file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/datasets.py
import torch import copy from torch.utils.data import Dataset class PPODataset(Dataset): def __init__(self, batch_size, minibatch_size, is_discrete, is_rnn, device, seq_len): self.is_rnn = is_rnn self.seq_len = seq_len self.batch_size = batch_size self.minibatch_size = minibatch_size self.device = device self.length = self.batch_size // self.minibatch_size self.is_discrete = is_discrete self.is_continuous = not is_discrete total_games = self.batch_size // self.seq_len self.num_games_batch = self.minibatch_size // self.seq_len self.game_indexes = torch.arange(total_games, dtype=torch.long, device=self.device) self.flat_indexes = torch.arange(total_games * self.seq_len, dtype=torch.long, device=self.device).reshape(total_games, self.seq_len) self.special_names = ['rnn_states'] def update_values_dict(self, values_dict): self.values_dict = values_dict def update_mu_sigma(self, mu, sigma): start = self.last_range[0] end = self.last_range[1] self.values_dict['mu'][start:end] = mu self.values_dict['sigma'][start:end] = sigma def __len__(self): return self.length def _get_item_rnn(self, idx): gstart = idx * self.num_games_batch gend = (idx + 1) * self.num_games_batch start = gstart * self.seq_len end = gend * self.seq_len self.last_range = (start, end) input_dict = {} for k,v in self.values_dict.items(): if k not in self.special_names: if v is dict: v_dict = { kd:vd[start:end] for kd, vd in v.items() } input_dict[k] = v_dict else: input_dict[k] = v[start:end] rnn_states = self.values_dict['rnn_states'] input_dict['rnn_states'] = [s[:,gstart:gend,:] for s in rnn_states] return input_dict def _get_item(self, idx): start = idx * self.minibatch_size end = (idx + 1) * self.minibatch_size self.last_range = (start, end) input_dict = {} for k,v in self.values_dict.items(): if k not in self.special_names and v is not None: if type(v) is dict: v_dict = { kd:vd[start:end] for kd, vd in v.items() } input_dict[k] = v_dict else: input_dict[k] = v[start:end] return input_dict def __getitem__(self, idx): if self.is_rnn: sample = self._get_item_rnn(idx) else: sample = self._get_item(idx) return sample class DatasetList(Dataset): def __init__(self): self.dataset_list = [] def __len__(self): return self.dataset_list[0].length * len(self.dataset_list) def add_dataset(self, dataset): self.dataset_list.append(copy.deepcopy(dataset)) def clear(self): self.dataset_list = [] def __getitem__(self, idx): ds_len = len(self.dataset_list) ds_idx = idx % ds_len in_idx = idx // ds_len return self.dataset_list[ds_idx].__getitem__(in_idx)
3,260
Python
33.326315
141
0.553067
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/player.py
import time import gym import numpy as np import torch from rl_games.common import env_configurations class BasePlayer(object): def __init__(self, config): self.config = config self.env_name = self.config['env_name'] self.env_config = self.config.get('env_config', {}) self.env_info = self.config.get('env_info') if self.env_info is None: self.env = self.create_env() self.env_info = env_configurations.get_env_info(self.env) self.value_size = self.env_info.get('value_size', 1) self.action_space = self.env_info['action_space'] self.num_agents = self.env_info['agents'] self.observation_space = self.env_info['observation_space'] if isinstance(self.observation_space, gym.spaces.Dict): self.obs_shape = {} for k, v in self.observation_space.spaces.items(): self.obs_shape[k] = v.shape else: self.obs_shape = self.observation_space.shape self.is_tensor_obses = False self.states = None self.player_config = self.config.get('player', {}) self.use_cuda = True self.batch_size = 1 self.has_batch_dimension = False self.has_central_value = self.config.get('central_value_config') is not None self.device_name = self.player_config.get('device_name', 'cuda') self.render_env = self.player_config.get('render', False) self.games_num = self.player_config.get('games_num', 2000) self.is_determenistic = self.player_config.get('determenistic', True) self.n_game_life = self.player_config.get('n_game_life', 1) self.print_stats = self.player_config.get('print_stats', True) self.render_sleep = self.player_config.get('render_sleep', 0.002) self.max_steps = 108000 // 4 self.device = torch.device(self.device_name) def _preproc_obs(self, obs_batch): if type(obs_batch) is dict: for k, v in obs_batch.items(): obs_batch[k] = self._preproc_obs(v) else: if obs_batch.dtype == torch.uint8: obs_batch = obs_batch.float() / 255.0 if self.normalize_input: obs_batch = self.running_mean_std(obs_batch) return obs_batch def env_step(self, env, actions): if not self.is_tensor_obses: actions = actions.cpu().numpy() obs, rewards, dones, infos = env.step(actions) if hasattr(obs, 'dtype') and obs.dtype == np.float64: obs = np.float32(obs) if self.value_size > 1: rewards = rewards[0] if self.is_tensor_obses: return self.obs_to_torch(obs), rewards.cpu(), dones.cpu(), infos else: if np.isscalar(dones): rewards = np.expand_dims(np.asarray(rewards), 0) dones = np.expand_dims(np.asarray(dones), 0) return self.obs_to_torch(obs), torch.from_numpy(rewards), torch.from_numpy(dones), infos def obs_to_torch(self, obs): if isinstance(obs, dict): if 'obs' in obs: obs = obs['obs'] if isinstance(obs, dict): upd_obs = {} for key, value in obs.items(): upd_obs[key] = self._obs_to_tensors_internal(value, False) else: upd_obs = self.cast_obs(obs) else: upd_obs = self.cast_obs(obs) return upd_obs def _obs_to_tensors_internal(self, obs, cast_to_dict=True): if isinstance(obs, dict): upd_obs = {} for key, value in obs.items(): upd_obs[key] = self._obs_to_tensors_internal(value, False) else: upd_obs = self.cast_obs(obs) return upd_obs def cast_obs(self, obs): if isinstance(obs, torch.Tensor): self.is_tensor_obses = True elif isinstance(obs, np.ndarray): assert(self.observation_space.dtype != np.int8) if self.observation_space.dtype == np.uint8: obs = torch.ByteTensor(obs).to(self.device) else: obs = torch.FloatTensor(obs).to(self.device) return obs def preprocess_actions(self, actions): if not self.is_tensor_obses: actions = actions.cpu().numpy() return actions def env_reset(self, env): obs = env.reset() return self.obs_to_torch(obs) def restore(self, fn): raise NotImplementedError('restore') def get_weights(self): weights = {} weights['model'] = self.model.state_dict() if self.normalize_input: weights['running_mean_std'] = self.running_mean_std.state_dict() return weights def set_weights(self, weights): self.model.load_state_dict(weights['model']) if self.normalize_input: self.running_mean_std.load_state_dict(weights['running_mean_std']) def create_env(self): return env_configurations.configurations[self.env_name]['env_creator'](**self.env_config) def get_action(self, obs, is_determenistic=False): raise NotImplementedError('step') def get_masked_action(self, obs, mask, is_determenistic=False): raise NotImplementedError('step') def reset(self): raise NotImplementedError('raise') def init_rnn(self): if self.is_rnn: rnn_states = self.model.get_default_rnn_state() self.states = [torch.zeros((s.size()[0], self.batch_size, s.size( )[2]), dtype=torch.float32).to(self.device) for s in rnn_states] def run(self): n_games = self.games_num render = self.render_env n_game_life = self.n_game_life is_determenistic = self.is_determenistic sum_rewards = 0 sum_steps = 0 sum_game_res = 0 n_games = n_games * n_game_life games_played = 0 has_masks = False has_masks_func = getattr(self.env, "has_action_mask", None) is not None op_agent = getattr(self.env, "create_agent", None) if op_agent: agent_inited = True #print('setting agent weights for selfplay') # self.env.create_agent(self.env.config) # self.env.set_weights(range(8),self.get_weights()) if has_masks_func: has_masks = self.env.has_action_mask() need_init_rnn = self.is_rnn for _ in range(n_games): if games_played >= n_games: break obses = self.env_reset(self.env) batch_size = 1 batch_size = self.get_batch_size(obses, batch_size) if need_init_rnn: self.init_rnn() need_init_rnn = False cr = torch.zeros(batch_size, dtype=torch.float32) steps = torch.zeros(batch_size, dtype=torch.float32) print_game_res = False for n in range(self.max_steps): if has_masks: masks = self.env.get_action_mask() action = self.get_masked_action( obses, masks, is_determenistic) else: action = self.get_action(obses, is_determenistic) obses, r, done, info = self.env_step(self.env, action) cr += r steps += 1 if render: self.env.render(mode='human') time.sleep(self.render_sleep) all_done_indices = done.nonzero(as_tuple=False) done_indices = all_done_indices[::self.num_agents] done_count = len(done_indices) games_played += done_count if done_count > 0: if self.is_rnn: for s in self.states: s[:, all_done_indices, :] = s[:, all_done_indices, :] * 0.0 cur_rewards = cr[done_indices].sum().item() cur_steps = steps[done_indices].sum().item() cr = cr * (1.0 - done.float()) steps = steps * (1.0 - done.float()) sum_rewards += cur_rewards sum_steps += cur_steps game_res = 0.0 if isinstance(info, dict): if 'battle_won' in info: print_game_res = True game_res = info.get('battle_won', 0.5) if 'scores' in info: print_game_res = True game_res = info.get('scores', 0.5) if self.print_stats: if print_game_res: print('reward:', cur_rewards/done_count, 'steps:', cur_steps/done_count, 'w:', game_res) else: print('reward:', cur_rewards/done_count, 'steps:', cur_steps/done_count) sum_game_res += game_res if batch_size//self.num_agents == 1 or games_played >= n_games: break print(sum_rewards) if print_game_res: print('av reward:', sum_rewards / games_played * n_game_life, 'av steps:', sum_steps / games_played * n_game_life, 'winrate:', sum_game_res / games_played * n_game_life) else: print('av reward:', sum_rewards / games_played * n_game_life, 'av steps:', sum_steps / games_played * n_game_life) def get_batch_size(self, obses, batch_size): obs_shape = self.obs_shape if type(self.obs_shape) is dict: if 'obs' in obses: obses = obses['obs'] keys_view = self.obs_shape.keys() keys_iterator = iter(keys_view) first_key = next(keys_iterator) obs_shape = self.obs_shape[first_key] obses = obses[first_key] if len(obses.size()) > len(obs_shape): batch_size = obses.size()[0] self.has_batch_dimension = True self.batch_size = batch_size return batch_size
10,359
Python
37.37037
100
0.529009
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/categorical.py
import numpy as np class CategoricalQ: def __init__(self, n_atoms, v_min, v_max): self.n_atoms = n_atoms self.v_min = v_min self.v_max = v_max self.delta_z = (v_max - v_min) / (n_atoms - 1) def distr_projection(self, next_distr, rewards, dones, gamma): """ Perform distribution projection aka Catergorical Algorithm from the "A Distributional Perspective on RL" paper """ proj_distr = np.zeros_like(next_distr, dtype=np.float32) n_atoms = self.n_atoms v_min = self.v_min v_max = self.v_max delta_z = self.delta_z for atom in range(n_atoms): z = rewards + (v_min + atom * delta_z) * gamma tz_j = np.clip(z, v_min, v_max) b_j = (tz_j - v_min) / delta_z l = np.floor(b_j).astype(np.int64) u = np.ceil(b_j).astype(np.int64) eq_mask = u == l proj_distr[eq_mask, l[eq_mask]] += next_distr[eq_mask, atom] ne_mask = u != l proj_distr[ne_mask, l[ne_mask]] += next_distr[ne_mask, atom] * (u - b_j)[ne_mask] proj_distr[ne_mask, u[ne_mask]] += next_distr[ne_mask, atom] * (b_j - l)[ne_mask] if dones.any(): proj_distr[dones] = 0.0 tz_j = np.clip(rewards[dones], v_min, v_max) b_j = (tz_j - v_min) / delta_z l = np.floor(b_j).astype(np.int64) u = np.ceil(b_j).astype(np.int64) eq_mask = u == l eq_dones = dones.copy() eq_dones[dones] = eq_mask if eq_dones.any(): proj_distr[eq_dones, l[eq_mask]] = 1.0 ne_mask = u != l ne_dones = dones.copy() ne_dones[dones] = ne_mask if ne_dones.any(): proj_distr[ne_dones, l[ne_mask]] = (u - b_j)[ne_mask] proj_distr[ne_dones, u[ne_mask]] = (b_j - l)[ne_mask] return proj_distr
1,977
Python
37.784313
93
0.49216
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/divergence.py
import torch import torch.distributions as dist def d_kl_discrete(p, q): # p = target, q = online # categorical distribution parametrized by logits logits_diff = p - q p_probs = torch.exp(p) d_kl = (p_probs * logits_diff).sum(-1) return d_kl def d_kl_discrete_list(p, q): d_kl = 0 for pi, qi in zip(p,q): d_kl += d_kl_discrete(pi, qi) return d_kl def d_kl_normal(p, q): # p = target, q = online p_mean, p_sigma = p q_mean, q_sigma = q mean_diff = ((q_mean - p_mean) / q_sigma).pow(2) var_ratio = (p_sigma / q_sigma).pow(2) d_kl = 0.5 * (var_ratio + mean_diff - 1 - var_ratio.log()) return d_kl.sum(-1)
680
Python
22.482758
62
0.570588
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/algo_observer.py
from rl_games.algos_torch import torch_ext import torch import numpy as np class AlgoObserver: def __init__(self): pass def before_init(self, base_name, config, experiment_name): pass def after_init(self, algo): pass def process_infos(self, infos, done_indices): pass def after_steps(self): pass def after_print_stats(self, frame, epoch_num, total_time): pass class DefaultAlgoObserver(AlgoObserver): def __init__(self): pass def after_init(self, algo): self.algo = algo self.game_scores = torch_ext.AverageMeter(1, self.algo.games_to_track).to(self.algo.ppo_device) self.writer = self.algo.writer def process_infos(self, infos, done_indices): if not infos: return if not isinstance(infos, dict) and len(infos) > 0 and isinstance(infos[0], dict): done_indices = done_indices.cpu() for ind in done_indices: ind = ind.item() if len(infos) <= ind//self.algo.num_agents: continue info = infos[ind//self.algo.num_agents] game_res = None if 'battle_won' in info: game_res = info['battle_won'] if 'scores' in info: game_res = info['scores'] if game_res is not None: self.game_scores.update(torch.from_numpy(np.asarray([game_res])).to(self.algo.ppo_device)) def after_clear_stats(self): self.game_scores.clear() def after_print_stats(self, frame, epoch_num, total_time): if self.game_scores.current_size > 0 and self.writer is not None: mean_scores = self.game_scores.get_mean() self.writer.add_scalar('scores/mean', mean_scores, frame) self.writer.add_scalar('scores/iter', mean_scores, epoch_num) self.writer.add_scalar('scores/time', mean_scores, total_time)
2,001
Python
31.290322
110
0.578211
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/ivecenv.py
class IVecEnv: def step(self, actions): raise NotImplementedError def reset(self): raise NotImplementedError def has_action_masks(self): return False def get_number_of_agents(self): return 1 def get_env_info(self): pass def set_train_info(self, env_frames, *args, **kwargs): """ Send the information in the direction algo->environment. Most common use case: tell the environment how far along we are in the training process. This is useful for implementing curriculums and things such as that. """ pass def get_env_state(self): """ Return serializable environment state to be saved to checkpoint. Can be used for stateful training sessions, i.e. with adaptive curriculums. """ return None def set_env_state(self, env_state): pass
905
Python
25.647058
111
0.624309
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/vecenv.py
import ray from rl_games.common.ivecenv import IVecEnv from rl_games.common.env_configurations import configurations from rl_games.common.tr_helpers import dicts_to_dict_with_arrays import numpy as np import gym from time import sleep class RayWorker: def __init__(self, config_name, config): self.env = configurations[config_name]['env_creator'](**config) #self.obs = self.env.reset() def step(self, action): next_state, reward, is_done, info = self.env.step(action) if np.isscalar(is_done): episode_done = is_done else: episode_done = is_done.all() if episode_done: next_state = self.reset() if isinstance(next_state, dict): for k,v in next_state.items(): if isinstance(v, dict): for dk,dv in v.items(): if dv.dtype == np.float64: v[dk] = dv.astype(np.float32) else: if v.dtype == np.float64: next_state[k] = v.astype(np.float32) else: if next_state.dtype == np.float64: next_state = next_state.astype(np.float32) return next_state, reward, is_done, info def render(self): self.env.render() def reset(self): self.obs = self.env.reset() return self.obs def get_action_mask(self): return self.env.get_action_mask() def get_number_of_agents(self): if hasattr(self.env, 'get_number_of_agents'): return self.env.get_number_of_agents() else: return 1 def set_weights(self, weights): self.env.update_weights(weights) def can_concat_infos(self): if hasattr(self.env, 'concat_infos'): return self.env.concat_infos else: return False def get_env_info(self): info = {} observation_space = self.env.observation_space #if isinstance(observation_space, gym.spaces.dict.Dict): # observation_space = observation_space['observations'] info['action_space'] = self.env.action_space info['observation_space'] = observation_space info['state_space'] = None info['use_global_observations'] = False info['agents'] = self.get_number_of_agents() info['value_size'] = 1 if hasattr(self.env, 'use_central_value'): info['use_global_observations'] = self.env.use_central_value if hasattr(self.env, 'value_size'): info['value_size'] = self.env.value_size if hasattr(self.env, 'state_space'): info['state_space'] = self.env.state_space return info class RayVecEnv(IVecEnv): def __init__(self, config_name, num_actors, **kwargs): self.config_name = config_name self.num_actors = num_actors self.use_torch = False self.remote_worker = ray.remote(RayWorker) self.workers = [self.remote_worker.remote(self.config_name, kwargs) for i in range(self.num_actors)] res = self.workers[0].get_number_of_agents.remote() self.num_agents = ray.get(res) res = self.workers[0].get_env_info.remote() env_info = ray.get(res) res = self.workers[0].can_concat_infos.remote() can_concat_infos = ray.get(res) self.use_global_obs = env_info['use_global_observations'] self.concat_infos = can_concat_infos self.obs_type_dict = type(env_info.get('observation_space')) is gym.spaces.Dict self.state_type_dict = type(env_info.get('state_space')) is gym.spaces.Dict if self.num_agents == 1: self.concat_func = np.stack else: self.concat_func = np.concatenate def step(self, actions): newobs, newstates, newrewards, newdones, newinfos = [], [], [], [], [] res_obs = [] if self.num_agents == 1: for (action, worker) in zip(actions, self.workers): res_obs.append(worker.step.remote(action)) else: for num, worker in enumerate(self.workers): res_obs.append(worker.step.remote(actions[self.num_agents * num: self.num_agents * num + self.num_agents])) all_res = ray.get(res_obs) for res in all_res: cobs, crewards, cdones, cinfos = res if self.use_global_obs: newobs.append(cobs["obs"]) newstates.append(cobs["state"]) else: newobs.append(cobs) newrewards.append(crewards) newdones.append(cdones) newinfos.append(cinfos) if self.obs_type_dict: ret_obs = dicts_to_dict_with_arrays(newobs, self.num_agents == 1) else: ret_obs = self.concat_func(newobs) if self.use_global_obs: newobsdict = {} newobsdict["obs"] = ret_obs if self.state_type_dict: newobsdict["states"] = dicts_to_dict_with_arrays(newstates, True) else: newobsdict["states"] = np.stack(newstates) ret_obs = newobsdict if self.concat_infos: newinfos = dicts_to_dict_with_arrays(newinfos, False) return ret_obs, self.concat_func(newrewards), self.concat_func(newdones), newinfos def get_env_info(self): res = self.workers[0].get_env_info.remote() return ray.get(res) def set_weights(self, indices, weights): res = [] for ind in indices: res.append(self.workers[ind].set_weights.remote(weights)) ray.get(res) def has_action_masks(self): return True def get_action_masks(self): mask = [worker.get_action_mask.remote() for worker in self.workers] return np.asarray(ray.get(mask), dtype=np.int32) def reset(self): res_obs = [worker.reset.remote() for worker in self.workers] newobs, newstates = [],[] for res in res_obs: cobs = ray.get(res) if self.use_global_obs: newobs.append(cobs["obs"]) newstates.append(cobs["state"]) else: newobs.append(cobs) if self.obs_type_dict: ret_obs = dicts_to_dict_with_arrays(newobs, self.num_agents == 1) else: ret_obs = self.concat_func(newobs) if self.use_global_obs: newobsdict = {} newobsdict["obs"] = ret_obs if self.state_type_dict: newobsdict["states"] = dicts_to_dict_with_arrays(newstates, True) else: newobsdict["states"] = np.stack(newstates) ret_obs = newobsdict return ret_obs # todo rename multi-agent class RayVecSMACEnv(IVecEnv): def __init__(self, config_name, num_actors, **kwargs): self.config_name = config_name self.num_actors = num_actors self.remote_worker = ray.remote(RayWorker) self.workers = [self.remote_worker.remote(self.config_name, kwargs) for i in range(self.num_actors)] res = self.workers[0].get_number_of_agents.remote() self.num_agents = ray.get(res) res = self.workers[0].get_env_info.remote() env_info = ray.get(res) self.use_global_obs = env_info['use_global_observations'] def get_env_info(self): res = self.workers[0].get_env_info.remote() return ray.get(res) def get_number_of_agents(self): return self.num_agents def step(self, actions): newobs, newstates, newrewards, newdones, newinfos = [], [], [], [], [] newobsdict = {} res_obs, res_state = [], [] for num, worker in enumerate(self.workers): res_obs.append(worker.step.remote(actions[self.num_agents * num: self.num_agents * num + self.num_agents])) for res in res_obs: cobs, crewards, cdones, cinfos = ray.get(res) if self.use_global_obs: newobs.append(cobs["obs"]) newstates.append(cobs["state"]) else: newobs.append(cobs) newrewards.append(crewards) newdones.append(cdones) newinfos.append(cinfos) if self.use_global_obs: newobsdict["obs"] = np.concatenate(newobs, axis=0) newobsdict["states"] = np.asarray(newstates) ret_obs = newobsdict else: ret_obs = np.concatenate(newobs, axis=0) return ret_obs, np.concatenate(newrewards, axis=0), np.concatenate(newdones, axis=0), newinfos def has_action_masks(self): return True def get_action_masks(self): mask = [worker.get_action_mask.remote() for worker in self.workers] masks = ray.get(mask) return np.concatenate(masks, axis=0) def reset(self): res_obs = [worker.reset.remote() for worker in self.workers] if self.use_global_obs: newobs, newstates = [],[] for res in res_obs: cobs = ray.get(res) if self.use_global_obs: newobs.append(cobs["obs"]) newstates.append(cobs["state"]) else: newobs.append(cobs) newobsdict = {} newobsdict["obs"] = np.concatenate(newobs, axis=0) newobsdict["states"] = np.asarray(newstates) ret_obs = newobsdict else: ret_obs = ray.get(res_obs) ret_obs = np.concatenate(ret_obs, axis=0) return ret_obs vecenv_config = {} def register(config_name, func): vecenv_config[config_name] = func def create_vec_env(config_name, num_actors, **kwargs): vec_env_name = configurations[config_name]['vecenv_type'] return vecenv_config[vec_env_name](config_name, num_actors, **kwargs) register('RAY', lambda config_name, num_actors, **kwargs: RayVecEnv(config_name, num_actors, **kwargs)) register('RAY_SMAC', lambda config_name, num_actors, **kwargs: RayVecSMACEnv(config_name, num_actors, **kwargs)) from rl_games.envs.brax import BraxEnv register('BRAX', lambda config_name, num_actors, **kwargs: BraxEnv(config_name, num_actors, **kwargs))
10,351
Python
34.696552
123
0.571539
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/tr_helpers.py
import numpy as np from collections import defaultdict class LinearValueProcessor: def __init__(self, start_eps, end_eps, end_eps_frames): self.start_eps = start_eps self.end_eps = end_eps self.end_eps_frames = end_eps_frames def __call__(self, frame): if frame >= self.end_eps_frames: return self.end_eps df = frame / self.end_eps_frames return df * self.end_eps + (1.0 - df) * self.start_eps class DefaultRewardsShaper: def __init__(self, scale_value = 1, shift_value = 0, min_val=-np.inf, max_val=np.inf, is_torch=True): self.scale_value = scale_value self.shift_value = shift_value self.min_val = min_val self.max_val = max_val self.is_torch = is_torch def __call__(self, reward): reward = reward + self.shift_value reward = reward * self.scale_value if self.is_torch: import torch reward = torch.clamp(reward, self.min_val, self.max_val) else: reward = np.clip(reward, self.min_val, self.max_val) return reward def dicts_to_dict_with_arrays(dicts, add_batch_dim = True): def stack(v): if len(np.shape(v)) == 1: return np.array(v) else: return np.stack(v) def concatenate(v): if len(np.shape(v)) == 1: return np.array(v) else: return np.concatenate(v) dicts_len = len(dicts) if(dicts_len <= 1): return dicts res = defaultdict(list) { res[key].append(sub[key]) for sub in dicts for key in sub } if add_batch_dim: concat_func = stack else: concat_func = concatenate res = {k : concat_func(v) for k,v in res.items()} return res def unsqueeze_obs(obs): if type(obs) is dict: for k,v in obs.items(): obs[k] = unsqueeze_obs(v) else: obs = obs.unsqueeze(0) return obs def flatten_first_two_dims(arr): if arr.ndim > 2: return arr.reshape(-1, *arr.shape[-(arr.ndim-2):]) else: return arr.reshape(-1) def free_mem(): import ctypes ctypes.CDLL('libc.so.6').malloc_trim(0)
2,203
Python
26.898734
105
0.568316
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/object_factory.py
class ObjectFactory: def __init__(self): self._builders = {} def register_builder(self, name, builder): self._builders[name] = builder def set_builders(self, builders): self._builders = builders def create(self, name, **kwargs): builder = self._builders.get(name) if not builder: raise ValueError(name) return builder(**kwargs)
414
Python
26.666665
46
0.584541
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/transforms/soft_augmentation.py
from rl_games.common.transforms import transforms import torch class SoftAugmentation(): def __init__(self, **kwargs): self.transform_config = kwargs.pop('transform') self.aug_coef = kwargs.pop('aug_coef', 0.001) print('aug coef:', self.aug_coef) self.name = self.transform_config['name'] #TODO: remove hardcode self.transform = transforms.ImageDatasetTransform(**self.transform_config) def get_coef(self): return self.aug_coef def get_loss(self, p_dict, model, input_dict, loss_type = 'both'): ''' loss_type: 'critic', 'policy', 'both' ''' if self.transform: input_dict = self.transform(input_dict) loss = 0 q_dict = model(input_dict) if loss_type == 'policy' or loss_type == 'both': p_dict['logits'] = p_dict['logits'].detach() loss = model.kl(p_dict, q_dict) if loss_type == 'critic' or loss_type == 'both': p_value = p_dict['value'].detach() q_value = q_dict['value'] loss = loss + (0.5 * (p_value - q_value)**2).sum(dim=-1) return loss
1,165
Python
34.333332
82
0.559657
vstrozzi/FRL-SHAC-Extension/externals/rl_games/rl_games/common/transforms/transforms.py
import torch from torch import nn class DatasetTransform(nn.Module): def __init__(self): super().__init__() def forward(self, dataset): return dataset class ImageDatasetTransform(DatasetTransform): def __init__(self, **kwargs): super().__init__() import kornia self.transform = torch.nn.Sequential( nn.ReplicationPad2d(4), kornia.augmentation.RandomCrop((84,84)) #kornia.augmentation.RandomErasing(p=0.2), #kornia.augmentation.RandomAffine(degrees=0, translate=(2.0/84,2.0/84), p=1), #kornia.augmentation.RandomCrop((84,84)) ) def forward(self, dataset): dataset['obs'] = self.transform(dataset['obs']) return dataset
746
Python
27.730768
85
0.619303
vstrozzi/FRL-SHAC-Extension/models/model_utils.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch.nn as nn def init(module, weight_init, bias_init, gain=1): weight_init(module.weight.data, gain=gain) bias_init(module.bias.data) return module def get_activation_func(activation_name): if activation_name.lower() == 'tanh': return nn.Tanh() elif activation_name.lower() == 'relu': return nn.ReLU() elif activation_name.lower() == 'elu': return nn.ELU() elif activation_name.lower() == 'identity': return nn.Identity() else: raise NotImplementedError('Actication func {} not defined'.format(activation_name))
1,018
Python
39.759998
91
0.720039
vstrozzi/FRL-SHAC-Extension/models/actor.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import torch.nn as nn from torch.distributions.normal import Normal import numpy as np from models import model_utils class ActorDeterministicMLP(nn.Module): def __init__(self, obs_dim, action_dim, cfg_network, device='cuda:0'): super(ActorDeterministicMLP, self).__init__() self.device = device self.layer_dims = [obs_dim] + cfg_network['actor_mlp']['units'] + [action_dim] init_ = lambda m: model_utils.init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0), np.sqrt(2)) modules = [] for i in range(len(self.layer_dims) - 1): modules.append(init_(nn.Linear(self.layer_dims[i], self.layer_dims[i + 1]))) if i < len(self.layer_dims) - 2: modules.append(model_utils.get_activation_func(cfg_network['actor_mlp']['activation'])) modules.append(torch.nn.LayerNorm(self.layer_dims[i+1])) self.actor = nn.Sequential(*modules).to(device) self.action_dim = action_dim self.obs_dim = obs_dim print(self.actor) def get_logstd(self): # return self.logstd return None def forward(self, observations, deterministic = False): return self.actor(observations) class ActorStochasticMLP(nn.Module): def __init__(self, obs_dim, action_dim, cfg_network, device='cuda:0'): super(ActorStochasticMLP, self).__init__() self.device = device self.layer_dims = [obs_dim] + cfg_network['actor_mlp']['units'] + [action_dim] init_ = lambda m: model_utils.init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0), np.sqrt(2)) modules = [] for i in range(len(self.layer_dims) - 1): modules.append(nn.Linear(self.layer_dims[i], self.layer_dims[i + 1])) if i < len(self.layer_dims) - 2: modules.append(model_utils.get_activation_func(cfg_network['actor_mlp']['activation'])) modules.append(torch.nn.LayerNorm(self.layer_dims[i+1])) else: modules.append(model_utils.get_activation_func('identity')) self.mu_net = nn.Sequential(*modules).to(device) logstd = cfg_network.get('actor_logstd_init', -1.0) self.logstd = torch.nn.Parameter(torch.ones(action_dim, dtype=torch.float32, device=device) * logstd) self.action_dim = action_dim self.obs_dim = obs_dim print(self.mu_net) print(self.logstd) def get_logstd(self): return self.logstd def forward(self, obs, deterministic = False): mu = self.mu_net(obs) if deterministic: return mu else: std = self.logstd.exp() # (num_actions) # eps = torch.randn((*obs.shape[:-1], std.shape[-1])).to(self.device) # sample = mu + eps * std dist = Normal(mu, std) sample = dist.rsample() return sample def forward_with_dist(self, obs, deterministic = False): mu = self.mu_net(obs) std = self.logstd.exp() # (num_actions) if deterministic: return mu, mu, std else: dist = Normal(mu, std) sample = dist.rsample() return sample, mu, std def evaluate_actions_log_probs(self, obs, actions): mu = self.mu_net(obs) std = self.logstd.exp() dist = Normal(mu, std) return dist.log_prob(actions)
3,988
Python
33.991228
109
0.595286
vstrozzi/FRL-SHAC-Extension/models/critic.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import torch.nn as nn import numpy as np from models import model_utils class CriticMLP(nn.Module): def __init__(self, obs_dim, cfg_network, device='cuda:0'): super(CriticMLP, self).__init__() self.device = device self.layer_dims = [obs_dim] + cfg_network['critic_mlp']['units'] + [1] init_ = lambda m: model_utils.init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0), np.sqrt(2)) modules = [] for i in range(len(self.layer_dims) - 1): modules.append(init_(nn.Linear(self.layer_dims[i], self.layer_dims[i + 1]))) if i < len(self.layer_dims) - 2: modules.append(model_utils.get_activation_func(cfg_network['critic_mlp']['activation'])) modules.append(torch.nn.LayerNorm(self.layer_dims[i + 1])) self.critic = nn.Sequential(*modules).to(device) self.obs_dim = obs_dim print(self.critic) def forward(self, observations): return self.critic(observations)
1,505
Python
36.649999
104
0.646512
vstrozzi/FRL-SHAC-Extension/dflex/setup.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import setuptools setuptools.setup( name="dflex", version="0.0.1", author="NVIDIA", author_email="[email protected]", description="Differentiable Multiphysics for Python", long_description="", long_description_content_type="text/markdown", # url="https://github.com/pypa/sampleproject", packages=setuptools.find_packages(), package_data={"": ["*.h"]}, classifiers=[ "Programming Language :: Python :: 3", "Operating System :: OS Independent", ], install_requires=["ninja", "torch"], )
983
Python
35.444443
76
0.713123
vstrozzi/FRL-SHAC-Extension/dflex/README.md
# A Differentiable Multiphysics Engine for PyTorch dFlex is a physics engine for Python. It is written entirely in PyTorch and supports reverse mode differentiation w.r.t. to any simulation inputs. It includes a USD-based visualization library (`dflex.render`), which can generate time-sampled USD files, or update an existing stage on-the-fly. ## Prerequisites * Python 3.6 * PyTorch 1.4.0 or higher * Pixar USD lib (for visualization) Pre-built USD Python libraries can be downloaded from https://developer.nvidia.com/usd, once they are downloaded you should follow the instructions to add them to your PYTHONPATH environment variable. ## Using the built-in backend By default dFlex uses the built-in PyTorch cpp-extensions mechanism to compile auto-generated simulation kernels. - Windows users should ensure they have Visual Studio 2019 installed ## Setup and Running To use the engine you can import first the simulation module: ```python import dflex.sim ``` To build physical models there is a helper class available in `dflex.sim.ModelBuilder`. This can be used to create models programmatically from Python. For example, to create a chain of particles: ```python builder = dflex.sim.ModelBuilder() # anchor point (zero mass) builder.add_particle((0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0) # build chain for i in range(1,10): builder.add_particle((i, 1.0, 0.0), (0.0, 0.0, 0.0), 1.0) builder.add_spring(i-1, i, 1.e+3, 0.0, 0) # add ground plane builder.add_shape_plane((0.0, 1.0, 0.0, 0.0), 0) ``` Once you have built your model you must convert it to a finalized PyTorch simulation data structure using `finalize()`: ```python model = builder.finalize('cpu') ``` The model object represents static (non-time varying) data such as constraints, collision shapes, etc. The model is stored in PyTorch tensors, allowing differentiation with respect to both model and state. ## Time Stepping To advance the simulation forward in time (forward dynamics), we use an `integrator` object. dFlex currently offers semi-implicit and fully implicit (planned), via. the `dflex.sim.ExplicitIntegrator`, and `dflex.sim.ImplicitIntegrator` classes as follows: ```python sim_dt = 1.0/60.0 sim_steps = 100 integrator = dflex.sim.ExplicitIntegrator() for i in range(0, sim_steps): state = integrator.forward(model, state, sim_dt) ``` ## Rendering To visualize the scene dFlex supports a USD-based update via. the `dflex.render.UsdRenderer` class. To create a renderer you must first create the USD stage, and the physical model. ```python import dflex.render stage = Usd.Stage.CreateNew("test.usda") renderer = dflex.render.UsdRenderer(model, stage) renderer.draw_points = True renderer.draw_springs = True renderer.draw_shapes = True ``` Each frame the renderer should be updated with the current model state and the current elapsed simulation time: ```python renderer.update(state, sim_time) ``` ## Contact Miles Macklin ([email protected])
3,065
Markdown
32.326087
255
0.730832
vstrozzi/FRL-SHAC-Extension/dflex/build/lib/dflex/mat33.h
#pragma once //---------------------------------------------------------- // mat33 struct mat33 { inline CUDA_CALLABLE mat33(float3 c0, float3 c1, float3 c2) { data[0][0] = c0.x; data[1][0] = c0.y; data[2][0] = c0.z; data[0][1] = c1.x; data[1][1] = c1.y; data[2][1] = c1.z; data[0][2] = c2.x; data[1][2] = c2.y; data[2][2] = c2.z; } inline CUDA_CALLABLE mat33(float m00=0.0f, float m01=0.0f, float m02=0.0f, float m10=0.0f, float m11=0.0f, float m12=0.0f, float m20=0.0f, float m21=0.0f, float m22=0.0f) { data[0][0] = m00; data[1][0] = m10; data[2][0] = m20; data[0][1] = m01; data[1][1] = m11; data[2][1] = m21; data[0][2] = m02; data[1][2] = m12; data[2][2] = m22; } CUDA_CALLABLE float3 get_row(int index) const { return (float3&)data[index]; } CUDA_CALLABLE void set_row(int index, const float3& v) { (float3&)data[index] = v; } CUDA_CALLABLE float3 get_col(int index) const { return float3(data[0][index], data[1][index], data[2][index]); } CUDA_CALLABLE void set_col(int index, const float3& v) { data[0][index] = v.x; data[1][index] = v.y; data[2][index] = v.z; } // row major storage assumed to be compatible with PyTorch float data[3][3]; }; #ifdef CUDA inline __device__ void atomic_add(mat33 * addr, mat33 value) { atomicAdd(&((addr -> data)[0][0]), value.data[0][0]); atomicAdd(&((addr -> data)[1][0]), value.data[1][0]); atomicAdd(&((addr -> data)[2][0]), value.data[2][0]); atomicAdd(&((addr -> data)[0][1]), value.data[0][1]); atomicAdd(&((addr -> data)[1][1]), value.data[1][1]); atomicAdd(&((addr -> data)[2][1]), value.data[2][1]); atomicAdd(&((addr -> data)[0][2]), value.data[0][2]); atomicAdd(&((addr -> data)[1][2]), value.data[1][2]); atomicAdd(&((addr -> data)[2][2]), value.data[2][2]); } #endif inline CUDA_CALLABLE void adj_mat33(float3 c0, float3 c1, float3 c2, float3& a0, float3& a1, float3& a2, const mat33& adj_ret) { // column constructor a0 += adj_ret.get_col(0); a1 += adj_ret.get_col(1); a2 += adj_ret.get_col(2); } inline CUDA_CALLABLE void adj_mat33(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22, float& a00, float& a01, float& a02, float& a10, float& a11, float& a12, float& a20, float& a21, float& a22, const mat33& adj_ret) { printf("todo\n"); } inline CUDA_CALLABLE float index(const mat33& m, int row, int col) { return m.data[row][col]; } inline CUDA_CALLABLE mat33 add(const mat33& a, const mat33& b) { mat33 t; for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { t.data[i][j] = a.data[i][j] + b.data[i][j]; } } return t; } inline CUDA_CALLABLE mat33 mul(const mat33& a, float b) { mat33 t; for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { t.data[i][j] = a.data[i][j]*b; } } return t; } inline CUDA_CALLABLE float3 mul(const mat33& a, const float3& b) { float3 r = a.get_col(0)*b.x + a.get_col(1)*b.y + a.get_col(2)*b.z; return r; } inline CUDA_CALLABLE mat33 mul(const mat33& a, const mat33& b) { mat33 t; for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { for (int k=0; k < 3; ++k) { t.data[i][j] += a.data[i][k]*b.data[k][j]; } } } return t; } inline CUDA_CALLABLE mat33 transpose(const mat33& a) { mat33 t; for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { t.data[i][j] = a.data[j][i]; } } return t; } inline CUDA_CALLABLE float determinant(const mat33& m) { return dot(float3(m.data[0]), cross(float3(m.data[1]), float3(m.data[2]))); } inline CUDA_CALLABLE mat33 outer(const float3& a, const float3& b) { return mat33(a*b.x, a*b.y, a*b.z); } inline CUDA_CALLABLE mat33 skew(const float3& a) { mat33 out(0.0f, -a.z, a.y, a.z, 0.0f, -a.x, -a.y, a.x, 0.0f); return out; } inline void CUDA_CALLABLE adj_index(const mat33& m, int row, int col, mat33& adj_m, int& adj_row, int& adj_col, float adj_ret) { adj_m.data[row][col] += adj_ret; } inline CUDA_CALLABLE void adj_add(const mat33& a, const mat33& b, mat33& adj_a, mat33& adj_b, const mat33& adj_ret) { for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { adj_a.data[i][j] += adj_ret.data[i][j]; adj_b.data[i][j] += adj_ret.data[i][j]; } } } inline CUDA_CALLABLE void adj_mul(const mat33& a, float b, mat33& adj_a, float& adj_b, const mat33& adj_ret) { for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { adj_a.data[i][j] += b*adj_ret.data[i][j]; adj_b += a.data[i][j]*adj_ret.data[i][j]; } } } inline CUDA_CALLABLE void adj_mul(const mat33& a, const float3& b, mat33& adj_a, float3& adj_b, const float3& adj_ret) { adj_a += outer(adj_ret, b); adj_b += mul(transpose(a), adj_ret); } inline CUDA_CALLABLE void adj_mul(const mat33& a, const mat33& b, mat33& adj_a, mat33& adj_b, const mat33& adj_ret) { adj_a += mul(adj_ret, transpose(b)); adj_b += mul(transpose(a), adj_ret); } inline CUDA_CALLABLE void adj_transpose(const mat33& a, mat33& adj_a, const mat33& adj_ret) { adj_a += transpose(adj_ret); } inline CUDA_CALLABLE void adj_determinant(const mat33& m, mat33& adj_m, float adj_ret) { (float3&)adj_m.data[0] += cross(m.get_row(1), m.get_row(2))*adj_ret; (float3&)adj_m.data[1] += cross(m.get_row(2), m.get_row(0))*adj_ret; (float3&)adj_m.data[2] += cross(m.get_row(0), m.get_row(1))*adj_ret; } inline CUDA_CALLABLE void adj_skew(const float3& a, float3& adj_a, const mat33& adj_ret) { mat33 out(0.0f, -a.z, a.y, a.z, 0.0f, -a.x, -a.y, a.x, 0.0f); adj_a.x += adj_ret.data[2][1] - adj_ret.data[1][2]; adj_a.y += adj_ret.data[0][2] - adj_ret.data[2][0]; adj_a.z += adj_ret.data[1][0] - adj_ret.data[0][1]; }
6,549
C
24.192308
126
0.505726
vstrozzi/FRL-SHAC-Extension/dflex/build/lib/dflex/spatial.h
#pragma once //--------------------------------------------------------------------------------- // Represents a twist in se(3) struct spatial_vector { float3 w; float3 v; CUDA_CALLABLE inline spatial_vector(float a, float b, float c, float d, float e, float f) : w(a, b, c), v(d, e, f) {} CUDA_CALLABLE inline spatial_vector(float3 w=float3(), float3 v=float3()) : w(w), v(v) {} CUDA_CALLABLE inline spatial_vector(float a) : w(a, a, a), v(a, a, a) {} CUDA_CALLABLE inline float operator[](int index) const { assert(index < 6); return (&w.x)[index]; } CUDA_CALLABLE inline float& operator[](int index) { assert(index < 6); return (&w.x)[index]; } }; CUDA_CALLABLE inline spatial_vector operator - (spatial_vector a) { return spatial_vector(-a.w, -a.v); } CUDA_CALLABLE inline spatial_vector add(const spatial_vector& a, const spatial_vector& b) { return { a.w + b.w, a.v + b.v }; } CUDA_CALLABLE inline spatial_vector sub(const spatial_vector& a, const spatial_vector& b) { return { a.w - b.w, a.v - b.v }; } CUDA_CALLABLE inline spatial_vector mul(const spatial_vector& a, float s) { return { a.w*s, a.v*s }; } CUDA_CALLABLE inline float spatial_dot(const spatial_vector& a, const spatial_vector& b) { return dot(a.w, b.w) + dot(a.v, b.v); } CUDA_CALLABLE inline spatial_vector spatial_cross(const spatial_vector& a, const spatial_vector& b) { float3 w = cross(a.w, b.w); float3 v = cross(a.v, b.w) + cross(a.w, b.v); return spatial_vector(w, v); } CUDA_CALLABLE inline spatial_vector spatial_cross_dual(const spatial_vector& a, const spatial_vector& b) { float3 w = cross(a.w, b.w) + cross(a.v, b.v); float3 v = cross(a.w, b.v); return spatial_vector(w, v); } CUDA_CALLABLE inline float3 spatial_top(const spatial_vector& a) { return a.w; } CUDA_CALLABLE inline float3 spatial_bottom(const spatial_vector& a) { return a.v; } // adjoint methods CUDA_CALLABLE inline void adj_spatial_vector( float a, float b, float c, float d, float e, float f, float& adj_a, float& adj_b, float& adj_c, float& adj_d, float& adj_e,float& adj_f, const spatial_vector& adj_ret) { adj_a += adj_ret.w.x; adj_b += adj_ret.w.y; adj_c += adj_ret.w.z; adj_d += adj_ret.v.x; adj_e += adj_ret.v.y; adj_f += adj_ret.v.z; } CUDA_CALLABLE inline void adj_spatial_vector(const float3& w, const float3& v, float3& adj_w, float3& adj_v, const spatial_vector& adj_ret) { adj_w += adj_ret.w; adj_v += adj_ret.v; } CUDA_CALLABLE inline void adj_add(const spatial_vector& a, const spatial_vector& b, spatial_vector& adj_a, spatial_vector& adj_b, const spatial_vector& adj_ret) { adj_add(a.w, b.w, adj_a.w, adj_b.w, adj_ret.w); adj_add(a.v, b.v, adj_a.v, adj_b.v, adj_ret.v); } CUDA_CALLABLE inline void adj_sub(const spatial_vector& a, const spatial_vector& b, spatial_vector& adj_a, spatial_vector& adj_b, const spatial_vector& adj_ret) { adj_sub(a.w, b.w, adj_a.w, adj_b.w, adj_ret.w); adj_sub(a.v, b.v, adj_a.v, adj_b.v, adj_ret.v); } CUDA_CALLABLE inline void adj_mul(const spatial_vector& a, float s, spatial_vector& adj_a, float& adj_s, const spatial_vector& adj_ret) { adj_mul(a.w, s, adj_a.w, adj_s, adj_ret.w); adj_mul(a.v, s, adj_a.v, adj_s, adj_ret.v); } CUDA_CALLABLE inline void adj_spatial_dot(const spatial_vector& a, const spatial_vector& b, spatial_vector& adj_a, spatial_vector& adj_b, const float& adj_ret) { adj_dot(a.w, b.w, adj_a.w, adj_b.w, adj_ret); adj_dot(a.v, b.v, adj_a.v, adj_b.v, adj_ret); } CUDA_CALLABLE inline void adj_spatial_cross(const spatial_vector& a, const spatial_vector& b, spatial_vector& adj_a, spatial_vector& adj_b, const spatial_vector& adj_ret) { adj_cross(a.w, b.w, adj_a.w, adj_b.w, adj_ret.w); adj_cross(a.v, b.w, adj_a.v, adj_b.w, adj_ret.v); adj_cross(a.w, b.v, adj_a.w, adj_b.v, adj_ret.v); } CUDA_CALLABLE inline void adj_spatial_cross_dual(const spatial_vector& a, const spatial_vector& b, spatial_vector& adj_a, spatial_vector& adj_b, const spatial_vector& adj_ret) { adj_cross(a.w, b.w, adj_a.w, adj_b.w, adj_ret.w); adj_cross(a.v, b.v, adj_a.v, adj_b.v, adj_ret.w); adj_cross(a.w, b.v, adj_a.w, adj_b.v, adj_ret.v); } CUDA_CALLABLE inline void adj_spatial_top(const spatial_vector& a, spatial_vector& adj_a, const float3& adj_ret) { adj_a.w += adj_ret; } CUDA_CALLABLE inline void adj_spatial_bottom(const spatial_vector& a, spatial_vector& adj_a, const float3& adj_ret) { adj_a.v += adj_ret; } #ifdef CUDA inline __device__ void atomic_add(spatial_vector* addr, const spatial_vector& value) { atomic_add(&addr->w, value.w); atomic_add(&addr->v, value.v); } #endif //--------------------------------------------------------------------------------- // Represents a rigid body transformation struct spatial_transform { float3 p; quat q; CUDA_CALLABLE inline spatial_transform(float3 p=float3(), quat q=quat()) : p(p), q(q) {} CUDA_CALLABLE inline spatial_transform(float) {} // helps uniform initialization }; CUDA_CALLABLE inline spatial_transform spatial_transform_identity() { return spatial_transform(float3(), quat_identity()); } CUDA_CALLABLE inline float3 spatial_transform_get_translation(const spatial_transform& t) { return t.p; } CUDA_CALLABLE inline quat spatial_transform_get_rotation(const spatial_transform& t) { return t.q; } CUDA_CALLABLE inline spatial_transform spatial_transform_multiply(const spatial_transform& a, const spatial_transform& b) { return { rotate(a.q, b.p) + a.p, mul(a.q, b.q) }; } /* CUDA_CALLABLE inline spatial_transform spatial_transform_inverse(const spatial_transform& t) { quat q_inv = inverse(t.q); return spatial_transform(-rotate(q_inv, t.p), q_inv); } */ CUDA_CALLABLE inline float3 spatial_transform_vector(const spatial_transform& t, const float3& x) { return rotate(t.q, x); } CUDA_CALLABLE inline float3 spatial_transform_point(const spatial_transform& t, const float3& x) { return t.p + rotate(t.q, x); } // Frank & Park definition 3.20, pg 100 CUDA_CALLABLE inline spatial_vector spatial_transform_twist(const spatial_transform& t, const spatial_vector& x) { float3 w = rotate(t.q, x.w); float3 v = rotate(t.q, x.v) + cross(t.p, w); return spatial_vector(w, v); } CUDA_CALLABLE inline spatial_vector spatial_transform_wrench(const spatial_transform& t, const spatial_vector& x) { float3 v = rotate(t.q, x.v); float3 w = rotate(t.q, x.w) + cross(t.p, v); return spatial_vector(w, v); } CUDA_CALLABLE inline spatial_transform add(const spatial_transform& a, const spatial_transform& b) { return { a.p + b.p, a.q + b.q }; } CUDA_CALLABLE inline spatial_transform sub(const spatial_transform& a, const spatial_transform& b) { return { a.p - b.p, a.q - b.q }; } CUDA_CALLABLE inline spatial_transform mul(const spatial_transform& a, float s) { return { a.p*s, a.q*s }; } // adjoint methods CUDA_CALLABLE inline void adj_add(const spatial_transform& a, const spatial_transform& b, spatial_transform& adj_a, spatial_transform& adj_b, const spatial_transform& adj_ret) { adj_add(a.p, b.p, adj_a.p, adj_b.p, adj_ret.p); adj_add(a.q, b.q, adj_a.q, adj_b.q, adj_ret.q); } CUDA_CALLABLE inline void adj_sub(const spatial_transform& a, const spatial_transform& b, spatial_transform& adj_a, spatial_transform& adj_b, const spatial_transform& adj_ret) { adj_sub(a.p, b.p, adj_a.p, adj_b.p, adj_ret.p); adj_sub(a.q, b.q, adj_a.q, adj_b.q, adj_ret.q); } CUDA_CALLABLE inline void adj_mul(const spatial_transform& a, float s, spatial_transform& adj_a, float& adj_s, const spatial_transform& adj_ret) { adj_mul(a.p, s, adj_a.p, adj_s, adj_ret.p); adj_mul(a.q, s, adj_a.q, adj_s, adj_ret.q); } #ifdef CUDA inline __device__ void atomic_add(spatial_transform* addr, const spatial_transform& value) { atomic_add(&addr->p, value.p); atomic_add(&addr->q, value.q); } #endif CUDA_CALLABLE inline void adj_spatial_transform(const float3& p, const quat& q, float3& adj_p, quat& adj_q, const spatial_transform& adj_ret) { adj_p += adj_ret.p; adj_q += adj_ret.q; } CUDA_CALLABLE inline void adj_spatial_transform_identity(const spatial_transform& adj_ret) { // nop } CUDA_CALLABLE inline void adj_spatial_transform_get_translation(const spatial_transform& t, spatial_transform& adj_t, const float3& adj_ret) { adj_t.p += adj_ret; } CUDA_CALLABLE inline void adj_spatial_transform_get_rotation(const spatial_transform& t, spatial_transform& adj_t, const quat& adj_ret) { adj_t.q += adj_ret; } /* CUDA_CALLABLE inline void adj_spatial_transform_inverse(const spatial_transform& t, spatial_transform& adj_t, const spatial_transform& adj_ret) { //quat q_inv = inverse(t.q); //return spatial_transform(-rotate(q_inv, t.p), q_inv); quat q_inv = inverse(t.q); float3 p = rotate(q_inv, t.p); float3 np = -p; quat adj_q_inv = 0.0f; quat adj_q = 0.0f; float3 adj_p = 0.0f; float3 adj_np = 0.0f; adj_spatial_transform(np, q_inv, adj_np, adj_q_inv, adj_ret); adj_p = -adj_np; adj_rotate(q_inv, t.p, adj_q_inv, adj_t.p, adj_p); adj_inverse(t.q, adj_t.q, adj_q_inv); } */ CUDA_CALLABLE inline void adj_spatial_transform_multiply(const spatial_transform& a, const spatial_transform& b, spatial_transform& adj_a, spatial_transform& adj_b, const spatial_transform& adj_ret) { // translational part adj_rotate(a.q, b.p, adj_a.q, adj_b.p, adj_ret.p); adj_a.p += adj_ret.p; // rotational part adj_mul(a.q, b.q, adj_a.q, adj_b.q, adj_ret.q); } CUDA_CALLABLE inline void adj_spatial_transform_vector(const spatial_transform& t, const float3& x, spatial_transform& adj_t, float3& adj_x, const float3& adj_ret) { adj_rotate(t.q, x, adj_t.q, adj_x, adj_ret); } CUDA_CALLABLE inline void adj_spatial_transform_point(const spatial_transform& t, const float3& x, spatial_transform& adj_t, float3& adj_x, const float3& adj_ret) { adj_rotate(t.q, x, adj_t.q, adj_x, adj_ret); adj_t.p += adj_ret; } CUDA_CALLABLE inline void adj_spatial_transform_twist(const spatial_transform& a, const spatial_vector& s, spatial_transform& adj_a, spatial_vector& adj_s, const spatial_vector& adj_ret) { printf("todo, %s, %d\n", __FILE__, __LINE__); // float3 w = rotate(t.q, x.w); // float3 v = rotate(t.q, x.v) + cross(t.p, w); // return spatial_vector(w, v); } CUDA_CALLABLE inline void adj_spatial_transform_wrench(const spatial_transform& t, const spatial_vector& x, spatial_transform& adj_t, spatial_vector& adj_x, const spatial_vector& adj_ret) { printf("todo, %s, %d\n", __FILE__, __LINE__); // float3 v = rotate(t.q, x.v); // float3 w = rotate(t.q, x.w) + cross(t.p, v); // return spatial_vector(w, v); } /* // should match model.py #define JOINT_PRISMATIC 0 #define JOINT_REVOLUTE 1 #define JOINT_FIXED 2 #define JOINT_FREE 3 CUDA_CALLABLE inline spatial_transform spatial_jcalc(int type, float* joint_q, float3 axis, int start) { if (type == JOINT_REVOLUTE) { float q = joint_q[start]; spatial_transform X_jc = spatial_transform(float3(), quat_from_axis_angle(axis, q)); return X_jc; } else if (type == JOINT_PRISMATIC) { float q = joint_q[start]; spatial_transform X_jc = spatial_transform(axis*q, quat_identity()); return X_jc; } else if (type == JOINT_FREE) { float px = joint_q[start+0]; float py = joint_q[start+1]; float pz = joint_q[start+2]; float qx = joint_q[start+3]; float qy = joint_q[start+4]; float qz = joint_q[start+5]; float qw = joint_q[start+6]; spatial_transform X_jc = spatial_transform(float3(px, py, pz), quat(qx, qy, qz, qw)); return X_jc; } // JOINT_FIXED return spatial_transform(float3(), quat_identity()); } CUDA_CALLABLE inline void adj_spatial_jcalc(int type, float* q, float3 axis, int start, int& adj_type, float* adj_q, float3& adj_axis, int& adj_start, const spatial_transform& adj_ret) { if (type == JOINT_REVOLUTE) { adj_quat_from_axis_angle(axis, q[start], adj_axis, adj_q[start], adj_ret.q); } else if (type == JOINT_PRISMATIC) { adj_mul(axis, q[start], adj_axis, adj_q[start], adj_ret.p); } else if (type == JOINT_FREE) { adj_q[start+0] += adj_ret.p.x; adj_q[start+1] += adj_ret.p.y; adj_q[start+2] += adj_ret.p.z; adj_q[start+3] += adj_ret.q.x; adj_q[start+4] += adj_ret.q.y; adj_q[start+5] += adj_ret.q.z; adj_q[start+6] += adj_ret.q.w; } } */ struct spatial_matrix { float data[6][6] = { { 0 } }; CUDA_CALLABLE inline spatial_matrix(float f=0.0f) { } CUDA_CALLABLE inline spatial_matrix( float a00, float a01, float a02, float a03, float a04, float a05, float a10, float a11, float a12, float a13, float a14, float a15, float a20, float a21, float a22, float a23, float a24, float a25, float a30, float a31, float a32, float a33, float a34, float a35, float a40, float a41, float a42, float a43, float a44, float a45, float a50, float a51, float a52, float a53, float a54, float a55) { data[0][0] = a00; data[0][1] = a01; data[0][2] = a02; data[0][3] = a03; data[0][4] = a04; data[0][5] = a05; data[1][0] = a10; data[1][1] = a11; data[1][2] = a12; data[1][3] = a13; data[1][4] = a14; data[1][5] = a15; data[2][0] = a20; data[2][1] = a21; data[2][2] = a22; data[2][3] = a23; data[2][4] = a24; data[2][5] = a25; data[3][0] = a30; data[3][1] = a31; data[3][2] = a32; data[3][3] = a33; data[3][4] = a34; data[3][5] = a35; data[4][0] = a40; data[4][1] = a41; data[4][2] = a42; data[4][3] = a43; data[4][4] = a44; data[4][5] = a45; data[5][0] = a50; data[5][1] = a51; data[5][2] = a52; data[5][3] = a53; data[5][4] = a54; data[5][5] = a55; } }; inline CUDA_CALLABLE float index(const spatial_matrix& m, int row, int col) { return m.data[row][col]; } inline CUDA_CALLABLE spatial_matrix add(const spatial_matrix& a, const spatial_matrix& b) { spatial_matrix out; for (int i=0; i < 6; ++i) for (int j=0; j < 6; ++j) out.data[i][j] = a.data[i][j] + b.data[i][j]; return out; } inline CUDA_CALLABLE spatial_vector mul(const spatial_matrix& a, const spatial_vector& b) { spatial_vector out; for (int i=0; i < 6; ++i) for (int j=0; j < 6; ++j) out[i] += a.data[i][j]*b[j]; return out; } inline CUDA_CALLABLE spatial_matrix mul(const spatial_matrix& a, const spatial_matrix& b) { spatial_matrix out; for (int i=0; i < 6; ++i) { for (int j=0; j < 6; ++j) { for (int k=0; k < 6; ++k) { out.data[i][j] += a.data[i][k]*b.data[k][j]; } } } return out; } inline CUDA_CALLABLE spatial_matrix transpose(const spatial_matrix& a) { spatial_matrix out; for (int i=0; i < 6; i++) for (int j=0; j < 6; j++) out.data[i][j] = a.data[j][i]; return out; } inline CUDA_CALLABLE spatial_matrix outer(const spatial_vector& a, const spatial_vector& b) { spatial_matrix out; for (int i=0; i < 6; i++) for (int j=0; j < 6; j++) out.data[i][j] = a[i]*b[j]; return out; } CUDA_CALLABLE void print(spatial_transform t); CUDA_CALLABLE void print(spatial_matrix m); inline CUDA_CALLABLE spatial_matrix spatial_adjoint(const mat33& R, const mat33& S) { spatial_matrix adT; // T = [R 0] // [skew(p)*R R] // diagonal blocks for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { adT.data[i][j] = R.data[i][j]; adT.data[i+3][j+3] = R.data[i][j]; } } // lower off diagonal for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { adT.data[i+3][j] = S.data[i][j]; } } return adT; } inline CUDA_CALLABLE void adj_spatial_adjoint(const mat33& R, const mat33& S, mat33& adj_R, mat33& adj_S, const spatial_matrix& adj_ret) { // diagonal blocks for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { adj_R.data[i][j] += adj_ret.data[i][j]; adj_R.data[i][j] += adj_ret.data[i+3][j+3]; } } // lower off diagonal for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { adj_S.data[i][j] += adj_ret.data[i+3][j]; } } } /* // computes adj_t^-T*I*adj_t^-1 (tensor change of coordinates), Frank & Park, section 8.2.3, pg 290 inline CUDA_CALLABLE spatial_matrix spatial_transform_inertia(const spatial_transform& t, const spatial_matrix& I) { spatial_transform t_inv = spatial_transform_inverse(t); float3 r1 = rotate(t_inv.q, float3(1.0, 0.0, 0.0)); float3 r2 = rotate(t_inv.q, float3(0.0, 1.0, 0.0)); float3 r3 = rotate(t_inv.q, float3(0.0, 0.0, 1.0)); mat33 R(r1, r2, r3); mat33 S = mul(skew(t_inv.p), R); spatial_matrix T = spatial_adjoint(R, S); // first quadratic form, for derivation of the adjoint see https://people.maths.ox.ac.uk/gilesm/files/AD2008.pdf, section 2.3.2 return mul(mul(transpose(T), I), T); } */ inline CUDA_CALLABLE void adj_add(const spatial_matrix& a, const spatial_matrix& b, spatial_matrix& adj_a, spatial_matrix& adj_b, const spatial_matrix& adj_ret) { adj_a += adj_ret; adj_b += adj_ret; } inline CUDA_CALLABLE void adj_mul(const spatial_matrix& a, const spatial_vector& b, spatial_matrix& adj_a, spatial_vector& adj_b, const spatial_vector& adj_ret) { adj_a += outer(adj_ret, b); adj_b += mul(transpose(a), adj_ret); } inline CUDA_CALLABLE void adj_mul(const spatial_matrix& a, const spatial_matrix& b, spatial_matrix& adj_a, spatial_matrix& adj_b, const spatial_matrix& adj_ret) { adj_a += mul(adj_ret, transpose(b)); adj_b += mul(transpose(a), adj_ret); } inline CUDA_CALLABLE void adj_transpose(const spatial_matrix& a, spatial_matrix& adj_a, const spatial_matrix& adj_ret) { adj_a += transpose(adj_ret); } inline CUDA_CALLABLE void adj_spatial_transform_inertia( const spatial_transform& xform, const spatial_matrix& I, const spatial_transform& adj_xform, const spatial_matrix& adj_I, spatial_matrix& adj_ret) { //printf("todo, %s, %d\n", __FILE__, __LINE__); } inline void CUDA_CALLABLE adj_index(const spatial_matrix& m, int row, int col, spatial_matrix& adj_m, int& adj_row, int& adj_col, float adj_ret) { adj_m.data[row][col] += adj_ret; } #ifdef CUDA inline __device__ void atomic_add(spatial_matrix* addr, const spatial_matrix& value) { for (int i=0; i < 6; ++i) { for (int j=0; j < 6; ++j) { atomicAdd(&addr->data[i][j], value.data[i][j]); } } } #endif CUDA_CALLABLE inline int row_index(int stride, int i, int j) { return i*stride + j; } // builds spatial Jacobian J which is an (joint_count*6)x(dof_count) matrix CUDA_CALLABLE inline void spatial_jacobian( const spatial_vector* S, const int* joint_parents, const int* joint_qd_start, int joint_start, // offset of the first joint for the articulation int joint_count, int J_start, float* J) { const int articulation_dof_start = joint_qd_start[joint_start]; const int articulation_dof_end = joint_qd_start[joint_start + joint_count]; const int articulation_dof_count = articulation_dof_end-articulation_dof_start; // shift output pointers const int S_start = articulation_dof_start; S += S_start; J += J_start; for (int i=0; i < joint_count; ++i) { const int row_start = i * 6; int j = joint_start + i; while (j != -1) { const int joint_dof_start = joint_qd_start[j]; const int joint_dof_end = joint_qd_start[j+1]; const int joint_dof_count = joint_dof_end-joint_dof_start; // fill out each row of the Jacobian walking up the tree //for (int col=dof_start; col < dof_end; ++col) for (int dof=0; dof < joint_dof_count; ++dof) { const int col = (joint_dof_start-articulation_dof_start) + dof; J[row_index(articulation_dof_count, row_start+0, col)] = S[col].w.x; J[row_index(articulation_dof_count, row_start+1, col)] = S[col].w.y; J[row_index(articulation_dof_count, row_start+2, col)] = S[col].w.z; J[row_index(articulation_dof_count, row_start+3, col)] = S[col].v.x; J[row_index(articulation_dof_count, row_start+4, col)] = S[col].v.y; J[row_index(articulation_dof_count, row_start+5, col)] = S[col].v.z; } j = joint_parents[j]; } } } CUDA_CALLABLE inline void adj_spatial_jacobian( const spatial_vector* S, const int* joint_parents, const int* joint_qd_start, const int joint_start, const int joint_count, const int J_start, const float* J, // adjs spatial_vector* adj_S, int* adj_joint_parents, int* adj_joint_qd_start, int& adj_joint_start, int& adj_joint_count, int& adj_J_start, const float* adj_J) { const int articulation_dof_start = joint_qd_start[joint_start]; const int articulation_dof_end = joint_qd_start[joint_start + joint_count]; const int articulation_dof_count = articulation_dof_end-articulation_dof_start; // shift output pointers const int S_start = articulation_dof_start; S += S_start; J += J_start; adj_S += S_start; adj_J += J_start; for (int i=0; i < joint_count; ++i) { const int row_start = i * 6; int j = joint_start + i; while (j != -1) { const int joint_dof_start = joint_qd_start[j]; const int joint_dof_end = joint_qd_start[j+1]; const int joint_dof_count = joint_dof_end-joint_dof_start; // fill out each row of the Jacobian walking up the tree //for (int col=dof_start; col < dof_end; ++col) for (int dof=0; dof < joint_dof_count; ++dof) { const int col = (joint_dof_start-articulation_dof_start) + dof; adj_S[col].w.x += adj_J[row_index(articulation_dof_count, row_start+0, col)]; adj_S[col].w.y += adj_J[row_index(articulation_dof_count, row_start+1, col)]; adj_S[col].w.z += adj_J[row_index(articulation_dof_count, row_start+2, col)]; adj_S[col].v.x += adj_J[row_index(articulation_dof_count, row_start+3, col)]; adj_S[col].v.y += adj_J[row_index(articulation_dof_count, row_start+4, col)]; adj_S[col].v.z += adj_J[row_index(articulation_dof_count, row_start+5, col)]; } j = joint_parents[j]; } } } CUDA_CALLABLE inline void spatial_mass(const spatial_matrix* I_s, int joint_start, int joint_count, int M_start, float* M) { const int stride = joint_count*6; for (int l=0; l < joint_count; ++l) { for (int i=0; i < 6; ++i) { for (int j=0; j < 6; ++j) { M[M_start + row_index(stride, l*6 + i, l*6 + j)] = I_s[joint_start + l].data[i][j]; } } } } CUDA_CALLABLE inline void adj_spatial_mass( const spatial_matrix* I_s, const int joint_start, const int joint_count, const int M_start, const float* M, spatial_matrix* adj_I_s, int& adj_joint_start, int& adj_joint_count, int& adj_M_start, const float* adj_M) { const int stride = joint_count*6; for (int l=0; l < joint_count; ++l) { for (int i=0; i < 6; ++i) { for (int j=0; j < 6; ++j) { adj_I_s[joint_start + l].data[i][j] += adj_M[M_start + row_index(stride, l*6 + i, l*6 + j)]; } } } }
24,501
C
28.099762
198
0.594057
vstrozzi/FRL-SHAC-Extension/dflex/build/lib/dflex/mat22.h
#pragma once //---------------------------------------------------------- // mat22 struct mat22 { inline CUDA_CALLABLE mat22(float m00=0.0f, float m01=0.0f, float m10=0.0f, float m11=0.0f) { data[0][0] = m00; data[1][0] = m10; data[0][1] = m01; data[1][1] = m11; } // row major storage assumed to be compatible with PyTorch float data[2][2]; }; #ifdef CUDA inline __device__ void atomic_add(mat22 * addr, mat22 value) { // *addr += value; atomicAdd(&((addr -> data)[0][0]), value.data[0][0]); atomicAdd(&((addr -> data)[0][1]), value.data[0][1]); atomicAdd(&((addr -> data)[1][0]), value.data[1][0]); atomicAdd(&((addr -> data)[1][1]), value.data[1][1]); } #endif inline CUDA_CALLABLE void adj_mat22(float m00, float m01, float m10, float m11, float& adj_m00, float& adj_m01, float& adj_m10, float& adj_m11, const mat22& adj_ret) { printf("todo\n"); } inline CUDA_CALLABLE float index(const mat22& m, int row, int col) { return m.data[row][col]; } inline CUDA_CALLABLE mat22 add(const mat22& a, const mat22& b) { mat22 t; for (int i=0; i < 2; ++i) { for (int j=0; j < 2; ++j) { t.data[i][j] = a.data[i][j] + b.data[i][j]; } } return t; } inline CUDA_CALLABLE mat22 mul(const mat22& a, float b) { mat22 t; for (int i=0; i < 2; ++i) { for (int j=0; j < 2; ++j) { t.data[i][j] = a.data[i][j]*b; } } return t; } inline CUDA_CALLABLE mat22 mul(const mat22& a, const mat22& b) { mat22 t; for (int i=0; i < 2; ++i) { for (int j=0; j < 2; ++j) { for (int k=0; k < 2; ++k) { t.data[i][j] += a.data[i][k]*b.data[k][j]; } } } return t; } inline CUDA_CALLABLE mat22 transpose(const mat22& a) { mat22 t; for (int i=0; i < 2; ++i) { for (int j=0; j < 2; ++j) { t.data[i][j] = a.data[j][i]; } } return t; } inline CUDA_CALLABLE float determinant(const mat22& m) { return m.data[0][0]*m.data[1][1] - m.data[1][0]*m.data[0][1]; } inline void CUDA_CALLABLE adj_index(const mat22& m, int row, int col, mat22& adj_m, int& adj_row, int& adj_col, float adj_ret) { adj_m.data[row][col] += adj_ret; } inline CUDA_CALLABLE void adj_add(const mat22& a, const mat22& b, mat22& adj_a, mat22& adj_b, const mat22& adj_ret) { for (int i=0; i < 2; ++i) { for (int j=0; j < 2; ++j) { adj_a.data[i][j] = adj_ret.data[i][j]; adj_b.data[i][j] = adj_ret.data[i][j]; } } } inline CUDA_CALLABLE void adj_mul(const mat22& a, const mat22& b, mat22& adj_a, mat22& adj_b, const mat22& adj_ret) { printf("todo\n"); } inline CUDA_CALLABLE void adj_transpose(const mat22& a, mat22& adj_a, const mat22& adj_ret) { printf("todo\n"); } inline CUDA_CALLABLE void adj_determinant(const mat22& m, mat22& adj_m, float adj_ret) { adj_m.data[0][0] += m.data[1][1]*adj_ret; adj_m.data[1][1] += m.data[0][0]*adj_ret; adj_m.data[0][1] -= m.data[1][0]*adj_ret; adj_m.data[1][0] -= m.data[0][1]*adj_ret; }
3,206
C
21.744681
165
0.515908
vstrozzi/FRL-SHAC-Extension/dflex/build/lib/dflex/vec2.h
#pragma once struct float2 { float x; float y; };
58
C
7.42857
13
0.586207
vstrozzi/FRL-SHAC-Extension/dflex/build/lib/dflex/util.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import timeit import math import numpy as np import gc import torch import cProfile log_output = "" def log(s): print(s) global log_output log_output = log_output + s + "\n" # short hands def length(a): return np.linalg.norm(a) def length_sq(a): return np.dot(a, a) # NumPy has no normalize() method.. def normalize(v): norm = np.linalg.norm(v) if norm == 0.0: return v return v / norm def skew(v): return np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]]) # math utils def quat(i, j, k, w): return np.array([i, j, k, w]) def quat_identity(): return np.array((0.0, 0.0, 0.0, 1.0)) def quat_inverse(q): return np.array((-q[0], -q[1], -q[2], q[3])) def quat_from_axis_angle(axis, angle): v = np.array(axis) half = angle * 0.5 w = math.cos(half) sin_theta_over_two = math.sin(half) v *= sin_theta_over_two return np.array((v[0], v[1], v[2], w)) # rotate a vector def quat_rotate(q, x): x = np.array(x) axis = np.array((q[0], q[1], q[2])) return x * (2.0 * q[3] * q[3] - 1.0) + np.cross(axis, x) * q[3] * 2.0 + axis * np.dot(axis, x) * 2.0 # multiply two quats def quat_multiply(a, b): return np.array((a[3] * b[0] + b[3] * a[0] + a[1] * b[2] - b[1] * a[2], a[3] * b[1] + b[3] * a[1] + a[2] * b[0] - b[2] * a[0], a[3] * b[2] + b[3] * a[2] + a[0] * b[1] - b[0] * a[1], a[3] * b[3] - a[0] * b[0] - a[1] * b[1] - a[2] * b[2])) # convert to mat33 def quat_to_matrix(q): c1 = quat_rotate(q, np.array((1.0, 0.0, 0.0))) c2 = quat_rotate(q, np.array((0.0, 1.0, 0.0))) c3 = quat_rotate(q, np.array((0.0, 0.0, 1.0))) return np.array([c1, c2, c3]).T def quat_rpy(roll, pitch, yaw): cy = math.cos(yaw * 0.5) sy = math.sin(yaw * 0.5) cr = math.cos(roll * 0.5) sr = math.sin(roll * 0.5) cp = math.cos(pitch * 0.5) sp = math.sin(pitch * 0.5) w = (cy * cr * cp + sy * sr * sp) x = (cy * sr * cp - sy * cr * sp) y = (cy * cr * sp + sy * sr * cp) z = (sy * cr * cp - cy * sr * sp) return (x, y, z, w) def quat_from_matrix(m): tr = m[0, 0] + m[1, 1] + m[2, 2] h = 0.0 if(tr >= 0.0): h = math.sqrt(tr + 1.0) w = 0.5 * h h = 0.5 / h x = (m[2, 1] - m[1, 2]) * h y = (m[0, 2] - m[2, 0]) * h z = (m[1, 0] - m[0, 1]) * h else: i = 0; if(m[1, 1] > m[0, 0]): i = 1; if(m[2, 2] > m[i, i]): i = 2; if (i == 0): h = math.sqrt((m[0, 0] - (m[1, 1] + m[2, 2])) + 1.0) x = 0.5 * h h = 0.5 / h y = (m[0, 1] + m[1, 0]) * h z = (m[2, 0] + m[0, 2]) * h w = (m[2, 1] - m[1, 2]) * h elif (i == 1): h = sqrtf((m[1, 1] - (m[2, 2] + m[0, 0])) + 1.0) y = 0.5 * h h = 0.5 / h z = (m[1, 2] + m[2, 1]) * h x = (m[0, 1] + m[1, 0]) * h w = (m[0, 2] - m[2, 0]) * h elif (i == 2): h = sqrtf((m[2, 2] - (m[0, 0] + m[1, 1])) + 1.0) z = 0.5 * h h = 0.5 / h x = (m[2, 0] + m[0, 2]) * h y = (m[1, 2] + m[2, 1]) * h w = (m[1, 0] - m[0, 1]) * h return normalize(quat(x, y, z, w)) # rigid body transform def transform(x, r): return (np.array(x), np.array(r)) def transform_identity(): return (np.array((0.0, 0.0, 0.0)), quat_identity()) # se(3) -> SE(3), Park & Lynch pg. 105, screw in [w, v] normalized form def transform_exp(s, angle): w = np.array(s[0:3]) v = np.array(s[3:6]) if (length(w) < 1.0): r = quat_identity() else: r = quat_from_axis_angle(w, angle) t = v * angle + (1.0 - math.cos(angle)) * np.cross(w, v) + (angle - math.sin(angle)) * np.cross(w, np.cross(w, v)) return (t, r) def transform_inverse(t): q_inv = quat_inverse(t[1]) return (-quat_rotate(q_inv, t[0]), q_inv) def transform_vector(t, v): return quat_rotate(t[1], v) def transform_point(t, p): return np.array(t[0]) + quat_rotate(t[1], p) def transform_multiply(t, u): return (quat_rotate(t[1], u[0]) + t[0], quat_multiply(t[1], u[1])) # flatten an array of transforms (p,q) format to a 7-vector def transform_flatten(t): return np.array([*t[0], *t[1]]) # expand a 7-vec to a tuple of arrays def transform_expand(t): return (np.array(t[0:3]), np.array(t[3:7])) # convert array of transforms to a array of 7-vecs def transform_flatten_list(xforms): exp = lambda t: transform_flatten(t) return list(map(exp, xforms)) def transform_expand_list(xforms): exp = lambda t: transform_expand(t) return list(map(exp, xforms)) def transform_inertia(m, I, p, q): R = quat_to_matrix(q) # Steiner's theorem return R * I * R.T + m * (np.dot(p, p) * np.eye(3) - np.outer(p, p)) # spatial operators # AdT def spatial_adjoint(t): R = quat_to_matrix(t[1]) w = skew(t[0]) A = np.zeros((6, 6)) A[0:3, 0:3] = R A[3:6, 0:3] = np.dot(w, R) A[3:6, 3:6] = R return A # (AdT)^-T def spatial_adjoint_dual(t): R = quat_to_matrix(t[1]) w = skew(t[0]) A = np.zeros((6, 6)) A[0:3, 0:3] = R A[0:3, 3:6] = np.dot(w, R) A[3:6, 3:6] = R return A # AdT*s def transform_twist(t_ab, s_b): return np.dot(spatial_adjoint(t_ab), s_b) # AdT^{-T}*s def transform_wrench(t_ab, f_b): return np.dot(spatial_adjoint_dual(t_ab), f_b) # transform spatial inertia (6x6) in b frame to a frame def transform_spatial_inertia(t_ab, I_b): t_ba = transform_inverse(t_ab) # todo: write specialized method I_a = np.dot(np.dot(spatial_adjoint(t_ba).T, I_b), spatial_adjoint(t_ba)) return I_a def translate_twist(p_ab, s_b): w = s_b[0:3] v = np.cross(p_ab, s_b[0:3]) + s_b[3:6] return np.array((*w, *v)) def translate_wrench(p_ab, s_b): w = s_b[0:3] + np.cross(p_ab, s_b[3:6]) v = s_b[3:6] return np.array((*w, *v)) def spatial_vector(v=(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)): return np.array(v) # ad_V pg. 289 L&P, pg. 25 Featherstone def spatial_cross(a, b): w = np.cross(a[0:3], b[0:3]) v = np.cross(a[3:6], b[0:3]) + np.cross(a[0:3], b[3:6]) return np.array((*w, *v)) # ad_V^T pg. 290 L&P, pg. 25 Featurestone, note this does not includes the sign flip in the definition def spatial_cross_dual(a, b): w = np.cross(a[0:3], b[0:3]) + np.cross(a[3:6], b[3:6]) v = np.cross(a[0:3], b[3:6]) return np.array((*w, *v)) def spatial_dot(a, b): return np.dot(a, b) def spatial_outer(a, b): return np.outer(a, b) def spatial_matrix(): return np.zeros((6, 6)) def spatial_matrix_from_inertia(I, m): G = spatial_matrix() G[0:3, 0:3] = I G[3, 3] = m G[4, 4] = m G[5, 5] = m return G # solves x = I^(-1)b def spatial_solve(I, b): return np.dot(np.linalg.inv(I), b) def rpy2quat(roll, pitch, yaw): cy = math.cos(yaw * 0.5) sy = math.sin(yaw * 0.5) cr = math.cos(roll * 0.5) sr = math.sin(roll * 0.5) cp = math.cos(pitch * 0.5) sp = math.sin(pitch * 0.5) w = cy * cr * cp + sy * sr * sp x = cy * sr * cp - sy * cr * sp y = cy * cr * sp + sy * sr * cp z = sy * cr * cp - cy * sr * sp return (x, y, z, w) # helper to retrive body angular velocity from a twist v_s in se(3) def get_body_angular_velocity(v_s): return v_s[0:3] # helper to compute velocity of a point p on a body given it's spatial twist v_s def get_body_linear_velocity(v_s, p): dpdt = v_s[3:6] + torch.cross(v_s[0:3], p) return dpdt # helper to build a body twist given the angular and linear velocity of # the center of mass specified in the world frame, returns the body # twist with respect to the origin (v_s) def get_body_twist(w_m, v_m, p_m): lin = v_m + torch.cross(p_m, w_m) return (*w_m, *lin) # timer utils class ScopedTimer: indent = -1 enabled = True def __init__(self, name, active=True, detailed=False): self.name = name self.active = active and self.enabled self.detailed = detailed def __enter__(self): if (self.active): self.start = timeit.default_timer() ScopedTimer.indent += 1 if (self.detailed): self.cp = cProfile.Profile() self.cp.clear() self.cp.enable() def __exit__(self, exc_type, exc_value, traceback): if (self.detailed): self.cp.disable() self.cp.print_stats(sort='tottime') if (self.active): elapsed = (timeit.default_timer() - self.start) * 1000.0 indent = "" for i in range(ScopedTimer.indent): indent += "\t" log("{}{} took {:.2f} ms".format(indent, self.name, elapsed)) ScopedTimer.indent -= 1 # code snippet for invoking cProfile # cp = cProfile.Profile() # cp.enable() # for i in range(1000): # self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # cp.disable() # cp.print_stats(sort='tottime') # exit(0) # represent an edge between v0, v1 with connected faces f0, f1, and opposite vertex o0, and o1 # winding is such that first tri can be reconstructed as {v0, v1, o0}, and second tri as { v1, v0, o1 } class MeshEdge: def __init__(self, v0, v1, o0, o1, f0, f1): self.v0 = v0 # vertex 0 self.v1 = v1 # vertex 1 self.o0 = o0 # opposite vertex 1 self.o1 = o1 # opposite vertex 2 self.f0 = f0 # index of tri1 self.f1 = f1 # index of tri2 class MeshAdjacency: def __init__(self, indices, num_tris): # map edges (v0, v1) to faces (f0, f1) self.edges = {} self.indices = indices for index, tri in enumerate(indices): self.add_edge(tri[0], tri[1], tri[2], index) self.add_edge(tri[1], tri[2], tri[0], index) self.add_edge(tri[2], tri[0], tri[1], index) def add_edge(self, i0, i1, o, f): # index1, index2, index3, index of triangle key = (min(i0, i1), max(i0, i1)) edge = None if key in self.edges: edge = self.edges[key] if (edge.f1 != -1): print("Detected non-manifold edge") return else: # update other side of the edge edge.o1 = o edge.f1 = f else: # create new edge with opposite yet to be filled edge = MeshEdge(i0, i1, o, -1, f, -1) self.edges[key] = edge def opposite_vertex(self, edge): pass def mem_report(): '''Report the memory usage of the tensor.storage in pytorch Both on CPUs and GPUs are reported''' def _mem_report(tensors, mem_type): '''Print the selected tensors of type There are two major storage types in our major concern: - GPU: tensors transferred to CUDA devices - CPU: tensors remaining on the system memory (usually unimportant) Args: - tensors: the tensors of specified type - mem_type: 'CPU' or 'GPU' in current implementation ''' total_numel = 0 total_mem = 0 visited_data = [] for tensor in tensors: if tensor.is_sparse: continue # a data_ptr indicates a memory block allocated data_ptr = tensor.storage().data_ptr() if data_ptr in visited_data: continue visited_data.append(data_ptr) numel = tensor.storage().size() total_numel += numel element_size = tensor.storage().element_size() mem = numel*element_size /1024/1024 # 32bit=4Byte, MByte total_mem += mem element_type = type(tensor).__name__ size = tuple(tensor.size()) # print('%s\t\t%s\t\t%.2f' % ( # element_type, # size, # mem) ) print('Type: %s Total Tensors: %d \tUsed Memory Space: %.2f MBytes' % (mem_type, total_numel, total_mem) ) gc.collect() LEN = 65 objects = gc.get_objects() #print('%s\t%s\t\t\t%s' %('Element type', 'Size', 'Used MEM(MBytes)') ) tensors = [obj for obj in objects if torch.is_tensor(obj)] cuda_tensors = [t for t in tensors if t.is_cuda] host_tensors = [t for t in tensors if not t.is_cuda] _mem_report(cuda_tensors, 'GPU') _mem_report(host_tensors, 'CPU') print('='*LEN)
13,134
Python
23.056777
118
0.522994
vstrozzi/FRL-SHAC-Extension/dflex/build/lib/dflex/adjoint.h
#pragma once #include <cmath> #include <stdio.h> #ifdef CPU #define CUDA_CALLABLE #define __device__ #define __host__ #define __constant__ #elif defined(CUDA) #define CUDA_CALLABLE __device__ #include <cuda.h> #include <cuda_runtime_api.h> #define check_cuda(code) { check_cuda_impl(code, __FILE__, __LINE__); } void check_cuda_impl(cudaError_t code, const char* file, int line) { if (code != cudaSuccess) { printf("CUDA Error: %s %s %d\n", cudaGetErrorString(code), file, line); } } void print_device() { int currentDevice; cudaError_t err = cudaGetDevice(&currentDevice); cudaDeviceProp props; err = cudaGetDeviceProperties(&props, currentDevice); if (err != cudaSuccess) printf("CUDA error: %d\n", err); else printf("%s\n", props.name); } #endif #ifdef _WIN32 #define __restrict__ __restrict #endif #define FP_CHECK 0 namespace df { template <typename T> CUDA_CALLABLE float cast_float(T x) { return (float)(x); } template <typename T> CUDA_CALLABLE int cast_int(T x) { return (int)(x); } template <typename T> CUDA_CALLABLE void adj_cast_float(T x, T& adj_x, float adj_ret) { adj_x += adj_ret; } template <typename T> CUDA_CALLABLE void adj_cast_int(T x, T& adj_x, int adj_ret) { adj_x += adj_ret; } // avoid namespacing of float type for casting to float type, this is to avoid wp::float(x), which is not valid in C++ #define float(x) cast_float(x) #define adj_float(x, adj_x, adj_ret) adj_cast_float(x, adj_x, adj_ret) #define int(x) cast_int(x) #define adj_int(x, adj_x, adj_ret) adj_cast_int(x, adj_x, adj_ret) #define kEps 0.0f // basic ops for integer types inline CUDA_CALLABLE int mul(int a, int b) { return a*b; } inline CUDA_CALLABLE int div(int a, int b) { return a/b; } inline CUDA_CALLABLE int add(int a, int b) { return a+b; } inline CUDA_CALLABLE int sub(int a, int b) { return a-b; } inline CUDA_CALLABLE int mod(int a, int b) { return a % b; } inline CUDA_CALLABLE void adj_mul(int a, int b, int& adj_a, int& adj_b, int adj_ret) { } inline CUDA_CALLABLE void adj_div(int a, int b, int& adj_a, int& adj_b, int adj_ret) { } inline CUDA_CALLABLE void adj_add(int a, int b, int& adj_a, int& adj_b, int adj_ret) { } inline CUDA_CALLABLE void adj_sub(int a, int b, int& adj_a, int& adj_b, int adj_ret) { } inline CUDA_CALLABLE void adj_mod(int a, int b, int& adj_a, int& adj_b, int adj_ret) { } // basic ops for float types inline CUDA_CALLABLE float mul(float a, float b) { return a*b; } inline CUDA_CALLABLE float div(float a, float b) { return a/b; } inline CUDA_CALLABLE float add(float a, float b) { return a+b; } inline CUDA_CALLABLE float sub(float a, float b) { return a-b; } inline CUDA_CALLABLE float min(float a, float b) { return a<b?a:b; } inline CUDA_CALLABLE float max(float a, float b) { return a>b?a:b; } inline CUDA_CALLABLE float leaky_min(float a, float b, float r) { return min(a, b); } inline CUDA_CALLABLE float leaky_max(float a, float b, float r) { return max(a, b); } inline CUDA_CALLABLE float clamp(float x, float a, float b) { return min(max(a, x), b); } inline CUDA_CALLABLE float step(float x) { return x < 0.0 ? 1.0 : 0.0; } inline CUDA_CALLABLE float sign(float x) { return x < 0.0 ? -1.0 : 1.0; } inline CUDA_CALLABLE float abs(float x) { return fabsf(x); } inline CUDA_CALLABLE float nonzero(float x) { return x == 0.0 ? 0.0 : 1.0; } inline CUDA_CALLABLE float acos(float x) { return std::acos(std::min(std::max(x, -1.0f), 1.0f)); } inline CUDA_CALLABLE float sin(float x) { return std::sin(x); } inline CUDA_CALLABLE float cos(float x) { return std::cos(x); } inline CUDA_CALLABLE float sqrt(float x) { return std::sqrt(x); } inline CUDA_CALLABLE void adj_mul(float a, float b, float& adj_a, float& adj_b, float adj_ret) { adj_a += b*adj_ret; adj_b += a*adj_ret; } inline CUDA_CALLABLE void adj_div(float a, float b, float& adj_a, float& adj_b, float adj_ret) { adj_a += adj_ret/b; adj_b -= adj_ret*(a/b)/b; } inline CUDA_CALLABLE void adj_add(float a, float b, float& adj_a, float& adj_b, float adj_ret) { adj_a += adj_ret; adj_b += adj_ret; } inline CUDA_CALLABLE void adj_sub(float a, float b, float& adj_a, float& adj_b, float adj_ret) { adj_a += adj_ret; adj_b -= adj_ret; } // inline CUDA_CALLABLE bool lt(float a, float b) { return a < b; } // inline CUDA_CALLABLE bool gt(float a, float b) { return a > b; } // inline CUDA_CALLABLE bool lte(float a, float b) { return a <= b; } // inline CUDA_CALLABLE bool gte(float a, float b) { return a >= b; } // inline CUDA_CALLABLE bool eq(float a, float b) { return a == b; } // inline CUDA_CALLABLE bool neq(float a, float b) { return a != b; } // inline CUDA_CALLABLE bool adj_lt(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { } // inline CUDA_CALLABLE bool adj_gt(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { } // inline CUDA_CALLABLE bool adj_lte(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { } // inline CUDA_CALLABLE bool adj_gte(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { } // inline CUDA_CALLABLE bool adj_eq(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { } // inline CUDA_CALLABLE bool adj_neq(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { } inline CUDA_CALLABLE void adj_min(float a, float b, float& adj_a, float& adj_b, float adj_ret) { if (a < b) adj_a += adj_ret; else adj_b += adj_ret; } inline CUDA_CALLABLE void adj_max(float a, float b, float& adj_a, float& adj_b, float adj_ret) { if (a > b) adj_a += adj_ret; else adj_b += adj_ret; } inline CUDA_CALLABLE void adj_leaky_min(float a, float b, float r, float& adj_a, float& adj_b, float& adj_r, float adj_ret) { if (a < b) adj_a += adj_ret; else { adj_a += r*adj_ret; adj_b += adj_ret; } } inline CUDA_CALLABLE void adj_leaky_max(float a, float b, float r, float& adj_a, float& adj_b, float& adj_r, float adj_ret) { if (a > b) adj_a += adj_ret; else { adj_a += r*adj_ret; adj_b += adj_ret; } } inline CUDA_CALLABLE void adj_clamp(float x, float a, float b, float& adj_x, float& adj_a, float& adj_b, float adj_ret) { if (x < a) adj_a += adj_ret; else if (x > b) adj_b += adj_ret; else adj_x += adj_ret; } inline CUDA_CALLABLE void adj_step(float x, float& adj_x, float adj_ret) { // nop } inline CUDA_CALLABLE void adj_nonzero(float x, float& adj_x, float adj_ret) { // nop } inline CUDA_CALLABLE void adj_sign(float x, float& adj_x, float adj_ret) { // nop } inline CUDA_CALLABLE void adj_abs(float x, float& adj_x, float adj_ret) { if (x < 0.0) adj_x -= adj_ret; else adj_x += adj_ret; } inline CUDA_CALLABLE void adj_acos(float x, float& adj_x, float adj_ret) { float d = sqrt(1.0-x*x); if (d > 0.0) adj_x -= (1.0/d)*adj_ret; } inline CUDA_CALLABLE void adj_sin(float x, float& adj_x, float adj_ret) { adj_x += std::cos(x)*adj_ret; } inline CUDA_CALLABLE void adj_cos(float x, float& adj_x, float adj_ret) { adj_x -= std::sin(x)*adj_ret; } inline CUDA_CALLABLE void adj_sqrt(float x, float& adj_x, float adj_ret) { adj_x += 0.5f*(1.0/std::sqrt(x))*adj_ret; } template <typename T> CUDA_CALLABLE inline T select(bool cond, const T& a, const T& b) { return cond?b:a; } template <typename T> CUDA_CALLABLE inline void adj_select(bool cond, const T& a, const T& b, bool& adj_cond, T& adj_a, T& adj_b, const T& adj_ret) { if (cond) adj_b += adj_ret; else adj_a += adj_ret; } // some helpful operator overloads (just for C++ use, these are not adjointed) template <typename T> CUDA_CALLABLE T& operator += (T& a, const T& b) { a = add(a, b); return a; } template <typename T> CUDA_CALLABLE T& operator -= (T& a, const T& b) { a = sub(a, b); return a; } template <typename T> CUDA_CALLABLE T operator*(const T& a, float s) { return mul(a, s); } template <typename T> CUDA_CALLABLE T operator/(const T& a, float s) { return div(a, s); } template <typename T> CUDA_CALLABLE T operator+(const T& a, const T& b) { return add(a, b); } template <typename T> CUDA_CALLABLE T operator-(const T& a, const T& b) { return sub(a, b); } // for single thread CPU only static int s_threadIdx; inline CUDA_CALLABLE int tid() { #ifdef CPU return s_threadIdx; #elif defined(CUDA) return blockDim.x * blockIdx.x + threadIdx.x; #endif } #include "vec2.h" #include "vec3.h" #include "mat22.h" #include "mat33.h" #include "matnn.h" #include "quat.h" #include "spatial.h" //-------------- template<typename T> inline CUDA_CALLABLE T load(T* buf, int index) { assert(buf); return buf[index]; } template<typename T> inline CUDA_CALLABLE void store(T* buf, int index, T value) { // allow NULL buffers for case where gradients are not required if (buf) { buf[index] = value; } } #ifdef CUDA template<typename T> inline __device__ void atomic_add(T* buf, T value) { atomicAdd(buf, value); } #endif template<typename T> inline __device__ void atomic_add(T* buf, int index, T value) { if (buf) { // CPU mode is sequential so just add #ifdef CPU buf[index] += value; #elif defined(CUDA) atomic_add(buf + index, value); #endif } } template<typename T> inline __device__ void atomic_sub(T* buf, int index, T value) { if (buf) { // CPU mode is sequential so just add #ifdef CPU buf[index] -= value; #elif defined(CUDA) atomic_add(buf + index, -value); #endif } } template <typename T> inline CUDA_CALLABLE void adj_load(T* buf, int index, T* adj_buf, int& adj_index, const T& adj_output) { // allow NULL buffers for case where gradients are not required if (adj_buf) { #ifdef CPU adj_buf[index] += adj_output; // does not need to be atomic if single-threaded #elif defined(CUDA) atomic_add(adj_buf, index, adj_output); #endif } } template <typename T> inline CUDA_CALLABLE void adj_store(T* buf, int index, T value, T* adj_buf, int& adj_index, T& adj_value) { adj_value += adj_buf[index]; // doesn't need to be atomic because it's used to load from a buffer onto the stack } template<typename T> inline CUDA_CALLABLE void adj_atomic_add(T* buf, int index, T value, T* adj_buf, int& adj_index, T& adj_value) { if (adj_buf) { // cannot be atomic because used locally adj_value += adj_buf[index]; } } template<typename T> inline CUDA_CALLABLE void adj_atomic_sub(T* buf, int index, T value, T* adj_buf, int& adj_index, T& adj_value) { if (adj_buf) { // cannot be atomic because used locally adj_value -= adj_buf[index]; } } //------------------------- // Texture methods inline CUDA_CALLABLE float sdf_sample(float3 x) { return 0.0; } inline CUDA_CALLABLE float3 sdf_grad(float3 x) { return float3(); } inline CUDA_CALLABLE void adj_sdf_sample(float3 x, float3& adj_x, float adj_ret) { } inline CUDA_CALLABLE void adj_sdf_grad(float3 x, float3& adj_x, float3& adj_ret) { } inline CUDA_CALLABLE void print(int i) { printf("%d\n", i); } inline CUDA_CALLABLE void print(float i) { printf("%f\n", i); } inline CUDA_CALLABLE void print(float3 i) { printf("%f %f %f\n", i.x, i.y, i.z); } inline CUDA_CALLABLE void print(quat i) { printf("%f %f %f %f\n", i.x, i.y, i.z, i.w); } inline CUDA_CALLABLE void print(mat22 m) { printf("%f %f\n%f %f\n", m.data[0][0], m.data[0][1], m.data[1][0], m.data[1][1]); } inline CUDA_CALLABLE void print(mat33 m) { printf("%f %f %f\n%f %f %f\n%f %f %f\n", m.data[0][0], m.data[0][1], m.data[0][2], m.data[1][0], m.data[1][1], m.data[1][2], m.data[2][0], m.data[2][1], m.data[2][2]); } inline CUDA_CALLABLE void print(spatial_transform t) { printf("(%f %f %f) (%f %f %f %f)\n", t.p.x, t.p.y, t.p.z, t.q.x, t.q.y, t.q.z, t.q.w); } inline CUDA_CALLABLE void print(spatial_vector v) { printf("(%f %f %f) (%f %f %f)\n", v.w.x, v.w.y, v.w.z, v.v.x, v.v.y, v.v.z); } inline CUDA_CALLABLE void print(spatial_matrix m) { printf("%f %f %f %f %f %f\n" "%f %f %f %f %f %f\n" "%f %f %f %f %f %f\n" "%f %f %f %f %f %f\n" "%f %f %f %f %f %f\n" "%f %f %f %f %f %f\n", m.data[0][0], m.data[0][1], m.data[0][2], m.data[0][3], m.data[0][4], m.data[0][5], m.data[1][0], m.data[1][1], m.data[1][2], m.data[1][3], m.data[1][4], m.data[1][5], m.data[2][0], m.data[2][1], m.data[2][2], m.data[2][3], m.data[2][4], m.data[2][5], m.data[3][0], m.data[3][1], m.data[3][2], m.data[3][3], m.data[3][4], m.data[3][5], m.data[4][0], m.data[4][1], m.data[4][2], m.data[4][3], m.data[4][4], m.data[4][5], m.data[5][0], m.data[5][1], m.data[5][2], m.data[5][3], m.data[5][4], m.data[5][5]); } inline CUDA_CALLABLE void adj_print(int i, int& adj_i) { printf("%d adj: %d\n", i, adj_i); } inline CUDA_CALLABLE void adj_print(float i, float& adj_i) { printf("%f adj: %f\n", i, adj_i); } inline CUDA_CALLABLE void adj_print(float3 i, float3& adj_i) { printf("%f %f %f adj: %f %f %f \n", i.x, i.y, i.z, adj_i.x, adj_i.y, adj_i.z); } inline CUDA_CALLABLE void adj_print(quat i, quat& adj_i) { } inline CUDA_CALLABLE void adj_print(mat22 m, mat22& adj_m) { } inline CUDA_CALLABLE void adj_print(mat33 m, mat33& adj_m) { } inline CUDA_CALLABLE void adj_print(spatial_transform t, spatial_transform& adj_t) {} inline CUDA_CALLABLE void adj_print(spatial_vector t, spatial_vector& adj_t) {} inline CUDA_CALLABLE void adj_print(spatial_matrix t, spatial_matrix& adj_t) {} } // namespace df
13,946
C
29.05819
144
0.608992
vstrozzi/FRL-SHAC-Extension/dflex/build/lib/dflex/config.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os no_grad = False # disable adjoint tracking check_grad = False # will perform numeric gradient checking after each launch verify_fp = False # verify inputs and outputs are finite after each launch
650
Python
49.076919
82
0.783077
vstrozzi/FRL-SHAC-Extension/dflex/build/lib/dflex/quat.h
#pragma once struct quat { // imaginary part float x; float y; float z; // real part float w; inline CUDA_CALLABLE quat(float x=0.0f, float y=0.0f, float z=0.0f, float w=0.0) : x(x), y(y), z(z), w(w) {} explicit inline CUDA_CALLABLE quat(const float3& v, float w=0.0f) : x(v.x), y(v.y), z(v.z), w(w) {} }; #ifdef CUDA inline __device__ void atomic_add(quat * addr, quat value) { atomicAdd(&(addr -> x), value.x); atomicAdd(&(addr -> y), value.y); atomicAdd(&(addr -> z), value.z); atomicAdd(&(addr -> w), value.w); } #endif inline CUDA_CALLABLE void adj_quat(float x, float y, float z, float w, float& adj_x, float& adj_y, float& adj_z, float& adj_w, quat adj_ret) { adj_x += adj_ret.x; adj_y += adj_ret.y; adj_z += adj_ret.z; adj_w += adj_ret.w; } inline CUDA_CALLABLE void adj_quat(const float3& v, float w, float3& adj_v, float& adj_w, quat adj_ret) { adj_v.x += adj_ret.x; adj_v.y += adj_ret.y; adj_v.z += adj_ret.z; adj_w += adj_ret.w; } // foward methods inline CUDA_CALLABLE quat quat_from_axis_angle(const float3& axis, float angle) { float half = angle*0.5f; float w = cosf(half); float sin_theta_over_two = sinf(half); float3 v = axis*sin_theta_over_two; return quat(v.x, v.y, v.z, w); } inline CUDA_CALLABLE quat quat_identity() { return quat(0.0f, 0.0f, 0.0f, 1.0f); } inline CUDA_CALLABLE float dot(const quat& a, const quat& b) { return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w; } inline CUDA_CALLABLE float length(const quat& q) { return sqrtf(dot(q, q)); } inline CUDA_CALLABLE quat normalize(const quat& q) { float l = length(q); if (l > kEps) { float inv_l = 1.0f/l; return quat(q.x*inv_l, q.y*inv_l, q.z*inv_l, q.w*inv_l); } else { return quat(0.0f, 0.0f, 0.0f, 1.0f); } } inline CUDA_CALLABLE quat inverse(const quat& q) { return quat(-q.x, -q.y, -q.z, q.w); } inline CUDA_CALLABLE quat add(const quat& a, const quat& b) { return quat(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w); } inline CUDA_CALLABLE quat sub(const quat& a, const quat& b) { return quat(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w);} inline CUDA_CALLABLE quat mul(const quat& a, const quat& b) { return quat(a.w*b.x + b.w*a.x + a.y*b.z - b.y*a.z, a.w*b.y + b.w*a.y + a.z*b.x - b.z*a.x, a.w*b.z + b.w*a.z + a.x*b.y - b.x*a.y, a.w*b.w - a.x*b.x - a.y*b.y - a.z*b.z); } inline CUDA_CALLABLE quat mul(const quat& a, float s) { return quat(a.x*s, a.y*s, a.z*s, a.w*s); } inline CUDA_CALLABLE float3 rotate(const quat& q, const float3& x) { return x*(2.0f*q.w*q.w-1.0f) + cross(float3(&q.x), x)*q.w*2.0f + float3(&q.x)*dot(float3(&q.x), x)*2.0f; } inline CUDA_CALLABLE float3 rotate_inv(const quat& q, const float3& x) { return x*(2.0f*q.w*q.w-1.0f) - cross(float3(&q.x), x)*q.w*2.0f + float3(&q.x)*dot(float3(&q.x), x)*2.0f; } inline CUDA_CALLABLE float index(const quat& a, int idx) { #if FP_CHECK if (idx < 0 || idx > 3) { printf("quat index %d out of bounds at %s %d", idx, __FILE__, __LINE__); exit(1); } #endif return (&a.x)[idx]; } inline CUDA_CALLABLE void adj_index(const quat& a, int idx, quat& adj_a, int & adj_idx, float & adj_ret) { #if FP_CHECK if (idx < 0 || idx > 3) { printf("quat index %d out of bounds at %s %d", idx, __FILE__, __LINE__); exit(1); } #endif (&adj_a.x)[idx] += adj_ret; } // backward methods inline CUDA_CALLABLE void adj_quat_from_axis_angle(const float3& axis, float angle, float3& adj_axis, float& adj_angle, const quat& adj_ret) { float3 v = float3(adj_ret.x, adj_ret.y, adj_ret.z); float s = sinf(angle*0.5f); float c = cosf(angle*0.5f); quat dqda = quat(axis.x*c, axis.y*c, axis.z*c, -s)*0.5f; adj_axis += v*s; adj_angle += dot(dqda, adj_ret); } inline CUDA_CALLABLE void adj_quat_identity(const quat& adj_ret) { // nop } inline CUDA_CALLABLE void adj_dot(const quat& a, const quat& b, quat& adj_a, quat& adj_b, const float adj_ret) { adj_a += b*adj_ret; adj_b += a*adj_ret; } inline CUDA_CALLABLE void adj_length(const quat& a, quat& adj_a, const float adj_ret) { adj_a += normalize(a)*adj_ret; } inline CUDA_CALLABLE void adj_normalize(const quat& q, quat& adj_q, const quat& adj_ret) { float l = length(q); if (l > kEps) { float l_inv = 1.0f/l; adj_q += adj_ret*l_inv - q*(l_inv*l_inv*l_inv*dot(q, adj_ret)); } } inline CUDA_CALLABLE void adj_inverse(const quat& q, quat& adj_q, const quat& adj_ret) { adj_q.x -= adj_ret.x; adj_q.y -= adj_ret.y; adj_q.z -= adj_ret.z; adj_q.w += adj_ret.w; } // inline void adj_normalize(const quat& a, quat& adj_a, const quat& adj_ret) // { // float d = length(a); // if (d > kEps) // { // float invd = 1.0f/d; // quat ahat = normalize(a); // adj_a += (adj_ret - ahat*(dot(ahat, adj_ret))*invd); // //if (!isfinite(adj_a)) // // printf("%s:%d - adj_normalize((%f %f %f), (%f %f %f), (%f, %f, %f))\n", __FILE__, __LINE__, a.x, a.y, a.z, adj_a.x, adj_a.y, adj_a.z, adj_ret.x, adj_ret.y, adj_ret.z); // } // } inline CUDA_CALLABLE void adj_add(const quat& a, const quat& b, quat& adj_a, quat& adj_b, const quat& adj_ret) { adj_a += adj_ret; adj_b += adj_ret; } inline CUDA_CALLABLE void adj_sub(const quat& a, const quat& b, quat& adj_a, quat& adj_b, const quat& adj_ret) { adj_a += adj_ret; adj_b -= adj_ret; } inline CUDA_CALLABLE void adj_mul(const quat& a, const quat& b, quat& adj_a, quat& adj_b, const quat& adj_ret) { // shorthand const quat& r = adj_ret; adj_a += quat(b.w*r.x - b.x*r.w + b.y*r.z - b.z*r.y, b.w*r.y - b.y*r.w - b.x*r.z + b.z*r.x, b.w*r.z + b.x*r.y - b.y*r.x - b.z*r.w, b.w*r.w + b.x*r.x + b.y*r.y + b.z*r.z); adj_b += quat(a.w*r.x - a.x*r.w - a.y*r.z + a.z*r.y, a.w*r.y - a.y*r.w + a.x*r.z - a.z*r.x, a.w*r.z - a.x*r.y + a.y*r.x - a.z*r.w, a.w*r.w + a.x*r.x + a.y*r.y + a.z*r.z); } inline CUDA_CALLABLE void adj_mul(const quat& a, float s, quat& adj_a, float& adj_s, const quat& adj_ret) { adj_a += adj_ret*s; adj_s += dot(a, adj_ret); } inline CUDA_CALLABLE void adj_rotate(const quat& q, const float3& p, quat& adj_q, float3& adj_p, const float3& adj_ret) { const float3& r = adj_ret; { float t2 = p.z*q.z*2.0f; float t3 = p.y*q.w*2.0f; float t4 = p.x*q.w*2.0f; float t5 = p.x*q.x*2.0f; float t6 = p.y*q.y*2.0f; float t7 = p.z*q.y*2.0f; float t8 = p.x*q.z*2.0f; float t9 = p.x*q.y*2.0f; float t10 = p.y*q.x*2.0f; adj_q.x += r.z*(t3+t8)+r.x*(t2+t6+p.x*q.x*4.0f)+r.y*(t9-p.z*q.w*2.0f); adj_q.y += r.y*(t2+t5+p.y*q.y*4.0f)+r.x*(t10+p.z*q.w*2.0f)-r.z*(t4-p.y*q.z*2.0f); adj_q.z += r.y*(t4+t7)+r.z*(t5+t6+p.z*q.z*4.0f)-r.x*(t3-p.z*q.x*2.0f); adj_q.w += r.x*(t7+p.x*q.w*4.0f-p.y*q.z*2.0f)+r.y*(t8+p.y*q.w*4.0f-p.z*q.x*2.0f)+r.z*(-t9+t10+p.z*q.w*4.0f); } { float t2 = q.w*q.w; float t3 = t2*2.0f; float t4 = q.w*q.z*2.0f; float t5 = q.x*q.y*2.0f; float t6 = q.w*q.y*2.0f; float t7 = q.w*q.x*2.0f; float t8 = q.y*q.z*2.0f; adj_p.x += r.y*(t4+t5)+r.x*(t3+(q.x*q.x)*2.0f-1.0f)-r.z*(t6-q.x*q.z*2.0f); adj_p.y += r.z*(t7+t8)-r.x*(t4-t5)+r.y*(t3+(q.y*q.y)*2.0f-1.0f); adj_p.z += -r.y*(t7-t8)+r.z*(t3+(q.z*q.z)*2.0f-1.0f)+r.x*(t6+q.x*q.z*2.0f); } } inline CUDA_CALLABLE void adj_rotate_inv(const quat& q, const float3& p, quat& adj_q, float3& adj_p, const float3& adj_ret) { const float3& r = adj_ret; { float t2 = p.z*q.w*2.0f; float t3 = p.z*q.z*2.0f; float t4 = p.y*q.w*2.0f; float t5 = p.x*q.w*2.0f; float t6 = p.x*q.x*2.0f; float t7 = p.y*q.y*2.0f; float t8 = p.y*q.z*2.0f; float t9 = p.z*q.x*2.0f; float t10 = p.x*q.y*2.0f; adj_q.x += r.y*(t2+t10)+r.x*(t3+t7+p.x*q.x*4.0f)-r.z*(t4-p.x*q.z*2.0f); adj_q.y += r.z*(t5+t8)+r.y*(t3+t6+p.y*q.y*4.0f)-r.x*(t2-p.y*q.x*2.0f); adj_q.z += r.x*(t4+t9)+r.z*(t6+t7+p.z*q.z*4.0f)-r.y*(t5-p.z*q.y*2.0f); adj_q.w += r.x*(t8+p.x*q.w*4.0f-p.z*q.y*2.0f)+r.y*(t9+p.y*q.w*4.0f-p.x*q.z*2.0f)+r.z*(t10-p.y*q.x*2.0f+p.z*q.w*4.0f); } { float t2 = q.w*q.w; float t3 = t2*2.0f; float t4 = q.w*q.z*2.0f; float t5 = q.w*q.y*2.0f; float t6 = q.x*q.z*2.0f; float t7 = q.w*q.x*2.0f; adj_p.x += r.z*(t5+t6)+r.x*(t3+(q.x*q.x)*2.0f-1.0f)-r.y*(t4-q.x*q.y*2.0f); adj_p.y += r.y*(t3+(q.y*q.y)*2.0f-1.0f)+r.x*(t4+q.x*q.y*2.0f)-r.z*(t7-q.y*q.z*2.0f); adj_p.z += -r.x*(t5-t6)+r.z*(t3+(q.z*q.z)*2.0f-1.0f)+r.y*(t7+q.y*q.z*2.0f); } }
8,985
C
26.993769
184
0.522315
vstrozzi/FRL-SHAC-Extension/dflex/build/lib/dflex/vec3.h
#pragma once struct float3 { float x; float y; float z; inline CUDA_CALLABLE float3(float x=0.0f, float y=0.0f, float z=0.0f) : x(x), y(y), z(z) {} explicit inline CUDA_CALLABLE float3(const float* p) : x(p[0]), y(p[1]), z(p[2]) {} }; //-------------- // float3 methods inline CUDA_CALLABLE float3 operator - (float3 a) { return { -a.x, -a.y, -a.z }; } inline CUDA_CALLABLE float3 mul(float3 a, float s) { return { a.x*s, a.y*s, a.z*s }; } inline CUDA_CALLABLE float3 div(float3 a, float s) { return { a.x/s, a.y/s, a.z/s }; } inline CUDA_CALLABLE float3 add(float3 a, float3 b) { return { a.x+b.x, a.y+b.y, a.z+b.z }; } inline CUDA_CALLABLE float3 add(float3 a, float s) { return { a.x + s, a.y + s, a.z + s }; } inline CUDA_CALLABLE float3 sub(float3 a, float3 b) { return { a.x-b.x, a.y-b.y, a.z-b.z }; } inline CUDA_CALLABLE float dot(float3 a, float3 b) { return a.x*b.x + a.y*b.y + a.z*b.z; } inline CUDA_CALLABLE float3 cross(float3 a, float3 b) { float3 c; c.x = a.y*b.z - a.z*b.y; c.y = a.z*b.x - a.x*b.z; c.z = a.x*b.y - a.y*b.x; return c; } inline CUDA_CALLABLE float index(const float3 & a, int idx) { #if FP_CHECK if (idx < 0 || idx > 2) { printf("float3 index %d out of bounds at %s %d\n", idx, __FILE__, __LINE__); exit(1); } #endif return (&a.x)[idx]; } inline CUDA_CALLABLE void adj_index(const float3 & a, int idx, float3 & adj_a, int & adj_idx, float & adj_ret) { #if FP_CHECK if (idx < 0 || idx > 2) { printf("float3 index %d out of bounds at %s %d\n", idx, __FILE__, __LINE__); exit(1); } #endif (&adj_a.x)[idx] += adj_ret; } inline CUDA_CALLABLE float length(float3 a) { return sqrtf(dot(a, a)); } inline CUDA_CALLABLE float3 normalize(float3 a) { float l = length(a); if (l > kEps) return div(a,l); else return float3(); } inline bool CUDA_CALLABLE isfinite(float3 x) { return std::isfinite(x.x) && std::isfinite(x.y) && std::isfinite(x.z); } // adjoint float3 constructor inline CUDA_CALLABLE void adj_float3(float x, float y, float z, float& adj_x, float& adj_y, float& adj_z, const float3& adj_ret) { adj_x += adj_ret.x; adj_y += adj_ret.y; adj_z += adj_ret.z; } inline CUDA_CALLABLE void adj_mul(float3 a, float s, float3& adj_a, float& adj_s, const float3& adj_ret) { adj_a.x += s*adj_ret.x; adj_a.y += s*adj_ret.y; adj_a.z += s*adj_ret.z; adj_s += dot(a, adj_ret); #if FP_CHECK if (!isfinite(a) || !isfinite(s) || !isfinite(adj_a) || !isfinite(adj_s) || !isfinite(adj_ret)) printf("adj_mul((%f %f %f), %f, (%f %f %f), %f, (%f %f %f)\n", a.x, a.y, a.z, s, adj_a.x, adj_a.y, adj_a.z, adj_s, adj_ret.x, adj_ret.y, adj_ret.z); #endif } inline CUDA_CALLABLE void adj_div(float3 a, float s, float3& adj_a, float& adj_s, const float3& adj_ret) { adj_s += dot(- a / (s * s), adj_ret); // - a / s^2 adj_a.x += adj_ret.x / s; adj_a.y += adj_ret.y / s; adj_a.z += adj_ret.z / s; #if FP_CHECK if (!isfinite(a) || !isfinite(s) || !isfinite(adj_a) || !isfinite(adj_s) || !isfinite(adj_ret)) printf("adj_div((%f %f %f), %f, (%f %f %f), %f, (%f %f %f)\n", a.x, a.y, a.z, s, adj_a.x, adj_a.y, adj_a.z, adj_s, adj_ret.x, adj_ret.y, adj_ret.z); #endif } inline CUDA_CALLABLE void adj_add(float3 a, float3 b, float3& adj_a, float3& adj_b, const float3& adj_ret) { adj_a += adj_ret; adj_b += adj_ret; } inline CUDA_CALLABLE void adj_add(float3 a, float s, float3& adj_a, float& adj_s, const float3& adj_ret) { adj_a += adj_ret; adj_s += adj_ret.x + adj_ret.y + adj_ret.z; } inline CUDA_CALLABLE void adj_sub(float3 a, float3 b, float3& adj_a, float3& adj_b, const float3& adj_ret) { adj_a += adj_ret; adj_b -= adj_ret; } inline CUDA_CALLABLE void adj_dot(float3 a, float3 b, float3& adj_a, float3& adj_b, const float adj_ret) { adj_a += b*adj_ret; adj_b += a*adj_ret; #if FP_CHECK if (!isfinite(a) || !isfinite(b) || !isfinite(adj_a) || !isfinite(adj_b) || !isfinite(adj_ret)) printf("adj_dot((%f %f %f), (%f %f %f), (%f %f %f), (%f %f %f), %f)\n", a.x, a.y, a.z, b.x, b.y, b.z, adj_a.x, adj_a.y, adj_a.z, adj_b.x, adj_b.y, adj_b.z, adj_ret); #endif } inline CUDA_CALLABLE void adj_cross(float3 a, float3 b, float3& adj_a, float3& adj_b, const float3& adj_ret) { // todo: sign check adj_a += cross(b, adj_ret); adj_b -= cross(a, adj_ret); } #ifdef CUDA inline __device__ void atomic_add(float3 * addr, float3 value) { // *addr += value; atomicAdd(&(addr -> x), value.x); atomicAdd(&(addr -> y), value.y); atomicAdd(&(addr -> z), value.z); } #endif inline CUDA_CALLABLE void adj_length(float3 a, float3& adj_a, const float adj_ret) { adj_a += normalize(a)*adj_ret; #if FP_CHECK if (!isfinite(adj_a)) printf("%s:%d - adj_length((%f %f %f), (%f %f %f), (%f))\n", __FILE__, __LINE__, a.x, a.y, a.z, adj_a.x, adj_a.y, adj_a.z, adj_ret); #endif } inline CUDA_CALLABLE void adj_normalize(float3 a, float3& adj_a, const float3& adj_ret) { float d = length(a); if (d > kEps) { float invd = 1.0f/d; float3 ahat = normalize(a); adj_a += (adj_ret*invd - ahat*(dot(ahat, adj_ret))*invd); #if FP_CHECK if (!isfinite(adj_a)) printf("%s:%d - adj_normalize((%f %f %f), (%f %f %f), (%f, %f, %f))\n", __FILE__, __LINE__, a.x, a.y, a.z, adj_a.x, adj_a.y, adj_a.z, adj_ret.x, adj_ret.y, adj_ret.z); #endif } }
5,542
C
23.745536
179
0.560628
vstrozzi/FRL-SHAC-Extension/dflex/build/lib/dflex/sim.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """This module contains time-integration objects for simulating models + state forward in time. """ import math import torch import numpy as np import dflex.util import dflex.adjoint as df import dflex.config from dflex.model import * import time # Todo #----- # # [x] Spring model # [x] 2D FEM model # [x] 3D FEM model # [x] Cloth # [x] Wind/Drag model # [x] Bending model # [x] Triangle collision # [x] Rigid body model # [x] Rigid shape contact # [x] Sphere # [x] Capsule # [x] Box # [ ] Convex # [ ] SDF # [ ] Implicit solver # [x] USD import # [x] USD export # ----- # externally compiled kernels module (C++/CUDA code with PyBind entry points) kernels = None @df.func def test(c: float): x = 1.0 y = float(2) z = int(3.0) print(y) print(z) if (c < 3.0): x = 2.0 return x*6.0 def kernel_init(): global kernels kernels = df.compile() @df.kernel def integrate_particles(x: df.tensor(df.float3), v: df.tensor(df.float3), f: df.tensor(df.float3), w: df.tensor(float), gravity: df.tensor(df.float3), dt: float, x_new: df.tensor(df.float3), v_new: df.tensor(df.float3)): tid = df.tid() x0 = df.load(x, tid) v0 = df.load(v, tid) f0 = df.load(f, tid) inv_mass = df.load(w, tid) g = df.load(gravity, 0) # simple semi-implicit Euler. v1 = v0 + a dt, x1 = x0 + v1 dt v1 = v0 + (f0 * inv_mass + g * df.step(0.0 - inv_mass)) * dt x1 = x0 + v1 * dt df.store(x_new, tid, x1) df.store(v_new, tid, v1) # semi-implicit Euler integration @df.kernel def integrate_rigids(rigid_x: df.tensor(df.float3), rigid_r: df.tensor(df.quat), rigid_v: df.tensor(df.float3), rigid_w: df.tensor(df.float3), rigid_f: df.tensor(df.float3), rigid_t: df.tensor(df.float3), inv_m: df.tensor(float), inv_I: df.tensor(df.mat33), gravity: df.tensor(df.float3), dt: float, rigid_x_new: df.tensor(df.float3), rigid_r_new: df.tensor(df.quat), rigid_v_new: df.tensor(df.float3), rigid_w_new: df.tensor(df.float3)): tid = df.tid() # positions x0 = df.load(rigid_x, tid) r0 = df.load(rigid_r, tid) # velocities v0 = df.load(rigid_v, tid) w0 = df.load(rigid_w, tid) # angular velocity # forces f0 = df.load(rigid_f, tid) t0 = df.load(rigid_t, tid) # masses inv_mass = df.load(inv_m, tid) # 1 / mass inv_inertia = df.load(inv_I, tid) # inverse of 3x3 inertia matrix g = df.load(gravity, 0) # linear part v1 = v0 + (f0 * inv_mass + g * df.nonzero(inv_mass)) * dt # linear integral (linear position/velocity) x1 = x0 + v1 * dt # angular part # so reverse multiplication by r0 takes you from global coordinates into local coordinates # because it's covector and thus gets pulled back rather than pushed forward wb = df.rotate_inv(r0, w0) # angular integral (angular velocity and rotation), rotate into object reference frame tb = df.rotate_inv(r0, t0) # also rotate torques into local coordinates # I^{-1} torque = angular acceleration and inv_inertia is always going to be in the object frame. # So we need to rotate into that frame, and then back into global. w1 = df.rotate(r0, wb + inv_inertia * tb * dt) # I^-1 * torque * dt., then go back into global coordinates r1 = df.normalize(r0 + df.quat(w1, 0.0) * r0 * 0.5 * dt) # rotate around w1 by dt df.store(rigid_x_new, tid, x1) df.store(rigid_r_new, tid, r1) df.store(rigid_v_new, tid, v1) df.store(rigid_w_new, tid, w1) @df.kernel def eval_springs(x: df.tensor(df.float3), v: df.tensor(df.float3), spring_indices: df.tensor(int), spring_rest_lengths: df.tensor(float), spring_stiffness: df.tensor(float), spring_damping: df.tensor(float), f: df.tensor(df.float3)): tid = df.tid() i = df.load(spring_indices, tid * 2 + 0) j = df.load(spring_indices, tid * 2 + 1) ke = df.load(spring_stiffness, tid) kd = df.load(spring_damping, tid) rest = df.load(spring_rest_lengths, tid) xi = df.load(x, i) xj = df.load(x, j) vi = df.load(v, i) vj = df.load(v, j) xij = xi - xj vij = vi - vj l = length(xij) l_inv = 1.0 / l # normalized spring direction dir = xij * l_inv c = l - rest dcdt = dot(dir, vij) # damping based on relative velocity. fs = dir * (ke * c + kd * dcdt) df.atomic_sub(f, i, fs) df.atomic_add(f, j, fs) @df.kernel def eval_triangles(x: df.tensor(df.float3), v: df.tensor(df.float3), indices: df.tensor(int), pose: df.tensor(df.mat22), activation: df.tensor(float), k_mu: float, k_lambda: float, k_damp: float, k_drag: float, k_lift: float, f: df.tensor(df.float3)): tid = df.tid() i = df.load(indices, tid * 3 + 0) j = df.load(indices, tid * 3 + 1) k = df.load(indices, tid * 3 + 2) p = df.load(x, i) # point zero q = df.load(x, j) # point one r = df.load(x, k) # point two vp = df.load(v, i) # vel zero vq = df.load(v, j) # vel one vr = df.load(v, k) # vel two qp = q - p # barycentric coordinates (centered at p) rp = r - p Dm = df.load(pose, tid) inv_rest_area = df.determinant(Dm) * 2.0 # 1 / det(A) = det(A^-1) rest_area = 1.0 / inv_rest_area # scale stiffness coefficients to account for area k_mu = k_mu * rest_area k_lambda = k_lambda * rest_area k_damp = k_damp * rest_area # F = Xs*Xm^-1 f1 = qp * Dm[0, 0] + rp * Dm[1, 0] f2 = qp * Dm[0, 1] + rp * Dm[1, 1] #----------------------------- # St. Venant-Kirchoff # # Green strain, F'*F-I # e00 = dot(f1, f1) - 1.0 # e10 = dot(f2, f1) # e01 = dot(f1, f2) # e11 = dot(f2, f2) - 1.0 # E = df.mat22(e00, e01, # e10, e11) # # local forces (deviatoric part) # T = df.mul(E, df.transpose(Dm)) # # spatial forces, F*T # fq = (f1*T[0,0] + f2*T[1,0])*k_mu*2.0 # fr = (f1*T[0,1] + f2*T[1,1])*k_mu*2.0 # alpha = 1.0 #----------------------------- # Baraff & Witkin, note this model is not isotropic # c1 = length(f1) - 1.0 # c2 = length(f2) - 1.0 # f1 = normalize(f1)*c1*k1 # f2 = normalize(f2)*c2*k1 # fq = f1*Dm[0,0] + f2*Dm[0,1] # fr = f1*Dm[1,0] + f2*Dm[1,1] #----------------------------- # Neo-Hookean (with rest stability) # force = mu*F*Dm' fq = (f1 * Dm[0, 0] + f2 * Dm[0, 1]) * k_mu fr = (f1 * Dm[1, 0] + f2 * Dm[1, 1]) * k_mu alpha = 1.0 + k_mu / k_lambda #----------------------------- # Area Preservation n = df.cross(qp, rp) area = df.length(n) * 0.5 # actuation act = df.load(activation, tid) # J-alpha c = area * inv_rest_area - alpha + act # dJdx n = df.normalize(n) dcdq = df.cross(rp, n) * inv_rest_area * 0.5 dcdr = df.cross(n, qp) * inv_rest_area * 0.5 f_area = k_lambda * c #----------------------------- # Area Damping dcdt = dot(dcdq, vq) + dot(dcdr, vr) - dot(dcdq + dcdr, vp) f_damp = k_damp * dcdt fq = fq + dcdq * (f_area + f_damp) fr = fr + dcdr * (f_area + f_damp) fp = fq + fr #----------------------------- # Lift + Drag vmid = (vp + vr + vq) * 0.3333 vdir = df.normalize(vmid) f_drag = vmid * (k_drag * area * df.abs(df.dot(n, vmid))) f_lift = n * (k_lift * area * (1.57079 - df.acos(df.dot(n, vdir)))) * dot(vmid, vmid) # note reversed sign due to atomic_add below.. need to write the unary op - fp = fp - f_drag - f_lift fq = fq + f_drag + f_lift fr = fr + f_drag + f_lift # apply forces df.atomic_add(f, i, fp) df.atomic_sub(f, j, fq) df.atomic_sub(f, k, fr) @df.func def triangle_closest_point_barycentric(a: df.float3, b: df.float3, c: df.float3, p: df.float3): ab = b - a ac = c - a ap = p - a d1 = df.dot(ab, ap) d2 = df.dot(ac, ap) if (d1 <= 0.0 and d2 <= 0.0): return float3(1.0, 0.0, 0.0) bp = p - b d3 = df.dot(ab, bp) d4 = df.dot(ac, bp) if (d3 >= 0.0 and d4 <= d3): return float3(0.0, 1.0, 0.0) vc = d1 * d4 - d3 * d2 v = d1 / (d1 - d3) if (vc <= 0.0 and d1 >= 0.0 and d3 <= 0.0): return float3(1.0 - v, v, 0.0) cp = p - c d5 = dot(ab, cp) d6 = dot(ac, cp) if (d6 >= 0.0 and d5 <= d6): return float3(0.0, 0.0, 1.0) vb = d5 * d2 - d1 * d6 w = d2 / (d2 - d6) if (vb <= 0.0 and d2 >= 0.0 and d6 <= 0.0): return float3(1.0 - w, 0.0, w) va = d3 * d6 - d5 * d4 w = (d4 - d3) / ((d4 - d3) + (d5 - d6)) if (va <= 0.0 and (d4 - d3) >= 0.0 and (d5 - d6) >= 0.0): return float3(0.0, w, 1.0 - w) denom = 1.0 / (va + vb + vc) v = vb * denom w = vc * denom return float3(1.0 - v - w, v, w) @df.kernel def eval_triangles_contact( # idx : df.tensor(int), # list of indices for colliding particles num_particles: int, # size of particles x: df.tensor(df.float3), v: df.tensor(df.float3), indices: df.tensor(int), pose: df.tensor(df.mat22), activation: df.tensor(float), k_mu: float, k_lambda: float, k_damp: float, k_drag: float, k_lift: float, f: df.tensor(df.float3)): tid = df.tid() face_no = tid // num_particles # which face particle_no = tid % num_particles # which particle # index = df.load(idx, tid) pos = df.load(x, particle_no) # at the moment, just one particle # vel0 = df.load(v, 0) i = df.load(indices, face_no * 3 + 0) j = df.load(indices, face_no * 3 + 1) k = df.load(indices, face_no * 3 + 2) if (i == particle_no or j == particle_no or k == particle_no): return p = df.load(x, i) # point zero q = df.load(x, j) # point one r = df.load(x, k) # point two # vp = df.load(v, i) # vel zero # vq = df.load(v, j) # vel one # vr = df.load(v, k) # vel two # qp = q-p # barycentric coordinates (centered at p) # rp = r-p bary = triangle_closest_point_barycentric(p, q, r, pos) closest = p * bary[0] + q * bary[1] + r * bary[2] diff = pos - closest dist = df.dot(diff, diff) n = df.normalize(diff) c = df.min(dist - 0.01, 0.0) # 0 unless within 0.01 of surface #c = df.leaky_min(dot(n, x0)-0.01, 0.0, 0.0) fn = n * c * 1e5 df.atomic_sub(f, particle_no, fn) # # apply forces (could do - f / 3 here) df.atomic_add(f, i, fn * bary[0]) df.atomic_add(f, j, fn * bary[1]) df.atomic_add(f, k, fn * bary[2]) @df.kernel def eval_triangles_rigid_contacts( num_particles: int, # number of particles (size of contact_point) x: df.tensor(df.float3), # position of particles v: df.tensor(df.float3), indices: df.tensor(int), # triangle indices rigid_x: df.tensor(df.float3), # rigid body positions rigid_r: df.tensor(df.quat), rigid_v: df.tensor(df.float3), rigid_w: df.tensor(df.float3), contact_body: df.tensor(int), contact_point: df.tensor(df.float3), # position of contact points relative to body contact_dist: df.tensor(float), contact_mat: df.tensor(int), materials: df.tensor(float), # rigid_f : df.tensor(df.float3), # rigid_t : df.tensor(df.float3), tri_f: df.tensor(df.float3)): tid = df.tid() face_no = tid // num_particles # which face particle_no = tid % num_particles # which particle # ----------------------- # load rigid body point c_body = df.load(contact_body, particle_no) c_point = df.load(contact_point, particle_no) c_dist = df.load(contact_dist, particle_no) c_mat = df.load(contact_mat, particle_no) # hard coded surface parameter tensor layout (ke, kd, kf, mu) ke = df.load(materials, c_mat * 4 + 0) # restitution coefficient kd = df.load(materials, c_mat * 4 + 1) # damping coefficient kf = df.load(materials, c_mat * 4 + 2) # friction coefficient mu = df.load(materials, c_mat * 4 + 3) # coulomb friction x0 = df.load(rigid_x, c_body) # position of colliding body r0 = df.load(rigid_r, c_body) # orientation of colliding body v0 = df.load(rigid_v, c_body) w0 = df.load(rigid_w, c_body) # transform point to world space pos = x0 + df.rotate(r0, c_point) # use x0 as center, everything is offset from center of mass # moment arm r = pos - x0 # basically just c_point in the new coordinates rhat = df.normalize(r) pos = pos + rhat * c_dist # add on 'thickness' of shape, e.g.: radius of sphere/capsule # contact point velocity dpdt = v0 + df.cross(w0, r) # this is rigid velocity cross offset, so it's the velocity of the contact point. # ----------------------- # load triangle i = df.load(indices, face_no * 3 + 0) j = df.load(indices, face_no * 3 + 1) k = df.load(indices, face_no * 3 + 2) p = df.load(x, i) # point zero q = df.load(x, j) # point one r = df.load(x, k) # point two vp = df.load(v, i) # vel zero vq = df.load(v, j) # vel one vr = df.load(v, k) # vel two bary = triangle_closest_point_barycentric(p, q, r, pos) closest = p * bary[0] + q * bary[1] + r * bary[2] diff = pos - closest # vector from tri to point dist = df.dot(diff, diff) # squared distance n = df.normalize(diff) # points into the object c = df.min(dist - 0.05, 0.0) # 0 unless within 0.05 of surface #c = df.leaky_min(dot(n, x0)-0.01, 0.0, 0.0) # fn = n * c * 1e6 # points towards cloth (both n and c are negative) # df.atomic_sub(tri_f, particle_no, fn) fn = c * ke # normal force (restitution coefficient * how far inside for ground) (negative) vtri = vp * bary[0] + vq * bary[1] + vr * bary[2] # bad approximation for centroid velocity vrel = vtri - dpdt vn = dot(n, vrel) # velocity component of rigid in negative normal direction vt = vrel - n * vn # velocity component not in normal direction # contact damping fd = 0.0 - df.max(vn, 0.0) * kd * df.step(c) # again, negative, into the ground # # viscous friction # ft = vt*kf # Coulomb friction (box) lower = mu * (fn + fd) upper = 0.0 - lower # workaround because no unary ops yet nx = cross(n, float3(0.0, 0.0, 1.0)) # basis vectors for tangent nz = cross(n, float3(1.0, 0.0, 0.0)) vx = df.clamp(dot(nx * kf, vt), lower, upper) vz = df.clamp(dot(nz * kf, vt), lower, upper) ft = (nx * vx + nz * vz) * (0.0 - df.step(c)) # df.float3(vx, 0.0, vz)*df.step(c) # # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) # #ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke) f_total = n * (fn + fd) + ft df.atomic_add(tri_f, i, f_total * bary[0]) df.atomic_add(tri_f, j, f_total * bary[1]) df.atomic_add(tri_f, k, f_total * bary[2]) @df.kernel def eval_bending( x: df.tensor(df.float3), v: df.tensor(df.float3), indices: df.tensor(int), rest: df.tensor(float), ke: float, kd: float, f: df.tensor(df.float3)): tid = df.tid() i = df.load(indices, tid * 4 + 0) j = df.load(indices, tid * 4 + 1) k = df.load(indices, tid * 4 + 2) l = df.load(indices, tid * 4 + 3) rest_angle = df.load(rest, tid) x1 = df.load(x, i) x2 = df.load(x, j) x3 = df.load(x, k) x4 = df.load(x, l) v1 = df.load(v, i) v2 = df.load(v, j) v3 = df.load(v, k) v4 = df.load(v, l) n1 = df.cross(x3 - x1, x4 - x1) # normal to face 1 n2 = df.cross(x4 - x2, x3 - x2) # normal to face 2 n1_length = df.length(n1) n2_length = df.length(n2) rcp_n1 = 1.0 / n1_length rcp_n2 = 1.0 / n2_length cos_theta = df.dot(n1, n2) * rcp_n1 * rcp_n2 n1 = n1 * rcp_n1 * rcp_n1 n2 = n2 * rcp_n2 * rcp_n2 e = x4 - x3 e_hat = df.normalize(e) e_length = df.length(e) s = df.sign(df.dot(df.cross(n2, n1), e_hat)) angle = df.acos(cos_theta) * s d1 = n1 * e_length d2 = n2 * e_length d3 = n1 * df.dot(x1 - x4, e_hat) + n2 * df.dot(x2 - x4, e_hat) d4 = n1 * df.dot(x3 - x1, e_hat) + n2 * df.dot(x3 - x2, e_hat) # elastic f_elastic = ke * (angle - rest_angle) # damping f_damp = kd * (df.dot(d1, v1) + df.dot(d2, v2) + df.dot(d3, v3) + df.dot(d4, v4)) # total force, proportional to edge length f_total = 0.0 - e_length * (f_elastic + f_damp) df.atomic_add(f, i, d1 * f_total) df.atomic_add(f, j, d2 * f_total) df.atomic_add(f, k, d3 * f_total) df.atomic_add(f, l, d4 * f_total) @df.kernel def eval_tetrahedra(x: df.tensor(df.float3), v: df.tensor(df.float3), indices: df.tensor(int), pose: df.tensor(df.mat33), activation: df.tensor(float), materials: df.tensor(float), f: df.tensor(df.float3)): tid = df.tid() i = df.load(indices, tid * 4 + 0) j = df.load(indices, tid * 4 + 1) k = df.load(indices, tid * 4 + 2) l = df.load(indices, tid * 4 + 3) act = df.load(activation, tid) k_mu = df.load(materials, tid * 3 + 0) k_lambda = df.load(materials, tid * 3 + 1) k_damp = df.load(materials, tid * 3 + 2) x0 = df.load(x, i) x1 = df.load(x, j) x2 = df.load(x, k) x3 = df.load(x, l) v0 = df.load(v, i) v1 = df.load(v, j) v2 = df.load(v, k) v3 = df.load(v, l) x10 = x1 - x0 x20 = x2 - x0 x30 = x3 - x0 v10 = v1 - v0 v20 = v2 - v0 v30 = v3 - v0 Ds = df.mat33(x10, x20, x30) Dm = df.load(pose, tid) inv_rest_volume = df.determinant(Dm) * 6.0 rest_volume = 1.0 / inv_rest_volume alpha = 1.0 + k_mu / k_lambda - k_mu / (4.0 * k_lambda) # scale stiffness coefficients to account for area k_mu = k_mu * rest_volume k_lambda = k_lambda * rest_volume k_damp = k_damp * rest_volume # F = Xs*Xm^-1 F = Ds * Dm dFdt = df.mat33(v10, v20, v30) * Dm col1 = df.float3(F[0, 0], F[1, 0], F[2, 0]) col2 = df.float3(F[0, 1], F[1, 1], F[2, 1]) col3 = df.float3(F[0, 2], F[1, 2], F[2, 2]) #----------------------------- # Neo-Hookean (with rest stability [Smith et al 2018]) Ic = dot(col1, col1) + dot(col2, col2) + dot(col3, col3) # deviatoric part P = F * k_mu * (1.0 - 1.0 / (Ic + 1.0)) + dFdt * k_damp H = P * df.transpose(Dm) f1 = df.float3(H[0, 0], H[1, 0], H[2, 0]) f2 = df.float3(H[0, 1], H[1, 1], H[2, 1]) f3 = df.float3(H[0, 2], H[1, 2], H[2, 2]) #----------------------------- # C_spherical # r_s = df.sqrt(dot(col1, col1) + dot(col2, col2) + dot(col3, col3)) # r_s_inv = 1.0/r_s # C = r_s - df.sqrt(3.0) # dCdx = F*df.transpose(Dm)*r_s_inv # grad1 = float3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = float3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = float3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # f1 = grad1*C*k_mu # f2 = grad2*C*k_mu # f3 = grad3*C*k_mu #---------------------------- # C_D # r_s = df.sqrt(dot(col1, col1) + dot(col2, col2) + dot(col3, col3)) # C = r_s*r_s - 3.0 # dCdx = F*df.transpose(Dm)*2.0 # grad1 = float3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = float3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = float3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # f1 = grad1*C*k_mu # f2 = grad2*C*k_mu # f3 = grad3*C*k_mu # hydrostatic part J = df.determinant(F) #print(J) s = inv_rest_volume / 6.0 dJdx1 = df.cross(x20, x30) * s dJdx2 = df.cross(x30, x10) * s dJdx3 = df.cross(x10, x20) * s f_volume = (J - alpha + act) * k_lambda f_damp = (df.dot(dJdx1, v1) + df.dot(dJdx2, v2) + df.dot(dJdx3, v3)) * k_damp f_total = f_volume + f_damp f1 = f1 + dJdx1 * f_total f2 = f2 + dJdx2 * f_total f3 = f3 + dJdx3 * f_total f0 = (f1 + f2 + f3) * (0.0 - 1.0) # apply forces df.atomic_sub(f, i, f0) df.atomic_sub(f, j, f1) df.atomic_sub(f, k, f2) df.atomic_sub(f, l, f3) @df.kernel def eval_contacts(x: df.tensor(df.float3), v: df.tensor(df.float3), ke: float, kd: float, kf: float, mu: float, f: df.tensor(df.float3)): tid = df.tid() # this just handles contact of particles with the ground plane, nothing else. x0 = df.load(x, tid) v0 = df.load(v, tid) n = float3(0.0, 1.0, 0.0) # why is the normal always y? Ground is always (0, 1, 0) normal c = df.min(dot(n, x0) - 0.01, 0.0) # 0 unless within 0.01 of surface #c = df.leaky_min(dot(n, x0)-0.01, 0.0, 0.0) vn = dot(n, v0) vt = v0 - n * vn fn = n * c * ke # contact damping fd = n * df.min(vn, 0.0) * kd # viscous friction #ft = vt*kf # Coulomb friction (box) lower = mu * c * ke upper = 0.0 - lower vx = clamp(dot(float3(kf, 0.0, 0.0), vt), lower, upper) vz = clamp(dot(float3(0.0, 0.0, kf), vt), lower, upper) ft = df.float3(vx, 0.0, vz) # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) #ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke) ftotal = fn + (fd + ft) * df.step(c) df.atomic_sub(f, tid, ftotal) @df.func def sphere_sdf(center: df.float3, radius: float, p: df.float3): return df.length(p-center) - radius @df.func def sphere_sdf_grad(center: df.float3, radius: float, p: df.float3): return df.normalize(p-center) @df.func def box_sdf(upper: df.float3, p: df.float3): # adapted from https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm qx = abs(p[0])-upper[0] qy = abs(p[1])-upper[1] qz = abs(p[2])-upper[2] e = df.float3(df.max(qx, 0.0), df.max(qy, 0.0), df.max(qz, 0.0)) return df.length(e) + df.min(df.max(qx, df.max(qy, qz)), 0.0) @df.func def box_sdf_grad(upper: df.float3, p: df.float3): qx = abs(p[0])-upper[0] qy = abs(p[1])-upper[1] qz = abs(p[2])-upper[2] # exterior case if (qx > 0.0 or qy > 0.0 or qz > 0.0): x = df.clamp(p[0], 0.0-upper[0], upper[0]) y = df.clamp(p[1], 0.0-upper[1], upper[1]) z = df.clamp(p[2], 0.0-upper[2], upper[2]) return df.normalize(p - df.float3(x, y, z)) sx = df.sign(p[0]) sy = df.sign(p[1]) sz = df.sign(p[2]) # x projection if (qx > qy and qx > qz): return df.float3(sx, 0.0, 0.0) # y projection if (qy > qx and qy > qz): return df.float3(0.0, sy, 0.0) # z projection if (qz > qx and qz > qy): return df.float3(0.0, 0.0, sz) @df.func def capsule_sdf(radius: float, half_width: float, p: df.float3): if (p[0] > half_width): return length(df.float3(p[0] - half_width, p[1], p[2])) - radius if (p[0] < 0.0 - half_width): return length(df.float3(p[0] + half_width, p[1], p[2])) - radius return df.length(df.float3(0.0, p[1], p[2])) - radius @df.func def capsule_sdf_grad(radius: float, half_width: float, p: df.float3): if (p[0] > half_width): return normalize(df.float3(p[0] - half_width, p[1], p[2])) if (p[0] < 0.0 - half_width): return normalize(df.float3(p[0] + half_width, p[1], p[2])) return normalize(df.float3(0.0, p[1], p[2])) @df.kernel def eval_soft_contacts( num_particles: int, particle_x: df.tensor(df.float3), particle_v: df.tensor(df.float3), body_X_sc: df.tensor(df.spatial_transform), body_v_sc: df.tensor(df.spatial_vector), shape_X_co: df.tensor(df.spatial_transform), shape_body: df.tensor(int), shape_geo_type: df.tensor(int), shape_geo_src: df.tensor(int), shape_geo_scale: df.tensor(df.float3), shape_materials: df.tensor(float), ke: float, kd: float, kf: float, mu: float, # outputs particle_f: df.tensor(df.float3), body_f: df.tensor(df.spatial_vector)): tid = df.tid() shape_index = tid // num_particles # which shape particle_index = tid % num_particles # which particle rigid_index = df.load(shape_body, shape_index) px = df.load(particle_x, particle_index) pv = df.load(particle_v, particle_index) #center = float3(0.0, 0.5, 0.0) #radius = 0.25 #margin = 0.01 # sphere collider # c = df.min(sphere_sdf(center, radius, x0)-margin, 0.0) # n = sphere_sdf_grad(center, radius, x0) # box collider #c = df.min(box_sdf(df.float3(radius, radius, radius), x0-center)-margin, 0.0) #n = box_sdf_grad(df.float3(radius, radius, radius), x0-center) X_sc = df.spatial_transform_identity() if (rigid_index >= 0): X_sc = df.load(body_X_sc, rigid_index) X_co = df.load(shape_X_co, shape_index) X_so = df.spatial_transform_multiply(X_sc, X_co) X_os = df.spatial_transform_inverse(X_so) # transform particle position to shape local space x_local = df.spatial_transform_point(X_os, px) # geo description geo_type = df.load(shape_geo_type, shape_index) geo_scale = df.load(shape_geo_scale, shape_index) margin = 0.01 # evaluate shape sdf c = 0.0 n = df.float3(0.0, 0.0, 0.0) # GEO_SPHERE (0) if (geo_type == 0): c = df.min(sphere_sdf(df.float3(0.0, 0.0, 0.0), geo_scale[0], x_local)-margin, 0.0) n = df.spatial_transform_vector(X_so, sphere_sdf_grad(df.float3(0.0, 0.0, 0.0), geo_scale[0], x_local)) # GEO_BOX (1) if (geo_type == 1): c = df.min(box_sdf(geo_scale, x_local)-margin, 0.0) n = df.spatial_transform_vector(X_so, box_sdf_grad(geo_scale, x_local)) # GEO_CAPSULE (2) if (geo_type == 2): c = df.min(capsule_sdf(geo_scale[0], geo_scale[1], x_local)-margin, 0.0) n = df.spatial_transform_vector(X_so, capsule_sdf_grad(geo_scale[0], geo_scale[1], x_local)) # rigid velocity rigid_v_s = df.spatial_vector() if (rigid_index >= 0): rigid_v_s = df.load(body_v_sc, rigid_index) rigid_w = df.spatial_top(rigid_v_s) rigid_v = df.spatial_bottom(rigid_v_s) # compute the body velocity at the particle position bv = rigid_v + df.cross(rigid_w, px) # relative velocity v = pv - bv # decompose relative velocity vn = dot(n, v) vt = v - n * vn # contact elastic fn = n * c * ke # contact damping fd = n * df.min(vn, 0.0) * kd # viscous friction #ft = vt*kf # Coulomb friction (box) lower = mu * c * ke upper = 0.0 - lower vx = clamp(dot(float3(kf, 0.0, 0.0), vt), lower, upper) vz = clamp(dot(float3(0.0, 0.0, kf), vt), lower, upper) ft = df.float3(vx, 0.0, vz) # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) #ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke) f_total = fn + (fd + ft) * df.step(c) t_total = df.cross(px, f_total) df.atomic_sub(particle_f, particle_index, f_total) if (rigid_index >= 0): df.atomic_sub(body_f, rigid_index, df.spatial_vector(t_total, f_total)) @df.kernel def eval_rigid_contacts(rigid_x: df.tensor(df.float3), rigid_r: df.tensor(df.quat), rigid_v: df.tensor(df.float3), rigid_w: df.tensor(df.float3), contact_body: df.tensor(int), contact_point: df.tensor(df.float3), contact_dist: df.tensor(float), contact_mat: df.tensor(int), materials: df.tensor(float), rigid_f: df.tensor(df.float3), rigid_t: df.tensor(df.float3)): tid = df.tid() c_body = df.load(contact_body, tid) c_point = df.load(contact_point, tid) c_dist = df.load(contact_dist, tid) c_mat = df.load(contact_mat, tid) # hard coded surface parameter tensor layout (ke, kd, kf, mu) ke = df.load(materials, c_mat * 4 + 0) # restitution coefficient kd = df.load(materials, c_mat * 4 + 1) # damping coefficient kf = df.load(materials, c_mat * 4 + 2) # friction coefficient mu = df.load(materials, c_mat * 4 + 3) # coulomb friction x0 = df.load(rigid_x, c_body) # position of colliding body r0 = df.load(rigid_r, c_body) # orientation of colliding body v0 = df.load(rigid_v, c_body) w0 = df.load(rigid_w, c_body) n = float3(0.0, 1.0, 0.0) # transform point to world space p = x0 + df.rotate(r0, c_point) - n * c_dist # add on 'thickness' of shape, e.g.: radius of sphere/capsule # use x0 as center, everything is offset from center of mass # moment arm r = p - x0 # basically just c_point in the new coordinates # contact point velocity dpdt = v0 + df.cross(w0, r) # this is rigid velocity cross offset, so it's the velocity of the contact point. # check ground contact c = df.min(dot(n, p), 0.0) # check if we're inside the ground vn = dot(n, dpdt) # velocity component out of the ground vt = dpdt - n * vn # velocity component not into the ground fn = c * ke # normal force (restitution coefficient * how far inside for ground) # contact damping fd = df.min(vn, 0.0) * kd * df.step(c) # again, velocity into the ground, negative # viscous friction #ft = vt*kf # Coulomb friction (box) lower = mu * (fn + fd) # negative upper = 0.0 - lower # positive, workaround for no unary ops vx = df.clamp(dot(float3(kf, 0.0, 0.0), vt), lower, upper) vz = df.clamp(dot(float3(0.0, 0.0, kf), vt), lower, upper) ft = df.float3(vx, 0.0, vz) * df.step(c) # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) #ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke) f_total = n * (fn + fd) + ft t_total = df.cross(r, f_total) df.atomic_sub(rigid_f, c_body, f_total) df.atomic_sub(rigid_t, c_body, t_total) # # Frank & Park definition 3.20, pg 100 @df.func def spatial_transform_twist(t: df.spatial_transform, x: df.spatial_vector): q = spatial_transform_get_rotation(t) p = spatial_transform_get_translation(t) w = spatial_top(x) v = spatial_bottom(x) w = rotate(q, w) v = rotate(q, v) + cross(p, w) return spatial_vector(w, v) @df.func def spatial_transform_wrench(t: df.spatial_transform, x: df.spatial_vector): q = spatial_transform_get_rotation(t) p = spatial_transform_get_translation(t) w = spatial_top(x) v = spatial_bottom(x) v = rotate(q, v) w = rotate(q, w) + cross(p, v) return spatial_vector(w, v) @df.func def spatial_transform_inverse(t: df.spatial_transform): p = spatial_transform_get_translation(t) q = spatial_transform_get_rotation(t) q_inv = inverse(q) return spatial_transform(rotate(q_inv, p)*(0.0 - 1.0), q_inv); # computes adj_t^-T*I*adj_t^-1 (tensor change of coordinates), Frank & Park, section 8.2.3, pg 290 @df.func def spatial_transform_inertia(t: df.spatial_transform, I: df.spatial_matrix): t_inv = spatial_transform_inverse(t) q = spatial_transform_get_rotation(t_inv) p = spatial_transform_get_translation(t_inv) r1 = rotate(q, float3(1.0, 0.0, 0.0)) r2 = rotate(q, float3(0.0, 1.0, 0.0)) r3 = rotate(q, float3(0.0, 0.0, 1.0)) R = mat33(r1, r2, r3) S = mul(skew(p), R) T = spatial_adjoint(R, S) return mul(mul(transpose(T), I), T) @df.kernel def eval_rigid_contacts_art( body_X_s: df.tensor(df.spatial_transform), body_v_s: df.tensor(df.spatial_vector), contact_body: df.tensor(int), contact_point: df.tensor(df.float3), contact_dist: df.tensor(float), contact_mat: df.tensor(int), materials: df.tensor(float), body_f_s: df.tensor(df.spatial_vector)): tid = df.tid() c_body = df.load(contact_body, tid) c_point = df.load(contact_point, tid) c_dist = df.load(contact_dist, tid) c_mat = df.load(contact_mat, tid) # hard coded surface parameter tensor layout (ke, kd, kf, mu) ke = df.load(materials, c_mat * 4 + 0) # restitution coefficient kd = df.load(materials, c_mat * 4 + 1) # damping coefficient kf = df.load(materials, c_mat * 4 + 2) # friction coefficient mu = df.load(materials, c_mat * 4 + 3) # coulomb friction X_s = df.load(body_X_s, c_body) # position of colliding body v_s = df.load(body_v_s, c_body) # orientation of colliding body n = float3(0.0, 1.0, 0.0) # transform point to world space p = df.spatial_transform_point(X_s, c_point) - n * c_dist # add on 'thickness' of shape, e.g.: radius of sphere/capsule w = df.spatial_top(v_s) v = df.spatial_bottom(v_s) # contact point velocity dpdt = v + df.cross(w, p) # check ground contact c = df.dot(n, p) # check if we're inside the ground if (c >= 0.0): return vn = dot(n, dpdt) # velocity component out of the ground vt = dpdt - n * vn # velocity component not into the ground fn = c * ke # normal force (restitution coefficient * how far inside for ground) # contact damping fd = df.min(vn, 0.0) * kd * df.step(c) * (0.0 - c) # viscous friction #ft = vt*kf # Coulomb friction (box) lower = mu * (fn + fd) # negative upper = 0.0 - lower # positive, workaround for no unary ops vx = df.clamp(dot(float3(kf, 0.0, 0.0), vt), lower, upper) vz = df.clamp(dot(float3(0.0, 0.0, kf), vt), lower, upper) # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke) * df.step(c) f_total = n * (fn + fd) + ft t_total = df.cross(p, f_total) df.atomic_add(body_f_s, c_body, df.spatial_vector(t_total, f_total)) @df.func def compute_muscle_force( i: int, body_X_s: df.tensor(df.spatial_transform), body_v_s: df.tensor(df.spatial_vector), muscle_links: df.tensor(int), muscle_points: df.tensor(df.float3), muscle_activation: float, body_f_s: df.tensor(df.spatial_vector)): link_0 = df.load(muscle_links, i) link_1 = df.load(muscle_links, i+1) if (link_0 == link_1): return 0 r_0 = df.load(muscle_points, i) r_1 = df.load(muscle_points, i+1) xform_0 = df.load(body_X_s, link_0) xform_1 = df.load(body_X_s, link_1) pos_0 = df.spatial_transform_point(xform_0, r_0) pos_1 = df.spatial_transform_point(xform_1, r_1) n = df.normalize(pos_1 - pos_0) # todo: add passive elastic and viscosity terms f = n * muscle_activation df.atomic_sub(body_f_s, link_0, df.spatial_vector(df.cross(pos_0, f), f)) df.atomic_add(body_f_s, link_1, df.spatial_vector(df.cross(pos_1, f), f)) return 0 @df.kernel def eval_muscles( body_X_s: df.tensor(df.spatial_transform), body_v_s: df.tensor(df.spatial_vector), muscle_start: df.tensor(int), muscle_params: df.tensor(float), muscle_links: df.tensor(int), muscle_points: df.tensor(df.float3), muscle_activation: df.tensor(float), # output body_f_s: df.tensor(df.spatial_vector)): tid = df.tid() m_start = df.load(muscle_start, tid) m_end = df.load(muscle_start, tid+1) - 1 activation = df.load(muscle_activation, tid) for i in range(m_start, m_end): compute_muscle_force(i, body_X_s, body_v_s, muscle_links, muscle_points, activation, body_f_s) # compute transform across a joint @df.func def jcalc_transform(type: int, axis: df.float3, joint_q: df.tensor(float), start: int): # prismatic if (type == 0): q = df.load(joint_q, start) X_jc = spatial_transform(axis * q, quat_identity()) return X_jc # revolute if (type == 1): q = df.load(joint_q, start) X_jc = spatial_transform(float3(0.0, 0.0, 0.0), quat_from_axis_angle(axis, q)) return X_jc # ball if (type == 2): qx = df.load(joint_q, start + 0) qy = df.load(joint_q, start + 1) qz = df.load(joint_q, start + 2) qw = df.load(joint_q, start + 3) X_jc = spatial_transform(float3(0.0, 0.0, 0.0), quat(qx, qy, qz, qw)) return X_jc # fixed if (type == 3): X_jc = spatial_transform_identity() return X_jc # free if (type == 4): px = df.load(joint_q, start + 0) py = df.load(joint_q, start + 1) pz = df.load(joint_q, start + 2) qx = df.load(joint_q, start + 3) qy = df.load(joint_q, start + 4) qz = df.load(joint_q, start + 5) qw = df.load(joint_q, start + 6) X_jc = spatial_transform(float3(px, py, pz), quat(qx, qy, qz, qw)) return X_jc # default case return spatial_transform_identity() # compute motion subspace and velocity for a joint @df.func def jcalc_motion(type: int, axis: df.float3, X_sc: df.spatial_transform, joint_S_s: df.tensor(df.spatial_vector), joint_qd: df.tensor(float), joint_start: int): # prismatic if (type == 0): S_s = df.spatial_transform_twist(X_sc, spatial_vector(float3(0.0, 0.0, 0.0), axis)) v_j_s = S_s * df.load(joint_qd, joint_start) df.store(joint_S_s, joint_start, S_s) return v_j_s # revolute if (type == 1): S_s = df.spatial_transform_twist(X_sc, spatial_vector(axis, float3(0.0, 0.0, 0.0))) v_j_s = S_s * df.load(joint_qd, joint_start) df.store(joint_S_s, joint_start, S_s) return v_j_s # ball if (type == 2): w = float3(df.load(joint_qd, joint_start + 0), df.load(joint_qd, joint_start + 1), df.load(joint_qd, joint_start + 2)) S_0 = df.spatial_transform_twist(X_sc, spatial_vector(1.0, 0.0, 0.0, 0.0, 0.0, 0.0)) S_1 = df.spatial_transform_twist(X_sc, spatial_vector(0.0, 1.0, 0.0, 0.0, 0.0, 0.0)) S_2 = df.spatial_transform_twist(X_sc, spatial_vector(0.0, 0.0, 1.0, 0.0, 0.0, 0.0)) # write motion subspace df.store(joint_S_s, joint_start + 0, S_0) df.store(joint_S_s, joint_start + 1, S_1) df.store(joint_S_s, joint_start + 2, S_2) return S_0*w[0] + S_1*w[1] + S_2*w[2] # fixed if (type == 3): return spatial_vector() # free if (type == 4): v_j_s = spatial_vector(df.load(joint_qd, joint_start + 0), df.load(joint_qd, joint_start + 1), df.load(joint_qd, joint_start + 2), df.load(joint_qd, joint_start + 3), df.load(joint_qd, joint_start + 4), df.load(joint_qd, joint_start + 5)) # write motion subspace df.store(joint_S_s, joint_start + 0, spatial_vector(1.0, 0.0, 0.0, 0.0, 0.0, 0.0)) df.store(joint_S_s, joint_start + 1, spatial_vector(0.0, 1.0, 0.0, 0.0, 0.0, 0.0)) df.store(joint_S_s, joint_start + 2, spatial_vector(0.0, 0.0, 1.0, 0.0, 0.0, 0.0)) df.store(joint_S_s, joint_start + 3, spatial_vector(0.0, 0.0, 0.0, 1.0, 0.0, 0.0)) df.store(joint_S_s, joint_start + 4, spatial_vector(0.0, 0.0, 0.0, 0.0, 1.0, 0.0)) df.store(joint_S_s, joint_start + 5, spatial_vector(0.0, 0.0, 0.0, 0.0, 0.0, 1.0)) return v_j_s # default case return spatial_vector() # # compute the velocity across a joint # #@df.func # def jcalc_velocity(self, type, S_s, joint_qd, start): # # prismatic # if (type == 0): # v_j_s = df.load(S_s, start)*df.load(joint_qd, start) # return v_j_s # # revolute # if (type == 1): # v_j_s = df.load(S_s, start)*df.load(joint_qd, start) # return v_j_s # # fixed # if (type == 2): # v_j_s = spatial_vector() # return v_j_s # # free # if (type == 3): # v_j_s = S_s[start+0]*joint_qd[start+0] # v_j_s += S_s[start+1]*joint_qd[start+1] # v_j_s += S_s[start+2]*joint_qd[start+2] # v_j_s += S_s[start+3]*joint_qd[start+3] # v_j_s += S_s[start+4]*joint_qd[start+4] # v_j_s += S_s[start+5]*joint_qd[start+5] # return v_j_s # computes joint space forces/torques in tau @df.func def jcalc_tau( type: int, target_k_e: float, target_k_d: float, limit_k_e: float, limit_k_d: float, joint_S_s: df.tensor(spatial_vector), joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_act: df.tensor(float), joint_target: df.tensor(float), joint_limit_lower: df.tensor(float), joint_limit_upper: df.tensor(float), coord_start: int, dof_start: int, body_f_s: spatial_vector, tau: df.tensor(float)): # prismatic / revolute if (type == 0 or type == 1): S_s = df.load(joint_S_s, dof_start) q = df.load(joint_q, coord_start) qd = df.load(joint_qd, dof_start) act = df.load(joint_act, dof_start) target = df.load(joint_target, coord_start) lower = df.load(joint_limit_lower, coord_start) upper = df.load(joint_limit_upper, coord_start) limit_f = 0.0 # compute limit forces, damping only active when limit is violated if (q < lower): limit_f = limit_k_e*(lower-q) if (q > upper): limit_f = limit_k_e*(upper-q) damping_f = (0.0 - limit_k_d) * qd # total torque / force on the joint t = 0.0 - spatial_dot(S_s, body_f_s) - target_k_e*(q - target) - target_k_d*qd + act + limit_f + damping_f df.store(tau, dof_start, t) # ball if (type == 2): # elastic term.. this is proportional to the # imaginary part of the relative quaternion r_j = float3(df.load(joint_q, coord_start + 0), df.load(joint_q, coord_start + 1), df.load(joint_q, coord_start + 2)) # angular velocity for damping w_j = float3(df.load(joint_qd, dof_start + 0), df.load(joint_qd, dof_start + 1), df.load(joint_qd, dof_start + 2)) for i in range(0, 3): S_s = df.load(joint_S_s, dof_start+i) w = w_j[i] r = r_j[i] df.store(tau, dof_start+i, 0.0 - spatial_dot(S_s, body_f_s) - w*target_k_d - r*target_k_e) # fixed # if (type == 3) # pass # free if (type == 4): for i in range(0, 6): S_s = df.load(joint_S_s, dof_start+i) df.store(tau, dof_start+i, 0.0 - spatial_dot(S_s, body_f_s)) return 0 @df.func def jcalc_integrate( type: int, joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_qdd: df.tensor(float), coord_start: int, dof_start: int, dt: float, joint_q_new: df.tensor(float), joint_qd_new: df.tensor(float)): # prismatic / revolute if (type == 0 or type == 1): qdd = df.load(joint_qdd, dof_start) qd = df.load(joint_qd, dof_start) q = df.load(joint_q, coord_start) qd_new = qd + qdd*dt q_new = q + qd_new*dt df.store(joint_qd_new, dof_start, qd_new) df.store(joint_q_new, coord_start, q_new) # ball if (type == 2): m_j = float3(df.load(joint_qdd, dof_start + 0), df.load(joint_qdd, dof_start + 1), df.load(joint_qdd, dof_start + 2)) w_j = float3(df.load(joint_qd, dof_start + 0), df.load(joint_qd, dof_start + 1), df.load(joint_qd, dof_start + 2)) r_j = quat(df.load(joint_q, coord_start + 0), df.load(joint_q, coord_start + 1), df.load(joint_q, coord_start + 2), df.load(joint_q, coord_start + 3)) # symplectic Euler w_j_new = w_j + m_j*dt drdt_j = mul(quat(w_j_new, 0.0), r_j) * 0.5 # new orientation (normalized) r_j_new = normalize(r_j + drdt_j * dt) # update joint coords df.store(joint_q_new, coord_start + 0, r_j_new[0]) df.store(joint_q_new, coord_start + 1, r_j_new[1]) df.store(joint_q_new, coord_start + 2, r_j_new[2]) df.store(joint_q_new, coord_start + 3, r_j_new[3]) # update joint vel df.store(joint_qd_new, dof_start + 0, w_j_new[0]) df.store(joint_qd_new, dof_start + 1, w_j_new[1]) df.store(joint_qd_new, dof_start + 2, w_j_new[2]) # fixed joint #if (type == 3) # pass # free joint if (type == 4): # dofs: qd = (omega_x, omega_y, omega_z, vel_x, vel_y, vel_z) # coords: q = (trans_x, trans_y, trans_z, quat_x, quat_y, quat_z, quat_w) # angular and linear acceleration m_s = float3(df.load(joint_qdd, dof_start + 0), df.load(joint_qdd, dof_start + 1), df.load(joint_qdd, dof_start + 2)) a_s = float3(df.load(joint_qdd, dof_start + 3), df.load(joint_qdd, dof_start + 4), df.load(joint_qdd, dof_start + 5)) # angular and linear velocity w_s = float3(df.load(joint_qd, dof_start + 0), df.load(joint_qd, dof_start + 1), df.load(joint_qd, dof_start + 2)) v_s = float3(df.load(joint_qd, dof_start + 3), df.load(joint_qd, dof_start + 4), df.load(joint_qd, dof_start + 5)) # symplectic Euler w_s = w_s + m_s*dt v_s = v_s + a_s*dt # translation of origin p_s = float3(df.load(joint_q, coord_start + 0), df.load(joint_q, coord_start + 1), df.load(joint_q, coord_start + 2)) # linear vel of origin (note q/qd switch order of linear angular elements) # note we are converting the body twist in the space frame (w_s, v_s) to compute center of mass velcity dpdt_s = v_s + cross(w_s, p_s) # quat and quat derivative r_s = quat(df.load(joint_q, coord_start + 3), df.load(joint_q, coord_start + 4), df.load(joint_q, coord_start + 5), df.load(joint_q, coord_start + 6)) drdt_s = mul(quat(w_s, 0.0), r_s) * 0.5 # new orientation (normalized) p_s_new = p_s + dpdt_s * dt r_s_new = normalize(r_s + drdt_s * dt) # update transform df.store(joint_q_new, coord_start + 0, p_s_new[0]) df.store(joint_q_new, coord_start + 1, p_s_new[1]) df.store(joint_q_new, coord_start + 2, p_s_new[2]) df.store(joint_q_new, coord_start + 3, r_s_new[0]) df.store(joint_q_new, coord_start + 4, r_s_new[1]) df.store(joint_q_new, coord_start + 5, r_s_new[2]) df.store(joint_q_new, coord_start + 6, r_s_new[3]) # update joint_twist df.store(joint_qd_new, dof_start + 0, w_s[0]) df.store(joint_qd_new, dof_start + 1, w_s[1]) df.store(joint_qd_new, dof_start + 2, w_s[2]) df.store(joint_qd_new, dof_start + 3, v_s[0]) df.store(joint_qd_new, dof_start + 4, v_s[1]) df.store(joint_qd_new, dof_start + 5, v_s[2]) return 0 @df.func def compute_link_transform(i: int, joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_X_pj: df.tensor(df.spatial_transform), joint_X_cm: df.tensor(df.spatial_transform), joint_axis: df.tensor(df.float3), body_X_sc: df.tensor(df.spatial_transform), body_X_sm: df.tensor(df.spatial_transform)): # parent transform parent = load(joint_parent, i) # parent transform in spatial coordinates X_sp = spatial_transform_identity() if (parent >= 0): X_sp = load(body_X_sc, parent) type = load(joint_type, i) axis = load(joint_axis, i) coord_start = load(joint_q_start, i) dof_start = load(joint_qd_start, i) # compute transform across joint X_jc = jcalc_transform(type, axis, joint_q, coord_start) X_pj = load(joint_X_pj, i) X_sc = spatial_transform_multiply(X_sp, spatial_transform_multiply(X_pj, X_jc)) # compute transform of center of mass X_cm = load(joint_X_cm, i) X_sm = spatial_transform_multiply(X_sc, X_cm) # store geometry transforms store(body_X_sc, i, X_sc) store(body_X_sm, i, X_sm) return 0 @df.kernel def eval_rigid_fk(articulation_start: df.tensor(int), joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_X_pj: df.tensor(df.spatial_transform), joint_X_cm: df.tensor(df.spatial_transform), joint_axis: df.tensor(df.float3), body_X_sc: df.tensor(df.spatial_transform), body_X_sm: df.tensor(df.spatial_transform)): # one thread per-articulation index = tid() start = df.load(articulation_start, index) end = df.load(articulation_start, index+1) for i in range(start, end): compute_link_transform(i, joint_type, joint_parent, joint_q_start, joint_qd_start, joint_q, joint_X_pj, joint_X_cm, joint_axis, body_X_sc, body_X_sm) @df.func def compute_link_velocity(i: int, joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_qd_start: df.tensor(int), joint_qd: df.tensor(float), joint_axis: df.tensor(df.float3), body_I_m: df.tensor(df.spatial_matrix), body_X_sc: df.tensor(df.spatial_transform), body_X_sm: df.tensor(df.spatial_transform), joint_X_pj: df.tensor(df.spatial_transform), gravity: df.tensor(df.float3), # outputs joint_S_s: df.tensor(df.spatial_vector), body_I_s: df.tensor(df.spatial_matrix), body_v_s: df.tensor(df.spatial_vector), body_f_s: df.tensor(df.spatial_vector), body_a_s: df.tensor(df.spatial_vector)): type = df.load(joint_type, i) axis = df.load(joint_axis, i) parent = df.load(joint_parent, i) dof_start = df.load(joint_qd_start, i) X_sc = df.load(body_X_sc, i) # parent transform in spatial coordinates X_sp = spatial_transform_identity() if (parent >= 0): X_sp = load(body_X_sc, parent) X_pj = load(joint_X_pj, i) X_sj = spatial_transform_multiply(X_sp, X_pj) # compute motion subspace and velocity across the joint (also stores S_s to global memory) v_j_s = jcalc_motion(type, axis, X_sj, joint_S_s, joint_qd, dof_start) # parent velocity v_parent_s = spatial_vector() a_parent_s = spatial_vector() if (parent >= 0): v_parent_s = df.load(body_v_s, parent) a_parent_s = df.load(body_a_s, parent) # body velocity, acceleration v_s = v_parent_s + v_j_s a_s = a_parent_s + spatial_cross(v_s, v_j_s) # + self.joint_S_s[i]*self.joint_qdd[i] # compute body forces X_sm = df.load(body_X_sm, i) I_m = df.load(body_I_m, i) # gravity and external forces (expressed in frame aligned with s but centered at body mass) g = df.load(gravity, 0) m = I_m[3, 3] f_g_m = spatial_vector(float3(), g) * m f_g_s = spatial_transform_wrench(spatial_transform(spatial_transform_get_translation(X_sm), quat_identity()), f_g_m) #f_ext_s = df.load(body_f_s, i) + f_g_s # body forces I_s = spatial_transform_inertia(X_sm, I_m) f_b_s = df.mul(I_s, a_s) + spatial_cross_dual(v_s, df.mul(I_s, v_s)) df.store(body_v_s, i, v_s) df.store(body_a_s, i, a_s) df.store(body_f_s, i, f_b_s - f_g_s) df.store(body_I_s, i, I_s) return 0 @df.func def compute_link_tau(offset: int, joint_end: int, joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_act: df.tensor(float), joint_target: df.tensor(float), joint_target_ke: df.tensor(float), joint_target_kd: df.tensor(float), joint_limit_lower: df.tensor(float), joint_limit_upper: df.tensor(float), joint_limit_ke: df.tensor(float), joint_limit_kd: df.tensor(float), joint_S_s: df.tensor(df.spatial_vector), body_fb_s: df.tensor(df.spatial_vector), # outputs body_ft_s: df.tensor(df.spatial_vector), tau: df.tensor(float)): # for backwards traversal i = joint_end-offset-1 type = df.load(joint_type, i) parent = df.load(joint_parent, i) dof_start = df.load(joint_qd_start, i) coord_start = df.load(joint_q_start, i) target_k_e = df.load(joint_target_ke, i) target_k_d = df.load(joint_target_kd, i) limit_k_e = df.load(joint_limit_ke, i) limit_k_d = df.load(joint_limit_kd, i) # total forces on body f_b_s = df.load(body_fb_s, i) f_t_s = df.load(body_ft_s, i) f_s = f_b_s + f_t_s # compute joint-space forces, writes out tau jcalc_tau(type, target_k_e, target_k_d, limit_k_e, limit_k_d, joint_S_s, joint_q, joint_qd, joint_act, joint_target, joint_limit_lower, joint_limit_upper, coord_start, dof_start, f_s, tau) # update parent forces, todo: check that this is valid for the backwards pass if (parent >= 0): df.atomic_add(body_ft_s, parent, f_s) return 0 @df.kernel def eval_rigid_id(articulation_start: df.tensor(int), joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_axis: df.tensor(df.float3), joint_target_ke: df.tensor(float), joint_target_kd: df.tensor(float), body_I_m: df.tensor(df.spatial_matrix), body_X_sc: df.tensor(df.spatial_transform), body_X_sm: df.tensor(df.spatial_transform), joint_X_pj: df.tensor(df.spatial_transform), gravity: df.tensor(df.float3), # outputs joint_S_s: df.tensor(df.spatial_vector), body_I_s: df.tensor(df.spatial_matrix), body_v_s: df.tensor(df.spatial_vector), body_f_s: df.tensor(df.spatial_vector), body_a_s: df.tensor(df.spatial_vector)): # one thread per-articulation index = tid() start = df.load(articulation_start, index) end = df.load(articulation_start, index+1) count = end-start # compute link velocities and coriolis forces for i in range(start, end): compute_link_velocity( i, joint_type, joint_parent, joint_qd_start, joint_qd, joint_axis, body_I_m, body_X_sc, body_X_sm, joint_X_pj, gravity, joint_S_s, body_I_s, body_v_s, body_f_s, body_a_s) @df.kernel def eval_rigid_tau(articulation_start: df.tensor(int), joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_act: df.tensor(float), joint_target: df.tensor(float), joint_target_ke: df.tensor(float), joint_target_kd: df.tensor(float), joint_limit_lower: df.tensor(float), joint_limit_upper: df.tensor(float), joint_limit_ke: df.tensor(float), joint_limit_kd: df.tensor(float), joint_axis: df.tensor(df.float3), joint_S_s: df.tensor(df.spatial_vector), body_fb_s: df.tensor(df.spatial_vector), # outputs body_ft_s: df.tensor(df.spatial_vector), tau: df.tensor(float)): # one thread per-articulation index = tid() start = df.load(articulation_start, index) end = df.load(articulation_start, index+1) count = end-start # compute joint forces for i in range(0, count): compute_link_tau( i, end, joint_type, joint_parent, joint_q_start, joint_qd_start, joint_q, joint_qd, joint_act, joint_target, joint_target_ke, joint_target_kd, joint_limit_lower, joint_limit_upper, joint_limit_ke, joint_limit_kd, joint_S_s, body_fb_s, body_ft_s, tau) @df.kernel def eval_rigid_jacobian( articulation_start: df.tensor(int), articulation_J_start: df.tensor(int), joint_parent: df.tensor(int), joint_qd_start: df.tensor(int), joint_S_s: df.tensor(spatial_vector), # outputs J: df.tensor(float)): # one thread per-articulation index = tid() joint_start = df.load(articulation_start, index) joint_end = df.load(articulation_start, index+1) joint_count = joint_end-joint_start J_offset = df.load(articulation_J_start, index) # in spatial.h spatial_jacobian(joint_S_s, joint_parent, joint_qd_start, joint_start, joint_count, J_offset, J) # @df.kernel # def eval_rigid_jacobian( # articulation_start: df.tensor(int), # articulation_J_start: df.tensor(int), # joint_parent: df.tensor(int), # joint_qd_start: df.tensor(int), # joint_S_s: df.tensor(spatial_vector), # # outputs # J: df.tensor(float)): # # one thread per-articulation # index = tid() # joint_start = df.load(articulation_start, index) # joint_end = df.load(articulation_start, index+1) # joint_count = joint_end-joint_start # dof_start = df.load(joint_qd_start, joint_start) # dof_end = df.load(joint_qd_start, joint_end) # dof_count = dof_end-dof_start # #(const spatial_vector* S, const int* joint_parents, const int* joint_qd_start, int num_links, int num_dofs, float* J) # spatial_jacobian(joint_S_s, joint_parent, joint_qd_start, joint_count, dof_count, J) @df.kernel def eval_rigid_mass( articulation_start: df.tensor(int), articulation_M_start: df.tensor(int), body_I_s: df.tensor(spatial_matrix), # outputs M: df.tensor(float)): # one thread per-articulation index = tid() joint_start = df.load(articulation_start, index) joint_end = df.load(articulation_start, index+1) joint_count = joint_end-joint_start M_offset = df.load(articulation_M_start, index) # in spatial.h spatial_mass(body_I_s, joint_start, joint_count, M_offset, M) @df.kernel def eval_dense_gemm(m: int, n: int, p: int, t1: int, t2: int, A: df.tensor(float), B: df.tensor(float), C: df.tensor(float)): dense_gemm(m, n, p, t1, t2, A, B, C) @df.kernel def eval_dense_gemm_batched(m: df.tensor(int), n: df.tensor(int), p: df.tensor(int), t1: int, t2: int, A_start: df.tensor(int), B_start: df.tensor(int), C_start: df.tensor(int), A: df.tensor(float), B: df.tensor(float), C: df.tensor(float)): dense_gemm_batched(m, n, p, t1, t2, A_start, B_start, C_start, A, B, C) @df.kernel def eval_dense_cholesky(n: int, A: df.tensor(float), regularization: df.tensor(float), L: df.tensor(float)): dense_chol(n, A, regularization, L) @df.kernel def eval_dense_cholesky_batched(A_start: df.tensor(int), A_dim: df.tensor(int), A: df.tensor(float), regularization: df.tensor(float), L: df.tensor(float)): dense_chol_batched(A_start, A_dim, A, regularization, L) @df.kernel def eval_dense_subs(n: int, L: df.tensor(float), b: df.tensor(float), x: df.tensor(float)): dense_subs(n, L, b, x) # helper that propagates gradients back to A, treating L as a constant / temporary variable # allows us to reuse the Cholesky decomposition from the forward pass @df.kernel def eval_dense_solve(n: int, A: df.tensor(float), L: df.tensor(float), b: df.tensor(float), tmp: df.tensor(float), x: df.tensor(float)): dense_solve(n, A, L, b, tmp, x) # helper that propagates gradients back to A, treating L as a constant / temporary variable # allows us to reuse the Cholesky decomposition from the forward pass @df.kernel def eval_dense_solve_batched(b_start: df.tensor(int), A_start: df.tensor(int), A_dim: df.tensor(int), A: df.tensor(float), L: df.tensor(float), b: df.tensor(float), tmp: df.tensor(float), x: df.tensor(float)): dense_solve_batched(b_start, A_start, A_dim, A, L, b, tmp, x) @df.kernel def eval_rigid_integrate( joint_type: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_qdd: df.tensor(float), dt: float, # outputs joint_q_new: df.tensor(float), joint_qd_new: df.tensor(float)): # one thread per-articulation index = tid() type = df.load(joint_type, index) coord_start = df.load(joint_q_start, index) dof_start = df.load(joint_qd_start, index) jcalc_integrate( type, joint_q, joint_qd, joint_qdd, coord_start, dof_start, dt, joint_q_new, joint_qd_new) g_state_out = None # define PyTorch autograd op to wrap simulate func class SimulateFunc(torch.autograd.Function): """PyTorch autograd function representing a simulation stpe Note: This node will be inserted into the computation graph whenever `forward()` is called on an integrator object. It should not be called directly by the user. """ @staticmethod def forward(ctx, integrator, model, state_in, dt, substeps, mass_matrix_freq, *tensors): # record launches ctx.tape = df.Tape() ctx.inputs = tensors #ctx.outputs = df.to_weak_list(state_out.flatten()) actuation = state_in.joint_act # simulate for i in range(substeps): # ensure actuation is set on all substeps state_in.joint_act = actuation state_out = model.state() integrator._simulate(ctx.tape, model, state_in, state_out, dt/float(substeps), update_mass_matrix=((i%mass_matrix_freq)==0)) # swap states state_in = state_out # use global to pass state object back to caller global g_state_out g_state_out = state_out ctx.outputs = df.to_weak_list(state_out.flatten()) return tuple(state_out.flatten()) @staticmethod def backward(ctx, *grads): # ensure grads are contiguous in memory adj_outputs = df.make_contiguous(grads) # register outputs with tape outputs = df.to_strong_list(ctx.outputs) for o in range(len(outputs)): ctx.tape.adjoints[outputs[o]] = adj_outputs[o] # replay launches backwards ctx.tape.replay() # find adjoint of inputs adj_inputs = [] for i in ctx.inputs: if i in ctx.tape.adjoints: adj_inputs.append(ctx.tape.adjoints[i]) else: adj_inputs.append(None) # free the tape ctx.tape.reset() # filter grads to replace empty tensors / no grad / constant params with None return (None, None, None, None, None, None, *df.filter_grads(adj_inputs)) class SemiImplicitIntegrator: """A semi-implicit integrator using symplectic Euler After constructing `Model` and `State` objects this time-integrator may be used to advance the simulation state forward in time. Semi-implicit time integration is a variational integrator that preserves energy, however it not unconditionally stable, and requires a time-step small enough to support the required stiffness and damping forces. See: https://en.wikipedia.org/wiki/Semi-implicit_Euler_method Example: >>> integrator = df.SemiImplicitIntegrator() >>> >>> # simulation loop >>> for i in range(100): >>> state = integrator.forward(model, state, dt) """ def __init__(self): pass def forward(self, model: Model, state_in: State, dt: float, substeps: int, mass_matrix_freq: int) -> State: """Performs a single integration step forward in time This method inserts a node into the PyTorch computational graph with references to all model and state tensors such that gradients can be propagrated back through the simulation step. Args: model: Simulation model state: Simulation state at the start the time-step dt: The simulation time-step (usually in seconds) Returns: The state of the system at the end of the time-step """ if dflex.config.no_grad: # if no gradient required then do inplace update for i in range(substeps): self._simulate(df.Tape(), model, state_in, state_in, dt/float(substeps), update_mass_matrix=(i%mass_matrix_freq)==0) return state_in else: # get list of inputs and outputs for PyTorch tensor tracking inputs = [*state_in.flatten(), *model.flatten()] # run sim as a PyTorch op tensors = SimulateFunc.apply(self, model, state_in, dt, substeps, mass_matrix_freq, *inputs) global g_state_out state_out = g_state_out g_state_out = None # null reference return state_out def _simulate(self, tape, model, state_in, state_out, dt, update_mass_matrix=True): with dflex.util.ScopedTimer("simulate", False): # alloc particle force buffer if (model.particle_count): state_out.particle_f.zero_() if (model.link_count): state_out.body_ft_s = torch.zeros((model.link_count, 6), dtype=torch.float32, device=model.adapter, requires_grad=True) state_out.body_f_ext_s = torch.zeros((model.link_count, 6), dtype=torch.float32, device=model.adapter, requires_grad=True) # damped springs if (model.spring_count): tape.launch(func=eval_springs, dim=model.spring_count, inputs=[state_in.particle_q, state_in.particle_qd, model.spring_indices, model.spring_rest_length, model.spring_stiffness, model.spring_damping], outputs=[state_out.particle_f], adapter=model.adapter) # triangle elastic and lift/drag forces if (model.tri_count and model.tri_ke > 0.0): tape.launch(func=eval_triangles, dim=model.tri_count, inputs=[ state_in.particle_q, state_in.particle_qd, model.tri_indices, model.tri_poses, model.tri_activations, model.tri_ke, model.tri_ka, model.tri_kd, model.tri_drag, model.tri_lift ], outputs=[state_out.particle_f], adapter=model.adapter) # triangle/triangle contacts if (model.enable_tri_collisions and model.tri_count and model.tri_ke > 0.0): tape.launch(func=eval_triangles_contact, dim=model.tri_count * model.particle_count, inputs=[ model.particle_count, state_in.particle_q, state_in.particle_qd, model.tri_indices, model.tri_poses, model.tri_activations, model.tri_ke, model.tri_ka, model.tri_kd, model.tri_drag, model.tri_lift ], outputs=[state_out.particle_f], adapter=model.adapter) # triangle bending if (model.edge_count): tape.launch(func=eval_bending, dim=model.edge_count, inputs=[state_in.particle_q, state_in.particle_qd, model.edge_indices, model.edge_rest_angle, model.edge_ke, model.edge_kd], outputs=[state_out.particle_f], adapter=model.adapter) # particle ground contact if (model.ground and model.particle_count): tape.launch(func=eval_contacts, dim=model.particle_count, inputs=[state_in.particle_q, state_in.particle_qd, model.contact_ke, model.contact_kd, model.contact_kf, model.contact_mu], outputs=[state_out.particle_f], adapter=model.adapter) # tetrahedral FEM if (model.tet_count): tape.launch(func=eval_tetrahedra, dim=model.tet_count, inputs=[state_in.particle_q, state_in.particle_qd, model.tet_indices, model.tet_poses, model.tet_activations, model.tet_materials], outputs=[state_out.particle_f], adapter=model.adapter) #---------------------------- # articulations if (model.link_count): # evaluate body transforms tape.launch( func=eval_rigid_fk, dim=model.articulation_count, inputs=[ model.articulation_joint_start, model.joint_type, model.joint_parent, model.joint_q_start, model.joint_qd_start, state_in.joint_q, model.joint_X_pj, model.joint_X_cm, model.joint_axis ], outputs=[ state_out.body_X_sc, state_out.body_X_sm ], adapter=model.adapter, preserve_output=True) # evaluate joint inertias, motion vectors, and forces tape.launch( func=eval_rigid_id, dim=model.articulation_count, inputs=[ model.articulation_joint_start, model.joint_type, model.joint_parent, model.joint_q_start, model.joint_qd_start, state_in.joint_q, state_in.joint_qd, model.joint_axis, model.joint_target_ke, model.joint_target_kd, model.body_I_m, state_out.body_X_sc, state_out.body_X_sm, model.joint_X_pj, model.gravity ], outputs=[ state_out.joint_S_s, state_out.body_I_s, state_out.body_v_s, state_out.body_f_s, state_out.body_a_s, ], adapter=model.adapter, preserve_output=True) if (model.ground and model.contact_count > 0): # evaluate contact forces tape.launch( func=eval_rigid_contacts_art, dim=model.contact_count, inputs=[ state_out.body_X_sc, state_out.body_v_s, model.contact_body0, model.contact_point0, model.contact_dist, model.contact_material, model.shape_materials ], outputs=[ state_out.body_f_s ], adapter=model.adapter, preserve_output=True) # particle shape contact if (model.particle_count): # tape.launch(func=eval_soft_contacts, # dim=model.particle_count*model.shape_count, # inputs=[state_in.particle_q, state_in.particle_qd, model.contact_ke, model.contact_kd, model.contact_kf, model.contact_mu], # outputs=[state_out.particle_f], # adapter=model.adapter) tape.launch(func=eval_soft_contacts, dim=model.particle_count*model.shape_count, inputs=[ model.particle_count, state_in.particle_q, state_in.particle_qd, state_in.body_X_sc, state_in.body_v_s, model.shape_transform, model.shape_body, model.shape_geo_type, torch.Tensor(), model.shape_geo_scale, model.shape_materials, model.contact_ke, model.contact_kd, model.contact_kf, model.contact_mu], # outputs outputs=[ state_out.particle_f, state_out.body_f_s], adapter=model.adapter) # evaluate muscle actuation tape.launch( func=eval_muscles, dim=model.muscle_count, inputs=[ state_out.body_X_sc, state_out.body_v_s, model.muscle_start, model.muscle_params, model.muscle_links, model.muscle_points, model.muscle_activation ], outputs=[ state_out.body_f_s ], adapter=model.adapter, preserve_output=True) # evaluate joint torques tape.launch( func=eval_rigid_tau, dim=model.articulation_count, inputs=[ model.articulation_joint_start, model.joint_type, model.joint_parent, model.joint_q_start, model.joint_qd_start, state_in.joint_q, state_in.joint_qd, state_in.joint_act, model.joint_target, model.joint_target_ke, model.joint_target_kd, model.joint_limit_lower, model.joint_limit_upper, model.joint_limit_ke, model.joint_limit_kd, model.joint_axis, state_out.joint_S_s, state_out.body_f_s ], outputs=[ state_out.body_ft_s, state_out.joint_tau ], adapter=model.adapter, preserve_output=True) if (update_mass_matrix): model.alloc_mass_matrix() # build J tape.launch( func=eval_rigid_jacobian, dim=model.articulation_count, inputs=[ # inputs model.articulation_joint_start, model.articulation_J_start, model.joint_parent, model.joint_qd_start, state_out.joint_S_s ], outputs=[ model.J ], adapter=model.adapter, preserve_output=True) # build M tape.launch( func=eval_rigid_mass, dim=model.articulation_count, inputs=[ # inputs model.articulation_joint_start, model.articulation_M_start, state_out.body_I_s ], outputs=[ model.M ], adapter=model.adapter, preserve_output=True) # form P = M*J df.matmul_batched( tape, model.articulation_count, model.articulation_M_rows, model.articulation_J_cols, model.articulation_J_rows, 0, 0, model.articulation_M_start, model.articulation_J_start, model.articulation_J_start, # P start is the same as J start since it has the same dims as J model.M, model.J, model.P, adapter=model.adapter) # form H = J^T*P df.matmul_batched( tape, model.articulation_count, model.articulation_J_cols, model.articulation_J_cols, model.articulation_J_rows, # P rows is the same as J rows 1, 0, model.articulation_J_start, model.articulation_J_start, # P start is the same as J start since it has the same dims as J model.articulation_H_start, model.J, model.P, model.H, adapter=model.adapter) # compute decomposition tape.launch( func=eval_dense_cholesky_batched, dim=model.articulation_count, inputs=[ model.articulation_H_start, model.articulation_H_rows, model.H, model.joint_armature ], outputs=[ model.L ], adapter=model.adapter, skip_check_grad=True) tmp = torch.zeros_like(state_out.joint_tau) # solve for qdd tape.launch( func=eval_dense_solve_batched, dim=model.articulation_count, inputs=[ model.articulation_dof_start, model.articulation_H_start, model.articulation_H_rows, model.H, model.L, state_out.joint_tau, tmp ], outputs=[ state_out.joint_qdd ], adapter=model.adapter, skip_check_grad=True) # integrate joint dofs -> joint coords tape.launch( func=eval_rigid_integrate, dim=model.link_count, inputs=[ model.joint_type, model.joint_q_start, model.joint_qd_start, state_in.joint_q, state_in.joint_qd, state_out.joint_qdd, dt ], outputs=[ state_out.joint_q, state_out.joint_qd ], adapter=model.adapter) #---------------------------- # integrate particles if (model.particle_count): tape.launch(func=integrate_particles, dim=model.particle_count, inputs=[state_in.particle_q, state_in.particle_qd, state_out.particle_f, model.particle_inv_mass, model.gravity, dt], outputs=[state_out.particle_q, state_out.particle_qd], adapter=model.adapter) return state_out @df.kernel def solve_springs(x: df.tensor(df.float3), v: df.tensor(df.float3), invmass: df.tensor(float), spring_indices: df.tensor(int), spring_rest_lengths: df.tensor(float), spring_stiffness: df.tensor(float), spring_damping: df.tensor(float), dt: float, delta: df.tensor(df.float3)): tid = df.tid() i = df.load(spring_indices, tid * 2 + 0) j = df.load(spring_indices, tid * 2 + 1) ke = df.load(spring_stiffness, tid) kd = df.load(spring_damping, tid) rest = df.load(spring_rest_lengths, tid) xi = df.load(x, i) xj = df.load(x, j) vi = df.load(v, i) vj = df.load(v, j) xij = xi - xj vij = vi - vj l = length(xij) l_inv = 1.0 / l # normalized spring direction dir = xij * l_inv c = l - rest dcdt = dot(dir, vij) # damping based on relative velocity. #fs = dir * (ke * c + kd * dcdt) wi = df.load(invmass, i) wj = df.load(invmass, j) denom = wi + wj alpha = 1.0/(ke*dt*dt) multiplier = c / (denom)# + alpha) xd = dir*multiplier df.atomic_sub(delta, i, xd*wi) df.atomic_add(delta, j, xd*wj) @df.kernel def solve_tetrahedra(x: df.tensor(df.float3), v: df.tensor(df.float3), inv_mass: df.tensor(float), indices: df.tensor(int), pose: df.tensor(df.mat33), activation: df.tensor(float), materials: df.tensor(float), dt: float, relaxation: float, delta: df.tensor(df.float3)): tid = df.tid() i = df.load(indices, tid * 4 + 0) j = df.load(indices, tid * 4 + 1) k = df.load(indices, tid * 4 + 2) l = df.load(indices, tid * 4 + 3) act = df.load(activation, tid) k_mu = df.load(materials, tid * 3 + 0) k_lambda = df.load(materials, tid * 3 + 1) k_damp = df.load(materials, tid * 3 + 2) x0 = df.load(x, i) x1 = df.load(x, j) x2 = df.load(x, k) x3 = df.load(x, l) v0 = df.load(v, i) v1 = df.load(v, j) v2 = df.load(v, k) v3 = df.load(v, l) w0 = df.load(inv_mass, i) w1 = df.load(inv_mass, j) w2 = df.load(inv_mass, k) w3 = df.load(inv_mass, l) x10 = x1 - x0 x20 = x2 - x0 x30 = x3 - x0 v10 = v1 - v0 v20 = v2 - v0 v30 = v3 - v0 Ds = df.mat33(x10, x20, x30) Dm = df.load(pose, tid) inv_rest_volume = df.determinant(Dm) * 6.0 rest_volume = 1.0 / inv_rest_volume # F = Xs*Xm^-1 F = Ds * Dm f1 = df.float3(F[0, 0], F[1, 0], F[2, 0]) f2 = df.float3(F[0, 1], F[1, 1], F[2, 1]) f3 = df.float3(F[0, 2], F[1, 2], F[2, 2]) # C_sqrt tr = dot(f1, f1) + dot(f2, f2) + dot(f3, f3) r_s = df.sqrt(abs(tr - 3.0)) C = r_s if (r_s == 0.0): return if (tr < 3.0): r_s = 0.0 - r_s dCdx = F*df.transpose(Dm)*(1.0/r_s) alpha = 1.0 + k_mu / k_lambda # C_Neo # r_s = df.sqrt(dot(f1, f1) + dot(f2, f2) + dot(f3, f3)) # r_s_inv = 1.0/r_s # C = r_s # dCdx = F*df.transpose(Dm)*r_s_inv # alpha = 1.0 + k_mu / k_lambda # C_Spherical # r_s = df.sqrt(dot(f1, f1) + dot(f2, f2) + dot(f3, f3)) # r_s_inv = 1.0/r_s # C = r_s - df.sqrt(3.0) # dCdx = F*df.transpose(Dm)*r_s_inv # alpha = 1.0 # C_D #r_s = df.sqrt(dot(f1, f1) + dot(f2, f2) + dot(f3, f3)) #C = r_s*r_s - 3.0 #dCdx = F*df.transpose(Dm)*2.0 #alpha = 1.0 grad1 = float3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) grad2 = float3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) grad3 = float3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) grad0 = (grad1 + grad2 + grad3)*(0.0 - 1.0) denom = dot(grad0,grad0)*w0 + dot(grad1,grad1)*w1 + dot(grad2,grad2)*w2 + dot(grad3,grad3)*w3 multiplier = C/(denom + 1.0/(k_mu*dt*dt*rest_volume)) delta0 = grad0*multiplier delta1 = grad1*multiplier delta2 = grad2*multiplier delta3 = grad3*multiplier # hydrostatic part J = df.determinant(F) C_vol = J - alpha # dCdx = df.mat33(cross(f2, f3), cross(f3, f1), cross(f1, f2))*df.transpose(Dm) # grad1 = float3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = float3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = float3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # grad0 = (grad1 + grad2 + grad3)*(0.0 - 1.0) s = inv_rest_volume / 6.0 grad1 = df.cross(x20, x30) * s grad2 = df.cross(x30, x10) * s grad3 = df.cross(x10, x20) * s grad0 = (grad1 + grad2 + grad3)*(0.0 - 1.0) denom = dot(grad0, grad0)*w0 + dot(grad1, grad1)*w1 + dot(grad2, grad2)*w2 + dot(grad3, grad3)*w3 multiplier = C_vol/(denom + 1.0/(k_lambda*dt*dt*rest_volume)) delta0 = delta0 + grad0 * multiplier delta1 = delta1 + grad1 * multiplier delta2 = delta2 + grad2 * multiplier delta3 = delta3 + grad3 * multiplier # apply forces df.atomic_sub(delta, i, delta0*w0*relaxation) df.atomic_sub(delta, j, delta1*w1*relaxation) df.atomic_sub(delta, k, delta2*w2*relaxation) df.atomic_sub(delta, l, delta3*w3*relaxation) @df.kernel def solve_contacts( x: df.tensor(df.float3), v: df.tensor(df.float3), inv_mass: df.tensor(float), mu: float, dt: float, delta: df.tensor(df.float3)): tid = df.tid() x0 = df.load(x, tid) v0 = df.load(v, tid) w0 = df.load(inv_mass, tid) n = df.float3(0.0, 1.0, 0.0) c = df.dot(n, x0) - 0.01 if (c > 0.0): return # normal lambda_n = c delta_n = n*lambda_n # friction vn = df.dot(n, v0) vt = v0 - n * vn lambda_f = df.max(mu*lambda_n, 0.0 - df.length(vt)*dt) delta_f = df.normalize(vt)*lambda_f df.atomic_add(delta, tid, delta_f - delta_n) @df.kernel def apply_deltas(x_orig: df.tensor(df.float3), v_orig: df.tensor(df.float3), x_pred: df.tensor(df.float3), delta: df.tensor(df.float3), dt: float, x_out: df.tensor(df.float3), v_out: df.tensor(df.float3)): tid = df.tid() x0 = df.load(x_orig, tid) xp = df.load(x_pred, tid) # constraint deltas d = df.load(delta, tid) x_new = xp + d v_new = (x_new - x0)/dt df.store(x_out, tid, x_new) df.store(v_out, tid, v_new) class XPBDIntegrator: """A implicit integrator using XPBD After constructing `Model` and `State` objects this time-integrator may be used to advance the simulation state forward in time. Semi-implicit time integration is a variational integrator that preserves energy, however it not unconditionally stable, and requires a time-step small enough to support the required stiffness and damping forces. See: https://en.wikipedia.org/wiki/Semi-implicit_Euler_method Example: >>> integrator = df.SemiImplicitIntegrator() >>> >>> # simulation loop >>> for i in range(100): >>> state = integrator.forward(model, state, dt) """ def __init__(self): pass def forward(self, model: Model, state_in: State, dt: float) -> State: """Performs a single integration step forward in time This method inserts a node into the PyTorch computational graph with references to all model and state tensors such that gradients can be propagrated back through the simulation step. Args: model: Simulation model state: Simulation state at the start the time-step dt: The simulation time-step (usually in seconds) Returns: The state of the system at the end of the time-step """ if dflex.config.no_grad: # if no gradient required then do inplace update self._simulate(df.Tape(), model, state_in, state_in, dt) return state_in else: # get list of inputs and outputs for PyTorch tensor tracking inputs = [*state_in.flatten(), *model.flatten()] # allocate new output state_out = model.state() # run sim as a PyTorch op tensors = SimulateFunc.apply(self, model, state_in, state_out, dt, *inputs) return state_out def _simulate(self, tape, model, state_in, state_out, dt): with dflex.util.ScopedTimer("simulate", False): # alloc particle force buffer if (model.particle_count): state_out.particle_f.zero_() q_pred = torch.zeros_like(state_in.particle_q) qd_pred = torch.zeros_like(state_in.particle_qd) #---------------------------- # integrate particles if (model.particle_count): tape.launch(func=integrate_particles, dim=model.particle_count, inputs=[state_in.particle_q, state_in.particle_qd, state_out.particle_f, model.particle_inv_mass, model.gravity, dt], outputs=[q_pred, qd_pred], adapter=model.adapter) # contacts if (model.particle_count and model.ground): tape.launch(func=solve_contacts, dim=model.particle_count, inputs=[q_pred, qd_pred, model.particle_inv_mass, model.contact_mu, dt], outputs=[state_out.particle_f], adapter=model.adapter) # damped springs if (model.spring_count): tape.launch(func=solve_springs, dim=model.spring_count, inputs=[q_pred, qd_pred, model.particle_inv_mass, model.spring_indices, model.spring_rest_length, model.spring_stiffness, model.spring_damping, dt], outputs=[state_out.particle_f], adapter=model.adapter) # tetrahedral FEM if (model.tet_count): tape.launch(func=solve_tetrahedra, dim=model.tet_count, inputs=[q_pred, qd_pred, model.particle_inv_mass, model.tet_indices, model.tet_poses, model.tet_activations, model.tet_materials, dt, model.relaxation], outputs=[state_out.particle_f], adapter=model.adapter) # apply updates tape.launch(func=apply_deltas, dim=model.particle_count, inputs=[state_in.particle_q, state_in.particle_qd, q_pred, state_out.particle_f, dt], outputs=[state_out.particle_q, state_out.particle_qd], adapter=model.adapter) return state_out
97,130
Python
31.333888
241
0.51253
vstrozzi/FRL-SHAC-Extension/dflex/build/lib/dflex/matnn.h
#pragma once CUDA_CALLABLE inline int dense_index(int stride, int i, int j) { return i*stride + j; } template <bool transpose> CUDA_CALLABLE inline int dense_index(int rows, int cols, int i, int j) { if (transpose) return j*rows + i; else return i*cols + j; } #ifdef CPU const int kNumThreadsPerBlock = 1; template <bool t1, bool t2, bool add> CUDA_CALLABLE inline void dense_gemm_impl(int m, int n, int p, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C) { for (int i=0; i < m; i++) { for (int j=0; j < n; ++j) { float sum = 0.0f; for (int k=0; k < p; ++k) { sum += A[dense_index<t1>(m, p, i, k)]*B[dense_index<t2>(p, n, k, j)]; } if (add) C[i*n + j] += sum; else C[i*n + j] = sum; } } } #else const int kNumThreadsPerBlock = 256; template <bool t1, bool t2, bool add> CUDA_CALLABLE inline void dense_gemm_impl(int m, int n, int p, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C) { // each thread in the block calculates an output (or more if output dim > block dim) for (int e=threadIdx.x; e < m*n; e += blockDim.x) { const int i=e/n; const int j=e%n; float sum = 0.0f; for (int k=0; k < p; ++k) { sum += A[dense_index<t1>(m, p, i, k)]*B[dense_index<t2>(p, n, k, j)]; } if (add) C[i*n + j] += sum; else C[i*n + j] = sum; } } #endif template <bool add=false> CUDA_CALLABLE inline void dense_gemm(int m, int n, int p, int t1, int t2, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C) { if (t1 == 0 && t2 == 0) dense_gemm_impl<false, false, add>(m, n, p, A, B, C); else if (t1 == 1 && t2 == 0) dense_gemm_impl<true, false, add>(m, n, p, A, B, C); else if (t1 == 0 && t2 == 1) dense_gemm_impl<false, true, add>(m, n, p, A, B, C); else if (t1 == 1 && t2 == 1) dense_gemm_impl<true, true, add>(m, n, p, A, B, C); } template <bool add=false> CUDA_CALLABLE inline void dense_gemm_batched( const int* __restrict__ m, const int* __restrict__ n, const int* __restrict__ p, int t1, int t2, const int* __restrict__ A_start, const int* __restrict__ B_start, const int* __restrict__ C_start, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C) { // on the CPU each thread computes the whole matrix multiply // on the GPU each block computes the multiply with one output per-thread const int batch = tid()/kNumThreadsPerBlock; dense_gemm<add>(m[batch], n[batch], p[batch], t1, t2, A+A_start[batch], B+B_start[batch], C+C_start[batch]); } // computes c = b^T*a*b, with a and b being stored in row-major layout CUDA_CALLABLE inline void dense_quadratic() { } // CUDA_CALLABLE inline void dense_chol(int n, const float* A, float* L) // { // // for each column // for (int j=0; j < n; ++j) // { // for (int i=j; i < n; ++i) // { // L[dense_index(n, i, j)] = A[dense_index(n, i, j)]; // } // for (int k = 0; k < j; ++k) // { // const float p = L[dense_index(n, j, k)]; // for (int i=j; i < n; ++i) // { // L[dense_index(n, i, j)] -= p*L[dense_index(n, i, k)]; // } // } // // scale // const float d = L[dense_index(n, j, j)]; // const float s = 1.0f/sqrtf(d); // for (int i=j; i < n; ++i) // { // L[dense_index(n, i, j)] *=s; // } // } // } void CUDA_CALLABLE inline dense_chol(int n, const float* __restrict__ A, const float* __restrict__ regularization, float* __restrict__ L) { for (int j=0; j < n; ++j) { float s = A[dense_index(n, j, j)] + regularization[j]; for (int k=0; k < j; ++k) { float r = L[dense_index(n, j, k)]; s -= r*r; } s = sqrtf(s); const float invS = 1.0f/s; L[dense_index(n, j, j)] = s; for (int i=j+1; i < n; ++i) { s = A[dense_index(n, i, j)]; for (int k=0; k < j; ++k) { s -= L[dense_index(n, i, k)]*L[dense_index(n, j, k)]; } L[dense_index(n, i, j)] = s*invS; } } } void CUDA_CALLABLE inline dense_chol_batched(const int* __restrict__ A_start, const int* __restrict__ A_dim, const float* __restrict__ A, const float* __restrict__ regularization, float* __restrict__ L) { const int batch = tid(); const int n = A_dim[batch]; const int offset = A_start[batch]; dense_chol(n, A + offset, regularization + n*batch, L + offset); } // Solves (L*L^T)x = b given the Cholesky factor L CUDA_CALLABLE inline void dense_subs(int n, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ x) { // forward substitution for (int i=0; i < n; ++i) { float s = b[i]; for (int j=0; j < i; ++j) { s -= L[dense_index(n, i, j)]*x[j]; } x[i] = s/L[dense_index(n, i, i)]; } // backward substitution for (int i=n-1; i >= 0; --i) { float s = x[i]; for (int j=i+1; j < n; ++j) { s -= L[dense_index(n, j, i)]*x[j]; } x[i] = s/L[dense_index(n, i, i)]; } } CUDA_CALLABLE inline void dense_solve(int n, const float* __restrict__ A, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ tmp, float* __restrict__ x) { dense_subs(n, L, b, x); } CUDA_CALLABLE inline void dense_solve_batched( const int* __restrict__ b_start, const int* A_start, const int* A_dim, const float* __restrict__ A, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ tmp, float* __restrict__ x) { const int batch = tid(); dense_solve(A_dim[batch], A + A_start[batch], L + A_start[batch], b + b_start[batch], NULL, x + b_start[batch]); } CUDA_CALLABLE inline void print_matrix(const char* name, int m, int n, const float* data) { printf("%s = [", name); for (int i=0; i < m; ++i) { for (int j=0; j < n; ++j) { printf("%f ", data[dense_index(n, i, j)]); } printf(";\n"); } printf("]\n"); } // adjoint methods CUDA_CALLABLE inline void adj_dense_gemm( int m, int n, int p, int t1, int t2, const float* A, const float* B, float* C, int adj_m, int adj_n, int adj_p, int adj_t1, int adj_t2, float* adj_A, float* adj_B, const float* adj_C) { // print_matrix("A", m, p, A); // print_matrix("B", p, n, B); // printf("t1: %d t2: %d\n", t1, t2); if (t1) { dense_gemm<true>(p, m, n, 0, 1, B, adj_C, adj_A); dense_gemm<true>(p, n, m, int(!t1), 0, A, adj_C, adj_B); } else { dense_gemm<true>(m, p, n, 0, int(!t2), adj_C, B, adj_A); dense_gemm<true>(p, n, m, int(!t1), 0, A, adj_C, adj_B); } } CUDA_CALLABLE inline void adj_dense_gemm_batched( const int* __restrict__ m, const int* __restrict__ n, const int* __restrict__ p, int t1, int t2, const int* __restrict__ A_start, const int* __restrict__ B_start, const int* __restrict__ C_start, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C, // adj int* __restrict__ adj_m, int* __restrict__ adj_n, int* __restrict__ adj_p, int adj_t1, int adj_t2, int* __restrict__ adj_A_start, int* __restrict__ adj_B_start, int* __restrict__ adj_C_start, float* __restrict__ adj_A, float* __restrict__ adj_B, const float* __restrict__ adj_C) { const int batch = tid()/kNumThreadsPerBlock; adj_dense_gemm(m[batch], n[batch], p[batch], t1, t2, A+A_start[batch], B+B_start[batch], C+C_start[batch], 0, 0, 0, 0, 0, adj_A+A_start[batch], adj_B+B_start[batch], adj_C+C_start[batch]); } CUDA_CALLABLE inline void adj_dense_chol( int n, const float* A, const float* __restrict__ regularization, float* L, int adj_n, const float* adj_A, const float* __restrict__ adj_regularization, float* adj_L) { // nop, use dense_solve to differentiate through (A^-1)b = x } CUDA_CALLABLE inline void adj_dense_chol_batched( const int* __restrict__ A_start, const int* __restrict__ A_dim, const float* __restrict__ A, const float* __restrict__ regularization, float* __restrict__ L, const int* __restrict__ adj_A_start, const int* __restrict__ adj_A_dim, const float* __restrict__ adj_A, const float* __restrict__ adj_regularization, float* __restrict__ adj_L) { // nop, use dense_solve to differentiate through (A^-1)b = x } CUDA_CALLABLE inline void adj_dense_subs( int n, const float* L, const float* b, float* x, int adj_n, const float* adj_L, const float* adj_b, float* adj_x) { // nop, use dense_solve to differentiate through (A^-1)b = x } CUDA_CALLABLE inline void adj_dense_solve( int n, const float* __restrict__ A, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ tmp, const float* __restrict__ x, int adj_n, float* __restrict__ adj_A, float* __restrict__ adj_L, float* __restrict__ adj_b, float* __restrict__ adj_tmp, const float* __restrict__ adj_x) { for (int i=0; i < n; ++i) { tmp[i] = 0.0f; } dense_subs(n, L, adj_x, tmp); for (int i=0; i < n; ++i) { adj_b[i] += tmp[i]; } //dense_subs(n, L, adj_x, adj_b); // A* = -adj_b*x^T for (int i=0; i < n; ++i) { for (int j=0; j < n; ++j) { adj_A[dense_index(n, i, j)] += -tmp[i]*x[j]; } } } CUDA_CALLABLE inline void adj_dense_solve_batched( const int* __restrict__ b_start, const int* A_start, const int* A_dim, const float* __restrict__ A, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ tmp, float* __restrict__ x, // adj int* __restrict__ adj_b_start, int* __restrict__ adj_A_start, int* __restrict__ adj_A_dim, float* __restrict__ adj_A, float* __restrict__ adj_L, float* __restrict__ adj_b, float* __restrict__ adj_tmp, const float* __restrict__ adj_x) { const int batch = tid(); adj_dense_solve(A_dim[batch], A + A_start[batch], L + A_start[batch], b + b_start[batch], tmp + b_start[batch], x + b_start[batch], 0, adj_A + A_start[batch], adj_L + A_start[batch], adj_b + b_start[batch], tmp + b_start[batch], adj_x + b_start[batch]); }
10,723
C
29.379603
202
0.531847
vstrozzi/FRL-SHAC-Extension/dflex/build/lib/dflex/__init__.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from dflex.sim import * from dflex.render import * from dflex.adjoint import compile from dflex.util import * # compiles kernels kernel_init()
569
Python
34.624998
76
0.804921
vstrozzi/FRL-SHAC-Extension/dflex/build/lib/dflex/render.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """This optional module contains a built-in renderer for the USD data format that can be used to visualize time-sampled simulation data. Users should create a simulation model and integrator and periodically call :func:`UsdRenderer.update()` to write time-sampled simulation data to the USD stage. Example: >>> # construct a new USD stage >>> stage = Usd.Stage.CreateNew("my_stage.usda") >>> renderer = df.render.UsdRenderer(model, stage) >>> >>> time = 0.0 >>> >>> for i in range(100): >>> >>> # update simulation here >>> # .... >>> >>> # update renderer >>> stage.update(state, time) >>> time += dt >>> >>> # write stage to file >>> stage.Save() Note: You must have the Pixar USD bindings installed to use this module please see https://developer.nvidia.com/usd to obtain precompiled USD binaries and installation instructions. """ try: from pxr import Usd, UsdGeom, Gf, Sdf except ModuleNotFoundError: print("No pxr package") import dflex.sim import dflex.util import math def _usd_add_xform(prim): prim.ClearXformOpOrder() t = prim.AddTranslateOp() r = prim.AddOrientOp() s = prim.AddScaleOp() def _usd_set_xform(xform, transform, scale, time): xform_ops = xform.GetOrderedXformOps() pos = tuple(transform[0]) rot = tuple(transform[1]) xform_ops[0].Set(Gf.Vec3d(pos), time) xform_ops[1].Set(Gf.Quatf(rot[3], rot[0], rot[1], rot[2]), time) xform_ops[2].Set(Gf.Vec3d(scale), time) # transforms a cylinder such that it connects the two points pos0, pos1 def _compute_segment_xform(pos0, pos1): mid = (pos0 + pos1) * 0.5 height = (pos1 - pos0).GetLength() dir = (pos1 - pos0) / height rot = Gf.Rotation() rot.SetRotateInto((0.0, 0.0, 1.0), Gf.Vec3d(dir)) scale = Gf.Vec3f(1.0, 1.0, height) return (mid, Gf.Quath(rot.GetQuat()), scale) class UsdRenderer: """A USD renderer """ def __init__(self, model: dflex.model.Model, stage): """Construct a UsdRenderer object Args: model: A simulation model stage (Usd.Stage): A USD stage (either in memory or on disk) """ self.stage = stage self.model = model self.draw_points = True self.draw_springs = False self.draw_triangles = False if (stage.GetPrimAtPath("/root")): stage.RemovePrim("/root") self.root = UsdGeom.Xform.Define(stage, '/root') # add sphere instancer for particles self.particle_instancer = UsdGeom.PointInstancer.Define(stage, self.root.GetPath().AppendChild("particle_instancer")) self.particle_instancer_sphere = UsdGeom.Sphere.Define(stage, self.particle_instancer.GetPath().AppendChild("sphere")) self.particle_instancer_sphere.GetRadiusAttr().Set(model.particle_radius) self.particle_instancer.CreatePrototypesRel().SetTargets([self.particle_instancer_sphere.GetPath()]) self.particle_instancer.CreateProtoIndicesAttr().Set([0] * model.particle_count) # add line instancer if (self.model.spring_count > 0): self.spring_instancer = UsdGeom.PointInstancer.Define(stage, self.root.GetPath().AppendChild("spring_instancer")) self.spring_instancer_cylinder = UsdGeom.Capsule.Define(stage, self.spring_instancer.GetPath().AppendChild("cylinder")) self.spring_instancer_cylinder.GetRadiusAttr().Set(0.01) self.spring_instancer.CreatePrototypesRel().SetTargets([self.spring_instancer_cylinder.GetPath()]) self.spring_instancer.CreateProtoIndicesAttr().Set([0] * model.spring_count) self.stage.SetDefaultPrim(self.root.GetPrim()) # time codes try: self.stage.SetStartTimeCode(0.0) self.stage.SetEndTimeCode(0.0) self.stage.SetTimeCodesPerSecond(1.0) except: pass # add dynamic cloth mesh if (model.tri_count > 0): self.cloth_mesh = UsdGeom.Mesh.Define(stage, self.root.GetPath().AppendChild("cloth")) self.cloth_remap = {} self.cloth_verts = [] self.cloth_indices = [] # USD needs a contiguous vertex buffer, use a dict to map from simulation indices->render indices indices = self.model.tri_indices.flatten().tolist() for i in indices: if i not in self.cloth_remap: # copy vertex new_index = len(self.cloth_verts) self.cloth_verts.append(self.model.particle_q[i].tolist()) self.cloth_indices.append(new_index) self.cloth_remap[i] = new_index else: self.cloth_indices.append(self.cloth_remap[i]) self.cloth_mesh.GetPointsAttr().Set(self.cloth_verts) self.cloth_mesh.GetFaceVertexIndicesAttr().Set(self.cloth_indices) self.cloth_mesh.GetFaceVertexCountsAttr().Set([3] * model.tri_count) else: self.cloth_mesh = None # built-in ground plane if (model.ground): size = 10.0 mesh = UsdGeom.Mesh.Define(stage, self.root.GetPath().AppendChild("plane_0")) mesh.CreateDoubleSidedAttr().Set(True) points = ((-size, 0.0, -size), (size, 0.0, -size), (size, 0.0, size), (-size, 0.0, size)) normals = ((0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0)) counts = (4, ) indices = [0, 1, 2, 3] mesh.GetPointsAttr().Set(points) mesh.GetNormalsAttr().Set(normals) mesh.GetFaceVertexCountsAttr().Set(counts) mesh.GetFaceVertexIndicesAttr().Set(indices) # add rigid bodies xform root for b in range(model.link_count): xform = UsdGeom.Xform.Define(stage, self.root.GetPath().AppendChild("body_" + str(b))) _usd_add_xform(xform) # add rigid body shapes for s in range(model.shape_count): parent_path = self.root.GetPath() if model.shape_body[s] >= 0: parent_path = parent_path.AppendChild("body_" + str(model.shape_body[s].item())) geo_type = model.shape_geo_type[s].item() geo_scale = model.shape_geo_scale[s].tolist() geo_src = model.shape_geo_src[s] # shape transform in body frame X_bs = dflex.util.transform_expand(model.shape_transform[s].tolist()) if (geo_type == dflex.sim.GEO_PLANE): # plane mesh size = 1000.0 mesh = UsdGeom.Mesh.Define(stage, parent_path.AppendChild("plane_" + str(s))) mesh.CreateDoubleSidedAttr().Set(True) points = ((-size, 0.0, -size), (size, 0.0, -size), (size, 0.0, size), (-size, 0.0, size)) normals = ((0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0)) counts = (4, ) indices = [0, 1, 2, 3] mesh.GetPointsAttr().Set(points) mesh.GetNormalsAttr().Set(normals) mesh.GetFaceVertexCountsAttr().Set(counts) mesh.GetFaceVertexIndicesAttr().Set(indices) elif (geo_type == dflex.sim.GEO_SPHERE): mesh = UsdGeom.Sphere.Define(stage, parent_path.AppendChild("sphere_" + str(s))) mesh.GetRadiusAttr().Set(geo_scale[0]) _usd_add_xform(mesh) _usd_set_xform(mesh, X_bs, (1.0, 1.0, 1.0), 0.0) elif (geo_type == dflex.sim.GEO_CAPSULE): mesh = UsdGeom.Capsule.Define(stage, parent_path.AppendChild("capsule_" + str(s))) mesh.GetRadiusAttr().Set(geo_scale[0]) mesh.GetHeightAttr().Set(geo_scale[1] * 2.0) # geometry transform w.r.t shape, convert USD geometry to physics engine convention X_sg = dflex.util.transform((0.0, 0.0, 0.0), dflex.util.quat_from_axis_angle((0.0, 1.0, 0.0), math.pi * 0.5)) X_bg = dflex.util.transform_multiply(X_bs, X_sg) _usd_add_xform(mesh) _usd_set_xform(mesh, X_bg, (1.0, 1.0, 1.0), 0.0) elif (geo_type == dflex.sim.GEO_BOX): mesh = UsdGeom.Cube.Define(stage, parent_path.AppendChild("box_" + str(s))) #mesh.GetSizeAttr().Set((geo_scale[0], geo_scale[1], geo_scale[2])) _usd_add_xform(mesh) _usd_set_xform(mesh, X_bs, (geo_scale[0], geo_scale[1], geo_scale[2]), 0.0) elif (geo_type == dflex.sim.GEO_MESH): mesh = UsdGeom.Mesh.Define(stage, parent_path.AppendChild("mesh_" + str(s))) mesh.GetPointsAttr().Set(geo_src.vertices) mesh.GetFaceVertexIndicesAttr().Set(geo_src.indices) mesh.GetFaceVertexCountsAttr().Set([3] * int(len(geo_src.indices) / 3)) _usd_add_xform(mesh) _usd_set_xform(mesh, X_bs, (geo_scale[0], geo_scale[1], geo_scale[2]), 0.0) elif (geo_type == dflex.sim.GEO_SDF): pass def update(self, state: dflex.model.State, time: float): """Update the USD stage with latest simulation data Args: state: Current state of the simulation time: The current time to update at in seconds """ try: self.stage.SetEndTimeCode(time) except: pass # convert to list if self.model.particle_count: particle_q = state.particle_q.tolist() particle_orientations = [Gf.Quath(1.0, 0.0, 0.0, 0.0)] * self.model.particle_count self.particle_instancer.GetPositionsAttr().Set(particle_q, time) self.particle_instancer.GetOrientationsAttr().Set(particle_orientations, time) # update cloth if (self.cloth_mesh): for k, v in self.cloth_remap.items(): self.cloth_verts[v] = particle_q[k] self.cloth_mesh.GetPointsAttr().Set(self.cloth_verts, time) # update springs if (self.model.spring_count > 0): line_positions = [] line_rotations = [] line_scales = [] for i in range(self.model.spring_count): index0 = self.model.spring_indices[i * 2 + 0] index1 = self.model.spring_indices[i * 2 + 1] pos0 = particle_q[index0] pos1 = particle_q[index1] (pos, rot, scale) = _compute_segment_xform(Gf.Vec3f(pos0), Gf.Vec3f(pos1)) line_positions.append(pos) line_rotations.append(rot) line_scales.append(scale) self.spring_instancer.GetPositionsAttr().Set(line_positions, time) self.spring_instancer.GetOrientationsAttr().Set(line_rotations, time) self.spring_instancer.GetScalesAttr().Set(line_scales, time) # rigids for b in range(self.model.link_count): #xform = UsdGeom.Xform.Define(self.stage, self.root.GetPath().AppendChild("body_" + str(b))) node = UsdGeom.Xform(self.stage.GetPrimAtPath(self.root.GetPath().AppendChild("body_" + str(b)))) # unpack rigid spatial_transform X_sb = dflex.util.transform_expand(state.body_X_sc[b].tolist()) _usd_set_xform(node, X_sb, (1.0, 1.0, 1.0), time) def add_sphere(self, pos: tuple, radius: float, name: str, time: float=0.0): """Debug helper to add a sphere for visualization Args: pos: The position of the sphere radius: The radius of the sphere name: A name for the USD prim on the stage """ sphere_path = self.root.GetPath().AppendChild(name) sphere = UsdGeom.Sphere.Get(self.stage, sphere_path) if not sphere: sphere = UsdGeom.Sphere.Define(self.stage, sphere_path) sphere.GetRadiusAttr().Set(radius, time) mat = Gf.Matrix4d() mat.SetIdentity() mat.SetTranslateOnly(Gf.Vec3d(pos)) op = sphere.MakeMatrixXform() op.Set(mat, time) def add_box(self, pos: tuple, extents: float, name: str, time: float=0.0): """Debug helper to add a box for visualization Args: pos: The position of the sphere extents: The radius of the sphere name: A name for the USD prim on the stage """ sphere_path = self.root.GetPath().AppendChild(name) sphere = UsdGeom.Cube.Get(self.stage, sphere_path) if not sphere: sphere = UsdGeom.Cube.Define(self.stage, sphere_path) #sphere.GetSizeAttr().Set((extents[0]*2.0, extents[1]*2.0, extents[2]*2.0), time) mat = Gf.Matrix4d() mat.SetIdentity() mat.SetScale(extents) mat.SetTranslateOnly(Gf.Vec3d(pos)) op = sphere.MakeMatrixXform() op.Set(mat, time) def add_mesh(self, name: str, path: str, transform, scale, time: float): ref_path = "/root/" + name ref = UsdGeom.Xform.Get(self.stage, ref_path) if not ref: ref = UsdGeom.Xform.Define(self.stage, ref_path) ref.GetPrim().GetReferences().AddReference(path) _usd_add_xform(ref) # update transform _usd_set_xform(ref, transform, scale, time) def add_line_list(self, vertices, color, time, name, radius): """Debug helper to add a line list as a set of capsules Args: vertices: The vertices of the line-strip color: The color of the line time: The time to update at """ num_lines = int(len(vertices)/2) if (num_lines < 1): return # look up rope point instancer instancer_path = self.root.GetPath().AppendChild(name) instancer = UsdGeom.PointInstancer.Get(self.stage, instancer_path) if not instancer: instancer = UsdGeom.PointInstancer.Define(self.stage, instancer_path) instancer_capsule = UsdGeom.Capsule.Define(self.stage, instancer.GetPath().AppendChild("capsule")) instancer_capsule.GetRadiusAttr().Set(radius) instancer.CreatePrototypesRel().SetTargets([instancer_capsule.GetPath()]) instancer.CreatePrimvar("displayColor", Sdf.ValueTypeNames.Float3Array, "constant", 1) line_positions = [] line_rotations = [] line_scales = [] # line_colors = [] for i in range(num_lines): pos0 = vertices[i*2+0] pos1 = vertices[i*2+1] (pos, rot, scale) = _compute_segment_xform(Gf.Vec3f(pos0), Gf.Vec3f(pos1)) line_positions.append(pos) line_rotations.append(rot) line_scales.append(scale) #line_colors.append(Gf.Vec3f((float(i)/num_lines, 0.5, 0.5))) instancer.GetPositionsAttr().Set(line_positions, time) instancer.GetOrientationsAttr().Set(line_rotations, time) instancer.GetScalesAttr().Set(line_scales, time) instancer.GetProtoIndicesAttr().Set([0] * num_lines, time) # instancer.GetPrimvar("displayColor").Set(line_colors, time) def add_line_strip(self, vertices: dflex.sim.List[dflex.sim.Vec3], color: tuple, time: float, name: str, radius: float=0.01): """Debug helper to add a line strip as a connected list of capsules Args: vertices: The vertices of the line-strip color: The color of the line time: The time to update at """ num_lines = int(len(vertices)-1) if (num_lines < 1): return # look up rope point instancer instancer_path = self.root.GetPath().AppendChild(name) instancer = UsdGeom.PointInstancer.Get(self.stage, instancer_path) if not instancer: instancer = UsdGeom.PointInstancer.Define(self.stage, instancer_path) instancer_capsule = UsdGeom.Capsule.Define(self.stage, instancer.GetPath().AppendChild("capsule")) instancer_capsule.GetRadiusAttr().Set(radius) instancer.CreatePrototypesRel().SetTargets([instancer_capsule.GetPath()]) line_positions = [] line_rotations = [] line_scales = [] for i in range(num_lines): pos0 = vertices[i] pos1 = vertices[i+1] (pos, rot, scale) = _compute_segment_xform(Gf.Vec3f(pos0), Gf.Vec3f(pos1)) line_positions.append(pos) line_rotations.append(rot) line_scales.append(scale) instancer.GetPositionsAttr().Set(line_positions, time) instancer.GetOrientationsAttr().Set(line_rotations, time) instancer.GetScalesAttr().Set(line_scales, time) instancer.GetProtoIndicesAttr().Set([0] * num_lines, time) instancer_capsule = UsdGeom.Capsule.Get(self.stage, instancer.GetPath().AppendChild("capsule")) instancer_capsule.GetDisplayColorAttr().Set([Gf.Vec3f(color)], time)
17,760
Python
34.808468
131
0.586768
vstrozzi/FRL-SHAC-Extension/dflex/build/lib/dflex/model.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """A module for building simulation models and state. """ import math import torch import numpy as np from typing import Tuple from typing import List Vec3 = List[float] Vec4 = List[float] Quat = List[float] Mat33 = List[float] Transform = Tuple[Vec3, Quat] from dflex.util import * # shape geometry types GEO_SPHERE = 0 GEO_BOX = 1 GEO_CAPSULE = 2 GEO_MESH = 3 GEO_SDF = 4 GEO_PLANE = 5 GEO_NONE = 6 # body joint types JOINT_PRISMATIC = 0 JOINT_REVOLUTE = 1 JOINT_BALL = 2 JOINT_FIXED = 3 JOINT_FREE = 4 class Mesh: """Describes a triangle collision mesh for simulation Attributes: vertices (List[Vec3]): Mesh vertices indices (List[int]): Mesh indices I (Mat33): Inertia tensor of the mesh assuming density of 1.0 (around the center of mass) mass (float): The total mass of the body assuming density of 1.0 com (Vec3): The center of mass of the body """ def __init__(self, vertices: List[Vec3], indices: List[int]): """Construct a Mesh object from a triangle mesh The mesh center of mass and inertia tensor will automatically be calculated using a density of 1.0. This computation is only valid if the mesh is closed (two-manifold). Args: vertices: List of vertices in the mesh indices: List of triangle indices, 3 per-element """ self.vertices = vertices self.indices = indices # compute com and inertia (using density=1.0) com = np.mean(vertices, 0) num_tris = int(len(indices) / 3) # compute signed inertia for each tetrahedron # formed with the interior point, using an order-2 # quadrature: https://www.sciencedirect.com/science/article/pii/S0377042712001604#br000040 weight = 0.25 alpha = math.sqrt(5.0) / 5.0 I = np.zeros((3, 3)) mass = 0.0 for i in range(num_tris): p = np.array(vertices[indices[i * 3 + 0]]) q = np.array(vertices[indices[i * 3 + 1]]) r = np.array(vertices[indices[i * 3 + 2]]) mid = (com + p + q + r) / 4.0 pcom = p - com qcom = q - com rcom = r - com Dm = np.matrix((pcom, qcom, rcom)).T volume = np.linalg.det(Dm) / 6.0 # quadrature points lie on the line between the # centroid and each vertex of the tetrahedron quads = (mid + (p - mid) * alpha, mid + (q - mid) * alpha, mid + (r - mid) * alpha, mid + (com - mid) * alpha) for j in range(4): # displacement of quadrature point from COM d = quads[j] - com I += weight * volume * (length_sq(d) * np.eye(3, 3) - np.outer(d, d)) mass += weight * volume self.I = I self.mass = mass self.com = com class State: """The State object holds all *time-varying* data for a model. Time-varying data includes particle positions, velocities, rigid body states, and anything that is output from the integrator as derived data, e.g.: forces. The exact attributes depend on the contents of the model. State objects should generally be created using the :func:`Model.state()` function. Attributes: particle_q (torch.Tensor): Tensor of particle positions particle_qd (torch.Tensor): Tensor of particle velocities joint_q (torch.Tensor): Tensor of joint coordinates joint_qd (torch.Tensor): Tensor of joint velocities joint_act (torch.Tensor): Tensor of joint actuation values """ def __init__(self): self.particle_count = 0 self.link_count = 0 # def flatten(self): # """Returns a list of Tensors stored by the state # This function is intended to be used internal-only but can be used to obtain # a set of all tensors owned by the state. # """ # tensors = [] # # particles # if (self.particle_count): # tensors.append(self.particle_q) # tensors.append(self.particle_qd) # # articulations # if (self.link_count): # tensors.append(self.joint_q) # tensors.append(self.joint_qd) # tensors.append(self.joint_act) # return tensors def flatten(self): """Returns a list of Tensors stored by the state This function is intended to be used internal-only but can be used to obtain a set of all tensors owned by the state. """ tensors = [] # build a list of all tensor attributes for attr, value in self.__dict__.items(): if (torch.is_tensor(value)): tensors.append(value) return tensors class Model: """Holds the definition of the simulation model This class holds the non-time varying description of the system, i.e.: all geometry, constraints, and parameters used to describe the simulation. Attributes: particle_q (torch.Tensor): Particle positions, shape [particle_count, 3], float particle_qd (torch.Tensor): Particle velocities, shape [particle_count, 3], float particle_mass (torch.Tensor): Particle mass, shape [particle_count], float particle_inv_mass (torch.Tensor): Particle inverse mass, shape [particle_count], float shape_transform (torch.Tensor): Rigid shape transforms, shape [shape_count, 7], float shape_body (torch.Tensor): Rigid shape body index, shape [shape_count], int shape_geo_type (torch.Tensor): Rigid shape geometry type, [shape_count], int shape_geo_src (torch.Tensor): Rigid shape geometry source, shape [shape_count], int shape_geo_scale (torch.Tensor): Rigid shape geometry scale, shape [shape_count, 3], float shape_materials (torch.Tensor): Rigid shape contact materials, shape [shape_count, 4], float spring_indices (torch.Tensor): Particle spring indices, shape [spring_count*2], int spring_rest_length (torch.Tensor): Particle spring rest length, shape [spring_count], float spring_stiffness (torch.Tensor): Particle spring stiffness, shape [spring_count], float spring_damping (torch.Tensor): Particle spring damping, shape [spring_count], float spring_control (torch.Tensor): Particle spring activation, shape [spring_count], float tri_indices (torch.Tensor): Triangle element indices, shape [tri_count*3], int tri_poses (torch.Tensor): Triangle element rest pose, shape [tri_count, 2, 2], float tri_activations (torch.Tensor): Triangle element activations, shape [tri_count], float edge_indices (torch.Tensor): Bending edge indices, shape [edge_count*2], int edge_rest_angle (torch.Tensor): Bending edge rest angle, shape [edge_count], float tet_indices (torch.Tensor): Tetrahedral element indices, shape [tet_count*4], int tet_poses (torch.Tensor): Tetrahedral rest poses, shape [tet_count, 3, 3], float tet_activations (torch.Tensor): Tetrahedral volumetric activations, shape [tet_count], float tet_materials (torch.Tensor): Tetrahedral elastic parameters in form :math:`k_{mu}, k_{lambda}, k_{damp}`, shape [tet_count, 3] body_X_cm (torch.Tensor): Rigid body center of mass (in local frame), shape [link_count, 7], float body_I_m (torch.Tensor): Rigid body inertia tensor (relative to COM), shape [link_count, 3, 3], float articulation_start (torch.Tensor): Articulation start offset, shape [num_articulations], int joint_q (torch.Tensor): Joint coordinate, shape [joint_coord_count], float joint_qd (torch.Tensor): Joint velocity, shape [joint_dof_count], float joint_type (torch.Tensor): Joint type, shape [joint_count], int joint_parent (torch.Tensor): Joint parent, shape [joint_count], int joint_X_pj (torch.Tensor): Joint transform in parent frame, shape [joint_count, 7], float joint_X_cm (torch.Tensor): Joint mass frame in child frame, shape [joint_count, 7], float joint_axis (torch.Tensor): Joint axis in child frame, shape [joint_count, 3], float joint_q_start (torch.Tensor): Joint coordinate offset, shape [joint_count], int joint_qd_start (torch.Tensor): Joint velocity offset, shape [joint_count], int joint_armature (torch.Tensor): Armature for each joint, shape [joint_count], float joint_target_ke (torch.Tensor): Joint stiffness, shape [joint_count], float joint_target_kd (torch.Tensor): Joint damping, shape [joint_count], float joint_target (torch.Tensor): Joint target, shape [joint_count], float particle_count (int): Total number of particles in the system joint_coord_count (int): Total number of joint coordinates in the system joint_dof_count (int): Total number of joint dofs in the system link_count (int): Total number of links in the system shape_count (int): Total number of shapes in the system tri_count (int): Total number of triangles in the system tet_count (int): Total number of tetrahedra in the system edge_count (int): Total number of edges in the system spring_count (int): Total number of springs in the system contact_count (int): Total number of contacts in the system Note: It is strongly recommended to use the ModelBuilder to construct a simulation rather than creating your own Model object directly, however it is possible to do so if desired. """ def __init__(self, adapter): self.particle_q = None self.particle_qd = None self.particle_mass = None self.particle_inv_mass = None self.shape_transform = None self.shape_body = None self.shape_geo_type = None self.shape_geo_src = None self.shape_geo_scale = None self.shape_materials = None self.spring_indices = None self.spring_rest_length = None self.spring_stiffness = None self.spring_damping = None self.spring_control = None self.tri_indices = None self.tri_poses = None self.tri_activations = None self.edge_indices = None self.edge_rest_angle = None self.tet_indices = None self.tet_poses = None self.tet_activations = None self.tet_materials = None self.body_X_cm = None self.body_I_m = None self.articulation_start = None self.joint_q = None self.joint_qd = None self.joint_type = None self.joint_parent = None self.joint_X_pj = None self.joint_X_cm = None self.joint_axis = None self.joint_q_start = None self.joint_qd_start = None self.joint_armature = None self.joint_target_ke = None self.joint_target_kd = None self.joint_target = None self.particle_count = 0 self.joint_coord_count = 0 self.joint_dof_count = 0 self.link_count = 0 self.shape_count = 0 self.tri_count = 0 self.tet_count = 0 self.edge_count = 0 self.spring_count = 0 self.contact_count = 0 self.gravity = torch.tensor((0.0, -9.8, 0.0), dtype=torch.float32, device=adapter) self.contact_distance = 0.1 self.contact_ke = 1.e+3 self.contact_kd = 0.0 self.contact_kf = 1.e+3 self.contact_mu = 0.5 self.tri_ke = 100.0 self.tri_ka = 100.0 self.tri_kd = 10.0 self.tri_kb = 100.0 self.tri_drag = 0.0 self.tri_lift = 0.0 self.edge_ke = 100.0 self.edge_kd = 0.0 self.particle_radius = 0.1 self.adapter = adapter def state(self) -> State: """Returns a state object for the model The returned state will be initialized with the initial configuration given in the model description. """ s = State() s.particle_count = self.particle_count s.link_count = self.link_count #-------------------------------- # dynamic state (input, output) # particles if (self.particle_count): s.particle_q = torch.clone(self.particle_q) s.particle_qd = torch.clone(self.particle_qd) # articulations if (self.link_count): s.joint_q = torch.clone(self.joint_q) s.joint_qd = torch.clone(self.joint_qd) s.joint_act = torch.zeros_like(self.joint_qd) s.joint_q.requires_grad = True s.joint_qd.requires_grad = True #-------------------------------- # derived state (output only) if (self.particle_count): s.particle_f = torch.empty_like(self.particle_qd, requires_grad=True) if (self.link_count): # joints s.joint_qdd = torch.empty_like(self.joint_qd, requires_grad=True) s.joint_tau = torch.empty_like(self.joint_qd, requires_grad=True) s.joint_S_s = torch.empty((self.joint_dof_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) # derived rigid body data (maximal coordinates) s.body_X_sc = torch.empty((self.link_count, 7), dtype=torch.float32, device=self.adapter, requires_grad=True) s.body_X_sm = torch.empty((self.link_count, 7), dtype=torch.float32, device=self.adapter, requires_grad=True) s.body_I_s = torch.empty((self.link_count, 6, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) s.body_v_s = torch.empty((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) s.body_a_s = torch.empty((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) s.body_f_s = torch.zeros((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) #s.body_ft_s = torch.zeros((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) #s.body_f_ext_s = torch.zeros((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) return s def alloc_mass_matrix(self): if (self.link_count): # system matrices self.M = torch.zeros(self.M_size, dtype=torch.float32, device=self.adapter, requires_grad=True) self.J = torch.zeros(self.J_size, dtype=torch.float32, device=self.adapter, requires_grad=True) self.P = torch.empty(self.J_size, dtype=torch.float32, device=self.adapter, requires_grad=True) self.H = torch.empty(self.H_size, dtype=torch.float32, device=self.adapter, requires_grad=True) # zero since only upper triangle is set which can trigger NaN detection self.L = torch.zeros(self.H_size, dtype=torch.float32, device=self.adapter, requires_grad=True) def flatten(self): """Returns a list of Tensors stored by the model This function is intended to be used internal-only but can be used to obtain a set of all tensors owned by the model. """ tensors = [] # build a list of all tensor attributes for attr, value in self.__dict__.items(): if (torch.is_tensor(value)): tensors.append(value) return tensors # builds contacts def collide(self, state: State): """Constructs a set of contacts between rigid bodies and ground This method performs collision detection between rigid body vertices in the scene and updates the model's set of contacts stored as the following attributes: * **contact_body0**: Tensor of ints with first rigid body index * **contact_body1**: Tensor of ints with second rigid body index (currently always -1 to indicate ground) * **contact_point0**: Tensor of Vec3 representing contact point in local frame of body0 * **contact_dist**: Tensor of float values representing the distance to maintain * **contact_material**: Tensor contact material indices Args: state: The state of the simulation at which to perform collision detection Note: Currently this method uses an 'all pairs' approach to contact generation that is state indepdendent. In the future this will change and will create a node in the computational graph to propagate gradients as a function of state. Todo: Only ground-plane collision is currently implemented. Since the ground is static it is acceptable to call this method once at initialization time. """ body0 = [] body1 = [] point = [] dist = [] mat = [] def add_contact(b0, b1, t, p0, d, m): body0.append(b0) body1.append(b1) point.append(transform_point(t, np.array(p0))) dist.append(d) mat.append(m) for i in range(self.shape_count): # transform from shape to body X_bs = transform_expand(self.shape_transform[i].tolist()) geo_type = self.shape_geo_type[i].item() if (geo_type == GEO_SPHERE): radius = self.shape_geo_scale[i][0].item() add_contact(self.shape_body[i], -1, X_bs, (0.0, 0.0, 0.0), radius, i) elif (geo_type == GEO_CAPSULE): radius = self.shape_geo_scale[i][0].item() half_width = self.shape_geo_scale[i][1].item() add_contact(self.shape_body[i], -1, X_bs, (-half_width, 0.0, 0.0), radius, i) add_contact(self.shape_body[i], -1, X_bs, (half_width, 0.0, 0.0), radius, i) elif (geo_type == GEO_BOX): edges = self.shape_geo_scale[i].tolist() add_contact(self.shape_body[i], -1, X_bs, (-edges[0], -edges[1], -edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, ( edges[0], -edges[1], -edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (-edges[0], edges[1], -edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (edges[0], edges[1], -edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (-edges[0], -edges[1], edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (edges[0], -edges[1], edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (-edges[0], edges[1], edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (edges[0], edges[1], edges[2]), 0.0, i) elif (geo_type == GEO_MESH): mesh = self.shape_geo_src[i] scale = self.shape_geo_scale[i] for v in mesh.vertices: p = (v[0] * scale[0], v[1] * scale[1], v[2] * scale[2]) add_contact(self.shape_body[i], -1, X_bs, p, 0.0, i) # send to torch self.contact_body0 = torch.tensor(body0, dtype=torch.int32, device=self.adapter) self.contact_body1 = torch.tensor(body1, dtype=torch.int32, device=self.adapter) self.contact_point0 = torch.tensor(point, dtype=torch.float32, device=self.adapter) self.contact_dist = torch.tensor(dist, dtype=torch.float32, device=self.adapter) self.contact_material = torch.tensor(mat, dtype=torch.int32, device=self.adapter) self.contact_count = len(body0) class ModelBuilder: """A helper class for building simulation models at runtime. Use the ModelBuilder to construct a simulation scene. The ModelBuilder is independent of PyTorch and builds the scene representation using standard Python data structures, this means it is not differentiable. Once :func:`finalize()` has been called the ModelBuilder transfers all data to Torch tensors and returns an object that may be used for simulation. Example: >>> import dflex as df >>> >>> builder = df.ModelBuilder() >>> >>> # anchor point (zero mass) >>> builder.add_particle((0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0) >>> >>> # build chain >>> for i in range(1,10): >>> builder.add_particle((i, 1.0, 0.0), (0.0, 0.0, 0.0), 1.0) >>> builder.add_spring(i-1, i, 1.e+3, 0.0, 0) >>> >>> # create model >>> model = builder.finalize() Note: It is strongly recommended to use the ModelBuilder to construct a simulation rather than creating your own Model object directly, however it is possible to do so if desired. """ def __init__(self): # particles self.particle_q = [] self.particle_qd = [] self.particle_mass = [] # shapes self.shape_transform = [] self.shape_body = [] self.shape_geo_type = [] self.shape_geo_scale = [] self.shape_geo_src = [] self.shape_materials = [] # geometry self.geo_meshes = [] self.geo_sdfs = [] # springs self.spring_indices = [] self.spring_rest_length = [] self.spring_stiffness = [] self.spring_damping = [] self.spring_control = [] # triangles self.tri_indices = [] self.tri_poses = [] self.tri_activations = [] # edges (bending) self.edge_indices = [] self.edge_rest_angle = [] # tetrahedra self.tet_indices = [] self.tet_poses = [] self.tet_activations = [] self.tet_materials = [] # muscles self.muscle_start = [] self.muscle_params = [] self.muscle_activation = [] self.muscle_links = [] self.muscle_points = [] # rigid bodies self.joint_parent = [] # index of the parent body (constant) self.joint_child = [] # index of the child body (constant) self.joint_axis = [] # joint axis in child joint frame (constant) self.joint_X_pj = [] # frame of joint in parent (constant) self.joint_X_cm = [] # frame of child com (in child coordinates) (constant) self.joint_q_start = [] # joint offset in the q array self.joint_qd_start = [] # joint offset in the qd array self.joint_type = [] self.joint_armature = [] self.joint_target_ke = [] self.joint_target_kd = [] self.joint_target = [] self.joint_limit_lower = [] self.joint_limit_upper = [] self.joint_limit_ke = [] self.joint_limit_kd = [] self.joint_q = [] # generalized coordinates (input) self.joint_qd = [] # generalized velocities (input) self.joint_qdd = [] # generalized accelerations (id,fd) self.joint_tau = [] # generalized actuation (input) self.joint_u = [] # generalized total torque (fd) self.body_mass = [] self.body_inertia = [] self.body_com = [] self.articulation_start = [] def add_articulation(self) -> int: """Add an articulation object, all subsequently added links (see: :func:`add_link`) will belong to this articulation object. Calling this method multiple times 'closes' any previous articulations and begins a new one. Returns: The index of the articulation """ self.articulation_start.append(len(self.joint_type)) return len(self.articulation_start)-1 # rigids, register a rigid body and return its index. def add_link( self, parent : int, X_pj : Transform, axis : Vec3, type : int, armature: float=0.01, stiffness: float=0.0, damping: float=0.0, limit_lower: float=-1.e+3, limit_upper: float=1.e+3, limit_ke: float=100.0, limit_kd: float=10.0, com: Vec3=np.zeros(3), I_m: Mat33=np.zeros((3, 3)), m: float=0.0) -> int: """Adds a rigid body to the model. Args: parent: The index of the parent body X_pj: The location of the joint in the parent's local frame connecting this body axis: The joint axis type: The type of joint, should be one of: JOINT_PRISMATIC, JOINT_REVOLUTE, JOINT_BALL, JOINT_FIXED, or JOINT_FREE armature: Additional inertia around the joint axis stiffness: Spring stiffness that attempts to return joint to zero position damping: Spring damping that attempts to remove joint velocity com: The center of mass of the body w.r.t its origin I_m: The 3x3 inertia tensor of the body (specified relative to the center of mass) m: The mass of the body Returns: The index of the body in the model Note: If the mass (m) is zero then the body is treated as kinematic with no dynamics """ # joint data self.joint_type.append(type) self.joint_axis.append(np.array(axis)) self.joint_parent.append(parent) self.joint_X_pj.append(X_pj) self.joint_target_ke.append(stiffness) self.joint_target_kd.append(damping) self.joint_limit_ke.append(limit_ke) self.joint_limit_kd.append(limit_kd) self.joint_q_start.append(len(self.joint_q)) self.joint_qd_start.append(len(self.joint_qd)) if (type == JOINT_PRISMATIC): self.joint_q.append(0.0) self.joint_qd.append(0.0) self.joint_target.append(0.0) self.joint_armature.append(armature) self.joint_limit_lower.append(limit_lower) self.joint_limit_upper.append(limit_upper) elif (type == JOINT_REVOLUTE): self.joint_q.append(0.0) self.joint_qd.append(0.0) self.joint_target.append(0.0) self.joint_armature.append(armature) self.joint_limit_lower.append(limit_lower) self.joint_limit_upper.append(limit_upper) elif (type == JOINT_BALL): # quaternion self.joint_q.append(0.0) self.joint_q.append(0.0) self.joint_q.append(0.0) self.joint_q.append(1.0) # angular velocity self.joint_qd.append(0.0) self.joint_qd.append(0.0) self.joint_qd.append(0.0) # pd targets self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_armature.append(armature) self.joint_armature.append(armature) self.joint_armature.append(armature) self.joint_limit_lower.append(limit_lower) self.joint_limit_lower.append(limit_lower) self.joint_limit_lower.append(limit_lower) self.joint_limit_lower.append(0.0) self.joint_limit_upper.append(limit_upper) self.joint_limit_upper.append(limit_upper) self.joint_limit_upper.append(limit_upper) self.joint_limit_upper.append(0.0) elif (type == JOINT_FIXED): pass elif (type == JOINT_FREE): # translation self.joint_q.append(0.0) self.joint_q.append(0.0) self.joint_q.append(0.0) # quaternion self.joint_q.append(0.0) self.joint_q.append(0.0) self.joint_q.append(0.0) self.joint_q.append(1.0) # note armature for free joints should always be zero, better to modify the body inertia directly self.joint_armature.append(0.0) self.joint_armature.append(0.0) self.joint_armature.append(0.0) self.joint_armature.append(0.0) self.joint_armature.append(0.0) self.joint_armature.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) # joint velocities for i in range(6): self.joint_qd.append(0.0) self.body_inertia.append(np.zeros((3, 3))) self.body_mass.append(0.0) self.body_com.append(np.zeros(3)) # return index of body return len(self.joint_type) - 1 # muscles def add_muscle(self, links: List[int], positions: List[Vec3], f0: float, lm: float, lt: float, lmax: float, pen: float) -> float: """Adds a muscle-tendon activation unit Args: links: A list of link indices for each waypoint positions: A list of positions of each waypoint in the link's local frame f0: Force scaling lm: Muscle length lt: Tendon length lmax: Maximally efficient muscle length Returns: The index of the muscle in the model """ n = len(links) self.muscle_start.append(len(self.muscle_links)) self.muscle_params.append((f0, lm, lt, lmax, pen)) self.muscle_activation.append(0.0) for i in range(n): self.muscle_links.append(links[i]) self.muscle_points.append(positions[i]) # return the index of the muscle return len(self.muscle_start)-1 # shapes def add_shape_plane(self, plane: Vec4=(0.0, 1.0, 0.0, 0.0), ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5): """Adds a plane collision shape Args: plane: The plane equation in form a*x + b*y + c*z + d = 0 ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction """ self._add_shape(-1, (0.0, 0.0, 0.0), (0.0, 0.0, 0.0), GEO_PLANE, plane, None, 0.0, ke, kd, kf, mu) def add_shape_sphere(self, body, pos: Vec3=(0.0, 0.0, 0.0), rot: Quat=(0.0, 0.0, 0.0, 1.0), radius: float=1.0, density: float=1000.0, ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5): """Adds a sphere collision shape to a link. Args: body: The index of the parent link this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame radius: The radius of the sphere density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction """ self._add_shape(body, pos, rot, GEO_SPHERE, (radius, 0.0, 0.0, 0.0), None, density, ke, kd, kf, mu) def add_shape_box(self, body : int, pos: Vec3=(0.0, 0.0, 0.0), rot: Quat=(0.0, 0.0, 0.0, 1.0), hx: float=0.5, hy: float=0.5, hz: float=0.5, density: float=1000.0, ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5): """Adds a box collision shape to a link. Args: body: The index of the parent link this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame hx: The half-extents along the x-axis hy: The half-extents along the y-axis hz: The half-extents along the z-axis density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction """ self._add_shape(body, pos, rot, GEO_BOX, (hx, hy, hz, 0.0), None, density, ke, kd, kf, mu) def add_shape_capsule(self, body: int, pos: Vec3=(0.0, 0.0, 0.0), rot: Quat=(0.0, 0.0, 0.0, 1.0), radius: float=1.0, half_width: float=0.5, density: float=1000.0, ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5): """Adds a capsule collision shape to a link. Args: body: The index of the parent link this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame radius: The radius of the capsule half_width: The half length of the center cylinder along the x-axis density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction """ self._add_shape(body, pos, rot, GEO_CAPSULE, (radius, half_width, 0.0, 0.0), None, density, ke, kd, kf, mu) def add_shape_mesh(self, body: int, pos: Vec3=(0.0, 0.0, 0.0), rot: Quat=(0.0, 0.0, 0.0, 1.0), mesh: Mesh=None, scale: Vec3=(1.0, 1.0, 1.0), density: float=1000.0, ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5): """Adds a triangle mesh collision shape to a link. Args: body: The index of the parent link this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame mesh: The mesh object scale: Scale to use for the collider density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction """ self._add_shape(body, pos, rot, GEO_MESH, (scale[0], scale[1], scale[2], 0.0), mesh, density, ke, kd, kf, mu) def _add_shape(self, body , pos, rot, type, scale, src, density, ke, kd, kf, mu): self.shape_body.append(body) self.shape_transform.append(transform(pos, rot)) self.shape_geo_type.append(type) self.shape_geo_scale.append((scale[0], scale[1], scale[2])) self.shape_geo_src.append(src) self.shape_materials.append((ke, kd, kf, mu)) (m, I) = self._compute_shape_mass(type, scale, src, density) self._update_body_mass(body, m, I, np.array(pos), np.array(rot)) # particles def add_particle(self, pos : Vec3, vel : Vec3, mass : float) -> int: """Adds a single particle to the model Args: pos: The initial position of the particle vel: The initial velocity of the particle mass: The mass of the particle Note: Set the mass equal to zero to create a 'kinematic' particle that does is not subject to dynamics. Returns: The index of the particle in the system """ self.particle_q.append(pos) self.particle_qd.append(vel) self.particle_mass.append(mass) return len(self.particle_q) - 1 def add_spring(self, i : int, j, ke : float, kd : float, control: float): """Adds a spring between two particles in the system Args: i: The index of the first particle j: The index of the second particle ke: The elastic stiffness of the spring kd: The damping stiffness of the spring control: The actuation level of the spring Note: The spring is created with a rest-length based on the distance between the particles in their initial configuration. """ self.spring_indices.append(i) self.spring_indices.append(j) self.spring_stiffness.append(ke) self.spring_damping.append(kd) self.spring_control.append(control) # compute rest length p = self.particle_q[i] q = self.particle_q[j] delta = np.subtract(p, q) l = np.sqrt(np.dot(delta, delta)) self.spring_rest_length.append(l) def add_triangle(self, i : int, j : int, k : int) -> float: """Adds a trianglular FEM element between three particles in the system. Triangles are modeled as viscoelastic elements with elastic stiffness and damping Parameters specfied on the model. See model.tri_ke, model.tri_kd. Args: i: The index of the first particle j: The index of the second particle k: The index of the third particle Return: The area of the triangle Note: The triangle is created with a rest-length based on the distance between the particles in their initial configuration. Todo: * Expose elastic paramters on a per-element basis """ # compute basis for 2D rest pose p = np.array(self.particle_q[i]) q = np.array(self.particle_q[j]) r = np.array(self.particle_q[k]) qp = q - p rp = r - p # construct basis aligned with the triangle n = normalize(np.cross(qp, rp)) e1 = normalize(qp) e2 = normalize(np.cross(n, e1)) R = np.matrix((e1, e2)) M = np.matrix((qp, rp)) D = R * M.T inv_D = np.linalg.inv(D) area = np.linalg.det(D) / 2.0 if (area < 0.0): print("inverted triangle element") self.tri_indices.append((i, j, k)) self.tri_poses.append(inv_D.tolist()) self.tri_activations.append(0.0) return area def add_tetrahedron(self, i: int, j: int, k: int, l: int, k_mu: float=1.e+3, k_lambda: float=1.e+3, k_damp: float=0.0) -> float: """Adds a tetrahedral FEM element between four particles in the system. Tetrahdera are modeled as viscoelastic elements with a NeoHookean energy density based on [Smith et al. 2018]. Args: i: The index of the first particle j: The index of the second particle k: The index of the third particle l: The index of the fourth particle k_mu: The first elastic Lame parameter k_lambda: The second elastic Lame parameter k_damp: The element's damping stiffness Return: The volume of the tetrahedron Note: The tetrahedron is created with a rest-pose based on the particle's initial configruation """ # compute basis for 2D rest pose p = np.array(self.particle_q[i]) q = np.array(self.particle_q[j]) r = np.array(self.particle_q[k]) s = np.array(self.particle_q[l]) qp = q - p rp = r - p sp = s - p Dm = np.matrix((qp, rp, sp)).T volume = np.linalg.det(Dm) / 6.0 if (volume <= 0.0): print("inverted tetrahedral element") else: inv_Dm = np.linalg.inv(Dm) self.tet_indices.append((i, j, k, l)) self.tet_poses.append(inv_Dm.tolist()) self.tet_activations.append(0.0) self.tet_materials.append((k_mu, k_lambda, k_damp)) return volume def add_edge(self, i: int, j: int, k: int, l: int, rest: float=None): """Adds a bending edge element between four particles in the system. Bending elements are designed to be between two connected triangles. Then bending energy is based of [Bridson et al. 2002]. Bending stiffness is controlled by the `model.tri_kb` parameter. Args: i: The index of the first particle j: The index of the second particle k: The index of the third particle l: The index of the fourth particle rest: The rest angle across the edge in radians, if not specified it will be computed Note: The edge lies between the particles indexed by 'k' and 'l' parameters with the opposing vertices indexed by 'i' and 'j'. This defines two connected triangles with counter clockwise winding: (i, k, l), (j, l, k). """ # compute rest angle if (rest == None): x1 = np.array(self.particle_q[i]) x2 = np.array(self.particle_q[j]) x3 = np.array(self.particle_q[k]) x4 = np.array(self.particle_q[l]) n1 = normalize(np.cross(x3 - x1, x4 - x1)) n2 = normalize(np.cross(x4 - x2, x3 - x2)) e = normalize(x4 - x3) d = np.clip(np.dot(n2, n1), -1.0, 1.0) angle = math.acos(d) sign = np.sign(np.dot(np.cross(n2, n1), e)) rest = angle * sign self.edge_indices.append((i, j, k, l)) self.edge_rest_angle.append(rest) def add_cloth_grid(self, pos: Vec3, rot: Quat, vel: Vec3, dim_x: int, dim_y: int, cell_x: float, cell_y: float, mass: float, reverse_winding: bool=False, fix_left: bool=False, fix_right: bool=False, fix_top: bool=False, fix_bottom: bool=False): """Helper to create a regular planar cloth grid Creates a rectangular grid of particles with FEM triangles and bending elements automatically. Args: pos: The position of the cloth in world space rot: The orientation of the cloth in world space vel: The velocity of the cloth in world space dim_x_: The number of rectangular cells along the x-axis dim_y: The number of rectangular cells along the y-axis cell_x: The width of each cell in the x-direction cell_y: The width of each cell in the y-direction mass: The mass of each particle reverse_winding: Flip the winding of the mesh fix_left: Make the left-most edge of particles kinematic (fixed in place) fix_right: Make the right-most edge of particles kinematic fix_top: Make the top-most edge of particles kinematic fix_bottom: Make the bottom-most edge of particles kinematic """ def grid_index(x, y, dim_x): return y * dim_x + x start_vertex = len(self.particle_q) start_tri = len(self.tri_indices) for y in range(0, dim_y + 1): for x in range(0, dim_x + 1): g = np.array((x * cell_x, y * cell_y, 0.0)) p = quat_rotate(rot, g) + pos m = mass if (x == 0 and fix_left): m = 0.0 elif (x == dim_x and fix_right): m = 0.0 elif (y == 0 and fix_bottom): m = 0.0 elif (y == dim_y and fix_top): m = 0.0 self.add_particle(p, vel, m) if (x > 0 and y > 0): if (reverse_winding): tri1 = (start_vertex + grid_index(x - 1, y - 1, dim_x + 1), start_vertex + grid_index(x, y - 1, dim_x + 1), start_vertex + grid_index(x, y, dim_x + 1)) tri2 = (start_vertex + grid_index(x - 1, y - 1, dim_x + 1), start_vertex + grid_index(x, y, dim_x + 1), start_vertex + grid_index(x - 1, y, dim_x + 1)) self.add_triangle(*tri1) self.add_triangle(*tri2) else: tri1 = (start_vertex + grid_index(x - 1, y - 1, dim_x + 1), start_vertex + grid_index(x, y - 1, dim_x + 1), start_vertex + grid_index(x - 1, y, dim_x + 1)) tri2 = (start_vertex + grid_index(x, y - 1, dim_x + 1), start_vertex + grid_index(x, y, dim_x + 1), start_vertex + grid_index(x - 1, y, dim_x + 1)) self.add_triangle(*tri1) self.add_triangle(*tri2) end_vertex = len(self.particle_q) end_tri = len(self.tri_indices) # bending constraints, could create these explicitly for a grid but this # is a good test of the adjacency structure adj = MeshAdjacency(self.tri_indices[start_tri:end_tri], end_tri - start_tri) for k, e in adj.edges.items(): # skip open edges if (e.f0 == -1 or e.f1 == -1): continue self.add_edge(e.o0, e.o1, e.v0, e.v1) # opposite 0, opposite 1, vertex 0, vertex 1 def add_cloth_mesh(self, pos: Vec3, rot: Quat, scale: float, vel: Vec3, vertices: List[Vec3], indices: List[int], density: float, edge_callback=None, face_callback=None): """Helper to create a cloth model from a regular triangle mesh Creates one FEM triangle element and one bending element for every face and edge in the input triangle mesh Args: pos: The position of the cloth in world space rot: The orientation of the cloth in world space vel: The velocity of the cloth in world space vertices: A list of vertex positions indices: A list of triangle indices, 3 entries per-face density: The density per-area of the mesh edge_callback: A user callback when an edge is created face_callback: A user callback when a face is created Note: The mesh should be two manifold. """ num_tris = int(len(indices) / 3) start_vertex = len(self.particle_q) start_tri = len(self.tri_indices) # particles for i, v in enumerate(vertices): p = quat_rotate(rot, v * scale) + pos self.add_particle(p, vel, 0.0) # triangles for t in range(num_tris): i = start_vertex + indices[t * 3 + 0] j = start_vertex + indices[t * 3 + 1] k = start_vertex + indices[t * 3 + 2] if (face_callback): face_callback(i, j, k) area = self.add_triangle(i, j, k) # add area fraction to particles if (area > 0.0): self.particle_mass[i] += density * area / 3.0 self.particle_mass[j] += density * area / 3.0 self.particle_mass[k] += density * area / 3.0 end_vertex = len(self.particle_q) end_tri = len(self.tri_indices) adj = MeshAdjacency(self.tri_indices[start_tri:end_tri], end_tri - start_tri) # bend constraints for k, e in adj.edges.items(): # skip open edges if (e.f0 == -1 or e.f1 == -1): continue if (edge_callback): edge_callback(e.f0, e.f1) self.add_edge(e.o0, e.o1, e.v0, e.v1) def add_soft_grid(self, pos: Vec3, rot: Quat, vel: Vec3, dim_x: int, dim_y: int, dim_z: int, cell_x: float, cell_y: float, cell_z: float, density: float, k_mu: float, k_lambda: float, k_damp: float, fix_left: bool=False, fix_right: bool=False, fix_top: bool=False, fix_bottom: bool=False): """Helper to create a rectangular tetrahedral FEM grid Creates a regular grid of FEM tetrhedra and surface triangles. Useful for example to create beams and sheets. Each hexahedral cell is decomposed into 5 tetrahedral elements. Args: pos: The position of the solid in world space rot: The orientation of the solid in world space vel: The velocity of the solid in world space dim_x_: The number of rectangular cells along the x-axis dim_y: The number of rectangular cells along the y-axis dim_z: The number of rectangular cells along the z-axis cell_x: The width of each cell in the x-direction cell_y: The width of each cell in the y-direction cell_z: The width of each cell in the z-direction density: The density of each particle k_mu: The first elastic Lame parameter k_lambda: The second elastic Lame parameter k_damp: The damping stiffness fix_left: Make the left-most edge of particles kinematic (fixed in place) fix_right: Make the right-most edge of particles kinematic fix_top: Make the top-most edge of particles kinematic fix_bottom: Make the bottom-most edge of particles kinematic """ start_vertex = len(self.particle_q) mass = cell_x * cell_y * cell_z * density for z in range(dim_z + 1): for y in range(dim_y + 1): for x in range(dim_x + 1): v = np.array((x * cell_x, y * cell_y, z * cell_z)) m = mass if (fix_left and x == 0): m = 0.0 if (fix_right and x == dim_x): m = 0.0 if (fix_top and y == dim_y): m = 0.0 if (fix_bottom and y == 0): m = 0.0 p = quat_rotate(rot, v) + pos self.add_particle(p, vel, m) # dict of open faces faces = {} def add_face(i: int, j: int, k: int): key = tuple(sorted((i, j, k))) if key not in faces: faces[key] = (i, j, k) else: del faces[key] def add_tet(i: int, j: int, k: int, l: int): self.add_tetrahedron(i, j, k, l, k_mu, k_lambda, k_damp) add_face(i, k, j) add_face(j, k, l) add_face(i, j, l) add_face(i, l, k) def grid_index(x, y, z): return (dim_x + 1) * (dim_y + 1) * z + (dim_x + 1) * y + x for z in range(dim_z): for y in range(dim_y): for x in range(dim_x): v0 = grid_index(x, y, z) + start_vertex v1 = grid_index(x + 1, y, z) + start_vertex v2 = grid_index(x + 1, y, z + 1) + start_vertex v3 = grid_index(x, y, z + 1) + start_vertex v4 = grid_index(x, y + 1, z) + start_vertex v5 = grid_index(x + 1, y + 1, z) + start_vertex v6 = grid_index(x + 1, y + 1, z + 1) + start_vertex v7 = grid_index(x, y + 1, z + 1) + start_vertex if (((x & 1) ^ (y & 1) ^ (z & 1))): add_tet(v0, v1, v4, v3) add_tet(v2, v3, v6, v1) add_tet(v5, v4, v1, v6) add_tet(v7, v6, v3, v4) add_tet(v4, v1, v6, v3) else: add_tet(v1, v2, v5, v0) add_tet(v3, v0, v7, v2) add_tet(v4, v7, v0, v5) add_tet(v6, v5, v2, v7) add_tet(v5, v2, v7, v0) # add triangles for k, v in faces.items(): self.add_triangle(v[0], v[1], v[2]) def add_soft_mesh(self, pos: Vec3, rot: Quat, scale: float, vel: Vec3, vertices: List[Vec3], indices: List[int], density: float, k_mu: float, k_lambda: float, k_damp: float): """Helper to create a tetrahedral model from an input tetrahedral mesh Args: pos: The position of the solid in world space rot: The orientation of the solid in world space vel: The velocity of the solid in world space vertices: A list of vertex positions indices: A list of tetrahedron indices, 4 entries per-element density: The density per-area of the mesh k_mu: The first elastic Lame parameter k_lambda: The second elastic Lame parameter k_damp: The damping stiffness """ num_tets = int(len(indices) / 4) start_vertex = len(self.particle_q) start_tri = len(self.tri_indices) # dict of open faces faces = {} def add_face(i, j, k): key = tuple(sorted((i, j, k))) if key not in faces: faces[key] = (i, j, k) else: del faces[key] # add particles for v in vertices: p = quat_rotate(rot, v * scale) + pos self.add_particle(p, vel, 0.0) # add tetrahedra for t in range(num_tets): v0 = start_vertex + indices[t * 4 + 0] v1 = start_vertex + indices[t * 4 + 1] v2 = start_vertex + indices[t * 4 + 2] v3 = start_vertex + indices[t * 4 + 3] volume = self.add_tetrahedron(v0, v1, v2, v3, k_mu, k_lambda, k_damp) # distribute volume fraction to particles if (volume > 0.0): self.particle_mass[v0] += density * volume / 4.0 self.particle_mass[v1] += density * volume / 4.0 self.particle_mass[v2] += density * volume / 4.0 self.particle_mass[v3] += density * volume / 4.0 # build open faces add_face(v0, v2, v1) add_face(v1, v2, v3) add_face(v0, v1, v3) add_face(v0, v3, v2) # add triangles for k, v in faces.items(): try: self.add_triangle(v[0], v[1], v[2]) except np.linalg.LinAlgError: continue def compute_sphere_inertia(self, density: float, r: float) -> tuple: """Helper to compute mass and inertia of a sphere Args: density: The sphere density r: The sphere radius Returns: A tuple of (mass, inertia) with inertia specified around the origin """ v = 4.0 / 3.0 * math.pi * r * r * r m = density * v Ia = 2.0 / 5.0 * m * r * r I = np.array([[Ia, 0.0, 0.0], [0.0, Ia, 0.0], [0.0, 0.0, Ia]]) return (m, I) def compute_capsule_inertia(self, density: float, r: float, l: float) -> tuple: """Helper to compute mass and inertia of a capsule Args: density: The capsule density r: The capsule radius l: The capsule length (full width of the interior cylinder) Returns: A tuple of (mass, inertia) with inertia specified around the origin """ ms = density * (4.0 / 3.0) * math.pi * r * r * r mc = density * math.pi * r * r * l # total mass m = ms + mc # adapted from ODE Ia = mc * (0.25 * r * r + (1.0 / 12.0) * l * l) + ms * (0.4 * r * r + 0.375 * r * l + 0.25 * l * l) Ib = (mc * 0.5 + ms * 0.4) * r * r I = np.array([[Ib, 0.0, 0.0], [0.0, Ia, 0.0], [0.0, 0.0, Ia]]) return (m, I) def compute_box_inertia(self, density: float, w: float, h: float, d: float) -> tuple: """Helper to compute mass and inertia of a box Args: density: The box density w: The box width along the x-axis h: The box height along the y-axis d: The box depth along the z-axis Returns: A tuple of (mass, inertia) with inertia specified around the origin """ v = w * h * d m = density * v Ia = 1.0 / 12.0 * m * (h * h + d * d) Ib = 1.0 / 12.0 * m * (w * w + d * d) Ic = 1.0 / 12.0 * m * (w * w + h * h) I = np.array([[Ia, 0.0, 0.0], [0.0, Ib, 0.0], [0.0, 0.0, Ic]]) return (m, I) def _compute_shape_mass(self, type, scale, src, density): if density == 0: # zero density means fixed return 0, np.zeros((3, 3)) if (type == GEO_SPHERE): return self.compute_sphere_inertia(density, scale[0]) elif (type == GEO_BOX): return self.compute_box_inertia(density, scale[0] * 2.0, scale[1] * 2.0, scale[2] * 2.0) elif (type == GEO_CAPSULE): return self.compute_capsule_inertia(density, scale[0], scale[1] * 2.0) elif (type == GEO_MESH): #todo: non-uniform scale of inertia tensor s = scale[0] # eventually want to compute moment of inertia for mesh. return (density * src.mass * s * s * s, density * src.I * s * s * s * s * s) # incrementally updates rigid body mass with additional mass and inertia expressed at a local to the body def _update_body_mass(self, i, m, I, p, q): if (i == -1): return # find new COM new_mass = self.body_mass[i] + m if new_mass == 0.0: # no mass return new_com = (self.body_com[i] * self.body_mass[i] + p * m) / new_mass # shift inertia to new COM com_offset = new_com - self.body_com[i] shape_offset = new_com - p new_inertia = transform_inertia(self.body_mass[i], self.body_inertia[i], com_offset, quat_identity()) + transform_inertia( m, I, shape_offset, q) self.body_mass[i] = new_mass self.body_inertia[i] = new_inertia self.body_com[i] = new_com # returns a (model, state) pair given the description def finalize(self, adapter: str) -> Model: """Convert this builder object to a concrete model for simulation. After building simulation elements this method should be called to transfer all data to PyTorch tensors ready for simulation. Args: adapter: The simulation adapter to use, e.g.: 'cpu', 'cuda' Returns: A model object. """ # construct particle inv masses particle_inv_mass = [] for m in self.particle_mass: if (m > 0.0): particle_inv_mass.append(1.0 / m) else: particle_inv_mass.append(0.0) #------------------------------------- # construct Model (non-time varying) data m = Model(adapter) #--------------------- # particles # state (initial) m.particle_q = torch.tensor(self.particle_q, dtype=torch.float32, device=adapter) m.particle_qd = torch.tensor(self.particle_qd, dtype=torch.float32, device=adapter) # model m.particle_mass = torch.tensor(self.particle_mass, dtype=torch.float32, device=adapter) m.particle_inv_mass = torch.tensor(particle_inv_mass, dtype=torch.float32, device=adapter) #--------------------- # collision geometry m.shape_transform = torch.tensor(transform_flatten_list(self.shape_transform), dtype=torch.float32, device=adapter) m.shape_body = torch.tensor(self.shape_body, dtype=torch.int32, device=adapter) m.shape_geo_type = torch.tensor(self.shape_geo_type, dtype=torch.int32, device=adapter) m.shape_geo_src = self.shape_geo_src m.shape_geo_scale = torch.tensor(self.shape_geo_scale, dtype=torch.float32, device=adapter) m.shape_materials = torch.tensor(self.shape_materials, dtype=torch.float32, device=adapter) #--------------------- # springs m.spring_indices = torch.tensor(self.spring_indices, dtype=torch.int32, device=adapter) m.spring_rest_length = torch.tensor(self.spring_rest_length, dtype=torch.float32, device=adapter) m.spring_stiffness = torch.tensor(self.spring_stiffness, dtype=torch.float32, device=adapter) m.spring_damping = torch.tensor(self.spring_damping, dtype=torch.float32, device=adapter) m.spring_control = torch.tensor(self.spring_control, dtype=torch.float32, device=adapter) #--------------------- # triangles m.tri_indices = torch.tensor(self.tri_indices, dtype=torch.int32, device=adapter) m.tri_poses = torch.tensor(self.tri_poses, dtype=torch.float32, device=adapter) m.tri_activations = torch.tensor(self.tri_activations, dtype=torch.float32, device=adapter) #--------------------- # edges m.edge_indices = torch.tensor(self.edge_indices, dtype=torch.int32, device=adapter) m.edge_rest_angle = torch.tensor(self.edge_rest_angle, dtype=torch.float32, device=adapter) #--------------------- # tetrahedra m.tet_indices = torch.tensor(self.tet_indices, dtype=torch.int32, device=adapter) m.tet_poses = torch.tensor(self.tet_poses, dtype=torch.float32, device=adapter) m.tet_activations = torch.tensor(self.tet_activations, dtype=torch.float32, device=adapter) m.tet_materials = torch.tensor(self.tet_materials, dtype=torch.float32, device=adapter) #----------------------- # muscles muscle_count = len(self.muscle_start) # close the muscle waypoint indices self.muscle_start.append(len(self.muscle_links)) m.muscle_start = torch.tensor(self.muscle_start, dtype=torch.int32, device=adapter) m.muscle_params = torch.tensor(self.muscle_params, dtype=torch.float32, device=adapter) m.muscle_links = torch.tensor(self.muscle_links, dtype=torch.int32, device=adapter) m.muscle_points = torch.tensor(self.muscle_points, dtype=torch.float32, device=adapter) m.muscle_activation = torch.tensor(self.muscle_activation, dtype=torch.float32, device=adapter) #-------------------------------------- # articulations # build 6x6 spatial inertia and COM transform body_X_cm = [] body_I_m = [] for i in range(len(self.body_inertia)): body_I_m.append(spatial_matrix_from_inertia(self.body_inertia[i], self.body_mass[i])) body_X_cm.append(transform(self.body_com[i], quat_identity())) m.body_I_m = torch.tensor(body_I_m, dtype=torch.float32, device=adapter) articulation_count = len(self.articulation_start) joint_coord_count = len(self.joint_q) joint_dof_count = len(self.joint_qd) # 'close' the start index arrays with a sentinel value self.joint_q_start.append(len(self.joint_q)) self.joint_qd_start.append(len(self.joint_qd)) self.articulation_start.append(len(self.joint_type)) # calculate total size and offsets of Jacobian and mass matrices for entire system m.J_size = 0 m.M_size = 0 m.H_size = 0 articulation_J_start = [] articulation_M_start = [] articulation_H_start = [] articulation_M_rows = [] articulation_H_rows = [] articulation_J_rows = [] articulation_J_cols = [] articulation_dof_start = [] articulation_coord_start = [] for i in range(articulation_count): first_joint = self.articulation_start[i] last_joint = self.articulation_start[i+1] first_coord = self.joint_q_start[first_joint] last_coord = self.joint_q_start[last_joint] first_dof = self.joint_qd_start[first_joint] last_dof = self.joint_qd_start[last_joint] joint_count = last_joint-first_joint dof_count = last_dof-first_dof coord_count = last_coord-first_coord articulation_J_start.append(m.J_size) articulation_M_start.append(m.M_size) articulation_H_start.append(m.H_size) articulation_dof_start.append(first_dof) articulation_coord_start.append(first_coord) # bit of data duplication here, but will leave it as such for clarity articulation_M_rows.append(joint_count*6) articulation_H_rows.append(dof_count) articulation_J_rows.append(joint_count*6) articulation_J_cols.append(dof_count) m.J_size += 6*joint_count*dof_count m.M_size += 6*joint_count*6*joint_count m.H_size += dof_count*dof_count m.articulation_joint_start = torch.tensor(self.articulation_start, dtype=torch.int32, device=adapter) # matrix offsets for batched gemm m.articulation_J_start = torch.tensor(articulation_J_start, dtype=torch.int32, device=adapter) m.articulation_M_start = torch.tensor(articulation_M_start, dtype=torch.int32, device=adapter) m.articulation_H_start = torch.tensor(articulation_H_start, dtype=torch.int32, device=adapter) m.articulation_M_rows = torch.tensor(articulation_M_rows, dtype=torch.int32, device=adapter) m.articulation_H_rows = torch.tensor(articulation_H_rows, dtype=torch.int32, device=adapter) m.articulation_J_rows = torch.tensor(articulation_J_rows, dtype=torch.int32, device=adapter) m.articulation_J_cols = torch.tensor(articulation_J_cols, dtype=torch.int32, device=adapter) m.articulation_dof_start = torch.tensor(articulation_dof_start, dtype=torch.int32, device=adapter) m.articulation_coord_start = torch.tensor(articulation_coord_start, dtype=torch.int32, device=adapter) # state (initial) m.joint_q = torch.tensor(self.joint_q, dtype=torch.float32, device=adapter) m.joint_qd = torch.tensor(self.joint_qd, dtype=torch.float32, device=adapter) # model m.joint_type = torch.tensor(self.joint_type, dtype=torch.int32, device=adapter) m.joint_parent = torch.tensor(self.joint_parent, dtype=torch.int32, device=adapter) m.joint_X_pj = torch.tensor(transform_flatten_list(self.joint_X_pj), dtype=torch.float32, device=adapter) m.joint_X_cm = torch.tensor(transform_flatten_list(body_X_cm), dtype=torch.float32, device=adapter) m.joint_axis = torch.tensor(self.joint_axis, dtype=torch.float32, device=adapter) m.joint_q_start = torch.tensor(self.joint_q_start, dtype=torch.int32, device=adapter) m.joint_qd_start = torch.tensor(self.joint_qd_start, dtype=torch.int32, device=adapter) # dynamics properties m.joint_armature = torch.tensor(self.joint_armature, dtype=torch.float32, device=adapter) m.joint_target = torch.tensor(self.joint_target, dtype=torch.float32, device=adapter) m.joint_target_ke = torch.tensor(self.joint_target_ke, dtype=torch.float32, device=adapter) m.joint_target_kd = torch.tensor(self.joint_target_kd, dtype=torch.float32, device=adapter) m.joint_limit_lower = torch.tensor(self.joint_limit_lower, dtype=torch.float32, device=adapter) m.joint_limit_upper = torch.tensor(self.joint_limit_upper, dtype=torch.float32, device=adapter) m.joint_limit_ke = torch.tensor(self.joint_limit_ke, dtype=torch.float32, device=adapter) m.joint_limit_kd = torch.tensor(self.joint_limit_kd, dtype=torch.float32, device=adapter) # counts m.particle_count = len(self.particle_q) m.articulation_count = articulation_count m.joint_coord_count = joint_coord_count m.joint_dof_count = joint_dof_count m.muscle_count = muscle_count m.link_count = len(self.joint_type) m.shape_count = len(self.shape_geo_type) m.tri_count = len(self.tri_poses) m.tet_count = len(self.tet_poses) m.edge_count = len(self.edge_rest_angle) m.spring_count = len(self.spring_rest_length) m.contact_count = 0 # store refs to geometry m.geo_meshes = self.geo_meshes m.geo_sdfs = self.geo_sdfs # enable ground plane m.ground = True m.enable_tri_collisions = False m.gravity = torch.tensor((0.0, -9.8, 0.0), dtype=torch.float32, device=adapter) # allocate space for mass / jacobian matrices m.alloc_mass_matrix() return m
71,060
Python
36.798404
206
0.562046
vstrozzi/FRL-SHAC-Extension/dflex/build/lib/dflex/adjoint.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import imp import ast import math import inspect import typing import weakref import numpy as np import torch import torch.utils.cpp_extension import dflex.config import copy # Todo #----- # # [ ] Unary ops (e.g.: -) # [ ] Inplace ops (e.g.: +=, -=) # [ ] Conditionals # [ ] Loops (unrolled) # [ ] Auto-gen PyTorch operator # [ ] CUDA kernel code gen + dynamic compilation # ----- operators = {} functions = {} cuda_functions = {} kernels = {} #---------------------- # built-in types class float3: def __init__(self): x = 0.0 y = 0.0 z = 0.0 class float4: def __init__(self): x = 0.0 y = 0.0 z = 0.0 w = 0.0 class quat: def __init__(self): x = 0.0 y = 0.0 z = 0.0 w = 1.0 class mat22: def __init__(self): pass class mat33: def __init__(self): pass class spatial_vector: def __init__(self): pass class spatial_matrix: def __init__(self): pass class spatial_transform: def __init__(self): pass class void: def __init__(self): pass class tensor: def __init__(self, type): self.type = type self.requires_grad = True self.__name__ = "tensor<" + type.__name__ + ">" #---------------------- # register built-in function def builtin(key): def insert(func): func.key = key func.prefix = "df::" functions[key] = func return func return insert #--------------------------------- # built-in operators +,-,*,/ @builtin("add") class AddFunc: @staticmethod def value_type(args): return args[0].type @builtin("sub") class SubFunc: @staticmethod def value_type(args): return args[0].type @builtin("mod") class ModFunc: @staticmethod def value_type(args): return args[0].type @builtin("mul") class MulFunc: @staticmethod def value_type(args): # todo: encode type operator type globally if (args[0].type == mat33 and args[1].type == float3): return float3 if (args[0].type == spatial_matrix and args[1].type == spatial_vector): return spatial_vector else: return args[0].type @builtin("div") class DivFunc: @staticmethod def value_type(args): return args[0].type #---------------------- # map operator nodes to builtin operators[ast.Add] = "add" operators[ast.Sub] = "sub" operators[ast.Mult] = "mul" operators[ast.Div] = "div" operators[ast.FloorDiv] = "div" operators[ast.Mod] = "mod" operators[ast.Gt] = ">" operators[ast.Lt] = "<" operators[ast.GtE] = ">=" operators[ast.LtE] = "<=" operators[ast.Eq] = "==" operators[ast.NotEq] = "!=" #---------------------- # built-in functions @builtin("min") class MinFunc: @staticmethod def value_type(args): return float @builtin("max") class MaxFunc: @staticmethod def value_type(args): return float @builtin("leaky_max") class LeakyMaxFunc: @staticmethod def value_type(args): return float @builtin("leaky_min") class LeakyMinFunc: @staticmethod def value_type(args): return float @builtin("clamp") class ClampFunc: @staticmethod def value_type(args): return float @builtin("step") class StepFunc: @staticmethod def value_type(args): return float @builtin("nonzero") class NonZeroFunc: @staticmethod def value_type(args): return float @builtin("sign") class SignFunc: @staticmethod def value_type(args): return float @builtin("abs") class AbsFunc: @staticmethod def value_type(args): return float @builtin("sin") class SinFunc: @staticmethod def value_type(args): return float @builtin("cos") class CosFunc: @staticmethod def value_type(args): return float @builtin("acos") class ACosFunc: @staticmethod def value_type(args): return float @builtin("sin") class SinFunc: @staticmethod def value_type(args): return float @builtin("cos") class CosFunc: @staticmethod def value_type(args): return float @builtin("sqrt") class SqrtFunc: @staticmethod def value_type(args): return float @builtin("dot") class DotFunc: @staticmethod def value_type(args): return float @builtin("cross") class CrossFunc: @staticmethod def value_type(args): return float3 @builtin("skew") class SkewFunc: @staticmethod def value_type(args): return mat33 @builtin("length") class LengthFunc: @staticmethod def value_type(args): return float @builtin("normalize") class NormalizeFunc: @staticmethod def value_type(args): return args[0].type @builtin("select") class SelectFunc: @staticmethod def value_type(args): return args[1].type @builtin("rotate") class RotateFunc: @staticmethod def value_type(args): return float3 @builtin("rotate_inv") class RotateInvFunc: @staticmethod def value_type(args): return float3 @builtin("determinant") class DeterminantFunc: @staticmethod def value_type(args): return float @builtin("transpose") class TransposeFunc: @staticmethod def value_type(args): return args[0].type @builtin("load") class LoadFunc: @staticmethod def value_type(args): if (type(args[0].type) != tensor): raise Exception("Load input 0 must be a tensor") if (args[1].type != int): raise Exception("Load input 1 must be a int") return args[0].type.type @builtin("store") class StoreFunc: @staticmethod def value_type(args): if (type(args[0].type) != tensor): raise Exception("Store input 0 must be a tensor") if (args[1].type != int): raise Exception("Store input 1 must be a int") if (args[2].type != args[0].type.type): raise Exception("Store input 2 must be of the same type as the tensor") return None @builtin("atomic_add") class AtomicAddFunc: @staticmethod def value_type(args): return None @builtin("atomic_sub") class AtomicSubFunc: @staticmethod def value_type(args): return None @builtin("tid") class ThreadIdFunc: @staticmethod def value_type(args): return int # type construtors @builtin("float") class floatFunc: @staticmethod def value_type(args): return float @builtin("int") class IntFunc: @staticmethod def value_type(args): return int @builtin("float3") class Float3Func: @staticmethod def value_type(args): return float3 @builtin("quat") class QuatFunc: @staticmethod def value_type(args): return quat @builtin("quat_identity") class QuatIdentityFunc: @staticmethod def value_type(args): return quat @builtin("quat_from_axis_angle") class QuatAxisAngleFunc: @staticmethod def value_type(args): return quat @builtin("mat22") class Mat22Func: @staticmethod def value_type(args): return mat22 @builtin("mat33") class Mat33Func: @staticmethod def value_type(args): return mat33 @builtin("spatial_vector") class SpatialVectorFunc: @staticmethod def value_type(args): return spatial_vector # built-in spatial operators @builtin("spatial_transform") class TransformFunc: @staticmethod def value_type(args): return spatial_transform @builtin("spatial_transform_identity") class TransformIdentity: @staticmethod def value_type(args): return spatial_transform @builtin("inverse") class Inverse: @staticmethod def value_type(args): return quat # @builtin("spatial_transform_inverse") # class TransformInverse: # @staticmethod # def value_type(args): # return spatial_transform @builtin("spatial_transform_get_translation") class TransformGetTranslation: @staticmethod def value_type(args): return float3 @builtin("spatial_transform_get_rotation") class TransformGetRotation: @staticmethod def value_type(args): return quat @builtin("spatial_transform_multiply") class TransformMulFunc: @staticmethod def value_type(args): return spatial_transform # @builtin("spatial_transform_inertia") # class TransformInertiaFunc: # @staticmethod # def value_type(args): # return spatial_matrix @builtin("spatial_adjoint") class SpatialAdjoint: @staticmethod def value_type(args): return spatial_matrix @builtin("spatial_dot") class SpatialDotFunc: @staticmethod def value_type(args): return float @builtin("spatial_cross") class SpatialDotFunc: @staticmethod def value_type(args): return spatial_vector @builtin("spatial_cross_dual") class SpatialDotFunc: @staticmethod def value_type(args): return spatial_vector @builtin("spatial_transform_point") class SpatialTransformPointFunc: @staticmethod def value_type(args): return float3 @builtin("spatial_transform_vector") class SpatialTransformVectorFunc: @staticmethod def value_type(args): return float3 @builtin("spatial_top") class SpatialTopFunc: @staticmethod def value_type(args): return float3 @builtin("spatial_bottom") class SpatialBottomFunc: @staticmethod def value_type(args): return float3 @builtin("spatial_jacobian") class SpatialJacobian: @staticmethod def value_type(args): return None @builtin("spatial_mass") class SpatialMass: @staticmethod def value_type(args): return None @builtin("dense_gemm") class DenseGemm: @staticmethod def value_type(args): return None @builtin("dense_gemm_batched") class DenseGemmBatched: @staticmethod def value_type(args): return None @builtin("dense_chol") class DenseChol: @staticmethod def value_type(args): return None @builtin("dense_chol_batched") class DenseCholBatched: @staticmethod def value_type(args): return None @builtin("dense_subs") class DenseSubs: @staticmethod def value_type(args): return None @builtin("dense_solve") class DenseSolve: @staticmethod def value_type(args): return None @builtin("dense_solve_batched") class DenseSolve: @staticmethod def value_type(args): return None # helpers @builtin("index") class IndexFunc: @staticmethod def value_type(args): return float @builtin("print") class PrintFunc: @staticmethod def value_type(args): return None class Var: def __init__(adj, label, type, requires_grad=False, constant=None): adj.label = label adj.type = type adj.requires_grad = requires_grad adj.constant = constant def __str__(adj): return adj.label def ctype(self): if (isinstance(self.type, tensor)): if self.type.type == float3: return str("df::" + self.type.type.__name__) + "*" return str(self.type.type.__name__) + "*" elif self.type == float3: return "df::" + str(self.type.__name__) else: return str(self.type.__name__) #-------------------- # Storage class for partial AST up to a return statement. class Stmt: def __init__(self, cond, forward, forward_replay, reverse, ret_forward, ret_line): self.cond = cond # condition, can be None self.forward = forward # all forward code outside of conditional branch *since last return* self.forward_replay = forward_replay self.reverse = reverse # all reverse code including the reverse of any code in ret_forward self.ret_forward = ret_forward # all forward commands in the return statement except the actual return statement self.ret_line = ret_line # actual return statement #------------------------------------------------------------------------ # Source code transformer, this class takes a Python function and # computes its adjoint using single-pass translation of the function's AST class Adjoint: def __init__(adj, func, device='cpu'): adj.func = func adj.device = device adj.symbols = {} # map from symbols to adjoint variables adj.variables = [] # list of local variables (in order) adj.args = [] # list of function arguments (in order) adj.cond = None # condition variable if in branch adj.return_var = None # return type for function or kernel # build AST from function object adj.source = inspect.getsource(func) adj.tree = ast.parse(adj.source) # parse argument types arg_types = typing.get_type_hints(func) # add variables and symbol map for each argument for name, t in arg_types.items(): adj.symbols[name] = Var(name, t, False) # build ordered list of args for a in adj.tree.body[0].args.args: adj.args.append(adj.symbols[a.arg]) # primal statements (allows different statements in replay) adj.body_forward = [] adj.body_forward_replay = [] adj.body_reverse = [] adj.output = [] adj.indent_count = 0 adj.label_count = 0 # recursively evaluate function body adj.eval(adj.tree.body[0]) # code generation methods def format_template(adj, template, input_vars, output_var): # output var is always the 0th index args = [output_var] + input_vars s = template.format(*args) return s # generates a comma separated list of args def format_args(adj, prefix, indices): args = "" sep = "" for i in indices: args += sep + prefix + str(i) sep = ", " return args def add_var(adj, type=None, constant=None): index = len(adj.variables) v = Var(str(index), type=type, constant=constant) adj.variables.append(v) return v def add_constant(adj, n): output = adj.add_var(type=type(n), constant=n) #adj.add_forward("var_{} = {};".format(output, n)) return output def add_load(adj, input): output = adj.add_var(input.type) adj.add_forward("var_{} = {};".format(output, input)) adj.add_reverse("adj_{} += adj_{};".format(input, output)) return output def add_operator(adj, op, inputs): # todo: just using first input as the output type, would need some # type inference here to support things like float3 = float*float3 output = adj.add_var(inputs[0].type) transformer = operators[op.__class__] for t in transformer.forward(): adj.add_forward(adj.format_template(t, inputs, output)) for t in transformer.reverse(): adj.add_reverse(adj.format_template(t, inputs, output)) return output def add_comp(adj, op_strings, left, comps): output = adj.add_var(bool) s = "var_" + str(output) + " = " + ("(" * len(comps)) + "var_" + str(left) + " " for op, comp in zip(op_strings, comps): s += op + " var_" + str(comp) + ") " s = s.rstrip() + ";" adj.add_forward(s) return output def add_bool_op(adj, op_string, exprs): output = adj.add_var(bool) command = "var_" + str(output) + " = " + (" " + op_string + " ").join(["var_" + str(expr) for expr in exprs]) + ";" adj.add_forward(command) return output def add_call(adj, func, inputs, prefix='df::'): # expression (zero output), e.g.: tid() if (func.value_type(inputs) == None): forward_call = prefix + "{}({});".format(func.key, adj.format_args("var_", inputs)) adj.add_forward(forward_call) if (len(inputs)): reverse_call = prefix + "{}({}, {});".format("adj_" + func.key, adj.format_args("var_", inputs), adj.format_args("adj_", inputs)) adj.add_reverse(reverse_call) return None # function (one output) else: output = adj.add_var(func.value_type(inputs)) forward_call = "var_{} = ".format(output) + prefix + "{}({});".format(func.key, adj.format_args("var_", inputs)) adj.add_forward(forward_call) if (len(inputs)): reverse_call = prefix + "{}({}, {}, {});".format( "adj_" + func.key, adj.format_args("var_", inputs), adj.format_args("adj_", inputs), adj.format_args("adj_", [output])) adj.add_reverse(reverse_call) return output def add_return(adj, var): if (var == None): adj.add_forward("return;".format(var), "goto label{};".format(adj.label_count)) else: adj.add_forward("return var_{};".format(var), "goto label{};".format(adj.label_count)) adj.add_reverse("adj_" + str(var) + " += adj_ret;") adj.add_reverse("label{}:;".format(adj.label_count)) adj.label_count += 1 # define an if statement def begin_if(adj, cond): adj.add_forward("if (var_{}) {{".format(cond)) adj.add_reverse("}") adj.indent_count += 1 def end_if(adj, cond): adj.indent_count -= 1 adj.add_forward("}") adj.add_reverse("if (var_{}) {{".format(cond)) # define a for-loop def begin_for(adj, iter, start, end): # note that dynamic for-loops must not mutate any previous state, so we don't need to re-run them in the reverse pass adj.add_forward("for (var_{0}=var_{1}; var_{0} < var_{2}; ++var_{0}) {{".format(iter, start, end), "if (false) {") adj.add_reverse("}") adj.indent_count += 1 def end_for(adj, iter, start, end): adj.indent_count -= 1 adj.add_forward("}") adj.add_reverse("for (var_{0}=var_{2}-1; var_{0} >= var_{1}; --var_{0}) {{".format(iter, start, end)) # append a statement to the forward pass def add_forward(adj, statement, statement_replay=None): prefix = "" for i in range(adj.indent_count): prefix += "\t" adj.body_forward.append(prefix + statement) # allow for different statement in reverse kernel replay if (statement_replay): adj.body_forward_replay.append(prefix + statement_replay) else: adj.body_forward_replay.append(prefix + statement) # append a statement to the reverse pass def add_reverse(adj, statement): prefix = "" for i in range(adj.indent_count): prefix += "\t" adj.body_reverse.append(prefix + statement) def eval(adj, node): try: if (isinstance(node, ast.FunctionDef)): out = None for f in node.body: out = adj.eval(f) if 'return' in adj.symbols and adj.symbols['return'] is not None: out = adj.symbols['return'] stmt = Stmt(None, adj.body_forward, adj.body_forward_replay, reversed(adj.body_reverse), [], "") adj.output.append(stmt) else: stmt = Stmt(None, adj.body_forward, adj.body_forward_replay, reversed(adj.body_reverse), [], "") adj.output.append(stmt) return out elif (isinstance(node, ast.If)): # if statement if len(node.orelse) != 0: raise SyntaxError("Else statements not currently supported") if len(node.body) == 0: return None # save symbol map symbols_prev = adj.symbols.copy() # eval condition cond = adj.eval(node.test) # eval body adj.begin_if(cond) for stmt in node.body: adj.eval(stmt) adj.end_if(cond) # detect symbols with conflicting definitions (assigned inside the branch) for items in symbols_prev.items(): sym = items[0] var1 = items[1] var2 = adj.symbols[sym] if var1 != var2: # insert a phi function that # selects var1, var2 based on cond out = adj.add_call(functions["select"], [cond, var1, var2]) adj.symbols[sym] = out return None elif (isinstance(node, ast.Compare)): # node.left, node.ops (list of ops), node.comparators (things to compare to) # e.g. (left ops[0] node.comparators[0]) ops[1] node.comparators[1] left = adj.eval(node.left) comps = [adj.eval(comp) for comp in node.comparators] op_strings = [operators[type(op)] for op in node.ops] out = adj.add_comp(op_strings, left, comps) return out elif (isinstance(node, ast.BoolOp)): # op, expr list values (e.g. and and a list of things anded together) op = node.op if isinstance(op, ast.And): func = "&&" elif isinstance(op, ast.Or): func = "||" else: raise KeyError("Op {} is not supported".format(op)) out = adj.add_bool_op(func, [adj.eval(expr) for expr in node.values]) # import pdb # pdb.set_trace() return out elif (isinstance(node, ast.Name)): # lookup symbol, if it has already been assigned to a variable then return the existing mapping if (node.id in adj.symbols): return adj.symbols[node.id] else: raise KeyError("Referencing undefined symbol: " + str(node.id)) elif (isinstance(node, ast.Num)): # lookup constant, if it has already been assigned then return existing var # currently disabled, since assigning constant in a branch means it key = (node.n, type(node.n)) if (key in adj.symbols): return adj.symbols[key] else: out = adj.add_constant(node.n) adj.symbols[key] = out return out #out = adj.add_constant(node.n) #return out elif (isinstance(node, ast.BinOp)): # evaluate binary operator arguments left = adj.eval(node.left) right = adj.eval(node.right) name = operators[type(node.op)] func = functions[name] out = adj.add_call(func, [left, right]) return out elif (isinstance(node, ast.UnaryOp)): # evaluate unary op arguments arg = adj.eval(node.operand) out = adj.add_operator(node.op, [arg]) return out elif (isinstance(node, ast.For)): if (len(node.iter.args) != 2): raise Exception("For loop ranges must be of form range(start, end) with both start and end specified and no skip specifier.") # check if loop range is compile time constant unroll = True for a in node.iter.args: if (isinstance(a, ast.Num) == False): unroll = False break if (unroll): # constant loop, unroll start = node.iter.args[0].n end = node.iter.args[1].n for i in range(start, end): var_iter = adj.add_constant(i) adj.symbols[node.target.id] = var_iter # eval body for s in node.body: adj.eval(s) else: # dynamic loop, body must be side-effect free, i.e.: not # overwrite memory locations used by previous operations start = adj.eval(node.iter.args[0]) end = adj.eval(node.iter.args[1]) # add iterator variable iter = adj.add_var(int) adj.symbols[node.target.id] = iter adj.begin_for(iter, start, end) # eval body for s in node.body: adj.eval(s) adj.end_for(iter, start, end) elif (isinstance(node, ast.Expr)): return adj.eval(node.value) elif (isinstance(node, ast.Call)): name = None # determine if call is to a builtin (attribute), or to a user-func (name) if (isinstance(node.func, ast.Attribute)): name = node.func.attr elif (isinstance(node.func, ast.Name)): name = node.func.id # check it exists if name not in functions: raise KeyError("Could not find function {}".format(name)) if adj.device == 'cuda' and name in cuda_functions: func = cuda_functions[name] else: func = functions[name] args = [] # eval all arguments for arg in node.args: var = adj.eval(arg) args.append(var) # add var with value type from the function out = adj.add_call(func, args, prefix=func.prefix) return out elif (isinstance(node, ast.Subscript)): target = adj.eval(node.value) indices = [] if isinstance(node.slice, ast.Tuple): # handles the M[i, j] case for arg in node.slice.elts: var = adj.eval(arg) indices.append(var) else: # simple expression var = adj.eval(node.slice) indices.append(var) out = adj.add_call(functions["index"], [target, *indices]) return out elif (isinstance(node, ast.Assign)): # if adj.cond is not None: # raise SyntaxError("error, cannot assign variables in a conditional branch") # evaluate rhs out = adj.eval(node.value) # update symbol map (assumes lhs is a Name node) adj.symbols[node.targets[0].id] = out return out elif (isinstance(node, ast.Return)): cond = adj.cond # None if not in branch, else branch boolean out = adj.eval(node.value) adj.symbols['return'] = out if out is not None: # set return type of function return_var = out if adj.return_var is not None and adj.return_var.ctype() != return_var.ctype(): raise TypeError("error, function returned different types") adj.return_var = return_var adj.add_return(out) return out elif node is None: return None else: print("[WARNING] ast node of type {} not supported".format(type(node))) except Exception as e: # print error / line number lines = adj.source.splitlines() print("Error: {} while transforming node {} in func: {} at line: {} col: {}: \n {}".format(e, type(node), adj.func.__name__, node.lineno, node.col_offset, lines[max(node.lineno-1, 0)])) raise #---------------- # code generation cpu_module_header = ''' #define CPU #include "adjoint.h" using namespace df; template <typename T> T cast(torch::Tensor t) {{ return (T)(t.data_ptr()); }} ''' cuda_module_header = ''' #define CUDA #include "adjoint.h" using namespace df; template <typename T> T cast(torch::Tensor t) {{ return (T)(t.data_ptr()); }} ''' cpu_function_template = ''' {return_type} {name}_cpu_func({forward_args}) {{ {forward_body} }} void adj_{name}_cpu_func({forward_args}, {reverse_args}) {{ {reverse_body} }} ''' cuda_function_template = ''' CUDA_CALLABLE {return_type} {name}_cuda_func({forward_args}) {{ {forward_body} }} CUDA_CALLABLE void adj_{name}_cuda_func({forward_args}, {reverse_args}) {{ {reverse_body} }} ''' cuda_kernel_template = ''' __global__ void {name}_cuda_kernel_forward(int dim, {forward_args}) {{ {forward_body} }} __global__ void {name}_cuda_kernel_backward(int dim, {forward_args}, {reverse_args}) {{ {reverse_body} }} ''' cpu_kernel_template = ''' void {name}_cpu_kernel_forward({forward_args}) {{ {forward_body} }} void {name}_cpu_kernel_backward({forward_args}, {reverse_args}) {{ {reverse_body} }} ''' cuda_module_template = ''' // Python entry points void {name}_cuda_forward(int dim, {forward_args}) {{ {name}_cuda_kernel_forward<<<(dim + 256 - 1) / 256, 256>>>(dim, {forward_params}); //check_cuda(cudaPeekAtLastError()); //check_cuda(cudaDeviceSynchronize()); }} void {name}_cuda_backward(int dim, {forward_args}, {reverse_args}) {{ {name}_cuda_kernel_backward<<<(dim + 256 - 1) / 256, 256>>>(dim, {forward_params}, {reverse_params}); //check_cuda(cudaPeekAtLastError()); //check_cuda(cudaDeviceSynchronize()); }} ''' cpu_module_template = ''' // Python entry points void {name}_cpu_forward(int dim, {forward_args}) {{ for (int i=0; i < dim; ++i) {{ s_threadIdx = i; {name}_cpu_kernel_forward({forward_params}); }} }} void {name}_cpu_backward(int dim, {forward_args}, {reverse_args}) {{ for (int i=0; i < dim; ++i) {{ s_threadIdx = i; {name}_cpu_kernel_backward({forward_params}, {reverse_params}); }} }} ''' cuda_module_header_template = ''' // Python entry points void {name}_cuda_forward(int dim, {forward_args}); void {name}_cuda_backward(int dim, {forward_args}, {reverse_args}); ''' cpu_module_header_template = ''' // Python entry points void {name}_cpu_forward(int dim, {forward_args}); void {name}_cpu_backward(int dim, {forward_args}, {reverse_args}); ''' def indent(args, stops=1): sep = "\n" for i in range(stops): sep += "\t" return sep + args.replace(", ", "," + sep) def codegen_func_forward_body(adj, device='cpu', indent=4): body = [] indent_block = " " * indent for stmt in adj.output: for f in stmt.forward: body += [f + "\n"] if stmt.cond is not None: body += ["if (" + str(stmt.cond) + ") {\n"] for l in stmt.ret_forward: body += [indent_block + l + "\n"] body += [indent_block + stmt.ret_line + "\n"] body += ["}\n"] else: for l in stmt.ret_forward: body += [l + "\n"] body += [stmt.ret_line + "\n"] break # break once unconditional return is encountered return "".join([indent_block + l for l in body]) def codegen_func_forward(adj, func_type='kernel', device='cpu'): s = "" # primal vars s += " //---------\n" s += " // primal vars\n" for var in adj.variables: if var.constant == None: s += " " + var.ctype() + " var_" + str(var.label) + ";\n" else: s += " const " + var.ctype() + " var_" + str(var.label) + " = " + str(var.constant) + ";\n" # forward pass s += " //---------\n" s += " // forward\n" if device == 'cpu': s += codegen_func_forward_body(adj, device=device, indent=4) elif device == 'cuda': if func_type == 'kernel': s += " int var_idx = blockDim.x * blockIdx.x + threadIdx.x;\n" s += " if (var_idx < dim) {\n" s += codegen_func_forward_body(adj, device=device, indent=8) s += " }\n" else: s += codegen_func_forward_body(adj, device=device, indent=4) return s def codegen_func_reverse_body(adj, device='cpu', indent=4): body = [] indent_block = " " * indent for stmt in adj.output: # forward pass body += ["//---------\n"] body += ["// forward\n"] for f in stmt.forward_replay: body += [f + "\n"] if stmt.cond is not None: body += ["if (" + str(stmt.cond) + ") {\n"] for l in stmt.ret_forward: body += [indent_block + l + "\n"] # reverse pass body += [indent_block + "//---------\n"] body += [indent_block + "// reverse\n"] for l in stmt.reverse: body += [indent_block + l + "\n"] body += [indent_block + "return;\n"] body += ["}\n"] else: for l in stmt.ret_forward: body += [l + "\n"] # reverse pass body += ["//---------\n"] body += ["// reverse\n"] for l in stmt.reverse: body += [l + "\n"] body += ["return;\n"] break # break once unconditional return is encountered return "".join([indent_block + l for l in body]) def codegen_func_reverse(adj, func_type='kernel', device='cpu'): s = "" # primal vars s += " //---------\n" s += " // primal vars\n" for var in adj.variables: if var.constant == None: s += " " + var.ctype() + " var_" + str(var.label) + ";\n" else: s += " const " + var.ctype() + " var_" + str(var.label) + " = " + str(var.constant) + ";\n" # dual vars s += " //---------\n" s += " // dual vars\n" for var in adj.variables: s += " " + var.ctype() + " adj_" + str(var.label) + " = 0;\n" if device == 'cpu': s += codegen_func_reverse_body(adj, device=device, indent=4) elif device == 'cuda': if func_type == 'kernel': s += " int var_idx = blockDim.x * blockIdx.x + threadIdx.x;\n" s += " if (var_idx < dim) {\n" s += codegen_func_reverse_body(adj, device=device, indent=8) s += " }\n" else: s += codegen_func_reverse_body(adj, device=device, indent=4) else: raise ValueError("Device {} not supported for codegen".format(device)) return s def codegen_func(adj, device='cpu'): # forward header # return_type = "void" return_type = 'void' if adj.return_var is None else adj.return_var.ctype() # s = "{} {}_forward(".format(return_type, adj.func.__name__) # sep = "" # for arg in adj.args: # if (arg.label != 'return'): # s += sep + str(arg.type.__name__) + " var_" + arg.label # sep = ", " # reverse header # s = "void {}_reverse(".format(adj.func.__name__) # return s forward_args = "" reverse_args = "" # s = "" # forward args sep = "" for arg in adj.args: forward_args += sep + arg.ctype() + " var_" + arg.label sep = ", " # reverse args sep = "" for arg in adj.args: if "*" in arg.ctype(): reverse_args += sep + arg.ctype() + " adj_" + arg.label else: reverse_args += sep + arg.ctype() + " & adj_" + arg.label sep = ", " reverse_args += sep + return_type + " & adj_ret" # reverse args # add primal version of parameters # sep = "" # for var in adj.args: # if (var.label != 'return'): # s += sep + var.ctype() + " var_" + var.label # sep = ", " # # add adjoint version of parameters # for var in adj.args: # if (var.label != 'return'): # s += sep + var.ctype() + "& adj_" + var.label # sep = ", " # # add adjoint of output # if ('return' in adj.symbols and adj.symbols['return'] != None): # s += sep + str(adj.symbols['return'].type.__name__) + " adj_" + str(adj.symbols['return']) # codegen body forward_body = codegen_func_forward(adj, func_type='function', device=device) reverse_body = codegen_func_reverse(adj, func_type='function', device=device) if device == 'cpu': template = cpu_function_template elif device == 'cuda': template = cuda_function_template else: raise ValueError("Device {} is not supported".format(device)) s = template.format(name=adj.func.__name__, return_type=return_type, forward_args=indent(forward_args), reverse_args=indent(reverse_args), forward_body=forward_body, reverse_body=reverse_body) return s def codegen_kernel(adj, device='cpu'): forward_args = "" reverse_args = "" # forward args sep = "" for arg in adj.args: forward_args += sep + arg.ctype() + " var_" + arg.label sep = ", " # reverse args sep = "" for arg in adj.args: reverse_args += sep + arg.ctype() + " adj_" + arg.label sep = ", " # codegen body forward_body = codegen_func_forward(adj, func_type='kernel', device=device) reverse_body = codegen_func_reverse(adj, func_type='kernel', device=device) # import pdb # pdb.set_trace() if device == 'cpu': template = cpu_kernel_template elif device == 'cuda': template = cuda_kernel_template else: raise ValueError("Device {} is not supported".format(device)) s = template.format(name=adj.func.__name__, forward_args=indent(forward_args), reverse_args=indent(reverse_args), forward_body=forward_body, reverse_body=reverse_body) return s def codegen_module(adj, device='cpu'): forward_args = "" reverse_args = "" forward_params = "" reverse_params = "" sep = "" for arg in adj.args: if (isinstance(arg.type, tensor)): forward_args += sep + "torch::Tensor var_" + arg.label forward_params += sep + "cast<" + arg.ctype() + ">(var_" + arg.label + ")" else: forward_args += sep + arg.ctype() + " var_" + arg.label forward_params += sep + "var_" + arg.label sep = ", " sep = "" for arg in adj.args: if (isinstance(arg.type, tensor)): reverse_args += sep + "torch::Tensor adj_" + arg.label reverse_params += sep + "cast<" + arg.ctype() + ">(adj_" + arg.label + ")" else: reverse_args += sep + arg.ctype() + " adj_" + arg.label reverse_params += sep + "adj_" + arg.label sep = ", " if device == 'cpu': template = cpu_module_template elif device == 'cuda': template = cuda_module_template else: raise ValueError("Device {} is not supported".format(device)) s = template.format(name=adj.func.__name__, forward_args=indent(forward_args), reverse_args=indent(reverse_args), forward_params=indent(forward_params, 3), reverse_params=indent(reverse_params, 3)) return s def codegen_module_decl(adj, device='cpu'): forward_args = "" reverse_args = "" forward_params = "" reverse_params = "" sep = "" for arg in adj.args: if (isinstance(arg.type, tensor)): forward_args += sep + "torch::Tensor var_" + arg.label forward_params += sep + "cast<" + arg.ctype() + ">(var_" + arg.label + ")" else: forward_args += sep + arg.ctype() + " var_" + arg.label forward_params += sep + "var_" + arg.label sep = ", " sep = "" for arg in adj.args: if (isinstance(arg.type, tensor)): reverse_args += sep + "torch::Tensor adj_" + arg.label reverse_params += sep + "cast<" + arg.ctype() + ">(adj_" + arg.label + ")" else: reverse_args += sep + arg.ctype() + " adj_" + arg.label reverse_params += sep + "adj_" + arg.label sep = ", " if device == 'cpu': template = cpu_module_header_template elif device == 'cuda': template = cuda_module_header_template else: raise ValueError("Device {} is not supported".format(device)) s = template.format(name=adj.func.__name__, forward_args=indent(forward_args), reverse_args=indent(reverse_args)) return s # runs vcvars and copies back the build environment, PyTorch should really be doing this def set_build_env(): if os.name == 'nt': # VS2019 (required for PyTorch headers) vcvars_path = "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\Community\\VC\\Auxiliary\Build\\vcvars64.bat" s = '"{}" && set'.format(vcvars_path) output = os.popen(s).read() for line in output.splitlines(): pair = line.split("=", 1) if (len(pair) >= 2): os.environ[pair[0]] = pair[1] else: # nothing needed for Linux or Mac pass def import_module(module_name, path): # https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path file, path, description = imp.find_module(module_name, [path]) # Close the .so file after load. with file: return imp.load_module(module_name, file, path, description) def rename(name, return_type): def func(cls): cls.__name__ = name cls.key = name cls.prefix = "" cls.return_type = return_type return cls return func user_funcs = {} user_kernels = {} def func(f): user_funcs[f.__name__] = f # adj = Adjoint(f) # print(adj.codegen_forward()) # print(adj.codegen_reverse()) # set_build_env() # include_path = os.path.dirname(os.path.realpath(__file__)) # # requires PyTorch hotfix https://github.com/pytorch/pytorch/pull/33002 # test_cuda = torch.utils.cpp_extension.load_inline('test_cuda', [cpp_template], None, ["test_forward_1", "test_backward_1"], extra_include_paths=include_path, verbose=True) # help(test_cuda) def kernel(f): # stores source and compiled entry points for a kernel (will be populated after module loads) class Kernel: def __init__(self, f): self.func = f def register(self, module): # lookup entry points based on name self.forward_cpu = eval("module." + self.func.__name__ + "_cpu_forward") self.backward_cpu = eval("module." + self.func.__name__ + "_cpu_backward") if (torch.cuda.is_available()): self.forward_cuda = eval("module." + self.func.__name__ + "_cuda_forward") self.backward_cuda = eval("module." + self.func.__name__ + "_cuda_backward") k = Kernel(f) # register globally user_kernels[f.__name__] = k return k def compile(): use_cuda = torch.cuda.is_available() if not use_cuda: print("[INFO] CUDA support not found. Disabling CUDA kernel compilation.") cpp_source = "" cuda_source = "" cpp_source += cpu_module_header cuda_source += cuda_module_header # kernels entry_points = [] # functions for name, func in user_funcs.items(): adj = Adjoint(func, device='cpu') cpp_source += codegen_func(adj, device='cpu') adj = Adjoint(func, device='cuda') cuda_source += codegen_func(adj, device='cuda') # import pdb # pdb.set_trace() import copy @rename(func.__name__ + "_cpu_func", adj.return_var.type) class Func: @classmethod def value_type(cls, *args): return cls.return_type functions[func.__name__] = Func @rename(func.__name__ + "_cuda_func", adj.return_var.type) class CUDAFunc: @classmethod def value_type(cls, *args): return cls.return_type cuda_functions[func.__name__] = CUDAFunc for name, kernel in user_kernels.items(): if use_cuda: # each kernel gets an entry point in the module entry_points.append(name + "_cuda_forward") entry_points.append(name + "_cuda_backward") # each kernel gets an entry point in the module entry_points.append(name + "_cpu_forward") entry_points.append(name + "_cpu_backward") if use_cuda: adj = Adjoint(kernel.func, device='cuda') cuda_source += codegen_kernel(adj, device='cuda') cuda_source += codegen_module(adj, device='cuda') cpp_source += codegen_module_decl(adj, device='cuda') adj = Adjoint(kernel.func, device='cpu') cpp_source += codegen_kernel(adj, device='cpu') cpp_source += codegen_module(adj, device='cpu') cpp_source += codegen_module_decl(adj, device='cpu') include_path = os.path.dirname(os.path.realpath(__file__)) build_path = os.path.dirname(os.path.realpath(__file__)) + "/kernels" cache_file = build_path + "/adjoint.gen" if (os.path.exists(build_path) == False): os.mkdir(build_path) # test cache if (os.path.exists(cache_file)): f = open(cache_file, 'r') cache_string = f.read() f.close() if (cache_string == cpp_source): print("Using cached kernels") module = import_module("kernels", build_path) # register kernel methods for k in user_kernels.values(): k.register(module) return module # print("ignoring rebuild, using stale kernels") # module = import_module("kernels", build_path) # return module # cache stale, rebuild print("Rebuilding kernels") set_build_env() # debug config #module = torch.utils.cpp_extension.load_inline('kernels', [cpp_source], None, entry_points, extra_cflags=["/Zi", "/Od"], extra_ldflags=["/DEBUG"], build_directory=build_path, extra_include_paths=[include_path], verbose=True) if os.name == 'nt': cpp_flags = ["/Ox", "-DNDEBUG", "/fp:fast"] ld_flags = ["-DNDEBUG"] # cpp_flags = ["/Zi", "/Od", "/DEBUG"] # ld_flags = ["/DEBUG"] else: cpp_flags = ["-Z", "-O2", "-DNDEBUG"] ld_flags = ["-DNDEBUG"] # just use minimum to ensure compatability cuda_flags = ['-gencode=arch=compute_35,code=compute_35'] # release config if use_cuda: module = torch.utils.cpp_extension.load_inline('kernels', cpp_sources=[cpp_source], cuda_sources=[cuda_source], functions=entry_points, extra_cflags=cpp_flags, extra_ldflags=ld_flags, extra_cuda_cflags=cuda_flags, build_directory=build_path, extra_include_paths=[include_path], verbose=True, with_pytorch_error_handling=False) else: module = torch.utils.cpp_extension.load_inline('kernels', cpp_sources=[cpp_source], cuda_sources=[], functions=entry_points, extra_cflags=cpp_flags, extra_ldflags=ld_flags, extra_cuda_cflags=cuda_flags, build_directory=build_path, extra_include_paths=[include_path], verbose=True, with_pytorch_error_handling=False) # update cache f = open(cache_file, 'w') f.write(cpp_source) f.close() # register kernel methods for k in user_kernels.values(): k.register(module) return module #--------------------------------------------- # Helper functions for launching kernels as Torch ops def check_adapter(l, a): for t in l: if torch.is_tensor(t): assert(t.device.type == a) def check_finite(l): for t in l: if torch.is_tensor(t): assert(t.is_contiguous()) if (torch.isnan(t).any() == True): print(t) assert(torch.isnan(t).any() == False) else: assert(math.isnan(t) == False) def filter_grads(grads): """helper that takes a list of gradient tensors and makes non-outputs None as required by PyTorch when returning from a custom op """ outputs = [] for g in grads: if torch.is_tensor(g) and len(g) > 0: outputs.append(g) else: outputs.append(None) return tuple(outputs) def make_empty(outputs, device): empty = [] for o in outputs: empty.append(torch.FloatTensor().to(device)) return empty def make_contiguous(grads): ret = [] for g in grads: ret.append(g.contiguous()) return ret def copy_params(params): out = [] for p in params: if torch.is_tensor(p): c = p.clone() if c.dtype == torch.float32: c.requires_grad_() out.append(c) else: out.append(p) return out def assert_device(device, inputs): """helper that asserts that all Tensors in inputs reside on the specified device (device should be cpu or cuda). Also checks that dtypes are correct. """ for arg in inputs: if isinstance(arg, torch.Tensor): if (arg.dtype == torch.float64) or (arg.dtype == torch.float16): raise TypeError("Tensor {arg} has invalid dtype {dtype}".format(arg=arg, dtype=arg.dtype)) if device == 'cpu': if arg.is_cuda: # make sure all tensors are on the right device. Can fail silently in the CUDA kernel. raise TypeError("Tensor {arg} is using CUDA but was expected to be on the CPU.".format(arg=arg)) elif torch.device(device).type == 'cuda': #elif device.startswith('cuda'): if not arg.is_cuda: raise TypeError("Tensor {arg} is not on a CUDA device but was expected to be using CUDA.".format(arg=arg)) else: raise ValueError("Device {} is not supported".format(device)) def to_weak_list(s): w = [] for o in s: w.append(weakref.ref(o)) return w def to_strong_list(w): s = [] for o in w: s.append(o()) return s # standalone method to launch a kernel using PyTorch graph (skip custom tape) def launch_torch(func, dim, inputs, outputs, adapter, preserve_output=False, check_grad=False, no_grad=False): num_inputs = len(inputs) num_outputs = len(outputs) # define autograd type class TorchFunc(torch.autograd.Function): @staticmethod def forward(ctx, *args): #local_inputs = args[0:num_inputs] #local_outputs = args[num_inputs:len(args)] # save for backward #ctx.inputs = list(local_inputs) ctx.inputs = args local_outputs = [] for o in outputs: local_outputs.append(torch.zeros_like(o, requires_grad=True)) ctx.outputs = local_outputs # ensure inputs match adapter assert_device(adapter, args) # launch if adapter == 'cpu': func.forward_cpu(*[dim, *args, *ctx.outputs]) elif torch.device(adapter).type == 'cuda': #elif adapter.startswith('cuda'): func.forward_cuda(*[dim, *args, *ctx.outputs]) ret = tuple(ctx.outputs) return ret @staticmethod def backward(ctx, *grads): # ensure grads are contiguous in memory adj_outputs = make_contiguous(grads) # alloc grads adj_inputs = alloc_grads(ctx.inputs, adapter) # if we don't need outputs then make empty tensors to skip the write local_outputs = ctx.outputs # if preserve_output == True: # local_outputs = ctx.outputs # else: # local_outputs = [] # for o in range(num_outputs): # local_outputs.append(torch.FloatTensor().to(adapter)) # print("backward") # print("--------") # print (" inputs") # for i in ctx.inputs: # print(i) # print (" outputs") # for o in ctx.outputs: # print(o) # print (" adj_inputs") # for adj_i in adj_inputs: # print(adj_i) # print (" adj_outputs") # for adj_o in adj_outputs: # print(adj_o) # launch if adapter == 'cpu': func.backward_cpu(*[dim, *ctx.inputs, *local_outputs, *adj_inputs, *adj_outputs]) elif torch.device(adapter).type == 'cuda': #elif adapter.startswith('cuda'): func.backward_cuda(*[dim, *ctx.inputs, *local_outputs, *adj_inputs, *adj_outputs]) # filter grads replaces empty tensors / constant params with None ret = list(filter_grads(adj_inputs)) for i in range(num_outputs): ret.append(None) return tuple(ret) # run params = [*inputs] torch.set_printoptions(edgeitems=3) if (check_grad == True and no_grad == False): try: torch.autograd.gradcheck(TorchFunc.apply, params, eps=1e-2, atol=1e-3, rtol=1.e-3, raise_exception=True) except Exception as e: print(str(func.func.__name__) + " failed: " + str(e)) output = TorchFunc.apply(*params) return output class Tape: def __init__(self): self.launches = [] # dictionary mapping Tensor inputs to their adjoint self.adjoints = {} def launch(self, func, dim, inputs, outputs, adapter, preserve_output=False, skip_check_grad=False): if (dim > 0): # run kernel if adapter == 'cpu': func.forward_cpu(*[dim, *inputs, *outputs]) elif torch.device(adapter).type == 'cuda': #adapter.startswith('cuda'): func.forward_cuda(*[dim, *inputs, *outputs]) if dflex.config.verify_fp: check_adapter(inputs, adapter) check_adapter(outputs, adapter) check_finite(inputs) check_finite(outputs) # record launch if dflex.config.no_grad == False: self.launches.append([func, dim, inputs, outputs, adapter, preserve_output]) # optionally run grad check if dflex.config.check_grad == True and skip_check_grad == False: # copy inputs and outputs to avoid disturbing the computational graph inputs_copy = copy_params(inputs) outputs_copy = copy_params(outputs) launch_torch(func, dim, inputs_copy, outputs_copy, adapter, preserve_output, check_grad=True) def replay(self): for kernel in reversed(self.launches): func = kernel[0] dim = kernel[1] inputs = kernel[2] #outputs = to_strong_list(kernel[3]) outputs = kernel[3] adapter = kernel[4] # lookup adj_inputs adj_inputs = [] adj_outputs = [] # build input adjoints for i in inputs: if i in self.adjoints: adj_inputs.append(self.adjoints[i]) else: if torch.is_tensor(i): adj_inputs.append(self.alloc_grad(i)) else: adj_inputs.append(type(i)()) # build output adjoints for o in outputs: if o in self.adjoints: adj_outputs.append(self.adjoints[o]) else: # no output adjoint means the output wasn't used in the loss function so # allocate a zero tensor (they will still be read by the kernels) adj_outputs.append(self.alloc_grad(o)) # launch reverse if adapter == 'cpu': func.backward_cpu(*[dim, *inputs, *outputs, *adj_inputs, *adj_outputs]) elif torch.device(adapter).type == 'cuda': #elif adapter.startswith('cuda'): func.backward_cuda(*[dim, *inputs, *outputs, *adj_inputs, *adj_outputs]) if dflex.config.verify_fp: check_finite(inputs) check_finite(outputs) check_finite(adj_inputs) check_finite(adj_outputs) def reset(self): self.adjoints = {} self.launches = [] def alloc_grad(self, t): if t.dtype == torch.float32 and t.requires_grad: # zero tensor self.adjoints[t] = torch.zeros_like(t) return self.adjoints[t] else: # null tensor return torch.FloatTensor().to(t.device) # helper that given a set of inputs, will generate a set of output grad buffers def alloc_grads(inputs, adapter): """helper that generates output grad buffers for a set of inputs on the specified device. Args: inputs (iterable of Tensors, other literals): list of Tensors to generate gradient buffers for. Non-tensors are ignored. adapter (str, optional): name of torch device for storage location of allocated gradient buffers. Defaults to 'cpu'. """ grads = [] for arg in inputs: if (torch.is_tensor(arg)): if (arg.requires_grad and arg.dtype == torch.float): grads.append(torch.zeros_like(arg, device=adapter)) #grads.append(lookup_grad(arg)) else: grads.append(torch.FloatTensor().to(adapter)) else: grads.append(type(arg)()) return grads def matmul(tape, m, n, k, t1, t2, A, B, C, adapter): if (adapter == 'cpu'): threads = 1 else: threads = 256 # should match the threadblock size tape.launch( func=dflex.eval_dense_gemm, dim=threads, inputs=[ m, n, k, t1, t2, A, B, ], outputs=[ C ], adapter=adapter, preserve_output=False) def matmul_batched(tape, batch_count, m, n, k, t1, t2, A_start, B_start, C_start, A, B, C, adapter): if (adapter == 'cpu'): threads = batch_count else: threads = 256*batch_count # must match the threadblock size used in adjoint.py tape.launch( func=dflex.eval_dense_gemm_batched, dim=threads, inputs=[ m, n, k, t1, t2, A_start, B_start, C_start, A, B, ], outputs=[ C ], adapter=adapter, preserve_output=False)
61,318
Python
25.683638
229
0.535161
vstrozzi/FRL-SHAC-Extension/dflex/extension/dflex.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """dFlex Kit extension Allows setting up, training, and running inference on dFlex optimization environments. """ import os import subprocess import carb import carb.input import math import numpy as np import omni.kit.ui import omni.appwindow import omni.kit.editor import omni.timeline import omni.usd import omni.ui as ui from pathlib import Path ICON_PATH = Path(__file__).parent.parent.joinpath("icons") from pxr import Usd, UsdGeom, Sdf, Gf import torch from omni.kit.settings import create_setting_widget, create_setting_widget_combo, SettingType, get_settings_interface KIT_GREEN = 0xFF8A8777 LABEL_PADDING = 120 DARK_WINDOW_STYLE = { "Button": {"background_color": 0xFF292929, "margin": 3, "padding": 3, "border_radius": 2}, "Button.Label": {"color": 0xFFCCCCCC}, "Button:hovered": {"background_color": 0xFF9E9E9E}, "Button:pressed": {"background_color": 0xC22A8778}, "VStack::main_v_stack": {"secondary_color": 0x0, "margin_width": 10, "margin_height": 0}, "VStack::frame_v_stack": {"margin_width": 15, "margin_height": 10}, "Rectangle::frame_background": {"background_color": 0xFF343432, "border_radius": 5}, "Field::models": {"background_color": 0xFF23211F, "font_size": 14, "color": 0xFFAAAAAA, "border_radius": 4.0}, "Frame": {"background_color": 0xFFAAAAAA}, "Label": {"font_size": 14, "color": 0xFF8A8777}, "Label::status": {"font_size": 14, "color": 0xFF8AFF77} } CollapsableFrame_style = { "CollapsableFrame": { "background_color": 0xFF343432, "secondary_color": 0xFF343432, "color": 0xFFAAAAAA, "border_radius": 4.0, "border_color": 0x0, "border_width": 0, "font_size": 14, "padding": 0, }, "HStack::header": {"margin": 5}, "CollapsableFrame:hovered": {"secondary_color": 0xFF3A3A3A}, "CollapsableFrame:pressed": {"secondary_color": 0xFF343432}, } experiment = None class Extension: def __init__(self): self.MENU_SHOW_WINDOW = "Window/dFlex" self.MENU_INSERT_REFERENCE = "Utilities/Insert Reference" self._editor_window = None self._window_Frame = None self.time = 0.0 self.plot = None self.log = None self.status = None self.mode = 'stopped' self.properties = {} # add some helper menus self.menus = [] def on_shutdown(self): self._editor_window = None self.menus = [] #self.input.unsubscribe_to_keyboard_events(self.appwindow.get_keyboard(), self.key_sub) def on_startup(self): self.appwindow = omni.appwindow.get_default_app_window() self.editor = omni.kit.editor.get_editor_interface() self.input = carb.input.acquire_input_interface() self.timeline = omni.timeline.get_timeline_interface() self.usd_context = omni.usd.get_context() # event subscriptions self.stage_sub = self.usd_context.get_stage_event_stream().create_subscription_to_pop(self.on_stage, name="dFlex") self.update_sub = self.editor.subscribe_to_update_events(self.on_update) #self.key_sub = self.input.subscribe_to_keyboard_events(self.appwindow.get_keyboard(), self.on_key) self.menus.append(omni.kit.ui.get_editor_menu().add_item(self.MENU_SHOW_WINDOW, self.ui_on_menu, True, 11)) self.menus.append(omni.kit.ui.get_editor_menu().add_item(self.MENU_INSERT_REFERENCE, self.ui_on_menu)) self.reload() self.build_ui() def format(self, s): return s.replace("_", " ").title() def add_float_field(self, label, x, low=0.0, high=1.0): with ui.HStack(): ui.Label(self.format(label), width=120) self.add_property(label, ui.FloatSlider(name="value", width=150, min=low, max=high), x) def add_int_field(self, label, x, low=0, high=100): with ui.HStack(): ui.Label(self.format(label), width=120) self.add_property(label, ui.IntSlider(name="value", width=150, min=low, max=high), x) def add_combo_field(self, label, i, options): with ui.HStack(): ui.Label(self.format(label), width=120) ui.ComboBox(i, *options, width=150) # todo: how does the model work for combo boxes in omni.ui def add_bool_field(self, label, b): with ui.HStack(): ui.Label(self.format(label), width=120) self.add_property(label, ui.CheckBox(width=10), b) def add_property(self, label, widget, value): self.properties[label] = widget widget.model.set_value(value) def ui_on_menu(self, menu, value): if menu == self.MENU_SHOW_WINDOW: if self.window: if value: self.window.show() else: self.window.hide() omni.kit.ui.get_editor_menu().set_value(self.STAGE_SCRIPT_WINDOW_MENU, value) if menu == self.MENU_INSERT_REFERENCE: self.file_pick = omni.kit.ui.FilePicker("Select USD File", file_type=omni.kit.ui.FileDialogSelectType.FILE) self.file_pick.set_file_selected_fn(self.ui_on_select_ref_fn) self.file_pick.show(omni.kit.ui.FileDialogDataSource.LOCAL) def ui_on_select_ref_fn(self, real_path): file = os.path.normpath(real_path) name = os.path.basename(file) stem = os.path.splitext(name)[0] stage = self.usd_context.get_stage() stage_path = stage.GetRootLayer().realPath base = os.path.commonpath([real_path, stage_path]) rel_path = os.path.relpath(real_path, base) over = stage.OverridePrim('/' + stem) over.GetReferences().AddReference(rel_path) def ui_on_select_script_fn(self): # file picker self.file_pick = omni.kit.ui.FilePicker("Select Python Script", file_type=omni.kit.ui.FileDialogSelectType.FILE) self.file_pick.set_file_selected_fn(self.set_stage_script) self.file_pick.add_filter("Python Files (*.py)", ".*.py") self.file_pick.show(omni.kit.ui.FileDialogDataSource.LOCAL) def ui_on_clear_script_fn(self, widget): self.clear_stage_script() def ui_on_select_network_fn(self): # file picker self.file_pick = omni.kit.ui.FilePicker("Select Model", file_type=omni.kit.ui.FileDialogSelectType.FILE) self.file_pick.set_file_selected_fn(self.set_network) self.file_pick.add_filter("PyTorch Files (*.pt)", ".*.pt") self.file_pick.show(omni.kit.ui.FileDialogDataSource.LOCAL) # build panel def build_ui(self): stage = self.usd_context.get_stage() self._editor_window = ui.Window("dFlex", width=450, height=800) self._editor_window.frame.set_style(DARK_WINDOW_STYLE) with self._editor_window.frame: with ui.VStack(): self._window_Frame = ui.ScrollingFrame( name="canvas", horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_OFF, ) with self._window_Frame: with ui.VStack(spacing=6, name="main_v_stack"): ui.Spacer(height=5) with ui.CollapsableFrame(title="Experiment", height=60, style=CollapsableFrame_style): with ui.VStack(spacing=4, name="frame_v_stack"): with ui.HStack(): ui.Label("Script", name="label", width=120) s = "" if (self.get_stage_script() != None): s = self.get_stage_script() ui.StringField(name="models", tooltip="Training Python script").model.set_value(self.get_stage_script()) ui.Button("", image_url="resources/icons/folder.png", width=15, image_width=15, clicked_fn=self.ui_on_select_script_fn) ui.Button("Clear", width=15, clicked_fn=self.clear_stage_script) ui.Button("Reload", width=15, clicked_fn=self.reload) with ui.HStack(): ui.Label("Hot Reload", width=100) ui.CheckBox(width=10).model.set_value(False) if (experiment): with ui.CollapsableFrame(height=60, title="Simulation Settings", style=CollapsableFrame_style): with ui.VStack(spacing=4, name="frame_v_stack"): self.add_int_field("sim_substeps", 4, 1, 100) self.add_float_field("sim_duration", 5.0, 0.0, 30.0) with ui.CollapsableFrame(title="Training Settings", height=60, style=CollapsableFrame_style): with ui.VStack(spacing=4, name="frame_v_stack"): self.add_int_field("train_iters", 64, 1, 100) self.add_float_field("train_rate", 0.1, 0.0, 10.0) self.add_combo_field("train_optimizer", 0, ["GD", "SGD", "L-BFGS"]) with ui.CollapsableFrame(title="Actions", height=10, style=CollapsableFrame_style): with ui.VStack(spacing=4, name="frame_v_stack"): with ui.HStack(): ui.Label("Network", name="label", width=120) s = "" if (self.get_network() != None): s = self.get_network() ui.StringField(name="models", tooltip="Pretrained PyTorch network").model.set_value(s) ui.Button("", image_url="resources/icons/folder.png", width=15, image_width=15, clicked_fn=self.ui_on_select_network_fn) ui.Button("Clear", width=15, clicked_fn=self.clear_network) with ui.HStack(): p = (1.0/6.0)*100.0 ui.Button("Run", width=ui.Percent(p), clicked_fn=self.run) ui.Button("Train", width=ui.Percent(p), clicked_fn=self.train) ui.Button("Stop", width=ui.Percent(p), clicked_fn=self.stop) ui.Button("Reset", width=ui.Percent(p), clicked_fn=self.reset) self.add_bool_field("record", True) with ui.HStack(): ui.Label("Status: ", width=120) self.status = ui.Label("", name="status", width=200) with ui.CollapsableFrame(title="Loss", style=CollapsableFrame_style): data = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0] self.plot = ui.Plot(ui.Type.LINE, -1.0, 1.0, *data, height=200, style={"color": 0xff00ffFF}) # with ui.ScrollingFrame( # name="log", # horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_OFF, # height=200, # width=ui.Percent(95) # ): with ui.CollapsableFrame(title="Log", style=CollapsableFrame_style): with ui.VStack(spacing=4, name="frame_v_stack"): self.log = ui.Label("", height=200) def reload(self): path = self.get_stage_script() if (path): # read code to string file = open(path) code = file.read() file.close() # run it in the local environment exec(code, globals(), globals()) self.build_ui() # methods for storing script in stage metadata def get_stage_script(self): stage = self.usd_context.get_stage() custom_data = stage.GetEditTarget().GetLayer().customLayerData print(custom_data) if "script" in custom_data: return custom_data["script"] else: return None def set_stage_script(self, real_path): path = os.path.normpath(real_path) print("Setting stage script to: " + str(path)) stage = self.usd_context.get_stage() with Sdf.ChangeBlock(): custom_data = stage.GetEditTarget().GetLayer().customLayerData custom_data["script"] = path stage.GetEditTarget().GetLayer().customLayerData = custom_data # rebuild ui self.build_ui() def clear_stage_script(self): stage = self.usd_context.get_stage() with Sdf.ChangeBlock(): custom_data = stage.GetEditTarget().GetLayer().customLayerData if "script" in custom_data: del custom_data["script"] stage.GetEditTarget().GetLayer().customLayerData = custom_data self.build_ui() def set_network(self, real_path): path = os.path.normpath(real_path) experiment.network_file = path self.build_ui() def get_network(self): return experiment.network_file def clear_network(self): experiment.network_file = None self.build_ui() def on_key(self, event, *args, **kwargs): # if event.keyboard == self.appwindow.get_keyboard(): # if event.type == carb.input.KeyboardEventType.KEY_PRESS: # if event.input == carb.input.KeyboardInput.ESCAPE: # self.stop() # return True pass def on_stage(self, stage_event): if stage_event.type == int(omni.usd.StageEventType.OPENED): self.build_ui() self.reload() def on_update(self, dt): if (experiment): stage = self.usd_context.get_stage() stage.SetStartTimeCode(0.0) stage.SetEndTimeCode(experiment.render_time*60.0) stage.SetTimeCodesPerSecond(60.0) # pass parameters to the experiment if ('record' in self.properties): experiment.record = self.properties['record'].model.get_value_as_bool() # experiment.train_rate = self.get_property('train_rate') # experiment.train_iters = self.get_property('train_iters') # experiment.sim_duration = self.get_property('sim_duration') # experiment.sim_substeps = self.get_property('sim_substeps') if (self.mode == 'training'): experiment.train() # update error plot if (self.plot): self.plot.scale_min = np.min(experiment.train_loss) self.plot.scale_max = np.max(experiment.train_loss) self.plot.set_data(*experiment.train_loss) elif (self.mode == 'inference'): experiment.run() # update stage time (allow scrubbing while stopped) if (self.mode != 'stopped'): self.timeline.set_current_time(experiment.render_time*60.0) # update log if (self.log): self.log.text = df.util.log_output def set_status(self, str): self.status.text = str def train(self): experiment.reset() self.mode = 'training' # update status self.set_status('Training in progress, press [ESC] to cancel') def run(self): experiment.reset() self.mode = 'inference' # update status self.set_status('Inference in progress, press [ESC] to cancel') def stop(self): self.mode = 'stopped' # update status self.set_status('Stopped') def reset(self): experiment.reset() self.stop() def get_extension(): return Extension()
16,913
Python
35.689805
160
0.549814
vstrozzi/FRL-SHAC-Extension/dflex/dflex/mat33.h
#pragma once //---------------------------------------------------------- // mat33 struct mat33 { inline CUDA_CALLABLE mat33(float3 c0, float3 c1, float3 c2) { data[0][0] = c0.x; data[1][0] = c0.y; data[2][0] = c0.z; data[0][1] = c1.x; data[1][1] = c1.y; data[2][1] = c1.z; data[0][2] = c2.x; data[1][2] = c2.y; data[2][2] = c2.z; } inline CUDA_CALLABLE mat33(float m00=0.0f, float m01=0.0f, float m02=0.0f, float m10=0.0f, float m11=0.0f, float m12=0.0f, float m20=0.0f, float m21=0.0f, float m22=0.0f) { data[0][0] = m00; data[1][0] = m10; data[2][0] = m20; data[0][1] = m01; data[1][1] = m11; data[2][1] = m21; data[0][2] = m02; data[1][2] = m12; data[2][2] = m22; } CUDA_CALLABLE float3 get_row(int index) const { return (float3&)data[index]; } CUDA_CALLABLE void set_row(int index, const float3& v) { (float3&)data[index] = v; } CUDA_CALLABLE float3 get_col(int index) const { return float3(data[0][index], data[1][index], data[2][index]); } CUDA_CALLABLE void set_col(int index, const float3& v) { data[0][index] = v.x; data[1][index] = v.y; data[2][index] = v.z; } // row major storage assumed to be compatible with PyTorch float data[3][3]; }; #ifdef CUDA inline __device__ void atomic_add(mat33 * addr, mat33 value) { atomicAdd(&((addr -> data)[0][0]), value.data[0][0]); atomicAdd(&((addr -> data)[1][0]), value.data[1][0]); atomicAdd(&((addr -> data)[2][0]), value.data[2][0]); atomicAdd(&((addr -> data)[0][1]), value.data[0][1]); atomicAdd(&((addr -> data)[1][1]), value.data[1][1]); atomicAdd(&((addr -> data)[2][1]), value.data[2][1]); atomicAdd(&((addr -> data)[0][2]), value.data[0][2]); atomicAdd(&((addr -> data)[1][2]), value.data[1][2]); atomicAdd(&((addr -> data)[2][2]), value.data[2][2]); } #endif inline CUDA_CALLABLE void adj_mat33(float3 c0, float3 c1, float3 c2, float3& a0, float3& a1, float3& a2, const mat33& adj_ret) { // column constructor a0 += adj_ret.get_col(0); a1 += adj_ret.get_col(1); a2 += adj_ret.get_col(2); } inline CUDA_CALLABLE void adj_mat33(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22, float& a00, float& a01, float& a02, float& a10, float& a11, float& a12, float& a20, float& a21, float& a22, const mat33& adj_ret) { printf("todo\n"); } inline CUDA_CALLABLE float index(const mat33& m, int row, int col) { return m.data[row][col]; } inline CUDA_CALLABLE mat33 add(const mat33& a, const mat33& b) { mat33 t; for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { t.data[i][j] = a.data[i][j] + b.data[i][j]; } } return t; } inline CUDA_CALLABLE mat33 mul(const mat33& a, float b) { mat33 t; for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { t.data[i][j] = a.data[i][j]*b; } } return t; } inline CUDA_CALLABLE float3 mul(const mat33& a, const float3& b) { float3 r = a.get_col(0)*b.x + a.get_col(1)*b.y + a.get_col(2)*b.z; return r; } inline CUDA_CALLABLE mat33 mul(const mat33& a, const mat33& b) { mat33 t; for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { for (int k=0; k < 3; ++k) { t.data[i][j] += a.data[i][k]*b.data[k][j]; } } } return t; } inline CUDA_CALLABLE mat33 transpose(const mat33& a) { mat33 t; for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { t.data[i][j] = a.data[j][i]; } } return t; } inline CUDA_CALLABLE float determinant(const mat33& m) { return dot(float3(m.data[0]), cross(float3(m.data[1]), float3(m.data[2]))); } inline CUDA_CALLABLE mat33 outer(const float3& a, const float3& b) { return mat33(a*b.x, a*b.y, a*b.z); } inline CUDA_CALLABLE mat33 skew(const float3& a) { mat33 out(0.0f, -a.z, a.y, a.z, 0.0f, -a.x, -a.y, a.x, 0.0f); return out; } inline void CUDA_CALLABLE adj_index(const mat33& m, int row, int col, mat33& adj_m, int& adj_row, int& adj_col, float adj_ret) { adj_m.data[row][col] += adj_ret; } inline CUDA_CALLABLE void adj_add(const mat33& a, const mat33& b, mat33& adj_a, mat33& adj_b, const mat33& adj_ret) { for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { adj_a.data[i][j] += adj_ret.data[i][j]; adj_b.data[i][j] += adj_ret.data[i][j]; } } } inline CUDA_CALLABLE void adj_mul(const mat33& a, float b, mat33& adj_a, float& adj_b, const mat33& adj_ret) { for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { adj_a.data[i][j] += b*adj_ret.data[i][j]; adj_b += a.data[i][j]*adj_ret.data[i][j]; } } } inline CUDA_CALLABLE void adj_mul(const mat33& a, const float3& b, mat33& adj_a, float3& adj_b, const float3& adj_ret) { adj_a += outer(adj_ret, b); adj_b += mul(transpose(a), adj_ret); } inline CUDA_CALLABLE void adj_mul(const mat33& a, const mat33& b, mat33& adj_a, mat33& adj_b, const mat33& adj_ret) { adj_a += mul(adj_ret, transpose(b)); adj_b += mul(transpose(a), adj_ret); } inline CUDA_CALLABLE void adj_transpose(const mat33& a, mat33& adj_a, const mat33& adj_ret) { adj_a += transpose(adj_ret); } inline CUDA_CALLABLE void adj_determinant(const mat33& m, mat33& adj_m, float adj_ret) { (float3&)adj_m.data[0] += cross(m.get_row(1), m.get_row(2))*adj_ret; (float3&)adj_m.data[1] += cross(m.get_row(2), m.get_row(0))*adj_ret; (float3&)adj_m.data[2] += cross(m.get_row(0), m.get_row(1))*adj_ret; } inline CUDA_CALLABLE void adj_skew(const float3& a, float3& adj_a, const mat33& adj_ret) { mat33 out(0.0f, -a.z, a.y, a.z, 0.0f, -a.x, -a.y, a.x, 0.0f); adj_a.x += adj_ret.data[2][1] - adj_ret.data[1][2]; adj_a.y += adj_ret.data[0][2] - adj_ret.data[2][0]; adj_a.z += adj_ret.data[1][0] - adj_ret.data[0][1]; }
6,549
C
24.192308
126
0.505726
vstrozzi/FRL-SHAC-Extension/dflex/dflex/spatial.h
#pragma once //--------------------------------------------------------------------------------- // Represents a twist in se(3) struct spatial_vector { float3 w; float3 v; CUDA_CALLABLE inline spatial_vector(float a, float b, float c, float d, float e, float f) : w(a, b, c), v(d, e, f) {} CUDA_CALLABLE inline spatial_vector(float3 w=float3(), float3 v=float3()) : w(w), v(v) {} CUDA_CALLABLE inline spatial_vector(float a) : w(a, a, a), v(a, a, a) {} CUDA_CALLABLE inline float operator[](int index) const { assert(index < 6); return (&w.x)[index]; } CUDA_CALLABLE inline float& operator[](int index) { assert(index < 6); return (&w.x)[index]; } }; CUDA_CALLABLE inline spatial_vector operator - (spatial_vector a) { return spatial_vector(-a.w, -a.v); } CUDA_CALLABLE inline spatial_vector add(const spatial_vector& a, const spatial_vector& b) { return { a.w + b.w, a.v + b.v }; } CUDA_CALLABLE inline spatial_vector sub(const spatial_vector& a, const spatial_vector& b) { return { a.w - b.w, a.v - b.v }; } CUDA_CALLABLE inline spatial_vector mul(const spatial_vector& a, float s) { return { a.w*s, a.v*s }; } CUDA_CALLABLE inline float spatial_dot(const spatial_vector& a, const spatial_vector& b) { return dot(a.w, b.w) + dot(a.v, b.v); } CUDA_CALLABLE inline spatial_vector spatial_cross(const spatial_vector& a, const spatial_vector& b) { float3 w = cross(a.w, b.w); float3 v = cross(a.v, b.w) + cross(a.w, b.v); return spatial_vector(w, v); } CUDA_CALLABLE inline spatial_vector spatial_cross_dual(const spatial_vector& a, const spatial_vector& b) { float3 w = cross(a.w, b.w) + cross(a.v, b.v); float3 v = cross(a.w, b.v); return spatial_vector(w, v); } CUDA_CALLABLE inline float3 spatial_top(const spatial_vector& a) { return a.w; } CUDA_CALLABLE inline float3 spatial_bottom(const spatial_vector& a) { return a.v; } // adjoint methods CUDA_CALLABLE inline void adj_spatial_vector( float a, float b, float c, float d, float e, float f, float& adj_a, float& adj_b, float& adj_c, float& adj_d, float& adj_e,float& adj_f, const spatial_vector& adj_ret) { adj_a += adj_ret.w.x; adj_b += adj_ret.w.y; adj_c += adj_ret.w.z; adj_d += adj_ret.v.x; adj_e += adj_ret.v.y; adj_f += adj_ret.v.z; } CUDA_CALLABLE inline void adj_spatial_vector(const float3& w, const float3& v, float3& adj_w, float3& adj_v, const spatial_vector& adj_ret) { adj_w += adj_ret.w; adj_v += adj_ret.v; } CUDA_CALLABLE inline void adj_add(const spatial_vector& a, const spatial_vector& b, spatial_vector& adj_a, spatial_vector& adj_b, const spatial_vector& adj_ret) { adj_add(a.w, b.w, adj_a.w, adj_b.w, adj_ret.w); adj_add(a.v, b.v, adj_a.v, adj_b.v, adj_ret.v); } CUDA_CALLABLE inline void adj_sub(const spatial_vector& a, const spatial_vector& b, spatial_vector& adj_a, spatial_vector& adj_b, const spatial_vector& adj_ret) { adj_sub(a.w, b.w, adj_a.w, adj_b.w, adj_ret.w); adj_sub(a.v, b.v, adj_a.v, adj_b.v, adj_ret.v); } CUDA_CALLABLE inline void adj_mul(const spatial_vector& a, float s, spatial_vector& adj_a, float& adj_s, const spatial_vector& adj_ret) { adj_mul(a.w, s, adj_a.w, adj_s, adj_ret.w); adj_mul(a.v, s, adj_a.v, adj_s, adj_ret.v); } CUDA_CALLABLE inline void adj_spatial_dot(const spatial_vector& a, const spatial_vector& b, spatial_vector& adj_a, spatial_vector& adj_b, const float& adj_ret) { adj_dot(a.w, b.w, adj_a.w, adj_b.w, adj_ret); adj_dot(a.v, b.v, adj_a.v, adj_b.v, adj_ret); } CUDA_CALLABLE inline void adj_spatial_cross(const spatial_vector& a, const spatial_vector& b, spatial_vector& adj_a, spatial_vector& adj_b, const spatial_vector& adj_ret) { adj_cross(a.w, b.w, adj_a.w, adj_b.w, adj_ret.w); adj_cross(a.v, b.w, adj_a.v, adj_b.w, adj_ret.v); adj_cross(a.w, b.v, adj_a.w, adj_b.v, adj_ret.v); } CUDA_CALLABLE inline void adj_spatial_cross_dual(const spatial_vector& a, const spatial_vector& b, spatial_vector& adj_a, spatial_vector& adj_b, const spatial_vector& adj_ret) { adj_cross(a.w, b.w, adj_a.w, adj_b.w, adj_ret.w); adj_cross(a.v, b.v, adj_a.v, adj_b.v, adj_ret.w); adj_cross(a.w, b.v, adj_a.w, adj_b.v, adj_ret.v); } CUDA_CALLABLE inline void adj_spatial_top(const spatial_vector& a, spatial_vector& adj_a, const float3& adj_ret) { adj_a.w += adj_ret; } CUDA_CALLABLE inline void adj_spatial_bottom(const spatial_vector& a, spatial_vector& adj_a, const float3& adj_ret) { adj_a.v += adj_ret; } #ifdef CUDA inline __device__ void atomic_add(spatial_vector* addr, const spatial_vector& value) { atomic_add(&addr->w, value.w); atomic_add(&addr->v, value.v); } #endif //--------------------------------------------------------------------------------- // Represents a rigid body transformation struct spatial_transform { float3 p; quat q; CUDA_CALLABLE inline spatial_transform(float3 p=float3(), quat q=quat()) : p(p), q(q) {} CUDA_CALLABLE inline spatial_transform(float) {} // helps uniform initialization }; CUDA_CALLABLE inline spatial_transform spatial_transform_identity() { return spatial_transform(float3(), quat_identity()); } CUDA_CALLABLE inline float3 spatial_transform_get_translation(const spatial_transform& t) { return t.p; } CUDA_CALLABLE inline quat spatial_transform_get_rotation(const spatial_transform& t) { return t.q; } CUDA_CALLABLE inline spatial_transform spatial_transform_multiply(const spatial_transform& a, const spatial_transform& b) { return { rotate(a.q, b.p) + a.p, mul(a.q, b.q) }; } /* CUDA_CALLABLE inline spatial_transform spatial_transform_inverse(const spatial_transform& t) { quat q_inv = inverse(t.q); return spatial_transform(-rotate(q_inv, t.p), q_inv); } */ CUDA_CALLABLE inline float3 spatial_transform_vector(const spatial_transform& t, const float3& x) { return rotate(t.q, x); } CUDA_CALLABLE inline float3 spatial_transform_point(const spatial_transform& t, const float3& x) { return t.p + rotate(t.q, x); } // Frank & Park definition 3.20, pg 100 CUDA_CALLABLE inline spatial_vector spatial_transform_twist(const spatial_transform& t, const spatial_vector& x) { float3 w = rotate(t.q, x.w); float3 v = rotate(t.q, x.v) + cross(t.p, w); return spatial_vector(w, v); } CUDA_CALLABLE inline spatial_vector spatial_transform_wrench(const spatial_transform& t, const spatial_vector& x) { float3 v = rotate(t.q, x.v); float3 w = rotate(t.q, x.w) + cross(t.p, v); return spatial_vector(w, v); } CUDA_CALLABLE inline spatial_transform add(const spatial_transform& a, const spatial_transform& b) { return { a.p + b.p, a.q + b.q }; } CUDA_CALLABLE inline spatial_transform sub(const spatial_transform& a, const spatial_transform& b) { return { a.p - b.p, a.q - b.q }; } CUDA_CALLABLE inline spatial_transform mul(const spatial_transform& a, float s) { return { a.p*s, a.q*s }; } // adjoint methods CUDA_CALLABLE inline void adj_add(const spatial_transform& a, const spatial_transform& b, spatial_transform& adj_a, spatial_transform& adj_b, const spatial_transform& adj_ret) { adj_add(a.p, b.p, adj_a.p, adj_b.p, adj_ret.p); adj_add(a.q, b.q, adj_a.q, adj_b.q, adj_ret.q); } CUDA_CALLABLE inline void adj_sub(const spatial_transform& a, const spatial_transform& b, spatial_transform& adj_a, spatial_transform& adj_b, const spatial_transform& adj_ret) { adj_sub(a.p, b.p, adj_a.p, adj_b.p, adj_ret.p); adj_sub(a.q, b.q, adj_a.q, adj_b.q, adj_ret.q); } CUDA_CALLABLE inline void adj_mul(const spatial_transform& a, float s, spatial_transform& adj_a, float& adj_s, const spatial_transform& adj_ret) { adj_mul(a.p, s, adj_a.p, adj_s, adj_ret.p); adj_mul(a.q, s, adj_a.q, adj_s, adj_ret.q); } #ifdef CUDA inline __device__ void atomic_add(spatial_transform* addr, const spatial_transform& value) { atomic_add(&addr->p, value.p); atomic_add(&addr->q, value.q); } #endif CUDA_CALLABLE inline void adj_spatial_transform(const float3& p, const quat& q, float3& adj_p, quat& adj_q, const spatial_transform& adj_ret) { adj_p += adj_ret.p; adj_q += adj_ret.q; } CUDA_CALLABLE inline void adj_spatial_transform_identity(const spatial_transform& adj_ret) { // nop } CUDA_CALLABLE inline void adj_spatial_transform_get_translation(const spatial_transform& t, spatial_transform& adj_t, const float3& adj_ret) { adj_t.p += adj_ret; } CUDA_CALLABLE inline void adj_spatial_transform_get_rotation(const spatial_transform& t, spatial_transform& adj_t, const quat& adj_ret) { adj_t.q += adj_ret; } /* CUDA_CALLABLE inline void adj_spatial_transform_inverse(const spatial_transform& t, spatial_transform& adj_t, const spatial_transform& adj_ret) { //quat q_inv = inverse(t.q); //return spatial_transform(-rotate(q_inv, t.p), q_inv); quat q_inv = inverse(t.q); float3 p = rotate(q_inv, t.p); float3 np = -p; quat adj_q_inv = 0.0f; quat adj_q = 0.0f; float3 adj_p = 0.0f; float3 adj_np = 0.0f; adj_spatial_transform(np, q_inv, adj_np, adj_q_inv, adj_ret); adj_p = -adj_np; adj_rotate(q_inv, t.p, adj_q_inv, adj_t.p, adj_p); adj_inverse(t.q, adj_t.q, adj_q_inv); } */ CUDA_CALLABLE inline void adj_spatial_transform_multiply(const spatial_transform& a, const spatial_transform& b, spatial_transform& adj_a, spatial_transform& adj_b, const spatial_transform& adj_ret) { // translational part adj_rotate(a.q, b.p, adj_a.q, adj_b.p, adj_ret.p); adj_a.p += adj_ret.p; // rotational part adj_mul(a.q, b.q, adj_a.q, adj_b.q, adj_ret.q); } CUDA_CALLABLE inline void adj_spatial_transform_vector(const spatial_transform& t, const float3& x, spatial_transform& adj_t, float3& adj_x, const float3& adj_ret) { adj_rotate(t.q, x, adj_t.q, adj_x, adj_ret); } CUDA_CALLABLE inline void adj_spatial_transform_point(const spatial_transform& t, const float3& x, spatial_transform& adj_t, float3& adj_x, const float3& adj_ret) { adj_rotate(t.q, x, adj_t.q, adj_x, adj_ret); adj_t.p += adj_ret; } CUDA_CALLABLE inline void adj_spatial_transform_twist(const spatial_transform& a, const spatial_vector& s, spatial_transform& adj_a, spatial_vector& adj_s, const spatial_vector& adj_ret) { printf("todo, %s, %d\n", __FILE__, __LINE__); // float3 w = rotate(t.q, x.w); // float3 v = rotate(t.q, x.v) + cross(t.p, w); // return spatial_vector(w, v); } CUDA_CALLABLE inline void adj_spatial_transform_wrench(const spatial_transform& t, const spatial_vector& x, spatial_transform& adj_t, spatial_vector& adj_x, const spatial_vector& adj_ret) { printf("todo, %s, %d\n", __FILE__, __LINE__); // float3 v = rotate(t.q, x.v); // float3 w = rotate(t.q, x.w) + cross(t.p, v); // return spatial_vector(w, v); } /* // should match model.py #define JOINT_PRISMATIC 0 #define JOINT_REVOLUTE 1 #define JOINT_FIXED 2 #define JOINT_FREE 3 CUDA_CALLABLE inline spatial_transform spatial_jcalc(int type, float* joint_q, float3 axis, int start) { if (type == JOINT_REVOLUTE) { float q = joint_q[start]; spatial_transform X_jc = spatial_transform(float3(), quat_from_axis_angle(axis, q)); return X_jc; } else if (type == JOINT_PRISMATIC) { float q = joint_q[start]; spatial_transform X_jc = spatial_transform(axis*q, quat_identity()); return X_jc; } else if (type == JOINT_FREE) { float px = joint_q[start+0]; float py = joint_q[start+1]; float pz = joint_q[start+2]; float qx = joint_q[start+3]; float qy = joint_q[start+4]; float qz = joint_q[start+5]; float qw = joint_q[start+6]; spatial_transform X_jc = spatial_transform(float3(px, py, pz), quat(qx, qy, qz, qw)); return X_jc; } // JOINT_FIXED return spatial_transform(float3(), quat_identity()); } CUDA_CALLABLE inline void adj_spatial_jcalc(int type, float* q, float3 axis, int start, int& adj_type, float* adj_q, float3& adj_axis, int& adj_start, const spatial_transform& adj_ret) { if (type == JOINT_REVOLUTE) { adj_quat_from_axis_angle(axis, q[start], adj_axis, adj_q[start], adj_ret.q); } else if (type == JOINT_PRISMATIC) { adj_mul(axis, q[start], adj_axis, adj_q[start], adj_ret.p); } else if (type == JOINT_FREE) { adj_q[start+0] += adj_ret.p.x; adj_q[start+1] += adj_ret.p.y; adj_q[start+2] += adj_ret.p.z; adj_q[start+3] += adj_ret.q.x; adj_q[start+4] += adj_ret.q.y; adj_q[start+5] += adj_ret.q.z; adj_q[start+6] += adj_ret.q.w; } } */ struct spatial_matrix { float data[6][6] = { { 0 } }; CUDA_CALLABLE inline spatial_matrix(float f=0.0f) { } CUDA_CALLABLE inline spatial_matrix( float a00, float a01, float a02, float a03, float a04, float a05, float a10, float a11, float a12, float a13, float a14, float a15, float a20, float a21, float a22, float a23, float a24, float a25, float a30, float a31, float a32, float a33, float a34, float a35, float a40, float a41, float a42, float a43, float a44, float a45, float a50, float a51, float a52, float a53, float a54, float a55) { data[0][0] = a00; data[0][1] = a01; data[0][2] = a02; data[0][3] = a03; data[0][4] = a04; data[0][5] = a05; data[1][0] = a10; data[1][1] = a11; data[1][2] = a12; data[1][3] = a13; data[1][4] = a14; data[1][5] = a15; data[2][0] = a20; data[2][1] = a21; data[2][2] = a22; data[2][3] = a23; data[2][4] = a24; data[2][5] = a25; data[3][0] = a30; data[3][1] = a31; data[3][2] = a32; data[3][3] = a33; data[3][4] = a34; data[3][5] = a35; data[4][0] = a40; data[4][1] = a41; data[4][2] = a42; data[4][3] = a43; data[4][4] = a44; data[4][5] = a45; data[5][0] = a50; data[5][1] = a51; data[5][2] = a52; data[5][3] = a53; data[5][4] = a54; data[5][5] = a55; } }; inline CUDA_CALLABLE float index(const spatial_matrix& m, int row, int col) { return m.data[row][col]; } inline CUDA_CALLABLE spatial_matrix add(const spatial_matrix& a, const spatial_matrix& b) { spatial_matrix out; for (int i=0; i < 6; ++i) for (int j=0; j < 6; ++j) out.data[i][j] = a.data[i][j] + b.data[i][j]; return out; } inline CUDA_CALLABLE spatial_vector mul(const spatial_matrix& a, const spatial_vector& b) { spatial_vector out; for (int i=0; i < 6; ++i) for (int j=0; j < 6; ++j) out[i] += a.data[i][j]*b[j]; return out; } inline CUDA_CALLABLE spatial_matrix mul(const spatial_matrix& a, const spatial_matrix& b) { spatial_matrix out; for (int i=0; i < 6; ++i) { for (int j=0; j < 6; ++j) { for (int k=0; k < 6; ++k) { out.data[i][j] += a.data[i][k]*b.data[k][j]; } } } return out; } inline CUDA_CALLABLE spatial_matrix transpose(const spatial_matrix& a) { spatial_matrix out; for (int i=0; i < 6; i++) for (int j=0; j < 6; j++) out.data[i][j] = a.data[j][i]; return out; } inline CUDA_CALLABLE spatial_matrix outer(const spatial_vector& a, const spatial_vector& b) { spatial_matrix out; for (int i=0; i < 6; i++) for (int j=0; j < 6; j++) out.data[i][j] = a[i]*b[j]; return out; } CUDA_CALLABLE void print(spatial_transform t); CUDA_CALLABLE void print(spatial_matrix m); inline CUDA_CALLABLE spatial_matrix spatial_adjoint(const mat33& R, const mat33& S) { spatial_matrix adT; // T = [R 0] // [skew(p)*R R] // diagonal blocks for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { adT.data[i][j] = R.data[i][j]; adT.data[i+3][j+3] = R.data[i][j]; } } // lower off diagonal for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { adT.data[i+3][j] = S.data[i][j]; } } return adT; } inline CUDA_CALLABLE void adj_spatial_adjoint(const mat33& R, const mat33& S, mat33& adj_R, mat33& adj_S, const spatial_matrix& adj_ret) { // diagonal blocks for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { adj_R.data[i][j] += adj_ret.data[i][j]; adj_R.data[i][j] += adj_ret.data[i+3][j+3]; } } // lower off diagonal for (int i=0; i < 3; ++i) { for (int j=0; j < 3; ++j) { adj_S.data[i][j] += adj_ret.data[i+3][j]; } } } /* // computes adj_t^-T*I*adj_t^-1 (tensor change of coordinates), Frank & Park, section 8.2.3, pg 290 inline CUDA_CALLABLE spatial_matrix spatial_transform_inertia(const spatial_transform& t, const spatial_matrix& I) { spatial_transform t_inv = spatial_transform_inverse(t); float3 r1 = rotate(t_inv.q, float3(1.0, 0.0, 0.0)); float3 r2 = rotate(t_inv.q, float3(0.0, 1.0, 0.0)); float3 r3 = rotate(t_inv.q, float3(0.0, 0.0, 1.0)); mat33 R(r1, r2, r3); mat33 S = mul(skew(t_inv.p), R); spatial_matrix T = spatial_adjoint(R, S); // first quadratic form, for derivation of the adjoint see https://people.maths.ox.ac.uk/gilesm/files/AD2008.pdf, section 2.3.2 return mul(mul(transpose(T), I), T); } */ inline CUDA_CALLABLE void adj_add(const spatial_matrix& a, const spatial_matrix& b, spatial_matrix& adj_a, spatial_matrix& adj_b, const spatial_matrix& adj_ret) { adj_a += adj_ret; adj_b += adj_ret; } inline CUDA_CALLABLE void adj_mul(const spatial_matrix& a, const spatial_vector& b, spatial_matrix& adj_a, spatial_vector& adj_b, const spatial_vector& adj_ret) { adj_a += outer(adj_ret, b); adj_b += mul(transpose(a), adj_ret); } inline CUDA_CALLABLE void adj_mul(const spatial_matrix& a, const spatial_matrix& b, spatial_matrix& adj_a, spatial_matrix& adj_b, const spatial_matrix& adj_ret) { adj_a += mul(adj_ret, transpose(b)); adj_b += mul(transpose(a), adj_ret); } inline CUDA_CALLABLE void adj_transpose(const spatial_matrix& a, spatial_matrix& adj_a, const spatial_matrix& adj_ret) { adj_a += transpose(adj_ret); } inline CUDA_CALLABLE void adj_spatial_transform_inertia( const spatial_transform& xform, const spatial_matrix& I, const spatial_transform& adj_xform, const spatial_matrix& adj_I, spatial_matrix& adj_ret) { //printf("todo, %s, %d\n", __FILE__, __LINE__); } inline void CUDA_CALLABLE adj_index(const spatial_matrix& m, int row, int col, spatial_matrix& adj_m, int& adj_row, int& adj_col, float adj_ret) { adj_m.data[row][col] += adj_ret; } #ifdef CUDA inline __device__ void atomic_add(spatial_matrix* addr, const spatial_matrix& value) { for (int i=0; i < 6; ++i) { for (int j=0; j < 6; ++j) { atomicAdd(&addr->data[i][j], value.data[i][j]); } } } #endif CUDA_CALLABLE inline int row_index(int stride, int i, int j) { return i*stride + j; } // builds spatial Jacobian J which is an (joint_count*6)x(dof_count) matrix CUDA_CALLABLE inline void spatial_jacobian( const spatial_vector* S, const int* joint_parents, const int* joint_qd_start, int joint_start, // offset of the first joint for the articulation int joint_count, int J_start, float* J) { const int articulation_dof_start = joint_qd_start[joint_start]; const int articulation_dof_end = joint_qd_start[joint_start + joint_count]; const int articulation_dof_count = articulation_dof_end-articulation_dof_start; // shift output pointers const int S_start = articulation_dof_start; S += S_start; J += J_start; for (int i=0; i < joint_count; ++i) { const int row_start = i * 6; int j = joint_start + i; while (j != -1) { const int joint_dof_start = joint_qd_start[j]; const int joint_dof_end = joint_qd_start[j+1]; const int joint_dof_count = joint_dof_end-joint_dof_start; // fill out each row of the Jacobian walking up the tree //for (int col=dof_start; col < dof_end; ++col) for (int dof=0; dof < joint_dof_count; ++dof) { const int col = (joint_dof_start-articulation_dof_start) + dof; J[row_index(articulation_dof_count, row_start+0, col)] = S[col].w.x; J[row_index(articulation_dof_count, row_start+1, col)] = S[col].w.y; J[row_index(articulation_dof_count, row_start+2, col)] = S[col].w.z; J[row_index(articulation_dof_count, row_start+3, col)] = S[col].v.x; J[row_index(articulation_dof_count, row_start+4, col)] = S[col].v.y; J[row_index(articulation_dof_count, row_start+5, col)] = S[col].v.z; } j = joint_parents[j]; } } } CUDA_CALLABLE inline void adj_spatial_jacobian( const spatial_vector* S, const int* joint_parents, const int* joint_qd_start, const int joint_start, const int joint_count, const int J_start, const float* J, // adjs spatial_vector* adj_S, int* adj_joint_parents, int* adj_joint_qd_start, int& adj_joint_start, int& adj_joint_count, int& adj_J_start, const float* adj_J) { const int articulation_dof_start = joint_qd_start[joint_start]; const int articulation_dof_end = joint_qd_start[joint_start + joint_count]; const int articulation_dof_count = articulation_dof_end-articulation_dof_start; // shift output pointers const int S_start = articulation_dof_start; S += S_start; J += J_start; adj_S += S_start; adj_J += J_start; for (int i=0; i < joint_count; ++i) { const int row_start = i * 6; int j = joint_start + i; while (j != -1) { const int joint_dof_start = joint_qd_start[j]; const int joint_dof_end = joint_qd_start[j+1]; const int joint_dof_count = joint_dof_end-joint_dof_start; // fill out each row of the Jacobian walking up the tree //for (int col=dof_start; col < dof_end; ++col) for (int dof=0; dof < joint_dof_count; ++dof) { const int col = (joint_dof_start-articulation_dof_start) + dof; adj_S[col].w.x += adj_J[row_index(articulation_dof_count, row_start+0, col)]; adj_S[col].w.y += adj_J[row_index(articulation_dof_count, row_start+1, col)]; adj_S[col].w.z += adj_J[row_index(articulation_dof_count, row_start+2, col)]; adj_S[col].v.x += adj_J[row_index(articulation_dof_count, row_start+3, col)]; adj_S[col].v.y += adj_J[row_index(articulation_dof_count, row_start+4, col)]; adj_S[col].v.z += adj_J[row_index(articulation_dof_count, row_start+5, col)]; } j = joint_parents[j]; } } } CUDA_CALLABLE inline void spatial_mass(const spatial_matrix* I_s, int joint_start, int joint_count, int M_start, float* M) { const int stride = joint_count*6; for (int l=0; l < joint_count; ++l) { for (int i=0; i < 6; ++i) { for (int j=0; j < 6; ++j) { M[M_start + row_index(stride, l*6 + i, l*6 + j)] = I_s[joint_start + l].data[i][j]; } } } } CUDA_CALLABLE inline void adj_spatial_mass( const spatial_matrix* I_s, const int joint_start, const int joint_count, const int M_start, const float* M, spatial_matrix* adj_I_s, int& adj_joint_start, int& adj_joint_count, int& adj_M_start, const float* adj_M) { const int stride = joint_count*6; for (int l=0; l < joint_count; ++l) { for (int i=0; i < 6; ++i) { for (int j=0; j < 6; ++j) { adj_I_s[joint_start + l].data[i][j] += adj_M[M_start + row_index(stride, l*6 + i, l*6 + j)]; } } } }
24,501
C
28.099762
198
0.594057
vstrozzi/FRL-SHAC-Extension/dflex/dflex/mat22.h
#pragma once //---------------------------------------------------------- // mat22 struct mat22 { inline CUDA_CALLABLE mat22(float m00=0.0f, float m01=0.0f, float m10=0.0f, float m11=0.0f) { data[0][0] = m00; data[1][0] = m10; data[0][1] = m01; data[1][1] = m11; } // row major storage assumed to be compatible with PyTorch float data[2][2]; }; #ifdef CUDA inline __device__ void atomic_add(mat22 * addr, mat22 value) { // *addr += value; atomicAdd(&((addr -> data)[0][0]), value.data[0][0]); atomicAdd(&((addr -> data)[0][1]), value.data[0][1]); atomicAdd(&((addr -> data)[1][0]), value.data[1][0]); atomicAdd(&((addr -> data)[1][1]), value.data[1][1]); } #endif inline CUDA_CALLABLE void adj_mat22(float m00, float m01, float m10, float m11, float& adj_m00, float& adj_m01, float& adj_m10, float& adj_m11, const mat22& adj_ret) { printf("todo\n"); } inline CUDA_CALLABLE float index(const mat22& m, int row, int col) { return m.data[row][col]; } inline CUDA_CALLABLE mat22 add(const mat22& a, const mat22& b) { mat22 t; for (int i=0; i < 2; ++i) { for (int j=0; j < 2; ++j) { t.data[i][j] = a.data[i][j] + b.data[i][j]; } } return t; } inline CUDA_CALLABLE mat22 mul(const mat22& a, float b) { mat22 t; for (int i=0; i < 2; ++i) { for (int j=0; j < 2; ++j) { t.data[i][j] = a.data[i][j]*b; } } return t; } inline CUDA_CALLABLE mat22 mul(const mat22& a, const mat22& b) { mat22 t; for (int i=0; i < 2; ++i) { for (int j=0; j < 2; ++j) { for (int k=0; k < 2; ++k) { t.data[i][j] += a.data[i][k]*b.data[k][j]; } } } return t; } inline CUDA_CALLABLE mat22 transpose(const mat22& a) { mat22 t; for (int i=0; i < 2; ++i) { for (int j=0; j < 2; ++j) { t.data[i][j] = a.data[j][i]; } } return t; } inline CUDA_CALLABLE float determinant(const mat22& m) { return m.data[0][0]*m.data[1][1] - m.data[1][0]*m.data[0][1]; } inline void CUDA_CALLABLE adj_index(const mat22& m, int row, int col, mat22& adj_m, int& adj_row, int& adj_col, float adj_ret) { adj_m.data[row][col] += adj_ret; } inline CUDA_CALLABLE void adj_add(const mat22& a, const mat22& b, mat22& adj_a, mat22& adj_b, const mat22& adj_ret) { for (int i=0; i < 2; ++i) { for (int j=0; j < 2; ++j) { adj_a.data[i][j] = adj_ret.data[i][j]; adj_b.data[i][j] = adj_ret.data[i][j]; } } } inline CUDA_CALLABLE void adj_mul(const mat22& a, const mat22& b, mat22& adj_a, mat22& adj_b, const mat22& adj_ret) { printf("todo\n"); } inline CUDA_CALLABLE void adj_transpose(const mat22& a, mat22& adj_a, const mat22& adj_ret) { printf("todo\n"); } inline CUDA_CALLABLE void adj_determinant(const mat22& m, mat22& adj_m, float adj_ret) { adj_m.data[0][0] += m.data[1][1]*adj_ret; adj_m.data[1][1] += m.data[0][0]*adj_ret; adj_m.data[0][1] -= m.data[1][0]*adj_ret; adj_m.data[1][0] -= m.data[0][1]*adj_ret; }
3,206
C
21.744681
165
0.515908
vstrozzi/FRL-SHAC-Extension/dflex/dflex/vec2.h
#pragma once struct float2 { float x; float y; };
58
C
7.42857
13
0.586207
vstrozzi/FRL-SHAC-Extension/dflex/dflex/util.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import timeit import math import numpy as np import gc import torch import cProfile log_output = "" def log(s): print(s) global log_output log_output = log_output + s + "\n" # short hands def length(a): return np.linalg.norm(a) def length_sq(a): return np.dot(a, a) # NumPy has no normalize() method.. def normalize(v): norm = np.linalg.norm(v) if norm == 0.0: return v return v / norm def skew(v): return np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]]) # math utils def quat(i, j, k, w): return np.array([i, j, k, w]) def quat_identity(): return np.array((0.0, 0.0, 0.0, 1.0)) def quat_inverse(q): return np.array((-q[0], -q[1], -q[2], q[3])) def quat_from_axis_angle(axis, angle): v = np.array(axis) half = angle * 0.5 w = math.cos(half) sin_theta_over_two = math.sin(half) v *= sin_theta_over_two return np.array((v[0], v[1], v[2], w)) # rotate a vector def quat_rotate(q, x): x = np.array(x) axis = np.array((q[0], q[1], q[2])) return x * (2.0 * q[3] * q[3] - 1.0) + np.cross(axis, x) * q[3] * 2.0 + axis * np.dot(axis, x) * 2.0 # multiply two quats def quat_multiply(a, b): return np.array((a[3] * b[0] + b[3] * a[0] + a[1] * b[2] - b[1] * a[2], a[3] * b[1] + b[3] * a[1] + a[2] * b[0] - b[2] * a[0], a[3] * b[2] + b[3] * a[2] + a[0] * b[1] - b[0] * a[1], a[3] * b[3] - a[0] * b[0] - a[1] * b[1] - a[2] * b[2])) # convert to mat33 def quat_to_matrix(q): c1 = quat_rotate(q, np.array((1.0, 0.0, 0.0))) c2 = quat_rotate(q, np.array((0.0, 1.0, 0.0))) c3 = quat_rotate(q, np.array((0.0, 0.0, 1.0))) return np.array([c1, c2, c3]).T def quat_rpy(roll, pitch, yaw): cy = math.cos(yaw * 0.5) sy = math.sin(yaw * 0.5) cr = math.cos(roll * 0.5) sr = math.sin(roll * 0.5) cp = math.cos(pitch * 0.5) sp = math.sin(pitch * 0.5) w = (cy * cr * cp + sy * sr * sp) x = (cy * sr * cp - sy * cr * sp) y = (cy * cr * sp + sy * sr * cp) z = (sy * cr * cp - cy * sr * sp) return (x, y, z, w) def quat_from_matrix(m): tr = m[0, 0] + m[1, 1] + m[2, 2] h = 0.0 if(tr >= 0.0): h = math.sqrt(tr + 1.0) w = 0.5 * h h = 0.5 / h x = (m[2, 1] - m[1, 2]) * h y = (m[0, 2] - m[2, 0]) * h z = (m[1, 0] - m[0, 1]) * h else: i = 0; if(m[1, 1] > m[0, 0]): i = 1; if(m[2, 2] > m[i, i]): i = 2; if (i == 0): h = math.sqrt((m[0, 0] - (m[1, 1] + m[2, 2])) + 1.0) x = 0.5 * h h = 0.5 / h y = (m[0, 1] + m[1, 0]) * h z = (m[2, 0] + m[0, 2]) * h w = (m[2, 1] - m[1, 2]) * h elif (i == 1): h = sqrtf((m[1, 1] - (m[2, 2] + m[0, 0])) + 1.0) y = 0.5 * h h = 0.5 / h z = (m[1, 2] + m[2, 1]) * h x = (m[0, 1] + m[1, 0]) * h w = (m[0, 2] - m[2, 0]) * h elif (i == 2): h = sqrtf((m[2, 2] - (m[0, 0] + m[1, 1])) + 1.0) z = 0.5 * h h = 0.5 / h x = (m[2, 0] + m[0, 2]) * h y = (m[1, 2] + m[2, 1]) * h w = (m[1, 0] - m[0, 1]) * h return normalize(quat(x, y, z, w)) # rigid body transform def transform(x, r): return (np.array(x), np.array(r)) def transform_identity(): return (np.array((0.0, 0.0, 0.0)), quat_identity()) # se(3) -> SE(3), Park & Lynch pg. 105, screw in [w, v] normalized form def transform_exp(s, angle): w = np.array(s[0:3]) v = np.array(s[3:6]) if (length(w) < 1.0): r = quat_identity() else: r = quat_from_axis_angle(w, angle) t = v * angle + (1.0 - math.cos(angle)) * np.cross(w, v) + (angle - math.sin(angle)) * np.cross(w, np.cross(w, v)) return (t, r) def transform_inverse(t): q_inv = quat_inverse(t[1]) return (-quat_rotate(q_inv, t[0]), q_inv) def transform_vector(t, v): return quat_rotate(t[1], v) def transform_point(t, p): return np.array(t[0]) + quat_rotate(t[1], p) def transform_multiply(t, u): return (quat_rotate(t[1], u[0]) + t[0], quat_multiply(t[1], u[1])) # flatten an array of transforms (p,q) format to a 7-vector def transform_flatten(t): return np.array([*t[0], *t[1]]) # expand a 7-vec to a tuple of arrays def transform_expand(t): return (np.array(t[0:3]), np.array(t[3:7])) # convert array of transforms to a array of 7-vecs def transform_flatten_list(xforms): exp = lambda t: transform_flatten(t) return list(map(exp, xforms)) def transform_expand_list(xforms): exp = lambda t: transform_expand(t) return list(map(exp, xforms)) def transform_inertia(m, I, p, q): R = quat_to_matrix(q) # Steiner's theorem return R * I * R.T + m * (np.dot(p, p) * np.eye(3) - np.outer(p, p)) # spatial operators # AdT def spatial_adjoint(t): R = quat_to_matrix(t[1]) w = skew(t[0]) A = np.zeros((6, 6)) A[0:3, 0:3] = R A[3:6, 0:3] = np.dot(w, R) A[3:6, 3:6] = R return A # (AdT)^-T def spatial_adjoint_dual(t): R = quat_to_matrix(t[1]) w = skew(t[0]) A = np.zeros((6, 6)) A[0:3, 0:3] = R A[0:3, 3:6] = np.dot(w, R) A[3:6, 3:6] = R return A # AdT*s def transform_twist(t_ab, s_b): return np.dot(spatial_adjoint(t_ab), s_b) # AdT^{-T}*s def transform_wrench(t_ab, f_b): return np.dot(spatial_adjoint_dual(t_ab), f_b) # transform spatial inertia (6x6) in b frame to a frame def transform_spatial_inertia(t_ab, I_b): t_ba = transform_inverse(t_ab) # todo: write specialized method I_a = np.dot(np.dot(spatial_adjoint(t_ba).T, I_b), spatial_adjoint(t_ba)) return I_a def translate_twist(p_ab, s_b): w = s_b[0:3] v = np.cross(p_ab, s_b[0:3]) + s_b[3:6] return np.array((*w, *v)) def translate_wrench(p_ab, s_b): w = s_b[0:3] + np.cross(p_ab, s_b[3:6]) v = s_b[3:6] return np.array((*w, *v)) def spatial_vector(v=(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)): return np.array(v) # ad_V pg. 289 L&P, pg. 25 Featherstone def spatial_cross(a, b): w = np.cross(a[0:3], b[0:3]) v = np.cross(a[3:6], b[0:3]) + np.cross(a[0:3], b[3:6]) return np.array((*w, *v)) # ad_V^T pg. 290 L&P, pg. 25 Featurestone, note this does not includes the sign flip in the definition def spatial_cross_dual(a, b): w = np.cross(a[0:3], b[0:3]) + np.cross(a[3:6], b[3:6]) v = np.cross(a[0:3], b[3:6]) return np.array((*w, *v)) def spatial_dot(a, b): return np.dot(a, b) def spatial_outer(a, b): return np.outer(a, b) def spatial_matrix(): return np.zeros((6, 6)) def spatial_matrix_from_inertia(I, m): G = spatial_matrix() G[0:3, 0:3] = I G[3, 3] = m G[4, 4] = m G[5, 5] = m return G # solves x = I^(-1)b def spatial_solve(I, b): return np.dot(np.linalg.inv(I), b) def rpy2quat(roll, pitch, yaw): cy = math.cos(yaw * 0.5) sy = math.sin(yaw * 0.5) cr = math.cos(roll * 0.5) sr = math.sin(roll * 0.5) cp = math.cos(pitch * 0.5) sp = math.sin(pitch * 0.5) w = cy * cr * cp + sy * sr * sp x = cy * sr * cp - sy * cr * sp y = cy * cr * sp + sy * sr * cp z = sy * cr * cp - cy * sr * sp return (x, y, z, w) # helper to retrive body angular velocity from a twist v_s in se(3) def get_body_angular_velocity(v_s): return v_s[0:3] # helper to compute velocity of a point p on a body given it's spatial twist v_s def get_body_linear_velocity(v_s, p): dpdt = v_s[3:6] + torch.cross(v_s[0:3], p) return dpdt # helper to build a body twist given the angular and linear velocity of # the center of mass specified in the world frame, returns the body # twist with respect to the origin (v_s) def get_body_twist(w_m, v_m, p_m): lin = v_m + torch.cross(p_m, w_m) return (*w_m, *lin) # timer utils class ScopedTimer: indent = -1 enabled = True def __init__(self, name, active=True, detailed=False): self.name = name self.active = active and self.enabled self.detailed = detailed def __enter__(self): if (self.active): self.start = timeit.default_timer() ScopedTimer.indent += 1 if (self.detailed): self.cp = cProfile.Profile() self.cp.clear() self.cp.enable() def __exit__(self, exc_type, exc_value, traceback): if (self.detailed): self.cp.disable() self.cp.print_stats(sort='tottime') if (self.active): elapsed = (timeit.default_timer() - self.start) * 1000.0 indent = "" for i in range(ScopedTimer.indent): indent += "\t" log("{}{} took {:.2f} ms".format(indent, self.name, elapsed)) ScopedTimer.indent -= 1 # code snippet for invoking cProfile # cp = cProfile.Profile() # cp.enable() # for i in range(1000): # self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # cp.disable() # cp.print_stats(sort='tottime') # exit(0) # represent an edge between v0, v1 with connected faces f0, f1, and opposite vertex o0, and o1 # winding is such that first tri can be reconstructed as {v0, v1, o0}, and second tri as { v1, v0, o1 } class MeshEdge: def __init__(self, v0, v1, o0, o1, f0, f1): self.v0 = v0 # vertex 0 self.v1 = v1 # vertex 1 self.o0 = o0 # opposite vertex 1 self.o1 = o1 # opposite vertex 2 self.f0 = f0 # index of tri1 self.f1 = f1 # index of tri2 class MeshAdjacency: def __init__(self, indices, num_tris): # map edges (v0, v1) to faces (f0, f1) self.edges = {} self.indices = indices for index, tri in enumerate(indices): self.add_edge(tri[0], tri[1], tri[2], index) self.add_edge(tri[1], tri[2], tri[0], index) self.add_edge(tri[2], tri[0], tri[1], index) def add_edge(self, i0, i1, o, f): # index1, index2, index3, index of triangle key = (min(i0, i1), max(i0, i1)) edge = None if key in self.edges: edge = self.edges[key] if (edge.f1 != -1): print("Detected non-manifold edge") return else: # update other side of the edge edge.o1 = o edge.f1 = f else: # create new edge with opposite yet to be filled edge = MeshEdge(i0, i1, o, -1, f, -1) self.edges[key] = edge def opposite_vertex(self, edge): pass def mem_report(): '''Report the memory usage of the tensor.storage in pytorch Both on CPUs and GPUs are reported''' def _mem_report(tensors, mem_type): '''Print the selected tensors of type There are two major storage types in our major concern: - GPU: tensors transferred to CUDA devices - CPU: tensors remaining on the system memory (usually unimportant) Args: - tensors: the tensors of specified type - mem_type: 'CPU' or 'GPU' in current implementation ''' total_numel = 0 total_mem = 0 visited_data = [] for tensor in tensors: if tensor.is_sparse: continue # a data_ptr indicates a memory block allocated data_ptr = tensor.storage().data_ptr() if data_ptr in visited_data: continue visited_data.append(data_ptr) numel = tensor.storage().size() total_numel += numel element_size = tensor.storage().element_size() mem = numel*element_size /1024/1024 # 32bit=4Byte, MByte total_mem += mem element_type = type(tensor).__name__ size = tuple(tensor.size()) # print('%s\t\t%s\t\t%.2f' % ( # element_type, # size, # mem) ) print('Type: %s Total Tensors: %d \tUsed Memory Space: %.2f MBytes' % (mem_type, total_numel, total_mem) ) gc.collect() LEN = 65 objects = gc.get_objects() #print('%s\t%s\t\t\t%s' %('Element type', 'Size', 'Used MEM(MBytes)') ) tensors = [obj for obj in objects if torch.is_tensor(obj)] cuda_tensors = [t for t in tensors if t.is_cuda] host_tensors = [t for t in tensors if not t.is_cuda] _mem_report(cuda_tensors, 'GPU') _mem_report(host_tensors, 'CPU') print('='*LEN)
13,134
Python
23.056777
118
0.522994
vstrozzi/FRL-SHAC-Extension/dflex/dflex/adjoint.h
#pragma once #include <cmath> #include <stdio.h> #ifdef CPU #define CUDA_CALLABLE #define __device__ #define __host__ #define __constant__ #elif defined(CUDA) #define CUDA_CALLABLE __device__ #include <cuda.h> #include <cuda_runtime_api.h> #define check_cuda(code) { check_cuda_impl(code, __FILE__, __LINE__); } void check_cuda_impl(cudaError_t code, const char* file, int line) { if (code != cudaSuccess) { printf("CUDA Error: %s %s %d\n", cudaGetErrorString(code), file, line); } } void print_device() { int currentDevice; cudaError_t err = cudaGetDevice(&currentDevice); cudaDeviceProp props; err = cudaGetDeviceProperties(&props, currentDevice); if (err != cudaSuccess) printf("CUDA error: %d\n", err); else printf("%s\n", props.name); } #endif #ifdef _WIN32 #define __restrict__ __restrict #endif #define FP_CHECK 0 namespace df { template <typename T> CUDA_CALLABLE float cast_float(T x) { return (float)(x); } template <typename T> CUDA_CALLABLE int cast_int(T x) { return (int)(x); } template <typename T> CUDA_CALLABLE void adj_cast_float(T x, T& adj_x, float adj_ret) { adj_x += adj_ret; } template <typename T> CUDA_CALLABLE void adj_cast_int(T x, T& adj_x, int adj_ret) { adj_x += adj_ret; } // avoid namespacing of float type for casting to float type, this is to avoid wp::float(x), which is not valid in C++ #define float(x) cast_float(x) #define adj_float(x, adj_x, adj_ret) adj_cast_float(x, adj_x, adj_ret) #define int(x) cast_int(x) #define adj_int(x, adj_x, adj_ret) adj_cast_int(x, adj_x, adj_ret) #define kEps 0.0f // basic ops for integer types inline CUDA_CALLABLE int mul(int a, int b) { return a*b; } inline CUDA_CALLABLE int div(int a, int b) { return a/b; } inline CUDA_CALLABLE int add(int a, int b) { return a+b; } inline CUDA_CALLABLE int sub(int a, int b) { return a-b; } inline CUDA_CALLABLE int mod(int a, int b) { return a % b; } inline CUDA_CALLABLE void adj_mul(int a, int b, int& adj_a, int& adj_b, int adj_ret) { } inline CUDA_CALLABLE void adj_div(int a, int b, int& adj_a, int& adj_b, int adj_ret) { } inline CUDA_CALLABLE void adj_add(int a, int b, int& adj_a, int& adj_b, int adj_ret) { } inline CUDA_CALLABLE void adj_sub(int a, int b, int& adj_a, int& adj_b, int adj_ret) { } inline CUDA_CALLABLE void adj_mod(int a, int b, int& adj_a, int& adj_b, int adj_ret) { } // basic ops for float types inline CUDA_CALLABLE float mul(float a, float b) { return a*b; } inline CUDA_CALLABLE float div(float a, float b) { return a/b; } inline CUDA_CALLABLE float add(float a, float b) { return a+b; } inline CUDA_CALLABLE float sub(float a, float b) { return a-b; } inline CUDA_CALLABLE float min(float a, float b) { return a<b?a:b; } inline CUDA_CALLABLE float max(float a, float b) { return a>b?a:b; } inline CUDA_CALLABLE float leaky_min(float a, float b, float r) { return min(a, b); } inline CUDA_CALLABLE float leaky_max(float a, float b, float r) { return max(a, b); } inline CUDA_CALLABLE float clamp(float x, float a, float b) { return min(max(a, x), b); } inline CUDA_CALLABLE float step(float x) { return x < 0.0 ? 1.0 : 0.0; } inline CUDA_CALLABLE float sign(float x) { return x < 0.0 ? -1.0 : 1.0; } inline CUDA_CALLABLE float abs(float x) { return fabsf(x); } inline CUDA_CALLABLE float nonzero(float x) { return x == 0.0 ? 0.0 : 1.0; } inline CUDA_CALLABLE float acos(float x) { return std::acos(std::min(std::max(x, -1.0f), 1.0f)); } inline CUDA_CALLABLE float sin(float x) { return std::sin(x); } inline CUDA_CALLABLE float cos(float x) { return std::cos(x); } inline CUDA_CALLABLE float sqrt(float x) { return std::sqrt(x); } inline CUDA_CALLABLE void adj_mul(float a, float b, float& adj_a, float& adj_b, float adj_ret) { adj_a += b*adj_ret; adj_b += a*adj_ret; } inline CUDA_CALLABLE void adj_div(float a, float b, float& adj_a, float& adj_b, float adj_ret) { adj_a += adj_ret/b; adj_b -= adj_ret*(a/b)/b; } inline CUDA_CALLABLE void adj_add(float a, float b, float& adj_a, float& adj_b, float adj_ret) { adj_a += adj_ret; adj_b += adj_ret; } inline CUDA_CALLABLE void adj_sub(float a, float b, float& adj_a, float& adj_b, float adj_ret) { adj_a += adj_ret; adj_b -= adj_ret; } // inline CUDA_CALLABLE bool lt(float a, float b) { return a < b; } // inline CUDA_CALLABLE bool gt(float a, float b) { return a > b; } // inline CUDA_CALLABLE bool lte(float a, float b) { return a <= b; } // inline CUDA_CALLABLE bool gte(float a, float b) { return a >= b; } // inline CUDA_CALLABLE bool eq(float a, float b) { return a == b; } // inline CUDA_CALLABLE bool neq(float a, float b) { return a != b; } // inline CUDA_CALLABLE bool adj_lt(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { } // inline CUDA_CALLABLE bool adj_gt(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { } // inline CUDA_CALLABLE bool adj_lte(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { } // inline CUDA_CALLABLE bool adj_gte(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { } // inline CUDA_CALLABLE bool adj_eq(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { } // inline CUDA_CALLABLE bool adj_neq(float a, float b, float & adj_a, float & adj_b, bool & adj_ret) { } inline CUDA_CALLABLE void adj_min(float a, float b, float& adj_a, float& adj_b, float adj_ret) { if (a < b) adj_a += adj_ret; else adj_b += adj_ret; } inline CUDA_CALLABLE void adj_max(float a, float b, float& adj_a, float& adj_b, float adj_ret) { if (a > b) adj_a += adj_ret; else adj_b += adj_ret; } inline CUDA_CALLABLE void adj_leaky_min(float a, float b, float r, float& adj_a, float& adj_b, float& adj_r, float adj_ret) { if (a < b) adj_a += adj_ret; else { adj_a += r*adj_ret; adj_b += adj_ret; } } inline CUDA_CALLABLE void adj_leaky_max(float a, float b, float r, float& adj_a, float& adj_b, float& adj_r, float adj_ret) { if (a > b) adj_a += adj_ret; else { adj_a += r*adj_ret; adj_b += adj_ret; } } inline CUDA_CALLABLE void adj_clamp(float x, float a, float b, float& adj_x, float& adj_a, float& adj_b, float adj_ret) { if (x < a) adj_a += adj_ret; else if (x > b) adj_b += adj_ret; else adj_x += adj_ret; } inline CUDA_CALLABLE void adj_step(float x, float& adj_x, float adj_ret) { // nop } inline CUDA_CALLABLE void adj_nonzero(float x, float& adj_x, float adj_ret) { // nop } inline CUDA_CALLABLE void adj_sign(float x, float& adj_x, float adj_ret) { // nop } inline CUDA_CALLABLE void adj_abs(float x, float& adj_x, float adj_ret) { if (x < 0.0) adj_x -= adj_ret; else adj_x += adj_ret; } inline CUDA_CALLABLE void adj_acos(float x, float& adj_x, float adj_ret) { float d = sqrt(1.0-x*x); if (d > 0.0) adj_x -= (1.0/d)*adj_ret; } inline CUDA_CALLABLE void adj_sin(float x, float& adj_x, float adj_ret) { adj_x += std::cos(x)*adj_ret; } inline CUDA_CALLABLE void adj_cos(float x, float& adj_x, float adj_ret) { adj_x -= std::sin(x)*adj_ret; } inline CUDA_CALLABLE void adj_sqrt(float x, float& adj_x, float adj_ret) { adj_x += 0.5f*(1.0/std::sqrt(x))*adj_ret; } template <typename T> CUDA_CALLABLE inline T select(bool cond, const T& a, const T& b) { return cond?b:a; } template <typename T> CUDA_CALLABLE inline void adj_select(bool cond, const T& a, const T& b, bool& adj_cond, T& adj_a, T& adj_b, const T& adj_ret) { if (cond) adj_b += adj_ret; else adj_a += adj_ret; } // some helpful operator overloads (just for C++ use, these are not adjointed) template <typename T> CUDA_CALLABLE T& operator += (T& a, const T& b) { a = add(a, b); return a; } template <typename T> CUDA_CALLABLE T& operator -= (T& a, const T& b) { a = sub(a, b); return a; } template <typename T> CUDA_CALLABLE T operator*(const T& a, float s) { return mul(a, s); } template <typename T> CUDA_CALLABLE T operator/(const T& a, float s) { return div(a, s); } template <typename T> CUDA_CALLABLE T operator+(const T& a, const T& b) { return add(a, b); } template <typename T> CUDA_CALLABLE T operator-(const T& a, const T& b) { return sub(a, b); } // for single thread CPU only static int s_threadIdx; inline CUDA_CALLABLE int tid() { #ifdef CPU return s_threadIdx; #elif defined(CUDA) return blockDim.x * blockIdx.x + threadIdx.x; #endif } #include "vec2.h" #include "vec3.h" #include "mat22.h" #include "mat33.h" #include "matnn.h" #include "quat.h" #include "spatial.h" //-------------- template<typename T> inline CUDA_CALLABLE T load(T* buf, int index) { assert(buf); return buf[index]; } template<typename T> inline CUDA_CALLABLE void store(T* buf, int index, T value) { // allow NULL buffers for case where gradients are not required if (buf) { buf[index] = value; } } #ifdef CUDA template<typename T> inline __device__ void atomic_add(T* buf, T value) { atomicAdd(buf, value); } #endif template<typename T> inline __device__ void atomic_add(T* buf, int index, T value) { if (buf) { // CPU mode is sequential so just add #ifdef CPU buf[index] += value; #elif defined(CUDA) atomic_add(buf + index, value); #endif } } template<typename T> inline __device__ void atomic_sub(T* buf, int index, T value) { if (buf) { // CPU mode is sequential so just add #ifdef CPU buf[index] -= value; #elif defined(CUDA) atomic_add(buf + index, -value); #endif } } template <typename T> inline CUDA_CALLABLE void adj_load(T* buf, int index, T* adj_buf, int& adj_index, const T& adj_output) { // allow NULL buffers for case where gradients are not required if (adj_buf) { #ifdef CPU adj_buf[index] += adj_output; // does not need to be atomic if single-threaded #elif defined(CUDA) atomic_add(adj_buf, index, adj_output); #endif } } template <typename T> inline CUDA_CALLABLE void adj_store(T* buf, int index, T value, T* adj_buf, int& adj_index, T& adj_value) { adj_value += adj_buf[index]; // doesn't need to be atomic because it's used to load from a buffer onto the stack } template<typename T> inline CUDA_CALLABLE void adj_atomic_add(T* buf, int index, T value, T* adj_buf, int& adj_index, T& adj_value) { if (adj_buf) { // cannot be atomic because used locally adj_value += adj_buf[index]; } } template<typename T> inline CUDA_CALLABLE void adj_atomic_sub(T* buf, int index, T value, T* adj_buf, int& adj_index, T& adj_value) { if (adj_buf) { // cannot be atomic because used locally adj_value -= adj_buf[index]; } } //------------------------- // Texture methods inline CUDA_CALLABLE float sdf_sample(float3 x) { return 0.0; } inline CUDA_CALLABLE float3 sdf_grad(float3 x) { return float3(); } inline CUDA_CALLABLE void adj_sdf_sample(float3 x, float3& adj_x, float adj_ret) { } inline CUDA_CALLABLE void adj_sdf_grad(float3 x, float3& adj_x, float3& adj_ret) { } inline CUDA_CALLABLE void print(int i) { printf("%d\n", i); } inline CUDA_CALLABLE void print(float i) { printf("%f\n", i); } inline CUDA_CALLABLE void print(float3 i) { printf("%f %f %f\n", i.x, i.y, i.z); } inline CUDA_CALLABLE void print(quat i) { printf("%f %f %f %f\n", i.x, i.y, i.z, i.w); } inline CUDA_CALLABLE void print(mat22 m) { printf("%f %f\n%f %f\n", m.data[0][0], m.data[0][1], m.data[1][0], m.data[1][1]); } inline CUDA_CALLABLE void print(mat33 m) { printf("%f %f %f\n%f %f %f\n%f %f %f\n", m.data[0][0], m.data[0][1], m.data[0][2], m.data[1][0], m.data[1][1], m.data[1][2], m.data[2][0], m.data[2][1], m.data[2][2]); } inline CUDA_CALLABLE void print(spatial_transform t) { printf("(%f %f %f) (%f %f %f %f)\n", t.p.x, t.p.y, t.p.z, t.q.x, t.q.y, t.q.z, t.q.w); } inline CUDA_CALLABLE void print(spatial_vector v) { printf("(%f %f %f) (%f %f %f)\n", v.w.x, v.w.y, v.w.z, v.v.x, v.v.y, v.v.z); } inline CUDA_CALLABLE void print(spatial_matrix m) { printf("%f %f %f %f %f %f\n" "%f %f %f %f %f %f\n" "%f %f %f %f %f %f\n" "%f %f %f %f %f %f\n" "%f %f %f %f %f %f\n" "%f %f %f %f %f %f\n", m.data[0][0], m.data[0][1], m.data[0][2], m.data[0][3], m.data[0][4], m.data[0][5], m.data[1][0], m.data[1][1], m.data[1][2], m.data[1][3], m.data[1][4], m.data[1][5], m.data[2][0], m.data[2][1], m.data[2][2], m.data[2][3], m.data[2][4], m.data[2][5], m.data[3][0], m.data[3][1], m.data[3][2], m.data[3][3], m.data[3][4], m.data[3][5], m.data[4][0], m.data[4][1], m.data[4][2], m.data[4][3], m.data[4][4], m.data[4][5], m.data[5][0], m.data[5][1], m.data[5][2], m.data[5][3], m.data[5][4], m.data[5][5]); } inline CUDA_CALLABLE void adj_print(int i, int& adj_i) { printf("%d adj: %d\n", i, adj_i); } inline CUDA_CALLABLE void adj_print(float i, float& adj_i) { printf("%f adj: %f\n", i, adj_i); } inline CUDA_CALLABLE void adj_print(float3 i, float3& adj_i) { printf("%f %f %f adj: %f %f %f \n", i.x, i.y, i.z, adj_i.x, adj_i.y, adj_i.z); } inline CUDA_CALLABLE void adj_print(quat i, quat& adj_i) { } inline CUDA_CALLABLE void adj_print(mat22 m, mat22& adj_m) { } inline CUDA_CALLABLE void adj_print(mat33 m, mat33& adj_m) { } inline CUDA_CALLABLE void adj_print(spatial_transform t, spatial_transform& adj_t) {} inline CUDA_CALLABLE void adj_print(spatial_vector t, spatial_vector& adj_t) {} inline CUDA_CALLABLE void adj_print(spatial_matrix t, spatial_matrix& adj_t) {} } // namespace df
13,946
C
29.05819
144
0.608992
vstrozzi/FRL-SHAC-Extension/dflex/dflex/config.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os no_grad = False # disable adjoint tracking check_grad = False # will perform numeric gradient checking after each launch verify_fp = False # verify inputs and outputs are finite after each launch
650
Python
49.076919
82
0.783077
vstrozzi/FRL-SHAC-Extension/dflex/dflex/quat.h
#pragma once struct quat { // imaginary part float x; float y; float z; // real part float w; inline CUDA_CALLABLE quat(float x=0.0f, float y=0.0f, float z=0.0f, float w=0.0) : x(x), y(y), z(z), w(w) {} explicit inline CUDA_CALLABLE quat(const float3& v, float w=0.0f) : x(v.x), y(v.y), z(v.z), w(w) {} }; #ifdef CUDA inline __device__ void atomic_add(quat * addr, quat value) { atomicAdd(&(addr -> x), value.x); atomicAdd(&(addr -> y), value.y); atomicAdd(&(addr -> z), value.z); atomicAdd(&(addr -> w), value.w); } #endif inline CUDA_CALLABLE void adj_quat(float x, float y, float z, float w, float& adj_x, float& adj_y, float& adj_z, float& adj_w, quat adj_ret) { adj_x += adj_ret.x; adj_y += adj_ret.y; adj_z += adj_ret.z; adj_w += adj_ret.w; } inline CUDA_CALLABLE void adj_quat(const float3& v, float w, float3& adj_v, float& adj_w, quat adj_ret) { adj_v.x += adj_ret.x; adj_v.y += adj_ret.y; adj_v.z += adj_ret.z; adj_w += adj_ret.w; } // foward methods inline CUDA_CALLABLE quat quat_from_axis_angle(const float3& axis, float angle) { float half = angle*0.5f; float w = cosf(half); float sin_theta_over_two = sinf(half); float3 v = axis*sin_theta_over_two; return quat(v.x, v.y, v.z, w); } inline CUDA_CALLABLE quat quat_identity() { return quat(0.0f, 0.0f, 0.0f, 1.0f); } inline CUDA_CALLABLE float dot(const quat& a, const quat& b) { return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w; } inline CUDA_CALLABLE float length(const quat& q) { return sqrtf(dot(q, q)); } inline CUDA_CALLABLE quat normalize(const quat& q) { float l = length(q); if (l > kEps) { float inv_l = 1.0f/l; return quat(q.x*inv_l, q.y*inv_l, q.z*inv_l, q.w*inv_l); } else { return quat(0.0f, 0.0f, 0.0f, 1.0f); } } inline CUDA_CALLABLE quat inverse(const quat& q) { return quat(-q.x, -q.y, -q.z, q.w); } inline CUDA_CALLABLE quat add(const quat& a, const quat& b) { return quat(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w); } inline CUDA_CALLABLE quat sub(const quat& a, const quat& b) { return quat(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w);} inline CUDA_CALLABLE quat mul(const quat& a, const quat& b) { return quat(a.w*b.x + b.w*a.x + a.y*b.z - b.y*a.z, a.w*b.y + b.w*a.y + a.z*b.x - b.z*a.x, a.w*b.z + b.w*a.z + a.x*b.y - b.x*a.y, a.w*b.w - a.x*b.x - a.y*b.y - a.z*b.z); } inline CUDA_CALLABLE quat mul(const quat& a, float s) { return quat(a.x*s, a.y*s, a.z*s, a.w*s); } inline CUDA_CALLABLE float3 rotate(const quat& q, const float3& x) { return x*(2.0f*q.w*q.w-1.0f) + cross(float3(&q.x), x)*q.w*2.0f + float3(&q.x)*dot(float3(&q.x), x)*2.0f; } inline CUDA_CALLABLE float3 rotate_inv(const quat& q, const float3& x) { return x*(2.0f*q.w*q.w-1.0f) - cross(float3(&q.x), x)*q.w*2.0f + float3(&q.x)*dot(float3(&q.x), x)*2.0f; } inline CUDA_CALLABLE float index(const quat& a, int idx) { #if FP_CHECK if (idx < 0 || idx > 3) { printf("quat index %d out of bounds at %s %d", idx, __FILE__, __LINE__); exit(1); } #endif return (&a.x)[idx]; } inline CUDA_CALLABLE void adj_index(const quat& a, int idx, quat& adj_a, int & adj_idx, float & adj_ret) { #if FP_CHECK if (idx < 0 || idx > 3) { printf("quat index %d out of bounds at %s %d", idx, __FILE__, __LINE__); exit(1); } #endif (&adj_a.x)[idx] += adj_ret; } // backward methods inline CUDA_CALLABLE void adj_quat_from_axis_angle(const float3& axis, float angle, float3& adj_axis, float& adj_angle, const quat& adj_ret) { float3 v = float3(adj_ret.x, adj_ret.y, adj_ret.z); float s = sinf(angle*0.5f); float c = cosf(angle*0.5f); quat dqda = quat(axis.x*c, axis.y*c, axis.z*c, -s)*0.5f; adj_axis += v*s; adj_angle += dot(dqda, adj_ret); } inline CUDA_CALLABLE void adj_quat_identity(const quat& adj_ret) { // nop } inline CUDA_CALLABLE void adj_dot(const quat& a, const quat& b, quat& adj_a, quat& adj_b, const float adj_ret) { adj_a += b*adj_ret; adj_b += a*adj_ret; } inline CUDA_CALLABLE void adj_length(const quat& a, quat& adj_a, const float adj_ret) { adj_a += normalize(a)*adj_ret; } inline CUDA_CALLABLE void adj_normalize(const quat& q, quat& adj_q, const quat& adj_ret) { float l = length(q); if (l > kEps) { float l_inv = 1.0f/l; adj_q += adj_ret*l_inv - q*(l_inv*l_inv*l_inv*dot(q, adj_ret)); } } inline CUDA_CALLABLE void adj_inverse(const quat& q, quat& adj_q, const quat& adj_ret) { adj_q.x -= adj_ret.x; adj_q.y -= adj_ret.y; adj_q.z -= adj_ret.z; adj_q.w += adj_ret.w; } // inline void adj_normalize(const quat& a, quat& adj_a, const quat& adj_ret) // { // float d = length(a); // if (d > kEps) // { // float invd = 1.0f/d; // quat ahat = normalize(a); // adj_a += (adj_ret - ahat*(dot(ahat, adj_ret))*invd); // //if (!isfinite(adj_a)) // // printf("%s:%d - adj_normalize((%f %f %f), (%f %f %f), (%f, %f, %f))\n", __FILE__, __LINE__, a.x, a.y, a.z, adj_a.x, adj_a.y, adj_a.z, adj_ret.x, adj_ret.y, adj_ret.z); // } // } inline CUDA_CALLABLE void adj_add(const quat& a, const quat& b, quat& adj_a, quat& adj_b, const quat& adj_ret) { adj_a += adj_ret; adj_b += adj_ret; } inline CUDA_CALLABLE void adj_sub(const quat& a, const quat& b, quat& adj_a, quat& adj_b, const quat& adj_ret) { adj_a += adj_ret; adj_b -= adj_ret; } inline CUDA_CALLABLE void adj_mul(const quat& a, const quat& b, quat& adj_a, quat& adj_b, const quat& adj_ret) { // shorthand const quat& r = adj_ret; adj_a += quat(b.w*r.x - b.x*r.w + b.y*r.z - b.z*r.y, b.w*r.y - b.y*r.w - b.x*r.z + b.z*r.x, b.w*r.z + b.x*r.y - b.y*r.x - b.z*r.w, b.w*r.w + b.x*r.x + b.y*r.y + b.z*r.z); adj_b += quat(a.w*r.x - a.x*r.w - a.y*r.z + a.z*r.y, a.w*r.y - a.y*r.w + a.x*r.z - a.z*r.x, a.w*r.z - a.x*r.y + a.y*r.x - a.z*r.w, a.w*r.w + a.x*r.x + a.y*r.y + a.z*r.z); } inline CUDA_CALLABLE void adj_mul(const quat& a, float s, quat& adj_a, float& adj_s, const quat& adj_ret) { adj_a += adj_ret*s; adj_s += dot(a, adj_ret); } inline CUDA_CALLABLE void adj_rotate(const quat& q, const float3& p, quat& adj_q, float3& adj_p, const float3& adj_ret) { const float3& r = adj_ret; { float t2 = p.z*q.z*2.0f; float t3 = p.y*q.w*2.0f; float t4 = p.x*q.w*2.0f; float t5 = p.x*q.x*2.0f; float t6 = p.y*q.y*2.0f; float t7 = p.z*q.y*2.0f; float t8 = p.x*q.z*2.0f; float t9 = p.x*q.y*2.0f; float t10 = p.y*q.x*2.0f; adj_q.x += r.z*(t3+t8)+r.x*(t2+t6+p.x*q.x*4.0f)+r.y*(t9-p.z*q.w*2.0f); adj_q.y += r.y*(t2+t5+p.y*q.y*4.0f)+r.x*(t10+p.z*q.w*2.0f)-r.z*(t4-p.y*q.z*2.0f); adj_q.z += r.y*(t4+t7)+r.z*(t5+t6+p.z*q.z*4.0f)-r.x*(t3-p.z*q.x*2.0f); adj_q.w += r.x*(t7+p.x*q.w*4.0f-p.y*q.z*2.0f)+r.y*(t8+p.y*q.w*4.0f-p.z*q.x*2.0f)+r.z*(-t9+t10+p.z*q.w*4.0f); } { float t2 = q.w*q.w; float t3 = t2*2.0f; float t4 = q.w*q.z*2.0f; float t5 = q.x*q.y*2.0f; float t6 = q.w*q.y*2.0f; float t7 = q.w*q.x*2.0f; float t8 = q.y*q.z*2.0f; adj_p.x += r.y*(t4+t5)+r.x*(t3+(q.x*q.x)*2.0f-1.0f)-r.z*(t6-q.x*q.z*2.0f); adj_p.y += r.z*(t7+t8)-r.x*(t4-t5)+r.y*(t3+(q.y*q.y)*2.0f-1.0f); adj_p.z += -r.y*(t7-t8)+r.z*(t3+(q.z*q.z)*2.0f-1.0f)+r.x*(t6+q.x*q.z*2.0f); } } inline CUDA_CALLABLE void adj_rotate_inv(const quat& q, const float3& p, quat& adj_q, float3& adj_p, const float3& adj_ret) { const float3& r = adj_ret; { float t2 = p.z*q.w*2.0f; float t3 = p.z*q.z*2.0f; float t4 = p.y*q.w*2.0f; float t5 = p.x*q.w*2.0f; float t6 = p.x*q.x*2.0f; float t7 = p.y*q.y*2.0f; float t8 = p.y*q.z*2.0f; float t9 = p.z*q.x*2.0f; float t10 = p.x*q.y*2.0f; adj_q.x += r.y*(t2+t10)+r.x*(t3+t7+p.x*q.x*4.0f)-r.z*(t4-p.x*q.z*2.0f); adj_q.y += r.z*(t5+t8)+r.y*(t3+t6+p.y*q.y*4.0f)-r.x*(t2-p.y*q.x*2.0f); adj_q.z += r.x*(t4+t9)+r.z*(t6+t7+p.z*q.z*4.0f)-r.y*(t5-p.z*q.y*2.0f); adj_q.w += r.x*(t8+p.x*q.w*4.0f-p.z*q.y*2.0f)+r.y*(t9+p.y*q.w*4.0f-p.x*q.z*2.0f)+r.z*(t10-p.y*q.x*2.0f+p.z*q.w*4.0f); } { float t2 = q.w*q.w; float t3 = t2*2.0f; float t4 = q.w*q.z*2.0f; float t5 = q.w*q.y*2.0f; float t6 = q.x*q.z*2.0f; float t7 = q.w*q.x*2.0f; adj_p.x += r.z*(t5+t6)+r.x*(t3+(q.x*q.x)*2.0f-1.0f)-r.y*(t4-q.x*q.y*2.0f); adj_p.y += r.y*(t3+(q.y*q.y)*2.0f-1.0f)+r.x*(t4+q.x*q.y*2.0f)-r.z*(t7-q.y*q.z*2.0f); adj_p.z += -r.x*(t5-t6)+r.z*(t3+(q.z*q.z)*2.0f-1.0f)+r.y*(t7+q.y*q.z*2.0f); } }
8,985
C
26.993769
184
0.522315
vstrozzi/FRL-SHAC-Extension/dflex/dflex/vec3.h
#pragma once struct float3 { float x; float y; float z; inline CUDA_CALLABLE float3(float x=0.0f, float y=0.0f, float z=0.0f) : x(x), y(y), z(z) {} explicit inline CUDA_CALLABLE float3(const float* p) : x(p[0]), y(p[1]), z(p[2]) {} }; //-------------- // float3 methods inline CUDA_CALLABLE float3 operator - (float3 a) { return { -a.x, -a.y, -a.z }; } inline CUDA_CALLABLE float3 mul(float3 a, float s) { return { a.x*s, a.y*s, a.z*s }; } inline CUDA_CALLABLE float3 div(float3 a, float s) { return { a.x/s, a.y/s, a.z/s }; } inline CUDA_CALLABLE float3 add(float3 a, float3 b) { return { a.x+b.x, a.y+b.y, a.z+b.z }; } inline CUDA_CALLABLE float3 add(float3 a, float s) { return { a.x + s, a.y + s, a.z + s }; } inline CUDA_CALLABLE float3 sub(float3 a, float3 b) { return { a.x-b.x, a.y-b.y, a.z-b.z }; } inline CUDA_CALLABLE float dot(float3 a, float3 b) { return a.x*b.x + a.y*b.y + a.z*b.z; } inline CUDA_CALLABLE float3 cross(float3 a, float3 b) { float3 c; c.x = a.y*b.z - a.z*b.y; c.y = a.z*b.x - a.x*b.z; c.z = a.x*b.y - a.y*b.x; return c; } inline CUDA_CALLABLE float index(const float3 & a, int idx) { #if FP_CHECK if (idx < 0 || idx > 2) { printf("float3 index %d out of bounds at %s %d\n", idx, __FILE__, __LINE__); exit(1); } #endif return (&a.x)[idx]; } inline CUDA_CALLABLE void adj_index(const float3 & a, int idx, float3 & adj_a, int & adj_idx, float & adj_ret) { #if FP_CHECK if (idx < 0 || idx > 2) { printf("float3 index %d out of bounds at %s %d\n", idx, __FILE__, __LINE__); exit(1); } #endif (&adj_a.x)[idx] += adj_ret; } inline CUDA_CALLABLE float length(float3 a) { return sqrtf(dot(a, a)); } inline CUDA_CALLABLE float3 normalize(float3 a) { float l = length(a); if (l > kEps) return div(a,l); else return float3(); } inline bool CUDA_CALLABLE isfinite(float3 x) { return std::isfinite(x.x) && std::isfinite(x.y) && std::isfinite(x.z); } // adjoint float3 constructor inline CUDA_CALLABLE void adj_float3(float x, float y, float z, float& adj_x, float& adj_y, float& adj_z, const float3& adj_ret) { adj_x += adj_ret.x; adj_y += adj_ret.y; adj_z += adj_ret.z; } inline CUDA_CALLABLE void adj_mul(float3 a, float s, float3& adj_a, float& adj_s, const float3& adj_ret) { adj_a.x += s*adj_ret.x; adj_a.y += s*adj_ret.y; adj_a.z += s*adj_ret.z; adj_s += dot(a, adj_ret); #if FP_CHECK if (!isfinite(a) || !isfinite(s) || !isfinite(adj_a) || !isfinite(adj_s) || !isfinite(adj_ret)) printf("adj_mul((%f %f %f), %f, (%f %f %f), %f, (%f %f %f)\n", a.x, a.y, a.z, s, adj_a.x, adj_a.y, adj_a.z, adj_s, adj_ret.x, adj_ret.y, adj_ret.z); #endif } inline CUDA_CALLABLE void adj_div(float3 a, float s, float3& adj_a, float& adj_s, const float3& adj_ret) { adj_s += dot(- a / (s * s), adj_ret); // - a / s^2 adj_a.x += adj_ret.x / s; adj_a.y += adj_ret.y / s; adj_a.z += adj_ret.z / s; #if FP_CHECK if (!isfinite(a) || !isfinite(s) || !isfinite(adj_a) || !isfinite(adj_s) || !isfinite(adj_ret)) printf("adj_div((%f %f %f), %f, (%f %f %f), %f, (%f %f %f)\n", a.x, a.y, a.z, s, adj_a.x, adj_a.y, adj_a.z, adj_s, adj_ret.x, adj_ret.y, adj_ret.z); #endif } inline CUDA_CALLABLE void adj_add(float3 a, float3 b, float3& adj_a, float3& adj_b, const float3& adj_ret) { adj_a += adj_ret; adj_b += adj_ret; } inline CUDA_CALLABLE void adj_add(float3 a, float s, float3& adj_a, float& adj_s, const float3& adj_ret) { adj_a += adj_ret; adj_s += adj_ret.x + adj_ret.y + adj_ret.z; } inline CUDA_CALLABLE void adj_sub(float3 a, float3 b, float3& adj_a, float3& adj_b, const float3& adj_ret) { adj_a += adj_ret; adj_b -= adj_ret; } inline CUDA_CALLABLE void adj_dot(float3 a, float3 b, float3& adj_a, float3& adj_b, const float adj_ret) { adj_a += b*adj_ret; adj_b += a*adj_ret; #if FP_CHECK if (!isfinite(a) || !isfinite(b) || !isfinite(adj_a) || !isfinite(adj_b) || !isfinite(adj_ret)) printf("adj_dot((%f %f %f), (%f %f %f), (%f %f %f), (%f %f %f), %f)\n", a.x, a.y, a.z, b.x, b.y, b.z, adj_a.x, adj_a.y, adj_a.z, adj_b.x, adj_b.y, adj_b.z, adj_ret); #endif } inline CUDA_CALLABLE void adj_cross(float3 a, float3 b, float3& adj_a, float3& adj_b, const float3& adj_ret) { // todo: sign check adj_a += cross(b, adj_ret); adj_b -= cross(a, adj_ret); } #ifdef CUDA inline __device__ void atomic_add(float3 * addr, float3 value) { // *addr += value; atomicAdd(&(addr -> x), value.x); atomicAdd(&(addr -> y), value.y); atomicAdd(&(addr -> z), value.z); } #endif inline CUDA_CALLABLE void adj_length(float3 a, float3& adj_a, const float adj_ret) { adj_a += normalize(a)*adj_ret; #if FP_CHECK if (!isfinite(adj_a)) printf("%s:%d - adj_length((%f %f %f), (%f %f %f), (%f))\n", __FILE__, __LINE__, a.x, a.y, a.z, adj_a.x, adj_a.y, adj_a.z, adj_ret); #endif } inline CUDA_CALLABLE void adj_normalize(float3 a, float3& adj_a, const float3& adj_ret) { float d = length(a); if (d > kEps) { float invd = 1.0f/d; float3 ahat = normalize(a); adj_a += (adj_ret*invd - ahat*(dot(ahat, adj_ret))*invd); #if FP_CHECK if (!isfinite(adj_a)) printf("%s:%d - adj_normalize((%f %f %f), (%f %f %f), (%f, %f, %f))\n", __FILE__, __LINE__, a.x, a.y, a.z, adj_a.x, adj_a.y, adj_a.z, adj_ret.x, adj_ret.y, adj_ret.z); #endif } }
5,542
C
23.745536
179
0.560628
vstrozzi/FRL-SHAC-Extension/dflex/dflex/sim.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """This module contains time-integration objects for simulating models + state forward in time. """ import math import torch import numpy as np import dflex.util import dflex.adjoint as df import dflex.config from dflex.model import * import time # Todo #----- # # [x] Spring model # [x] 2D FEM model # [x] 3D FEM model # [x] Cloth # [x] Wind/Drag model # [x] Bending model # [x] Triangle collision # [x] Rigid body model # [x] Rigid shape contact # [x] Sphere # [x] Capsule # [x] Box # [ ] Convex # [ ] SDF # [ ] Implicit solver # [x] USD import # [x] USD export # ----- # externally compiled kernels module (C++/CUDA code with PyBind entry points) kernels = None @df.func def test(c: float): x = 1.0 y = float(2) z = int(3.0) print(y) print(z) if (c < 3.0): x = 2.0 return x*6.0 def kernel_init(): global kernels kernels = df.compile() @df.kernel def integrate_particles(x: df.tensor(df.float3), v: df.tensor(df.float3), f: df.tensor(df.float3), w: df.tensor(float), gravity: df.tensor(df.float3), dt: float, x_new: df.tensor(df.float3), v_new: df.tensor(df.float3)): tid = df.tid() x0 = df.load(x, tid) v0 = df.load(v, tid) f0 = df.load(f, tid) inv_mass = df.load(w, tid) g = df.load(gravity, 0) # simple semi-implicit Euler. v1 = v0 + a dt, x1 = x0 + v1 dt v1 = v0 + (f0 * inv_mass + g * df.step(0.0 - inv_mass)) * dt x1 = x0 + v1 * dt df.store(x_new, tid, x1) df.store(v_new, tid, v1) # semi-implicit Euler integration @df.kernel def integrate_rigids(rigid_x: df.tensor(df.float3), rigid_r: df.tensor(df.quat), rigid_v: df.tensor(df.float3), rigid_w: df.tensor(df.float3), rigid_f: df.tensor(df.float3), rigid_t: df.tensor(df.float3), inv_m: df.tensor(float), inv_I: df.tensor(df.mat33), gravity: df.tensor(df.float3), dt: float, rigid_x_new: df.tensor(df.float3), rigid_r_new: df.tensor(df.quat), rigid_v_new: df.tensor(df.float3), rigid_w_new: df.tensor(df.float3)): tid = df.tid() # positions x0 = df.load(rigid_x, tid) r0 = df.load(rigid_r, tid) # velocities v0 = df.load(rigid_v, tid) w0 = df.load(rigid_w, tid) # angular velocity # forces f0 = df.load(rigid_f, tid) t0 = df.load(rigid_t, tid) # masses inv_mass = df.load(inv_m, tid) # 1 / mass inv_inertia = df.load(inv_I, tid) # inverse of 3x3 inertia matrix g = df.load(gravity, 0) # linear part v1 = v0 + (f0 * inv_mass + g * df.nonzero(inv_mass)) * dt # linear integral (linear position/velocity) x1 = x0 + v1 * dt # angular part # so reverse multiplication by r0 takes you from global coordinates into local coordinates # because it's covector and thus gets pulled back rather than pushed forward wb = df.rotate_inv(r0, w0) # angular integral (angular velocity and rotation), rotate into object reference frame tb = df.rotate_inv(r0, t0) # also rotate torques into local coordinates # I^{-1} torque = angular acceleration and inv_inertia is always going to be in the object frame. # So we need to rotate into that frame, and then back into global. w1 = df.rotate(r0, wb + inv_inertia * tb * dt) # I^-1 * torque * dt., then go back into global coordinates r1 = df.normalize(r0 + df.quat(w1, 0.0) * r0 * 0.5 * dt) # rotate around w1 by dt df.store(rigid_x_new, tid, x1) df.store(rigid_r_new, tid, r1) df.store(rigid_v_new, tid, v1) df.store(rigid_w_new, tid, w1) @df.kernel def eval_springs(x: df.tensor(df.float3), v: df.tensor(df.float3), spring_indices: df.tensor(int), spring_rest_lengths: df.tensor(float), spring_stiffness: df.tensor(float), spring_damping: df.tensor(float), f: df.tensor(df.float3)): tid = df.tid() i = df.load(spring_indices, tid * 2 + 0) j = df.load(spring_indices, tid * 2 + 1) ke = df.load(spring_stiffness, tid) kd = df.load(spring_damping, tid) rest = df.load(spring_rest_lengths, tid) xi = df.load(x, i) xj = df.load(x, j) vi = df.load(v, i) vj = df.load(v, j) xij = xi - xj vij = vi - vj l = length(xij) l_inv = 1.0 / l # normalized spring direction dir = xij * l_inv c = l - rest dcdt = dot(dir, vij) # damping based on relative velocity. fs = dir * (ke * c + kd * dcdt) df.atomic_sub(f, i, fs) df.atomic_add(f, j, fs) @df.kernel def eval_triangles(x: df.tensor(df.float3), v: df.tensor(df.float3), indices: df.tensor(int), pose: df.tensor(df.mat22), activation: df.tensor(float), k_mu: float, k_lambda: float, k_damp: float, k_drag: float, k_lift: float, f: df.tensor(df.float3)): tid = df.tid() i = df.load(indices, tid * 3 + 0) j = df.load(indices, tid * 3 + 1) k = df.load(indices, tid * 3 + 2) p = df.load(x, i) # point zero q = df.load(x, j) # point one r = df.load(x, k) # point two vp = df.load(v, i) # vel zero vq = df.load(v, j) # vel one vr = df.load(v, k) # vel two qp = q - p # barycentric coordinates (centered at p) rp = r - p Dm = df.load(pose, tid) inv_rest_area = df.determinant(Dm) * 2.0 # 1 / det(A) = det(A^-1) rest_area = 1.0 / inv_rest_area # scale stiffness coefficients to account for area k_mu = k_mu * rest_area k_lambda = k_lambda * rest_area k_damp = k_damp * rest_area # F = Xs*Xm^-1 f1 = qp * Dm[0, 0] + rp * Dm[1, 0] f2 = qp * Dm[0, 1] + rp * Dm[1, 1] #----------------------------- # St. Venant-Kirchoff # # Green strain, F'*F-I # e00 = dot(f1, f1) - 1.0 # e10 = dot(f2, f1) # e01 = dot(f1, f2) # e11 = dot(f2, f2) - 1.0 # E = df.mat22(e00, e01, # e10, e11) # # local forces (deviatoric part) # T = df.mul(E, df.transpose(Dm)) # # spatial forces, F*T # fq = (f1*T[0,0] + f2*T[1,0])*k_mu*2.0 # fr = (f1*T[0,1] + f2*T[1,1])*k_mu*2.0 # alpha = 1.0 #----------------------------- # Baraff & Witkin, note this model is not isotropic # c1 = length(f1) - 1.0 # c2 = length(f2) - 1.0 # f1 = normalize(f1)*c1*k1 # f2 = normalize(f2)*c2*k1 # fq = f1*Dm[0,0] + f2*Dm[0,1] # fr = f1*Dm[1,0] + f2*Dm[1,1] #----------------------------- # Neo-Hookean (with rest stability) # force = mu*F*Dm' fq = (f1 * Dm[0, 0] + f2 * Dm[0, 1]) * k_mu fr = (f1 * Dm[1, 0] + f2 * Dm[1, 1]) * k_mu alpha = 1.0 + k_mu / k_lambda #----------------------------- # Area Preservation n = df.cross(qp, rp) area = df.length(n) * 0.5 # actuation act = df.load(activation, tid) # J-alpha c = area * inv_rest_area - alpha + act # dJdx n = df.normalize(n) dcdq = df.cross(rp, n) * inv_rest_area * 0.5 dcdr = df.cross(n, qp) * inv_rest_area * 0.5 f_area = k_lambda * c #----------------------------- # Area Damping dcdt = dot(dcdq, vq) + dot(dcdr, vr) - dot(dcdq + dcdr, vp) f_damp = k_damp * dcdt fq = fq + dcdq * (f_area + f_damp) fr = fr + dcdr * (f_area + f_damp) fp = fq + fr #----------------------------- # Lift + Drag vmid = (vp + vr + vq) * 0.3333 vdir = df.normalize(vmid) f_drag = vmid * (k_drag * area * df.abs(df.dot(n, vmid))) f_lift = n * (k_lift * area * (1.57079 - df.acos(df.dot(n, vdir)))) * dot(vmid, vmid) # note reversed sign due to atomic_add below.. need to write the unary op - fp = fp - f_drag - f_lift fq = fq + f_drag + f_lift fr = fr + f_drag + f_lift # apply forces df.atomic_add(f, i, fp) df.atomic_sub(f, j, fq) df.atomic_sub(f, k, fr) @df.func def triangle_closest_point_barycentric(a: df.float3, b: df.float3, c: df.float3, p: df.float3): ab = b - a ac = c - a ap = p - a d1 = df.dot(ab, ap) d2 = df.dot(ac, ap) if (d1 <= 0.0 and d2 <= 0.0): return float3(1.0, 0.0, 0.0) bp = p - b d3 = df.dot(ab, bp) d4 = df.dot(ac, bp) if (d3 >= 0.0 and d4 <= d3): return float3(0.0, 1.0, 0.0) vc = d1 * d4 - d3 * d2 v = d1 / (d1 - d3) if (vc <= 0.0 and d1 >= 0.0 and d3 <= 0.0): return float3(1.0 - v, v, 0.0) cp = p - c d5 = dot(ab, cp) d6 = dot(ac, cp) if (d6 >= 0.0 and d5 <= d6): return float3(0.0, 0.0, 1.0) vb = d5 * d2 - d1 * d6 w = d2 / (d2 - d6) if (vb <= 0.0 and d2 >= 0.0 and d6 <= 0.0): return float3(1.0 - w, 0.0, w) va = d3 * d6 - d5 * d4 w = (d4 - d3) / ((d4 - d3) + (d5 - d6)) if (va <= 0.0 and (d4 - d3) >= 0.0 and (d5 - d6) >= 0.0): return float3(0.0, w, 1.0 - w) denom = 1.0 / (va + vb + vc) v = vb * denom w = vc * denom return float3(1.0 - v - w, v, w) @df.kernel def eval_triangles_contact( # idx : df.tensor(int), # list of indices for colliding particles num_particles: int, # size of particles x: df.tensor(df.float3), v: df.tensor(df.float3), indices: df.tensor(int), pose: df.tensor(df.mat22), activation: df.tensor(float), k_mu: float, k_lambda: float, k_damp: float, k_drag: float, k_lift: float, f: df.tensor(df.float3)): tid = df.tid() face_no = tid // num_particles # which face particle_no = tid % num_particles # which particle # index = df.load(idx, tid) pos = df.load(x, particle_no) # at the moment, just one particle # vel0 = df.load(v, 0) i = df.load(indices, face_no * 3 + 0) j = df.load(indices, face_no * 3 + 1) k = df.load(indices, face_no * 3 + 2) if (i == particle_no or j == particle_no or k == particle_no): return p = df.load(x, i) # point zero q = df.load(x, j) # point one r = df.load(x, k) # point two # vp = df.load(v, i) # vel zero # vq = df.load(v, j) # vel one # vr = df.load(v, k) # vel two # qp = q-p # barycentric coordinates (centered at p) # rp = r-p bary = triangle_closest_point_barycentric(p, q, r, pos) closest = p * bary[0] + q * bary[1] + r * bary[2] diff = pos - closest dist = df.dot(diff, diff) n = df.normalize(diff) c = df.min(dist - 0.01, 0.0) # 0 unless within 0.01 of surface #c = df.leaky_min(dot(n, x0)-0.01, 0.0, 0.0) fn = n * c * 1e5 df.atomic_sub(f, particle_no, fn) # # apply forces (could do - f / 3 here) df.atomic_add(f, i, fn * bary[0]) df.atomic_add(f, j, fn * bary[1]) df.atomic_add(f, k, fn * bary[2]) @df.kernel def eval_triangles_rigid_contacts( num_particles: int, # number of particles (size of contact_point) x: df.tensor(df.float3), # position of particles v: df.tensor(df.float3), indices: df.tensor(int), # triangle indices rigid_x: df.tensor(df.float3), # rigid body positions rigid_r: df.tensor(df.quat), rigid_v: df.tensor(df.float3), rigid_w: df.tensor(df.float3), contact_body: df.tensor(int), contact_point: df.tensor(df.float3), # position of contact points relative to body contact_dist: df.tensor(float), contact_mat: df.tensor(int), materials: df.tensor(float), # rigid_f : df.tensor(df.float3), # rigid_t : df.tensor(df.float3), tri_f: df.tensor(df.float3)): tid = df.tid() face_no = tid // num_particles # which face particle_no = tid % num_particles # which particle # ----------------------- # load rigid body point c_body = df.load(contact_body, particle_no) c_point = df.load(contact_point, particle_no) c_dist = df.load(contact_dist, particle_no) c_mat = df.load(contact_mat, particle_no) # hard coded surface parameter tensor layout (ke, kd, kf, mu) ke = df.load(materials, c_mat * 4 + 0) # restitution coefficient kd = df.load(materials, c_mat * 4 + 1) # damping coefficient kf = df.load(materials, c_mat * 4 + 2) # friction coefficient mu = df.load(materials, c_mat * 4 + 3) # coulomb friction x0 = df.load(rigid_x, c_body) # position of colliding body r0 = df.load(rigid_r, c_body) # orientation of colliding body v0 = df.load(rigid_v, c_body) w0 = df.load(rigid_w, c_body) # transform point to world space pos = x0 + df.rotate(r0, c_point) # use x0 as center, everything is offset from center of mass # moment arm r = pos - x0 # basically just c_point in the new coordinates rhat = df.normalize(r) pos = pos + rhat * c_dist # add on 'thickness' of shape, e.g.: radius of sphere/capsule # contact point velocity dpdt = v0 + df.cross(w0, r) # this is rigid velocity cross offset, so it's the velocity of the contact point. # ----------------------- # load triangle i = df.load(indices, face_no * 3 + 0) j = df.load(indices, face_no * 3 + 1) k = df.load(indices, face_no * 3 + 2) p = df.load(x, i) # point zero q = df.load(x, j) # point one r = df.load(x, k) # point two vp = df.load(v, i) # vel zero vq = df.load(v, j) # vel one vr = df.load(v, k) # vel two bary = triangle_closest_point_barycentric(p, q, r, pos) closest = p * bary[0] + q * bary[1] + r * bary[2] diff = pos - closest # vector from tri to point dist = df.dot(diff, diff) # squared distance n = df.normalize(diff) # points into the object c = df.min(dist - 0.05, 0.0) # 0 unless within 0.05 of surface #c = df.leaky_min(dot(n, x0)-0.01, 0.0, 0.0) # fn = n * c * 1e6 # points towards cloth (both n and c are negative) # df.atomic_sub(tri_f, particle_no, fn) fn = c * ke # normal force (restitution coefficient * how far inside for ground) (negative) vtri = vp * bary[0] + vq * bary[1] + vr * bary[2] # bad approximation for centroid velocity vrel = vtri - dpdt vn = dot(n, vrel) # velocity component of rigid in negative normal direction vt = vrel - n * vn # velocity component not in normal direction # contact damping fd = 0.0 - df.max(vn, 0.0) * kd * df.step(c) # again, negative, into the ground # # viscous friction # ft = vt*kf # Coulomb friction (box) lower = mu * (fn + fd) upper = 0.0 - lower # workaround because no unary ops yet nx = cross(n, float3(0.0, 0.0, 1.0)) # basis vectors for tangent nz = cross(n, float3(1.0, 0.0, 0.0)) vx = df.clamp(dot(nx * kf, vt), lower, upper) vz = df.clamp(dot(nz * kf, vt), lower, upper) ft = (nx * vx + nz * vz) * (0.0 - df.step(c)) # df.float3(vx, 0.0, vz)*df.step(c) # # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) # #ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke) f_total = n * (fn + fd) + ft df.atomic_add(tri_f, i, f_total * bary[0]) df.atomic_add(tri_f, j, f_total * bary[1]) df.atomic_add(tri_f, k, f_total * bary[2]) @df.kernel def eval_bending( x: df.tensor(df.float3), v: df.tensor(df.float3), indices: df.tensor(int), rest: df.tensor(float), ke: float, kd: float, f: df.tensor(df.float3)): tid = df.tid() i = df.load(indices, tid * 4 + 0) j = df.load(indices, tid * 4 + 1) k = df.load(indices, tid * 4 + 2) l = df.load(indices, tid * 4 + 3) rest_angle = df.load(rest, tid) x1 = df.load(x, i) x2 = df.load(x, j) x3 = df.load(x, k) x4 = df.load(x, l) v1 = df.load(v, i) v2 = df.load(v, j) v3 = df.load(v, k) v4 = df.load(v, l) n1 = df.cross(x3 - x1, x4 - x1) # normal to face 1 n2 = df.cross(x4 - x2, x3 - x2) # normal to face 2 n1_length = df.length(n1) n2_length = df.length(n2) rcp_n1 = 1.0 / n1_length rcp_n2 = 1.0 / n2_length cos_theta = df.dot(n1, n2) * rcp_n1 * rcp_n2 n1 = n1 * rcp_n1 * rcp_n1 n2 = n2 * rcp_n2 * rcp_n2 e = x4 - x3 e_hat = df.normalize(e) e_length = df.length(e) s = df.sign(df.dot(df.cross(n2, n1), e_hat)) angle = df.acos(cos_theta) * s d1 = n1 * e_length d2 = n2 * e_length d3 = n1 * df.dot(x1 - x4, e_hat) + n2 * df.dot(x2 - x4, e_hat) d4 = n1 * df.dot(x3 - x1, e_hat) + n2 * df.dot(x3 - x2, e_hat) # elastic f_elastic = ke * (angle - rest_angle) # damping f_damp = kd * (df.dot(d1, v1) + df.dot(d2, v2) + df.dot(d3, v3) + df.dot(d4, v4)) # total force, proportional to edge length f_total = 0.0 - e_length * (f_elastic + f_damp) df.atomic_add(f, i, d1 * f_total) df.atomic_add(f, j, d2 * f_total) df.atomic_add(f, k, d3 * f_total) df.atomic_add(f, l, d4 * f_total) @df.kernel def eval_tetrahedra(x: df.tensor(df.float3), v: df.tensor(df.float3), indices: df.tensor(int), pose: df.tensor(df.mat33), activation: df.tensor(float), materials: df.tensor(float), f: df.tensor(df.float3)): tid = df.tid() i = df.load(indices, tid * 4 + 0) j = df.load(indices, tid * 4 + 1) k = df.load(indices, tid * 4 + 2) l = df.load(indices, tid * 4 + 3) act = df.load(activation, tid) k_mu = df.load(materials, tid * 3 + 0) k_lambda = df.load(materials, tid * 3 + 1) k_damp = df.load(materials, tid * 3 + 2) x0 = df.load(x, i) x1 = df.load(x, j) x2 = df.load(x, k) x3 = df.load(x, l) v0 = df.load(v, i) v1 = df.load(v, j) v2 = df.load(v, k) v3 = df.load(v, l) x10 = x1 - x0 x20 = x2 - x0 x30 = x3 - x0 v10 = v1 - v0 v20 = v2 - v0 v30 = v3 - v0 Ds = df.mat33(x10, x20, x30) Dm = df.load(pose, tid) inv_rest_volume = df.determinant(Dm) * 6.0 rest_volume = 1.0 / inv_rest_volume alpha = 1.0 + k_mu / k_lambda - k_mu / (4.0 * k_lambda) # scale stiffness coefficients to account for area k_mu = k_mu * rest_volume k_lambda = k_lambda * rest_volume k_damp = k_damp * rest_volume # F = Xs*Xm^-1 F = Ds * Dm dFdt = df.mat33(v10, v20, v30) * Dm col1 = df.float3(F[0, 0], F[1, 0], F[2, 0]) col2 = df.float3(F[0, 1], F[1, 1], F[2, 1]) col3 = df.float3(F[0, 2], F[1, 2], F[2, 2]) #----------------------------- # Neo-Hookean (with rest stability [Smith et al 2018]) Ic = dot(col1, col1) + dot(col2, col2) + dot(col3, col3) # deviatoric part P = F * k_mu * (1.0 - 1.0 / (Ic + 1.0)) + dFdt * k_damp H = P * df.transpose(Dm) f1 = df.float3(H[0, 0], H[1, 0], H[2, 0]) f2 = df.float3(H[0, 1], H[1, 1], H[2, 1]) f3 = df.float3(H[0, 2], H[1, 2], H[2, 2]) #----------------------------- # C_spherical # r_s = df.sqrt(dot(col1, col1) + dot(col2, col2) + dot(col3, col3)) # r_s_inv = 1.0/r_s # C = r_s - df.sqrt(3.0) # dCdx = F*df.transpose(Dm)*r_s_inv # grad1 = float3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = float3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = float3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # f1 = grad1*C*k_mu # f2 = grad2*C*k_mu # f3 = grad3*C*k_mu #---------------------------- # C_D # r_s = df.sqrt(dot(col1, col1) + dot(col2, col2) + dot(col3, col3)) # C = r_s*r_s - 3.0 # dCdx = F*df.transpose(Dm)*2.0 # grad1 = float3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = float3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = float3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # f1 = grad1*C*k_mu # f2 = grad2*C*k_mu # f3 = grad3*C*k_mu # hydrostatic part J = df.determinant(F) #print(J) s = inv_rest_volume / 6.0 dJdx1 = df.cross(x20, x30) * s dJdx2 = df.cross(x30, x10) * s dJdx3 = df.cross(x10, x20) * s f_volume = (J - alpha + act) * k_lambda f_damp = (df.dot(dJdx1, v1) + df.dot(dJdx2, v2) + df.dot(dJdx3, v3)) * k_damp f_total = f_volume + f_damp f1 = f1 + dJdx1 * f_total f2 = f2 + dJdx2 * f_total f3 = f3 + dJdx3 * f_total f0 = (f1 + f2 + f3) * (0.0 - 1.0) # apply forces df.atomic_sub(f, i, f0) df.atomic_sub(f, j, f1) df.atomic_sub(f, k, f2) df.atomic_sub(f, l, f3) @df.kernel def eval_contacts(x: df.tensor(df.float3), v: df.tensor(df.float3), ke: float, kd: float, kf: float, mu: float, f: df.tensor(df.float3)): tid = df.tid() # this just handles contact of particles with the ground plane, nothing else. x0 = df.load(x, tid) v0 = df.load(v, tid) n = float3(0.0, 1.0, 0.0) # why is the normal always y? Ground is always (0, 1, 0) normal c = df.min(dot(n, x0) - 0.01, 0.0) # 0 unless within 0.01 of surface #c = df.leaky_min(dot(n, x0)-0.01, 0.0, 0.0) vn = dot(n, v0) vt = v0 - n * vn fn = n * c * ke # contact damping fd = n * df.min(vn, 0.0) * kd # viscous friction #ft = vt*kf # Coulomb friction (box) lower = mu * c * ke upper = 0.0 - lower vx = clamp(dot(float3(kf, 0.0, 0.0), vt), lower, upper) vz = clamp(dot(float3(0.0, 0.0, kf), vt), lower, upper) ft = df.float3(vx, 0.0, vz) # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) #ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke) ftotal = fn + (fd + ft) * df.step(c) df.atomic_sub(f, tid, ftotal) @df.func def sphere_sdf(center: df.float3, radius: float, p: df.float3): return df.length(p-center) - radius @df.func def sphere_sdf_grad(center: df.float3, radius: float, p: df.float3): return df.normalize(p-center) @df.func def box_sdf(upper: df.float3, p: df.float3): # adapted from https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm qx = abs(p[0])-upper[0] qy = abs(p[1])-upper[1] qz = abs(p[2])-upper[2] e = df.float3(df.max(qx, 0.0), df.max(qy, 0.0), df.max(qz, 0.0)) return df.length(e) + df.min(df.max(qx, df.max(qy, qz)), 0.0) @df.func def box_sdf_grad(upper: df.float3, p: df.float3): qx = abs(p[0])-upper[0] qy = abs(p[1])-upper[1] qz = abs(p[2])-upper[2] # exterior case if (qx > 0.0 or qy > 0.0 or qz > 0.0): x = df.clamp(p[0], 0.0-upper[0], upper[0]) y = df.clamp(p[1], 0.0-upper[1], upper[1]) z = df.clamp(p[2], 0.0-upper[2], upper[2]) return df.normalize(p - df.float3(x, y, z)) sx = df.sign(p[0]) sy = df.sign(p[1]) sz = df.sign(p[2]) # x projection if (qx > qy and qx > qz): return df.float3(sx, 0.0, 0.0) # y projection if (qy > qx and qy > qz): return df.float3(0.0, sy, 0.0) # z projection if (qz > qx and qz > qy): return df.float3(0.0, 0.0, sz) @df.func def capsule_sdf(radius: float, half_width: float, p: df.float3): if (p[0] > half_width): return length(df.float3(p[0] - half_width, p[1], p[2])) - radius if (p[0] < 0.0 - half_width): return length(df.float3(p[0] + half_width, p[1], p[2])) - radius return df.length(df.float3(0.0, p[1], p[2])) - radius @df.func def capsule_sdf_grad(radius: float, half_width: float, p: df.float3): if (p[0] > half_width): return normalize(df.float3(p[0] - half_width, p[1], p[2])) if (p[0] < 0.0 - half_width): return normalize(df.float3(p[0] + half_width, p[1], p[2])) return normalize(df.float3(0.0, p[1], p[2])) @df.kernel def eval_soft_contacts( num_particles: int, particle_x: df.tensor(df.float3), particle_v: df.tensor(df.float3), body_X_sc: df.tensor(df.spatial_transform), body_v_sc: df.tensor(df.spatial_vector), shape_X_co: df.tensor(df.spatial_transform), shape_body: df.tensor(int), shape_geo_type: df.tensor(int), shape_geo_src: df.tensor(int), shape_geo_scale: df.tensor(df.float3), shape_materials: df.tensor(float), ke: float, kd: float, kf: float, mu: float, # outputs particle_f: df.tensor(df.float3), body_f: df.tensor(df.spatial_vector)): tid = df.tid() shape_index = tid // num_particles # which shape particle_index = tid % num_particles # which particle rigid_index = df.load(shape_body, shape_index) px = df.load(particle_x, particle_index) pv = df.load(particle_v, particle_index) #center = float3(0.0, 0.5, 0.0) #radius = 0.25 #margin = 0.01 # sphere collider # c = df.min(sphere_sdf(center, radius, x0)-margin, 0.0) # n = sphere_sdf_grad(center, radius, x0) # box collider #c = df.min(box_sdf(df.float3(radius, radius, radius), x0-center)-margin, 0.0) #n = box_sdf_grad(df.float3(radius, radius, radius), x0-center) X_sc = df.spatial_transform_identity() if (rigid_index >= 0): X_sc = df.load(body_X_sc, rigid_index) X_co = df.load(shape_X_co, shape_index) X_so = df.spatial_transform_multiply(X_sc, X_co) X_os = df.spatial_transform_inverse(X_so) # transform particle position to shape local space x_local = df.spatial_transform_point(X_os, px) # geo description geo_type = df.load(shape_geo_type, shape_index) geo_scale = df.load(shape_geo_scale, shape_index) margin = 0.01 # evaluate shape sdf c = 0.0 n = df.float3(0.0, 0.0, 0.0) # GEO_SPHERE (0) if (geo_type == 0): c = df.min(sphere_sdf(df.float3(0.0, 0.0, 0.0), geo_scale[0], x_local)-margin, 0.0) n = df.spatial_transform_vector(X_so, sphere_sdf_grad(df.float3(0.0, 0.0, 0.0), geo_scale[0], x_local)) # GEO_BOX (1) if (geo_type == 1): c = df.min(box_sdf(geo_scale, x_local)-margin, 0.0) n = df.spatial_transform_vector(X_so, box_sdf_grad(geo_scale, x_local)) # GEO_CAPSULE (2) if (geo_type == 2): c = df.min(capsule_sdf(geo_scale[0], geo_scale[1], x_local)-margin, 0.0) n = df.spatial_transform_vector(X_so, capsule_sdf_grad(geo_scale[0], geo_scale[1], x_local)) # rigid velocity rigid_v_s = df.spatial_vector() if (rigid_index >= 0): rigid_v_s = df.load(body_v_sc, rigid_index) rigid_w = df.spatial_top(rigid_v_s) rigid_v = df.spatial_bottom(rigid_v_s) # compute the body velocity at the particle position bv = rigid_v + df.cross(rigid_w, px) # relative velocity v = pv - bv # decompose relative velocity vn = dot(n, v) vt = v - n * vn # contact elastic fn = n * c * ke # contact damping fd = n * df.min(vn, 0.0) * kd # viscous friction #ft = vt*kf # Coulomb friction (box) lower = mu * c * ke upper = 0.0 - lower vx = clamp(dot(float3(kf, 0.0, 0.0), vt), lower, upper) vz = clamp(dot(float3(0.0, 0.0, kf), vt), lower, upper) ft = df.float3(vx, 0.0, vz) # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) #ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke) f_total = fn + (fd + ft) * df.step(c) t_total = df.cross(px, f_total) df.atomic_sub(particle_f, particle_index, f_total) if (rigid_index >= 0): df.atomic_sub(body_f, rigid_index, df.spatial_vector(t_total, f_total)) @df.kernel def eval_rigid_contacts(rigid_x: df.tensor(df.float3), rigid_r: df.tensor(df.quat), rigid_v: df.tensor(df.float3), rigid_w: df.tensor(df.float3), contact_body: df.tensor(int), contact_point: df.tensor(df.float3), contact_dist: df.tensor(float), contact_mat: df.tensor(int), materials: df.tensor(float), rigid_f: df.tensor(df.float3), rigid_t: df.tensor(df.float3)): tid = df.tid() c_body = df.load(contact_body, tid) c_point = df.load(contact_point, tid) c_dist = df.load(contact_dist, tid) c_mat = df.load(contact_mat, tid) # hard coded surface parameter tensor layout (ke, kd, kf, mu) ke = df.load(materials, c_mat * 4 + 0) # restitution coefficient kd = df.load(materials, c_mat * 4 + 1) # damping coefficient kf = df.load(materials, c_mat * 4 + 2) # friction coefficient mu = df.load(materials, c_mat * 4 + 3) # coulomb friction x0 = df.load(rigid_x, c_body) # position of colliding body r0 = df.load(rigid_r, c_body) # orientation of colliding body v0 = df.load(rigid_v, c_body) w0 = df.load(rigid_w, c_body) n = float3(0.0, 1.0, 0.0) # transform point to world space p = x0 + df.rotate(r0, c_point) - n * c_dist # add on 'thickness' of shape, e.g.: radius of sphere/capsule # use x0 as center, everything is offset from center of mass # moment arm r = p - x0 # basically just c_point in the new coordinates # contact point velocity dpdt = v0 + df.cross(w0, r) # this is rigid velocity cross offset, so it's the velocity of the contact point. # check ground contact c = df.min(dot(n, p), 0.0) # check if we're inside the ground vn = dot(n, dpdt) # velocity component out of the ground vt = dpdt - n * vn # velocity component not into the ground fn = c * ke # normal force (restitution coefficient * how far inside for ground) # contact damping fd = df.min(vn, 0.0) * kd * df.step(c) # again, velocity into the ground, negative # viscous friction #ft = vt*kf # Coulomb friction (box) lower = mu * (fn + fd) # negative upper = 0.0 - lower # positive, workaround for no unary ops vx = df.clamp(dot(float3(kf, 0.0, 0.0), vt), lower, upper) vz = df.clamp(dot(float3(0.0, 0.0, kf), vt), lower, upper) ft = df.float3(vx, 0.0, vz) * df.step(c) # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) #ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke) f_total = n * (fn + fd) + ft t_total = df.cross(r, f_total) df.atomic_sub(rigid_f, c_body, f_total) df.atomic_sub(rigid_t, c_body, t_total) # # Frank & Park definition 3.20, pg 100 @df.func def spatial_transform_twist(t: df.spatial_transform, x: df.spatial_vector): q = spatial_transform_get_rotation(t) p = spatial_transform_get_translation(t) w = spatial_top(x) v = spatial_bottom(x) w = rotate(q, w) v = rotate(q, v) + cross(p, w) return spatial_vector(w, v) @df.func def spatial_transform_wrench(t: df.spatial_transform, x: df.spatial_vector): q = spatial_transform_get_rotation(t) p = spatial_transform_get_translation(t) w = spatial_top(x) v = spatial_bottom(x) v = rotate(q, v) w = rotate(q, w) + cross(p, v) return spatial_vector(w, v) @df.func def spatial_transform_inverse(t: df.spatial_transform): p = spatial_transform_get_translation(t) q = spatial_transform_get_rotation(t) q_inv = inverse(q) return spatial_transform(rotate(q_inv, p)*(0.0 - 1.0), q_inv); # computes adj_t^-T*I*adj_t^-1 (tensor change of coordinates), Frank & Park, section 8.2.3, pg 290 @df.func def spatial_transform_inertia(t: df.spatial_transform, I: df.spatial_matrix): t_inv = spatial_transform_inverse(t) q = spatial_transform_get_rotation(t_inv) p = spatial_transform_get_translation(t_inv) r1 = rotate(q, float3(1.0, 0.0, 0.0)) r2 = rotate(q, float3(0.0, 1.0, 0.0)) r3 = rotate(q, float3(0.0, 0.0, 1.0)) R = mat33(r1, r2, r3) S = mul(skew(p), R) T = spatial_adjoint(R, S) return mul(mul(transpose(T), I), T) @df.kernel def eval_rigid_contacts_art( body_X_s: df.tensor(df.spatial_transform), body_v_s: df.tensor(df.spatial_vector), contact_body: df.tensor(int), contact_point: df.tensor(df.float3), contact_dist: df.tensor(float), contact_mat: df.tensor(int), materials: df.tensor(float), body_f_s: df.tensor(df.spatial_vector)): tid = df.tid() c_body = df.load(contact_body, tid) c_point = df.load(contact_point, tid) c_dist = df.load(contact_dist, tid) c_mat = df.load(contact_mat, tid) # hard coded surface parameter tensor layout (ke, kd, kf, mu) ke = df.load(materials, c_mat * 4 + 0) # restitution coefficient kd = df.load(materials, c_mat * 4 + 1) # damping coefficient kf = df.load(materials, c_mat * 4 + 2) # friction coefficient mu = df.load(materials, c_mat * 4 + 3) # coulomb friction X_s = df.load(body_X_s, c_body) # position of colliding body v_s = df.load(body_v_s, c_body) # orientation of colliding body n = float3(0.0, 1.0, 0.0) # transform point to world space p = df.spatial_transform_point(X_s, c_point) - n * c_dist # add on 'thickness' of shape, e.g.: radius of sphere/capsule w = df.spatial_top(v_s) v = df.spatial_bottom(v_s) # contact point velocity dpdt = v + df.cross(w, p) # check ground contact c = df.dot(n, p) # check if we're inside the ground if (c >= 0.0): return vn = dot(n, dpdt) # velocity component out of the ground vt = dpdt - n * vn # velocity component not into the ground fn = c * ke # normal force (restitution coefficient * how far inside for ground) # contact damping fd = df.min(vn, 0.0) * kd * df.step(c) * (0.0 - c) # viscous friction #ft = vt*kf # Coulomb friction (box) lower = mu * (fn + fd) # negative upper = 0.0 - lower # positive, workaround for no unary ops vx = df.clamp(dot(float3(kf, 0.0, 0.0), vt), lower, upper) vz = df.clamp(dot(float3(0.0, 0.0, kf), vt), lower, upper) # Coulomb friction (smooth, but gradients are numerically unstable around |vt| = 0) ft = df.normalize(vt)*df.min(kf*df.length(vt), 0.0 - mu*c*ke) * df.step(c) f_total = n * (fn + fd) + ft t_total = df.cross(p, f_total) df.atomic_add(body_f_s, c_body, df.spatial_vector(t_total, f_total)) @df.func def compute_muscle_force( i: int, body_X_s: df.tensor(df.spatial_transform), body_v_s: df.tensor(df.spatial_vector), muscle_links: df.tensor(int), muscle_points: df.tensor(df.float3), muscle_activation: float, body_f_s: df.tensor(df.spatial_vector)): link_0 = df.load(muscle_links, i) link_1 = df.load(muscle_links, i+1) if (link_0 == link_1): return 0 r_0 = df.load(muscle_points, i) r_1 = df.load(muscle_points, i+1) xform_0 = df.load(body_X_s, link_0) xform_1 = df.load(body_X_s, link_1) pos_0 = df.spatial_transform_point(xform_0, r_0) pos_1 = df.spatial_transform_point(xform_1, r_1) n = df.normalize(pos_1 - pos_0) # todo: add passive elastic and viscosity terms f = n * muscle_activation df.atomic_sub(body_f_s, link_0, df.spatial_vector(df.cross(pos_0, f), f)) df.atomic_add(body_f_s, link_1, df.spatial_vector(df.cross(pos_1, f), f)) return 0 @df.kernel def eval_muscles( body_X_s: df.tensor(df.spatial_transform), body_v_s: df.tensor(df.spatial_vector), muscle_start: df.tensor(int), muscle_params: df.tensor(float), muscle_links: df.tensor(int), muscle_points: df.tensor(df.float3), muscle_activation: df.tensor(float), # output body_f_s: df.tensor(df.spatial_vector)): tid = df.tid() m_start = df.load(muscle_start, tid) m_end = df.load(muscle_start, tid+1) - 1 activation = df.load(muscle_activation, tid) for i in range(m_start, m_end): compute_muscle_force(i, body_X_s, body_v_s, muscle_links, muscle_points, activation, body_f_s) # compute transform across a joint @df.func def jcalc_transform(type: int, axis: df.float3, joint_q: df.tensor(float), start: int): # prismatic if (type == 0): q = df.load(joint_q, start) X_jc = spatial_transform(axis * q, quat_identity()) return X_jc # revolute if (type == 1): q = df.load(joint_q, start) X_jc = spatial_transform(float3(0.0, 0.0, 0.0), quat_from_axis_angle(axis, q)) return X_jc # ball if (type == 2): qx = df.load(joint_q, start + 0) qy = df.load(joint_q, start + 1) qz = df.load(joint_q, start + 2) qw = df.load(joint_q, start + 3) X_jc = spatial_transform(float3(0.0, 0.0, 0.0), quat(qx, qy, qz, qw)) return X_jc # fixed if (type == 3): X_jc = spatial_transform_identity() return X_jc # free if (type == 4): px = df.load(joint_q, start + 0) py = df.load(joint_q, start + 1) pz = df.load(joint_q, start + 2) qx = df.load(joint_q, start + 3) qy = df.load(joint_q, start + 4) qz = df.load(joint_q, start + 5) qw = df.load(joint_q, start + 6) X_jc = spatial_transform(float3(px, py, pz), quat(qx, qy, qz, qw)) return X_jc # default case return spatial_transform_identity() # compute motion subspace and velocity for a joint @df.func def jcalc_motion(type: int, axis: df.float3, X_sc: df.spatial_transform, joint_S_s: df.tensor(df.spatial_vector), joint_qd: df.tensor(float), joint_start: int): # prismatic if (type == 0): S_s = df.spatial_transform_twist(X_sc, spatial_vector(float3(0.0, 0.0, 0.0), axis)) v_j_s = S_s * df.load(joint_qd, joint_start) df.store(joint_S_s, joint_start, S_s) return v_j_s # revolute if (type == 1): S_s = df.spatial_transform_twist(X_sc, spatial_vector(axis, float3(0.0, 0.0, 0.0))) v_j_s = S_s * df.load(joint_qd, joint_start) df.store(joint_S_s, joint_start, S_s) return v_j_s # ball if (type == 2): w = float3(df.load(joint_qd, joint_start + 0), df.load(joint_qd, joint_start + 1), df.load(joint_qd, joint_start + 2)) S_0 = df.spatial_transform_twist(X_sc, spatial_vector(1.0, 0.0, 0.0, 0.0, 0.0, 0.0)) S_1 = df.spatial_transform_twist(X_sc, spatial_vector(0.0, 1.0, 0.0, 0.0, 0.0, 0.0)) S_2 = df.spatial_transform_twist(X_sc, spatial_vector(0.0, 0.0, 1.0, 0.0, 0.0, 0.0)) # write motion subspace df.store(joint_S_s, joint_start + 0, S_0) df.store(joint_S_s, joint_start + 1, S_1) df.store(joint_S_s, joint_start + 2, S_2) return S_0*w[0] + S_1*w[1] + S_2*w[2] # fixed if (type == 3): return spatial_vector() # free if (type == 4): v_j_s = spatial_vector(df.load(joint_qd, joint_start + 0), df.load(joint_qd, joint_start + 1), df.load(joint_qd, joint_start + 2), df.load(joint_qd, joint_start + 3), df.load(joint_qd, joint_start + 4), df.load(joint_qd, joint_start + 5)) # write motion subspace df.store(joint_S_s, joint_start + 0, spatial_vector(1.0, 0.0, 0.0, 0.0, 0.0, 0.0)) df.store(joint_S_s, joint_start + 1, spatial_vector(0.0, 1.0, 0.0, 0.0, 0.0, 0.0)) df.store(joint_S_s, joint_start + 2, spatial_vector(0.0, 0.0, 1.0, 0.0, 0.0, 0.0)) df.store(joint_S_s, joint_start + 3, spatial_vector(0.0, 0.0, 0.0, 1.0, 0.0, 0.0)) df.store(joint_S_s, joint_start + 4, spatial_vector(0.0, 0.0, 0.0, 0.0, 1.0, 0.0)) df.store(joint_S_s, joint_start + 5, spatial_vector(0.0, 0.0, 0.0, 0.0, 0.0, 1.0)) return v_j_s # default case return spatial_vector() # # compute the velocity across a joint # #@df.func # def jcalc_velocity(self, type, S_s, joint_qd, start): # # prismatic # if (type == 0): # v_j_s = df.load(S_s, start)*df.load(joint_qd, start) # return v_j_s # # revolute # if (type == 1): # v_j_s = df.load(S_s, start)*df.load(joint_qd, start) # return v_j_s # # fixed # if (type == 2): # v_j_s = spatial_vector() # return v_j_s # # free # if (type == 3): # v_j_s = S_s[start+0]*joint_qd[start+0] # v_j_s += S_s[start+1]*joint_qd[start+1] # v_j_s += S_s[start+2]*joint_qd[start+2] # v_j_s += S_s[start+3]*joint_qd[start+3] # v_j_s += S_s[start+4]*joint_qd[start+4] # v_j_s += S_s[start+5]*joint_qd[start+5] # return v_j_s # computes joint space forces/torques in tau @df.func def jcalc_tau( type: int, target_k_e: float, target_k_d: float, limit_k_e: float, limit_k_d: float, joint_S_s: df.tensor(spatial_vector), joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_act: df.tensor(float), joint_target: df.tensor(float), joint_limit_lower: df.tensor(float), joint_limit_upper: df.tensor(float), coord_start: int, dof_start: int, body_f_s: spatial_vector, tau: df.tensor(float)): # prismatic / revolute if (type == 0 or type == 1): S_s = df.load(joint_S_s, dof_start) q = df.load(joint_q, coord_start) qd = df.load(joint_qd, dof_start) act = df.load(joint_act, dof_start) target = df.load(joint_target, coord_start) lower = df.load(joint_limit_lower, coord_start) upper = df.load(joint_limit_upper, coord_start) limit_f = 0.0 # compute limit forces, damping only active when limit is violated if (q < lower): limit_f = limit_k_e*(lower-q) if (q > upper): limit_f = limit_k_e*(upper-q) damping_f = (0.0 - limit_k_d) * qd # total torque / force on the joint t = 0.0 - spatial_dot(S_s, body_f_s) - target_k_e*(q - target) - target_k_d*qd + act + limit_f + damping_f df.store(tau, dof_start, t) # ball if (type == 2): # elastic term.. this is proportional to the # imaginary part of the relative quaternion r_j = float3(df.load(joint_q, coord_start + 0), df.load(joint_q, coord_start + 1), df.load(joint_q, coord_start + 2)) # angular velocity for damping w_j = float3(df.load(joint_qd, dof_start + 0), df.load(joint_qd, dof_start + 1), df.load(joint_qd, dof_start + 2)) for i in range(0, 3): S_s = df.load(joint_S_s, dof_start+i) w = w_j[i] r = r_j[i] df.store(tau, dof_start+i, 0.0 - spatial_dot(S_s, body_f_s) - w*target_k_d - r*target_k_e) # fixed # if (type == 3) # pass # free if (type == 4): for i in range(0, 6): S_s = df.load(joint_S_s, dof_start+i) df.store(tau, dof_start+i, 0.0 - spatial_dot(S_s, body_f_s)) return 0 @df.func def jcalc_integrate( type: int, joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_qdd: df.tensor(float), coord_start: int, dof_start: int, dt: float, joint_q_new: df.tensor(float), joint_qd_new: df.tensor(float)): # prismatic / revolute if (type == 0 or type == 1): qdd = df.load(joint_qdd, dof_start) qd = df.load(joint_qd, dof_start) q = df.load(joint_q, coord_start) qd_new = qd + qdd*dt q_new = q + qd_new*dt df.store(joint_qd_new, dof_start, qd_new) df.store(joint_q_new, coord_start, q_new) # ball if (type == 2): m_j = float3(df.load(joint_qdd, dof_start + 0), df.load(joint_qdd, dof_start + 1), df.load(joint_qdd, dof_start + 2)) w_j = float3(df.load(joint_qd, dof_start + 0), df.load(joint_qd, dof_start + 1), df.load(joint_qd, dof_start + 2)) r_j = quat(df.load(joint_q, coord_start + 0), df.load(joint_q, coord_start + 1), df.load(joint_q, coord_start + 2), df.load(joint_q, coord_start + 3)) # symplectic Euler w_j_new = w_j + m_j*dt drdt_j = mul(quat(w_j_new, 0.0), r_j) * 0.5 # new orientation (normalized) r_j_new = normalize(r_j + drdt_j * dt) # update joint coords df.store(joint_q_new, coord_start + 0, r_j_new[0]) df.store(joint_q_new, coord_start + 1, r_j_new[1]) df.store(joint_q_new, coord_start + 2, r_j_new[2]) df.store(joint_q_new, coord_start + 3, r_j_new[3]) # update joint vel df.store(joint_qd_new, dof_start + 0, w_j_new[0]) df.store(joint_qd_new, dof_start + 1, w_j_new[1]) df.store(joint_qd_new, dof_start + 2, w_j_new[2]) # fixed joint #if (type == 3) # pass # free joint if (type == 4): # dofs: qd = (omega_x, omega_y, omega_z, vel_x, vel_y, vel_z) # coords: q = (trans_x, trans_y, trans_z, quat_x, quat_y, quat_z, quat_w) # angular and linear acceleration m_s = float3(df.load(joint_qdd, dof_start + 0), df.load(joint_qdd, dof_start + 1), df.load(joint_qdd, dof_start + 2)) a_s = float3(df.load(joint_qdd, dof_start + 3), df.load(joint_qdd, dof_start + 4), df.load(joint_qdd, dof_start + 5)) # angular and linear velocity w_s = float3(df.load(joint_qd, dof_start + 0), df.load(joint_qd, dof_start + 1), df.load(joint_qd, dof_start + 2)) v_s = float3(df.load(joint_qd, dof_start + 3), df.load(joint_qd, dof_start + 4), df.load(joint_qd, dof_start + 5)) # symplectic Euler w_s = w_s + m_s*dt v_s = v_s + a_s*dt # translation of origin p_s = float3(df.load(joint_q, coord_start + 0), df.load(joint_q, coord_start + 1), df.load(joint_q, coord_start + 2)) # linear vel of origin (note q/qd switch order of linear angular elements) # note we are converting the body twist in the space frame (w_s, v_s) to compute center of mass velcity dpdt_s = v_s + cross(w_s, p_s) # quat and quat derivative r_s = quat(df.load(joint_q, coord_start + 3), df.load(joint_q, coord_start + 4), df.load(joint_q, coord_start + 5), df.load(joint_q, coord_start + 6)) drdt_s = mul(quat(w_s, 0.0), r_s) * 0.5 # new orientation (normalized) p_s_new = p_s + dpdt_s * dt r_s_new = normalize(r_s + drdt_s * dt) # update transform df.store(joint_q_new, coord_start + 0, p_s_new[0]) df.store(joint_q_new, coord_start + 1, p_s_new[1]) df.store(joint_q_new, coord_start + 2, p_s_new[2]) df.store(joint_q_new, coord_start + 3, r_s_new[0]) df.store(joint_q_new, coord_start + 4, r_s_new[1]) df.store(joint_q_new, coord_start + 5, r_s_new[2]) df.store(joint_q_new, coord_start + 6, r_s_new[3]) # update joint_twist df.store(joint_qd_new, dof_start + 0, w_s[0]) df.store(joint_qd_new, dof_start + 1, w_s[1]) df.store(joint_qd_new, dof_start + 2, w_s[2]) df.store(joint_qd_new, dof_start + 3, v_s[0]) df.store(joint_qd_new, dof_start + 4, v_s[1]) df.store(joint_qd_new, dof_start + 5, v_s[2]) return 0 @df.func def compute_link_transform(i: int, joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_X_pj: df.tensor(df.spatial_transform), joint_X_cm: df.tensor(df.spatial_transform), joint_axis: df.tensor(df.float3), body_X_sc: df.tensor(df.spatial_transform), body_X_sm: df.tensor(df.spatial_transform)): # parent transform parent = load(joint_parent, i) # parent transform in spatial coordinates X_sp = spatial_transform_identity() if (parent >= 0): X_sp = load(body_X_sc, parent) type = load(joint_type, i) axis = load(joint_axis, i) coord_start = load(joint_q_start, i) dof_start = load(joint_qd_start, i) # compute transform across joint X_jc = jcalc_transform(type, axis, joint_q, coord_start) X_pj = load(joint_X_pj, i) X_sc = spatial_transform_multiply(X_sp, spatial_transform_multiply(X_pj, X_jc)) # compute transform of center of mass X_cm = load(joint_X_cm, i) X_sm = spatial_transform_multiply(X_sc, X_cm) # store geometry transforms store(body_X_sc, i, X_sc) store(body_X_sm, i, X_sm) return 0 @df.kernel def eval_rigid_fk(articulation_start: df.tensor(int), joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_X_pj: df.tensor(df.spatial_transform), joint_X_cm: df.tensor(df.spatial_transform), joint_axis: df.tensor(df.float3), body_X_sc: df.tensor(df.spatial_transform), body_X_sm: df.tensor(df.spatial_transform)): # one thread per-articulation index = tid() start = df.load(articulation_start, index) end = df.load(articulation_start, index+1) for i in range(start, end): compute_link_transform(i, joint_type, joint_parent, joint_q_start, joint_qd_start, joint_q, joint_X_pj, joint_X_cm, joint_axis, body_X_sc, body_X_sm) @df.func def compute_link_velocity(i: int, joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_qd_start: df.tensor(int), joint_qd: df.tensor(float), joint_axis: df.tensor(df.float3), body_I_m: df.tensor(df.spatial_matrix), body_X_sc: df.tensor(df.spatial_transform), body_X_sm: df.tensor(df.spatial_transform), joint_X_pj: df.tensor(df.spatial_transform), gravity: df.tensor(df.float3), # outputs joint_S_s: df.tensor(df.spatial_vector), body_I_s: df.tensor(df.spatial_matrix), body_v_s: df.tensor(df.spatial_vector), body_f_s: df.tensor(df.spatial_vector), body_a_s: df.tensor(df.spatial_vector)): type = df.load(joint_type, i) axis = df.load(joint_axis, i) parent = df.load(joint_parent, i) dof_start = df.load(joint_qd_start, i) X_sc = df.load(body_X_sc, i) # parent transform in spatial coordinates X_sp = spatial_transform_identity() if (parent >= 0): X_sp = load(body_X_sc, parent) X_pj = load(joint_X_pj, i) X_sj = spatial_transform_multiply(X_sp, X_pj) # compute motion subspace and velocity across the joint (also stores S_s to global memory) v_j_s = jcalc_motion(type, axis, X_sj, joint_S_s, joint_qd, dof_start) # parent velocity v_parent_s = spatial_vector() a_parent_s = spatial_vector() if (parent >= 0): v_parent_s = df.load(body_v_s, parent) a_parent_s = df.load(body_a_s, parent) # body velocity, acceleration v_s = v_parent_s + v_j_s a_s = a_parent_s + spatial_cross(v_s, v_j_s) # + self.joint_S_s[i]*self.joint_qdd[i] # compute body forces X_sm = df.load(body_X_sm, i) I_m = df.load(body_I_m, i) # gravity and external forces (expressed in frame aligned with s but centered at body mass) g = df.load(gravity, 0) m = I_m[3, 3] f_g_m = spatial_vector(float3(), g) * m f_g_s = spatial_transform_wrench(spatial_transform(spatial_transform_get_translation(X_sm), quat_identity()), f_g_m) #f_ext_s = df.load(body_f_s, i) + f_g_s # body forces I_s = spatial_transform_inertia(X_sm, I_m) f_b_s = df.mul(I_s, a_s) + spatial_cross_dual(v_s, df.mul(I_s, v_s)) df.store(body_v_s, i, v_s) df.store(body_a_s, i, a_s) df.store(body_f_s, i, f_b_s - f_g_s) df.store(body_I_s, i, I_s) return 0 @df.func def compute_link_tau(offset: int, joint_end: int, joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_act: df.tensor(float), joint_target: df.tensor(float), joint_target_ke: df.tensor(float), joint_target_kd: df.tensor(float), joint_limit_lower: df.tensor(float), joint_limit_upper: df.tensor(float), joint_limit_ke: df.tensor(float), joint_limit_kd: df.tensor(float), joint_S_s: df.tensor(df.spatial_vector), body_fb_s: df.tensor(df.spatial_vector), # outputs body_ft_s: df.tensor(df.spatial_vector), tau: df.tensor(float)): # for backwards traversal i = joint_end-offset-1 type = df.load(joint_type, i) parent = df.load(joint_parent, i) dof_start = df.load(joint_qd_start, i) coord_start = df.load(joint_q_start, i) target_k_e = df.load(joint_target_ke, i) target_k_d = df.load(joint_target_kd, i) limit_k_e = df.load(joint_limit_ke, i) limit_k_d = df.load(joint_limit_kd, i) # total forces on body f_b_s = df.load(body_fb_s, i) f_t_s = df.load(body_ft_s, i) f_s = f_b_s + f_t_s # compute joint-space forces, writes out tau jcalc_tau(type, target_k_e, target_k_d, limit_k_e, limit_k_d, joint_S_s, joint_q, joint_qd, joint_act, joint_target, joint_limit_lower, joint_limit_upper, coord_start, dof_start, f_s, tau) # update parent forces, todo: check that this is valid for the backwards pass if (parent >= 0): df.atomic_add(body_ft_s, parent, f_s) return 0 @df.kernel def eval_rigid_id(articulation_start: df.tensor(int), joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_axis: df.tensor(df.float3), joint_target_ke: df.tensor(float), joint_target_kd: df.tensor(float), body_I_m: df.tensor(df.spatial_matrix), body_X_sc: df.tensor(df.spatial_transform), body_X_sm: df.tensor(df.spatial_transform), joint_X_pj: df.tensor(df.spatial_transform), gravity: df.tensor(df.float3), # outputs joint_S_s: df.tensor(df.spatial_vector), body_I_s: df.tensor(df.spatial_matrix), body_v_s: df.tensor(df.spatial_vector), body_f_s: df.tensor(df.spatial_vector), body_a_s: df.tensor(df.spatial_vector)): # one thread per-articulation index = tid() start = df.load(articulation_start, index) end = df.load(articulation_start, index+1) count = end-start # compute link velocities and coriolis forces for i in range(start, end): compute_link_velocity( i, joint_type, joint_parent, joint_qd_start, joint_qd, joint_axis, body_I_m, body_X_sc, body_X_sm, joint_X_pj, gravity, joint_S_s, body_I_s, body_v_s, body_f_s, body_a_s) @df.kernel def eval_rigid_tau(articulation_start: df.tensor(int), joint_type: df.tensor(int), joint_parent: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_act: df.tensor(float), joint_target: df.tensor(float), joint_target_ke: df.tensor(float), joint_target_kd: df.tensor(float), joint_limit_lower: df.tensor(float), joint_limit_upper: df.tensor(float), joint_limit_ke: df.tensor(float), joint_limit_kd: df.tensor(float), joint_axis: df.tensor(df.float3), joint_S_s: df.tensor(df.spatial_vector), body_fb_s: df.tensor(df.spatial_vector), # outputs body_ft_s: df.tensor(df.spatial_vector), tau: df.tensor(float)): # one thread per-articulation index = tid() start = df.load(articulation_start, index) end = df.load(articulation_start, index+1) count = end-start # compute joint forces for i in range(0, count): compute_link_tau( i, end, joint_type, joint_parent, joint_q_start, joint_qd_start, joint_q, joint_qd, joint_act, joint_target, joint_target_ke, joint_target_kd, joint_limit_lower, joint_limit_upper, joint_limit_ke, joint_limit_kd, joint_S_s, body_fb_s, body_ft_s, tau) @df.kernel def eval_rigid_jacobian( articulation_start: df.tensor(int), articulation_J_start: df.tensor(int), joint_parent: df.tensor(int), joint_qd_start: df.tensor(int), joint_S_s: df.tensor(spatial_vector), # outputs J: df.tensor(float)): # one thread per-articulation index = tid() joint_start = df.load(articulation_start, index) joint_end = df.load(articulation_start, index+1) joint_count = joint_end-joint_start J_offset = df.load(articulation_J_start, index) # in spatial.h spatial_jacobian(joint_S_s, joint_parent, joint_qd_start, joint_start, joint_count, J_offset, J) # @df.kernel # def eval_rigid_jacobian( # articulation_start: df.tensor(int), # articulation_J_start: df.tensor(int), # joint_parent: df.tensor(int), # joint_qd_start: df.tensor(int), # joint_S_s: df.tensor(spatial_vector), # # outputs # J: df.tensor(float)): # # one thread per-articulation # index = tid() # joint_start = df.load(articulation_start, index) # joint_end = df.load(articulation_start, index+1) # joint_count = joint_end-joint_start # dof_start = df.load(joint_qd_start, joint_start) # dof_end = df.load(joint_qd_start, joint_end) # dof_count = dof_end-dof_start # #(const spatial_vector* S, const int* joint_parents, const int* joint_qd_start, int num_links, int num_dofs, float* J) # spatial_jacobian(joint_S_s, joint_parent, joint_qd_start, joint_count, dof_count, J) @df.kernel def eval_rigid_mass( articulation_start: df.tensor(int), articulation_M_start: df.tensor(int), body_I_s: df.tensor(spatial_matrix), # outputs M: df.tensor(float)): # one thread per-articulation index = tid() joint_start = df.load(articulation_start, index) joint_end = df.load(articulation_start, index+1) joint_count = joint_end-joint_start M_offset = df.load(articulation_M_start, index) # in spatial.h spatial_mass(body_I_s, joint_start, joint_count, M_offset, M) @df.kernel def eval_dense_gemm(m: int, n: int, p: int, t1: int, t2: int, A: df.tensor(float), B: df.tensor(float), C: df.tensor(float)): dense_gemm(m, n, p, t1, t2, A, B, C) @df.kernel def eval_dense_gemm_batched(m: df.tensor(int), n: df.tensor(int), p: df.tensor(int), t1: int, t2: int, A_start: df.tensor(int), B_start: df.tensor(int), C_start: df.tensor(int), A: df.tensor(float), B: df.tensor(float), C: df.tensor(float)): dense_gemm_batched(m, n, p, t1, t2, A_start, B_start, C_start, A, B, C) @df.kernel def eval_dense_cholesky(n: int, A: df.tensor(float), regularization: df.tensor(float), L: df.tensor(float)): dense_chol(n, A, regularization, L) @df.kernel def eval_dense_cholesky_batched(A_start: df.tensor(int), A_dim: df.tensor(int), A: df.tensor(float), regularization: df.tensor(float), L: df.tensor(float)): dense_chol_batched(A_start, A_dim, A, regularization, L) @df.kernel def eval_dense_subs(n: int, L: df.tensor(float), b: df.tensor(float), x: df.tensor(float)): dense_subs(n, L, b, x) # helper that propagates gradients back to A, treating L as a constant / temporary variable # allows us to reuse the Cholesky decomposition from the forward pass @df.kernel def eval_dense_solve(n: int, A: df.tensor(float), L: df.tensor(float), b: df.tensor(float), tmp: df.tensor(float), x: df.tensor(float)): dense_solve(n, A, L, b, tmp, x) # helper that propagates gradients back to A, treating L as a constant / temporary variable # allows us to reuse the Cholesky decomposition from the forward pass @df.kernel def eval_dense_solve_batched(b_start: df.tensor(int), A_start: df.tensor(int), A_dim: df.tensor(int), A: df.tensor(float), L: df.tensor(float), b: df.tensor(float), tmp: df.tensor(float), x: df.tensor(float)): dense_solve_batched(b_start, A_start, A_dim, A, L, b, tmp, x) @df.kernel def eval_rigid_integrate( joint_type: df.tensor(int), joint_q_start: df.tensor(int), joint_qd_start: df.tensor(int), joint_q: df.tensor(float), joint_qd: df.tensor(float), joint_qdd: df.tensor(float), dt: float, # outputs joint_q_new: df.tensor(float), joint_qd_new: df.tensor(float)): # one thread per-articulation index = tid() type = df.load(joint_type, index) coord_start = df.load(joint_q_start, index) dof_start = df.load(joint_qd_start, index) jcalc_integrate( type, joint_q, joint_qd, joint_qdd, coord_start, dof_start, dt, joint_q_new, joint_qd_new) g_state_out = None # define PyTorch autograd op to wrap simulate func class SimulateFunc(torch.autograd.Function): """PyTorch autograd function representing a simulation stpe Note: This node will be inserted into the computation graph whenever `forward()` is called on an integrator object. It should not be called directly by the user. """ @staticmethod def forward(ctx, integrator, model, state_in, dt, substeps, mass_matrix_freq, *tensors): # record launches ctx.tape = df.Tape() ctx.inputs = tensors #ctx.outputs = df.to_weak_list(state_out.flatten()) actuation = state_in.joint_act # simulate for i in range(substeps): # ensure actuation is set on all substeps state_in.joint_act = actuation state_out = model.state() integrator._simulate(ctx.tape, model, state_in, state_out, dt/float(substeps), update_mass_matrix=((i%mass_matrix_freq)==0)) # swap states state_in = state_out # use global to pass state object back to caller global g_state_out g_state_out = state_out ctx.outputs = df.to_weak_list(state_out.flatten()) return tuple(state_out.flatten()) @staticmethod def backward(ctx, *grads): # ensure grads are contiguous in memory adj_outputs = df.make_contiguous(grads) # register outputs with tape outputs = df.to_strong_list(ctx.outputs) for o in range(len(outputs)): ctx.tape.adjoints[outputs[o]] = adj_outputs[o] # replay launches backwards ctx.tape.replay() # find adjoint of inputs adj_inputs = [] for i in ctx.inputs: if i in ctx.tape.adjoints: adj_inputs.append(ctx.tape.adjoints[i]) else: adj_inputs.append(None) # free the tape ctx.tape.reset() # filter grads to replace empty tensors / no grad / constant params with None return (None, None, None, None, None, None, *df.filter_grads(adj_inputs)) class SemiImplicitIntegrator: """A semi-implicit integrator using symplectic Euler After constructing `Model` and `State` objects this time-integrator may be used to advance the simulation state forward in time. Semi-implicit time integration is a variational integrator that preserves energy, however it not unconditionally stable, and requires a time-step small enough to support the required stiffness and damping forces. See: https://en.wikipedia.org/wiki/Semi-implicit_Euler_method Example: >>> integrator = df.SemiImplicitIntegrator() >>> >>> # simulation loop >>> for i in range(100): >>> state = integrator.forward(model, state, dt) """ def __init__(self): pass def forward(self, model: Model, state_in: State, dt: float, substeps: int, mass_matrix_freq: int) -> State: """Performs a single integration step forward in time This method inserts a node into the PyTorch computational graph with references to all model and state tensors such that gradients can be propagrated back through the simulation step. Args: model: Simulation model state: Simulation state at the start the time-step dt: The simulation time-step (usually in seconds) Returns: The state of the system at the end of the time-step """ if dflex.config.no_grad: # if no gradient required then do inplace update for i in range(substeps): self._simulate(df.Tape(), model, state_in, state_in, dt/float(substeps), update_mass_matrix=(i%mass_matrix_freq)==0) return state_in else: # get list of inputs and outputs for PyTorch tensor tracking inputs = [*state_in.flatten(), *model.flatten()] # run sim as a PyTorch op tensors = SimulateFunc.apply(self, model, state_in, dt, substeps, mass_matrix_freq, *inputs) global g_state_out state_out = g_state_out g_state_out = None # null reference return state_out def _simulate(self, tape, model, state_in, state_out, dt, update_mass_matrix=True): with dflex.util.ScopedTimer("simulate", False): # alloc particle force buffer if (model.particle_count): state_out.particle_f.zero_() if (model.link_count): state_out.body_ft_s = torch.zeros((model.link_count, 6), dtype=torch.float32, device=model.adapter, requires_grad=True) state_out.body_f_ext_s = torch.zeros((model.link_count, 6), dtype=torch.float32, device=model.adapter, requires_grad=True) # damped springs if (model.spring_count): tape.launch(func=eval_springs, dim=model.spring_count, inputs=[state_in.particle_q, state_in.particle_qd, model.spring_indices, model.spring_rest_length, model.spring_stiffness, model.spring_damping], outputs=[state_out.particle_f], adapter=model.adapter) # triangle elastic and lift/drag forces if (model.tri_count and model.tri_ke > 0.0): tape.launch(func=eval_triangles, dim=model.tri_count, inputs=[ state_in.particle_q, state_in.particle_qd, model.tri_indices, model.tri_poses, model.tri_activations, model.tri_ke, model.tri_ka, model.tri_kd, model.tri_drag, model.tri_lift ], outputs=[state_out.particle_f], adapter=model.adapter) # triangle/triangle contacts if (model.enable_tri_collisions and model.tri_count and model.tri_ke > 0.0): tape.launch(func=eval_triangles_contact, dim=model.tri_count * model.particle_count, inputs=[ model.particle_count, state_in.particle_q, state_in.particle_qd, model.tri_indices, model.tri_poses, model.tri_activations, model.tri_ke, model.tri_ka, model.tri_kd, model.tri_drag, model.tri_lift ], outputs=[state_out.particle_f], adapter=model.adapter) # triangle bending if (model.edge_count): tape.launch(func=eval_bending, dim=model.edge_count, inputs=[state_in.particle_q, state_in.particle_qd, model.edge_indices, model.edge_rest_angle, model.edge_ke, model.edge_kd], outputs=[state_out.particle_f], adapter=model.adapter) # particle ground contact if (model.ground and model.particle_count): tape.launch(func=eval_contacts, dim=model.particle_count, inputs=[state_in.particle_q, state_in.particle_qd, model.contact_ke, model.contact_kd, model.contact_kf, model.contact_mu], outputs=[state_out.particle_f], adapter=model.adapter) # tetrahedral FEM if (model.tet_count): tape.launch(func=eval_tetrahedra, dim=model.tet_count, inputs=[state_in.particle_q, state_in.particle_qd, model.tet_indices, model.tet_poses, model.tet_activations, model.tet_materials], outputs=[state_out.particle_f], adapter=model.adapter) #---------------------------- # articulations if (model.link_count): # evaluate body transforms tape.launch( func=eval_rigid_fk, dim=model.articulation_count, inputs=[ model.articulation_joint_start, model.joint_type, model.joint_parent, model.joint_q_start, model.joint_qd_start, state_in.joint_q, model.joint_X_pj, model.joint_X_cm, model.joint_axis ], outputs=[ state_out.body_X_sc, state_out.body_X_sm ], adapter=model.adapter, preserve_output=True) # evaluate joint inertias, motion vectors, and forces tape.launch( func=eval_rigid_id, dim=model.articulation_count, inputs=[ model.articulation_joint_start, model.joint_type, model.joint_parent, model.joint_q_start, model.joint_qd_start, state_in.joint_q, state_in.joint_qd, model.joint_axis, model.joint_target_ke, model.joint_target_kd, model.body_I_m, state_out.body_X_sc, state_out.body_X_sm, model.joint_X_pj, model.gravity ], outputs=[ state_out.joint_S_s, state_out.body_I_s, state_out.body_v_s, state_out.body_f_s, state_out.body_a_s, ], adapter=model.adapter, preserve_output=True) if (model.ground and model.contact_count > 0): # evaluate contact forces tape.launch( func=eval_rigid_contacts_art, dim=model.contact_count, inputs=[ state_out.body_X_sc, state_out.body_v_s, model.contact_body0, model.contact_point0, model.contact_dist, model.contact_material, model.shape_materials ], outputs=[ state_out.body_f_s ], adapter=model.adapter, preserve_output=True) # particle shape contact if (model.particle_count): # tape.launch(func=eval_soft_contacts, # dim=model.particle_count*model.shape_count, # inputs=[state_in.particle_q, state_in.particle_qd, model.contact_ke, model.contact_kd, model.contact_kf, model.contact_mu], # outputs=[state_out.particle_f], # adapter=model.adapter) tape.launch(func=eval_soft_contacts, dim=model.particle_count*model.shape_count, inputs=[ model.particle_count, state_in.particle_q, state_in.particle_qd, state_in.body_X_sc, state_in.body_v_s, model.shape_transform, model.shape_body, model.shape_geo_type, torch.Tensor(), model.shape_geo_scale, model.shape_materials, model.contact_ke, model.contact_kd, model.contact_kf, model.contact_mu], # outputs outputs=[ state_out.particle_f, state_out.body_f_s], adapter=model.adapter) # evaluate muscle actuation tape.launch( func=eval_muscles, dim=model.muscle_count, inputs=[ state_out.body_X_sc, state_out.body_v_s, model.muscle_start, model.muscle_params, model.muscle_links, model.muscle_points, model.muscle_activation ], outputs=[ state_out.body_f_s ], adapter=model.adapter, preserve_output=True) # evaluate joint torques tape.launch( func=eval_rigid_tau, dim=model.articulation_count, inputs=[ model.articulation_joint_start, model.joint_type, model.joint_parent, model.joint_q_start, model.joint_qd_start, state_in.joint_q, state_in.joint_qd, state_in.joint_act, model.joint_target, model.joint_target_ke, model.joint_target_kd, model.joint_limit_lower, model.joint_limit_upper, model.joint_limit_ke, model.joint_limit_kd, model.joint_axis, state_out.joint_S_s, state_out.body_f_s ], outputs=[ state_out.body_ft_s, state_out.joint_tau ], adapter=model.adapter, preserve_output=True) if (update_mass_matrix): model.alloc_mass_matrix() # build J tape.launch( func=eval_rigid_jacobian, dim=model.articulation_count, inputs=[ # inputs model.articulation_joint_start, model.articulation_J_start, model.joint_parent, model.joint_qd_start, state_out.joint_S_s ], outputs=[ model.J ], adapter=model.adapter, preserve_output=True) # build M tape.launch( func=eval_rigid_mass, dim=model.articulation_count, inputs=[ # inputs model.articulation_joint_start, model.articulation_M_start, state_out.body_I_s ], outputs=[ model.M ], adapter=model.adapter, preserve_output=True) # form P = M*J df.matmul_batched( tape, model.articulation_count, model.articulation_M_rows, model.articulation_J_cols, model.articulation_J_rows, 0, 0, model.articulation_M_start, model.articulation_J_start, model.articulation_J_start, # P start is the same as J start since it has the same dims as J model.M, model.J, model.P, adapter=model.adapter) # form H = J^T*P df.matmul_batched( tape, model.articulation_count, model.articulation_J_cols, model.articulation_J_cols, model.articulation_J_rows, # P rows is the same as J rows 1, 0, model.articulation_J_start, model.articulation_J_start, # P start is the same as J start since it has the same dims as J model.articulation_H_start, model.J, model.P, model.H, adapter=model.adapter) # compute decomposition tape.launch( func=eval_dense_cholesky_batched, dim=model.articulation_count, inputs=[ model.articulation_H_start, model.articulation_H_rows, model.H, model.joint_armature ], outputs=[ model.L ], adapter=model.adapter, skip_check_grad=True) tmp = torch.zeros_like(state_out.joint_tau) # solve for qdd tape.launch( func=eval_dense_solve_batched, dim=model.articulation_count, inputs=[ model.articulation_dof_start, model.articulation_H_start, model.articulation_H_rows, model.H, model.L, state_out.joint_tau, tmp ], outputs=[ state_out.joint_qdd ], adapter=model.adapter, skip_check_grad=True) # integrate joint dofs -> joint coords tape.launch( func=eval_rigid_integrate, dim=model.link_count, inputs=[ model.joint_type, model.joint_q_start, model.joint_qd_start, state_in.joint_q, state_in.joint_qd, state_out.joint_qdd, dt ], outputs=[ state_out.joint_q, state_out.joint_qd ], adapter=model.adapter) #---------------------------- # integrate particles if (model.particle_count): tape.launch(func=integrate_particles, dim=model.particle_count, inputs=[state_in.particle_q, state_in.particle_qd, state_out.particle_f, model.particle_inv_mass, model.gravity, dt], outputs=[state_out.particle_q, state_out.particle_qd], adapter=model.adapter) return state_out @df.kernel def solve_springs(x: df.tensor(df.float3), v: df.tensor(df.float3), invmass: df.tensor(float), spring_indices: df.tensor(int), spring_rest_lengths: df.tensor(float), spring_stiffness: df.tensor(float), spring_damping: df.tensor(float), dt: float, delta: df.tensor(df.float3)): tid = df.tid() i = df.load(spring_indices, tid * 2 + 0) j = df.load(spring_indices, tid * 2 + 1) ke = df.load(spring_stiffness, tid) kd = df.load(spring_damping, tid) rest = df.load(spring_rest_lengths, tid) xi = df.load(x, i) xj = df.load(x, j) vi = df.load(v, i) vj = df.load(v, j) xij = xi - xj vij = vi - vj l = length(xij) l_inv = 1.0 / l # normalized spring direction dir = xij * l_inv c = l - rest dcdt = dot(dir, vij) # damping based on relative velocity. #fs = dir * (ke * c + kd * dcdt) wi = df.load(invmass, i) wj = df.load(invmass, j) denom = wi + wj alpha = 1.0/(ke*dt*dt) multiplier = c / (denom)# + alpha) xd = dir*multiplier df.atomic_sub(delta, i, xd*wi) df.atomic_add(delta, j, xd*wj) @df.kernel def solve_tetrahedra(x: df.tensor(df.float3), v: df.tensor(df.float3), inv_mass: df.tensor(float), indices: df.tensor(int), pose: df.tensor(df.mat33), activation: df.tensor(float), materials: df.tensor(float), dt: float, relaxation: float, delta: df.tensor(df.float3)): tid = df.tid() i = df.load(indices, tid * 4 + 0) j = df.load(indices, tid * 4 + 1) k = df.load(indices, tid * 4 + 2) l = df.load(indices, tid * 4 + 3) act = df.load(activation, tid) k_mu = df.load(materials, tid * 3 + 0) k_lambda = df.load(materials, tid * 3 + 1) k_damp = df.load(materials, tid * 3 + 2) x0 = df.load(x, i) x1 = df.load(x, j) x2 = df.load(x, k) x3 = df.load(x, l) v0 = df.load(v, i) v1 = df.load(v, j) v2 = df.load(v, k) v3 = df.load(v, l) w0 = df.load(inv_mass, i) w1 = df.load(inv_mass, j) w2 = df.load(inv_mass, k) w3 = df.load(inv_mass, l) x10 = x1 - x0 x20 = x2 - x0 x30 = x3 - x0 v10 = v1 - v0 v20 = v2 - v0 v30 = v3 - v0 Ds = df.mat33(x10, x20, x30) Dm = df.load(pose, tid) inv_rest_volume = df.determinant(Dm) * 6.0 rest_volume = 1.0 / inv_rest_volume # F = Xs*Xm^-1 F = Ds * Dm f1 = df.float3(F[0, 0], F[1, 0], F[2, 0]) f2 = df.float3(F[0, 1], F[1, 1], F[2, 1]) f3 = df.float3(F[0, 2], F[1, 2], F[2, 2]) # C_sqrt tr = dot(f1, f1) + dot(f2, f2) + dot(f3, f3) r_s = df.sqrt(abs(tr - 3.0)) C = r_s if (r_s == 0.0): return if (tr < 3.0): r_s = 0.0 - r_s dCdx = F*df.transpose(Dm)*(1.0/r_s) alpha = 1.0 + k_mu / k_lambda # C_Neo # r_s = df.sqrt(dot(f1, f1) + dot(f2, f2) + dot(f3, f3)) # r_s_inv = 1.0/r_s # C = r_s # dCdx = F*df.transpose(Dm)*r_s_inv # alpha = 1.0 + k_mu / k_lambda # C_Spherical # r_s = df.sqrt(dot(f1, f1) + dot(f2, f2) + dot(f3, f3)) # r_s_inv = 1.0/r_s # C = r_s - df.sqrt(3.0) # dCdx = F*df.transpose(Dm)*r_s_inv # alpha = 1.0 # C_D #r_s = df.sqrt(dot(f1, f1) + dot(f2, f2) + dot(f3, f3)) #C = r_s*r_s - 3.0 #dCdx = F*df.transpose(Dm)*2.0 #alpha = 1.0 grad1 = float3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) grad2 = float3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) grad3 = float3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) grad0 = (grad1 + grad2 + grad3)*(0.0 - 1.0) denom = dot(grad0,grad0)*w0 + dot(grad1,grad1)*w1 + dot(grad2,grad2)*w2 + dot(grad3,grad3)*w3 multiplier = C/(denom + 1.0/(k_mu*dt*dt*rest_volume)) delta0 = grad0*multiplier delta1 = grad1*multiplier delta2 = grad2*multiplier delta3 = grad3*multiplier # hydrostatic part J = df.determinant(F) C_vol = J - alpha # dCdx = df.mat33(cross(f2, f3), cross(f3, f1), cross(f1, f2))*df.transpose(Dm) # grad1 = float3(dCdx[0,0], dCdx[1,0], dCdx[2,0]) # grad2 = float3(dCdx[0,1], dCdx[1,1], dCdx[2,1]) # grad3 = float3(dCdx[0,2], dCdx[1,2], dCdx[2,2]) # grad0 = (grad1 + grad2 + grad3)*(0.0 - 1.0) s = inv_rest_volume / 6.0 grad1 = df.cross(x20, x30) * s grad2 = df.cross(x30, x10) * s grad3 = df.cross(x10, x20) * s grad0 = (grad1 + grad2 + grad3)*(0.0 - 1.0) denom = dot(grad0, grad0)*w0 + dot(grad1, grad1)*w1 + dot(grad2, grad2)*w2 + dot(grad3, grad3)*w3 multiplier = C_vol/(denom + 1.0/(k_lambda*dt*dt*rest_volume)) delta0 = delta0 + grad0 * multiplier delta1 = delta1 + grad1 * multiplier delta2 = delta2 + grad2 * multiplier delta3 = delta3 + grad3 * multiplier # apply forces df.atomic_sub(delta, i, delta0*w0*relaxation) df.atomic_sub(delta, j, delta1*w1*relaxation) df.atomic_sub(delta, k, delta2*w2*relaxation) df.atomic_sub(delta, l, delta3*w3*relaxation) @df.kernel def solve_contacts( x: df.tensor(df.float3), v: df.tensor(df.float3), inv_mass: df.tensor(float), mu: float, dt: float, delta: df.tensor(df.float3)): tid = df.tid() x0 = df.load(x, tid) v0 = df.load(v, tid) w0 = df.load(inv_mass, tid) n = df.float3(0.0, 1.0, 0.0) c = df.dot(n, x0) - 0.01 if (c > 0.0): return # normal lambda_n = c delta_n = n*lambda_n # friction vn = df.dot(n, v0) vt = v0 - n * vn lambda_f = df.max(mu*lambda_n, 0.0 - df.length(vt)*dt) delta_f = df.normalize(vt)*lambda_f df.atomic_add(delta, tid, delta_f - delta_n) @df.kernel def apply_deltas(x_orig: df.tensor(df.float3), v_orig: df.tensor(df.float3), x_pred: df.tensor(df.float3), delta: df.tensor(df.float3), dt: float, x_out: df.tensor(df.float3), v_out: df.tensor(df.float3)): tid = df.tid() x0 = df.load(x_orig, tid) xp = df.load(x_pred, tid) # constraint deltas d = df.load(delta, tid) x_new = xp + d v_new = (x_new - x0)/dt df.store(x_out, tid, x_new) df.store(v_out, tid, v_new) class XPBDIntegrator: """A implicit integrator using XPBD After constructing `Model` and `State` objects this time-integrator may be used to advance the simulation state forward in time. Semi-implicit time integration is a variational integrator that preserves energy, however it not unconditionally stable, and requires a time-step small enough to support the required stiffness and damping forces. See: https://en.wikipedia.org/wiki/Semi-implicit_Euler_method Example: >>> integrator = df.SemiImplicitIntegrator() >>> >>> # simulation loop >>> for i in range(100): >>> state = integrator.forward(model, state, dt) """ def __init__(self): pass def forward(self, model: Model, state_in: State, dt: float) -> State: """Performs a single integration step forward in time This method inserts a node into the PyTorch computational graph with references to all model and state tensors such that gradients can be propagrated back through the simulation step. Args: model: Simulation model state: Simulation state at the start the time-step dt: The simulation time-step (usually in seconds) Returns: The state of the system at the end of the time-step """ if dflex.config.no_grad: # if no gradient required then do inplace update self._simulate(df.Tape(), model, state_in, state_in, dt) return state_in else: # get list of inputs and outputs for PyTorch tensor tracking inputs = [*state_in.flatten(), *model.flatten()] # allocate new output state_out = model.state() # run sim as a PyTorch op tensors = SimulateFunc.apply(self, model, state_in, state_out, dt, *inputs) return state_out def _simulate(self, tape, model, state_in, state_out, dt): with dflex.util.ScopedTimer("simulate", False): # alloc particle force buffer if (model.particle_count): state_out.particle_f.zero_() q_pred = torch.zeros_like(state_in.particle_q) qd_pred = torch.zeros_like(state_in.particle_qd) #---------------------------- # integrate particles if (model.particle_count): tape.launch(func=integrate_particles, dim=model.particle_count, inputs=[state_in.particle_q, state_in.particle_qd, state_out.particle_f, model.particle_inv_mass, model.gravity, dt], outputs=[q_pred, qd_pred], adapter=model.adapter) # contacts if (model.particle_count and model.ground): tape.launch(func=solve_contacts, dim=model.particle_count, inputs=[q_pred, qd_pred, model.particle_inv_mass, model.contact_mu, dt], outputs=[state_out.particle_f], adapter=model.adapter) # damped springs if (model.spring_count): tape.launch(func=solve_springs, dim=model.spring_count, inputs=[q_pred, qd_pred, model.particle_inv_mass, model.spring_indices, model.spring_rest_length, model.spring_stiffness, model.spring_damping, dt], outputs=[state_out.particle_f], adapter=model.adapter) # tetrahedral FEM if (model.tet_count): tape.launch(func=solve_tetrahedra, dim=model.tet_count, inputs=[q_pred, qd_pred, model.particle_inv_mass, model.tet_indices, model.tet_poses, model.tet_activations, model.tet_materials, dt, model.relaxation], outputs=[state_out.particle_f], adapter=model.adapter) # apply updates tape.launch(func=apply_deltas, dim=model.particle_count, inputs=[state_in.particle_q, state_in.particle_qd, q_pred, state_out.particle_f, dt], outputs=[state_out.particle_q, state_out.particle_qd], adapter=model.adapter) return state_out
97,130
Python
31.333888
241
0.51253
vstrozzi/FRL-SHAC-Extension/dflex/dflex/matnn.h
#pragma once CUDA_CALLABLE inline int dense_index(int stride, int i, int j) { return i*stride + j; } template <bool transpose> CUDA_CALLABLE inline int dense_index(int rows, int cols, int i, int j) { if (transpose) return j*rows + i; else return i*cols + j; } #ifdef CPU const int kNumThreadsPerBlock = 1; template <bool t1, bool t2, bool add> CUDA_CALLABLE inline void dense_gemm_impl(int m, int n, int p, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C) { for (int i=0; i < m; i++) { for (int j=0; j < n; ++j) { float sum = 0.0f; for (int k=0; k < p; ++k) { sum += A[dense_index<t1>(m, p, i, k)]*B[dense_index<t2>(p, n, k, j)]; } if (add) C[i*n + j] += sum; else C[i*n + j] = sum; } } } #else const int kNumThreadsPerBlock = 256; template <bool t1, bool t2, bool add> CUDA_CALLABLE inline void dense_gemm_impl(int m, int n, int p, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C) { // each thread in the block calculates an output (or more if output dim > block dim) for (int e=threadIdx.x; e < m*n; e += blockDim.x) { const int i=e/n; const int j=e%n; float sum = 0.0f; for (int k=0; k < p; ++k) { sum += A[dense_index<t1>(m, p, i, k)]*B[dense_index<t2>(p, n, k, j)]; } if (add) C[i*n + j] += sum; else C[i*n + j] = sum; } } #endif template <bool add=false> CUDA_CALLABLE inline void dense_gemm(int m, int n, int p, int t1, int t2, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C) { if (t1 == 0 && t2 == 0) dense_gemm_impl<false, false, add>(m, n, p, A, B, C); else if (t1 == 1 && t2 == 0) dense_gemm_impl<true, false, add>(m, n, p, A, B, C); else if (t1 == 0 && t2 == 1) dense_gemm_impl<false, true, add>(m, n, p, A, B, C); else if (t1 == 1 && t2 == 1) dense_gemm_impl<true, true, add>(m, n, p, A, B, C); } template <bool add=false> CUDA_CALLABLE inline void dense_gemm_batched( const int* __restrict__ m, const int* __restrict__ n, const int* __restrict__ p, int t1, int t2, const int* __restrict__ A_start, const int* __restrict__ B_start, const int* __restrict__ C_start, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C) { // on the CPU each thread computes the whole matrix multiply // on the GPU each block computes the multiply with one output per-thread const int batch = tid()/kNumThreadsPerBlock; dense_gemm<add>(m[batch], n[batch], p[batch], t1, t2, A+A_start[batch], B+B_start[batch], C+C_start[batch]); } // computes c = b^T*a*b, with a and b being stored in row-major layout CUDA_CALLABLE inline void dense_quadratic() { } // CUDA_CALLABLE inline void dense_chol(int n, const float* A, float* L) // { // // for each column // for (int j=0; j < n; ++j) // { // for (int i=j; i < n; ++i) // { // L[dense_index(n, i, j)] = A[dense_index(n, i, j)]; // } // for (int k = 0; k < j; ++k) // { // const float p = L[dense_index(n, j, k)]; // for (int i=j; i < n; ++i) // { // L[dense_index(n, i, j)] -= p*L[dense_index(n, i, k)]; // } // } // // scale // const float d = L[dense_index(n, j, j)]; // const float s = 1.0f/sqrtf(d); // for (int i=j; i < n; ++i) // { // L[dense_index(n, i, j)] *=s; // } // } // } void CUDA_CALLABLE inline dense_chol(int n, const float* __restrict__ A, const float* __restrict__ regularization, float* __restrict__ L) { for (int j=0; j < n; ++j) { float s = A[dense_index(n, j, j)] + regularization[j]; for (int k=0; k < j; ++k) { float r = L[dense_index(n, j, k)]; s -= r*r; } s = sqrtf(s); const float invS = 1.0f/s; L[dense_index(n, j, j)] = s; for (int i=j+1; i < n; ++i) { s = A[dense_index(n, i, j)]; for (int k=0; k < j; ++k) { s -= L[dense_index(n, i, k)]*L[dense_index(n, j, k)]; } L[dense_index(n, i, j)] = s*invS; } } } void CUDA_CALLABLE inline dense_chol_batched(const int* __restrict__ A_start, const int* __restrict__ A_dim, const float* __restrict__ A, const float* __restrict__ regularization, float* __restrict__ L) { const int batch = tid(); const int n = A_dim[batch]; const int offset = A_start[batch]; dense_chol(n, A + offset, regularization + n*batch, L + offset); } // Solves (L*L^T)x = b given the Cholesky factor L CUDA_CALLABLE inline void dense_subs(int n, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ x) { // forward substitution for (int i=0; i < n; ++i) { float s = b[i]; for (int j=0; j < i; ++j) { s -= L[dense_index(n, i, j)]*x[j]; } x[i] = s/L[dense_index(n, i, i)]; } // backward substitution for (int i=n-1; i >= 0; --i) { float s = x[i]; for (int j=i+1; j < n; ++j) { s -= L[dense_index(n, j, i)]*x[j]; } x[i] = s/L[dense_index(n, i, i)]; } } CUDA_CALLABLE inline void dense_solve(int n, const float* __restrict__ A, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ tmp, float* __restrict__ x) { dense_subs(n, L, b, x); } CUDA_CALLABLE inline void dense_solve_batched( const int* __restrict__ b_start, const int* A_start, const int* A_dim, const float* __restrict__ A, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ tmp, float* __restrict__ x) { const int batch = tid(); dense_solve(A_dim[batch], A + A_start[batch], L + A_start[batch], b + b_start[batch], NULL, x + b_start[batch]); } CUDA_CALLABLE inline void print_matrix(const char* name, int m, int n, const float* data) { printf("%s = [", name); for (int i=0; i < m; ++i) { for (int j=0; j < n; ++j) { printf("%f ", data[dense_index(n, i, j)]); } printf(";\n"); } printf("]\n"); } // adjoint methods CUDA_CALLABLE inline void adj_dense_gemm( int m, int n, int p, int t1, int t2, const float* A, const float* B, float* C, int adj_m, int adj_n, int adj_p, int adj_t1, int adj_t2, float* adj_A, float* adj_B, const float* adj_C) { // print_matrix("A", m, p, A); // print_matrix("B", p, n, B); // printf("t1: %d t2: %d\n", t1, t2); if (t1) { dense_gemm<true>(p, m, n, 0, 1, B, adj_C, adj_A); dense_gemm<true>(p, n, m, int(!t1), 0, A, adj_C, adj_B); } else { dense_gemm<true>(m, p, n, 0, int(!t2), adj_C, B, adj_A); dense_gemm<true>(p, n, m, int(!t1), 0, A, adj_C, adj_B); } } CUDA_CALLABLE inline void adj_dense_gemm_batched( const int* __restrict__ m, const int* __restrict__ n, const int* __restrict__ p, int t1, int t2, const int* __restrict__ A_start, const int* __restrict__ B_start, const int* __restrict__ C_start, const float* __restrict__ A, const float* __restrict__ B, float* __restrict__ C, // adj int* __restrict__ adj_m, int* __restrict__ adj_n, int* __restrict__ adj_p, int adj_t1, int adj_t2, int* __restrict__ adj_A_start, int* __restrict__ adj_B_start, int* __restrict__ adj_C_start, float* __restrict__ adj_A, float* __restrict__ adj_B, const float* __restrict__ adj_C) { const int batch = tid()/kNumThreadsPerBlock; adj_dense_gemm(m[batch], n[batch], p[batch], t1, t2, A+A_start[batch], B+B_start[batch], C+C_start[batch], 0, 0, 0, 0, 0, adj_A+A_start[batch], adj_B+B_start[batch], adj_C+C_start[batch]); } CUDA_CALLABLE inline void adj_dense_chol( int n, const float* A, const float* __restrict__ regularization, float* L, int adj_n, const float* adj_A, const float* __restrict__ adj_regularization, float* adj_L) { // nop, use dense_solve to differentiate through (A^-1)b = x } CUDA_CALLABLE inline void adj_dense_chol_batched( const int* __restrict__ A_start, const int* __restrict__ A_dim, const float* __restrict__ A, const float* __restrict__ regularization, float* __restrict__ L, const int* __restrict__ adj_A_start, const int* __restrict__ adj_A_dim, const float* __restrict__ adj_A, const float* __restrict__ adj_regularization, float* __restrict__ adj_L) { // nop, use dense_solve to differentiate through (A^-1)b = x } CUDA_CALLABLE inline void adj_dense_subs( int n, const float* L, const float* b, float* x, int adj_n, const float* adj_L, const float* adj_b, float* adj_x) { // nop, use dense_solve to differentiate through (A^-1)b = x } CUDA_CALLABLE inline void adj_dense_solve( int n, const float* __restrict__ A, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ tmp, const float* __restrict__ x, int adj_n, float* __restrict__ adj_A, float* __restrict__ adj_L, float* __restrict__ adj_b, float* __restrict__ adj_tmp, const float* __restrict__ adj_x) { for (int i=0; i < n; ++i) { tmp[i] = 0.0f; } dense_subs(n, L, adj_x, tmp); for (int i=0; i < n; ++i) { adj_b[i] += tmp[i]; } //dense_subs(n, L, adj_x, adj_b); // A* = -adj_b*x^T for (int i=0; i < n; ++i) { for (int j=0; j < n; ++j) { adj_A[dense_index(n, i, j)] += -tmp[i]*x[j]; } } } CUDA_CALLABLE inline void adj_dense_solve_batched( const int* __restrict__ b_start, const int* A_start, const int* A_dim, const float* __restrict__ A, const float* __restrict__ L, const float* __restrict__ b, float* __restrict__ tmp, float* __restrict__ x, // adj int* __restrict__ adj_b_start, int* __restrict__ adj_A_start, int* __restrict__ adj_A_dim, float* __restrict__ adj_A, float* __restrict__ adj_L, float* __restrict__ adj_b, float* __restrict__ adj_tmp, const float* __restrict__ adj_x) { const int batch = tid(); adj_dense_solve(A_dim[batch], A + A_start[batch], L + A_start[batch], b + b_start[batch], tmp + b_start[batch], x + b_start[batch], 0, adj_A + A_start[batch], adj_L + A_start[batch], adj_b + b_start[batch], tmp + b_start[batch], adj_x + b_start[batch]); }
10,723
C
29.379603
202
0.531847
vstrozzi/FRL-SHAC-Extension/dflex/dflex/__init__.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from dflex.sim import * from dflex.render import * from dflex.adjoint import compile from dflex.util import * # compiles kernels kernel_init()
569
Python
34.624998
76
0.804921
vstrozzi/FRL-SHAC-Extension/dflex/dflex/render.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """This optional module contains a built-in renderer for the USD data format that can be used to visualize time-sampled simulation data. Users should create a simulation model and integrator and periodically call :func:`UsdRenderer.update()` to write time-sampled simulation data to the USD stage. Example: >>> # construct a new USD stage >>> stage = Usd.Stage.CreateNew("my_stage.usda") >>> renderer = df.render.UsdRenderer(model, stage) >>> >>> time = 0.0 >>> >>> for i in range(100): >>> >>> # update simulation here >>> # .... >>> >>> # update renderer >>> stage.update(state, time) >>> time += dt >>> >>> # write stage to file >>> stage.Save() Note: You must have the Pixar USD bindings installed to use this module please see https://developer.nvidia.com/usd to obtain precompiled USD binaries and installation instructions. """ try: from pxr import Usd, UsdGeom, Gf, Sdf except ModuleNotFoundError: print("No pxr package") import dflex.sim import dflex.util import math def _usd_add_xform(prim): prim.ClearXformOpOrder() t = prim.AddTranslateOp() r = prim.AddOrientOp() s = prim.AddScaleOp() def _usd_set_xform(xform, transform, scale, time): xform_ops = xform.GetOrderedXformOps() pos = tuple(transform[0]) rot = tuple(transform[1]) xform_ops[0].Set(Gf.Vec3d(pos), time) xform_ops[1].Set(Gf.Quatf(rot[3], rot[0], rot[1], rot[2]), time) xform_ops[2].Set(Gf.Vec3d(scale), time) # transforms a cylinder such that it connects the two points pos0, pos1 def _compute_segment_xform(pos0, pos1): mid = (pos0 + pos1) * 0.5 height = (pos1 - pos0).GetLength() dir = (pos1 - pos0) / height rot = Gf.Rotation() rot.SetRotateInto((0.0, 0.0, 1.0), Gf.Vec3d(dir)) scale = Gf.Vec3f(1.0, 1.0, height) return (mid, Gf.Quath(rot.GetQuat()), scale) class UsdRenderer: """A USD renderer """ def __init__(self, model: dflex.model.Model, stage): """Construct a UsdRenderer object Args: model: A simulation model stage (Usd.Stage): A USD stage (either in memory or on disk) """ self.stage = stage self.model = model self.draw_points = True self.draw_springs = False self.draw_triangles = False if (stage.GetPrimAtPath("/root")): stage.RemovePrim("/root") self.root = UsdGeom.Xform.Define(stage, '/root') # add sphere instancer for particles self.particle_instancer = UsdGeom.PointInstancer.Define(stage, self.root.GetPath().AppendChild("particle_instancer")) self.particle_instancer_sphere = UsdGeom.Sphere.Define(stage, self.particle_instancer.GetPath().AppendChild("sphere")) self.particle_instancer_sphere.GetRadiusAttr().Set(model.particle_radius) self.particle_instancer.CreatePrototypesRel().SetTargets([self.particle_instancer_sphere.GetPath()]) self.particle_instancer.CreateProtoIndicesAttr().Set([0] * model.particle_count) # add line instancer if (self.model.spring_count > 0): self.spring_instancer = UsdGeom.PointInstancer.Define(stage, self.root.GetPath().AppendChild("spring_instancer")) self.spring_instancer_cylinder = UsdGeom.Capsule.Define(stage, self.spring_instancer.GetPath().AppendChild("cylinder")) self.spring_instancer_cylinder.GetRadiusAttr().Set(0.01) self.spring_instancer.CreatePrototypesRel().SetTargets([self.spring_instancer_cylinder.GetPath()]) self.spring_instancer.CreateProtoIndicesAttr().Set([0] * model.spring_count) self.stage.SetDefaultPrim(self.root.GetPrim()) # time codes try: self.stage.SetStartTimeCode(0.0) self.stage.SetEndTimeCode(0.0) self.stage.SetTimeCodesPerSecond(1.0) except: pass # add dynamic cloth mesh if (model.tri_count > 0): self.cloth_mesh = UsdGeom.Mesh.Define(stage, self.root.GetPath().AppendChild("cloth")) self.cloth_remap = {} self.cloth_verts = [] self.cloth_indices = [] # USD needs a contiguous vertex buffer, use a dict to map from simulation indices->render indices indices = self.model.tri_indices.flatten().tolist() for i in indices: if i not in self.cloth_remap: # copy vertex new_index = len(self.cloth_verts) self.cloth_verts.append(self.model.particle_q[i].tolist()) self.cloth_indices.append(new_index) self.cloth_remap[i] = new_index else: self.cloth_indices.append(self.cloth_remap[i]) self.cloth_mesh.GetPointsAttr().Set(self.cloth_verts) self.cloth_mesh.GetFaceVertexIndicesAttr().Set(self.cloth_indices) self.cloth_mesh.GetFaceVertexCountsAttr().Set([3] * model.tri_count) else: self.cloth_mesh = None # built-in ground plane if (model.ground): size = 10.0 mesh = UsdGeom.Mesh.Define(stage, self.root.GetPath().AppendChild("plane_0")) mesh.CreateDoubleSidedAttr().Set(True) points = ((-size, 0.0, -size), (size, 0.0, -size), (size, 0.0, size), (-size, 0.0, size)) normals = ((0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0)) counts = (4, ) indices = [0, 1, 2, 3] mesh.GetPointsAttr().Set(points) mesh.GetNormalsAttr().Set(normals) mesh.GetFaceVertexCountsAttr().Set(counts) mesh.GetFaceVertexIndicesAttr().Set(indices) # add rigid bodies xform root for b in range(model.link_count): xform = UsdGeom.Xform.Define(stage, self.root.GetPath().AppendChild("body_" + str(b))) _usd_add_xform(xform) # add rigid body shapes for s in range(model.shape_count): parent_path = self.root.GetPath() if model.shape_body[s] >= 0: parent_path = parent_path.AppendChild("body_" + str(model.shape_body[s].item())) geo_type = model.shape_geo_type[s].item() geo_scale = model.shape_geo_scale[s].tolist() geo_src = model.shape_geo_src[s] # shape transform in body frame X_bs = dflex.util.transform_expand(model.shape_transform[s].tolist()) if (geo_type == dflex.sim.GEO_PLANE): # plane mesh size = 1000.0 mesh = UsdGeom.Mesh.Define(stage, parent_path.AppendChild("plane_" + str(s))) mesh.CreateDoubleSidedAttr().Set(True) points = ((-size, 0.0, -size), (size, 0.0, -size), (size, 0.0, size), (-size, 0.0, size)) normals = ((0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0)) counts = (4, ) indices = [0, 1, 2, 3] mesh.GetPointsAttr().Set(points) mesh.GetNormalsAttr().Set(normals) mesh.GetFaceVertexCountsAttr().Set(counts) mesh.GetFaceVertexIndicesAttr().Set(indices) elif (geo_type == dflex.sim.GEO_SPHERE): mesh = UsdGeom.Sphere.Define(stage, parent_path.AppendChild("sphere_" + str(s))) mesh.GetRadiusAttr().Set(geo_scale[0]) _usd_add_xform(mesh) _usd_set_xform(mesh, X_bs, (1.0, 1.0, 1.0), 0.0) elif (geo_type == dflex.sim.GEO_CAPSULE): mesh = UsdGeom.Capsule.Define(stage, parent_path.AppendChild("capsule_" + str(s))) mesh.GetRadiusAttr().Set(geo_scale[0]) mesh.GetHeightAttr().Set(geo_scale[1] * 2.0) # geometry transform w.r.t shape, convert USD geometry to physics engine convention X_sg = dflex.util.transform((0.0, 0.0, 0.0), dflex.util.quat_from_axis_angle((0.0, 1.0, 0.0), math.pi * 0.5)) X_bg = dflex.util.transform_multiply(X_bs, X_sg) _usd_add_xform(mesh) _usd_set_xform(mesh, X_bg, (1.0, 1.0, 1.0), 0.0) elif (geo_type == dflex.sim.GEO_BOX): mesh = UsdGeom.Cube.Define(stage, parent_path.AppendChild("box_" + str(s))) #mesh.GetSizeAttr().Set((geo_scale[0], geo_scale[1], geo_scale[2])) _usd_add_xform(mesh) _usd_set_xform(mesh, X_bs, (geo_scale[0], geo_scale[1], geo_scale[2]), 0.0) elif (geo_type == dflex.sim.GEO_MESH): mesh = UsdGeom.Mesh.Define(stage, parent_path.AppendChild("mesh_" + str(s))) mesh.GetPointsAttr().Set(geo_src.vertices) mesh.GetFaceVertexIndicesAttr().Set(geo_src.indices) mesh.GetFaceVertexCountsAttr().Set([3] * int(len(geo_src.indices) / 3)) _usd_add_xform(mesh) _usd_set_xform(mesh, X_bs, (geo_scale[0], geo_scale[1], geo_scale[2]), 0.0) elif (geo_type == dflex.sim.GEO_SDF): pass def update(self, state: dflex.model.State, time: float): """Update the USD stage with latest simulation data Args: state: Current state of the simulation time: The current time to update at in seconds """ try: self.stage.SetEndTimeCode(time) except: pass # convert to list if self.model.particle_count: particle_q = state.particle_q.tolist() particle_orientations = [Gf.Quath(1.0, 0.0, 0.0, 0.0)] * self.model.particle_count self.particle_instancer.GetPositionsAttr().Set(particle_q, time) self.particle_instancer.GetOrientationsAttr().Set(particle_orientations, time) # update cloth if (self.cloth_mesh): for k, v in self.cloth_remap.items(): self.cloth_verts[v] = particle_q[k] self.cloth_mesh.GetPointsAttr().Set(self.cloth_verts, time) # update springs if (self.model.spring_count > 0): line_positions = [] line_rotations = [] line_scales = [] for i in range(self.model.spring_count): index0 = self.model.spring_indices[i * 2 + 0] index1 = self.model.spring_indices[i * 2 + 1] pos0 = particle_q[index0] pos1 = particle_q[index1] (pos, rot, scale) = _compute_segment_xform(Gf.Vec3f(pos0), Gf.Vec3f(pos1)) line_positions.append(pos) line_rotations.append(rot) line_scales.append(scale) self.spring_instancer.GetPositionsAttr().Set(line_positions, time) self.spring_instancer.GetOrientationsAttr().Set(line_rotations, time) self.spring_instancer.GetScalesAttr().Set(line_scales, time) # rigids for b in range(self.model.link_count): #xform = UsdGeom.Xform.Define(self.stage, self.root.GetPath().AppendChild("body_" + str(b))) node = UsdGeom.Xform(self.stage.GetPrimAtPath(self.root.GetPath().AppendChild("body_" + str(b)))) # unpack rigid spatial_transform X_sb = dflex.util.transform_expand(state.body_X_sc[b].tolist()) _usd_set_xform(node, X_sb, (1.0, 1.0, 1.0), time) def add_sphere(self, pos: tuple, radius: float, name: str, time: float=0.0): """Debug helper to add a sphere for visualization Args: pos: The position of the sphere radius: The radius of the sphere name: A name for the USD prim on the stage """ sphere_path = self.root.GetPath().AppendChild(name) sphere = UsdGeom.Sphere.Get(self.stage, sphere_path) if not sphere: sphere = UsdGeom.Sphere.Define(self.stage, sphere_path) sphere.GetRadiusAttr().Set(radius, time) mat = Gf.Matrix4d() mat.SetIdentity() mat.SetTranslateOnly(Gf.Vec3d(pos)) op = sphere.MakeMatrixXform() op.Set(mat, time) def add_box(self, pos: tuple, extents: float, name: str, time: float=0.0): """Debug helper to add a box for visualization Args: pos: The position of the sphere extents: The radius of the sphere name: A name for the USD prim on the stage """ sphere_path = self.root.GetPath().AppendChild(name) sphere = UsdGeom.Cube.Get(self.stage, sphere_path) if not sphere: sphere = UsdGeom.Cube.Define(self.stage, sphere_path) #sphere.GetSizeAttr().Set((extents[0]*2.0, extents[1]*2.0, extents[2]*2.0), time) mat = Gf.Matrix4d() mat.SetIdentity() mat.SetScale(extents) mat.SetTranslateOnly(Gf.Vec3d(pos)) op = sphere.MakeMatrixXform() op.Set(mat, time) def add_mesh(self, name: str, path: str, transform, scale, time: float): ref_path = "/root/" + name ref = UsdGeom.Xform.Get(self.stage, ref_path) if not ref: ref = UsdGeom.Xform.Define(self.stage, ref_path) ref.GetPrim().GetReferences().AddReference(path) _usd_add_xform(ref) # update transform _usd_set_xform(ref, transform, scale, time) def add_line_list(self, vertices, color, time, name, radius): """Debug helper to add a line list as a set of capsules Args: vertices: The vertices of the line-strip color: The color of the line time: The time to update at """ num_lines = int(len(vertices)/2) if (num_lines < 1): return # look up rope point instancer instancer_path = self.root.GetPath().AppendChild(name) instancer = UsdGeom.PointInstancer.Get(self.stage, instancer_path) if not instancer: instancer = UsdGeom.PointInstancer.Define(self.stage, instancer_path) instancer_capsule = UsdGeom.Capsule.Define(self.stage, instancer.GetPath().AppendChild("capsule")) instancer_capsule.GetRadiusAttr().Set(radius) instancer.CreatePrototypesRel().SetTargets([instancer_capsule.GetPath()]) instancer.CreatePrimvar("displayColor", Sdf.ValueTypeNames.Float3Array, "constant", 1) line_positions = [] line_rotations = [] line_scales = [] # line_colors = [] for i in range(num_lines): pos0 = vertices[i*2+0] pos1 = vertices[i*2+1] (pos, rot, scale) = _compute_segment_xform(Gf.Vec3f(pos0), Gf.Vec3f(pos1)) line_positions.append(pos) line_rotations.append(rot) line_scales.append(scale) #line_colors.append(Gf.Vec3f((float(i)/num_lines, 0.5, 0.5))) instancer.GetPositionsAttr().Set(line_positions, time) instancer.GetOrientationsAttr().Set(line_rotations, time) instancer.GetScalesAttr().Set(line_scales, time) instancer.GetProtoIndicesAttr().Set([0] * num_lines, time) # instancer.GetPrimvar("displayColor").Set(line_colors, time) def add_line_strip(self, vertices: dflex.sim.List[dflex.sim.Vec3], color: tuple, time: float, name: str, radius: float=0.01): """Debug helper to add a line strip as a connected list of capsules Args: vertices: The vertices of the line-strip color: The color of the line time: The time to update at """ num_lines = int(len(vertices)-1) if (num_lines < 1): return # look up rope point instancer instancer_path = self.root.GetPath().AppendChild(name) instancer = UsdGeom.PointInstancer.Get(self.stage, instancer_path) if not instancer: instancer = UsdGeom.PointInstancer.Define(self.stage, instancer_path) instancer_capsule = UsdGeom.Capsule.Define(self.stage, instancer.GetPath().AppendChild("capsule")) instancer_capsule.GetRadiusAttr().Set(radius) instancer.CreatePrototypesRel().SetTargets([instancer_capsule.GetPath()]) line_positions = [] line_rotations = [] line_scales = [] for i in range(num_lines): pos0 = vertices[i] pos1 = vertices[i+1] (pos, rot, scale) = _compute_segment_xform(Gf.Vec3f(pos0), Gf.Vec3f(pos1)) line_positions.append(pos) line_rotations.append(rot) line_scales.append(scale) instancer.GetPositionsAttr().Set(line_positions, time) instancer.GetOrientationsAttr().Set(line_rotations, time) instancer.GetScalesAttr().Set(line_scales, time) instancer.GetProtoIndicesAttr().Set([0] * num_lines, time) instancer_capsule = UsdGeom.Capsule.Get(self.stage, instancer.GetPath().AppendChild("capsule")) instancer_capsule.GetDisplayColorAttr().Set([Gf.Vec3f(color)], time)
17,760
Python
34.808468
131
0.586768
vstrozzi/FRL-SHAC-Extension/dflex/dflex/model.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """A module for building simulation models and state. """ import math import torch import numpy as np from typing import Tuple from typing import List Vec3 = List[float] Vec4 = List[float] Quat = List[float] Mat33 = List[float] Transform = Tuple[Vec3, Quat] from dflex.util import * # shape geometry types GEO_SPHERE = 0 GEO_BOX = 1 GEO_CAPSULE = 2 GEO_MESH = 3 GEO_SDF = 4 GEO_PLANE = 5 GEO_NONE = 6 # body joint types JOINT_PRISMATIC = 0 JOINT_REVOLUTE = 1 JOINT_BALL = 2 JOINT_FIXED = 3 JOINT_FREE = 4 class Mesh: """Describes a triangle collision mesh for simulation Attributes: vertices (List[Vec3]): Mesh vertices indices (List[int]): Mesh indices I (Mat33): Inertia tensor of the mesh assuming density of 1.0 (around the center of mass) mass (float): The total mass of the body assuming density of 1.0 com (Vec3): The center of mass of the body """ def __init__(self, vertices: List[Vec3], indices: List[int]): """Construct a Mesh object from a triangle mesh The mesh center of mass and inertia tensor will automatically be calculated using a density of 1.0. This computation is only valid if the mesh is closed (two-manifold). Args: vertices: List of vertices in the mesh indices: List of triangle indices, 3 per-element """ self.vertices = vertices self.indices = indices # compute com and inertia (using density=1.0) com = np.mean(vertices, 0) num_tris = int(len(indices) / 3) # compute signed inertia for each tetrahedron # formed with the interior point, using an order-2 # quadrature: https://www.sciencedirect.com/science/article/pii/S0377042712001604#br000040 weight = 0.25 alpha = math.sqrt(5.0) / 5.0 I = np.zeros((3, 3)) mass = 0.0 for i in range(num_tris): p = np.array(vertices[indices[i * 3 + 0]]) q = np.array(vertices[indices[i * 3 + 1]]) r = np.array(vertices[indices[i * 3 + 2]]) mid = (com + p + q + r) / 4.0 pcom = p - com qcom = q - com rcom = r - com Dm = np.matrix((pcom, qcom, rcom)).T volume = np.linalg.det(Dm) / 6.0 # quadrature points lie on the line between the # centroid and each vertex of the tetrahedron quads = (mid + (p - mid) * alpha, mid + (q - mid) * alpha, mid + (r - mid) * alpha, mid + (com - mid) * alpha) for j in range(4): # displacement of quadrature point from COM d = quads[j] - com I += weight * volume * (length_sq(d) * np.eye(3, 3) - np.outer(d, d)) mass += weight * volume self.I = I self.mass = mass self.com = com class State: """The State object holds all *time-varying* data for a model. Time-varying data includes particle positions, velocities, rigid body states, and anything that is output from the integrator as derived data, e.g.: forces. The exact attributes depend on the contents of the model. State objects should generally be created using the :func:`Model.state()` function. Attributes: particle_q (torch.Tensor): Tensor of particle positions particle_qd (torch.Tensor): Tensor of particle velocities joint_q (torch.Tensor): Tensor of joint coordinates joint_qd (torch.Tensor): Tensor of joint velocities joint_act (torch.Tensor): Tensor of joint actuation values """ def __init__(self): self.particle_count = 0 self.link_count = 0 # def flatten(self): # """Returns a list of Tensors stored by the state # This function is intended to be used internal-only but can be used to obtain # a set of all tensors owned by the state. # """ # tensors = [] # # particles # if (self.particle_count): # tensors.append(self.particle_q) # tensors.append(self.particle_qd) # # articulations # if (self.link_count): # tensors.append(self.joint_q) # tensors.append(self.joint_qd) # tensors.append(self.joint_act) # return tensors def flatten(self): """Returns a list of Tensors stored by the state This function is intended to be used internal-only but can be used to obtain a set of all tensors owned by the state. """ tensors = [] # build a list of all tensor attributes for attr, value in self.__dict__.items(): if (torch.is_tensor(value)): tensors.append(value) return tensors class Model: """Holds the definition of the simulation model This class holds the non-time varying description of the system, i.e.: all geometry, constraints, and parameters used to describe the simulation. Attributes: particle_q (torch.Tensor): Particle positions, shape [particle_count, 3], float particle_qd (torch.Tensor): Particle velocities, shape [particle_count, 3], float particle_mass (torch.Tensor): Particle mass, shape [particle_count], float particle_inv_mass (torch.Tensor): Particle inverse mass, shape [particle_count], float shape_transform (torch.Tensor): Rigid shape transforms, shape [shape_count, 7], float shape_body (torch.Tensor): Rigid shape body index, shape [shape_count], int shape_geo_type (torch.Tensor): Rigid shape geometry type, [shape_count], int shape_geo_src (torch.Tensor): Rigid shape geometry source, shape [shape_count], int shape_geo_scale (torch.Tensor): Rigid shape geometry scale, shape [shape_count, 3], float shape_materials (torch.Tensor): Rigid shape contact materials, shape [shape_count, 4], float spring_indices (torch.Tensor): Particle spring indices, shape [spring_count*2], int spring_rest_length (torch.Tensor): Particle spring rest length, shape [spring_count], float spring_stiffness (torch.Tensor): Particle spring stiffness, shape [spring_count], float spring_damping (torch.Tensor): Particle spring damping, shape [spring_count], float spring_control (torch.Tensor): Particle spring activation, shape [spring_count], float tri_indices (torch.Tensor): Triangle element indices, shape [tri_count*3], int tri_poses (torch.Tensor): Triangle element rest pose, shape [tri_count, 2, 2], float tri_activations (torch.Tensor): Triangle element activations, shape [tri_count], float edge_indices (torch.Tensor): Bending edge indices, shape [edge_count*2], int edge_rest_angle (torch.Tensor): Bending edge rest angle, shape [edge_count], float tet_indices (torch.Tensor): Tetrahedral element indices, shape [tet_count*4], int tet_poses (torch.Tensor): Tetrahedral rest poses, shape [tet_count, 3, 3], float tet_activations (torch.Tensor): Tetrahedral volumetric activations, shape [tet_count], float tet_materials (torch.Tensor): Tetrahedral elastic parameters in form :math:`k_{mu}, k_{lambda}, k_{damp}`, shape [tet_count, 3] body_X_cm (torch.Tensor): Rigid body center of mass (in local frame), shape [link_count, 7], float body_I_m (torch.Tensor): Rigid body inertia tensor (relative to COM), shape [link_count, 3, 3], float articulation_start (torch.Tensor): Articulation start offset, shape [num_articulations], int joint_q (torch.Tensor): Joint coordinate, shape [joint_coord_count], float joint_qd (torch.Tensor): Joint velocity, shape [joint_dof_count], float joint_type (torch.Tensor): Joint type, shape [joint_count], int joint_parent (torch.Tensor): Joint parent, shape [joint_count], int joint_X_pj (torch.Tensor): Joint transform in parent frame, shape [joint_count, 7], float joint_X_cm (torch.Tensor): Joint mass frame in child frame, shape [joint_count, 7], float joint_axis (torch.Tensor): Joint axis in child frame, shape [joint_count, 3], float joint_q_start (torch.Tensor): Joint coordinate offset, shape [joint_count], int joint_qd_start (torch.Tensor): Joint velocity offset, shape [joint_count], int joint_armature (torch.Tensor): Armature for each joint, shape [joint_count], float joint_target_ke (torch.Tensor): Joint stiffness, shape [joint_count], float joint_target_kd (torch.Tensor): Joint damping, shape [joint_count], float joint_target (torch.Tensor): Joint target, shape [joint_count], float particle_count (int): Total number of particles in the system joint_coord_count (int): Total number of joint coordinates in the system joint_dof_count (int): Total number of joint dofs in the system link_count (int): Total number of links in the system shape_count (int): Total number of shapes in the system tri_count (int): Total number of triangles in the system tet_count (int): Total number of tetrahedra in the system edge_count (int): Total number of edges in the system spring_count (int): Total number of springs in the system contact_count (int): Total number of contacts in the system Note: It is strongly recommended to use the ModelBuilder to construct a simulation rather than creating your own Model object directly, however it is possible to do so if desired. """ def __init__(self, adapter): self.particle_q = None self.particle_qd = None self.particle_mass = None self.particle_inv_mass = None self.shape_transform = None self.shape_body = None self.shape_geo_type = None self.shape_geo_src = None self.shape_geo_scale = None self.shape_materials = None self.spring_indices = None self.spring_rest_length = None self.spring_stiffness = None self.spring_damping = None self.spring_control = None self.tri_indices = None self.tri_poses = None self.tri_activations = None self.edge_indices = None self.edge_rest_angle = None self.tet_indices = None self.tet_poses = None self.tet_activations = None self.tet_materials = None self.body_X_cm = None self.body_I_m = None self.articulation_start = None self.joint_q = None self.joint_qd = None self.joint_type = None self.joint_parent = None self.joint_X_pj = None self.joint_X_cm = None self.joint_axis = None self.joint_q_start = None self.joint_qd_start = None self.joint_armature = None self.joint_target_ke = None self.joint_target_kd = None self.joint_target = None self.particle_count = 0 self.joint_coord_count = 0 self.joint_dof_count = 0 self.link_count = 0 self.shape_count = 0 self.tri_count = 0 self.tet_count = 0 self.edge_count = 0 self.spring_count = 0 self.contact_count = 0 self.gravity = torch.tensor((0.0, -9.8, 0.0), dtype=torch.float32, device=adapter) self.contact_distance = 0.1 self.contact_ke = 1.e+3 self.contact_kd = 0.0 self.contact_kf = 1.e+3 self.contact_mu = 0.5 self.tri_ke = 100.0 self.tri_ka = 100.0 self.tri_kd = 10.0 self.tri_kb = 100.0 self.tri_drag = 0.0 self.tri_lift = 0.0 self.edge_ke = 100.0 self.edge_kd = 0.0 self.particle_radius = 0.1 self.adapter = adapter def state(self) -> State: """Returns a state object for the model The returned state will be initialized with the initial configuration given in the model description. """ s = State() s.particle_count = self.particle_count s.link_count = self.link_count #-------------------------------- # dynamic state (input, output) # particles if (self.particle_count): s.particle_q = torch.clone(self.particle_q) s.particle_qd = torch.clone(self.particle_qd) # articulations if (self.link_count): s.joint_q = torch.clone(self.joint_q) s.joint_qd = torch.clone(self.joint_qd) s.joint_act = torch.zeros_like(self.joint_qd) s.joint_q.requires_grad = True s.joint_qd.requires_grad = True #-------------------------------- # derived state (output only) if (self.particle_count): s.particle_f = torch.empty_like(self.particle_qd, requires_grad=True) if (self.link_count): # joints s.joint_qdd = torch.empty_like(self.joint_qd, requires_grad=True) s.joint_tau = torch.empty_like(self.joint_qd, requires_grad=True) s.joint_S_s = torch.empty((self.joint_dof_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) # derived rigid body data (maximal coordinates) s.body_X_sc = torch.empty((self.link_count, 7), dtype=torch.float32, device=self.adapter, requires_grad=True) s.body_X_sm = torch.empty((self.link_count, 7), dtype=torch.float32, device=self.adapter, requires_grad=True) s.body_I_s = torch.empty((self.link_count, 6, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) s.body_v_s = torch.empty((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) s.body_a_s = torch.empty((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) s.body_f_s = torch.zeros((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) #s.body_ft_s = torch.zeros((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) #s.body_f_ext_s = torch.zeros((self.link_count, 6), dtype=torch.float32, device=self.adapter, requires_grad=True) return s def alloc_mass_matrix(self): if (self.link_count): # system matrices self.M = torch.zeros(self.M_size, dtype=torch.float32, device=self.adapter, requires_grad=True) self.J = torch.zeros(self.J_size, dtype=torch.float32, device=self.adapter, requires_grad=True) self.P = torch.empty(self.J_size, dtype=torch.float32, device=self.adapter, requires_grad=True) self.H = torch.empty(self.H_size, dtype=torch.float32, device=self.adapter, requires_grad=True) # zero since only upper triangle is set which can trigger NaN detection self.L = torch.zeros(self.H_size, dtype=torch.float32, device=self.adapter, requires_grad=True) def flatten(self): """Returns a list of Tensors stored by the model This function is intended to be used internal-only but can be used to obtain a set of all tensors owned by the model. """ tensors = [] # build a list of all tensor attributes for attr, value in self.__dict__.items(): if (torch.is_tensor(value)): tensors.append(value) return tensors # builds contacts def collide(self, state: State): """Constructs a set of contacts between rigid bodies and ground This method performs collision detection between rigid body vertices in the scene and updates the model's set of contacts stored as the following attributes: * **contact_body0**: Tensor of ints with first rigid body index * **contact_body1**: Tensor of ints with second rigid body index (currently always -1 to indicate ground) * **contact_point0**: Tensor of Vec3 representing contact point in local frame of body0 * **contact_dist**: Tensor of float values representing the distance to maintain * **contact_material**: Tensor contact material indices Args: state: The state of the simulation at which to perform collision detection Note: Currently this method uses an 'all pairs' approach to contact generation that is state indepdendent. In the future this will change and will create a node in the computational graph to propagate gradients as a function of state. Todo: Only ground-plane collision is currently implemented. Since the ground is static it is acceptable to call this method once at initialization time. """ body0 = [] body1 = [] point = [] dist = [] mat = [] def add_contact(b0, b1, t, p0, d, m): body0.append(b0) body1.append(b1) point.append(transform_point(t, np.array(p0))) dist.append(d) mat.append(m) for i in range(self.shape_count): # transform from shape to body X_bs = transform_expand(self.shape_transform[i].tolist()) geo_type = self.shape_geo_type[i].item() if (geo_type == GEO_SPHERE): radius = self.shape_geo_scale[i][0].item() add_contact(self.shape_body[i], -1, X_bs, (0.0, 0.0, 0.0), radius, i) elif (geo_type == GEO_CAPSULE): radius = self.shape_geo_scale[i][0].item() half_width = self.shape_geo_scale[i][1].item() add_contact(self.shape_body[i], -1, X_bs, (-half_width, 0.0, 0.0), radius, i) add_contact(self.shape_body[i], -1, X_bs, (half_width, 0.0, 0.0), radius, i) elif (geo_type == GEO_BOX): edges = self.shape_geo_scale[i].tolist() add_contact(self.shape_body[i], -1, X_bs, (-edges[0], -edges[1], -edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, ( edges[0], -edges[1], -edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (-edges[0], edges[1], -edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (edges[0], edges[1], -edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (-edges[0], -edges[1], edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (edges[0], -edges[1], edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (-edges[0], edges[1], edges[2]), 0.0, i) add_contact(self.shape_body[i], -1, X_bs, (edges[0], edges[1], edges[2]), 0.0, i) elif (geo_type == GEO_MESH): mesh = self.shape_geo_src[i] scale = self.shape_geo_scale[i] for v in mesh.vertices: p = (v[0] * scale[0], v[1] * scale[1], v[2] * scale[2]) add_contact(self.shape_body[i], -1, X_bs, p, 0.0, i) # send to torch self.contact_body0 = torch.tensor(body0, dtype=torch.int32, device=self.adapter) self.contact_body1 = torch.tensor(body1, dtype=torch.int32, device=self.adapter) self.contact_point0 = torch.tensor(point, dtype=torch.float32, device=self.adapter) self.contact_dist = torch.tensor(dist, dtype=torch.float32, device=self.adapter) self.contact_material = torch.tensor(mat, dtype=torch.int32, device=self.adapter) self.contact_count = len(body0) class ModelBuilder: """A helper class for building simulation models at runtime. Use the ModelBuilder to construct a simulation scene. The ModelBuilder is independent of PyTorch and builds the scene representation using standard Python data structures, this means it is not differentiable. Once :func:`finalize()` has been called the ModelBuilder transfers all data to Torch tensors and returns an object that may be used for simulation. Example: >>> import dflex as df >>> >>> builder = df.ModelBuilder() >>> >>> # anchor point (zero mass) >>> builder.add_particle((0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0) >>> >>> # build chain >>> for i in range(1,10): >>> builder.add_particle((i, 1.0, 0.0), (0.0, 0.0, 0.0), 1.0) >>> builder.add_spring(i-1, i, 1.e+3, 0.0, 0) >>> >>> # create model >>> model = builder.finalize() Note: It is strongly recommended to use the ModelBuilder to construct a simulation rather than creating your own Model object directly, however it is possible to do so if desired. """ def __init__(self): # particles self.particle_q = [] self.particle_qd = [] self.particle_mass = [] # shapes self.shape_transform = [] self.shape_body = [] self.shape_geo_type = [] self.shape_geo_scale = [] self.shape_geo_src = [] self.shape_materials = [] # geometry self.geo_meshes = [] self.geo_sdfs = [] # springs self.spring_indices = [] self.spring_rest_length = [] self.spring_stiffness = [] self.spring_damping = [] self.spring_control = [] # triangles self.tri_indices = [] self.tri_poses = [] self.tri_activations = [] # edges (bending) self.edge_indices = [] self.edge_rest_angle = [] # tetrahedra self.tet_indices = [] self.tet_poses = [] self.tet_activations = [] self.tet_materials = [] # muscles self.muscle_start = [] self.muscle_params = [] self.muscle_activation = [] self.muscle_links = [] self.muscle_points = [] # rigid bodies self.joint_parent = [] # index of the parent body (constant) self.joint_child = [] # index of the child body (constant) self.joint_axis = [] # joint axis in child joint frame (constant) self.joint_X_pj = [] # frame of joint in parent (constant) self.joint_X_cm = [] # frame of child com (in child coordinates) (constant) self.joint_q_start = [] # joint offset in the q array self.joint_qd_start = [] # joint offset in the qd array self.joint_type = [] self.joint_armature = [] self.joint_target_ke = [] self.joint_target_kd = [] self.joint_target = [] self.joint_limit_lower = [] self.joint_limit_upper = [] self.joint_limit_ke = [] self.joint_limit_kd = [] self.joint_q = [] # generalized coordinates (input) self.joint_qd = [] # generalized velocities (input) self.joint_qdd = [] # generalized accelerations (id,fd) self.joint_tau = [] # generalized actuation (input) self.joint_u = [] # generalized total torque (fd) self.body_mass = [] self.body_inertia = [] self.body_com = [] self.articulation_start = [] def add_articulation(self) -> int: """Add an articulation object, all subsequently added links (see: :func:`add_link`) will belong to this articulation object. Calling this method multiple times 'closes' any previous articulations and begins a new one. Returns: The index of the articulation """ self.articulation_start.append(len(self.joint_type)) return len(self.articulation_start)-1 # rigids, register a rigid body and return its index. def add_link( self, parent : int, X_pj : Transform, axis : Vec3, type : int, armature: float=0.01, stiffness: float=0.0, damping: float=0.0, limit_lower: float=-1.e+3, limit_upper: float=1.e+3, limit_ke: float=100.0, limit_kd: float=10.0, com: Vec3=np.zeros(3), I_m: Mat33=np.zeros((3, 3)), m: float=0.0) -> int: """Adds a rigid body to the model. Args: parent: The index of the parent body X_pj: The location of the joint in the parent's local frame connecting this body axis: The joint axis type: The type of joint, should be one of: JOINT_PRISMATIC, JOINT_REVOLUTE, JOINT_BALL, JOINT_FIXED, or JOINT_FREE armature: Additional inertia around the joint axis stiffness: Spring stiffness that attempts to return joint to zero position damping: Spring damping that attempts to remove joint velocity com: The center of mass of the body w.r.t its origin I_m: The 3x3 inertia tensor of the body (specified relative to the center of mass) m: The mass of the body Returns: The index of the body in the model Note: If the mass (m) is zero then the body is treated as kinematic with no dynamics """ # joint data self.joint_type.append(type) self.joint_axis.append(np.array(axis)) self.joint_parent.append(parent) self.joint_X_pj.append(X_pj) self.joint_target_ke.append(stiffness) self.joint_target_kd.append(damping) self.joint_limit_ke.append(limit_ke) self.joint_limit_kd.append(limit_kd) self.joint_q_start.append(len(self.joint_q)) self.joint_qd_start.append(len(self.joint_qd)) if (type == JOINT_PRISMATIC): self.joint_q.append(0.0) self.joint_qd.append(0.0) self.joint_target.append(0.0) self.joint_armature.append(armature) self.joint_limit_lower.append(limit_lower) self.joint_limit_upper.append(limit_upper) elif (type == JOINT_REVOLUTE): self.joint_q.append(0.0) self.joint_qd.append(0.0) self.joint_target.append(0.0) self.joint_armature.append(armature) self.joint_limit_lower.append(limit_lower) self.joint_limit_upper.append(limit_upper) elif (type == JOINT_BALL): # quaternion self.joint_q.append(0.0) self.joint_q.append(0.0) self.joint_q.append(0.0) self.joint_q.append(1.0) # angular velocity self.joint_qd.append(0.0) self.joint_qd.append(0.0) self.joint_qd.append(0.0) # pd targets self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_armature.append(armature) self.joint_armature.append(armature) self.joint_armature.append(armature) self.joint_limit_lower.append(limit_lower) self.joint_limit_lower.append(limit_lower) self.joint_limit_lower.append(limit_lower) self.joint_limit_lower.append(0.0) self.joint_limit_upper.append(limit_upper) self.joint_limit_upper.append(limit_upper) self.joint_limit_upper.append(limit_upper) self.joint_limit_upper.append(0.0) elif (type == JOINT_FIXED): pass elif (type == JOINT_FREE): # translation self.joint_q.append(0.0) self.joint_q.append(0.0) self.joint_q.append(0.0) # quaternion self.joint_q.append(0.0) self.joint_q.append(0.0) self.joint_q.append(0.0) self.joint_q.append(1.0) # note armature for free joints should always be zero, better to modify the body inertia directly self.joint_armature.append(0.0) self.joint_armature.append(0.0) self.joint_armature.append(0.0) self.joint_armature.append(0.0) self.joint_armature.append(0.0) self.joint_armature.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_target.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_lower.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) self.joint_limit_upper.append(0.0) # joint velocities for i in range(6): self.joint_qd.append(0.0) self.body_inertia.append(np.zeros((3, 3))) self.body_mass.append(0.0) self.body_com.append(np.zeros(3)) # return index of body return len(self.joint_type) - 1 # muscles def add_muscle(self, links: List[int], positions: List[Vec3], f0: float, lm: float, lt: float, lmax: float, pen: float) -> float: """Adds a muscle-tendon activation unit Args: links: A list of link indices for each waypoint positions: A list of positions of each waypoint in the link's local frame f0: Force scaling lm: Muscle length lt: Tendon length lmax: Maximally efficient muscle length Returns: The index of the muscle in the model """ n = len(links) self.muscle_start.append(len(self.muscle_links)) self.muscle_params.append((f0, lm, lt, lmax, pen)) self.muscle_activation.append(0.0) for i in range(n): self.muscle_links.append(links[i]) self.muscle_points.append(positions[i]) # return the index of the muscle return len(self.muscle_start)-1 # shapes def add_shape_plane(self, plane: Vec4=(0.0, 1.0, 0.0, 0.0), ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5): """Adds a plane collision shape Args: plane: The plane equation in form a*x + b*y + c*z + d = 0 ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction """ self._add_shape(-1, (0.0, 0.0, 0.0), (0.0, 0.0, 0.0), GEO_PLANE, plane, None, 0.0, ke, kd, kf, mu) def add_shape_sphere(self, body, pos: Vec3=(0.0, 0.0, 0.0), rot: Quat=(0.0, 0.0, 0.0, 1.0), radius: float=1.0, density: float=1000.0, ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5): """Adds a sphere collision shape to a link. Args: body: The index of the parent link this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame radius: The radius of the sphere density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction """ self._add_shape(body, pos, rot, GEO_SPHERE, (radius, 0.0, 0.0, 0.0), None, density, ke, kd, kf, mu) def add_shape_box(self, body : int, pos: Vec3=(0.0, 0.0, 0.0), rot: Quat=(0.0, 0.0, 0.0, 1.0), hx: float=0.5, hy: float=0.5, hz: float=0.5, density: float=1000.0, ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5): """Adds a box collision shape to a link. Args: body: The index of the parent link this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame hx: The half-extents along the x-axis hy: The half-extents along the y-axis hz: The half-extents along the z-axis density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction """ self._add_shape(body, pos, rot, GEO_BOX, (hx, hy, hz, 0.0), None, density, ke, kd, kf, mu) def add_shape_capsule(self, body: int, pos: Vec3=(0.0, 0.0, 0.0), rot: Quat=(0.0, 0.0, 0.0, 1.0), radius: float=1.0, half_width: float=0.5, density: float=1000.0, ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5): """Adds a capsule collision shape to a link. Args: body: The index of the parent link this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame radius: The radius of the capsule half_width: The half length of the center cylinder along the x-axis density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction """ self._add_shape(body, pos, rot, GEO_CAPSULE, (radius, half_width, 0.0, 0.0), None, density, ke, kd, kf, mu) def add_shape_mesh(self, body: int, pos: Vec3=(0.0, 0.0, 0.0), rot: Quat=(0.0, 0.0, 0.0, 1.0), mesh: Mesh=None, scale: Vec3=(1.0, 1.0, 1.0), density: float=1000.0, ke: float=1.e+5, kd: float=1000.0, kf: float=1000.0, mu: float=0.5): """Adds a triangle mesh collision shape to a link. Args: body: The index of the parent link this shape belongs to pos: The location of the shape with respect to the parent frame rot: The rotation of the shape with respect to the parent frame mesh: The mesh object scale: Scale to use for the collider density: The density of the shape ke: The contact elastic stiffness kd: The contact damping stiffness kf: The contact friction stiffness mu: The coefficient of friction """ self._add_shape(body, pos, rot, GEO_MESH, (scale[0], scale[1], scale[2], 0.0), mesh, density, ke, kd, kf, mu) def _add_shape(self, body , pos, rot, type, scale, src, density, ke, kd, kf, mu): self.shape_body.append(body) self.shape_transform.append(transform(pos, rot)) self.shape_geo_type.append(type) self.shape_geo_scale.append((scale[0], scale[1], scale[2])) self.shape_geo_src.append(src) self.shape_materials.append((ke, kd, kf, mu)) (m, I) = self._compute_shape_mass(type, scale, src, density) self._update_body_mass(body, m, I, np.array(pos), np.array(rot)) # particles def add_particle(self, pos : Vec3, vel : Vec3, mass : float) -> int: """Adds a single particle to the model Args: pos: The initial position of the particle vel: The initial velocity of the particle mass: The mass of the particle Note: Set the mass equal to zero to create a 'kinematic' particle that does is not subject to dynamics. Returns: The index of the particle in the system """ self.particle_q.append(pos) self.particle_qd.append(vel) self.particle_mass.append(mass) return len(self.particle_q) - 1 def add_spring(self, i : int, j, ke : float, kd : float, control: float): """Adds a spring between two particles in the system Args: i: The index of the first particle j: The index of the second particle ke: The elastic stiffness of the spring kd: The damping stiffness of the spring control: The actuation level of the spring Note: The spring is created with a rest-length based on the distance between the particles in their initial configuration. """ self.spring_indices.append(i) self.spring_indices.append(j) self.spring_stiffness.append(ke) self.spring_damping.append(kd) self.spring_control.append(control) # compute rest length p = self.particle_q[i] q = self.particle_q[j] delta = np.subtract(p, q) l = np.sqrt(np.dot(delta, delta)) self.spring_rest_length.append(l) def add_triangle(self, i : int, j : int, k : int) -> float: """Adds a trianglular FEM element between three particles in the system. Triangles are modeled as viscoelastic elements with elastic stiffness and damping Parameters specfied on the model. See model.tri_ke, model.tri_kd. Args: i: The index of the first particle j: The index of the second particle k: The index of the third particle Return: The area of the triangle Note: The triangle is created with a rest-length based on the distance between the particles in their initial configuration. Todo: * Expose elastic paramters on a per-element basis """ # compute basis for 2D rest pose p = np.array(self.particle_q[i]) q = np.array(self.particle_q[j]) r = np.array(self.particle_q[k]) qp = q - p rp = r - p # construct basis aligned with the triangle n = normalize(np.cross(qp, rp)) e1 = normalize(qp) e2 = normalize(np.cross(n, e1)) R = np.matrix((e1, e2)) M = np.matrix((qp, rp)) D = R * M.T inv_D = np.linalg.inv(D) area = np.linalg.det(D) / 2.0 if (area < 0.0): print("inverted triangle element") self.tri_indices.append((i, j, k)) self.tri_poses.append(inv_D.tolist()) self.tri_activations.append(0.0) return area def add_tetrahedron(self, i: int, j: int, k: int, l: int, k_mu: float=1.e+3, k_lambda: float=1.e+3, k_damp: float=0.0) -> float: """Adds a tetrahedral FEM element between four particles in the system. Tetrahdera are modeled as viscoelastic elements with a NeoHookean energy density based on [Smith et al. 2018]. Args: i: The index of the first particle j: The index of the second particle k: The index of the third particle l: The index of the fourth particle k_mu: The first elastic Lame parameter k_lambda: The second elastic Lame parameter k_damp: The element's damping stiffness Return: The volume of the tetrahedron Note: The tetrahedron is created with a rest-pose based on the particle's initial configruation """ # compute basis for 2D rest pose p = np.array(self.particle_q[i]) q = np.array(self.particle_q[j]) r = np.array(self.particle_q[k]) s = np.array(self.particle_q[l]) qp = q - p rp = r - p sp = s - p Dm = np.matrix((qp, rp, sp)).T volume = np.linalg.det(Dm) / 6.0 if (volume <= 0.0): print("inverted tetrahedral element") else: inv_Dm = np.linalg.inv(Dm) self.tet_indices.append((i, j, k, l)) self.tet_poses.append(inv_Dm.tolist()) self.tet_activations.append(0.0) self.tet_materials.append((k_mu, k_lambda, k_damp)) return volume def add_edge(self, i: int, j: int, k: int, l: int, rest: float=None): """Adds a bending edge element between four particles in the system. Bending elements are designed to be between two connected triangles. Then bending energy is based of [Bridson et al. 2002]. Bending stiffness is controlled by the `model.tri_kb` parameter. Args: i: The index of the first particle j: The index of the second particle k: The index of the third particle l: The index of the fourth particle rest: The rest angle across the edge in radians, if not specified it will be computed Note: The edge lies between the particles indexed by 'k' and 'l' parameters with the opposing vertices indexed by 'i' and 'j'. This defines two connected triangles with counter clockwise winding: (i, k, l), (j, l, k). """ # compute rest angle if (rest == None): x1 = np.array(self.particle_q[i]) x2 = np.array(self.particle_q[j]) x3 = np.array(self.particle_q[k]) x4 = np.array(self.particle_q[l]) n1 = normalize(np.cross(x3 - x1, x4 - x1)) n2 = normalize(np.cross(x4 - x2, x3 - x2)) e = normalize(x4 - x3) d = np.clip(np.dot(n2, n1), -1.0, 1.0) angle = math.acos(d) sign = np.sign(np.dot(np.cross(n2, n1), e)) rest = angle * sign self.edge_indices.append((i, j, k, l)) self.edge_rest_angle.append(rest) def add_cloth_grid(self, pos: Vec3, rot: Quat, vel: Vec3, dim_x: int, dim_y: int, cell_x: float, cell_y: float, mass: float, reverse_winding: bool=False, fix_left: bool=False, fix_right: bool=False, fix_top: bool=False, fix_bottom: bool=False): """Helper to create a regular planar cloth grid Creates a rectangular grid of particles with FEM triangles and bending elements automatically. Args: pos: The position of the cloth in world space rot: The orientation of the cloth in world space vel: The velocity of the cloth in world space dim_x_: The number of rectangular cells along the x-axis dim_y: The number of rectangular cells along the y-axis cell_x: The width of each cell in the x-direction cell_y: The width of each cell in the y-direction mass: The mass of each particle reverse_winding: Flip the winding of the mesh fix_left: Make the left-most edge of particles kinematic (fixed in place) fix_right: Make the right-most edge of particles kinematic fix_top: Make the top-most edge of particles kinematic fix_bottom: Make the bottom-most edge of particles kinematic """ def grid_index(x, y, dim_x): return y * dim_x + x start_vertex = len(self.particle_q) start_tri = len(self.tri_indices) for y in range(0, dim_y + 1): for x in range(0, dim_x + 1): g = np.array((x * cell_x, y * cell_y, 0.0)) p = quat_rotate(rot, g) + pos m = mass if (x == 0 and fix_left): m = 0.0 elif (x == dim_x and fix_right): m = 0.0 elif (y == 0 and fix_bottom): m = 0.0 elif (y == dim_y and fix_top): m = 0.0 self.add_particle(p, vel, m) if (x > 0 and y > 0): if (reverse_winding): tri1 = (start_vertex + grid_index(x - 1, y - 1, dim_x + 1), start_vertex + grid_index(x, y - 1, dim_x + 1), start_vertex + grid_index(x, y, dim_x + 1)) tri2 = (start_vertex + grid_index(x - 1, y - 1, dim_x + 1), start_vertex + grid_index(x, y, dim_x + 1), start_vertex + grid_index(x - 1, y, dim_x + 1)) self.add_triangle(*tri1) self.add_triangle(*tri2) else: tri1 = (start_vertex + grid_index(x - 1, y - 1, dim_x + 1), start_vertex + grid_index(x, y - 1, dim_x + 1), start_vertex + grid_index(x - 1, y, dim_x + 1)) tri2 = (start_vertex + grid_index(x, y - 1, dim_x + 1), start_vertex + grid_index(x, y, dim_x + 1), start_vertex + grid_index(x - 1, y, dim_x + 1)) self.add_triangle(*tri1) self.add_triangle(*tri2) end_vertex = len(self.particle_q) end_tri = len(self.tri_indices) # bending constraints, could create these explicitly for a grid but this # is a good test of the adjacency structure adj = MeshAdjacency(self.tri_indices[start_tri:end_tri], end_tri - start_tri) for k, e in adj.edges.items(): # skip open edges if (e.f0 == -1 or e.f1 == -1): continue self.add_edge(e.o0, e.o1, e.v0, e.v1) # opposite 0, opposite 1, vertex 0, vertex 1 def add_cloth_mesh(self, pos: Vec3, rot: Quat, scale: float, vel: Vec3, vertices: List[Vec3], indices: List[int], density: float, edge_callback=None, face_callback=None): """Helper to create a cloth model from a regular triangle mesh Creates one FEM triangle element and one bending element for every face and edge in the input triangle mesh Args: pos: The position of the cloth in world space rot: The orientation of the cloth in world space vel: The velocity of the cloth in world space vertices: A list of vertex positions indices: A list of triangle indices, 3 entries per-face density: The density per-area of the mesh edge_callback: A user callback when an edge is created face_callback: A user callback when a face is created Note: The mesh should be two manifold. """ num_tris = int(len(indices) / 3) start_vertex = len(self.particle_q) start_tri = len(self.tri_indices) # particles for i, v in enumerate(vertices): p = quat_rotate(rot, v * scale) + pos self.add_particle(p, vel, 0.0) # triangles for t in range(num_tris): i = start_vertex + indices[t * 3 + 0] j = start_vertex + indices[t * 3 + 1] k = start_vertex + indices[t * 3 + 2] if (face_callback): face_callback(i, j, k) area = self.add_triangle(i, j, k) # add area fraction to particles if (area > 0.0): self.particle_mass[i] += density * area / 3.0 self.particle_mass[j] += density * area / 3.0 self.particle_mass[k] += density * area / 3.0 end_vertex = len(self.particle_q) end_tri = len(self.tri_indices) adj = MeshAdjacency(self.tri_indices[start_tri:end_tri], end_tri - start_tri) # bend constraints for k, e in adj.edges.items(): # skip open edges if (e.f0 == -1 or e.f1 == -1): continue if (edge_callback): edge_callback(e.f0, e.f1) self.add_edge(e.o0, e.o1, e.v0, e.v1) def add_soft_grid(self, pos: Vec3, rot: Quat, vel: Vec3, dim_x: int, dim_y: int, dim_z: int, cell_x: float, cell_y: float, cell_z: float, density: float, k_mu: float, k_lambda: float, k_damp: float, fix_left: bool=False, fix_right: bool=False, fix_top: bool=False, fix_bottom: bool=False): """Helper to create a rectangular tetrahedral FEM grid Creates a regular grid of FEM tetrhedra and surface triangles. Useful for example to create beams and sheets. Each hexahedral cell is decomposed into 5 tetrahedral elements. Args: pos: The position of the solid in world space rot: The orientation of the solid in world space vel: The velocity of the solid in world space dim_x_: The number of rectangular cells along the x-axis dim_y: The number of rectangular cells along the y-axis dim_z: The number of rectangular cells along the z-axis cell_x: The width of each cell in the x-direction cell_y: The width of each cell in the y-direction cell_z: The width of each cell in the z-direction density: The density of each particle k_mu: The first elastic Lame parameter k_lambda: The second elastic Lame parameter k_damp: The damping stiffness fix_left: Make the left-most edge of particles kinematic (fixed in place) fix_right: Make the right-most edge of particles kinematic fix_top: Make the top-most edge of particles kinematic fix_bottom: Make the bottom-most edge of particles kinematic """ start_vertex = len(self.particle_q) mass = cell_x * cell_y * cell_z * density for z in range(dim_z + 1): for y in range(dim_y + 1): for x in range(dim_x + 1): v = np.array((x * cell_x, y * cell_y, z * cell_z)) m = mass if (fix_left and x == 0): m = 0.0 if (fix_right and x == dim_x): m = 0.0 if (fix_top and y == dim_y): m = 0.0 if (fix_bottom and y == 0): m = 0.0 p = quat_rotate(rot, v) + pos self.add_particle(p, vel, m) # dict of open faces faces = {} def add_face(i: int, j: int, k: int): key = tuple(sorted((i, j, k))) if key not in faces: faces[key] = (i, j, k) else: del faces[key] def add_tet(i: int, j: int, k: int, l: int): self.add_tetrahedron(i, j, k, l, k_mu, k_lambda, k_damp) add_face(i, k, j) add_face(j, k, l) add_face(i, j, l) add_face(i, l, k) def grid_index(x, y, z): return (dim_x + 1) * (dim_y + 1) * z + (dim_x + 1) * y + x for z in range(dim_z): for y in range(dim_y): for x in range(dim_x): v0 = grid_index(x, y, z) + start_vertex v1 = grid_index(x + 1, y, z) + start_vertex v2 = grid_index(x + 1, y, z + 1) + start_vertex v3 = grid_index(x, y, z + 1) + start_vertex v4 = grid_index(x, y + 1, z) + start_vertex v5 = grid_index(x + 1, y + 1, z) + start_vertex v6 = grid_index(x + 1, y + 1, z + 1) + start_vertex v7 = grid_index(x, y + 1, z + 1) + start_vertex if (((x & 1) ^ (y & 1) ^ (z & 1))): add_tet(v0, v1, v4, v3) add_tet(v2, v3, v6, v1) add_tet(v5, v4, v1, v6) add_tet(v7, v6, v3, v4) add_tet(v4, v1, v6, v3) else: add_tet(v1, v2, v5, v0) add_tet(v3, v0, v7, v2) add_tet(v4, v7, v0, v5) add_tet(v6, v5, v2, v7) add_tet(v5, v2, v7, v0) # add triangles for k, v in faces.items(): self.add_triangle(v[0], v[1], v[2]) def add_soft_mesh(self, pos: Vec3, rot: Quat, scale: float, vel: Vec3, vertices: List[Vec3], indices: List[int], density: float, k_mu: float, k_lambda: float, k_damp: float): """Helper to create a tetrahedral model from an input tetrahedral mesh Args: pos: The position of the solid in world space rot: The orientation of the solid in world space vel: The velocity of the solid in world space vertices: A list of vertex positions indices: A list of tetrahedron indices, 4 entries per-element density: The density per-area of the mesh k_mu: The first elastic Lame parameter k_lambda: The second elastic Lame parameter k_damp: The damping stiffness """ num_tets = int(len(indices) / 4) start_vertex = len(self.particle_q) start_tri = len(self.tri_indices) # dict of open faces faces = {} def add_face(i, j, k): key = tuple(sorted((i, j, k))) if key not in faces: faces[key] = (i, j, k) else: del faces[key] # add particles for v in vertices: p = quat_rotate(rot, v * scale) + pos self.add_particle(p, vel, 0.0) # add tetrahedra for t in range(num_tets): v0 = start_vertex + indices[t * 4 + 0] v1 = start_vertex + indices[t * 4 + 1] v2 = start_vertex + indices[t * 4 + 2] v3 = start_vertex + indices[t * 4 + 3] volume = self.add_tetrahedron(v0, v1, v2, v3, k_mu, k_lambda, k_damp) # distribute volume fraction to particles if (volume > 0.0): self.particle_mass[v0] += density * volume / 4.0 self.particle_mass[v1] += density * volume / 4.0 self.particle_mass[v2] += density * volume / 4.0 self.particle_mass[v3] += density * volume / 4.0 # build open faces add_face(v0, v2, v1) add_face(v1, v2, v3) add_face(v0, v1, v3) add_face(v0, v3, v2) # add triangles for k, v in faces.items(): try: self.add_triangle(v[0], v[1], v[2]) except np.linalg.LinAlgError: continue def compute_sphere_inertia(self, density: float, r: float) -> tuple: """Helper to compute mass and inertia of a sphere Args: density: The sphere density r: The sphere radius Returns: A tuple of (mass, inertia) with inertia specified around the origin """ v = 4.0 / 3.0 * math.pi * r * r * r m = density * v Ia = 2.0 / 5.0 * m * r * r I = np.array([[Ia, 0.0, 0.0], [0.0, Ia, 0.0], [0.0, 0.0, Ia]]) return (m, I) def compute_capsule_inertia(self, density: float, r: float, l: float) -> tuple: """Helper to compute mass and inertia of a capsule Args: density: The capsule density r: The capsule radius l: The capsule length (full width of the interior cylinder) Returns: A tuple of (mass, inertia) with inertia specified around the origin """ ms = density * (4.0 / 3.0) * math.pi * r * r * r mc = density * math.pi * r * r * l # total mass m = ms + mc # adapted from ODE Ia = mc * (0.25 * r * r + (1.0 / 12.0) * l * l) + ms * (0.4 * r * r + 0.375 * r * l + 0.25 * l * l) Ib = (mc * 0.5 + ms * 0.4) * r * r I = np.array([[Ib, 0.0, 0.0], [0.0, Ia, 0.0], [0.0, 0.0, Ia]]) return (m, I) def compute_box_inertia(self, density: float, w: float, h: float, d: float) -> tuple: """Helper to compute mass and inertia of a box Args: density: The box density w: The box width along the x-axis h: The box height along the y-axis d: The box depth along the z-axis Returns: A tuple of (mass, inertia) with inertia specified around the origin """ v = w * h * d m = density * v Ia = 1.0 / 12.0 * m * (h * h + d * d) Ib = 1.0 / 12.0 * m * (w * w + d * d) Ic = 1.0 / 12.0 * m * (w * w + h * h) I = np.array([[Ia, 0.0, 0.0], [0.0, Ib, 0.0], [0.0, 0.0, Ic]]) return (m, I) def _compute_shape_mass(self, type, scale, src, density): if density == 0: # zero density means fixed return 0, np.zeros((3, 3)) if (type == GEO_SPHERE): return self.compute_sphere_inertia(density, scale[0]) elif (type == GEO_BOX): return self.compute_box_inertia(density, scale[0] * 2.0, scale[1] * 2.0, scale[2] * 2.0) elif (type == GEO_CAPSULE): return self.compute_capsule_inertia(density, scale[0], scale[1] * 2.0) elif (type == GEO_MESH): #todo: non-uniform scale of inertia tensor s = scale[0] # eventually want to compute moment of inertia for mesh. return (density * src.mass * s * s * s, density * src.I * s * s * s * s * s) # incrementally updates rigid body mass with additional mass and inertia expressed at a local to the body def _update_body_mass(self, i, m, I, p, q): if (i == -1): return # find new COM new_mass = self.body_mass[i] + m if new_mass == 0.0: # no mass return new_com = (self.body_com[i] * self.body_mass[i] + p * m) / new_mass # shift inertia to new COM com_offset = new_com - self.body_com[i] shape_offset = new_com - p new_inertia = transform_inertia(self.body_mass[i], self.body_inertia[i], com_offset, quat_identity()) + transform_inertia( m, I, shape_offset, q) self.body_mass[i] = new_mass self.body_inertia[i] = new_inertia self.body_com[i] = new_com # returns a (model, state) pair given the description def finalize(self, adapter: str) -> Model: """Convert this builder object to a concrete model for simulation. After building simulation elements this method should be called to transfer all data to PyTorch tensors ready for simulation. Args: adapter: The simulation adapter to use, e.g.: 'cpu', 'cuda' Returns: A model object. """ # construct particle inv masses particle_inv_mass = [] for m in self.particle_mass: if (m > 0.0): particle_inv_mass.append(1.0 / m) else: particle_inv_mass.append(0.0) #------------------------------------- # construct Model (non-time varying) data m = Model(adapter) #--------------------- # particles # state (initial) m.particle_q = torch.tensor(self.particle_q, dtype=torch.float32, device=adapter) m.particle_qd = torch.tensor(self.particle_qd, dtype=torch.float32, device=adapter) # model m.particle_mass = torch.tensor(self.particle_mass, dtype=torch.float32, device=adapter) m.particle_inv_mass = torch.tensor(particle_inv_mass, dtype=torch.float32, device=adapter) #--------------------- # collision geometry m.shape_transform = torch.tensor(transform_flatten_list(self.shape_transform), dtype=torch.float32, device=adapter) m.shape_body = torch.tensor(self.shape_body, dtype=torch.int32, device=adapter) m.shape_geo_type = torch.tensor(self.shape_geo_type, dtype=torch.int32, device=adapter) m.shape_geo_src = self.shape_geo_src m.shape_geo_scale = torch.tensor(self.shape_geo_scale, dtype=torch.float32, device=adapter) m.shape_materials = torch.tensor(self.shape_materials, dtype=torch.float32, device=adapter) #--------------------- # springs m.spring_indices = torch.tensor(self.spring_indices, dtype=torch.int32, device=adapter) m.spring_rest_length = torch.tensor(self.spring_rest_length, dtype=torch.float32, device=adapter) m.spring_stiffness = torch.tensor(self.spring_stiffness, dtype=torch.float32, device=adapter) m.spring_damping = torch.tensor(self.spring_damping, dtype=torch.float32, device=adapter) m.spring_control = torch.tensor(self.spring_control, dtype=torch.float32, device=adapter) #--------------------- # triangles m.tri_indices = torch.tensor(self.tri_indices, dtype=torch.int32, device=adapter) m.tri_poses = torch.tensor(self.tri_poses, dtype=torch.float32, device=adapter) m.tri_activations = torch.tensor(self.tri_activations, dtype=torch.float32, device=adapter) #--------------------- # edges m.edge_indices = torch.tensor(self.edge_indices, dtype=torch.int32, device=adapter) m.edge_rest_angle = torch.tensor(self.edge_rest_angle, dtype=torch.float32, device=adapter) #--------------------- # tetrahedra m.tet_indices = torch.tensor(self.tet_indices, dtype=torch.int32, device=adapter) m.tet_poses = torch.tensor(self.tet_poses, dtype=torch.float32, device=adapter) m.tet_activations = torch.tensor(self.tet_activations, dtype=torch.float32, device=adapter) m.tet_materials = torch.tensor(self.tet_materials, dtype=torch.float32, device=adapter) #----------------------- # muscles muscle_count = len(self.muscle_start) # close the muscle waypoint indices self.muscle_start.append(len(self.muscle_links)) m.muscle_start = torch.tensor(self.muscle_start, dtype=torch.int32, device=adapter) m.muscle_params = torch.tensor(self.muscle_params, dtype=torch.float32, device=adapter) m.muscle_links = torch.tensor(self.muscle_links, dtype=torch.int32, device=adapter) m.muscle_points = torch.tensor(self.muscle_points, dtype=torch.float32, device=adapter) m.muscle_activation = torch.tensor(self.muscle_activation, dtype=torch.float32, device=adapter) #-------------------------------------- # articulations # build 6x6 spatial inertia and COM transform body_X_cm = [] body_I_m = [] for i in range(len(self.body_inertia)): body_I_m.append(spatial_matrix_from_inertia(self.body_inertia[i], self.body_mass[i])) body_X_cm.append(transform(self.body_com[i], quat_identity())) m.body_I_m = torch.tensor(body_I_m, dtype=torch.float32, device=adapter) articulation_count = len(self.articulation_start) joint_coord_count = len(self.joint_q) joint_dof_count = len(self.joint_qd) # 'close' the start index arrays with a sentinel value self.joint_q_start.append(len(self.joint_q)) self.joint_qd_start.append(len(self.joint_qd)) self.articulation_start.append(len(self.joint_type)) # calculate total size and offsets of Jacobian and mass matrices for entire system m.J_size = 0 m.M_size = 0 m.H_size = 0 articulation_J_start = [] articulation_M_start = [] articulation_H_start = [] articulation_M_rows = [] articulation_H_rows = [] articulation_J_rows = [] articulation_J_cols = [] articulation_dof_start = [] articulation_coord_start = [] for i in range(articulation_count): first_joint = self.articulation_start[i] last_joint = self.articulation_start[i+1] first_coord = self.joint_q_start[first_joint] last_coord = self.joint_q_start[last_joint] first_dof = self.joint_qd_start[first_joint] last_dof = self.joint_qd_start[last_joint] joint_count = last_joint-first_joint dof_count = last_dof-first_dof coord_count = last_coord-first_coord articulation_J_start.append(m.J_size) articulation_M_start.append(m.M_size) articulation_H_start.append(m.H_size) articulation_dof_start.append(first_dof) articulation_coord_start.append(first_coord) # bit of data duplication here, but will leave it as such for clarity articulation_M_rows.append(joint_count*6) articulation_H_rows.append(dof_count) articulation_J_rows.append(joint_count*6) articulation_J_cols.append(dof_count) m.J_size += 6*joint_count*dof_count m.M_size += 6*joint_count*6*joint_count m.H_size += dof_count*dof_count m.articulation_joint_start = torch.tensor(self.articulation_start, dtype=torch.int32, device=adapter) # matrix offsets for batched gemm m.articulation_J_start = torch.tensor(articulation_J_start, dtype=torch.int32, device=adapter) m.articulation_M_start = torch.tensor(articulation_M_start, dtype=torch.int32, device=adapter) m.articulation_H_start = torch.tensor(articulation_H_start, dtype=torch.int32, device=adapter) m.articulation_M_rows = torch.tensor(articulation_M_rows, dtype=torch.int32, device=adapter) m.articulation_H_rows = torch.tensor(articulation_H_rows, dtype=torch.int32, device=adapter) m.articulation_J_rows = torch.tensor(articulation_J_rows, dtype=torch.int32, device=adapter) m.articulation_J_cols = torch.tensor(articulation_J_cols, dtype=torch.int32, device=adapter) m.articulation_dof_start = torch.tensor(articulation_dof_start, dtype=torch.int32, device=adapter) m.articulation_coord_start = torch.tensor(articulation_coord_start, dtype=torch.int32, device=adapter) # state (initial) m.joint_q = torch.tensor(self.joint_q, dtype=torch.float32, device=adapter) m.joint_qd = torch.tensor(self.joint_qd, dtype=torch.float32, device=adapter) # model m.joint_type = torch.tensor(self.joint_type, dtype=torch.int32, device=adapter) m.joint_parent = torch.tensor(self.joint_parent, dtype=torch.int32, device=adapter) m.joint_X_pj = torch.tensor(transform_flatten_list(self.joint_X_pj), dtype=torch.float32, device=adapter) m.joint_X_cm = torch.tensor(transform_flatten_list(body_X_cm), dtype=torch.float32, device=adapter) m.joint_axis = torch.tensor(self.joint_axis, dtype=torch.float32, device=adapter) m.joint_q_start = torch.tensor(self.joint_q_start, dtype=torch.int32, device=adapter) m.joint_qd_start = torch.tensor(self.joint_qd_start, dtype=torch.int32, device=adapter) # dynamics properties m.joint_armature = torch.tensor(self.joint_armature, dtype=torch.float32, device=adapter) m.joint_target = torch.tensor(self.joint_target, dtype=torch.float32, device=adapter) m.joint_target_ke = torch.tensor(self.joint_target_ke, dtype=torch.float32, device=adapter) m.joint_target_kd = torch.tensor(self.joint_target_kd, dtype=torch.float32, device=adapter) m.joint_limit_lower = torch.tensor(self.joint_limit_lower, dtype=torch.float32, device=adapter) m.joint_limit_upper = torch.tensor(self.joint_limit_upper, dtype=torch.float32, device=adapter) m.joint_limit_ke = torch.tensor(self.joint_limit_ke, dtype=torch.float32, device=adapter) m.joint_limit_kd = torch.tensor(self.joint_limit_kd, dtype=torch.float32, device=adapter) # counts m.particle_count = len(self.particle_q) m.articulation_count = articulation_count m.joint_coord_count = joint_coord_count m.joint_dof_count = joint_dof_count m.muscle_count = muscle_count m.link_count = len(self.joint_type) m.shape_count = len(self.shape_geo_type) m.tri_count = len(self.tri_poses) m.tet_count = len(self.tet_poses) m.edge_count = len(self.edge_rest_angle) m.spring_count = len(self.spring_rest_length) m.contact_count = 0 # store refs to geometry m.geo_meshes = self.geo_meshes m.geo_sdfs = self.geo_sdfs # enable ground plane m.ground = True m.enable_tri_collisions = False m.gravity = torch.tensor((0.0, -9.8, 0.0), dtype=torch.float32, device=adapter) # allocate space for mass / jacobian matrices m.alloc_mass_matrix() return m
71,060
Python
36.798404
206
0.562046
vstrozzi/FRL-SHAC-Extension/dflex/dflex/adjoint.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import imp import ast import math import inspect import typing import weakref import numpy as np import torch import torch.utils.cpp_extension import dflex.config import copy # Todo #----- # # [ ] Unary ops (e.g.: -) # [ ] Inplace ops (e.g.: +=, -=) # [ ] Conditionals # [ ] Loops (unrolled) # [ ] Auto-gen PyTorch operator # [ ] CUDA kernel code gen + dynamic compilation # ----- operators = {} functions = {} cuda_functions = {} kernels = {} #---------------------- # built-in types class float3: def __init__(self): x = 0.0 y = 0.0 z = 0.0 class float4: def __init__(self): x = 0.0 y = 0.0 z = 0.0 w = 0.0 class quat: def __init__(self): x = 0.0 y = 0.0 z = 0.0 w = 1.0 class mat22: def __init__(self): pass class mat33: def __init__(self): pass class spatial_vector: def __init__(self): pass class spatial_matrix: def __init__(self): pass class spatial_transform: def __init__(self): pass class void: def __init__(self): pass class tensor: def __init__(self, type): self.type = type self.requires_grad = True self.__name__ = "tensor<" + type.__name__ + ">" #---------------------- # register built-in function def builtin(key): def insert(func): func.key = key func.prefix = "df::" functions[key] = func return func return insert #--------------------------------- # built-in operators +,-,*,/ @builtin("add") class AddFunc: @staticmethod def value_type(args): return args[0].type @builtin("sub") class SubFunc: @staticmethod def value_type(args): return args[0].type @builtin("mod") class ModFunc: @staticmethod def value_type(args): return args[0].type @builtin("mul") class MulFunc: @staticmethod def value_type(args): # todo: encode type operator type globally if (args[0].type == mat33 and args[1].type == float3): return float3 if (args[0].type == spatial_matrix and args[1].type == spatial_vector): return spatial_vector else: return args[0].type @builtin("div") class DivFunc: @staticmethod def value_type(args): return args[0].type #---------------------- # map operator nodes to builtin operators[ast.Add] = "add" operators[ast.Sub] = "sub" operators[ast.Mult] = "mul" operators[ast.Div] = "div" operators[ast.FloorDiv] = "div" operators[ast.Mod] = "mod" operators[ast.Gt] = ">" operators[ast.Lt] = "<" operators[ast.GtE] = ">=" operators[ast.LtE] = "<=" operators[ast.Eq] = "==" operators[ast.NotEq] = "!=" #---------------------- # built-in functions @builtin("min") class MinFunc: @staticmethod def value_type(args): return float @builtin("max") class MaxFunc: @staticmethod def value_type(args): return float @builtin("leaky_max") class LeakyMaxFunc: @staticmethod def value_type(args): return float @builtin("leaky_min") class LeakyMinFunc: @staticmethod def value_type(args): return float @builtin("clamp") class ClampFunc: @staticmethod def value_type(args): return float @builtin("step") class StepFunc: @staticmethod def value_type(args): return float @builtin("nonzero") class NonZeroFunc: @staticmethod def value_type(args): return float @builtin("sign") class SignFunc: @staticmethod def value_type(args): return float @builtin("abs") class AbsFunc: @staticmethod def value_type(args): return float @builtin("sin") class SinFunc: @staticmethod def value_type(args): return float @builtin("cos") class CosFunc: @staticmethod def value_type(args): return float @builtin("acos") class ACosFunc: @staticmethod def value_type(args): return float @builtin("sin") class SinFunc: @staticmethod def value_type(args): return float @builtin("cos") class CosFunc: @staticmethod def value_type(args): return float @builtin("sqrt") class SqrtFunc: @staticmethod def value_type(args): return float @builtin("dot") class DotFunc: @staticmethod def value_type(args): return float @builtin("cross") class CrossFunc: @staticmethod def value_type(args): return float3 @builtin("skew") class SkewFunc: @staticmethod def value_type(args): return mat33 @builtin("length") class LengthFunc: @staticmethod def value_type(args): return float @builtin("normalize") class NormalizeFunc: @staticmethod def value_type(args): return args[0].type @builtin("select") class SelectFunc: @staticmethod def value_type(args): return args[1].type @builtin("rotate") class RotateFunc: @staticmethod def value_type(args): return float3 @builtin("rotate_inv") class RotateInvFunc: @staticmethod def value_type(args): return float3 @builtin("determinant") class DeterminantFunc: @staticmethod def value_type(args): return float @builtin("transpose") class TransposeFunc: @staticmethod def value_type(args): return args[0].type @builtin("load") class LoadFunc: @staticmethod def value_type(args): if (type(args[0].type) != tensor): raise Exception("Load input 0 must be a tensor") if (args[1].type != int): raise Exception("Load input 1 must be a int") return args[0].type.type @builtin("store") class StoreFunc: @staticmethod def value_type(args): if (type(args[0].type) != tensor): raise Exception("Store input 0 must be a tensor") if (args[1].type != int): raise Exception("Store input 1 must be a int") if (args[2].type != args[0].type.type): raise Exception("Store input 2 must be of the same type as the tensor") return None @builtin("atomic_add") class AtomicAddFunc: @staticmethod def value_type(args): return None @builtin("atomic_sub") class AtomicSubFunc: @staticmethod def value_type(args): return None @builtin("tid") class ThreadIdFunc: @staticmethod def value_type(args): return int # type construtors @builtin("float") class floatFunc: @staticmethod def value_type(args): return float @builtin("int") class IntFunc: @staticmethod def value_type(args): return int @builtin("float3") class Float3Func: @staticmethod def value_type(args): return float3 @builtin("quat") class QuatFunc: @staticmethod def value_type(args): return quat @builtin("quat_identity") class QuatIdentityFunc: @staticmethod def value_type(args): return quat @builtin("quat_from_axis_angle") class QuatAxisAngleFunc: @staticmethod def value_type(args): return quat @builtin("mat22") class Mat22Func: @staticmethod def value_type(args): return mat22 @builtin("mat33") class Mat33Func: @staticmethod def value_type(args): return mat33 @builtin("spatial_vector") class SpatialVectorFunc: @staticmethod def value_type(args): return spatial_vector # built-in spatial operators @builtin("spatial_transform") class TransformFunc: @staticmethod def value_type(args): return spatial_transform @builtin("spatial_transform_identity") class TransformIdentity: @staticmethod def value_type(args): return spatial_transform @builtin("inverse") class Inverse: @staticmethod def value_type(args): return quat # @builtin("spatial_transform_inverse") # class TransformInverse: # @staticmethod # def value_type(args): # return spatial_transform @builtin("spatial_transform_get_translation") class TransformGetTranslation: @staticmethod def value_type(args): return float3 @builtin("spatial_transform_get_rotation") class TransformGetRotation: @staticmethod def value_type(args): return quat @builtin("spatial_transform_multiply") class TransformMulFunc: @staticmethod def value_type(args): return spatial_transform # @builtin("spatial_transform_inertia") # class TransformInertiaFunc: # @staticmethod # def value_type(args): # return spatial_matrix @builtin("spatial_adjoint") class SpatialAdjoint: @staticmethod def value_type(args): return spatial_matrix @builtin("spatial_dot") class SpatialDotFunc: @staticmethod def value_type(args): return float @builtin("spatial_cross") class SpatialDotFunc: @staticmethod def value_type(args): return spatial_vector @builtin("spatial_cross_dual") class SpatialDotFunc: @staticmethod def value_type(args): return spatial_vector @builtin("spatial_transform_point") class SpatialTransformPointFunc: @staticmethod def value_type(args): return float3 @builtin("spatial_transform_vector") class SpatialTransformVectorFunc: @staticmethod def value_type(args): return float3 @builtin("spatial_top") class SpatialTopFunc: @staticmethod def value_type(args): return float3 @builtin("spatial_bottom") class SpatialBottomFunc: @staticmethod def value_type(args): return float3 @builtin("spatial_jacobian") class SpatialJacobian: @staticmethod def value_type(args): return None @builtin("spatial_mass") class SpatialMass: @staticmethod def value_type(args): return None @builtin("dense_gemm") class DenseGemm: @staticmethod def value_type(args): return None @builtin("dense_gemm_batched") class DenseGemmBatched: @staticmethod def value_type(args): return None @builtin("dense_chol") class DenseChol: @staticmethod def value_type(args): return None @builtin("dense_chol_batched") class DenseCholBatched: @staticmethod def value_type(args): return None @builtin("dense_subs") class DenseSubs: @staticmethod def value_type(args): return None @builtin("dense_solve") class DenseSolve: @staticmethod def value_type(args): return None @builtin("dense_solve_batched") class DenseSolve: @staticmethod def value_type(args): return None # helpers @builtin("index") class IndexFunc: @staticmethod def value_type(args): return float @builtin("print") class PrintFunc: @staticmethod def value_type(args): return None class Var: def __init__(adj, label, type, requires_grad=False, constant=None): adj.label = label adj.type = type adj.requires_grad = requires_grad adj.constant = constant def __str__(adj): return adj.label def ctype(self): if (isinstance(self.type, tensor)): if self.type.type == float3: return str("df::" + self.type.type.__name__) + "*" return str(self.type.type.__name__) + "*" elif self.type == float3: return "df::" + str(self.type.__name__) else: return str(self.type.__name__) #-------------------- # Storage class for partial AST up to a return statement. class Stmt: def __init__(self, cond, forward, forward_replay, reverse, ret_forward, ret_line): self.cond = cond # condition, can be None self.forward = forward # all forward code outside of conditional branch *since last return* self.forward_replay = forward_replay self.reverse = reverse # all reverse code including the reverse of any code in ret_forward self.ret_forward = ret_forward # all forward commands in the return statement except the actual return statement self.ret_line = ret_line # actual return statement #------------------------------------------------------------------------ # Source code transformer, this class takes a Python function and # computes its adjoint using single-pass translation of the function's AST class Adjoint: def __init__(adj, func, device='cpu'): adj.func = func adj.device = device adj.symbols = {} # map from symbols to adjoint variables adj.variables = [] # list of local variables (in order) adj.args = [] # list of function arguments (in order) adj.cond = None # condition variable if in branch adj.return_var = None # return type for function or kernel # build AST from function object adj.source = inspect.getsource(func) adj.tree = ast.parse(adj.source) # parse argument types arg_types = typing.get_type_hints(func) # add variables and symbol map for each argument for name, t in arg_types.items(): adj.symbols[name] = Var(name, t, False) # build ordered list of args for a in adj.tree.body[0].args.args: adj.args.append(adj.symbols[a.arg]) # primal statements (allows different statements in replay) adj.body_forward = [] adj.body_forward_replay = [] adj.body_reverse = [] adj.output = [] adj.indent_count = 0 adj.label_count = 0 # recursively evaluate function body adj.eval(adj.tree.body[0]) # code generation methods def format_template(adj, template, input_vars, output_var): # output var is always the 0th index args = [output_var] + input_vars s = template.format(*args) return s # generates a comma separated list of args def format_args(adj, prefix, indices): args = "" sep = "" for i in indices: args += sep + prefix + str(i) sep = ", " return args def add_var(adj, type=None, constant=None): index = len(adj.variables) v = Var(str(index), type=type, constant=constant) adj.variables.append(v) return v def add_constant(adj, n): output = adj.add_var(type=type(n), constant=n) #adj.add_forward("var_{} = {};".format(output, n)) return output def add_load(adj, input): output = adj.add_var(input.type) adj.add_forward("var_{} = {};".format(output, input)) adj.add_reverse("adj_{} += adj_{};".format(input, output)) return output def add_operator(adj, op, inputs): # todo: just using first input as the output type, would need some # type inference here to support things like float3 = float*float3 output = adj.add_var(inputs[0].type) transformer = operators[op.__class__] for t in transformer.forward(): adj.add_forward(adj.format_template(t, inputs, output)) for t in transformer.reverse(): adj.add_reverse(adj.format_template(t, inputs, output)) return output def add_comp(adj, op_strings, left, comps): output = adj.add_var(bool) s = "var_" + str(output) + " = " + ("(" * len(comps)) + "var_" + str(left) + " " for op, comp in zip(op_strings, comps): s += op + " var_" + str(comp) + ") " s = s.rstrip() + ";" adj.add_forward(s) return output def add_bool_op(adj, op_string, exprs): output = adj.add_var(bool) command = "var_" + str(output) + " = " + (" " + op_string + " ").join(["var_" + str(expr) for expr in exprs]) + ";" adj.add_forward(command) return output def add_call(adj, func, inputs, prefix='df::'): # expression (zero output), e.g.: tid() if (func.value_type(inputs) == None): forward_call = prefix + "{}({});".format(func.key, adj.format_args("var_", inputs)) adj.add_forward(forward_call) if (len(inputs)): reverse_call = prefix + "{}({}, {});".format("adj_" + func.key, adj.format_args("var_", inputs), adj.format_args("adj_", inputs)) adj.add_reverse(reverse_call) return None # function (one output) else: output = adj.add_var(func.value_type(inputs)) forward_call = "var_{} = ".format(output) + prefix + "{}({});".format(func.key, adj.format_args("var_", inputs)) adj.add_forward(forward_call) if (len(inputs)): reverse_call = prefix + "{}({}, {}, {});".format( "adj_" + func.key, adj.format_args("var_", inputs), adj.format_args("adj_", inputs), adj.format_args("adj_", [output])) adj.add_reverse(reverse_call) return output def add_return(adj, var): if (var == None): adj.add_forward("return;".format(var), "goto label{};".format(adj.label_count)) else: adj.add_forward("return var_{};".format(var), "goto label{};".format(adj.label_count)) adj.add_reverse("adj_" + str(var) + " += adj_ret;") adj.add_reverse("label{}:;".format(adj.label_count)) adj.label_count += 1 # define an if statement def begin_if(adj, cond): adj.add_forward("if (var_{}) {{".format(cond)) adj.add_reverse("}") adj.indent_count += 1 def end_if(adj, cond): adj.indent_count -= 1 adj.add_forward("}") adj.add_reverse("if (var_{}) {{".format(cond)) # define a for-loop def begin_for(adj, iter, start, end): # note that dynamic for-loops must not mutate any previous state, so we don't need to re-run them in the reverse pass adj.add_forward("for (var_{0}=var_{1}; var_{0} < var_{2}; ++var_{0}) {{".format(iter, start, end), "if (false) {") adj.add_reverse("}") adj.indent_count += 1 def end_for(adj, iter, start, end): adj.indent_count -= 1 adj.add_forward("}") adj.add_reverse("for (var_{0}=var_{2}-1; var_{0} >= var_{1}; --var_{0}) {{".format(iter, start, end)) # append a statement to the forward pass def add_forward(adj, statement, statement_replay=None): prefix = "" for i in range(adj.indent_count): prefix += "\t" adj.body_forward.append(prefix + statement) # allow for different statement in reverse kernel replay if (statement_replay): adj.body_forward_replay.append(prefix + statement_replay) else: adj.body_forward_replay.append(prefix + statement) # append a statement to the reverse pass def add_reverse(adj, statement): prefix = "" for i in range(adj.indent_count): prefix += "\t" adj.body_reverse.append(prefix + statement) def eval(adj, node): try: if (isinstance(node, ast.FunctionDef)): out = None for f in node.body: out = adj.eval(f) if 'return' in adj.symbols and adj.symbols['return'] is not None: out = adj.symbols['return'] stmt = Stmt(None, adj.body_forward, adj.body_forward_replay, reversed(adj.body_reverse), [], "") adj.output.append(stmt) else: stmt = Stmt(None, adj.body_forward, adj.body_forward_replay, reversed(adj.body_reverse), [], "") adj.output.append(stmt) return out elif (isinstance(node, ast.If)): # if statement if len(node.orelse) != 0: raise SyntaxError("Else statements not currently supported") if len(node.body) == 0: return None # save symbol map symbols_prev = adj.symbols.copy() # eval condition cond = adj.eval(node.test) # eval body adj.begin_if(cond) for stmt in node.body: adj.eval(stmt) adj.end_if(cond) # detect symbols with conflicting definitions (assigned inside the branch) for items in symbols_prev.items(): sym = items[0] var1 = items[1] var2 = adj.symbols[sym] if var1 != var2: # insert a phi function that # selects var1, var2 based on cond out = adj.add_call(functions["select"], [cond, var1, var2]) adj.symbols[sym] = out return None elif (isinstance(node, ast.Compare)): # node.left, node.ops (list of ops), node.comparators (things to compare to) # e.g. (left ops[0] node.comparators[0]) ops[1] node.comparators[1] left = adj.eval(node.left) comps = [adj.eval(comp) for comp in node.comparators] op_strings = [operators[type(op)] for op in node.ops] out = adj.add_comp(op_strings, left, comps) return out elif (isinstance(node, ast.BoolOp)): # op, expr list values (e.g. and and a list of things anded together) op = node.op if isinstance(op, ast.And): func = "&&" elif isinstance(op, ast.Or): func = "||" else: raise KeyError("Op {} is not supported".format(op)) out = adj.add_bool_op(func, [adj.eval(expr) for expr in node.values]) # import pdb # pdb.set_trace() return out elif (isinstance(node, ast.Name)): # lookup symbol, if it has already been assigned to a variable then return the existing mapping if (node.id in adj.symbols): return adj.symbols[node.id] else: raise KeyError("Referencing undefined symbol: " + str(node.id)) elif (isinstance(node, ast.Num)): # lookup constant, if it has already been assigned then return existing var # currently disabled, since assigning constant in a branch means it key = (node.n, type(node.n)) if (key in adj.symbols): return adj.symbols[key] else: out = adj.add_constant(node.n) adj.symbols[key] = out return out #out = adj.add_constant(node.n) #return out elif (isinstance(node, ast.BinOp)): # evaluate binary operator arguments left = adj.eval(node.left) right = adj.eval(node.right) name = operators[type(node.op)] func = functions[name] out = adj.add_call(func, [left, right]) return out elif (isinstance(node, ast.UnaryOp)): # evaluate unary op arguments arg = adj.eval(node.operand) out = adj.add_operator(node.op, [arg]) return out elif (isinstance(node, ast.For)): if (len(node.iter.args) != 2): raise Exception("For loop ranges must be of form range(start, end) with both start and end specified and no skip specifier.") # check if loop range is compile time constant unroll = True for a in node.iter.args: if (isinstance(a, ast.Num) == False): unroll = False break if (unroll): # constant loop, unroll start = node.iter.args[0].n end = node.iter.args[1].n for i in range(start, end): var_iter = adj.add_constant(i) adj.symbols[node.target.id] = var_iter # eval body for s in node.body: adj.eval(s) else: # dynamic loop, body must be side-effect free, i.e.: not # overwrite memory locations used by previous operations start = adj.eval(node.iter.args[0]) end = adj.eval(node.iter.args[1]) # add iterator variable iter = adj.add_var(int) adj.symbols[node.target.id] = iter adj.begin_for(iter, start, end) # eval body for s in node.body: adj.eval(s) adj.end_for(iter, start, end) elif (isinstance(node, ast.Expr)): return adj.eval(node.value) elif (isinstance(node, ast.Call)): name = None # determine if call is to a builtin (attribute), or to a user-func (name) if (isinstance(node.func, ast.Attribute)): name = node.func.attr elif (isinstance(node.func, ast.Name)): name = node.func.id # check it exists if name not in functions: raise KeyError("Could not find function {}".format(name)) if adj.device == 'cuda' and name in cuda_functions: func = cuda_functions[name] else: func = functions[name] args = [] # eval all arguments for arg in node.args: var = adj.eval(arg) args.append(var) # add var with value type from the function out = adj.add_call(func, args, prefix=func.prefix) return out elif (isinstance(node, ast.Subscript)): target = adj.eval(node.value) indices = [] if isinstance(node.slice, ast.Tuple): # handles the M[i, j] case for arg in node.slice.elts: var = adj.eval(arg) indices.append(var) else: # simple expression var = adj.eval(node.slice) indices.append(var) out = adj.add_call(functions["index"], [target, *indices]) return out elif (isinstance(node, ast.Assign)): # if adj.cond is not None: # raise SyntaxError("error, cannot assign variables in a conditional branch") # evaluate rhs out = adj.eval(node.value) # update symbol map (assumes lhs is a Name node) adj.symbols[node.targets[0].id] = out return out elif (isinstance(node, ast.Return)): cond = adj.cond # None if not in branch, else branch boolean out = adj.eval(node.value) adj.symbols['return'] = out if out is not None: # set return type of function return_var = out if adj.return_var is not None and adj.return_var.ctype() != return_var.ctype(): raise TypeError("error, function returned different types") adj.return_var = return_var adj.add_return(out) return out elif node is None: return None else: print("[WARNING] ast node of type {} not supported".format(type(node))) except Exception as e: # print error / line number lines = adj.source.splitlines() print("Error: {} while transforming node {} in func: {} at line: {} col: {}: \n {}".format(e, type(node), adj.func.__name__, node.lineno, node.col_offset, lines[max(node.lineno-1, 0)])) raise #---------------- # code generation cpu_module_header = ''' #define CPU #include "adjoint.h" using namespace df; template <typename T> T cast(torch::Tensor t) {{ return (T)(t.data_ptr()); }} ''' cuda_module_header = ''' #define CUDA #include "adjoint.h" using namespace df; template <typename T> T cast(torch::Tensor t) {{ return (T)(t.data_ptr()); }} ''' cpu_function_template = ''' {return_type} {name}_cpu_func({forward_args}) {{ {forward_body} }} void adj_{name}_cpu_func({forward_args}, {reverse_args}) {{ {reverse_body} }} ''' cuda_function_template = ''' CUDA_CALLABLE {return_type} {name}_cuda_func({forward_args}) {{ {forward_body} }} CUDA_CALLABLE void adj_{name}_cuda_func({forward_args}, {reverse_args}) {{ {reverse_body} }} ''' cuda_kernel_template = ''' __global__ void {name}_cuda_kernel_forward(int dim, {forward_args}) {{ {forward_body} }} __global__ void {name}_cuda_kernel_backward(int dim, {forward_args}, {reverse_args}) {{ {reverse_body} }} ''' cpu_kernel_template = ''' void {name}_cpu_kernel_forward({forward_args}) {{ {forward_body} }} void {name}_cpu_kernel_backward({forward_args}, {reverse_args}) {{ {reverse_body} }} ''' cuda_module_template = ''' // Python entry points void {name}_cuda_forward(int dim, {forward_args}) {{ {name}_cuda_kernel_forward<<<(dim + 256 - 1) / 256, 256>>>(dim, {forward_params}); //check_cuda(cudaPeekAtLastError()); //check_cuda(cudaDeviceSynchronize()); }} void {name}_cuda_backward(int dim, {forward_args}, {reverse_args}) {{ {name}_cuda_kernel_backward<<<(dim + 256 - 1) / 256, 256>>>(dim, {forward_params}, {reverse_params}); //check_cuda(cudaPeekAtLastError()); //check_cuda(cudaDeviceSynchronize()); }} ''' cpu_module_template = ''' // Python entry points void {name}_cpu_forward(int dim, {forward_args}) {{ for (int i=0; i < dim; ++i) {{ s_threadIdx = i; {name}_cpu_kernel_forward({forward_params}); }} }} void {name}_cpu_backward(int dim, {forward_args}, {reverse_args}) {{ for (int i=0; i < dim; ++i) {{ s_threadIdx = i; {name}_cpu_kernel_backward({forward_params}, {reverse_params}); }} }} ''' cuda_module_header_template = ''' // Python entry points void {name}_cuda_forward(int dim, {forward_args}); void {name}_cuda_backward(int dim, {forward_args}, {reverse_args}); ''' cpu_module_header_template = ''' // Python entry points void {name}_cpu_forward(int dim, {forward_args}); void {name}_cpu_backward(int dim, {forward_args}, {reverse_args}); ''' def indent(args, stops=1): sep = "\n" for i in range(stops): sep += "\t" return sep + args.replace(", ", "," + sep) def codegen_func_forward_body(adj, device='cpu', indent=4): body = [] indent_block = " " * indent for stmt in adj.output: for f in stmt.forward: body += [f + "\n"] if stmt.cond is not None: body += ["if (" + str(stmt.cond) + ") {\n"] for l in stmt.ret_forward: body += [indent_block + l + "\n"] body += [indent_block + stmt.ret_line + "\n"] body += ["}\n"] else: for l in stmt.ret_forward: body += [l + "\n"] body += [stmt.ret_line + "\n"] break # break once unconditional return is encountered return "".join([indent_block + l for l in body]) def codegen_func_forward(adj, func_type='kernel', device='cpu'): s = "" # primal vars s += " //---------\n" s += " // primal vars\n" for var in adj.variables: if var.constant == None: s += " " + var.ctype() + " var_" + str(var.label) + ";\n" else: s += " const " + var.ctype() + " var_" + str(var.label) + " = " + str(var.constant) + ";\n" # forward pass s += " //---------\n" s += " // forward\n" if device == 'cpu': s += codegen_func_forward_body(adj, device=device, indent=4) elif device == 'cuda': if func_type == 'kernel': s += " int var_idx = blockDim.x * blockIdx.x + threadIdx.x;\n" s += " if (var_idx < dim) {\n" s += codegen_func_forward_body(adj, device=device, indent=8) s += " }\n" else: s += codegen_func_forward_body(adj, device=device, indent=4) return s def codegen_func_reverse_body(adj, device='cpu', indent=4): body = [] indent_block = " " * indent for stmt in adj.output: # forward pass body += ["//---------\n"] body += ["// forward\n"] for f in stmt.forward_replay: body += [f + "\n"] if stmt.cond is not None: body += ["if (" + str(stmt.cond) + ") {\n"] for l in stmt.ret_forward: body += [indent_block + l + "\n"] # reverse pass body += [indent_block + "//---------\n"] body += [indent_block + "// reverse\n"] for l in stmt.reverse: body += [indent_block + l + "\n"] body += [indent_block + "return;\n"] body += ["}\n"] else: for l in stmt.ret_forward: body += [l + "\n"] # reverse pass body += ["//---------\n"] body += ["// reverse\n"] for l in stmt.reverse: body += [l + "\n"] body += ["return;\n"] break # break once unconditional return is encountered return "".join([indent_block + l for l in body]) def codegen_func_reverse(adj, func_type='kernel', device='cpu'): s = "" # primal vars s += " //---------\n" s += " // primal vars\n" for var in adj.variables: if var.constant == None: s += " " + var.ctype() + " var_" + str(var.label) + ";\n" else: s += " const " + var.ctype() + " var_" + str(var.label) + " = " + str(var.constant) + ";\n" # dual vars s += " //---------\n" s += " // dual vars\n" for var in adj.variables: s += " " + var.ctype() + " adj_" + str(var.label) + " = 0;\n" if device == 'cpu': s += codegen_func_reverse_body(adj, device=device, indent=4) elif device == 'cuda': if func_type == 'kernel': s += " int var_idx = blockDim.x * blockIdx.x + threadIdx.x;\n" s += " if (var_idx < dim) {\n" s += codegen_func_reverse_body(adj, device=device, indent=8) s += " }\n" else: s += codegen_func_reverse_body(adj, device=device, indent=4) else: raise ValueError("Device {} not supported for codegen".format(device)) return s def codegen_func(adj, device='cpu'): # forward header # return_type = "void" return_type = 'void' if adj.return_var is None else adj.return_var.ctype() # s = "{} {}_forward(".format(return_type, adj.func.__name__) # sep = "" # for arg in adj.args: # if (arg.label != 'return'): # s += sep + str(arg.type.__name__) + " var_" + arg.label # sep = ", " # reverse header # s = "void {}_reverse(".format(adj.func.__name__) # return s forward_args = "" reverse_args = "" # s = "" # forward args sep = "" for arg in adj.args: forward_args += sep + arg.ctype() + " var_" + arg.label sep = ", " # reverse args sep = "" for arg in adj.args: if "*" in arg.ctype(): reverse_args += sep + arg.ctype() + " adj_" + arg.label else: reverse_args += sep + arg.ctype() + " & adj_" + arg.label sep = ", " reverse_args += sep + return_type + " & adj_ret" # reverse args # add primal version of parameters # sep = "" # for var in adj.args: # if (var.label != 'return'): # s += sep + var.ctype() + " var_" + var.label # sep = ", " # # add adjoint version of parameters # for var in adj.args: # if (var.label != 'return'): # s += sep + var.ctype() + "& adj_" + var.label # sep = ", " # # add adjoint of output # if ('return' in adj.symbols and adj.symbols['return'] != None): # s += sep + str(adj.symbols['return'].type.__name__) + " adj_" + str(adj.symbols['return']) # codegen body forward_body = codegen_func_forward(adj, func_type='function', device=device) reverse_body = codegen_func_reverse(adj, func_type='function', device=device) if device == 'cpu': template = cpu_function_template elif device == 'cuda': template = cuda_function_template else: raise ValueError("Device {} is not supported".format(device)) s = template.format(name=adj.func.__name__, return_type=return_type, forward_args=indent(forward_args), reverse_args=indent(reverse_args), forward_body=forward_body, reverse_body=reverse_body) return s def codegen_kernel(adj, device='cpu'): forward_args = "" reverse_args = "" # forward args sep = "" for arg in adj.args: forward_args += sep + arg.ctype() + " var_" + arg.label sep = ", " # reverse args sep = "" for arg in adj.args: reverse_args += sep + arg.ctype() + " adj_" + arg.label sep = ", " # codegen body forward_body = codegen_func_forward(adj, func_type='kernel', device=device) reverse_body = codegen_func_reverse(adj, func_type='kernel', device=device) # import pdb # pdb.set_trace() if device == 'cpu': template = cpu_kernel_template elif device == 'cuda': template = cuda_kernel_template else: raise ValueError("Device {} is not supported".format(device)) s = template.format(name=adj.func.__name__, forward_args=indent(forward_args), reverse_args=indent(reverse_args), forward_body=forward_body, reverse_body=reverse_body) return s def codegen_module(adj, device='cpu'): forward_args = "" reverse_args = "" forward_params = "" reverse_params = "" sep = "" for arg in adj.args: if (isinstance(arg.type, tensor)): forward_args += sep + "torch::Tensor var_" + arg.label forward_params += sep + "cast<" + arg.ctype() + ">(var_" + arg.label + ")" else: forward_args += sep + arg.ctype() + " var_" + arg.label forward_params += sep + "var_" + arg.label sep = ", " sep = "" for arg in adj.args: if (isinstance(arg.type, tensor)): reverse_args += sep + "torch::Tensor adj_" + arg.label reverse_params += sep + "cast<" + arg.ctype() + ">(adj_" + arg.label + ")" else: reverse_args += sep + arg.ctype() + " adj_" + arg.label reverse_params += sep + "adj_" + arg.label sep = ", " if device == 'cpu': template = cpu_module_template elif device == 'cuda': template = cuda_module_template else: raise ValueError("Device {} is not supported".format(device)) s = template.format(name=adj.func.__name__, forward_args=indent(forward_args), reverse_args=indent(reverse_args), forward_params=indent(forward_params, 3), reverse_params=indent(reverse_params, 3)) return s def codegen_module_decl(adj, device='cpu'): forward_args = "" reverse_args = "" forward_params = "" reverse_params = "" sep = "" for arg in adj.args: if (isinstance(arg.type, tensor)): forward_args += sep + "torch::Tensor var_" + arg.label forward_params += sep + "cast<" + arg.ctype() + ">(var_" + arg.label + ")" else: forward_args += sep + arg.ctype() + " var_" + arg.label forward_params += sep + "var_" + arg.label sep = ", " sep = "" for arg in adj.args: if (isinstance(arg.type, tensor)): reverse_args += sep + "torch::Tensor adj_" + arg.label reverse_params += sep + "cast<" + arg.ctype() + ">(adj_" + arg.label + ")" else: reverse_args += sep + arg.ctype() + " adj_" + arg.label reverse_params += sep + "adj_" + arg.label sep = ", " if device == 'cpu': template = cpu_module_header_template elif device == 'cuda': template = cuda_module_header_template else: raise ValueError("Device {} is not supported".format(device)) s = template.format(name=adj.func.__name__, forward_args=indent(forward_args), reverse_args=indent(reverse_args)) return s # runs vcvars and copies back the build environment, PyTorch should really be doing this def set_build_env(): if os.name == 'nt': # VS2019 (required for PyTorch headers) vcvars_path = "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\Community\\VC\\Auxiliary\Build\\vcvars64.bat" s = '"{}" && set'.format(vcvars_path) output = os.popen(s).read() for line in output.splitlines(): pair = line.split("=", 1) if (len(pair) >= 2): os.environ[pair[0]] = pair[1] else: # nothing needed for Linux or Mac pass def import_module(module_name, path): # https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path file, path, description = imp.find_module(module_name, [path]) # Close the .so file after load. with file: return imp.load_module(module_name, file, path, description) def rename(name, return_type): def func(cls): cls.__name__ = name cls.key = name cls.prefix = "" cls.return_type = return_type return cls return func user_funcs = {} user_kernels = {} def func(f): user_funcs[f.__name__] = f # adj = Adjoint(f) # print(adj.codegen_forward()) # print(adj.codegen_reverse()) # set_build_env() # include_path = os.path.dirname(os.path.realpath(__file__)) # # requires PyTorch hotfix https://github.com/pytorch/pytorch/pull/33002 # test_cuda = torch.utils.cpp_extension.load_inline('test_cuda', [cpp_template], None, ["test_forward_1", "test_backward_1"], extra_include_paths=include_path, verbose=True) # help(test_cuda) def kernel(f): # stores source and compiled entry points for a kernel (will be populated after module loads) class Kernel: def __init__(self, f): self.func = f def register(self, module): # lookup entry points based on name self.forward_cpu = eval("module." + self.func.__name__ + "_cpu_forward") self.backward_cpu = eval("module." + self.func.__name__ + "_cpu_backward") if (torch.cuda.is_available()): self.forward_cuda = eval("module." + self.func.__name__ + "_cuda_forward") self.backward_cuda = eval("module." + self.func.__name__ + "_cuda_backward") k = Kernel(f) # register globally user_kernels[f.__name__] = k return k def compile(): use_cuda = torch.cuda.is_available() if not use_cuda: print("[INFO] CUDA support not found. Disabling CUDA kernel compilation.") cpp_source = "" cuda_source = "" cpp_source += cpu_module_header cuda_source += cuda_module_header # kernels entry_points = [] # functions for name, func in user_funcs.items(): adj = Adjoint(func, device='cpu') cpp_source += codegen_func(adj, device='cpu') adj = Adjoint(func, device='cuda') cuda_source += codegen_func(adj, device='cuda') # import pdb # pdb.set_trace() import copy @rename(func.__name__ + "_cpu_func", adj.return_var.type) class Func: @classmethod def value_type(cls, *args): return cls.return_type functions[func.__name__] = Func @rename(func.__name__ + "_cuda_func", adj.return_var.type) class CUDAFunc: @classmethod def value_type(cls, *args): return cls.return_type cuda_functions[func.__name__] = CUDAFunc for name, kernel in user_kernels.items(): if use_cuda: # each kernel gets an entry point in the module entry_points.append(name + "_cuda_forward") entry_points.append(name + "_cuda_backward") # each kernel gets an entry point in the module entry_points.append(name + "_cpu_forward") entry_points.append(name + "_cpu_backward") if use_cuda: adj = Adjoint(kernel.func, device='cuda') cuda_source += codegen_kernel(adj, device='cuda') cuda_source += codegen_module(adj, device='cuda') cpp_source += codegen_module_decl(adj, device='cuda') adj = Adjoint(kernel.func, device='cpu') cpp_source += codegen_kernel(adj, device='cpu') cpp_source += codegen_module(adj, device='cpu') cpp_source += codegen_module_decl(adj, device='cpu') include_path = os.path.dirname(os.path.realpath(__file__)) build_path = os.path.dirname(os.path.realpath(__file__)) + "/kernels" cache_file = build_path + "/adjoint.gen" if (os.path.exists(build_path) == False): os.mkdir(build_path) # test cache if (os.path.exists(cache_file)): f = open(cache_file, 'r') cache_string = f.read() f.close() if (cache_string == cpp_source): print("Using cached kernels") module = import_module("kernels", build_path) # register kernel methods for k in user_kernels.values(): k.register(module) return module # print("ignoring rebuild, using stale kernels") # module = import_module("kernels", build_path) # return module # cache stale, rebuild print("Rebuilding kernels") set_build_env() # debug config #module = torch.utils.cpp_extension.load_inline('kernels', [cpp_source], None, entry_points, extra_cflags=["/Zi", "/Od"], extra_ldflags=["/DEBUG"], build_directory=build_path, extra_include_paths=[include_path], verbose=True) if os.name == 'nt': cpp_flags = ["/Ox", "-DNDEBUG", "/fp:fast"] ld_flags = ["-DNDEBUG"] # cpp_flags = ["/Zi", "/Od", "/DEBUG"] # ld_flags = ["/DEBUG"] else: cpp_flags = ["-Z", "-O2", "-DNDEBUG"] ld_flags = ["-DNDEBUG"] # just use minimum to ensure compatability cuda_flags = ['-gencode=arch=compute_61,code=compute_61'] # release config if use_cuda: module = torch.utils.cpp_extension.load_inline('kernels', cpp_sources=[cpp_source], cuda_sources=[cuda_source], functions=entry_points, extra_cflags=cpp_flags, extra_ldflags=ld_flags, extra_cuda_cflags=cuda_flags, build_directory=build_path, extra_include_paths=[include_path], verbose=True, with_pytorch_error_handling=False) else: module = torch.utils.cpp_extension.load_inline('kernels', cpp_sources=[cpp_source], cuda_sources=[], functions=entry_points, extra_cflags=cpp_flags, extra_ldflags=ld_flags, extra_cuda_cflags=cuda_flags, build_directory=build_path, extra_include_paths=[include_path], verbose=True, with_pytorch_error_handling=False) # update cache f = open(cache_file, 'w') f.write(cpp_source) f.close() # register kernel methods for k in user_kernels.values(): k.register(module) return module #--------------------------------------------- # Helper functions for launching kernels as Torch ops def check_adapter(l, a): for t in l: if torch.is_tensor(t): assert(t.device.type == a) def check_finite(l): for t in l: if torch.is_tensor(t): assert(t.is_contiguous()) if (torch.isnan(t).any() == True): print(t) assert(torch.isnan(t).any() == False) else: assert(math.isnan(t) == False) def filter_grads(grads): """helper that takes a list of gradient tensors and makes non-outputs None as required by PyTorch when returning from a custom op """ outputs = [] for g in grads: if torch.is_tensor(g) and len(g) > 0: outputs.append(g) else: outputs.append(None) return tuple(outputs) def make_empty(outputs, device): empty = [] for o in outputs: empty.append(torch.FloatTensor().to(device)) return empty def make_contiguous(grads): ret = [] for g in grads: ret.append(g.contiguous()) return ret def copy_params(params): out = [] for p in params: if torch.is_tensor(p): c = p.clone() if c.dtype == torch.float32: c.requires_grad_() out.append(c) else: out.append(p) return out def assert_device(device, inputs): """helper that asserts that all Tensors in inputs reside on the specified device (device should be cpu or cuda). Also checks that dtypes are correct. """ for arg in inputs: if isinstance(arg, torch.Tensor): if (arg.dtype == torch.float64) or (arg.dtype == torch.float16): raise TypeError("Tensor {arg} has invalid dtype {dtype}".format(arg=arg, dtype=arg.dtype)) if device == 'cpu': if arg.is_cuda: # make sure all tensors are on the right device. Can fail silently in the CUDA kernel. raise TypeError("Tensor {arg} is using CUDA but was expected to be on the CPU.".format(arg=arg)) elif torch.device(device).type == 'cuda': #elif device.startswith('cuda'): if not arg.is_cuda: raise TypeError("Tensor {arg} is not on a CUDA device but was expected to be using CUDA.".format(arg=arg)) else: raise ValueError("Device {} is not supported".format(device)) def to_weak_list(s): w = [] for o in s: w.append(weakref.ref(o)) return w def to_strong_list(w): s = [] for o in w: s.append(o()) return s # standalone method to launch a kernel using PyTorch graph (skip custom tape) def launch_torch(func, dim, inputs, outputs, adapter, preserve_output=False, check_grad=False, no_grad=False): num_inputs = len(inputs) num_outputs = len(outputs) # define autograd type class TorchFunc(torch.autograd.Function): @staticmethod def forward(ctx, *args): #local_inputs = args[0:num_inputs] #local_outputs = args[num_inputs:len(args)] # save for backward #ctx.inputs = list(local_inputs) ctx.inputs = args local_outputs = [] for o in outputs: local_outputs.append(torch.zeros_like(o, requires_grad=True)) ctx.outputs = local_outputs # ensure inputs match adapter assert_device(adapter, args) # launch if adapter == 'cpu': func.forward_cpu(*[dim, *args, *ctx.outputs]) elif torch.device(adapter).type == 'cuda': #elif adapter.startswith('cuda'): func.forward_cuda(*[dim, *args, *ctx.outputs]) ret = tuple(ctx.outputs) return ret @staticmethod def backward(ctx, *grads): # ensure grads are contiguous in memory adj_outputs = make_contiguous(grads) # alloc grads adj_inputs = alloc_grads(ctx.inputs, adapter) # if we don't need outputs then make empty tensors to skip the write local_outputs = ctx.outputs # if preserve_output == True: # local_outputs = ctx.outputs # else: # local_outputs = [] # for o in range(num_outputs): # local_outputs.append(torch.FloatTensor().to(adapter)) # print("backward") # print("--------") # print (" inputs") # for i in ctx.inputs: # print(i) # print (" outputs") # for o in ctx.outputs: # print(o) # print (" adj_inputs") # for adj_i in adj_inputs: # print(adj_i) # print (" adj_outputs") # for adj_o in adj_outputs: # print(adj_o) # launch if adapter == 'cpu': func.backward_cpu(*[dim, *ctx.inputs, *local_outputs, *adj_inputs, *adj_outputs]) elif torch.device(adapter).type == 'cuda': #elif adapter.startswith('cuda'): func.backward_cuda(*[dim, *ctx.inputs, *local_outputs, *adj_inputs, *adj_outputs]) # filter grads replaces empty tensors / constant params with None ret = list(filter_grads(adj_inputs)) for i in range(num_outputs): ret.append(None) return tuple(ret) # run params = [*inputs] torch.set_printoptions(edgeitems=3) if (check_grad == True and no_grad == False): try: torch.autograd.gradcheck(TorchFunc.apply, params, eps=1e-2, atol=1e-3, rtol=1.e-3, raise_exception=True) except Exception as e: print(str(func.func.__name__) + " failed: " + str(e)) output = TorchFunc.apply(*params) return output class Tape: def __init__(self): self.launches = [] # dictionary mapping Tensor inputs to their adjoint self.adjoints = {} def launch(self, func, dim, inputs, outputs, adapter, preserve_output=False, skip_check_grad=False): if (dim > 0): # run kernel if adapter == 'cpu': func.forward_cpu(*[dim, *inputs, *outputs]) elif torch.device(adapter).type == 'cuda': #adapter.startswith('cuda'): func.forward_cuda(*[dim, *inputs, *outputs]) if dflex.config.verify_fp: check_adapter(inputs, adapter) check_adapter(outputs, adapter) check_finite(inputs) check_finite(outputs) # record launch if dflex.config.no_grad == False: self.launches.append([func, dim, inputs, outputs, adapter, preserve_output]) # optionally run grad check if dflex.config.check_grad == True and skip_check_grad == False: # copy inputs and outputs to avoid disturbing the computational graph inputs_copy = copy_params(inputs) outputs_copy = copy_params(outputs) launch_torch(func, dim, inputs_copy, outputs_copy, adapter, preserve_output, check_grad=True) def replay(self): for kernel in reversed(self.launches): func = kernel[0] dim = kernel[1] inputs = kernel[2] #outputs = to_strong_list(kernel[3]) outputs = kernel[3] adapter = kernel[4] # lookup adj_inputs adj_inputs = [] adj_outputs = [] # build input adjoints for i in inputs: if i in self.adjoints: adj_inputs.append(self.adjoints[i]) else: if torch.is_tensor(i): adj_inputs.append(self.alloc_grad(i)) else: adj_inputs.append(type(i)()) # build output adjoints for o in outputs: if o in self.adjoints: adj_outputs.append(self.adjoints[o]) else: # no output adjoint means the output wasn't used in the loss function so # allocate a zero tensor (they will still be read by the kernels) adj_outputs.append(self.alloc_grad(o)) # launch reverse if adapter == 'cpu': func.backward_cpu(*[dim, *inputs, *outputs, *adj_inputs, *adj_outputs]) elif torch.device(adapter).type == 'cuda': #elif adapter.startswith('cuda'): func.backward_cuda(*[dim, *inputs, *outputs, *adj_inputs, *adj_outputs]) if dflex.config.verify_fp: check_finite(inputs) check_finite(outputs) check_finite(adj_inputs) check_finite(adj_outputs) def reset(self): self.adjoints = {} self.launches = [] def alloc_grad(self, t): if t.dtype == torch.float32 and t.requires_grad: # zero tensor self.adjoints[t] = torch.zeros_like(t) return self.adjoints[t] else: # null tensor return torch.FloatTensor().to(t.device) # helper that given a set of inputs, will generate a set of output grad buffers def alloc_grads(inputs, adapter): """helper that generates output grad buffers for a set of inputs on the specified device. Args: inputs (iterable of Tensors, other literals): list of Tensors to generate gradient buffers for. Non-tensors are ignored. adapter (str, optional): name of torch device for storage location of allocated gradient buffers. Defaults to 'cpu'. """ grads = [] for arg in inputs: if (torch.is_tensor(arg)): if (arg.requires_grad and arg.dtype == torch.float): grads.append(torch.zeros_like(arg, device=adapter)) #grads.append(lookup_grad(arg)) else: grads.append(torch.FloatTensor().to(adapter)) else: grads.append(type(arg)()) return grads def matmul(tape, m, n, k, t1, t2, A, B, C, adapter): if (adapter == 'cpu'): threads = 1 else: threads = 256 # should match the threadblock size tape.launch( func=dflex.eval_dense_gemm, dim=threads, inputs=[ m, n, k, t1, t2, A, B, ], outputs=[ C ], adapter=adapter, preserve_output=False) def matmul_batched(tape, batch_count, m, n, k, t1, t2, A_start, B_start, C_start, A, B, C, adapter): if (adapter == 'cpu'): threads = batch_count else: threads = 256*batch_count # must match the threadblock size used in adjoint.py tape.launch( func=dflex.eval_dense_gemm_batched, dim=threads, inputs=[ m, n, k, t1, t2, A_start, B_start, C_start, A, B, ], outputs=[ C ], adapter=adapter, preserve_output=False)
61,318
Python
25.683638
229
0.535161
vstrozzi/FRL-SHAC-Extension/dflex/dflex/kernels/main.cpp
#include <torch/extension.h> #define CPU #include "adjoint.h" using namespace df; template <typename T> T cast(torch::Tensor t) {{ return (T)(t.data_ptr()); }} float test_cpu_func( float var_c) { //--------- // primal vars const float var_0 = 1.0; const int var_1 = 2; float var_2; const float var_3 = 3.0; int var_4; bool var_5; const float var_6 = 2.0; float var_7; const float var_8 = 6.0; float var_9; //--------- // forward var_2 = df::float(var_1); var_4 = df::int(var_3); df::print(var_2); df::print(var_4); var_5 = (var_c < var_3); if (var_5) { } var_7 = df::select(var_5, var_0, var_6); var_9 = df::mul(var_7, var_8); return var_9; } void adj_test_cpu_func( float var_c, float & adj_c, float & adj_ret) { //--------- // primal vars const float var_0 = 1.0; const int var_1 = 2; float var_2; const float var_3 = 3.0; int var_4; bool var_5; const float var_6 = 2.0; float var_7; const float var_8 = 6.0; float var_9; //--------- // dual vars float adj_0 = 0; int adj_1 = 0; float adj_2 = 0; float adj_3 = 0; int adj_4 = 0; bool adj_5 = 0; float adj_6 = 0; float adj_7 = 0; float adj_8 = 0; float adj_9 = 0; //--------- // forward var_2 = df::float(var_1); var_4 = df::int(var_3); df::print(var_2); df::print(var_4); var_5 = (var_c < var_3); if (var_5) { } var_7 = df::select(var_5, var_0, var_6); var_9 = df::mul(var_7, var_8); goto label0; //--------- // reverse label0:; adj_9 += adj_ret; df::adj_mul(var_7, var_8, adj_7, adj_8, adj_9); df::adj_select(var_5, var_0, var_6, adj_5, adj_0, adj_6, adj_7); if (var_5) { } df::adj_print(var_4, adj_4); df::adj_print(var_2, adj_2); df::adj_int(var_3, adj_3, adj_4); df::adj_float(var_1, adj_1, adj_2); return; } df::float3 triangle_closest_point_barycentric_cpu_func( df::float3 var_a, df::float3 var_b, df::float3 var_c, df::float3 var_p) { //--------- // primal vars df::float3 var_0; df::float3 var_1; df::float3 var_2; float var_3; float var_4; const float var_5 = 0.0; bool var_6; bool var_7; bool var_8; const float var_9 = 1.0; df::float3 var_10; df::float3 var_11; float var_12; float var_13; bool var_14; bool var_15; bool var_16; df::float3 var_17; df::float3 var_18; float var_19; float var_20; float var_21; float var_22; float var_23; bool var_24; bool var_25; bool var_26; bool var_27; float var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; float var_32; float var_33; bool var_34; bool var_35; bool var_36; df::float3 var_37; df::float3 var_38; float var_39; float var_40; float var_41; float var_42; float var_43; bool var_44; bool var_45; bool var_46; bool var_47; float var_48; df::float3 var_49; df::float3 var_50; float var_51; float var_52; float var_53; float var_54; float var_55; float var_56; float var_57; float var_58; bool var_59; float var_60; bool var_61; float var_62; bool var_63; bool var_64; float var_65; df::float3 var_66; df::float3 var_67; float var_68; float var_69; float var_70; float var_71; float var_72; float var_73; float var_74; df::float3 var_75; //--------- // forward var_0 = df::sub(var_b, var_a); var_1 = df::sub(var_c, var_a); var_2 = df::sub(var_p, var_a); var_3 = df::dot(var_0, var_2); var_4 = df::dot(var_1, var_2); var_6 = (var_3 <= var_5); var_7 = (var_4 <= var_5); var_8 = var_6 && var_7; if (var_8) { var_10 = df::float3(var_9, var_5, var_5); return var_10; } var_11 = df::sub(var_p, var_b); var_12 = df::dot(var_0, var_11); var_13 = df::dot(var_1, var_11); var_14 = (var_12 >= var_5); var_15 = (var_13 <= var_12); var_16 = var_14 && var_15; if (var_16) { var_17 = df::float3(var_5, var_9, var_5); return var_17; } var_18 = df::select(var_16, var_10, var_17); var_19 = df::mul(var_3, var_13); var_20 = df::mul(var_12, var_4); var_21 = df::sub(var_19, var_20); var_22 = df::sub(var_3, var_12); var_23 = df::div(var_3, var_22); var_24 = (var_21 <= var_5); var_25 = (var_3 >= var_5); var_26 = (var_12 <= var_5); var_27 = var_24 && var_25 && var_26; if (var_27) { var_28 = df::sub(var_9, var_23); var_29 = df::float3(var_28, var_23, var_5); return var_29; } var_30 = df::select(var_27, var_18, var_29); var_31 = df::sub(var_p, var_c); var_32 = df::dot(var_0, var_31); var_33 = df::dot(var_1, var_31); var_34 = (var_33 >= var_5); var_35 = (var_32 <= var_33); var_36 = var_34 && var_35; if (var_36) { var_37 = df::float3(var_5, var_5, var_9); return var_37; } var_38 = df::select(var_36, var_30, var_37); var_39 = df::mul(var_32, var_4); var_40 = df::mul(var_3, var_33); var_41 = df::sub(var_39, var_40); var_42 = df::sub(var_4, var_33); var_43 = df::div(var_4, var_42); var_44 = (var_41 <= var_5); var_45 = (var_4 >= var_5); var_46 = (var_33 <= var_5); var_47 = var_44 && var_45 && var_46; if (var_47) { var_48 = df::sub(var_9, var_43); var_49 = df::float3(var_48, var_5, var_43); return var_49; } var_50 = df::select(var_47, var_38, var_49); var_51 = df::mul(var_12, var_33); var_52 = df::mul(var_32, var_13); var_53 = df::sub(var_51, var_52); var_54 = df::sub(var_13, var_12); var_55 = df::sub(var_13, var_12); var_56 = df::sub(var_32, var_33); var_57 = df::add(var_55, var_56); var_58 = df::div(var_54, var_57); var_59 = (var_53 <= var_5); var_60 = df::sub(var_13, var_12); var_61 = (var_60 >= var_5); var_62 = df::sub(var_32, var_33); var_63 = (var_62 >= var_5); var_64 = var_59 && var_61 && var_63; if (var_64) { var_65 = df::sub(var_9, var_58); var_66 = df::float3(var_5, var_58, var_65); return var_66; } var_67 = df::select(var_64, var_50, var_66); var_68 = df::add(var_53, var_41); var_69 = df::add(var_68, var_21); var_70 = df::div(var_9, var_69); var_71 = df::mul(var_41, var_70); var_72 = df::mul(var_21, var_70); var_73 = df::sub(var_9, var_71); var_74 = df::sub(var_73, var_72); var_75 = df::float3(var_74, var_71, var_72); return var_75; } void adj_triangle_closest_point_barycentric_cpu_func( df::float3 var_a, df::float3 var_b, df::float3 var_c, df::float3 var_p, df::float3 & adj_a, df::float3 & adj_b, df::float3 & adj_c, df::float3 & adj_p, df::float3 & adj_ret) { //--------- // primal vars df::float3 var_0; df::float3 var_1; df::float3 var_2; float var_3; float var_4; const float var_5 = 0.0; bool var_6; bool var_7; bool var_8; const float var_9 = 1.0; df::float3 var_10; df::float3 var_11; float var_12; float var_13; bool var_14; bool var_15; bool var_16; df::float3 var_17; df::float3 var_18; float var_19; float var_20; float var_21; float var_22; float var_23; bool var_24; bool var_25; bool var_26; bool var_27; float var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; float var_32; float var_33; bool var_34; bool var_35; bool var_36; df::float3 var_37; df::float3 var_38; float var_39; float var_40; float var_41; float var_42; float var_43; bool var_44; bool var_45; bool var_46; bool var_47; float var_48; df::float3 var_49; df::float3 var_50; float var_51; float var_52; float var_53; float var_54; float var_55; float var_56; float var_57; float var_58; bool var_59; float var_60; bool var_61; float var_62; bool var_63; bool var_64; float var_65; df::float3 var_66; df::float3 var_67; float var_68; float var_69; float var_70; float var_71; float var_72; float var_73; float var_74; df::float3 var_75; //--------- // dual vars df::float3 adj_0 = 0; df::float3 adj_1 = 0; df::float3 adj_2 = 0; float adj_3 = 0; float adj_4 = 0; float adj_5 = 0; bool adj_6 = 0; bool adj_7 = 0; bool adj_8 = 0; float adj_9 = 0; df::float3 adj_10 = 0; df::float3 adj_11 = 0; float adj_12 = 0; float adj_13 = 0; bool adj_14 = 0; bool adj_15 = 0; bool adj_16 = 0; df::float3 adj_17 = 0; df::float3 adj_18 = 0; float adj_19 = 0; float adj_20 = 0; float adj_21 = 0; float adj_22 = 0; float adj_23 = 0; bool adj_24 = 0; bool adj_25 = 0; bool adj_26 = 0; bool adj_27 = 0; float adj_28 = 0; df::float3 adj_29 = 0; df::float3 adj_30 = 0; df::float3 adj_31 = 0; float adj_32 = 0; float adj_33 = 0; bool adj_34 = 0; bool adj_35 = 0; bool adj_36 = 0; df::float3 adj_37 = 0; df::float3 adj_38 = 0; float adj_39 = 0; float adj_40 = 0; float adj_41 = 0; float adj_42 = 0; float adj_43 = 0; bool adj_44 = 0; bool adj_45 = 0; bool adj_46 = 0; bool adj_47 = 0; float adj_48 = 0; df::float3 adj_49 = 0; df::float3 adj_50 = 0; float adj_51 = 0; float adj_52 = 0; float adj_53 = 0; float adj_54 = 0; float adj_55 = 0; float adj_56 = 0; float adj_57 = 0; float adj_58 = 0; bool adj_59 = 0; float adj_60 = 0; bool adj_61 = 0; float adj_62 = 0; bool adj_63 = 0; bool adj_64 = 0; float adj_65 = 0; df::float3 adj_66 = 0; df::float3 adj_67 = 0; float adj_68 = 0; float adj_69 = 0; float adj_70 = 0; float adj_71 = 0; float adj_72 = 0; float adj_73 = 0; float adj_74 = 0; df::float3 adj_75 = 0; //--------- // forward var_0 = df::sub(var_b, var_a); var_1 = df::sub(var_c, var_a); var_2 = df::sub(var_p, var_a); var_3 = df::dot(var_0, var_2); var_4 = df::dot(var_1, var_2); var_6 = (var_3 <= var_5); var_7 = (var_4 <= var_5); var_8 = var_6 && var_7; if (var_8) { var_10 = df::float3(var_9, var_5, var_5); goto label0; } var_11 = df::sub(var_p, var_b); var_12 = df::dot(var_0, var_11); var_13 = df::dot(var_1, var_11); var_14 = (var_12 >= var_5); var_15 = (var_13 <= var_12); var_16 = var_14 && var_15; if (var_16) { var_17 = df::float3(var_5, var_9, var_5); goto label1; } var_18 = df::select(var_16, var_10, var_17); var_19 = df::mul(var_3, var_13); var_20 = df::mul(var_12, var_4); var_21 = df::sub(var_19, var_20); var_22 = df::sub(var_3, var_12); var_23 = df::div(var_3, var_22); var_24 = (var_21 <= var_5); var_25 = (var_3 >= var_5); var_26 = (var_12 <= var_5); var_27 = var_24 && var_25 && var_26; if (var_27) { var_28 = df::sub(var_9, var_23); var_29 = df::float3(var_28, var_23, var_5); goto label2; } var_30 = df::select(var_27, var_18, var_29); var_31 = df::sub(var_p, var_c); var_32 = df::dot(var_0, var_31); var_33 = df::dot(var_1, var_31); var_34 = (var_33 >= var_5); var_35 = (var_32 <= var_33); var_36 = var_34 && var_35; if (var_36) { var_37 = df::float3(var_5, var_5, var_9); goto label3; } var_38 = df::select(var_36, var_30, var_37); var_39 = df::mul(var_32, var_4); var_40 = df::mul(var_3, var_33); var_41 = df::sub(var_39, var_40); var_42 = df::sub(var_4, var_33); var_43 = df::div(var_4, var_42); var_44 = (var_41 <= var_5); var_45 = (var_4 >= var_5); var_46 = (var_33 <= var_5); var_47 = var_44 && var_45 && var_46; if (var_47) { var_48 = df::sub(var_9, var_43); var_49 = df::float3(var_48, var_5, var_43); goto label4; } var_50 = df::select(var_47, var_38, var_49); var_51 = df::mul(var_12, var_33); var_52 = df::mul(var_32, var_13); var_53 = df::sub(var_51, var_52); var_54 = df::sub(var_13, var_12); var_55 = df::sub(var_13, var_12); var_56 = df::sub(var_32, var_33); var_57 = df::add(var_55, var_56); var_58 = df::div(var_54, var_57); var_59 = (var_53 <= var_5); var_60 = df::sub(var_13, var_12); var_61 = (var_60 >= var_5); var_62 = df::sub(var_32, var_33); var_63 = (var_62 >= var_5); var_64 = var_59 && var_61 && var_63; if (var_64) { var_65 = df::sub(var_9, var_58); var_66 = df::float3(var_5, var_58, var_65); goto label5; } var_67 = df::select(var_64, var_50, var_66); var_68 = df::add(var_53, var_41); var_69 = df::add(var_68, var_21); var_70 = df::div(var_9, var_69); var_71 = df::mul(var_41, var_70); var_72 = df::mul(var_21, var_70); var_73 = df::sub(var_9, var_71); var_74 = df::sub(var_73, var_72); var_75 = df::float3(var_74, var_71, var_72); goto label6; //--------- // reverse label6:; adj_75 += adj_ret; df::adj_float3(var_74, var_71, var_72, adj_74, adj_71, adj_72, adj_75); df::adj_sub(var_73, var_72, adj_73, adj_72, adj_74); df::adj_sub(var_9, var_71, adj_9, adj_71, adj_73); df::adj_mul(var_21, var_70, adj_21, adj_70, adj_72); df::adj_mul(var_41, var_70, adj_41, adj_70, adj_71); df::adj_div(var_9, var_69, adj_9, adj_69, adj_70); df::adj_add(var_68, var_21, adj_68, adj_21, adj_69); df::adj_add(var_53, var_41, adj_53, adj_41, adj_68); df::adj_select(var_64, var_50, var_66, adj_64, adj_50, adj_66, adj_67); if (var_64) { label5:; adj_66 += adj_ret; df::adj_float3(var_5, var_58, var_65, adj_5, adj_58, adj_65, adj_66); df::adj_sub(var_9, var_58, adj_9, adj_58, adj_65); } df::adj_sub(var_32, var_33, adj_32, adj_33, adj_62); df::adj_sub(var_13, var_12, adj_13, adj_12, adj_60); df::adj_div(var_54, var_57, adj_54, adj_57, adj_58); df::adj_add(var_55, var_56, adj_55, adj_56, adj_57); df::adj_sub(var_32, var_33, adj_32, adj_33, adj_56); df::adj_sub(var_13, var_12, adj_13, adj_12, adj_55); df::adj_sub(var_13, var_12, adj_13, adj_12, adj_54); df::adj_sub(var_51, var_52, adj_51, adj_52, adj_53); df::adj_mul(var_32, var_13, adj_32, adj_13, adj_52); df::adj_mul(var_12, var_33, adj_12, adj_33, adj_51); df::adj_select(var_47, var_38, var_49, adj_47, adj_38, adj_49, adj_50); if (var_47) { label4:; adj_49 += adj_ret; df::adj_float3(var_48, var_5, var_43, adj_48, adj_5, adj_43, adj_49); df::adj_sub(var_9, var_43, adj_9, adj_43, adj_48); } df::adj_div(var_4, var_42, adj_4, adj_42, adj_43); df::adj_sub(var_4, var_33, adj_4, adj_33, adj_42); df::adj_sub(var_39, var_40, adj_39, adj_40, adj_41); df::adj_mul(var_3, var_33, adj_3, adj_33, adj_40); df::adj_mul(var_32, var_4, adj_32, adj_4, adj_39); df::adj_select(var_36, var_30, var_37, adj_36, adj_30, adj_37, adj_38); if (var_36) { label3:; adj_37 += adj_ret; df::adj_float3(var_5, var_5, var_9, adj_5, adj_5, adj_9, adj_37); } df::adj_dot(var_1, var_31, adj_1, adj_31, adj_33); df::adj_dot(var_0, var_31, adj_0, adj_31, adj_32); df::adj_sub(var_p, var_c, adj_p, adj_c, adj_31); df::adj_select(var_27, var_18, var_29, adj_27, adj_18, adj_29, adj_30); if (var_27) { label2:; adj_29 += adj_ret; df::adj_float3(var_28, var_23, var_5, adj_28, adj_23, adj_5, adj_29); df::adj_sub(var_9, var_23, adj_9, adj_23, adj_28); } df::adj_div(var_3, var_22, adj_3, adj_22, adj_23); df::adj_sub(var_3, var_12, adj_3, adj_12, adj_22); df::adj_sub(var_19, var_20, adj_19, adj_20, adj_21); df::adj_mul(var_12, var_4, adj_12, adj_4, adj_20); df::adj_mul(var_3, var_13, adj_3, adj_13, adj_19); df::adj_select(var_16, var_10, var_17, adj_16, adj_10, adj_17, adj_18); if (var_16) { label1:; adj_17 += adj_ret; df::adj_float3(var_5, var_9, var_5, adj_5, adj_9, adj_5, adj_17); } df::adj_dot(var_1, var_11, adj_1, adj_11, adj_13); df::adj_dot(var_0, var_11, adj_0, adj_11, adj_12); df::adj_sub(var_p, var_b, adj_p, adj_b, adj_11); if (var_8) { label0:; adj_10 += adj_ret; df::adj_float3(var_9, var_5, var_5, adj_9, adj_5, adj_5, adj_10); } df::adj_dot(var_1, var_2, adj_1, adj_2, adj_4); df::adj_dot(var_0, var_2, adj_0, adj_2, adj_3); df::adj_sub(var_p, var_a, adj_p, adj_a, adj_2); df::adj_sub(var_c, var_a, adj_c, adj_a, adj_1); df::adj_sub(var_b, var_a, adj_b, adj_a, adj_0); return; } float sphere_sdf_cpu_func( df::float3 var_center, float var_radius, df::float3 var_p) { //--------- // primal vars df::float3 var_0; float var_1; float var_2; //--------- // forward var_0 = df::sub(var_p, var_center); var_1 = df::length(var_0); var_2 = df::sub(var_1, var_radius); return var_2; } void adj_sphere_sdf_cpu_func( df::float3 var_center, float var_radius, df::float3 var_p, df::float3 & adj_center, float & adj_radius, df::float3 & adj_p, float & adj_ret) { //--------- // primal vars df::float3 var_0; float var_1; float var_2; //--------- // dual vars df::float3 adj_0 = 0; float adj_1 = 0; float adj_2 = 0; //--------- // forward var_0 = df::sub(var_p, var_center); var_1 = df::length(var_0); var_2 = df::sub(var_1, var_radius); goto label0; //--------- // reverse label0:; adj_2 += adj_ret; df::adj_sub(var_1, var_radius, adj_1, adj_radius, adj_2); df::adj_length(var_0, adj_0, adj_1); df::adj_sub(var_p, var_center, adj_p, adj_center, adj_0); return; } df::float3 sphere_sdf_grad_cpu_func( df::float3 var_center, float var_radius, df::float3 var_p) { //--------- // primal vars df::float3 var_0; df::float3 var_1; //--------- // forward var_0 = df::sub(var_p, var_center); var_1 = df::normalize(var_0); return var_1; } void adj_sphere_sdf_grad_cpu_func( df::float3 var_center, float var_radius, df::float3 var_p, df::float3 & adj_center, float & adj_radius, df::float3 & adj_p, df::float3 & adj_ret) { //--------- // primal vars df::float3 var_0; df::float3 var_1; //--------- // dual vars df::float3 adj_0 = 0; df::float3 adj_1 = 0; //--------- // forward var_0 = df::sub(var_p, var_center); var_1 = df::normalize(var_0); goto label0; //--------- // reverse label0:; adj_1 += adj_ret; df::adj_normalize(var_0, adj_0, adj_1); df::adj_sub(var_p, var_center, adj_p, adj_center, adj_0); return; } float box_sdf_cpu_func( df::float3 var_upper, df::float3 var_p) { //--------- // primal vars const int var_0 = 0; float var_1; float var_2; float var_3; float var_4; const int var_5 = 1; float var_6; float var_7; float var_8; float var_9; const int var_10 = 2; float var_11; float var_12; float var_13; float var_14; const float var_15 = 0.0; float var_16; float var_17; float var_18; df::float3 var_19; float var_20; float var_21; float var_22; float var_23; float var_24; //--------- // forward var_1 = df::index(var_p, var_0); var_2 = df::abs(var_1); var_3 = df::index(var_upper, var_0); var_4 = df::sub(var_2, var_3); var_6 = df::index(var_p, var_5); var_7 = df::abs(var_6); var_8 = df::index(var_upper, var_5); var_9 = df::sub(var_7, var_8); var_11 = df::index(var_p, var_10); var_12 = df::abs(var_11); var_13 = df::index(var_upper, var_10); var_14 = df::sub(var_12, var_13); var_16 = df::max(var_4, var_15); var_17 = df::max(var_9, var_15); var_18 = df::max(var_14, var_15); var_19 = df::float3(var_16, var_17, var_18); var_20 = df::length(var_19); var_21 = df::max(var_9, var_14); var_22 = df::max(var_4, var_21); var_23 = df::min(var_22, var_15); var_24 = df::add(var_20, var_23); return var_24; } void adj_box_sdf_cpu_func( df::float3 var_upper, df::float3 var_p, df::float3 & adj_upper, df::float3 & adj_p, float & adj_ret) { //--------- // primal vars const int var_0 = 0; float var_1; float var_2; float var_3; float var_4; const int var_5 = 1; float var_6; float var_7; float var_8; float var_9; const int var_10 = 2; float var_11; float var_12; float var_13; float var_14; const float var_15 = 0.0; float var_16; float var_17; float var_18; df::float3 var_19; float var_20; float var_21; float var_22; float var_23; float var_24; //--------- // dual vars int adj_0 = 0; float adj_1 = 0; float adj_2 = 0; float adj_3 = 0; float adj_4 = 0; int adj_5 = 0; float adj_6 = 0; float adj_7 = 0; float adj_8 = 0; float adj_9 = 0; int adj_10 = 0; float adj_11 = 0; float adj_12 = 0; float adj_13 = 0; float adj_14 = 0; float adj_15 = 0; float adj_16 = 0; float adj_17 = 0; float adj_18 = 0; df::float3 adj_19 = 0; float adj_20 = 0; float adj_21 = 0; float adj_22 = 0; float adj_23 = 0; float adj_24 = 0; //--------- // forward var_1 = df::index(var_p, var_0); var_2 = df::abs(var_1); var_3 = df::index(var_upper, var_0); var_4 = df::sub(var_2, var_3); var_6 = df::index(var_p, var_5); var_7 = df::abs(var_6); var_8 = df::index(var_upper, var_5); var_9 = df::sub(var_7, var_8); var_11 = df::index(var_p, var_10); var_12 = df::abs(var_11); var_13 = df::index(var_upper, var_10); var_14 = df::sub(var_12, var_13); var_16 = df::max(var_4, var_15); var_17 = df::max(var_9, var_15); var_18 = df::max(var_14, var_15); var_19 = df::float3(var_16, var_17, var_18); var_20 = df::length(var_19); var_21 = df::max(var_9, var_14); var_22 = df::max(var_4, var_21); var_23 = df::min(var_22, var_15); var_24 = df::add(var_20, var_23); goto label0; //--------- // reverse label0:; adj_24 += adj_ret; df::adj_add(var_20, var_23, adj_20, adj_23, adj_24); df::adj_min(var_22, var_15, adj_22, adj_15, adj_23); df::adj_max(var_4, var_21, adj_4, adj_21, adj_22); df::adj_max(var_9, var_14, adj_9, adj_14, adj_21); df::adj_length(var_19, adj_19, adj_20); df::adj_float3(var_16, var_17, var_18, adj_16, adj_17, adj_18, adj_19); df::adj_max(var_14, var_15, adj_14, adj_15, adj_18); df::adj_max(var_9, var_15, adj_9, adj_15, adj_17); df::adj_max(var_4, var_15, adj_4, adj_15, adj_16); df::adj_sub(var_12, var_13, adj_12, adj_13, adj_14); df::adj_index(var_upper, var_10, adj_upper, adj_10, adj_13); df::adj_abs(var_11, adj_11, adj_12); df::adj_index(var_p, var_10, adj_p, adj_10, adj_11); df::adj_sub(var_7, var_8, adj_7, adj_8, adj_9); df::adj_index(var_upper, var_5, adj_upper, adj_5, adj_8); df::adj_abs(var_6, adj_6, adj_7); df::adj_index(var_p, var_5, adj_p, adj_5, adj_6); df::adj_sub(var_2, var_3, adj_2, adj_3, adj_4); df::adj_index(var_upper, var_0, adj_upper, adj_0, adj_3); df::adj_abs(var_1, adj_1, adj_2); df::adj_index(var_p, var_0, adj_p, adj_0, adj_1); return; } df::float3 box_sdf_grad_cpu_func( df::float3 var_upper, df::float3 var_p) { //--------- // primal vars const int var_0 = 0; float var_1; float var_2; float var_3; float var_4; const int var_5 = 1; float var_6; float var_7; float var_8; float var_9; const int var_10 = 2; float var_11; float var_12; float var_13; float var_14; const float var_15 = 0.0; bool var_16; bool var_17; bool var_18; bool var_19; float var_20; float var_21; float var_22; float var_23; float var_24; float var_25; float var_26; float var_27; float var_28; float var_29; float var_30; float var_31; float var_32; float var_33; float var_34; df::float3 var_35; df::float3 var_36; df::float3 var_37; float var_38; float var_39; float var_40; float var_41; float var_42; float var_43; bool var_44; bool var_45; bool var_46; df::float3 var_47; df::float3 var_48; bool var_49; bool var_50; bool var_51; df::float3 var_52; df::float3 var_53; bool var_54; bool var_55; bool var_56; df::float3 var_57; df::float3 var_58; //--------- // forward var_1 = df::index(var_p, var_0); var_2 = df::abs(var_1); var_3 = df::index(var_upper, var_0); var_4 = df::sub(var_2, var_3); var_6 = df::index(var_p, var_5); var_7 = df::abs(var_6); var_8 = df::index(var_upper, var_5); var_9 = df::sub(var_7, var_8); var_11 = df::index(var_p, var_10); var_12 = df::abs(var_11); var_13 = df::index(var_upper, var_10); var_14 = df::sub(var_12, var_13); var_16 = (var_4 > var_15); var_17 = (var_9 > var_15); var_18 = (var_14 > var_15); var_19 = var_16 || var_17 || var_18; if (var_19) { var_20 = df::index(var_p, var_0); var_21 = df::index(var_upper, var_0); var_22 = df::sub(var_15, var_21); var_23 = df::index(var_upper, var_0); var_24 = df::clamp(var_20, var_22, var_23); var_25 = df::index(var_p, var_5); var_26 = df::index(var_upper, var_5); var_27 = df::sub(var_15, var_26); var_28 = df::index(var_upper, var_5); var_29 = df::clamp(var_25, var_27, var_28); var_30 = df::index(var_p, var_10); var_31 = df::index(var_upper, var_10); var_32 = df::sub(var_15, var_31); var_33 = df::index(var_upper, var_10); var_34 = df::clamp(var_30, var_32, var_33); var_35 = df::float3(var_24, var_29, var_34); var_36 = df::sub(var_p, var_35); var_37 = df::normalize(var_36); return var_37; } var_38 = df::index(var_p, var_0); var_39 = df::sign(var_38); var_40 = df::index(var_p, var_5); var_41 = df::sign(var_40); var_42 = df::index(var_p, var_10); var_43 = df::sign(var_42); var_44 = (var_4 > var_9); var_45 = (var_4 > var_14); var_46 = var_44 && var_45; if (var_46) { var_47 = df::float3(var_39, var_15, var_15); return var_47; } var_48 = df::select(var_46, var_37, var_47); var_49 = (var_9 > var_4); var_50 = (var_9 > var_14); var_51 = var_49 && var_50; if (var_51) { var_52 = df::float3(var_15, var_41, var_15); return var_52; } var_53 = df::select(var_51, var_48, var_52); var_54 = (var_14 > var_4); var_55 = (var_14 > var_9); var_56 = var_54 && var_55; if (var_56) { var_57 = df::float3(var_15, var_15, var_43); return var_57; } var_58 = df::select(var_56, var_53, var_57); } void adj_box_sdf_grad_cpu_func( df::float3 var_upper, df::float3 var_p, df::float3 & adj_upper, df::float3 & adj_p, df::float3 & adj_ret) { //--------- // primal vars const int var_0 = 0; float var_1; float var_2; float var_3; float var_4; const int var_5 = 1; float var_6; float var_7; float var_8; float var_9; const int var_10 = 2; float var_11; float var_12; float var_13; float var_14; const float var_15 = 0.0; bool var_16; bool var_17; bool var_18; bool var_19; float var_20; float var_21; float var_22; float var_23; float var_24; float var_25; float var_26; float var_27; float var_28; float var_29; float var_30; float var_31; float var_32; float var_33; float var_34; df::float3 var_35; df::float3 var_36; df::float3 var_37; float var_38; float var_39; float var_40; float var_41; float var_42; float var_43; bool var_44; bool var_45; bool var_46; df::float3 var_47; df::float3 var_48; bool var_49; bool var_50; bool var_51; df::float3 var_52; df::float3 var_53; bool var_54; bool var_55; bool var_56; df::float3 var_57; df::float3 var_58; //--------- // dual vars int adj_0 = 0; float adj_1 = 0; float adj_2 = 0; float adj_3 = 0; float adj_4 = 0; int adj_5 = 0; float adj_6 = 0; float adj_7 = 0; float adj_8 = 0; float adj_9 = 0; int adj_10 = 0; float adj_11 = 0; float adj_12 = 0; float adj_13 = 0; float adj_14 = 0; float adj_15 = 0; bool adj_16 = 0; bool adj_17 = 0; bool adj_18 = 0; bool adj_19 = 0; float adj_20 = 0; float adj_21 = 0; float adj_22 = 0; float adj_23 = 0; float adj_24 = 0; float adj_25 = 0; float adj_26 = 0; float adj_27 = 0; float adj_28 = 0; float adj_29 = 0; float adj_30 = 0; float adj_31 = 0; float adj_32 = 0; float adj_33 = 0; float adj_34 = 0; df::float3 adj_35 = 0; df::float3 adj_36 = 0; df::float3 adj_37 = 0; float adj_38 = 0; float adj_39 = 0; float adj_40 = 0; float adj_41 = 0; float adj_42 = 0; float adj_43 = 0; bool adj_44 = 0; bool adj_45 = 0; bool adj_46 = 0; df::float3 adj_47 = 0; df::float3 adj_48 = 0; bool adj_49 = 0; bool adj_50 = 0; bool adj_51 = 0; df::float3 adj_52 = 0; df::float3 adj_53 = 0; bool adj_54 = 0; bool adj_55 = 0; bool adj_56 = 0; df::float3 adj_57 = 0; df::float3 adj_58 = 0; //--------- // forward var_1 = df::index(var_p, var_0); var_2 = df::abs(var_1); var_3 = df::index(var_upper, var_0); var_4 = df::sub(var_2, var_3); var_6 = df::index(var_p, var_5); var_7 = df::abs(var_6); var_8 = df::index(var_upper, var_5); var_9 = df::sub(var_7, var_8); var_11 = df::index(var_p, var_10); var_12 = df::abs(var_11); var_13 = df::index(var_upper, var_10); var_14 = df::sub(var_12, var_13); var_16 = (var_4 > var_15); var_17 = (var_9 > var_15); var_18 = (var_14 > var_15); var_19 = var_16 || var_17 || var_18; if (var_19) { var_20 = df::index(var_p, var_0); var_21 = df::index(var_upper, var_0); var_22 = df::sub(var_15, var_21); var_23 = df::index(var_upper, var_0); var_24 = df::clamp(var_20, var_22, var_23); var_25 = df::index(var_p, var_5); var_26 = df::index(var_upper, var_5); var_27 = df::sub(var_15, var_26); var_28 = df::index(var_upper, var_5); var_29 = df::clamp(var_25, var_27, var_28); var_30 = df::index(var_p, var_10); var_31 = df::index(var_upper, var_10); var_32 = df::sub(var_15, var_31); var_33 = df::index(var_upper, var_10); var_34 = df::clamp(var_30, var_32, var_33); var_35 = df::float3(var_24, var_29, var_34); var_36 = df::sub(var_p, var_35); var_37 = df::normalize(var_36); goto label0; } var_38 = df::index(var_p, var_0); var_39 = df::sign(var_38); var_40 = df::index(var_p, var_5); var_41 = df::sign(var_40); var_42 = df::index(var_p, var_10); var_43 = df::sign(var_42); var_44 = (var_4 > var_9); var_45 = (var_4 > var_14); var_46 = var_44 && var_45; if (var_46) { var_47 = df::float3(var_39, var_15, var_15); goto label1; } var_48 = df::select(var_46, var_37, var_47); var_49 = (var_9 > var_4); var_50 = (var_9 > var_14); var_51 = var_49 && var_50; if (var_51) { var_52 = df::float3(var_15, var_41, var_15); goto label2; } var_53 = df::select(var_51, var_48, var_52); var_54 = (var_14 > var_4); var_55 = (var_14 > var_9); var_56 = var_54 && var_55; if (var_56) { var_57 = df::float3(var_15, var_15, var_43); goto label3; } var_58 = df::select(var_56, var_53, var_57); //--------- // reverse df::adj_select(var_56, var_53, var_57, adj_56, adj_53, adj_57, adj_58); if (var_56) { label3:; adj_57 += adj_ret; df::adj_float3(var_15, var_15, var_43, adj_15, adj_15, adj_43, adj_57); } df::adj_select(var_51, var_48, var_52, adj_51, adj_48, adj_52, adj_53); if (var_51) { label2:; adj_52 += adj_ret; df::adj_float3(var_15, var_41, var_15, adj_15, adj_41, adj_15, adj_52); } df::adj_select(var_46, var_37, var_47, adj_46, adj_37, adj_47, adj_48); if (var_46) { label1:; adj_47 += adj_ret; df::adj_float3(var_39, var_15, var_15, adj_39, adj_15, adj_15, adj_47); } df::adj_sign(var_42, adj_42, adj_43); df::adj_index(var_p, var_10, adj_p, adj_10, adj_42); df::adj_sign(var_40, adj_40, adj_41); df::adj_index(var_p, var_5, adj_p, adj_5, adj_40); df::adj_sign(var_38, adj_38, adj_39); df::adj_index(var_p, var_0, adj_p, adj_0, adj_38); if (var_19) { label0:; adj_37 += adj_ret; df::adj_normalize(var_36, adj_36, adj_37); df::adj_sub(var_p, var_35, adj_p, adj_35, adj_36); df::adj_float3(var_24, var_29, var_34, adj_24, adj_29, adj_34, adj_35); df::adj_clamp(var_30, var_32, var_33, adj_30, adj_32, adj_33, adj_34); df::adj_index(var_upper, var_10, adj_upper, adj_10, adj_33); df::adj_sub(var_15, var_31, adj_15, adj_31, adj_32); df::adj_index(var_upper, var_10, adj_upper, adj_10, adj_31); df::adj_index(var_p, var_10, adj_p, adj_10, adj_30); df::adj_clamp(var_25, var_27, var_28, adj_25, adj_27, adj_28, adj_29); df::adj_index(var_upper, var_5, adj_upper, adj_5, adj_28); df::adj_sub(var_15, var_26, adj_15, adj_26, adj_27); df::adj_index(var_upper, var_5, adj_upper, adj_5, adj_26); df::adj_index(var_p, var_5, adj_p, adj_5, adj_25); df::adj_clamp(var_20, var_22, var_23, adj_20, adj_22, adj_23, adj_24); df::adj_index(var_upper, var_0, adj_upper, adj_0, adj_23); df::adj_sub(var_15, var_21, adj_15, adj_21, adj_22); df::adj_index(var_upper, var_0, adj_upper, adj_0, adj_21); df::adj_index(var_p, var_0, adj_p, adj_0, adj_20); } df::adj_sub(var_12, var_13, adj_12, adj_13, adj_14); df::adj_index(var_upper, var_10, adj_upper, adj_10, adj_13); df::adj_abs(var_11, adj_11, adj_12); df::adj_index(var_p, var_10, adj_p, adj_10, adj_11); df::adj_sub(var_7, var_8, adj_7, adj_8, adj_9); df::adj_index(var_upper, var_5, adj_upper, adj_5, adj_8); df::adj_abs(var_6, adj_6, adj_7); df::adj_index(var_p, var_5, adj_p, adj_5, adj_6); df::adj_sub(var_2, var_3, adj_2, adj_3, adj_4); df::adj_index(var_upper, var_0, adj_upper, adj_0, adj_3); df::adj_abs(var_1, adj_1, adj_2); df::adj_index(var_p, var_0, adj_p, adj_0, adj_1); return; } float capsule_sdf_cpu_func( float var_radius, float var_half_width, df::float3 var_p) { //--------- // primal vars const int var_0 = 0; float var_1; bool var_2; float var_3; float var_4; const int var_5 = 1; float var_6; const int var_7 = 2; float var_8; df::float3 var_9; float var_10; float var_11; float var_12; const float var_13 = 0.0; float var_14; bool var_15; float var_16; float var_17; float var_18; float var_19; df::float3 var_20; float var_21; float var_22; float var_23; float var_24; float var_25; df::float3 var_26; float var_27; float var_28; //--------- // forward var_1 = df::index(var_p, var_0); var_2 = (var_1 > var_half_width); if (var_2) { var_3 = df::index(var_p, var_0); var_4 = df::sub(var_3, var_half_width); var_6 = df::index(var_p, var_5); var_8 = df::index(var_p, var_7); var_9 = df::float3(var_4, var_6, var_8); var_10 = df::length(var_9); var_11 = df::sub(var_10, var_radius); return var_11; } var_12 = df::index(var_p, var_0); var_14 = df::sub(var_13, var_half_width); var_15 = (var_12 < var_14); if (var_15) { var_16 = df::index(var_p, var_0); var_17 = df::add(var_16, var_half_width); var_18 = df::index(var_p, var_5); var_19 = df::index(var_p, var_7); var_20 = df::float3(var_17, var_18, var_19); var_21 = df::length(var_20); var_22 = df::sub(var_21, var_radius); return var_22; } var_23 = df::select(var_15, var_11, var_22); var_24 = df::index(var_p, var_5); var_25 = df::index(var_p, var_7); var_26 = df::float3(var_13, var_24, var_25); var_27 = df::length(var_26); var_28 = df::sub(var_27, var_radius); return var_28; } void adj_capsule_sdf_cpu_func( float var_radius, float var_half_width, df::float3 var_p, float & adj_radius, float & adj_half_width, df::float3 & adj_p, float & adj_ret) { //--------- // primal vars const int var_0 = 0; float var_1; bool var_2; float var_3; float var_4; const int var_5 = 1; float var_6; const int var_7 = 2; float var_8; df::float3 var_9; float var_10; float var_11; float var_12; const float var_13 = 0.0; float var_14; bool var_15; float var_16; float var_17; float var_18; float var_19; df::float3 var_20; float var_21; float var_22; float var_23; float var_24; float var_25; df::float3 var_26; float var_27; float var_28; //--------- // dual vars int adj_0 = 0; float adj_1 = 0; bool adj_2 = 0; float adj_3 = 0; float adj_4 = 0; int adj_5 = 0; float adj_6 = 0; int adj_7 = 0; float adj_8 = 0; df::float3 adj_9 = 0; float adj_10 = 0; float adj_11 = 0; float adj_12 = 0; float adj_13 = 0; float adj_14 = 0; bool adj_15 = 0; float adj_16 = 0; float adj_17 = 0; float adj_18 = 0; float adj_19 = 0; df::float3 adj_20 = 0; float adj_21 = 0; float adj_22 = 0; float adj_23 = 0; float adj_24 = 0; float adj_25 = 0; df::float3 adj_26 = 0; float adj_27 = 0; float adj_28 = 0; //--------- // forward var_1 = df::index(var_p, var_0); var_2 = (var_1 > var_half_width); if (var_2) { var_3 = df::index(var_p, var_0); var_4 = df::sub(var_3, var_half_width); var_6 = df::index(var_p, var_5); var_8 = df::index(var_p, var_7); var_9 = df::float3(var_4, var_6, var_8); var_10 = df::length(var_9); var_11 = df::sub(var_10, var_radius); goto label0; } var_12 = df::index(var_p, var_0); var_14 = df::sub(var_13, var_half_width); var_15 = (var_12 < var_14); if (var_15) { var_16 = df::index(var_p, var_0); var_17 = df::add(var_16, var_half_width); var_18 = df::index(var_p, var_5); var_19 = df::index(var_p, var_7); var_20 = df::float3(var_17, var_18, var_19); var_21 = df::length(var_20); var_22 = df::sub(var_21, var_radius); goto label1; } var_23 = df::select(var_15, var_11, var_22); var_24 = df::index(var_p, var_5); var_25 = df::index(var_p, var_7); var_26 = df::float3(var_13, var_24, var_25); var_27 = df::length(var_26); var_28 = df::sub(var_27, var_radius); goto label2; //--------- // reverse label2:; adj_28 += adj_ret; df::adj_sub(var_27, var_radius, adj_27, adj_radius, adj_28); df::adj_length(var_26, adj_26, adj_27); df::adj_float3(var_13, var_24, var_25, adj_13, adj_24, adj_25, adj_26); df::adj_index(var_p, var_7, adj_p, adj_7, adj_25); df::adj_index(var_p, var_5, adj_p, adj_5, adj_24); df::adj_select(var_15, var_11, var_22, adj_15, adj_11, adj_22, adj_23); if (var_15) { label1:; adj_22 += adj_ret; df::adj_sub(var_21, var_radius, adj_21, adj_radius, adj_22); df::adj_length(var_20, adj_20, adj_21); df::adj_float3(var_17, var_18, var_19, adj_17, adj_18, adj_19, adj_20); df::adj_index(var_p, var_7, adj_p, adj_7, adj_19); df::adj_index(var_p, var_5, adj_p, adj_5, adj_18); df::adj_add(var_16, var_half_width, adj_16, adj_half_width, adj_17); df::adj_index(var_p, var_0, adj_p, adj_0, adj_16); } df::adj_sub(var_13, var_half_width, adj_13, adj_half_width, adj_14); df::adj_index(var_p, var_0, adj_p, adj_0, adj_12); if (var_2) { label0:; adj_11 += adj_ret; df::adj_sub(var_10, var_radius, adj_10, adj_radius, adj_11); df::adj_length(var_9, adj_9, adj_10); df::adj_float3(var_4, var_6, var_8, adj_4, adj_6, adj_8, adj_9); df::adj_index(var_p, var_7, adj_p, adj_7, adj_8); df::adj_index(var_p, var_5, adj_p, adj_5, adj_6); df::adj_sub(var_3, var_half_width, adj_3, adj_half_width, adj_4); df::adj_index(var_p, var_0, adj_p, adj_0, adj_3); } df::adj_index(var_p, var_0, adj_p, adj_0, adj_1); return; } df::float3 capsule_sdf_grad_cpu_func( float var_radius, float var_half_width, df::float3 var_p) { //--------- // primal vars const int var_0 = 0; float var_1; bool var_2; float var_3; float var_4; const int var_5 = 1; float var_6; const int var_7 = 2; float var_8; df::float3 var_9; df::float3 var_10; float var_11; const float var_12 = 0.0; float var_13; bool var_14; float var_15; float var_16; float var_17; float var_18; df::float3 var_19; df::float3 var_20; df::float3 var_21; float var_22; float var_23; df::float3 var_24; df::float3 var_25; //--------- // forward var_1 = df::index(var_p, var_0); var_2 = (var_1 > var_half_width); if (var_2) { var_3 = df::index(var_p, var_0); var_4 = df::sub(var_3, var_half_width); var_6 = df::index(var_p, var_5); var_8 = df::index(var_p, var_7); var_9 = df::float3(var_4, var_6, var_8); var_10 = df::normalize(var_9); return var_10; } var_11 = df::index(var_p, var_0); var_13 = df::sub(var_12, var_half_width); var_14 = (var_11 < var_13); if (var_14) { var_15 = df::index(var_p, var_0); var_16 = df::add(var_15, var_half_width); var_17 = df::index(var_p, var_5); var_18 = df::index(var_p, var_7); var_19 = df::float3(var_16, var_17, var_18); var_20 = df::normalize(var_19); return var_20; } var_21 = df::select(var_14, var_10, var_20); var_22 = df::index(var_p, var_5); var_23 = df::index(var_p, var_7); var_24 = df::float3(var_12, var_22, var_23); var_25 = df::normalize(var_24); return var_25; } void adj_capsule_sdf_grad_cpu_func( float var_radius, float var_half_width, df::float3 var_p, float & adj_radius, float & adj_half_width, df::float3 & adj_p, df::float3 & adj_ret) { //--------- // primal vars const int var_0 = 0; float var_1; bool var_2; float var_3; float var_4; const int var_5 = 1; float var_6; const int var_7 = 2; float var_8; df::float3 var_9; df::float3 var_10; float var_11; const float var_12 = 0.0; float var_13; bool var_14; float var_15; float var_16; float var_17; float var_18; df::float3 var_19; df::float3 var_20; df::float3 var_21; float var_22; float var_23; df::float3 var_24; df::float3 var_25; //--------- // dual vars int adj_0 = 0; float adj_1 = 0; bool adj_2 = 0; float adj_3 = 0; float adj_4 = 0; int adj_5 = 0; float adj_6 = 0; int adj_7 = 0; float adj_8 = 0; df::float3 adj_9 = 0; df::float3 adj_10 = 0; float adj_11 = 0; float adj_12 = 0; float adj_13 = 0; bool adj_14 = 0; float adj_15 = 0; float adj_16 = 0; float adj_17 = 0; float adj_18 = 0; df::float3 adj_19 = 0; df::float3 adj_20 = 0; df::float3 adj_21 = 0; float adj_22 = 0; float adj_23 = 0; df::float3 adj_24 = 0; df::float3 adj_25 = 0; //--------- // forward var_1 = df::index(var_p, var_0); var_2 = (var_1 > var_half_width); if (var_2) { var_3 = df::index(var_p, var_0); var_4 = df::sub(var_3, var_half_width); var_6 = df::index(var_p, var_5); var_8 = df::index(var_p, var_7); var_9 = df::float3(var_4, var_6, var_8); var_10 = df::normalize(var_9); goto label0; } var_11 = df::index(var_p, var_0); var_13 = df::sub(var_12, var_half_width); var_14 = (var_11 < var_13); if (var_14) { var_15 = df::index(var_p, var_0); var_16 = df::add(var_15, var_half_width); var_17 = df::index(var_p, var_5); var_18 = df::index(var_p, var_7); var_19 = df::float3(var_16, var_17, var_18); var_20 = df::normalize(var_19); goto label1; } var_21 = df::select(var_14, var_10, var_20); var_22 = df::index(var_p, var_5); var_23 = df::index(var_p, var_7); var_24 = df::float3(var_12, var_22, var_23); var_25 = df::normalize(var_24); goto label2; //--------- // reverse label2:; adj_25 += adj_ret; df::adj_normalize(var_24, adj_24, adj_25); df::adj_float3(var_12, var_22, var_23, adj_12, adj_22, adj_23, adj_24); df::adj_index(var_p, var_7, adj_p, adj_7, adj_23); df::adj_index(var_p, var_5, adj_p, adj_5, adj_22); df::adj_select(var_14, var_10, var_20, adj_14, adj_10, adj_20, adj_21); if (var_14) { label1:; adj_20 += adj_ret; df::adj_normalize(var_19, adj_19, adj_20); df::adj_float3(var_16, var_17, var_18, adj_16, adj_17, adj_18, adj_19); df::adj_index(var_p, var_7, adj_p, adj_7, adj_18); df::adj_index(var_p, var_5, adj_p, adj_5, adj_17); df::adj_add(var_15, var_half_width, adj_15, adj_half_width, adj_16); df::adj_index(var_p, var_0, adj_p, adj_0, adj_15); } df::adj_sub(var_12, var_half_width, adj_12, adj_half_width, adj_13); df::adj_index(var_p, var_0, adj_p, adj_0, adj_11); if (var_2) { label0:; adj_10 += adj_ret; df::adj_normalize(var_9, adj_9, adj_10); df::adj_float3(var_4, var_6, var_8, adj_4, adj_6, adj_8, adj_9); df::adj_index(var_p, var_7, adj_p, adj_7, adj_8); df::adj_index(var_p, var_5, adj_p, adj_5, adj_6); df::adj_sub(var_3, var_half_width, adj_3, adj_half_width, adj_4); df::adj_index(var_p, var_0, adj_p, adj_0, adj_3); } df::adj_index(var_p, var_0, adj_p, adj_0, adj_1); return; } spatial_vector spatial_transform_twist_cpu_func( spatial_transform var_t, spatial_vector var_x) { //--------- // primal vars quat var_0; df::float3 var_1; df::float3 var_2; df::float3 var_3; df::float3 var_4; df::float3 var_5; df::float3 var_6; df::float3 var_7; spatial_vector var_8; //--------- // forward var_0 = df::spatial_transform_get_rotation(var_t); var_1 = df::spatial_transform_get_translation(var_t); var_2 = df::spatial_top(var_x); var_3 = df::spatial_bottom(var_x); var_4 = df::rotate(var_0, var_2); var_5 = df::rotate(var_0, var_3); var_6 = df::cross(var_1, var_4); var_7 = df::add(var_5, var_6); var_8 = df::spatial_vector(var_4, var_7); return var_8; } void adj_spatial_transform_twist_cpu_func( spatial_transform var_t, spatial_vector var_x, spatial_transform & adj_t, spatial_vector & adj_x, spatial_vector & adj_ret) { //--------- // primal vars quat var_0; df::float3 var_1; df::float3 var_2; df::float3 var_3; df::float3 var_4; df::float3 var_5; df::float3 var_6; df::float3 var_7; spatial_vector var_8; //--------- // dual vars quat adj_0 = 0; df::float3 adj_1 = 0; df::float3 adj_2 = 0; df::float3 adj_3 = 0; df::float3 adj_4 = 0; df::float3 adj_5 = 0; df::float3 adj_6 = 0; df::float3 adj_7 = 0; spatial_vector adj_8 = 0; //--------- // forward var_0 = df::spatial_transform_get_rotation(var_t); var_1 = df::spatial_transform_get_translation(var_t); var_2 = df::spatial_top(var_x); var_3 = df::spatial_bottom(var_x); var_4 = df::rotate(var_0, var_2); var_5 = df::rotate(var_0, var_3); var_6 = df::cross(var_1, var_4); var_7 = df::add(var_5, var_6); var_8 = df::spatial_vector(var_4, var_7); goto label0; //--------- // reverse label0:; adj_8 += adj_ret; df::adj_spatial_vector(var_4, var_7, adj_4, adj_7, adj_8); df::adj_add(var_5, var_6, adj_5, adj_6, adj_7); df::adj_cross(var_1, var_4, adj_1, adj_4, adj_6); df::adj_rotate(var_0, var_3, adj_0, adj_3, adj_5); df::adj_rotate(var_0, var_2, adj_0, adj_2, adj_4); df::adj_spatial_bottom(var_x, adj_x, adj_3); df::adj_spatial_top(var_x, adj_x, adj_2); df::adj_spatial_transform_get_translation(var_t, adj_t, adj_1); df::adj_spatial_transform_get_rotation(var_t, adj_t, adj_0); return; } spatial_vector spatial_transform_wrench_cpu_func( spatial_transform var_t, spatial_vector var_x) { //--------- // primal vars quat var_0; df::float3 var_1; df::float3 var_2; df::float3 var_3; df::float3 var_4; df::float3 var_5; df::float3 var_6; df::float3 var_7; spatial_vector var_8; //--------- // forward var_0 = df::spatial_transform_get_rotation(var_t); var_1 = df::spatial_transform_get_translation(var_t); var_2 = df::spatial_top(var_x); var_3 = df::spatial_bottom(var_x); var_4 = df::rotate(var_0, var_3); var_5 = df::rotate(var_0, var_2); var_6 = df::cross(var_1, var_4); var_7 = df::add(var_5, var_6); var_8 = df::spatial_vector(var_7, var_4); return var_8; } void adj_spatial_transform_wrench_cpu_func( spatial_transform var_t, spatial_vector var_x, spatial_transform & adj_t, spatial_vector & adj_x, spatial_vector & adj_ret) { //--------- // primal vars quat var_0; df::float3 var_1; df::float3 var_2; df::float3 var_3; df::float3 var_4; df::float3 var_5; df::float3 var_6; df::float3 var_7; spatial_vector var_8; //--------- // dual vars quat adj_0 = 0; df::float3 adj_1 = 0; df::float3 adj_2 = 0; df::float3 adj_3 = 0; df::float3 adj_4 = 0; df::float3 adj_5 = 0; df::float3 adj_6 = 0; df::float3 adj_7 = 0; spatial_vector adj_8 = 0; //--------- // forward var_0 = df::spatial_transform_get_rotation(var_t); var_1 = df::spatial_transform_get_translation(var_t); var_2 = df::spatial_top(var_x); var_3 = df::spatial_bottom(var_x); var_4 = df::rotate(var_0, var_3); var_5 = df::rotate(var_0, var_2); var_6 = df::cross(var_1, var_4); var_7 = df::add(var_5, var_6); var_8 = df::spatial_vector(var_7, var_4); goto label0; //--------- // reverse label0:; adj_8 += adj_ret; df::adj_spatial_vector(var_7, var_4, adj_7, adj_4, adj_8); df::adj_add(var_5, var_6, adj_5, adj_6, adj_7); df::adj_cross(var_1, var_4, adj_1, adj_4, adj_6); df::adj_rotate(var_0, var_2, adj_0, adj_2, adj_5); df::adj_rotate(var_0, var_3, adj_0, adj_3, adj_4); df::adj_spatial_bottom(var_x, adj_x, adj_3); df::adj_spatial_top(var_x, adj_x, adj_2); df::adj_spatial_transform_get_translation(var_t, adj_t, adj_1); df::adj_spatial_transform_get_rotation(var_t, adj_t, adj_0); return; } spatial_transform spatial_transform_inverse_cpu_func( spatial_transform var_t) { //--------- // primal vars df::float3 var_0; quat var_1; quat var_2; df::float3 var_3; const float var_4 = 0.0; const float var_5 = 1.0; float var_6; df::float3 var_7; spatial_transform var_8; //--------- // forward var_0 = df::spatial_transform_get_translation(var_t); var_1 = df::spatial_transform_get_rotation(var_t); var_2 = df::inverse(var_1); var_3 = df::rotate(var_2, var_0); var_6 = df::sub(var_4, var_5); var_7 = df::mul(var_3, var_6); var_8 = df::spatial_transform(var_7, var_2); return var_8; } void adj_spatial_transform_inverse_cpu_func( spatial_transform var_t, spatial_transform & adj_t, spatial_transform & adj_ret) { //--------- // primal vars df::float3 var_0; quat var_1; quat var_2; df::float3 var_3; const float var_4 = 0.0; const float var_5 = 1.0; float var_6; df::float3 var_7; spatial_transform var_8; //--------- // dual vars df::float3 adj_0 = 0; quat adj_1 = 0; quat adj_2 = 0; df::float3 adj_3 = 0; float adj_4 = 0; float adj_5 = 0; float adj_6 = 0; df::float3 adj_7 = 0; spatial_transform adj_8 = 0; //--------- // forward var_0 = df::spatial_transform_get_translation(var_t); var_1 = df::spatial_transform_get_rotation(var_t); var_2 = df::inverse(var_1); var_3 = df::rotate(var_2, var_0); var_6 = df::sub(var_4, var_5); var_7 = df::mul(var_3, var_6); var_8 = df::spatial_transform(var_7, var_2); goto label0; //--------- // reverse label0:; adj_8 += adj_ret; df::adj_spatial_transform(var_7, var_2, adj_7, adj_2, adj_8); df::adj_mul(var_3, var_6, adj_3, adj_6, adj_7); df::adj_sub(var_4, var_5, adj_4, adj_5, adj_6); df::adj_rotate(var_2, var_0, adj_2, adj_0, adj_3); df::adj_inverse(var_1, adj_1, adj_2); df::adj_spatial_transform_get_rotation(var_t, adj_t, adj_1); df::adj_spatial_transform_get_translation(var_t, adj_t, adj_0); return; } spatial_matrix spatial_transform_inertia_cpu_func( spatial_transform var_t, spatial_matrix var_I) { //--------- // primal vars spatial_transform var_0; quat var_1; df::float3 var_2; const float var_3 = 1.0; const float var_4 = 0.0; df::float3 var_5; df::float3 var_6; df::float3 var_7; df::float3 var_8; df::float3 var_9; df::float3 var_10; mat33 var_11; mat33 var_12; mat33 var_13; spatial_matrix var_14; spatial_matrix var_15; spatial_matrix var_16; spatial_matrix var_17; //--------- // forward var_0 = spatial_transform_inverse_cpu_func(var_t); var_1 = df::spatial_transform_get_rotation(var_0); var_2 = df::spatial_transform_get_translation(var_0); var_5 = df::float3(var_3, var_4, var_4); var_6 = df::rotate(var_1, var_5); var_7 = df::float3(var_4, var_3, var_4); var_8 = df::rotate(var_1, var_7); var_9 = df::float3(var_4, var_4, var_3); var_10 = df::rotate(var_1, var_9); var_11 = df::mat33(var_6, var_8, var_10); var_12 = df::skew(var_2); var_13 = df::mul(var_12, var_11); var_14 = df::spatial_adjoint(var_11, var_13); var_15 = df::transpose(var_14); var_16 = df::mul(var_15, var_I); var_17 = df::mul(var_16, var_14); return var_17; } void adj_spatial_transform_inertia_cpu_func( spatial_transform var_t, spatial_matrix var_I, spatial_transform & adj_t, spatial_matrix & adj_I, spatial_matrix & adj_ret) { //--------- // primal vars spatial_transform var_0; quat var_1; df::float3 var_2; const float var_3 = 1.0; const float var_4 = 0.0; df::float3 var_5; df::float3 var_6; df::float3 var_7; df::float3 var_8; df::float3 var_9; df::float3 var_10; mat33 var_11; mat33 var_12; mat33 var_13; spatial_matrix var_14; spatial_matrix var_15; spatial_matrix var_16; spatial_matrix var_17; //--------- // dual vars spatial_transform adj_0 = 0; quat adj_1 = 0; df::float3 adj_2 = 0; float adj_3 = 0; float adj_4 = 0; df::float3 adj_5 = 0; df::float3 adj_6 = 0; df::float3 adj_7 = 0; df::float3 adj_8 = 0; df::float3 adj_9 = 0; df::float3 adj_10 = 0; mat33 adj_11 = 0; mat33 adj_12 = 0; mat33 adj_13 = 0; spatial_matrix adj_14 = 0; spatial_matrix adj_15 = 0; spatial_matrix adj_16 = 0; spatial_matrix adj_17 = 0; //--------- // forward var_0 = spatial_transform_inverse_cpu_func(var_t); var_1 = df::spatial_transform_get_rotation(var_0); var_2 = df::spatial_transform_get_translation(var_0); var_5 = df::float3(var_3, var_4, var_4); var_6 = df::rotate(var_1, var_5); var_7 = df::float3(var_4, var_3, var_4); var_8 = df::rotate(var_1, var_7); var_9 = df::float3(var_4, var_4, var_3); var_10 = df::rotate(var_1, var_9); var_11 = df::mat33(var_6, var_8, var_10); var_12 = df::skew(var_2); var_13 = df::mul(var_12, var_11); var_14 = df::spatial_adjoint(var_11, var_13); var_15 = df::transpose(var_14); var_16 = df::mul(var_15, var_I); var_17 = df::mul(var_16, var_14); goto label0; //--------- // reverse label0:; adj_17 += adj_ret; df::adj_mul(var_16, var_14, adj_16, adj_14, adj_17); df::adj_mul(var_15, var_I, adj_15, adj_I, adj_16); df::adj_transpose(var_14, adj_14, adj_15); df::adj_spatial_adjoint(var_11, var_13, adj_11, adj_13, adj_14); df::adj_mul(var_12, var_11, adj_12, adj_11, adj_13); df::adj_skew(var_2, adj_2, adj_12); df::adj_mat33(var_6, var_8, var_10, adj_6, adj_8, adj_10, adj_11); df::adj_rotate(var_1, var_9, adj_1, adj_9, adj_10); df::adj_float3(var_4, var_4, var_3, adj_4, adj_4, adj_3, adj_9); df::adj_rotate(var_1, var_7, adj_1, adj_7, adj_8); df::adj_float3(var_4, var_3, var_4, adj_4, adj_3, adj_4, adj_7); df::adj_rotate(var_1, var_5, adj_1, adj_5, adj_6); df::adj_float3(var_3, var_4, var_4, adj_3, adj_4, adj_4, adj_5); df::adj_spatial_transform_get_translation(var_0, adj_0, adj_2); df::adj_spatial_transform_get_rotation(var_0, adj_0, adj_1); adj_spatial_transform_inverse_cpu_func(var_t, adj_t, adj_0); return; } int compute_muscle_force_cpu_func( int var_i, spatial_transform* var_body_X_s, spatial_vector* var_body_v_s, int* var_muscle_links, df::float3* var_muscle_points, float var_muscle_activation, spatial_vector* var_body_f_s) { //--------- // primal vars int var_0; const int var_1 = 1; int var_2; int var_3; bool var_4; const int var_5 = 0; df::float3 var_6; int var_7; df::float3 var_8; spatial_transform var_9; spatial_transform var_10; df::float3 var_11; df::float3 var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; spatial_vector var_17; df::float3 var_18; spatial_vector var_19; //--------- // forward var_0 = df::load(var_muscle_links, var_i); var_2 = df::add(var_i, var_1); var_3 = df::load(var_muscle_links, var_2); var_4 = (var_0 == var_3); if (var_4) { return var_5; } var_6 = df::load(var_muscle_points, var_i); var_7 = df::add(var_i, var_1); var_8 = df::load(var_muscle_points, var_7); var_9 = df::load(var_body_X_s, var_0); var_10 = df::load(var_body_X_s, var_3); var_11 = df::spatial_transform_point(var_9, var_6); var_12 = df::spatial_transform_point(var_10, var_8); var_13 = df::sub(var_12, var_11); var_14 = df::normalize(var_13); var_15 = df::mul(var_14, var_muscle_activation); var_16 = df::cross(var_11, var_15); var_17 = df::spatial_vector(var_16, var_15); df::atomic_sub(var_body_f_s, var_0, var_17); var_18 = df::cross(var_12, var_15); var_19 = df::spatial_vector(var_18, var_15); df::atomic_add(var_body_f_s, var_3, var_19); return var_5; } void adj_compute_muscle_force_cpu_func( int var_i, spatial_transform* var_body_X_s, spatial_vector* var_body_v_s, int* var_muscle_links, df::float3* var_muscle_points, float var_muscle_activation, spatial_vector* var_body_f_s, int & adj_i, spatial_transform* adj_body_X_s, spatial_vector* adj_body_v_s, int* adj_muscle_links, df::float3* adj_muscle_points, float & adj_muscle_activation, spatial_vector* adj_body_f_s, int & adj_ret) { //--------- // primal vars int var_0; const int var_1 = 1; int var_2; int var_3; bool var_4; const int var_5 = 0; df::float3 var_6; int var_7; df::float3 var_8; spatial_transform var_9; spatial_transform var_10; df::float3 var_11; df::float3 var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; spatial_vector var_17; df::float3 var_18; spatial_vector var_19; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; bool adj_4 = 0; int adj_5 = 0; df::float3 adj_6 = 0; int adj_7 = 0; df::float3 adj_8 = 0; spatial_transform adj_9 = 0; spatial_transform adj_10 = 0; df::float3 adj_11 = 0; df::float3 adj_12 = 0; df::float3 adj_13 = 0; df::float3 adj_14 = 0; df::float3 adj_15 = 0; df::float3 adj_16 = 0; spatial_vector adj_17 = 0; df::float3 adj_18 = 0; spatial_vector adj_19 = 0; //--------- // forward var_0 = df::load(var_muscle_links, var_i); var_2 = df::add(var_i, var_1); var_3 = df::load(var_muscle_links, var_2); var_4 = (var_0 == var_3); if (var_4) { goto label0; } var_6 = df::load(var_muscle_points, var_i); var_7 = df::add(var_i, var_1); var_8 = df::load(var_muscle_points, var_7); var_9 = df::load(var_body_X_s, var_0); var_10 = df::load(var_body_X_s, var_3); var_11 = df::spatial_transform_point(var_9, var_6); var_12 = df::spatial_transform_point(var_10, var_8); var_13 = df::sub(var_12, var_11); var_14 = df::normalize(var_13); var_15 = df::mul(var_14, var_muscle_activation); var_16 = df::cross(var_11, var_15); var_17 = df::spatial_vector(var_16, var_15); df::atomic_sub(var_body_f_s, var_0, var_17); var_18 = df::cross(var_12, var_15); var_19 = df::spatial_vector(var_18, var_15); df::atomic_add(var_body_f_s, var_3, var_19); goto label1; //--------- // reverse label1:; adj_5 += adj_ret; df::adj_atomic_add(var_body_f_s, var_3, var_19, adj_body_f_s, adj_3, adj_19); df::adj_spatial_vector(var_18, var_15, adj_18, adj_15, adj_19); df::adj_cross(var_12, var_15, adj_12, adj_15, adj_18); df::adj_atomic_sub(var_body_f_s, var_0, var_17, adj_body_f_s, adj_0, adj_17); df::adj_spatial_vector(var_16, var_15, adj_16, adj_15, adj_17); df::adj_cross(var_11, var_15, adj_11, adj_15, adj_16); df::adj_mul(var_14, var_muscle_activation, adj_14, adj_muscle_activation, adj_15); df::adj_normalize(var_13, adj_13, adj_14); df::adj_sub(var_12, var_11, adj_12, adj_11, adj_13); df::adj_spatial_transform_point(var_10, var_8, adj_10, adj_8, adj_12); df::adj_spatial_transform_point(var_9, var_6, adj_9, adj_6, adj_11); df::adj_load(var_body_X_s, var_3, adj_body_X_s, adj_3, adj_10); df::adj_load(var_body_X_s, var_0, adj_body_X_s, adj_0, adj_9); df::adj_load(var_muscle_points, var_7, adj_muscle_points, adj_7, adj_8); df::adj_add(var_i, var_1, adj_i, adj_1, adj_7); df::adj_load(var_muscle_points, var_i, adj_muscle_points, adj_i, adj_6); if (var_4) { label0:; adj_5 += adj_ret; } df::adj_load(var_muscle_links, var_2, adj_muscle_links, adj_2, adj_3); df::adj_add(var_i, var_1, adj_i, adj_1, adj_2); df::adj_load(var_muscle_links, var_i, adj_muscle_links, adj_i, adj_0); return; } spatial_transform jcalc_transform_cpu_func( int var_type, df::float3 var_axis, float* var_joint_q, int var_start) { //--------- // primal vars const int var_0 = 0; bool var_1; float var_2; df::float3 var_3; quat var_4; spatial_transform var_5; const int var_6 = 1; bool var_7; float var_8; const float var_9 = 0.0; df::float3 var_10; quat var_11; spatial_transform var_12; float var_13; spatial_transform var_14; spatial_transform var_15; const int var_16 = 2; bool var_17; int var_18; float var_19; int var_20; float var_21; int var_22; float var_23; const int var_24 = 3; int var_25; float var_26; df::float3 var_27; quat var_28; spatial_transform var_29; spatial_transform var_30; spatial_transform var_31; bool var_32; spatial_transform var_33; spatial_transform var_34; spatial_transform var_35; const int var_36 = 4; bool var_37; int var_38; float var_39; int var_40; float var_41; int var_42; float var_43; int var_44; float var_45; int var_46; float var_47; const int var_48 = 5; int var_49; float var_50; const int var_51 = 6; int var_52; float var_53; df::float3 var_54; quat var_55; spatial_transform var_56; spatial_transform var_57; spatial_transform var_58; float var_59; float var_60; float var_61; float var_62; spatial_transform var_63; //--------- // forward var_1 = (var_type == var_0); if (var_1) { var_2 = df::load(var_joint_q, var_start); var_3 = df::mul(var_axis, var_2); var_4 = df::quat_identity(); var_5 = df::spatial_transform(var_3, var_4); return var_5; } var_7 = (var_type == var_6); if (var_7) { var_8 = df::load(var_joint_q, var_start); var_10 = df::float3(var_9, var_9, var_9); var_11 = df::quat_from_axis_angle(var_axis, var_8); var_12 = df::spatial_transform(var_10, var_11); return var_12; } var_13 = df::select(var_7, var_2, var_8); var_14 = df::select(var_7, var_5, var_12); var_15 = df::select(var_7, var_5, var_12); var_17 = (var_type == var_16); if (var_17) { var_18 = df::add(var_start, var_0); var_19 = df::load(var_joint_q, var_18); var_20 = df::add(var_start, var_6); var_21 = df::load(var_joint_q, var_20); var_22 = df::add(var_start, var_16); var_23 = df::load(var_joint_q, var_22); var_25 = df::add(var_start, var_24); var_26 = df::load(var_joint_q, var_25); var_27 = df::float3(var_9, var_9, var_9); var_28 = df::quat(var_19, var_21, var_23, var_26); var_29 = df::spatial_transform(var_27, var_28); return var_29; } var_30 = df::select(var_17, var_14, var_29); var_31 = df::select(var_17, var_15, var_29); var_32 = (var_type == var_24); if (var_32) { var_33 = df::spatial_transform_identity(); return var_33; } var_34 = df::select(var_32, var_30, var_33); var_35 = df::select(var_32, var_31, var_33); var_37 = (var_type == var_36); if (var_37) { var_38 = df::add(var_start, var_0); var_39 = df::load(var_joint_q, var_38); var_40 = df::add(var_start, var_6); var_41 = df::load(var_joint_q, var_40); var_42 = df::add(var_start, var_16); var_43 = df::load(var_joint_q, var_42); var_44 = df::add(var_start, var_24); var_45 = df::load(var_joint_q, var_44); var_46 = df::add(var_start, var_36); var_47 = df::load(var_joint_q, var_46); var_49 = df::add(var_start, var_48); var_50 = df::load(var_joint_q, var_49); var_52 = df::add(var_start, var_51); var_53 = df::load(var_joint_q, var_52); var_54 = df::float3(var_39, var_41, var_43); var_55 = df::quat(var_45, var_47, var_50, var_53); var_56 = df::spatial_transform(var_54, var_55); return var_56; } var_57 = df::select(var_37, var_34, var_56); var_58 = df::select(var_37, var_35, var_56); var_59 = df::select(var_37, var_19, var_45); var_60 = df::select(var_37, var_21, var_47); var_61 = df::select(var_37, var_23, var_50); var_62 = df::select(var_37, var_26, var_53); var_63 = df::spatial_transform_identity(); return var_63; } void adj_jcalc_transform_cpu_func( int var_type, df::float3 var_axis, float* var_joint_q, int var_start, int & adj_type, df::float3 & adj_axis, float* adj_joint_q, int & adj_start, spatial_transform & adj_ret) { //--------- // primal vars const int var_0 = 0; bool var_1; float var_2; df::float3 var_3; quat var_4; spatial_transform var_5; const int var_6 = 1; bool var_7; float var_8; const float var_9 = 0.0; df::float3 var_10; quat var_11; spatial_transform var_12; float var_13; spatial_transform var_14; spatial_transform var_15; const int var_16 = 2; bool var_17; int var_18; float var_19; int var_20; float var_21; int var_22; float var_23; const int var_24 = 3; int var_25; float var_26; df::float3 var_27; quat var_28; spatial_transform var_29; spatial_transform var_30; spatial_transform var_31; bool var_32; spatial_transform var_33; spatial_transform var_34; spatial_transform var_35; const int var_36 = 4; bool var_37; int var_38; float var_39; int var_40; float var_41; int var_42; float var_43; int var_44; float var_45; int var_46; float var_47; const int var_48 = 5; int var_49; float var_50; const int var_51 = 6; int var_52; float var_53; df::float3 var_54; quat var_55; spatial_transform var_56; spatial_transform var_57; spatial_transform var_58; float var_59; float var_60; float var_61; float var_62; spatial_transform var_63; //--------- // dual vars int adj_0 = 0; bool adj_1 = 0; float adj_2 = 0; df::float3 adj_3 = 0; quat adj_4 = 0; spatial_transform adj_5 = 0; int adj_6 = 0; bool adj_7 = 0; float adj_8 = 0; float adj_9 = 0; df::float3 adj_10 = 0; quat adj_11 = 0; spatial_transform adj_12 = 0; float adj_13 = 0; spatial_transform adj_14 = 0; spatial_transform adj_15 = 0; int adj_16 = 0; bool adj_17 = 0; int adj_18 = 0; float adj_19 = 0; int adj_20 = 0; float adj_21 = 0; int adj_22 = 0; float adj_23 = 0; int adj_24 = 0; int adj_25 = 0; float adj_26 = 0; df::float3 adj_27 = 0; quat adj_28 = 0; spatial_transform adj_29 = 0; spatial_transform adj_30 = 0; spatial_transform adj_31 = 0; bool adj_32 = 0; spatial_transform adj_33 = 0; spatial_transform adj_34 = 0; spatial_transform adj_35 = 0; int adj_36 = 0; bool adj_37 = 0; int adj_38 = 0; float adj_39 = 0; int adj_40 = 0; float adj_41 = 0; int adj_42 = 0; float adj_43 = 0; int adj_44 = 0; float adj_45 = 0; int adj_46 = 0; float adj_47 = 0; int adj_48 = 0; int adj_49 = 0; float adj_50 = 0; int adj_51 = 0; int adj_52 = 0; float adj_53 = 0; df::float3 adj_54 = 0; quat adj_55 = 0; spatial_transform adj_56 = 0; spatial_transform adj_57 = 0; spatial_transform adj_58 = 0; float adj_59 = 0; float adj_60 = 0; float adj_61 = 0; float adj_62 = 0; spatial_transform adj_63 = 0; //--------- // forward var_1 = (var_type == var_0); if (var_1) { var_2 = df::load(var_joint_q, var_start); var_3 = df::mul(var_axis, var_2); var_4 = df::quat_identity(); var_5 = df::spatial_transform(var_3, var_4); goto label0; } var_7 = (var_type == var_6); if (var_7) { var_8 = df::load(var_joint_q, var_start); var_10 = df::float3(var_9, var_9, var_9); var_11 = df::quat_from_axis_angle(var_axis, var_8); var_12 = df::spatial_transform(var_10, var_11); goto label1; } var_13 = df::select(var_7, var_2, var_8); var_14 = df::select(var_7, var_5, var_12); var_15 = df::select(var_7, var_5, var_12); var_17 = (var_type == var_16); if (var_17) { var_18 = df::add(var_start, var_0); var_19 = df::load(var_joint_q, var_18); var_20 = df::add(var_start, var_6); var_21 = df::load(var_joint_q, var_20); var_22 = df::add(var_start, var_16); var_23 = df::load(var_joint_q, var_22); var_25 = df::add(var_start, var_24); var_26 = df::load(var_joint_q, var_25); var_27 = df::float3(var_9, var_9, var_9); var_28 = df::quat(var_19, var_21, var_23, var_26); var_29 = df::spatial_transform(var_27, var_28); goto label2; } var_30 = df::select(var_17, var_14, var_29); var_31 = df::select(var_17, var_15, var_29); var_32 = (var_type == var_24); if (var_32) { var_33 = df::spatial_transform_identity(); goto label3; } var_34 = df::select(var_32, var_30, var_33); var_35 = df::select(var_32, var_31, var_33); var_37 = (var_type == var_36); if (var_37) { var_38 = df::add(var_start, var_0); var_39 = df::load(var_joint_q, var_38); var_40 = df::add(var_start, var_6); var_41 = df::load(var_joint_q, var_40); var_42 = df::add(var_start, var_16); var_43 = df::load(var_joint_q, var_42); var_44 = df::add(var_start, var_24); var_45 = df::load(var_joint_q, var_44); var_46 = df::add(var_start, var_36); var_47 = df::load(var_joint_q, var_46); var_49 = df::add(var_start, var_48); var_50 = df::load(var_joint_q, var_49); var_52 = df::add(var_start, var_51); var_53 = df::load(var_joint_q, var_52); var_54 = df::float3(var_39, var_41, var_43); var_55 = df::quat(var_45, var_47, var_50, var_53); var_56 = df::spatial_transform(var_54, var_55); goto label4; } var_57 = df::select(var_37, var_34, var_56); var_58 = df::select(var_37, var_35, var_56); var_59 = df::select(var_37, var_19, var_45); var_60 = df::select(var_37, var_21, var_47); var_61 = df::select(var_37, var_23, var_50); var_62 = df::select(var_37, var_26, var_53); var_63 = df::spatial_transform_identity(); goto label5; //--------- // reverse label5:; adj_63 += adj_ret; df::adj_select(var_37, var_26, var_53, adj_37, adj_26, adj_53, adj_62); df::adj_select(var_37, var_23, var_50, adj_37, adj_23, adj_50, adj_61); df::adj_select(var_37, var_21, var_47, adj_37, adj_21, adj_47, adj_60); df::adj_select(var_37, var_19, var_45, adj_37, adj_19, adj_45, adj_59); df::adj_select(var_37, var_35, var_56, adj_37, adj_35, adj_56, adj_58); df::adj_select(var_37, var_34, var_56, adj_37, adj_34, adj_56, adj_57); if (var_37) { label4:; adj_56 += adj_ret; df::adj_spatial_transform(var_54, var_55, adj_54, adj_55, adj_56); df::adj_quat(var_45, var_47, var_50, var_53, adj_45, adj_47, adj_50, adj_53, adj_55); df::adj_float3(var_39, var_41, var_43, adj_39, adj_41, adj_43, adj_54); df::adj_load(var_joint_q, var_52, adj_joint_q, adj_52, adj_53); df::adj_add(var_start, var_51, adj_start, adj_51, adj_52); df::adj_load(var_joint_q, var_49, adj_joint_q, adj_49, adj_50); df::adj_add(var_start, var_48, adj_start, adj_48, adj_49); df::adj_load(var_joint_q, var_46, adj_joint_q, adj_46, adj_47); df::adj_add(var_start, var_36, adj_start, adj_36, adj_46); df::adj_load(var_joint_q, var_44, adj_joint_q, adj_44, adj_45); df::adj_add(var_start, var_24, adj_start, adj_24, adj_44); df::adj_load(var_joint_q, var_42, adj_joint_q, adj_42, adj_43); df::adj_add(var_start, var_16, adj_start, adj_16, adj_42); df::adj_load(var_joint_q, var_40, adj_joint_q, adj_40, adj_41); df::adj_add(var_start, var_6, adj_start, adj_6, adj_40); df::adj_load(var_joint_q, var_38, adj_joint_q, adj_38, adj_39); df::adj_add(var_start, var_0, adj_start, adj_0, adj_38); } df::adj_select(var_32, var_31, var_33, adj_32, adj_31, adj_33, adj_35); df::adj_select(var_32, var_30, var_33, adj_32, adj_30, adj_33, adj_34); if (var_32) { label3:; adj_33 += adj_ret; } df::adj_select(var_17, var_15, var_29, adj_17, adj_15, adj_29, adj_31); df::adj_select(var_17, var_14, var_29, adj_17, adj_14, adj_29, adj_30); if (var_17) { label2:; adj_29 += adj_ret; df::adj_spatial_transform(var_27, var_28, adj_27, adj_28, adj_29); df::adj_quat(var_19, var_21, var_23, var_26, adj_19, adj_21, adj_23, adj_26, adj_28); df::adj_float3(var_9, var_9, var_9, adj_9, adj_9, adj_9, adj_27); df::adj_load(var_joint_q, var_25, adj_joint_q, adj_25, adj_26); df::adj_add(var_start, var_24, adj_start, adj_24, adj_25); df::adj_load(var_joint_q, var_22, adj_joint_q, adj_22, adj_23); df::adj_add(var_start, var_16, adj_start, adj_16, adj_22); df::adj_load(var_joint_q, var_20, adj_joint_q, adj_20, adj_21); df::adj_add(var_start, var_6, adj_start, adj_6, adj_20); df::adj_load(var_joint_q, var_18, adj_joint_q, adj_18, adj_19); df::adj_add(var_start, var_0, adj_start, adj_0, adj_18); } df::adj_select(var_7, var_5, var_12, adj_7, adj_5, adj_12, adj_15); df::adj_select(var_7, var_5, var_12, adj_7, adj_5, adj_12, adj_14); df::adj_select(var_7, var_2, var_8, adj_7, adj_2, adj_8, adj_13); if (var_7) { label1:; adj_12 += adj_ret; df::adj_spatial_transform(var_10, var_11, adj_10, adj_11, adj_12); df::adj_quat_from_axis_angle(var_axis, var_8, adj_axis, adj_8, adj_11); df::adj_float3(var_9, var_9, var_9, adj_9, adj_9, adj_9, adj_10); df::adj_load(var_joint_q, var_start, adj_joint_q, adj_start, adj_8); } if (var_1) { label0:; adj_5 += adj_ret; df::adj_spatial_transform(var_3, var_4, adj_3, adj_4, adj_5); df::adj_mul(var_axis, var_2, adj_axis, adj_2, adj_3); df::adj_load(var_joint_q, var_start, adj_joint_q, adj_start, adj_2); } return; } spatial_vector jcalc_motion_cpu_func( int var_type, df::float3 var_axis, spatial_transform var_X_sc, spatial_vector* var_joint_S_s, float* var_joint_qd, int var_joint_start) { //--------- // primal vars const int var_0 = 0; bool var_1; const float var_2 = 0.0; df::float3 var_3; spatial_vector var_4; spatial_vector var_5; float var_6; spatial_vector var_7; const int var_8 = 1; bool var_9; df::float3 var_10; spatial_vector var_11; spatial_vector var_12; float var_13; spatial_vector var_14; spatial_vector var_15; spatial_vector var_16; spatial_vector var_17; const int var_18 = 2; bool var_19; int var_20; float var_21; int var_22; float var_23; int var_24; float var_25; df::float3 var_26; const float var_27 = 1.0; spatial_vector var_28; spatial_vector var_29; spatial_vector var_30; spatial_vector var_31; spatial_vector var_32; spatial_vector var_33; int var_34; int var_35; int var_36; float var_37; spatial_vector var_38; float var_39; spatial_vector var_40; spatial_vector var_41; float var_42; spatial_vector var_43; spatial_vector var_44; spatial_vector var_45; const int var_46 = 3; bool var_47; spatial_vector var_48; spatial_vector var_49; const int var_50 = 4; bool var_51; int var_52; float var_53; int var_54; float var_55; int var_56; float var_57; int var_58; float var_59; int var_60; float var_61; const int var_62 = 5; int var_63; float var_64; spatial_vector var_65; int var_66; spatial_vector var_67; int var_68; spatial_vector var_69; int var_70; spatial_vector var_71; int var_72; spatial_vector var_73; int var_74; spatial_vector var_75; int var_76; spatial_vector var_77; spatial_vector var_78; spatial_vector var_79; spatial_vector var_80; //--------- // forward var_1 = (var_type == var_0); if (var_1) { var_3 = df::float3(var_2, var_2, var_2); var_4 = df::spatial_vector(var_3, var_axis); var_5 = spatial_transform_twist_cpu_func(var_X_sc, var_4); var_6 = df::load(var_joint_qd, var_joint_start); var_7 = df::mul(var_5, var_6); df::store(var_joint_S_s, var_joint_start, var_5); return var_7; } var_9 = (var_type == var_8); if (var_9) { var_10 = df::float3(var_2, var_2, var_2); var_11 = df::spatial_vector(var_axis, var_10); var_12 = spatial_transform_twist_cpu_func(var_X_sc, var_11); var_13 = df::load(var_joint_qd, var_joint_start); var_14 = df::mul(var_12, var_13); df::store(var_joint_S_s, var_joint_start, var_12); return var_14; } var_15 = df::select(var_9, var_5, var_12); var_16 = df::select(var_9, var_7, var_14); var_17 = df::select(var_9, var_7, var_14); var_19 = (var_type == var_18); if (var_19) { var_20 = df::add(var_joint_start, var_0); var_21 = df::load(var_joint_qd, var_20); var_22 = df::add(var_joint_start, var_8); var_23 = df::load(var_joint_qd, var_22); var_24 = df::add(var_joint_start, var_18); var_25 = df::load(var_joint_qd, var_24); var_26 = df::float3(var_21, var_23, var_25); var_28 = df::spatial_vector(var_27, var_2, var_2, var_2, var_2, var_2); var_29 = spatial_transform_twist_cpu_func(var_X_sc, var_28); var_30 = df::spatial_vector(var_2, var_27, var_2, var_2, var_2, var_2); var_31 = spatial_transform_twist_cpu_func(var_X_sc, var_30); var_32 = df::spatial_vector(var_2, var_2, var_27, var_2, var_2, var_2); var_33 = spatial_transform_twist_cpu_func(var_X_sc, var_32); var_34 = df::add(var_joint_start, var_0); df::store(var_joint_S_s, var_34, var_29); var_35 = df::add(var_joint_start, var_8); df::store(var_joint_S_s, var_35, var_31); var_36 = df::add(var_joint_start, var_18); df::store(var_joint_S_s, var_36, var_33); var_37 = df::index(var_26, var_0); var_38 = df::mul(var_29, var_37); var_39 = df::index(var_26, var_8); var_40 = df::mul(var_31, var_39); var_41 = df::add(var_38, var_40); var_42 = df::index(var_26, var_18); var_43 = df::mul(var_33, var_42); var_44 = df::add(var_41, var_43); return var_44; } var_45 = df::select(var_19, var_17, var_44); var_47 = (var_type == var_46); if (var_47) { var_48 = df::spatial_vector(); return var_48; } var_49 = df::select(var_47, var_45, var_48); var_51 = (var_type == var_50); if (var_51) { var_52 = df::add(var_joint_start, var_0); var_53 = df::load(var_joint_qd, var_52); var_54 = df::add(var_joint_start, var_8); var_55 = df::load(var_joint_qd, var_54); var_56 = df::add(var_joint_start, var_18); var_57 = df::load(var_joint_qd, var_56); var_58 = df::add(var_joint_start, var_46); var_59 = df::load(var_joint_qd, var_58); var_60 = df::add(var_joint_start, var_50); var_61 = df::load(var_joint_qd, var_60); var_63 = df::add(var_joint_start, var_62); var_64 = df::load(var_joint_qd, var_63); var_65 = df::spatial_vector(var_53, var_55, var_57, var_59, var_61, var_64); var_66 = df::add(var_joint_start, var_0); var_67 = df::spatial_vector(var_27, var_2, var_2, var_2, var_2, var_2); df::store(var_joint_S_s, var_66, var_67); var_68 = df::add(var_joint_start, var_8); var_69 = df::spatial_vector(var_2, var_27, var_2, var_2, var_2, var_2); df::store(var_joint_S_s, var_68, var_69); var_70 = df::add(var_joint_start, var_18); var_71 = df::spatial_vector(var_2, var_2, var_27, var_2, var_2, var_2); df::store(var_joint_S_s, var_70, var_71); var_72 = df::add(var_joint_start, var_46); var_73 = df::spatial_vector(var_2, var_2, var_2, var_27, var_2, var_2); df::store(var_joint_S_s, var_72, var_73); var_74 = df::add(var_joint_start, var_50); var_75 = df::spatial_vector(var_2, var_2, var_2, var_2, var_27, var_2); df::store(var_joint_S_s, var_74, var_75); var_76 = df::add(var_joint_start, var_62); var_77 = df::spatial_vector(var_2, var_2, var_2, var_2, var_2, var_27); df::store(var_joint_S_s, var_76, var_77); return var_65; } var_78 = df::select(var_51, var_16, var_65); var_79 = df::select(var_51, var_49, var_65); var_80 = df::spatial_vector(); return var_80; } void adj_jcalc_motion_cpu_func( int var_type, df::float3 var_axis, spatial_transform var_X_sc, spatial_vector* var_joint_S_s, float* var_joint_qd, int var_joint_start, int & adj_type, df::float3 & adj_axis, spatial_transform & adj_X_sc, spatial_vector* adj_joint_S_s, float* adj_joint_qd, int & adj_joint_start, spatial_vector & adj_ret) { //--------- // primal vars const int var_0 = 0; bool var_1; const float var_2 = 0.0; df::float3 var_3; spatial_vector var_4; spatial_vector var_5; float var_6; spatial_vector var_7; const int var_8 = 1; bool var_9; df::float3 var_10; spatial_vector var_11; spatial_vector var_12; float var_13; spatial_vector var_14; spatial_vector var_15; spatial_vector var_16; spatial_vector var_17; const int var_18 = 2; bool var_19; int var_20; float var_21; int var_22; float var_23; int var_24; float var_25; df::float3 var_26; const float var_27 = 1.0; spatial_vector var_28; spatial_vector var_29; spatial_vector var_30; spatial_vector var_31; spatial_vector var_32; spatial_vector var_33; int var_34; int var_35; int var_36; float var_37; spatial_vector var_38; float var_39; spatial_vector var_40; spatial_vector var_41; float var_42; spatial_vector var_43; spatial_vector var_44; spatial_vector var_45; const int var_46 = 3; bool var_47; spatial_vector var_48; spatial_vector var_49; const int var_50 = 4; bool var_51; int var_52; float var_53; int var_54; float var_55; int var_56; float var_57; int var_58; float var_59; int var_60; float var_61; const int var_62 = 5; int var_63; float var_64; spatial_vector var_65; int var_66; spatial_vector var_67; int var_68; spatial_vector var_69; int var_70; spatial_vector var_71; int var_72; spatial_vector var_73; int var_74; spatial_vector var_75; int var_76; spatial_vector var_77; spatial_vector var_78; spatial_vector var_79; spatial_vector var_80; //--------- // dual vars int adj_0 = 0; bool adj_1 = 0; float adj_2 = 0; df::float3 adj_3 = 0; spatial_vector adj_4 = 0; spatial_vector adj_5 = 0; float adj_6 = 0; spatial_vector adj_7 = 0; int adj_8 = 0; bool adj_9 = 0; df::float3 adj_10 = 0; spatial_vector adj_11 = 0; spatial_vector adj_12 = 0; float adj_13 = 0; spatial_vector adj_14 = 0; spatial_vector adj_15 = 0; spatial_vector adj_16 = 0; spatial_vector adj_17 = 0; int adj_18 = 0; bool adj_19 = 0; int adj_20 = 0; float adj_21 = 0; int adj_22 = 0; float adj_23 = 0; int adj_24 = 0; float adj_25 = 0; df::float3 adj_26 = 0; float adj_27 = 0; spatial_vector adj_28 = 0; spatial_vector adj_29 = 0; spatial_vector adj_30 = 0; spatial_vector adj_31 = 0; spatial_vector adj_32 = 0; spatial_vector adj_33 = 0; int adj_34 = 0; int adj_35 = 0; int adj_36 = 0; float adj_37 = 0; spatial_vector adj_38 = 0; float adj_39 = 0; spatial_vector adj_40 = 0; spatial_vector adj_41 = 0; float adj_42 = 0; spatial_vector adj_43 = 0; spatial_vector adj_44 = 0; spatial_vector adj_45 = 0; int adj_46 = 0; bool adj_47 = 0; spatial_vector adj_48 = 0; spatial_vector adj_49 = 0; int adj_50 = 0; bool adj_51 = 0; int adj_52 = 0; float adj_53 = 0; int adj_54 = 0; float adj_55 = 0; int adj_56 = 0; float adj_57 = 0; int adj_58 = 0; float adj_59 = 0; int adj_60 = 0; float adj_61 = 0; int adj_62 = 0; int adj_63 = 0; float adj_64 = 0; spatial_vector adj_65 = 0; int adj_66 = 0; spatial_vector adj_67 = 0; int adj_68 = 0; spatial_vector adj_69 = 0; int adj_70 = 0; spatial_vector adj_71 = 0; int adj_72 = 0; spatial_vector adj_73 = 0; int adj_74 = 0; spatial_vector adj_75 = 0; int adj_76 = 0; spatial_vector adj_77 = 0; spatial_vector adj_78 = 0; spatial_vector adj_79 = 0; spatial_vector adj_80 = 0; //--------- // forward var_1 = (var_type == var_0); if (var_1) { var_3 = df::float3(var_2, var_2, var_2); var_4 = df::spatial_vector(var_3, var_axis); var_5 = spatial_transform_twist_cpu_func(var_X_sc, var_4); var_6 = df::load(var_joint_qd, var_joint_start); var_7 = df::mul(var_5, var_6); df::store(var_joint_S_s, var_joint_start, var_5); goto label0; } var_9 = (var_type == var_8); if (var_9) { var_10 = df::float3(var_2, var_2, var_2); var_11 = df::spatial_vector(var_axis, var_10); var_12 = spatial_transform_twist_cpu_func(var_X_sc, var_11); var_13 = df::load(var_joint_qd, var_joint_start); var_14 = df::mul(var_12, var_13); df::store(var_joint_S_s, var_joint_start, var_12); goto label1; } var_15 = df::select(var_9, var_5, var_12); var_16 = df::select(var_9, var_7, var_14); var_17 = df::select(var_9, var_7, var_14); var_19 = (var_type == var_18); if (var_19) { var_20 = df::add(var_joint_start, var_0); var_21 = df::load(var_joint_qd, var_20); var_22 = df::add(var_joint_start, var_8); var_23 = df::load(var_joint_qd, var_22); var_24 = df::add(var_joint_start, var_18); var_25 = df::load(var_joint_qd, var_24); var_26 = df::float3(var_21, var_23, var_25); var_28 = df::spatial_vector(var_27, var_2, var_2, var_2, var_2, var_2); var_29 = spatial_transform_twist_cpu_func(var_X_sc, var_28); var_30 = df::spatial_vector(var_2, var_27, var_2, var_2, var_2, var_2); var_31 = spatial_transform_twist_cpu_func(var_X_sc, var_30); var_32 = df::spatial_vector(var_2, var_2, var_27, var_2, var_2, var_2); var_33 = spatial_transform_twist_cpu_func(var_X_sc, var_32); var_34 = df::add(var_joint_start, var_0); df::store(var_joint_S_s, var_34, var_29); var_35 = df::add(var_joint_start, var_8); df::store(var_joint_S_s, var_35, var_31); var_36 = df::add(var_joint_start, var_18); df::store(var_joint_S_s, var_36, var_33); var_37 = df::index(var_26, var_0); var_38 = df::mul(var_29, var_37); var_39 = df::index(var_26, var_8); var_40 = df::mul(var_31, var_39); var_41 = df::add(var_38, var_40); var_42 = df::index(var_26, var_18); var_43 = df::mul(var_33, var_42); var_44 = df::add(var_41, var_43); goto label2; } var_45 = df::select(var_19, var_17, var_44); var_47 = (var_type == var_46); if (var_47) { var_48 = df::spatial_vector(); goto label3; } var_49 = df::select(var_47, var_45, var_48); var_51 = (var_type == var_50); if (var_51) { var_52 = df::add(var_joint_start, var_0); var_53 = df::load(var_joint_qd, var_52); var_54 = df::add(var_joint_start, var_8); var_55 = df::load(var_joint_qd, var_54); var_56 = df::add(var_joint_start, var_18); var_57 = df::load(var_joint_qd, var_56); var_58 = df::add(var_joint_start, var_46); var_59 = df::load(var_joint_qd, var_58); var_60 = df::add(var_joint_start, var_50); var_61 = df::load(var_joint_qd, var_60); var_63 = df::add(var_joint_start, var_62); var_64 = df::load(var_joint_qd, var_63); var_65 = df::spatial_vector(var_53, var_55, var_57, var_59, var_61, var_64); var_66 = df::add(var_joint_start, var_0); var_67 = df::spatial_vector(var_27, var_2, var_2, var_2, var_2, var_2); df::store(var_joint_S_s, var_66, var_67); var_68 = df::add(var_joint_start, var_8); var_69 = df::spatial_vector(var_2, var_27, var_2, var_2, var_2, var_2); df::store(var_joint_S_s, var_68, var_69); var_70 = df::add(var_joint_start, var_18); var_71 = df::spatial_vector(var_2, var_2, var_27, var_2, var_2, var_2); df::store(var_joint_S_s, var_70, var_71); var_72 = df::add(var_joint_start, var_46); var_73 = df::spatial_vector(var_2, var_2, var_2, var_27, var_2, var_2); df::store(var_joint_S_s, var_72, var_73); var_74 = df::add(var_joint_start, var_50); var_75 = df::spatial_vector(var_2, var_2, var_2, var_2, var_27, var_2); df::store(var_joint_S_s, var_74, var_75); var_76 = df::add(var_joint_start, var_62); var_77 = df::spatial_vector(var_2, var_2, var_2, var_2, var_2, var_27); df::store(var_joint_S_s, var_76, var_77); goto label4; } var_78 = df::select(var_51, var_16, var_65); var_79 = df::select(var_51, var_49, var_65); var_80 = df::spatial_vector(); goto label5; //--------- // reverse label5:; adj_80 += adj_ret; df::adj_select(var_51, var_49, var_65, adj_51, adj_49, adj_65, adj_79); df::adj_select(var_51, var_16, var_65, adj_51, adj_16, adj_65, adj_78); if (var_51) { label4:; adj_65 += adj_ret; df::adj_store(var_joint_S_s, var_76, var_77, adj_joint_S_s, adj_76, adj_77); df::adj_spatial_vector(var_2, var_2, var_2, var_2, var_2, var_27, adj_2, adj_2, adj_2, adj_2, adj_2, adj_27, adj_77); df::adj_add(var_joint_start, var_62, adj_joint_start, adj_62, adj_76); df::adj_store(var_joint_S_s, var_74, var_75, adj_joint_S_s, adj_74, adj_75); df::adj_spatial_vector(var_2, var_2, var_2, var_2, var_27, var_2, adj_2, adj_2, adj_2, adj_2, adj_27, adj_2, adj_75); df::adj_add(var_joint_start, var_50, adj_joint_start, adj_50, adj_74); df::adj_store(var_joint_S_s, var_72, var_73, adj_joint_S_s, adj_72, adj_73); df::adj_spatial_vector(var_2, var_2, var_2, var_27, var_2, var_2, adj_2, adj_2, adj_2, adj_27, adj_2, adj_2, adj_73); df::adj_add(var_joint_start, var_46, adj_joint_start, adj_46, adj_72); df::adj_store(var_joint_S_s, var_70, var_71, adj_joint_S_s, adj_70, adj_71); df::adj_spatial_vector(var_2, var_2, var_27, var_2, var_2, var_2, adj_2, adj_2, adj_27, adj_2, adj_2, adj_2, adj_71); df::adj_add(var_joint_start, var_18, adj_joint_start, adj_18, adj_70); df::adj_store(var_joint_S_s, var_68, var_69, adj_joint_S_s, adj_68, adj_69); df::adj_spatial_vector(var_2, var_27, var_2, var_2, var_2, var_2, adj_2, adj_27, adj_2, adj_2, adj_2, adj_2, adj_69); df::adj_add(var_joint_start, var_8, adj_joint_start, adj_8, adj_68); df::adj_store(var_joint_S_s, var_66, var_67, adj_joint_S_s, adj_66, adj_67); df::adj_spatial_vector(var_27, var_2, var_2, var_2, var_2, var_2, adj_27, adj_2, adj_2, adj_2, adj_2, adj_2, adj_67); df::adj_add(var_joint_start, var_0, adj_joint_start, adj_0, adj_66); df::adj_spatial_vector(var_53, var_55, var_57, var_59, var_61, var_64, adj_53, adj_55, adj_57, adj_59, adj_61, adj_64, adj_65); df::adj_load(var_joint_qd, var_63, adj_joint_qd, adj_63, adj_64); df::adj_add(var_joint_start, var_62, adj_joint_start, adj_62, adj_63); df::adj_load(var_joint_qd, var_60, adj_joint_qd, adj_60, adj_61); df::adj_add(var_joint_start, var_50, adj_joint_start, adj_50, adj_60); df::adj_load(var_joint_qd, var_58, adj_joint_qd, adj_58, adj_59); df::adj_add(var_joint_start, var_46, adj_joint_start, adj_46, adj_58); df::adj_load(var_joint_qd, var_56, adj_joint_qd, adj_56, adj_57); df::adj_add(var_joint_start, var_18, adj_joint_start, adj_18, adj_56); df::adj_load(var_joint_qd, var_54, adj_joint_qd, adj_54, adj_55); df::adj_add(var_joint_start, var_8, adj_joint_start, adj_8, adj_54); df::adj_load(var_joint_qd, var_52, adj_joint_qd, adj_52, adj_53); df::adj_add(var_joint_start, var_0, adj_joint_start, adj_0, adj_52); } df::adj_select(var_47, var_45, var_48, adj_47, adj_45, adj_48, adj_49); if (var_47) { label3:; adj_48 += adj_ret; } df::adj_select(var_19, var_17, var_44, adj_19, adj_17, adj_44, adj_45); if (var_19) { label2:; adj_44 += adj_ret; df::adj_add(var_41, var_43, adj_41, adj_43, adj_44); df::adj_mul(var_33, var_42, adj_33, adj_42, adj_43); df::adj_index(var_26, var_18, adj_26, adj_18, adj_42); df::adj_add(var_38, var_40, adj_38, adj_40, adj_41); df::adj_mul(var_31, var_39, adj_31, adj_39, adj_40); df::adj_index(var_26, var_8, adj_26, adj_8, adj_39); df::adj_mul(var_29, var_37, adj_29, adj_37, adj_38); df::adj_index(var_26, var_0, adj_26, adj_0, adj_37); df::adj_store(var_joint_S_s, var_36, var_33, adj_joint_S_s, adj_36, adj_33); df::adj_add(var_joint_start, var_18, adj_joint_start, adj_18, adj_36); df::adj_store(var_joint_S_s, var_35, var_31, adj_joint_S_s, adj_35, adj_31); df::adj_add(var_joint_start, var_8, adj_joint_start, adj_8, adj_35); df::adj_store(var_joint_S_s, var_34, var_29, adj_joint_S_s, adj_34, adj_29); df::adj_add(var_joint_start, var_0, adj_joint_start, adj_0, adj_34); adj_spatial_transform_twist_cpu_func(var_X_sc, var_32, adj_X_sc, adj_32, adj_33); df::adj_spatial_vector(var_2, var_2, var_27, var_2, var_2, var_2, adj_2, adj_2, adj_27, adj_2, adj_2, adj_2, adj_32); adj_spatial_transform_twist_cpu_func(var_X_sc, var_30, adj_X_sc, adj_30, adj_31); df::adj_spatial_vector(var_2, var_27, var_2, var_2, var_2, var_2, adj_2, adj_27, adj_2, adj_2, adj_2, adj_2, adj_30); adj_spatial_transform_twist_cpu_func(var_X_sc, var_28, adj_X_sc, adj_28, adj_29); df::adj_spatial_vector(var_27, var_2, var_2, var_2, var_2, var_2, adj_27, adj_2, adj_2, adj_2, adj_2, adj_2, adj_28); df::adj_float3(var_21, var_23, var_25, adj_21, adj_23, adj_25, adj_26); df::adj_load(var_joint_qd, var_24, adj_joint_qd, adj_24, adj_25); df::adj_add(var_joint_start, var_18, adj_joint_start, adj_18, adj_24); df::adj_load(var_joint_qd, var_22, adj_joint_qd, adj_22, adj_23); df::adj_add(var_joint_start, var_8, adj_joint_start, adj_8, adj_22); df::adj_load(var_joint_qd, var_20, adj_joint_qd, adj_20, adj_21); df::adj_add(var_joint_start, var_0, adj_joint_start, adj_0, adj_20); } df::adj_select(var_9, var_7, var_14, adj_9, adj_7, adj_14, adj_17); df::adj_select(var_9, var_7, var_14, adj_9, adj_7, adj_14, adj_16); df::adj_select(var_9, var_5, var_12, adj_9, adj_5, adj_12, adj_15); if (var_9) { label1:; adj_14 += adj_ret; df::adj_store(var_joint_S_s, var_joint_start, var_12, adj_joint_S_s, adj_joint_start, adj_12); df::adj_mul(var_12, var_13, adj_12, adj_13, adj_14); df::adj_load(var_joint_qd, var_joint_start, adj_joint_qd, adj_joint_start, adj_13); adj_spatial_transform_twist_cpu_func(var_X_sc, var_11, adj_X_sc, adj_11, adj_12); df::adj_spatial_vector(var_axis, var_10, adj_axis, adj_10, adj_11); df::adj_float3(var_2, var_2, var_2, adj_2, adj_2, adj_2, adj_10); } if (var_1) { label0:; adj_7 += adj_ret; df::adj_store(var_joint_S_s, var_joint_start, var_5, adj_joint_S_s, adj_joint_start, adj_5); df::adj_mul(var_5, var_6, adj_5, adj_6, adj_7); df::adj_load(var_joint_qd, var_joint_start, adj_joint_qd, adj_joint_start, adj_6); adj_spatial_transform_twist_cpu_func(var_X_sc, var_4, adj_X_sc, adj_4, adj_5); df::adj_spatial_vector(var_3, var_axis, adj_3, adj_axis, adj_4); df::adj_float3(var_2, var_2, var_2, adj_2, adj_2, adj_2, adj_3); } return; } int jcalc_tau_cpu_func( int var_type, float var_target_k_e, float var_target_k_d, float var_limit_k_e, float var_limit_k_d, spatial_vector* var_joint_S_s, float* var_joint_q, float* var_joint_qd, float* var_joint_act, float* var_joint_target, float* var_joint_limit_lower, float* var_joint_limit_upper, int var_coord_start, int var_dof_start, spatial_vector var_body_f_s, float* var_tau) { //--------- // primal vars const int var_0 = 0; bool var_1; const int var_2 = 1; bool var_3; bool var_4; spatial_vector var_5; float var_6; float var_7; float var_8; float var_9; float var_10; float var_11; const float var_12 = 0.0; bool var_13; float var_14; float var_15; float var_16; bool var_17; float var_18; float var_19; float var_20; float var_21; float var_22; float var_23; float var_24; float var_25; float var_26; float var_27; float var_28; float var_29; float var_30; float var_31; float var_32; const int var_33 = 2; bool var_34; int var_35; float var_36; int var_37; float var_38; int var_39; float var_40; df::float3 var_41; int var_42; float var_43; int var_44; float var_45; int var_46; float var_47; df::float3 var_48; const int var_49 = 0; int var_50; spatial_vector var_51; float var_52; float var_53; int var_54; float var_55; float var_56; float var_57; float var_58; float var_59; float var_60; const int var_61 = 1; int var_62; spatial_vector var_63; float var_64; float var_65; int var_66; float var_67; float var_68; float var_69; float var_70; float var_71; float var_72; const int var_73 = 2; int var_74; spatial_vector var_75; float var_76; float var_77; int var_78; float var_79; float var_80; float var_81; float var_82; float var_83; float var_84; spatial_vector var_85; const int var_86 = 4; bool var_87; const int var_88 = 0; int var_89; spatial_vector var_90; int var_91; float var_92; float var_93; const int var_94 = 1; int var_95; spatial_vector var_96; int var_97; float var_98; float var_99; const int var_100 = 2; int var_101; spatial_vector var_102; int var_103; float var_104; float var_105; const int var_106 = 3; int var_107; spatial_vector var_108; int var_109; float var_110; float var_111; const int var_112 = 4; int var_113; spatial_vector var_114; int var_115; float var_116; float var_117; const int var_118 = 5; int var_119; spatial_vector var_120; int var_121; float var_122; float var_123; spatial_vector var_124; int var_125; //--------- // forward var_1 = (var_type == var_0); var_3 = (var_type == var_2); var_4 = var_1 || var_3; if (var_4) { var_5 = df::load(var_joint_S_s, var_dof_start); var_6 = df::load(var_joint_q, var_coord_start); var_7 = df::load(var_joint_qd, var_dof_start); var_8 = df::load(var_joint_act, var_dof_start); var_9 = df::load(var_joint_target, var_coord_start); var_10 = df::load(var_joint_limit_lower, var_coord_start); var_11 = df::load(var_joint_limit_upper, var_coord_start); var_13 = (var_6 < var_10); if (var_13) { var_14 = df::sub(var_10, var_6); var_15 = df::mul(var_limit_k_e, var_14); } var_16 = df::select(var_13, var_12, var_15); var_17 = (var_6 > var_11); if (var_17) { var_18 = df::sub(var_11, var_6); var_19 = df::mul(var_limit_k_e, var_18); } var_20 = df::select(var_17, var_16, var_19); var_21 = df::sub(var_12, var_limit_k_d); var_22 = df::mul(var_21, var_7); var_23 = df::spatial_dot(var_5, var_body_f_s); var_24 = df::sub(var_12, var_23); var_25 = df::sub(var_6, var_9); var_26 = df::mul(var_target_k_e, var_25); var_27 = df::sub(var_24, var_26); var_28 = df::mul(var_target_k_d, var_7); var_29 = df::sub(var_27, var_28); var_30 = df::add(var_29, var_8); var_31 = df::add(var_30, var_20); var_32 = df::add(var_31, var_22); df::store(var_tau, var_dof_start, var_32); } var_34 = (var_type == var_33); if (var_34) { var_35 = df::add(var_coord_start, var_0); var_36 = df::load(var_joint_q, var_35); var_37 = df::add(var_coord_start, var_2); var_38 = df::load(var_joint_q, var_37); var_39 = df::add(var_coord_start, var_33); var_40 = df::load(var_joint_q, var_39); var_41 = df::float3(var_36, var_38, var_40); var_42 = df::add(var_dof_start, var_0); var_43 = df::load(var_joint_qd, var_42); var_44 = df::add(var_dof_start, var_2); var_45 = df::load(var_joint_qd, var_44); var_46 = df::add(var_dof_start, var_33); var_47 = df::load(var_joint_qd, var_46); var_48 = df::float3(var_43, var_45, var_47); var_50 = df::add(var_dof_start, var_49); var_51 = df::load(var_joint_S_s, var_50); var_52 = df::index(var_48, var_49); var_53 = df::index(var_41, var_49); var_54 = df::add(var_dof_start, var_49); var_55 = df::spatial_dot(var_51, var_body_f_s); var_56 = df::sub(var_12, var_55); var_57 = df::mul(var_52, var_target_k_d); var_58 = df::sub(var_56, var_57); var_59 = df::mul(var_53, var_target_k_e); var_60 = df::sub(var_58, var_59); df::store(var_tau, var_54, var_60); var_62 = df::add(var_dof_start, var_61); var_63 = df::load(var_joint_S_s, var_62); var_64 = df::index(var_48, var_61); var_65 = df::index(var_41, var_61); var_66 = df::add(var_dof_start, var_61); var_67 = df::spatial_dot(var_63, var_body_f_s); var_68 = df::sub(var_12, var_67); var_69 = df::mul(var_64, var_target_k_d); var_70 = df::sub(var_68, var_69); var_71 = df::mul(var_65, var_target_k_e); var_72 = df::sub(var_70, var_71); df::store(var_tau, var_66, var_72); var_74 = df::add(var_dof_start, var_73); var_75 = df::load(var_joint_S_s, var_74); var_76 = df::index(var_48, var_73); var_77 = df::index(var_41, var_73); var_78 = df::add(var_dof_start, var_73); var_79 = df::spatial_dot(var_75, var_body_f_s); var_80 = df::sub(var_12, var_79); var_81 = df::mul(var_76, var_target_k_d); var_82 = df::sub(var_80, var_81); var_83 = df::mul(var_77, var_target_k_e); var_84 = df::sub(var_82, var_83); df::store(var_tau, var_78, var_84); } var_85 = df::select(var_34, var_5, var_75); var_87 = (var_type == var_86); if (var_87) { var_89 = df::add(var_dof_start, var_88); var_90 = df::load(var_joint_S_s, var_89); var_91 = df::add(var_dof_start, var_88); var_92 = df::spatial_dot(var_90, var_body_f_s); var_93 = df::sub(var_12, var_92); df::store(var_tau, var_91, var_93); var_95 = df::add(var_dof_start, var_94); var_96 = df::load(var_joint_S_s, var_95); var_97 = df::add(var_dof_start, var_94); var_98 = df::spatial_dot(var_96, var_body_f_s); var_99 = df::sub(var_12, var_98); df::store(var_tau, var_97, var_99); var_101 = df::add(var_dof_start, var_100); var_102 = df::load(var_joint_S_s, var_101); var_103 = df::add(var_dof_start, var_100); var_104 = df::spatial_dot(var_102, var_body_f_s); var_105 = df::sub(var_12, var_104); df::store(var_tau, var_103, var_105); var_107 = df::add(var_dof_start, var_106); var_108 = df::load(var_joint_S_s, var_107); var_109 = df::add(var_dof_start, var_106); var_110 = df::spatial_dot(var_108, var_body_f_s); var_111 = df::sub(var_12, var_110); df::store(var_tau, var_109, var_111); var_113 = df::add(var_dof_start, var_112); var_114 = df::load(var_joint_S_s, var_113); var_115 = df::add(var_dof_start, var_112); var_116 = df::spatial_dot(var_114, var_body_f_s); var_117 = df::sub(var_12, var_116); df::store(var_tau, var_115, var_117); var_119 = df::add(var_dof_start, var_118); var_120 = df::load(var_joint_S_s, var_119); var_121 = df::add(var_dof_start, var_118); var_122 = df::spatial_dot(var_120, var_body_f_s); var_123 = df::sub(var_12, var_122); df::store(var_tau, var_121, var_123); } var_124 = df::select(var_87, var_85, var_120); var_125 = df::select(var_87, var_73, var_118); return var_0; } void adj_jcalc_tau_cpu_func( int var_type, float var_target_k_e, float var_target_k_d, float var_limit_k_e, float var_limit_k_d, spatial_vector* var_joint_S_s, float* var_joint_q, float* var_joint_qd, float* var_joint_act, float* var_joint_target, float* var_joint_limit_lower, float* var_joint_limit_upper, int var_coord_start, int var_dof_start, spatial_vector var_body_f_s, float* var_tau, int & adj_type, float & adj_target_k_e, float & adj_target_k_d, float & adj_limit_k_e, float & adj_limit_k_d, spatial_vector* adj_joint_S_s, float* adj_joint_q, float* adj_joint_qd, float* adj_joint_act, float* adj_joint_target, float* adj_joint_limit_lower, float* adj_joint_limit_upper, int & adj_coord_start, int & adj_dof_start, spatial_vector & adj_body_f_s, float* adj_tau, int & adj_ret) { //--------- // primal vars const int var_0 = 0; bool var_1; const int var_2 = 1; bool var_3; bool var_4; spatial_vector var_5; float var_6; float var_7; float var_8; float var_9; float var_10; float var_11; const float var_12 = 0.0; bool var_13; float var_14; float var_15; float var_16; bool var_17; float var_18; float var_19; float var_20; float var_21; float var_22; float var_23; float var_24; float var_25; float var_26; float var_27; float var_28; float var_29; float var_30; float var_31; float var_32; const int var_33 = 2; bool var_34; int var_35; float var_36; int var_37; float var_38; int var_39; float var_40; df::float3 var_41; int var_42; float var_43; int var_44; float var_45; int var_46; float var_47; df::float3 var_48; const int var_49 = 0; int var_50; spatial_vector var_51; float var_52; float var_53; int var_54; float var_55; float var_56; float var_57; float var_58; float var_59; float var_60; const int var_61 = 1; int var_62; spatial_vector var_63; float var_64; float var_65; int var_66; float var_67; float var_68; float var_69; float var_70; float var_71; float var_72; const int var_73 = 2; int var_74; spatial_vector var_75; float var_76; float var_77; int var_78; float var_79; float var_80; float var_81; float var_82; float var_83; float var_84; spatial_vector var_85; const int var_86 = 4; bool var_87; const int var_88 = 0; int var_89; spatial_vector var_90; int var_91; float var_92; float var_93; const int var_94 = 1; int var_95; spatial_vector var_96; int var_97; float var_98; float var_99; const int var_100 = 2; int var_101; spatial_vector var_102; int var_103; float var_104; float var_105; const int var_106 = 3; int var_107; spatial_vector var_108; int var_109; float var_110; float var_111; const int var_112 = 4; int var_113; spatial_vector var_114; int var_115; float var_116; float var_117; const int var_118 = 5; int var_119; spatial_vector var_120; int var_121; float var_122; float var_123; spatial_vector var_124; int var_125; //--------- // dual vars int adj_0 = 0; bool adj_1 = 0; int adj_2 = 0; bool adj_3 = 0; bool adj_4 = 0; spatial_vector adj_5 = 0; float adj_6 = 0; float adj_7 = 0; float adj_8 = 0; float adj_9 = 0; float adj_10 = 0; float adj_11 = 0; float adj_12 = 0; bool adj_13 = 0; float adj_14 = 0; float adj_15 = 0; float adj_16 = 0; bool adj_17 = 0; float adj_18 = 0; float adj_19 = 0; float adj_20 = 0; float adj_21 = 0; float adj_22 = 0; float adj_23 = 0; float adj_24 = 0; float adj_25 = 0; float adj_26 = 0; float adj_27 = 0; float adj_28 = 0; float adj_29 = 0; float adj_30 = 0; float adj_31 = 0; float adj_32 = 0; int adj_33 = 0; bool adj_34 = 0; int adj_35 = 0; float adj_36 = 0; int adj_37 = 0; float adj_38 = 0; int adj_39 = 0; float adj_40 = 0; df::float3 adj_41 = 0; int adj_42 = 0; float adj_43 = 0; int adj_44 = 0; float adj_45 = 0; int adj_46 = 0; float adj_47 = 0; df::float3 adj_48 = 0; int adj_49 = 0; int adj_50 = 0; spatial_vector adj_51 = 0; float adj_52 = 0; float adj_53 = 0; int adj_54 = 0; float adj_55 = 0; float adj_56 = 0; float adj_57 = 0; float adj_58 = 0; float adj_59 = 0; float adj_60 = 0; int adj_61 = 0; int adj_62 = 0; spatial_vector adj_63 = 0; float adj_64 = 0; float adj_65 = 0; int adj_66 = 0; float adj_67 = 0; float adj_68 = 0; float adj_69 = 0; float adj_70 = 0; float adj_71 = 0; float adj_72 = 0; int adj_73 = 0; int adj_74 = 0; spatial_vector adj_75 = 0; float adj_76 = 0; float adj_77 = 0; int adj_78 = 0; float adj_79 = 0; float adj_80 = 0; float adj_81 = 0; float adj_82 = 0; float adj_83 = 0; float adj_84 = 0; spatial_vector adj_85 = 0; int adj_86 = 0; bool adj_87 = 0; int adj_88 = 0; int adj_89 = 0; spatial_vector adj_90 = 0; int adj_91 = 0; float adj_92 = 0; float adj_93 = 0; int adj_94 = 0; int adj_95 = 0; spatial_vector adj_96 = 0; int adj_97 = 0; float adj_98 = 0; float adj_99 = 0; int adj_100 = 0; int adj_101 = 0; spatial_vector adj_102 = 0; int adj_103 = 0; float adj_104 = 0; float adj_105 = 0; int adj_106 = 0; int adj_107 = 0; spatial_vector adj_108 = 0; int adj_109 = 0; float adj_110 = 0; float adj_111 = 0; int adj_112 = 0; int adj_113 = 0; spatial_vector adj_114 = 0; int adj_115 = 0; float adj_116 = 0; float adj_117 = 0; int adj_118 = 0; int adj_119 = 0; spatial_vector adj_120 = 0; int adj_121 = 0; float adj_122 = 0; float adj_123 = 0; spatial_vector adj_124 = 0; int adj_125 = 0; //--------- // forward var_1 = (var_type == var_0); var_3 = (var_type == var_2); var_4 = var_1 || var_3; if (var_4) { var_5 = df::load(var_joint_S_s, var_dof_start); var_6 = df::load(var_joint_q, var_coord_start); var_7 = df::load(var_joint_qd, var_dof_start); var_8 = df::load(var_joint_act, var_dof_start); var_9 = df::load(var_joint_target, var_coord_start); var_10 = df::load(var_joint_limit_lower, var_coord_start); var_11 = df::load(var_joint_limit_upper, var_coord_start); var_13 = (var_6 < var_10); if (var_13) { var_14 = df::sub(var_10, var_6); var_15 = df::mul(var_limit_k_e, var_14); } var_16 = df::select(var_13, var_12, var_15); var_17 = (var_6 > var_11); if (var_17) { var_18 = df::sub(var_11, var_6); var_19 = df::mul(var_limit_k_e, var_18); } var_20 = df::select(var_17, var_16, var_19); var_21 = df::sub(var_12, var_limit_k_d); var_22 = df::mul(var_21, var_7); var_23 = df::spatial_dot(var_5, var_body_f_s); var_24 = df::sub(var_12, var_23); var_25 = df::sub(var_6, var_9); var_26 = df::mul(var_target_k_e, var_25); var_27 = df::sub(var_24, var_26); var_28 = df::mul(var_target_k_d, var_7); var_29 = df::sub(var_27, var_28); var_30 = df::add(var_29, var_8); var_31 = df::add(var_30, var_20); var_32 = df::add(var_31, var_22); df::store(var_tau, var_dof_start, var_32); } var_34 = (var_type == var_33); if (var_34) { var_35 = df::add(var_coord_start, var_0); var_36 = df::load(var_joint_q, var_35); var_37 = df::add(var_coord_start, var_2); var_38 = df::load(var_joint_q, var_37); var_39 = df::add(var_coord_start, var_33); var_40 = df::load(var_joint_q, var_39); var_41 = df::float3(var_36, var_38, var_40); var_42 = df::add(var_dof_start, var_0); var_43 = df::load(var_joint_qd, var_42); var_44 = df::add(var_dof_start, var_2); var_45 = df::load(var_joint_qd, var_44); var_46 = df::add(var_dof_start, var_33); var_47 = df::load(var_joint_qd, var_46); var_48 = df::float3(var_43, var_45, var_47); var_50 = df::add(var_dof_start, var_49); var_51 = df::load(var_joint_S_s, var_50); var_52 = df::index(var_48, var_49); var_53 = df::index(var_41, var_49); var_54 = df::add(var_dof_start, var_49); var_55 = df::spatial_dot(var_51, var_body_f_s); var_56 = df::sub(var_12, var_55); var_57 = df::mul(var_52, var_target_k_d); var_58 = df::sub(var_56, var_57); var_59 = df::mul(var_53, var_target_k_e); var_60 = df::sub(var_58, var_59); df::store(var_tau, var_54, var_60); var_62 = df::add(var_dof_start, var_61); var_63 = df::load(var_joint_S_s, var_62); var_64 = df::index(var_48, var_61); var_65 = df::index(var_41, var_61); var_66 = df::add(var_dof_start, var_61); var_67 = df::spatial_dot(var_63, var_body_f_s); var_68 = df::sub(var_12, var_67); var_69 = df::mul(var_64, var_target_k_d); var_70 = df::sub(var_68, var_69); var_71 = df::mul(var_65, var_target_k_e); var_72 = df::sub(var_70, var_71); df::store(var_tau, var_66, var_72); var_74 = df::add(var_dof_start, var_73); var_75 = df::load(var_joint_S_s, var_74); var_76 = df::index(var_48, var_73); var_77 = df::index(var_41, var_73); var_78 = df::add(var_dof_start, var_73); var_79 = df::spatial_dot(var_75, var_body_f_s); var_80 = df::sub(var_12, var_79); var_81 = df::mul(var_76, var_target_k_d); var_82 = df::sub(var_80, var_81); var_83 = df::mul(var_77, var_target_k_e); var_84 = df::sub(var_82, var_83); df::store(var_tau, var_78, var_84); } var_85 = df::select(var_34, var_5, var_75); var_87 = (var_type == var_86); if (var_87) { var_89 = df::add(var_dof_start, var_88); var_90 = df::load(var_joint_S_s, var_89); var_91 = df::add(var_dof_start, var_88); var_92 = df::spatial_dot(var_90, var_body_f_s); var_93 = df::sub(var_12, var_92); df::store(var_tau, var_91, var_93); var_95 = df::add(var_dof_start, var_94); var_96 = df::load(var_joint_S_s, var_95); var_97 = df::add(var_dof_start, var_94); var_98 = df::spatial_dot(var_96, var_body_f_s); var_99 = df::sub(var_12, var_98); df::store(var_tau, var_97, var_99); var_101 = df::add(var_dof_start, var_100); var_102 = df::load(var_joint_S_s, var_101); var_103 = df::add(var_dof_start, var_100); var_104 = df::spatial_dot(var_102, var_body_f_s); var_105 = df::sub(var_12, var_104); df::store(var_tau, var_103, var_105); var_107 = df::add(var_dof_start, var_106); var_108 = df::load(var_joint_S_s, var_107); var_109 = df::add(var_dof_start, var_106); var_110 = df::spatial_dot(var_108, var_body_f_s); var_111 = df::sub(var_12, var_110); df::store(var_tau, var_109, var_111); var_113 = df::add(var_dof_start, var_112); var_114 = df::load(var_joint_S_s, var_113); var_115 = df::add(var_dof_start, var_112); var_116 = df::spatial_dot(var_114, var_body_f_s); var_117 = df::sub(var_12, var_116); df::store(var_tau, var_115, var_117); var_119 = df::add(var_dof_start, var_118); var_120 = df::load(var_joint_S_s, var_119); var_121 = df::add(var_dof_start, var_118); var_122 = df::spatial_dot(var_120, var_body_f_s); var_123 = df::sub(var_12, var_122); df::store(var_tau, var_121, var_123); } var_124 = df::select(var_87, var_85, var_120); var_125 = df::select(var_87, var_73, var_118); goto label0; //--------- // reverse label0:; adj_0 += adj_ret; df::adj_select(var_87, var_73, var_118, adj_87, adj_73, adj_118, adj_125); df::adj_select(var_87, var_85, var_120, adj_87, adj_85, adj_120, adj_124); if (var_87) { df::adj_store(var_tau, var_121, var_123, adj_tau, adj_121, adj_123); df::adj_sub(var_12, var_122, adj_12, adj_122, adj_123); df::adj_spatial_dot(var_120, var_body_f_s, adj_120, adj_body_f_s, adj_122); df::adj_add(var_dof_start, var_118, adj_dof_start, adj_118, adj_121); df::adj_load(var_joint_S_s, var_119, adj_joint_S_s, adj_119, adj_120); df::adj_add(var_dof_start, var_118, adj_dof_start, adj_118, adj_119); df::adj_store(var_tau, var_115, var_117, adj_tau, adj_115, adj_117); df::adj_sub(var_12, var_116, adj_12, adj_116, adj_117); df::adj_spatial_dot(var_114, var_body_f_s, adj_114, adj_body_f_s, adj_116); df::adj_add(var_dof_start, var_112, adj_dof_start, adj_112, adj_115); df::adj_load(var_joint_S_s, var_113, adj_joint_S_s, adj_113, adj_114); df::adj_add(var_dof_start, var_112, adj_dof_start, adj_112, adj_113); df::adj_store(var_tau, var_109, var_111, adj_tau, adj_109, adj_111); df::adj_sub(var_12, var_110, adj_12, adj_110, adj_111); df::adj_spatial_dot(var_108, var_body_f_s, adj_108, adj_body_f_s, adj_110); df::adj_add(var_dof_start, var_106, adj_dof_start, adj_106, adj_109); df::adj_load(var_joint_S_s, var_107, adj_joint_S_s, adj_107, adj_108); df::adj_add(var_dof_start, var_106, adj_dof_start, adj_106, adj_107); df::adj_store(var_tau, var_103, var_105, adj_tau, adj_103, adj_105); df::adj_sub(var_12, var_104, adj_12, adj_104, adj_105); df::adj_spatial_dot(var_102, var_body_f_s, adj_102, adj_body_f_s, adj_104); df::adj_add(var_dof_start, var_100, adj_dof_start, adj_100, adj_103); df::adj_load(var_joint_S_s, var_101, adj_joint_S_s, adj_101, adj_102); df::adj_add(var_dof_start, var_100, adj_dof_start, adj_100, adj_101); df::adj_store(var_tau, var_97, var_99, adj_tau, adj_97, adj_99); df::adj_sub(var_12, var_98, adj_12, adj_98, adj_99); df::adj_spatial_dot(var_96, var_body_f_s, adj_96, adj_body_f_s, adj_98); df::adj_add(var_dof_start, var_94, adj_dof_start, adj_94, adj_97); df::adj_load(var_joint_S_s, var_95, adj_joint_S_s, adj_95, adj_96); df::adj_add(var_dof_start, var_94, adj_dof_start, adj_94, adj_95); df::adj_store(var_tau, var_91, var_93, adj_tau, adj_91, adj_93); df::adj_sub(var_12, var_92, adj_12, adj_92, adj_93); df::adj_spatial_dot(var_90, var_body_f_s, adj_90, adj_body_f_s, adj_92); df::adj_add(var_dof_start, var_88, adj_dof_start, adj_88, adj_91); df::adj_load(var_joint_S_s, var_89, adj_joint_S_s, adj_89, adj_90); df::adj_add(var_dof_start, var_88, adj_dof_start, adj_88, adj_89); } df::adj_select(var_34, var_5, var_75, adj_34, adj_5, adj_75, adj_85); if (var_34) { df::adj_store(var_tau, var_78, var_84, adj_tau, adj_78, adj_84); df::adj_sub(var_82, var_83, adj_82, adj_83, adj_84); df::adj_mul(var_77, var_target_k_e, adj_77, adj_target_k_e, adj_83); df::adj_sub(var_80, var_81, adj_80, adj_81, adj_82); df::adj_mul(var_76, var_target_k_d, adj_76, adj_target_k_d, adj_81); df::adj_sub(var_12, var_79, adj_12, adj_79, adj_80); df::adj_spatial_dot(var_75, var_body_f_s, adj_75, adj_body_f_s, adj_79); df::adj_add(var_dof_start, var_73, adj_dof_start, adj_73, adj_78); df::adj_index(var_41, var_73, adj_41, adj_73, adj_77); df::adj_index(var_48, var_73, adj_48, adj_73, adj_76); df::adj_load(var_joint_S_s, var_74, adj_joint_S_s, adj_74, adj_75); df::adj_add(var_dof_start, var_73, adj_dof_start, adj_73, adj_74); df::adj_store(var_tau, var_66, var_72, adj_tau, adj_66, adj_72); df::adj_sub(var_70, var_71, adj_70, adj_71, adj_72); df::adj_mul(var_65, var_target_k_e, adj_65, adj_target_k_e, adj_71); df::adj_sub(var_68, var_69, adj_68, adj_69, adj_70); df::adj_mul(var_64, var_target_k_d, adj_64, adj_target_k_d, adj_69); df::adj_sub(var_12, var_67, adj_12, adj_67, adj_68); df::adj_spatial_dot(var_63, var_body_f_s, adj_63, adj_body_f_s, adj_67); df::adj_add(var_dof_start, var_61, adj_dof_start, adj_61, adj_66); df::adj_index(var_41, var_61, adj_41, adj_61, adj_65); df::adj_index(var_48, var_61, adj_48, adj_61, adj_64); df::adj_load(var_joint_S_s, var_62, adj_joint_S_s, adj_62, adj_63); df::adj_add(var_dof_start, var_61, adj_dof_start, adj_61, adj_62); df::adj_store(var_tau, var_54, var_60, adj_tau, adj_54, adj_60); df::adj_sub(var_58, var_59, adj_58, adj_59, adj_60); df::adj_mul(var_53, var_target_k_e, adj_53, adj_target_k_e, adj_59); df::adj_sub(var_56, var_57, adj_56, adj_57, adj_58); df::adj_mul(var_52, var_target_k_d, adj_52, adj_target_k_d, adj_57); df::adj_sub(var_12, var_55, adj_12, adj_55, adj_56); df::adj_spatial_dot(var_51, var_body_f_s, adj_51, adj_body_f_s, adj_55); df::adj_add(var_dof_start, var_49, adj_dof_start, adj_49, adj_54); df::adj_index(var_41, var_49, adj_41, adj_49, adj_53); df::adj_index(var_48, var_49, adj_48, adj_49, adj_52); df::adj_load(var_joint_S_s, var_50, adj_joint_S_s, adj_50, adj_51); df::adj_add(var_dof_start, var_49, adj_dof_start, adj_49, adj_50); df::adj_float3(var_43, var_45, var_47, adj_43, adj_45, adj_47, adj_48); df::adj_load(var_joint_qd, var_46, adj_joint_qd, adj_46, adj_47); df::adj_add(var_dof_start, var_33, adj_dof_start, adj_33, adj_46); df::adj_load(var_joint_qd, var_44, adj_joint_qd, adj_44, adj_45); df::adj_add(var_dof_start, var_2, adj_dof_start, adj_2, adj_44); df::adj_load(var_joint_qd, var_42, adj_joint_qd, adj_42, adj_43); df::adj_add(var_dof_start, var_0, adj_dof_start, adj_0, adj_42); df::adj_float3(var_36, var_38, var_40, adj_36, adj_38, adj_40, adj_41); df::adj_load(var_joint_q, var_39, adj_joint_q, adj_39, adj_40); df::adj_add(var_coord_start, var_33, adj_coord_start, adj_33, adj_39); df::adj_load(var_joint_q, var_37, adj_joint_q, adj_37, adj_38); df::adj_add(var_coord_start, var_2, adj_coord_start, adj_2, adj_37); df::adj_load(var_joint_q, var_35, adj_joint_q, adj_35, adj_36); df::adj_add(var_coord_start, var_0, adj_coord_start, adj_0, adj_35); } if (var_4) { df::adj_store(var_tau, var_dof_start, var_32, adj_tau, adj_dof_start, adj_32); df::adj_add(var_31, var_22, adj_31, adj_22, adj_32); df::adj_add(var_30, var_20, adj_30, adj_20, adj_31); df::adj_add(var_29, var_8, adj_29, adj_8, adj_30); df::adj_sub(var_27, var_28, adj_27, adj_28, adj_29); df::adj_mul(var_target_k_d, var_7, adj_target_k_d, adj_7, adj_28); df::adj_sub(var_24, var_26, adj_24, adj_26, adj_27); df::adj_mul(var_target_k_e, var_25, adj_target_k_e, adj_25, adj_26); df::adj_sub(var_6, var_9, adj_6, adj_9, adj_25); df::adj_sub(var_12, var_23, adj_12, adj_23, adj_24); df::adj_spatial_dot(var_5, var_body_f_s, adj_5, adj_body_f_s, adj_23); df::adj_mul(var_21, var_7, adj_21, adj_7, adj_22); df::adj_sub(var_12, var_limit_k_d, adj_12, adj_limit_k_d, adj_21); df::adj_select(var_17, var_16, var_19, adj_17, adj_16, adj_19, adj_20); if (var_17) { df::adj_mul(var_limit_k_e, var_18, adj_limit_k_e, adj_18, adj_19); df::adj_sub(var_11, var_6, adj_11, adj_6, adj_18); } df::adj_select(var_13, var_12, var_15, adj_13, adj_12, adj_15, adj_16); if (var_13) { df::adj_mul(var_limit_k_e, var_14, adj_limit_k_e, adj_14, adj_15); df::adj_sub(var_10, var_6, adj_10, adj_6, adj_14); } df::adj_load(var_joint_limit_upper, var_coord_start, adj_joint_limit_upper, adj_coord_start, adj_11); df::adj_load(var_joint_limit_lower, var_coord_start, adj_joint_limit_lower, adj_coord_start, adj_10); df::adj_load(var_joint_target, var_coord_start, adj_joint_target, adj_coord_start, adj_9); df::adj_load(var_joint_act, var_dof_start, adj_joint_act, adj_dof_start, adj_8); df::adj_load(var_joint_qd, var_dof_start, adj_joint_qd, adj_dof_start, adj_7); df::adj_load(var_joint_q, var_coord_start, adj_joint_q, adj_coord_start, adj_6); df::adj_load(var_joint_S_s, var_dof_start, adj_joint_S_s, adj_dof_start, adj_5); } return; } int jcalc_integrate_cpu_func( int var_type, float* var_joint_q, float* var_joint_qd, float* var_joint_qdd, int var_coord_start, int var_dof_start, float var_dt, float* var_joint_q_new, float* var_joint_qd_new) { //--------- // primal vars const int var_0 = 0; bool var_1; const int var_2 = 1; bool var_3; bool var_4; float var_5; float var_6; float var_7; float var_8; float var_9; float var_10; float var_11; const int var_12 = 2; bool var_13; int var_14; float var_15; int var_16; float var_17; int var_18; float var_19; df::float3 var_20; int var_21; float var_22; int var_23; float var_24; int var_25; float var_26; df::float3 var_27; int var_28; float var_29; int var_30; float var_31; int var_32; float var_33; const int var_34 = 3; int var_35; float var_36; quat var_37; df::float3 var_38; df::float3 var_39; const float var_40 = 0.0; quat var_41; quat var_42; const float var_43 = 0.5; quat var_44; quat var_45; quat var_46; quat var_47; int var_48; float var_49; int var_50; float var_51; int var_52; float var_53; int var_54; float var_55; int var_56; float var_57; int var_58; float var_59; int var_60; float var_61; const int var_62 = 4; bool var_63; int var_64; float var_65; int var_66; float var_67; int var_68; float var_69; df::float3 var_70; int var_71; float var_72; int var_73; float var_74; const int var_75 = 5; int var_76; float var_77; df::float3 var_78; int var_79; float var_80; int var_81; float var_82; int var_83; float var_84; df::float3 var_85; int var_86; float var_87; int var_88; float var_89; int var_90; float var_91; df::float3 var_92; df::float3 var_93; df::float3 var_94; df::float3 var_95; df::float3 var_96; int var_97; float var_98; int var_99; float var_100; int var_101; float var_102; df::float3 var_103; df::float3 var_104; df::float3 var_105; int var_106; float var_107; int var_108; float var_109; int var_110; float var_111; const int var_112 = 6; int var_113; float var_114; quat var_115; quat var_116; quat var_117; quat var_118; df::float3 var_119; df::float3 var_120; quat var_121; quat var_122; quat var_123; int var_124; float var_125; int var_126; float var_127; int var_128; float var_129; int var_130; float var_131; int var_132; float var_133; int var_134; float var_135; int var_136; float var_137; int var_138; float var_139; int var_140; float var_141; int var_142; float var_143; int var_144; float var_145; int var_146; float var_147; int var_148; float var_149; //--------- // forward var_1 = (var_type == var_0); var_3 = (var_type == var_2); var_4 = var_1 || var_3; if (var_4) { var_5 = df::load(var_joint_qdd, var_dof_start); var_6 = df::load(var_joint_qd, var_dof_start); var_7 = df::load(var_joint_q, var_coord_start); var_8 = df::mul(var_5, var_dt); var_9 = df::add(var_6, var_8); var_10 = df::mul(var_9, var_dt); var_11 = df::add(var_7, var_10); df::store(var_joint_qd_new, var_dof_start, var_9); df::store(var_joint_q_new, var_coord_start, var_11); } var_13 = (var_type == var_12); if (var_13) { var_14 = df::add(var_dof_start, var_0); var_15 = df::load(var_joint_qdd, var_14); var_16 = df::add(var_dof_start, var_2); var_17 = df::load(var_joint_qdd, var_16); var_18 = df::add(var_dof_start, var_12); var_19 = df::load(var_joint_qdd, var_18); var_20 = df::float3(var_15, var_17, var_19); var_21 = df::add(var_dof_start, var_0); var_22 = df::load(var_joint_qd, var_21); var_23 = df::add(var_dof_start, var_2); var_24 = df::load(var_joint_qd, var_23); var_25 = df::add(var_dof_start, var_12); var_26 = df::load(var_joint_qd, var_25); var_27 = df::float3(var_22, var_24, var_26); var_28 = df::add(var_coord_start, var_0); var_29 = df::load(var_joint_q, var_28); var_30 = df::add(var_coord_start, var_2); var_31 = df::load(var_joint_q, var_30); var_32 = df::add(var_coord_start, var_12); var_33 = df::load(var_joint_q, var_32); var_35 = df::add(var_coord_start, var_34); var_36 = df::load(var_joint_q, var_35); var_37 = df::quat(var_29, var_31, var_33, var_36); var_38 = df::mul(var_20, var_dt); var_39 = df::add(var_27, var_38); var_41 = df::quat(var_39, var_40); var_42 = df::mul(var_41, var_37); var_44 = df::mul(var_42, var_43); var_45 = df::mul(var_44, var_dt); var_46 = df::add(var_37, var_45); var_47 = df::normalize(var_46); var_48 = df::add(var_coord_start, var_0); var_49 = df::index(var_47, var_0); df::store(var_joint_q_new, var_48, var_49); var_50 = df::add(var_coord_start, var_2); var_51 = df::index(var_47, var_2); df::store(var_joint_q_new, var_50, var_51); var_52 = df::add(var_coord_start, var_12); var_53 = df::index(var_47, var_12); df::store(var_joint_q_new, var_52, var_53); var_54 = df::add(var_coord_start, var_34); var_55 = df::index(var_47, var_34); df::store(var_joint_q_new, var_54, var_55); var_56 = df::add(var_dof_start, var_0); var_57 = df::index(var_39, var_0); df::store(var_joint_qd_new, var_56, var_57); var_58 = df::add(var_dof_start, var_2); var_59 = df::index(var_39, var_2); df::store(var_joint_qd_new, var_58, var_59); var_60 = df::add(var_dof_start, var_12); var_61 = df::index(var_39, var_12); df::store(var_joint_qd_new, var_60, var_61); } var_63 = (var_type == var_62); if (var_63) { var_64 = df::add(var_dof_start, var_0); var_65 = df::load(var_joint_qdd, var_64); var_66 = df::add(var_dof_start, var_2); var_67 = df::load(var_joint_qdd, var_66); var_68 = df::add(var_dof_start, var_12); var_69 = df::load(var_joint_qdd, var_68); var_70 = df::float3(var_65, var_67, var_69); var_71 = df::add(var_dof_start, var_34); var_72 = df::load(var_joint_qdd, var_71); var_73 = df::add(var_dof_start, var_62); var_74 = df::load(var_joint_qdd, var_73); var_76 = df::add(var_dof_start, var_75); var_77 = df::load(var_joint_qdd, var_76); var_78 = df::float3(var_72, var_74, var_77); var_79 = df::add(var_dof_start, var_0); var_80 = df::load(var_joint_qd, var_79); var_81 = df::add(var_dof_start, var_2); var_82 = df::load(var_joint_qd, var_81); var_83 = df::add(var_dof_start, var_12); var_84 = df::load(var_joint_qd, var_83); var_85 = df::float3(var_80, var_82, var_84); var_86 = df::add(var_dof_start, var_34); var_87 = df::load(var_joint_qd, var_86); var_88 = df::add(var_dof_start, var_62); var_89 = df::load(var_joint_qd, var_88); var_90 = df::add(var_dof_start, var_75); var_91 = df::load(var_joint_qd, var_90); var_92 = df::float3(var_87, var_89, var_91); var_93 = df::mul(var_70, var_dt); var_94 = df::add(var_85, var_93); var_95 = df::mul(var_78, var_dt); var_96 = df::add(var_92, var_95); var_97 = df::add(var_coord_start, var_0); var_98 = df::load(var_joint_q, var_97); var_99 = df::add(var_coord_start, var_2); var_100 = df::load(var_joint_q, var_99); var_101 = df::add(var_coord_start, var_12); var_102 = df::load(var_joint_q, var_101); var_103 = df::float3(var_98, var_100, var_102); var_104 = df::cross(var_94, var_103); var_105 = df::add(var_96, var_104); var_106 = df::add(var_coord_start, var_34); var_107 = df::load(var_joint_q, var_106); var_108 = df::add(var_coord_start, var_62); var_109 = df::load(var_joint_q, var_108); var_110 = df::add(var_coord_start, var_75); var_111 = df::load(var_joint_q, var_110); var_113 = df::add(var_coord_start, var_112); var_114 = df::load(var_joint_q, var_113); var_115 = df::quat(var_107, var_109, var_111, var_114); var_116 = df::quat(var_94, var_40); var_117 = df::mul(var_116, var_115); var_118 = df::mul(var_117, var_43); var_119 = df::mul(var_105, var_dt); var_120 = df::add(var_103, var_119); var_121 = df::mul(var_118, var_dt); var_122 = df::add(var_115, var_121); var_123 = df::normalize(var_122); var_124 = df::add(var_coord_start, var_0); var_125 = df::index(var_120, var_0); df::store(var_joint_q_new, var_124, var_125); var_126 = df::add(var_coord_start, var_2); var_127 = df::index(var_120, var_2); df::store(var_joint_q_new, var_126, var_127); var_128 = df::add(var_coord_start, var_12); var_129 = df::index(var_120, var_12); df::store(var_joint_q_new, var_128, var_129); var_130 = df::add(var_coord_start, var_34); var_131 = df::index(var_123, var_0); df::store(var_joint_q_new, var_130, var_131); var_132 = df::add(var_coord_start, var_62); var_133 = df::index(var_123, var_2); df::store(var_joint_q_new, var_132, var_133); var_134 = df::add(var_coord_start, var_75); var_135 = df::index(var_123, var_12); df::store(var_joint_q_new, var_134, var_135); var_136 = df::add(var_coord_start, var_112); var_137 = df::index(var_123, var_34); df::store(var_joint_q_new, var_136, var_137); var_138 = df::add(var_dof_start, var_0); var_139 = df::index(var_94, var_0); df::store(var_joint_qd_new, var_138, var_139); var_140 = df::add(var_dof_start, var_2); var_141 = df::index(var_94, var_2); df::store(var_joint_qd_new, var_140, var_141); var_142 = df::add(var_dof_start, var_12); var_143 = df::index(var_94, var_12); df::store(var_joint_qd_new, var_142, var_143); var_144 = df::add(var_dof_start, var_34); var_145 = df::index(var_96, var_0); df::store(var_joint_qd_new, var_144, var_145); var_146 = df::add(var_dof_start, var_62); var_147 = df::index(var_96, var_2); df::store(var_joint_qd_new, var_146, var_147); var_148 = df::add(var_dof_start, var_75); var_149 = df::index(var_96, var_12); df::store(var_joint_qd_new, var_148, var_149); } return var_0; } void adj_jcalc_integrate_cpu_func( int var_type, float* var_joint_q, float* var_joint_qd, float* var_joint_qdd, int var_coord_start, int var_dof_start, float var_dt, float* var_joint_q_new, float* var_joint_qd_new, int & adj_type, float* adj_joint_q, float* adj_joint_qd, float* adj_joint_qdd, int & adj_coord_start, int & adj_dof_start, float & adj_dt, float* adj_joint_q_new, float* adj_joint_qd_new, int & adj_ret) { //--------- // primal vars const int var_0 = 0; bool var_1; const int var_2 = 1; bool var_3; bool var_4; float var_5; float var_6; float var_7; float var_8; float var_9; float var_10; float var_11; const int var_12 = 2; bool var_13; int var_14; float var_15; int var_16; float var_17; int var_18; float var_19; df::float3 var_20; int var_21; float var_22; int var_23; float var_24; int var_25; float var_26; df::float3 var_27; int var_28; float var_29; int var_30; float var_31; int var_32; float var_33; const int var_34 = 3; int var_35; float var_36; quat var_37; df::float3 var_38; df::float3 var_39; const float var_40 = 0.0; quat var_41; quat var_42; const float var_43 = 0.5; quat var_44; quat var_45; quat var_46; quat var_47; int var_48; float var_49; int var_50; float var_51; int var_52; float var_53; int var_54; float var_55; int var_56; float var_57; int var_58; float var_59; int var_60; float var_61; const int var_62 = 4; bool var_63; int var_64; float var_65; int var_66; float var_67; int var_68; float var_69; df::float3 var_70; int var_71; float var_72; int var_73; float var_74; const int var_75 = 5; int var_76; float var_77; df::float3 var_78; int var_79; float var_80; int var_81; float var_82; int var_83; float var_84; df::float3 var_85; int var_86; float var_87; int var_88; float var_89; int var_90; float var_91; df::float3 var_92; df::float3 var_93; df::float3 var_94; df::float3 var_95; df::float3 var_96; int var_97; float var_98; int var_99; float var_100; int var_101; float var_102; df::float3 var_103; df::float3 var_104; df::float3 var_105; int var_106; float var_107; int var_108; float var_109; int var_110; float var_111; const int var_112 = 6; int var_113; float var_114; quat var_115; quat var_116; quat var_117; quat var_118; df::float3 var_119; df::float3 var_120; quat var_121; quat var_122; quat var_123; int var_124; float var_125; int var_126; float var_127; int var_128; float var_129; int var_130; float var_131; int var_132; float var_133; int var_134; float var_135; int var_136; float var_137; int var_138; float var_139; int var_140; float var_141; int var_142; float var_143; int var_144; float var_145; int var_146; float var_147; int var_148; float var_149; //--------- // dual vars int adj_0 = 0; bool adj_1 = 0; int adj_2 = 0; bool adj_3 = 0; bool adj_4 = 0; float adj_5 = 0; float adj_6 = 0; float adj_7 = 0; float adj_8 = 0; float adj_9 = 0; float adj_10 = 0; float adj_11 = 0; int adj_12 = 0; bool adj_13 = 0; int adj_14 = 0; float adj_15 = 0; int adj_16 = 0; float adj_17 = 0; int adj_18 = 0; float adj_19 = 0; df::float3 adj_20 = 0; int adj_21 = 0; float adj_22 = 0; int adj_23 = 0; float adj_24 = 0; int adj_25 = 0; float adj_26 = 0; df::float3 adj_27 = 0; int adj_28 = 0; float adj_29 = 0; int adj_30 = 0; float adj_31 = 0; int adj_32 = 0; float adj_33 = 0; int adj_34 = 0; int adj_35 = 0; float adj_36 = 0; quat adj_37 = 0; df::float3 adj_38 = 0; df::float3 adj_39 = 0; float adj_40 = 0; quat adj_41 = 0; quat adj_42 = 0; float adj_43 = 0; quat adj_44 = 0; quat adj_45 = 0; quat adj_46 = 0; quat adj_47 = 0; int adj_48 = 0; float adj_49 = 0; int adj_50 = 0; float adj_51 = 0; int adj_52 = 0; float adj_53 = 0; int adj_54 = 0; float adj_55 = 0; int adj_56 = 0; float adj_57 = 0; int adj_58 = 0; float adj_59 = 0; int adj_60 = 0; float adj_61 = 0; int adj_62 = 0; bool adj_63 = 0; int adj_64 = 0; float adj_65 = 0; int adj_66 = 0; float adj_67 = 0; int adj_68 = 0; float adj_69 = 0; df::float3 adj_70 = 0; int adj_71 = 0; float adj_72 = 0; int adj_73 = 0; float adj_74 = 0; int adj_75 = 0; int adj_76 = 0; float adj_77 = 0; df::float3 adj_78 = 0; int adj_79 = 0; float adj_80 = 0; int adj_81 = 0; float adj_82 = 0; int adj_83 = 0; float adj_84 = 0; df::float3 adj_85 = 0; int adj_86 = 0; float adj_87 = 0; int adj_88 = 0; float adj_89 = 0; int adj_90 = 0; float adj_91 = 0; df::float3 adj_92 = 0; df::float3 adj_93 = 0; df::float3 adj_94 = 0; df::float3 adj_95 = 0; df::float3 adj_96 = 0; int adj_97 = 0; float adj_98 = 0; int adj_99 = 0; float adj_100 = 0; int adj_101 = 0; float adj_102 = 0; df::float3 adj_103 = 0; df::float3 adj_104 = 0; df::float3 adj_105 = 0; int adj_106 = 0; float adj_107 = 0; int adj_108 = 0; float adj_109 = 0; int adj_110 = 0; float adj_111 = 0; int adj_112 = 0; int adj_113 = 0; float adj_114 = 0; quat adj_115 = 0; quat adj_116 = 0; quat adj_117 = 0; quat adj_118 = 0; df::float3 adj_119 = 0; df::float3 adj_120 = 0; quat adj_121 = 0; quat adj_122 = 0; quat adj_123 = 0; int adj_124 = 0; float adj_125 = 0; int adj_126 = 0; float adj_127 = 0; int adj_128 = 0; float adj_129 = 0; int adj_130 = 0; float adj_131 = 0; int adj_132 = 0; float adj_133 = 0; int adj_134 = 0; float adj_135 = 0; int adj_136 = 0; float adj_137 = 0; int adj_138 = 0; float adj_139 = 0; int adj_140 = 0; float adj_141 = 0; int adj_142 = 0; float adj_143 = 0; int adj_144 = 0; float adj_145 = 0; int adj_146 = 0; float adj_147 = 0; int adj_148 = 0; float adj_149 = 0; //--------- // forward var_1 = (var_type == var_0); var_3 = (var_type == var_2); var_4 = var_1 || var_3; if (var_4) { var_5 = df::load(var_joint_qdd, var_dof_start); var_6 = df::load(var_joint_qd, var_dof_start); var_7 = df::load(var_joint_q, var_coord_start); var_8 = df::mul(var_5, var_dt); var_9 = df::add(var_6, var_8); var_10 = df::mul(var_9, var_dt); var_11 = df::add(var_7, var_10); df::store(var_joint_qd_new, var_dof_start, var_9); df::store(var_joint_q_new, var_coord_start, var_11); } var_13 = (var_type == var_12); if (var_13) { var_14 = df::add(var_dof_start, var_0); var_15 = df::load(var_joint_qdd, var_14); var_16 = df::add(var_dof_start, var_2); var_17 = df::load(var_joint_qdd, var_16); var_18 = df::add(var_dof_start, var_12); var_19 = df::load(var_joint_qdd, var_18); var_20 = df::float3(var_15, var_17, var_19); var_21 = df::add(var_dof_start, var_0); var_22 = df::load(var_joint_qd, var_21); var_23 = df::add(var_dof_start, var_2); var_24 = df::load(var_joint_qd, var_23); var_25 = df::add(var_dof_start, var_12); var_26 = df::load(var_joint_qd, var_25); var_27 = df::float3(var_22, var_24, var_26); var_28 = df::add(var_coord_start, var_0); var_29 = df::load(var_joint_q, var_28); var_30 = df::add(var_coord_start, var_2); var_31 = df::load(var_joint_q, var_30); var_32 = df::add(var_coord_start, var_12); var_33 = df::load(var_joint_q, var_32); var_35 = df::add(var_coord_start, var_34); var_36 = df::load(var_joint_q, var_35); var_37 = df::quat(var_29, var_31, var_33, var_36); var_38 = df::mul(var_20, var_dt); var_39 = df::add(var_27, var_38); var_41 = df::quat(var_39, var_40); var_42 = df::mul(var_41, var_37); var_44 = df::mul(var_42, var_43); var_45 = df::mul(var_44, var_dt); var_46 = df::add(var_37, var_45); var_47 = df::normalize(var_46); var_48 = df::add(var_coord_start, var_0); var_49 = df::index(var_47, var_0); df::store(var_joint_q_new, var_48, var_49); var_50 = df::add(var_coord_start, var_2); var_51 = df::index(var_47, var_2); df::store(var_joint_q_new, var_50, var_51); var_52 = df::add(var_coord_start, var_12); var_53 = df::index(var_47, var_12); df::store(var_joint_q_new, var_52, var_53); var_54 = df::add(var_coord_start, var_34); var_55 = df::index(var_47, var_34); df::store(var_joint_q_new, var_54, var_55); var_56 = df::add(var_dof_start, var_0); var_57 = df::index(var_39, var_0); df::store(var_joint_qd_new, var_56, var_57); var_58 = df::add(var_dof_start, var_2); var_59 = df::index(var_39, var_2); df::store(var_joint_qd_new, var_58, var_59); var_60 = df::add(var_dof_start, var_12); var_61 = df::index(var_39, var_12); df::store(var_joint_qd_new, var_60, var_61); } var_63 = (var_type == var_62); if (var_63) { var_64 = df::add(var_dof_start, var_0); var_65 = df::load(var_joint_qdd, var_64); var_66 = df::add(var_dof_start, var_2); var_67 = df::load(var_joint_qdd, var_66); var_68 = df::add(var_dof_start, var_12); var_69 = df::load(var_joint_qdd, var_68); var_70 = df::float3(var_65, var_67, var_69); var_71 = df::add(var_dof_start, var_34); var_72 = df::load(var_joint_qdd, var_71); var_73 = df::add(var_dof_start, var_62); var_74 = df::load(var_joint_qdd, var_73); var_76 = df::add(var_dof_start, var_75); var_77 = df::load(var_joint_qdd, var_76); var_78 = df::float3(var_72, var_74, var_77); var_79 = df::add(var_dof_start, var_0); var_80 = df::load(var_joint_qd, var_79); var_81 = df::add(var_dof_start, var_2); var_82 = df::load(var_joint_qd, var_81); var_83 = df::add(var_dof_start, var_12); var_84 = df::load(var_joint_qd, var_83); var_85 = df::float3(var_80, var_82, var_84); var_86 = df::add(var_dof_start, var_34); var_87 = df::load(var_joint_qd, var_86); var_88 = df::add(var_dof_start, var_62); var_89 = df::load(var_joint_qd, var_88); var_90 = df::add(var_dof_start, var_75); var_91 = df::load(var_joint_qd, var_90); var_92 = df::float3(var_87, var_89, var_91); var_93 = df::mul(var_70, var_dt); var_94 = df::add(var_85, var_93); var_95 = df::mul(var_78, var_dt); var_96 = df::add(var_92, var_95); var_97 = df::add(var_coord_start, var_0); var_98 = df::load(var_joint_q, var_97); var_99 = df::add(var_coord_start, var_2); var_100 = df::load(var_joint_q, var_99); var_101 = df::add(var_coord_start, var_12); var_102 = df::load(var_joint_q, var_101); var_103 = df::float3(var_98, var_100, var_102); var_104 = df::cross(var_94, var_103); var_105 = df::add(var_96, var_104); var_106 = df::add(var_coord_start, var_34); var_107 = df::load(var_joint_q, var_106); var_108 = df::add(var_coord_start, var_62); var_109 = df::load(var_joint_q, var_108); var_110 = df::add(var_coord_start, var_75); var_111 = df::load(var_joint_q, var_110); var_113 = df::add(var_coord_start, var_112); var_114 = df::load(var_joint_q, var_113); var_115 = df::quat(var_107, var_109, var_111, var_114); var_116 = df::quat(var_94, var_40); var_117 = df::mul(var_116, var_115); var_118 = df::mul(var_117, var_43); var_119 = df::mul(var_105, var_dt); var_120 = df::add(var_103, var_119); var_121 = df::mul(var_118, var_dt); var_122 = df::add(var_115, var_121); var_123 = df::normalize(var_122); var_124 = df::add(var_coord_start, var_0); var_125 = df::index(var_120, var_0); df::store(var_joint_q_new, var_124, var_125); var_126 = df::add(var_coord_start, var_2); var_127 = df::index(var_120, var_2); df::store(var_joint_q_new, var_126, var_127); var_128 = df::add(var_coord_start, var_12); var_129 = df::index(var_120, var_12); df::store(var_joint_q_new, var_128, var_129); var_130 = df::add(var_coord_start, var_34); var_131 = df::index(var_123, var_0); df::store(var_joint_q_new, var_130, var_131); var_132 = df::add(var_coord_start, var_62); var_133 = df::index(var_123, var_2); df::store(var_joint_q_new, var_132, var_133); var_134 = df::add(var_coord_start, var_75); var_135 = df::index(var_123, var_12); df::store(var_joint_q_new, var_134, var_135); var_136 = df::add(var_coord_start, var_112); var_137 = df::index(var_123, var_34); df::store(var_joint_q_new, var_136, var_137); var_138 = df::add(var_dof_start, var_0); var_139 = df::index(var_94, var_0); df::store(var_joint_qd_new, var_138, var_139); var_140 = df::add(var_dof_start, var_2); var_141 = df::index(var_94, var_2); df::store(var_joint_qd_new, var_140, var_141); var_142 = df::add(var_dof_start, var_12); var_143 = df::index(var_94, var_12); df::store(var_joint_qd_new, var_142, var_143); var_144 = df::add(var_dof_start, var_34); var_145 = df::index(var_96, var_0); df::store(var_joint_qd_new, var_144, var_145); var_146 = df::add(var_dof_start, var_62); var_147 = df::index(var_96, var_2); df::store(var_joint_qd_new, var_146, var_147); var_148 = df::add(var_dof_start, var_75); var_149 = df::index(var_96, var_12); df::store(var_joint_qd_new, var_148, var_149); } goto label0; //--------- // reverse label0:; adj_0 += adj_ret; if (var_63) { df::adj_store(var_joint_qd_new, var_148, var_149, adj_joint_qd_new, adj_148, adj_149); df::adj_index(var_96, var_12, adj_96, adj_12, adj_149); df::adj_add(var_dof_start, var_75, adj_dof_start, adj_75, adj_148); df::adj_store(var_joint_qd_new, var_146, var_147, adj_joint_qd_new, adj_146, adj_147); df::adj_index(var_96, var_2, adj_96, adj_2, adj_147); df::adj_add(var_dof_start, var_62, adj_dof_start, adj_62, adj_146); df::adj_store(var_joint_qd_new, var_144, var_145, adj_joint_qd_new, adj_144, adj_145); df::adj_index(var_96, var_0, adj_96, adj_0, adj_145); df::adj_add(var_dof_start, var_34, adj_dof_start, adj_34, adj_144); df::adj_store(var_joint_qd_new, var_142, var_143, adj_joint_qd_new, adj_142, adj_143); df::adj_index(var_94, var_12, adj_94, adj_12, adj_143); df::adj_add(var_dof_start, var_12, adj_dof_start, adj_12, adj_142); df::adj_store(var_joint_qd_new, var_140, var_141, adj_joint_qd_new, adj_140, adj_141); df::adj_index(var_94, var_2, adj_94, adj_2, adj_141); df::adj_add(var_dof_start, var_2, adj_dof_start, adj_2, adj_140); df::adj_store(var_joint_qd_new, var_138, var_139, adj_joint_qd_new, adj_138, adj_139); df::adj_index(var_94, var_0, adj_94, adj_0, adj_139); df::adj_add(var_dof_start, var_0, adj_dof_start, adj_0, adj_138); df::adj_store(var_joint_q_new, var_136, var_137, adj_joint_q_new, adj_136, adj_137); df::adj_index(var_123, var_34, adj_123, adj_34, adj_137); df::adj_add(var_coord_start, var_112, adj_coord_start, adj_112, adj_136); df::adj_store(var_joint_q_new, var_134, var_135, adj_joint_q_new, adj_134, adj_135); df::adj_index(var_123, var_12, adj_123, adj_12, adj_135); df::adj_add(var_coord_start, var_75, adj_coord_start, adj_75, adj_134); df::adj_store(var_joint_q_new, var_132, var_133, adj_joint_q_new, adj_132, adj_133); df::adj_index(var_123, var_2, adj_123, adj_2, adj_133); df::adj_add(var_coord_start, var_62, adj_coord_start, adj_62, adj_132); df::adj_store(var_joint_q_new, var_130, var_131, adj_joint_q_new, adj_130, adj_131); df::adj_index(var_123, var_0, adj_123, adj_0, adj_131); df::adj_add(var_coord_start, var_34, adj_coord_start, adj_34, adj_130); df::adj_store(var_joint_q_new, var_128, var_129, adj_joint_q_new, adj_128, adj_129); df::adj_index(var_120, var_12, adj_120, adj_12, adj_129); df::adj_add(var_coord_start, var_12, adj_coord_start, adj_12, adj_128); df::adj_store(var_joint_q_new, var_126, var_127, adj_joint_q_new, adj_126, adj_127); df::adj_index(var_120, var_2, adj_120, adj_2, adj_127); df::adj_add(var_coord_start, var_2, adj_coord_start, adj_2, adj_126); df::adj_store(var_joint_q_new, var_124, var_125, adj_joint_q_new, adj_124, adj_125); df::adj_index(var_120, var_0, adj_120, adj_0, adj_125); df::adj_add(var_coord_start, var_0, adj_coord_start, adj_0, adj_124); df::adj_normalize(var_122, adj_122, adj_123); df::adj_add(var_115, var_121, adj_115, adj_121, adj_122); df::adj_mul(var_118, var_dt, adj_118, adj_dt, adj_121); df::adj_add(var_103, var_119, adj_103, adj_119, adj_120); df::adj_mul(var_105, var_dt, adj_105, adj_dt, adj_119); df::adj_mul(var_117, var_43, adj_117, adj_43, adj_118); df::adj_mul(var_116, var_115, adj_116, adj_115, adj_117); df::adj_quat(var_94, var_40, adj_94, adj_40, adj_116); df::adj_quat(var_107, var_109, var_111, var_114, adj_107, adj_109, adj_111, adj_114, adj_115); df::adj_load(var_joint_q, var_113, adj_joint_q, adj_113, adj_114); df::adj_add(var_coord_start, var_112, adj_coord_start, adj_112, adj_113); df::adj_load(var_joint_q, var_110, adj_joint_q, adj_110, adj_111); df::adj_add(var_coord_start, var_75, adj_coord_start, adj_75, adj_110); df::adj_load(var_joint_q, var_108, adj_joint_q, adj_108, adj_109); df::adj_add(var_coord_start, var_62, adj_coord_start, adj_62, adj_108); df::adj_load(var_joint_q, var_106, adj_joint_q, adj_106, adj_107); df::adj_add(var_coord_start, var_34, adj_coord_start, adj_34, adj_106); df::adj_add(var_96, var_104, adj_96, adj_104, adj_105); df::adj_cross(var_94, var_103, adj_94, adj_103, adj_104); df::adj_float3(var_98, var_100, var_102, adj_98, adj_100, adj_102, adj_103); df::adj_load(var_joint_q, var_101, adj_joint_q, adj_101, adj_102); df::adj_add(var_coord_start, var_12, adj_coord_start, adj_12, adj_101); df::adj_load(var_joint_q, var_99, adj_joint_q, adj_99, adj_100); df::adj_add(var_coord_start, var_2, adj_coord_start, adj_2, adj_99); df::adj_load(var_joint_q, var_97, adj_joint_q, adj_97, adj_98); df::adj_add(var_coord_start, var_0, adj_coord_start, adj_0, adj_97); df::adj_add(var_92, var_95, adj_92, adj_95, adj_96); df::adj_mul(var_78, var_dt, adj_78, adj_dt, adj_95); df::adj_add(var_85, var_93, adj_85, adj_93, adj_94); df::adj_mul(var_70, var_dt, adj_70, adj_dt, adj_93); df::adj_float3(var_87, var_89, var_91, adj_87, adj_89, adj_91, adj_92); df::adj_load(var_joint_qd, var_90, adj_joint_qd, adj_90, adj_91); df::adj_add(var_dof_start, var_75, adj_dof_start, adj_75, adj_90); df::adj_load(var_joint_qd, var_88, adj_joint_qd, adj_88, adj_89); df::adj_add(var_dof_start, var_62, adj_dof_start, adj_62, adj_88); df::adj_load(var_joint_qd, var_86, adj_joint_qd, adj_86, adj_87); df::adj_add(var_dof_start, var_34, adj_dof_start, adj_34, adj_86); df::adj_float3(var_80, var_82, var_84, adj_80, adj_82, adj_84, adj_85); df::adj_load(var_joint_qd, var_83, adj_joint_qd, adj_83, adj_84); df::adj_add(var_dof_start, var_12, adj_dof_start, adj_12, adj_83); df::adj_load(var_joint_qd, var_81, adj_joint_qd, adj_81, adj_82); df::adj_add(var_dof_start, var_2, adj_dof_start, adj_2, adj_81); df::adj_load(var_joint_qd, var_79, adj_joint_qd, adj_79, adj_80); df::adj_add(var_dof_start, var_0, adj_dof_start, adj_0, adj_79); df::adj_float3(var_72, var_74, var_77, adj_72, adj_74, adj_77, adj_78); df::adj_load(var_joint_qdd, var_76, adj_joint_qdd, adj_76, adj_77); df::adj_add(var_dof_start, var_75, adj_dof_start, adj_75, adj_76); df::adj_load(var_joint_qdd, var_73, adj_joint_qdd, adj_73, adj_74); df::adj_add(var_dof_start, var_62, adj_dof_start, adj_62, adj_73); df::adj_load(var_joint_qdd, var_71, adj_joint_qdd, adj_71, adj_72); df::adj_add(var_dof_start, var_34, adj_dof_start, adj_34, adj_71); df::adj_float3(var_65, var_67, var_69, adj_65, adj_67, adj_69, adj_70); df::adj_load(var_joint_qdd, var_68, adj_joint_qdd, adj_68, adj_69); df::adj_add(var_dof_start, var_12, adj_dof_start, adj_12, adj_68); df::adj_load(var_joint_qdd, var_66, adj_joint_qdd, adj_66, adj_67); df::adj_add(var_dof_start, var_2, adj_dof_start, adj_2, adj_66); df::adj_load(var_joint_qdd, var_64, adj_joint_qdd, adj_64, adj_65); df::adj_add(var_dof_start, var_0, adj_dof_start, adj_0, adj_64); } if (var_13) { df::adj_store(var_joint_qd_new, var_60, var_61, adj_joint_qd_new, adj_60, adj_61); df::adj_index(var_39, var_12, adj_39, adj_12, adj_61); df::adj_add(var_dof_start, var_12, adj_dof_start, adj_12, adj_60); df::adj_store(var_joint_qd_new, var_58, var_59, adj_joint_qd_new, adj_58, adj_59); df::adj_index(var_39, var_2, adj_39, adj_2, adj_59); df::adj_add(var_dof_start, var_2, adj_dof_start, adj_2, adj_58); df::adj_store(var_joint_qd_new, var_56, var_57, adj_joint_qd_new, adj_56, adj_57); df::adj_index(var_39, var_0, adj_39, adj_0, adj_57); df::adj_add(var_dof_start, var_0, adj_dof_start, adj_0, adj_56); df::adj_store(var_joint_q_new, var_54, var_55, adj_joint_q_new, adj_54, adj_55); df::adj_index(var_47, var_34, adj_47, adj_34, adj_55); df::adj_add(var_coord_start, var_34, adj_coord_start, adj_34, adj_54); df::adj_store(var_joint_q_new, var_52, var_53, adj_joint_q_new, adj_52, adj_53); df::adj_index(var_47, var_12, adj_47, adj_12, adj_53); df::adj_add(var_coord_start, var_12, adj_coord_start, adj_12, adj_52); df::adj_store(var_joint_q_new, var_50, var_51, adj_joint_q_new, adj_50, adj_51); df::adj_index(var_47, var_2, adj_47, adj_2, adj_51); df::adj_add(var_coord_start, var_2, adj_coord_start, adj_2, adj_50); df::adj_store(var_joint_q_new, var_48, var_49, adj_joint_q_new, adj_48, adj_49); df::adj_index(var_47, var_0, adj_47, adj_0, adj_49); df::adj_add(var_coord_start, var_0, adj_coord_start, adj_0, adj_48); df::adj_normalize(var_46, adj_46, adj_47); df::adj_add(var_37, var_45, adj_37, adj_45, adj_46); df::adj_mul(var_44, var_dt, adj_44, adj_dt, adj_45); df::adj_mul(var_42, var_43, adj_42, adj_43, adj_44); df::adj_mul(var_41, var_37, adj_41, adj_37, adj_42); df::adj_quat(var_39, var_40, adj_39, adj_40, adj_41); df::adj_add(var_27, var_38, adj_27, adj_38, adj_39); df::adj_mul(var_20, var_dt, adj_20, adj_dt, adj_38); df::adj_quat(var_29, var_31, var_33, var_36, adj_29, adj_31, adj_33, adj_36, adj_37); df::adj_load(var_joint_q, var_35, adj_joint_q, adj_35, adj_36); df::adj_add(var_coord_start, var_34, adj_coord_start, adj_34, adj_35); df::adj_load(var_joint_q, var_32, adj_joint_q, adj_32, adj_33); df::adj_add(var_coord_start, var_12, adj_coord_start, adj_12, adj_32); df::adj_load(var_joint_q, var_30, adj_joint_q, adj_30, adj_31); df::adj_add(var_coord_start, var_2, adj_coord_start, adj_2, adj_30); df::adj_load(var_joint_q, var_28, adj_joint_q, adj_28, adj_29); df::adj_add(var_coord_start, var_0, adj_coord_start, adj_0, adj_28); df::adj_float3(var_22, var_24, var_26, adj_22, adj_24, adj_26, adj_27); df::adj_load(var_joint_qd, var_25, adj_joint_qd, adj_25, adj_26); df::adj_add(var_dof_start, var_12, adj_dof_start, adj_12, adj_25); df::adj_load(var_joint_qd, var_23, adj_joint_qd, adj_23, adj_24); df::adj_add(var_dof_start, var_2, adj_dof_start, adj_2, adj_23); df::adj_load(var_joint_qd, var_21, adj_joint_qd, adj_21, adj_22); df::adj_add(var_dof_start, var_0, adj_dof_start, adj_0, adj_21); df::adj_float3(var_15, var_17, var_19, adj_15, adj_17, adj_19, adj_20); df::adj_load(var_joint_qdd, var_18, adj_joint_qdd, adj_18, adj_19); df::adj_add(var_dof_start, var_12, adj_dof_start, adj_12, adj_18); df::adj_load(var_joint_qdd, var_16, adj_joint_qdd, adj_16, adj_17); df::adj_add(var_dof_start, var_2, adj_dof_start, adj_2, adj_16); df::adj_load(var_joint_qdd, var_14, adj_joint_qdd, adj_14, adj_15); df::adj_add(var_dof_start, var_0, adj_dof_start, adj_0, adj_14); } if (var_4) { df::adj_store(var_joint_q_new, var_coord_start, var_11, adj_joint_q_new, adj_coord_start, adj_11); df::adj_store(var_joint_qd_new, var_dof_start, var_9, adj_joint_qd_new, adj_dof_start, adj_9); df::adj_add(var_7, var_10, adj_7, adj_10, adj_11); df::adj_mul(var_9, var_dt, adj_9, adj_dt, adj_10); df::adj_add(var_6, var_8, adj_6, adj_8, adj_9); df::adj_mul(var_5, var_dt, adj_5, adj_dt, adj_8); df::adj_load(var_joint_q, var_coord_start, adj_joint_q, adj_coord_start, adj_7); df::adj_load(var_joint_qd, var_dof_start, adj_joint_qd, adj_dof_start, adj_6); df::adj_load(var_joint_qdd, var_dof_start, adj_joint_qdd, adj_dof_start, adj_5); } return; } int compute_link_transform_cpu_func( int var_i, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, spatial_transform* var_joint_X_pj, spatial_transform* var_joint_X_cm, df::float3* var_joint_axis, spatial_transform* var_body_X_sc, spatial_transform* var_body_X_sm) { //--------- // primal vars int var_0; spatial_transform var_1; const int var_2 = 0; bool var_3; spatial_transform var_4; spatial_transform var_5; int var_6; df::float3 var_7; int var_8; int var_9; spatial_transform var_10; spatial_transform var_11; spatial_transform var_12; spatial_transform var_13; spatial_transform var_14; spatial_transform var_15; //--------- // forward var_0 = df::load(var_joint_parent, var_i); var_1 = df::spatial_transform_identity(); var_3 = (var_0 >= var_2); if (var_3) { var_4 = df::load(var_body_X_sc, var_0); } var_5 = df::select(var_3, var_1, var_4); var_6 = df::load(var_joint_type, var_i); var_7 = df::load(var_joint_axis, var_i); var_8 = df::load(var_joint_q_start, var_i); var_9 = df::load(var_joint_qd_start, var_i); var_10 = jcalc_transform_cpu_func(var_6, var_7, var_joint_q, var_8); var_11 = df::load(var_joint_X_pj, var_i); var_12 = df::spatial_transform_multiply(var_11, var_10); var_13 = df::spatial_transform_multiply(var_5, var_12); var_14 = df::load(var_joint_X_cm, var_i); var_15 = df::spatial_transform_multiply(var_13, var_14); df::store(var_body_X_sc, var_i, var_13); df::store(var_body_X_sm, var_i, var_15); return var_2; } void adj_compute_link_transform_cpu_func( int var_i, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, spatial_transform* var_joint_X_pj, spatial_transform* var_joint_X_cm, df::float3* var_joint_axis, spatial_transform* var_body_X_sc, spatial_transform* var_body_X_sm, int & adj_i, int* adj_joint_type, int* adj_joint_parent, int* adj_joint_q_start, int* adj_joint_qd_start, float* adj_joint_q, spatial_transform* adj_joint_X_pj, spatial_transform* adj_joint_X_cm, df::float3* adj_joint_axis, spatial_transform* adj_body_X_sc, spatial_transform* adj_body_X_sm, int & adj_ret) { //--------- // primal vars int var_0; spatial_transform var_1; const int var_2 = 0; bool var_3; spatial_transform var_4; spatial_transform var_5; int var_6; df::float3 var_7; int var_8; int var_9; spatial_transform var_10; spatial_transform var_11; spatial_transform var_12; spatial_transform var_13; spatial_transform var_14; spatial_transform var_15; //--------- // dual vars int adj_0 = 0; spatial_transform adj_1 = 0; int adj_2 = 0; bool adj_3 = 0; spatial_transform adj_4 = 0; spatial_transform adj_5 = 0; int adj_6 = 0; df::float3 adj_7 = 0; int adj_8 = 0; int adj_9 = 0; spatial_transform adj_10 = 0; spatial_transform adj_11 = 0; spatial_transform adj_12 = 0; spatial_transform adj_13 = 0; spatial_transform adj_14 = 0; spatial_transform adj_15 = 0; //--------- // forward var_0 = df::load(var_joint_parent, var_i); var_1 = df::spatial_transform_identity(); var_3 = (var_0 >= var_2); if (var_3) { var_4 = df::load(var_body_X_sc, var_0); } var_5 = df::select(var_3, var_1, var_4); var_6 = df::load(var_joint_type, var_i); var_7 = df::load(var_joint_axis, var_i); var_8 = df::load(var_joint_q_start, var_i); var_9 = df::load(var_joint_qd_start, var_i); var_10 = jcalc_transform_cpu_func(var_6, var_7, var_joint_q, var_8); var_11 = df::load(var_joint_X_pj, var_i); var_12 = df::spatial_transform_multiply(var_11, var_10); var_13 = df::spatial_transform_multiply(var_5, var_12); var_14 = df::load(var_joint_X_cm, var_i); var_15 = df::spatial_transform_multiply(var_13, var_14); df::store(var_body_X_sc, var_i, var_13); df::store(var_body_X_sm, var_i, var_15); goto label0; //--------- // reverse label0:; adj_2 += adj_ret; df::adj_store(var_body_X_sm, var_i, var_15, adj_body_X_sm, adj_i, adj_15); df::adj_store(var_body_X_sc, var_i, var_13, adj_body_X_sc, adj_i, adj_13); df::adj_spatial_transform_multiply(var_13, var_14, adj_13, adj_14, adj_15); df::adj_load(var_joint_X_cm, var_i, adj_joint_X_cm, adj_i, adj_14); df::adj_spatial_transform_multiply(var_5, var_12, adj_5, adj_12, adj_13); df::adj_spatial_transform_multiply(var_11, var_10, adj_11, adj_10, adj_12); df::adj_load(var_joint_X_pj, var_i, adj_joint_X_pj, adj_i, adj_11); adj_jcalc_transform_cpu_func(var_6, var_7, var_joint_q, var_8, adj_6, adj_7, adj_joint_q, adj_8, adj_10); df::adj_load(var_joint_qd_start, var_i, adj_joint_qd_start, adj_i, adj_9); df::adj_load(var_joint_q_start, var_i, adj_joint_q_start, adj_i, adj_8); df::adj_load(var_joint_axis, var_i, adj_joint_axis, adj_i, adj_7); df::adj_load(var_joint_type, var_i, adj_joint_type, adj_i, adj_6); df::adj_select(var_3, var_1, var_4, adj_3, adj_1, adj_4, adj_5); if (var_3) { df::adj_load(var_body_X_sc, var_0, adj_body_X_sc, adj_0, adj_4); } df::adj_load(var_joint_parent, var_i, adj_joint_parent, adj_i, adj_0); return; } int compute_link_velocity_cpu_func( int var_i, int* var_joint_type, int* var_joint_parent, int* var_joint_qd_start, float* var_joint_qd, df::float3* var_joint_axis, spatial_matrix* var_body_I_m, spatial_transform* var_body_X_sc, spatial_transform* var_body_X_sm, spatial_transform* var_joint_X_pj, df::float3* var_gravity, spatial_vector* var_joint_S_s, spatial_matrix* var_body_I_s, spatial_vector* var_body_v_s, spatial_vector* var_body_f_s, spatial_vector* var_body_a_s) { //--------- // primal vars int var_0; df::float3 var_1; int var_2; int var_3; spatial_transform var_4; spatial_transform var_5; const int var_6 = 0; bool var_7; spatial_transform var_8; spatial_transform var_9; spatial_transform var_10; spatial_transform var_11; spatial_vector var_12; spatial_vector var_13; spatial_vector var_14; bool var_15; spatial_vector var_16; spatial_vector var_17; spatial_vector var_18; spatial_vector var_19; spatial_vector var_20; spatial_vector var_21; spatial_vector var_22; spatial_transform var_23; spatial_matrix var_24; df::float3 var_25; const int var_26 = 3; float var_27; df::float3 var_28; spatial_vector var_29; spatial_vector var_30; df::float3 var_31; quat var_32; spatial_transform var_33; spatial_vector var_34; spatial_matrix var_35; spatial_vector var_36; spatial_vector var_37; spatial_vector var_38; spatial_vector var_39; spatial_vector var_40; //--------- // forward var_0 = df::load(var_joint_type, var_i); var_1 = df::load(var_joint_axis, var_i); var_2 = df::load(var_joint_parent, var_i); var_3 = df::load(var_joint_qd_start, var_i); var_4 = df::load(var_body_X_sc, var_i); var_5 = df::spatial_transform_identity(); var_7 = (var_2 >= var_6); if (var_7) { var_8 = df::load(var_body_X_sc, var_2); } var_9 = df::select(var_7, var_5, var_8); var_10 = df::load(var_joint_X_pj, var_i); var_11 = df::spatial_transform_multiply(var_9, var_10); var_12 = jcalc_motion_cpu_func(var_0, var_1, var_11, var_joint_S_s, var_joint_qd, var_3); var_13 = df::spatial_vector(); var_14 = df::spatial_vector(); var_15 = (var_2 >= var_6); if (var_15) { var_16 = df::load(var_body_v_s, var_2); var_17 = df::load(var_body_a_s, var_2); } var_18 = df::select(var_15, var_13, var_16); var_19 = df::select(var_15, var_14, var_17); var_20 = df::add(var_18, var_12); var_21 = df::spatial_cross(var_20, var_12); var_22 = df::add(var_19, var_21); var_23 = df::load(var_body_X_sm, var_i); var_24 = df::load(var_body_I_m, var_i); var_25 = df::load(var_gravity, var_6); var_27 = df::index(var_24, var_26, var_26); var_28 = df::float3(); var_29 = df::spatial_vector(var_28, var_25); var_30 = df::mul(var_29, var_27); var_31 = df::spatial_transform_get_translation(var_23); var_32 = df::quat_identity(); var_33 = df::spatial_transform(var_31, var_32); var_34 = spatial_transform_wrench_cpu_func(var_33, var_30); var_35 = spatial_transform_inertia_cpu_func(var_23, var_24); var_36 = df::mul(var_35, var_22); var_37 = df::mul(var_35, var_20); var_38 = df::spatial_cross_dual(var_20, var_37); var_39 = df::add(var_36, var_38); df::store(var_body_v_s, var_i, var_20); df::store(var_body_a_s, var_i, var_22); var_40 = df::sub(var_39, var_34); df::store(var_body_f_s, var_i, var_40); df::store(var_body_I_s, var_i, var_35); return var_6; } void adj_compute_link_velocity_cpu_func( int var_i, int* var_joint_type, int* var_joint_parent, int* var_joint_qd_start, float* var_joint_qd, df::float3* var_joint_axis, spatial_matrix* var_body_I_m, spatial_transform* var_body_X_sc, spatial_transform* var_body_X_sm, spatial_transform* var_joint_X_pj, df::float3* var_gravity, spatial_vector* var_joint_S_s, spatial_matrix* var_body_I_s, spatial_vector* var_body_v_s, spatial_vector* var_body_f_s, spatial_vector* var_body_a_s, int & adj_i, int* adj_joint_type, int* adj_joint_parent, int* adj_joint_qd_start, float* adj_joint_qd, df::float3* adj_joint_axis, spatial_matrix* adj_body_I_m, spatial_transform* adj_body_X_sc, spatial_transform* adj_body_X_sm, spatial_transform* adj_joint_X_pj, df::float3* adj_gravity, spatial_vector* adj_joint_S_s, spatial_matrix* adj_body_I_s, spatial_vector* adj_body_v_s, spatial_vector* adj_body_f_s, spatial_vector* adj_body_a_s, int & adj_ret) { //--------- // primal vars int var_0; df::float3 var_1; int var_2; int var_3; spatial_transform var_4; spatial_transform var_5; const int var_6 = 0; bool var_7; spatial_transform var_8; spatial_transform var_9; spatial_transform var_10; spatial_transform var_11; spatial_vector var_12; spatial_vector var_13; spatial_vector var_14; bool var_15; spatial_vector var_16; spatial_vector var_17; spatial_vector var_18; spatial_vector var_19; spatial_vector var_20; spatial_vector var_21; spatial_vector var_22; spatial_transform var_23; spatial_matrix var_24; df::float3 var_25; const int var_26 = 3; float var_27; df::float3 var_28; spatial_vector var_29; spatial_vector var_30; df::float3 var_31; quat var_32; spatial_transform var_33; spatial_vector var_34; spatial_matrix var_35; spatial_vector var_36; spatial_vector var_37; spatial_vector var_38; spatial_vector var_39; spatial_vector var_40; //--------- // dual vars int adj_0 = 0; df::float3 adj_1 = 0; int adj_2 = 0; int adj_3 = 0; spatial_transform adj_4 = 0; spatial_transform adj_5 = 0; int adj_6 = 0; bool adj_7 = 0; spatial_transform adj_8 = 0; spatial_transform adj_9 = 0; spatial_transform adj_10 = 0; spatial_transform adj_11 = 0; spatial_vector adj_12 = 0; spatial_vector adj_13 = 0; spatial_vector adj_14 = 0; bool adj_15 = 0; spatial_vector adj_16 = 0; spatial_vector adj_17 = 0; spatial_vector adj_18 = 0; spatial_vector adj_19 = 0; spatial_vector adj_20 = 0; spatial_vector adj_21 = 0; spatial_vector adj_22 = 0; spatial_transform adj_23 = 0; spatial_matrix adj_24 = 0; df::float3 adj_25 = 0; int adj_26 = 0; float adj_27 = 0; df::float3 adj_28 = 0; spatial_vector adj_29 = 0; spatial_vector adj_30 = 0; df::float3 adj_31 = 0; quat adj_32 = 0; spatial_transform adj_33 = 0; spatial_vector adj_34 = 0; spatial_matrix adj_35 = 0; spatial_vector adj_36 = 0; spatial_vector adj_37 = 0; spatial_vector adj_38 = 0; spatial_vector adj_39 = 0; spatial_vector adj_40 = 0; //--------- // forward var_0 = df::load(var_joint_type, var_i); var_1 = df::load(var_joint_axis, var_i); var_2 = df::load(var_joint_parent, var_i); var_3 = df::load(var_joint_qd_start, var_i); var_4 = df::load(var_body_X_sc, var_i); var_5 = df::spatial_transform_identity(); var_7 = (var_2 >= var_6); if (var_7) { var_8 = df::load(var_body_X_sc, var_2); } var_9 = df::select(var_7, var_5, var_8); var_10 = df::load(var_joint_X_pj, var_i); var_11 = df::spatial_transform_multiply(var_9, var_10); var_12 = jcalc_motion_cpu_func(var_0, var_1, var_11, var_joint_S_s, var_joint_qd, var_3); var_13 = df::spatial_vector(); var_14 = df::spatial_vector(); var_15 = (var_2 >= var_6); if (var_15) { var_16 = df::load(var_body_v_s, var_2); var_17 = df::load(var_body_a_s, var_2); } var_18 = df::select(var_15, var_13, var_16); var_19 = df::select(var_15, var_14, var_17); var_20 = df::add(var_18, var_12); var_21 = df::spatial_cross(var_20, var_12); var_22 = df::add(var_19, var_21); var_23 = df::load(var_body_X_sm, var_i); var_24 = df::load(var_body_I_m, var_i); var_25 = df::load(var_gravity, var_6); var_27 = df::index(var_24, var_26, var_26); var_28 = df::float3(); var_29 = df::spatial_vector(var_28, var_25); var_30 = df::mul(var_29, var_27); var_31 = df::spatial_transform_get_translation(var_23); var_32 = df::quat_identity(); var_33 = df::spatial_transform(var_31, var_32); var_34 = spatial_transform_wrench_cpu_func(var_33, var_30); var_35 = spatial_transform_inertia_cpu_func(var_23, var_24); var_36 = df::mul(var_35, var_22); var_37 = df::mul(var_35, var_20); var_38 = df::spatial_cross_dual(var_20, var_37); var_39 = df::add(var_36, var_38); df::store(var_body_v_s, var_i, var_20); df::store(var_body_a_s, var_i, var_22); var_40 = df::sub(var_39, var_34); df::store(var_body_f_s, var_i, var_40); df::store(var_body_I_s, var_i, var_35); goto label0; //--------- // reverse label0:; adj_6 += adj_ret; df::adj_store(var_body_I_s, var_i, var_35, adj_body_I_s, adj_i, adj_35); df::adj_store(var_body_f_s, var_i, var_40, adj_body_f_s, adj_i, adj_40); df::adj_sub(var_39, var_34, adj_39, adj_34, adj_40); df::adj_store(var_body_a_s, var_i, var_22, adj_body_a_s, adj_i, adj_22); df::adj_store(var_body_v_s, var_i, var_20, adj_body_v_s, adj_i, adj_20); df::adj_add(var_36, var_38, adj_36, adj_38, adj_39); df::adj_spatial_cross_dual(var_20, var_37, adj_20, adj_37, adj_38); df::adj_mul(var_35, var_20, adj_35, adj_20, adj_37); df::adj_mul(var_35, var_22, adj_35, adj_22, adj_36); adj_spatial_transform_inertia_cpu_func(var_23, var_24, adj_23, adj_24, adj_35); adj_spatial_transform_wrench_cpu_func(var_33, var_30, adj_33, adj_30, adj_34); df::adj_spatial_transform(var_31, var_32, adj_31, adj_32, adj_33); df::adj_spatial_transform_get_translation(var_23, adj_23, adj_31); df::adj_mul(var_29, var_27, adj_29, adj_27, adj_30); df::adj_spatial_vector(var_28, var_25, adj_28, adj_25, adj_29); df::adj_index(var_24, var_26, var_26, adj_24, adj_26, adj_26, adj_27); df::adj_load(var_gravity, var_6, adj_gravity, adj_6, adj_25); df::adj_load(var_body_I_m, var_i, adj_body_I_m, adj_i, adj_24); df::adj_load(var_body_X_sm, var_i, adj_body_X_sm, adj_i, adj_23); df::adj_add(var_19, var_21, adj_19, adj_21, adj_22); df::adj_spatial_cross(var_20, var_12, adj_20, adj_12, adj_21); df::adj_add(var_18, var_12, adj_18, adj_12, adj_20); df::adj_select(var_15, var_14, var_17, adj_15, adj_14, adj_17, adj_19); df::adj_select(var_15, var_13, var_16, adj_15, adj_13, adj_16, adj_18); if (var_15) { df::adj_load(var_body_a_s, var_2, adj_body_a_s, adj_2, adj_17); df::adj_load(var_body_v_s, var_2, adj_body_v_s, adj_2, adj_16); } adj_jcalc_motion_cpu_func(var_0, var_1, var_11, var_joint_S_s, var_joint_qd, var_3, adj_0, adj_1, adj_11, adj_joint_S_s, adj_joint_qd, adj_3, adj_12); df::adj_spatial_transform_multiply(var_9, var_10, adj_9, adj_10, adj_11); df::adj_load(var_joint_X_pj, var_i, adj_joint_X_pj, adj_i, adj_10); df::adj_select(var_7, var_5, var_8, adj_7, adj_5, adj_8, adj_9); if (var_7) { df::adj_load(var_body_X_sc, var_2, adj_body_X_sc, adj_2, adj_8); } df::adj_load(var_body_X_sc, var_i, adj_body_X_sc, adj_i, adj_4); df::adj_load(var_joint_qd_start, var_i, adj_joint_qd_start, adj_i, adj_3); df::adj_load(var_joint_parent, var_i, adj_joint_parent, adj_i, adj_2); df::adj_load(var_joint_axis, var_i, adj_joint_axis, adj_i, adj_1); df::adj_load(var_joint_type, var_i, adj_joint_type, adj_i, adj_0); return; } int compute_link_tau_cpu_func( int var_offset, int var_joint_end, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, float* var_joint_qd, float* var_joint_act, float* var_joint_target, float* var_joint_target_ke, float* var_joint_target_kd, float* var_joint_limit_lower, float* var_joint_limit_upper, float* var_joint_limit_ke, float* var_joint_limit_kd, spatial_vector* var_joint_S_s, spatial_vector* var_body_fb_s, spatial_vector* var_body_ft_s, float* var_tau) { //--------- // primal vars int var_0; const int var_1 = 1; int var_2; int var_3; int var_4; int var_5; int var_6; float var_7; float var_8; float var_9; float var_10; spatial_vector var_11; spatial_vector var_12; spatial_vector var_13; int var_14; const int var_15 = 0; bool var_16; //--------- // forward var_0 = df::sub(var_joint_end, var_offset); var_2 = df::sub(var_0, var_1); var_3 = df::load(var_joint_type, var_2); var_4 = df::load(var_joint_parent, var_2); var_5 = df::load(var_joint_qd_start, var_2); var_6 = df::load(var_joint_q_start, var_2); var_7 = df::load(var_joint_target_ke, var_2); var_8 = df::load(var_joint_target_kd, var_2); var_9 = df::load(var_joint_limit_ke, var_2); var_10 = df::load(var_joint_limit_kd, var_2); var_11 = df::load(var_body_fb_s, var_2); var_12 = df::load(var_body_ft_s, var_2); var_13 = df::add(var_11, var_12); var_14 = jcalc_tau_cpu_func(var_3, var_7, var_8, var_9, var_10, var_joint_S_s, var_joint_q, var_joint_qd, var_joint_act, var_joint_target, var_joint_limit_lower, var_joint_limit_upper, var_6, var_5, var_13, var_tau); var_16 = (var_4 >= var_15); if (var_16) { df::atomic_add(var_body_ft_s, var_4, var_13); } return var_15; } void adj_compute_link_tau_cpu_func( int var_offset, int var_joint_end, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, float* var_joint_qd, float* var_joint_act, float* var_joint_target, float* var_joint_target_ke, float* var_joint_target_kd, float* var_joint_limit_lower, float* var_joint_limit_upper, float* var_joint_limit_ke, float* var_joint_limit_kd, spatial_vector* var_joint_S_s, spatial_vector* var_body_fb_s, spatial_vector* var_body_ft_s, float* var_tau, int & adj_offset, int & adj_joint_end, int* adj_joint_type, int* adj_joint_parent, int* adj_joint_q_start, int* adj_joint_qd_start, float* adj_joint_q, float* adj_joint_qd, float* adj_joint_act, float* adj_joint_target, float* adj_joint_target_ke, float* adj_joint_target_kd, float* adj_joint_limit_lower, float* adj_joint_limit_upper, float* adj_joint_limit_ke, float* adj_joint_limit_kd, spatial_vector* adj_joint_S_s, spatial_vector* adj_body_fb_s, spatial_vector* adj_body_ft_s, float* adj_tau, int & adj_ret) { //--------- // primal vars int var_0; const int var_1 = 1; int var_2; int var_3; int var_4; int var_5; int var_6; float var_7; float var_8; float var_9; float var_10; spatial_vector var_11; spatial_vector var_12; spatial_vector var_13; int var_14; const int var_15 = 0; bool var_16; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; float adj_7 = 0; float adj_8 = 0; float adj_9 = 0; float adj_10 = 0; spatial_vector adj_11 = 0; spatial_vector adj_12 = 0; spatial_vector adj_13 = 0; int adj_14 = 0; int adj_15 = 0; bool adj_16 = 0; //--------- // forward var_0 = df::sub(var_joint_end, var_offset); var_2 = df::sub(var_0, var_1); var_3 = df::load(var_joint_type, var_2); var_4 = df::load(var_joint_parent, var_2); var_5 = df::load(var_joint_qd_start, var_2); var_6 = df::load(var_joint_q_start, var_2); var_7 = df::load(var_joint_target_ke, var_2); var_8 = df::load(var_joint_target_kd, var_2); var_9 = df::load(var_joint_limit_ke, var_2); var_10 = df::load(var_joint_limit_kd, var_2); var_11 = df::load(var_body_fb_s, var_2); var_12 = df::load(var_body_ft_s, var_2); var_13 = df::add(var_11, var_12); var_14 = jcalc_tau_cpu_func(var_3, var_7, var_8, var_9, var_10, var_joint_S_s, var_joint_q, var_joint_qd, var_joint_act, var_joint_target, var_joint_limit_lower, var_joint_limit_upper, var_6, var_5, var_13, var_tau); var_16 = (var_4 >= var_15); if (var_16) { df::atomic_add(var_body_ft_s, var_4, var_13); } goto label0; //--------- // reverse label0:; adj_15 += adj_ret; if (var_16) { df::adj_atomic_add(var_body_ft_s, var_4, var_13, adj_body_ft_s, adj_4, adj_13); } adj_jcalc_tau_cpu_func(var_3, var_7, var_8, var_9, var_10, var_joint_S_s, var_joint_q, var_joint_qd, var_joint_act, var_joint_target, var_joint_limit_lower, var_joint_limit_upper, var_6, var_5, var_13, var_tau, adj_3, adj_7, adj_8, adj_9, adj_10, adj_joint_S_s, adj_joint_q, adj_joint_qd, adj_joint_act, adj_joint_target, adj_joint_limit_lower, adj_joint_limit_upper, adj_6, adj_5, adj_13, adj_tau, adj_14); df::adj_add(var_11, var_12, adj_11, adj_12, adj_13); df::adj_load(var_body_ft_s, var_2, adj_body_ft_s, adj_2, adj_12); df::adj_load(var_body_fb_s, var_2, adj_body_fb_s, adj_2, adj_11); df::adj_load(var_joint_limit_kd, var_2, adj_joint_limit_kd, adj_2, adj_10); df::adj_load(var_joint_limit_ke, var_2, adj_joint_limit_ke, adj_2, adj_9); df::adj_load(var_joint_target_kd, var_2, adj_joint_target_kd, adj_2, adj_8); df::adj_load(var_joint_target_ke, var_2, adj_joint_target_ke, adj_2, adj_7); df::adj_load(var_joint_q_start, var_2, adj_joint_q_start, adj_2, adj_6); df::adj_load(var_joint_qd_start, var_2, adj_joint_qd_start, adj_2, adj_5); df::adj_load(var_joint_parent, var_2, adj_joint_parent, adj_2, adj_4); df::adj_load(var_joint_type, var_2, adj_joint_type, adj_2, adj_3); df::adj_sub(var_0, var_1, adj_0, adj_1, adj_2); df::adj_sub(var_joint_end, var_offset, adj_joint_end, adj_offset, adj_0); return; } void integrate_particles_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, df::float3* var_f, float* var_w, df::float3* var_gravity, float var_dt, df::float3* var_x_new, df::float3* var_v_new) { //--------- // primal vars int var_0; df::float3 var_1; df::float3 var_2; df::float3 var_3; float var_4; const int var_5 = 0; df::float3 var_6; df::float3 var_7; const float var_8 = 0.0; float var_9; float var_10; df::float3 var_11; df::float3 var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_x, var_0); var_2 = df::load(var_v, var_0); var_3 = df::load(var_f, var_0); var_4 = df::load(var_w, var_0); var_6 = df::load(var_gravity, var_5); var_7 = df::mul(var_3, var_4); var_9 = df::sub(var_8, var_4); var_10 = df::step(var_9); var_11 = df::mul(var_6, var_10); var_12 = df::add(var_7, var_11); var_13 = df::mul(var_12, var_dt); var_14 = df::add(var_2, var_13); var_15 = df::mul(var_14, var_dt); var_16 = df::add(var_1, var_15); df::store(var_x_new, var_0, var_16); df::store(var_v_new, var_0, var_14); } void integrate_particles_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, df::float3* var_f, float* var_w, df::float3* var_gravity, float var_dt, df::float3* var_x_new, df::float3* var_v_new, df::float3* adj_x, df::float3* adj_v, df::float3* adj_f, float* adj_w, df::float3* adj_gravity, float adj_dt, df::float3* adj_x_new, df::float3* adj_v_new) { //--------- // primal vars int var_0; df::float3 var_1; df::float3 var_2; df::float3 var_3; float var_4; const int var_5 = 0; df::float3 var_6; df::float3 var_7; const float var_8 = 0.0; float var_9; float var_10; df::float3 var_11; df::float3 var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; //--------- // dual vars int adj_0 = 0; df::float3 adj_1 = 0; df::float3 adj_2 = 0; df::float3 adj_3 = 0; float adj_4 = 0; int adj_5 = 0; df::float3 adj_6 = 0; df::float3 adj_7 = 0; float adj_8 = 0; float adj_9 = 0; float adj_10 = 0; df::float3 adj_11 = 0; df::float3 adj_12 = 0; df::float3 adj_13 = 0; df::float3 adj_14 = 0; df::float3 adj_15 = 0; df::float3 adj_16 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_x, var_0); var_2 = df::load(var_v, var_0); var_3 = df::load(var_f, var_0); var_4 = df::load(var_w, var_0); var_6 = df::load(var_gravity, var_5); var_7 = df::mul(var_3, var_4); var_9 = df::sub(var_8, var_4); var_10 = df::step(var_9); var_11 = df::mul(var_6, var_10); var_12 = df::add(var_7, var_11); var_13 = df::mul(var_12, var_dt); var_14 = df::add(var_2, var_13); var_15 = df::mul(var_14, var_dt); var_16 = df::add(var_1, var_15); df::store(var_x_new, var_0, var_16); df::store(var_v_new, var_0, var_14); //--------- // reverse df::adj_store(var_v_new, var_0, var_14, adj_v_new, adj_0, adj_14); df::adj_store(var_x_new, var_0, var_16, adj_x_new, adj_0, adj_16); df::adj_add(var_1, var_15, adj_1, adj_15, adj_16); df::adj_mul(var_14, var_dt, adj_14, adj_dt, adj_15); df::adj_add(var_2, var_13, adj_2, adj_13, adj_14); df::adj_mul(var_12, var_dt, adj_12, adj_dt, adj_13); df::adj_add(var_7, var_11, adj_7, adj_11, adj_12); df::adj_mul(var_6, var_10, adj_6, adj_10, adj_11); df::adj_step(var_9, adj_9, adj_10); df::adj_sub(var_8, var_4, adj_8, adj_4, adj_9); df::adj_mul(var_3, var_4, adj_3, adj_4, adj_7); df::adj_load(var_gravity, var_5, adj_gravity, adj_5, adj_6); df::adj_load(var_w, var_0, adj_w, adj_0, adj_4); df::adj_load(var_f, var_0, adj_f, adj_0, adj_3); df::adj_load(var_v, var_0, adj_v, adj_0, adj_2); df::adj_load(var_x, var_0, adj_x, adj_0, adj_1); return; } // Python entry points void integrate_particles_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_f, torch::Tensor var_w, torch::Tensor var_gravity, float var_dt, torch::Tensor var_x_new, torch::Tensor var_v_new) { for (int i=0; i < dim; ++i) { s_threadIdx = i; integrate_particles_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<df::float3*>(var_f), cast<float*>(var_w), cast<df::float3*>(var_gravity), var_dt, cast<df::float3*>(var_x_new), cast<df::float3*>(var_v_new)); } } void integrate_particles_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_f, torch::Tensor var_w, torch::Tensor var_gravity, float var_dt, torch::Tensor var_x_new, torch::Tensor var_v_new, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_f, torch::Tensor adj_w, torch::Tensor adj_gravity, float adj_dt, torch::Tensor adj_x_new, torch::Tensor adj_v_new) { for (int i=0; i < dim; ++i) { s_threadIdx = i; integrate_particles_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<df::float3*>(var_f), cast<float*>(var_w), cast<df::float3*>(var_gravity), var_dt, cast<df::float3*>(var_x_new), cast<df::float3*>(var_v_new), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<df::float3*>(adj_f), cast<float*>(adj_w), cast<df::float3*>(adj_gravity), adj_dt, cast<df::float3*>(adj_x_new), cast<df::float3*>(adj_v_new)); } } // Python entry points void integrate_particles_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_f, torch::Tensor var_w, torch::Tensor var_gravity, float var_dt, torch::Tensor var_x_new, torch::Tensor var_v_new); void integrate_particles_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_f, torch::Tensor var_w, torch::Tensor var_gravity, float var_dt, torch::Tensor var_x_new, torch::Tensor var_v_new, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_f, torch::Tensor adj_w, torch::Tensor adj_gravity, float adj_dt, torch::Tensor adj_x_new, torch::Tensor adj_v_new); void integrate_rigids_cpu_kernel_forward( df::float3* var_rigid_x, quat* var_rigid_r, df::float3* var_rigid_v, df::float3* var_rigid_w, df::float3* var_rigid_f, df::float3* var_rigid_t, float* var_inv_m, mat33* var_inv_I, df::float3* var_gravity, float var_dt, df::float3* var_rigid_x_new, quat* var_rigid_r_new, df::float3* var_rigid_v_new, df::float3* var_rigid_w_new) { //--------- // primal vars int var_0; df::float3 var_1; quat var_2; df::float3 var_3; df::float3 var_4; df::float3 var_5; df::float3 var_6; float var_7; mat33 var_8; const int var_9 = 0; df::float3 var_10; df::float3 var_11; float var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; df::float3 var_17; df::float3 var_18; df::float3 var_19; df::float3 var_20; df::float3 var_21; df::float3 var_22; df::float3 var_23; df::float3 var_24; const float var_25 = 0.0; quat var_26; quat var_27; const float var_28 = 0.5; quat var_29; quat var_30; quat var_31; quat var_32; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_rigid_x, var_0); var_2 = df::load(var_rigid_r, var_0); var_3 = df::load(var_rigid_v, var_0); var_4 = df::load(var_rigid_w, var_0); var_5 = df::load(var_rigid_f, var_0); var_6 = df::load(var_rigid_t, var_0); var_7 = df::load(var_inv_m, var_0); var_8 = df::load(var_inv_I, var_0); var_10 = df::load(var_gravity, var_9); var_11 = df::mul(var_5, var_7); var_12 = df::nonzero(var_7); var_13 = df::mul(var_10, var_12); var_14 = df::add(var_11, var_13); var_15 = df::mul(var_14, var_dt); var_16 = df::add(var_3, var_15); var_17 = df::mul(var_16, var_dt); var_18 = df::add(var_1, var_17); var_19 = df::rotate_inv(var_2, var_4); var_20 = df::rotate_inv(var_2, var_6); var_21 = df::mul(var_8, var_20); var_22 = df::mul(var_21, var_dt); var_23 = df::add(var_19, var_22); var_24 = df::rotate(var_2, var_23); var_26 = df::quat(var_24, var_25); var_27 = df::mul(var_26, var_2); var_29 = df::mul(var_27, var_28); var_30 = df::mul(var_29, var_dt); var_31 = df::add(var_2, var_30); var_32 = df::normalize(var_31); df::store(var_rigid_x_new, var_0, var_18); df::store(var_rigid_r_new, var_0, var_32); df::store(var_rigid_v_new, var_0, var_16); df::store(var_rigid_w_new, var_0, var_24); } void integrate_rigids_cpu_kernel_backward( df::float3* var_rigid_x, quat* var_rigid_r, df::float3* var_rigid_v, df::float3* var_rigid_w, df::float3* var_rigid_f, df::float3* var_rigid_t, float* var_inv_m, mat33* var_inv_I, df::float3* var_gravity, float var_dt, df::float3* var_rigid_x_new, quat* var_rigid_r_new, df::float3* var_rigid_v_new, df::float3* var_rigid_w_new, df::float3* adj_rigid_x, quat* adj_rigid_r, df::float3* adj_rigid_v, df::float3* adj_rigid_w, df::float3* adj_rigid_f, df::float3* adj_rigid_t, float* adj_inv_m, mat33* adj_inv_I, df::float3* adj_gravity, float adj_dt, df::float3* adj_rigid_x_new, quat* adj_rigid_r_new, df::float3* adj_rigid_v_new, df::float3* adj_rigid_w_new) { //--------- // primal vars int var_0; df::float3 var_1; quat var_2; df::float3 var_3; df::float3 var_4; df::float3 var_5; df::float3 var_6; float var_7; mat33 var_8; const int var_9 = 0; df::float3 var_10; df::float3 var_11; float var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; df::float3 var_17; df::float3 var_18; df::float3 var_19; df::float3 var_20; df::float3 var_21; df::float3 var_22; df::float3 var_23; df::float3 var_24; const float var_25 = 0.0; quat var_26; quat var_27; const float var_28 = 0.5; quat var_29; quat var_30; quat var_31; quat var_32; //--------- // dual vars int adj_0 = 0; df::float3 adj_1 = 0; quat adj_2 = 0; df::float3 adj_3 = 0; df::float3 adj_4 = 0; df::float3 adj_5 = 0; df::float3 adj_6 = 0; float adj_7 = 0; mat33 adj_8 = 0; int adj_9 = 0; df::float3 adj_10 = 0; df::float3 adj_11 = 0; float adj_12 = 0; df::float3 adj_13 = 0; df::float3 adj_14 = 0; df::float3 adj_15 = 0; df::float3 adj_16 = 0; df::float3 adj_17 = 0; df::float3 adj_18 = 0; df::float3 adj_19 = 0; df::float3 adj_20 = 0; df::float3 adj_21 = 0; df::float3 adj_22 = 0; df::float3 adj_23 = 0; df::float3 adj_24 = 0; float adj_25 = 0; quat adj_26 = 0; quat adj_27 = 0; float adj_28 = 0; quat adj_29 = 0; quat adj_30 = 0; quat adj_31 = 0; quat adj_32 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_rigid_x, var_0); var_2 = df::load(var_rigid_r, var_0); var_3 = df::load(var_rigid_v, var_0); var_4 = df::load(var_rigid_w, var_0); var_5 = df::load(var_rigid_f, var_0); var_6 = df::load(var_rigid_t, var_0); var_7 = df::load(var_inv_m, var_0); var_8 = df::load(var_inv_I, var_0); var_10 = df::load(var_gravity, var_9); var_11 = df::mul(var_5, var_7); var_12 = df::nonzero(var_7); var_13 = df::mul(var_10, var_12); var_14 = df::add(var_11, var_13); var_15 = df::mul(var_14, var_dt); var_16 = df::add(var_3, var_15); var_17 = df::mul(var_16, var_dt); var_18 = df::add(var_1, var_17); var_19 = df::rotate_inv(var_2, var_4); var_20 = df::rotate_inv(var_2, var_6); var_21 = df::mul(var_8, var_20); var_22 = df::mul(var_21, var_dt); var_23 = df::add(var_19, var_22); var_24 = df::rotate(var_2, var_23); var_26 = df::quat(var_24, var_25); var_27 = df::mul(var_26, var_2); var_29 = df::mul(var_27, var_28); var_30 = df::mul(var_29, var_dt); var_31 = df::add(var_2, var_30); var_32 = df::normalize(var_31); df::store(var_rigid_x_new, var_0, var_18); df::store(var_rigid_r_new, var_0, var_32); df::store(var_rigid_v_new, var_0, var_16); df::store(var_rigid_w_new, var_0, var_24); //--------- // reverse df::adj_store(var_rigid_w_new, var_0, var_24, adj_rigid_w_new, adj_0, adj_24); df::adj_store(var_rigid_v_new, var_0, var_16, adj_rigid_v_new, adj_0, adj_16); df::adj_store(var_rigid_r_new, var_0, var_32, adj_rigid_r_new, adj_0, adj_32); df::adj_store(var_rigid_x_new, var_0, var_18, adj_rigid_x_new, adj_0, adj_18); df::adj_normalize(var_31, adj_31, adj_32); df::adj_add(var_2, var_30, adj_2, adj_30, adj_31); df::adj_mul(var_29, var_dt, adj_29, adj_dt, adj_30); df::adj_mul(var_27, var_28, adj_27, adj_28, adj_29); df::adj_mul(var_26, var_2, adj_26, adj_2, adj_27); df::adj_quat(var_24, var_25, adj_24, adj_25, adj_26); df::adj_rotate(var_2, var_23, adj_2, adj_23, adj_24); df::adj_add(var_19, var_22, adj_19, adj_22, adj_23); df::adj_mul(var_21, var_dt, adj_21, adj_dt, adj_22); df::adj_mul(var_8, var_20, adj_8, adj_20, adj_21); df::adj_rotate_inv(var_2, var_6, adj_2, adj_6, adj_20); df::adj_rotate_inv(var_2, var_4, adj_2, adj_4, adj_19); df::adj_add(var_1, var_17, adj_1, adj_17, adj_18); df::adj_mul(var_16, var_dt, adj_16, adj_dt, adj_17); df::adj_add(var_3, var_15, adj_3, adj_15, adj_16); df::adj_mul(var_14, var_dt, adj_14, adj_dt, adj_15); df::adj_add(var_11, var_13, adj_11, adj_13, adj_14); df::adj_mul(var_10, var_12, adj_10, adj_12, adj_13); df::adj_nonzero(var_7, adj_7, adj_12); df::adj_mul(var_5, var_7, adj_5, adj_7, adj_11); df::adj_load(var_gravity, var_9, adj_gravity, adj_9, adj_10); df::adj_load(var_inv_I, var_0, adj_inv_I, adj_0, adj_8); df::adj_load(var_inv_m, var_0, adj_inv_m, adj_0, adj_7); df::adj_load(var_rigid_t, var_0, adj_rigid_t, adj_0, adj_6); df::adj_load(var_rigid_f, var_0, adj_rigid_f, adj_0, adj_5); df::adj_load(var_rigid_w, var_0, adj_rigid_w, adj_0, adj_4); df::adj_load(var_rigid_v, var_0, adj_rigid_v, adj_0, adj_3); df::adj_load(var_rigid_r, var_0, adj_rigid_r, adj_0, adj_2); df::adj_load(var_rigid_x, var_0, adj_rigid_x, adj_0, adj_1); return; } // Python entry points void integrate_rigids_cpu_forward(int dim, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_rigid_f, torch::Tensor var_rigid_t, torch::Tensor var_inv_m, torch::Tensor var_inv_I, torch::Tensor var_gravity, float var_dt, torch::Tensor var_rigid_x_new, torch::Tensor var_rigid_r_new, torch::Tensor var_rigid_v_new, torch::Tensor var_rigid_w_new) { for (int i=0; i < dim; ++i) { s_threadIdx = i; integrate_rigids_cpu_kernel_forward( cast<df::float3*>(var_rigid_x), cast<quat*>(var_rigid_r), cast<df::float3*>(var_rigid_v), cast<df::float3*>(var_rigid_w), cast<df::float3*>(var_rigid_f), cast<df::float3*>(var_rigid_t), cast<float*>(var_inv_m), cast<mat33*>(var_inv_I), cast<df::float3*>(var_gravity), var_dt, cast<df::float3*>(var_rigid_x_new), cast<quat*>(var_rigid_r_new), cast<df::float3*>(var_rigid_v_new), cast<df::float3*>(var_rigid_w_new)); } } void integrate_rigids_cpu_backward(int dim, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_rigid_f, torch::Tensor var_rigid_t, torch::Tensor var_inv_m, torch::Tensor var_inv_I, torch::Tensor var_gravity, float var_dt, torch::Tensor var_rigid_x_new, torch::Tensor var_rigid_r_new, torch::Tensor var_rigid_v_new, torch::Tensor var_rigid_w_new, torch::Tensor adj_rigid_x, torch::Tensor adj_rigid_r, torch::Tensor adj_rigid_v, torch::Tensor adj_rigid_w, torch::Tensor adj_rigid_f, torch::Tensor adj_rigid_t, torch::Tensor adj_inv_m, torch::Tensor adj_inv_I, torch::Tensor adj_gravity, float adj_dt, torch::Tensor adj_rigid_x_new, torch::Tensor adj_rigid_r_new, torch::Tensor adj_rigid_v_new, torch::Tensor adj_rigid_w_new) { for (int i=0; i < dim; ++i) { s_threadIdx = i; integrate_rigids_cpu_kernel_backward( cast<df::float3*>(var_rigid_x), cast<quat*>(var_rigid_r), cast<df::float3*>(var_rigid_v), cast<df::float3*>(var_rigid_w), cast<df::float3*>(var_rigid_f), cast<df::float3*>(var_rigid_t), cast<float*>(var_inv_m), cast<mat33*>(var_inv_I), cast<df::float3*>(var_gravity), var_dt, cast<df::float3*>(var_rigid_x_new), cast<quat*>(var_rigid_r_new), cast<df::float3*>(var_rigid_v_new), cast<df::float3*>(var_rigid_w_new), cast<df::float3*>(adj_rigid_x), cast<quat*>(adj_rigid_r), cast<df::float3*>(adj_rigid_v), cast<df::float3*>(adj_rigid_w), cast<df::float3*>(adj_rigid_f), cast<df::float3*>(adj_rigid_t), cast<float*>(adj_inv_m), cast<mat33*>(adj_inv_I), cast<df::float3*>(adj_gravity), adj_dt, cast<df::float3*>(adj_rigid_x_new), cast<quat*>(adj_rigid_r_new), cast<df::float3*>(adj_rigid_v_new), cast<df::float3*>(adj_rigid_w_new)); } } // Python entry points void integrate_rigids_cpu_forward(int dim, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_rigid_f, torch::Tensor var_rigid_t, torch::Tensor var_inv_m, torch::Tensor var_inv_I, torch::Tensor var_gravity, float var_dt, torch::Tensor var_rigid_x_new, torch::Tensor var_rigid_r_new, torch::Tensor var_rigid_v_new, torch::Tensor var_rigid_w_new); void integrate_rigids_cpu_backward(int dim, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_rigid_f, torch::Tensor var_rigid_t, torch::Tensor var_inv_m, torch::Tensor var_inv_I, torch::Tensor var_gravity, float var_dt, torch::Tensor var_rigid_x_new, torch::Tensor var_rigid_r_new, torch::Tensor var_rigid_v_new, torch::Tensor var_rigid_w_new, torch::Tensor adj_rigid_x, torch::Tensor adj_rigid_r, torch::Tensor adj_rigid_v, torch::Tensor adj_rigid_w, torch::Tensor adj_rigid_f, torch::Tensor adj_rigid_t, torch::Tensor adj_inv_m, torch::Tensor adj_inv_I, torch::Tensor adj_gravity, float adj_dt, torch::Tensor adj_rigid_x_new, torch::Tensor adj_rigid_r_new, torch::Tensor adj_rigid_v_new, torch::Tensor adj_rigid_w_new); void eval_springs_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, int* var_spring_indices, float* var_spring_rest_lengths, float* var_spring_stiffness, float* var_spring_damping, df::float3* var_f) { //--------- // primal vars int var_0; const int var_1 = 2; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; float var_10; float var_11; float var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; df::float3 var_17; df::float3 var_18; float var_19; const float var_20 = 1.0; float var_21; df::float3 var_22; float var_23; float var_24; float var_25; float var_26; float var_27; df::float3 var_28; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_spring_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_spring_indices, var_8); var_10 = df::load(var_spring_stiffness, var_0); var_11 = df::load(var_spring_damping, var_0); var_12 = df::load(var_spring_rest_lengths, var_0); var_13 = df::load(var_x, var_5); var_14 = df::load(var_x, var_9); var_15 = df::load(var_v, var_5); var_16 = df::load(var_v, var_9); var_17 = df::sub(var_13, var_14); var_18 = df::sub(var_15, var_16); var_19 = df::length(var_17); var_21 = df::div(var_20, var_19); var_22 = df::mul(var_17, var_21); var_23 = df::sub(var_19, var_12); var_24 = df::dot(var_22, var_18); var_25 = df::mul(var_10, var_23); var_26 = df::mul(var_11, var_24); var_27 = df::add(var_25, var_26); var_28 = df::mul(var_22, var_27); df::atomic_sub(var_f, var_5, var_28); df::atomic_add(var_f, var_9, var_28); } void eval_springs_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, int* var_spring_indices, float* var_spring_rest_lengths, float* var_spring_stiffness, float* var_spring_damping, df::float3* var_f, df::float3* adj_x, df::float3* adj_v, int* adj_spring_indices, float* adj_spring_rest_lengths, float* adj_spring_stiffness, float* adj_spring_damping, df::float3* adj_f) { //--------- // primal vars int var_0; const int var_1 = 2; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; float var_10; float var_11; float var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; df::float3 var_17; df::float3 var_18; float var_19; const float var_20 = 1.0; float var_21; df::float3 var_22; float var_23; float var_24; float var_25; float var_26; float var_27; df::float3 var_28; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; int adj_9 = 0; float adj_10 = 0; float adj_11 = 0; float adj_12 = 0; df::float3 adj_13 = 0; df::float3 adj_14 = 0; df::float3 adj_15 = 0; df::float3 adj_16 = 0; df::float3 adj_17 = 0; df::float3 adj_18 = 0; float adj_19 = 0; float adj_20 = 0; float adj_21 = 0; df::float3 adj_22 = 0; float adj_23 = 0; float adj_24 = 0; float adj_25 = 0; float adj_26 = 0; float adj_27 = 0; df::float3 adj_28 = 0; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_spring_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_spring_indices, var_8); var_10 = df::load(var_spring_stiffness, var_0); var_11 = df::load(var_spring_damping, var_0); var_12 = df::load(var_spring_rest_lengths, var_0); var_13 = df::load(var_x, var_5); var_14 = df::load(var_x, var_9); var_15 = df::load(var_v, var_5); var_16 = df::load(var_v, var_9); var_17 = df::sub(var_13, var_14); var_18 = df::sub(var_15, var_16); var_19 = df::length(var_17); var_21 = df::div(var_20, var_19); var_22 = df::mul(var_17, var_21); var_23 = df::sub(var_19, var_12); var_24 = df::dot(var_22, var_18); var_25 = df::mul(var_10, var_23); var_26 = df::mul(var_11, var_24); var_27 = df::add(var_25, var_26); var_28 = df::mul(var_22, var_27); df::atomic_sub(var_f, var_5, var_28); df::atomic_add(var_f, var_9, var_28); //--------- // reverse df::adj_atomic_add(var_f, var_9, var_28, adj_f, adj_9, adj_28); df::adj_atomic_sub(var_f, var_5, var_28, adj_f, adj_5, adj_28); df::adj_mul(var_22, var_27, adj_22, adj_27, adj_28); df::adj_add(var_25, var_26, adj_25, adj_26, adj_27); df::adj_mul(var_11, var_24, adj_11, adj_24, adj_26); df::adj_mul(var_10, var_23, adj_10, adj_23, adj_25); df::adj_dot(var_22, var_18, adj_22, adj_18, adj_24); df::adj_sub(var_19, var_12, adj_19, adj_12, adj_23); df::adj_mul(var_17, var_21, adj_17, adj_21, adj_22); df::adj_div(var_20, var_19, adj_20, adj_19, adj_21); df::adj_length(var_17, adj_17, adj_19); df::adj_sub(var_15, var_16, adj_15, adj_16, adj_18); df::adj_sub(var_13, var_14, adj_13, adj_14, adj_17); df::adj_load(var_v, var_9, adj_v, adj_9, adj_16); df::adj_load(var_v, var_5, adj_v, adj_5, adj_15); df::adj_load(var_x, var_9, adj_x, adj_9, adj_14); df::adj_load(var_x, var_5, adj_x, adj_5, adj_13); df::adj_load(var_spring_rest_lengths, var_0, adj_spring_rest_lengths, adj_0, adj_12); df::adj_load(var_spring_damping, var_0, adj_spring_damping, adj_0, adj_11); df::adj_load(var_spring_stiffness, var_0, adj_spring_stiffness, adj_0, adj_10); df::adj_load(var_spring_indices, var_8, adj_spring_indices, adj_8, adj_9); df::adj_add(var_6, var_7, adj_6, adj_7, adj_8); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_6); df::adj_load(var_spring_indices, var_4, adj_spring_indices, adj_4, adj_5); df::adj_add(var_2, var_3, adj_2, adj_3, adj_4); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_2); return; } // Python entry points void eval_springs_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_spring_indices, torch::Tensor var_spring_rest_lengths, torch::Tensor var_spring_stiffness, torch::Tensor var_spring_damping, torch::Tensor var_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_springs_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_spring_indices), cast<float*>(var_spring_rest_lengths), cast<float*>(var_spring_stiffness), cast<float*>(var_spring_damping), cast<df::float3*>(var_f)); } } void eval_springs_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_spring_indices, torch::Tensor var_spring_rest_lengths, torch::Tensor var_spring_stiffness, torch::Tensor var_spring_damping, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_spring_indices, torch::Tensor adj_spring_rest_lengths, torch::Tensor adj_spring_stiffness, torch::Tensor adj_spring_damping, torch::Tensor adj_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_springs_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_spring_indices), cast<float*>(var_spring_rest_lengths), cast<float*>(var_spring_stiffness), cast<float*>(var_spring_damping), cast<df::float3*>(var_f), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<int*>(adj_spring_indices), cast<float*>(adj_spring_rest_lengths), cast<float*>(adj_spring_stiffness), cast<float*>(adj_spring_damping), cast<df::float3*>(adj_f)); } } // Python entry points void eval_springs_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_spring_indices, torch::Tensor var_spring_rest_lengths, torch::Tensor var_spring_stiffness, torch::Tensor var_spring_damping, torch::Tensor var_f); void eval_springs_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_spring_indices, torch::Tensor var_spring_rest_lengths, torch::Tensor var_spring_stiffness, torch::Tensor var_spring_damping, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_spring_indices, torch::Tensor adj_spring_rest_lengths, torch::Tensor adj_spring_stiffness, torch::Tensor adj_spring_damping, torch::Tensor adj_f); void eval_triangles_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, int* var_indices, mat22* var_pose, float* var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, df::float3* var_f) { //--------- // primal vars int var_0; const int var_1 = 3; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; int var_10; const int var_11 = 2; int var_12; int var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; df::float3 var_17; df::float3 var_18; df::float3 var_19; df::float3 var_20; df::float3 var_21; mat22 var_22; float var_23; const float var_24 = 2.0; float var_25; const float var_26 = 1.0; float var_27; float var_28; float var_29; float var_30; float var_31; df::float3 var_32; float var_33; df::float3 var_34; df::float3 var_35; float var_36; df::float3 var_37; float var_38; df::float3 var_39; df::float3 var_40; float var_41; df::float3 var_42; float var_43; df::float3 var_44; df::float3 var_45; df::float3 var_46; float var_47; df::float3 var_48; float var_49; df::float3 var_50; df::float3 var_51; df::float3 var_52; float var_53; float var_54; df::float3 var_55; float var_56; const float var_57 = 0.5; float var_58; float var_59; float var_60; float var_61; float var_62; df::float3 var_63; df::float3 var_64; df::float3 var_65; df::float3 var_66; df::float3 var_67; df::float3 var_68; df::float3 var_69; float var_70; float var_71; float var_72; float var_73; df::float3 var_74; float var_75; float var_76; float var_77; float var_78; df::float3 var_79; df::float3 var_80; float var_81; df::float3 var_82; df::float3 var_83; df::float3 var_84; df::float3 var_85; df::float3 var_86; const float var_87 = 0.3333; df::float3 var_88; df::float3 var_89; float var_90; float var_91; float var_92; float var_93; df::float3 var_94; float var_95; const float var_96 = 1.57079; float var_97; float var_98; float var_99; float var_100; df::float3 var_101; float var_102; df::float3 var_103; df::float3 var_104; df::float3 var_105; df::float3 var_106; df::float3 var_107; df::float3 var_108; df::float3 var_109; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_indices, var_8); var_10 = df::mul(var_0, var_1); var_12 = df::add(var_10, var_11); var_13 = df::load(var_indices, var_12); var_14 = df::load(var_x, var_5); var_15 = df::load(var_x, var_9); var_16 = df::load(var_x, var_13); var_17 = df::load(var_v, var_5); var_18 = df::load(var_v, var_9); var_19 = df::load(var_v, var_13); var_20 = df::sub(var_15, var_14); var_21 = df::sub(var_16, var_14); var_22 = df::load(var_pose, var_0); var_23 = df::determinant(var_22); var_25 = df::mul(var_23, var_24); var_27 = df::div(var_26, var_25); var_28 = df::mul(var_k_mu, var_27); var_29 = df::mul(var_k_lambda, var_27); var_30 = df::mul(var_k_damp, var_27); var_31 = df::index(var_22, var_3, var_3); var_32 = df::mul(var_20, var_31); var_33 = df::index(var_22, var_7, var_3); var_34 = df::mul(var_21, var_33); var_35 = df::add(var_32, var_34); var_36 = df::index(var_22, var_3, var_7); var_37 = df::mul(var_20, var_36); var_38 = df::index(var_22, var_7, var_7); var_39 = df::mul(var_21, var_38); var_40 = df::add(var_37, var_39); var_41 = df::index(var_22, var_3, var_3); var_42 = df::mul(var_35, var_41); var_43 = df::index(var_22, var_3, var_7); var_44 = df::mul(var_40, var_43); var_45 = df::add(var_42, var_44); var_46 = df::mul(var_45, var_28); var_47 = df::index(var_22, var_7, var_3); var_48 = df::mul(var_35, var_47); var_49 = df::index(var_22, var_7, var_7); var_50 = df::mul(var_40, var_49); var_51 = df::add(var_48, var_50); var_52 = df::mul(var_51, var_28); var_53 = df::div(var_28, var_29); var_54 = df::add(var_26, var_53); var_55 = df::cross(var_20, var_21); var_56 = df::length(var_55); var_58 = df::mul(var_56, var_57); var_59 = df::load(var_activation, var_0); var_60 = df::mul(var_58, var_25); var_61 = df::sub(var_60, var_54); var_62 = df::add(var_61, var_59); var_63 = df::normalize(var_55); var_64 = df::cross(var_21, var_63); var_65 = df::mul(var_64, var_25); var_66 = df::mul(var_65, var_57); var_67 = df::cross(var_63, var_20); var_68 = df::mul(var_67, var_25); var_69 = df::mul(var_68, var_57); var_70 = df::mul(var_29, var_62); var_71 = df::dot(var_66, var_18); var_72 = df::dot(var_69, var_19); var_73 = df::add(var_71, var_72); var_74 = df::add(var_66, var_69); var_75 = df::dot(var_74, var_17); var_76 = df::sub(var_73, var_75); var_77 = df::mul(var_30, var_76); var_78 = df::add(var_70, var_77); var_79 = df::mul(var_66, var_78); var_80 = df::add(var_46, var_79); var_81 = df::add(var_70, var_77); var_82 = df::mul(var_69, var_81); var_83 = df::add(var_52, var_82); var_84 = df::add(var_80, var_83); var_85 = df::add(var_17, var_19); var_86 = df::add(var_85, var_18); var_88 = df::mul(var_86, var_87); var_89 = df::normalize(var_88); var_90 = df::mul(var_k_drag, var_58); var_91 = df::dot(var_63, var_88); var_92 = df::abs(var_91); var_93 = df::mul(var_90, var_92); var_94 = df::mul(var_88, var_93); var_95 = df::mul(var_k_lift, var_58); var_97 = df::dot(var_63, var_89); var_98 = df::acos(var_97); var_99 = df::sub(var_96, var_98); var_100 = df::mul(var_95, var_99); var_101 = df::mul(var_63, var_100); var_102 = df::dot(var_88, var_88); var_103 = df::mul(var_101, var_102); var_104 = df::sub(var_84, var_94); var_105 = df::sub(var_104, var_103); var_106 = df::add(var_80, var_94); var_107 = df::add(var_106, var_103); var_108 = df::add(var_83, var_94); var_109 = df::add(var_108, var_103); df::atomic_add(var_f, var_5, var_105); df::atomic_sub(var_f, var_9, var_107); df::atomic_sub(var_f, var_13, var_109); } void eval_triangles_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, int* var_indices, mat22* var_pose, float* var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, df::float3* var_f, df::float3* adj_x, df::float3* adj_v, int* adj_indices, mat22* adj_pose, float* adj_activation, float adj_k_mu, float adj_k_lambda, float adj_k_damp, float adj_k_drag, float adj_k_lift, df::float3* adj_f) { //--------- // primal vars int var_0; const int var_1 = 3; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; int var_10; const int var_11 = 2; int var_12; int var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; df::float3 var_17; df::float3 var_18; df::float3 var_19; df::float3 var_20; df::float3 var_21; mat22 var_22; float var_23; const float var_24 = 2.0; float var_25; const float var_26 = 1.0; float var_27; float var_28; float var_29; float var_30; float var_31; df::float3 var_32; float var_33; df::float3 var_34; df::float3 var_35; float var_36; df::float3 var_37; float var_38; df::float3 var_39; df::float3 var_40; float var_41; df::float3 var_42; float var_43; df::float3 var_44; df::float3 var_45; df::float3 var_46; float var_47; df::float3 var_48; float var_49; df::float3 var_50; df::float3 var_51; df::float3 var_52; float var_53; float var_54; df::float3 var_55; float var_56; const float var_57 = 0.5; float var_58; float var_59; float var_60; float var_61; float var_62; df::float3 var_63; df::float3 var_64; df::float3 var_65; df::float3 var_66; df::float3 var_67; df::float3 var_68; df::float3 var_69; float var_70; float var_71; float var_72; float var_73; df::float3 var_74; float var_75; float var_76; float var_77; float var_78; df::float3 var_79; df::float3 var_80; float var_81; df::float3 var_82; df::float3 var_83; df::float3 var_84; df::float3 var_85; df::float3 var_86; const float var_87 = 0.3333; df::float3 var_88; df::float3 var_89; float var_90; float var_91; float var_92; float var_93; df::float3 var_94; float var_95; const float var_96 = 1.57079; float var_97; float var_98; float var_99; float var_100; df::float3 var_101; float var_102; df::float3 var_103; df::float3 var_104; df::float3 var_105; df::float3 var_106; df::float3 var_107; df::float3 var_108; df::float3 var_109; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; int adj_9 = 0; int adj_10 = 0; int adj_11 = 0; int adj_12 = 0; int adj_13 = 0; df::float3 adj_14 = 0; df::float3 adj_15 = 0; df::float3 adj_16 = 0; df::float3 adj_17 = 0; df::float3 adj_18 = 0; df::float3 adj_19 = 0; df::float3 adj_20 = 0; df::float3 adj_21 = 0; mat22 adj_22 = 0; float adj_23 = 0; float adj_24 = 0; float adj_25 = 0; float adj_26 = 0; float adj_27 = 0; float adj_28 = 0; float adj_29 = 0; float adj_30 = 0; float adj_31 = 0; df::float3 adj_32 = 0; float adj_33 = 0; df::float3 adj_34 = 0; df::float3 adj_35 = 0; float adj_36 = 0; df::float3 adj_37 = 0; float adj_38 = 0; df::float3 adj_39 = 0; df::float3 adj_40 = 0; float adj_41 = 0; df::float3 adj_42 = 0; float adj_43 = 0; df::float3 adj_44 = 0; df::float3 adj_45 = 0; df::float3 adj_46 = 0; float adj_47 = 0; df::float3 adj_48 = 0; float adj_49 = 0; df::float3 adj_50 = 0; df::float3 adj_51 = 0; df::float3 adj_52 = 0; float adj_53 = 0; float adj_54 = 0; df::float3 adj_55 = 0; float adj_56 = 0; float adj_57 = 0; float adj_58 = 0; float adj_59 = 0; float adj_60 = 0; float adj_61 = 0; float adj_62 = 0; df::float3 adj_63 = 0; df::float3 adj_64 = 0; df::float3 adj_65 = 0; df::float3 adj_66 = 0; df::float3 adj_67 = 0; df::float3 adj_68 = 0; df::float3 adj_69 = 0; float adj_70 = 0; float adj_71 = 0; float adj_72 = 0; float adj_73 = 0; df::float3 adj_74 = 0; float adj_75 = 0; float adj_76 = 0; float adj_77 = 0; float adj_78 = 0; df::float3 adj_79 = 0; df::float3 adj_80 = 0; float adj_81 = 0; df::float3 adj_82 = 0; df::float3 adj_83 = 0; df::float3 adj_84 = 0; df::float3 adj_85 = 0; df::float3 adj_86 = 0; float adj_87 = 0; df::float3 adj_88 = 0; df::float3 adj_89 = 0; float adj_90 = 0; float adj_91 = 0; float adj_92 = 0; float adj_93 = 0; df::float3 adj_94 = 0; float adj_95 = 0; float adj_96 = 0; float adj_97 = 0; float adj_98 = 0; float adj_99 = 0; float adj_100 = 0; df::float3 adj_101 = 0; float adj_102 = 0; df::float3 adj_103 = 0; df::float3 adj_104 = 0; df::float3 adj_105 = 0; df::float3 adj_106 = 0; df::float3 adj_107 = 0; df::float3 adj_108 = 0; df::float3 adj_109 = 0; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_indices, var_8); var_10 = df::mul(var_0, var_1); var_12 = df::add(var_10, var_11); var_13 = df::load(var_indices, var_12); var_14 = df::load(var_x, var_5); var_15 = df::load(var_x, var_9); var_16 = df::load(var_x, var_13); var_17 = df::load(var_v, var_5); var_18 = df::load(var_v, var_9); var_19 = df::load(var_v, var_13); var_20 = df::sub(var_15, var_14); var_21 = df::sub(var_16, var_14); var_22 = df::load(var_pose, var_0); var_23 = df::determinant(var_22); var_25 = df::mul(var_23, var_24); var_27 = df::div(var_26, var_25); var_28 = df::mul(var_k_mu, var_27); var_29 = df::mul(var_k_lambda, var_27); var_30 = df::mul(var_k_damp, var_27); var_31 = df::index(var_22, var_3, var_3); var_32 = df::mul(var_20, var_31); var_33 = df::index(var_22, var_7, var_3); var_34 = df::mul(var_21, var_33); var_35 = df::add(var_32, var_34); var_36 = df::index(var_22, var_3, var_7); var_37 = df::mul(var_20, var_36); var_38 = df::index(var_22, var_7, var_7); var_39 = df::mul(var_21, var_38); var_40 = df::add(var_37, var_39); var_41 = df::index(var_22, var_3, var_3); var_42 = df::mul(var_35, var_41); var_43 = df::index(var_22, var_3, var_7); var_44 = df::mul(var_40, var_43); var_45 = df::add(var_42, var_44); var_46 = df::mul(var_45, var_28); var_47 = df::index(var_22, var_7, var_3); var_48 = df::mul(var_35, var_47); var_49 = df::index(var_22, var_7, var_7); var_50 = df::mul(var_40, var_49); var_51 = df::add(var_48, var_50); var_52 = df::mul(var_51, var_28); var_53 = df::div(var_28, var_29); var_54 = df::add(var_26, var_53); var_55 = df::cross(var_20, var_21); var_56 = df::length(var_55); var_58 = df::mul(var_56, var_57); var_59 = df::load(var_activation, var_0); var_60 = df::mul(var_58, var_25); var_61 = df::sub(var_60, var_54); var_62 = df::add(var_61, var_59); var_63 = df::normalize(var_55); var_64 = df::cross(var_21, var_63); var_65 = df::mul(var_64, var_25); var_66 = df::mul(var_65, var_57); var_67 = df::cross(var_63, var_20); var_68 = df::mul(var_67, var_25); var_69 = df::mul(var_68, var_57); var_70 = df::mul(var_29, var_62); var_71 = df::dot(var_66, var_18); var_72 = df::dot(var_69, var_19); var_73 = df::add(var_71, var_72); var_74 = df::add(var_66, var_69); var_75 = df::dot(var_74, var_17); var_76 = df::sub(var_73, var_75); var_77 = df::mul(var_30, var_76); var_78 = df::add(var_70, var_77); var_79 = df::mul(var_66, var_78); var_80 = df::add(var_46, var_79); var_81 = df::add(var_70, var_77); var_82 = df::mul(var_69, var_81); var_83 = df::add(var_52, var_82); var_84 = df::add(var_80, var_83); var_85 = df::add(var_17, var_19); var_86 = df::add(var_85, var_18); var_88 = df::mul(var_86, var_87); var_89 = df::normalize(var_88); var_90 = df::mul(var_k_drag, var_58); var_91 = df::dot(var_63, var_88); var_92 = df::abs(var_91); var_93 = df::mul(var_90, var_92); var_94 = df::mul(var_88, var_93); var_95 = df::mul(var_k_lift, var_58); var_97 = df::dot(var_63, var_89); var_98 = df::acos(var_97); var_99 = df::sub(var_96, var_98); var_100 = df::mul(var_95, var_99); var_101 = df::mul(var_63, var_100); var_102 = df::dot(var_88, var_88); var_103 = df::mul(var_101, var_102); var_104 = df::sub(var_84, var_94); var_105 = df::sub(var_104, var_103); var_106 = df::add(var_80, var_94); var_107 = df::add(var_106, var_103); var_108 = df::add(var_83, var_94); var_109 = df::add(var_108, var_103); df::atomic_add(var_f, var_5, var_105); df::atomic_sub(var_f, var_9, var_107); df::atomic_sub(var_f, var_13, var_109); //--------- // reverse df::adj_atomic_sub(var_f, var_13, var_109, adj_f, adj_13, adj_109); df::adj_atomic_sub(var_f, var_9, var_107, adj_f, adj_9, adj_107); df::adj_atomic_add(var_f, var_5, var_105, adj_f, adj_5, adj_105); df::adj_add(var_108, var_103, adj_108, adj_103, adj_109); df::adj_add(var_83, var_94, adj_83, adj_94, adj_108); df::adj_add(var_106, var_103, adj_106, adj_103, adj_107); df::adj_add(var_80, var_94, adj_80, adj_94, adj_106); df::adj_sub(var_104, var_103, adj_104, adj_103, adj_105); df::adj_sub(var_84, var_94, adj_84, adj_94, adj_104); df::adj_mul(var_101, var_102, adj_101, adj_102, adj_103); df::adj_dot(var_88, var_88, adj_88, adj_88, adj_102); df::adj_mul(var_63, var_100, adj_63, adj_100, adj_101); df::adj_mul(var_95, var_99, adj_95, adj_99, adj_100); df::adj_sub(var_96, var_98, adj_96, adj_98, adj_99); df::adj_acos(var_97, adj_97, adj_98); df::adj_dot(var_63, var_89, adj_63, adj_89, adj_97); df::adj_mul(var_k_lift, var_58, adj_k_lift, adj_58, adj_95); df::adj_mul(var_88, var_93, adj_88, adj_93, adj_94); df::adj_mul(var_90, var_92, adj_90, adj_92, adj_93); df::adj_abs(var_91, adj_91, adj_92); df::adj_dot(var_63, var_88, adj_63, adj_88, adj_91); df::adj_mul(var_k_drag, var_58, adj_k_drag, adj_58, adj_90); df::adj_normalize(var_88, adj_88, adj_89); df::adj_mul(var_86, var_87, adj_86, adj_87, adj_88); df::adj_add(var_85, var_18, adj_85, adj_18, adj_86); df::adj_add(var_17, var_19, adj_17, adj_19, adj_85); df::adj_add(var_80, var_83, adj_80, adj_83, adj_84); df::adj_add(var_52, var_82, adj_52, adj_82, adj_83); df::adj_mul(var_69, var_81, adj_69, adj_81, adj_82); df::adj_add(var_70, var_77, adj_70, adj_77, adj_81); df::adj_add(var_46, var_79, adj_46, adj_79, adj_80); df::adj_mul(var_66, var_78, adj_66, adj_78, adj_79); df::adj_add(var_70, var_77, adj_70, adj_77, adj_78); df::adj_mul(var_30, var_76, adj_30, adj_76, adj_77); df::adj_sub(var_73, var_75, adj_73, adj_75, adj_76); df::adj_dot(var_74, var_17, adj_74, adj_17, adj_75); df::adj_add(var_66, var_69, adj_66, adj_69, adj_74); df::adj_add(var_71, var_72, adj_71, adj_72, adj_73); df::adj_dot(var_69, var_19, adj_69, adj_19, adj_72); df::adj_dot(var_66, var_18, adj_66, adj_18, adj_71); df::adj_mul(var_29, var_62, adj_29, adj_62, adj_70); df::adj_mul(var_68, var_57, adj_68, adj_57, adj_69); df::adj_mul(var_67, var_25, adj_67, adj_25, adj_68); df::adj_cross(var_63, var_20, adj_63, adj_20, adj_67); df::adj_mul(var_65, var_57, adj_65, adj_57, adj_66); df::adj_mul(var_64, var_25, adj_64, adj_25, adj_65); df::adj_cross(var_21, var_63, adj_21, adj_63, adj_64); df::adj_normalize(var_55, adj_55, adj_63); df::adj_add(var_61, var_59, adj_61, adj_59, adj_62); df::adj_sub(var_60, var_54, adj_60, adj_54, adj_61); df::adj_mul(var_58, var_25, adj_58, adj_25, adj_60); df::adj_load(var_activation, var_0, adj_activation, adj_0, adj_59); df::adj_mul(var_56, var_57, adj_56, adj_57, adj_58); df::adj_length(var_55, adj_55, adj_56); df::adj_cross(var_20, var_21, adj_20, adj_21, adj_55); df::adj_add(var_26, var_53, adj_26, adj_53, adj_54); df::adj_div(var_28, var_29, adj_28, adj_29, adj_53); df::adj_mul(var_51, var_28, adj_51, adj_28, adj_52); df::adj_add(var_48, var_50, adj_48, adj_50, adj_51); df::adj_mul(var_40, var_49, adj_40, adj_49, adj_50); df::adj_index(var_22, var_7, var_7, adj_22, adj_7, adj_7, adj_49); df::adj_mul(var_35, var_47, adj_35, adj_47, adj_48); df::adj_index(var_22, var_7, var_3, adj_22, adj_7, adj_3, adj_47); df::adj_mul(var_45, var_28, adj_45, adj_28, adj_46); df::adj_add(var_42, var_44, adj_42, adj_44, adj_45); df::adj_mul(var_40, var_43, adj_40, adj_43, adj_44); df::adj_index(var_22, var_3, var_7, adj_22, adj_3, adj_7, adj_43); df::adj_mul(var_35, var_41, adj_35, adj_41, adj_42); df::adj_index(var_22, var_3, var_3, adj_22, adj_3, adj_3, adj_41); df::adj_add(var_37, var_39, adj_37, adj_39, adj_40); df::adj_mul(var_21, var_38, adj_21, adj_38, adj_39); df::adj_index(var_22, var_7, var_7, adj_22, adj_7, adj_7, adj_38); df::adj_mul(var_20, var_36, adj_20, adj_36, adj_37); df::adj_index(var_22, var_3, var_7, adj_22, adj_3, adj_7, adj_36); df::adj_add(var_32, var_34, adj_32, adj_34, adj_35); df::adj_mul(var_21, var_33, adj_21, adj_33, adj_34); df::adj_index(var_22, var_7, var_3, adj_22, adj_7, adj_3, adj_33); df::adj_mul(var_20, var_31, adj_20, adj_31, adj_32); df::adj_index(var_22, var_3, var_3, adj_22, adj_3, adj_3, adj_31); df::adj_mul(var_k_damp, var_27, adj_k_damp, adj_27, adj_30); df::adj_mul(var_k_lambda, var_27, adj_k_lambda, adj_27, adj_29); df::adj_mul(var_k_mu, var_27, adj_k_mu, adj_27, adj_28); df::adj_div(var_26, var_25, adj_26, adj_25, adj_27); df::adj_mul(var_23, var_24, adj_23, adj_24, adj_25); df::adj_determinant(var_22, adj_22, adj_23); df::adj_load(var_pose, var_0, adj_pose, adj_0, adj_22); df::adj_sub(var_16, var_14, adj_16, adj_14, adj_21); df::adj_sub(var_15, var_14, adj_15, adj_14, adj_20); df::adj_load(var_v, var_13, adj_v, adj_13, adj_19); df::adj_load(var_v, var_9, adj_v, adj_9, adj_18); df::adj_load(var_v, var_5, adj_v, adj_5, adj_17); df::adj_load(var_x, var_13, adj_x, adj_13, adj_16); df::adj_load(var_x, var_9, adj_x, adj_9, adj_15); df::adj_load(var_x, var_5, adj_x, adj_5, adj_14); df::adj_load(var_indices, var_12, adj_indices, adj_12, adj_13); df::adj_add(var_10, var_11, adj_10, adj_11, adj_12); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_10); df::adj_load(var_indices, var_8, adj_indices, adj_8, adj_9); df::adj_add(var_6, var_7, adj_6, adj_7, adj_8); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_6); df::adj_load(var_indices, var_4, adj_indices, adj_4, adj_5); df::adj_add(var_2, var_3, adj_2, adj_3, adj_4); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_2); return; } // Python entry points void eval_triangles_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, torch::Tensor var_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_triangles_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<mat22*>(var_pose), cast<float*>(var_activation), var_k_mu, var_k_lambda, var_k_damp, var_k_drag, var_k_lift, cast<df::float3*>(var_f)); } } void eval_triangles_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_pose, torch::Tensor adj_activation, float adj_k_mu, float adj_k_lambda, float adj_k_damp, float adj_k_drag, float adj_k_lift, torch::Tensor adj_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_triangles_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<mat22*>(var_pose), cast<float*>(var_activation), var_k_mu, var_k_lambda, var_k_damp, var_k_drag, var_k_lift, cast<df::float3*>(var_f), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<int*>(adj_indices), cast<mat22*>(adj_pose), cast<float*>(adj_activation), adj_k_mu, adj_k_lambda, adj_k_damp, adj_k_drag, adj_k_lift, cast<df::float3*>(adj_f)); } } // Python entry points void eval_triangles_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, torch::Tensor var_f); void eval_triangles_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_pose, torch::Tensor adj_activation, float adj_k_mu, float adj_k_lambda, float adj_k_damp, float adj_k_drag, float adj_k_lift, torch::Tensor adj_f); void eval_triangles_contact_cpu_kernel_forward( int var_num_particles, df::float3* var_x, df::float3* var_v, int* var_indices, mat22* var_pose, float* var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, df::float3* var_f) { //--------- // primal vars int var_0; int var_1; int var_2; df::float3 var_3; const int var_4 = 3; int var_5; const int var_6 = 0; int var_7; int var_8; int var_9; const int var_10 = 1; int var_11; int var_12; int var_13; const int var_14 = 2; int var_15; int var_16; bool var_17; bool var_18; bool var_19; bool var_20; df::float3 var_21; df::float3 var_22; df::float3 var_23; df::float3 var_24; float var_25; df::float3 var_26; float var_27; df::float3 var_28; df::float3 var_29; float var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; float var_34; df::float3 var_35; const float var_36 = 0.01; float var_37; const float var_38 = 0.0; float var_39; df::float3 var_40; const float var_41 = 100000.0; df::float3 var_42; float var_43; df::float3 var_44; float var_45; df::float3 var_46; float var_47; df::float3 var_48; //--------- // forward var_0 = df::tid(); var_1 = df::div(var_0, var_num_particles); var_2 = df::mod(var_0, var_num_particles); var_3 = df::load(var_x, var_2); var_5 = df::mul(var_1, var_4); var_7 = df::add(var_5, var_6); var_8 = df::load(var_indices, var_7); var_9 = df::mul(var_1, var_4); var_11 = df::add(var_9, var_10); var_12 = df::load(var_indices, var_11); var_13 = df::mul(var_1, var_4); var_15 = df::add(var_13, var_14); var_16 = df::load(var_indices, var_15); var_17 = (var_8 == var_2); var_18 = (var_12 == var_2); var_19 = (var_16 == var_2); var_20 = var_17 || var_18 || var_19; if (var_20) { return; } var_21 = df::load(var_x, var_8); var_22 = df::load(var_x, var_12); var_23 = df::load(var_x, var_16); var_24 = triangle_closest_point_barycentric_cpu_func(var_21, var_22, var_23, var_3); var_25 = df::index(var_24, var_6); var_26 = df::mul(var_21, var_25); var_27 = df::index(var_24, var_10); var_28 = df::mul(var_22, var_27); var_29 = df::add(var_26, var_28); var_30 = df::index(var_24, var_14); var_31 = df::mul(var_23, var_30); var_32 = df::add(var_29, var_31); var_33 = df::sub(var_3, var_32); var_34 = df::dot(var_33, var_33); var_35 = df::normalize(var_33); var_37 = df::sub(var_34, var_36); var_39 = df::min(var_37, var_38); var_40 = df::mul(var_35, var_39); var_42 = df::mul(var_40, var_41); df::atomic_sub(var_f, var_2, var_42); var_43 = df::index(var_24, var_6); var_44 = df::mul(var_42, var_43); df::atomic_add(var_f, var_8, var_44); var_45 = df::index(var_24, var_10); var_46 = df::mul(var_42, var_45); df::atomic_add(var_f, var_12, var_46); var_47 = df::index(var_24, var_14); var_48 = df::mul(var_42, var_47); df::atomic_add(var_f, var_16, var_48); } void eval_triangles_contact_cpu_kernel_backward( int var_num_particles, df::float3* var_x, df::float3* var_v, int* var_indices, mat22* var_pose, float* var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, df::float3* var_f, int adj_num_particles, df::float3* adj_x, df::float3* adj_v, int* adj_indices, mat22* adj_pose, float* adj_activation, float adj_k_mu, float adj_k_lambda, float adj_k_damp, float adj_k_drag, float adj_k_lift, df::float3* adj_f) { //--------- // primal vars int var_0; int var_1; int var_2; df::float3 var_3; const int var_4 = 3; int var_5; const int var_6 = 0; int var_7; int var_8; int var_9; const int var_10 = 1; int var_11; int var_12; int var_13; const int var_14 = 2; int var_15; int var_16; bool var_17; bool var_18; bool var_19; bool var_20; df::float3 var_21; df::float3 var_22; df::float3 var_23; df::float3 var_24; float var_25; df::float3 var_26; float var_27; df::float3 var_28; df::float3 var_29; float var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; float var_34; df::float3 var_35; const float var_36 = 0.01; float var_37; const float var_38 = 0.0; float var_39; df::float3 var_40; const float var_41 = 100000.0; df::float3 var_42; float var_43; df::float3 var_44; float var_45; df::float3 var_46; float var_47; df::float3 var_48; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; df::float3 adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; int adj_9 = 0; int adj_10 = 0; int adj_11 = 0; int adj_12 = 0; int adj_13 = 0; int adj_14 = 0; int adj_15 = 0; int adj_16 = 0; bool adj_17 = 0; bool adj_18 = 0; bool adj_19 = 0; bool adj_20 = 0; df::float3 adj_21 = 0; df::float3 adj_22 = 0; df::float3 adj_23 = 0; df::float3 adj_24 = 0; float adj_25 = 0; df::float3 adj_26 = 0; float adj_27 = 0; df::float3 adj_28 = 0; df::float3 adj_29 = 0; float adj_30 = 0; df::float3 adj_31 = 0; df::float3 adj_32 = 0; df::float3 adj_33 = 0; float adj_34 = 0; df::float3 adj_35 = 0; float adj_36 = 0; float adj_37 = 0; float adj_38 = 0; float adj_39 = 0; df::float3 adj_40 = 0; float adj_41 = 0; df::float3 adj_42 = 0; float adj_43 = 0; df::float3 adj_44 = 0; float adj_45 = 0; df::float3 adj_46 = 0; float adj_47 = 0; df::float3 adj_48 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::div(var_0, var_num_particles); var_2 = df::mod(var_0, var_num_particles); var_3 = df::load(var_x, var_2); var_5 = df::mul(var_1, var_4); var_7 = df::add(var_5, var_6); var_8 = df::load(var_indices, var_7); var_9 = df::mul(var_1, var_4); var_11 = df::add(var_9, var_10); var_12 = df::load(var_indices, var_11); var_13 = df::mul(var_1, var_4); var_15 = df::add(var_13, var_14); var_16 = df::load(var_indices, var_15); var_17 = (var_8 == var_2); var_18 = (var_12 == var_2); var_19 = (var_16 == var_2); var_20 = var_17 || var_18 || var_19; if (var_20) { goto label0; } var_21 = df::load(var_x, var_8); var_22 = df::load(var_x, var_12); var_23 = df::load(var_x, var_16); var_24 = triangle_closest_point_barycentric_cpu_func(var_21, var_22, var_23, var_3); var_25 = df::index(var_24, var_6); var_26 = df::mul(var_21, var_25); var_27 = df::index(var_24, var_10); var_28 = df::mul(var_22, var_27); var_29 = df::add(var_26, var_28); var_30 = df::index(var_24, var_14); var_31 = df::mul(var_23, var_30); var_32 = df::add(var_29, var_31); var_33 = df::sub(var_3, var_32); var_34 = df::dot(var_33, var_33); var_35 = df::normalize(var_33); var_37 = df::sub(var_34, var_36); var_39 = df::min(var_37, var_38); var_40 = df::mul(var_35, var_39); var_42 = df::mul(var_40, var_41); df::atomic_sub(var_f, var_2, var_42); var_43 = df::index(var_24, var_6); var_44 = df::mul(var_42, var_43); df::atomic_add(var_f, var_8, var_44); var_45 = df::index(var_24, var_10); var_46 = df::mul(var_42, var_45); df::atomic_add(var_f, var_12, var_46); var_47 = df::index(var_24, var_14); var_48 = df::mul(var_42, var_47); df::atomic_add(var_f, var_16, var_48); //--------- // reverse df::adj_atomic_add(var_f, var_16, var_48, adj_f, adj_16, adj_48); df::adj_mul(var_42, var_47, adj_42, adj_47, adj_48); df::adj_index(var_24, var_14, adj_24, adj_14, adj_47); df::adj_atomic_add(var_f, var_12, var_46, adj_f, adj_12, adj_46); df::adj_mul(var_42, var_45, adj_42, adj_45, adj_46); df::adj_index(var_24, var_10, adj_24, adj_10, adj_45); df::adj_atomic_add(var_f, var_8, var_44, adj_f, adj_8, adj_44); df::adj_mul(var_42, var_43, adj_42, adj_43, adj_44); df::adj_index(var_24, var_6, adj_24, adj_6, adj_43); df::adj_atomic_sub(var_f, var_2, var_42, adj_f, adj_2, adj_42); df::adj_mul(var_40, var_41, adj_40, adj_41, adj_42); df::adj_mul(var_35, var_39, adj_35, adj_39, adj_40); df::adj_min(var_37, var_38, adj_37, adj_38, adj_39); df::adj_sub(var_34, var_36, adj_34, adj_36, adj_37); df::adj_normalize(var_33, adj_33, adj_35); df::adj_dot(var_33, var_33, adj_33, adj_33, adj_34); df::adj_sub(var_3, var_32, adj_3, adj_32, adj_33); df::adj_add(var_29, var_31, adj_29, adj_31, adj_32); df::adj_mul(var_23, var_30, adj_23, adj_30, adj_31); df::adj_index(var_24, var_14, adj_24, adj_14, adj_30); df::adj_add(var_26, var_28, adj_26, adj_28, adj_29); df::adj_mul(var_22, var_27, adj_22, adj_27, adj_28); df::adj_index(var_24, var_10, adj_24, adj_10, adj_27); df::adj_mul(var_21, var_25, adj_21, adj_25, adj_26); df::adj_index(var_24, var_6, adj_24, adj_6, adj_25); adj_triangle_closest_point_barycentric_cpu_func(var_21, var_22, var_23, var_3, adj_21, adj_22, adj_23, adj_3, adj_24); df::adj_load(var_x, var_16, adj_x, adj_16, adj_23); df::adj_load(var_x, var_12, adj_x, adj_12, adj_22); df::adj_load(var_x, var_8, adj_x, adj_8, adj_21); if (var_20) { label0:; } df::adj_load(var_indices, var_15, adj_indices, adj_15, adj_16); df::adj_add(var_13, var_14, adj_13, adj_14, adj_15); df::adj_mul(var_1, var_4, adj_1, adj_4, adj_13); df::adj_load(var_indices, var_11, adj_indices, adj_11, adj_12); df::adj_add(var_9, var_10, adj_9, adj_10, adj_11); df::adj_mul(var_1, var_4, adj_1, adj_4, adj_9); df::adj_load(var_indices, var_7, adj_indices, adj_7, adj_8); df::adj_add(var_5, var_6, adj_5, adj_6, adj_7); df::adj_mul(var_1, var_4, adj_1, adj_4, adj_5); df::adj_load(var_x, var_2, adj_x, adj_2, adj_3); df::adj_mod(var_0, var_num_particles, adj_0, adj_num_particles, adj_2); df::adj_div(var_0, var_num_particles, adj_0, adj_num_particles, adj_1); return; } // Python entry points void eval_triangles_contact_cpu_forward(int dim, int var_num_particles, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, torch::Tensor var_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_triangles_contact_cpu_kernel_forward( var_num_particles, cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<mat22*>(var_pose), cast<float*>(var_activation), var_k_mu, var_k_lambda, var_k_damp, var_k_drag, var_k_lift, cast<df::float3*>(var_f)); } } void eval_triangles_contact_cpu_backward(int dim, int var_num_particles, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, torch::Tensor var_f, int adj_num_particles, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_pose, torch::Tensor adj_activation, float adj_k_mu, float adj_k_lambda, float adj_k_damp, float adj_k_drag, float adj_k_lift, torch::Tensor adj_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_triangles_contact_cpu_kernel_backward( var_num_particles, cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<mat22*>(var_pose), cast<float*>(var_activation), var_k_mu, var_k_lambda, var_k_damp, var_k_drag, var_k_lift, cast<df::float3*>(var_f), adj_num_particles, cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<int*>(adj_indices), cast<mat22*>(adj_pose), cast<float*>(adj_activation), adj_k_mu, adj_k_lambda, adj_k_damp, adj_k_drag, adj_k_lift, cast<df::float3*>(adj_f)); } } // Python entry points void eval_triangles_contact_cpu_forward(int dim, int var_num_particles, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, torch::Tensor var_f); void eval_triangles_contact_cpu_backward(int dim, int var_num_particles, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, float var_k_mu, float var_k_lambda, float var_k_damp, float var_k_drag, float var_k_lift, torch::Tensor var_f, int adj_num_particles, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_pose, torch::Tensor adj_activation, float adj_k_mu, float adj_k_lambda, float adj_k_damp, float adj_k_drag, float adj_k_lift, torch::Tensor adj_f); void eval_triangles_rigid_contacts_cpu_kernel_forward( int var_num_particles, df::float3* var_x, df::float3* var_v, int* var_indices, df::float3* var_rigid_x, quat* var_rigid_r, df::float3* var_rigid_v, df::float3* var_rigid_w, int* var_contact_body, df::float3* var_contact_point, float* var_contact_dist, int* var_contact_mat, float* var_materials, df::float3* var_tri_f) { //--------- // primal vars int var_0; int var_1; int var_2; int var_3; df::float3 var_4; float var_5; int var_6; const int var_7 = 4; int var_8; const int var_9 = 0; int var_10; float var_11; int var_12; const int var_13 = 1; int var_14; float var_15; int var_16; const int var_17 = 2; int var_18; float var_19; int var_20; const int var_21 = 3; int var_22; float var_23; df::float3 var_24; quat var_25; df::float3 var_26; df::float3 var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; df::float3 var_35; int var_36; int var_37; int var_38; int var_39; int var_40; int var_41; int var_42; int var_43; int var_44; df::float3 var_45; df::float3 var_46; df::float3 var_47; df::float3 var_48; df::float3 var_49; df::float3 var_50; df::float3 var_51; float var_52; df::float3 var_53; float var_54; df::float3 var_55; df::float3 var_56; float var_57; df::float3 var_58; df::float3 var_59; df::float3 var_60; float var_61; df::float3 var_62; const float var_63 = 0.05; float var_64; const float var_65 = 0.0; float var_66; float var_67; float var_68; df::float3 var_69; float var_70; df::float3 var_71; df::float3 var_72; float var_73; df::float3 var_74; df::float3 var_75; df::float3 var_76; float var_77; df::float3 var_78; df::float3 var_79; float var_80; float var_81; float var_82; float var_83; float var_84; float var_85; float var_86; float var_87; const float var_88 = 1.0; df::float3 var_89; df::float3 var_90; df::float3 var_91; df::float3 var_92; df::float3 var_93; float var_94; float var_95; df::float3 var_96; float var_97; float var_98; df::float3 var_99; df::float3 var_100; df::float3 var_101; float var_102; float var_103; df::float3 var_104; float var_105; df::float3 var_106; df::float3 var_107; float var_108; df::float3 var_109; float var_110; df::float3 var_111; float var_112; df::float3 var_113; //--------- // forward var_0 = df::tid(); var_1 = df::div(var_0, var_num_particles); var_2 = df::mod(var_0, var_num_particles); var_3 = df::load(var_contact_body, var_2); var_4 = df::load(var_contact_point, var_2); var_5 = df::load(var_contact_dist, var_2); var_6 = df::load(var_contact_mat, var_2); var_8 = df::mul(var_6, var_7); var_10 = df::add(var_8, var_9); var_11 = df::load(var_materials, var_10); var_12 = df::mul(var_6, var_7); var_14 = df::add(var_12, var_13); var_15 = df::load(var_materials, var_14); var_16 = df::mul(var_6, var_7); var_18 = df::add(var_16, var_17); var_19 = df::load(var_materials, var_18); var_20 = df::mul(var_6, var_7); var_22 = df::add(var_20, var_21); var_23 = df::load(var_materials, var_22); var_24 = df::load(var_rigid_x, var_3); var_25 = df::load(var_rigid_r, var_3); var_26 = df::load(var_rigid_v, var_3); var_27 = df::load(var_rigid_w, var_3); var_28 = df::rotate(var_25, var_4); var_29 = df::add(var_24, var_28); var_30 = df::sub(var_29, var_24); var_31 = df::normalize(var_30); var_32 = df::mul(var_31, var_5); var_33 = df::add(var_29, var_32); var_34 = df::cross(var_27, var_30); var_35 = df::add(var_26, var_34); var_36 = df::mul(var_1, var_21); var_37 = df::add(var_36, var_9); var_38 = df::load(var_indices, var_37); var_39 = df::mul(var_1, var_21); var_40 = df::add(var_39, var_13); var_41 = df::load(var_indices, var_40); var_42 = df::mul(var_1, var_21); var_43 = df::add(var_42, var_17); var_44 = df::load(var_indices, var_43); var_45 = df::load(var_x, var_38); var_46 = df::load(var_x, var_41); var_47 = df::load(var_x, var_44); var_48 = df::load(var_v, var_38); var_49 = df::load(var_v, var_41); var_50 = df::load(var_v, var_44); var_51 = triangle_closest_point_barycentric_cpu_func(var_45, var_46, var_47, var_33); var_52 = df::index(var_51, var_9); var_53 = df::mul(var_45, var_52); var_54 = df::index(var_51, var_13); var_55 = df::mul(var_46, var_54); var_56 = df::add(var_53, var_55); var_57 = df::index(var_51, var_17); var_58 = df::mul(var_47, var_57); var_59 = df::add(var_56, var_58); var_60 = df::sub(var_33, var_59); var_61 = df::dot(var_60, var_60); var_62 = df::normalize(var_60); var_64 = df::sub(var_61, var_63); var_66 = df::min(var_64, var_65); var_67 = df::mul(var_66, var_11); var_68 = df::index(var_51, var_9); var_69 = df::mul(var_48, var_68); var_70 = df::index(var_51, var_13); var_71 = df::mul(var_49, var_70); var_72 = df::add(var_69, var_71); var_73 = df::index(var_51, var_17); var_74 = df::mul(var_50, var_73); var_75 = df::add(var_72, var_74); var_76 = df::sub(var_75, var_35); var_77 = df::dot(var_62, var_76); var_78 = df::mul(var_62, var_77); var_79 = df::sub(var_76, var_78); var_80 = df::max(var_77, var_65); var_81 = df::mul(var_80, var_15); var_82 = df::step(var_66); var_83 = df::mul(var_81, var_82); var_84 = df::sub(var_65, var_83); var_85 = df::add(var_67, var_84); var_86 = df::mul(var_23, var_85); var_87 = df::sub(var_65, var_86); var_89 = df::float3(var_65, var_65, var_88); var_90 = df::cross(var_62, var_89); var_91 = df::float3(var_88, var_65, var_65); var_92 = df::cross(var_62, var_91); var_93 = df::mul(var_90, var_19); var_94 = df::dot(var_93, var_79); var_95 = df::clamp(var_94, var_86, var_87); var_96 = df::mul(var_92, var_19); var_97 = df::dot(var_96, var_79); var_98 = df::clamp(var_97, var_86, var_87); var_99 = df::mul(var_90, var_95); var_100 = df::mul(var_92, var_98); var_101 = df::add(var_99, var_100); var_102 = df::step(var_66); var_103 = df::sub(var_65, var_102); var_104 = df::mul(var_101, var_103); var_105 = df::add(var_67, var_84); var_106 = df::mul(var_62, var_105); var_107 = df::add(var_106, var_104); var_108 = df::index(var_51, var_9); var_109 = df::mul(var_107, var_108); df::atomic_add(var_tri_f, var_38, var_109); var_110 = df::index(var_51, var_13); var_111 = df::mul(var_107, var_110); df::atomic_add(var_tri_f, var_41, var_111); var_112 = df::index(var_51, var_17); var_113 = df::mul(var_107, var_112); df::atomic_add(var_tri_f, var_44, var_113); } void eval_triangles_rigid_contacts_cpu_kernel_backward( int var_num_particles, df::float3* var_x, df::float3* var_v, int* var_indices, df::float3* var_rigid_x, quat* var_rigid_r, df::float3* var_rigid_v, df::float3* var_rigid_w, int* var_contact_body, df::float3* var_contact_point, float* var_contact_dist, int* var_contact_mat, float* var_materials, df::float3* var_tri_f, int adj_num_particles, df::float3* adj_x, df::float3* adj_v, int* adj_indices, df::float3* adj_rigid_x, quat* adj_rigid_r, df::float3* adj_rigid_v, df::float3* adj_rigid_w, int* adj_contact_body, df::float3* adj_contact_point, float* adj_contact_dist, int* adj_contact_mat, float* adj_materials, df::float3* adj_tri_f) { //--------- // primal vars int var_0; int var_1; int var_2; int var_3; df::float3 var_4; float var_5; int var_6; const int var_7 = 4; int var_8; const int var_9 = 0; int var_10; float var_11; int var_12; const int var_13 = 1; int var_14; float var_15; int var_16; const int var_17 = 2; int var_18; float var_19; int var_20; const int var_21 = 3; int var_22; float var_23; df::float3 var_24; quat var_25; df::float3 var_26; df::float3 var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; df::float3 var_35; int var_36; int var_37; int var_38; int var_39; int var_40; int var_41; int var_42; int var_43; int var_44; df::float3 var_45; df::float3 var_46; df::float3 var_47; df::float3 var_48; df::float3 var_49; df::float3 var_50; df::float3 var_51; float var_52; df::float3 var_53; float var_54; df::float3 var_55; df::float3 var_56; float var_57; df::float3 var_58; df::float3 var_59; df::float3 var_60; float var_61; df::float3 var_62; const float var_63 = 0.05; float var_64; const float var_65 = 0.0; float var_66; float var_67; float var_68; df::float3 var_69; float var_70; df::float3 var_71; df::float3 var_72; float var_73; df::float3 var_74; df::float3 var_75; df::float3 var_76; float var_77; df::float3 var_78; df::float3 var_79; float var_80; float var_81; float var_82; float var_83; float var_84; float var_85; float var_86; float var_87; const float var_88 = 1.0; df::float3 var_89; df::float3 var_90; df::float3 var_91; df::float3 var_92; df::float3 var_93; float var_94; float var_95; df::float3 var_96; float var_97; float var_98; df::float3 var_99; df::float3 var_100; df::float3 var_101; float var_102; float var_103; df::float3 var_104; float var_105; df::float3 var_106; df::float3 var_107; float var_108; df::float3 var_109; float var_110; df::float3 var_111; float var_112; df::float3 var_113; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; df::float3 adj_4 = 0; float adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; int adj_9 = 0; int adj_10 = 0; float adj_11 = 0; int adj_12 = 0; int adj_13 = 0; int adj_14 = 0; float adj_15 = 0; int adj_16 = 0; int adj_17 = 0; int adj_18 = 0; float adj_19 = 0; int adj_20 = 0; int adj_21 = 0; int adj_22 = 0; float adj_23 = 0; df::float3 adj_24 = 0; quat adj_25 = 0; df::float3 adj_26 = 0; df::float3 adj_27 = 0; df::float3 adj_28 = 0; df::float3 adj_29 = 0; df::float3 adj_30 = 0; df::float3 adj_31 = 0; df::float3 adj_32 = 0; df::float3 adj_33 = 0; df::float3 adj_34 = 0; df::float3 adj_35 = 0; int adj_36 = 0; int adj_37 = 0; int adj_38 = 0; int adj_39 = 0; int adj_40 = 0; int adj_41 = 0; int adj_42 = 0; int adj_43 = 0; int adj_44 = 0; df::float3 adj_45 = 0; df::float3 adj_46 = 0; df::float3 adj_47 = 0; df::float3 adj_48 = 0; df::float3 adj_49 = 0; df::float3 adj_50 = 0; df::float3 adj_51 = 0; float adj_52 = 0; df::float3 adj_53 = 0; float adj_54 = 0; df::float3 adj_55 = 0; df::float3 adj_56 = 0; float adj_57 = 0; df::float3 adj_58 = 0; df::float3 adj_59 = 0; df::float3 adj_60 = 0; float adj_61 = 0; df::float3 adj_62 = 0; float adj_63 = 0; float adj_64 = 0; float adj_65 = 0; float adj_66 = 0; float adj_67 = 0; float adj_68 = 0; df::float3 adj_69 = 0; float adj_70 = 0; df::float3 adj_71 = 0; df::float3 adj_72 = 0; float adj_73 = 0; df::float3 adj_74 = 0; df::float3 adj_75 = 0; df::float3 adj_76 = 0; float adj_77 = 0; df::float3 adj_78 = 0; df::float3 adj_79 = 0; float adj_80 = 0; float adj_81 = 0; float adj_82 = 0; float adj_83 = 0; float adj_84 = 0; float adj_85 = 0; float adj_86 = 0; float adj_87 = 0; float adj_88 = 0; df::float3 adj_89 = 0; df::float3 adj_90 = 0; df::float3 adj_91 = 0; df::float3 adj_92 = 0; df::float3 adj_93 = 0; float adj_94 = 0; float adj_95 = 0; df::float3 adj_96 = 0; float adj_97 = 0; float adj_98 = 0; df::float3 adj_99 = 0; df::float3 adj_100 = 0; df::float3 adj_101 = 0; float adj_102 = 0; float adj_103 = 0; df::float3 adj_104 = 0; float adj_105 = 0; df::float3 adj_106 = 0; df::float3 adj_107 = 0; float adj_108 = 0; df::float3 adj_109 = 0; float adj_110 = 0; df::float3 adj_111 = 0; float adj_112 = 0; df::float3 adj_113 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::div(var_0, var_num_particles); var_2 = df::mod(var_0, var_num_particles); var_3 = df::load(var_contact_body, var_2); var_4 = df::load(var_contact_point, var_2); var_5 = df::load(var_contact_dist, var_2); var_6 = df::load(var_contact_mat, var_2); var_8 = df::mul(var_6, var_7); var_10 = df::add(var_8, var_9); var_11 = df::load(var_materials, var_10); var_12 = df::mul(var_6, var_7); var_14 = df::add(var_12, var_13); var_15 = df::load(var_materials, var_14); var_16 = df::mul(var_6, var_7); var_18 = df::add(var_16, var_17); var_19 = df::load(var_materials, var_18); var_20 = df::mul(var_6, var_7); var_22 = df::add(var_20, var_21); var_23 = df::load(var_materials, var_22); var_24 = df::load(var_rigid_x, var_3); var_25 = df::load(var_rigid_r, var_3); var_26 = df::load(var_rigid_v, var_3); var_27 = df::load(var_rigid_w, var_3); var_28 = df::rotate(var_25, var_4); var_29 = df::add(var_24, var_28); var_30 = df::sub(var_29, var_24); var_31 = df::normalize(var_30); var_32 = df::mul(var_31, var_5); var_33 = df::add(var_29, var_32); var_34 = df::cross(var_27, var_30); var_35 = df::add(var_26, var_34); var_36 = df::mul(var_1, var_21); var_37 = df::add(var_36, var_9); var_38 = df::load(var_indices, var_37); var_39 = df::mul(var_1, var_21); var_40 = df::add(var_39, var_13); var_41 = df::load(var_indices, var_40); var_42 = df::mul(var_1, var_21); var_43 = df::add(var_42, var_17); var_44 = df::load(var_indices, var_43); var_45 = df::load(var_x, var_38); var_46 = df::load(var_x, var_41); var_47 = df::load(var_x, var_44); var_48 = df::load(var_v, var_38); var_49 = df::load(var_v, var_41); var_50 = df::load(var_v, var_44); var_51 = triangle_closest_point_barycentric_cpu_func(var_45, var_46, var_47, var_33); var_52 = df::index(var_51, var_9); var_53 = df::mul(var_45, var_52); var_54 = df::index(var_51, var_13); var_55 = df::mul(var_46, var_54); var_56 = df::add(var_53, var_55); var_57 = df::index(var_51, var_17); var_58 = df::mul(var_47, var_57); var_59 = df::add(var_56, var_58); var_60 = df::sub(var_33, var_59); var_61 = df::dot(var_60, var_60); var_62 = df::normalize(var_60); var_64 = df::sub(var_61, var_63); var_66 = df::min(var_64, var_65); var_67 = df::mul(var_66, var_11); var_68 = df::index(var_51, var_9); var_69 = df::mul(var_48, var_68); var_70 = df::index(var_51, var_13); var_71 = df::mul(var_49, var_70); var_72 = df::add(var_69, var_71); var_73 = df::index(var_51, var_17); var_74 = df::mul(var_50, var_73); var_75 = df::add(var_72, var_74); var_76 = df::sub(var_75, var_35); var_77 = df::dot(var_62, var_76); var_78 = df::mul(var_62, var_77); var_79 = df::sub(var_76, var_78); var_80 = df::max(var_77, var_65); var_81 = df::mul(var_80, var_15); var_82 = df::step(var_66); var_83 = df::mul(var_81, var_82); var_84 = df::sub(var_65, var_83); var_85 = df::add(var_67, var_84); var_86 = df::mul(var_23, var_85); var_87 = df::sub(var_65, var_86); var_89 = df::float3(var_65, var_65, var_88); var_90 = df::cross(var_62, var_89); var_91 = df::float3(var_88, var_65, var_65); var_92 = df::cross(var_62, var_91); var_93 = df::mul(var_90, var_19); var_94 = df::dot(var_93, var_79); var_95 = df::clamp(var_94, var_86, var_87); var_96 = df::mul(var_92, var_19); var_97 = df::dot(var_96, var_79); var_98 = df::clamp(var_97, var_86, var_87); var_99 = df::mul(var_90, var_95); var_100 = df::mul(var_92, var_98); var_101 = df::add(var_99, var_100); var_102 = df::step(var_66); var_103 = df::sub(var_65, var_102); var_104 = df::mul(var_101, var_103); var_105 = df::add(var_67, var_84); var_106 = df::mul(var_62, var_105); var_107 = df::add(var_106, var_104); var_108 = df::index(var_51, var_9); var_109 = df::mul(var_107, var_108); df::atomic_add(var_tri_f, var_38, var_109); var_110 = df::index(var_51, var_13); var_111 = df::mul(var_107, var_110); df::atomic_add(var_tri_f, var_41, var_111); var_112 = df::index(var_51, var_17); var_113 = df::mul(var_107, var_112); df::atomic_add(var_tri_f, var_44, var_113); //--------- // reverse df::adj_atomic_add(var_tri_f, var_44, var_113, adj_tri_f, adj_44, adj_113); df::adj_mul(var_107, var_112, adj_107, adj_112, adj_113); df::adj_index(var_51, var_17, adj_51, adj_17, adj_112); df::adj_atomic_add(var_tri_f, var_41, var_111, adj_tri_f, adj_41, adj_111); df::adj_mul(var_107, var_110, adj_107, adj_110, adj_111); df::adj_index(var_51, var_13, adj_51, adj_13, adj_110); df::adj_atomic_add(var_tri_f, var_38, var_109, adj_tri_f, adj_38, adj_109); df::adj_mul(var_107, var_108, adj_107, adj_108, adj_109); df::adj_index(var_51, var_9, adj_51, adj_9, adj_108); df::adj_add(var_106, var_104, adj_106, adj_104, adj_107); df::adj_mul(var_62, var_105, adj_62, adj_105, adj_106); df::adj_add(var_67, var_84, adj_67, adj_84, adj_105); df::adj_mul(var_101, var_103, adj_101, adj_103, adj_104); df::adj_sub(var_65, var_102, adj_65, adj_102, adj_103); df::adj_step(var_66, adj_66, adj_102); df::adj_add(var_99, var_100, adj_99, adj_100, adj_101); df::adj_mul(var_92, var_98, adj_92, adj_98, adj_100); df::adj_mul(var_90, var_95, adj_90, adj_95, adj_99); df::adj_clamp(var_97, var_86, var_87, adj_97, adj_86, adj_87, adj_98); df::adj_dot(var_96, var_79, adj_96, adj_79, adj_97); df::adj_mul(var_92, var_19, adj_92, adj_19, adj_96); df::adj_clamp(var_94, var_86, var_87, adj_94, adj_86, adj_87, adj_95); df::adj_dot(var_93, var_79, adj_93, adj_79, adj_94); df::adj_mul(var_90, var_19, adj_90, adj_19, adj_93); df::adj_cross(var_62, var_91, adj_62, adj_91, adj_92); df::adj_float3(var_88, var_65, var_65, adj_88, adj_65, adj_65, adj_91); df::adj_cross(var_62, var_89, adj_62, adj_89, adj_90); df::adj_float3(var_65, var_65, var_88, adj_65, adj_65, adj_88, adj_89); df::adj_sub(var_65, var_86, adj_65, adj_86, adj_87); df::adj_mul(var_23, var_85, adj_23, adj_85, adj_86); df::adj_add(var_67, var_84, adj_67, adj_84, adj_85); df::adj_sub(var_65, var_83, adj_65, adj_83, adj_84); df::adj_mul(var_81, var_82, adj_81, adj_82, adj_83); df::adj_step(var_66, adj_66, adj_82); df::adj_mul(var_80, var_15, adj_80, adj_15, adj_81); df::adj_max(var_77, var_65, adj_77, adj_65, adj_80); df::adj_sub(var_76, var_78, adj_76, adj_78, adj_79); df::adj_mul(var_62, var_77, adj_62, adj_77, adj_78); df::adj_dot(var_62, var_76, adj_62, adj_76, adj_77); df::adj_sub(var_75, var_35, adj_75, adj_35, adj_76); df::adj_add(var_72, var_74, adj_72, adj_74, adj_75); df::adj_mul(var_50, var_73, adj_50, adj_73, adj_74); df::adj_index(var_51, var_17, adj_51, adj_17, adj_73); df::adj_add(var_69, var_71, adj_69, adj_71, adj_72); df::adj_mul(var_49, var_70, adj_49, adj_70, adj_71); df::adj_index(var_51, var_13, adj_51, adj_13, adj_70); df::adj_mul(var_48, var_68, adj_48, adj_68, adj_69); df::adj_index(var_51, var_9, adj_51, adj_9, adj_68); df::adj_mul(var_66, var_11, adj_66, adj_11, adj_67); df::adj_min(var_64, var_65, adj_64, adj_65, adj_66); df::adj_sub(var_61, var_63, adj_61, adj_63, adj_64); df::adj_normalize(var_60, adj_60, adj_62); df::adj_dot(var_60, var_60, adj_60, adj_60, adj_61); df::adj_sub(var_33, var_59, adj_33, adj_59, adj_60); df::adj_add(var_56, var_58, adj_56, adj_58, adj_59); df::adj_mul(var_47, var_57, adj_47, adj_57, adj_58); df::adj_index(var_51, var_17, adj_51, adj_17, adj_57); df::adj_add(var_53, var_55, adj_53, adj_55, adj_56); df::adj_mul(var_46, var_54, adj_46, adj_54, adj_55); df::adj_index(var_51, var_13, adj_51, adj_13, adj_54); df::adj_mul(var_45, var_52, adj_45, adj_52, adj_53); df::adj_index(var_51, var_9, adj_51, adj_9, adj_52); adj_triangle_closest_point_barycentric_cpu_func(var_45, var_46, var_47, var_33, adj_45, adj_46, adj_47, adj_33, adj_51); df::adj_load(var_v, var_44, adj_v, adj_44, adj_50); df::adj_load(var_v, var_41, adj_v, adj_41, adj_49); df::adj_load(var_v, var_38, adj_v, adj_38, adj_48); df::adj_load(var_x, var_44, adj_x, adj_44, adj_47); df::adj_load(var_x, var_41, adj_x, adj_41, adj_46); df::adj_load(var_x, var_38, adj_x, adj_38, adj_45); df::adj_load(var_indices, var_43, adj_indices, adj_43, adj_44); df::adj_add(var_42, var_17, adj_42, adj_17, adj_43); df::adj_mul(var_1, var_21, adj_1, adj_21, adj_42); df::adj_load(var_indices, var_40, adj_indices, adj_40, adj_41); df::adj_add(var_39, var_13, adj_39, adj_13, adj_40); df::adj_mul(var_1, var_21, adj_1, adj_21, adj_39); df::adj_load(var_indices, var_37, adj_indices, adj_37, adj_38); df::adj_add(var_36, var_9, adj_36, adj_9, adj_37); df::adj_mul(var_1, var_21, adj_1, adj_21, adj_36); df::adj_add(var_26, var_34, adj_26, adj_34, adj_35); df::adj_cross(var_27, var_30, adj_27, adj_30, adj_34); df::adj_add(var_29, var_32, adj_29, adj_32, adj_33); df::adj_mul(var_31, var_5, adj_31, adj_5, adj_32); df::adj_normalize(var_30, adj_30, adj_31); df::adj_sub(var_29, var_24, adj_29, adj_24, adj_30); df::adj_add(var_24, var_28, adj_24, adj_28, adj_29); df::adj_rotate(var_25, var_4, adj_25, adj_4, adj_28); df::adj_load(var_rigid_w, var_3, adj_rigid_w, adj_3, adj_27); df::adj_load(var_rigid_v, var_3, adj_rigid_v, adj_3, adj_26); df::adj_load(var_rigid_r, var_3, adj_rigid_r, adj_3, adj_25); df::adj_load(var_rigid_x, var_3, adj_rigid_x, adj_3, adj_24); df::adj_load(var_materials, var_22, adj_materials, adj_22, adj_23); df::adj_add(var_20, var_21, adj_20, adj_21, adj_22); df::adj_mul(var_6, var_7, adj_6, adj_7, adj_20); df::adj_load(var_materials, var_18, adj_materials, adj_18, adj_19); df::adj_add(var_16, var_17, adj_16, adj_17, adj_18); df::adj_mul(var_6, var_7, adj_6, adj_7, adj_16); df::adj_load(var_materials, var_14, adj_materials, adj_14, adj_15); df::adj_add(var_12, var_13, adj_12, adj_13, adj_14); df::adj_mul(var_6, var_7, adj_6, adj_7, adj_12); df::adj_load(var_materials, var_10, adj_materials, adj_10, adj_11); df::adj_add(var_8, var_9, adj_8, adj_9, adj_10); df::adj_mul(var_6, var_7, adj_6, adj_7, adj_8); df::adj_load(var_contact_mat, var_2, adj_contact_mat, adj_2, adj_6); df::adj_load(var_contact_dist, var_2, adj_contact_dist, adj_2, adj_5); df::adj_load(var_contact_point, var_2, adj_contact_point, adj_2, adj_4); df::adj_load(var_contact_body, var_2, adj_contact_body, adj_2, adj_3); df::adj_mod(var_0, var_num_particles, adj_0, adj_num_particles, adj_2); df::adj_div(var_0, var_num_particles, adj_0, adj_num_particles, adj_1); return; } // Python entry points void eval_triangles_rigid_contacts_cpu_forward(int dim, int var_num_particles, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_tri_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_triangles_rigid_contacts_cpu_kernel_forward( var_num_particles, cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<df::float3*>(var_rigid_x), cast<quat*>(var_rigid_r), cast<df::float3*>(var_rigid_v), cast<df::float3*>(var_rigid_w), cast<int*>(var_contact_body), cast<df::float3*>(var_contact_point), cast<float*>(var_contact_dist), cast<int*>(var_contact_mat), cast<float*>(var_materials), cast<df::float3*>(var_tri_f)); } } void eval_triangles_rigid_contacts_cpu_backward(int dim, int var_num_particles, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_tri_f, int adj_num_particles, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_rigid_x, torch::Tensor adj_rigid_r, torch::Tensor adj_rigid_v, torch::Tensor adj_rigid_w, torch::Tensor adj_contact_body, torch::Tensor adj_contact_point, torch::Tensor adj_contact_dist, torch::Tensor adj_contact_mat, torch::Tensor adj_materials, torch::Tensor adj_tri_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_triangles_rigid_contacts_cpu_kernel_backward( var_num_particles, cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<df::float3*>(var_rigid_x), cast<quat*>(var_rigid_r), cast<df::float3*>(var_rigid_v), cast<df::float3*>(var_rigid_w), cast<int*>(var_contact_body), cast<df::float3*>(var_contact_point), cast<float*>(var_contact_dist), cast<int*>(var_contact_mat), cast<float*>(var_materials), cast<df::float3*>(var_tri_f), adj_num_particles, cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<int*>(adj_indices), cast<df::float3*>(adj_rigid_x), cast<quat*>(adj_rigid_r), cast<df::float3*>(adj_rigid_v), cast<df::float3*>(adj_rigid_w), cast<int*>(adj_contact_body), cast<df::float3*>(adj_contact_point), cast<float*>(adj_contact_dist), cast<int*>(adj_contact_mat), cast<float*>(adj_materials), cast<df::float3*>(adj_tri_f)); } } // Python entry points void eval_triangles_rigid_contacts_cpu_forward(int dim, int var_num_particles, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_tri_f); void eval_triangles_rigid_contacts_cpu_backward(int dim, int var_num_particles, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_tri_f, int adj_num_particles, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_rigid_x, torch::Tensor adj_rigid_r, torch::Tensor adj_rigid_v, torch::Tensor adj_rigid_w, torch::Tensor adj_contact_body, torch::Tensor adj_contact_point, torch::Tensor adj_contact_dist, torch::Tensor adj_contact_mat, torch::Tensor adj_materials, torch::Tensor adj_tri_f); void eval_bending_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, int* var_indices, float* var_rest, float var_ke, float var_kd, df::float3* var_f) { //--------- // primal vars int var_0; const int var_1 = 4; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; int var_10; const int var_11 = 2; int var_12; int var_13; int var_14; const int var_15 = 3; int var_16; int var_17; float var_18; df::float3 var_19; df::float3 var_20; df::float3 var_21; df::float3 var_22; df::float3 var_23; df::float3 var_24; df::float3 var_25; df::float3 var_26; df::float3 var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; float var_33; float var_34; const float var_35 = 1.0; float var_36; float var_37; float var_38; float var_39; float var_40; df::float3 var_41; df::float3 var_42; df::float3 var_43; df::float3 var_44; df::float3 var_45; df::float3 var_46; float var_47; df::float3 var_48; float var_49; float var_50; float var_51; float var_52; df::float3 var_53; df::float3 var_54; df::float3 var_55; float var_56; df::float3 var_57; df::float3 var_58; float var_59; df::float3 var_60; df::float3 var_61; df::float3 var_62; float var_63; df::float3 var_64; df::float3 var_65; float var_66; df::float3 var_67; df::float3 var_68; float var_69; float var_70; float var_71; float var_72; float var_73; float var_74; float var_75; float var_76; float var_77; float var_78; const float var_79 = 0.0; float var_80; float var_81; float var_82; df::float3 var_83; df::float3 var_84; df::float3 var_85; df::float3 var_86; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_indices, var_8); var_10 = df::mul(var_0, var_1); var_12 = df::add(var_10, var_11); var_13 = df::load(var_indices, var_12); var_14 = df::mul(var_0, var_1); var_16 = df::add(var_14, var_15); var_17 = df::load(var_indices, var_16); var_18 = df::load(var_rest, var_0); var_19 = df::load(var_x, var_5); var_20 = df::load(var_x, var_9); var_21 = df::load(var_x, var_13); var_22 = df::load(var_x, var_17); var_23 = df::load(var_v, var_5); var_24 = df::load(var_v, var_9); var_25 = df::load(var_v, var_13); var_26 = df::load(var_v, var_17); var_27 = df::sub(var_21, var_19); var_28 = df::sub(var_22, var_19); var_29 = df::cross(var_27, var_28); var_30 = df::sub(var_22, var_20); var_31 = df::sub(var_21, var_20); var_32 = df::cross(var_30, var_31); var_33 = df::length(var_29); var_34 = df::length(var_32); var_36 = df::div(var_35, var_33); var_37 = df::div(var_35, var_34); var_38 = df::dot(var_29, var_32); var_39 = df::mul(var_38, var_36); var_40 = df::mul(var_39, var_37); var_41 = df::mul(var_29, var_36); var_42 = df::mul(var_41, var_36); var_43 = df::mul(var_32, var_37); var_44 = df::mul(var_43, var_37); var_45 = df::sub(var_22, var_21); var_46 = df::normalize(var_45); var_47 = df::length(var_45); var_48 = df::cross(var_44, var_42); var_49 = df::dot(var_48, var_46); var_50 = df::sign(var_49); var_51 = df::acos(var_40); var_52 = df::mul(var_51, var_50); var_53 = df::mul(var_42, var_47); var_54 = df::mul(var_44, var_47); var_55 = df::sub(var_19, var_22); var_56 = df::dot(var_55, var_46); var_57 = df::mul(var_42, var_56); var_58 = df::sub(var_20, var_22); var_59 = df::dot(var_58, var_46); var_60 = df::mul(var_44, var_59); var_61 = df::add(var_57, var_60); var_62 = df::sub(var_21, var_19); var_63 = df::dot(var_62, var_46); var_64 = df::mul(var_42, var_63); var_65 = df::sub(var_21, var_20); var_66 = df::dot(var_65, var_46); var_67 = df::mul(var_44, var_66); var_68 = df::add(var_64, var_67); var_69 = df::sub(var_52, var_18); var_70 = df::mul(var_ke, var_69); var_71 = df::dot(var_53, var_23); var_72 = df::dot(var_54, var_24); var_73 = df::add(var_71, var_72); var_74 = df::dot(var_61, var_25); var_75 = df::add(var_73, var_74); var_76 = df::dot(var_68, var_26); var_77 = df::add(var_75, var_76); var_78 = df::mul(var_kd, var_77); var_80 = df::add(var_70, var_78); var_81 = df::mul(var_47, var_80); var_82 = df::sub(var_79, var_81); var_83 = df::mul(var_53, var_82); df::atomic_add(var_f, var_5, var_83); var_84 = df::mul(var_54, var_82); df::atomic_add(var_f, var_9, var_84); var_85 = df::mul(var_61, var_82); df::atomic_add(var_f, var_13, var_85); var_86 = df::mul(var_68, var_82); df::atomic_add(var_f, var_17, var_86); } void eval_bending_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, int* var_indices, float* var_rest, float var_ke, float var_kd, df::float3* var_f, df::float3* adj_x, df::float3* adj_v, int* adj_indices, float* adj_rest, float adj_ke, float adj_kd, df::float3* adj_f) { //--------- // primal vars int var_0; const int var_1 = 4; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; int var_10; const int var_11 = 2; int var_12; int var_13; int var_14; const int var_15 = 3; int var_16; int var_17; float var_18; df::float3 var_19; df::float3 var_20; df::float3 var_21; df::float3 var_22; df::float3 var_23; df::float3 var_24; df::float3 var_25; df::float3 var_26; df::float3 var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; float var_33; float var_34; const float var_35 = 1.0; float var_36; float var_37; float var_38; float var_39; float var_40; df::float3 var_41; df::float3 var_42; df::float3 var_43; df::float3 var_44; df::float3 var_45; df::float3 var_46; float var_47; df::float3 var_48; float var_49; float var_50; float var_51; float var_52; df::float3 var_53; df::float3 var_54; df::float3 var_55; float var_56; df::float3 var_57; df::float3 var_58; float var_59; df::float3 var_60; df::float3 var_61; df::float3 var_62; float var_63; df::float3 var_64; df::float3 var_65; float var_66; df::float3 var_67; df::float3 var_68; float var_69; float var_70; float var_71; float var_72; float var_73; float var_74; float var_75; float var_76; float var_77; float var_78; const float var_79 = 0.0; float var_80; float var_81; float var_82; df::float3 var_83; df::float3 var_84; df::float3 var_85; df::float3 var_86; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; int adj_9 = 0; int adj_10 = 0; int adj_11 = 0; int adj_12 = 0; int adj_13 = 0; int adj_14 = 0; int adj_15 = 0; int adj_16 = 0; int adj_17 = 0; float adj_18 = 0; df::float3 adj_19 = 0; df::float3 adj_20 = 0; df::float3 adj_21 = 0; df::float3 adj_22 = 0; df::float3 adj_23 = 0; df::float3 adj_24 = 0; df::float3 adj_25 = 0; df::float3 adj_26 = 0; df::float3 adj_27 = 0; df::float3 adj_28 = 0; df::float3 adj_29 = 0; df::float3 adj_30 = 0; df::float3 adj_31 = 0; df::float3 adj_32 = 0; float adj_33 = 0; float adj_34 = 0; float adj_35 = 0; float adj_36 = 0; float adj_37 = 0; float adj_38 = 0; float adj_39 = 0; float adj_40 = 0; df::float3 adj_41 = 0; df::float3 adj_42 = 0; df::float3 adj_43 = 0; df::float3 adj_44 = 0; df::float3 adj_45 = 0; df::float3 adj_46 = 0; float adj_47 = 0; df::float3 adj_48 = 0; float adj_49 = 0; float adj_50 = 0; float adj_51 = 0; float adj_52 = 0; df::float3 adj_53 = 0; df::float3 adj_54 = 0; df::float3 adj_55 = 0; float adj_56 = 0; df::float3 adj_57 = 0; df::float3 adj_58 = 0; float adj_59 = 0; df::float3 adj_60 = 0; df::float3 adj_61 = 0; df::float3 adj_62 = 0; float adj_63 = 0; df::float3 adj_64 = 0; df::float3 adj_65 = 0; float adj_66 = 0; df::float3 adj_67 = 0; df::float3 adj_68 = 0; float adj_69 = 0; float adj_70 = 0; float adj_71 = 0; float adj_72 = 0; float adj_73 = 0; float adj_74 = 0; float adj_75 = 0; float adj_76 = 0; float adj_77 = 0; float adj_78 = 0; float adj_79 = 0; float adj_80 = 0; float adj_81 = 0; float adj_82 = 0; df::float3 adj_83 = 0; df::float3 adj_84 = 0; df::float3 adj_85 = 0; df::float3 adj_86 = 0; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_indices, var_8); var_10 = df::mul(var_0, var_1); var_12 = df::add(var_10, var_11); var_13 = df::load(var_indices, var_12); var_14 = df::mul(var_0, var_1); var_16 = df::add(var_14, var_15); var_17 = df::load(var_indices, var_16); var_18 = df::load(var_rest, var_0); var_19 = df::load(var_x, var_5); var_20 = df::load(var_x, var_9); var_21 = df::load(var_x, var_13); var_22 = df::load(var_x, var_17); var_23 = df::load(var_v, var_5); var_24 = df::load(var_v, var_9); var_25 = df::load(var_v, var_13); var_26 = df::load(var_v, var_17); var_27 = df::sub(var_21, var_19); var_28 = df::sub(var_22, var_19); var_29 = df::cross(var_27, var_28); var_30 = df::sub(var_22, var_20); var_31 = df::sub(var_21, var_20); var_32 = df::cross(var_30, var_31); var_33 = df::length(var_29); var_34 = df::length(var_32); var_36 = df::div(var_35, var_33); var_37 = df::div(var_35, var_34); var_38 = df::dot(var_29, var_32); var_39 = df::mul(var_38, var_36); var_40 = df::mul(var_39, var_37); var_41 = df::mul(var_29, var_36); var_42 = df::mul(var_41, var_36); var_43 = df::mul(var_32, var_37); var_44 = df::mul(var_43, var_37); var_45 = df::sub(var_22, var_21); var_46 = df::normalize(var_45); var_47 = df::length(var_45); var_48 = df::cross(var_44, var_42); var_49 = df::dot(var_48, var_46); var_50 = df::sign(var_49); var_51 = df::acos(var_40); var_52 = df::mul(var_51, var_50); var_53 = df::mul(var_42, var_47); var_54 = df::mul(var_44, var_47); var_55 = df::sub(var_19, var_22); var_56 = df::dot(var_55, var_46); var_57 = df::mul(var_42, var_56); var_58 = df::sub(var_20, var_22); var_59 = df::dot(var_58, var_46); var_60 = df::mul(var_44, var_59); var_61 = df::add(var_57, var_60); var_62 = df::sub(var_21, var_19); var_63 = df::dot(var_62, var_46); var_64 = df::mul(var_42, var_63); var_65 = df::sub(var_21, var_20); var_66 = df::dot(var_65, var_46); var_67 = df::mul(var_44, var_66); var_68 = df::add(var_64, var_67); var_69 = df::sub(var_52, var_18); var_70 = df::mul(var_ke, var_69); var_71 = df::dot(var_53, var_23); var_72 = df::dot(var_54, var_24); var_73 = df::add(var_71, var_72); var_74 = df::dot(var_61, var_25); var_75 = df::add(var_73, var_74); var_76 = df::dot(var_68, var_26); var_77 = df::add(var_75, var_76); var_78 = df::mul(var_kd, var_77); var_80 = df::add(var_70, var_78); var_81 = df::mul(var_47, var_80); var_82 = df::sub(var_79, var_81); var_83 = df::mul(var_53, var_82); df::atomic_add(var_f, var_5, var_83); var_84 = df::mul(var_54, var_82); df::atomic_add(var_f, var_9, var_84); var_85 = df::mul(var_61, var_82); df::atomic_add(var_f, var_13, var_85); var_86 = df::mul(var_68, var_82); df::atomic_add(var_f, var_17, var_86); //--------- // reverse df::adj_atomic_add(var_f, var_17, var_86, adj_f, adj_17, adj_86); df::adj_mul(var_68, var_82, adj_68, adj_82, adj_86); df::adj_atomic_add(var_f, var_13, var_85, adj_f, adj_13, adj_85); df::adj_mul(var_61, var_82, adj_61, adj_82, adj_85); df::adj_atomic_add(var_f, var_9, var_84, adj_f, adj_9, adj_84); df::adj_mul(var_54, var_82, adj_54, adj_82, adj_84); df::adj_atomic_add(var_f, var_5, var_83, adj_f, adj_5, adj_83); df::adj_mul(var_53, var_82, adj_53, adj_82, adj_83); df::adj_sub(var_79, var_81, adj_79, adj_81, adj_82); df::adj_mul(var_47, var_80, adj_47, adj_80, adj_81); df::adj_add(var_70, var_78, adj_70, adj_78, adj_80); df::adj_mul(var_kd, var_77, adj_kd, adj_77, adj_78); df::adj_add(var_75, var_76, adj_75, adj_76, adj_77); df::adj_dot(var_68, var_26, adj_68, adj_26, adj_76); df::adj_add(var_73, var_74, adj_73, adj_74, adj_75); df::adj_dot(var_61, var_25, adj_61, adj_25, adj_74); df::adj_add(var_71, var_72, adj_71, adj_72, adj_73); df::adj_dot(var_54, var_24, adj_54, adj_24, adj_72); df::adj_dot(var_53, var_23, adj_53, adj_23, adj_71); df::adj_mul(var_ke, var_69, adj_ke, adj_69, adj_70); df::adj_sub(var_52, var_18, adj_52, adj_18, adj_69); df::adj_add(var_64, var_67, adj_64, adj_67, adj_68); df::adj_mul(var_44, var_66, adj_44, adj_66, adj_67); df::adj_dot(var_65, var_46, adj_65, adj_46, adj_66); df::adj_sub(var_21, var_20, adj_21, adj_20, adj_65); df::adj_mul(var_42, var_63, adj_42, adj_63, adj_64); df::adj_dot(var_62, var_46, adj_62, adj_46, adj_63); df::adj_sub(var_21, var_19, adj_21, adj_19, adj_62); df::adj_add(var_57, var_60, adj_57, adj_60, adj_61); df::adj_mul(var_44, var_59, adj_44, adj_59, adj_60); df::adj_dot(var_58, var_46, adj_58, adj_46, adj_59); df::adj_sub(var_20, var_22, adj_20, adj_22, adj_58); df::adj_mul(var_42, var_56, adj_42, adj_56, adj_57); df::adj_dot(var_55, var_46, adj_55, adj_46, adj_56); df::adj_sub(var_19, var_22, adj_19, adj_22, adj_55); df::adj_mul(var_44, var_47, adj_44, adj_47, adj_54); df::adj_mul(var_42, var_47, adj_42, adj_47, adj_53); df::adj_mul(var_51, var_50, adj_51, adj_50, adj_52); df::adj_acos(var_40, adj_40, adj_51); df::adj_sign(var_49, adj_49, adj_50); df::adj_dot(var_48, var_46, adj_48, adj_46, adj_49); df::adj_cross(var_44, var_42, adj_44, adj_42, adj_48); df::adj_length(var_45, adj_45, adj_47); df::adj_normalize(var_45, adj_45, adj_46); df::adj_sub(var_22, var_21, adj_22, adj_21, adj_45); df::adj_mul(var_43, var_37, adj_43, adj_37, adj_44); df::adj_mul(var_32, var_37, adj_32, adj_37, adj_43); df::adj_mul(var_41, var_36, adj_41, adj_36, adj_42); df::adj_mul(var_29, var_36, adj_29, adj_36, adj_41); df::adj_mul(var_39, var_37, adj_39, adj_37, adj_40); df::adj_mul(var_38, var_36, adj_38, adj_36, adj_39); df::adj_dot(var_29, var_32, adj_29, adj_32, adj_38); df::adj_div(var_35, var_34, adj_35, adj_34, adj_37); df::adj_div(var_35, var_33, adj_35, adj_33, adj_36); df::adj_length(var_32, adj_32, adj_34); df::adj_length(var_29, adj_29, adj_33); df::adj_cross(var_30, var_31, adj_30, adj_31, adj_32); df::adj_sub(var_21, var_20, adj_21, adj_20, adj_31); df::adj_sub(var_22, var_20, adj_22, adj_20, adj_30); df::adj_cross(var_27, var_28, adj_27, adj_28, adj_29); df::adj_sub(var_22, var_19, adj_22, adj_19, adj_28); df::adj_sub(var_21, var_19, adj_21, adj_19, adj_27); df::adj_load(var_v, var_17, adj_v, adj_17, adj_26); df::adj_load(var_v, var_13, adj_v, adj_13, adj_25); df::adj_load(var_v, var_9, adj_v, adj_9, adj_24); df::adj_load(var_v, var_5, adj_v, adj_5, adj_23); df::adj_load(var_x, var_17, adj_x, adj_17, adj_22); df::adj_load(var_x, var_13, adj_x, adj_13, adj_21); df::adj_load(var_x, var_9, adj_x, adj_9, adj_20); df::adj_load(var_x, var_5, adj_x, adj_5, adj_19); df::adj_load(var_rest, var_0, adj_rest, adj_0, adj_18); df::adj_load(var_indices, var_16, adj_indices, adj_16, adj_17); df::adj_add(var_14, var_15, adj_14, adj_15, adj_16); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_14); df::adj_load(var_indices, var_12, adj_indices, adj_12, adj_13); df::adj_add(var_10, var_11, adj_10, adj_11, adj_12); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_10); df::adj_load(var_indices, var_8, adj_indices, adj_8, adj_9); df::adj_add(var_6, var_7, adj_6, adj_7, adj_8); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_6); df::adj_load(var_indices, var_4, adj_indices, adj_4, adj_5); df::adj_add(var_2, var_3, adj_2, adj_3, adj_4); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_2); return; } // Python entry points void eval_bending_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_rest, float var_ke, float var_kd, torch::Tensor var_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_bending_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<float*>(var_rest), var_ke, var_kd, cast<df::float3*>(var_f)); } } void eval_bending_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_rest, float var_ke, float var_kd, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_rest, float adj_ke, float adj_kd, torch::Tensor adj_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_bending_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<float*>(var_rest), var_ke, var_kd, cast<df::float3*>(var_f), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<int*>(adj_indices), cast<float*>(adj_rest), adj_ke, adj_kd, cast<df::float3*>(adj_f)); } } // Python entry points void eval_bending_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_rest, float var_ke, float var_kd, torch::Tensor var_f); void eval_bending_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_rest, float var_ke, float var_kd, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_rest, float adj_ke, float adj_kd, torch::Tensor adj_f); void eval_tetrahedra_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, int* var_indices, mat33* var_pose, float* var_activation, float* var_materials, df::float3* var_f) { //--------- // primal vars int var_0; const int var_1 = 4; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; int var_10; const int var_11 = 2; int var_12; int var_13; int var_14; const int var_15 = 3; int var_16; int var_17; float var_18; int var_19; int var_20; float var_21; int var_22; int var_23; float var_24; int var_25; int var_26; float var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; df::float3 var_35; df::float3 var_36; df::float3 var_37; df::float3 var_38; df::float3 var_39; df::float3 var_40; df::float3 var_41; mat33 var_42; mat33 var_43; float var_44; const float var_45 = 6.0; float var_46; const float var_47 = 1.0; float var_48; float var_49; float var_50; const float var_51 = 4.0; float var_52; float var_53; float var_54; float var_55; float var_56; float var_57; mat33 var_58; mat33 var_59; mat33 var_60; float var_61; float var_62; float var_63; df::float3 var_64; float var_65; float var_66; float var_67; df::float3 var_68; float var_69; float var_70; float var_71; df::float3 var_72; float var_73; float var_74; float var_75; float var_76; float var_77; mat33 var_78; float var_79; float var_80; float var_81; mat33 var_82; mat33 var_83; mat33 var_84; mat33 var_85; mat33 var_86; float var_87; float var_88; float var_89; df::float3 var_90; float var_91; float var_92; float var_93; df::float3 var_94; float var_95; float var_96; float var_97; df::float3 var_98; float var_99; float var_100; df::float3 var_101; df::float3 var_102; df::float3 var_103; df::float3 var_104; df::float3 var_105; df::float3 var_106; float var_107; float var_108; float var_109; float var_110; float var_111; float var_112; float var_113; float var_114; float var_115; float var_116; df::float3 var_117; df::float3 var_118; df::float3 var_119; df::float3 var_120; df::float3 var_121; df::float3 var_122; df::float3 var_123; df::float3 var_124; const float var_125 = 0.0; float var_126; df::float3 var_127; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_indices, var_8); var_10 = df::mul(var_0, var_1); var_12 = df::add(var_10, var_11); var_13 = df::load(var_indices, var_12); var_14 = df::mul(var_0, var_1); var_16 = df::add(var_14, var_15); var_17 = df::load(var_indices, var_16); var_18 = df::load(var_activation, var_0); var_19 = df::mul(var_0, var_15); var_20 = df::add(var_19, var_3); var_21 = df::load(var_materials, var_20); var_22 = df::mul(var_0, var_15); var_23 = df::add(var_22, var_7); var_24 = df::load(var_materials, var_23); var_25 = df::mul(var_0, var_15); var_26 = df::add(var_25, var_11); var_27 = df::load(var_materials, var_26); var_28 = df::load(var_x, var_5); var_29 = df::load(var_x, var_9); var_30 = df::load(var_x, var_13); var_31 = df::load(var_x, var_17); var_32 = df::load(var_v, var_5); var_33 = df::load(var_v, var_9); var_34 = df::load(var_v, var_13); var_35 = df::load(var_v, var_17); var_36 = df::sub(var_29, var_28); var_37 = df::sub(var_30, var_28); var_38 = df::sub(var_31, var_28); var_39 = df::sub(var_33, var_32); var_40 = df::sub(var_34, var_32); var_41 = df::sub(var_35, var_32); var_42 = df::mat33(var_36, var_37, var_38); var_43 = df::load(var_pose, var_0); var_44 = df::determinant(var_43); var_46 = df::mul(var_44, var_45); var_48 = df::div(var_47, var_46); var_49 = df::div(var_21, var_24); var_50 = df::add(var_47, var_49); var_52 = df::mul(var_51, var_24); var_53 = df::div(var_21, var_52); var_54 = df::sub(var_50, var_53); var_55 = df::mul(var_21, var_48); var_56 = df::mul(var_24, var_48); var_57 = df::mul(var_27, var_48); var_58 = df::mul(var_42, var_43); var_59 = df::mat33(var_39, var_40, var_41); var_60 = df::mul(var_59, var_43); var_61 = df::index(var_58, var_3, var_3); var_62 = df::index(var_58, var_7, var_3); var_63 = df::index(var_58, var_11, var_3); var_64 = df::float3(var_61, var_62, var_63); var_65 = df::index(var_58, var_3, var_7); var_66 = df::index(var_58, var_7, var_7); var_67 = df::index(var_58, var_11, var_7); var_68 = df::float3(var_65, var_66, var_67); var_69 = df::index(var_58, var_3, var_11); var_70 = df::index(var_58, var_7, var_11); var_71 = df::index(var_58, var_11, var_11); var_72 = df::float3(var_69, var_70, var_71); var_73 = df::dot(var_64, var_64); var_74 = df::dot(var_68, var_68); var_75 = df::add(var_73, var_74); var_76 = df::dot(var_72, var_72); var_77 = df::add(var_75, var_76); var_78 = df::mul(var_58, var_55); var_79 = df::add(var_77, var_47); var_80 = df::div(var_47, var_79); var_81 = df::sub(var_47, var_80); var_82 = df::mul(var_78, var_81); var_83 = df::mul(var_60, var_57); var_84 = df::add(var_82, var_83); var_85 = df::transpose(var_43); var_86 = df::mul(var_84, var_85); var_87 = df::index(var_86, var_3, var_3); var_88 = df::index(var_86, var_7, var_3); var_89 = df::index(var_86, var_11, var_3); var_90 = df::float3(var_87, var_88, var_89); var_91 = df::index(var_86, var_3, var_7); var_92 = df::index(var_86, var_7, var_7); var_93 = df::index(var_86, var_11, var_7); var_94 = df::float3(var_91, var_92, var_93); var_95 = df::index(var_86, var_3, var_11); var_96 = df::index(var_86, var_7, var_11); var_97 = df::index(var_86, var_11, var_11); var_98 = df::float3(var_95, var_96, var_97); var_99 = df::determinant(var_58); var_100 = df::div(var_46, var_45); var_101 = df::cross(var_37, var_38); var_102 = df::mul(var_101, var_100); var_103 = df::cross(var_38, var_36); var_104 = df::mul(var_103, var_100); var_105 = df::cross(var_36, var_37); var_106 = df::mul(var_105, var_100); var_107 = df::sub(var_99, var_54); var_108 = df::add(var_107, var_18); var_109 = df::mul(var_108, var_56); var_110 = df::dot(var_102, var_33); var_111 = df::dot(var_104, var_34); var_112 = df::add(var_110, var_111); var_113 = df::dot(var_106, var_35); var_114 = df::add(var_112, var_113); var_115 = df::mul(var_114, var_57); var_116 = df::add(var_109, var_115); var_117 = df::mul(var_102, var_116); var_118 = df::add(var_90, var_117); var_119 = df::mul(var_104, var_116); var_120 = df::add(var_94, var_119); var_121 = df::mul(var_106, var_116); var_122 = df::add(var_98, var_121); var_123 = df::add(var_118, var_120); var_124 = df::add(var_123, var_122); var_126 = df::sub(var_125, var_47); var_127 = df::mul(var_124, var_126); df::atomic_sub(var_f, var_5, var_127); df::atomic_sub(var_f, var_9, var_118); df::atomic_sub(var_f, var_13, var_120); df::atomic_sub(var_f, var_17, var_122); } void eval_tetrahedra_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, int* var_indices, mat33* var_pose, float* var_activation, float* var_materials, df::float3* var_f, df::float3* adj_x, df::float3* adj_v, int* adj_indices, mat33* adj_pose, float* adj_activation, float* adj_materials, df::float3* adj_f) { //--------- // primal vars int var_0; const int var_1 = 4; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; int var_10; const int var_11 = 2; int var_12; int var_13; int var_14; const int var_15 = 3; int var_16; int var_17; float var_18; int var_19; int var_20; float var_21; int var_22; int var_23; float var_24; int var_25; int var_26; float var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; df::float3 var_35; df::float3 var_36; df::float3 var_37; df::float3 var_38; df::float3 var_39; df::float3 var_40; df::float3 var_41; mat33 var_42; mat33 var_43; float var_44; const float var_45 = 6.0; float var_46; const float var_47 = 1.0; float var_48; float var_49; float var_50; const float var_51 = 4.0; float var_52; float var_53; float var_54; float var_55; float var_56; float var_57; mat33 var_58; mat33 var_59; mat33 var_60; float var_61; float var_62; float var_63; df::float3 var_64; float var_65; float var_66; float var_67; df::float3 var_68; float var_69; float var_70; float var_71; df::float3 var_72; float var_73; float var_74; float var_75; float var_76; float var_77; mat33 var_78; float var_79; float var_80; float var_81; mat33 var_82; mat33 var_83; mat33 var_84; mat33 var_85; mat33 var_86; float var_87; float var_88; float var_89; df::float3 var_90; float var_91; float var_92; float var_93; df::float3 var_94; float var_95; float var_96; float var_97; df::float3 var_98; float var_99; float var_100; df::float3 var_101; df::float3 var_102; df::float3 var_103; df::float3 var_104; df::float3 var_105; df::float3 var_106; float var_107; float var_108; float var_109; float var_110; float var_111; float var_112; float var_113; float var_114; float var_115; float var_116; df::float3 var_117; df::float3 var_118; df::float3 var_119; df::float3 var_120; df::float3 var_121; df::float3 var_122; df::float3 var_123; df::float3 var_124; const float var_125 = 0.0; float var_126; df::float3 var_127; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; int adj_9 = 0; int adj_10 = 0; int adj_11 = 0; int adj_12 = 0; int adj_13 = 0; int adj_14 = 0; int adj_15 = 0; int adj_16 = 0; int adj_17 = 0; float adj_18 = 0; int adj_19 = 0; int adj_20 = 0; float adj_21 = 0; int adj_22 = 0; int adj_23 = 0; float adj_24 = 0; int adj_25 = 0; int adj_26 = 0; float adj_27 = 0; df::float3 adj_28 = 0; df::float3 adj_29 = 0; df::float3 adj_30 = 0; df::float3 adj_31 = 0; df::float3 adj_32 = 0; df::float3 adj_33 = 0; df::float3 adj_34 = 0; df::float3 adj_35 = 0; df::float3 adj_36 = 0; df::float3 adj_37 = 0; df::float3 adj_38 = 0; df::float3 adj_39 = 0; df::float3 adj_40 = 0; df::float3 adj_41 = 0; mat33 adj_42 = 0; mat33 adj_43 = 0; float adj_44 = 0; float adj_45 = 0; float adj_46 = 0; float adj_47 = 0; float adj_48 = 0; float adj_49 = 0; float adj_50 = 0; float adj_51 = 0; float adj_52 = 0; float adj_53 = 0; float adj_54 = 0; float adj_55 = 0; float adj_56 = 0; float adj_57 = 0; mat33 adj_58 = 0; mat33 adj_59 = 0; mat33 adj_60 = 0; float adj_61 = 0; float adj_62 = 0; float adj_63 = 0; df::float3 adj_64 = 0; float adj_65 = 0; float adj_66 = 0; float adj_67 = 0; df::float3 adj_68 = 0; float adj_69 = 0; float adj_70 = 0; float adj_71 = 0; df::float3 adj_72 = 0; float adj_73 = 0; float adj_74 = 0; float adj_75 = 0; float adj_76 = 0; float adj_77 = 0; mat33 adj_78 = 0; float adj_79 = 0; float adj_80 = 0; float adj_81 = 0; mat33 adj_82 = 0; mat33 adj_83 = 0; mat33 adj_84 = 0; mat33 adj_85 = 0; mat33 adj_86 = 0; float adj_87 = 0; float adj_88 = 0; float adj_89 = 0; df::float3 adj_90 = 0; float adj_91 = 0; float adj_92 = 0; float adj_93 = 0; df::float3 adj_94 = 0; float adj_95 = 0; float adj_96 = 0; float adj_97 = 0; df::float3 adj_98 = 0; float adj_99 = 0; float adj_100 = 0; df::float3 adj_101 = 0; df::float3 adj_102 = 0; df::float3 adj_103 = 0; df::float3 adj_104 = 0; df::float3 adj_105 = 0; df::float3 adj_106 = 0; float adj_107 = 0; float adj_108 = 0; float adj_109 = 0; float adj_110 = 0; float adj_111 = 0; float adj_112 = 0; float adj_113 = 0; float adj_114 = 0; float adj_115 = 0; float adj_116 = 0; df::float3 adj_117 = 0; df::float3 adj_118 = 0; df::float3 adj_119 = 0; df::float3 adj_120 = 0; df::float3 adj_121 = 0; df::float3 adj_122 = 0; df::float3 adj_123 = 0; df::float3 adj_124 = 0; float adj_125 = 0; float adj_126 = 0; df::float3 adj_127 = 0; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_indices, var_8); var_10 = df::mul(var_0, var_1); var_12 = df::add(var_10, var_11); var_13 = df::load(var_indices, var_12); var_14 = df::mul(var_0, var_1); var_16 = df::add(var_14, var_15); var_17 = df::load(var_indices, var_16); var_18 = df::load(var_activation, var_0); var_19 = df::mul(var_0, var_15); var_20 = df::add(var_19, var_3); var_21 = df::load(var_materials, var_20); var_22 = df::mul(var_0, var_15); var_23 = df::add(var_22, var_7); var_24 = df::load(var_materials, var_23); var_25 = df::mul(var_0, var_15); var_26 = df::add(var_25, var_11); var_27 = df::load(var_materials, var_26); var_28 = df::load(var_x, var_5); var_29 = df::load(var_x, var_9); var_30 = df::load(var_x, var_13); var_31 = df::load(var_x, var_17); var_32 = df::load(var_v, var_5); var_33 = df::load(var_v, var_9); var_34 = df::load(var_v, var_13); var_35 = df::load(var_v, var_17); var_36 = df::sub(var_29, var_28); var_37 = df::sub(var_30, var_28); var_38 = df::sub(var_31, var_28); var_39 = df::sub(var_33, var_32); var_40 = df::sub(var_34, var_32); var_41 = df::sub(var_35, var_32); var_42 = df::mat33(var_36, var_37, var_38); var_43 = df::load(var_pose, var_0); var_44 = df::determinant(var_43); var_46 = df::mul(var_44, var_45); var_48 = df::div(var_47, var_46); var_49 = df::div(var_21, var_24); var_50 = df::add(var_47, var_49); var_52 = df::mul(var_51, var_24); var_53 = df::div(var_21, var_52); var_54 = df::sub(var_50, var_53); var_55 = df::mul(var_21, var_48); var_56 = df::mul(var_24, var_48); var_57 = df::mul(var_27, var_48); var_58 = df::mul(var_42, var_43); var_59 = df::mat33(var_39, var_40, var_41); var_60 = df::mul(var_59, var_43); var_61 = df::index(var_58, var_3, var_3); var_62 = df::index(var_58, var_7, var_3); var_63 = df::index(var_58, var_11, var_3); var_64 = df::float3(var_61, var_62, var_63); var_65 = df::index(var_58, var_3, var_7); var_66 = df::index(var_58, var_7, var_7); var_67 = df::index(var_58, var_11, var_7); var_68 = df::float3(var_65, var_66, var_67); var_69 = df::index(var_58, var_3, var_11); var_70 = df::index(var_58, var_7, var_11); var_71 = df::index(var_58, var_11, var_11); var_72 = df::float3(var_69, var_70, var_71); var_73 = df::dot(var_64, var_64); var_74 = df::dot(var_68, var_68); var_75 = df::add(var_73, var_74); var_76 = df::dot(var_72, var_72); var_77 = df::add(var_75, var_76); var_78 = df::mul(var_58, var_55); var_79 = df::add(var_77, var_47); var_80 = df::div(var_47, var_79); var_81 = df::sub(var_47, var_80); var_82 = df::mul(var_78, var_81); var_83 = df::mul(var_60, var_57); var_84 = df::add(var_82, var_83); var_85 = df::transpose(var_43); var_86 = df::mul(var_84, var_85); var_87 = df::index(var_86, var_3, var_3); var_88 = df::index(var_86, var_7, var_3); var_89 = df::index(var_86, var_11, var_3); var_90 = df::float3(var_87, var_88, var_89); var_91 = df::index(var_86, var_3, var_7); var_92 = df::index(var_86, var_7, var_7); var_93 = df::index(var_86, var_11, var_7); var_94 = df::float3(var_91, var_92, var_93); var_95 = df::index(var_86, var_3, var_11); var_96 = df::index(var_86, var_7, var_11); var_97 = df::index(var_86, var_11, var_11); var_98 = df::float3(var_95, var_96, var_97); var_99 = df::determinant(var_58); var_100 = df::div(var_46, var_45); var_101 = df::cross(var_37, var_38); var_102 = df::mul(var_101, var_100); var_103 = df::cross(var_38, var_36); var_104 = df::mul(var_103, var_100); var_105 = df::cross(var_36, var_37); var_106 = df::mul(var_105, var_100); var_107 = df::sub(var_99, var_54); var_108 = df::add(var_107, var_18); var_109 = df::mul(var_108, var_56); var_110 = df::dot(var_102, var_33); var_111 = df::dot(var_104, var_34); var_112 = df::add(var_110, var_111); var_113 = df::dot(var_106, var_35); var_114 = df::add(var_112, var_113); var_115 = df::mul(var_114, var_57); var_116 = df::add(var_109, var_115); var_117 = df::mul(var_102, var_116); var_118 = df::add(var_90, var_117); var_119 = df::mul(var_104, var_116); var_120 = df::add(var_94, var_119); var_121 = df::mul(var_106, var_116); var_122 = df::add(var_98, var_121); var_123 = df::add(var_118, var_120); var_124 = df::add(var_123, var_122); var_126 = df::sub(var_125, var_47); var_127 = df::mul(var_124, var_126); df::atomic_sub(var_f, var_5, var_127); df::atomic_sub(var_f, var_9, var_118); df::atomic_sub(var_f, var_13, var_120); df::atomic_sub(var_f, var_17, var_122); //--------- // reverse df::adj_atomic_sub(var_f, var_17, var_122, adj_f, adj_17, adj_122); df::adj_atomic_sub(var_f, var_13, var_120, adj_f, adj_13, adj_120); df::adj_atomic_sub(var_f, var_9, var_118, adj_f, adj_9, adj_118); df::adj_atomic_sub(var_f, var_5, var_127, adj_f, adj_5, adj_127); df::adj_mul(var_124, var_126, adj_124, adj_126, adj_127); df::adj_sub(var_125, var_47, adj_125, adj_47, adj_126); df::adj_add(var_123, var_122, adj_123, adj_122, adj_124); df::adj_add(var_118, var_120, adj_118, adj_120, adj_123); df::adj_add(var_98, var_121, adj_98, adj_121, adj_122); df::adj_mul(var_106, var_116, adj_106, adj_116, adj_121); df::adj_add(var_94, var_119, adj_94, adj_119, adj_120); df::adj_mul(var_104, var_116, adj_104, adj_116, adj_119); df::adj_add(var_90, var_117, adj_90, adj_117, adj_118); df::adj_mul(var_102, var_116, adj_102, adj_116, adj_117); df::adj_add(var_109, var_115, adj_109, adj_115, adj_116); df::adj_mul(var_114, var_57, adj_114, adj_57, adj_115); df::adj_add(var_112, var_113, adj_112, adj_113, adj_114); df::adj_dot(var_106, var_35, adj_106, adj_35, adj_113); df::adj_add(var_110, var_111, adj_110, adj_111, adj_112); df::adj_dot(var_104, var_34, adj_104, adj_34, adj_111); df::adj_dot(var_102, var_33, adj_102, adj_33, adj_110); df::adj_mul(var_108, var_56, adj_108, adj_56, adj_109); df::adj_add(var_107, var_18, adj_107, adj_18, adj_108); df::adj_sub(var_99, var_54, adj_99, adj_54, adj_107); df::adj_mul(var_105, var_100, adj_105, adj_100, adj_106); df::adj_cross(var_36, var_37, adj_36, adj_37, adj_105); df::adj_mul(var_103, var_100, adj_103, adj_100, adj_104); df::adj_cross(var_38, var_36, adj_38, adj_36, adj_103); df::adj_mul(var_101, var_100, adj_101, adj_100, adj_102); df::adj_cross(var_37, var_38, adj_37, adj_38, adj_101); df::adj_div(var_46, var_45, adj_46, adj_45, adj_100); df::adj_determinant(var_58, adj_58, adj_99); df::adj_float3(var_95, var_96, var_97, adj_95, adj_96, adj_97, adj_98); df::adj_index(var_86, var_11, var_11, adj_86, adj_11, adj_11, adj_97); df::adj_index(var_86, var_7, var_11, adj_86, adj_7, adj_11, adj_96); df::adj_index(var_86, var_3, var_11, adj_86, adj_3, adj_11, adj_95); df::adj_float3(var_91, var_92, var_93, adj_91, adj_92, adj_93, adj_94); df::adj_index(var_86, var_11, var_7, adj_86, adj_11, adj_7, adj_93); df::adj_index(var_86, var_7, var_7, adj_86, adj_7, adj_7, adj_92); df::adj_index(var_86, var_3, var_7, adj_86, adj_3, adj_7, adj_91); df::adj_float3(var_87, var_88, var_89, adj_87, adj_88, adj_89, adj_90); df::adj_index(var_86, var_11, var_3, adj_86, adj_11, adj_3, adj_89); df::adj_index(var_86, var_7, var_3, adj_86, adj_7, adj_3, adj_88); df::adj_index(var_86, var_3, var_3, adj_86, adj_3, adj_3, adj_87); df::adj_mul(var_84, var_85, adj_84, adj_85, adj_86); df::adj_transpose(var_43, adj_43, adj_85); df::adj_add(var_82, var_83, adj_82, adj_83, adj_84); df::adj_mul(var_60, var_57, adj_60, adj_57, adj_83); df::adj_mul(var_78, var_81, adj_78, adj_81, adj_82); df::adj_sub(var_47, var_80, adj_47, adj_80, adj_81); df::adj_div(var_47, var_79, adj_47, adj_79, adj_80); df::adj_add(var_77, var_47, adj_77, adj_47, adj_79); df::adj_mul(var_58, var_55, adj_58, adj_55, adj_78); df::adj_add(var_75, var_76, adj_75, adj_76, adj_77); df::adj_dot(var_72, var_72, adj_72, adj_72, adj_76); df::adj_add(var_73, var_74, adj_73, adj_74, adj_75); df::adj_dot(var_68, var_68, adj_68, adj_68, adj_74); df::adj_dot(var_64, var_64, adj_64, adj_64, adj_73); df::adj_float3(var_69, var_70, var_71, adj_69, adj_70, adj_71, adj_72); df::adj_index(var_58, var_11, var_11, adj_58, adj_11, adj_11, adj_71); df::adj_index(var_58, var_7, var_11, adj_58, adj_7, adj_11, adj_70); df::adj_index(var_58, var_3, var_11, adj_58, adj_3, adj_11, adj_69); df::adj_float3(var_65, var_66, var_67, adj_65, adj_66, adj_67, adj_68); df::adj_index(var_58, var_11, var_7, adj_58, adj_11, adj_7, adj_67); df::adj_index(var_58, var_7, var_7, adj_58, adj_7, adj_7, adj_66); df::adj_index(var_58, var_3, var_7, adj_58, adj_3, adj_7, adj_65); df::adj_float3(var_61, var_62, var_63, adj_61, adj_62, adj_63, adj_64); df::adj_index(var_58, var_11, var_3, adj_58, adj_11, adj_3, adj_63); df::adj_index(var_58, var_7, var_3, adj_58, adj_7, adj_3, adj_62); df::adj_index(var_58, var_3, var_3, adj_58, adj_3, adj_3, adj_61); df::adj_mul(var_59, var_43, adj_59, adj_43, adj_60); df::adj_mat33(var_39, var_40, var_41, adj_39, adj_40, adj_41, adj_59); df::adj_mul(var_42, var_43, adj_42, adj_43, adj_58); df::adj_mul(var_27, var_48, adj_27, adj_48, adj_57); df::adj_mul(var_24, var_48, adj_24, adj_48, adj_56); df::adj_mul(var_21, var_48, adj_21, adj_48, adj_55); df::adj_sub(var_50, var_53, adj_50, adj_53, adj_54); df::adj_div(var_21, var_52, adj_21, adj_52, adj_53); df::adj_mul(var_51, var_24, adj_51, adj_24, adj_52); df::adj_add(var_47, var_49, adj_47, adj_49, adj_50); df::adj_div(var_21, var_24, adj_21, adj_24, adj_49); df::adj_div(var_47, var_46, adj_47, adj_46, adj_48); df::adj_mul(var_44, var_45, adj_44, adj_45, adj_46); df::adj_determinant(var_43, adj_43, adj_44); df::adj_load(var_pose, var_0, adj_pose, adj_0, adj_43); df::adj_mat33(var_36, var_37, var_38, adj_36, adj_37, adj_38, adj_42); df::adj_sub(var_35, var_32, adj_35, adj_32, adj_41); df::adj_sub(var_34, var_32, adj_34, adj_32, adj_40); df::adj_sub(var_33, var_32, adj_33, adj_32, adj_39); df::adj_sub(var_31, var_28, adj_31, adj_28, adj_38); df::adj_sub(var_30, var_28, adj_30, adj_28, adj_37); df::adj_sub(var_29, var_28, adj_29, adj_28, adj_36); df::adj_load(var_v, var_17, adj_v, adj_17, adj_35); df::adj_load(var_v, var_13, adj_v, adj_13, adj_34); df::adj_load(var_v, var_9, adj_v, adj_9, adj_33); df::adj_load(var_v, var_5, adj_v, adj_5, adj_32); df::adj_load(var_x, var_17, adj_x, adj_17, adj_31); df::adj_load(var_x, var_13, adj_x, adj_13, adj_30); df::adj_load(var_x, var_9, adj_x, adj_9, adj_29); df::adj_load(var_x, var_5, adj_x, adj_5, adj_28); df::adj_load(var_materials, var_26, adj_materials, adj_26, adj_27); df::adj_add(var_25, var_11, adj_25, adj_11, adj_26); df::adj_mul(var_0, var_15, adj_0, adj_15, adj_25); df::adj_load(var_materials, var_23, adj_materials, adj_23, adj_24); df::adj_add(var_22, var_7, adj_22, adj_7, adj_23); df::adj_mul(var_0, var_15, adj_0, adj_15, adj_22); df::adj_load(var_materials, var_20, adj_materials, adj_20, adj_21); df::adj_add(var_19, var_3, adj_19, adj_3, adj_20); df::adj_mul(var_0, var_15, adj_0, adj_15, adj_19); df::adj_load(var_activation, var_0, adj_activation, adj_0, adj_18); df::adj_load(var_indices, var_16, adj_indices, adj_16, adj_17); df::adj_add(var_14, var_15, adj_14, adj_15, adj_16); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_14); df::adj_load(var_indices, var_12, adj_indices, adj_12, adj_13); df::adj_add(var_10, var_11, adj_10, adj_11, adj_12); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_10); df::adj_load(var_indices, var_8, adj_indices, adj_8, adj_9); df::adj_add(var_6, var_7, adj_6, adj_7, adj_8); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_6); df::adj_load(var_indices, var_4, adj_indices, adj_4, adj_5); df::adj_add(var_2, var_3, adj_2, adj_3, adj_4); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_2); return; } // Python entry points void eval_tetrahedra_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, torch::Tensor var_materials, torch::Tensor var_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_tetrahedra_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<mat33*>(var_pose), cast<float*>(var_activation), cast<float*>(var_materials), cast<df::float3*>(var_f)); } } void eval_tetrahedra_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, torch::Tensor var_materials, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_pose, torch::Tensor adj_activation, torch::Tensor adj_materials, torch::Tensor adj_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_tetrahedra_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<int*>(var_indices), cast<mat33*>(var_pose), cast<float*>(var_activation), cast<float*>(var_materials), cast<df::float3*>(var_f), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<int*>(adj_indices), cast<mat33*>(adj_pose), cast<float*>(adj_activation), cast<float*>(adj_materials), cast<df::float3*>(adj_f)); } } // Python entry points void eval_tetrahedra_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, torch::Tensor var_materials, torch::Tensor var_f); void eval_tetrahedra_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, torch::Tensor var_materials, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_indices, torch::Tensor adj_pose, torch::Tensor adj_activation, torch::Tensor adj_materials, torch::Tensor adj_f); void eval_contacts_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, float var_ke, float var_kd, float var_kf, float var_mu, df::float3* var_f) { //--------- // primal vars int var_0; df::float3 var_1; df::float3 var_2; const float var_3 = 0.0; const float var_4 = 1.0; df::float3 var_5; float var_6; const float var_7 = 0.01; float var_8; float var_9; float var_10; df::float3 var_11; df::float3 var_12; df::float3 var_13; df::float3 var_14; float var_15; df::float3 var_16; df::float3 var_17; float var_18; float var_19; float var_20; df::float3 var_21; float var_22; float var_23; df::float3 var_24; float var_25; float var_26; df::float3 var_27; df::float3 var_28; float var_29; df::float3 var_30; df::float3 var_31; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_x, var_0); var_2 = df::load(var_v, var_0); var_5 = df::float3(var_3, var_4, var_3); var_6 = df::dot(var_5, var_1); var_8 = df::sub(var_6, var_7); var_9 = df::min(var_8, var_3); var_10 = df::dot(var_5, var_2); var_11 = df::mul(var_5, var_10); var_12 = df::sub(var_2, var_11); var_13 = df::mul(var_5, var_9); var_14 = df::mul(var_13, var_ke); var_15 = df::min(var_10, var_3); var_16 = df::mul(var_5, var_15); var_17 = df::mul(var_16, var_kd); var_18 = df::mul(var_mu, var_9); var_19 = df::mul(var_18, var_ke); var_20 = df::sub(var_3, var_19); var_21 = df::float3(var_kf, var_3, var_3); var_22 = df::dot(var_21, var_12); var_23 = df::clamp(var_22, var_19, var_20); var_24 = df::float3(var_3, var_3, var_kf); var_25 = df::dot(var_24, var_12); var_26 = df::clamp(var_25, var_19, var_20); var_27 = df::float3(var_23, var_3, var_26); var_28 = df::add(var_17, var_27); var_29 = df::step(var_9); var_30 = df::mul(var_28, var_29); var_31 = df::add(var_14, var_30); df::atomic_sub(var_f, var_0, var_31); } void eval_contacts_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, float var_ke, float var_kd, float var_kf, float var_mu, df::float3* var_f, df::float3* adj_x, df::float3* adj_v, float adj_ke, float adj_kd, float adj_kf, float adj_mu, df::float3* adj_f) { //--------- // primal vars int var_0; df::float3 var_1; df::float3 var_2; const float var_3 = 0.0; const float var_4 = 1.0; df::float3 var_5; float var_6; const float var_7 = 0.01; float var_8; float var_9; float var_10; df::float3 var_11; df::float3 var_12; df::float3 var_13; df::float3 var_14; float var_15; df::float3 var_16; df::float3 var_17; float var_18; float var_19; float var_20; df::float3 var_21; float var_22; float var_23; df::float3 var_24; float var_25; float var_26; df::float3 var_27; df::float3 var_28; float var_29; df::float3 var_30; df::float3 var_31; //--------- // dual vars int adj_0 = 0; df::float3 adj_1 = 0; df::float3 adj_2 = 0; float adj_3 = 0; float adj_4 = 0; df::float3 adj_5 = 0; float adj_6 = 0; float adj_7 = 0; float adj_8 = 0; float adj_9 = 0; float adj_10 = 0; df::float3 adj_11 = 0; df::float3 adj_12 = 0; df::float3 adj_13 = 0; df::float3 adj_14 = 0; float adj_15 = 0; df::float3 adj_16 = 0; df::float3 adj_17 = 0; float adj_18 = 0; float adj_19 = 0; float adj_20 = 0; df::float3 adj_21 = 0; float adj_22 = 0; float adj_23 = 0; df::float3 adj_24 = 0; float adj_25 = 0; float adj_26 = 0; df::float3 adj_27 = 0; df::float3 adj_28 = 0; float adj_29 = 0; df::float3 adj_30 = 0; df::float3 adj_31 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_x, var_0); var_2 = df::load(var_v, var_0); var_5 = df::float3(var_3, var_4, var_3); var_6 = df::dot(var_5, var_1); var_8 = df::sub(var_6, var_7); var_9 = df::min(var_8, var_3); var_10 = df::dot(var_5, var_2); var_11 = df::mul(var_5, var_10); var_12 = df::sub(var_2, var_11); var_13 = df::mul(var_5, var_9); var_14 = df::mul(var_13, var_ke); var_15 = df::min(var_10, var_3); var_16 = df::mul(var_5, var_15); var_17 = df::mul(var_16, var_kd); var_18 = df::mul(var_mu, var_9); var_19 = df::mul(var_18, var_ke); var_20 = df::sub(var_3, var_19); var_21 = df::float3(var_kf, var_3, var_3); var_22 = df::dot(var_21, var_12); var_23 = df::clamp(var_22, var_19, var_20); var_24 = df::float3(var_3, var_3, var_kf); var_25 = df::dot(var_24, var_12); var_26 = df::clamp(var_25, var_19, var_20); var_27 = df::float3(var_23, var_3, var_26); var_28 = df::add(var_17, var_27); var_29 = df::step(var_9); var_30 = df::mul(var_28, var_29); var_31 = df::add(var_14, var_30); df::atomic_sub(var_f, var_0, var_31); //--------- // reverse df::adj_atomic_sub(var_f, var_0, var_31, adj_f, adj_0, adj_31); df::adj_add(var_14, var_30, adj_14, adj_30, adj_31); df::adj_mul(var_28, var_29, adj_28, adj_29, adj_30); df::adj_step(var_9, adj_9, adj_29); df::adj_add(var_17, var_27, adj_17, adj_27, adj_28); df::adj_float3(var_23, var_3, var_26, adj_23, adj_3, adj_26, adj_27); df::adj_clamp(var_25, var_19, var_20, adj_25, adj_19, adj_20, adj_26); df::adj_dot(var_24, var_12, adj_24, adj_12, adj_25); df::adj_float3(var_3, var_3, var_kf, adj_3, adj_3, adj_kf, adj_24); df::adj_clamp(var_22, var_19, var_20, adj_22, adj_19, adj_20, adj_23); df::adj_dot(var_21, var_12, adj_21, adj_12, adj_22); df::adj_float3(var_kf, var_3, var_3, adj_kf, adj_3, adj_3, adj_21); df::adj_sub(var_3, var_19, adj_3, adj_19, adj_20); df::adj_mul(var_18, var_ke, adj_18, adj_ke, adj_19); df::adj_mul(var_mu, var_9, adj_mu, adj_9, adj_18); df::adj_mul(var_16, var_kd, adj_16, adj_kd, adj_17); df::adj_mul(var_5, var_15, adj_5, adj_15, adj_16); df::adj_min(var_10, var_3, adj_10, adj_3, adj_15); df::adj_mul(var_13, var_ke, adj_13, adj_ke, adj_14); df::adj_mul(var_5, var_9, adj_5, adj_9, adj_13); df::adj_sub(var_2, var_11, adj_2, adj_11, adj_12); df::adj_mul(var_5, var_10, adj_5, adj_10, adj_11); df::adj_dot(var_5, var_2, adj_5, adj_2, adj_10); df::adj_min(var_8, var_3, adj_8, adj_3, adj_9); df::adj_sub(var_6, var_7, adj_6, adj_7, adj_8); df::adj_dot(var_5, var_1, adj_5, adj_1, adj_6); df::adj_float3(var_3, var_4, var_3, adj_3, adj_4, adj_3, adj_5); df::adj_load(var_v, var_0, adj_v, adj_0, adj_2); df::adj_load(var_x, var_0, adj_x, adj_0, adj_1); return; } // Python entry points void eval_contacts_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, float var_ke, float var_kd, float var_kf, float var_mu, torch::Tensor var_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_contacts_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), var_ke, var_kd, var_kf, var_mu, cast<df::float3*>(var_f)); } } void eval_contacts_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, float var_ke, float var_kd, float var_kf, float var_mu, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, float adj_ke, float adj_kd, float adj_kf, float adj_mu, torch::Tensor adj_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_contacts_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), var_ke, var_kd, var_kf, var_mu, cast<df::float3*>(var_f), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), adj_ke, adj_kd, adj_kf, adj_mu, cast<df::float3*>(adj_f)); } } // Python entry points void eval_contacts_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, float var_ke, float var_kd, float var_kf, float var_mu, torch::Tensor var_f); void eval_contacts_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, float var_ke, float var_kd, float var_kf, float var_mu, torch::Tensor var_f, torch::Tensor adj_x, torch::Tensor adj_v, float adj_ke, float adj_kd, float adj_kf, float adj_mu, torch::Tensor adj_f); void eval_soft_contacts_cpu_kernel_forward( int var_num_particles, df::float3* var_particle_x, df::float3* var_particle_v, spatial_transform* var_body_X_sc, spatial_vector* var_body_v_sc, spatial_transform* var_shape_X_co, int* var_shape_body, int* var_shape_geo_type, int* var_shape_geo_src, df::float3* var_shape_geo_scale, float* var_shape_materials, float var_ke, float var_kd, float var_kf, float var_mu, df::float3* var_particle_f, spatial_vector* var_body_f) { //--------- // primal vars int var_0; int var_1; int var_2; int var_3; df::float3 var_4; df::float3 var_5; spatial_transform var_6; const int var_7 = 0; bool var_8; spatial_transform var_9; spatial_transform var_10; spatial_transform var_11; spatial_transform var_12; spatial_transform var_13; df::float3 var_14; int var_15; df::float3 var_16; const float var_17 = 0.01; const float var_18 = 0.0; df::float3 var_19; bool var_20; df::float3 var_21; float var_22; float var_23; float var_24; float var_25; df::float3 var_26; float var_27; df::float3 var_28; df::float3 var_29; float var_30; df::float3 var_31; const int var_32 = 1; bool var_33; float var_34; float var_35; float var_36; df::float3 var_37; df::float3 var_38; float var_39; df::float3 var_40; const int var_41 = 2; bool var_42; float var_43; float var_44; float var_45; float var_46; float var_47; float var_48; float var_49; df::float3 var_50; df::float3 var_51; float var_52; df::float3 var_53; spatial_vector var_54; bool var_55; spatial_vector var_56; spatial_vector var_57; df::float3 var_58; df::float3 var_59; df::float3 var_60; df::float3 var_61; df::float3 var_62; float var_63; df::float3 var_64; df::float3 var_65; df::float3 var_66; df::float3 var_67; float var_68; df::float3 var_69; df::float3 var_70; float var_71; float var_72; float var_73; df::float3 var_74; float var_75; float var_76; df::float3 var_77; float var_78; float var_79; df::float3 var_80; df::float3 var_81; float var_82; df::float3 var_83; df::float3 var_84; df::float3 var_85; bool var_86; spatial_vector var_87; //--------- // forward var_0 = df::tid(); var_1 = df::div(var_0, var_num_particles); var_2 = df::mod(var_0, var_num_particles); var_3 = df::load(var_shape_body, var_1); var_4 = df::load(var_particle_x, var_2); var_5 = df::load(var_particle_v, var_2); var_6 = df::spatial_transform_identity(); var_8 = (var_3 >= var_7); if (var_8) { var_9 = df::load(var_body_X_sc, var_3); } var_10 = df::select(var_8, var_6, var_9); var_11 = df::load(var_shape_X_co, var_1); var_12 = df::spatial_transform_multiply(var_10, var_11); var_13 = spatial_transform_inverse_cpu_func(var_12); var_14 = df::spatial_transform_point(var_13, var_4); var_15 = df::load(var_shape_geo_type, var_1); var_16 = df::load(var_shape_geo_scale, var_1); var_19 = df::float3(var_18, var_18, var_18); var_20 = (var_15 == var_7); if (var_20) { var_21 = df::float3(var_18, var_18, var_18); var_22 = df::index(var_16, var_7); var_23 = sphere_sdf_cpu_func(var_21, var_22, var_14); var_24 = df::sub(var_23, var_17); var_25 = df::min(var_24, var_18); var_26 = df::float3(var_18, var_18, var_18); var_27 = df::index(var_16, var_7); var_28 = sphere_sdf_grad_cpu_func(var_26, var_27, var_14); var_29 = df::spatial_transform_vector(var_12, var_28); } var_30 = df::select(var_20, var_18, var_25); var_31 = df::select(var_20, var_19, var_29); var_33 = (var_15 == var_32); if (var_33) { var_34 = box_sdf_cpu_func(var_16, var_14); var_35 = df::sub(var_34, var_17); var_36 = df::min(var_35, var_18); var_37 = box_sdf_grad_cpu_func(var_16, var_14); var_38 = df::spatial_transform_vector(var_12, var_37); } var_39 = df::select(var_33, var_30, var_36); var_40 = df::select(var_33, var_31, var_38); var_42 = (var_15 == var_41); if (var_42) { var_43 = df::index(var_16, var_7); var_44 = df::index(var_16, var_32); var_45 = capsule_sdf_cpu_func(var_43, var_44, var_14); var_46 = df::sub(var_45, var_17); var_47 = df::min(var_46, var_18); var_48 = df::index(var_16, var_7); var_49 = df::index(var_16, var_32); var_50 = capsule_sdf_grad_cpu_func(var_48, var_49, var_14); var_51 = df::spatial_transform_vector(var_12, var_50); } var_52 = df::select(var_42, var_39, var_47); var_53 = df::select(var_42, var_40, var_51); var_54 = df::spatial_vector(); var_55 = (var_3 >= var_7); if (var_55) { var_56 = df::load(var_body_v_sc, var_3); } var_57 = df::select(var_55, var_54, var_56); var_58 = df::spatial_top(var_57); var_59 = df::spatial_bottom(var_57); var_60 = df::cross(var_58, var_4); var_61 = df::add(var_59, var_60); var_62 = df::sub(var_5, var_61); var_63 = df::dot(var_53, var_62); var_64 = df::mul(var_53, var_63); var_65 = df::sub(var_62, var_64); var_66 = df::mul(var_53, var_52); var_67 = df::mul(var_66, var_ke); var_68 = df::min(var_63, var_18); var_69 = df::mul(var_53, var_68); var_70 = df::mul(var_69, var_kd); var_71 = df::mul(var_mu, var_52); var_72 = df::mul(var_71, var_ke); var_73 = df::sub(var_18, var_72); var_74 = df::float3(var_kf, var_18, var_18); var_75 = df::dot(var_74, var_65); var_76 = df::clamp(var_75, var_72, var_73); var_77 = df::float3(var_18, var_18, var_kf); var_78 = df::dot(var_77, var_65); var_79 = df::clamp(var_78, var_72, var_73); var_80 = df::float3(var_76, var_18, var_79); var_81 = df::add(var_70, var_80); var_82 = df::step(var_52); var_83 = df::mul(var_81, var_82); var_84 = df::add(var_67, var_83); var_85 = df::cross(var_4, var_84); df::atomic_sub(var_particle_f, var_2, var_84); var_86 = (var_3 >= var_7); if (var_86) { var_87 = df::spatial_vector(var_85, var_84); df::atomic_sub(var_body_f, var_3, var_87); } } void eval_soft_contacts_cpu_kernel_backward( int var_num_particles, df::float3* var_particle_x, df::float3* var_particle_v, spatial_transform* var_body_X_sc, spatial_vector* var_body_v_sc, spatial_transform* var_shape_X_co, int* var_shape_body, int* var_shape_geo_type, int* var_shape_geo_src, df::float3* var_shape_geo_scale, float* var_shape_materials, float var_ke, float var_kd, float var_kf, float var_mu, df::float3* var_particle_f, spatial_vector* var_body_f, int adj_num_particles, df::float3* adj_particle_x, df::float3* adj_particle_v, spatial_transform* adj_body_X_sc, spatial_vector* adj_body_v_sc, spatial_transform* adj_shape_X_co, int* adj_shape_body, int* adj_shape_geo_type, int* adj_shape_geo_src, df::float3* adj_shape_geo_scale, float* adj_shape_materials, float adj_ke, float adj_kd, float adj_kf, float adj_mu, df::float3* adj_particle_f, spatial_vector* adj_body_f) { //--------- // primal vars int var_0; int var_1; int var_2; int var_3; df::float3 var_4; df::float3 var_5; spatial_transform var_6; const int var_7 = 0; bool var_8; spatial_transform var_9; spatial_transform var_10; spatial_transform var_11; spatial_transform var_12; spatial_transform var_13; df::float3 var_14; int var_15; df::float3 var_16; const float var_17 = 0.01; const float var_18 = 0.0; df::float3 var_19; bool var_20; df::float3 var_21; float var_22; float var_23; float var_24; float var_25; df::float3 var_26; float var_27; df::float3 var_28; df::float3 var_29; float var_30; df::float3 var_31; const int var_32 = 1; bool var_33; float var_34; float var_35; float var_36; df::float3 var_37; df::float3 var_38; float var_39; df::float3 var_40; const int var_41 = 2; bool var_42; float var_43; float var_44; float var_45; float var_46; float var_47; float var_48; float var_49; df::float3 var_50; df::float3 var_51; float var_52; df::float3 var_53; spatial_vector var_54; bool var_55; spatial_vector var_56; spatial_vector var_57; df::float3 var_58; df::float3 var_59; df::float3 var_60; df::float3 var_61; df::float3 var_62; float var_63; df::float3 var_64; df::float3 var_65; df::float3 var_66; df::float3 var_67; float var_68; df::float3 var_69; df::float3 var_70; float var_71; float var_72; float var_73; df::float3 var_74; float var_75; float var_76; df::float3 var_77; float var_78; float var_79; df::float3 var_80; df::float3 var_81; float var_82; df::float3 var_83; df::float3 var_84; df::float3 var_85; bool var_86; spatial_vector var_87; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; df::float3 adj_4 = 0; df::float3 adj_5 = 0; spatial_transform adj_6 = 0; int adj_7 = 0; bool adj_8 = 0; spatial_transform adj_9 = 0; spatial_transform adj_10 = 0; spatial_transform adj_11 = 0; spatial_transform adj_12 = 0; spatial_transform adj_13 = 0; df::float3 adj_14 = 0; int adj_15 = 0; df::float3 adj_16 = 0; float adj_17 = 0; float adj_18 = 0; df::float3 adj_19 = 0; bool adj_20 = 0; df::float3 adj_21 = 0; float adj_22 = 0; float adj_23 = 0; float adj_24 = 0; float adj_25 = 0; df::float3 adj_26 = 0; float adj_27 = 0; df::float3 adj_28 = 0; df::float3 adj_29 = 0; float adj_30 = 0; df::float3 adj_31 = 0; int adj_32 = 0; bool adj_33 = 0; float adj_34 = 0; float adj_35 = 0; float adj_36 = 0; df::float3 adj_37 = 0; df::float3 adj_38 = 0; float adj_39 = 0; df::float3 adj_40 = 0; int adj_41 = 0; bool adj_42 = 0; float adj_43 = 0; float adj_44 = 0; float adj_45 = 0; float adj_46 = 0; float adj_47 = 0; float adj_48 = 0; float adj_49 = 0; df::float3 adj_50 = 0; df::float3 adj_51 = 0; float adj_52 = 0; df::float3 adj_53 = 0; spatial_vector adj_54 = 0; bool adj_55 = 0; spatial_vector adj_56 = 0; spatial_vector adj_57 = 0; df::float3 adj_58 = 0; df::float3 adj_59 = 0; df::float3 adj_60 = 0; df::float3 adj_61 = 0; df::float3 adj_62 = 0; float adj_63 = 0; df::float3 adj_64 = 0; df::float3 adj_65 = 0; df::float3 adj_66 = 0; df::float3 adj_67 = 0; float adj_68 = 0; df::float3 adj_69 = 0; df::float3 adj_70 = 0; float adj_71 = 0; float adj_72 = 0; float adj_73 = 0; df::float3 adj_74 = 0; float adj_75 = 0; float adj_76 = 0; df::float3 adj_77 = 0; float adj_78 = 0; float adj_79 = 0; df::float3 adj_80 = 0; df::float3 adj_81 = 0; float adj_82 = 0; df::float3 adj_83 = 0; df::float3 adj_84 = 0; df::float3 adj_85 = 0; bool adj_86 = 0; spatial_vector adj_87 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::div(var_0, var_num_particles); var_2 = df::mod(var_0, var_num_particles); var_3 = df::load(var_shape_body, var_1); var_4 = df::load(var_particle_x, var_2); var_5 = df::load(var_particle_v, var_2); var_6 = df::spatial_transform_identity(); var_8 = (var_3 >= var_7); if (var_8) { var_9 = df::load(var_body_X_sc, var_3); } var_10 = df::select(var_8, var_6, var_9); var_11 = df::load(var_shape_X_co, var_1); var_12 = df::spatial_transform_multiply(var_10, var_11); var_13 = spatial_transform_inverse_cpu_func(var_12); var_14 = df::spatial_transform_point(var_13, var_4); var_15 = df::load(var_shape_geo_type, var_1); var_16 = df::load(var_shape_geo_scale, var_1); var_19 = df::float3(var_18, var_18, var_18); var_20 = (var_15 == var_7); if (var_20) { var_21 = df::float3(var_18, var_18, var_18); var_22 = df::index(var_16, var_7); var_23 = sphere_sdf_cpu_func(var_21, var_22, var_14); var_24 = df::sub(var_23, var_17); var_25 = df::min(var_24, var_18); var_26 = df::float3(var_18, var_18, var_18); var_27 = df::index(var_16, var_7); var_28 = sphere_sdf_grad_cpu_func(var_26, var_27, var_14); var_29 = df::spatial_transform_vector(var_12, var_28); } var_30 = df::select(var_20, var_18, var_25); var_31 = df::select(var_20, var_19, var_29); var_33 = (var_15 == var_32); if (var_33) { var_34 = box_sdf_cpu_func(var_16, var_14); var_35 = df::sub(var_34, var_17); var_36 = df::min(var_35, var_18); var_37 = box_sdf_grad_cpu_func(var_16, var_14); var_38 = df::spatial_transform_vector(var_12, var_37); } var_39 = df::select(var_33, var_30, var_36); var_40 = df::select(var_33, var_31, var_38); var_42 = (var_15 == var_41); if (var_42) { var_43 = df::index(var_16, var_7); var_44 = df::index(var_16, var_32); var_45 = capsule_sdf_cpu_func(var_43, var_44, var_14); var_46 = df::sub(var_45, var_17); var_47 = df::min(var_46, var_18); var_48 = df::index(var_16, var_7); var_49 = df::index(var_16, var_32); var_50 = capsule_sdf_grad_cpu_func(var_48, var_49, var_14); var_51 = df::spatial_transform_vector(var_12, var_50); } var_52 = df::select(var_42, var_39, var_47); var_53 = df::select(var_42, var_40, var_51); var_54 = df::spatial_vector(); var_55 = (var_3 >= var_7); if (var_55) { var_56 = df::load(var_body_v_sc, var_3); } var_57 = df::select(var_55, var_54, var_56); var_58 = df::spatial_top(var_57); var_59 = df::spatial_bottom(var_57); var_60 = df::cross(var_58, var_4); var_61 = df::add(var_59, var_60); var_62 = df::sub(var_5, var_61); var_63 = df::dot(var_53, var_62); var_64 = df::mul(var_53, var_63); var_65 = df::sub(var_62, var_64); var_66 = df::mul(var_53, var_52); var_67 = df::mul(var_66, var_ke); var_68 = df::min(var_63, var_18); var_69 = df::mul(var_53, var_68); var_70 = df::mul(var_69, var_kd); var_71 = df::mul(var_mu, var_52); var_72 = df::mul(var_71, var_ke); var_73 = df::sub(var_18, var_72); var_74 = df::float3(var_kf, var_18, var_18); var_75 = df::dot(var_74, var_65); var_76 = df::clamp(var_75, var_72, var_73); var_77 = df::float3(var_18, var_18, var_kf); var_78 = df::dot(var_77, var_65); var_79 = df::clamp(var_78, var_72, var_73); var_80 = df::float3(var_76, var_18, var_79); var_81 = df::add(var_70, var_80); var_82 = df::step(var_52); var_83 = df::mul(var_81, var_82); var_84 = df::add(var_67, var_83); var_85 = df::cross(var_4, var_84); df::atomic_sub(var_particle_f, var_2, var_84); var_86 = (var_3 >= var_7); if (var_86) { var_87 = df::spatial_vector(var_85, var_84); df::atomic_sub(var_body_f, var_3, var_87); } //--------- // reverse if (var_86) { df::adj_atomic_sub(var_body_f, var_3, var_87, adj_body_f, adj_3, adj_87); df::adj_spatial_vector(var_85, var_84, adj_85, adj_84, adj_87); } df::adj_atomic_sub(var_particle_f, var_2, var_84, adj_particle_f, adj_2, adj_84); df::adj_cross(var_4, var_84, adj_4, adj_84, adj_85); df::adj_add(var_67, var_83, adj_67, adj_83, adj_84); df::adj_mul(var_81, var_82, adj_81, adj_82, adj_83); df::adj_step(var_52, adj_52, adj_82); df::adj_add(var_70, var_80, adj_70, adj_80, adj_81); df::adj_float3(var_76, var_18, var_79, adj_76, adj_18, adj_79, adj_80); df::adj_clamp(var_78, var_72, var_73, adj_78, adj_72, adj_73, adj_79); df::adj_dot(var_77, var_65, adj_77, adj_65, adj_78); df::adj_float3(var_18, var_18, var_kf, adj_18, adj_18, adj_kf, adj_77); df::adj_clamp(var_75, var_72, var_73, adj_75, adj_72, adj_73, adj_76); df::adj_dot(var_74, var_65, adj_74, adj_65, adj_75); df::adj_float3(var_kf, var_18, var_18, adj_kf, adj_18, adj_18, adj_74); df::adj_sub(var_18, var_72, adj_18, adj_72, adj_73); df::adj_mul(var_71, var_ke, adj_71, adj_ke, adj_72); df::adj_mul(var_mu, var_52, adj_mu, adj_52, adj_71); df::adj_mul(var_69, var_kd, adj_69, adj_kd, adj_70); df::adj_mul(var_53, var_68, adj_53, adj_68, adj_69); df::adj_min(var_63, var_18, adj_63, adj_18, adj_68); df::adj_mul(var_66, var_ke, adj_66, adj_ke, adj_67); df::adj_mul(var_53, var_52, adj_53, adj_52, adj_66); df::adj_sub(var_62, var_64, adj_62, adj_64, adj_65); df::adj_mul(var_53, var_63, adj_53, adj_63, adj_64); df::adj_dot(var_53, var_62, adj_53, adj_62, adj_63); df::adj_sub(var_5, var_61, adj_5, adj_61, adj_62); df::adj_add(var_59, var_60, adj_59, adj_60, adj_61); df::adj_cross(var_58, var_4, adj_58, adj_4, adj_60); df::adj_spatial_bottom(var_57, adj_57, adj_59); df::adj_spatial_top(var_57, adj_57, adj_58); df::adj_select(var_55, var_54, var_56, adj_55, adj_54, adj_56, adj_57); if (var_55) { df::adj_load(var_body_v_sc, var_3, adj_body_v_sc, adj_3, adj_56); } df::adj_select(var_42, var_40, var_51, adj_42, adj_40, adj_51, adj_53); df::adj_select(var_42, var_39, var_47, adj_42, adj_39, adj_47, adj_52); if (var_42) { df::adj_spatial_transform_vector(var_12, var_50, adj_12, adj_50, adj_51); adj_capsule_sdf_grad_cpu_func(var_48, var_49, var_14, adj_48, adj_49, adj_14, adj_50); df::adj_index(var_16, var_32, adj_16, adj_32, adj_49); df::adj_index(var_16, var_7, adj_16, adj_7, adj_48); df::adj_min(var_46, var_18, adj_46, adj_18, adj_47); df::adj_sub(var_45, var_17, adj_45, adj_17, adj_46); adj_capsule_sdf_cpu_func(var_43, var_44, var_14, adj_43, adj_44, adj_14, adj_45); df::adj_index(var_16, var_32, adj_16, adj_32, adj_44); df::adj_index(var_16, var_7, adj_16, adj_7, adj_43); } df::adj_select(var_33, var_31, var_38, adj_33, adj_31, adj_38, adj_40); df::adj_select(var_33, var_30, var_36, adj_33, adj_30, adj_36, adj_39); if (var_33) { df::adj_spatial_transform_vector(var_12, var_37, adj_12, adj_37, adj_38); adj_box_sdf_grad_cpu_func(var_16, var_14, adj_16, adj_14, adj_37); df::adj_min(var_35, var_18, adj_35, adj_18, adj_36); df::adj_sub(var_34, var_17, adj_34, adj_17, adj_35); adj_box_sdf_cpu_func(var_16, var_14, adj_16, adj_14, adj_34); } df::adj_select(var_20, var_19, var_29, adj_20, adj_19, adj_29, adj_31); df::adj_select(var_20, var_18, var_25, adj_20, adj_18, adj_25, adj_30); if (var_20) { df::adj_spatial_transform_vector(var_12, var_28, adj_12, adj_28, adj_29); adj_sphere_sdf_grad_cpu_func(var_26, var_27, var_14, adj_26, adj_27, adj_14, adj_28); df::adj_index(var_16, var_7, adj_16, adj_7, adj_27); df::adj_float3(var_18, var_18, var_18, adj_18, adj_18, adj_18, adj_26); df::adj_min(var_24, var_18, adj_24, adj_18, adj_25); df::adj_sub(var_23, var_17, adj_23, adj_17, adj_24); adj_sphere_sdf_cpu_func(var_21, var_22, var_14, adj_21, adj_22, adj_14, adj_23); df::adj_index(var_16, var_7, adj_16, adj_7, adj_22); df::adj_float3(var_18, var_18, var_18, adj_18, adj_18, adj_18, adj_21); } df::adj_float3(var_18, var_18, var_18, adj_18, adj_18, adj_18, adj_19); df::adj_load(var_shape_geo_scale, var_1, adj_shape_geo_scale, adj_1, adj_16); df::adj_load(var_shape_geo_type, var_1, adj_shape_geo_type, adj_1, adj_15); df::adj_spatial_transform_point(var_13, var_4, adj_13, adj_4, adj_14); adj_spatial_transform_inverse_cpu_func(var_12, adj_12, adj_13); df::adj_spatial_transform_multiply(var_10, var_11, adj_10, adj_11, adj_12); df::adj_load(var_shape_X_co, var_1, adj_shape_X_co, adj_1, adj_11); df::adj_select(var_8, var_6, var_9, adj_8, adj_6, adj_9, adj_10); if (var_8) { df::adj_load(var_body_X_sc, var_3, adj_body_X_sc, adj_3, adj_9); } df::adj_load(var_particle_v, var_2, adj_particle_v, adj_2, adj_5); df::adj_load(var_particle_x, var_2, adj_particle_x, adj_2, adj_4); df::adj_load(var_shape_body, var_1, adj_shape_body, adj_1, adj_3); df::adj_mod(var_0, var_num_particles, adj_0, adj_num_particles, adj_2); df::adj_div(var_0, var_num_particles, adj_0, adj_num_particles, adj_1); return; } // Python entry points void eval_soft_contacts_cpu_forward(int dim, int var_num_particles, torch::Tensor var_particle_x, torch::Tensor var_particle_v, torch::Tensor var_body_X_sc, torch::Tensor var_body_v_sc, torch::Tensor var_shape_X_co, torch::Tensor var_shape_body, torch::Tensor var_shape_geo_type, torch::Tensor var_shape_geo_src, torch::Tensor var_shape_geo_scale, torch::Tensor var_shape_materials, float var_ke, float var_kd, float var_kf, float var_mu, torch::Tensor var_particle_f, torch::Tensor var_body_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_soft_contacts_cpu_kernel_forward( var_num_particles, cast<df::float3*>(var_particle_x), cast<df::float3*>(var_particle_v), cast<spatial_transform*>(var_body_X_sc), cast<spatial_vector*>(var_body_v_sc), cast<spatial_transform*>(var_shape_X_co), cast<int*>(var_shape_body), cast<int*>(var_shape_geo_type), cast<int*>(var_shape_geo_src), cast<df::float3*>(var_shape_geo_scale), cast<float*>(var_shape_materials), var_ke, var_kd, var_kf, var_mu, cast<df::float3*>(var_particle_f), cast<spatial_vector*>(var_body_f)); } } void eval_soft_contacts_cpu_backward(int dim, int var_num_particles, torch::Tensor var_particle_x, torch::Tensor var_particle_v, torch::Tensor var_body_X_sc, torch::Tensor var_body_v_sc, torch::Tensor var_shape_X_co, torch::Tensor var_shape_body, torch::Tensor var_shape_geo_type, torch::Tensor var_shape_geo_src, torch::Tensor var_shape_geo_scale, torch::Tensor var_shape_materials, float var_ke, float var_kd, float var_kf, float var_mu, torch::Tensor var_particle_f, torch::Tensor var_body_f, int adj_num_particles, torch::Tensor adj_particle_x, torch::Tensor adj_particle_v, torch::Tensor adj_body_X_sc, torch::Tensor adj_body_v_sc, torch::Tensor adj_shape_X_co, torch::Tensor adj_shape_body, torch::Tensor adj_shape_geo_type, torch::Tensor adj_shape_geo_src, torch::Tensor adj_shape_geo_scale, torch::Tensor adj_shape_materials, float adj_ke, float adj_kd, float adj_kf, float adj_mu, torch::Tensor adj_particle_f, torch::Tensor adj_body_f) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_soft_contacts_cpu_kernel_backward( var_num_particles, cast<df::float3*>(var_particle_x), cast<df::float3*>(var_particle_v), cast<spatial_transform*>(var_body_X_sc), cast<spatial_vector*>(var_body_v_sc), cast<spatial_transform*>(var_shape_X_co), cast<int*>(var_shape_body), cast<int*>(var_shape_geo_type), cast<int*>(var_shape_geo_src), cast<df::float3*>(var_shape_geo_scale), cast<float*>(var_shape_materials), var_ke, var_kd, var_kf, var_mu, cast<df::float3*>(var_particle_f), cast<spatial_vector*>(var_body_f), adj_num_particles, cast<df::float3*>(adj_particle_x), cast<df::float3*>(adj_particle_v), cast<spatial_transform*>(adj_body_X_sc), cast<spatial_vector*>(adj_body_v_sc), cast<spatial_transform*>(adj_shape_X_co), cast<int*>(adj_shape_body), cast<int*>(adj_shape_geo_type), cast<int*>(adj_shape_geo_src), cast<df::float3*>(adj_shape_geo_scale), cast<float*>(adj_shape_materials), adj_ke, adj_kd, adj_kf, adj_mu, cast<df::float3*>(adj_particle_f), cast<spatial_vector*>(adj_body_f)); } } // Python entry points void eval_soft_contacts_cpu_forward(int dim, int var_num_particles, torch::Tensor var_particle_x, torch::Tensor var_particle_v, torch::Tensor var_body_X_sc, torch::Tensor var_body_v_sc, torch::Tensor var_shape_X_co, torch::Tensor var_shape_body, torch::Tensor var_shape_geo_type, torch::Tensor var_shape_geo_src, torch::Tensor var_shape_geo_scale, torch::Tensor var_shape_materials, float var_ke, float var_kd, float var_kf, float var_mu, torch::Tensor var_particle_f, torch::Tensor var_body_f); void eval_soft_contacts_cpu_backward(int dim, int var_num_particles, torch::Tensor var_particle_x, torch::Tensor var_particle_v, torch::Tensor var_body_X_sc, torch::Tensor var_body_v_sc, torch::Tensor var_shape_X_co, torch::Tensor var_shape_body, torch::Tensor var_shape_geo_type, torch::Tensor var_shape_geo_src, torch::Tensor var_shape_geo_scale, torch::Tensor var_shape_materials, float var_ke, float var_kd, float var_kf, float var_mu, torch::Tensor var_particle_f, torch::Tensor var_body_f, int adj_num_particles, torch::Tensor adj_particle_x, torch::Tensor adj_particle_v, torch::Tensor adj_body_X_sc, torch::Tensor adj_body_v_sc, torch::Tensor adj_shape_X_co, torch::Tensor adj_shape_body, torch::Tensor adj_shape_geo_type, torch::Tensor adj_shape_geo_src, torch::Tensor adj_shape_geo_scale, torch::Tensor adj_shape_materials, float adj_ke, float adj_kd, float adj_kf, float adj_mu, torch::Tensor adj_particle_f, torch::Tensor adj_body_f); void eval_rigid_contacts_cpu_kernel_forward( df::float3* var_rigid_x, quat* var_rigid_r, df::float3* var_rigid_v, df::float3* var_rigid_w, int* var_contact_body, df::float3* var_contact_point, float* var_contact_dist, int* var_contact_mat, float* var_materials, df::float3* var_rigid_f, df::float3* var_rigid_t) { //--------- // primal vars int var_0; int var_1; df::float3 var_2; float var_3; int var_4; const int var_5 = 4; int var_6; const int var_7 = 0; int var_8; float var_9; int var_10; const int var_11 = 1; int var_12; float var_13; int var_14; const int var_15 = 2; int var_16; float var_17; int var_18; const int var_19 = 3; int var_20; float var_21; df::float3 var_22; quat var_23; df::float3 var_24; df::float3 var_25; const float var_26 = 0.0; const float var_27 = 1.0; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; df::float3 var_35; float var_36; float var_37; float var_38; df::float3 var_39; df::float3 var_40; float var_41; float var_42; float var_43; float var_44; float var_45; float var_46; float var_47; float var_48; df::float3 var_49; float var_50; float var_51; df::float3 var_52; float var_53; float var_54; df::float3 var_55; float var_56; df::float3 var_57; float var_58; df::float3 var_59; df::float3 var_60; df::float3 var_61; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_contact_body, var_0); var_2 = df::load(var_contact_point, var_0); var_3 = df::load(var_contact_dist, var_0); var_4 = df::load(var_contact_mat, var_0); var_6 = df::mul(var_4, var_5); var_8 = df::add(var_6, var_7); var_9 = df::load(var_materials, var_8); var_10 = df::mul(var_4, var_5); var_12 = df::add(var_10, var_11); var_13 = df::load(var_materials, var_12); var_14 = df::mul(var_4, var_5); var_16 = df::add(var_14, var_15); var_17 = df::load(var_materials, var_16); var_18 = df::mul(var_4, var_5); var_20 = df::add(var_18, var_19); var_21 = df::load(var_materials, var_20); var_22 = df::load(var_rigid_x, var_1); var_23 = df::load(var_rigid_r, var_1); var_24 = df::load(var_rigid_v, var_1); var_25 = df::load(var_rigid_w, var_1); var_28 = df::float3(var_26, var_27, var_26); var_29 = df::rotate(var_23, var_2); var_30 = df::add(var_22, var_29); var_31 = df::mul(var_28, var_3); var_32 = df::sub(var_30, var_31); var_33 = df::sub(var_32, var_22); var_34 = df::cross(var_25, var_33); var_35 = df::add(var_24, var_34); var_36 = df::dot(var_28, var_32); var_37 = df::min(var_36, var_26); var_38 = df::dot(var_28, var_35); var_39 = df::mul(var_28, var_38); var_40 = df::sub(var_35, var_39); var_41 = df::mul(var_37, var_9); var_42 = df::min(var_38, var_26); var_43 = df::mul(var_42, var_13); var_44 = df::step(var_37); var_45 = df::mul(var_43, var_44); var_46 = df::add(var_41, var_45); var_47 = df::mul(var_21, var_46); var_48 = df::sub(var_26, var_47); var_49 = df::float3(var_17, var_26, var_26); var_50 = df::dot(var_49, var_40); var_51 = df::clamp(var_50, var_47, var_48); var_52 = df::float3(var_26, var_26, var_17); var_53 = df::dot(var_52, var_40); var_54 = df::clamp(var_53, var_47, var_48); var_55 = df::float3(var_51, var_26, var_54); var_56 = df::step(var_37); var_57 = df::mul(var_55, var_56); var_58 = df::add(var_41, var_45); var_59 = df::mul(var_28, var_58); var_60 = df::add(var_59, var_57); var_61 = df::cross(var_33, var_60); df::atomic_sub(var_rigid_f, var_1, var_60); df::atomic_sub(var_rigid_t, var_1, var_61); } void eval_rigid_contacts_cpu_kernel_backward( df::float3* var_rigid_x, quat* var_rigid_r, df::float3* var_rigid_v, df::float3* var_rigid_w, int* var_contact_body, df::float3* var_contact_point, float* var_contact_dist, int* var_contact_mat, float* var_materials, df::float3* var_rigid_f, df::float3* var_rigid_t, df::float3* adj_rigid_x, quat* adj_rigid_r, df::float3* adj_rigid_v, df::float3* adj_rigid_w, int* adj_contact_body, df::float3* adj_contact_point, float* adj_contact_dist, int* adj_contact_mat, float* adj_materials, df::float3* adj_rigid_f, df::float3* adj_rigid_t) { //--------- // primal vars int var_0; int var_1; df::float3 var_2; float var_3; int var_4; const int var_5 = 4; int var_6; const int var_7 = 0; int var_8; float var_9; int var_10; const int var_11 = 1; int var_12; float var_13; int var_14; const int var_15 = 2; int var_16; float var_17; int var_18; const int var_19 = 3; int var_20; float var_21; df::float3 var_22; quat var_23; df::float3 var_24; df::float3 var_25; const float var_26 = 0.0; const float var_27 = 1.0; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; df::float3 var_35; float var_36; float var_37; float var_38; df::float3 var_39; df::float3 var_40; float var_41; float var_42; float var_43; float var_44; float var_45; float var_46; float var_47; float var_48; df::float3 var_49; float var_50; float var_51; df::float3 var_52; float var_53; float var_54; df::float3 var_55; float var_56; df::float3 var_57; float var_58; df::float3 var_59; df::float3 var_60; df::float3 var_61; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; df::float3 adj_2 = 0; float adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; float adj_9 = 0; int adj_10 = 0; int adj_11 = 0; int adj_12 = 0; float adj_13 = 0; int adj_14 = 0; int adj_15 = 0; int adj_16 = 0; float adj_17 = 0; int adj_18 = 0; int adj_19 = 0; int adj_20 = 0; float adj_21 = 0; df::float3 adj_22 = 0; quat adj_23 = 0; df::float3 adj_24 = 0; df::float3 adj_25 = 0; float adj_26 = 0; float adj_27 = 0; df::float3 adj_28 = 0; df::float3 adj_29 = 0; df::float3 adj_30 = 0; df::float3 adj_31 = 0; df::float3 adj_32 = 0; df::float3 adj_33 = 0; df::float3 adj_34 = 0; df::float3 adj_35 = 0; float adj_36 = 0; float adj_37 = 0; float adj_38 = 0; df::float3 adj_39 = 0; df::float3 adj_40 = 0; float adj_41 = 0; float adj_42 = 0; float adj_43 = 0; float adj_44 = 0; float adj_45 = 0; float adj_46 = 0; float adj_47 = 0; float adj_48 = 0; df::float3 adj_49 = 0; float adj_50 = 0; float adj_51 = 0; df::float3 adj_52 = 0; float adj_53 = 0; float adj_54 = 0; df::float3 adj_55 = 0; float adj_56 = 0; df::float3 adj_57 = 0; float adj_58 = 0; df::float3 adj_59 = 0; df::float3 adj_60 = 0; df::float3 adj_61 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_contact_body, var_0); var_2 = df::load(var_contact_point, var_0); var_3 = df::load(var_contact_dist, var_0); var_4 = df::load(var_contact_mat, var_0); var_6 = df::mul(var_4, var_5); var_8 = df::add(var_6, var_7); var_9 = df::load(var_materials, var_8); var_10 = df::mul(var_4, var_5); var_12 = df::add(var_10, var_11); var_13 = df::load(var_materials, var_12); var_14 = df::mul(var_4, var_5); var_16 = df::add(var_14, var_15); var_17 = df::load(var_materials, var_16); var_18 = df::mul(var_4, var_5); var_20 = df::add(var_18, var_19); var_21 = df::load(var_materials, var_20); var_22 = df::load(var_rigid_x, var_1); var_23 = df::load(var_rigid_r, var_1); var_24 = df::load(var_rigid_v, var_1); var_25 = df::load(var_rigid_w, var_1); var_28 = df::float3(var_26, var_27, var_26); var_29 = df::rotate(var_23, var_2); var_30 = df::add(var_22, var_29); var_31 = df::mul(var_28, var_3); var_32 = df::sub(var_30, var_31); var_33 = df::sub(var_32, var_22); var_34 = df::cross(var_25, var_33); var_35 = df::add(var_24, var_34); var_36 = df::dot(var_28, var_32); var_37 = df::min(var_36, var_26); var_38 = df::dot(var_28, var_35); var_39 = df::mul(var_28, var_38); var_40 = df::sub(var_35, var_39); var_41 = df::mul(var_37, var_9); var_42 = df::min(var_38, var_26); var_43 = df::mul(var_42, var_13); var_44 = df::step(var_37); var_45 = df::mul(var_43, var_44); var_46 = df::add(var_41, var_45); var_47 = df::mul(var_21, var_46); var_48 = df::sub(var_26, var_47); var_49 = df::float3(var_17, var_26, var_26); var_50 = df::dot(var_49, var_40); var_51 = df::clamp(var_50, var_47, var_48); var_52 = df::float3(var_26, var_26, var_17); var_53 = df::dot(var_52, var_40); var_54 = df::clamp(var_53, var_47, var_48); var_55 = df::float3(var_51, var_26, var_54); var_56 = df::step(var_37); var_57 = df::mul(var_55, var_56); var_58 = df::add(var_41, var_45); var_59 = df::mul(var_28, var_58); var_60 = df::add(var_59, var_57); var_61 = df::cross(var_33, var_60); df::atomic_sub(var_rigid_f, var_1, var_60); df::atomic_sub(var_rigid_t, var_1, var_61); //--------- // reverse df::adj_atomic_sub(var_rigid_t, var_1, var_61, adj_rigid_t, adj_1, adj_61); df::adj_atomic_sub(var_rigid_f, var_1, var_60, adj_rigid_f, adj_1, adj_60); df::adj_cross(var_33, var_60, adj_33, adj_60, adj_61); df::adj_add(var_59, var_57, adj_59, adj_57, adj_60); df::adj_mul(var_28, var_58, adj_28, adj_58, adj_59); df::adj_add(var_41, var_45, adj_41, adj_45, adj_58); df::adj_mul(var_55, var_56, adj_55, adj_56, adj_57); df::adj_step(var_37, adj_37, adj_56); df::adj_float3(var_51, var_26, var_54, adj_51, adj_26, adj_54, adj_55); df::adj_clamp(var_53, var_47, var_48, adj_53, adj_47, adj_48, adj_54); df::adj_dot(var_52, var_40, adj_52, adj_40, adj_53); df::adj_float3(var_26, var_26, var_17, adj_26, adj_26, adj_17, adj_52); df::adj_clamp(var_50, var_47, var_48, adj_50, adj_47, adj_48, adj_51); df::adj_dot(var_49, var_40, adj_49, adj_40, adj_50); df::adj_float3(var_17, var_26, var_26, adj_17, adj_26, adj_26, adj_49); df::adj_sub(var_26, var_47, adj_26, adj_47, adj_48); df::adj_mul(var_21, var_46, adj_21, adj_46, adj_47); df::adj_add(var_41, var_45, adj_41, adj_45, adj_46); df::adj_mul(var_43, var_44, adj_43, adj_44, adj_45); df::adj_step(var_37, adj_37, adj_44); df::adj_mul(var_42, var_13, adj_42, adj_13, adj_43); df::adj_min(var_38, var_26, adj_38, adj_26, adj_42); df::adj_mul(var_37, var_9, adj_37, adj_9, adj_41); df::adj_sub(var_35, var_39, adj_35, adj_39, adj_40); df::adj_mul(var_28, var_38, adj_28, adj_38, adj_39); df::adj_dot(var_28, var_35, adj_28, adj_35, adj_38); df::adj_min(var_36, var_26, adj_36, adj_26, adj_37); df::adj_dot(var_28, var_32, adj_28, adj_32, adj_36); df::adj_add(var_24, var_34, adj_24, adj_34, adj_35); df::adj_cross(var_25, var_33, adj_25, adj_33, adj_34); df::adj_sub(var_32, var_22, adj_32, adj_22, adj_33); df::adj_sub(var_30, var_31, adj_30, adj_31, adj_32); df::adj_mul(var_28, var_3, adj_28, adj_3, adj_31); df::adj_add(var_22, var_29, adj_22, adj_29, adj_30); df::adj_rotate(var_23, var_2, adj_23, adj_2, adj_29); df::adj_float3(var_26, var_27, var_26, adj_26, adj_27, adj_26, adj_28); df::adj_load(var_rigid_w, var_1, adj_rigid_w, adj_1, adj_25); df::adj_load(var_rigid_v, var_1, adj_rigid_v, adj_1, adj_24); df::adj_load(var_rigid_r, var_1, adj_rigid_r, adj_1, adj_23); df::adj_load(var_rigid_x, var_1, adj_rigid_x, adj_1, adj_22); df::adj_load(var_materials, var_20, adj_materials, adj_20, adj_21); df::adj_add(var_18, var_19, adj_18, adj_19, adj_20); df::adj_mul(var_4, var_5, adj_4, adj_5, adj_18); df::adj_load(var_materials, var_16, adj_materials, adj_16, adj_17); df::adj_add(var_14, var_15, adj_14, adj_15, adj_16); df::adj_mul(var_4, var_5, adj_4, adj_5, adj_14); df::adj_load(var_materials, var_12, adj_materials, adj_12, adj_13); df::adj_add(var_10, var_11, adj_10, adj_11, adj_12); df::adj_mul(var_4, var_5, adj_4, adj_5, adj_10); df::adj_load(var_materials, var_8, adj_materials, adj_8, adj_9); df::adj_add(var_6, var_7, adj_6, adj_7, adj_8); df::adj_mul(var_4, var_5, adj_4, adj_5, adj_6); df::adj_load(var_contact_mat, var_0, adj_contact_mat, adj_0, adj_4); df::adj_load(var_contact_dist, var_0, adj_contact_dist, adj_0, adj_3); df::adj_load(var_contact_point, var_0, adj_contact_point, adj_0, adj_2); df::adj_load(var_contact_body, var_0, adj_contact_body, adj_0, adj_1); return; } // Python entry points void eval_rigid_contacts_cpu_forward(int dim, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_rigid_f, torch::Tensor var_rigid_t) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_contacts_cpu_kernel_forward( cast<df::float3*>(var_rigid_x), cast<quat*>(var_rigid_r), cast<df::float3*>(var_rigid_v), cast<df::float3*>(var_rigid_w), cast<int*>(var_contact_body), cast<df::float3*>(var_contact_point), cast<float*>(var_contact_dist), cast<int*>(var_contact_mat), cast<float*>(var_materials), cast<df::float3*>(var_rigid_f), cast<df::float3*>(var_rigid_t)); } } void eval_rigid_contacts_cpu_backward(int dim, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_rigid_f, torch::Tensor var_rigid_t, torch::Tensor adj_rigid_x, torch::Tensor adj_rigid_r, torch::Tensor adj_rigid_v, torch::Tensor adj_rigid_w, torch::Tensor adj_contact_body, torch::Tensor adj_contact_point, torch::Tensor adj_contact_dist, torch::Tensor adj_contact_mat, torch::Tensor adj_materials, torch::Tensor adj_rigid_f, torch::Tensor adj_rigid_t) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_contacts_cpu_kernel_backward( cast<df::float3*>(var_rigid_x), cast<quat*>(var_rigid_r), cast<df::float3*>(var_rigid_v), cast<df::float3*>(var_rigid_w), cast<int*>(var_contact_body), cast<df::float3*>(var_contact_point), cast<float*>(var_contact_dist), cast<int*>(var_contact_mat), cast<float*>(var_materials), cast<df::float3*>(var_rigid_f), cast<df::float3*>(var_rigid_t), cast<df::float3*>(adj_rigid_x), cast<quat*>(adj_rigid_r), cast<df::float3*>(adj_rigid_v), cast<df::float3*>(adj_rigid_w), cast<int*>(adj_contact_body), cast<df::float3*>(adj_contact_point), cast<float*>(adj_contact_dist), cast<int*>(adj_contact_mat), cast<float*>(adj_materials), cast<df::float3*>(adj_rigid_f), cast<df::float3*>(adj_rigid_t)); } } // Python entry points void eval_rigid_contacts_cpu_forward(int dim, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_rigid_f, torch::Tensor var_rigid_t); void eval_rigid_contacts_cpu_backward(int dim, torch::Tensor var_rigid_x, torch::Tensor var_rigid_r, torch::Tensor var_rigid_v, torch::Tensor var_rigid_w, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_rigid_f, torch::Tensor var_rigid_t, torch::Tensor adj_rigid_x, torch::Tensor adj_rigid_r, torch::Tensor adj_rigid_v, torch::Tensor adj_rigid_w, torch::Tensor adj_contact_body, torch::Tensor adj_contact_point, torch::Tensor adj_contact_dist, torch::Tensor adj_contact_mat, torch::Tensor adj_materials, torch::Tensor adj_rigid_f, torch::Tensor adj_rigid_t); void eval_rigid_contacts_art_cpu_kernel_forward( spatial_transform* var_body_X_s, spatial_vector* var_body_v_s, int* var_contact_body, df::float3* var_contact_point, float* var_contact_dist, int* var_contact_mat, float* var_materials, spatial_vector* var_body_f_s) { //--------- // primal vars int var_0; int var_1; df::float3 var_2; float var_3; int var_4; const int var_5 = 4; int var_6; const int var_7 = 0; int var_8; float var_9; int var_10; const int var_11 = 1; int var_12; float var_13; int var_14; const int var_15 = 2; int var_16; float var_17; int var_18; const int var_19 = 3; int var_20; float var_21; spatial_transform var_22; spatial_vector var_23; const float var_24 = 0.0; const float var_25 = 1.0; df::float3 var_26; df::float3 var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; float var_34; bool var_35; float var_36; df::float3 var_37; df::float3 var_38; float var_39; float var_40; float var_41; float var_42; float var_43; float var_44; float var_45; float var_46; float var_47; float var_48; df::float3 var_49; float var_50; float var_51; df::float3 var_52; float var_53; float var_54; df::float3 var_55; float var_56; float var_57; float var_58; float var_59; float var_60; float var_61; df::float3 var_62; float var_63; df::float3 var_64; float var_65; df::float3 var_66; df::float3 var_67; df::float3 var_68; spatial_vector var_69; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_contact_body, var_0); var_2 = df::load(var_contact_point, var_0); var_3 = df::load(var_contact_dist, var_0); var_4 = df::load(var_contact_mat, var_0); var_6 = df::mul(var_4, var_5); var_8 = df::add(var_6, var_7); var_9 = df::load(var_materials, var_8); var_10 = df::mul(var_4, var_5); var_12 = df::add(var_10, var_11); var_13 = df::load(var_materials, var_12); var_14 = df::mul(var_4, var_5); var_16 = df::add(var_14, var_15); var_17 = df::load(var_materials, var_16); var_18 = df::mul(var_4, var_5); var_20 = df::add(var_18, var_19); var_21 = df::load(var_materials, var_20); var_22 = df::load(var_body_X_s, var_1); var_23 = df::load(var_body_v_s, var_1); var_26 = df::float3(var_24, var_25, var_24); var_27 = df::spatial_transform_point(var_22, var_2); var_28 = df::mul(var_26, var_3); var_29 = df::sub(var_27, var_28); var_30 = df::spatial_top(var_23); var_31 = df::spatial_bottom(var_23); var_32 = df::cross(var_30, var_29); var_33 = df::add(var_31, var_32); var_34 = df::dot(var_26, var_29); var_35 = (var_34 >= var_24); if (var_35) { return; } var_36 = df::dot(var_26, var_33); var_37 = df::mul(var_26, var_36); var_38 = df::sub(var_33, var_37); var_39 = df::mul(var_34, var_9); var_40 = df::min(var_36, var_24); var_41 = df::mul(var_40, var_13); var_42 = df::step(var_34); var_43 = df::mul(var_41, var_42); var_44 = df::sub(var_24, var_34); var_45 = df::mul(var_43, var_44); var_46 = df::add(var_39, var_45); var_47 = df::mul(var_21, var_46); var_48 = df::sub(var_24, var_47); var_49 = df::float3(var_17, var_24, var_24); var_50 = df::dot(var_49, var_38); var_51 = df::clamp(var_50, var_47, var_48); var_52 = df::float3(var_24, var_24, var_17); var_53 = df::dot(var_52, var_38); var_54 = df::clamp(var_53, var_47, var_48); var_55 = df::normalize(var_38); var_56 = df::length(var_38); var_57 = df::mul(var_17, var_56); var_58 = df::mul(var_21, var_34); var_59 = df::mul(var_58, var_9); var_60 = df::sub(var_24, var_59); var_61 = df::min(var_57, var_60); var_62 = df::mul(var_55, var_61); var_63 = df::step(var_34); var_64 = df::mul(var_62, var_63); var_65 = df::add(var_39, var_45); var_66 = df::mul(var_26, var_65); var_67 = df::add(var_66, var_64); var_68 = df::cross(var_29, var_67); var_69 = df::spatial_vector(var_68, var_67); df::atomic_add(var_body_f_s, var_1, var_69); } void eval_rigid_contacts_art_cpu_kernel_backward( spatial_transform* var_body_X_s, spatial_vector* var_body_v_s, int* var_contact_body, df::float3* var_contact_point, float* var_contact_dist, int* var_contact_mat, float* var_materials, spatial_vector* var_body_f_s, spatial_transform* adj_body_X_s, spatial_vector* adj_body_v_s, int* adj_contact_body, df::float3* adj_contact_point, float* adj_contact_dist, int* adj_contact_mat, float* adj_materials, spatial_vector* adj_body_f_s) { //--------- // primal vars int var_0; int var_1; df::float3 var_2; float var_3; int var_4; const int var_5 = 4; int var_6; const int var_7 = 0; int var_8; float var_9; int var_10; const int var_11 = 1; int var_12; float var_13; int var_14; const int var_15 = 2; int var_16; float var_17; int var_18; const int var_19 = 3; int var_20; float var_21; spatial_transform var_22; spatial_vector var_23; const float var_24 = 0.0; const float var_25 = 1.0; df::float3 var_26; df::float3 var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; float var_34; bool var_35; float var_36; df::float3 var_37; df::float3 var_38; float var_39; float var_40; float var_41; float var_42; float var_43; float var_44; float var_45; float var_46; float var_47; float var_48; df::float3 var_49; float var_50; float var_51; df::float3 var_52; float var_53; float var_54; df::float3 var_55; float var_56; float var_57; float var_58; float var_59; float var_60; float var_61; df::float3 var_62; float var_63; df::float3 var_64; float var_65; df::float3 var_66; df::float3 var_67; df::float3 var_68; spatial_vector var_69; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; df::float3 adj_2 = 0; float adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; float adj_9 = 0; int adj_10 = 0; int adj_11 = 0; int adj_12 = 0; float adj_13 = 0; int adj_14 = 0; int adj_15 = 0; int adj_16 = 0; float adj_17 = 0; int adj_18 = 0; int adj_19 = 0; int adj_20 = 0; float adj_21 = 0; spatial_transform adj_22 = 0; spatial_vector adj_23 = 0; float adj_24 = 0; float adj_25 = 0; df::float3 adj_26 = 0; df::float3 adj_27 = 0; df::float3 adj_28 = 0; df::float3 adj_29 = 0; df::float3 adj_30 = 0; df::float3 adj_31 = 0; df::float3 adj_32 = 0; df::float3 adj_33 = 0; float adj_34 = 0; bool adj_35 = 0; float adj_36 = 0; df::float3 adj_37 = 0; df::float3 adj_38 = 0; float adj_39 = 0; float adj_40 = 0; float adj_41 = 0; float adj_42 = 0; float adj_43 = 0; float adj_44 = 0; float adj_45 = 0; float adj_46 = 0; float adj_47 = 0; float adj_48 = 0; df::float3 adj_49 = 0; float adj_50 = 0; float adj_51 = 0; df::float3 adj_52 = 0; float adj_53 = 0; float adj_54 = 0; df::float3 adj_55 = 0; float adj_56 = 0; float adj_57 = 0; float adj_58 = 0; float adj_59 = 0; float adj_60 = 0; float adj_61 = 0; df::float3 adj_62 = 0; float adj_63 = 0; df::float3 adj_64 = 0; float adj_65 = 0; df::float3 adj_66 = 0; df::float3 adj_67 = 0; df::float3 adj_68 = 0; spatial_vector adj_69 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_contact_body, var_0); var_2 = df::load(var_contact_point, var_0); var_3 = df::load(var_contact_dist, var_0); var_4 = df::load(var_contact_mat, var_0); var_6 = df::mul(var_4, var_5); var_8 = df::add(var_6, var_7); var_9 = df::load(var_materials, var_8); var_10 = df::mul(var_4, var_5); var_12 = df::add(var_10, var_11); var_13 = df::load(var_materials, var_12); var_14 = df::mul(var_4, var_5); var_16 = df::add(var_14, var_15); var_17 = df::load(var_materials, var_16); var_18 = df::mul(var_4, var_5); var_20 = df::add(var_18, var_19); var_21 = df::load(var_materials, var_20); var_22 = df::load(var_body_X_s, var_1); var_23 = df::load(var_body_v_s, var_1); var_26 = df::float3(var_24, var_25, var_24); var_27 = df::spatial_transform_point(var_22, var_2); var_28 = df::mul(var_26, var_3); var_29 = df::sub(var_27, var_28); var_30 = df::spatial_top(var_23); var_31 = df::spatial_bottom(var_23); var_32 = df::cross(var_30, var_29); var_33 = df::add(var_31, var_32); var_34 = df::dot(var_26, var_29); var_35 = (var_34 >= var_24); if (var_35) { goto label0; } var_36 = df::dot(var_26, var_33); var_37 = df::mul(var_26, var_36); var_38 = df::sub(var_33, var_37); var_39 = df::mul(var_34, var_9); var_40 = df::min(var_36, var_24); var_41 = df::mul(var_40, var_13); var_42 = df::step(var_34); var_43 = df::mul(var_41, var_42); var_44 = df::sub(var_24, var_34); var_45 = df::mul(var_43, var_44); var_46 = df::add(var_39, var_45); var_47 = df::mul(var_21, var_46); var_48 = df::sub(var_24, var_47); var_49 = df::float3(var_17, var_24, var_24); var_50 = df::dot(var_49, var_38); var_51 = df::clamp(var_50, var_47, var_48); var_52 = df::float3(var_24, var_24, var_17); var_53 = df::dot(var_52, var_38); var_54 = df::clamp(var_53, var_47, var_48); var_55 = df::normalize(var_38); var_56 = df::length(var_38); var_57 = df::mul(var_17, var_56); var_58 = df::mul(var_21, var_34); var_59 = df::mul(var_58, var_9); var_60 = df::sub(var_24, var_59); var_61 = df::min(var_57, var_60); var_62 = df::mul(var_55, var_61); var_63 = df::step(var_34); var_64 = df::mul(var_62, var_63); var_65 = df::add(var_39, var_45); var_66 = df::mul(var_26, var_65); var_67 = df::add(var_66, var_64); var_68 = df::cross(var_29, var_67); var_69 = df::spatial_vector(var_68, var_67); df::atomic_add(var_body_f_s, var_1, var_69); //--------- // reverse df::adj_atomic_add(var_body_f_s, var_1, var_69, adj_body_f_s, adj_1, adj_69); df::adj_spatial_vector(var_68, var_67, adj_68, adj_67, adj_69); df::adj_cross(var_29, var_67, adj_29, adj_67, adj_68); df::adj_add(var_66, var_64, adj_66, adj_64, adj_67); df::adj_mul(var_26, var_65, adj_26, adj_65, adj_66); df::adj_add(var_39, var_45, adj_39, adj_45, adj_65); df::adj_mul(var_62, var_63, adj_62, adj_63, adj_64); df::adj_step(var_34, adj_34, adj_63); df::adj_mul(var_55, var_61, adj_55, adj_61, adj_62); df::adj_min(var_57, var_60, adj_57, adj_60, adj_61); df::adj_sub(var_24, var_59, adj_24, adj_59, adj_60); df::adj_mul(var_58, var_9, adj_58, adj_9, adj_59); df::adj_mul(var_21, var_34, adj_21, adj_34, adj_58); df::adj_mul(var_17, var_56, adj_17, adj_56, adj_57); df::adj_length(var_38, adj_38, adj_56); df::adj_normalize(var_38, adj_38, adj_55); df::adj_clamp(var_53, var_47, var_48, adj_53, adj_47, adj_48, adj_54); df::adj_dot(var_52, var_38, adj_52, adj_38, adj_53); df::adj_float3(var_24, var_24, var_17, adj_24, adj_24, adj_17, adj_52); df::adj_clamp(var_50, var_47, var_48, adj_50, adj_47, adj_48, adj_51); df::adj_dot(var_49, var_38, adj_49, adj_38, adj_50); df::adj_float3(var_17, var_24, var_24, adj_17, adj_24, adj_24, adj_49); df::adj_sub(var_24, var_47, adj_24, adj_47, adj_48); df::adj_mul(var_21, var_46, adj_21, adj_46, adj_47); df::adj_add(var_39, var_45, adj_39, adj_45, adj_46); df::adj_mul(var_43, var_44, adj_43, adj_44, adj_45); df::adj_sub(var_24, var_34, adj_24, adj_34, adj_44); df::adj_mul(var_41, var_42, adj_41, adj_42, adj_43); df::adj_step(var_34, adj_34, adj_42); df::adj_mul(var_40, var_13, adj_40, adj_13, adj_41); df::adj_min(var_36, var_24, adj_36, adj_24, adj_40); df::adj_mul(var_34, var_9, adj_34, adj_9, adj_39); df::adj_sub(var_33, var_37, adj_33, adj_37, adj_38); df::adj_mul(var_26, var_36, adj_26, adj_36, adj_37); df::adj_dot(var_26, var_33, adj_26, adj_33, adj_36); if (var_35) { label0:; } df::adj_dot(var_26, var_29, adj_26, adj_29, adj_34); df::adj_add(var_31, var_32, adj_31, adj_32, adj_33); df::adj_cross(var_30, var_29, adj_30, adj_29, adj_32); df::adj_spatial_bottom(var_23, adj_23, adj_31); df::adj_spatial_top(var_23, adj_23, adj_30); df::adj_sub(var_27, var_28, adj_27, adj_28, adj_29); df::adj_mul(var_26, var_3, adj_26, adj_3, adj_28); df::adj_spatial_transform_point(var_22, var_2, adj_22, adj_2, adj_27); df::adj_float3(var_24, var_25, var_24, adj_24, adj_25, adj_24, adj_26); df::adj_load(var_body_v_s, var_1, adj_body_v_s, adj_1, adj_23); df::adj_load(var_body_X_s, var_1, adj_body_X_s, adj_1, adj_22); df::adj_load(var_materials, var_20, adj_materials, adj_20, adj_21); df::adj_add(var_18, var_19, adj_18, adj_19, adj_20); df::adj_mul(var_4, var_5, adj_4, adj_5, adj_18); df::adj_load(var_materials, var_16, adj_materials, adj_16, adj_17); df::adj_add(var_14, var_15, adj_14, adj_15, adj_16); df::adj_mul(var_4, var_5, adj_4, adj_5, adj_14); df::adj_load(var_materials, var_12, adj_materials, adj_12, adj_13); df::adj_add(var_10, var_11, adj_10, adj_11, adj_12); df::adj_mul(var_4, var_5, adj_4, adj_5, adj_10); df::adj_load(var_materials, var_8, adj_materials, adj_8, adj_9); df::adj_add(var_6, var_7, adj_6, adj_7, adj_8); df::adj_mul(var_4, var_5, adj_4, adj_5, adj_6); df::adj_load(var_contact_mat, var_0, adj_contact_mat, adj_0, adj_4); df::adj_load(var_contact_dist, var_0, adj_contact_dist, adj_0, adj_3); df::adj_load(var_contact_point, var_0, adj_contact_point, adj_0, adj_2); df::adj_load(var_contact_body, var_0, adj_contact_body, adj_0, adj_1); return; } // Python entry points void eval_rigid_contacts_art_cpu_forward(int dim, torch::Tensor var_body_X_s, torch::Tensor var_body_v_s, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_body_f_s) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_contacts_art_cpu_kernel_forward( cast<spatial_transform*>(var_body_X_s), cast<spatial_vector*>(var_body_v_s), cast<int*>(var_contact_body), cast<df::float3*>(var_contact_point), cast<float*>(var_contact_dist), cast<int*>(var_contact_mat), cast<float*>(var_materials), cast<spatial_vector*>(var_body_f_s)); } } void eval_rigid_contacts_art_cpu_backward(int dim, torch::Tensor var_body_X_s, torch::Tensor var_body_v_s, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_body_f_s, torch::Tensor adj_body_X_s, torch::Tensor adj_body_v_s, torch::Tensor adj_contact_body, torch::Tensor adj_contact_point, torch::Tensor adj_contact_dist, torch::Tensor adj_contact_mat, torch::Tensor adj_materials, torch::Tensor adj_body_f_s) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_contacts_art_cpu_kernel_backward( cast<spatial_transform*>(var_body_X_s), cast<spatial_vector*>(var_body_v_s), cast<int*>(var_contact_body), cast<df::float3*>(var_contact_point), cast<float*>(var_contact_dist), cast<int*>(var_contact_mat), cast<float*>(var_materials), cast<spatial_vector*>(var_body_f_s), cast<spatial_transform*>(adj_body_X_s), cast<spatial_vector*>(adj_body_v_s), cast<int*>(adj_contact_body), cast<df::float3*>(adj_contact_point), cast<float*>(adj_contact_dist), cast<int*>(adj_contact_mat), cast<float*>(adj_materials), cast<spatial_vector*>(adj_body_f_s)); } } // Python entry points void eval_rigid_contacts_art_cpu_forward(int dim, torch::Tensor var_body_X_s, torch::Tensor var_body_v_s, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_body_f_s); void eval_rigid_contacts_art_cpu_backward(int dim, torch::Tensor var_body_X_s, torch::Tensor var_body_v_s, torch::Tensor var_contact_body, torch::Tensor var_contact_point, torch::Tensor var_contact_dist, torch::Tensor var_contact_mat, torch::Tensor var_materials, torch::Tensor var_body_f_s, torch::Tensor adj_body_X_s, torch::Tensor adj_body_v_s, torch::Tensor adj_contact_body, torch::Tensor adj_contact_point, torch::Tensor adj_contact_dist, torch::Tensor adj_contact_mat, torch::Tensor adj_materials, torch::Tensor adj_body_f_s); void eval_muscles_cpu_kernel_forward( spatial_transform* var_body_X_s, spatial_vector* var_body_v_s, int* var_muscle_start, float* var_muscle_params, int* var_muscle_links, df::float3* var_muscle_points, float* var_muscle_activation, spatial_vector* var_body_f_s) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; float var_6; int var_7; int var_8; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_muscle_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_muscle_start, var_3); var_5 = df::sub(var_4, var_2); var_6 = df::load(var_muscle_activation, var_0); for (var_7=var_1; var_7 < var_5; ++var_7) { var_8 = compute_muscle_force_cpu_func(var_7, var_body_X_s, var_body_v_s, var_muscle_links, var_muscle_points, var_6, var_body_f_s); } } void eval_muscles_cpu_kernel_backward( spatial_transform* var_body_X_s, spatial_vector* var_body_v_s, int* var_muscle_start, float* var_muscle_params, int* var_muscle_links, df::float3* var_muscle_points, float* var_muscle_activation, spatial_vector* var_body_f_s, spatial_transform* adj_body_X_s, spatial_vector* adj_body_v_s, int* adj_muscle_start, float* adj_muscle_params, int* adj_muscle_links, df::float3* adj_muscle_points, float* adj_muscle_activation, spatial_vector* adj_body_f_s) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; float var_6; int var_7; int var_8; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; float adj_6 = 0; int adj_7 = 0; int adj_8 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_muscle_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_muscle_start, var_3); var_5 = df::sub(var_4, var_2); var_6 = df::load(var_muscle_activation, var_0); if (false) { var_8 = compute_muscle_force_cpu_func(var_7, var_body_X_s, var_body_v_s, var_muscle_links, var_muscle_points, var_6, var_body_f_s); } //--------- // reverse for (var_7=var_5-1; var_7 >= var_1; --var_7) { adj_compute_muscle_force_cpu_func(var_7, var_body_X_s, var_body_v_s, var_muscle_links, var_muscle_points, var_6, var_body_f_s, adj_7, adj_body_X_s, adj_body_v_s, adj_muscle_links, adj_muscle_points, adj_6, adj_body_f_s, adj_8); } df::adj_load(var_muscle_activation, var_0, adj_muscle_activation, adj_0, adj_6); df::adj_sub(var_4, var_2, adj_4, adj_2, adj_5); df::adj_load(var_muscle_start, var_3, adj_muscle_start, adj_3, adj_4); df::adj_add(var_0, var_2, adj_0, adj_2, adj_3); df::adj_load(var_muscle_start, var_0, adj_muscle_start, adj_0, adj_1); return; } // Python entry points void eval_muscles_cpu_forward(int dim, torch::Tensor var_body_X_s, torch::Tensor var_body_v_s, torch::Tensor var_muscle_start, torch::Tensor var_muscle_params, torch::Tensor var_muscle_links, torch::Tensor var_muscle_points, torch::Tensor var_muscle_activation, torch::Tensor var_body_f_s) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_muscles_cpu_kernel_forward( cast<spatial_transform*>(var_body_X_s), cast<spatial_vector*>(var_body_v_s), cast<int*>(var_muscle_start), cast<float*>(var_muscle_params), cast<int*>(var_muscle_links), cast<df::float3*>(var_muscle_points), cast<float*>(var_muscle_activation), cast<spatial_vector*>(var_body_f_s)); } } void eval_muscles_cpu_backward(int dim, torch::Tensor var_body_X_s, torch::Tensor var_body_v_s, torch::Tensor var_muscle_start, torch::Tensor var_muscle_params, torch::Tensor var_muscle_links, torch::Tensor var_muscle_points, torch::Tensor var_muscle_activation, torch::Tensor var_body_f_s, torch::Tensor adj_body_X_s, torch::Tensor adj_body_v_s, torch::Tensor adj_muscle_start, torch::Tensor adj_muscle_params, torch::Tensor adj_muscle_links, torch::Tensor adj_muscle_points, torch::Tensor adj_muscle_activation, torch::Tensor adj_body_f_s) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_muscles_cpu_kernel_backward( cast<spatial_transform*>(var_body_X_s), cast<spatial_vector*>(var_body_v_s), cast<int*>(var_muscle_start), cast<float*>(var_muscle_params), cast<int*>(var_muscle_links), cast<df::float3*>(var_muscle_points), cast<float*>(var_muscle_activation), cast<spatial_vector*>(var_body_f_s), cast<spatial_transform*>(adj_body_X_s), cast<spatial_vector*>(adj_body_v_s), cast<int*>(adj_muscle_start), cast<float*>(adj_muscle_params), cast<int*>(adj_muscle_links), cast<df::float3*>(adj_muscle_points), cast<float*>(adj_muscle_activation), cast<spatial_vector*>(adj_body_f_s)); } } // Python entry points void eval_muscles_cpu_forward(int dim, torch::Tensor var_body_X_s, torch::Tensor var_body_v_s, torch::Tensor var_muscle_start, torch::Tensor var_muscle_params, torch::Tensor var_muscle_links, torch::Tensor var_muscle_points, torch::Tensor var_muscle_activation, torch::Tensor var_body_f_s); void eval_muscles_cpu_backward(int dim, torch::Tensor var_body_X_s, torch::Tensor var_body_v_s, torch::Tensor var_muscle_start, torch::Tensor var_muscle_params, torch::Tensor var_muscle_links, torch::Tensor var_muscle_points, torch::Tensor var_muscle_activation, torch::Tensor var_body_f_s, torch::Tensor adj_body_X_s, torch::Tensor adj_body_v_s, torch::Tensor adj_muscle_start, torch::Tensor adj_muscle_params, torch::Tensor adj_muscle_links, torch::Tensor adj_muscle_points, torch::Tensor adj_muscle_activation, torch::Tensor adj_body_f_s); void eval_rigid_fk_cpu_kernel_forward( int* var_articulation_start, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, spatial_transform* var_joint_X_pj, spatial_transform* var_joint_X_cm, df::float3* var_joint_axis, spatial_transform* var_body_X_sc, spatial_transform* var_body_X_sm) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; int var_6; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); for (var_5=var_1; var_5 < var_4; ++var_5) { var_6 = compute_link_transform_cpu_func(var_5, var_joint_type, var_joint_parent, var_joint_q_start, var_joint_qd_start, var_joint_q, var_joint_X_pj, var_joint_X_cm, var_joint_axis, var_body_X_sc, var_body_X_sm); } } void eval_rigid_fk_cpu_kernel_backward( int* var_articulation_start, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, spatial_transform* var_joint_X_pj, spatial_transform* var_joint_X_cm, df::float3* var_joint_axis, spatial_transform* var_body_X_sc, spatial_transform* var_body_X_sm, int* adj_articulation_start, int* adj_joint_type, int* adj_joint_parent, int* adj_joint_q_start, int* adj_joint_qd_start, float* adj_joint_q, spatial_transform* adj_joint_X_pj, spatial_transform* adj_joint_X_cm, df::float3* adj_joint_axis, spatial_transform* adj_body_X_sc, spatial_transform* adj_body_X_sm) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; int var_6; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); if (false) { var_6 = compute_link_transform_cpu_func(var_5, var_joint_type, var_joint_parent, var_joint_q_start, var_joint_qd_start, var_joint_q, var_joint_X_pj, var_joint_X_cm, var_joint_axis, var_body_X_sc, var_body_X_sm); } //--------- // reverse for (var_5=var_4-1; var_5 >= var_1; --var_5) { adj_compute_link_transform_cpu_func(var_5, var_joint_type, var_joint_parent, var_joint_q_start, var_joint_qd_start, var_joint_q, var_joint_X_pj, var_joint_X_cm, var_joint_axis, var_body_X_sc, var_body_X_sm, adj_5, adj_joint_type, adj_joint_parent, adj_joint_q_start, adj_joint_qd_start, adj_joint_q, adj_joint_X_pj, adj_joint_X_cm, adj_joint_axis, adj_body_X_sc, adj_body_X_sm, adj_6); } df::adj_load(var_articulation_start, var_3, adj_articulation_start, adj_3, adj_4); df::adj_add(var_0, var_2, adj_0, adj_2, adj_3); df::adj_load(var_articulation_start, var_0, adj_articulation_start, adj_0, adj_1); return; } // Python entry points void eval_rigid_fk_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_X_pj, torch::Tensor var_joint_X_cm, torch::Tensor var_joint_axis, torch::Tensor var_body_X_sc, torch::Tensor var_body_X_sm) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_fk_cpu_kernel_forward( cast<int*>(var_articulation_start), cast<int*>(var_joint_type), cast<int*>(var_joint_parent), cast<int*>(var_joint_q_start), cast<int*>(var_joint_qd_start), cast<float*>(var_joint_q), cast<spatial_transform*>(var_joint_X_pj), cast<spatial_transform*>(var_joint_X_cm), cast<df::float3*>(var_joint_axis), cast<spatial_transform*>(var_body_X_sc), cast<spatial_transform*>(var_body_X_sm)); } } void eval_rigid_fk_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_X_pj, torch::Tensor var_joint_X_cm, torch::Tensor var_joint_axis, torch::Tensor var_body_X_sc, torch::Tensor var_body_X_sm, torch::Tensor adj_articulation_start, torch::Tensor adj_joint_type, torch::Tensor adj_joint_parent, torch::Tensor adj_joint_q_start, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_q, torch::Tensor adj_joint_X_pj, torch::Tensor adj_joint_X_cm, torch::Tensor adj_joint_axis, torch::Tensor adj_body_X_sc, torch::Tensor adj_body_X_sm) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_fk_cpu_kernel_backward( cast<int*>(var_articulation_start), cast<int*>(var_joint_type), cast<int*>(var_joint_parent), cast<int*>(var_joint_q_start), cast<int*>(var_joint_qd_start), cast<float*>(var_joint_q), cast<spatial_transform*>(var_joint_X_pj), cast<spatial_transform*>(var_joint_X_cm), cast<df::float3*>(var_joint_axis), cast<spatial_transform*>(var_body_X_sc), cast<spatial_transform*>(var_body_X_sm), cast<int*>(adj_articulation_start), cast<int*>(adj_joint_type), cast<int*>(adj_joint_parent), cast<int*>(adj_joint_q_start), cast<int*>(adj_joint_qd_start), cast<float*>(adj_joint_q), cast<spatial_transform*>(adj_joint_X_pj), cast<spatial_transform*>(adj_joint_X_cm), cast<df::float3*>(adj_joint_axis), cast<spatial_transform*>(adj_body_X_sc), cast<spatial_transform*>(adj_body_X_sm)); } } // Python entry points void eval_rigid_fk_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_X_pj, torch::Tensor var_joint_X_cm, torch::Tensor var_joint_axis, torch::Tensor var_body_X_sc, torch::Tensor var_body_X_sm); void eval_rigid_fk_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_X_pj, torch::Tensor var_joint_X_cm, torch::Tensor var_joint_axis, torch::Tensor var_body_X_sc, torch::Tensor var_body_X_sm, torch::Tensor adj_articulation_start, torch::Tensor adj_joint_type, torch::Tensor adj_joint_parent, torch::Tensor adj_joint_q_start, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_q, torch::Tensor adj_joint_X_pj, torch::Tensor adj_joint_X_cm, torch::Tensor adj_joint_axis, torch::Tensor adj_body_X_sc, torch::Tensor adj_body_X_sm); void eval_rigid_id_cpu_kernel_forward( int* var_articulation_start, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, float* var_joint_qd, df::float3* var_joint_axis, float* var_joint_target_ke, float* var_joint_target_kd, spatial_matrix* var_body_I_m, spatial_transform* var_body_X_sc, spatial_transform* var_body_X_sm, spatial_transform* var_joint_X_pj, df::float3* var_gravity, spatial_vector* var_joint_S_s, spatial_matrix* var_body_I_s, spatial_vector* var_body_v_s, spatial_vector* var_body_f_s, spatial_vector* var_body_a_s) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; int var_6; int var_7; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); var_5 = df::sub(var_4, var_1); for (var_6=var_1; var_6 < var_4; ++var_6) { var_7 = compute_link_velocity_cpu_func(var_6, var_joint_type, var_joint_parent, var_joint_qd_start, var_joint_qd, var_joint_axis, var_body_I_m, var_body_X_sc, var_body_X_sm, var_joint_X_pj, var_gravity, var_joint_S_s, var_body_I_s, var_body_v_s, var_body_f_s, var_body_a_s); } } void eval_rigid_id_cpu_kernel_backward( int* var_articulation_start, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, float* var_joint_qd, df::float3* var_joint_axis, float* var_joint_target_ke, float* var_joint_target_kd, spatial_matrix* var_body_I_m, spatial_transform* var_body_X_sc, spatial_transform* var_body_X_sm, spatial_transform* var_joint_X_pj, df::float3* var_gravity, spatial_vector* var_joint_S_s, spatial_matrix* var_body_I_s, spatial_vector* var_body_v_s, spatial_vector* var_body_f_s, spatial_vector* var_body_a_s, int* adj_articulation_start, int* adj_joint_type, int* adj_joint_parent, int* adj_joint_q_start, int* adj_joint_qd_start, float* adj_joint_q, float* adj_joint_qd, df::float3* adj_joint_axis, float* adj_joint_target_ke, float* adj_joint_target_kd, spatial_matrix* adj_body_I_m, spatial_transform* adj_body_X_sc, spatial_transform* adj_body_X_sm, spatial_transform* adj_joint_X_pj, df::float3* adj_gravity, spatial_vector* adj_joint_S_s, spatial_matrix* adj_body_I_s, spatial_vector* adj_body_v_s, spatial_vector* adj_body_f_s, spatial_vector* adj_body_a_s) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; int var_6; int var_7; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); var_5 = df::sub(var_4, var_1); if (false) { var_7 = compute_link_velocity_cpu_func(var_6, var_joint_type, var_joint_parent, var_joint_qd_start, var_joint_qd, var_joint_axis, var_body_I_m, var_body_X_sc, var_body_X_sm, var_joint_X_pj, var_gravity, var_joint_S_s, var_body_I_s, var_body_v_s, var_body_f_s, var_body_a_s); } //--------- // reverse for (var_6=var_4-1; var_6 >= var_1; --var_6) { adj_compute_link_velocity_cpu_func(var_6, var_joint_type, var_joint_parent, var_joint_qd_start, var_joint_qd, var_joint_axis, var_body_I_m, var_body_X_sc, var_body_X_sm, var_joint_X_pj, var_gravity, var_joint_S_s, var_body_I_s, var_body_v_s, var_body_f_s, var_body_a_s, adj_6, adj_joint_type, adj_joint_parent, adj_joint_qd_start, adj_joint_qd, adj_joint_axis, adj_body_I_m, adj_body_X_sc, adj_body_X_sm, adj_joint_X_pj, adj_gravity, adj_joint_S_s, adj_body_I_s, adj_body_v_s, adj_body_f_s, adj_body_a_s, adj_7); } df::adj_sub(var_4, var_1, adj_4, adj_1, adj_5); df::adj_load(var_articulation_start, var_3, adj_articulation_start, adj_3, adj_4); df::adj_add(var_0, var_2, adj_0, adj_2, adj_3); df::adj_load(var_articulation_start, var_0, adj_articulation_start, adj_0, adj_1); return; } // Python entry points void eval_rigid_id_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_axis, torch::Tensor var_joint_target_ke, torch::Tensor var_joint_target_kd, torch::Tensor var_body_I_m, torch::Tensor var_body_X_sc, torch::Tensor var_body_X_sm, torch::Tensor var_joint_X_pj, torch::Tensor var_gravity, torch::Tensor var_joint_S_s, torch::Tensor var_body_I_s, torch::Tensor var_body_v_s, torch::Tensor var_body_f_s, torch::Tensor var_body_a_s) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_id_cpu_kernel_forward( cast<int*>(var_articulation_start), cast<int*>(var_joint_type), cast<int*>(var_joint_parent), cast<int*>(var_joint_q_start), cast<int*>(var_joint_qd_start), cast<float*>(var_joint_q), cast<float*>(var_joint_qd), cast<df::float3*>(var_joint_axis), cast<float*>(var_joint_target_ke), cast<float*>(var_joint_target_kd), cast<spatial_matrix*>(var_body_I_m), cast<spatial_transform*>(var_body_X_sc), cast<spatial_transform*>(var_body_X_sm), cast<spatial_transform*>(var_joint_X_pj), cast<df::float3*>(var_gravity), cast<spatial_vector*>(var_joint_S_s), cast<spatial_matrix*>(var_body_I_s), cast<spatial_vector*>(var_body_v_s), cast<spatial_vector*>(var_body_f_s), cast<spatial_vector*>(var_body_a_s)); } } void eval_rigid_id_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_axis, torch::Tensor var_joint_target_ke, torch::Tensor var_joint_target_kd, torch::Tensor var_body_I_m, torch::Tensor var_body_X_sc, torch::Tensor var_body_X_sm, torch::Tensor var_joint_X_pj, torch::Tensor var_gravity, torch::Tensor var_joint_S_s, torch::Tensor var_body_I_s, torch::Tensor var_body_v_s, torch::Tensor var_body_f_s, torch::Tensor var_body_a_s, torch::Tensor adj_articulation_start, torch::Tensor adj_joint_type, torch::Tensor adj_joint_parent, torch::Tensor adj_joint_q_start, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_q, torch::Tensor adj_joint_qd, torch::Tensor adj_joint_axis, torch::Tensor adj_joint_target_ke, torch::Tensor adj_joint_target_kd, torch::Tensor adj_body_I_m, torch::Tensor adj_body_X_sc, torch::Tensor adj_body_X_sm, torch::Tensor adj_joint_X_pj, torch::Tensor adj_gravity, torch::Tensor adj_joint_S_s, torch::Tensor adj_body_I_s, torch::Tensor adj_body_v_s, torch::Tensor adj_body_f_s, torch::Tensor adj_body_a_s) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_id_cpu_kernel_backward( cast<int*>(var_articulation_start), cast<int*>(var_joint_type), cast<int*>(var_joint_parent), cast<int*>(var_joint_q_start), cast<int*>(var_joint_qd_start), cast<float*>(var_joint_q), cast<float*>(var_joint_qd), cast<df::float3*>(var_joint_axis), cast<float*>(var_joint_target_ke), cast<float*>(var_joint_target_kd), cast<spatial_matrix*>(var_body_I_m), cast<spatial_transform*>(var_body_X_sc), cast<spatial_transform*>(var_body_X_sm), cast<spatial_transform*>(var_joint_X_pj), cast<df::float3*>(var_gravity), cast<spatial_vector*>(var_joint_S_s), cast<spatial_matrix*>(var_body_I_s), cast<spatial_vector*>(var_body_v_s), cast<spatial_vector*>(var_body_f_s), cast<spatial_vector*>(var_body_a_s), cast<int*>(adj_articulation_start), cast<int*>(adj_joint_type), cast<int*>(adj_joint_parent), cast<int*>(adj_joint_q_start), cast<int*>(adj_joint_qd_start), cast<float*>(adj_joint_q), cast<float*>(adj_joint_qd), cast<df::float3*>(adj_joint_axis), cast<float*>(adj_joint_target_ke), cast<float*>(adj_joint_target_kd), cast<spatial_matrix*>(adj_body_I_m), cast<spatial_transform*>(adj_body_X_sc), cast<spatial_transform*>(adj_body_X_sm), cast<spatial_transform*>(adj_joint_X_pj), cast<df::float3*>(adj_gravity), cast<spatial_vector*>(adj_joint_S_s), cast<spatial_matrix*>(adj_body_I_s), cast<spatial_vector*>(adj_body_v_s), cast<spatial_vector*>(adj_body_f_s), cast<spatial_vector*>(adj_body_a_s)); } } // Python entry points void eval_rigid_id_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_axis, torch::Tensor var_joint_target_ke, torch::Tensor var_joint_target_kd, torch::Tensor var_body_I_m, torch::Tensor var_body_X_sc, torch::Tensor var_body_X_sm, torch::Tensor var_joint_X_pj, torch::Tensor var_gravity, torch::Tensor var_joint_S_s, torch::Tensor var_body_I_s, torch::Tensor var_body_v_s, torch::Tensor var_body_f_s, torch::Tensor var_body_a_s); void eval_rigid_id_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_axis, torch::Tensor var_joint_target_ke, torch::Tensor var_joint_target_kd, torch::Tensor var_body_I_m, torch::Tensor var_body_X_sc, torch::Tensor var_body_X_sm, torch::Tensor var_joint_X_pj, torch::Tensor var_gravity, torch::Tensor var_joint_S_s, torch::Tensor var_body_I_s, torch::Tensor var_body_v_s, torch::Tensor var_body_f_s, torch::Tensor var_body_a_s, torch::Tensor adj_articulation_start, torch::Tensor adj_joint_type, torch::Tensor adj_joint_parent, torch::Tensor adj_joint_q_start, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_q, torch::Tensor adj_joint_qd, torch::Tensor adj_joint_axis, torch::Tensor adj_joint_target_ke, torch::Tensor adj_joint_target_kd, torch::Tensor adj_body_I_m, torch::Tensor adj_body_X_sc, torch::Tensor adj_body_X_sm, torch::Tensor adj_joint_X_pj, torch::Tensor adj_gravity, torch::Tensor adj_joint_S_s, torch::Tensor adj_body_I_s, torch::Tensor adj_body_v_s, torch::Tensor adj_body_f_s, torch::Tensor adj_body_a_s); void eval_rigid_tau_cpu_kernel_forward( int* var_articulation_start, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, float* var_joint_qd, float* var_joint_act, float* var_joint_target, float* var_joint_target_ke, float* var_joint_target_kd, float* var_joint_limit_lower, float* var_joint_limit_upper, float* var_joint_limit_ke, float* var_joint_limit_kd, df::float3* var_joint_axis, spatial_vector* var_joint_S_s, spatial_vector* var_body_fb_s, spatial_vector* var_body_ft_s, float* var_tau) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; const int var_6 = 0; int var_7; int var_8; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); var_5 = df::sub(var_4, var_1); for (var_7=var_6; var_7 < var_5; ++var_7) { var_8 = compute_link_tau_cpu_func(var_7, var_4, var_joint_type, var_joint_parent, var_joint_q_start, var_joint_qd_start, var_joint_q, var_joint_qd, var_joint_act, var_joint_target, var_joint_target_ke, var_joint_target_kd, var_joint_limit_lower, var_joint_limit_upper, var_joint_limit_ke, var_joint_limit_kd, var_joint_S_s, var_body_fb_s, var_body_ft_s, var_tau); } } void eval_rigid_tau_cpu_kernel_backward( int* var_articulation_start, int* var_joint_type, int* var_joint_parent, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, float* var_joint_qd, float* var_joint_act, float* var_joint_target, float* var_joint_target_ke, float* var_joint_target_kd, float* var_joint_limit_lower, float* var_joint_limit_upper, float* var_joint_limit_ke, float* var_joint_limit_kd, df::float3* var_joint_axis, spatial_vector* var_joint_S_s, spatial_vector* var_body_fb_s, spatial_vector* var_body_ft_s, float* var_tau, int* adj_articulation_start, int* adj_joint_type, int* adj_joint_parent, int* adj_joint_q_start, int* adj_joint_qd_start, float* adj_joint_q, float* adj_joint_qd, float* adj_joint_act, float* adj_joint_target, float* adj_joint_target_ke, float* adj_joint_target_kd, float* adj_joint_limit_lower, float* adj_joint_limit_upper, float* adj_joint_limit_ke, float* adj_joint_limit_kd, df::float3* adj_joint_axis, spatial_vector* adj_joint_S_s, spatial_vector* adj_body_fb_s, spatial_vector* adj_body_ft_s, float* adj_tau) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; const int var_6 = 0; int var_7; int var_8; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); var_5 = df::sub(var_4, var_1); if (false) { var_8 = compute_link_tau_cpu_func(var_7, var_4, var_joint_type, var_joint_parent, var_joint_q_start, var_joint_qd_start, var_joint_q, var_joint_qd, var_joint_act, var_joint_target, var_joint_target_ke, var_joint_target_kd, var_joint_limit_lower, var_joint_limit_upper, var_joint_limit_ke, var_joint_limit_kd, var_joint_S_s, var_body_fb_s, var_body_ft_s, var_tau); } //--------- // reverse for (var_7=var_5-1; var_7 >= var_6; --var_7) { adj_compute_link_tau_cpu_func(var_7, var_4, var_joint_type, var_joint_parent, var_joint_q_start, var_joint_qd_start, var_joint_q, var_joint_qd, var_joint_act, var_joint_target, var_joint_target_ke, var_joint_target_kd, var_joint_limit_lower, var_joint_limit_upper, var_joint_limit_ke, var_joint_limit_kd, var_joint_S_s, var_body_fb_s, var_body_ft_s, var_tau, adj_7, adj_4, adj_joint_type, adj_joint_parent, adj_joint_q_start, adj_joint_qd_start, adj_joint_q, adj_joint_qd, adj_joint_act, adj_joint_target, adj_joint_target_ke, adj_joint_target_kd, adj_joint_limit_lower, adj_joint_limit_upper, adj_joint_limit_ke, adj_joint_limit_kd, adj_joint_S_s, adj_body_fb_s, adj_body_ft_s, adj_tau, adj_8); } df::adj_sub(var_4, var_1, adj_4, adj_1, adj_5); df::adj_load(var_articulation_start, var_3, adj_articulation_start, adj_3, adj_4); df::adj_add(var_0, var_2, adj_0, adj_2, adj_3); df::adj_load(var_articulation_start, var_0, adj_articulation_start, adj_0, adj_1); return; } // Python entry points void eval_rigid_tau_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_act, torch::Tensor var_joint_target, torch::Tensor var_joint_target_ke, torch::Tensor var_joint_target_kd, torch::Tensor var_joint_limit_lower, torch::Tensor var_joint_limit_upper, torch::Tensor var_joint_limit_ke, torch::Tensor var_joint_limit_kd, torch::Tensor var_joint_axis, torch::Tensor var_joint_S_s, torch::Tensor var_body_fb_s, torch::Tensor var_body_ft_s, torch::Tensor var_tau) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_tau_cpu_kernel_forward( cast<int*>(var_articulation_start), cast<int*>(var_joint_type), cast<int*>(var_joint_parent), cast<int*>(var_joint_q_start), cast<int*>(var_joint_qd_start), cast<float*>(var_joint_q), cast<float*>(var_joint_qd), cast<float*>(var_joint_act), cast<float*>(var_joint_target), cast<float*>(var_joint_target_ke), cast<float*>(var_joint_target_kd), cast<float*>(var_joint_limit_lower), cast<float*>(var_joint_limit_upper), cast<float*>(var_joint_limit_ke), cast<float*>(var_joint_limit_kd), cast<df::float3*>(var_joint_axis), cast<spatial_vector*>(var_joint_S_s), cast<spatial_vector*>(var_body_fb_s), cast<spatial_vector*>(var_body_ft_s), cast<float*>(var_tau)); } } void eval_rigid_tau_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_act, torch::Tensor var_joint_target, torch::Tensor var_joint_target_ke, torch::Tensor var_joint_target_kd, torch::Tensor var_joint_limit_lower, torch::Tensor var_joint_limit_upper, torch::Tensor var_joint_limit_ke, torch::Tensor var_joint_limit_kd, torch::Tensor var_joint_axis, torch::Tensor var_joint_S_s, torch::Tensor var_body_fb_s, torch::Tensor var_body_ft_s, torch::Tensor var_tau, torch::Tensor adj_articulation_start, torch::Tensor adj_joint_type, torch::Tensor adj_joint_parent, torch::Tensor adj_joint_q_start, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_q, torch::Tensor adj_joint_qd, torch::Tensor adj_joint_act, torch::Tensor adj_joint_target, torch::Tensor adj_joint_target_ke, torch::Tensor adj_joint_target_kd, torch::Tensor adj_joint_limit_lower, torch::Tensor adj_joint_limit_upper, torch::Tensor adj_joint_limit_ke, torch::Tensor adj_joint_limit_kd, torch::Tensor adj_joint_axis, torch::Tensor adj_joint_S_s, torch::Tensor adj_body_fb_s, torch::Tensor adj_body_ft_s, torch::Tensor adj_tau) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_tau_cpu_kernel_backward( cast<int*>(var_articulation_start), cast<int*>(var_joint_type), cast<int*>(var_joint_parent), cast<int*>(var_joint_q_start), cast<int*>(var_joint_qd_start), cast<float*>(var_joint_q), cast<float*>(var_joint_qd), cast<float*>(var_joint_act), cast<float*>(var_joint_target), cast<float*>(var_joint_target_ke), cast<float*>(var_joint_target_kd), cast<float*>(var_joint_limit_lower), cast<float*>(var_joint_limit_upper), cast<float*>(var_joint_limit_ke), cast<float*>(var_joint_limit_kd), cast<df::float3*>(var_joint_axis), cast<spatial_vector*>(var_joint_S_s), cast<spatial_vector*>(var_body_fb_s), cast<spatial_vector*>(var_body_ft_s), cast<float*>(var_tau), cast<int*>(adj_articulation_start), cast<int*>(adj_joint_type), cast<int*>(adj_joint_parent), cast<int*>(adj_joint_q_start), cast<int*>(adj_joint_qd_start), cast<float*>(adj_joint_q), cast<float*>(adj_joint_qd), cast<float*>(adj_joint_act), cast<float*>(adj_joint_target), cast<float*>(adj_joint_target_ke), cast<float*>(adj_joint_target_kd), cast<float*>(adj_joint_limit_lower), cast<float*>(adj_joint_limit_upper), cast<float*>(adj_joint_limit_ke), cast<float*>(adj_joint_limit_kd), cast<df::float3*>(adj_joint_axis), cast<spatial_vector*>(adj_joint_S_s), cast<spatial_vector*>(adj_body_fb_s), cast<spatial_vector*>(adj_body_ft_s), cast<float*>(adj_tau)); } } // Python entry points void eval_rigid_tau_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_act, torch::Tensor var_joint_target, torch::Tensor var_joint_target_ke, torch::Tensor var_joint_target_kd, torch::Tensor var_joint_limit_lower, torch::Tensor var_joint_limit_upper, torch::Tensor var_joint_limit_ke, torch::Tensor var_joint_limit_kd, torch::Tensor var_joint_axis, torch::Tensor var_joint_S_s, torch::Tensor var_body_fb_s, torch::Tensor var_body_ft_s, torch::Tensor var_tau); void eval_rigid_tau_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_joint_type, torch::Tensor var_joint_parent, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_act, torch::Tensor var_joint_target, torch::Tensor var_joint_target_ke, torch::Tensor var_joint_target_kd, torch::Tensor var_joint_limit_lower, torch::Tensor var_joint_limit_upper, torch::Tensor var_joint_limit_ke, torch::Tensor var_joint_limit_kd, torch::Tensor var_joint_axis, torch::Tensor var_joint_S_s, torch::Tensor var_body_fb_s, torch::Tensor var_body_ft_s, torch::Tensor var_tau, torch::Tensor adj_articulation_start, torch::Tensor adj_joint_type, torch::Tensor adj_joint_parent, torch::Tensor adj_joint_q_start, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_q, torch::Tensor adj_joint_qd, torch::Tensor adj_joint_act, torch::Tensor adj_joint_target, torch::Tensor adj_joint_target_ke, torch::Tensor adj_joint_target_kd, torch::Tensor adj_joint_limit_lower, torch::Tensor adj_joint_limit_upper, torch::Tensor adj_joint_limit_ke, torch::Tensor adj_joint_limit_kd, torch::Tensor adj_joint_axis, torch::Tensor adj_joint_S_s, torch::Tensor adj_body_fb_s, torch::Tensor adj_body_ft_s, torch::Tensor adj_tau); void eval_rigid_jacobian_cpu_kernel_forward( int* var_articulation_start, int* var_articulation_J_start, int* var_joint_parent, int* var_joint_qd_start, spatial_vector* var_joint_S_s, float* var_J) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; int var_6; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); var_5 = df::sub(var_4, var_1); var_6 = df::load(var_articulation_J_start, var_0); df::spatial_jacobian(var_joint_S_s, var_joint_parent, var_joint_qd_start, var_1, var_5, var_6, var_J); } void eval_rigid_jacobian_cpu_kernel_backward( int* var_articulation_start, int* var_articulation_J_start, int* var_joint_parent, int* var_joint_qd_start, spatial_vector* var_joint_S_s, float* var_J, int* adj_articulation_start, int* adj_articulation_J_start, int* adj_joint_parent, int* adj_joint_qd_start, spatial_vector* adj_joint_S_s, float* adj_J) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; int var_6; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); var_5 = df::sub(var_4, var_1); var_6 = df::load(var_articulation_J_start, var_0); df::spatial_jacobian(var_joint_S_s, var_joint_parent, var_joint_qd_start, var_1, var_5, var_6, var_J); //--------- // reverse df::adj_spatial_jacobian(var_joint_S_s, var_joint_parent, var_joint_qd_start, var_1, var_5, var_6, var_J, adj_joint_S_s, adj_joint_parent, adj_joint_qd_start, adj_1, adj_5, adj_6, adj_J); df::adj_load(var_articulation_J_start, var_0, adj_articulation_J_start, adj_0, adj_6); df::adj_sub(var_4, var_1, adj_4, adj_1, adj_5); df::adj_load(var_articulation_start, var_3, adj_articulation_start, adj_3, adj_4); df::adj_add(var_0, var_2, adj_0, adj_2, adj_3); df::adj_load(var_articulation_start, var_0, adj_articulation_start, adj_0, adj_1); return; } // Python entry points void eval_rigid_jacobian_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_articulation_J_start, torch::Tensor var_joint_parent, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_S_s, torch::Tensor var_J) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_jacobian_cpu_kernel_forward( cast<int*>(var_articulation_start), cast<int*>(var_articulation_J_start), cast<int*>(var_joint_parent), cast<int*>(var_joint_qd_start), cast<spatial_vector*>(var_joint_S_s), cast<float*>(var_J)); } } void eval_rigid_jacobian_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_articulation_J_start, torch::Tensor var_joint_parent, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_S_s, torch::Tensor var_J, torch::Tensor adj_articulation_start, torch::Tensor adj_articulation_J_start, torch::Tensor adj_joint_parent, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_S_s, torch::Tensor adj_J) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_jacobian_cpu_kernel_backward( cast<int*>(var_articulation_start), cast<int*>(var_articulation_J_start), cast<int*>(var_joint_parent), cast<int*>(var_joint_qd_start), cast<spatial_vector*>(var_joint_S_s), cast<float*>(var_J), cast<int*>(adj_articulation_start), cast<int*>(adj_articulation_J_start), cast<int*>(adj_joint_parent), cast<int*>(adj_joint_qd_start), cast<spatial_vector*>(adj_joint_S_s), cast<float*>(adj_J)); } } // Python entry points void eval_rigid_jacobian_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_articulation_J_start, torch::Tensor var_joint_parent, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_S_s, torch::Tensor var_J); void eval_rigid_jacobian_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_articulation_J_start, torch::Tensor var_joint_parent, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_S_s, torch::Tensor var_J, torch::Tensor adj_articulation_start, torch::Tensor adj_articulation_J_start, torch::Tensor adj_joint_parent, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_S_s, torch::Tensor adj_J); void eval_rigid_mass_cpu_kernel_forward( int* var_articulation_start, int* var_articulation_M_start, spatial_matrix* var_body_I_s, float* var_M) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; int var_6; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); var_5 = df::sub(var_4, var_1); var_6 = df::load(var_articulation_M_start, var_0); df::spatial_mass(var_body_I_s, var_1, var_5, var_6, var_M); } void eval_rigid_mass_cpu_kernel_backward( int* var_articulation_start, int* var_articulation_M_start, spatial_matrix* var_body_I_s, float* var_M, int* adj_articulation_start, int* adj_articulation_M_start, spatial_matrix* adj_body_I_s, float* adj_M) { //--------- // primal vars int var_0; int var_1; const int var_2 = 1; int var_3; int var_4; int var_5; int var_6; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_articulation_start, var_0); var_3 = df::add(var_0, var_2); var_4 = df::load(var_articulation_start, var_3); var_5 = df::sub(var_4, var_1); var_6 = df::load(var_articulation_M_start, var_0); df::spatial_mass(var_body_I_s, var_1, var_5, var_6, var_M); //--------- // reverse df::adj_spatial_mass(var_body_I_s, var_1, var_5, var_6, var_M, adj_body_I_s, adj_1, adj_5, adj_6, adj_M); df::adj_load(var_articulation_M_start, var_0, adj_articulation_M_start, adj_0, adj_6); df::adj_sub(var_4, var_1, adj_4, adj_1, adj_5); df::adj_load(var_articulation_start, var_3, adj_articulation_start, adj_3, adj_4); df::adj_add(var_0, var_2, adj_0, adj_2, adj_3); df::adj_load(var_articulation_start, var_0, adj_articulation_start, adj_0, adj_1); return; } // Python entry points void eval_rigid_mass_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_articulation_M_start, torch::Tensor var_body_I_s, torch::Tensor var_M) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_mass_cpu_kernel_forward( cast<int*>(var_articulation_start), cast<int*>(var_articulation_M_start), cast<spatial_matrix*>(var_body_I_s), cast<float*>(var_M)); } } void eval_rigid_mass_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_articulation_M_start, torch::Tensor var_body_I_s, torch::Tensor var_M, torch::Tensor adj_articulation_start, torch::Tensor adj_articulation_M_start, torch::Tensor adj_body_I_s, torch::Tensor adj_M) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_mass_cpu_kernel_backward( cast<int*>(var_articulation_start), cast<int*>(var_articulation_M_start), cast<spatial_matrix*>(var_body_I_s), cast<float*>(var_M), cast<int*>(adj_articulation_start), cast<int*>(adj_articulation_M_start), cast<spatial_matrix*>(adj_body_I_s), cast<float*>(adj_M)); } } // Python entry points void eval_rigid_mass_cpu_forward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_articulation_M_start, torch::Tensor var_body_I_s, torch::Tensor var_M); void eval_rigid_mass_cpu_backward(int dim, torch::Tensor var_articulation_start, torch::Tensor var_articulation_M_start, torch::Tensor var_body_I_s, torch::Tensor var_M, torch::Tensor adj_articulation_start, torch::Tensor adj_articulation_M_start, torch::Tensor adj_body_I_s, torch::Tensor adj_M); void eval_dense_gemm_cpu_kernel_forward( int var_m, int var_n, int var_p, int var_t1, int var_t2, float* var_A, float* var_B, float* var_C) { //--------- // primal vars //--------- // forward df::dense_gemm(var_m, var_n, var_p, var_t1, var_t2, var_A, var_B, var_C); } void eval_dense_gemm_cpu_kernel_backward( int var_m, int var_n, int var_p, int var_t1, int var_t2, float* var_A, float* var_B, float* var_C, int adj_m, int adj_n, int adj_p, int adj_t1, int adj_t2, float* adj_A, float* adj_B, float* adj_C) { //--------- // primal vars //--------- // dual vars //--------- // forward df::dense_gemm(var_m, var_n, var_p, var_t1, var_t2, var_A, var_B, var_C); //--------- // reverse df::adj_dense_gemm(var_m, var_n, var_p, var_t1, var_t2, var_A, var_B, var_C, adj_m, adj_n, adj_p, adj_t1, adj_t2, adj_A, adj_B, adj_C); return; } // Python entry points void eval_dense_gemm_cpu_forward(int dim, int var_m, int var_n, int var_p, int var_t1, int var_t2, torch::Tensor var_A, torch::Tensor var_B, torch::Tensor var_C) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_gemm_cpu_kernel_forward( var_m, var_n, var_p, var_t1, var_t2, cast<float*>(var_A), cast<float*>(var_B), cast<float*>(var_C)); } } void eval_dense_gemm_cpu_backward(int dim, int var_m, int var_n, int var_p, int var_t1, int var_t2, torch::Tensor var_A, torch::Tensor var_B, torch::Tensor var_C, int adj_m, int adj_n, int adj_p, int adj_t1, int adj_t2, torch::Tensor adj_A, torch::Tensor adj_B, torch::Tensor adj_C) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_gemm_cpu_kernel_backward( var_m, var_n, var_p, var_t1, var_t2, cast<float*>(var_A), cast<float*>(var_B), cast<float*>(var_C), adj_m, adj_n, adj_p, adj_t1, adj_t2, cast<float*>(adj_A), cast<float*>(adj_B), cast<float*>(adj_C)); } } // Python entry points void eval_dense_gemm_cpu_forward(int dim, int var_m, int var_n, int var_p, int var_t1, int var_t2, torch::Tensor var_A, torch::Tensor var_B, torch::Tensor var_C); void eval_dense_gemm_cpu_backward(int dim, int var_m, int var_n, int var_p, int var_t1, int var_t2, torch::Tensor var_A, torch::Tensor var_B, torch::Tensor var_C, int adj_m, int adj_n, int adj_p, int adj_t1, int adj_t2, torch::Tensor adj_A, torch::Tensor adj_B, torch::Tensor adj_C); void eval_dense_gemm_batched_cpu_kernel_forward( int* var_m, int* var_n, int* var_p, int var_t1, int var_t2, int* var_A_start, int* var_B_start, int* var_C_start, float* var_A, float* var_B, float* var_C) { //--------- // primal vars //--------- // forward df::dense_gemm_batched(var_m, var_n, var_p, var_t1, var_t2, var_A_start, var_B_start, var_C_start, var_A, var_B, var_C); } void eval_dense_gemm_batched_cpu_kernel_backward( int* var_m, int* var_n, int* var_p, int var_t1, int var_t2, int* var_A_start, int* var_B_start, int* var_C_start, float* var_A, float* var_B, float* var_C, int* adj_m, int* adj_n, int* adj_p, int adj_t1, int adj_t2, int* adj_A_start, int* adj_B_start, int* adj_C_start, float* adj_A, float* adj_B, float* adj_C) { //--------- // primal vars //--------- // dual vars //--------- // forward df::dense_gemm_batched(var_m, var_n, var_p, var_t1, var_t2, var_A_start, var_B_start, var_C_start, var_A, var_B, var_C); //--------- // reverse df::adj_dense_gemm_batched(var_m, var_n, var_p, var_t1, var_t2, var_A_start, var_B_start, var_C_start, var_A, var_B, var_C, adj_m, adj_n, adj_p, adj_t1, adj_t2, adj_A_start, adj_B_start, adj_C_start, adj_A, adj_B, adj_C); return; } // Python entry points void eval_dense_gemm_batched_cpu_forward(int dim, torch::Tensor var_m, torch::Tensor var_n, torch::Tensor var_p, int var_t1, int var_t2, torch::Tensor var_A_start, torch::Tensor var_B_start, torch::Tensor var_C_start, torch::Tensor var_A, torch::Tensor var_B, torch::Tensor var_C) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_gemm_batched_cpu_kernel_forward( cast<int*>(var_m), cast<int*>(var_n), cast<int*>(var_p), var_t1, var_t2, cast<int*>(var_A_start), cast<int*>(var_B_start), cast<int*>(var_C_start), cast<float*>(var_A), cast<float*>(var_B), cast<float*>(var_C)); } } void eval_dense_gemm_batched_cpu_backward(int dim, torch::Tensor var_m, torch::Tensor var_n, torch::Tensor var_p, int var_t1, int var_t2, torch::Tensor var_A_start, torch::Tensor var_B_start, torch::Tensor var_C_start, torch::Tensor var_A, torch::Tensor var_B, torch::Tensor var_C, torch::Tensor adj_m, torch::Tensor adj_n, torch::Tensor adj_p, int adj_t1, int adj_t2, torch::Tensor adj_A_start, torch::Tensor adj_B_start, torch::Tensor adj_C_start, torch::Tensor adj_A, torch::Tensor adj_B, torch::Tensor adj_C) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_gemm_batched_cpu_kernel_backward( cast<int*>(var_m), cast<int*>(var_n), cast<int*>(var_p), var_t1, var_t2, cast<int*>(var_A_start), cast<int*>(var_B_start), cast<int*>(var_C_start), cast<float*>(var_A), cast<float*>(var_B), cast<float*>(var_C), cast<int*>(adj_m), cast<int*>(adj_n), cast<int*>(adj_p), adj_t1, adj_t2, cast<int*>(adj_A_start), cast<int*>(adj_B_start), cast<int*>(adj_C_start), cast<float*>(adj_A), cast<float*>(adj_B), cast<float*>(adj_C)); } } // Python entry points void eval_dense_gemm_batched_cpu_forward(int dim, torch::Tensor var_m, torch::Tensor var_n, torch::Tensor var_p, int var_t1, int var_t2, torch::Tensor var_A_start, torch::Tensor var_B_start, torch::Tensor var_C_start, torch::Tensor var_A, torch::Tensor var_B, torch::Tensor var_C); void eval_dense_gemm_batched_cpu_backward(int dim, torch::Tensor var_m, torch::Tensor var_n, torch::Tensor var_p, int var_t1, int var_t2, torch::Tensor var_A_start, torch::Tensor var_B_start, torch::Tensor var_C_start, torch::Tensor var_A, torch::Tensor var_B, torch::Tensor var_C, torch::Tensor adj_m, torch::Tensor adj_n, torch::Tensor adj_p, int adj_t1, int adj_t2, torch::Tensor adj_A_start, torch::Tensor adj_B_start, torch::Tensor adj_C_start, torch::Tensor adj_A, torch::Tensor adj_B, torch::Tensor adj_C); void eval_dense_cholesky_cpu_kernel_forward( int var_n, float* var_A, float* var_regularization, float* var_L) { //--------- // primal vars //--------- // forward df::dense_chol(var_n, var_A, var_regularization, var_L); } void eval_dense_cholesky_cpu_kernel_backward( int var_n, float* var_A, float* var_regularization, float* var_L, int adj_n, float* adj_A, float* adj_regularization, float* adj_L) { //--------- // primal vars //--------- // dual vars //--------- // forward df::dense_chol(var_n, var_A, var_regularization, var_L); //--------- // reverse df::adj_dense_chol(var_n, var_A, var_regularization, var_L, adj_n, adj_A, adj_regularization, adj_L); return; } // Python entry points void eval_dense_cholesky_cpu_forward(int dim, int var_n, torch::Tensor var_A, torch::Tensor var_regularization, torch::Tensor var_L) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_cholesky_cpu_kernel_forward( var_n, cast<float*>(var_A), cast<float*>(var_regularization), cast<float*>(var_L)); } } void eval_dense_cholesky_cpu_backward(int dim, int var_n, torch::Tensor var_A, torch::Tensor var_regularization, torch::Tensor var_L, int adj_n, torch::Tensor adj_A, torch::Tensor adj_regularization, torch::Tensor adj_L) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_cholesky_cpu_kernel_backward( var_n, cast<float*>(var_A), cast<float*>(var_regularization), cast<float*>(var_L), adj_n, cast<float*>(adj_A), cast<float*>(adj_regularization), cast<float*>(adj_L)); } } // Python entry points void eval_dense_cholesky_cpu_forward(int dim, int var_n, torch::Tensor var_A, torch::Tensor var_regularization, torch::Tensor var_L); void eval_dense_cholesky_cpu_backward(int dim, int var_n, torch::Tensor var_A, torch::Tensor var_regularization, torch::Tensor var_L, int adj_n, torch::Tensor adj_A, torch::Tensor adj_regularization, torch::Tensor adj_L); void eval_dense_cholesky_batched_cpu_kernel_forward( int* var_A_start, int* var_A_dim, float* var_A, float* var_regularization, float* var_L) { //--------- // primal vars //--------- // forward df::dense_chol_batched(var_A_start, var_A_dim, var_A, var_regularization, var_L); } void eval_dense_cholesky_batched_cpu_kernel_backward( int* var_A_start, int* var_A_dim, float* var_A, float* var_regularization, float* var_L, int* adj_A_start, int* adj_A_dim, float* adj_A, float* adj_regularization, float* adj_L) { //--------- // primal vars //--------- // dual vars //--------- // forward df::dense_chol_batched(var_A_start, var_A_dim, var_A, var_regularization, var_L); //--------- // reverse df::adj_dense_chol_batched(var_A_start, var_A_dim, var_A, var_regularization, var_L, adj_A_start, adj_A_dim, adj_A, adj_regularization, adj_L); return; } // Python entry points void eval_dense_cholesky_batched_cpu_forward(int dim, torch::Tensor var_A_start, torch::Tensor var_A_dim, torch::Tensor var_A, torch::Tensor var_regularization, torch::Tensor var_L) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_cholesky_batched_cpu_kernel_forward( cast<int*>(var_A_start), cast<int*>(var_A_dim), cast<float*>(var_A), cast<float*>(var_regularization), cast<float*>(var_L)); } } void eval_dense_cholesky_batched_cpu_backward(int dim, torch::Tensor var_A_start, torch::Tensor var_A_dim, torch::Tensor var_A, torch::Tensor var_regularization, torch::Tensor var_L, torch::Tensor adj_A_start, torch::Tensor adj_A_dim, torch::Tensor adj_A, torch::Tensor adj_regularization, torch::Tensor adj_L) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_cholesky_batched_cpu_kernel_backward( cast<int*>(var_A_start), cast<int*>(var_A_dim), cast<float*>(var_A), cast<float*>(var_regularization), cast<float*>(var_L), cast<int*>(adj_A_start), cast<int*>(adj_A_dim), cast<float*>(adj_A), cast<float*>(adj_regularization), cast<float*>(adj_L)); } } // Python entry points void eval_dense_cholesky_batched_cpu_forward(int dim, torch::Tensor var_A_start, torch::Tensor var_A_dim, torch::Tensor var_A, torch::Tensor var_regularization, torch::Tensor var_L); void eval_dense_cholesky_batched_cpu_backward(int dim, torch::Tensor var_A_start, torch::Tensor var_A_dim, torch::Tensor var_A, torch::Tensor var_regularization, torch::Tensor var_L, torch::Tensor adj_A_start, torch::Tensor adj_A_dim, torch::Tensor adj_A, torch::Tensor adj_regularization, torch::Tensor adj_L); void eval_dense_subs_cpu_kernel_forward( int var_n, float* var_L, float* var_b, float* var_x) { //--------- // primal vars //--------- // forward df::dense_subs(var_n, var_L, var_b, var_x); } void eval_dense_subs_cpu_kernel_backward( int var_n, float* var_L, float* var_b, float* var_x, int adj_n, float* adj_L, float* adj_b, float* adj_x) { //--------- // primal vars //--------- // dual vars //--------- // forward df::dense_subs(var_n, var_L, var_b, var_x); //--------- // reverse df::adj_dense_subs(var_n, var_L, var_b, var_x, adj_n, adj_L, adj_b, adj_x); return; } // Python entry points void eval_dense_subs_cpu_forward(int dim, int var_n, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_x) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_subs_cpu_kernel_forward( var_n, cast<float*>(var_L), cast<float*>(var_b), cast<float*>(var_x)); } } void eval_dense_subs_cpu_backward(int dim, int var_n, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_x, int adj_n, torch::Tensor adj_L, torch::Tensor adj_b, torch::Tensor adj_x) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_subs_cpu_kernel_backward( var_n, cast<float*>(var_L), cast<float*>(var_b), cast<float*>(var_x), adj_n, cast<float*>(adj_L), cast<float*>(adj_b), cast<float*>(adj_x)); } } // Python entry points void eval_dense_subs_cpu_forward(int dim, int var_n, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_x); void eval_dense_subs_cpu_backward(int dim, int var_n, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_x, int adj_n, torch::Tensor adj_L, torch::Tensor adj_b, torch::Tensor adj_x); void eval_dense_solve_cpu_kernel_forward( int var_n, float* var_A, float* var_L, float* var_b, float* var_tmp, float* var_x) { //--------- // primal vars //--------- // forward df::dense_solve(var_n, var_A, var_L, var_b, var_tmp, var_x); } void eval_dense_solve_cpu_kernel_backward( int var_n, float* var_A, float* var_L, float* var_b, float* var_tmp, float* var_x, int adj_n, float* adj_A, float* adj_L, float* adj_b, float* adj_tmp, float* adj_x) { //--------- // primal vars //--------- // dual vars //--------- // forward df::dense_solve(var_n, var_A, var_L, var_b, var_tmp, var_x); //--------- // reverse df::adj_dense_solve(var_n, var_A, var_L, var_b, var_tmp, var_x, adj_n, adj_A, adj_L, adj_b, adj_tmp, adj_x); return; } // Python entry points void eval_dense_solve_cpu_forward(int dim, int var_n, torch::Tensor var_A, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_tmp, torch::Tensor var_x) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_solve_cpu_kernel_forward( var_n, cast<float*>(var_A), cast<float*>(var_L), cast<float*>(var_b), cast<float*>(var_tmp), cast<float*>(var_x)); } } void eval_dense_solve_cpu_backward(int dim, int var_n, torch::Tensor var_A, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_tmp, torch::Tensor var_x, int adj_n, torch::Tensor adj_A, torch::Tensor adj_L, torch::Tensor adj_b, torch::Tensor adj_tmp, torch::Tensor adj_x) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_solve_cpu_kernel_backward( var_n, cast<float*>(var_A), cast<float*>(var_L), cast<float*>(var_b), cast<float*>(var_tmp), cast<float*>(var_x), adj_n, cast<float*>(adj_A), cast<float*>(adj_L), cast<float*>(adj_b), cast<float*>(adj_tmp), cast<float*>(adj_x)); } } // Python entry points void eval_dense_solve_cpu_forward(int dim, int var_n, torch::Tensor var_A, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_tmp, torch::Tensor var_x); void eval_dense_solve_cpu_backward(int dim, int var_n, torch::Tensor var_A, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_tmp, torch::Tensor var_x, int adj_n, torch::Tensor adj_A, torch::Tensor adj_L, torch::Tensor adj_b, torch::Tensor adj_tmp, torch::Tensor adj_x); void eval_dense_solve_batched_cpu_kernel_forward( int* var_b_start, int* var_A_start, int* var_A_dim, float* var_A, float* var_L, float* var_b, float* var_tmp, float* var_x) { //--------- // primal vars //--------- // forward df::dense_solve_batched(var_b_start, var_A_start, var_A_dim, var_A, var_L, var_b, var_tmp, var_x); } void eval_dense_solve_batched_cpu_kernel_backward( int* var_b_start, int* var_A_start, int* var_A_dim, float* var_A, float* var_L, float* var_b, float* var_tmp, float* var_x, int* adj_b_start, int* adj_A_start, int* adj_A_dim, float* adj_A, float* adj_L, float* adj_b, float* adj_tmp, float* adj_x) { //--------- // primal vars //--------- // dual vars //--------- // forward df::dense_solve_batched(var_b_start, var_A_start, var_A_dim, var_A, var_L, var_b, var_tmp, var_x); //--------- // reverse df::adj_dense_solve_batched(var_b_start, var_A_start, var_A_dim, var_A, var_L, var_b, var_tmp, var_x, adj_b_start, adj_A_start, adj_A_dim, adj_A, adj_L, adj_b, adj_tmp, adj_x); return; } // Python entry points void eval_dense_solve_batched_cpu_forward(int dim, torch::Tensor var_b_start, torch::Tensor var_A_start, torch::Tensor var_A_dim, torch::Tensor var_A, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_tmp, torch::Tensor var_x) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_solve_batched_cpu_kernel_forward( cast<int*>(var_b_start), cast<int*>(var_A_start), cast<int*>(var_A_dim), cast<float*>(var_A), cast<float*>(var_L), cast<float*>(var_b), cast<float*>(var_tmp), cast<float*>(var_x)); } } void eval_dense_solve_batched_cpu_backward(int dim, torch::Tensor var_b_start, torch::Tensor var_A_start, torch::Tensor var_A_dim, torch::Tensor var_A, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_tmp, torch::Tensor var_x, torch::Tensor adj_b_start, torch::Tensor adj_A_start, torch::Tensor adj_A_dim, torch::Tensor adj_A, torch::Tensor adj_L, torch::Tensor adj_b, torch::Tensor adj_tmp, torch::Tensor adj_x) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_dense_solve_batched_cpu_kernel_backward( cast<int*>(var_b_start), cast<int*>(var_A_start), cast<int*>(var_A_dim), cast<float*>(var_A), cast<float*>(var_L), cast<float*>(var_b), cast<float*>(var_tmp), cast<float*>(var_x), cast<int*>(adj_b_start), cast<int*>(adj_A_start), cast<int*>(adj_A_dim), cast<float*>(adj_A), cast<float*>(adj_L), cast<float*>(adj_b), cast<float*>(adj_tmp), cast<float*>(adj_x)); } } // Python entry points void eval_dense_solve_batched_cpu_forward(int dim, torch::Tensor var_b_start, torch::Tensor var_A_start, torch::Tensor var_A_dim, torch::Tensor var_A, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_tmp, torch::Tensor var_x); void eval_dense_solve_batched_cpu_backward(int dim, torch::Tensor var_b_start, torch::Tensor var_A_start, torch::Tensor var_A_dim, torch::Tensor var_A, torch::Tensor var_L, torch::Tensor var_b, torch::Tensor var_tmp, torch::Tensor var_x, torch::Tensor adj_b_start, torch::Tensor adj_A_start, torch::Tensor adj_A_dim, torch::Tensor adj_A, torch::Tensor adj_L, torch::Tensor adj_b, torch::Tensor adj_tmp, torch::Tensor adj_x); void eval_rigid_integrate_cpu_kernel_forward( int* var_joint_type, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, float* var_joint_qd, float* var_joint_qdd, float var_dt, float* var_joint_q_new, float* var_joint_qd_new) { //--------- // primal vars int var_0; int var_1; int var_2; int var_3; int var_4; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_joint_type, var_0); var_2 = df::load(var_joint_q_start, var_0); var_3 = df::load(var_joint_qd_start, var_0); var_4 = jcalc_integrate_cpu_func(var_1, var_joint_q, var_joint_qd, var_joint_qdd, var_2, var_3, var_dt, var_joint_q_new, var_joint_qd_new); } void eval_rigid_integrate_cpu_kernel_backward( int* var_joint_type, int* var_joint_q_start, int* var_joint_qd_start, float* var_joint_q, float* var_joint_qd, float* var_joint_qdd, float var_dt, float* var_joint_q_new, float* var_joint_qd_new, int* adj_joint_type, int* adj_joint_q_start, int* adj_joint_qd_start, float* adj_joint_q, float* adj_joint_qd, float* adj_joint_qdd, float adj_dt, float* adj_joint_q_new, float* adj_joint_qd_new) { //--------- // primal vars int var_0; int var_1; int var_2; int var_3; int var_4; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_joint_type, var_0); var_2 = df::load(var_joint_q_start, var_0); var_3 = df::load(var_joint_qd_start, var_0); var_4 = jcalc_integrate_cpu_func(var_1, var_joint_q, var_joint_qd, var_joint_qdd, var_2, var_3, var_dt, var_joint_q_new, var_joint_qd_new); //--------- // reverse adj_jcalc_integrate_cpu_func(var_1, var_joint_q, var_joint_qd, var_joint_qdd, var_2, var_3, var_dt, var_joint_q_new, var_joint_qd_new, adj_1, adj_joint_q, adj_joint_qd, adj_joint_qdd, adj_2, adj_3, adj_dt, adj_joint_q_new, adj_joint_qd_new, adj_4); df::adj_load(var_joint_qd_start, var_0, adj_joint_qd_start, adj_0, adj_3); df::adj_load(var_joint_q_start, var_0, adj_joint_q_start, adj_0, adj_2); df::adj_load(var_joint_type, var_0, adj_joint_type, adj_0, adj_1); return; } // Python entry points void eval_rigid_integrate_cpu_forward(int dim, torch::Tensor var_joint_type, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_qdd, float var_dt, torch::Tensor var_joint_q_new, torch::Tensor var_joint_qd_new) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_integrate_cpu_kernel_forward( cast<int*>(var_joint_type), cast<int*>(var_joint_q_start), cast<int*>(var_joint_qd_start), cast<float*>(var_joint_q), cast<float*>(var_joint_qd), cast<float*>(var_joint_qdd), var_dt, cast<float*>(var_joint_q_new), cast<float*>(var_joint_qd_new)); } } void eval_rigid_integrate_cpu_backward(int dim, torch::Tensor var_joint_type, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_qdd, float var_dt, torch::Tensor var_joint_q_new, torch::Tensor var_joint_qd_new, torch::Tensor adj_joint_type, torch::Tensor adj_joint_q_start, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_q, torch::Tensor adj_joint_qd, torch::Tensor adj_joint_qdd, float adj_dt, torch::Tensor adj_joint_q_new, torch::Tensor adj_joint_qd_new) { for (int i=0; i < dim; ++i) { s_threadIdx = i; eval_rigid_integrate_cpu_kernel_backward( cast<int*>(var_joint_type), cast<int*>(var_joint_q_start), cast<int*>(var_joint_qd_start), cast<float*>(var_joint_q), cast<float*>(var_joint_qd), cast<float*>(var_joint_qdd), var_dt, cast<float*>(var_joint_q_new), cast<float*>(var_joint_qd_new), cast<int*>(adj_joint_type), cast<int*>(adj_joint_q_start), cast<int*>(adj_joint_qd_start), cast<float*>(adj_joint_q), cast<float*>(adj_joint_qd), cast<float*>(adj_joint_qdd), adj_dt, cast<float*>(adj_joint_q_new), cast<float*>(adj_joint_qd_new)); } } // Python entry points void eval_rigid_integrate_cpu_forward(int dim, torch::Tensor var_joint_type, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_qdd, float var_dt, torch::Tensor var_joint_q_new, torch::Tensor var_joint_qd_new); void eval_rigid_integrate_cpu_backward(int dim, torch::Tensor var_joint_type, torch::Tensor var_joint_q_start, torch::Tensor var_joint_qd_start, torch::Tensor var_joint_q, torch::Tensor var_joint_qd, torch::Tensor var_joint_qdd, float var_dt, torch::Tensor var_joint_q_new, torch::Tensor var_joint_qd_new, torch::Tensor adj_joint_type, torch::Tensor adj_joint_q_start, torch::Tensor adj_joint_qd_start, torch::Tensor adj_joint_q, torch::Tensor adj_joint_qd, torch::Tensor adj_joint_qdd, float adj_dt, torch::Tensor adj_joint_q_new, torch::Tensor adj_joint_qd_new); void solve_springs_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, float* var_invmass, int* var_spring_indices, float* var_spring_rest_lengths, float* var_spring_stiffness, float* var_spring_damping, float var_dt, df::float3* var_delta) { //--------- // primal vars int var_0; const int var_1 = 2; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; float var_10; float var_11; float var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; df::float3 var_17; df::float3 var_18; float var_19; const float var_20 = 1.0; float var_21; df::float3 var_22; float var_23; float var_24; float var_25; float var_26; float var_27; float var_28; float var_29; float var_30; float var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_spring_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_spring_indices, var_8); var_10 = df::load(var_spring_stiffness, var_0); var_11 = df::load(var_spring_damping, var_0); var_12 = df::load(var_spring_rest_lengths, var_0); var_13 = df::load(var_x, var_5); var_14 = df::load(var_x, var_9); var_15 = df::load(var_v, var_5); var_16 = df::load(var_v, var_9); var_17 = df::sub(var_13, var_14); var_18 = df::sub(var_15, var_16); var_19 = df::length(var_17); var_21 = df::div(var_20, var_19); var_22 = df::mul(var_17, var_21); var_23 = df::sub(var_19, var_12); var_24 = df::dot(var_22, var_18); var_25 = df::load(var_invmass, var_5); var_26 = df::load(var_invmass, var_9); var_27 = df::add(var_25, var_26); var_28 = df::mul(var_10, var_dt); var_29 = df::mul(var_28, var_dt); var_30 = df::div(var_20, var_29); var_31 = df::div(var_23, var_27); var_32 = df::mul(var_22, var_31); var_33 = df::mul(var_32, var_25); df::atomic_sub(var_delta, var_5, var_33); var_34 = df::mul(var_32, var_26); df::atomic_add(var_delta, var_9, var_34); } void solve_springs_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, float* var_invmass, int* var_spring_indices, float* var_spring_rest_lengths, float* var_spring_stiffness, float* var_spring_damping, float var_dt, df::float3* var_delta, df::float3* adj_x, df::float3* adj_v, float* adj_invmass, int* adj_spring_indices, float* adj_spring_rest_lengths, float* adj_spring_stiffness, float* adj_spring_damping, float adj_dt, df::float3* adj_delta) { //--------- // primal vars int var_0; const int var_1 = 2; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; float var_10; float var_11; float var_12; df::float3 var_13; df::float3 var_14; df::float3 var_15; df::float3 var_16; df::float3 var_17; df::float3 var_18; float var_19; const float var_20 = 1.0; float var_21; df::float3 var_22; float var_23; float var_24; float var_25; float var_26; float var_27; float var_28; float var_29; float var_30; float var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; int adj_9 = 0; float adj_10 = 0; float adj_11 = 0; float adj_12 = 0; df::float3 adj_13 = 0; df::float3 adj_14 = 0; df::float3 adj_15 = 0; df::float3 adj_16 = 0; df::float3 adj_17 = 0; df::float3 adj_18 = 0; float adj_19 = 0; float adj_20 = 0; float adj_21 = 0; df::float3 adj_22 = 0; float adj_23 = 0; float adj_24 = 0; float adj_25 = 0; float adj_26 = 0; float adj_27 = 0; float adj_28 = 0; float adj_29 = 0; float adj_30 = 0; float adj_31 = 0; df::float3 adj_32 = 0; df::float3 adj_33 = 0; df::float3 adj_34 = 0; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_spring_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_spring_indices, var_8); var_10 = df::load(var_spring_stiffness, var_0); var_11 = df::load(var_spring_damping, var_0); var_12 = df::load(var_spring_rest_lengths, var_0); var_13 = df::load(var_x, var_5); var_14 = df::load(var_x, var_9); var_15 = df::load(var_v, var_5); var_16 = df::load(var_v, var_9); var_17 = df::sub(var_13, var_14); var_18 = df::sub(var_15, var_16); var_19 = df::length(var_17); var_21 = df::div(var_20, var_19); var_22 = df::mul(var_17, var_21); var_23 = df::sub(var_19, var_12); var_24 = df::dot(var_22, var_18); var_25 = df::load(var_invmass, var_5); var_26 = df::load(var_invmass, var_9); var_27 = df::add(var_25, var_26); var_28 = df::mul(var_10, var_dt); var_29 = df::mul(var_28, var_dt); var_30 = df::div(var_20, var_29); var_31 = df::div(var_23, var_27); var_32 = df::mul(var_22, var_31); var_33 = df::mul(var_32, var_25); df::atomic_sub(var_delta, var_5, var_33); var_34 = df::mul(var_32, var_26); df::atomic_add(var_delta, var_9, var_34); //--------- // reverse df::adj_atomic_add(var_delta, var_9, var_34, adj_delta, adj_9, adj_34); df::adj_mul(var_32, var_26, adj_32, adj_26, adj_34); df::adj_atomic_sub(var_delta, var_5, var_33, adj_delta, adj_5, adj_33); df::adj_mul(var_32, var_25, adj_32, adj_25, adj_33); df::adj_mul(var_22, var_31, adj_22, adj_31, adj_32); df::adj_div(var_23, var_27, adj_23, adj_27, adj_31); df::adj_div(var_20, var_29, adj_20, adj_29, adj_30); df::adj_mul(var_28, var_dt, adj_28, adj_dt, adj_29); df::adj_mul(var_10, var_dt, adj_10, adj_dt, adj_28); df::adj_add(var_25, var_26, adj_25, adj_26, adj_27); df::adj_load(var_invmass, var_9, adj_invmass, adj_9, adj_26); df::adj_load(var_invmass, var_5, adj_invmass, adj_5, adj_25); df::adj_dot(var_22, var_18, adj_22, adj_18, adj_24); df::adj_sub(var_19, var_12, adj_19, adj_12, adj_23); df::adj_mul(var_17, var_21, adj_17, adj_21, adj_22); df::adj_div(var_20, var_19, adj_20, adj_19, adj_21); df::adj_length(var_17, adj_17, adj_19); df::adj_sub(var_15, var_16, adj_15, adj_16, adj_18); df::adj_sub(var_13, var_14, adj_13, adj_14, adj_17); df::adj_load(var_v, var_9, adj_v, adj_9, adj_16); df::adj_load(var_v, var_5, adj_v, adj_5, adj_15); df::adj_load(var_x, var_9, adj_x, adj_9, adj_14); df::adj_load(var_x, var_5, adj_x, adj_5, adj_13); df::adj_load(var_spring_rest_lengths, var_0, adj_spring_rest_lengths, adj_0, adj_12); df::adj_load(var_spring_damping, var_0, adj_spring_damping, adj_0, adj_11); df::adj_load(var_spring_stiffness, var_0, adj_spring_stiffness, adj_0, adj_10); df::adj_load(var_spring_indices, var_8, adj_spring_indices, adj_8, adj_9); df::adj_add(var_6, var_7, adj_6, adj_7, adj_8); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_6); df::adj_load(var_spring_indices, var_4, adj_spring_indices, adj_4, adj_5); df::adj_add(var_2, var_3, adj_2, adj_3, adj_4); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_2); return; } // Python entry points void solve_springs_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_invmass, torch::Tensor var_spring_indices, torch::Tensor var_spring_rest_lengths, torch::Tensor var_spring_stiffness, torch::Tensor var_spring_damping, float var_dt, torch::Tensor var_delta) { for (int i=0; i < dim; ++i) { s_threadIdx = i; solve_springs_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<float*>(var_invmass), cast<int*>(var_spring_indices), cast<float*>(var_spring_rest_lengths), cast<float*>(var_spring_stiffness), cast<float*>(var_spring_damping), var_dt, cast<df::float3*>(var_delta)); } } void solve_springs_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_invmass, torch::Tensor var_spring_indices, torch::Tensor var_spring_rest_lengths, torch::Tensor var_spring_stiffness, torch::Tensor var_spring_damping, float var_dt, torch::Tensor var_delta, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_invmass, torch::Tensor adj_spring_indices, torch::Tensor adj_spring_rest_lengths, torch::Tensor adj_spring_stiffness, torch::Tensor adj_spring_damping, float adj_dt, torch::Tensor adj_delta) { for (int i=0; i < dim; ++i) { s_threadIdx = i; solve_springs_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<float*>(var_invmass), cast<int*>(var_spring_indices), cast<float*>(var_spring_rest_lengths), cast<float*>(var_spring_stiffness), cast<float*>(var_spring_damping), var_dt, cast<df::float3*>(var_delta), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<float*>(adj_invmass), cast<int*>(adj_spring_indices), cast<float*>(adj_spring_rest_lengths), cast<float*>(adj_spring_stiffness), cast<float*>(adj_spring_damping), adj_dt, cast<df::float3*>(adj_delta)); } } // Python entry points void solve_springs_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_invmass, torch::Tensor var_spring_indices, torch::Tensor var_spring_rest_lengths, torch::Tensor var_spring_stiffness, torch::Tensor var_spring_damping, float var_dt, torch::Tensor var_delta); void solve_springs_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_invmass, torch::Tensor var_spring_indices, torch::Tensor var_spring_rest_lengths, torch::Tensor var_spring_stiffness, torch::Tensor var_spring_damping, float var_dt, torch::Tensor var_delta, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_invmass, torch::Tensor adj_spring_indices, torch::Tensor adj_spring_rest_lengths, torch::Tensor adj_spring_stiffness, torch::Tensor adj_spring_damping, float adj_dt, torch::Tensor adj_delta); void solve_tetrahedra_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, float* var_inv_mass, int* var_indices, mat33* var_pose, float* var_activation, float* var_materials, float var_dt, float var_relaxation, df::float3* var_delta) { //--------- // primal vars int var_0; const int var_1 = 4; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; int var_10; const int var_11 = 2; int var_12; int var_13; int var_14; const int var_15 = 3; int var_16; int var_17; float var_18; int var_19; int var_20; float var_21; int var_22; int var_23; float var_24; int var_25; int var_26; float var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; df::float3 var_35; float var_36; float var_37; float var_38; float var_39; df::float3 var_40; df::float3 var_41; df::float3 var_42; df::float3 var_43; df::float3 var_44; df::float3 var_45; mat33 var_46; mat33 var_47; float var_48; const float var_49 = 6.0; float var_50; const float var_51 = 1.0; float var_52; mat33 var_53; float var_54; float var_55; float var_56; df::float3 var_57; float var_58; float var_59; float var_60; df::float3 var_61; float var_62; float var_63; float var_64; df::float3 var_65; float var_66; float var_67; float var_68; float var_69; float var_70; const float var_71 = 3.0; float var_72; float var_73; float var_74; const float var_75 = 0.0; bool var_76; bool var_77; float var_78; float var_79; mat33 var_80; mat33 var_81; float var_82; mat33 var_83; float var_84; float var_85; float var_86; float var_87; float var_88; df::float3 var_89; float var_90; float var_91; float var_92; df::float3 var_93; float var_94; float var_95; float var_96; df::float3 var_97; df::float3 var_98; df::float3 var_99; float var_100; df::float3 var_101; float var_102; float var_103; float var_104; float var_105; float var_106; float var_107; float var_108; float var_109; float var_110; float var_111; float var_112; float var_113; float var_114; float var_115; float var_116; float var_117; float var_118; df::float3 var_119; df::float3 var_120; df::float3 var_121; df::float3 var_122; float var_123; float var_124; float var_125; df::float3 var_126; df::float3 var_127; df::float3 var_128; df::float3 var_129; df::float3 var_130; df::float3 var_131; df::float3 var_132; df::float3 var_133; float var_134; df::float3 var_135; float var_136; float var_137; float var_138; float var_139; float var_140; float var_141; float var_142; float var_143; float var_144; float var_145; float var_146; float var_147; float var_148; float var_149; float var_150; float var_151; float var_152; df::float3 var_153; df::float3 var_154; df::float3 var_155; df::float3 var_156; df::float3 var_157; df::float3 var_158; df::float3 var_159; df::float3 var_160; df::float3 var_161; df::float3 var_162; df::float3 var_163; df::float3 var_164; df::float3 var_165; df::float3 var_166; df::float3 var_167; df::float3 var_168; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_indices, var_8); var_10 = df::mul(var_0, var_1); var_12 = df::add(var_10, var_11); var_13 = df::load(var_indices, var_12); var_14 = df::mul(var_0, var_1); var_16 = df::add(var_14, var_15); var_17 = df::load(var_indices, var_16); var_18 = df::load(var_activation, var_0); var_19 = df::mul(var_0, var_15); var_20 = df::add(var_19, var_3); var_21 = df::load(var_materials, var_20); var_22 = df::mul(var_0, var_15); var_23 = df::add(var_22, var_7); var_24 = df::load(var_materials, var_23); var_25 = df::mul(var_0, var_15); var_26 = df::add(var_25, var_11); var_27 = df::load(var_materials, var_26); var_28 = df::load(var_x, var_5); var_29 = df::load(var_x, var_9); var_30 = df::load(var_x, var_13); var_31 = df::load(var_x, var_17); var_32 = df::load(var_v, var_5); var_33 = df::load(var_v, var_9); var_34 = df::load(var_v, var_13); var_35 = df::load(var_v, var_17); var_36 = df::load(var_inv_mass, var_5); var_37 = df::load(var_inv_mass, var_9); var_38 = df::load(var_inv_mass, var_13); var_39 = df::load(var_inv_mass, var_17); var_40 = df::sub(var_29, var_28); var_41 = df::sub(var_30, var_28); var_42 = df::sub(var_31, var_28); var_43 = df::sub(var_33, var_32); var_44 = df::sub(var_34, var_32); var_45 = df::sub(var_35, var_32); var_46 = df::mat33(var_40, var_41, var_42); var_47 = df::load(var_pose, var_0); var_48 = df::determinant(var_47); var_50 = df::mul(var_48, var_49); var_52 = df::div(var_51, var_50); var_53 = df::mul(var_46, var_47); var_54 = df::index(var_53, var_3, var_3); var_55 = df::index(var_53, var_7, var_3); var_56 = df::index(var_53, var_11, var_3); var_57 = df::float3(var_54, var_55, var_56); var_58 = df::index(var_53, var_3, var_7); var_59 = df::index(var_53, var_7, var_7); var_60 = df::index(var_53, var_11, var_7); var_61 = df::float3(var_58, var_59, var_60); var_62 = df::index(var_53, var_3, var_11); var_63 = df::index(var_53, var_7, var_11); var_64 = df::index(var_53, var_11, var_11); var_65 = df::float3(var_62, var_63, var_64); var_66 = df::dot(var_57, var_57); var_67 = df::dot(var_61, var_61); var_68 = df::add(var_66, var_67); var_69 = df::dot(var_65, var_65); var_70 = df::add(var_68, var_69); var_72 = df::sub(var_70, var_71); var_73 = df::abs(var_72); var_74 = df::sqrt(var_73); var_76 = (var_74 == var_75); if (var_76) { return; } var_77 = (var_70 < var_71); if (var_77) { var_78 = df::sub(var_75, var_74); } var_79 = df::select(var_77, var_74, var_78); var_80 = df::transpose(var_47); var_81 = df::mul(var_53, var_80); var_82 = df::div(var_51, var_79); var_83 = df::mul(var_81, var_82); var_84 = df::div(var_21, var_24); var_85 = df::add(var_51, var_84); var_86 = df::index(var_83, var_3, var_3); var_87 = df::index(var_83, var_7, var_3); var_88 = df::index(var_83, var_11, var_3); var_89 = df::float3(var_86, var_87, var_88); var_90 = df::index(var_83, var_3, var_7); var_91 = df::index(var_83, var_7, var_7); var_92 = df::index(var_83, var_11, var_7); var_93 = df::float3(var_90, var_91, var_92); var_94 = df::index(var_83, var_3, var_11); var_95 = df::index(var_83, var_7, var_11); var_96 = df::index(var_83, var_11, var_11); var_97 = df::float3(var_94, var_95, var_96); var_98 = df::add(var_89, var_93); var_99 = df::add(var_98, var_97); var_100 = df::sub(var_75, var_51); var_101 = df::mul(var_99, var_100); var_102 = df::dot(var_101, var_101); var_103 = df::mul(var_102, var_36); var_104 = df::dot(var_89, var_89); var_105 = df::mul(var_104, var_37); var_106 = df::add(var_103, var_105); var_107 = df::dot(var_93, var_93); var_108 = df::mul(var_107, var_38); var_109 = df::add(var_106, var_108); var_110 = df::dot(var_97, var_97); var_111 = df::mul(var_110, var_39); var_112 = df::add(var_109, var_111); var_113 = df::mul(var_21, var_dt); var_114 = df::mul(var_113, var_dt); var_115 = df::mul(var_114, var_52); var_116 = df::div(var_51, var_115); var_117 = df::add(var_112, var_116); var_118 = df::div(var_74, var_117); var_119 = df::mul(var_101, var_118); var_120 = df::mul(var_89, var_118); var_121 = df::mul(var_93, var_118); var_122 = df::mul(var_97, var_118); var_123 = df::determinant(var_53); var_124 = df::sub(var_123, var_85); var_125 = df::div(var_50, var_49); var_126 = df::cross(var_41, var_42); var_127 = df::mul(var_126, var_125); var_128 = df::cross(var_42, var_40); var_129 = df::mul(var_128, var_125); var_130 = df::cross(var_40, var_41); var_131 = df::mul(var_130, var_125); var_132 = df::add(var_127, var_129); var_133 = df::add(var_132, var_131); var_134 = df::sub(var_75, var_51); var_135 = df::mul(var_133, var_134); var_136 = df::dot(var_135, var_135); var_137 = df::mul(var_136, var_36); var_138 = df::dot(var_127, var_127); var_139 = df::mul(var_138, var_37); var_140 = df::add(var_137, var_139); var_141 = df::dot(var_129, var_129); var_142 = df::mul(var_141, var_38); var_143 = df::add(var_140, var_142); var_144 = df::dot(var_131, var_131); var_145 = df::mul(var_144, var_39); var_146 = df::add(var_143, var_145); var_147 = df::mul(var_24, var_dt); var_148 = df::mul(var_147, var_dt); var_149 = df::mul(var_148, var_52); var_150 = df::div(var_51, var_149); var_151 = df::add(var_146, var_150); var_152 = df::div(var_124, var_151); var_153 = df::mul(var_135, var_152); var_154 = df::add(var_119, var_153); var_155 = df::mul(var_127, var_152); var_156 = df::add(var_120, var_155); var_157 = df::mul(var_129, var_152); var_158 = df::add(var_121, var_157); var_159 = df::mul(var_131, var_152); var_160 = df::add(var_122, var_159); var_161 = df::mul(var_154, var_36); var_162 = df::mul(var_161, var_relaxation); df::atomic_sub(var_delta, var_5, var_162); var_163 = df::mul(var_156, var_37); var_164 = df::mul(var_163, var_relaxation); df::atomic_sub(var_delta, var_9, var_164); var_165 = df::mul(var_158, var_38); var_166 = df::mul(var_165, var_relaxation); df::atomic_sub(var_delta, var_13, var_166); var_167 = df::mul(var_160, var_39); var_168 = df::mul(var_167, var_relaxation); df::atomic_sub(var_delta, var_17, var_168); } void solve_tetrahedra_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, float* var_inv_mass, int* var_indices, mat33* var_pose, float* var_activation, float* var_materials, float var_dt, float var_relaxation, df::float3* var_delta, df::float3* adj_x, df::float3* adj_v, float* adj_inv_mass, int* adj_indices, mat33* adj_pose, float* adj_activation, float* adj_materials, float adj_dt, float adj_relaxation, df::float3* adj_delta) { //--------- // primal vars int var_0; const int var_1 = 4; int var_2; const int var_3 = 0; int var_4; int var_5; int var_6; const int var_7 = 1; int var_8; int var_9; int var_10; const int var_11 = 2; int var_12; int var_13; int var_14; const int var_15 = 3; int var_16; int var_17; float var_18; int var_19; int var_20; float var_21; int var_22; int var_23; float var_24; int var_25; int var_26; float var_27; df::float3 var_28; df::float3 var_29; df::float3 var_30; df::float3 var_31; df::float3 var_32; df::float3 var_33; df::float3 var_34; df::float3 var_35; float var_36; float var_37; float var_38; float var_39; df::float3 var_40; df::float3 var_41; df::float3 var_42; df::float3 var_43; df::float3 var_44; df::float3 var_45; mat33 var_46; mat33 var_47; float var_48; const float var_49 = 6.0; float var_50; const float var_51 = 1.0; float var_52; mat33 var_53; float var_54; float var_55; float var_56; df::float3 var_57; float var_58; float var_59; float var_60; df::float3 var_61; float var_62; float var_63; float var_64; df::float3 var_65; float var_66; float var_67; float var_68; float var_69; float var_70; const float var_71 = 3.0; float var_72; float var_73; float var_74; const float var_75 = 0.0; bool var_76; bool var_77; float var_78; float var_79; mat33 var_80; mat33 var_81; float var_82; mat33 var_83; float var_84; float var_85; float var_86; float var_87; float var_88; df::float3 var_89; float var_90; float var_91; float var_92; df::float3 var_93; float var_94; float var_95; float var_96; df::float3 var_97; df::float3 var_98; df::float3 var_99; float var_100; df::float3 var_101; float var_102; float var_103; float var_104; float var_105; float var_106; float var_107; float var_108; float var_109; float var_110; float var_111; float var_112; float var_113; float var_114; float var_115; float var_116; float var_117; float var_118; df::float3 var_119; df::float3 var_120; df::float3 var_121; df::float3 var_122; float var_123; float var_124; float var_125; df::float3 var_126; df::float3 var_127; df::float3 var_128; df::float3 var_129; df::float3 var_130; df::float3 var_131; df::float3 var_132; df::float3 var_133; float var_134; df::float3 var_135; float var_136; float var_137; float var_138; float var_139; float var_140; float var_141; float var_142; float var_143; float var_144; float var_145; float var_146; float var_147; float var_148; float var_149; float var_150; float var_151; float var_152; df::float3 var_153; df::float3 var_154; df::float3 var_155; df::float3 var_156; df::float3 var_157; df::float3 var_158; df::float3 var_159; df::float3 var_160; df::float3 var_161; df::float3 var_162; df::float3 var_163; df::float3 var_164; df::float3 var_165; df::float3 var_166; df::float3 var_167; df::float3 var_168; //--------- // dual vars int adj_0 = 0; int adj_1 = 0; int adj_2 = 0; int adj_3 = 0; int adj_4 = 0; int adj_5 = 0; int adj_6 = 0; int adj_7 = 0; int adj_8 = 0; int adj_9 = 0; int adj_10 = 0; int adj_11 = 0; int adj_12 = 0; int adj_13 = 0; int adj_14 = 0; int adj_15 = 0; int adj_16 = 0; int adj_17 = 0; float adj_18 = 0; int adj_19 = 0; int adj_20 = 0; float adj_21 = 0; int adj_22 = 0; int adj_23 = 0; float adj_24 = 0; int adj_25 = 0; int adj_26 = 0; float adj_27 = 0; df::float3 adj_28 = 0; df::float3 adj_29 = 0; df::float3 adj_30 = 0; df::float3 adj_31 = 0; df::float3 adj_32 = 0; df::float3 adj_33 = 0; df::float3 adj_34 = 0; df::float3 adj_35 = 0; float adj_36 = 0; float adj_37 = 0; float adj_38 = 0; float adj_39 = 0; df::float3 adj_40 = 0; df::float3 adj_41 = 0; df::float3 adj_42 = 0; df::float3 adj_43 = 0; df::float3 adj_44 = 0; df::float3 adj_45 = 0; mat33 adj_46 = 0; mat33 adj_47 = 0; float adj_48 = 0; float adj_49 = 0; float adj_50 = 0; float adj_51 = 0; float adj_52 = 0; mat33 adj_53 = 0; float adj_54 = 0; float adj_55 = 0; float adj_56 = 0; df::float3 adj_57 = 0; float adj_58 = 0; float adj_59 = 0; float adj_60 = 0; df::float3 adj_61 = 0; float adj_62 = 0; float adj_63 = 0; float adj_64 = 0; df::float3 adj_65 = 0; float adj_66 = 0; float adj_67 = 0; float adj_68 = 0; float adj_69 = 0; float adj_70 = 0; float adj_71 = 0; float adj_72 = 0; float adj_73 = 0; float adj_74 = 0; float adj_75 = 0; bool adj_76 = 0; bool adj_77 = 0; float adj_78 = 0; float adj_79 = 0; mat33 adj_80 = 0; mat33 adj_81 = 0; float adj_82 = 0; mat33 adj_83 = 0; float adj_84 = 0; float adj_85 = 0; float adj_86 = 0; float adj_87 = 0; float adj_88 = 0; df::float3 adj_89 = 0; float adj_90 = 0; float adj_91 = 0; float adj_92 = 0; df::float3 adj_93 = 0; float adj_94 = 0; float adj_95 = 0; float adj_96 = 0; df::float3 adj_97 = 0; df::float3 adj_98 = 0; df::float3 adj_99 = 0; float adj_100 = 0; df::float3 adj_101 = 0; float adj_102 = 0; float adj_103 = 0; float adj_104 = 0; float adj_105 = 0; float adj_106 = 0; float adj_107 = 0; float adj_108 = 0; float adj_109 = 0; float adj_110 = 0; float adj_111 = 0; float adj_112 = 0; float adj_113 = 0; float adj_114 = 0; float adj_115 = 0; float adj_116 = 0; float adj_117 = 0; float adj_118 = 0; df::float3 adj_119 = 0; df::float3 adj_120 = 0; df::float3 adj_121 = 0; df::float3 adj_122 = 0; float adj_123 = 0; float adj_124 = 0; float adj_125 = 0; df::float3 adj_126 = 0; df::float3 adj_127 = 0; df::float3 adj_128 = 0; df::float3 adj_129 = 0; df::float3 adj_130 = 0; df::float3 adj_131 = 0; df::float3 adj_132 = 0; df::float3 adj_133 = 0; float adj_134 = 0; df::float3 adj_135 = 0; float adj_136 = 0; float adj_137 = 0; float adj_138 = 0; float adj_139 = 0; float adj_140 = 0; float adj_141 = 0; float adj_142 = 0; float adj_143 = 0; float adj_144 = 0; float adj_145 = 0; float adj_146 = 0; float adj_147 = 0; float adj_148 = 0; float adj_149 = 0; float adj_150 = 0; float adj_151 = 0; float adj_152 = 0; df::float3 adj_153 = 0; df::float3 adj_154 = 0; df::float3 adj_155 = 0; df::float3 adj_156 = 0; df::float3 adj_157 = 0; df::float3 adj_158 = 0; df::float3 adj_159 = 0; df::float3 adj_160 = 0; df::float3 adj_161 = 0; df::float3 adj_162 = 0; df::float3 adj_163 = 0; df::float3 adj_164 = 0; df::float3 adj_165 = 0; df::float3 adj_166 = 0; df::float3 adj_167 = 0; df::float3 adj_168 = 0; //--------- // forward var_0 = df::tid(); var_2 = df::mul(var_0, var_1); var_4 = df::add(var_2, var_3); var_5 = df::load(var_indices, var_4); var_6 = df::mul(var_0, var_1); var_8 = df::add(var_6, var_7); var_9 = df::load(var_indices, var_8); var_10 = df::mul(var_0, var_1); var_12 = df::add(var_10, var_11); var_13 = df::load(var_indices, var_12); var_14 = df::mul(var_0, var_1); var_16 = df::add(var_14, var_15); var_17 = df::load(var_indices, var_16); var_18 = df::load(var_activation, var_0); var_19 = df::mul(var_0, var_15); var_20 = df::add(var_19, var_3); var_21 = df::load(var_materials, var_20); var_22 = df::mul(var_0, var_15); var_23 = df::add(var_22, var_7); var_24 = df::load(var_materials, var_23); var_25 = df::mul(var_0, var_15); var_26 = df::add(var_25, var_11); var_27 = df::load(var_materials, var_26); var_28 = df::load(var_x, var_5); var_29 = df::load(var_x, var_9); var_30 = df::load(var_x, var_13); var_31 = df::load(var_x, var_17); var_32 = df::load(var_v, var_5); var_33 = df::load(var_v, var_9); var_34 = df::load(var_v, var_13); var_35 = df::load(var_v, var_17); var_36 = df::load(var_inv_mass, var_5); var_37 = df::load(var_inv_mass, var_9); var_38 = df::load(var_inv_mass, var_13); var_39 = df::load(var_inv_mass, var_17); var_40 = df::sub(var_29, var_28); var_41 = df::sub(var_30, var_28); var_42 = df::sub(var_31, var_28); var_43 = df::sub(var_33, var_32); var_44 = df::sub(var_34, var_32); var_45 = df::sub(var_35, var_32); var_46 = df::mat33(var_40, var_41, var_42); var_47 = df::load(var_pose, var_0); var_48 = df::determinant(var_47); var_50 = df::mul(var_48, var_49); var_52 = df::div(var_51, var_50); var_53 = df::mul(var_46, var_47); var_54 = df::index(var_53, var_3, var_3); var_55 = df::index(var_53, var_7, var_3); var_56 = df::index(var_53, var_11, var_3); var_57 = df::float3(var_54, var_55, var_56); var_58 = df::index(var_53, var_3, var_7); var_59 = df::index(var_53, var_7, var_7); var_60 = df::index(var_53, var_11, var_7); var_61 = df::float3(var_58, var_59, var_60); var_62 = df::index(var_53, var_3, var_11); var_63 = df::index(var_53, var_7, var_11); var_64 = df::index(var_53, var_11, var_11); var_65 = df::float3(var_62, var_63, var_64); var_66 = df::dot(var_57, var_57); var_67 = df::dot(var_61, var_61); var_68 = df::add(var_66, var_67); var_69 = df::dot(var_65, var_65); var_70 = df::add(var_68, var_69); var_72 = df::sub(var_70, var_71); var_73 = df::abs(var_72); var_74 = df::sqrt(var_73); var_76 = (var_74 == var_75); if (var_76) { goto label0; } var_77 = (var_70 < var_71); if (var_77) { var_78 = df::sub(var_75, var_74); } var_79 = df::select(var_77, var_74, var_78); var_80 = df::transpose(var_47); var_81 = df::mul(var_53, var_80); var_82 = df::div(var_51, var_79); var_83 = df::mul(var_81, var_82); var_84 = df::div(var_21, var_24); var_85 = df::add(var_51, var_84); var_86 = df::index(var_83, var_3, var_3); var_87 = df::index(var_83, var_7, var_3); var_88 = df::index(var_83, var_11, var_3); var_89 = df::float3(var_86, var_87, var_88); var_90 = df::index(var_83, var_3, var_7); var_91 = df::index(var_83, var_7, var_7); var_92 = df::index(var_83, var_11, var_7); var_93 = df::float3(var_90, var_91, var_92); var_94 = df::index(var_83, var_3, var_11); var_95 = df::index(var_83, var_7, var_11); var_96 = df::index(var_83, var_11, var_11); var_97 = df::float3(var_94, var_95, var_96); var_98 = df::add(var_89, var_93); var_99 = df::add(var_98, var_97); var_100 = df::sub(var_75, var_51); var_101 = df::mul(var_99, var_100); var_102 = df::dot(var_101, var_101); var_103 = df::mul(var_102, var_36); var_104 = df::dot(var_89, var_89); var_105 = df::mul(var_104, var_37); var_106 = df::add(var_103, var_105); var_107 = df::dot(var_93, var_93); var_108 = df::mul(var_107, var_38); var_109 = df::add(var_106, var_108); var_110 = df::dot(var_97, var_97); var_111 = df::mul(var_110, var_39); var_112 = df::add(var_109, var_111); var_113 = df::mul(var_21, var_dt); var_114 = df::mul(var_113, var_dt); var_115 = df::mul(var_114, var_52); var_116 = df::div(var_51, var_115); var_117 = df::add(var_112, var_116); var_118 = df::div(var_74, var_117); var_119 = df::mul(var_101, var_118); var_120 = df::mul(var_89, var_118); var_121 = df::mul(var_93, var_118); var_122 = df::mul(var_97, var_118); var_123 = df::determinant(var_53); var_124 = df::sub(var_123, var_85); var_125 = df::div(var_50, var_49); var_126 = df::cross(var_41, var_42); var_127 = df::mul(var_126, var_125); var_128 = df::cross(var_42, var_40); var_129 = df::mul(var_128, var_125); var_130 = df::cross(var_40, var_41); var_131 = df::mul(var_130, var_125); var_132 = df::add(var_127, var_129); var_133 = df::add(var_132, var_131); var_134 = df::sub(var_75, var_51); var_135 = df::mul(var_133, var_134); var_136 = df::dot(var_135, var_135); var_137 = df::mul(var_136, var_36); var_138 = df::dot(var_127, var_127); var_139 = df::mul(var_138, var_37); var_140 = df::add(var_137, var_139); var_141 = df::dot(var_129, var_129); var_142 = df::mul(var_141, var_38); var_143 = df::add(var_140, var_142); var_144 = df::dot(var_131, var_131); var_145 = df::mul(var_144, var_39); var_146 = df::add(var_143, var_145); var_147 = df::mul(var_24, var_dt); var_148 = df::mul(var_147, var_dt); var_149 = df::mul(var_148, var_52); var_150 = df::div(var_51, var_149); var_151 = df::add(var_146, var_150); var_152 = df::div(var_124, var_151); var_153 = df::mul(var_135, var_152); var_154 = df::add(var_119, var_153); var_155 = df::mul(var_127, var_152); var_156 = df::add(var_120, var_155); var_157 = df::mul(var_129, var_152); var_158 = df::add(var_121, var_157); var_159 = df::mul(var_131, var_152); var_160 = df::add(var_122, var_159); var_161 = df::mul(var_154, var_36); var_162 = df::mul(var_161, var_relaxation); df::atomic_sub(var_delta, var_5, var_162); var_163 = df::mul(var_156, var_37); var_164 = df::mul(var_163, var_relaxation); df::atomic_sub(var_delta, var_9, var_164); var_165 = df::mul(var_158, var_38); var_166 = df::mul(var_165, var_relaxation); df::atomic_sub(var_delta, var_13, var_166); var_167 = df::mul(var_160, var_39); var_168 = df::mul(var_167, var_relaxation); df::atomic_sub(var_delta, var_17, var_168); //--------- // reverse df::adj_atomic_sub(var_delta, var_17, var_168, adj_delta, adj_17, adj_168); df::adj_mul(var_167, var_relaxation, adj_167, adj_relaxation, adj_168); df::adj_mul(var_160, var_39, adj_160, adj_39, adj_167); df::adj_atomic_sub(var_delta, var_13, var_166, adj_delta, adj_13, adj_166); df::adj_mul(var_165, var_relaxation, adj_165, adj_relaxation, adj_166); df::adj_mul(var_158, var_38, adj_158, adj_38, adj_165); df::adj_atomic_sub(var_delta, var_9, var_164, adj_delta, adj_9, adj_164); df::adj_mul(var_163, var_relaxation, adj_163, adj_relaxation, adj_164); df::adj_mul(var_156, var_37, adj_156, adj_37, adj_163); df::adj_atomic_sub(var_delta, var_5, var_162, adj_delta, adj_5, adj_162); df::adj_mul(var_161, var_relaxation, adj_161, adj_relaxation, adj_162); df::adj_mul(var_154, var_36, adj_154, adj_36, adj_161); df::adj_add(var_122, var_159, adj_122, adj_159, adj_160); df::adj_mul(var_131, var_152, adj_131, adj_152, adj_159); df::adj_add(var_121, var_157, adj_121, adj_157, adj_158); df::adj_mul(var_129, var_152, adj_129, adj_152, adj_157); df::adj_add(var_120, var_155, adj_120, adj_155, adj_156); df::adj_mul(var_127, var_152, adj_127, adj_152, adj_155); df::adj_add(var_119, var_153, adj_119, adj_153, adj_154); df::adj_mul(var_135, var_152, adj_135, adj_152, adj_153); df::adj_div(var_124, var_151, adj_124, adj_151, adj_152); df::adj_add(var_146, var_150, adj_146, adj_150, adj_151); df::adj_div(var_51, var_149, adj_51, adj_149, adj_150); df::adj_mul(var_148, var_52, adj_148, adj_52, adj_149); df::adj_mul(var_147, var_dt, adj_147, adj_dt, adj_148); df::adj_mul(var_24, var_dt, adj_24, adj_dt, adj_147); df::adj_add(var_143, var_145, adj_143, adj_145, adj_146); df::adj_mul(var_144, var_39, adj_144, adj_39, adj_145); df::adj_dot(var_131, var_131, adj_131, adj_131, adj_144); df::adj_add(var_140, var_142, adj_140, adj_142, adj_143); df::adj_mul(var_141, var_38, adj_141, adj_38, adj_142); df::adj_dot(var_129, var_129, adj_129, adj_129, adj_141); df::adj_add(var_137, var_139, adj_137, adj_139, adj_140); df::adj_mul(var_138, var_37, adj_138, adj_37, adj_139); df::adj_dot(var_127, var_127, adj_127, adj_127, adj_138); df::adj_mul(var_136, var_36, adj_136, adj_36, adj_137); df::adj_dot(var_135, var_135, adj_135, adj_135, adj_136); df::adj_mul(var_133, var_134, adj_133, adj_134, adj_135); df::adj_sub(var_75, var_51, adj_75, adj_51, adj_134); df::adj_add(var_132, var_131, adj_132, adj_131, adj_133); df::adj_add(var_127, var_129, adj_127, adj_129, adj_132); df::adj_mul(var_130, var_125, adj_130, adj_125, adj_131); df::adj_cross(var_40, var_41, adj_40, adj_41, adj_130); df::adj_mul(var_128, var_125, adj_128, adj_125, adj_129); df::adj_cross(var_42, var_40, adj_42, adj_40, adj_128); df::adj_mul(var_126, var_125, adj_126, adj_125, adj_127); df::adj_cross(var_41, var_42, adj_41, adj_42, adj_126); df::adj_div(var_50, var_49, adj_50, adj_49, adj_125); df::adj_sub(var_123, var_85, adj_123, adj_85, adj_124); df::adj_determinant(var_53, adj_53, adj_123); df::adj_mul(var_97, var_118, adj_97, adj_118, adj_122); df::adj_mul(var_93, var_118, adj_93, adj_118, adj_121); df::adj_mul(var_89, var_118, adj_89, adj_118, adj_120); df::adj_mul(var_101, var_118, adj_101, adj_118, adj_119); df::adj_div(var_74, var_117, adj_74, adj_117, adj_118); df::adj_add(var_112, var_116, adj_112, adj_116, adj_117); df::adj_div(var_51, var_115, adj_51, adj_115, adj_116); df::adj_mul(var_114, var_52, adj_114, adj_52, adj_115); df::adj_mul(var_113, var_dt, adj_113, adj_dt, adj_114); df::adj_mul(var_21, var_dt, adj_21, adj_dt, adj_113); df::adj_add(var_109, var_111, adj_109, adj_111, adj_112); df::adj_mul(var_110, var_39, adj_110, adj_39, adj_111); df::adj_dot(var_97, var_97, adj_97, adj_97, adj_110); df::adj_add(var_106, var_108, adj_106, adj_108, adj_109); df::adj_mul(var_107, var_38, adj_107, adj_38, adj_108); df::adj_dot(var_93, var_93, adj_93, adj_93, adj_107); df::adj_add(var_103, var_105, adj_103, adj_105, adj_106); df::adj_mul(var_104, var_37, adj_104, adj_37, adj_105); df::adj_dot(var_89, var_89, adj_89, adj_89, adj_104); df::adj_mul(var_102, var_36, adj_102, adj_36, adj_103); df::adj_dot(var_101, var_101, adj_101, adj_101, adj_102); df::adj_mul(var_99, var_100, adj_99, adj_100, adj_101); df::adj_sub(var_75, var_51, adj_75, adj_51, adj_100); df::adj_add(var_98, var_97, adj_98, adj_97, adj_99); df::adj_add(var_89, var_93, adj_89, adj_93, adj_98); df::adj_float3(var_94, var_95, var_96, adj_94, adj_95, adj_96, adj_97); df::adj_index(var_83, var_11, var_11, adj_83, adj_11, adj_11, adj_96); df::adj_index(var_83, var_7, var_11, adj_83, adj_7, adj_11, adj_95); df::adj_index(var_83, var_3, var_11, adj_83, adj_3, adj_11, adj_94); df::adj_float3(var_90, var_91, var_92, adj_90, adj_91, adj_92, adj_93); df::adj_index(var_83, var_11, var_7, adj_83, adj_11, adj_7, adj_92); df::adj_index(var_83, var_7, var_7, adj_83, adj_7, adj_7, adj_91); df::adj_index(var_83, var_3, var_7, adj_83, adj_3, adj_7, adj_90); df::adj_float3(var_86, var_87, var_88, adj_86, adj_87, adj_88, adj_89); df::adj_index(var_83, var_11, var_3, adj_83, adj_11, adj_3, adj_88); df::adj_index(var_83, var_7, var_3, adj_83, adj_7, adj_3, adj_87); df::adj_index(var_83, var_3, var_3, adj_83, adj_3, adj_3, adj_86); df::adj_add(var_51, var_84, adj_51, adj_84, adj_85); df::adj_div(var_21, var_24, adj_21, adj_24, adj_84); df::adj_mul(var_81, var_82, adj_81, adj_82, adj_83); df::adj_div(var_51, var_79, adj_51, adj_79, adj_82); df::adj_mul(var_53, var_80, adj_53, adj_80, adj_81); df::adj_transpose(var_47, adj_47, adj_80); df::adj_select(var_77, var_74, var_78, adj_77, adj_74, adj_78, adj_79); if (var_77) { df::adj_sub(var_75, var_74, adj_75, adj_74, adj_78); } if (var_76) { label0:; } df::adj_sqrt(var_73, adj_73, adj_74); df::adj_abs(var_72, adj_72, adj_73); df::adj_sub(var_70, var_71, adj_70, adj_71, adj_72); df::adj_add(var_68, var_69, adj_68, adj_69, adj_70); df::adj_dot(var_65, var_65, adj_65, adj_65, adj_69); df::adj_add(var_66, var_67, adj_66, adj_67, adj_68); df::adj_dot(var_61, var_61, adj_61, adj_61, adj_67); df::adj_dot(var_57, var_57, adj_57, adj_57, adj_66); df::adj_float3(var_62, var_63, var_64, adj_62, adj_63, adj_64, adj_65); df::adj_index(var_53, var_11, var_11, adj_53, adj_11, adj_11, adj_64); df::adj_index(var_53, var_7, var_11, adj_53, adj_7, adj_11, adj_63); df::adj_index(var_53, var_3, var_11, adj_53, adj_3, adj_11, adj_62); df::adj_float3(var_58, var_59, var_60, adj_58, adj_59, adj_60, adj_61); df::adj_index(var_53, var_11, var_7, adj_53, adj_11, adj_7, adj_60); df::adj_index(var_53, var_7, var_7, adj_53, adj_7, adj_7, adj_59); df::adj_index(var_53, var_3, var_7, adj_53, adj_3, adj_7, adj_58); df::adj_float3(var_54, var_55, var_56, adj_54, adj_55, adj_56, adj_57); df::adj_index(var_53, var_11, var_3, adj_53, adj_11, adj_3, adj_56); df::adj_index(var_53, var_7, var_3, adj_53, adj_7, adj_3, adj_55); df::adj_index(var_53, var_3, var_3, adj_53, adj_3, adj_3, adj_54); df::adj_mul(var_46, var_47, adj_46, adj_47, adj_53); df::adj_div(var_51, var_50, adj_51, adj_50, adj_52); df::adj_mul(var_48, var_49, adj_48, adj_49, adj_50); df::adj_determinant(var_47, adj_47, adj_48); df::adj_load(var_pose, var_0, adj_pose, adj_0, adj_47); df::adj_mat33(var_40, var_41, var_42, adj_40, adj_41, adj_42, adj_46); df::adj_sub(var_35, var_32, adj_35, adj_32, adj_45); df::adj_sub(var_34, var_32, adj_34, adj_32, adj_44); df::adj_sub(var_33, var_32, adj_33, adj_32, adj_43); df::adj_sub(var_31, var_28, adj_31, adj_28, adj_42); df::adj_sub(var_30, var_28, adj_30, adj_28, adj_41); df::adj_sub(var_29, var_28, adj_29, adj_28, adj_40); df::adj_load(var_inv_mass, var_17, adj_inv_mass, adj_17, adj_39); df::adj_load(var_inv_mass, var_13, adj_inv_mass, adj_13, adj_38); df::adj_load(var_inv_mass, var_9, adj_inv_mass, adj_9, adj_37); df::adj_load(var_inv_mass, var_5, adj_inv_mass, adj_5, adj_36); df::adj_load(var_v, var_17, adj_v, adj_17, adj_35); df::adj_load(var_v, var_13, adj_v, adj_13, adj_34); df::adj_load(var_v, var_9, adj_v, adj_9, adj_33); df::adj_load(var_v, var_5, adj_v, adj_5, adj_32); df::adj_load(var_x, var_17, adj_x, adj_17, adj_31); df::adj_load(var_x, var_13, adj_x, adj_13, adj_30); df::adj_load(var_x, var_9, adj_x, adj_9, adj_29); df::adj_load(var_x, var_5, adj_x, adj_5, adj_28); df::adj_load(var_materials, var_26, adj_materials, adj_26, adj_27); df::adj_add(var_25, var_11, adj_25, adj_11, adj_26); df::adj_mul(var_0, var_15, adj_0, adj_15, adj_25); df::adj_load(var_materials, var_23, adj_materials, adj_23, adj_24); df::adj_add(var_22, var_7, adj_22, adj_7, adj_23); df::adj_mul(var_0, var_15, adj_0, adj_15, adj_22); df::adj_load(var_materials, var_20, adj_materials, adj_20, adj_21); df::adj_add(var_19, var_3, adj_19, adj_3, adj_20); df::adj_mul(var_0, var_15, adj_0, adj_15, adj_19); df::adj_load(var_activation, var_0, adj_activation, adj_0, adj_18); df::adj_load(var_indices, var_16, adj_indices, adj_16, adj_17); df::adj_add(var_14, var_15, adj_14, adj_15, adj_16); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_14); df::adj_load(var_indices, var_12, adj_indices, adj_12, adj_13); df::adj_add(var_10, var_11, adj_10, adj_11, adj_12); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_10); df::adj_load(var_indices, var_8, adj_indices, adj_8, adj_9); df::adj_add(var_6, var_7, adj_6, adj_7, adj_8); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_6); df::adj_load(var_indices, var_4, adj_indices, adj_4, adj_5); df::adj_add(var_2, var_3, adj_2, adj_3, adj_4); df::adj_mul(var_0, var_1, adj_0, adj_1, adj_2); return; } // Python entry points void solve_tetrahedra_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_inv_mass, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, torch::Tensor var_materials, float var_dt, float var_relaxation, torch::Tensor var_delta) { for (int i=0; i < dim; ++i) { s_threadIdx = i; solve_tetrahedra_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<float*>(var_inv_mass), cast<int*>(var_indices), cast<mat33*>(var_pose), cast<float*>(var_activation), cast<float*>(var_materials), var_dt, var_relaxation, cast<df::float3*>(var_delta)); } } void solve_tetrahedra_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_inv_mass, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, torch::Tensor var_materials, float var_dt, float var_relaxation, torch::Tensor var_delta, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_inv_mass, torch::Tensor adj_indices, torch::Tensor adj_pose, torch::Tensor adj_activation, torch::Tensor adj_materials, float adj_dt, float adj_relaxation, torch::Tensor adj_delta) { for (int i=0; i < dim; ++i) { s_threadIdx = i; solve_tetrahedra_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<float*>(var_inv_mass), cast<int*>(var_indices), cast<mat33*>(var_pose), cast<float*>(var_activation), cast<float*>(var_materials), var_dt, var_relaxation, cast<df::float3*>(var_delta), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<float*>(adj_inv_mass), cast<int*>(adj_indices), cast<mat33*>(adj_pose), cast<float*>(adj_activation), cast<float*>(adj_materials), adj_dt, adj_relaxation, cast<df::float3*>(adj_delta)); } } // Python entry points void solve_tetrahedra_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_inv_mass, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, torch::Tensor var_materials, float var_dt, float var_relaxation, torch::Tensor var_delta); void solve_tetrahedra_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_inv_mass, torch::Tensor var_indices, torch::Tensor var_pose, torch::Tensor var_activation, torch::Tensor var_materials, float var_dt, float var_relaxation, torch::Tensor var_delta, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_inv_mass, torch::Tensor adj_indices, torch::Tensor adj_pose, torch::Tensor adj_activation, torch::Tensor adj_materials, float adj_dt, float adj_relaxation, torch::Tensor adj_delta); void solve_contacts_cpu_kernel_forward( df::float3* var_x, df::float3* var_v, float* var_inv_mass, float var_mu, float var_dt, df::float3* var_delta) { //--------- // primal vars int var_0; df::float3 var_1; df::float3 var_2; float var_3; const float var_4 = 0.0; const float var_5 = 1.0; df::float3 var_6; float var_7; const float var_8 = 0.01; float var_9; bool var_10; df::float3 var_11; float var_12; df::float3 var_13; df::float3 var_14; float var_15; float var_16; float var_17; float var_18; float var_19; df::float3 var_20; df::float3 var_21; df::float3 var_22; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_x, var_0); var_2 = df::load(var_v, var_0); var_3 = df::load(var_inv_mass, var_0); var_6 = df::float3(var_4, var_5, var_4); var_7 = df::dot(var_6, var_1); var_9 = df::sub(var_7, var_8); var_10 = (var_9 > var_4); if (var_10) { return; } var_11 = df::mul(var_6, var_9); var_12 = df::dot(var_6, var_2); var_13 = df::mul(var_6, var_12); var_14 = df::sub(var_2, var_13); var_15 = df::mul(var_mu, var_9); var_16 = df::length(var_14); var_17 = df::mul(var_16, var_dt); var_18 = df::sub(var_4, var_17); var_19 = df::max(var_15, var_18); var_20 = df::normalize(var_14); var_21 = df::mul(var_20, var_19); var_22 = df::sub(var_21, var_11); df::atomic_add(var_delta, var_0, var_22); } void solve_contacts_cpu_kernel_backward( df::float3* var_x, df::float3* var_v, float* var_inv_mass, float var_mu, float var_dt, df::float3* var_delta, df::float3* adj_x, df::float3* adj_v, float* adj_inv_mass, float adj_mu, float adj_dt, df::float3* adj_delta) { //--------- // primal vars int var_0; df::float3 var_1; df::float3 var_2; float var_3; const float var_4 = 0.0; const float var_5 = 1.0; df::float3 var_6; float var_7; const float var_8 = 0.01; float var_9; bool var_10; df::float3 var_11; float var_12; df::float3 var_13; df::float3 var_14; float var_15; float var_16; float var_17; float var_18; float var_19; df::float3 var_20; df::float3 var_21; df::float3 var_22; //--------- // dual vars int adj_0 = 0; df::float3 adj_1 = 0; df::float3 adj_2 = 0; float adj_3 = 0; float adj_4 = 0; float adj_5 = 0; df::float3 adj_6 = 0; float adj_7 = 0; float adj_8 = 0; float adj_9 = 0; bool adj_10 = 0; df::float3 adj_11 = 0; float adj_12 = 0; df::float3 adj_13 = 0; df::float3 adj_14 = 0; float adj_15 = 0; float adj_16 = 0; float adj_17 = 0; float adj_18 = 0; float adj_19 = 0; df::float3 adj_20 = 0; df::float3 adj_21 = 0; df::float3 adj_22 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_x, var_0); var_2 = df::load(var_v, var_0); var_3 = df::load(var_inv_mass, var_0); var_6 = df::float3(var_4, var_5, var_4); var_7 = df::dot(var_6, var_1); var_9 = df::sub(var_7, var_8); var_10 = (var_9 > var_4); if (var_10) { goto label0; } var_11 = df::mul(var_6, var_9); var_12 = df::dot(var_6, var_2); var_13 = df::mul(var_6, var_12); var_14 = df::sub(var_2, var_13); var_15 = df::mul(var_mu, var_9); var_16 = df::length(var_14); var_17 = df::mul(var_16, var_dt); var_18 = df::sub(var_4, var_17); var_19 = df::max(var_15, var_18); var_20 = df::normalize(var_14); var_21 = df::mul(var_20, var_19); var_22 = df::sub(var_21, var_11); df::atomic_add(var_delta, var_0, var_22); //--------- // reverse df::adj_atomic_add(var_delta, var_0, var_22, adj_delta, adj_0, adj_22); df::adj_sub(var_21, var_11, adj_21, adj_11, adj_22); df::adj_mul(var_20, var_19, adj_20, adj_19, adj_21); df::adj_normalize(var_14, adj_14, adj_20); df::adj_max(var_15, var_18, adj_15, adj_18, adj_19); df::adj_sub(var_4, var_17, adj_4, adj_17, adj_18); df::adj_mul(var_16, var_dt, adj_16, adj_dt, adj_17); df::adj_length(var_14, adj_14, adj_16); df::adj_mul(var_mu, var_9, adj_mu, adj_9, adj_15); df::adj_sub(var_2, var_13, adj_2, adj_13, adj_14); df::adj_mul(var_6, var_12, adj_6, adj_12, adj_13); df::adj_dot(var_6, var_2, adj_6, adj_2, adj_12); df::adj_mul(var_6, var_9, adj_6, adj_9, adj_11); if (var_10) { label0:; } df::adj_sub(var_7, var_8, adj_7, adj_8, adj_9); df::adj_dot(var_6, var_1, adj_6, adj_1, adj_7); df::adj_float3(var_4, var_5, var_4, adj_4, adj_5, adj_4, adj_6); df::adj_load(var_inv_mass, var_0, adj_inv_mass, adj_0, adj_3); df::adj_load(var_v, var_0, adj_v, adj_0, adj_2); df::adj_load(var_x, var_0, adj_x, adj_0, adj_1); return; } // Python entry points void solve_contacts_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_inv_mass, float var_mu, float var_dt, torch::Tensor var_delta) { for (int i=0; i < dim; ++i) { s_threadIdx = i; solve_contacts_cpu_kernel_forward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<float*>(var_inv_mass), var_mu, var_dt, cast<df::float3*>(var_delta)); } } void solve_contacts_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_inv_mass, float var_mu, float var_dt, torch::Tensor var_delta, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_inv_mass, float adj_mu, float adj_dt, torch::Tensor adj_delta) { for (int i=0; i < dim; ++i) { s_threadIdx = i; solve_contacts_cpu_kernel_backward( cast<df::float3*>(var_x), cast<df::float3*>(var_v), cast<float*>(var_inv_mass), var_mu, var_dt, cast<df::float3*>(var_delta), cast<df::float3*>(adj_x), cast<df::float3*>(adj_v), cast<float*>(adj_inv_mass), adj_mu, adj_dt, cast<df::float3*>(adj_delta)); } } // Python entry points void solve_contacts_cpu_forward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_inv_mass, float var_mu, float var_dt, torch::Tensor var_delta); void solve_contacts_cpu_backward(int dim, torch::Tensor var_x, torch::Tensor var_v, torch::Tensor var_inv_mass, float var_mu, float var_dt, torch::Tensor var_delta, torch::Tensor adj_x, torch::Tensor adj_v, torch::Tensor adj_inv_mass, float adj_mu, float adj_dt, torch::Tensor adj_delta); void apply_deltas_cpu_kernel_forward( df::float3* var_x_orig, df::float3* var_v_orig, df::float3* var_x_pred, df::float3* var_delta, float var_dt, df::float3* var_x_out, df::float3* var_v_out) { //--------- // primal vars int var_0; df::float3 var_1; df::float3 var_2; df::float3 var_3; df::float3 var_4; df::float3 var_5; df::float3 var_6; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_x_orig, var_0); var_2 = df::load(var_x_pred, var_0); var_3 = df::load(var_delta, var_0); var_4 = df::add(var_2, var_3); var_5 = df::sub(var_4, var_1); var_6 = df::div(var_5, var_dt); df::store(var_x_out, var_0, var_4); df::store(var_v_out, var_0, var_6); } void apply_deltas_cpu_kernel_backward( df::float3* var_x_orig, df::float3* var_v_orig, df::float3* var_x_pred, df::float3* var_delta, float var_dt, df::float3* var_x_out, df::float3* var_v_out, df::float3* adj_x_orig, df::float3* adj_v_orig, df::float3* adj_x_pred, df::float3* adj_delta, float adj_dt, df::float3* adj_x_out, df::float3* adj_v_out) { //--------- // primal vars int var_0; df::float3 var_1; df::float3 var_2; df::float3 var_3; df::float3 var_4; df::float3 var_5; df::float3 var_6; //--------- // dual vars int adj_0 = 0; df::float3 adj_1 = 0; df::float3 adj_2 = 0; df::float3 adj_3 = 0; df::float3 adj_4 = 0; df::float3 adj_5 = 0; df::float3 adj_6 = 0; //--------- // forward var_0 = df::tid(); var_1 = df::load(var_x_orig, var_0); var_2 = df::load(var_x_pred, var_0); var_3 = df::load(var_delta, var_0); var_4 = df::add(var_2, var_3); var_5 = df::sub(var_4, var_1); var_6 = df::div(var_5, var_dt); df::store(var_x_out, var_0, var_4); df::store(var_v_out, var_0, var_6); //--------- // reverse df::adj_store(var_v_out, var_0, var_6, adj_v_out, adj_0, adj_6); df::adj_store(var_x_out, var_0, var_4, adj_x_out, adj_0, adj_4); df::adj_div(var_5, var_dt, adj_5, adj_dt, adj_6); df::adj_sub(var_4, var_1, adj_4, adj_1, adj_5); df::adj_add(var_2, var_3, adj_2, adj_3, adj_4); df::adj_load(var_delta, var_0, adj_delta, adj_0, adj_3); df::adj_load(var_x_pred, var_0, adj_x_pred, adj_0, adj_2); df::adj_load(var_x_orig, var_0, adj_x_orig, adj_0, adj_1); return; } // Python entry points void apply_deltas_cpu_forward(int dim, torch::Tensor var_x_orig, torch::Tensor var_v_orig, torch::Tensor var_x_pred, torch::Tensor var_delta, float var_dt, torch::Tensor var_x_out, torch::Tensor var_v_out) { for (int i=0; i < dim; ++i) { s_threadIdx = i; apply_deltas_cpu_kernel_forward( cast<df::float3*>(var_x_orig), cast<df::float3*>(var_v_orig), cast<df::float3*>(var_x_pred), cast<df::float3*>(var_delta), var_dt, cast<df::float3*>(var_x_out), cast<df::float3*>(var_v_out)); } } void apply_deltas_cpu_backward(int dim, torch::Tensor var_x_orig, torch::Tensor var_v_orig, torch::Tensor var_x_pred, torch::Tensor var_delta, float var_dt, torch::Tensor var_x_out, torch::Tensor var_v_out, torch::Tensor adj_x_orig, torch::Tensor adj_v_orig, torch::Tensor adj_x_pred, torch::Tensor adj_delta, float adj_dt, torch::Tensor adj_x_out, torch::Tensor adj_v_out) { for (int i=0; i < dim; ++i) { s_threadIdx = i; apply_deltas_cpu_kernel_backward( cast<df::float3*>(var_x_orig), cast<df::float3*>(var_v_orig), cast<df::float3*>(var_x_pred), cast<df::float3*>(var_delta), var_dt, cast<df::float3*>(var_x_out), cast<df::float3*>(var_v_out), cast<df::float3*>(adj_x_orig), cast<df::float3*>(adj_v_orig), cast<df::float3*>(adj_x_pred), cast<df::float3*>(adj_delta), adj_dt, cast<df::float3*>(adj_x_out), cast<df::float3*>(adj_v_out)); } } // Python entry points void apply_deltas_cpu_forward(int dim, torch::Tensor var_x_orig, torch::Tensor var_v_orig, torch::Tensor var_x_pred, torch::Tensor var_delta, float var_dt, torch::Tensor var_x_out, torch::Tensor var_v_out); void apply_deltas_cpu_backward(int dim, torch::Tensor var_x_orig, torch::Tensor var_v_orig, torch::Tensor var_x_pred, torch::Tensor var_delta, float var_dt, torch::Tensor var_x_out, torch::Tensor var_v_out, torch::Tensor adj_x_orig, torch::Tensor adj_v_orig, torch::Tensor adj_x_pred, torch::Tensor adj_delta, float adj_dt, torch::Tensor adj_x_out, torch::Tensor adj_v_out); PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("integrate_particles_cpu_forward", integrate_particles_cpu_forward, "integrate_particles_cpu_forward"); m.def("integrate_particles_cpu_backward", integrate_particles_cpu_backward, "integrate_particles_cpu_backward"); m.def("integrate_rigids_cpu_forward", integrate_rigids_cpu_forward, "integrate_rigids_cpu_forward"); m.def("integrate_rigids_cpu_backward", integrate_rigids_cpu_backward, "integrate_rigids_cpu_backward"); m.def("eval_springs_cpu_forward", eval_springs_cpu_forward, "eval_springs_cpu_forward"); m.def("eval_springs_cpu_backward", eval_springs_cpu_backward, "eval_springs_cpu_backward"); m.def("eval_triangles_cpu_forward", eval_triangles_cpu_forward, "eval_triangles_cpu_forward"); m.def("eval_triangles_cpu_backward", eval_triangles_cpu_backward, "eval_triangles_cpu_backward"); m.def("eval_triangles_contact_cpu_forward", eval_triangles_contact_cpu_forward, "eval_triangles_contact_cpu_forward"); m.def("eval_triangles_contact_cpu_backward", eval_triangles_contact_cpu_backward, "eval_triangles_contact_cpu_backward"); m.def("eval_triangles_rigid_contacts_cpu_forward", eval_triangles_rigid_contacts_cpu_forward, "eval_triangles_rigid_contacts_cpu_forward"); m.def("eval_triangles_rigid_contacts_cpu_backward", eval_triangles_rigid_contacts_cpu_backward, "eval_triangles_rigid_contacts_cpu_backward"); m.def("eval_bending_cpu_forward", eval_bending_cpu_forward, "eval_bending_cpu_forward"); m.def("eval_bending_cpu_backward", eval_bending_cpu_backward, "eval_bending_cpu_backward"); m.def("eval_tetrahedra_cpu_forward", eval_tetrahedra_cpu_forward, "eval_tetrahedra_cpu_forward"); m.def("eval_tetrahedra_cpu_backward", eval_tetrahedra_cpu_backward, "eval_tetrahedra_cpu_backward"); m.def("eval_contacts_cpu_forward", eval_contacts_cpu_forward, "eval_contacts_cpu_forward"); m.def("eval_contacts_cpu_backward", eval_contacts_cpu_backward, "eval_contacts_cpu_backward"); m.def("eval_soft_contacts_cpu_forward", eval_soft_contacts_cpu_forward, "eval_soft_contacts_cpu_forward"); m.def("eval_soft_contacts_cpu_backward", eval_soft_contacts_cpu_backward, "eval_soft_contacts_cpu_backward"); m.def("eval_rigid_contacts_cpu_forward", eval_rigid_contacts_cpu_forward, "eval_rigid_contacts_cpu_forward"); m.def("eval_rigid_contacts_cpu_backward", eval_rigid_contacts_cpu_backward, "eval_rigid_contacts_cpu_backward"); m.def("eval_rigid_contacts_art_cpu_forward", eval_rigid_contacts_art_cpu_forward, "eval_rigid_contacts_art_cpu_forward"); m.def("eval_rigid_contacts_art_cpu_backward", eval_rigid_contacts_art_cpu_backward, "eval_rigid_contacts_art_cpu_backward"); m.def("eval_muscles_cpu_forward", eval_muscles_cpu_forward, "eval_muscles_cpu_forward"); m.def("eval_muscles_cpu_backward", eval_muscles_cpu_backward, "eval_muscles_cpu_backward"); m.def("eval_rigid_fk_cpu_forward", eval_rigid_fk_cpu_forward, "eval_rigid_fk_cpu_forward"); m.def("eval_rigid_fk_cpu_backward", eval_rigid_fk_cpu_backward, "eval_rigid_fk_cpu_backward"); m.def("eval_rigid_id_cpu_forward", eval_rigid_id_cpu_forward, "eval_rigid_id_cpu_forward"); m.def("eval_rigid_id_cpu_backward", eval_rigid_id_cpu_backward, "eval_rigid_id_cpu_backward"); m.def("eval_rigid_tau_cpu_forward", eval_rigid_tau_cpu_forward, "eval_rigid_tau_cpu_forward"); m.def("eval_rigid_tau_cpu_backward", eval_rigid_tau_cpu_backward, "eval_rigid_tau_cpu_backward"); m.def("eval_rigid_jacobian_cpu_forward", eval_rigid_jacobian_cpu_forward, "eval_rigid_jacobian_cpu_forward"); m.def("eval_rigid_jacobian_cpu_backward", eval_rigid_jacobian_cpu_backward, "eval_rigid_jacobian_cpu_backward"); m.def("eval_rigid_mass_cpu_forward", eval_rigid_mass_cpu_forward, "eval_rigid_mass_cpu_forward"); m.def("eval_rigid_mass_cpu_backward", eval_rigid_mass_cpu_backward, "eval_rigid_mass_cpu_backward"); m.def("eval_dense_gemm_cpu_forward", eval_dense_gemm_cpu_forward, "eval_dense_gemm_cpu_forward"); m.def("eval_dense_gemm_cpu_backward", eval_dense_gemm_cpu_backward, "eval_dense_gemm_cpu_backward"); m.def("eval_dense_gemm_batched_cpu_forward", eval_dense_gemm_batched_cpu_forward, "eval_dense_gemm_batched_cpu_forward"); m.def("eval_dense_gemm_batched_cpu_backward", eval_dense_gemm_batched_cpu_backward, "eval_dense_gemm_batched_cpu_backward"); m.def("eval_dense_cholesky_cpu_forward", eval_dense_cholesky_cpu_forward, "eval_dense_cholesky_cpu_forward"); m.def("eval_dense_cholesky_cpu_backward", eval_dense_cholesky_cpu_backward, "eval_dense_cholesky_cpu_backward"); m.def("eval_dense_cholesky_batched_cpu_forward", eval_dense_cholesky_batched_cpu_forward, "eval_dense_cholesky_batched_cpu_forward"); m.def("eval_dense_cholesky_batched_cpu_backward", eval_dense_cholesky_batched_cpu_backward, "eval_dense_cholesky_batched_cpu_backward"); m.def("eval_dense_subs_cpu_forward", eval_dense_subs_cpu_forward, "eval_dense_subs_cpu_forward"); m.def("eval_dense_subs_cpu_backward", eval_dense_subs_cpu_backward, "eval_dense_subs_cpu_backward"); m.def("eval_dense_solve_cpu_forward", eval_dense_solve_cpu_forward, "eval_dense_solve_cpu_forward"); m.def("eval_dense_solve_cpu_backward", eval_dense_solve_cpu_backward, "eval_dense_solve_cpu_backward"); m.def("eval_dense_solve_batched_cpu_forward", eval_dense_solve_batched_cpu_forward, "eval_dense_solve_batched_cpu_forward"); m.def("eval_dense_solve_batched_cpu_backward", eval_dense_solve_batched_cpu_backward, "eval_dense_solve_batched_cpu_backward"); m.def("eval_rigid_integrate_cpu_forward", eval_rigid_integrate_cpu_forward, "eval_rigid_integrate_cpu_forward"); m.def("eval_rigid_integrate_cpu_backward", eval_rigid_integrate_cpu_backward, "eval_rigid_integrate_cpu_backward"); m.def("solve_springs_cpu_forward", solve_springs_cpu_forward, "solve_springs_cpu_forward"); m.def("solve_springs_cpu_backward", solve_springs_cpu_backward, "solve_springs_cpu_backward"); m.def("solve_tetrahedra_cpu_forward", solve_tetrahedra_cpu_forward, "solve_tetrahedra_cpu_forward"); m.def("solve_tetrahedra_cpu_backward", solve_tetrahedra_cpu_backward, "solve_tetrahedra_cpu_backward"); m.def("solve_contacts_cpu_forward", solve_contacts_cpu_forward, "solve_contacts_cpu_forward"); m.def("solve_contacts_cpu_backward", solve_contacts_cpu_backward, "solve_contacts_cpu_backward"); m.def("apply_deltas_cpu_forward", apply_deltas_cpu_forward, "apply_deltas_cpu_forward"); m.def("apply_deltas_cpu_backward", apply_deltas_cpu_backward, "apply_deltas_cpu_backward"); }
532,217
C++
29.40377
700
0.581105
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_humanoid.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class Robot: frame_dt = 1.0/60.0 episode_duration = 2.0 # seconds episode_frames = int(episode_duration/frame_dt) sim_substeps = 16 sim_dt = frame_dt / sim_substeps sim_steps = int(episode_duration / sim_dt) sim_time = 0.0 train_iters = 1024 train_rate = 0.05 ground = True name = "humanoid" regularization = 1.e-3 phase_count = 8 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render # humanoid test_util.urdf_load( builder, "assets/humanoid.urdf", df.transform((0.0, 1.35, 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)), #df.transform((0.0, 0.65, 0.0), df.quat_identity()), floating=True, shape_ke=1.e+3*5.0, shape_kd=1.e+2*2.0, shape_kf=1.e+2, shape_mu=0.5) # set pd-stiffness for i in range(len(builder.joint_target_ke)): builder.joint_target_ke[i] = 10.0 builder.joint_target_kd[i] = 1.0 # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) self.model.joint_q.requires_grad_() self.model.joint_qd.requires_grad_() #self.actions = torch.zeros((self.episode_frames, len(self.model.joint_qd)), dtype=torch.float32, device=adapter, requires_grad=True) #self.actions = torch.zeros(1, device=adapter, requires_grad=True) self.network = torch.nn.Sequential(torch.nn.Linear(self.phase_count, len(self.model.joint_qd), bias=False), torch.nn.Tanh()).to(adapter) self.action_strength = 0.0 self.action_penalty = 0.01 self.balance_reward = 15.0 self.forward_reward = 1.0 self.discount_scale = 3.0 self.discount_factor = 0.5 self.target = torch.tensor((0.0, 0.65, 0.0, 0.0, 0.0, 0.0, 1.0), dtype=torch.float32, device=adapter, requires_grad=False) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self, render=True): #--------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() if (self.model.ground): self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, dtype=torch.float32, device=self.model.adapter) for f in range(0, self.episode_frames): # df.config.no_grad = True #df.config.verify_fp = True # simulate with df.ScopedTimer("fk-id-dflex", detailed=False, active=False): phases = torch.zeros(self.phase_count, device=self.model.adapter) # build sinusoidal phase inputs for p in range(self.phase_count): phases[p] = math.sin(10.0 * (self.sim_time + 0.5 * p * math.pi)) actions = self.network(phases)*self.action_strength for i in range(0, self.sim_substeps): self.state.joint_act = actions self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt discount_time = self.sim_time discount = math.pow(self.discount_factor, discount_time*self.discount_scale) loss = loss - self.state.joint_q[1]*self.state.joint_q[1]*self.balance_reward*discount #torch.norm(actions)*self.action_penalty # loss = loss + self.state.joint_qd[5]*self.state.joint_q[1]# + torch.norm(actions)*self.action_penalty # render with df.ScopedTimer("render", False): if (self.render): self.render_time += self.frame_dt self.renderer.update(self.state, self.render_time) if (self.render): try: self.stage.Save() except: print("USD save error") return loss def run(self): df.config.no_grad = True #with torch.no_grad(): l = self.loss() def verify(self, eps=1.e-4): frame = 60 params = self.actions[frame] n = len(params) # evaluate analytic gradient l = self.loss(render=False) l.backward() # evaluate numeric gradient grad_analytic = self.actions.grad[frame].numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(n): mid = params[i].item() params[i] = mid - eps left = self.loss(render=False) params[i] = mid + eps right = self.loss(render=False) # reset params[i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = self.network.parameters() def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward", detailed=True): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward", detailed=True): #with torch.autograd.detect_anomaly(): l.backward() #print("vel: " + str(params[0])) #print("grad: " + str(params[0].grad)) #print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) def save(self): torch.save(self.network, "outputs/" + self.name + ".pt") def load(self): self.network = torch.load("outputs/" + self.name + ".pt") #--------- robot = Robot(depth=1, mode='dflex', render=True, adapter='cpu') robot.run() #robot.load() #robot.train(mode='adam')
9,237
Python
28.514377
144
0.533831
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_bending.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time import cProfile import numpy as np import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Bending: sim_duration = 10.0 # seconds sim_substeps = 32 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 200 train_rate = 0.01 def __init__(self, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() if (True): mesh = Usd.Stage.Open("assets/icosphere_open.usda") geom = UsdGeom.Mesh(mesh.GetPrimAtPath("/Shell/Mesh")) #mesh = Usd.Stage.Open("assets/cylinder_long_open.usda") #geom = UsdGeom.Mesh(mesh.GetPrimAtPath("/CylinderLong/CylinderLong")) points = geom.GetPointsAttr().Get() indices = geom.GetFaceVertexIndicesAttr().Get() counts = geom.GetFaceVertexCountsAttr().Get() linear_vel = np.array((1.0, 0.0, 0.0)) angular_vel = np.array((0.0, 0.0, 0.0)) center = np.array((0.0, 1.6, 0.0)) radius = 0.5 r = df.quat_multiply(df.quat_from_axis_angle((0.0, 0.0, 1.0), math.pi * 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi * 0.5)) builder.add_cloth_mesh(pos=center, rot=(0.0, 0.0, 0.0, 1.0), scale=radius, vel=(0.0, 0.0, 0.0), vertices=points, indices=indices, density=10.0) for i in range(len(builder.particle_qd)): v = np.cross(np.array(builder.particle_q) - center, angular_vel) builder.particle_qd[i] = v + linear_vel self.model = builder.finalize(adapter) self.model.tri_ke = 2000.0 self.model.tri_ka = 2000.0 self.model.tri_kd = 3.0 self.model.tri_lift = 0.0 self.model.tri_drag = 0.0 self.model.edge_ke = 20.0 self.model.edge_kd = 0.3 self.model.gravity = torch.tensor((0.0, -10.0, 0.0), device=adapter) else: builder.add_particle(pos=(1.0, 2.0, 1.0), vel=(0.0, 0.0, 0.0), mass=0.0) builder.add_particle(pos=(1.0, 2.0, -1.0), vel=(0.0, 0.0, 0.0), mass=0.0) builder.add_particle(pos=(-1.0, 2.0, -1.0), vel=(0.0, 0.0, 0.0), mass=0.0) builder.add_particle(pos=(-1.0, 2.0, 1.0), vel=(0.0, 0.0, 0.0), mass=1.0) builder.add_triangle(0, 1, 2) builder.add_triangle(0, 2, 3) builder.add_edge(1, 3, 2, 0) builder.edge_rest_angle[0] = -math.pi * 0.6 self.model = builder.finalize(adapter) self.model.tri_ke = 2000.0 self.model.tri_ka = 2000.0 self.model.tri_kd = 3.0 self.model.tri_lift = 0.0 self.model.tri_drag = 0.0 self.model.edge_ke = 20.0 self.model.edge_kd = 1.7 self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) # contact params self.model.contact_ke = 1.e+4 self.model.contact_kd = 1.0 self.model.contact_kf = 1000.0 self.model.contact_mu = 5.0 self.model.particle_radius = 0.01 self.model.ground = True # training params self.target_pos = torch.tensor((4.0, 2.0, 0.0), device=adapter) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/bending.usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.renderer.add_sphere(self.target_pos.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #----------------------- # run simulation self.state = self.model.state() loss = torch.zeros(1, requires_grad=True) for i in range(0, self.sim_steps): # forward dynamics self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # render if (render and (i % self.sim_substeps == 0)): self.sim_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.sim_time) # loss #com_loss = torch.mean(self.state.particle_qd*self.model.particle_mass[:, None], 0) #act_loss = torch.norm(activation)*self.activation_penalty #loss = loss - com_loss[1] return loss def run(self): with torch.no_grad(): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None def closure(): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True l = self.loss(render) l.backward() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 try: if (render): self.stage.Save() except: print("USD save error") return l if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(self.network.parameters(), lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(self.network.parameters(), lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(self.network.parameters(), lr=self.train_rate, momentum=0.5) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- bending = Bending(adapter='cpu') bending.run() #bending.train('lbfgs') #bending.train('sgd')
7,170
Python
28.755187
156
0.54212
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_ant.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util import xml.etree.ElementTree as ET class Robot: frame_dt = 1.0/60.0 episode_duration = 2.0 # seconds episode_frames = int(episode_duration/frame_dt) sim_substeps = 32 sim_dt = frame_dt / sim_substeps sim_steps = int(episode_duration / sim_dt) sim_time = 0.0 train_iters = 1024 train_rate = 0.001 phase_count = 8 phase_step = math.pi / phase_count * 2.0 phase_freq = 6.0 ground = True name = "humanoid" regularization = 1.e-3 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render self.parse_mjcf("./assets/" + self.name + ".xml", builder, stiffness=0.0, damping=0.0, contact_ke=1.e+3, contact_kd=1.e+3, contact_kf=1.e+2, contact_mu=0.75, limit_ke=1.e+2, limit_kd=1.e+1) # base transform # set joint targets to rest pose in mjcf if (self.name == "ant"): builder.joint_q[0:3] = [0.0, 0.70, 0.0] builder.joint_q[3:7] = df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5) builder.joint_q[7:] = [0.0, 1.0, 0.0, -1.0, 0.0, -1.0, 0.0, 1.0] builder.joint_target[7:] = [0.0, 1.0, 0.0, -1.0, 0.0, -1.0, 0.0, 1.0] if (self.name == "humanoid"): builder.joint_q[0:3] = [0.0, 1.70, 0.0] builder.joint_q[3:7] = df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5) # width = 0.1 # radius = 0.05 # builder.add_articulation() # body = -1 # for i in range(1): # body = builder.add_link( # parent=body, # X_pj=df.transform((2.0*width, 0.0, 0.0), df.quat_identity()), # axis=(0.0, 0.0, 1.0), # damping=0.0, # stiffness=0.0, # limit_lower=np.deg2rad(-30.0), # limit_upper=np.deg2rad(30.0), # limit_ke=100.0, # limit_kd=10.0, # type=df.JOINT_REVOLUTE) # shape = builder.add_shape_capsule(body, pos=(width, 0.0, 0.0), half_width=width, radius=radius) # self.ground = False # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) self.model.joint_q.requires_grad_() self.model.joint_qd.requires_grad_() self.network = torch.nn.Sequential(torch.nn.Linear(self.phase_count, len(self.model.joint_qd)-6, bias=False), torch.nn.Tanh()).to(adapter) self.action_strength = 150.0 self.action_penalty = 0.01 self.balance_reward = 15.0 self.forward_reward = 1.0 self.discount_scale = 1.0 self.discount_factor = 0.5 self.target = torch.tensor((0.0, 0.65, 0.0, 0.0, 0.0, 0.0, 1.0), dtype=torch.float32, device=adapter, requires_grad=False) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def parse_mjcf( self, filename, builder, density=1000.0, stiffness=0.0, damping=0.0, contact_ke=1000.0, contact_kd=100.0, contact_kf=100.0, contact_mu=0.5, limit_ke=100.0, limit_kd=10.0): file = ET.parse(filename) root = file.getroot() # map node names to link indices self.node_map = {} self.xform_map = {} self.mesh_map = {} type_map = { "ball": df.JOINT_BALL, "hinge": df.JOINT_REVOLUTE, "slide": df.JOINT_PRISMATIC, "free": df.JOINT_FREE, "fixed": df.JOINT_FIXED } def parse_float(node, key, default): if key in node.attrib: return float(node.attrib[key]) else: return default def parse_vec(node, key, default): if key in node.attrib: return np.fromstring(node.attrib[key], sep=" ") else: return np.array(default) def parse_body(body, parent): body_name = body.attrib["name"] body_pos = np.fromstring(body.attrib["pos"], sep=" ") #----------------- # add body for each joint for joint in body.findall("joint"): joint_name = joint.attrib["name"], joint_type = type_map[joint.attrib["type"]] joint_axis = parse_vec(joint, "axis", (0.0, 0.0, 0.0)) joint_pos = parse_vec(joint, "pos", (0.0, 0.0, 0.0)) joint_range = parse_vec(joint, "range", (-3.0, 3.0)) joint_armature = parse_float(joint, "armature", 0.0) joint_stiffness = parse_float(joint, "stiffness", stiffness) joint_damping = parse_float(joint, "damping", damping) joint_axis = df.normalize(joint_axis) if (parent == -1): body_pos = np.array((0.0, 0.0, 0.0)) link = builder.add_link( parent, X_pj=df.transform(body_pos, df.quat_identity()), axis=joint_axis, type=joint_type, limit_lower=np.deg2rad(joint_range[0]), limit_upper=np.deg2rad(joint_range[1]), limit_ke=limit_ke, limit_kd=limit_kd, stiffness=joint_stiffness, damping=joint_damping, armature=joint_armature) parent = link body_pos = [0.0, 0.0, 0.0] # todo: assumes that serial joints are all aligned at the same point #----------------- # add shapes for geom in body.findall("geom"): geom_name = geom.attrib["name"] geom_type = geom.attrib["type"] geom_size = parse_vec(geom, "size", [1.0]) geom_pos = parse_vec(geom, "pos", (0.0, 0.0, 0.0)) geom_rot = parse_vec(geom, "quat", (0.0, 0.0, 0.0, 1.0)) if (geom_type == "sphere"): builder.add_shape_sphere( link, pos=geom_pos, rot=geom_rot, radius=geom_size[0], density=density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu) elif (geom_type == "capsule"): if ("fromto" in geom.attrib): geom_fromto = parse_vec(geom, "fromto", (0.0, 0.0, 0.0, 1.0, 0.0, 0.0)) start = geom_fromto[0:3] end = geom_fromto[3:6] # compute rotation to align dflex capsule (along x-axis), with mjcf fromto direction axis = df.normalize(end-start) angle = math.acos(np.dot(axis, (1.0, 0.0, 0.0))) axis = df.normalize(np.cross(axis, (1.0, 0.0, 0.0))) geom_pos = (start + end)*0.5 geom_rot = df.quat_from_axis_angle(axis, -angle) geom_radius = geom_size[0] geom_width = np.linalg.norm(end-start)*0.5 else: geom_radius = geom_size[0] geom_width = geom_size[1] geom_pos = parse_vec(geom, "pos", (0.0, 0.0, 0.0)) builder.add_shape_capsule( link, pos=geom_pos, rot=geom_rot, radius=geom_radius, half_width=geom_width, density=density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu) else: print("Type: " + geom_type + " unsupported") #----------------- # recurse for child in body.findall("body"): parse_body(child, link) #----------------- # start articulation builder.add_articulation() world = root.find("worldbody") for body in world.findall("body"): parse_body(body, -1) def set_target(self, x, name): self.target = torch.tensor(x, device=self.adapter) self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self, render=True): #--------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() if (self.model.ground): self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, dtype=torch.float32, device=self.model.adapter) for f in range(0, self.episode_frames): # build sinusoidal input phases # with df.ScopedTimer("inference", False): # phases = torch.zeros(self.phase_count, device=self.model.adapter) # for p in range(self.phase_count): # phases[p] = math.sin(self.phase_freq * self.sim_time + p * self.phase_step) # # compute activations (joint torques) # actions = self.network(phases) * self.action_strength # simulate with df.ScopedTimer("simulate", detailed=False, active=True): for i in range(0, self.sim_substeps): # apply actions #self.state.joint_act[6:] = actions self.state = self.integrator.forward(self.model, self.state, self.sim_dt, i==0) self.sim_time += self.sim_dt discount_time = self.sim_time discount = math.pow(self.discount_factor, discount_time*self.discount_scale) pos = self.state.joint_q[0:3] vel = df.get_body_linear_velocity(self.state.joint_qd[0:6], pos) loss = loss - discount*vel[0] # + torch.norm(self.state.joint_q[1]-0.5) # render with df.ScopedTimer("render", False): if (self.render): self.render_time += self.frame_dt self.renderer.update(self.state, self.render_time) try: self.stage.Save() except: print("USD save error") return loss def run(self): df.config.no_grad = True with torch.no_grad(): l = self.loss() def verify(self, eps=1.e-4): frame = 60 params = self.actions[frame] n = len(params) # evaluate analytic gradient l = self.loss(render=False) l.backward() # evaluate numeric gradient grad_analytic = self.actions.grad[frame].numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(n): mid = params[i].item() params[i] = mid - eps left = self.loss(render=False) params[i] = mid + eps right = self.loss(render=False) # reset params[i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = self.network.parameters() def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() #print("vel: " + str(params[0])) #print("grad: " + str(params[0].grad)) #print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 #df.util.mem_report() # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): for p in list(params): p -= self.train_rate * p.grad p.grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.network, "outputs/" + self.name + ".pt") def load(self): self.network = torch.load("outputs/" + self.name + ".pt") #--------- #robot = Robot(depth=1, mode='dflex', render=True, adapter='cpu') #robot.load() #robot.run() robot = Robot(depth=1, mode='dflex', render=True, adapter='cuda') #robot.load() #robot.train(mode='adam') robot.run()
16,157
Python
29.486792
146
0.47744
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_jelly.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time import timeit import cProfile import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Bending: sim_duration = 5.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 200 train_rate = 0.01 phase_count = 8 phase_step = math.pi / phase_count * 2.0 phase_freq = 2.5 def __init__(self, adapter='cpu'): torch.manual_seed(42) r = df.quat_multiply(df.quat_from_axis_angle((0.0, 0.0, 1.0), math.pi * 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi * 0.5)) builder = df.sim.ModelBuilder() mesh = Usd.Stage.Open("assets/jellyfish.usda") geom = UsdGeom.Mesh(mesh.GetPrimAtPath("/Icosphere/Icosphere")) points = geom.GetPointsAttr().Get() indices = geom.GetFaceVertexIndicesAttr().Get() counts = geom.GetFaceVertexCountsAttr().Get() face_materials = [-1] * len(counts) face_subsets = UsdGeom.Subset.GetAllGeomSubsets(geom) for i, s in enumerate(face_subsets): face_subset_indices = s.GetIndicesAttr().Get() for f in face_subset_indices: face_materials[f] = i active_material = 0 active_scale = [] def add_edge(f0, f1): if (face_materials[f0] == active_material and face_materials[f1] == active_material): active_scale.append(1.0) else: active_scale.append(0.0) builder.add_cloth_mesh(pos=(0.0, 2.5, 0.0), rot=r, scale=1.0, vel=(0.0, 0.0, 0.0), vertices=points, indices=indices, edge_callback=add_edge, density=100.0) self.model = builder.finalize(adapter) self.model.tri_ke = 5000.0 self.model.tri_ka = 5000.0 self.model.tri_kd = 100.0 self.model.tri_lift = 1000.0 self.model.tri_drag = 0.0 self.model.edge_ke = 20.0 self.model.edge_kd = 1.0 #2.5 self.model.contact_ke = 1.e+4 self.model.contact_kd = 0.0 self.model.contact_kf = 1000.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.01 self.model.ground = False self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) # training params self.target_pos = torch.tensor((4.0, 2.0, 0.0), device=adapter) self.rest_angle = self.model.edge_rest_angle # one fully connected layer + tanh activation self.network = torch.nn.Sequential(torch.nn.Linear(self.phase_count, self.model.edge_count, bias=False), torch.nn.Tanh()).to(adapter) self.activation_strength = math.pi * 0.3 self.activation_scale = torch.tensor(active_scale, device=adapter) self.activation_penalty = 0.0 #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/jelly.usd") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.renderer.add_sphere(self.target_pos.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #----------------------- # run simulation self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # build sinusoidal input phases phases = torch.zeros(self.phase_count, device=self.model.adapter) for p in range(self.phase_count): phases[p] = math.sin(self.phase_freq*self.sim_time + p * self.phase_step) # compute activations (rest angles) activation = (self.network(phases)) * self.activation_strength * self.activation_scale self.model.edge_rest_angle = self.rest_angle + activation # forward dynamics with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # render with df.ScopedTimer("render", False): if (self.stage and render and (i % self.sim_substeps == 0)): self.sim_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.sim_time) # loss with df.ScopedTimer("loss", False): com_loss = torch.mean(self.state.particle_qd * self.model.particle_mass[:, None], 0) act_loss = torch.norm(activation) * self.activation_penalty loss = loss - com_loss[1] - act_loss return loss def run(self): with torch.no_grad(): l = self.loss() if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None def closure(): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): l = self.loss(render) with df.ScopedTimer("backward"): l.backward() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(self.network.parameters(), lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(self.network.parameters(), lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(self.network.parameters(), lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- bending = Bending(adapter='cpu') #bending.load('jelly_10358.net') #bending.run() #bending.train('lbfgs') bending.train('sgd')
8,059
Python
30.119691
160
0.540514
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_ball_joint.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class JointTest: sim_duration = 4.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 10.0 ground = False name = "ball_joint" regularization = 1.e-3 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render width = 0.1 radius = 0.05 builder.add_articulation() body = -1 for i in range(8): body = builder.add_link(body, df.transform((2.0*width, 0.0, 0.0), df.quat_identity()), axis=(0.0, 0.0, 1.0), damping=1.0, stiffness=500.0, type=df.JOINT_BALL) shape = builder.add_shape_capsule(body, pos=(width, 0.0, 0.0), half_width=width, radius=radius) builder.joint_qd[1] = 1.0 self.pole_angle_penalty = 10.0 self.pole_velocity_penalty = 0.5 self.cart_action_penalty = 1.e-7 self.cart_velocity_penalty = 1.0 self.cart_position_penalty = 2.0 # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), device=adapter) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self): #--------------- # run simulation self.sim_time = 0.0 # initial state self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # simulate with df.ScopedTimer("fd", active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # render with df.ScopedTimer("render", active=False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): # render scene self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt return loss def run(self): l = self.loss() if (self.render): self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = 1#len(params) self.render = False # evaluate analytic gradient l = self.loss() l.backward() # evaluate numeric gradient grad_analytic = params.grad.cpu().numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(1): mid = params[0][i].item() params[0][i] = mid - eps left = self.loss() params[0][i] = mid + eps right = self.loss() # reset params[0][i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.actions] def closure(): if (optimizer): optimizer.zero_grad() # render ever y N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss() with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() # for e in range(self.env_count): # print(self.actions.grad[e][0:20]) print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.actions, "outputs/" + self.name + ".pt") def load(self): self.actions = torch.load("outputs/" + self.name + ".pt") #--------- test = JointTest(depth=1, mode='dflex', render=True, adapter='cpu') #df.config.no_grad = True #df.config.check_grad = True #df.config.verify_fp = True test.run()
7,581
Python
25.982206
170
0.514312
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_urdf.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch t = torch.tensor((1.0), requires_grad=True) i = t.item() print(i) from urdfpy import URDF #robot = URDF.load("assets/trifinger/urdf/trifinger_with_stage.urdf") #robot = URDF.load("assets/franka_description/robots/franka_panda.urdf") #robot = URDF.load("assets/anymal_b_simple_description/urdf/anymal.urdf") #robot = URDF.load("assets/kinova_description/urdf/kinova.urdf") #robot = URDF.load("assets/ur5/urdf/ur5_robot.urdf") #robot = URDF.load("assets/kuka_allegro_description/allegro.urdf") robot = URDF.load("assets/allegro_hand_description/allegro_hand_description_left.urdf") for link in robot.links: dir(link) print(link) for joint in robot.joints: print(joint) robot.show()
1,141
Python
29.052631
87
0.765118
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_cloth.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf # uncomment to output timers df.ScopedTimer.enabled = True class Cloth: sim_duration = 5.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps # 60 frames per second, 16 updates between frames, # sim_steps = int(sim_duration/sim_dt) sim_steps = int(sim_duration/sim_dt) sim_time = 0.0 render_time = 0.0 train_iters = 100 train_rate = 0.01 phase_count = 4 def __init__(self, dim=20, mode="cloth", adapter='cpu'): torch.manual_seed(42) height = 2.5 builder = df.sim.ModelBuilder() builder.add_cloth_grid(pos=(0.0, height, 0.0), rot=df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi * 1.04), vel=(0.0, 0.0, 0.0), dim_x=dim, dim_y=dim, cell_x=0.2, cell_y=0.2, mass=400 / (dim**2)) #, fix_left=True, fix_right=True, fix_top=True, fix_bottom=True) attach0 = 0 attach1 = 20 anchor0 = builder.add_particle(pos=builder.particle_q[attach0] - (1.0, 0.0, 0.0), vel=(0.0, 0.0, 0.0), mass=0.0) anchor1 = builder.add_particle(pos=builder.particle_q[attach1] + (1.0, 0.0, 0.0), vel=(0.0, 0.0, 0.0), mass=0.0) builder.add_spring(anchor0, attach0, 10000.0, 1000.0, 0) builder.add_spring(anchor1, attach1, 10000.0, 1000.0, 0) self.model = builder.finalize(adapter) self.model.tri_ke = 10000.0 self.model.tri_ka = 10000.0 self.model.tri_kd = 100.0 self.model.contact_ke = 1.e+4 self.model.contact_kd = 1000.0 self.model.contact_kf = 1000.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.01 self.model.ground = False self.model.tri_collisions = False # set optimization targets self.model.spring_rest_length.requires_grad_() #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/cloth.usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True #self.integrator = df.sim.SemiImplicitIntegrator() self.integrator = df.sim.XPBDIntegrator() def loss(self, render=True): # reset state self.sim_time = 0.0 self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) with df.ScopedTimer("forward", False): # run simulation for i in range(0, self.sim_steps): with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) with df.ScopedTimer("render", False): if (render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) if (self.state.particle_q != self.state.particle_q).sum() != 0: print("NaN found in state") import pdb pdb.set_trace() self.sim_time += self.sim_dt # compute loss with df.ScopedTimer("loss", False): com_pos = torch.mean(self.state.particle_q, 0) com_vel = torch.mean(self.state.particle_qd, 0) # use integral of velocity over course of the run loss = loss - com_pos[1] return loss def run(self): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 self.render_steps = 1 optimizer = None def closure(): # render every N steps render = False if ((self.step_count % self.render_steps) == 0): render = True # with torch.autograd.detect_anomaly(): with df.ScopedTimer("forward", False): l = self.loss(render) with df.ScopedTimer("backward", False): l.backward() with df.ScopedTimer("save", False): if (render): self.stage.Save() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 return l with df.ScopedTimer("step"): if (mode == 'gd'): param = self.model.spring_rest_length # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad param.grad.data.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS([self.model.spring_rest_length], lr=0.01, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam([self.model.spring_rest_length], lr=self.train_rate * 4.0) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD([self.model.spring_rest_length], lr=self.train_rate * 0.01, momentum=0.8) # train for i in range(self.train_iters): optimizer.zero_grad() optimizer.step(closure) def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- cloth = Cloth(adapter='cuda') cloth.run() #cloth.train('adam') # for dim in range(20, 400, 20): # cloth = Cloth(dim=dim) # cloth.run()
7,006
Python
31.142202
157
0.515273
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_fem_contact.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import cProfile import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import test_util from pxr import Usd, UsdGeom, Gf class FEMContact: sim_duration = 10.0 # seconds sim_substeps = 64 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 16 train_rate = 0.01 #1.0/(sim_dt*sim_dt) phase_count = 8 phase_step = math.pi / phase_count * 2.0 phase_freq = 2.5 def __init__(self, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() solid = True if (solid): builder.add_soft_grid( pos=(0.5, 1.0, 0.0), rot=(0.0, 0.0, 0.0, 1.0), vel=(0.0, 0.0, 0.0), dim_x=3, dim_y=10, dim_z=3, cell_x=0.1, cell_y=0.1, cell_z=0.1, density=1000.0, k_mu=10000.0, k_lambda=10000.0, k_damp=1.0) else: builder.add_cloth_grid( pos=(-0.7, 1.0, -0.7), rot=df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi*0.5), vel=(0.0, 0.0, 0.0), dim_x=20, dim_y=20, cell_x=0.075, cell_y=0.075, mass=0.2) # art = builder.add_articulation() # link = builder.add_link( # parent=-1, # X_pj=df.transform_identity(), # axis=(0.0, 0.0, 0.0), # type=df.JOINT_FREE, # armature=0.0) # builder.add_shape_sphere( # body=link, # pos=(0.0, 0.5, 0.0), # rot=df.quat_identity(), # radius=0.25) # builder.add_shape_box( # body=link, # pos=(0.0, 0.5, 0.0), # rot=df.quat_identity(), # hx=0.5, # hy=0.25, # hz=0.5) builder.add_articulation() test_util.build_tree(builder, angle=0.0, length=0.25, width=0.1, max_depth=3, joint_stiffness=10000.0, joint_damping=100.0) builder.joint_X_pj[0] = df.transform((-0.5, 0.5, 0.0), df.quat_identity()) # mesh = Usd.Stage.Open("assets/torus.stl.usda") # geom = UsdGeom.Mesh(mesh.GetPrimAtPath("/mesh")) # points = geom.GetPointsAttr().Get() # tet_indices = geom.GetPrim().GetAttribute("tetraIndices").Get() # tri_indices = geom.GetFaceVertexIndicesAttr().Get() # tri_counts = geom.GetFaceVertexCountsAttr().Get() # r = df.quat_multiply(df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi * 0.5), df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi * 0.0)) # builder.add_soft_mesh(pos=(0.0, 2.0, 0.0), # rot=r, # scale=0.25, # vel=(1.5, 0.0, 0.0), # vertices=points, # indices=tet_indices, # density=10.0, # k_mu=1000.0, # k_lambda=1000.0, # k_damp=1.0) self.model = builder.finalize(adapter) #self.model.tet_kl = 1000.0 #self.model.tet_km = 1000.0 #self.model.tet_kd = 1.0 # disable triangle dynamics (just used for rendering) if (solid): self.model.tri_ke = 0.0 self.model.tri_ka = 0.0 self.model.tri_kd = 0.0 self.model.tri_kb = 0.0 else: self.model.tri_ke = 1000.0 self.model.tri_ka = 1000.0 self.model.tri_kd = 10.0 self.model.tri_kb = 0.0 self.model.edge_ke = 100.0 self.model.edge_kd = 0.1 self.model.contact_ke = 1.e+4*2.0 self.model.contact_kd = 10.0 self.model.contact_kf = 10.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.05 self.model.ground = True # one fully connected layer + tanh activation self.network = torch.nn.Sequential(torch.nn.Linear(self.phase_count, self.model.tet_count, bias=False), torch.nn.Tanh()).to(adapter) self.activation_strength = 0.3 self.activation_penalty = 0.0 #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/fem_contact.usd") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 #self.renderer.add_sphere((0.0, 0.5, 0.0), 0.25, "collider") #self.renderer.add_box((0.0, 0.5, 0.0), (0.25, 0.25, 0.25), "collider") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #----------------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # forward dynamics with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.stage and render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) return loss def run(self, profile=False, render=True): df.config.no_grad = True with torch.no_grad(): with df.ScopedTimer("run"): if profile: cp = cProfile.Profile() cp.clear() cp.enable() # run forward dynamics if profile: self.state = self.model.state() for i in range(0, self.sim_steps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt else: l = self.loss(render) if profile: cp.disable() cp.print_stats(sort='tottime') if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None def closure(): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(self.network.parameters(), lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(self.network.parameters(), lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(self.network.parameters(), lr=self.train_rate, momentum=0.5) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- fem = FEMContact(adapter='cuda') fem.run(profile=False, render=True) #fem.train('lbfgs') #fem.train('sgd')
9,689
Python
29.28125
160
0.484467
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_ballistic.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import time import math # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Ballistic: sim_duration = 2.0 # seconds sim_substeps = 10 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 5 train_rate = 0.1 #1.0/(sim_dt*sim_dt) def __init__(self, adapter='cpu'): builder = df.sim.ModelBuilder() builder.add_particle((0, 1.0, 0.0), (0.1, 0.0, 0.0), 1.0) self.model = builder.finalize(adapter) self.target = torch.tensor((2.0, 1.0, 0.0), device=adapter) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/ballistic.usda") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.renderer.add_sphere(self.target.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self): #----------------------- # run simulation self.state = self.model.state() for i in range(0, self.sim_steps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) if (i % self.sim_substeps) == 0: self.renderer.update(self.state, self.sim_time) self.sim_time += self.sim_dt loss = torch.norm(self.state.particle_q[0] - self.target) return loss def train(self, mode='gd'): # Gradient Descent if (mode == 'gd'): for i in range(self.train_iters): l = self.loss() l.backward() print(l) with torch.no_grad(): self.model.particle_v -= self.train_rate * self.model.particle_v.grad self.model.particle_v.grad.zero_() # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS([self.model.particle_v], self.train_rate, tolerance_grad=1.e-5, history_size=4, line_search_fn="strong_wolfe") def closure(): optimizer.zero_grad() l = self.loss() l.backward() print(l) return l for i in range(self.train_iters): optimizer.step(closure) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD([self.model.particle_v], lr=self.train_rate, momentum=0.8) for i in range(self.train_iters): optimizer.zero_grad() l = self.loss() l.backward() print(l) optimizer.step() self.stage.Save() #--------- ballistic = Ballistic(adapter='cpu') ballistic.train('lbfgs')
3,437
Python
25.446154
152
0.566773
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_paper.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time import cProfile import numpy as np import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Paper: sim_duration = 10.0 # seconds sim_substeps = 64 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 200 train_rate = 0.01 def __init__(self, adapter='cpu'): torch.manual_seed(42) np.random.seed(42) builder = df.sim.ModelBuilder() mesh = Usd.Stage.Open("assets/paper.usda") geom = UsdGeom.Mesh(mesh.GetPrimAtPath("/Grid/Grid")) # mesh = Usd.Stage.Open("assets/dart.usda") # geom = UsdGeom.Mesh(mesh.GetPrimAtPath("/planes_001/planes_001")) points = geom.GetPointsAttr().Get() indices = geom.GetFaceVertexIndicesAttr().Get() counts = geom.GetFaceVertexCountsAttr().Get() center = np.array((0.0, 10.0, 0.0)) radius = 5.0 for i in range(1): center = np.array([0.0, 5.0, 0.0]) + np.random.ranf((3, )) * 10.0 axis = df.normalize(np.random.ranf((3, ))) angle = np.random.ranf(1, ) * math.pi builder.add_cloth_mesh(pos=center, rot=df.quat_from_axis_angle(axis, angle), scale=radius, vel=(0.0, 0.0, 0.0), vertices=points, indices=indices, density=100.0) self.model = builder.finalize(adapter) self.model.tri_ke = 2000.0 self.model.tri_ka = 2000.0 self.model.tri_kd = 100.0 self.model.tri_lift = 50.0 self.model.tri_drag = 0.5 self.model.contact_ke = 1.e+4 self.model.contact_kd = 1000.0 self.model.contact_kf = 2000.0 self.model.contact_mu = 0.5 self.model.edge_ke = 20.0 self.model.edge_kd = 0.3 self.model.gravity = torch.tensor((0.0, -10.0, 0.0), device=adapter) self.model.particle_radius = 0.01 self.model.ground = True #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/paper.usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #----------------------- # run simulation self.state = self.model.state() loss = torch.zeros(1, requires_grad=True) for i in range(0, self.sim_steps): # forward dynamics self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # render if (render and (i % self.sim_substeps == 0)): self.sim_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.sim_time) return loss def run(self): with torch.no_grad(): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None def closure(): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True l = self.loss(render) l.backward() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 try: if (render): self.stage.Save() except: print("USD save error") return l if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(self.network.parameters(), lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(self.network.parameters(), lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(self.network.parameters(), lr=self.train_rate, momentum=0.5) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- paper = Paper(adapter='cpu') paper.run() #bending.train('lbfgs') #bending.train('sgd')
5,705
Python
26.432692
156
0.533567
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_muscle.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class MuscleTest: sim_duration = 4.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 10.0 ground = False name = "muscle" regularization = 1.e-3 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render length = 0.5 width = 0.1 radius = 0.05 builder.add_articulation() body = -1 for i in range(2): if (i == 0): body = builder.add_link(body, df.transform((2.0*length, 0.0, 0.0), df.quat_identity()), axis=(0.0, 0.0, 1.0), damping=1.0, stiffness=0.0, type=df.JOINT_FIXED) else: body = builder.add_link(body, df.transform((2.0*length, 0.0, 0.0), df.quat_identity()), axis=(0.0, 0.0, 1.0), damping=1.0, stiffness=0.0, type=df.JOINT_BALL) shape = builder.add_shape_box(body, pos=(length, 0.0, 0.0), hx=length, hy=width, hz=width) builder.add_muscle([0, 1], [(length*2.0 - 0.25, width + 0.05, 0.0), (0.25, width + 0.05, 0.0)], 1.0, 1.0, 1.0, 1.0, 1.0) builder.add_muscle([0, 1], [(length*2.0 - 0.25, -width - 0.05, 0.0), (0.25, -width - 0.05, 0.0)], 1.0, 1.0, 1.0, 1.0, 1.0) builder.muscle_activation[0] = 1000.0 builder.muscle_activation[1] = 0.0 self.pole_angle_penalty = 10.0 self.pole_velocity_penalty = 0.5 self.cart_action_penalty = 1.e-7 self.cart_velocity_penalty = 1.0 self.cart_position_penalty = 2.0 # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) self.activations = torch.zeros((self.sim_steps, 2), dtype=torch.float32, device=adapter, requires_grad=True) self.model.joint_q.requires_grad = True self.model.joint_qd.requires_grad = True self.model.muscle_activation.requires_grad = True #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self): #--------------- # run simulation self.sim_time = 0.0 # initial state self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) #self.model.muscle_activation = torch.zeros_like(self.model.muscle_activation) for i in range(0, self.sim_steps): # apply actions #for m in range(self.model.muscle_count): #self.model.muscle_activation = self.activations[i] # simulate with df.ScopedTimer("fd", active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # render with df.ScopedTimer("render", active=False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): for m in range(self.model.muscle_count): start = self.model.muscle_start[m] end = self.model.muscle_start[m+1] points = [] for w in range(start, end): link = self.model.muscle_links[w] point = self.model.muscle_points[w] X_sc = df.transform_expand(self.state.body_X_sc[link].tolist()) points.append(Gf.Vec3f(df.transform_point(X_sc, point).tolist())) self.renderer.add_line_strip(points, name=("muscle_0" + str(m)), radius=0.02, color=(self.activations[i][m]/1000.0 + 0.5, 0.2, 0.5), time=self.render_time) # render scene self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt loss = loss + self.state.joint_q[2]*self.state.joint_q[2] return loss def run(self): l = self.loss() if (self.render): self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = 1#len(params) self.render = False # evaluate analytic gradient l = self.loss() l.backward() # evaluate numeric gradient grad_analytic = params.grad.cpu().numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(1): mid = params[0][i].item() params[0][i] = mid - eps left = self.loss() params[0][i] = mid + eps right = self.loss() # reset params[0][i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.activations] def closure(): if (optimizer): optimizer.zero_grad() # render ever y N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss() with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() # for e in range(self.env_count): # print(self.actions.grad[e][0:20]) print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.activations, "outputs/" + self.name + ".pt") def load(self): self.activations = torch.load("outputs/" + self.name + ".pt") #--------- test = MuscleTest(depth=1, mode='dflex', render=True, adapter='cpu') #df.config.no_grad = True #df.config.check_grad = True #df.config.verify_fp = True #test.load() test.run() #test.train('lbfgs')
9,648
Python
28.965838
179
0.516998
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_franka.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class Robot: sim_duration = 4.0 # seconds sim_substeps = 4 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 10.0 ground = False name = "franka" regularization = 1.e-3 env_count = 1 env_dofs = 2 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render # cartpole for i in range(self.env_count): test_util.urdf_load( builder, "assets/franka_description/robots/franka_panda.urdf", df.transform((0.0, 0.0, 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)), floating=False, limit_ke=1.e+3, limit_kd=1.e+2) for i in range(len(builder.joint_target_kd)): builder.joint_target_kd[i] = 1.0 # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) self.model.joint_q.requires_grad_() self.model.joint_qd.requires_grad_() self.actions = torch.zeros((self.env_count, self.sim_steps), device=adapter, requires_grad=True) #self.actions = torch.zeros(1, device=adapter, requires_grad=True) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self): #--------------- # run simulation self.sim_time = 0.0 # initial state self.state = self.model.state() if (self.render): traj = [] for e in range(self.env_count): traj.append([]) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # simulate with df.ScopedTimer("fd", detailed=False, active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # render with df.ScopedTimer("render", False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): # draw end effector tracer # for e in range(self.env_count): # X_pole = df.transform_point(df.transform_expand(self.state.body_X_sc[e*3 + self.marker_body].tolist()), (0.0, 0.0, self.marker_offset)) # traj[e].append((X_pole[0], X_pole[1], X_pole[2])) # # render trajectory # self.renderer.add_line_strip(traj[e], (1.0, 1.0, 1.0), self.render_time, "traj_" + str(e)) # render scene self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt return loss def run(self): l = self.loss() if (self.render): self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = 1#len(params) self.render = False # evaluate analytic gradient l = self.loss() l.backward() # evaluate numeric gradient grad_analytic = params.grad.cpu().numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(1): mid = params[0][i].item() params[0][i] = mid - eps left = self.loss() params[0][i] = mid + eps right = self.loss() # reset params[0][i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.actions] def closure(): if (optimizer): optimizer.zero_grad() # render ever y N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss() with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() # for e in range(self.env_count): # print(self.actions.grad[e][0:20]) print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.actions, "outputs/" + self.name + ".pt") def load(self): self.actions = torch.load("outputs/" + self.name + ".pt") #--------- robot = Robot(depth=1, mode='dflex', render=True, adapter='cpu') #df.config.no_grad = True #df.config.check_grad = True #df.config.verify_fp = True #robot.load() robot.run() #robot.train(mode='lbfgs') #robot.verify(eps=1.e+1)
8,591
Python
27.54485
165
0.505762
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_util.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import urdfpy import math import numpy as np import os import xml.etree.ElementTree as ET import dflex as df def urdf_add_collision(builder, link, collisions, shape_ke, shape_kd, shape_kf, shape_mu): # add geometry for collision in collisions: origin = urdfpy.matrix_to_xyz_rpy(collision.origin) pos = origin[0:3] rot = df.rpy2quat(*origin[3:6]) geo = collision.geometry if (geo.box): builder.add_shape_box( link, pos, rot, geo.box.size[0]*0.5, geo.box.size[1]*0.5, geo.box.size[2]*0.5, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.sphere): builder.add_shape_sphere( link, pos, rot, geo.sphere.radius, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.cylinder): # cylinders in URDF are aligned with z-axis, while dFlex uses x-axis r = df.quat_from_axis_angle((0.0, 1.0, 0.0), math.pi*0.5) builder.add_shape_capsule( link, pos, df.quat_multiply(rot, r), geo.cylinder.radius, geo.cylinder.length*0.5, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.mesh): for m in geo.mesh.meshes: faces = [] vertices = [] for v in m.vertices: vertices.append(np.array(v)) for f in m.faces: faces.append(int(f[0])) faces.append(int(f[1])) faces.append(int(f[2])) mesh = df.Mesh(vertices, faces) builder.add_shape_mesh( link, pos, rot, mesh, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) def urdf_load( builder, filename, xform, floating=False, armature=0.0, shape_ke=1.e+4, shape_kd=1.e+3, shape_kf=1.e+2, shape_mu=0.25, limit_ke=100.0, limit_kd=10.0): robot = urdfpy.URDF.load(filename) # maps from link name -> link index link_index = {} builder.add_articulation() # add base if (floating): root = builder.add_link(-1, df.transform_identity(), (0,0,0), df.JOINT_FREE) # set dofs to transform start = builder.joint_q_start[root] builder.joint_q[start + 0] = xform[0][0] builder.joint_q[start + 1] = xform[0][1] builder.joint_q[start + 2] = xform[0][2] builder.joint_q[start + 3] = xform[1][0] builder.joint_q[start + 4] = xform[1][1] builder.joint_q[start + 5] = xform[1][2] builder.joint_q[start + 6] = xform[1][3] else: root = builder.add_link(-1, xform, (0,0,0), df.JOINT_FIXED) urdf_add_collision(builder, root, robot.links[0].collisions, shape_ke, shape_kd, shape_kf, shape_mu) link_index[robot.links[0].name] = root # add children for joint in robot.joints: type = None axis = (0.0, 0.0, 0.0) if (joint.joint_type == "revolute" or joint.joint_type == "continuous"): type = df.JOINT_REVOLUTE axis = joint.axis if (joint.joint_type == "prismatic"): type = df.JOINT_PRISMATIC axis = joint.axis if (joint.joint_type == "fixed"): type = df.JOINT_FIXED if (joint.joint_type == "floating"): type = df.JOINT_FREE parent = -1 if joint.parent in link_index: parent = link_index[joint.parent] origin = urdfpy.matrix_to_xyz_rpy(joint.origin) pos = origin[0:3] rot = df.rpy2quat(*origin[3:6]) lower = -1.e+3 upper = 1.e+3 damping = 0.0 # limits if (joint.limit): if (joint.limit.lower != None): lower = joint.limit.lower if (joint.limit.upper != None): upper = joint.limit.upper # damping if (joint.dynamics): if (joint.dynamics.damping): damping = joint.dynamics.damping # add link link = builder.add_link( parent=parent, X_pj=df.transform(pos, rot), axis=axis, type=type, limit_lower=lower, limit_upper=upper, limit_ke=limit_ke, limit_kd=limit_kd, damping=damping) # add collisions urdf_add_collision(builder, link, robot.link_map[joint.child].collisions, shape_ke, shape_kd, shape_kf, shape_mu) # add ourselves to the index link_index[joint.child] = link # build an articulated tree def build_tree( builder, angle, max_depth, width=0.05, length=0.25, density=1000.0, joint_stiffness=0.0, joint_damping=0.0, shape_ke = 1.e+4, shape_kd = 1.e+3, shape_kf = 1.e+2, shape_mu = 0.5, floating=False): def build_recursive(parent, depth): if (depth >= max_depth): return X_pj = df.transform((length * 2.0, 0.0, 0.0), df.quat_from_axis_angle((0.0, 0.0, 1.0), angle)) type = df.JOINT_REVOLUTE axis = (0.0, 0.0, 1.0) if (depth == 0 and floating == True): X_pj = df.transform((0.0, 0.0, 0.0), df.quat_identity()) type = df.JOINT_FREE link = builder.add_link( parent, X_pj, axis, type, stiffness=joint_stiffness, damping=joint_damping) # box # shape = builder.add_shape_box( # link, # pos=(length, 0.0, 0.0), # hx=length, # hy=width, # hz=width, # ke=shape_ke, # kd=shape_kd, # kf=shape_kf, # mu=shape_mu) # capsule shape = builder.add_shape_capsule( link, pos=(length, 0.0, 0.0), radius=width, half_width=length, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) # recurse #build_tree_recursive(builder, link, angle, width, depth + 1, max_depth, shape_ke, shape_kd, shape_kf, shape_mu, floating) build_recursive(link, depth + 1) # build_recursive(-1, 0) # SNU file format parser class MuscleUnit: def __init__(self): self.name = "" self.bones = [] self.points = [] class Skeleton: def __init__(self, skeleton_file, muscle_file, builder, filter): self.parse_skeleton(skeleton_file, builder, filter) self.parse_muscles(muscle_file, builder) def parse_skeleton(self, filename, builder, filter): file = ET.parse(filename) root = file.getroot() self.node_map = {} # map node names to link indices self.xform_map = {} # map node names to parent transforms self.mesh_map = {} # map mesh names to link indices objects self.coord_start = len(builder.joint_q) self.dof_start = len(builder.joint_qd) type_map = { "Ball": df.JOINT_BALL, "Revolute": df.JOINT_REVOLUTE, "Prismatic": df.JOINT_PRISMATIC, "Free": df.JOINT_FREE, "Fixed": df.JOINT_FIXED } builder.add_articulation() for child in root: if (child.tag == "Node"): body = child.find("Body") joint = child.find("Joint") name = child.attrib["name"] parent = child.attrib["parent"] parent_X_s = df.transform_identity() if parent in self.node_map: parent_link = self.node_map[parent] parent_X_s = self.xform_map[parent] else: parent_link = -1 body_xform = body.find("Transformation") joint_xform = joint.find("Transformation") body_mesh = body.attrib["obj"] body_size = np.fromstring(body.attrib["size"], sep=" ") body_type = body.attrib["type"] body_mass = body.attrib["mass"] body_R_s = np.fromstring(body_xform.attrib["linear"], sep=" ").reshape((3,3)) body_t_s = np.fromstring(body_xform.attrib["translation"], sep=" ") joint_R_s = np.fromstring(joint_xform.attrib["linear"], sep=" ").reshape((3,3)) joint_t_s = np.fromstring(joint_xform.attrib["translation"], sep=" ") joint_type = type_map[joint.attrib["type"]] joint_lower = np.array([-1.e+3]) joint_upper = np.array([1.e+3]) try: joint_lower = np.fromstring(joint.attrib["lower"], sep=" ") joint_upper = np.fromstring(joint.attrib["upper"], sep=" ") except: pass if ("axis" in joint.attrib): joint_axis = np.fromstring(joint.attrib["axis"], sep=" ") else: joint_axis = np.array((0.0, 0.0, 0.0)) body_X_s = df.transform(body_t_s, df.quat_from_matrix(body_R_s)) joint_X_s = df.transform(joint_t_s, df.quat_from_matrix(joint_R_s)) mesh_base = os.path.splitext(body_mesh)[0] mesh_file = mesh_base + ".usd" #----------------------------------- # one time conversion, put meshes into local body space (and meter units) # stage = Usd.Stage.Open("./assets/snu/OBJ/" + mesh_file) # geom = UsdGeom.Mesh.Get(stage, "/" + mesh_base + "_obj/defaultobject/defaultobject") # body_X_bs = df.transform_inverse(body_X_s) # joint_X_bs = df.transform_inverse(joint_X_s) # points = geom.GetPointsAttr().Get() # for i in range(len(points)): # p = df.transform_point(joint_X_bs, points[i]*0.01) # points[i] = Gf.Vec3f(p.tolist()) # cm -> meters # geom.GetPointsAttr().Set(points) # extent = UsdGeom.Boundable.ComputeExtentFromPlugins(geom, 0.0) # geom.GetExtentAttr().Set(extent) # stage.Save() #-------------------------------------- link = -1 if len(filter) == 0 or name in filter: joint_X_p = df.transform_multiply(df.transform_inverse(parent_X_s), joint_X_s) body_X_c = df.transform_multiply(df.transform_inverse(joint_X_s), body_X_s) if (parent_link == -1): joint_X_p = df.transform_identity() # add link link = builder.add_link( parent=parent_link, X_pj=joint_X_p, axis=joint_axis, type=joint_type, damping=2.0, stiffness=10.0, limit_lower=joint_lower[0], limit_upper=joint_upper[0]) # add shape shape = builder.add_shape_box( body=link, pos=body_X_c[0], rot=body_X_c[1], hx=body_size[0]*0.5, hy=body_size[1]*0.5, hz=body_size[2]*0.5, ke=1.e+3*5.0, kd=1.e+2*2.0, kf=1.e+2, mu=0.5) # add lookup in name->link map # save parent transform self.xform_map[name] = joint_X_s self.node_map[name] = link self.mesh_map[mesh_base] = link def parse_muscles(self, filename, builder): # list of MuscleUnits muscles = [] file = ET.parse(filename) root = file.getroot() self.muscle_start = len(builder.muscle_activation) for child in root: if (child.tag == "Unit"): unit_name = child.attrib["name"] unit_f0 = float(child.attrib["f0"]) unit_lm = float(child.attrib["lm"]) unit_lt = float(child.attrib["lt"]) unit_lmax = float(child.attrib["lmax"]) unit_pen = float(child.attrib["pen_angle"]) m = MuscleUnit() m.name = unit_name incomplete = False for waypoint in child.iter("Waypoint"): way_bone = waypoint.attrib["body"] way_link = self.node_map[way_bone] way_loc = np.fromstring(waypoint.attrib["p"], sep=" ", dtype=np.float32) if (way_link == -1): incomplete = True break # transform loc to joint local space joint_X_s = self.xform_map[way_bone] way_loc = df.transform_point(df.transform_inverse(joint_X_s), way_loc) m.bones.append(way_link) m.points.append(way_loc) if not incomplete: muscles.append(m) builder.add_muscle(m.bones, m.points, f0=unit_f0, lm=unit_lm, lt=unit_lt, lmax=unit_lmax, pen=unit_pen) self.muscles = muscles
14,815
Python
29.802495
130
0.468512
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_contact.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import time # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Contact: sim_duration = 2.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 16 train_rate = 0.1 #1.0/(sim_dt*sim_dt) def __init__(self, adapter='cpu'): builder = df.sim.ModelBuilder() builder.add_particle((0.0, 1.5, 0.0), (0.0, 0.0, 0.0), 0.25) self.target_pos = torch.tensor((3.0, 0.0, 0.0), device=adapter) self.target_index = 0 self.model = builder.finalize(adapter) self.model.contact_ke = 1.e+3 self.model.contact_kf = 10.0 self.model.contact_kd = 10.0 self.model.contact_mu = 0.25 self.model.particle_qd.requires_grad = True #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/contact.usda") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.renderer.add_sphere(self.target_pos.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self): #----------------------- # run simulation self.state = self.model.state() for i in range(0, self.sim_steps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) if (i % self.sim_substeps) == 0: self.renderer.update(self.state, self.sim_time) self.sim_time += self.sim_dt self.stage.Save() loss = torch.norm(self.state.particle_q[self.target_index] - self.target_pos) return loss def run(self): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train param = self.model.particle_qd # Gradient Descent if (mode == 'gd'): for i in range(self.train_iters): l = self.loss() l.backward() print("loss: " + str(l.item())) print("v: " + str(param)) print("vgrad: " + str(param.grad)) print("--------------------") with torch.no_grad(): param -= self.train_rate * param.grad param.grad.zero_() # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS([param], 1.0, tolerance_grad=1.e-5, history_size=4, line_search_fn="strong_wolfe") def closure(): optimizer.zero_grad() l = self.loss() l.backward() print(l) return l for i in range(self.train_iters): optimizer.step(closure) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD([param], lr=self.train_rate, momentum=0.8) for i in range(self.train_iters): optimizer.zero_grad() l = self.loss() l.backward() print(l) print(param) optimizer.step() self.stage.Save() #--------- contact = Contact(adapter='cpu') contact.train('lbfgs')
3,942
Python
25.112583
124
0.54693
vstrozzi/FRL-SHAC-Extension/dflex/tests/kit_walker.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf use_omni = False if use_omni: import omni.usd class Experiment: name = "kit_walker" network_file = None record = True render_time = 0.0 render_enabled = True def __init__(self): pass def reset(self, adapter='cuda'): self.episode_duration = 5.0 # seconds self.frame_dt = 1.0/60.0 self.frame_count = int(self.episode_duration/self.frame_dt) self.sim_substeps = 64 self.sim_dt = self.frame_dt / self.sim_substeps self.sim_time = 0.0 self.train_max_iters = 10000 self.train_iter = 0 self.train_rate = 0.025 self.train_loss = [] self.train_loss_best = math.inf self.phase_count = 8 self.phase_step = math.pi / self.phase_count * 2.0 self.phase_freq = 5.0 self.render_time = 0.0 torch.manual_seed(42) builder = df.sim.ModelBuilder() self.train_loss = [] self.optimizer = None #mesh = Usd.Stage.Open("assets/prop.usda") if use_omni == False: stage = Usd.Stage.Open("kit_walker.usda") else: stage = omni.usd.get_context().get_stage() # ostrich # geom = UsdGeom.Mesh(stage.GetPrimAtPath("/ostrich")) # points = geom.GetPointsAttr().Get() # builder.add_soft_mesh(pos=(0.0, 0.0, 0.0), # rot=df.quat_identity(), # scale=2.0, # vel=(0.0, 0.0, 0.0), # vertices=points, # indices=tet_indices, # density=1.0, # k_mu=2000.0, # k_lambda=2000.0, # k_damp=1.0) # bear geom = UsdGeom.Mesh(stage.GetPrimAtPath("/bear")) points = geom.GetPointsAttr().Get() xform = geom.ComputeLocalToWorldTransform(0.0) for i in range(len(points)): points[i] = xform.Transform(points[i]) tet_indices = geom.GetPrim().GetAttribute("tetraIndices").Get() tri_indices = geom.GetFaceVertexIndicesAttr().Get() tri_counts = geom.GetFaceVertexCountsAttr().Get() builder.add_soft_mesh(pos=(0.0, 0.0, 0.0), rot=df.quat_identity(), scale=2.0, vel=(0.0, 0.0, 0.0), vertices=points, indices=tet_indices, density=1.0, k_mu=2000.0, k_lambda=2000.0, k_damp=2.0) # # table # geom = UsdGeom.Mesh(stage.GetPrimAtPath("/table")) # points = geom.GetPointsAttr().Get() # builder.add_soft_mesh(pos=(0.0, 0.0, 0.0), # rot=df.quat_identity(), # scale=1.0, # vel=(0.0, 0.0, 0.0), # vertices=points, # indices=tet_indices, # density=1.0, # k_mu=1000.0, # k_lambda=1000.0, # k_damp=1.0) #builder.add_soft_grid(pos=(0.0, 0.5, 0.0), rot=(0.0, 0.0, 0.0, 1.0), vel=(0.0, 0.0, 0.0), dim_x=1, dim_y=2, dim_z=1, cell_x=0.5, cell_y=0.5, cell_z=0.5, density=1.0) # s = 2.0 # builder.add_particle((0.0, 0.5, 0.0), (0.0, 0.0, 0.0), 1.0) # builder.add_particle((s, 0.5, 0.0), (0.0, 0.0, 0.0), 1.0) # builder.add_particle((0.0, 0.5, s), (0.0, 0.0, 0.0), 1.0) # builder.add_particle((0.0, s + 0.5, 0.0), (0.0, 0.0, 0.0), 1.0) # builder.add_tetrahedron(1, 3, 0, 2) self.model = builder.finalize(adapter) #self.model.tet_kl = 1000.0 #self.model.tet_km = 1000.0 #self.model.tet_kd = 1.0 # disable triangle dynamics (just used for rendering) self.model.tri_ke = 0.0 self.model.tri_ka = 0.0 self.model.tri_kd = 0.0 self.model.tri_kb = 0.0 self.model.contact_ke = 1.e+3*2.0 self.model.contact_kd = 0.1 self.model.contact_kf = 10.0 self.model.contact_mu = 0.7 self.model.particle_radius = 0.05 self.model.ground = True #self.model.gravity = torch.tensor((0.0, -1.0, 0.0), device=adapter) # one fully connected layer + tanh activation self.network = torch.nn.Sequential(torch.nn.Linear(self.phase_count, self.model.tet_count, bias=False), torch.nn.Tanh()).to(adapter) self.activation_strength = 0.3 self.activation_penalty = 0.0 #----------------------- # set up Usd renderer self.stage = stage#Usd.Stage.CreateNew("outputs/fem.usd") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() self.state = self.model.state() if self.network_file: self.load(self.network_file) def inference(self): # build sinusoidal input phases with df.ScopedTimer("inference", False): phases = torch.zeros(self.phase_count, device=self.model.adapter) for p in range(self.phase_count): phases[p] = math.sin(self.phase_freq*self.sim_time + p * self.phase_step) # compute activations self.model.tet_activations = self.network(phases) * self.activation_strength def simulate(self, no_grad=False): # set grad mode df.config.no_grad = no_grad for i in range(self.sim_substeps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt def render(self): with df.ScopedTimer("render", False): if (self.record): self.render_time += self.frame_dt if (self.stage): self.renderer.update(self.state, self.render_time) def loss(self, render=True): #----------------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for f in range(self.frame_count): self.inference() self.simulate() if (self.render_enabled): self.render() # loss with df.ScopedTimer("loss", False): com_loss = torch.mean(self.state.particle_qd, 0) #act_loss = torch.norm(self.model.tet_activations)*self.activation_penalty loss = loss - com_loss[0] + torch.norm(com_loss[1]) + torch.norm(com_loss[2])# + act_loss return loss def run(self, profile=False): self.inference() self.simulate(no_grad=True) if (self.render_enabled): self.render() def train(self, mode='gd'): # create optimizer if requested if (self.optimizer == None): # L-BFGS if (mode == 'lbfgs'): self.optimizer = torch.optim.LBFGS(self.network.parameters(), lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): self.optimizer = torch.optim.Adam(self.network.parameters(), lr=self.train_rate) # SGD if (mode == 'sgd'): self.optimizer = torch.optim.SGD(self.network.parameters(), lr=self.train_rate, momentum=0.5, nesterov=True) # closure for evaluating loss (called by optimizers) def closure(): if (self.optimizer): self.optimizer.zero_grad() # render every N steps render = True with df.ScopedTimer("forward"): l = self.loss(render) # save best network so far if (l < self.train_loss_best): self.train_loss_best = float(l) self.save() self.train_loss.append(float(l)) df.log("Iteration: {} Loss: {}".format(len(self.train_loss), l.item())) # save USD file if use_omni == False: try: self.stage.Save() except: print("Usd save error") # calculate gradient with df.ScopedTimer("backward"): l.backward() return l # perform optimization step with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent closure() with torch.no_grad(): params = self.network.parameters() for p in params: if p.grad is None: continue p -= self.train_rate * p.grad p.grad.zero_() else: self.optimizer.step(closure) self.train_iter += 1 def save(self): torch.save(self.network, self.name + str(self.train_iter) + ".pt") def load(self, file): self.network = torch.load(file) self.network.eval() df.log("Loaded pretrained network: " + file) #--------- experiment = Experiment() if use_omni == False: experiment.reset(adapter='cuda') #experiment.load("kit_walker19.pt") #experiment.train_iter = 19 # with df.ScopedTimer("update", detailed=False): # for i in range(experiment.frame_count): # experiment.run() # experiment.stage.Save() experiment.render_enabled = False #with torch.autograd.profiler.profile() as prof: with df.ScopedTimer("train", detailed=True): #for i in range(experiment.train_max_iters): experiment.train('adam') #print(prof.key_averages().table())
11,009
Python
29.414365
174
0.512762
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_lift_drag.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch from torch.utils.tensorboard import SummaryWriter # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf # uncomment to output timers df.ScopedTimer.enabled = False class Cloth: sim_duration = 2.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 render_time = 0.0 train_iters = 4 train_rate = 0.01 / sim_substeps phase_count = 4 def __init__(self, adapter='cpu'): torch.manual_seed(42) height = 2.5 builder = df.sim.ModelBuilder() builder.add_cloth_grid(pos=(0.0, height, 0.0), rot=df.quat_from_axis_angle((1.0, 0.5, 0.0), math.pi * 0.5), vel=(0.0, 0.0, 0.0), dim_x=16, dim_y=16, cell_x=0.125, cell_y=0.125, mass=1.0) #, fix_left=True, fix_right=True, fix_top=True, fix_bottom=True) self.model = builder.finalize(adapter) self.model.tri_ke = 10000.0 self.model.tri_ka = 10000.0 self.model.tri_kd = 100.0 self.model.tri_lift = 10.0 self.model.tri_drag = 5.0 self.model.contact_ke = 1.e+4 self.model.contact_kd = 1000.0 self.model.contact_kf = 1000.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.01 self.model.ground = False self.target = torch.tensor((8.0, 0.0, 0.0), device=adapter) self.initial_velocity = torch.tensor((1.0, 0.0, 0.0), requires_grad=True, device=adapter) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/drag.usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.renderer.add_sphere(self.target.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): # reset state self.sim_time = 0.0 self.state = self.model.state() self.state.particle_qd = self.state.particle_qd + self.initial_velocity loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) # run simulation for i in range(0, self.sim_steps): with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) with df.ScopedTimer("render", False): if (render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt # compute loss with df.ScopedTimer("loss", False): com_pos = torch.mean(self.state.particle_q, 0) com_vel = torch.mean(self.state.particle_qd, 0) # use integral of velocity over course of the run loss = loss + torch.norm(com_pos - self.target) return loss def run(self): l = self.loss() self.stage.Save() def train(self, mode='gd'): writer = SummaryWriter() writer.add_hparams({"lr": self.train_rate, "mode": mode}, {}) # param to train self.step_count = 0 self.render_steps = 1 optimizer = None param = self.initial_velocity def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % self.render_steps) == 0): render = True with df.ScopedTimer("forward"): l = self.loss(render) with df.ScopedTimer("backward"): l.backward() with df.ScopedTimer("save"): if (render): self.stage.Save() print(str(self.step_count) + ": " + str(l)) writer.add_scalar("loss", l.item(), self.step_count) writer.flush() self.step_count += 1 return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad param.grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS([param], lr=0.1, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam([param], lr=self.train_rate * 4.0) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD([param], lr=self.train_rate * (1.0 / 32.0), momentum=0.8) # train for i in range(self.train_iters): optimizer.step(closure) writer.close() def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- cloth = Cloth(adapter='cpu') cloth.train('lbfgs') #cloth.run()
6,236
Python
28.559242
156
0.533355
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_cartpole.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class Robot: sim_duration = 4.0 # seconds sim_substeps = 4 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 10.0 ground = True name = "cartpole" regularization = 1.e-3 env_count = 16 env_dofs = 2 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render link_width = 0.5 max_depth = depth # cartpole for i in range(self.env_count): test_util.urdf_load(builder, "assets/" + self.name + ".urdf", df.transform((0.0, 2.5, -2.0 + i*2.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)), floating=False) builder.joint_q[i*2 + 0] = 0 builder.joint_q[i*2 + 1] = -math.pi*0.5# + i*0.25 self.pole_angle_penalty = 10.0 self.pole_velocity_penalty = 0.5 self.cart_action_penalty = 1.e-7 self.cart_velocity_penalty = 1.0 self.cart_position_penalty = 2.0 if self.name == "cartpole": self.marker_body = 2 self.marker_offset = 1.0 self.discount_scale = 2.0 self.discount_factor = 0.5 if self.name == "cartpole_double": self.marker_body = 3 self.marker_offset = 0.5 self.discount_scale = 6.0 self.discount_factor = 0.5 # # humanoid # test_util.urdf_load( # builder, # "assets/humanoid.urdf", # df.transform((0.0, 1.5, 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)), # floating=True, # shape_ke=1.e+3*5.0, # shape_kd=1.e+3, # shape_kf=1.e+2, # shape_mu=0.5) # # set pd-stiffness # for i in range(len(builder.joint_target_ke)): # builder.joint_target_ke[i] = 10.0 # builder.joint_target_kd[i] = 1.0 # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) self.model.joint_q.requires_grad_() self.model.joint_qd.requires_grad_() self.actions = torch.zeros((self.env_count, self.sim_steps), device=adapter, requires_grad=True) #self.actions = torch.zeros(1, device=adapter, requires_grad=True) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self): #--------------- # run simulation self.sim_time = 0.0 # initial state self.state = self.model.state() if (self.render): traj = [] for e in range(self.env_count): traj.append([]) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # apply actions self.state.joint_act[::2] = self.actions[:, i] # assign actions to cart DOF 0, 2, 4, etc #self.state.joint_act = self.state.joint_q*-50.0 - self.state.joint_qd*1.0 # simulate with df.ScopedTimer("fd", detailed=False, active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt, update_mass_matrix=(i%1==0)) # render with df.ScopedTimer("render", False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): # draw end effector tracer # for e in range(self.env_count): # X_pole = df.transform_point(df.transform_expand(self.state.body_X_sc[e*3 + self.marker_body].tolist()), (0.0, 0.0, self.marker_offset)) # traj[e].append((X_pole[0], X_pole[1], X_pole[2])) # # render trajectory # self.renderer.add_line_strip(traj[e], (1.0, 1.0, 1.0), self.render_time, "traj_" + str(e)) # render scene self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt # reward reward_start = 2.0 if self.sim_time > reward_start: discount_time = (self.sim_time - reward_start) discount = math.pow(self.discount_factor, discount_time*self.discount_scale) pole_rot = self.state.joint_q[1::2] # 1,3,5 pole_vel = self.state.joint_qd[1::2] # 1,3,5 cart_pos = self.state.joint_q[0::2] # 0,2,4 cart_vel = self.state.joint_qd[0::2] # 0,2,4 actions = self.actions.view(-1) loss = loss + (torch.dot(pole_rot, pole_rot)*self.pole_angle_penalty + torch.dot(pole_vel, pole_vel)*self.pole_velocity_penalty + torch.dot(cart_pos, cart_pos)*self.cart_position_penalty + torch.dot(cart_vel, cart_vel)*self.cart_velocity_penalty)*discount loss = loss + torch.dot(actions, actions)*self.cart_action_penalty return loss def run(self): l = self.loss() if (self.render): self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = 1#len(params) self.render = False # evaluate analytic gradient l = self.loss() l.backward() # evaluate numeric gradient grad_analytic = params.grad.cpu().numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(1): mid = params[0][i].item() params[0][i] = mid - eps left = self.loss() params[0][i] = mid + eps right = self.loss() # reset params[0][i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.actions] def closure(): if (optimizer): optimizer.zero_grad() # render ever y N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss() with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() # for e in range(self.env_count): # print(self.actions.grad[e][0:20]) print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.actions, "outputs/" + self.name + ".pt") def load(self): self.actions = torch.load("outputs/" + self.name + ".pt") #--------- robot = Robot(depth=1, mode='dflex', render=True, adapter='cuda') #df.config.no_grad = True #df.config.check_grad = True #df.config.verify_fp = True #robot.load() #df.config.no_grad = False #robot.run() robot.train(mode='lbfgs') #robot.verify(eps=1.e+1)
10,960
Python
29.030137
185
0.506296
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_snu.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class HumanoidSNU: sim_duration = 1.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 0.01 ground = False name = "humanoid_snu_neck" regularization = 1.e-3 env_count = 16 env_dofs = 2 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(41) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render self.filter = {} if self.name == "humanoid_snu_arm": self.filter = { "ShoulderR", "ArmR", "ForeArmR", "HandR", "Torso", "Neck" } self.ground = False if self.name == "humanoid_snu_neck": self.filter = { "Torso", "Neck", "Head", "ShoulderR", "ShoulderL"} self.ground = False self.node_map, self.xform_map, self.mesh_map = test_util.parse_skeleton("assets/snu/arm.xml", builder, self.filter) self.muscles = test_util.parse_muscles("assets/snu/muscle284.xml", builder, self.node_map, self.xform_map) # set initial position 1m off the ground if self.name == "humanoid_snu": builder.joint_q[1] = 1.0 # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) self.activations = torch.zeros((1, len(self.muscles)), dtype=torch.float32, device=adapter, requires_grad=True) #self.activations = torch.rand((1, len(self.muscles)), dtype=torch.float32, device=adapter, requires_grad=True) self.model.joint_q.requires_grad = True self.model.joint_qd.requires_grad = True self.model.muscle_activation.requires_grad = True self.target_penalty = 1.0 self.velocity_penalty = 0.1 self.action_penalty = 0.0 self.muscle_strength = 40.0 self.discount_scale = 2.0 self.discount_factor = 1.0 #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 else: self.renderer = None self.set_target((-0.1, 0.1, 0.5), "target") self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, dtype=torch.float32, device=self.adapter) if (self.renderer): self.renderer.add_sphere(self.target.tolist(), 0.05, name) def loss(self): #--------------- # run simulation self.sim_time = 0.0 # initial state self.state = self.model.state() self.model.collide(self.state) if (self.render): traj = [] for e in range(self.env_count): traj.append([]) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # apply actions self.model.muscle_activation = (torch.tanh(4.0*self.activations[0] - 2.0)*0.5 + 0.5)*self.muscle_strength #self.model.muscle_activation = self.activations[0]*self.muscle_strength # simulate with df.ScopedTimer("fd", detailed=False, active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # render with df.ScopedTimer("render", False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): # draw end effector tracer # for e in range(self.env_count): # X_pole = df.transform_point(df.transform_expand(self.state.body_X_sc[e*3 + self.marker_body].tolist()), (0.0, 0.0, self.marker_offset)) # traj[e].append((X_pole[0], X_pole[1], X_pole[2])) # # render trajectory # self.renderer.add_line_strip(traj[e], (1.0, 1.0, 1.0), self.render_time, "traj_" + str(e)) for mesh, link in self.mesh_map.items(): if link != -1: X_sc = df.transform_expand(self.state.body_X_sc[link].tolist()) #self.renderer.add_mesh(mesh, "../assets/snu/OBJ/" + mesh + ".usd", X_sc, 1.0, self.render_time) self.renderer.add_mesh(mesh, "../assets/snu/OBJ/" + mesh + ".usd", X_sc, 1.0, self.render_time) for m in range(self.model.muscle_count): start = self.model.muscle_start[m] end = self.model.muscle_start[m+1] points = [] for w in range(start, end): link = self.model.muscle_links[w] point = self.model.muscle_points[w].cpu() X_sc = df.transform_expand(self.state.body_X_sc[link].cpu().tolist()) points.append(Gf.Vec3f(df.transform_point(X_sc, point).tolist())) self.renderer.add_line_strip(points, name=self.muscles[m].name, radius=0.0075, color=(self.model.muscle_activation[m]/self.muscle_strength, 0.2, 0.5), time=self.render_time) # render scene self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt # loss if self.name == "humanoid_snu_arm": hand_pos = self.state.body_X_sc[self.node_map["HandR"]][0:3] discount_time = self.sim_time discount = math.pow(self.discount_factor, discount_time*self.discount_scale) # loss = loss + (torch.norm(hand_pos - self.target)*self.target_penalty + # torch.norm(self.state.joint_qd)*self.velocity_penalty + # torch.norm(self.model.muscle_activation)*self.action_penalty)*discount #loss = loss + torch.norm(self.state.joint_qd) loss = loss + torch.norm(hand_pos - self.target)*self.target_penalty if self.name == "humanoid_snu_neck": # rotate a vector def transform_vector_torch(t, x): axis = t[3:6] w = t[6] return x * (2.0 *w*w - 1.0) + torch.cross(axis, x) * w * 2.0 + axis * torch.dot(axis, x) * 2.0 forward_dir = torch.tensor((0.0, 0.0, 1.0), dtype=torch.float32, device=self.adapter) up_dir = torch.tensor((0.0, 1.0, 0.0), dtype=torch.float32, device=self.adapter) target_dir = torch.tensor((1.0, 0.0, 0.1), dtype=torch.float32, device=self.adapter) head_forward = transform_vector_torch(self.state.body_X_sc[self.node_map["Head"]], forward_dir) head_up = transform_vector_torch(self.state.body_X_sc[self.node_map["Head"]], up_dir) loss = loss - torch.dot(head_forward, target_dir)*self.target_penalty - torch.dot(head_up, up_dir)*self.target_penalty return loss def run(self): df.config.no_grad = True with torch.no_grad(): l = self.loss() if (self.render): self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = 1#len(params) self.render = False # evaluate analytic gradient l = self.loss() l.backward() # evaluate numeric gradient grad_analytic = params.grad.cpu().numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(1): mid = params[0][i].item() params[0][i] = mid - eps left = self.loss() params[0][i] = mid + eps right = self.loss() # reset params[0][i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.activations] def closure(): if (optimizer): optimizer.zero_grad() # render ever y N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss() with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() # for e in range(self.env_count): # print(self.actions.grad[e][0:20]) #print(self.activations.grad) print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9)#, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.activations, "outputs/" + self.name + ".pt") def load(self): self.activations = torch.load("outputs/" + self.name + ".pt") #--------- env = HumanoidSNU(depth=1, mode='dflex', render=True, adapter='cpu') #df.config.no_grad = True #df.config.check_grad = True #df.config.verify_fp = True #robot.load() #env.run() #env.load() env.train(mode='adam') #robot.verify(eps=1.e+1)
12,760
Python
31.306329
201
0.518103
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_walker.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Walker: sim_duration = 5.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 render_time = 0.0 train_iters = 50 train_rate = 0.0001 def __init__(self, mode="walker", adapter='cpu'): self.phase_count = 8 self.phase_step = math.pi / self.phase_count * 2.0 self.phase_freq = 20.0 torch.manual_seed(42) builder = df.sim.ModelBuilder() walker = Usd.Stage.Open("assets/walker.usda") mesh = UsdGeom.Mesh(walker.GetPrimAtPath("/Grid/Grid")) points = mesh.GetPointsAttr().Get() indices = mesh.GetFaceVertexIndicesAttr().Get() for p in points: builder.add_particle(tuple(p), (0.0, 0.0, 0.0), 1.0) for t in range(0, len(indices), 3): i = indices[t + 0] j = indices[t + 1] k = indices[t + 2] builder.add_triangle(i, j, k) self.model = builder.finalize(adapter) self.model.tri_ke = 10000.0 self.model.tri_ka = 10000.0 self.model.tri_kd = 100.0 self.model.tri_lift = 0.0 self.model.tri_drag = 0.0 self.edge_ke = 0.0 self.edge_kd = 0.0 self.model.contact_ke = 1.e+4 self.model.contact_kd = 1000.0 self.model.contact_kf = 1000.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.01 # one fully connected layer + tanh activation self.network = torch.nn.Sequential(torch.nn.Linear(self.phase_count, self.model.tri_count, bias=False), torch.nn.Tanh()).to(adapter) self.activation_strength = 0.2 self.activation_penalty = 0.1 #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/walker.usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #----------------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): phases = torch.zeros(self.phase_count, device=self.model.adapter) # build sinusoidal phase inputs for p in range(self.phase_count): phases[p] = math.cos(4.0*self.sim_time*math.pi/(2.0*self.phase_count)*(2.0*p + 1.0)) #self.phase_freq*self.sim_time + p * self.phase_step) self.model.tri_activations = self.network(phases) * self.activation_strength self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt if (render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) com_pos = torch.mean(self.state.particle_q, 0) com_vel = torch.mean(self.state.particle_qd, 0) # use integral of velocity over course of the run loss = loss - com_vel[0] + torch.norm(self.model.tri_activations) * self.activation_penalty return loss def run(self): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None def closure(): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True l = self.loss(render) l.backward() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 try: if (render): self.stage.Save() except: print("USD save error") return l if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(self.network.parameters(), lr=0.1, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(self.network.parameters(), lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(self.network.parameters(), lr=self.train_rate, momentum=0.25) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- walker = Walker(adapter='cpu') walker.train('lbfgs') #walker.run()
6,109
Python
27.685446
158
0.560485
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_cage.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import time # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Cage: sim_duration = 2.0 # seconds sim_substeps = 8 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 20 train_rate = 0.1 #1.0/(sim_dt*sim_dt) def __init__(self, mode="quad", adapter='cpu'): builder = df.sim.ModelBuilder() if (mode == "quad"): # anchors builder.add_particle((-1.0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((1.0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((1.0, -1.0, 0.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((-1.0, -1.0, 0.0), (0.0, 0.0, 0.0), 0.0) # ball builder.add_particle((0.0, 0.0, 0.0), (0.0, 0.0, 0.0), 1.0) ke = 1.e+2 kd = 10.0 # springs builder.add_spring(0, 4, ke, kd, 0) builder.add_spring(1, 4, ke, kd, 0) builder.add_spring(2, 4, ke, kd, 0) builder.add_spring(3, 4, ke, kd, 0) self.target_pos = torch.tensor((0.85, 0.5, 0.0), device=adapter) self.target_index = 4 if (mode == "box"): # anchors builder.add_particle((-1.0, -1.0, -1.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((-1.0, -1.0, 1.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((-1.0, 1.0, -1.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((-1.0, 1.0, 1.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((1.0, -1.0, -1.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((1.0, -1.0, 1.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((1.0, 1.0, -1.0), (0.0, 0.0, 0.0), 0.0) builder.add_particle((1.0, 1.0, 1.0), (0.0, 0.0, 0.0), 0.0) # ball builder.add_particle((0.0, 0.0, 0.0), (0.0, 0.0, 0.0), 1.0) ke = 1.e+2 kd = 10.0 target = 8 # springs builder.add_spring(0, target, ke, kd, 0) builder.add_spring(1, target, ke, kd, 0) builder.add_spring(2, target, ke, kd, 0) builder.add_spring(3, target, ke, kd, 0) builder.add_spring(4, target, ke, kd, 0) builder.add_spring(5, target, ke, kd, 0) builder.add_spring(6, target, ke, kd, 0) builder.add_spring(7, target, ke, kd, 0) self.target_pos = torch.tensor((0.85, 0.5, -0.75), device=adapter) self.target_index = target if (mode == "chain"): # anchor builder.add_particle((0.0, 0.0, 0.0), (0.0, 0.0, 0.0), 0.0) segments = 4 segment_length = 1.0 ke = 1.e+2 kd = 10.0 for i in range(1, segments + 1): builder.add_particle((segment_length * i, 0.0, 0.0), (0.0, 0.0, 0.0), 1.0) builder.add_spring(i - 1, i, ke, kd, 0) # bending spring if (i > 1): builder.add_spring(i - 2, i, ke * 4.0, kd, 0) self.target_pos = torch.tensor((3.0, 0.0, 0.0), device=adapter) self.target_index = segments self.model = builder.finalize(adapter) self.model.particle_radius = 0.05 self.model.ground = False self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) # set optimization targets self.model.spring_rest_length.requires_grad_() #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/cage.usda") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.renderer.add_sphere(self.target_pos.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self): #----------------------- # run simulation self.state = self.model.state() for i in range(0, self.sim_steps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # print("state: ", self.state.particle_q[self.target_index]) if (i % self.sim_substeps) == 0: self.renderer.update(self.state, self.sim_time) self.sim_time += self.sim_dt # print(self.state.particle_q[self.target_index]) loss = torch.norm(self.state.particle_q[self.target_index] - self.target_pos) return loss def run(self): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train param = self.model.spring_rest_length # Gradient Descent if (mode == 'gd'): for i in range(self.train_iters): # with torch.autograd.detect_anomaly(): l = self.loss() print(l) l.backward() with torch.no_grad(): param -= self.train_rate * param.grad param.grad.zero_() # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS([param], self.train_rate, tolerance_grad=1.e-5, history_size=4, line_search_fn="strong_wolfe") def closure(): optimizer.zero_grad() l = self.loss() l.backward() print(l) return l for i in range(self.train_iters): optimizer.step(closure) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD([param], lr=self.train_rate, momentum=0.8) for i in range(self.train_iters): optimizer.zero_grad() l = self.loss() l.backward() print(l) optimizer.step() self.stage.Save() #--------- cage = Cage("box", adapter='cpu') cage.train('gd') #cage.run()
6,656
Python
29.122172
136
0.510968
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_hopper.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class Robot: frame_dt = 1.0/60.0 episode_duration = 2.0 # seconds episode_frames = int(episode_duration/frame_dt) sim_substeps = 16 sim_dt = frame_dt / sim_substeps sim_steps = int(episode_duration / sim_dt) sim_time = 0.0 train_iters = 1024 train_rate = 0.001 ground = True name = "hopper" regularization = 1.e-3 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render # humanoid test_util.urdf_load( builder, "assets/hopper.urdf", #df.transform((0.0, 1.35, 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)), df.transform((0.0, 0.65, 0.0), df.quat_identity()), floating=True, shape_ke=1.e+3*2.0, shape_kd=1.e+2, shape_kf=1.e+2, shape_mu=0.5) # set pd-stiffness for i in range(len(builder.joint_target_ke)): builder.joint_target_ke[i] = 10.0 builder.joint_target_kd[i] = 1.0 # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=adapter) self.model.joint_q.requires_grad_() self.model.joint_qd.requires_grad_() self.actions = torch.zeros((self.episode_frames, len(self.model.joint_qd)), dtype=torch.float32, device=adapter, requires_grad=True) self.action_strength = 20.0 self.action_penalty = 0.01 self.balance_reward = 15.0 self.forward_reward = 1.0 self.discount_scale = 3.0 self.discount_factor = 0.5 #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self, render=True): #--------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() if (self.model.ground): self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, dtype=torch.float32, device=self.model.adapter) for f in range(0, self.episode_frames): # df.config.no_grad = True #df.config.verify_fp = True # simulate with df.ScopedTimer("fk-id-dflex", detailed=False, active=False): for i in range(0, self.sim_substeps): self.state.joint_act = self.actions[f] self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # discount_time = self.sim_time # discount = math.pow(self.discount_factor, discount_time*self.discount_scale) loss = loss - self.state.joint_q[1]*self.state.joint_q[1]*self.balance_reward # render with df.ScopedTimer("render", False): if (self.render): self.render_time += self.frame_dt self.renderer.update(self.state, self.render_time) if (self.render): try: self.stage.Save() except: print("USD save error") return loss def run(self): df.config.no_grad = True #with torch.no_grad(): l = self.loss() def verify(self, eps=1.e-4): frame = 60 params = self.actions[frame] n = len(params) # evaluate analytic gradient l = self.loss(render=False) l.backward() # evaluate numeric gradient grad_analytic = self.actions.grad[frame].numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(n): mid = params[i].item() params[i] = mid - eps left = self.loss(render=False) params[i] = mid + eps right = self.loss(render=False) # reset params[i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.actions] def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() #print("vel: " + str(params[0])) #print("grad: " + str(params[0].grad)) #print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.actions, "outputs/" + self.name + ".pt") def load(self): self.actions = torch.load("outputs/" + self.name + ".pt") #--------- robot = Robot(depth=1, mode='dflex', render=True, adapter='cpu') #df.config.check_grad = True #df.config.no_grad = True #robot.run() #df.config.verify_fp = True #robot.load() robot.train(mode='lbfgs') #robot.verify(eps=1.e-3)
8,553
Python
26.593548
140
0.519116
vstrozzi/FRL-SHAC-Extension/dflex/tests/rl_swing_up.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class Robot: sim_duration = 4.0 # seconds sim_substeps = 4 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 10.0 ground = True name = "cartpole" regularization = 1.e-3 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render link_width = 0.5 max_depth = depth # if (True): # # create a branched tree # builder.add_articulation() # test_util.build_tree(builder, angle=0.0, width=link_width, max_depth=max_depth) # self.ground = False # # add weight # if (False): # radius = 0.5 # X_pj = df.transform((link_width * 2.0, 0.0, 0.0), df.quat_from_axis_angle( (0.0, 0.0, 1.0), 0.0)) # X_cm = df.transform((radius, 0.0, 0.0), df.quat_identity()) # parent = len(builder.body_mass)-1 # link = builder.add_link(parent, X_pj, (0.0, 0.0, 1.0), df.JOINT_REVOLUTE) # shape = builder.add_shape_sphere(link, pos=(0.0, 0.0, 0.0), radius=radius) # builder.joint_q[0] = -math.pi*0.45 # cartpole test_util.urdf_load(builder, "assets/" + self.name + ".urdf", df.transform((0.0, 2.5, 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)), floating=False) builder.joint_q[1] = -math.pi self.pole_angle_penalty = 10.0 self.pole_velocity_penalty = 0.5 self.cart_action_penalty = 1.e-7 self.cart_velocity_penalty = 1.0 self.cart_position_penalty = 2.0 if self.name == "cartpole": self.marker_body = 2 self.marker_offset = 1.0 self.discount_scale = 2.0 self.discount_factor = 0.5 if self.name == "cartpole_double": self.marker_body = 3 self.marker_offset = 0.5 self.discount_scale = 6.0 self.discount_factor = 0.5 # # humanoid # test_util.urdf_load( # builder, # "assets/humanoid.urdf", # df.transform((0.0, 1.5, 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)), # floating=True, # shape_ke=1.e+3*5.0, # shape_kd=1.e+3, # shape_kf=1.e+2, # shape_mu=0.5) # # set pd-stiffness # for i in range(len(builder.joint_target_ke)): # builder.joint_target_ke[i] = 10.0 # builder.joint_target_kd[i] = 1.0 #builder.joint_q[0] = -math.pi*0.45 # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) self.model.joint_q.requires_grad_() self.model.joint_qd.requires_grad_() self.actions = torch.zeros(self.sim_steps, device=adapter, requires_grad=True) #self.actions = torch.zeros(1, device=adapter, requires_grad=True) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self, render=True): #--------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() if (self.model.ground): self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) traj = [] for i in range(0, self.sim_steps): # df.config.no_grad = True #df.config.verify_fp = True self.state.joint_act[0] = self.actions[i] # simulate with df.ScopedTimer("fk-id-dflex", detailed=False, active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # render with df.ScopedTimer("render", False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): X_pole = df.transform_point(df.transform_expand(self.state.body_X_sc[self.marker_body].tolist()), (0.0, 0.0, self.marker_offset)) traj.append((X_pole[0], X_pole[1], X_pole[2])) self.renderer.add_line_strip(traj, (1.0, 1.0, 1.0), self.render_time) self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt # reward if self.sim_time > 2.0: discount_time = (self.sim_time - 2.0) discount = math.pow(self.discount_factor, discount_time*self.discount_scale) if self.name == "cartpole": loss = loss + (torch.pow(self.state.joint_q[1], 2.0)*self.pole_angle_penalty + torch.pow(self.state.joint_qd[1], 2.0)*self.pole_velocity_penalty + torch.pow(self.state.joint_q[0], 2.0)*self.cart_position_penalty + torch.pow(self.state.joint_qd[0], 2.0)*self.cart_velocity_penalty)*discount if self.name == "cartpole_double": loss = loss + (torch.pow(self.state.joint_q[1], 2.0)*self.pole_angle_penalty + torch.pow(self.state.joint_qd[1], 2.0)*self.pole_velocity_penalty + torch.pow(self.state.joint_q[2], 2.0)*self.pole_angle_penalty + torch.pow(self.state.joint_qd[2], 2.0)*self.pole_velocity_penalty + torch.pow(self.state.joint_q[0], 2.0)*self.cart_position_penalty + torch.pow(self.state.joint_qd[0], 2.0)*self.cart_velocity_penalty)*discount return loss + torch.dot(self.actions, self.actions)*self.cart_action_penalty def run(self): #with torch.no_grad(): l = self.loss() self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = len(params) # evaluate analytic gradient l = self.loss(render=False) l.backward() # evaluate numeric gradient grad_analytic = params.grad.numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(n): mid = params[i].item() params[i] = mid - eps left = self.loss(render=False) params[i] = mid + eps right = self.loss(render=False) # reset params[i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.actions] def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() #print("vel: " + str(params[0])) #print("grad: " + str(params[0].grad)) #print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.actions, "outputs/" + self.name + ".pt") def load(self): self.actions = torch.load("outputs/" + self.name + ".pt") #--------- robot = Robot(depth=1, mode='dflex', render=True, adapter='cpu') #df.config.no_grad = True #df.config.check_grad = True robot.load() robot.run() #robot.train(mode='lbfgs') #df.config.verify_fp = True #robot.verify(eps=1.e-2)
11,631
Python
30.523035
172
0.509414
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_articulation_fk.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import tinyobjloader import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class Robot: sim_duration = 10.0 # seconds sim_substeps = 4 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 64 train_rate = 0.05 #1.0/(sim_dt*sim_dt) def __init__(self, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() x = 0.0 w = 0.5 max_depth = 3 # create a branched tree builder.add_articulation() test_util.build_tree(builder, angle=0.0, width=w, max_depth=max_depth) # add weight if (True): radius = 0.1 X_pj = df.transform((w * 2.0, 0.0, 0.0), df.quat_from_axis_angle( (0.0, 0.0, 1.0), 0.0)) X_cm = df.transform((radius, 0.0, 0.0), df.quat_identity()) parent = len(builder.body_mass)-1 link = builder.add_link(parent, X_pj, (0.0, 0.0, 1.0), df.JOINT_REVOLUTE) shape = builder.add_shape_sphere(link, pos=(0.0, 0.0, 0.0), radius=radius) self.model = builder.finalize(adapter) self.model.contact_ke = 1.e+4 self.model.contact_kd = 1000.0 self.model.contact_kf = 100.0 self.model.contact_mu = 0.75 self.model.ground = False self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) # base state self.state = self.model.state() self.state.joint_q.requires_grad_() # ik target self.target = torch.tensor((1.0, 2.0, 0.0), device=adapter) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/articulation_fk.usda") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self, render=True): #--------------- # run simulation self.sim_time = 0.0 if (True): self.state.body_X_sc, self.state.body_X_sm = df.adjoint.launch(df.eval_rigid_fk, 1, [ # inputs self.model.articulation_start, self.model.joint_type, self.model.joint_parent, self.model.joint_q_start, self.model.joint_qd_start, self.state.joint_q, self.model.joint_X_pj, self.model.joint_X_cm, self.model.joint_axis ], [ # outputs self.state.body_X_sc, self.state.body_X_sm ], adapter='cpu', preserve_output=True) p = self.state.body_X_sm[3][0:3] err = torch.norm(p - self.target) # try: # art_start = self.art.articulation_start.clone() # art_end = self.art.articulation_end.clone() # joint_type = self.art.joint_type.clone() # joint_parent = self.art.joint_parent.clone() # joint_q_start = self.art.joint_q_start.clone() # joint_qd_start = self.art.joint_qd_start.clone() # joint_q = self.art.joint_q.clone() # joint_X_pj = self.art.joint_X_pj.clone() # joint_X_cm = self.art.joint_X_cm.clone() # joint_axis = self.art.joint_axis.clone() # torch.autograd.gradcheck(df.EvalRigidFowardKinematicsFunc.apply, ( # art_start, # art_end, # joint_type, # joint_parent, # joint_q_start, # joint_qd_start, # joint_q, # joint_X_pj, # joint_X_cm, # joint_axis, # 'cpu'), eps=1e-3, atol=1e-3, raise_exception=True) # except Exception as e: # print("failed: " + str(e)) # render with df.ScopedTimer("render", False): if (self.stage): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) #self.stage.Save() self.sim_time += self.sim_dt return err def run(self): #with torch.no_grad(): l = self.loss() if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None params = [self.state.joint_q] def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() print("vel: " + str(params[0])) print("grad: " + str(params[0].grad)) print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=0.2, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- robot = Robot(adapter='cpu') #robot.run() mode = 'lbfgs' robot.set_target((1.0, 2.0, 0.0), "target_1") robot.train(mode) robot.set_target((1.0, -2.0, 0.0), "target_2") robot.train(mode) robot.set_target((-1.0, -2.0, 0.0), "target_3") robot.train(mode) robot.set_target((-2.0, 2.0, 0.0), "target_4") robot.train(mode) #rigid.stage.Save()
8,503
Python
28.425605
141
0.49359
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_fem.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import cProfile import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class FEM: sim_duration = 5.0 # seconds sim_substeps = 32 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 16 train_rate = 0.01 #1.0/(sim_dt*sim_dt) phase_count = 8 phase_step = math.pi / phase_count * 2.0 phase_freq = 2.5 def __init__(self, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() mesh = Usd.Stage.Open("assets/prop.usda") geom = UsdGeom.Mesh(mesh.GetPrimAtPath("/mesh")) points = geom.GetPointsAttr().Get() tet_indices = geom.GetPrim().GetAttribute("tetraIndices").Get() tri_indices = geom.GetFaceVertexIndicesAttr().Get() tri_counts = geom.GetFaceVertexCountsAttr().Get() r = df.quat_multiply(df.quat_from_axis_angle((0.0, 0.0, 1.0), math.pi * 0.0), df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi * 0.0)) builder.add_soft_mesh(pos=(0.0, 2.0, 0.0), rot=r, scale=1.0, vel=(1.5, 0.0, 0.0), vertices=points, indices=tet_indices, density=1.0, k_mu=1000.0, k_lambda=1000.0, k_damp=1.0) #builder.add_soft_grid(pos=(0.0, 0.5, 0.0), rot=(0.0, 0.0, 0.0, 1.0), vel=(0.0, 0.0, 0.0), dim_x=1, dim_y=2, dim_z=1, cell_x=0.5, cell_y=0.5, cell_z=0.5, density=1.0) # s = 2.0 # builder.add_particle((0.0, 0.5, 0.0), (0.0, 0.0, 0.0), 1.0) # builder.add_particle((s, 0.5, 0.0), (0.0, 0.0, 0.0), 1.0) # builder.add_particle((0.0, 0.5, s), (0.0, 0.0, 0.0), 1.0) # builder.add_particle((0.0, s + 0.5, 0.0), (0.0, 0.0, 0.0), 1.0) # builder.add_tetrahedron(1, 3, 0, 2) self.model = builder.finalize(adapter) #self.model.tet_kl = 1000.0 #self.model.tet_km = 1000.0 #self.model.tet_kd = 1.0 # disable triangle dynamics (just used for rendering) self.model.tri_ke = 0.0 self.model.tri_ka = 0.0 self.model.tri_kd = 0.0 self.model.tri_kb = 0.0 self.model.contact_ke = 1.e+4 self.model.contact_kd = 1.0 self.model.contact_kf = 10.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.05 self.model.ground = True # one fully connected layer + tanh activation self.network = torch.nn.Sequential(torch.nn.Linear(self.phase_count, self.model.tet_count, bias=False), torch.nn.Tanh()).to(adapter) self.activation_strength = 0.3 self.activation_penalty = 0.0 #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/fem.usd") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #----------------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # build sinusoidal input phases with df.ScopedTimer("inference", False): phases = torch.zeros(self.phase_count, device=self.model.adapter) for p in range(self.phase_count): phases[p] = math.sin(self.phase_freq * self.sim_time + p * self.phase_step) # compute activations (rest angles) self.model.tet_activations = self.network(phases) * self.activation_strength # forward dynamics with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.stage and render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) # loss with df.ScopedTimer("loss", False): com_loss = torch.mean(self.state.particle_qd, 0) #act_loss = torch.norm(selfactivation)*self.activation_penalty loss = loss - com_loss[0] # - act_loss return loss def run(self, profile=False, render=True): df.config.no_grad = True with torch.no_grad(): with df.ScopedTimer("run"): if profile: cp = cProfile.Profile() cp.clear() cp.enable() # run forward dynamics if profile: self.state = self.model.state() for i in range(0, self.sim_steps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt else: l = self.loss(render) if profile: cp.disable() cp.print_stats(sort='tottime') if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None def closure(): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(self.network.parameters(), lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(self.network.parameters(), lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(self.network.parameters(), lr=self.train_rate, momentum=0.5) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- fem = FEM(adapter='cuda') fem.run(profile=False, render=True) #fem.train('lbfgs') #fem.train('sgd')
8,649
Python
30.918819
174
0.513239
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_chain.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import time # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Chain: sim_duration = 10.0 # seconds sim_substeps = 2 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 20 train_rate = 0.1 #1.0/(sim_dt*sim_dt) def __init__(self, adapter='cpu'): builder = df.sim.ModelBuilder() # anchor builder.add_particle((0.0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0) for i in range(1, 10): builder.add_particle((i, 1.0, 0.0), (0.0, 0., 0.0), 1.0) builder.add_spring(i - 1, i, 1.e+6, 0.0, 0) self.model = builder.finalize(adapter) self.model.ground = False self.impulse = torch.tensor((0.0, 0.0, 0.0), requires_grad=True, device=adapter) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/chain.usda") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True #self.integrator = df.sim.SemiImplicitIntegrator() self.integrator = df.sim.XPBDIntegrator() def loss(self): #----------------------- # run simulation self.state = self.model.state() self.state.particle_qd[1] = self.impulse for i in range(0, self.sim_steps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) if (i % self.sim_substeps) == 0: self.renderer.update(self.state, self.sim_time) self.sim_time += self.sim_dt target = torch.tensor((0.0, 2.0, 0.0), device=self.model.adapter) loss = torch.norm(self.state.particle_q[1] - target) return loss def run(self): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train param = self.impulse # Gradient Descent if (mode == 'gd'): for i in range(self.train_iters): l = self.loss() l.backward() print(l) with torch.no_grad(): param -= self.train_rate * param.grad param.grad.zero_() # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS([param], self.train_rate, tolerance_grad=1.e-5, history_size=4, line_search_fn="strong_wolfe") def closure(): optimizer.zero_grad() l = self.loss() l.backward() print(l) return l for i in range(self.train_iters): optimizer.step(closure) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD([param], lr=self.train_rate, momentum=0.8) for i in range(self.train_iters): optimizer.zero_grad() l = self.loss() l.backward() print(l) optimizer.step() self.stage.Save() #--------- chain = Chain(adapter='cpu') #cloth.train('lbfgs') chain.run()
3,794
Python
24.993151
136
0.552188
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_cloth_collisions.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf # uncomment to output timers df.ScopedTimer.enabled = True class Cloth: sim_duration = 10.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps # 60 frames per second, 16 updates between frames, # sim_steps = int(sim_duration/sim_dt) sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 render_time = 0.0 train_iters = 100 train_rate = 0.01 phase_count = 4 def __init__(self, dim=20, mode="cloth", adapter='cpu'): torch.manual_seed(42) height = 4.0 builder = df.sim.ModelBuilder() # builder.add_particle(pos=(2.5, 3.0, 2.5), vel=(0.0, 0.0, 0.0), mass=1.0) # builder.add_particle(pos=(2.5, 4.0, 2.5), vel=(0.0, 0.0, 0.0), mass=1.0) # builder.add_particle(pos=(2.5, 5.0, 2.5), vel=(0.0, 0.0, 0.0), mass=1.0) builder.add_cloth_grid(pos=(0.0, height, 0.0), rot=df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi / 2), vel=(0, 5.0, 0.0), dim_x=dim, dim_y=dim, cell_x=0.2, cell_y=0.2, mass=400 / (dim**2)) #, fix_left=True, fix_right=True, fix_top=True, fix_bottom=True) usd = Usd.Stage.Open("assets/box.usda") geom = UsdGeom.Mesh(usd.GetPrimAtPath("/Cube/Cube")) points = geom.GetPointsAttr().Get() indices = geom.GetFaceVertexIndicesAttr().Get() counts = geom.GetFaceVertexCountsAttr().Get() mesh = df.sim.Mesh(points, indices) rigid = builder.add_rigid_body(pos=(2.5, 3.0, 2.5), rot=df.quat_from_axis_angle((0.0, 0.0, 1.0), math.pi * 0.0), vel=(0.0, 0.0, 0.0), omega=(0.0, 0.0, 0.0)) shape = builder.add_shape_mesh(rigid, mesh=mesh, scale=(0.5, 0.5, 0.5), density=100.0, ke=1.e+5, kd=1000.0, kf=1000.0, mu=0.5) # rigid = builder.add_rigid_body(pos=(2.5, 5.0, 2.5), rot=df.quat_from_axis_angle((0.0, 0.0, 1.0), math.pi*0.0), vel=(0.0, 0.0, 0.0), omega=(0.0, 0.0, 0.0)) # shape = builder.add_shape_mesh(rigid, mesh=mesh, scale=(0.5, 0.5, 0.5), density=100.0, ke=1.e+5, kd=1000.0, kf=1000.0, mu=0.5) # attach0 = 1 # attach1 = 21 # attach2 = 423 # attach3 = 443 # anchor0 = builder.add_particle(pos=builder.particle_x[attach0]-(1.0, 0.0, 0.0), vel=(0.0, 0.0, 0.0), mass=0.0) # anchor1 = builder.add_particle(pos=builder.particle_x[attach1]+(1.0, 0.0, 0.0), vel=(0.0, 0.0, 0.0), mass=0.0) # anchor2 = builder.add_particle(pos=builder.particle_x[attach2]-(1.0, 0.0, 0.0), vel=(0.0, 0.0, 0.0), mass=0.0) # anchor3 = builder.add_particle(pos=builder.particle_x[attach3]+(1.0, 0.0, 0.0), vel=(0.0, 0.0, 0.0), mass=0.0) # builder.add_spring(anchor0, attach0, 500.0, 1000.0, 0) # builder.add_spring(anchor1, attach1, 10000.0, 1000.0, 0) # builder.add_spring(anchor2, attach2, 10000.0, 1000.0, 0) # builder.add_spring(anchor3, attach3, 10000.0, 1000.0, 0) self.model = builder.finalize(adapter) # self.model.tri_ke = 10000.0 # self.model.tri_ka = 10000.0 # self.model.tri_kd = 100.0 self.model.tri_ke = 5000.0 self.model.tri_ka = 5000.0 self.model.tri_kd = 100.0 self.model.tri_lift = 50.0 self.model.tri_drag = 0.0 self.model.contact_ke = 1.e+4 self.model.contact_kd = 1000.0 self.model.contact_kf = 1000.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.1 self.model.ground = True self.model.tri_collisions = True #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/cloth_collision.usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): # reset state self.sim_time = 0.0 self.state = self.model.state() self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) with df.ScopedTimer("forward", False): # run simulation for i in range(0, self.sim_steps): with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) with df.ScopedTimer("render", False): if (render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) if (self.state.particle_q != self.state.particle_q).sum() != 0: print("NaN found in state") import pdb pdb.set_trace() self.sim_time += self.sim_dt # compute loss with df.ScopedTimer("loss", False): com_pos = torch.mean(self.state.particle_q, 0) com_vel = torch.mean(self.state.particle_qd, 0) # use integral of velocity over course of the run loss = loss - com_pos[1] return loss def run(self): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 self.render_steps = 1 optimizer = None def closure(): # render every N steps render = False if ((self.step_count % self.render_steps) == 0): render = True # with torch.autograd.detect_anomaly(): with df.ScopedTimer("forward", False): l = self.loss(render) with df.ScopedTimer("backward", False): l.backward() with df.ScopedTimer("save", False): if (render): self.stage.Save() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 return l with df.ScopedTimer("step"): if (mode == 'gd'): param = self.model.spring_rest_length # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad param.grad.data.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS([self.model.spring_rest_length], lr=0.01, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam([self.model.spring_rest_length], lr=self.train_rate * 4.0) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD([self.model.spring_rest_length], lr=self.train_rate * 0.01, momentum=0.8) # train for i in range(self.train_iters): optimizer.zero_grad() optimizer.step(closure) def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- cloth = Cloth(adapter='cuda') cloth.run() # cloth.train('adam') # for dim in range(20, 400, 20): # cloth = Cloth(dim=dim) # cloth.run()
8,834
Python
34.199203
164
0.514716
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_cloth_sphere_collisions.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time # include parent path import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf # uncomment to output timers df.ScopedTimer.enabled = True class Cloth: sim_duration = 10.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps # 60 frames per second, 16 updates between frames, # sim_steps = int(sim_duration/sim_dt) sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 render_time = 0.0 train_iters = 100 train_rate = 0.01 phase_count = 4 def __init__(self, dim=20, mode="cloth", adapter='cpu'): torch.manual_seed(42) height = 4.0 builder = df.sim.ModelBuilder() builder.add_cloth_grid(pos=(0.0, height, 0.0), rot=df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi / 2), vel=(0, 5.0, 0.0), dim_x=dim, dim_y=dim, cell_x=0.2, cell_y=0.2, mass=400 / (dim**2)) #, fix_left=True, fix_right=True, fix_top=True, fix_bottom=True) usd = Usd.Stage.Open("assets/sphere.usda") geom = UsdGeom.Mesh(usd.GetPrimAtPath("/Sphere/Sphere")) points = geom.GetPointsAttr().Get() indices = geom.GetFaceVertexIndicesAttr().Get() counts = geom.GetFaceVertexCountsAttr().Get() mesh = df.sim.Mesh(points, indices) rigid = builder.add_rigid_body(pos=(2.5, 1.0, 2.5), rot=df.quat_from_axis_angle((0.0, 0.0, 1.0), math.pi * 0.0), vel=(0.0, 0.0, 0.0), omega=(0.0, 0.0, 0.0)) shape = builder.add_shape_mesh(rigid, mesh=mesh, scale=(1 / 100, 1 / 100, 1 / 100), density=0.0, ke=1e3, kd=1e3, kf=1e3, mu=1.0) self.model = builder.finalize(adapter) # self.model.tri_ke = 10000.0 # self.model.tri_ka = 10000.0 # self.model.tri_kd = 100.0 self.model.tri_ke = 5000.0 self.model.tri_ka = 5000.0 self.model.tri_kd = 100.0 self.model.tri_lift = 50.0 self.model.tri_drag = 0.0 self.model.contact_ke = 1.e+4 self.model.contact_kd = 1000.0 self.model.contact_kf = 1000.0 self.model.contact_mu = 0.5 self.model.particle_radius = 0.1 self.model.ground = False self.model.tri_collisions = True #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/cloth_sphere.usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): # reset state self.sim_time = 0.0 self.state = self.model.state() self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) with df.ScopedTimer("forward", False): # run simulation for i in range(0, self.sim_steps): with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) with df.ScopedTimer("render", False): if (render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) if (self.state.particle_q != self.state.particle_q).sum() != 0: print("NaN found in state") import pdb pdb.set_trace() self.sim_time += self.sim_dt # compute loss with df.ScopedTimer("loss", False): com_pos = torch.mean(self.state.particle_q, 0) com_vel = torch.mean(self.state.particle_qd, 0) # use integral of velocity over course of the run loss = loss - com_pos[1] return loss def run(self): l = self.loss() self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 self.render_steps = 1 optimizer = None def closure(): # render every N steps render = False if ((self.step_count % self.render_steps) == 0): render = True # with torch.autograd.detect_anomaly(): with df.ScopedTimer("forward", False): l = self.loss(render) with df.ScopedTimer("backward", False): l.backward() with df.ScopedTimer("save", False): if (render): self.stage.Save() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 return l with df.ScopedTimer("step"): if (mode == 'gd'): param = self.model.spring_rest_length # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): param -= self.train_rate * param.grad param.grad.data.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS([self.model.spring_rest_length], lr=0.01, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam([self.model.spring_rest_length], lr=self.train_rate * 4.0) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD([self.model.spring_rest_length], lr=self.train_rate * 0.01, momentum=0.8) # train for i in range(self.train_iters): optimizer.zero_grad() optimizer.step(closure) def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- cloth = Cloth(adapter='cuda') cloth.run() # cloth.train('adam') # for dim in range(20, 400, 20): # cloth = Cloth(dim=dim) # cloth.run()
7,413
Python
31.234782
154
0.507757
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_beam.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df from pxr import Usd, UsdGeom, Gf class Beam: sim_duration = 3.0 # seconds sim_substeps = 32 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 64 train_rate = 1.0 def __init__(self, device='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() builder.add_soft_grid(pos=(0.0, 0.0, 0.0), rot=df.quat_identity(), vel=(0.0, 0.0, 0.0), dim_x=20, dim_y=2, dim_z=2, cell_x=0.1, cell_y=0.1, cell_z=0.1, density=10.0, k_mu=1000.0, k_lambda=1000.0, k_damp=5.0, fix_left=True, fix_right=True) self.model = builder.finalize(device) # disable triangle dynamics (just used for rendering) self.model.tri_ke = 0.0 self.model.tri_ka = 0.0 self.model.tri_kd = 0.0 self.model.tri_kb = 0.0 self.model.particle_radius = 0.05 self.model.ground = False self.target = torch.tensor((-0.5)).to(device) self.material = torch.tensor((100.0, 50.0, 5.0), requires_grad=True, device=device) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/beam.usd") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #----------------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # clamp material params to reasonable range mat_min = torch.tensor((1.e+1, 1.e+1, 5.0), device=self.model.adapter) mat_max = torch.tensor((1.e+5, 1.e+5, 5.0), device=self.model.adapter) mat_val = torch.max(torch.min(mat_max, self.material), mat_min) # broadcast stiffness params to all tets self.model.tet_materials = mat_val.expand((self.model.tet_count, 3)).contiguous() # forward dynamics with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.stage and render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) # loss with df.ScopedTimer("loss", False): com_loss = torch.mean(self.state.particle_q, 0) # minimize y loss = loss - torch.norm(com_loss[1] - self.target) return loss def run(self): with torch.no_grad(): l = self.loss() if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None params = [ self.material, ] def closure(): if optimizer: optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True # with torch.autograd.detect_anomaly(): with df.ScopedTimer("forward"): l = self.loss(render) with df.ScopedTimer("backward"): l.backward() print(self.material) print(self.material.grad) print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): for param in params: param -= self.train_rate * param.grad else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.5, nesterov=True) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- beam = Beam(device='cpu') #beam.run() #beam.train('lbfgs') beam.train('gd')
6,623
Python
28.704036
141
0.495697
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_rigid_bounce.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class RigidBounce: frame_dt = 1.0/60.0 episode_duration = 2.0 # seconds episode_frames = int(episode_duration/frame_dt) sim_substeps = 16 sim_dt = frame_dt / sim_substeps sim_steps = int(episode_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 0.01 ground = True name = "rigid_bounce" def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render builder.add_articulation() # add sphere link = builder.add_link(-1, df.transform((0.0, 0.0, 0.0), df.quat_identity()), (0,0,0), df.JOINT_FREE) shape = builder.add_shape_sphere( link, (0.0, 0.0, 0.0), df.quat_identity(), radius=0.1, ke=1.e+4, kd=10.0, kf=1.e+2, mu=0.25) builder.joint_q[1] = 1.0 #v_s = df.get_body_twist((0.0, 0.0, 0.0), (1.0, -1.0, 0.0), builder.joint_q[0:3]) w_m = (0.0, 0.0, 3.0) # angular velocity (expressed in world space) v_m = (0.0, 0.0, 0.0) # linear velocity at center of mass (expressed in world space) p_m = builder.joint_q[0:3] # position of the center of mass (expressed in world space) # set body0 twist builder.joint_qd[0:6] = df.get_body_twist(w_m, v_m, p_m) # get decomposed velocities print(df.get_body_angular_velocity(builder.joint_qd[0:6])) print(df.get_body_linear_velocity(builder.joint_qd[0:6], p_m)) # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=adapter) # initial velocity #self.model.joint_qd[3] = 0.5 #self.model.joint_qd[4] = -0.5 #self.model.joint_qd[2] = 1.0 self.model.joint_qd.requires_grad_() self.target = torch.tensor((1.0, 1.0, 0.0), dtype=torch.float32, device=adapter) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.renderer.add_sphere(self.target.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self, render=True): #--------------- # run simulation self.sim_time = 0.0 self.state = self.model.state() if (self.model.ground): self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for f in range(0, self.episode_frames): # df.config.no_grad = True #df.config.verify_fp = True # simulate with df.ScopedTimer("fk-id-dflex", detailed=False, active=False): for i in range(0, self.sim_substeps): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.render): self.render_time += self.frame_dt self.renderer.update(self.state, self.render_time) try: self.stage.Save() except: print("USD save error") #loss = loss + torch.dot(self.state.joint_qd[3:6], self.state.joint_qd[3:6])*self.balance_penalty*discount pos = self.state.joint_q[0:3] loss = torch.norm(pos-self.target) return loss def run(self): df.config.no_grad = True #with torch.no_grad(): l = self.loss() def verify(self, eps=1.e-4): frame = 60 params = self.model.joint_qd n = len(params) # evaluate analytic gradient l = self.loss(render=False) l.backward() # evaluate numeric gradient grad_analytic = self.model.joint_qd.grad.tolist() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(n): mid = params[i].item() params[i] = mid - eps left = self.loss(render=False) params[i] = mid + eps right = self.loss(render=False) # reset params[i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.model.joint_qd] def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() print("vel: " + str(params[0])) print("grad: " + str(params[0].grad)) print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.model.joint_qd, "outputs/" + self.name + ".pt") def load(self): self.model.joint_qd = torch.load("outputs/" + self.name + ".pt") #--------- robot = RigidBounce(depth=1, mode='dflex', render=True, adapter='cpu') #df.config.check_grad = True #df.config.no_grad = True robot.run() #df.config.verify_fp = True #robot.load() #robot.train(mode='lbfgs') #robot.verify(eps=1.e-3)
8,881
Python
27.196825
118
0.516158
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_rigid_slide.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import tinyobjloader import numpy as np from pxr import Usd, UsdGeom, Gf class RigidSlide: sim_duration = 3.0 # seconds sim_substeps = 16 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 64 train_rate = 0.1 discount_scale = 1.0 discount_factor = 0.5 def __init__(self, adapter='cpu'): torch.manual_seed(42) # load mesh usd = Usd.Stage.Open("assets/suzanne.usda") geom = UsdGeom.Mesh(usd.GetPrimAtPath("/Suzanne/Suzanne")) points = geom.GetPointsAttr().Get() indices = geom.GetFaceVertexIndicesAttr().Get() counts = geom.GetFaceVertexCountsAttr().Get() builder = df.sim.ModelBuilder() mesh = df.sim.Mesh(points, indices) articulation = builder.add_articulation() rigid = builder.add_link( parent=-1, X_pj=df.transform((0.0, 0.0, 0.0), df.quat_identity()), axis=(0.0, 0.0, 0.0), type=df.JOINT_FREE) ke = 1.e+4 kd = 1.e+3 kf = 1.e+3 mu = 0.5 # shape = builder.add_shape_mesh( # rigid, # mesh=mesh, # scale=(0.2, 0.2, 0.2), # density=1000.0, # ke=1.e+4, # kd=1000.0, # kf=1000.0, # mu=0.75) radius = 0.1 #shape = builder.add_shape_sphere(rigid, pos=(0.0, 0.0, 0.0), ke=ke, kd=kd, kf=kf, mu=mu, radius=radius) #shape = builder.add_shape_capsule(rigid, pos=(0.0, 0.0, 0.0), radius=radius, half_width=0.5) shape = builder.add_shape_box(rigid, pos=(0.0, 0.0, 0.0), hx=radius, hy=radius, hz=radius, ke=ke, kd=kd, kf=kf, mu=mu) builder.joint_q[1] = radius self.model = builder.finalize(adapter) self.model.joint_qd.requires_grad = True self.vel = torch.tensor((1.0, 0.0, 0.0), dtype=torch.float32, device=adapter, requires_grad=True) self.target = torch.tensor((3.0, 0.2, 0.0), device=adapter) #----------------------- # set up Usd renderer self.stage = Usd.Stage.CreateNew("outputs/rigid_slide.usda") if (self.stage): self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.renderer.add_sphere(self.target.tolist(), 0.1, "target") self.integrator = df.sim.SemiImplicitIntegrator() def loss(self, render=True): #--------------- # run simulation # construct contacts once at startup self.model.joint_qd = torch.cat((torch.tensor((0.0, 0.0, 0.0), dtype=torch.float32, device=self.model.adapter), self.vel)) self.sim_time = 0.0 self.state = self.model.state() self.model.collide(self.state) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # forward dynamics with df.ScopedTimer("simulate", False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) self.sim_time += self.sim_dt # render with df.ScopedTimer("render", False): if (self.stage and render and (i % self.sim_substeps == 0)): self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) #com = self.state.joint_q[0:3] com = self.state.body_X_sm[0, 0:3] loss = loss + torch.norm(com - self.target) return loss def run(self): #with torch.no_grad(): l = self.loss() if (self.stage): self.stage.Save() def train(self, mode='gd'): # param to train self.step_count = 0 render_freq = 1 optimizer = None params = [self.vel] def closure(): if (optimizer): optimizer.zero_grad() # render every N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss(render) with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() print("vel: " + str(params[0])) print("grad: " + str(params[0].grad)) print("--------") print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-5, tolerance_change=0.01, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self, file): torch.save(self.network, file) def load(self, file): self.network = torch.load(file) self.network.eval() #--------- rigid = RigidSlide(adapter='cpu') #rigid.run() rigid.train('adam')
7,018
Python
28.124481
141
0.526503
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_snu_mlp.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys import torch.nn as nn import torch.nn.functional as F from torch.utils.tensorboard import SummaryWriter # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class MultiLayerPerceptron(nn.Module): def __init__(self, n_in, n_out, n_hd, adapter, inference=False): super(MultiLayerPerceptron,self).__init__() self.n_in = n_in self.n_out = n_out self.n_hd = n_hd #self.ll = nn.Linear(n_in, n_out) self.fc1 = nn.Linear(n_in, n_hd).to(adapter) self.fc2 = nn.Linear(n_hd, n_hd).to(adapter) self.fc3 = nn.Linear(n_hd, n_out).to(adapter) self.bn1 = nn.LayerNorm(n_in, elementwise_affine=False).to(adapter) self.bn2 = nn.LayerNorm(n_hd, elementwise_affine=False).to(adapter) self.bn3 = nn.LayerNorm(n_out, elementwise_affine=False).to(adapter) def forward(self, x: torch.Tensor): x = F.leaky_relu(self.bn2(self.fc1(x))) x = F.leaky_relu(self.bn2(self.fc2(x))) x = torch.tanh(self.bn3(self.fc3(x))-2.0) return x class HumanoidSNU: train_iters = 100000000 train_rate = 0.001 train_size = 128 train_batch_size = 4 train_batch_iters = 128 train_batch_count = int(train_size/train_batch_size) train_data = None ground = True name = "humanoid_snu_lower" regularization = 1.e-3 inference = False initial_y = 1.0 def __init__(self, depth=1, mode='numpy', render=True, sim_duration=1.0, adapter='cpu', inference=False): self.sim_duration = sim_duration # seconds self.sim_substeps = 16 self.sim_dt = (1.0 / 60.0) / self.sim_substeps self.sim_steps = int(self.sim_duration / self.sim_dt) self.sim_time = 0.0 torch.manual_seed(41) np.random.seed(41) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render self.filter = {} if self.name == "humanoid_snu_arm": self.filter = { "ShoulderR", "ArmR", "ForeArmR", "HandR", "Torso", "Neck" } self.ground = False if self.name == "humanoid_snu_neck": self.filter = { "Torso", "Neck", "Head", "ShoulderR", "ShoulderL" } self.ground = False if self.name == "humanoid_snu_lower": self.filter = { "Pelvis", "FemurR", "TibiaR", "TalusR", "FootThumbR", "FootPinkyR", "FemurL", "TibiaL", "TalusL", "FootThumbL", "FootPinkyL"} self.ground = True self.initial_y = 1.0 if self.name == "humanoid_snu": self.filter = {} self.ground = True self.skeletons = [] self.inference = inference # if (self.inference): # self.train_batch_size = 1 for i in range(self.train_batch_size): skeleton = test_util.Skeleton("assets/snu/arm.xml", "assets/snu/muscle284.xml", builder, self.filter) # set initial position 1m off the ground builder.joint_q[skeleton.coord_start + 0] = i*1.5 builder.joint_q[skeleton.coord_start + 1] = self.initial_y # offset on z-axis #builder.joint_q[skeleton.coord_start + 2] = 10.0 # initial velcoity #builder.joint_qd[skeleton.dof_start + 5] = 3.0 self.skeletons.append(skeleton) # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) #self.activations = torch.zeros((1, len(self.muscles)), dtype=torch.float32, device=adapter, requires_grad=True) #self.activations = torch.rand((1, len(self.muscles)), dtype=torch.float32, device=adapter, requires_grad=True) self.network = MultiLayerPerceptron(3, len(self.skeletons[0].muscles), 128, adapter) self.model.joint_q.requires_grad = True self.model.joint_qd.requires_grad = True self.model.muscle_activation.requires_grad = True self.target_penalty = 1.0 self.velocity_penalty = 0.1 self.action_penalty = 0.0 self.muscle_strength = 40.0 self.discount_scale = 2.0 self.discount_factor = 1.0 # generate training data targets = [] for i in range(self.train_size): # generate a random point in -1, 1 away from the head t = np.random.rand(2)*2.0 - 1.0 t[1] += 0.5 targets.append((t[0], t[1] + 0.5, 1.0)) self.train_data = torch.tensor(targets, dtype=torch.float32, device=self.adapter) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 else: self.renderer = None self.set_target(torch.tensor((0.75, 0.4, 0.5), dtype=torch.float32, device=self.adapter), "target") self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = x if (self.renderer): self.renderer.add_sphere(self.target.tolist(), 0.05, name, self.render_time) def loss(self): #--------------- # run simulation self.sim_time = 0.0 # initial state self.state = self.model.state() loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) # apply actions #self.model.muscle_activation = self.activations[0]*self.muscle_strength # compute activations for each target in the batch targets = self.train_data[0:self.train_batch_size] activations = torch.flatten(self.network(targets)) self.model.muscle_activation = (activations*0.5 + 0.5)*self.muscle_strength # one time collision self.model.collide(self.state) for i in range(self.sim_steps): # apply random actions per-frame #self.model.muscle_activation = (activations*0.5 + 0.5 + torch.rand_like(activations,dtype=torch.float32, device=self.model.adapter))*self.muscle_strength # simulate with df.ScopedTimer("fd", detailed=False, active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) #if self.inference: #x = math.cos(self.sim_time*0.5)*0.5 #y = math.sin(self.sim_time*0.5)*0.5 # t = self.sim_time*0.5 # x = math.sin(t)*0.5 # y = math.sin(t)*math.cos(t)*0.5 # self.set_target(torch.tensor((x, y + 0.5, 1.0), dtype=torch.float32, device=self.adapter), "target") # activations = self.network(self.target) # self.model.muscle_activation = (activations*0.5 + 0.5)*self.muscle_strength # render with df.ScopedTimer("render", False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): muscle_start = 0 skel_index = 0 for s in self.skeletons: for mesh, link in s.mesh_map.items(): if link != -1: X_sc = df.transform_expand(self.state.body_X_sc[link].tolist()) #self.renderer.add_mesh(mesh, "../assets/snu/OBJ/" + mesh + ".usd", X_sc, 1.0, self.render_time) self.renderer.add_mesh(mesh, "../assets/snu/OBJ/" + mesh + ".usd", X_sc, 1.0, self.render_time) for m in range(len(s.muscles)):#.self.model.muscle_count): start = self.model.muscle_start[muscle_start + m].item() end = self.model.muscle_start[muscle_start + m + 1].item() points = [] for w in range(start, end): link = self.model.muscle_links[w].item() point = self.model.muscle_points[w].cpu().numpy() X_sc = df.transform_expand(self.state.body_X_sc[link].cpu().tolist()) points.append(Gf.Vec3f(df.transform_point(X_sc, point).tolist())) self.renderer.add_line_strip(points, name=s.muscles[m].name + str(skel_index), radius=0.0075, color=(self.model.muscle_activation[muscle_start + m]/self.muscle_strength, 0.2, 0.5), time=self.render_time) muscle_start += len(s.muscles) skel_index += 1 # render scene self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt # loss if self.name == "humanoid_snu_arm": hand_pos = self.state.body_X_sc[self.node_map["HandR"]][0:3] discount_time = self.sim_time discount = math.pow(self.discount_factor, discount_time*self.discount_scale) # loss = loss + (torch.norm(hand_pos - self.target)*self.target_penalty + # torch.norm(self.state.joint_qd)*self.velocity_penalty + # torch.norm(self.model.muscle_activation)*self.action_penalty)*discount #loss = loss + torch.norm(self.state.joint_qd) loss = loss + torch.norm(hand_pos - self.target)*self.target_penalty if self.name == "humanoid_snu_neck": # rotate a vector def transform_vector_torch(t, x): axis = t[3:6] w = t[6] return x * (2.0 *w*w - 1.0) + torch.cross(axis, x) * w * 2.0 + axis * torch.dot(axis, x) * 2.0 forward_dir = torch.tensor((0.0, 0.0, 1.0), dtype=torch.float32, device=self.adapter) up_dir = torch.tensor((0.0, 1.0, 0.0), dtype=torch.float32, device=self.adapter) for i in range(self.train_batch_size): skel = self.skeletons[i] head_pos = self.state.body_X_sc[skel.node_map["Head"]][0:3] head_forward = transform_vector_torch(self.state.body_X_sc[skel.node_map["Head"]], forward_dir) head_up = transform_vector_torch(self.state.body_X_sc[skel.node_map["Head"]], up_dir) target_dir = self.train_data[i] - head_pos loss_forward = torch.dot(head_forward, target_dir)*self.target_penalty loss_up = torch.dot(head_up, up_dir)*self.target_penalty*0.5 loss_penalty = torch.dot(activations, activations)*self.action_penalty loss = loss - loss_forward - loss_up + loss_penalty #self.writer.add_scalar("loss_forward", loss_forward.item(), self.step_count) #self.writer.add_scalar("loss_up", loss_up.item(), self.step_count) #self.writer.add_scalar("loss_penalty", loss_penalty.item(), self.step_count) return loss def run(self): df.config.no_grad = True self.inference = True with torch.no_grad(): l = self.loss() if (self.render): self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = 1#len(params) self.render = False # evaluate analytic gradient l = self.loss() l.backward() # evaluate numeric gradient grad_analytic = params.grad.cpu().numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(1): mid = params[0][i].item() params[0][i] = mid - eps left = self.loss() params[0][i] = mid + eps right = self.loss() # reset params[0][i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): self.writer = SummaryWriter() self.writer.add_hparams({"lr": self.train_rate, "mode": mode}, {}) # param to train self.step_count = 0 self.best_loss = math.inf optimizer = None scheduler = None params = self.network.parameters()#[self.activations] def closure(): batch = int(self.step_count/self.train_batch_iters)%self.train_batch_count print("Batch: " + str(batch) + " Iter: " + str(self.step_count%self.train_batch_iters)) if (optimizer): optimizer.zero_grad() # compute loss on all examples with df.ScopedTimer("forward"):#, detailed=True): l = self.loss() # compute gradient with df.ScopedTimer("backward"):#, detailed=True): l.backward() # batch stats self.writer.add_scalar("loss_batch", l.item(), self.step_count) self.writer.flush() print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: self.stage.Save() except: print("USD save error") # save network if (l < self.best_loss): self.save() self.best_loss = l return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9)#, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): last_LR = 1e-5 init_LR = 1e-3 decay_LR_steps = 2000 gamma = math.exp(math.log(last_LR/init_LR)/decay_LR_steps) optimizer = torch.optim.Adam(params, lr=self.train_rate, weight_decay=1e-5) #scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma = gamma) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) if optimizer: optimizer.step(closure) if scheduler: scheduler.step() # final save try: self.stage.Save() except: print("USD save error") def save(self): torch.save(self.network, "outputs/" + self.name + ".pt") def load(self, suffix=""): self.network = torch.load("outputs/" + self.name + suffix + ".pt") if self.inference: self.network.eval() else: self.network.train() #--------- #env = HumanoidSNU(depth=1, mode='dflex', render=True, sim_duration=2.0, adapter='cuda') #env.train(mode='adam') env = HumanoidSNU(depth=1, mode='dflex', render=True, sim_duration=2.0, adapter='cuda', inference=True) #env.load() env.run()
17,357
Python
32.445087
235
0.526358
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_allegro.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import os import sys # to allow tests to import the module they belong to sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df import numpy as np np.set_printoptions(precision=5, linewidth=256, suppress=True) from pxr import Usd, UsdGeom, Gf import test_util class Robot: sim_duration = 4.0 # seconds sim_substeps = 64 sim_dt = (1.0 / 60.0) / sim_substeps sim_steps = int(sim_duration / sim_dt) sim_time = 0.0 train_iters = 128 train_rate = 10.0 ground = False name = "allegro" regularization = 1.e-3 env_count = 1 env_dofs = 2 def __init__(self, depth=1, mode='numpy', render=True, adapter='cpu'): torch.manual_seed(42) builder = df.sim.ModelBuilder() self.adapter = adapter self.mode = mode self.render = render # allegro for i in range(self.env_count): test_util.urdf_load( builder, #"assets/franka_description/robots/franka_panda.urdf", "assets/allegro_hand_description/allegro_hand_description_right.urdf", df.transform((0.0, 0.0, 0.0), df.quat_from_axis_angle((0.0, 0.0, 1.0), math.pi*0.5)), floating=False, limit_ke=0.0,#1.e+3, limit_kd=0.0)#1.e+2) # set fingers to mid-range of their limits for i in range(len(builder.joint_q_start)): if (builder.joint_type[i] == df.JOINT_REVOLUTE): dof = builder.joint_q_start[i] mid = (builder.joint_limit_lower[dof] + builder.joint_limit_upper[dof])*0.5 builder.joint_q[dof] = mid builder.joint_target[dof] = mid builder.joint_target_kd[i] = 0.02 builder.joint_target_ke[i] = 1.0 solid = False # create FEM block if (solid): builder.add_soft_grid( pos=(-0.05, 0.2, 0.0), rot=(0.0, 0.0, 0.0, 1.0), vel=(0.0, 0.0, 0.0), dim_x=10, dim_y=5, dim_z=5, cell_x=0.01, cell_y=0.01, cell_z=0.01, density=1000.0, k_mu=500.0, k_lambda=1000.0, k_damp=1.0) else: builder.add_cloth_grid( pos=(-0.1, 0.2, -0.1), rot=df.quat_from_axis_angle((1.0, 0.0, 0.0), math.pi*0.5), vel=(0.0, 0.0, 0.0), dim_x=20, dim_y=20, cell_x=0.01, cell_y=0.01, mass=0.0125) # finalize model self.model = builder.finalize(adapter) self.model.ground = self.ground self.model.gravity = torch.tensor((0.0, -9.81, 0.0), device=adapter) #self.model.gravity = torch.tensor((0.0, 0.0, 0.0), device=adapter) self.model.contact_ke = 1.e+3 self.model.contact_kd = 2.0 self.model.contact_kf = 0.1 self.model.contact_mu = 0.5 self.model.particle_radius = 0.01 if (solid): self.model.tri_ke = 0.0 self.model.tri_ka = 0.0 self.model.tri_kd = 0.0 self.model.tri_kb = 0.0 else: self.model.tri_ke = 100.0 self.model.tri_ka = 100.0 self.model.tri_kd = 1.0 self.model.tri_kb = 0.0 self.model.edge_ke = 0.01 self.model.edge_kd = 0.001 self.model.joint_q.requires_grad_() self.model.joint_qd.requires_grad_() self.actions = torch.zeros((self.env_count, self.sim_steps), device=adapter, requires_grad=True) #self.actions = torch.zeros(1, device=adapter, requires_grad=True) #----------------------- # set up Usd renderer if (self.render): self.stage = Usd.Stage.CreateNew("outputs/" + self.name + ".usd") self.renderer = df.render.UsdRenderer(self.model, self.stage) self.renderer.draw_points = True self.renderer.draw_springs = True self.renderer.draw_shapes = True self.render_time = 0.0 self.integrator = df.sim.SemiImplicitIntegrator() def set_target(self, x, name): self.target = torch.tensor(x, device='cpu') self.renderer.add_sphere(self.target.tolist(), 0.1, name) def loss(self): #--------------- # run simulation self.sim_time = 0.0 # initial state self.state = self.model.state() if (self.render): traj = [] for e in range(self.env_count): traj.append([]) loss = torch.zeros(1, requires_grad=True, device=self.model.adapter) for i in range(0, self.sim_steps): # simulate with df.ScopedTimer("fd", detailed=False, active=False): self.state = self.integrator.forward(self.model, self.state, self.sim_dt) # render with df.ScopedTimer("render", False): if (self.render and (i % self.sim_substeps == 0)): with torch.no_grad(): # draw end effector tracer # for e in range(self.env_count): # X_pole = df.transform_point(df.transform_expand(self.state.body_X_sc[e*3 + self.marker_body].tolist()), (0.0, 0.0, self.marker_offset)) # traj[e].append((X_pole[0], X_pole[1], X_pole[2])) # # render trajectory # self.renderer.add_line_strip(traj[e], (1.0, 1.0, 1.0), self.render_time, "traj_" + str(e)) # render scene self.render_time += self.sim_dt * self.sim_substeps self.renderer.update(self.state, self.render_time) self.sim_time += self.sim_dt return loss def run(self): l = self.loss() if (self.render): self.stage.Save() def verify(self, eps=1.e-4): params = self.actions n = 1#len(params) self.render = False # evaluate analytic gradient l = self.loss() l.backward() # evaluate numeric gradient grad_analytic = params.grad.cpu().numpy() grad_numeric = np.zeros(n) with torch.no_grad(): df.config.no_grad = True for i in range(1): mid = params[0][i].item() params[0][i] = mid - eps left = self.loss() params[0][i] = mid + eps right = self.loss() # reset params[0][i] = mid # numeric grad grad_numeric[i] = (right-left)/(2.0*eps) # report print("grad_numeric: " + str(grad_numeric)) print("grad_analytic: " + str(grad_analytic)) def train(self, mode='gd'): # param to train self.step_count = 0 self.best_loss = math.inf render_freq = 1 optimizer = None params = [self.actions] def closure(): if (optimizer): optimizer.zero_grad() # render ever y N steps render = False if ((self.step_count % render_freq) == 0): render = True with df.ScopedTimer("forward"): #with torch.autograd.detect_anomaly(): l = self.loss() with df.ScopedTimer("backward"): #with torch.autograd.detect_anomaly(): l.backward() # for e in range(self.env_count): # print(self.actions.grad[e][0:20]) print(str(self.step_count) + ": " + str(l)) self.step_count += 1 with df.ScopedTimer("save"): try: if (render): self.stage.Save() except: print("USD save error") # save best trajectory if (l.item() < self.best_loss): self.save() self.best_loss = l.item() return l with df.ScopedTimer("step"): if (mode == 'gd'): # simple Gradient Descent for i in range(self.train_iters): closure() with torch.no_grad(): params[0] -= self.train_rate * params[0].grad params[0].grad.zero_() else: # L-BFGS if (mode == 'lbfgs'): optimizer = torch.optim.LBFGS(params, lr=1.0, tolerance_grad=1.e-9, line_search_fn="strong_wolfe") # Adam if (mode == 'adam'): optimizer = torch.optim.Adam(params, lr=self.train_rate) # SGD if (mode == 'sgd'): optimizer = torch.optim.SGD(params, lr=self.train_rate, momentum=0.8, nesterov=True) # train for i in range(self.train_iters): print("Step: " + str(i)) optimizer.step(closure) # final save try: if (render): self.stage.Save() except: print("USD save error") def save(self): torch.save(self.actions, "outputs/" + self.name + ".pt") def load(self): self.actions = torch.load("outputs/" + self.name + ".pt") #--------- robot = Robot(depth=1, mode='dflex', render=True, adapter='cuda') #df.config.no_grad = True #df.config.check_grad = True #df.config.verify_fp = True #robot.load() robot.run() #robot.train(mode='lbfgs') #robot.verify(eps=1.e+1)
10,608
Python
27.986339
165
0.488028
vstrozzi/FRL-SHAC-Extension/dflex/tests/test_adjoint.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import torch import time import cProfile import numpy as np import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import dflex as df
626
Python
25.124999
82
0.785942
vstrozzi/FRL-SHAC-Extension/dflex/tests/assets/humanoid.xml
<!-- ====================================================== This file is part of MuJoCo. Copyright 2009-2015 Roboti LLC. Model :: Humanoid Mujoco :: Advanced physics simulation engine Source : www.roboti.us Version : 1.31 Released : 23Apr16 Author :: Vikash Kumar Contacts : [email protected] Last edits : 30Apr'16, 30Nov'15, 26Sept'15 ====================================================== --> <mujoco model='humanoid (v1.31)'> <compiler inertiafromgeom='true' angle='degree'/> <default> <joint limited='true' damping='1' armature='0' /> <geom contype='1' conaffinity='1' condim='1' rgba='0.8 0.6 .4 1' margin="0.001" solref=".02 1" solimp=".8 .8 .01" material="geom"/> <motor ctrlrange='-.4 .4' ctrllimited='true'/> </default> <option timestep='0.002' iterations="50" solver="PGS"> <flag energy="enable"/> </option> <size nkey='5'/> <visual> <map fogstart="3" fogend="5" force="0.1"/> <quality shadowsize="2048"/> </visual> <asset> <texture type="skybox" builtin="gradient" width="100" height="100" rgb1=".4 .6 .8" rgb2="0 0 0"/> <texture name="texgeom" type="cube" builtin="flat" mark="cross" width="127" height="1278" rgb1="0.8 0.6 0.4" rgb2="0.8 0.6 0.4" markrgb="1 1 1" random="0.01"/> <texture name="texplane" type="2d" builtin="checker" rgb1=".2 .3 .4" rgb2=".1 0.15 0.2" width="100" height="100"/> <material name='MatPlane' reflectance='0.5' texture="texplane" texrepeat="1 1" texuniform="true"/> <material name='geom' texture="texgeom" texuniform="true"/> </asset> <worldbody> <geom name='floor' pos='0 0 0' size='10 10 0.125' type='plane' material="MatPlane" condim='3'/> <body name='torso' pos='0 0 1.4'> <light mode='trackcom' directional='false' diffuse='.8 .8 .8' specular='0.3 0.3 0.3' pos='0 0 4.0' dir='0 0 -1'/> <joint name='root' type='free' pos='0 0 0' limited='false' damping='0' armature='0' stiffness='0'/> <geom name='torso1' type='capsule' fromto='0 -.07 0 0 .07 0' size='0.07' /> <geom name='head' type='sphere' pos='0 0 .19' size='.09'/> <geom name='uwaist' type='capsule' fromto='-.01 -.06 -.12 -.01 .06 -.12' size='0.06'/> <body name='lwaist' pos='-.01 0 -0.260' quat='1.000 0 -0.002 0' > <geom name='lwaist' type='capsule' fromto='0 -.06 0 0 .06 0' size='0.06' /> <joint name='abdomen_z' type='hinge' pos='0 0 0.065' axis='0 0 1' range='-45 45' damping='5' stiffness='20' armature='0.02' /> <joint name='abdomen_y' type='hinge' pos='0 0 0.065' axis='0 1 0' range='-75 30' damping='5' stiffness='10' armature='0.02' /> <body name='pelvis' pos='0 0 -0.165' quat='1.000 0 -0.002 0' > <joint name='abdomen_x' type='hinge' pos='0 0 0.1' axis='1 0 0' range='-35 35' damping='5' stiffness='10' armature='0.02' /> <geom name='butt' type='capsule' fromto='-.02 -.07 0 -.02 .07 0' size='0.09' /> <body name='right_thigh' pos='0 -0.1 -0.04' > <joint name='right_hip_x' type='hinge' pos='0 0 0' axis='1 0 0' range='-25 5' damping='5' stiffness='10' armature='0.01' /> <joint name='right_hip_z' type='hinge' pos='0 0 0' axis='0 0 1' range='-60 35' damping='5' stiffness='10' armature='0.01' /> <joint name='right_hip_y' type='hinge' pos='0 0 0' axis='0 1 0' range='-120 20' damping='5' stiffness='20' armature='0.01' /> <geom name='right_thigh1' type='capsule' fromto='0 0 0 0 0.01 -.34' size='0.06' /> <body name='right_shin' pos='0 0.01 -0.403' > <joint name='right_knee' type='hinge' pos='0 0 .02' axis='0 -1 0' range='-160 -2' stiffness='1' armature='0.006' /> <geom name='right_shin1' type='capsule' fromto='0 0 0 0 0 -.3' size='0.049' /> <body name='right_foot' pos='0 0 -.39' > <joint name='right_ankle_y' type='hinge' pos='0 0 0.08' axis='0 1 0' range='-50 50' damping='5' stiffness='4' armature='0.008' /> <joint name='right_ankle_x' type='hinge' pos='0 0 0.08' axis='1 0 0.5' range='-50 50' damping='5' stiffness='1' armature='0.006' /> <geom name='right_foot_cap1' type='capsule' fromto='-.07 -0.02 0 0.14 -0.04 0' size='0.027' /> <geom name='right_foot_cap2' type='capsule' fromto='-.07 0 0 0.14 0.02 0' size='0.027' /> </body> </body> </body> <body name='left_thigh' pos='0 0.1 -0.04' > <joint name='left_hip_x' type='hinge' pos='0 0 0' axis='-1 0 0' range='-25 5' damping='5' stiffness='10' armature='0.01' /> <joint name='left_hip_z' type='hinge' pos='0 0 0' axis='0 0 -1' range='-60 35' damping='5' stiffness='10' armature='0.01' /> <joint name='left_hip_y' type='hinge' pos='0 0 0' axis='0 1 0' range='-120 20' damping='5' stiffness='20' armature='0.01' /> <geom name='left_thigh1' type='capsule' fromto='0 0 0 0 -0.01 -.34' size='0.06' /> <body name='left_shin' pos='0 -0.01 -0.403' > <joint name='left_knee' type='hinge' pos='0 0 .02' axis='0 -1 0' range='-160 -2' stiffness='1' armature='0.006' /> <geom name='left_shin1' type='capsule' fromto='0 0 0 0 0 -.3' size='0.049' /> <body name='left_foot' pos='0 0 -.39' > <joint name='left_ankle_y' type='hinge' pos='0 0 0.08' axis='0 1 0' range='-50 50' damping='5' stiffness='4' armature='0.008' /> <joint name='left_ankle_x' type='hinge' pos='0 0 0.08' axis='1 0 0.5' range='-50 50' damping='5' stiffness='1' armature='0.006' /> <geom name='left_foot_cap1' type='capsule' fromto='-.07 0.02 0 0.14 0.04 0' size='0.027' /> <geom name='left_foot_cap2' type='capsule' fromto='-.07 0 0 0.14 -0.02 0' size='0.027' /> </body> </body> </body> </body> </body> <body name='right_upper_arm' pos='0 -0.17 0.06' > <joint name='right_shoulder1' type='hinge' pos='0 0 0' axis='2 1 1' range='-85 60' stiffness='1' armature='0.0068' /> <joint name='right_shoulder2' type='hinge' pos='0 0 0' axis='0 -1 1' range='-85 60' stiffness='1' armature='0.0051' /> <geom name='right_uarm1' type='capsule' fromto='0 0 0 .16 -.16 -.16' size='0.04 0.16' /> <body name='right_lower_arm' pos='.18 -.18 -.18' > <joint name='right_elbow' type='hinge' pos='0 0 0' axis='0 -1 1' range='-90 50' stiffness='0' armature='0.0028' /> <geom name='right_larm' type='capsule' fromto='0.01 0.01 0.01 .17 .17 .17' size='0.031' /> <geom name='right_hand' type='sphere' pos='.18 .18 .18' size='0.04'/> </body> </body> <body name='left_upper_arm' pos='0 0.17 0.06' > <joint name='left_shoulder1' type='hinge' pos='0 0 0' axis='2 -1 1' range='-60 85' stiffness='1' armature='0.0068' /> <joint name='left_shoulder2' type='hinge' pos='0 0 0' axis='0 1 1' range='-60 85' stiffness='1' armature='0.0051' /> <geom name='left_uarm1' type='capsule' fromto='0 0 0 .16 .16 -.16' size='0.04 0.16' /> <body name='left_lower_arm' pos='.18 .18 -.18' > <joint name='left_elbow' type='hinge' pos='0 0 0' axis='0 -1 -1' range='-90 50' stiffness='0' armature='0.0028' /> <geom name='left_larm' type='capsule' fromto='0.01 -0.01 0.01 .17 -.17 .17' size='0.031' /> <geom name='left_hand' type='sphere' pos='.18 -.18 .18' size='0.04'/> </body> </body> </body> </worldbody> <tendon> <fixed name='left_hipknee'> <joint joint='left_hip_y' coef='-1'/> <joint joint='left_knee' coef='1'/> </fixed> <fixed name='right_hipknee'> <joint joint='right_hip_y' coef='-1'/> <joint joint='right_knee' coef='1'/> </fixed> </tendon> <keyframe> <key qpos='-0.0233227 0.00247283 0.0784829 0.728141 0.00223397 -0.685422 -0.00181805 -0.000580139 -0.245119 0.0329713 -0.0461148 0.0354257 0.252234 -0.0347763 -0.4663 -0.0313013 0.0285638 0.0147285 0.264063 -0.0346441 -0.559198 0.021724 -0.0333332 -0.718563 0.872778 0.000260393 0.733088 0.872748' /> <key qpos='0.0168601 -0.00192002 0.127167 0.762693 0.00191588 0.646754 -0.00210291 -0.000199049 0.0573113 -4.05731e-005 0.0134177 -0.00468944 0.0985945 -0.282695 -0.0469067 0.00874203 0.0263262 -0.00295056 0.0984851 -0.282098 -0.044293 0.00475795 0.127371 -0.42895 0.882402 -0.0980573 0.428506 0.88193' /> <key qpos='0.000471586 0.0317577 0.210587 0.758805 -0.583984 0.254155 0.136322 -0.0811633 0.0870309 -0.0935227 0.0904958 -0.0278004 -0.00978614 -0.359193 0.139761 -0.240168 0.060149 0.237062 -0.00622109 -0.252598 -0.00376874 -0.160597 0.25253 -0.278634 0.834376 -0.990444 -0.169065 0.652876' /> <key qpos='-0.0602175 0.048078 0.194579 -0.377418 -0.119412 -0.675073 -0.622553 0.139093 0.0710746 -0.0506027 0.0863461 0.196165 -0.0276685 -0.521954 -0.267784 0.179051 0.0371897 0.0560134 -0.032595 -0.0480022 0.0357436 0.108502 0.963806 0.157805 0.873092 -1.01145 -0.796409 0.24736' /> </keyframe> <actuator> <motor name='abdomen_y' gear='200' joint='abdomen_y' /> <motor name='abdomen_z' gear='200' joint='abdomen_z' /> <motor name='abdomen_x' gear='200' joint='abdomen_x' /> <motor name='right_hip_x' gear='200' joint='right_hip_x' /> <motor name='right_hip_z' gear='200' joint='right_hip_z' /> <motor name='right_hip_y' gear='600' joint='right_hip_y' /> <motor name='right_knee' gear='400' joint='right_knee' /> <motor name='right_ankle_x' gear='100' joint='right_ankle_x' /> <motor name='right_ankle_y' gear='100' joint='right_ankle_y' /> <motor name='left_hip_x' gear='200' joint='left_hip_x' /> <motor name='left_hip_z' gear='200' joint='left_hip_z' /> <motor name='left_hip_y' gear='600' joint='left_hip_y' /> <motor name='left_knee' gear='400' joint='left_knee' /> <motor name='left_ankle_x' gear='100' joint='left_ankle_x' /> <motor name='left_ankle_y' gear='100' joint='left_ankle_y' /> <motor name='right_shoulder1' gear='100' joint='right_shoulder1' /> <motor name='right_shoulder2' gear='100' joint='right_shoulder2' /> <motor name='right_elbow' gear='200' joint='right_elbow' /> <motor name='left_shoulder1' gear='100' joint='left_shoulder1' /> <motor name='left_shoulder2' gear='100' joint='left_shoulder2' /> <motor name='left_elbow' gear='200' joint='left_elbow' /> </actuator> </mujoco>
11,517
XML
68.385542
314
0.528784
vstrozzi/FRL-SHAC-Extension/dflex/tests/assets/ant.xml
<mujoco model="ant"> <compiler angle="degree" coordinate="local" inertiafromgeom="true"/> <option integrator="RK4" timestep="0.01"/> <custom> <numeric data="0.0 0.0 0.55 1.0 0.0 0.0 0.0 0.0 1.0 0.0 -1.0 0.0 -1.0 0.0 1.0" name="init_qpos"/> </custom> <default> <joint armature="0.001" damping="1" limited="true"/> <geom conaffinity="0" condim="3" density="5.0" friction="1.5 0.1 0.1" margin="0.01" rgba="0.97 0.38 0.06 1"/> </default> <worldbody> <body name="torso" pos="0 0 0.75"> <geom name="torso_geom" pos="0 0 0" size="0.25" type="sphere"/> <geom fromto="0.0 0.0 0.0 0.2 0.2 0.0" name="aux_1_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> <geom fromto="0.0 0.0 0.0 -0.2 0.2 0.0" name="aux_2_geom" size="0.08" type="capsule"/> <geom fromto="0.0 0.0 0.0 -0.2 -0.2 0.0" name="aux_3_geom" size="0.08" type="capsule"/> <geom fromto="0.0 0.0 0.0 0.2 -0.2 0.0" name="aux_4_geom" size="0.08" type="capsule" rgba=".999 .2 .02 1"/> <joint armature="0" damping="0" limited="false" margin="0.01" name="root" pos="0 0 0" type="free"/> <body name="front_left_leg" pos="0.2 0.2 0"> <joint axis="0 0 1" name="hip_1" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/> <geom fromto="0.0 0.0 0.0 0.2 0.2 0.0" name="left_leg_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> <body pos="0.2 0.2 0" name="front_left_foot"> <joint axis="-1 1 0" name="ankle_1" pos="0.0 0.0 0.0" range="30 100" type="hinge"/> <geom fromto="0.0 0.0 0.0 0.4 0.4 0.0" name="left_ankle_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> </body> </body> <body name="front_right_leg" pos="-0.2 0.2 0"> <joint axis="0 0 1" name="hip_2" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/> <geom fromto="0.0 0.0 0.0 -0.2 0.2 0.0" name="right_leg_geom" size="0.08" type="capsule"/> <body pos="-0.2 0.2 0" name="front_right_foot"> <joint axis="1 1 0" name="ankle_2" pos="0.0 0.0 0.0" range="-100 -30" type="hinge"/> <geom fromto="0.0 0.0 0.0 -0.4 0.4 0.0" name="right_ankle_geom" size="0.08" type="capsule"/> </body> </body> <body name="left_back_leg" pos="-0.2 -0.2 0"> <joint axis="0 0 1" name="hip_3" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/> <geom fromto="0.0 0.0 0.0 -0.2 -0.2 0.0" name="back_leg_geom" size="0.08" type="capsule"/> <body pos="-0.2 -0.2 0" name="left_back_foot"> <joint axis="-1 1 0" name="ankle_3" pos="0.0 0.0 0.0" range="-100 -30" type="hinge"/> <geom fromto="0.0 0.0 0.0 -0.4 -0.4 0.0" name="third_ankle_geom" size="0.08" type="capsule"/> </body> </body> <body name="right_back_leg" pos="0.2 -0.2 0"> <joint axis="0 0 1" name="hip_4" pos="0.0 0.0 0.0" range="-40 40" type="hinge"/> <geom fromto="0.0 0.0 0.0 0.2 -0.2 0.0" name="rightback_leg_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> <body pos="0.2 -0.2 0" name="right_back_foot"> <joint axis="1 1 0" name="ankle_4" pos="0.0 0.0 0.0" range="30 100" type="hinge"/> <geom fromto="0.0 0.0 0.0 0.4 -0.4 0.0" name="fourth_ankle_geom" size="0.08" type="capsule" rgba=".999 .2 .1 1"/> </body> </body> </body> </worldbody> <actuator> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="hip_4" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="ankle_4" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="hip_1" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="ankle_1" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="hip_2" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="ankle_2" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="hip_3" gear="150"/> <motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="ankle_3" gear="150"/> </actuator> </mujoco>
4,043
XML
61.215384
125
0.550829
vstrozzi/FRL-SHAC-Extension/dflex/docs/index.rst
Welcome to dFlex's documentation! ================================== dFlex is a differentiable multiphysics engine for PyTorch. It is written entirely in Python and supports reverse mode differentiation w.r.t. to any simulation inputs. It includes a USD-based visualization module (:class:`dflex.render`), which can generate time-sampled USD files, or update an existing stage on-the-fly. Prerequisites ------------- * Python 3.6 * PyTorch 1.4.0 or higher * Pixar USD lib (for visualization) Pre-built USD Python libraries can be downloaded from https://developer.nvidia.com/usd, once they are downloaded you should follow the instructions to add them to your PYTHONPATH environment variable. .. toctree:: :maxdepth: 3 :caption: Contents: modules/model modules/sim modules/render Quick Start ----------------- First ensure that the package is installed in your local Python environment (use the -e option if you will be doing development): .. code-block:: pip install -e dflex Then, to use the engine you can import the simulation module as follows: .. code-block:: import dflex To build physical models there is a helper class available in :class:`dflex.model.ModelBuilder`. This can be used to create models programmatically from Python. For example, to create a chain of particles: .. code-block:: builder = dflex.model.ModelBuilder() # anchor point (zero mass) builder.add_particle((0, 1.0, 0.0), (0.0, 0.0, 0.0), 0.0) # build chain for i in range(1,10): builder.add_particle((i, 1.0, 0.0), (0.0, 0.0, 0.0), 1.0) builder.add_spring(i-1, i, 1.e+3, 0.0, 0) # add ground plane builder.add_shape_plane((0.0, 1.0, 0.0, 0.0), 0) Once you have built your model you must convert it to a finalized PyTorch simulation data structure using :func:`dflex.model.ModelBuilder.finalize()`: .. code-block:: model = builder.finalize('cpu') The model object represents static (non-time varying) data such as constraints, collision shapes, etc. The model is stored in PyTorch tensors, allowing differentiation with respect to both model and state. Time Stepping ------------- To advance the simulation forward in time (forward dynamics), we use an `integrator` object. dFlex currently offers semi-implicit and fully implicit (planned), via. the :class:`dflex.sim.SemiImplicitIntegrator` class as follows: .. code-block:: sim_dt = 1.0/60.0 sim_steps = 100 integrator = dflex.sim.SemiImplicitIntegrator() for i in range(0, sim_steps): state = integrator.forward(model, state, sim_dt) Rendering --------- To visualize the scene dFlex supports a USD-based update via. the :class:`dflex.render.UsdRenderer` class. To create a renderer you must first create the USD stage, and the physical model. .. code-block:: import dflex.render stage = Usd.Stage.CreateNew("test.usda") renderer = dflex.render.UsdRenderer(model, stage) renderer.draw_points = True renderer.draw_springs = True renderer.draw_shapes = True Each frame the renderer should be updated with the current model state and the current elapsed simulation time: .. code-block:: renderer.update(state, sim_time) Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`
3,311
reStructuredText
27.8
228
0.700393
vstrozzi/FRL-SHAC-Extension/dflex/docs/conf.py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('../dflex')) # -- Project information ----------------------------------------------------- project = 'dFlex' copyright = '2020, NVIDIA' author = 'NVIDIA' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.intersphinx', # 'sphinx.ext.autosummary', 'sphinx.ext.todo', 'autodocsumm' ] # put type hints inside the description instead of the signature (easier to read) autodoc_typehints = 'description' # document class *and* __init__ methods autoclass_content = 'both' # todo_include_todos = True intersphinx_mapping = { 'python': ("https://docs.python.org/3", None), 'numpy': ('http://docs.scipy.org/doc/numpy/', None), 'PyTorch': ('http://pytorch.org/docs/master/', None), } # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # import sphinx_rtd_theme html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] html_theme = "sphinx_rtd_theme" # html_theme = 'alabaster' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = []
2,515
Python
32.105263
81
0.659245
vstrozzi/FRL-SHAC-Extension/dflex/docs/modules/sim.rst
dflex.sim =========== .. currentmodule:: dflex.sim .. toctree:: :maxdepth: 2 .. automodule:: dflex.sim :members: :undoc-members: :show-inheritance:
171
reStructuredText
12.230768
28
0.567251
vstrozzi/FRL-SHAC-Extension/dflex/docs/modules/model.rst
dflex.model =========== .. currentmodule:: dflex.model .. toctree:: :maxdepth: 2 model.modelbuilder model.model model.state
151
reStructuredText
10.692307
30
0.569536
vstrozzi/FRL-SHAC-Extension/dflex/docs/modules/model.model.rst
dflex.model.Model ======================== .. autoclasssumm:: dflex.model.Model .. autoclass:: dflex.model.Model :members: :undoc-members: :show-inheritance:
173
reStructuredText
14.81818
36
0.583815
vstrozzi/FRL-SHAC-Extension/dflex/docs/modules/render.rst
dflex.render ============ .. currentmodule:: dflex.render .. toctree:: :maxdepth: 2 .. automodule:: dflex.render :members: :undoc-members: :show-inheritance:
178
reStructuredText
11.785713
31
0.595506
vstrozzi/FRL-SHAC-Extension/dflex/docs/modules/model.state.rst
dflex.model.State ======================== .. autoclasssumm:: dflex.model.State .. autoclass:: dflex.model.State :members: :undoc-members: :show-inheritance:
173
reStructuredText
14.81818
36
0.583815
vstrozzi/FRL-SHAC-Extension/dflex/docs/modules/model.modelbuilder.rst
dflex.model.ModelBuilder ======================== .. autoclasssumm:: dflex.model.ModelBuilder .. autoclass:: dflex.model.ModelBuilder :members: :undoc-members: :show-inheritance:
194
reStructuredText
16.727271
43
0.628866
vstrozzi/FRL-SHAC-Extension/utils/common.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import sys # if there's overlap between args_list and commandline input, use commandline input def solve_argv_conflict(args_list): arguments_to_be_removed = [] arguments_size = [] for argv in sys.argv[1:]: if argv.startswith('-'): size_count = 1 for i, args in enumerate(args_list): if args == argv: arguments_to_be_removed.append(args) for more_args in args_list[i+1:]: if not more_args.startswith('-'): size_count += 1 else: break arguments_size.append(size_count) break for args, size in zip(arguments_to_be_removed, arguments_size): args_index = args_list.index(args) for _ in range(size): args_list.pop(args_index) def print_error(*message): print('\033[91m', 'ERROR ', *message, '\033[0m') raise RuntimeError def print_ok(*message): print('\033[92m', *message, '\033[0m') def print_warning(*message): print('\033[93m', *message, '\033[0m') def print_info(*message): print('\033[96m', *message, '\033[0m') from datetime import datetime def get_time_stamp(): now = datetime.now() year = now.strftime('%Y') month = now.strftime('%m') day = now.strftime('%d') hour = now.strftime('%H') minute = now.strftime('%M') second = now.strftime('%S') return '{}-{}-{}-{}-{}-{}'.format(month, day, year, hour, minute, second) import argparse def parse_model_args(model_args_path): fp = open(model_args_path, 'r') model_args = eval(fp.read()) model_args = argparse.Namespace(**model_args) return model_args import torch import numpy as np import random import os def seeding(seed=0, torch_deterministic=False): print("Setting seed: {}".format(seed)) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) if torch_deterministic: # refer to https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.use_deterministic_algorithms(True) else: torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = False return seed
2,965
Python
31.23913
91
0.629005
vstrozzi/FRL-SHAC-Extension/utils/torch_utils.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import timeit import math import numpy as np import gc import torch import cProfile log_output = "" def log(s): print(s) global log_output log_output = log_output + s + "\n" # short hands # torch quat/vector utils def to_torch(x, dtype=torch.float, device='cuda:0', requires_grad=False): return torch.tensor(x, dtype=dtype, device=device, requires_grad=requires_grad) @torch.jit.script def quat_mul(a, b): assert a.shape == b.shape shape = a.shape a = a.reshape(-1, 4) b = b.reshape(-1, 4) x1, y1, z1, w1 = a[:, 0], a[:, 1], a[:, 2], a[:, 3] x2, y2, z2, w2 = b[:, 0], b[:, 1], b[:, 2], b[:, 3] ww = (z1 + x1) * (x2 + y2) yy = (w1 - y1) * (w2 + z2) zz = (w1 + y1) * (w2 - z2) xx = ww + yy + zz qq = 0.5 * (xx + (z1 - x1) * (x2 - y2)) w = qq - ww + (z1 - y1) * (y2 - z2) x = qq - xx + (x1 + w1) * (x2 + w2) y = qq - yy + (w1 - x1) * (y2 + z2) z = qq - zz + (z1 + y1) * (w2 - x2) quat = torch.stack([x, y, z, w], dim=-1).view(shape) return quat @torch.jit.script def normalize(x, eps: float = 1e-9): return x / x.norm(p=2, dim=-1).clamp(min=eps, max=None).unsqueeze(-1) @torch.jit.script def quat_apply(a, b): shape = b.shape a = a.reshape(-1, 4) b = b.reshape(-1, 3) xyz = a[:, :3] t = xyz.cross(b, dim=-1) * 2 return (b + a[:, 3:] * t + xyz.cross(t, dim=-1)).view(shape) @torch.jit.script def quat_rotate(q, v): shape = q.shape q_w = q[:, -1] q_vec = q[:, :3] a = v * (2.0 * q_w ** 2 - 1.0).unsqueeze(-1) b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0 c = q_vec * \ torch.bmm(q_vec.view(shape[0], 1, 3), v.view( shape[0], 3, 1)).squeeze(-1) * 2.0 return a + b + c @torch.jit.script def quat_rotate_inverse(q, v): shape = q.shape q_w = q[:, -1] q_vec = q[:, :3] a = v * (2.0 * q_w ** 2 - 1.0).unsqueeze(-1) b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0 c = q_vec * \ torch.bmm(q_vec.view(shape[0], 1, 3), v.view( shape[0], 3, 1)).squeeze(-1) * 2.0 return a - b + c @torch.jit.script def quat_axis(q, axis=0): # type: (Tensor, int) -> Tensor basis_vec = torch.zeros(q.shape[0], 3, device=q.device) basis_vec[:, axis] = 1 return quat_rotate(q, basis_vec) @torch.jit.script def quat_conjugate(a): shape = a.shape a = a.reshape(-1, 4) return torch.cat((-a[:, :3], a[:, -1:]), dim=-1).view(shape) @torch.jit.script def quat_unit(a): return normalize(a) @torch.jit.script def quat_from_angle_axis(angle, axis): theta = (angle / 2).unsqueeze(-1) xyz = normalize(axis) * theta.sin() w = theta.cos() return quat_unit(torch.cat([xyz, w], dim=-1)) @torch.jit.script def normalize_angle(x): return torch.atan2(torch.sin(x), torch.cos(x)) @torch.jit.script def tf_inverse(q, t): q_inv = quat_conjugate(q) return q_inv, -quat_apply(q_inv, t) @torch.jit.script def tf_apply(q, t, v): return quat_apply(q, v) + t @torch.jit.script def tf_vector(q, v): return quat_apply(q, v) @torch.jit.script def tf_combine(q1, t1, q2, t2): return quat_mul(q1, q2), quat_apply(q1, t2) + t1 @torch.jit.script def get_basis_vector(q, v): return quat_rotate(q, v) def mem_report(): '''Report the memory usage of the tensor.storage in pytorch Both on CPUs and GPUs are reported''' def _mem_report(tensors, mem_type): '''Print the selected tensors of type There are two major storage types in our major concern: - GPU: tensors transferred to CUDA devices - CPU: tensors remaining on the system memory (usually unimportant) Args: - tensors: the tensors of specified type - mem_type: 'CPU' or 'GPU' in current implementation ''' total_numel = 0 total_mem = 0 visited_data = [] for tensor in tensors: if tensor.is_sparse: continue # a data_ptr indicates a memory block allocated data_ptr = tensor.storage().data_ptr() if data_ptr in visited_data: continue visited_data.append(data_ptr) numel = tensor.storage().size() total_numel += numel element_size = tensor.storage().element_size() mem = numel*element_size /1024/1024 # 32bit=4Byte, MByte total_mem += mem element_type = type(tensor).__name__ size = tuple(tensor.size()) # print('%s\t\t%s\t\t%.2f' % ( # element_type, # size, # mem) ) print('Type: %s Total Tensors: %d \tUsed Memory Space: %.2f MBytes' % (mem_type, total_numel, total_mem) ) gc.collect() LEN = 65 objects = gc.get_objects() #print('%s\t%s\t\t\t%s' %('Element type', 'Size', 'Used MEM(MBytes)') ) tensors = [obj for obj in objects if torch.is_tensor(obj)] cuda_tensors = [t for t in tensors if t.is_cuda] host_tensors = [t for t in tensors if not t.is_cuda] _mem_report(cuda_tensors, 'GPU') _mem_report(host_tensors, 'CPU') print('='*LEN) def grad_norm(params): grad_norm = 0. for p in params: if p.grad is not None: grad_norm += torch.sum(p.grad ** 2) return torch.sqrt(grad_norm) def print_leaf_nodes(grad_fn, id_set): if grad_fn is None: return if hasattr(grad_fn, 'variable'): mem_id = id(grad_fn.variable) if not(mem_id in id_set): print('is leaf:', grad_fn.variable.is_leaf) print(grad_fn.variable) id_set.add(mem_id) # print(grad_fn) for i in range(len(grad_fn.next_functions)): print_leaf_nodes(grad_fn.next_functions[i][0], id_set) def policy_kl(p0_mu, p0_sigma, p1_mu, p1_sigma): c1 = torch.log(p1_sigma/p0_sigma + 1e-5) c2 = (p0_sigma**2 + (p1_mu - p0_mu)**2)/(2.0 * (p1_sigma**2 + 1e-5)) c3 = -1.0 / 2.0 kl = c1 + c2 + c3 kl = kl.sum(dim=-1) # returning mean between all steps of sum between all actions return kl.mean()
6,536
Python
27.176724
114
0.568696
vstrozzi/FRL-SHAC-Extension/utils/average_meter.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import torch.nn as nn import numpy as np class AverageMeter(nn.Module): def __init__(self, in_shape, max_size): super(AverageMeter, self).__init__() self.max_size = max_size self.current_size = 0 self.register_buffer("mean", torch.zeros(in_shape, dtype = torch.float32)) def update(self, values): size = values.size()[0] if size == 0: return new_mean = torch.mean(values.float(), dim=0) size = np.clip(size, 0, self.max_size) old_size = min(self.max_size - size, self.current_size) size_sum = old_size + size self.current_size = size_sum self.mean = (self.mean * old_size + new_mean * size) / size_sum def clear(self): self.current_size = 0 self.mean.fill_(0) def __len__(self): return self.current_size def get_mean(self): return self.mean.squeeze(0).cpu().numpy()
1,368
Python
34.102563
82
0.65424
vstrozzi/FRL-SHAC-Extension/utils/load_utils.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import urdfpy import math import numpy as np import os import torch import random import xml.etree.ElementTree as ET import dflex as df def set_np_formatting(): np.set_printoptions(edgeitems=30, infstr='inf', linewidth=4000, nanstr='nan', precision=2, suppress=False, threshold=10000, formatter=None) def set_seed(seed, torch_deterministic=False): if seed == -1 and torch_deterministic: seed = 42 elif seed == -1: seed = np.random.randint(0, 10000) print("Setting seed: {}".format(seed)) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) if torch_deterministic: # refer to https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.use_deterministic_algorithms(True) else: torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = False return seed def urdf_add_collision(builder, link, collisions, shape_ke, shape_kd, shape_kf, shape_mu): # add geometry for collision in collisions: origin = urdfpy.matrix_to_xyz_rpy(collision.origin) pos = origin[0:3] rot = df.rpy2quat(*origin[3:6]) geo = collision.geometry if (geo.box): builder.add_shape_box( link, pos, rot, geo.box.size[0]*0.5, geo.box.size[1]*0.5, geo.box.size[2]*0.5, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.sphere): builder.add_shape_sphere( link, pos, rot, geo.sphere.radius, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.cylinder): # cylinders in URDF are aligned with z-axis, while dFlex uses x-axis r = df.quat_from_axis_angle((0.0, 1.0, 0.0), math.pi*0.5) builder.add_shape_capsule( link, pos, df.quat_multiply(rot, r), geo.cylinder.radius, geo.cylinder.length*0.5, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) if (geo.mesh): for m in geo.mesh.meshes: faces = [] vertices = [] for v in m.vertices: vertices.append(np.array(v)) for f in m.faces: faces.append(int(f[0])) faces.append(int(f[1])) faces.append(int(f[2])) mesh = df.Mesh(vertices, faces) builder.add_shape_mesh( link, pos, rot, mesh, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) def urdf_load( builder, filename, xform, floating=False, armature=0.0, shape_ke=1.e+4, shape_kd=1.e+4, shape_kf=1.e+2, shape_mu=0.25, limit_ke=100.0, limit_kd=1.0): robot = urdfpy.URDF.load(filename) # maps from link name -> link index link_index = {} builder.add_articulation() # add base if (floating): root = builder.add_link(-1, df.transform_identity(), (0,0,0), df.JOINT_FREE) # set dofs to transform start = builder.joint_q_start[root] builder.joint_q[start + 0] = xform[0][0] builder.joint_q[start + 1] = xform[0][1] builder.joint_q[start + 2] = xform[0][2] builder.joint_q[start + 3] = xform[1][0] builder.joint_q[start + 4] = xform[1][1] builder.joint_q[start + 5] = xform[1][2] builder.joint_q[start + 6] = xform[1][3] else: root = builder.add_link(-1, xform, (0,0,0), df.JOINT_FIXED) urdf_add_collision(builder, root, robot.links[0].collisions, shape_ke, shape_kd, shape_kf, shape_mu) link_index[robot.links[0].name] = root # add children for joint in robot.joints: type = None axis = (0.0, 0.0, 0.0) if (joint.joint_type == "revolute" or joint.joint_type == "continuous"): type = df.JOINT_REVOLUTE axis = joint.axis if (joint.joint_type == "prismatic"): type = df.JOINT_PRISMATIC axis = joint.axis if (joint.joint_type == "fixed"): type = df.JOINT_FIXED if (joint.joint_type == "floating"): type = df.JOINT_FREE parent = -1 if joint.parent in link_index: parent = link_index[joint.parent] origin = urdfpy.matrix_to_xyz_rpy(joint.origin) pos = origin[0:3] rot = df.rpy2quat(*origin[3:6]) lower = -1.e+3 upper = 1.e+3 damping = 0.0 # limits if (joint.limit): if (joint.limit.lower != None): lower = joint.limit.lower if (joint.limit.upper != None): upper = joint.limit.upper # damping if (joint.dynamics): if (joint.dynamics.damping): damping = joint.dynamics.damping # add link link = builder.add_link( parent=parent, X_pj=df.transform(pos, rot), axis=axis, type=type, limit_lower=lower, limit_upper=upper, limit_ke=limit_ke, limit_kd=limit_kd, damping=damping) # add collisions urdf_add_collision(builder, link, robot.link_map[joint.child].collisions, shape_ke, shape_kd, shape_kf, shape_mu) # add ourselves to the index link_index[joint.child] = link # build an articulated tree def build_tree( builder, angle, max_depth, width=0.05, length=0.25, density=1000.0, joint_stiffness=0.0, joint_damping=0.0, shape_ke = 1.e+4, shape_kd = 1.e+3, shape_kf = 1.e+2, shape_mu = 0.5, floating=False): def build_recursive(parent, depth): if (depth >= max_depth): return X_pj = df.transform((length * 2.0, 0.0, 0.0), df.quat_from_axis_angle((0.0, 0.0, 1.0), angle)) type = df.JOINT_REVOLUTE axis = (0.0, 0.0, 1.0) if (depth == 0 and floating == True): X_pj = df.transform((0.0, 0.0, 0.0), df.quat_identity()) type = df.JOINT_FREE link = builder.add_link( parent, X_pj, axis, type, stiffness=joint_stiffness, damping=joint_damping) # capsule shape = builder.add_shape_capsule( link, pos=(length, 0.0, 0.0), radius=width, half_width=length, ke=shape_ke, kd=shape_kd, kf=shape_kf, mu=shape_mu) # recurse #build_tree_recursive(builder, link, angle, width, depth + 1, max_depth, shape_ke, shape_kd, shape_kf, shape_mu, floating) build_recursive(link, depth + 1) # build_recursive(-1, 0) # Mujoco file format parser def parse_mjcf( filename, builder, density=1000.0, stiffness=0.0, damping=1.0, contact_ke=1e4, contact_kd=1e4, contact_kf=1e3, contact_mu=0.5, limit_ke=100.0, limit_kd=10.0, armature=0.01, radians=False, load_stiffness=False, load_armature=False): file = ET.parse(filename) root = file.getroot() type_map = { "ball": df.JOINT_BALL, "hinge": df.JOINT_REVOLUTE, "slide": df.JOINT_PRISMATIC, "free": df.JOINT_FREE, "fixed": df.JOINT_FIXED } def parse_float(node, key, default): if key in node.attrib: return float(node.attrib[key]) else: return default def parse_bool(node, key, default): if key in node.attrib: if node.attrib[key] == "true": return True else: return False else: return default def parse_vec(node, key, default): if key in node.attrib: return np.fromstring(node.attrib[key], sep=" ") else: return np.array(default) def parse_body(body, parent, last_joint_pos): body_name = body.attrib["name"] body_pos = np.fromstring(body.attrib["pos"], sep=" ") # last_joint_pos = np.zeros(3) #----------------- # add body for each joint, we assume the joints attached to one body have the same joint_pos for i, joint in enumerate(body.findall("joint")): joint_name = joint.attrib["name"] joint_type = type_map[joint.attrib.get("type", 'hinge')] joint_axis = parse_vec(joint, "axis", (0.0, 0.0, 0.0)) joint_pos = parse_vec(joint, "pos", (0.0, 0.0, 0.0)) joint_limited = parse_bool(joint, "limited", True) if joint_limited: if radians: joint_range = parse_vec(joint, "range", (np.deg2rad(-170.), np.deg2rad(170.))) else: joint_range = np.deg2rad(parse_vec(joint, "range", (-170.0, 170.0))) else: joint_range = np.array([-1.e+6, 1.e+6]) if load_stiffness: joint_stiffness = parse_float(joint, 'stiffness', stiffness) else: joint_stiffness = stiffness joint_damping = parse_float(joint, 'damping', damping) if load_armature: joint_armature = parse_float(joint, "armature", armature) else: joint_armature = armature joint_axis = df.normalize(joint_axis) if (parent == -1): body_pos = np.array((0.0, 0.0, 0.0)) #----------------- # add body link = builder.add_link( parent, X_pj=df.transform(body_pos + joint_pos - last_joint_pos, df.quat_identity()), axis=joint_axis, type=joint_type, limit_lower=joint_range[0], limit_upper=joint_range[1], limit_ke=limit_ke, limit_kd=limit_kd, stiffness=joint_stiffness, damping=joint_damping, armature=joint_armature) # assume that each joint is one body in simulation parent = link body_pos = [0.0, 0.0, 0.0] last_joint_pos = joint_pos #----------------- # add shapes to the last joint in the body for geom in body.findall("geom"): geom_name = geom.attrib["name"] geom_type = geom.attrib["type"] geom_size = parse_vec(geom, "size", [1.0]) geom_pos = parse_vec(geom, "pos", (0.0, 0.0, 0.0)) geom_rot = parse_vec(geom, "quat", (0.0, 0.0, 0.0, 1.0)) if (geom_type == "sphere"): builder.add_shape_sphere( link, pos=geom_pos - last_joint_pos, # position relative to the parent frame rot=geom_rot, radius=geom_size[0], density=density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu) elif (geom_type == "capsule"): if ("fromto" in geom.attrib): geom_fromto = parse_vec(geom, "fromto", (0.0, 0.0, 0.0, 1.0, 0.0, 0.0)) start = geom_fromto[0:3] end = geom_fromto[3:6] # compute rotation to align dflex capsule (along x-axis), with mjcf fromto direction axis = df.normalize(end-start) angle = math.acos(np.dot(axis, (1.0, 0.0, 0.0))) axis = df.normalize(np.cross(axis, (1.0, 0.0, 0.0))) geom_pos = (start + end)*0.5 geom_rot = df.quat_from_axis_angle(axis, -angle) geom_radius = geom_size[0] geom_width = np.linalg.norm(end-start)*0.5 else: geom_radius = geom_size[0] geom_width = geom_size[1] geom_pos = parse_vec(geom, "pos", (0.0, 0.0, 0.0)) if ("axisangle" in geom.attrib): axis_angle = parse_vec(geom, "axisangle", (0.0, 1.0, 0.0, 0.0)) geom_rot = df.quat_from_axis_angle(axis_angle[0:3], axis_angle[3]) if ("quat" in geom.attrib): q = parse_vec(geom, "quat", df.quat_identity()) geom_rot = q geom_rot = df.quat_multiply(geom_rot, df.quat_from_axis_angle((0.0, 1.0, 0.0), -math.pi*0.5)) builder.add_shape_capsule( link, pos=geom_pos - last_joint_pos, rot=geom_rot, radius=geom_radius, half_width=geom_width, density=density, ke=contact_ke, kd=contact_kd, kf=contact_kf, mu=contact_mu) else: print("Type: " + geom_type + " unsupported") #----------------- # recurse for child in body.findall("body"): parse_body(child, link, last_joint_pos) #----------------- # start articulation builder.add_articulation() world = root.find("worldbody") for body in world.findall("body"): parse_body(body, -1, np.zeros(3)) # SNU file format parser class MuscleUnit: def __init__(self): self.name = "" self.bones = [] self.points = [] self.muscle_strength = 0.0 class Skeleton: def __init__(self, skeleton_file, muscle_file, builder, filter={}, visualize_shapes=True, stiffness=5.0, damping=2.0, contact_ke=5000.0, contact_kd=2000.0, contact_kf=1000.0, contact_mu=0.5, limit_ke=1000.0, limit_kd=10.0, armature = 0.05): self.armature = armature self.stiffness = stiffness self.damping = damping self.contact_ke = contact_ke self.contact_kd = contact_kd self.contact_kf = contact_kf self.limit_ke = limit_ke self.limit_kd = limit_kd self.contact_mu = contact_mu self.visualize_shapes = visualize_shapes self.parse_skeleton(skeleton_file, builder, filter) if muscle_file != None: self.parse_muscles(muscle_file, builder) def parse_skeleton(self, filename, builder, filter): file = ET.parse(filename) root = file.getroot() self.node_map = {} # map node names to link indices self.xform_map = {} # map node names to parent transforms self.mesh_map = {} # map mesh names to link indices objects self.coord_start = len(builder.joint_q) self.dof_start = len(builder.joint_qd) type_map = { "Ball": df.JOINT_BALL, "Revolute": df.JOINT_REVOLUTE, "Prismatic": df.JOINT_PRISMATIC, "Free": df.JOINT_FREE, "Fixed": df.JOINT_FIXED } builder.add_articulation() for child in root: if (child.tag == "Node"): body = child.find("Body") joint = child.find("Joint") name = child.attrib["name"] parent = child.attrib["parent"] parent_X_s = df.transform_identity() if parent in self.node_map: parent_link = self.node_map[parent] parent_X_s = self.xform_map[parent] else: parent_link = -1 body_xform = body.find("Transformation") joint_xform = joint.find("Transformation") body_mesh = body.attrib["obj"] body_size = np.fromstring(body.attrib["size"], sep=" ") body_type = body.attrib["type"] body_mass = float(body.attrib["mass"]) x=body_size[0] y=body_size[1] z=body_size[2] density = body_mass / (x*y*z) max_body_mass = 15.0 mass_scale = body_mass / max_body_mass body_R_s = np.fromstring(body_xform.attrib["linear"], sep=" ").reshape((3,3)) body_t_s = np.fromstring(body_xform.attrib["translation"], sep=" ") joint_R_s = np.fromstring(joint_xform.attrib["linear"], sep=" ").reshape((3,3)) joint_t_s = np.fromstring(joint_xform.attrib["translation"], sep=" ") joint_type = type_map[joint.attrib["type"]] joint_lower = -1.e+3 joint_upper = 1.e+3 if (joint_type == type_map["Revolute"]): if ("lower" in joint.attrib): joint_lower = np.fromstring(joint.attrib["lower"], sep=" ")[0] if ("upper" in joint.attrib): joint_upper = np.fromstring(joint.attrib["upper"], sep=" ")[0] # print(joint_type, joint_lower, joint_upper) if ("axis" in joint.attrib): joint_axis = np.fromstring(joint.attrib["axis"], sep=" ") else: joint_axis = np.array((0.0, 0.0, 0.0)) body_X_s = df.transform(body_t_s, df.quat_from_matrix(body_R_s)) joint_X_s = df.transform(joint_t_s, df.quat_from_matrix(joint_R_s)) mesh_base = os.path.splitext(body_mesh)[0] mesh_file = mesh_base + ".usd" link = -1 if len(filter) == 0 or name in filter: joint_X_p = df.transform_multiply(df.transform_inverse(parent_X_s), joint_X_s) body_X_c = df.transform_multiply(df.transform_inverse(joint_X_s), body_X_s) if (parent_link == -1): joint_X_p = df.transform_identity() # add link link = builder.add_link( parent=parent_link, X_pj=joint_X_p, axis=joint_axis, type=joint_type, limit_lower=joint_lower, limit_upper=joint_upper, limit_ke=self.limit_ke * mass_scale, limit_kd=self.limit_kd * mass_scale, damping=self.damping, stiffness=self.stiffness * math.sqrt(mass_scale), armature=self.armature) # armature=self.armature * math.sqrt(mass_scale)) # add shape shape = builder.add_shape_box( body=link, pos=body_X_c[0], rot=body_X_c[1], hx=x*0.5, hy=y*0.5, hz=z*0.5, density=density, ke=self.contact_ke, kd=self.contact_kd, kf=self.contact_kf, mu=self.contact_mu) # add lookup in name->link map # save parent transform self.xform_map[name] = joint_X_s self.node_map[name] = link self.mesh_map[mesh_base] = link def parse_muscles(self, filename, builder): # list of MuscleUnits muscles = [] file = ET.parse(filename) root = file.getroot() self.muscle_start = len(builder.muscle_activation) for child in root: if (child.tag == "Unit"): unit_name = child.attrib["name"] unit_f0 = float(child.attrib["f0"]) unit_lm = float(child.attrib["lm"]) unit_lt = float(child.attrib["lt"]) unit_lmax = float(child.attrib["lmax"]) unit_pen = float(child.attrib["pen_angle"]) m = MuscleUnit() m.name = unit_name m.muscle_strength = unit_f0 incomplete = False for waypoint in child.iter("Waypoint"): way_bone = waypoint.attrib["body"] way_link = self.node_map[way_bone] way_loc = np.fromstring(waypoint.attrib["p"], sep=" ", dtype=np.float32) if (way_link == -1): incomplete = True break # transform loc to joint local space joint_X_s = self.xform_map[way_bone] way_loc = df.transform_point(df.transform_inverse(joint_X_s), way_loc) m.bones.append(way_link) m.points.append(way_loc) if not incomplete: muscles.append(m) builder.add_muscle(m.bones, m.points, f0=unit_f0, lm=unit_lm, lt=unit_lt, lmax=unit_lmax, pen=unit_pen) self.muscles = muscles
22,759
Python
30.523546
130
0.482622
vstrozzi/FRL-SHAC-Extension/utils/dataset.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np class CriticDataset: def __init__(self, batch_size, obs, target_values, shuffle = False, drop_last = False): self.obs = obs.view(-1, obs.shape[-1]) self.target_values = target_values.view(-1) self.batch_size = batch_size if shuffle: self.shuffle() if drop_last: self.length = self.obs.shape[0] // self.batch_size else: self.length = ((self.obs.shape[0] - 1) // self.batch_size) + 1 def shuffle(self): index = np.random.permutation(self.obs.shape[0]) self.obs = self.obs[index, :] self.target_values = self.target_values[index] def __len__(self): return self.length def __getitem__(self, index): start_idx = index * self.batch_size end_idx = min((index + 1) * self.batch_size, self.obs.shape[0]) return {'obs': self.obs[start_idx:end_idx, :], 'target_values': self.target_values[start_idx:end_idx]}
1,420
Python
37.405404
110
0.645775
vstrozzi/FRL-SHAC-Extension/utils/time_report.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import time from utils.common import * class Timer: def __init__(self, name): self.name = name self.start_time = None self.time_total = 0. def on(self): assert self.start_time is None, "Timer {} is already turned on!".format(self.name) self.start_time = time.time() def off(self): assert self.start_time is not None, "Timer {} not started yet!".format(self.name) self.time_total += time.time() - self.start_time self.start_time = None def report(self): print_info('Time report [{}]: {:.2f} seconds'.format(self.name, self.time_total)) def clear(self): self.start_time = None self.time_total = 0. class TimeReport: def __init__(self): self.timers = {} def add_timer(self, name): assert name not in self.timers, "Timer {} already exists!".format(name) self.timers[name] = Timer(name = name) def start_timer(self, name): assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].on() def end_timer(self, name): assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].off() def report(self, name = None): if name is not None: assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].report() else: print_info("------------Time Report------------") for timer_name in self.timers.keys(): self.timers[timer_name].report() print_info("-----------------------------------") def clear_timer(self, name = None): if name is not None: assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].clear() else: for timer_name in self.timers.keys(): self.timers[timer_name].clear() def pop_timer(self, name = None): if name is not None: assert name in self.timers, "Timer {} does not exist!".format(name) self.timers[name].report() del self.timers[name] else: self.report() self.timers = {}
2,688
Python
34.853333
90
0.58631
vstrozzi/FRL-SHAC-Extension/utils/running_mean_std.py
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import Tuple import torch class RunningMeanStd(object): def __init__(self, epsilon: float = 1e-4, shape: Tuple[int, ...] = (), device = 'cuda:0'): """ Calulates the running mean and std of a data stream https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm :param epsilon: helps with arithmetic issues :param shape: the shape of the data stream's output """ self.mean = torch.zeros(shape, dtype = torch.float32, device = device) self.var = torch.ones(shape, dtype = torch.float32, device = device) self.count = epsilon def to(self, device): rms = RunningMeanStd(device = device) rms.mean = self.mean.to(device).clone() rms.var = self.var.to(device).clone() rms.count = self.count return rms @torch.no_grad() def update(self, arr: torch.tensor) -> None: batch_mean = torch.mean(arr, dim = 0) batch_var = torch.var(arr, dim = 0, unbiased = False) batch_count = arr.shape[0] self.update_from_moments(batch_mean, batch_var, batch_count) def update_from_moments(self, batch_mean: torch.tensor, batch_var: torch.tensor, batch_count: int) -> None: delta = batch_mean - self.mean tot_count = self.count + batch_count new_mean = self.mean + delta * batch_count / tot_count m_a = self.var * self.count m_b = batch_var * batch_count m_2 = m_a + m_b + torch.square(delta) * self.count * batch_count / (self.count + batch_count) new_var = m_2 / (self.count + batch_count) new_count = batch_count + self.count self.mean = new_mean self.var = new_var self.count = new_count def normalize(self, arr:torch.tensor, un_norm = False) -> torch.tensor: if not un_norm: result = (arr - self.mean) / torch.sqrt(self.var + 1e-5) else: result = arr * torch.sqrt(self.var + 1e-5) + self.mean return result
2,462
Python
40.745762
111
0.638099
profK/Worldwizards-Export-Tools/README.md
# Extension Project Template This project was automatically generated. - `app` - It is a folder link to the location of your *Omniverse Kit* based app. - `exts` - It is a folder where you can add new extensions. It was automatically added to extension search path. (Extension Manager -> Gear Icon -> Extension Search Path). Open this folder using Visual Studio Code. It will suggest you to install few extensions that will make python experience better. Look for "worldwizards.export.tools" extension in extension manager and enable it. Try applying changes to any python files, it will hot-reload and you can observe results immediately. Alternatively, you can launch your app from console with this folder added to search path and your extension enabled, e.g.: ``` > app\omni.code.bat --ext-folder exts --enable company.hello.world ``` # App Link Setup If `app` folder link doesn't exist or broken it can be created again. For better developer experience it is recommended to create a folder link named `app` to the *Omniverse Kit* app installed from *Omniverse Launcher*. Convenience script to use is included. Run: ``` > link_app.bat ``` If successful you should see `app` folder link in the root of this repo. If multiple Omniverse apps is installed script will select recommended one. Or you can explicitly pass an app: ``` > link_app.bat --app create ``` You can also just pass a path to create link to: ``` > link_app.bat --path "C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4" ``` # Sharing Your Extensions This folder is ready to be pushed to any git repository. Once pushed direct link to a git repository can be added to *Omniverse Kit* extension search paths. Link might look like this: `git://github.com/[user]/[your_repo].git?branch=main&dir=exts` Notice `exts` is repo subfolder with extensions. More information can be found in "Git URL as Extension Search Paths" section of developers manual. To add a link to your *Omniverse Kit* based app go into: Extension Manager -> Gear Icon -> Extension Search Path
2,049
Markdown
37.679245
258
0.757931
profK/Worldwizards-Export-Tools/tools/scripts/link_app.py
import argparse import json import os import sys import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,814
Python
32.117647
133
0.562189