file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
jasonsaini/OmniverseCubeClickExtension/spawn_cube/exts/spawn.cube/spawn/cube/__init__.py
from .extension import *
25
Python
11.999994
24
0.76
jasonsaini/OmniverseCubeClickExtension/spawn_cube/exts/spawn.cube/spawn/cube/tests/__init__.py
from .test_hello_world import *
31
Python
30.999969
31
0.774194
jasonsaini/OmniverseCubeClickExtension/spawn_cube/exts/spawn.cube/spawn/cube/tests/test_hello_world.py
# NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test # Extnsion for writing UI tests (simulate UI interaction) import omni.kit.ui_test as ui_test # Import extension python module we are testing with absolute import path, as if we are external user (other extension) import spawn.cube # Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test class Test(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): pass # After running each test async def tearDown(self): pass # Actual test, notice it is "async" function, so "await" can be used if needed async def test_hello_public_function(self): result = spawn.cube.some_public_function(4) self.assertEqual(result, 256) async def test_window_button(self): # Find a label in our window label = ui_test.find("My Window//Frame/**/Label[*]") # Find buttons in our window add_button = ui_test.find("My Window//Frame/**/Button[*].text=='Add'") reset_button = ui_test.find("My Window//Frame/**/Button[*].text=='Reset'") # Click reset button await reset_button.click() self.assertEqual(label.widget.text, "empty") await add_button.click() self.assertEqual(label.widget.text, "count: 1") await add_button.click() self.assertEqual(label.widget.text, "count: 2")
1,656
Python
34.255318
142
0.679952
jasonsaini/OmniverseCubeClickExtension/spawn_cube/exts/spawn.cube/config/extension.toml
[package] # Semantic Versioning is used: https://semver.org/ version = "1.0.0" # Lists people or organizations that are considered the "authors" of the package. authors = ["NVIDIA"] # The title and description fields are primarily for displaying extension info in UI title = "Jason's Cube Spawner Extension" description="A simple python extension example that spawns cube in a USD file." # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "" # One of categories for UI. category = "Example" # Keywords for the extension keywords = ["kit", "example"] # Location of change log file in target (final) folder of extension, relative to the root. # More info on writing changelog: https://keepachangelog.com/en/1.0.0/ changelog="docs/CHANGELOG.md" # Preview image and icon. Folder named "data" automatically goes in git lfs (see .gitattributes file). # Preview image is shown in "Overview" of Extensions window. Screenshot of an extension might be a good preview image. preview_image = "data/preview.png" # Icon is shown in Extensions window, it is recommended to be square, of size 256x256. icon = "data/icon.png" # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} # Main python module this extension provides, it will be publicly available as "import spawn.cube". [[python.module]] name = "spawn.cube" [[test]] # Extra dependencies only to be used during test run dependencies = [ "omni.kit.ui_test" # UI testing extension ]
1,559
TOML
32.191489
118
0.743425
jasonsaini/OmniverseCubeClickExtension/spawn_cube/exts/spawn.cube/docs/CHANGELOG.md
# Changelog The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). ## [1.0.0] - 2021-04-26 - Initial version of extension UI template with a window
178
Markdown
18.888887
80
0.702247
jasonsaini/OmniverseCubeClickExtension/spawn_cube/exts/spawn.cube/docs/README.md
# Python Extension Example [spawn.cube] This is an example of pure python Kit extension. It is intended to be copied and serve as a template to create new extensions.
169
Markdown
32.999993
126
0.781065
jasonsaini/OmniverseCubeClickExtension/spawn_cube/exts/spawn.cube/docs/index.rst
spawn.cube ############################# Example of Python only extension .. toctree:: :maxdepth: 1 README CHANGELOG .. automodule::"spawn.cube" :platform: Windows-x86_64, Linux-x86_64 :members: :undoc-members: :show-inheritance: :imported-members: :exclude-members: contextmanager
321
reStructuredText
14.333333
43
0.604361
Mariuxtheone/kit-extension-sample-camerastudio/README.md
# Camera Studio - NVIDIA Omniverse Extension <img src="https://github.com/Mariuxtheone/kit-extension-sample-camerastudio/blob/main/exts/omni.example.camerastudio/data/icon.png" width="128"> This extension allows to open a CSV file containing information about Camera Settings and generate in-scene Cameras accordingly. ![Image](/exts/omni.example.camerastudio/data/preview.png) Usage: The extension generates cameras with the following settings: -Shot Name -Focal Length (in mm) -Horizontal Aperture (in mm) -Distance from the subject the camera should be placed at the scene (in meters) 1) Create your .csv file with the following header: ``` shot_name,focal_length,aperture,distance ``` e.g. ``` shot_name,focal_length,aperture,distance establishing_shot,24,2.8,4 wide_shot,14,2.0,4 over_the_shoulder_shot,50,2.8,0.5 point_of_view_shot,85,2.8,0.5 low_angle_shot,24,1.8,0.5 high_angle_shot,100,2.8,1.5 ``` 2) Open the .csv file via the Extension. 3) The extension will generate the cameras in your scene with the desired shots configured. # chatGPT Prompt (also works with GPT-3) This is the prompt that I perfected to generate shots, you might have to run it a few times to get the exact desired results, but this seems to do the trick: ``` list a series of 10 camera shots for an interior video shoot, specifying the focal length of the camera in mm, the horizontal aperture (as number), and the distance the camera should be put at (in meters) put those settings in a CSV file using this header: shot_name, focal_length, aperture, distance horizontal aperture should be indicated as number (for example, 2.8) and distance should be indicated as number (for example, for 1 meter, put 1). shot_name has to be represented with underscore format (for example, extreme_close_up_shot) remove mm and m from the CSV ``` # Extension Project Template This project was automatically generated. - `app` - It is a folder link to the location of your *Omniverse Kit* based app. - `exts` - It is a folder where you can add new extensions. It was automatically added to extension search path. (Extension Manager -> Gear Icon -> Extension Search Path). Open this folder using Visual Studio Code. It will suggest you to install few extensions that will make python experience better. Look for "omni.example.camerastudio" extension in extension manager and enable it. Try applying changes to any python files, it will hot-reload and you can observe results immediately. Alternatively, you can launch your app from console with this folder added to search path and your extension enabled, e.g.: ``` > app\omni.code.bat --ext-folder exts --enable company.hello.world ``` # App Link Setup If `app` folder link doesn't exist or broken it can be created again. For better developer experience it is recommended to create a folder link named `app` to the *Omniverse Kit* app installed from *Omniverse Launcher*. Convenience script to use is included. Run: ``` > link_app.bat ``` If successful you should see `app` folder link in the root of this repo. If multiple Omniverse apps is installed script will select recommended one. Or you can explicitly pass an app: ``` > link_app.bat --app create ``` You can also just pass a path to create link to: ``` > link_app.bat --path "C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4" ``` # Sharing Your Extensions This folder is ready to be pushed to any git repository. Once pushed direct link to a git repository can be added to *Omniverse Kit* extension search paths. Link might look like this: `git://github.com/[user]/[your_repo].git?branch=main&dir=exts` Notice `exts` is repo subfolder with extensions. More information can be found in "Git URL as Extension Search Paths" section of developers manual. To add a link to your *Omniverse Kit* based app go into: Extension Manager -> Gear Icon -> Extension Search Path ## Contributing The source code for this repository is provided as-is and we are not accepting outside contributions.
4,001
Markdown
36.401869
258
0.763809
Mariuxtheone/kit-extension-sample-camerastudio/tools/scripts/link_app.py
import argparse import json import os import sys import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,814
Python
32.117647
133
0.562189
Mariuxtheone/kit-extension-sample-camerastudio/tools/packman/config.packman.xml
<config remotes="cloudfront"> <remote2 name="cloudfront"> <transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" /> </remote2> </config>
211
XML
34.333328
123
0.691943
Mariuxtheone/kit-extension-sample-camerastudio/tools/packman/bootstrap/install_package.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import shutil import sys import tempfile import zipfile __author__ = "hfannar" logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") class TemporaryDirectory: def __init__(self): self.path = None def __enter__(self): self.path = tempfile.mkdtemp() return self.path def __exit__(self, type, value, traceback): # Remove temporary data created shutil.rmtree(self.path) def install_package(package_src_path, package_dst_path): with zipfile.ZipFile(package_src_path, allowZip64=True) as zip_file, TemporaryDirectory() as temp_dir: zip_file.extractall(temp_dir) # Recursively copy (temp_dir will be automatically cleaned up on exit) try: # Recursive copy is needed because both package name and version folder could be missing in # target directory: shutil.copytree(temp_dir, package_dst_path) except OSError as exc: logger.warning("Directory %s already present, packaged installation aborted" % package_dst_path) else: logger.info("Package successfully installed to %s" % package_dst_path) install_package(sys.argv[1], sys.argv[2])
1,844
Python
33.166666
108
0.703362
Mariuxtheone/kit-extension-sample-camerastudio/exts/omni.example.camerastudio/config/extension.toml
[package] # Semantic Versioning is used: https://semver.org/ version = "1.0.0" # Lists people or organizations that are considered the "authors" of the package. authors = ["NVIDIA"] # The title and description fields are primarily for displaying extension info in UI title = "Camera Studio" description="A small extension that generates Cameras based on predefined settings" # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "" # One of categories for UI. category = "Example" # Keywords for the extension keywords = ["kit", "example"] # Location of change log file in target (final) folder of extension, relative to the root. # More info on writing changelog: https://keepachangelog.com/en/1.0.0/ changelog="docs/CHANGELOG.md" # Preview image and icon. Folder named "data" automatically goes in git lfs (see .gitattributes file). # Preview image is shown in "Overview" of Extensions window. Screenshot of an extension might be a good preview image. preview_image = "data/preview.png" # Icon is shown in Extensions window, it is recommended to be square, of size 256x256. icon = "data/icon.png" # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} # Main python module this extension provides, it will be publicly available as "import omni.example.camerastudio". [[python.module]] name = "omni.example.camerastudio" [[test]] # Extra dependencies only to be used during test run dependencies = [ "omni.kit.ui_test" # UI testing extension ]
1,577
TOML
31.874999
118
0.748256
Mariuxtheone/kit-extension-sample-camerastudio/exts/omni.example.camerastudio/omni/example/camerastudio/extension.py
import omni.ext import omni.ui as ui import omni.kit.commands from .csvreader import CSVReader # Functions and vars are available to other extension as usual in python: `example.python_ext.some_public_function(x)` def some_public_function(x: int): print("[omni.example.camerastudio] some_public_function was called with x: ", x) return x ** x # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class CamerastudioExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[omni.example.camerastudio] omni example camerastudio startup") self._count = 0 self.csvreader = CSVReader() self._window = ui.Window("Camera Studio", width=300, height=250) with self._window.frame: with ui.VStack(): label = ui.Label("Click the button to import a CSV file\nwith the details to generate multiple cameras.") with ui.HStack(): ui.Button("Open File...", clicked_fn=self.csvreader.on_open_file) def on_shutdown(self): print("[omni.example.camerastudio] omni example camerastudio shutdown")
1,538
Python
39.499999
121
0.675553
Mariuxtheone/kit-extension-sample-camerastudio/exts/omni.example.camerastudio/omni/example/camerastudio/__init__.py
from .extension import *
25
Python
11.999994
24
0.76
Mariuxtheone/kit-extension-sample-camerastudio/exts/omni.example.camerastudio/omni/example/camerastudio/csvreader.py
import omni.ext import omni.ui as ui import omni.kit.commands from pxr import UsdGeom from omni.kit.window.file_importer import get_file_importer from typing import List, Tuple, Callable, Dict import csv from .cameragenerator import CameraGenerator class CSVReader(): def __init__(self): pass def import_handler(self,filename: str, dirname: str, selections: List[str] = []): print(f"> Import '{filename}' from '{dirname}' or selected files '{selections}'") self.openCSV(dirname+filename) def on_open_file(self): file_importer = get_file_importer() file_importer.show_window( title="Import File", # The callback function called after the user has selected a file. import_handler=self.import_handler ) #write a function that opens a CSV file, reads the data, and stores it in variables named shot_name, focal_length, aperture, distance def openCSV(self,selections): with open(selections) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 for row in csv_reader: if line_count == 0: line_count += 1 else: shot_name = row[0] print (f'Shot Name: {shot_name}.') focal_length = row[1] print (f'Focal Length: {focal_length}.') aperture = row[2] print (f'Aperture: {aperture}.') distance = row[3] print (f'Distance: {distance}.') #do something with the csv data. in this case, generate a camera cameraGenerator = CameraGenerator() cameraGenerator.generate_camera(str(shot_name), float(focal_length), float(aperture), float(distance)) line_count += 1
1,960
Python
34.017857
137
0.560714
Mariuxtheone/kit-extension-sample-camerastudio/exts/omni.example.camerastudio/omni/example/camerastudio/cameragenerator.py
import omni.ext import omni.ui as ui import omni.kit.commands from pxr import UsdGeom from omni.kit.window.file_importer import get_file_importer class CameraGenerator(): def __init__(self): pass def generate_camera(self, shot_name, focal_length, aperture, distance): #generate camera omni.kit.commands.execute("CreatePrimWithDefaultXform", prim_type="Camera", prim_path="/World/"+shot_name, attributes={ "projection": UsdGeom.Tokens.perspective, "focalLength": focal_length, "horizontalAperture": aperture, } ) #move camera omni.kit.commands.execute('TransformMultiPrimsSRTCpp', count=1, paths=['/World/'+shot_name], new_translations=[0, 0, distance*1000], new_rotation_eulers=[-0.0, -0.0, -0.0], new_rotation_orders=[1, 0, 2], new_scales=[1.0, 1.0, 1.0], old_translations=[0.0, 0.0, 0.0], old_rotation_eulers=[0.0, -0.0, -0.0], old_rotation_orders=[1, 0, 2], old_scales=[1.0, 1.0, 1.0], usd_context_name='', time_code=0.0)
1,526
Python
38.153845
75
0.439712
Mariuxtheone/kit-extension-sample-camerastudio/exts/omni.example.camerastudio/omni/example/camerastudio/tests/__init__.py
from .test_hello_world import *
31
Python
30.999969
31
0.774194
Mariuxtheone/kit-extension-sample-camerastudio/exts/omni.example.camerastudio/omni/example/camerastudio/tests/test_hello_world.py
# NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test # Extnsion for writing UI tests (simulate UI interaction) import omni.kit.ui_test as ui_test # Import extension python module we are testing with absolute import path, as if we are external user (other extension) import omni.example.camerastudio # Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test class Test(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): pass # After running each test async def tearDown(self): pass # Actual test, notice it is "async" function, so "await" can be used if needed async def test_hello_public_function(self): result = omni.example.camerastudio.some_public_function(4) self.assertEqual(result, 256) async def test_window_button(self): # Find a label in our window label = ui_test.find("My Window//Frame/**/Label[*]") # Find buttons in our window add_button = ui_test.find("My Window//Frame/**/Button[*].text=='Add'") reset_button = ui_test.find("My Window//Frame/**/Button[*].text=='Reset'") # Click reset button await reset_button.click() self.assertEqual(label.widget.text, "empty") await add_button.click() self.assertEqual(label.widget.text, "count: 1") await add_button.click() self.assertEqual(label.widget.text, "count: 2")
1,686
Python
34.893616
142
0.68446
Mariuxtheone/kit-extension-sample-camerastudio/exts/omni.example.camerastudio/docs/CHANGELOG.md
# Changelog The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). ## [1.0.0] - 2021-04-26 - Initial version of extension UI template with a window
178
Markdown
18.888887
80
0.702247
Mariuxtheone/kit-extension-sample-camerastudio/exts/omni.example.camerastudio/docs/README.md
# Camera Studio This extension allows to open a CSV file containing information about Camera Settings and generate in-scene Cameras accordingly. Usage: The extension generates cameras with the following settings: -Shot Name -Focal Length (in mm) -Horizontal Aperture (in mm) -Distance from the subject the camera should be placed at the scene (in meters) 1) Create your .csv file with the following header: shot_name,focal_length,aperture,distance e.g. shot_name,focal_length,aperture,distance establishing_shot,24,2.8,4 wide_shot,14,2.0,4 over_the_shoulder_shot,50,2.8,0.5 point_of_view_shot,85,2.8,0.5 low_angle_shot,24,1.8,0.5 high_angle_shot,100,2.8,1.5 2) Open the .csv file via the Extension. 3) The extension will generate the cameras in your scene with the desired shots configured.
799
Markdown
26.586206
128
0.777222
Mariuxtheone/kit-extension-sample-camerastudio/exts/omni.example.camerastudio/docs/index.rst
omni.example.camerastudio ############################# Example of Python only extension .. toctree:: :maxdepth: 1 README CHANGELOG .. automodule::"omni.example.camerastudio" :platform: Windows-x86_64, Linux-x86_64 :members: :undoc-members: :show-inheritance: :imported-members: :exclude-members: contextmanager
351
reStructuredText
15.761904
43
0.632479
Mariuxtheone/omni-openai-gpt3-snippet-extension/README.md
# NVIDIA Omniverse OpenAI GPT-3 Snippet Extension ![Screenshot](exts/omni.openai.snippet/data/screenshot.jpg) This is an Extension that adds a simple snippet UI to NVIDIA Omniverse which allows you to generate GPT-3 based snippets. ## 1) Dependencies In order to use this extension, you will need to install the following dependencies: - openai python library: `pip install openai` - pyperclip: `pip install pyperclip` ## 2) Installation 1) Install the Extension in your Omniverse app. 2) We need to create a folder to include the OPEN AI API key and the path to the main Python modules repository on our device, since Omniverse doesn't use the Python global PYTHONHOME and PYTHONPATH. 3) To do this, in the omni\openai\snippet\ folder, create a new file called `apikeys.py` 4) in the `apikeys.py` file, add the following lines: ``` apikey = "YOUR_OPENAI_API_KEY_GOES_HERE" pythonpath = "The file path where you have installed your main python modules" ``` so `apikeys.py` should look like this: ``` apikey = "sk-123Mb38gELphag234GDyYT67FJwa3334FPRZQZ2Aq5f1o" (this is a fake API key, good try!) pythonpath = "C:/Users/yourusername/AppData/Local/Packages/PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0/LocalCache/local-packages/Python310/site-packages" ``` ## 3) Enable and Usage To use the extension, enable it from the Extension Window and then click the "Generate Snippet" button. The generated snippet will be copied to your clipboard and you can past anywhere you want. ## 4) IMPORTANT DISCLAIMER 1) OpenAI is a third party API and you will need to create an account with OpenAI to use it. Consider that there's a cost associated with using the API. 2) The extension by default generate snippets up to 40 Tokens. If you want to generate more tokens, you will need to edit the variable `openaitokensresponse` 3) The extension by default uses the GPT-3 Engine "DaVinci" `text-davinci-001` which is the most powerful, but also, most expensive engine. If you want to use a different engine, you will need to edit the variable `engine` in `openai.Completion.create()`.
2,095
Markdown
43.595744
255
0.77327
Mariuxtheone/omni-openai-gpt3-snippet-extension/LICENSE.md
Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
11,357
Markdown
55.227722
77
0.73206
Mariuxtheone/omni-openai-gpt3-snippet-extension/tools/scripts/link_app.py
import os import argparse import sys import json import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,813
Python
32.5
133
0.562389
Mariuxtheone/omni-openai-gpt3-snippet-extension/tools/packman/config.packman.xml
<config remotes="cloudfront"> <remote2 name="cloudfront"> <transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" /> </remote2> </config>
211
XML
34.333328
123
0.691943
Mariuxtheone/omni-openai-gpt3-snippet-extension/tools/packman/bootstrap/install_package.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import zipfile import tempfile import sys import shutil __author__ = "hfannar" logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") class TemporaryDirectory: def __init__(self): self.path = None def __enter__(self): self.path = tempfile.mkdtemp() return self.path def __exit__(self, type, value, traceback): # Remove temporary data created shutil.rmtree(self.path) def install_package(package_src_path, package_dst_path): with zipfile.ZipFile( package_src_path, allowZip64=True ) as zip_file, TemporaryDirectory() as temp_dir: zip_file.extractall(temp_dir) # Recursively copy (temp_dir will be automatically cleaned up on exit) try: # Recursive copy is needed because both package name and version folder could be missing in # target directory: shutil.copytree(temp_dir, package_dst_path) except OSError as exc: logger.warning( "Directory %s already present, packaged installation aborted" % package_dst_path ) else: logger.info("Package successfully installed to %s" % package_dst_path) install_package(sys.argv[1], sys.argv[2])
1,888
Python
31.568965
103
0.68697
Mariuxtheone/omni-openai-gpt3-snippet-extension/exts/omni.openai.snippet/config/extension.toml
[package] # Semantic Versionning is used: https://semver.org/ version = "1.0.0" # The title and description fields are primarily for displaying extension info in UI title = "OpenAI GPT-3 Snippet Extension" description="A simple UI to generate snippet of text from OpenAI's GPT-3" # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "" # One of categories for UI. category = "Example" # Keywords for the extension keywords = ["kit", "example"] # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} # Main python module this extension provides, it will be publicly available as "import omni.hello.world". [[python.module]] name = "omni.openai.snippet"
777
TOML
25.827585
105
0.736165
Mariuxtheone/omni-openai-gpt3-snippet-extension/exts/omni.openai.snippet/omni/openai/snippet/extension.py
import omni.ext import omni.ui as ui #create a file apikeys.py in the same folder as extension.py and add 2 variables: # API_KEY: "your openai api key" # PYTHON_PATH: "the path of the python folder where the openai python library is installed" from .apikeys import apikey from .apikeys import pythonpath import pyperclip import sys sys.path.append(pythonpath) import openai #tokens used in the OpenAI API response openaitokensresponse = 40 # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class MyExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[omni.openai.snippet] MyExtension startup") self._window = ui.Window("OpenAI GPT-3 Text Generator", width=300, height=300) with self._window.frame: with ui.VStack(): prompt_label = ui.Label("Your Prompt:") prompt_field = ui.StringField(multiline=True) result_label = ui.Label("OpenAI GPT-3 Result:") label_style = {"Label": {"font_size": 16, "color": 0xFF00FF00,}} result_actual_label = ui.Label("The OpenAI generated text will show up here", style=label_style, word_wrap=True) def on_click(): # Load your API key from an environment variable or secret management service #openai.api_key = "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" openai.api_key = apikey my_prompt = prompt_field.model.get_value_as_string().replace("\n", " ") response = openai.Completion.create(engine="text-davinci-001", prompt=my_prompt, max_tokens=openaitokensresponse) #parse response as json and extract text text = response["choices"][0]["text"] pyperclip.copy(text) result_actual_label.text = "" result_actual_label.text = text ui.Button("Generate and Copy to Clipboard", clicked_fn=lambda: on_click()) def on_shutdown(self): print("[omni.openai.snippet] MyExtension shutdown")
2,609
Python
40.428571
133
0.617478
Mariuxtheone/omni-openai-gpt3-snippet-extension/exts/omni.openai.snippet/omni/openai/snippet/__init__.py
from .extension import *
26
Python
7.999997
24
0.730769
Mariuxtheone/omni-openai-gpt3-snippet-extension/exts/omni.openai.snippet/docs/README.md
# NVIDIA Omniverse OpenAI GPT-3 Snippet Extension This is an Extension that adds a simple snippet UI to NVIDIA Omniverse which allows you to generate GPT-3 based snippets. ## 1) Dependencies In order to use this extension, you will need to install the following dependencies: - openai python library: `pip install openai` - pyperclip: `pip install pyperclip` ## 2) Installation 1) Install the Extension in your Omniverse app. 2) We need to create a folder to include the OPEN AI API key and the path to the main Python modules repository on our device, since Omniverse doesn't use the Python global PYTHONHOME and PYTHONPATH. 3) To do this, in the omni\openai\snippet\ folder, create a new file called `apikeys.py` 4) in the `apikeys.py` file, add the following lines: ``` apikey = "YOUR_OPENAI_API_KEY_GOES_HERE" pythonpath = "The file path where you have installed your main python modules" ``` so `apikeys.py` should look like this: ``` apikey = "sk-123Mb38gELphag234GDyYT67FJwa3334FPRZQZ2Aq5f1o" (this is a fake API key, good try!) pythonpath = "C:/Users/yourusername/AppData/Local/Packages/PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0/LocalCache/local-packages/Python310/site-packages" ``` ## 3) Enable and Usage To use the extension, enable it from the Extension Window and then click the "Generate Snippet" button. The generated snippet will be copied to your clipboard and you can past anywhere you want. ## 4) IMPORTANT DISCLAIMER 1) OpenAI is a third party API and you will need to create an account with OpenAI to use it. Consider that there's a cost associated with using the API. 2) The extension by default generate snippets up to 40 Tokens. If you want to generate more tokens, you will need to edit the variable `openaitokensresponse` 3) The extension by default uses the GPT-3 Engine "DaVinci" `text-davinci-001` which is the most powerful, but also, most expensive engine. If you want to use a different engine, you will need to edit the variable `engine` in `openai.Completion.create()`.
2,029
Markdown
49.749999
255
0.774766
echo3Dco/NVIDIAOmniverse-echo3D-extension/README.md
# Echo3D Omniverse Extension An extension that allows Nvidia Omniverse users to easily import their echo3D assets into their projects, as well as search for new assets in the echo3D public library. Installation steps can be found at https://docs.echo3d.com/nvidia-omniverse/installation
289
Markdown
47.333325
168
0.820069
echo3Dco/NVIDIAOmniverse-echo3D-extension/tools/scripts/link_app.py
import argparse import json import os import sys import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,814
Python
32.117647
133
0.562189
echo3Dco/NVIDIAOmniverse-echo3D-extension/tools/packman/config.packman.xml
<config remotes="cloudfront"> <remote2 name="cloudfront"> <transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" /> </remote2> </config>
211
XML
34.333328
123
0.691943
echo3Dco/NVIDIAOmniverse-echo3D-extension/tools/packman/bootstrap/install_package.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import shutil import sys import tempfile import zipfile __author__ = "hfannar" logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") class TemporaryDirectory: def __init__(self): self.path = None def __enter__(self): self.path = tempfile.mkdtemp() return self.path def __exit__(self, type, value, traceback): # Remove temporary data created shutil.rmtree(self.path) def install_package(package_src_path, package_dst_path): with zipfile.ZipFile(package_src_path, allowZip64=True) as zip_file, TemporaryDirectory() as temp_dir: zip_file.extractall(temp_dir) # Recursively copy (temp_dir will be automatically cleaned up on exit) try: # Recursive copy is needed because both package name and version folder could be missing in # target directory: shutil.copytree(temp_dir, package_dst_path) except OSError as exc: logger.warning("Directory %s already present, packaged installation aborted" % package_dst_path) else: logger.info("Package successfully installed to %s" % package_dst_path) install_package(sys.argv[1], sys.argv[2])
1,844
Python
33.166666
108
0.703362
echo3Dco/NVIDIAOmniverse-echo3D-extension/exts/echo3d.search/echo3d/search/extension.py
import json import os import asyncio import ssl import certifi import aiohttp import omni.ext import omni.ui as ui import omni.kit.commands import urllib from omni.ui import color as cl # GLOBAL VARIABLES # IMAGES_PER_PAGE = 3 current_search_page = 0 current_project_page = 0 searchJsonData = [] projectJsonData = [] # UI Elements for the thumbnails search_image_widgets = [ui.Image() for _ in range(IMAGES_PER_PAGE)] project_image_widgets = [ui.Button() for _ in range(IMAGES_PER_PAGE)] # Hardcoded echo3D images script_dir = os.path.dirname(os.path.abspath(__file__)) logo_image_filename = 'echo3D_Logo.png' logo_image_path = os.path.join(script_dir, logo_image_filename) cloud_image_filename = 'cloud_background_transparent.png' cloud_image_path = os.path.join(script_dir, cloud_image_filename) # State variables to hold the style associated with each thumbnail project_button_styles = [ { "border_radius": 5, "Button.Image": { "color": cl("#FFFFFF30"), "image_url": cloud_image_path, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP } } for _ in range(IMAGES_PER_PAGE)] search_button_styles = [ { "border_radius": 5, "Button.Image": { "color": cl("#FFFFFF30"), "image_url": cloud_image_path, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP } } for _ in range(IMAGES_PER_PAGE)] arrowStyle = { ":disabled": { "background_color": cl("#1f212460") }, "Button.Label:disabled": { "color": cl("#FFFFFF40") } } ########################################################################################################### # # # An extension for Nvidia Omniverse that allows users to connect to their echo3D projects in order to # # stream their existing assets into the Omniverse Viewport, as well as search for new assets in the # # echo3D public asset library to add to their projects. # # # ########################################################################################################### class Echo3dSearchExtension(omni.ext.IExt): def on_startup(self, ext_id): print("[echo3D] echo3D startup") ############################################### # Define Functions for Search Feature # ############################################### # Load in new image thumbnails when clicks the previous/next buttons def update_search_images(searchJsonData): start_index = current_search_page * IMAGES_PER_PAGE end_index = start_index + IMAGES_PER_PAGE print(start_index) print(end_index) for i in range(start_index, end_index): if i < len(searchJsonData): search_button_styles[i % IMAGES_PER_PAGE] = {"Button.Image": { "color": cl("#FFFFFF"), "image_url": searchJsonData[i]["thumbnail"], "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } search_image_widgets[i % IMAGES_PER_PAGE].style = search_button_styles[i % IMAGES_PER_PAGE] search_image_widgets[i % IMAGES_PER_PAGE].enabled = True else: global cloud_image_path search_button_styles[i % IMAGES_PER_PAGE] = { "Button.Image": { "color": cl("#FFFFFF30"), "image_url": cloud_image_path, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } search_image_widgets[i % IMAGES_PER_PAGE].style = search_button_styles[i % IMAGES_PER_PAGE] search_image_widgets[i % IMAGES_PER_PAGE].enabled = False # Update state variables to reflect change of page, disable arrow buttons, update the thumbnails shown def on_click_left_arrow_search(): global current_search_page current_search_page -= 1 if (current_search_page == 0): searchLeftArrow.enabled = False searchRightArrow.enabled = True global searchJsonData update_search_images(searchJsonData) def on_click_right_arrow_search(): global current_search_page current_search_page += 1 global searchJsonData if ((current_search_page + 1) * IMAGES_PER_PAGE >= len(searchJsonData)): searchRightArrow.enabled = False searchLeftArrow.enabled = True update_search_images(searchJsonData) async def on_click_search_image(index): global searchJsonData global current_search_page selectedEntry = searchJsonData[current_search_page * IMAGES_PER_PAGE + index] url = selectedEntry["glb_location_url"] filename = selectedEntry["name"] + '.glb' folder_path = os.path.join(os.path.dirname(__file__), "temp_files") file_path = os.path.join(folder_path, filename) if not os.path.exists(folder_path): os.makedirs(folder_path) async with aiohttp.ClientSession() as session: async with session.get(url) as response: response.raise_for_status() content = await response.read() with open(file_path, "wb") as file: file.write(content) omni.kit.commands.execute('CreateReferenceCommand', path_to='/World/' + os.path.splitext(filename)[0].replace(" ", "_"), asset_path=file_path, usd_context=omni.usd.get_context()) api_url = "https://api.echo3d.com/upload" data = { "key": apiKeyInput.model.get_value_as_string(), "secKey": secKeyInput.model.get_value_as_string(), "data": "filePath:null", "type": "upload", "target_type": "2", "hologram_type": "2", "file_size": str(os.path.getsize(file_path)), "file_model": open(file_path, "rb") } async with session.post(url=api_url, data=data) as uploadRequest: uploadRequest.raise_for_status() # Call the echo3D /search endpoint to get models and display the resulting thumbnails def on_click_search(): global current_search_page current_search_page = 0 searchLeftArrow.enabled = False searchRightArrow.enabled = False searchTerm = searchInput.model.get_value_as_string() api_url = "https://api.echo3d.com/search" data = { "key": apiKeyInput.model.get_value_as_string(), "secKey": secKeyInput.model.get_value_as_string(), "keywords": searchTerm, "include2Dcontent": "false" } encoded_data = urllib.parse.urlencode(data).encode('utf-8') request = urllib.request.Request(api_url, data=encoded_data) response = urllib.request.urlopen(request, context=ssl.create_default_context(cafile=certifi.where())) librarySearchRequest = response.read().decode('utf-8') global searchJsonData searchJsonData = json.loads(librarySearchRequest) searchJsonData = [data for data in searchJsonData if "glb_location_url" in data and data["source"] == 'poly'] global search_image_widgets global search_button_styles for i in range(IMAGES_PER_PAGE): if i < len(searchJsonData): search_button_styles[i] = { "Button.Image": { "color": cl("#FFFFFF"), "image_url": searchJsonData[i]["thumbnail"], "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } search_image_widgets[i].style = search_button_styles[i] search_image_widgets[i].enabled = True searchRightArrow.enabled = len(searchJsonData) > IMAGES_PER_PAGE else: global cloud_image_path search_button_styles[i] = { "Button.Image": { "color": cl("#FFFFFF30"), "image_url": cloud_image_path, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } search_image_widgets[i].style = search_button_styles[i] search_image_widgets[i].enabled = False # Clear all the thumbnails and search term def on_reset_search(): global current_search_page current_search_page = 0 searchInput.model.set_value("") global search_image_widgets for i in range(IMAGES_PER_PAGE): global cloud_image_path search_button_styles[i] = { "Button.Image": { "color": cl("#FFFFFF30"), "image_url": cloud_image_path, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } search_image_widgets[i].style = search_button_styles[i] search_image_widgets[i].enabled = False ################################################# # Define Functions for Project Querying # ################################################# # Load in new image thumbnails when clicks the previous/next buttons def update_project_images(projectJsonData): start_index = current_project_page * IMAGES_PER_PAGE end_index = start_index + IMAGES_PER_PAGE for i in range(start_index, end_index): if i < len(projectJsonData): baseUrl = 'https://storage.echo3d.co/' + apiKeyInput.model.get_value_as_string() + "/" imageFilename = projectJsonData[i]["additionalData"]["screenshotStorageID"] project_button_styles[i % IMAGES_PER_PAGE] = {"Button.Image": { "color": cl("#FFFFFF"), "image_url": baseUrl + imageFilename, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } project_image_widgets[i % IMAGES_PER_PAGE].style = project_button_styles[i % IMAGES_PER_PAGE] project_image_widgets[i % IMAGES_PER_PAGE].enabled = True else: global cloud_image_path project_button_styles[i % IMAGES_PER_PAGE] = { "Button.Image": { "color": cl("#FFFFFF30"), "image_url": cloud_image_path, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } project_image_widgets[i % IMAGES_PER_PAGE].style = project_button_styles[i % IMAGES_PER_PAGE] project_image_widgets[i % IMAGES_PER_PAGE].enabled = False # Update state variables to reflect change of page, disable arrow buttons, update the thumbnails shown def on_click_left_arrow_project(): global current_project_page current_project_page -= 1 if (current_project_page == 0): projectLeftArrow.enabled = False projectRightArrow.enabled = True global projectJsonData update_project_images(projectJsonData) def on_click_right_arrow_project(): global current_project_page current_project_page += 1 global projectJsonData if ((current_project_page + 1) * IMAGES_PER_PAGE >= len(projectJsonData)): projectRightArrow.enabled = False projectLeftArrow.enabled = True update_project_images(projectJsonData) # When a user clicks a thumbnail, download the corresponding .usdz file if it exists and # instantiate it in the scene. Otherwise use the .glb file def on_click_project_image(index): global projectJsonData global current_project_page selectedEntry = projectJsonData[current_project_page * IMAGES_PER_PAGE + index] usdzStorageID = selectedEntry["additionalData"]["usdzHologramStorageID"] usdzFilename = selectedEntry["additionalData"]["usdzHologramStorageFilename"] if (usdzFilename): open_project_asset_from_filename(usdzFilename, usdzStorageID) else: glbStorageID = selectedEntry["hologram"]["storageID"] glbFilename = selectedEntry["hologram"]["filename"] open_project_asset_from_filename(glbFilename, glbStorageID) # Directly instantiate previously cached files from the session, or download them from the echo3D API def open_project_asset_from_filename(filename, storageId): folder_path = os.path.join(os.path.dirname(__file__), "temp_files") if not os.path.exists(folder_path): os.makedirs(folder_path) file_path = os.path.join(folder_path, filename) cachedUpload = os.path.exists(file_path) if (not cachedUpload): apiKey = apiKeyInput.model.get_value_as_string() secKey = secKeyInput.model.get_value_as_string() storageId = urllib.parse.quote(storageId) url = f'https://api.echo3d.com/query?key={apiKey}&secKey={secKey}&file={storageId}' response = urllib.request.urlopen(url, context=ssl.create_default_context(cafile=certifi.where())) response_data = response.read() with open(file_path, "wb") as file: file.write(response_data) omni.kit.commands.execute('CreateReferenceCommand', path_to='/World/' + os.path.splitext(filename)[0], asset_path=file_path, usd_context=omni.usd.get_context()) # Call the echo3D /query endpoint to get models and display the resulting thumbnails def on_click_load_project(): global current_project_page current_project_page = 0 projectLeftArrow.enabled = False projectRightArrow.enabled = False api_url = "https://api.echo3d.com/query" data = { "key": apiKeyInput.model.get_value_as_string(), "secKey": secKeyInput.model.get_value_as_string(), } encoded_data = urllib.parse.urlencode(data).encode('utf-8') request = urllib.request.Request(api_url, data=encoded_data) try: with urllib.request.urlopen(request, context=ssl.create_default_context(cafile=certifi.where())) as response: response_data = response.read().decode('utf-8') response_json = json.loads(response_data) values = list(response_json["db"].values()) entriesWithScreenshot = [data for data in values if "additionalData" in data and "screenshotStorageID" in data["additionalData"]] global projectJsonData projectJsonData = entriesWithScreenshot global project_image_widgets global project_button_styles sampleModels = ["6af76ce2-2f57-4ed0-82d8-42652f0eddbe.png", "d2398ecf-566b-4fde-b8cb-46b2fd6add1d.png", "d686a655-e800-430d-bfd2-e38cdfb0c9e9.png"] for i in range(IMAGES_PER_PAGE): if i < len(projectJsonData): imageFilename = projectJsonData[i]["additionalData"]["screenshotStorageID"] if (imageFilename in sampleModels): baseUrl = 'https://storage.echo3d.co/0_model_samples/' else: baseUrl = 'https://storage.echo3d.co/' + apiKeyInput.model.get_value_as_string() + "/" project_button_styles[i] = { "Button.Image": { "color": cl("#FFFFFF"), "image_url": baseUrl + imageFilename, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } project_image_widgets[i].style = project_button_styles[i] project_image_widgets[i].enabled = True projectRightArrow.enabled = len(projectJsonData) > IMAGES_PER_PAGE else: global cloud_image_path project_button_styles[i] = { "Button.Image": { "color": cl("#FFFFFF30"), "image_url": cloud_image_path, "alignment": ui.Alignment.CENTER, "fill_policy": ui.FillPolicy.PRESERVE_ASPECT_CROP }, "border_radius": 5 } project_image_widgets[i].style = project_button_styles[i] project_image_widgets[i].enabled = False searchButton.enabled = True clearButton.enabled = True searchInput.enabled = True disabledStateCover.style = {"background_color": cl("#32343400")} loadError.visible = False except Exception as e: loadError.visible = True print(str(e) + ". Ensure that your API Key and Security Key are entered correctly.") # Display the UI self._window = ui.Window("Echo3D", width=400, height=478) with self._window.frame: with ui.VStack(): script_dir = os.path.dirname(os.path.abspath(__file__)) logo_image_filename = 'echo3D_Logo.png' logo_image_path = os.path.join(script_dir, logo_image_filename) ui.Spacer(height=5) with ui.Frame(height=25): ui.Image(logo_image_path) ui.Spacer(height=8) with ui.HStack(height=20): ui.Spacer(width=5) with ui.Frame(width=85): ui.Label("API Key:") apiKeyInput = ui.StringField() ui.Spacer(width=5) ui.Spacer(height=3) with ui.HStack(height=20): ui.Spacer(width=5) with ui.Frame(width=85): ui.Label("Security Key:") secKeyInput = ui.StringField() with ui.Frame(width=5): ui.Label("") ui.Spacer(height=3) with ui.Frame(height=20): ui.Button("Load Project", clicked_fn=on_click_load_project) loadError = ui.Label("Error: Cannot Load Project. Correct your keys and try again.", visible=False, height=20, style={"color": cl("#FF0000")}, alignment=ui.Alignment.CENTER) ui.Spacer(height=3) # Overlay the disabled elements to indicate their state with ui.ZStack(): with ui.VStack(): with ui.HStack(height=5): ui.Spacer(width=5) ui.Line(name='default', style={"color": cl.gray}) ui.Spacer(width=5) ui.Spacer(height=3) with ui.HStack(height=20): ui.Spacer(width=5) ui.Label("Assets in Project:") global project_image_widgets with ui.HStack(height=80): with ui.Frame(height=80, width=10): projectLeftArrow = ui.Button("<", clicked_fn=on_click_left_arrow_project, enabled=False, style=arrowStyle) for i in range(IMAGES_PER_PAGE): with ui.Frame(height=80): project_image_widgets[i] = ui.Button("", clicked_fn=lambda index=i: on_click_project_image(index), style=project_button_styles[i], enabled=False) with ui.Frame(height=80, width=10): projectRightArrow = ui.Button(">", clicked_fn=on_click_right_arrow_project, enabled=False, style=arrowStyle) ui.Spacer(height=10) with ui.HStack(height=5): ui.Spacer(width=5) ui.Line(name='default', style={"color": cl.gray}) ui.Spacer(width=5) ui.Spacer(height=5) with ui.HStack(height=20): ui.Spacer(width=5) ui.Label("Public Search Results:") global search_image_widgets with ui.HStack(height=80): with ui.Frame(height=80, width=10): searchLeftArrow = ui.Button("<", clicked_fn=on_click_left_arrow_search, enabled=False, style=arrowStyle) for i in range(IMAGES_PER_PAGE): with ui.Frame(height=80): search_image_widgets[i] = ui.Button("", clicked_fn=lambda idx=i: asyncio.ensure_future( on_click_search_image(idx)), style=search_button_styles[i], enabled=False) with ui.Frame(height=80, width=10): searchRightArrow = ui.Button(">", clicked_fn=on_click_right_arrow_search, enabled=False, style=arrowStyle) ui.Spacer(height=10) with ui.HStack(height=20): ui.Spacer(width=5) with ui.Frame(width=85): ui.Label("Keywords:") searchInput = ui.StringField(enabled=False) with ui.Frame(width=5): ui.Label("") ui.Spacer(height=5) with ui.VStack(): with ui.Frame(height=20): searchButton = ui.Button("Search", clicked_fn=on_click_search, enabled=False) with ui.Frame(height=20): clearButton = ui.Button("Clear", clicked_fn=on_reset_search, enabled=False) disabledStateCover = ui.Rectangle(style={"background_color": cl("#323434A0")}, height=500) def on_shutdown(self): # Clear all temporary download files folder_path = os.path.join(os.path.dirname(__file__), "temp_files") if os.path.exists(folder_path): file_list = os.listdir(folder_path) for file_name in file_list: file_path = os.path.join(folder_path, file_name) if os.path.isfile(file_path): os.remove(file_path) print("[echo3D] echo3D shutdown")
26,601
Python
49.670476
120
0.477012
echo3Dco/NVIDIAOmniverse-echo3D-extension/exts/echo3d.search/echo3d/search/__init__.py
from .extension import *
25
Python
11.999994
24
0.76
echo3Dco/NVIDIAOmniverse-echo3D-extension/exts/echo3d.search/echo3d/search/tests/__init__.py
from .test_hello_world import *
31
Python
30.999969
31
0.774194
echo3Dco/NVIDIAOmniverse-echo3D-extension/exts/echo3d.search/echo3d/search/tests/test_hello_world.py
# NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test # Extnsion for writing UI tests (simulate UI interaction) import omni.kit.ui_test as ui_test # Import extension python module we are testing with absolute import path, as if we are external user (other extension) import echo3d.search # Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test class Test(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): pass # After running each test async def tearDown(self): pass # Actual test, notice it is "async" function, so "await" can be used if needed async def test_hello_public_function(self): result = echo3d.search.some_public_function(4) self.assertEqual(result, 256) async def test_window_button(self): # Find a label in our window label = ui_test.find("My Window//Frame/**/Label[*]") # Find buttons in our window add_button = ui_test.find("My Window//Frame/**/Button[*].text=='Add'") reset_button = ui_test.find("My Window//Frame/**/Button[*].text=='Reset'") # Click reset button await reset_button.click() self.assertEqual(label.widget.text, "empty") await add_button.click() self.assertEqual(label.widget.text, "count: 1") await add_button.click() self.assertEqual(label.widget.text, "count: 2")
1,662
Python
34.382978
142
0.681107
echo3Dco/NVIDIAOmniverse-echo3D-extension/exts/echo3d.search/config/extension.toml
[package] # Semantic Versioning is used: https://semver.org/ version = "1.0.0" # Lists people or organizations that are considered the "authors" of the package. authors = ["echo3D"] # The title and description fields are primarily for displaying extension info in UI title = "echo3d Connector" description="Manage and search 3D assets in your Omniverse experiences with the echo3D Connector.." # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "" # One of categories for UI. category = "Services" # Keywords for the extension keywords = ["kit", "services", "search", "library", "startup"] # Location of change log file in target (final) folder of extension, relative to the root. # More info on writing changelog: https://keepachangelog.com/en/1.0.0/ changelog="docs/CHANGELOG.md" # Preview image and icon. Folder named "data" automatically goes in git lfs (see .gitattributes file). # Preview image is shown in "Overview" of Extensions window. Screenshot of an extension might be a good preview image. preview_image = "data/preview.png" # Icon is shown in Extensions window, it is recommended to be square, of size 256x256. icon = "data/icon.png" # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} # Main python module this extension provides, it will be publicly available as "import echo3d.search". [[python.module]] name = "echo3d.search" [[test]] # Extra dependencies only to be used during test run dependencies = [ "omni.kit.ui_test" # UI testing extension ]
1,606
TOML
32.479166
118
0.743462
echo3Dco/NVIDIAOmniverse-echo3D-extension/exts/echo3d.search/docs/CHANGELOG.md
# Changelog The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). ## [1.0.0] - 2021-04-26 - Initial version of extension UI template with a window
178
Markdown
18.888887
80
0.702247
echo3Dco/NVIDIAOmniverse-echo3D-extension/exts/echo3d.search/docs/README.md
# echo3D Connector [echo3d.search] Manage and search 3D assets in your Omniverse experiences with the echo3D Connector. echo3D is a cloud platform for 3D asset management that provides tools and server-side infrastructure to help developers & companies manage and deploy 3D/AR/VR assets. echo3D offers a 3D-first content management system (CMS) and delivery network (CDN) that enables developers to build a 3D/AR/VR app backend in minutes and allows content creators to easily manage and publish 3D content to their Omniverse experience without involving development teams. ### Connecting an echo3D Project To begin, copy your echo3D API Key and Secret Key (if enabled) into the corresponding boxes in the Omniverse Extension. The API Key can be found in the header of the echo3D console, and the Secret Key can be found on the Security Tab of the Settings Page of the console. ### Loading Assets Simply click any of your project assets to add them to the Omniverse Viewer Additionally, you can search for publicly available assets by entering a keyword into the search bar. Note that clicking on them and importing them into the Omniverse Viewer will also automatically upload the asset to your echo3D project. ### Any other questions? - Reach out to [email protected] - or join at https://go.echo3d.co/join ### License This asset is governed by the license agreement at echo3D.com/terms. ### Preview
1,411
Markdown
57.833331
285
0.796598
echo3Dco/NVIDIAOmniverse-echo3D-extension/exts/echo3d.search/docs/index.rst
echo3d.search ############################# Example of Python only extension .. toctree:: :maxdepth: 1 README CHANGELOG .. automodule::"echo3d.search" :platform: Windows-x86_64, Linux-x86_64 :members: :undoc-members: :show-inheritance: :imported-members: :exclude-members: contextmanager
327
reStructuredText
14.619047
43
0.611621
ngzhili/SynTable/visualize_annotations.py
""" Visualises SynTable generated annotations: """ # Run python ./visualize_annotations.py --dataset './sample_data' --ann_json './sample_data/annotation_final.json' import json import cv2 import numpy as np import os, shutil import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib import pyplot as plt from PIL import Image import networkx as nx import argparse import pycocotools.mask as mask_util from matplotlib.colors import ListedColormap import seaborn as sns import matplotlib.patches as mpatches # visualize annotations def apply_mask(image, mask): # Convert to numpy arrays image = np.array(image) mask = np.array(mask) # Convert grayscale image to RGB mask = np.stack((mask,)*3, axis=-1) # Multiply arrays rgb_result= image*mask # First create the image with alpha channel rgba = cv2.cvtColor(rgb_result, cv2.COLOR_RGB2RGBA) # Then assign the mask to the last channel of the image # rgba[:, :, 3] = alpha_data # Make image transparent white anywhere it is transparent rgba[rgba[...,-1]==0] = [255,255,255,0] return rgba def compute_occluded_masks(mask1, mask2): """Computes occlusions between two sets of masks. masks1, masks2: [Height, Width, instances] """ # If either set of masks is empty return empty result #if masks1.shape[-1] == 0 or masks2.shape[-1] == 0: #return np.zeros((masks1.shape[-1], masks2.shape[-1])) # flatten masks and compute their areas #masks1 = np.reshape(masks1 > .5, (-1, masks1.shape[-1])).astype(np.float32) #masks2 = np.reshape(masks2 > .5, (-1, masks2.shape[-1])).astype(np.float32) #area1 = np.sum(masks1, axis=0) #area2 = np.sum(masks2, axis=0) # intersections and union #intersections_mask = np.dot(masks1.T, masks2) mask1_area = np.count_nonzero( mask1 ) mask2_area = np.count_nonzero( mask2 ) intersection_mask = np.logical_and( mask1, mask2 ) intersection = np.count_nonzero( np.logical_and( mask1, mask2 ) ) iou = intersection/(mask1_area+mask2_area-intersection) return iou, intersection_mask.astype(float) def convert_png(image): image = Image.fromarray(np.uint8(image)) image = image.convert('RGBA') # Transparency newImage = [] for item in image.getdata(): if item[:3] == (0, 0, 0): newImage.append((0, 0, 0, 0)) else: newImage.append(item) image.putdata(newImage) return image def rle2mask(mask_rle, shape=(480,640)): ''' mask_rle: run-length as string formated (start length) shape: (width,height) of array to return Returns numpy array, 1 - mask, 0 - background ''' s = mask_rle.split() starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])] starts -= 1 ends = starts + lengths img = np.zeros(shape[0]*shape[1], dtype=np.uint8) for lo, hi in zip(starts, ends): img[lo:hi] = 1 return img.reshape(shape).T def segmToRLE(segm, img_size): h, w = img_size if type(segm) == list: # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = maskUtils.frPyObjects(segm, h, w) rle = maskUtils.merge(rles) elif type(segm["counts"]) == list: # uncompressed RLE rle = maskUtils.frPyObjects(segm, h, w) else: # rle rle = segm return rle # Convert 1-channel groundtruth data to visualization image data def normalize_greyscale_image(image_data): image_data = np.reciprocal(image_data) image_data[image_data == 0.0] = 1e-5 image_data = np.clip(image_data, 0, 255) image_data -= np.min(image_data) if np.max(image_data) > 0: image_data /= np.max(image_data) image_data *= 255 image_data = image_data.astype(np.uint8) return image_data if __name__ == '__main__': parser = argparse.ArgumentParser(description='Visualise Annotations') parser.add_argument('--dataset', type=str, help='dataset to visualise') parser.add_argument('--ann_json', type=str, help='dataset annotation to visualise') args = parser.parse_args() data_dir = args.dataset ann_json = args.ann_json # Opening JSON file f = open(ann_json) # returns JSON object as a dictionary data = json.load(f) f.close() referenceDict = {} for i, ann in enumerate(data['annotations']): image_id = ann["image_id"] ann_id = ann["id"] # print(ann_id) if image_id not in referenceDict: referenceDict.update({image_id:{"rgb":None,"depth":None, "amodal":[], "visible":[], "occluded":[],"occluded_rate":[],"category_id":[],"object_name":[]}}) # print(referenceDict) referenceDict[image_id].update({"rgb":data["images"][i]["file_name"]}) referenceDict[image_id].update({"depth":data["images"][i]["depth_file_name"]}) # referenceDict[image_id].update({"occlusion_order":data["images"][i]["occlusion_order_file_name"]}) referenceDict[image_id]["amodal"].append(ann["segmentation"]) referenceDict[image_id]["visible"].append(ann["visible_mask"]) referenceDict[image_id]["occluded"].append(ann["occluded_mask"]) referenceDict[image_id]["occluded_rate"].append(ann["occluded_rate"]) referenceDict[image_id]["category_id"].append(ann["category_id"]) # referenceDict[image_id]["object_name"].append(ann["object_name"]) else: # if not (referenceDict[image_id]["rgb"] or referenceDict[image_id]["depth"]): # referenceDict[image_id].update({"rgb":data["images"][i]["file_name"]}) # referenceDict[image_id].update({"depth":data["images"][i]["depth_file_name"]}) referenceDict[image_id]["amodal"].append(ann["segmentation"]) referenceDict[image_id]["visible"].append(ann["visible_mask"]) referenceDict[image_id]["occluded"].append(ann["occluded_mask"]) referenceDict[image_id]["occluded_rate"].append(ann["occluded_rate"]) referenceDict[image_id]["category_id"].append(ann["category_id"]) # referenceDict[image_id]["object_name"].append(ann["object_name"]) # Create visualise directory vis_dir = os.path.join(data_dir,"visualise_dataset") if os.path.exists(vis_dir): # remove contents if exist for filename in os.listdir(vis_dir): file_path = os.path.join(vis_dir, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as e: print('Failed to delete %s. Reason: %s' % (file_path, e)) else: os.makedirs(vis_dir) # query_img_id_list = [1,50,100] query_img_id_list = [i for i in range(1,len(referenceDict)+1)] # visualise all images for id in query_img_id_list: if id in referenceDict: ann_dic = referenceDict[id] vis_dir_img = os.path.join(vis_dir,str(id)) if not os.path.exists(vis_dir_img): os.makedirs(vis_dir_img) # visualise rgb image rgb_path = os.path.join(data_dir,ann_dic["rgb"]) rgb_img = cv2.imread(rgb_path, cv2.IMREAD_UNCHANGED) # visualise depth image depth_path = os.path.join(data_dir,ann_dic["depth"]) from PIL import Image im = Image.open(depth_path) im = np.array(im) depth_img = Image.fromarray(normalize_greyscale_image(im.astype("float32"))) file = os.path.join(vis_dir_img,f"depth_{id}.png") depth_img.save(file, "PNG") # visualise occlusion masks on rgb image occ_img_list = ann_dic["occluded"] if len(occ_img_list) > 0: occ_img = rgb_img.copy() overlay = rgb_img.copy() combined_mask = np.zeros((occ_img.shape[0],occ_img.shape[1])) # iterate through all occlusion masks for i, occMask in enumerate(occ_img_list): occluded_mask = mask_util.decode(occMask) if ann_dic["category_id"][i] == 0: occ_img_back = rgb_img.copy() overlay_back = rgb_img.copy() occluded_mask = occluded_mask.astype(bool) # boolean mask overlay_back[occluded_mask] = [0, 0, 255] # print(np.unique(occluded_mask)) alpha =0.5 occ_img_back = cv2.addWeighted(overlay_back, alpha, occ_img_back, 1 - alpha, 0, occ_img_back) occ_save_path = f"{vis_dir_img}/rgb_occlusion_{id}_background.png" cv2.imwrite(occ_save_path, occ_img_back) else: combined_mask += occluded_mask combined_mask = combined_mask.astype(bool) # boolean mask overlay[combined_mask] = [0, 0, 255] alpha =0.5 occ_img = cv2.addWeighted(overlay, alpha, occ_img, 1 - alpha, 0, occ_img) occ_save_path = f"{vis_dir_img}/rgb_occlusion_{id}.png" cv2.imwrite(occ_save_path, occ_img) combined_mask = combined_mask.astype('uint8') occ_save_path = f"{vis_dir_img}/occlusion_mask_{id}.png" cv2.imwrite(occ_save_path, combined_mask*255) cols = 4 rows = len(occ_img_list) // cols + 1 from matplotlib import pyplot as plt fig = plt.figure(figsize=(20,10)) for index, occMask in enumerate(occ_img_list): occ_mask = mask_util.decode(occMask) plt.subplot(rows,cols, index+1) plt.axis('off') # plt.title(ann_dic["object_name"][index]) plt.imshow(occ_mask) plt.tight_layout() plt.suptitle(f"Occlusion Masks for {id}.png") # plt.show() plt.savefig(f'{vis_dir_img}/occ_masks_{id}.png') plt.close() # visualise visible masks on rgb image vis_img_list = ann_dic["visible"] if len(vis_img_list) > 0: vis_img = rgb_img.copy() overlay = rgb_img.copy() # iterate through all occlusion masks for i, visMask in enumerate(vis_img_list): visible_mask = mask_util.decode(visMask) if ann_dic["category_id"][i] == 0: vis_img_back = rgb_img.copy() overlay_back = rgb_img.copy() visible_mask = visible_mask.astype(bool) # boolean mask overlay_back[visible_mask] = [0, 0, 255] alpha =0.5 vis_img_back = cv2.addWeighted(overlay_back, alpha, vis_img_back, 1 - alpha, 0, vis_img_back) vis_save_path = f"{vis_dir_img}/rgb_visible_mask_{id}_background.png" cv2.imwrite(vis_save_path, vis_img_back) else: vis_combined_mask = visible_mask.astype(bool) # boolean mask colour = list(np.random.choice(range(256), size=3)) overlay[vis_combined_mask] = colour alpha = 0.5 vis_img = cv2.addWeighted(overlay, alpha, vis_img, 1 - alpha, 0, vis_img) vis_save_path = f"{vis_dir_img}/rgb_visible_mask_{id}.png" cv2.imwrite(vis_save_path,vis_img) cols = 4 rows = len(vis_img_list) // cols + 1 # print(len(amodal_img_list)) # print(cols,rows) from matplotlib import pyplot as plt fig = plt.figure(figsize=(20,10)) for index, visMask in enumerate(vis_img_list): vis_mask = mask_util.decode(visMask) plt.subplot(rows,cols, index+1) plt.axis('off') # plt.title(ann_dic["object_name"][index]) plt.imshow(vis_mask) plt.tight_layout() plt.suptitle(f"Visible Masks for {id}.png") # plt.show() plt.savefig(f'{vis_dir_img}/vis_masks_{id}.png') plt.close() # visualise amodal masks # img_dir_path = f"{output_dir}/visualize_occlusion_masks/" # img_list = sorted(os.listdir(img_dir_path), key=lambda x: float(x[4:-4])) amodal_img_list = ann_dic["amodal"] if len(amodal_img_list) > 0: cols = 4 rows = len(amodal_img_list) // cols + 1 # print(len(amodal_img_list)) # print(cols,rows) from matplotlib import pyplot as plt fig = plt.figure(figsize=(20,10)) for index, amoMask in enumerate(amodal_img_list): amodal_mask = mask_util.decode(amoMask) plt.subplot(rows,cols, index+1) plt.axis('off') # plt.title(ann_dic["object_name"][index]) plt.imshow(amodal_mask) plt.tight_layout() plt.suptitle(f"Amodal Masks for {id}.png") # plt.show() plt.savefig(f'{vis_dir_img}/amodal_masks_{id}.png') plt.close() # get rgb_path rgb_path = os.path.join(data_dir,ann_dic["rgb"]) rgb_img = cv2.imread(rgb_path, cv2.IMREAD_UNCHANGED) occ_order = False if occ_order: # get occlusion order adjacency matrix npy_path = os.path.join(data_dir,ann_dic["occlusion_order"]) occlusion_order_adjacency_matrix = np.load(npy_path) print(f"Calculating Directed Graph for Scene:{id}") # vis_img = cv2.imread(f"{vis_dir}/visuals/{scene_index}.png", cv2.IMREAD_UNCHANGED) rows = cols = len(ann_dic["visible"]) # number of objects obj_rgb_mask_list = [] for i in range(1,len(ann_dic["visible"])+1): visMask = ann_dic["visible"][i-1] visible_mask = mask_util.decode(visMask) rgb_crop = apply_mask(rgb_img, visible_mask) rgb_crop = convert_png(rgb_crop) def bbox(im): a = np.array(im)[:,:,:3] # keep RGB only m = np.any(a != [0,0,0], axis=2) coords = np.argwhere(m) y0, x0, y1, x1 = *np.min(coords, axis=0), *np.max(coords, axis=0) return (x0, y0, x1+1, y1+1) # print(bbox(rgb_crop)) obj_rgb_mask = rgb_crop.crop(bbox(rgb_crop)) obj_rgb_mask_list.append(obj_rgb_mask) # add obj_rgb_mask # get contours (presumably just one around the nonzero pixels) # for instance segmentation mask # contours = cv2.findContours(visible_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # contours = contours[0] if len(contours) == 2 else contours[1] # for cntr in contours: # x,y,w,h = cv2.boundingRect(cntr) # cv2.putText(img=vis_img, text=str(i), org=(x+w//2, y+h//2), fontFace=cv2.FONT_HERSHEY_TRIPLEX, fontScale=0.5, color=(0, 0, 0),thickness=1) """ === Generate Directed Graph === """ # print("Occlusion Order Adjacency Matrix:\n",occlusion_order_adjacency_matrix) # f, (ax1,ax2) = plt.subplots(1,2) # show_graph_with_labels(overlap_adjacency_matrix,ax1) labels = [i for i in range(1,len(occlusion_order_adjacency_matrix)+1)] labels_dict = {} for i in range(len(occlusion_order_adjacency_matrix)): labels_dict.update({i:labels[i]}) rows, cols = np.where(occlusion_order_adjacency_matrix == 1) rows += 1 cols += 1 edges = zip(rows.tolist(), cols.tolist()) nodes_list = [i for i in range(1, len(occlusion_order_adjacency_matrix)+1)] # Initialise directed graph G G = nx.DiGraph() G.add_nodes_from(nodes_list) G.add_edges_from(edges) # pos=nx.spring_layout(G,k=1/sqrt(N)) is_planar, P = nx.check_planarity(G) if is_planar: pos=nx.planar_layout(G) else: # pos=nx.draw(G) N = len(G.nodes()) pos=nx.spring_layout(G,k=3/sqrt(N)) print("Nodes:",G.nodes()) print("Edges:",G.edges()) # print(G.in_edges()) # print(G.out_edges()) # get start nodes start_nodes = [node for (node,degree) in G.in_degree if degree == 0] print("start_nodes:",start_nodes) # get end nodes end_nodes = [node for (node,degree) in G.out_degree if degree == 0] for node in end_nodes: if node in start_nodes: end_nodes.remove(node) print("end_nodes:",end_nodes) # get intermediate notes intermediate_nodes = [i for i in nodes_list if i not in (start_nodes) and i not in (end_nodes)] print("intermediate_nodes:",intermediate_nodes) print("(Degree of clustering) Number of Weakly Connected Components:",nx.number_weakly_connected_components(G)) # largest_wcc = max(nx.weakly_connected_components(G), key=len) # largest_wcc_size = len(largest_wcc) # print("(Scene Complexity) Sizes of Weakly Connected Component:",largest_wcc_size) wcc_list = list(nx.weakly_connected_components(G)) wcc_len = [] for component in wcc_list: wcc_len.append(len(component)) print("(Scene Complexity/Degree of overlapping regions) Sizes of Weakly Connected Components:",wcc_len) dag_longest_path_length = nx.dag_longest_path_length(G) print("(Minimum no. of depth layers to order all regions in WCC) Longest directed path of Weakly Connected Components:",dag_longest_path_length) # nx.draw(gr, node_size=500, with_labels=True) node_color_list = [] node_size_list = [] for node in nodes_list: if node in start_nodes: node_color_list.append('green') node_size_list.append(500) elif node in end_nodes: node_color_list.append('yellow') node_size_list.append(300) else: node_color_list.append('#1f78b4') node_size_list.append(300) options = { 'node_color': node_color_list, 'node_size': node_size_list, 'width': 1, 'arrowstyle': '-|>', 'arrowsize': 10 } fig1 = plt.figure(figsize=(20, 6), dpi=80) plt.subplot(1,3,1) # nx.draw_planar(G, pos, with_labels = True, arrows=True, **options) nx.draw_networkx(G,pos, with_labels= True, arrows=True, **options) dag = nx.is_directed_acyclic_graph(G) print(f"Is Directed Acyclic Graph (DAG)?: {dag}") colors = ["green", "#1f78b4", "yellow"] texts = ["Top Layer", "Intermediate Layers", "Bottom Layer"] patches = [ plt.plot([],[], marker="o", ms=10, ls="", mec=None, color=colors[i], label="{:s}".format(texts[i]) )[0] for i in range(len(texts)) ] plt.legend(handles=patches, bbox_to_anchor=(0.5, -0.05), loc='center', ncol=3, fancybox=True, shadow=True, facecolor="w", numpoints=1, fontsize=10) plt.title("Directed Occlusion Order Graph") # plt.subplot(1,2,2) # plt.imshow(vis_img) # plt.imshow(vis_img) # plt.title(f"Visible Masks Scene {scene_index}") plt.axis('off') # plt.show() # plt.savefig(f"{output_dir}/vis_img_{i}.png") # cv2.imwrite(f"{output_dir}/scene_{scene_index}.png", vis_img) # plt.show() # fig2 = plt.figure(figsize=(16, 6), dpi=80) plt.subplot(1,3,2) options = { 'node_color': "white", # 'node_size': node_size_list, 'width': 1, 'arrowstyle': '-|>', 'arrowsize': 10 } # nx.draw_networkx(G, arrows=True, **options) # nx.draw(G, with_labels = True,arrows=True, connectionstyle='arc3, rad = 0.1') # nx.draw_spring(G, with_labels = True,arrows=True, connectionstyle='arc3, rad = 0.5') N = len(G.nodes()) from math import sqrt if is_planar: pos=nx.planar_layout(G) else: # pos=nx.draw(G) N = len(G.nodes()) pos=nx.spring_layout(G,k=3/sqrt(N)) nx.draw_networkx(G,pos, with_labels= False, arrows=True, **options) plt.title("Visualisation of Occlusion Order Graph") # draw with images on nodes # nx.draw_networkx(G,pos,width=3,edge_color="r",alpha=0.6) ax=plt.gca() fig=plt.gcf() trans = ax.transData.transform trans2 = fig.transFigure.inverted().transform imsize = 0.05 # this is the image size node_size_list = [] for n in G.nodes(): (x,y) = pos[n] xx,yy = trans((x,y)) # figure coordinates xa,ya = trans2((xx,yy)) # axes coordinates # a = plt.axes([xa-imsize/2.0,ya-imsize/2.0, imsize, imsize ]) a = plt.axes([xa-imsize/2.0,ya-imsize/2.0, imsize, imsize ]) a.imshow(obj_rgb_mask_list[n-1]) a.set_aspect('equal') a.axis('off') # fig.patch.set_visible(False) ax.axis('off') plt.subplot(1,3,3) plt.imshow(rgb_img) plt.axis('off') plt.title(f"RGB Scene {id}") # plt.tight_layout() # plt.show() plt.savefig(f'{vis_dir_img}/occlusion_order_{id}.png') plt.close() m = occlusion_order_adjacency_matrix.astype(int) unique_chars, matrix = np.unique(m, return_inverse=True) color_dict = {1: 'darkred', 0: 'white'} plt.figure(figsize=(20,20)) sns.set(font_scale=2) ax1 = sns.heatmap(matrix.reshape(m.shape), annot=m, annot_kws={'fontsize': 20}, fmt='', linecolor='dodgerblue', lw=5, square=True, clip_on=False, cmap=ListedColormap([color_dict[char] for char in unique_chars]), xticklabels=np.arange(m.shape[1]) + 1, yticklabels=np.arange(m.shape[0]) + 1, cbar=False) ax1.tick_params(labelrotation=0) ax1.tick_params(axis='both', which='major', labelsize=20, labelbottom = False, bottom=False, top = False, labeltop=True) plt.xlabel("Occludee") ax1.xaxis.set_ticks_position('top') ax1.xaxis.set_label_position('top') plt.ylabel("Occluder") # plt.show() plt.savefig(f'{vis_dir_img}/occlusion_order_adjacency_matrix_{id}.png') plt.close()
25,100
Python
44.227027
160
0.5149
ngzhili/SynTable/README.md
# SynTable - A Synthetic Data Generation Pipeline for Cluttered Tabletop Scenes This repository contains the official implementation of the paper **"SynTable: A Synthetic Data Generation Pipeline for Unseen Object Amodal Instance Segmentation of Cluttered Tabletop Scenes"**. Zhili Ng*, Haozhe Wang*, Zhengshen Zhang*, Francis Eng Hock Tay, Marcelo H. Ang Jr. *equal contributions [[arXiv]](https://arxiv.org/abs/2307.07333) [[Website]](https://sites.google.com/view/syntable/home) [[Dataset]](https://doi.org/10.5281/zenodo.10565517) [[Demo Video]](https://youtu.be/zHM8H58Kn3E) [[Modified UOAIS-v2]](https://github.com/ngzhili/uoais-v2?tab=readme-ov-file) [![Dataset DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.10565517.svg)](https://doi.org/10.5281/zenodo.10565517) ![teaser](./readme_images/teaser.png) SynTable is a robust custom data generation pipeline that creates photorealistic synthetic datasets of Cluttered Tabletop Scenes. For each scene, it includes metadata such as - [x] RGB image of scene - [x] depth image of Scene - [x] scene instance segmentation masks - [x] object amodal (visible + invisible) rgb - [x] object amodal (visible + invisible) masks - [x] object modal (visible) masks - [x] object occlusion (invisible) masks - [x] object occlusion rate - [x] object visible bounding box - [x] tabletop visible masks - [x] background visible mask (background excludes tabletop and objects) - [x] occlusion ordering adjacency matrix (OOAM) of objects on tabletop ## **Installation** 1. Install [NVIDIA Isaac Sim 2022.1.1 version](https://developer.nvidia.com/isaac-sim) on Omniverse 2. Change Directory to isaac_sim-2022.1.1 directory ``` bash cd '/home/<username>/.local/share/ov/pkg/isaac_sim-2022.1.1/tools' ``` 3. Clone the repo ``` bash git clone https://github.com/ngzhili/SynTable.git ``` 4. Install Dependencies into isaac sim's python - Get issac sim source code directory path in command line. ``` bash SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )" echo $SCRIPT_DIR ``` - Get isaac sim's python path ``` bash python_exe=${PYTHONEXE:-"${SCRIPT_DIR}/kit/python/bin/python3"} echo $python_exe ``` - Run isaac sim's python ``` bash $python_exe ``` - while running isaac sim's python in bash, install pycocotools and opencv-python into isaac sim's python ``` bash import pip package_names=['pycocotools', 'opencv-python'] #packages to install pip.main(['install'] + package_names + ['--upgrade']) ``` 5. Copy the mount_dir folder to your home directory (anywhere outside of isaac sim source code) ``` bash cp -r SynTable/mount_dir /home/<username> ``` ## **Adding object models to nucleus** 1. You can download the .USD object models to be used for generating the tabletop datasets [here](https://mega.nz/folder/1nJAwQxA#1P3iUtqENKCS66uQYXk1vg). 2. Upload the downloaded syntable_nucleus folder into Omniverse Nucleus into /Users directory. 3. Ensure that the file paths in the config file are correct before running the generate dataset commands. ## **Generate Synthetic Dataset** Note: Before generating the synthetic dataset, please ensure that you uploaded all object models to isaac sim nucleus and their paths in the config file is correct. 1. Change Directory to Isaac SIM source code ``` bash cd /home/<username>/.local/share/ov/pkg/isaac_sim-2022.1.1 ``` 2. Run Syntable Pipeline (non-headless) ``` bash ./python.sh SynTable/syntable_composer/src/main1.py --input */parameters/train_config_syntable1.yaml --output */dataset/train --mount '/home/<username>/mount_dir' --num_scenes 3 --num_views 3 --overwrite --save_segmentation_data ``` ### **Types of Flags** | Flag | Description | | :--- | :----: | | ```--input``` | Path to input parameter file. | | ```--mount``` | Path to mount symbolized in parameter files via '*'. | | ```--headless``` | Will not launch Isaac SIM window. | | ```--nap``` | Will nap Isaac SIM after the first scene is generated. | | ```--overwrite``` | Overwrites dataset in output directory. | | ```--output``` | Output directory. Overrides 'output_dir' param. | | ```--num-scenes``` | Number of scenes in dataset. Overrides 'num_scenes' param. | | ```--num-views``` | Number of views to generate per scene. Overrides 'num_views' param. | | ```--save-segmentation-data``` | Saves visualisation of annotations into output directory. False by default. | ## Generated dataset - SynTable data generation pipeline generates dataset in COCO - Common Objects in Context format. ## **Folder Structure of Generated Synthetic Dataset** . ├── ... ├── SynTable-Sim # Generated dataset │ ├── data # folder to store RGB, Depth, OOAM │ │ └── mono │ │ ├── rgb │ │ │ ├── 0_0.png # file naming convention follows sceneNum_viewNum.png │ │ │ └── 0_1.png │ │ ├── depth │ │ │ ├── 0_0.png │ │ │ └── 0_1.png │ │ └── occlusion order │ │ ├── 0_0.npy │ │ └── 0_1.npy │ ├── parameters # parameters used for generation of annotations │ └── train.json # Annotation COCO.JSON └── ... ## **Visualise Annotations** 1. Create python venv and install dependencies ``` python3.8 -m venv env source env/bin/activate pip install -r requirements.txt ``` 2. Visualise sample annotations (creates a visualise_dataset directory in dataset directory, then saves annotation visualisations there) ``` python ./visualize_annotations.py --dataset './sample_data' --ann_json './sample_data/annotation_final.json' ``` ## **Sample Visualisation of Annotations** ![sample_annotations1](./readme_images/1.png) ![sample_annotations2](./readme_images/2.png) ## **References** We have heavily modified the Python SDK source code from NVIDA Isaac Sim's Replicator Composer. ## **Citation** If you find our work useful for your research, please consider citing the following BibTeX entry: ``` @misc{ng2023syntable, title={SynTable: A Synthetic Data Generation Pipeline for Unseen Object Amodal Instance Segmentation of Cluttered Tabletop Scenes}, author={Zhili Ng and Haozhe Wang and Zhengshen Zhang and Francis Tay Eng Hock and Marcelo H. Ang Jr au2}, year={2023}, eprint={2307.07333}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
6,703
Markdown
40.9
232
0.654781
ngzhili/SynTable/syntable_composer/src/main.py
import argparse import os import shutil import signal import sys from omni.isaac.kit import SimulationApp config1 = {"headless": False} kit = SimulationApp(config1) from distributions import Distribution from input import Parser from output import Metrics, Logger, OutputManager from sampling import Sampler from scene import SceneManager class Composer: def __init__(self, params, index, output_dir): """ Construct Composer. Start simulator and prepare for generation. """ self.params = params self.index = index self.output_dir = output_dir self.sample = Sampler().sample # Set-up output directories self.setup_data_output() # Start Simulator Logger.content_log_path = self.content_log_path Logger.start_log_entry("start-up") Logger.print("Isaac Sim starting up...") config = {"headless": self.sample("headless")} if self.sample("path_tracing"): config["renderer"] = "PathTracing" config["samples_per_pixel_per_frame"] = self.sample("samples_per_pixel_per_frame") else: config["renderer"] = "RayTracedLighting" #self.sim_app = SimulationApp(config) self.sim_app = kit from omni.isaac.core import SimulationContext self.scene_units_in_meters = self.sample("scene_units_in_meters") self.sim_context = SimulationContext(physics_dt=1.0 / 60.0, stage_units_in_meters=self.scene_units_in_meters) # need to initialize physics getting any articulation..etc self.sim_context.initialize_physics() self.sim_context.play() self.num_scenes = self.sample("num_scenes") self.sequential = self.sample("sequential") self.scene_manager = SceneManager(self.sim_app, self.sim_context) self.output_manager = OutputManager( self.sim_app, self.sim_context, self.scene_manager, self.output_data_dir, self.scene_units_in_meters ) # Set-up exit message signal.signal(signal.SIGINT, self.handle_exit) Logger.finish_log_entry() def handle_exit(self, *args, **kwargs): print("exiting dataset generation...") self.sim_context.clear_instance() self.sim_app.close() sys.exit() def generate_scene(self): """ Generate 1 dataset scene. Returns captured groundtruth data. """ self.scene_manager.prepare_scene(self.index) self.scene_manager.populate_scene() if self.sequential: sequence_length = self.sample("sequence_step_count") step_time = self.sample("sequence_step_time") for step in range(sequence_length): self.scene_manager.update_scene(step_time=step_time, step_index=step) groundtruth = self.output_manager.capture_groundtruth( self.index, step_index=step, sequence_length=sequence_length ) if step == 0: Logger.print("stepping through scene...") else: self.scene_manager.update_scene() groundtruth = self.output_manager.capture_groundtruth(self.index) self.scene_manager.finish_scene() return groundtruth def setup_data_output(self): """ Create output directories and copy input files to output. """ # Overwrite output directory, if needed if self.params["overwrite"]: shutil.rmtree(self.output_dir, ignore_errors=True) # Create output directory os.makedirs(self.output_dir, exist_ok=True) # Create output directories, as needed self.output_data_dir = os.path.join(self.output_dir, "data") self.parameter_dir = os.path.join(self.output_dir, "parameters") self.parameter_profiles_dir = os.path.join(self.parameter_dir, "profiles") self.log_dir = os.path.join(self.output_dir, "log") self.content_log_path = os.path.join(self.log_dir, "sampling_log.yaml") os.makedirs(self.output_data_dir, exist_ok=True) os.makedirs(self.parameter_profiles_dir, exist_ok=True) os.makedirs(self.log_dir, exist_ok=True) # Copy input parameters file to output input_file_name = os.path.basename(self.params["file_path"]) input_file_copy = os.path.join(self.parameter_dir, input_file_name) shutil.copy(self.params["file_path"], input_file_copy) # Copy profile parameters file(s) to output if self.params["profile_files"]: for profile_file in self.params["profile_files"]: profile_file_name = os.path.basename(profile_file) profile_file_copy = os.path.join(self.parameter_profiles_dir, profile_file_name) shutil.copy(profile_file, profile_file_copy) def get_output_dir(params): """ Determine output directory. """ if params["output_dir"].startswith("/"): output_dir = params["output_dir"] elif params["output_dir"].startswith("*"): output_dir = os.path.join(Distribution.mount, params["output_dir"][2:]) else: output_dir = os.path.join(os.path.dirname(__file__), "..", "datasets", params["output_dir"]) return output_dir def get_starting_index(params, output_dir): """ Determine starting index of dataset. """ if params["overwrite"]: return 0 output_data_dir = os.path.join(output_dir, "data") if not os.path.exists(output_data_dir): return 0 def find_min_missing(indices): if indices: indices.sort() for i in range(indices[-1]): if i not in indices: return i return indices[-1] else: return -1 camera_dirs = [os.path.join(output_data_dir, sub_dir) for sub_dir in os.listdir(output_data_dir)] min_indices = [] for camera_dir in camera_dirs: data_dirs = [os.path.join(camera_dir, sub_dir) for sub_dir in os.listdir(camera_dir)] for data_dir in data_dirs: indices = [] for filename in os.listdir(data_dir): try: if "_" in filename: index = int(filename[: filename.rfind("_")]) else: index = int(filename[: filename.rfind(".")]) indices.append(index) except: pass min_index = find_min_missing(indices) min_indices.append(min_index) if min_indices: minest_index = min(min_indices) return minest_index + 1 else: return 0 def assert_dataset_complete(params, index): """ Check if dataset is already complete. """ num_scenes = params["num_scenes"] if index >= num_scenes: print( 'Dataset is completed. Number of generated samples {} satifies "num_scenes" {}.'.format(index, num_scenes) ) sys.exit() else: print("Starting at index ", index) def define_arguments(): """ Define command line arguments. """ parser = argparse.ArgumentParser() parser.add_argument("--input", default="parameters/warehouse.yaml", help="Path to input parameter file") parser.add_argument( "--visualize-models", "--visualize_models", action="store_true", help="Output visuals of all object models defined in input parameter file, instead of outputting a dataset.", ) parser.add_argument("--mount", default="/tmp/composer", help="Path to mount symbolized in parameter files via '*'.") parser.add_argument("--headless", action="store_true", help="Will not launch Isaac SIM window.") parser.add_argument("--nap", action="store_true", help="Will nap Isaac SIM after the first scene is generated.") parser.add_argument("--overwrite", action="store_true", help="Overwrites dataset in output directory.") parser.add_argument("--output", type=str, help="Output directory. Overrides 'output_dir' param.") parser.add_argument( "--num-scenes", "--num_scenes", type=int, help="Num scenes in dataset. Overrides 'num_scenes' param." ) parser.add_argument( "--nucleus-server", "--nucleus_server", type=str, help="Nucleus Server URL. Overrides 'nucleus_server' param." ) return parser if __name__ == "__main__": # Create argument parser parser = define_arguments() args, _ = parser.parse_known_args() # Parse input parameter file parser = Parser(args) params = parser.params Sampler.params = params # Determine output directory output_dir = get_output_dir(params) # Run Composer in Visualize mode if args.visualize_models: from visualize import Visualizer visuals = Visualizer(parser, params, output_dir) visuals.visualize_models() # Handle shutdown visuals.composer.sim_context.clear_instance() visuals.composer.sim_app.close() sys.exit() # Set verbose mode Logger.verbose = params["verbose"] # Get starting index of dataset index = get_starting_index(params, output_dir) # Check if dataset is already complete assert_dataset_complete(params, index) # Initialize composer composer = Composer(params, index, output_dir) metrics = Metrics(composer.log_dir, composer.content_log_path) # Generate dataset while composer.index < params["num_scenes"]: composer.generate_scene() composer.index += 1 # Handle shutdown composer.output_manager.data_writer.stop_threads() composer.sim_context.clear_instance() composer.sim_app.close() # Output performance metrics metrics.output_performance_metrics()
9,745
Python
33.807143
120
0.626783
ngzhili/SynTable/syntable_composer/src/helper_functions.py
""" SynTable Replicator Composer Helper Functions """ import numpy as np import pycocotools.mask as mask_util import cv2 def compute_occluded_masks(mask1, mask2): """Computes occlusions between two sets of masks. masks1, masks2: [Height, Width, instances] """ # intersections and union mask1_area = np.count_nonzero(mask1) mask2_area = np.count_nonzero(mask2) intersection_mask = np.logical_and(mask1, mask2) intersection = np.count_nonzero(np.logical_and(mask1, mask2)) iou = intersection/(mask1_area+mask2_area-intersection) return iou, intersection_mask.astype(float) class GenericMask: """ Attribute: polygons (list[ndarray]): list[ndarray]: polygons for this mask. Each ndarray has format [x, y, x, y, ...] mask (ndarray): a binary mask """ def __init__(self, mask_or_polygons, height, width): self._mask = self._polygons = self._has_holes = None self.height = height self.width = width m = mask_or_polygons if isinstance(m, dict): # RLEs assert "counts" in m and "size" in m if isinstance(m["counts"], list): # uncompressed RLEs h, w = m["size"] assert h == height and w == width m = mask_util.frPyObjects(m, h, w) self._mask = mask_util.decode(m)[:, :] return if isinstance(m, list): # list[ndarray] self._polygons = [np.asarray(x).reshape(-1) for x in m] return if isinstance(m, np.ndarray): # assumed to be a binary mask assert m.shape[1] != 2, m.shape assert m.shape == (height, width), m.shape self._mask = m.astype("uint8") return raise ValueError("GenericMask cannot handle object {} of type '{}'".format(m, type(m))) @property def mask(self): if self._mask is None: self._mask = self.polygons_to_mask(self._polygons) return self._mask @property def polygons(self): if self._polygons is None: self._polygons, self._has_holes = self.mask_to_polygons(self._mask) return self._polygons @property def has_holes(self): if self._has_holes is None: if self._mask is not None: self._polygons, self._has_holes = self.mask_to_polygons(self._mask) else: self._has_holes = False # if original format is polygon, does not have holes return self._has_holes def mask_to_polygons(self, mask): # cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level # hierarchy. External contours (boundary) of the object are placed in hierarchy-1. # Internal contours (holes) are placed in hierarchy-2. # cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours. mask = np.ascontiguousarray(mask) # some versions of cv2 does not support incontiguous arr res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) hierarchy = res[-1] if hierarchy is None: # empty mask return [], False has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0 res = res[-2] res = [x.flatten() for x in res] # These coordinates from OpenCV are integers in range [0, W-1 or H-1]. # We add 0.5 to turn them into real-value coordinate space. A better solution # would be to first +0.5 and then dilate the returned polygon by 0.5. res = [x + 0.5 for x in res if len(x) >= 6] return res, has_holes def polygons_to_mask(self, polygons): rle = mask_util.frPyObjects(polygons, self.height, self.width) rle = mask_util.merge(rle) return mask_util.decode(rle)[:, :] def area(self): return self.mask.sum() def bbox(self): try: p = mask_util.frPyObjects(self.polygons, self.height, self.width) p = mask_util.merge(p) bbox = mask_util.toBbox(p) bbox[2] += bbox[0] bbox[3] += bbox[1] except: print(f"Encountered error while generating bounding boxes from mask polygons: {self.polygons}") print("self.polygons:",self.polygons) bbox = np.array([0,0,0,0]) return bbox def bbox_from_binary_mask(binary_mask): """ Returns the smallest bounding box containing all pixels marked "1" in the given image mask. :param binary_mask: A binary image mask with the shape [H, W]. :return: The bounding box represented as [x, y, width, height] """ # Find all columns and rows that contain 1s rows = np.any(binary_mask, axis=1) cols = np.any(binary_mask, axis=0) # Find the min and max col/row index that contain 1s rmin, rmax = np.where(rows)[0][[0, -1]] cmin, cmax = np.where(cols)[0][[0, -1]] # Calc height and width h = rmax - rmin + 1 w = cmax - cmin + 1 return [int(cmin), int(rmin), int(w), int(h)]
5,066
Python
36.533333
107
0.595934
ngzhili/SynTable/syntable_composer/src/main1.py
""" SynTable Replicator Composer Main """ # import dependencies import argparse from ntpath import join import os import shutil import signal import sys import numpy as np import random import math import gc import json import datetime import time import glob import cv2 from omni.isaac.kit import SimulationApp from distributions import Distribution from input.parse1 import Parser from output import Metrics, Logger from output.output1 import OutputManager from sampling.sample1 import Sampler from scene.scene1 import SceneManager from helper_functions import compute_occluded_masks from omni.isaac.kit.utils import set_carb_setting from scene.light1 import Light class Composer: def __init__(self, params, index, output_dir): """ Construct Composer. Start simulator and prepare for generation. """ self.params = params self.index = index self.output_dir = output_dir self.sample = Sampler().sample # Set-up output directories self.setup_data_output() # Start Simulator Logger.content_log_path = self.content_log_path Logger.start_log_entry("start-up") Logger.print("Isaac Sim starting up...") config = {"headless": self.sample("headless")} if self.sample("path_tracing"): config["renderer"] = "PathTracing" config["samples_per_pixel_per_frame"] = self.sample("samples_per_pixel_per_frame") else: config["renderer"] = "RayTracedLighting" self.sim_app = SimulationApp(config) from omni.isaac.core import SimulationContext self.scene_units_in_meters = self.sample("scene_units_in_meters") self.sim_context = SimulationContext(physics_dt=1.0/60, #1.0 / 60.0, rendering_dt =1.0/60, #1.0 / 60.0, stage_units_in_meters=self.scene_units_in_meters) # need to initialize physics getting any articulation..etc self.sim_context.initialize_physics() self.sim_context.play() self.num_scenes = self.sample("num_scenes") self.sequential = self.sample("sequential") self.scene_manager = SceneManager(self.sim_app, self.sim_context) self.output_manager = OutputManager( self.sim_app, self.sim_context, self.scene_manager, self.output_data_dir, self.scene_units_in_meters ) # Set-up exit message signal.signal(signal.SIGINT, self.handle_exit) Logger.finish_log_entry() def handle_exit(self, *args, **kwargs): print("exiting dataset generation...") self.sim_context.clear_instance() self.sim_app.close() sys.exit() def generate_scene(self, img_index, ann_index, img_list,ann_list,regen_scene): """ Generate 1 dataset scene. Returns captured groundtruth data. """ amodal = True self.scene_manager.prepare_scene(self.index) # reload table into scene self.scene_manager.reload_table() kit = self.sim_app # if generate amodal annotations if amodal: roomTableSize = self.scene_manager.roomTableSize roomTableHeight = roomTableSize[-1] spawnLowerBoundOffset = 0.2 spawnUpperBoundOffset = 1 # calculate tableBounds to constraint objects' spawn locations to be within tableBounds x_width = roomTableSize[0] /2 y_length = roomTableSize[1] /2 min_val = (-x_width*0.6, -y_length*0.6, roomTableHeight+spawnLowerBoundOffset) max_val = (x_width*0.6, y_length*0.6, roomTableHeight+spawnUpperBoundOffset) tableBounds = [min_val,max_val] self.scene_manager.populate_scene(tableBounds=tableBounds) # populate the scene once else: self.scene_manager.populate_scene() if self.sequential: sequence_length = self.sample("sequence_step_count") step_time = self.sample("sequence_step_time") for step in range(sequence_length): self.scene_manager.update_scene(step_time=step_time, step_index=step) groundtruth = self.output_manager.capture_groundtruth( self.index, step_index=step, sequence_length=sequence_length ) if step == 0: Logger.print("stepping through scene...") # if generate amodal annotations elif amodal: # simulate physical dropping of objects self.scene_manager.update_scene() # refresh UI rendering self.sim_context.render() # pause simulation self.sim_context.pause() # stop all object motion and remove objects not on tabletop objects = self.scene_manager.objs.copy() objects_filtered = [] # remove objects outside tabletop regions after simulation for obj in objects: obj.coord, quaternion = obj.xform_prim.get_world_pose() obj.coord = np.array(obj.coord, dtype=np.float32) # if object is not on tabletop after simulation, remove object if (abs(obj.coord[0]) > (roomTableSize[0]/2)) \ or (abs(obj.coord[1]) > (roomTableSize[1]/2)) \ or (abs(obj.coord[2]) < roomTableSize[2]): # remove object by turning off visibility of object obj.off_prim() # else object on tabletop, add obj to filtered list else: objects_filtered.append(obj) self.scene_manager.objs = objects_filtered # if no objects left on tabletop, regenerate scene if len(self.scene_manager.objs) == 0: print("No objects found on tabletop, regenerating scene.") self.scene_manager.finish_scene() return None, img_index, ann_index, img_list, ann_list, regen_scene else: regen_scene = False print("\nNumber of Objects on tabletop:", len(self.scene_manager.objs)) # get camera coordinates based on hemisphere of radus r and tabletop height def camera_orbit_coord(r = 12, tableTopHeight=10): """ constraints camera loc to a hemi-spherical orbit around tabletop origin origin z of hemisphere is offset by tabletopheight + 1m """ u = random.uniform(0,1) v = random.uniform(0,1) phi = math.acos(1.0 - v) # phi: [0,0.5*pi] theta = 2.0 * math.pi * u # theta: [0,2*pi] x = r * math.cos(theta) * math.sin(phi) y = r * math.sin(theta) * math.sin(phi) z = r * math.cos(phi) + tableTopHeight # add table height offset return np.array([x,y,z]) # Randomly move camera and light coordinates to be constrainted between 2 concentric hemispheres above tabletop numViews = self.params["num_views"] # get hemisphere radius bounds autoHemisphereRadius = self.sample("auto_hemisphere_radius") if not autoHemisphereRadius: camHemisphereRadiusMin = self.sample("cam_hemisphere_radius_min") camHemisphereRadiusMax = self.sample("cam_hemisphere_radius_max") lightHemisphereRadiusMin = self.sample("spherelight_hemisphere_radius_min") lightHemisphereRadiusMax = self.sample("spherelight_hemisphere_radius_max") else: camHemisphereRadiusMin = max(x_width,y_length) * 0.8 camHemisphereRadiusMax = camHemisphereRadiusMin + 0.7*camHemisphereRadiusMin lightHemisphereRadiusMin = camHemisphereRadiusMax + 0.1 lightHemisphereRadiusMax = lightHemisphereRadiusMin + 1 print(x_width,y_length) print("\n===Camera & Light Hemisphere Parameters===") print(f"autoHemisphereRadius:{autoHemisphereRadius}") print(f"camHemisphereRadiusMin = {camHemisphereRadiusMin}") print(f"camHemisphereRadiusMax = {camHemisphereRadiusMax}") print(f"lightHemisphereRadiusMin = {lightHemisphereRadiusMin}") print(f"lightHemisphereRadiusMax = {lightHemisphereRadiusMax}") Logger.print(f"\n=== Capturing Groundtruth for each viewport in scene ===\n") for view_id in range(numViews): random.seed(None) Logger.print(f"\n==> Scene: {self.index}, View: {view_id} <==\n") # resample radius of camera hemisphere between min and max radii bounds r = random.uniform(camHemisphereRadiusMin,camHemisphereRadiusMax) print('sampled radius r of camera hemisphere:',r) # resample camera coordinates and rotate camera to look at tabletop surface center cam_coord_w = camera_orbit_coord(r=r,tableTopHeight=roomTableHeight+0.2) print("sampled camera coordinate:",cam_coord_w) self.scene_manager.camera.translate(cam_coord_w) self.scene_manager.camera.translate_rotate(target=(0,0,roomTableHeight)) #target coordinates # initialise ambient lighting as 0 (for ray tracing), path tracing not affected rtx_mode = "/rtx" ambient_light_intensity = 0 #random.uniform(0.2,3.5) set_carb_setting(kit._carb_settings, rtx_mode + "/sceneDb/ambientLightIntensity", ambient_light_intensity) # Enable indirect diffuse GI (for ray tracing) set_carb_setting(kit._carb_settings, rtx_mode + "/indirectDiffuse/enabled", True) # Reset and delete all lights from omni.isaac.core.utils import prims for light in self.scene_manager.lights: prims.delete_prim(light.path) # Resample number of lights in viewport self.scene_manager.lights = [] for grp_index, group in enumerate(self.scene_manager.sample("groups")): # adjust ceiling light parameters if group == "ceilinglights": for lightIndex, light in enumerate(self.scene_manager.ceilinglights): if lightIndex == 0: new_intensity = light.sample("light_intensity") if light.sample("light_temp_enabled"): new_temp = light.sample("light_temp") # change light intensity light.attributes["intensity"] = new_intensity light.prim.GetAttribute("intensity").Set(light.attributes["intensity"]) # change light temperature if light.sample("light_temp_enabled"): light.attributes["colorTemperature"] = new_temp light.prim.GetAttribute("colorTemperature").Set(light.attributes["colorTemperature"]) # adjust spherical light parameters if group == "lights": num_lights = self.scene_manager.sample("light_count", group=group) for i in range(num_lights): path = "{}/Lights/lights_{}".format( self.scene_manager.scene_path, len(self.scene_manager.lights)) light = Light(self.scene_manager.sim_app, self.scene_manager.sim_context, path, self.scene_manager.camera, group) # change light intensity light.attributes["intensity"] = light.sample("light_intensity") light.prim.GetAttribute("intensity").Set(light.attributes["intensity"]) # change light temperature if light.sample("light_temp_enabled"): light.attributes["colorTemperature"] =light.sample("light_temp") light.prim.GetAttribute("colorTemperature").Set(light.attributes["colorTemperature"]) # change light coordinates light_coord_w = camera_orbit_coord(r=random.uniform(lightHemisphereRadiusMin,lightHemisphereRadiusMax),tableTopHeight=roomTableHeight+0.2) light.translate(light_coord_w) light.coord, quaternion = light.xform_prim.get_world_pose() light.coord = np.array(light.coord, dtype=np.float32) self.scene_manager.lights.append(light) print(f"Number of sphere lights in scene: {len(self.scene_manager.lights)}") # capture groundtruth of entire viewpoint groundtruth, img_index, ann_index, img_list, ann_list = \ self.output_manager.capture_amodal_groundtruth(self.index, self.scene_manager, img_index, ann_index, view_id, img_list, ann_list ) else: self.scene_manager.update_scene() groundtruth = self.output_manager.capture_groundtruth(self.index) # finish the scene and reset prims in scene self.scene_manager.finish_scene() return groundtruth, img_index, ann_index, img_list, ann_list, regen_scene def setup_data_output(self): """ Create output directories and copy input files to output. """ # Overwrite output directory, if needed if self.params["overwrite"]: shutil.rmtree(self.output_dir, ignore_errors=True) # Create output directory os.makedirs(self.output_dir, exist_ok=True) # Create output directories, as needed self.output_data_dir = os.path.join(self.output_dir, "data") self.parameter_dir = os.path.join(self.output_dir, "parameters") self.parameter_profiles_dir = os.path.join(self.parameter_dir, "profiles") self.log_dir = os.path.join(self.output_dir, "log") self.content_log_path = os.path.join(self.log_dir, "sampling_log.yaml") os.makedirs(self.output_data_dir, exist_ok=True) os.makedirs(self.parameter_profiles_dir, exist_ok=True) os.makedirs(self.log_dir, exist_ok=True) # Copy input parameters file to output input_file_name = os.path.basename(self.params["file_path"]) input_file_copy = os.path.join(self.parameter_dir, input_file_name) shutil.copy(self.params["file_path"], input_file_copy) # Copy profile parameters file(s) to output if self.params["profile_files"]: for profile_file in self.params["profile_files"]: profile_file_name = os.path.basename(profile_file) profile_file_copy = os.path.join(self.parameter_profiles_dir, profile_file_name) shutil.copy(profile_file, profile_file_copy) def get_output_dir(params): """ Determine output directory to store datasets. """ if params["output_dir"].startswith("/"): output_dir = params["output_dir"] elif params["output_dir"].startswith("*"): output_dir = os.path.join(Distribution.mount, params["output_dir"][2:]) else: output_dir = os.path.join(os.path.dirname(__file__), "..", "datasets", params["output_dir"]) return output_dir def get_starting_index(params, output_dir): """ Determine starting index of dataset. """ if params["overwrite"]: return 0 output_data_dir = os.path.join(output_dir, "data") if not os.path.exists(output_data_dir): return 0 def find_min_missing(indices): if indices: indices.sort() for i in range(indices[-1]): if i not in indices: return i return indices[-1] else: return -1 camera_dirs = [os.path.join(output_data_dir, sub_dir) for sub_dir in os.listdir(output_data_dir)] min_indices = [] for camera_dir in camera_dirs: data_dirs = [os.path.join(camera_dir, sub_dir) for sub_dir in os.listdir(camera_dir)] for data_dir in data_dirs: indices = [] for filename in os.listdir(data_dir): try: if "_" in filename: index = int(filename[: filename.rfind("_")]) else: index = int(filename[: filename.rfind(".")]) indices.append(index) except: pass min_index = find_min_missing(indices) min_indices.append(min_index) if min_indices: minest_index = min(min_indices) return minest_index + 1 else: return 0 def assert_dataset_complete(params, index): """ Check if dataset is already complete. """ num_scenes = params["num_scenes"] if index >= num_scenes: print( 'Dataset is completed. Number of generated samples {} satifies "num_scenes" {}.'.format(index, num_scenes) ) sys.exit() else: print("Starting at index ", index) def define_arguments(): """ Define command line arguments. """ parser = argparse.ArgumentParser() parser.add_argument("--input", default="parameters/warehouse.yaml", help="Path to input parameter file") parser.add_argument( "--visualize-models", "--visualize_models", action="store_true", help="Output visuals of all object models defined in input parameter file, instead of outputting a dataset.", ) parser.add_argument("--mount", default="/tmp/composer", help="Path to mount symbolized in parameter files via '*'.") parser.add_argument("--headless", action="store_true", help="Will not launch Isaac SIM window.") parser.add_argument("--nap", action="store_true", help="Will nap Isaac SIM after the first scene is generated.") parser.add_argument("--overwrite", action="store_true", help="Overwrites dataset in output directory.") parser.add_argument("--output", type=str, help="Output directory. Overrides 'output_dir' param.") parser.add_argument( "--num-scenes", "--num_scenes", type=int, help="Num scenes in dataset. Overrides 'num_scenes' param." ) parser.add_argument( "--num-views", "--num_views", type=int, help="Num Views in scenes. Overrides 'num_views' param." ) parser.add_argument( "--save-segmentation-data", "--save_segmentation_data", action="store_true", help="Save Segmentation data as PNG, Depth image as .pfm. Overrides 'save_segmentation_data' param." ) parser.add_argument( "--nucleus-server", "--nucleus_server", type=str, help="Nucleus Server URL. Overrides 'nucleus_server' param." ) return parser if __name__ == "__main__": # Create argument parser parser = define_arguments() args, _ = parser.parse_known_args() # Parse input parameter file parser = Parser(args) params = parser.params #print("params:",params) Sampler.params = params sample = Sampler().sample # Determine output directory output_dir = get_output_dir(params) # Run Composer in Visualize mode if args.visualize_models: from visualize import Visualizer visuals = Visualizer(parser, params, output_dir) visuals.visualize_models() # Handle shutdown visuals.composer.sim_context.clear_instance() visuals.composer.sim_app.close() sys.exit() # Set verbose mode Logger.verbose = params["verbose"] # Get starting index of dataset index = get_starting_index(params, output_dir) # if not overwrite json_files = [] if not params["overwrite"] and os.path.isdir(output_dir): # Check if annotation_final.json is present, continue from last scene index json_files = [pos_json for pos_json in os.listdir(output_dir) if pos_json.endswith('.json')] if len(json_files)>0: last_scene_index = -1 last_json_path = "" for i in json_files: if i != "annotation_final.json": json_index = int(i.split('_')[-1].split('.')[0]) if json_index >= last_scene_index: last_scene_index = json_index last_json_path = os.path.join(output_dir,i) # get current index index = last_scene_index + 1 # read latest json file f = open(last_json_path) data = json.load(f) last_img_index = max(data['images'][-1]['id'],-1) last_ann_index = max(data['annotations'][-1]['id'],-1) f.close() # remove images more than last scene index, these images do not have annotations img_files = [img_path for img_path in os.listdir(output_dir) if img_path.endswith('.png')] for path, subdirs, files in os.walk(output_dir): for name in files: if name.endswith('.png') or name.endswith('.pfm'): img_scene = int(name.split("_")[0]) if img_scene > last_scene_index: img_path = os.path.join(path, name) os.remove(img_path) print(f"Removing Images from scene {index} onwards.") print(f"Continuing from scene {index}.") # Check if dataset is already complete assert_dataset_complete(params, index) # Initialize composer composer = Composer(params, index, output_dir) metrics = Metrics(composer.log_dir, composer.content_log_path) if not params["overwrite"] and os.path.isdir(output_dir) and len(json_files) > 0: img_index, ann_index = last_img_index+1, last_ann_index+1 else: img_index, ann_index = 1, 1 img_list, ann_list = [],[] total_st = time.time() # Generate dataset while composer.index < params["num_scenes"]: # get the start time st = time.time() regen_scene = True while regen_scene: _, img_index, ann_index, img_list, ann_list, regen_scene = composer.generate_scene(img_index, ann_index,img_list,ann_list,regen_scene) # remove all images not are not saved in json/csv scene_no = composer.index if (scene_no % params["checkpoint_interval"]) == 0 and (scene_no != 0): # save every 2 generated scenes gc.collect() # Force the garbage collector for releasing an unreferenced memory date_created = str(datetime.datetime.now()) # create annotation file coco_json = { "info": { "description": "SynTable", "url": "nil", "version": "0.1.0", "year": 2022, "contributor": "SynTable", "date_created": date_created }, "licenses": [ { "id": 1, "name": "Attribution-NonCommercial-ShareAlike License", "url": "http://creativecommons.org/licenses/by-nc-sa/2.0/" } ], "categories": [ { "id": 1, "name": "object", "supercategory": "shape" } ], "images":img_list, "annotations":ann_list} # if save background segmentation if params["save_background"]: coco_json["categories"].append({ "id": 0, "name": "background", "supercategory": "shape" }) # save annotation dict with open(f'{output_dir}/annotation_{scene_no}.json', 'w') as write_file: json.dump(coco_json, write_file, indent=4) print(f"\n[Checkpoint] Finished scene {scene_no}, saving annotations to {output_dir}/annotation_{scene_no}.json") if (scene_no + 1) != params["num_scenes"]: # reset lists to prevent memory error img_list, ann_list = [],[] coco_json = {} composer.index += 1 # get the end time et = time.time() # get the execution time elapsed_time = time.time() - st print(f'\nExecution time for scene {scene_no}:', time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) date_created = str(datetime.datetime.now()) # create annotation file coco_json = { "info": { "description": "SynTable", "url": "nil", "version": "0.1.0", "year": 2022, "contributor": "SynTable", "date_created": date_created }, "licenses": [ { "id": 1, "name": "Attribution-NonCommercial-ShareAlike License", "url": "http://creativecommons.org/licenses/by-nc-sa/2.0/" } ], "categories": [ { "id": 1, "name": "object", "supercategory": "shape" } ], "images":img_list, "annotations":ann_list} # if save background segmentation if params["save_background"]: coco_json["categories"].append({ "id": 0, "name": "background", "supercategory": "shape" }) # save json with open(f'{output_dir}/annotation_{scene_no}.json', 'w') as write_file: json.dump(coco_json, write_file, indent=4) print(f"\n[End] Finished last scene {scene_no}, saving annotations to {output_dir}/annotation_{scene_no}.json") # reset lists to prevent out of memory (oom) error del img_list del ann_list del coco_json gc.collect() # Force the garbage collector for releasing an unreferenced memory elapsed_time = time.time() - total_st print(f'\nExecution time for all {params["num_scenes"]} scenes * {params["num_views"]} views:', time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) # Handle shutdown composer.output_manager.data_writer.stop_threads() composer.sim_context.clear_instance() composer.sim_app.close() # Output performance metrics metrics.output_performance_metrics() # concatenate all coco.json checkpoint files to final coco.json final_json_path = f'{output_dir}/annotation_final.json' json_files = [os.path.join(output_dir,pos_json) for pos_json in os.listdir(output_dir) if (pos_json.endswith('.json') and os.path.join(output_dir,pos_json) != final_json_path)] json_files = sorted(json_files, key=lambda x: int(x.split("_")[-1].split(".")[0])) coco_json = {"info":{},"licenses":[],"categories":[],"images":[],"annotations":[]} for i, file in enumerate(json_files): if file != final_json_path: f = open(file) data = json.load(f) if i == 0: coco_json["info"] = data["info"] coco_json["licenses"] = data["licenses"] coco_json["categories"] = data["categories"] coco_json["images"].extend(data["images"]) coco_json["annotations"].extend(data["annotations"]) f.close() with open(final_json_path, 'w') as write_file: json.dump(coco_json, write_file, indent=4) # visualize annotations if params["save_segmentation_data"]: print("[INFO] Generating occlusion masks...") rgb_dir = f"{output_dir}/data/mono/rgb" occ_dir = f"{output_dir}/data/mono/occlusion" instance_dir = f"{output_dir}/data/mono/instance" vis_dir = f"{output_dir}/data/mono/visualize" vis_occ_dir = f"{vis_dir}/occlusion" vis_instance_dir = f"{vis_dir}/instance" # make visualisation output directory for dir in [vis_dir,vis_occ_dir, vis_instance_dir]: if not os.path.exists(dir): os.makedirs(dir) # iterate through scenes rgb_paths = [pos_json for pos_json in os.listdir(rgb_dir) if pos_json.endswith('.png')] for scene_index in range(0,params["num_scenes"]): # scene_index = str(scene_index_raw) +"_"+str(view_id) for view_id in range(0,params["num_views"]): rgb_img_list = glob.glob(f"{rgb_dir}/{scene_index}_{view_id}.png") rgb_img = cv2.imread(rgb_img_list[0], cv2.IMREAD_UNCHANGED) occ_img_list = glob.glob(f"{occ_dir}/{scene_index}_{view_id}_*.png") #occ_mask_list = [] if len(occ_img_list) > 0: occ_img = rgb_img.copy() overlay = rgb_img.copy() combined_mask = np.zeros((occ_img.shape[0],occ_img.shape[1])) background = f"{occ_dir}/{scene_index}_background.png" # iterate through all occlusion masks for i in range(len(occ_img_list)): occ_mask_path = occ_img_list[i] if occ_mask_path == background: occ_img_back = rgb_img.copy() overlay_back = rgb_img.copy() occluded_mask = cv2.imread(occ_mask_path, cv2.IMREAD_UNCHANGED) occluded_mask = occluded_mask.astype(bool) # boolean mask overlay_back[occluded_mask] = [0, 0, 255] alpha =0.5 occ_img_back = cv2.addWeighted(overlay_back, alpha, occ_img_back, 1 - alpha, 0, occ_img_back) occ_save_path = f"{vis_occ_dir}/{scene_index}_{view_id}_background.png" cv2.imwrite(occ_save_path, occ_img_back) else: occluded_mask = cv2.imread(occ_mask_path, cv2.IMREAD_UNCHANGED) combined_mask += occluded_mask combined_mask = combined_mask.astype(bool) # boolean mask overlay[combined_mask] = [0, 0, 255] alpha =0.5 occ_img = cv2.addWeighted(overlay, alpha, occ_img, 1 - alpha, 0, occ_img) occ_save_path = f"{vis_occ_dir}/{scene_index}_{view_id}.png" cv2.imwrite(occ_save_path, occ_img) combined_mask = combined_mask.astype('uint8') occ_save_path = f"{vis_occ_dir}/{scene_index}_{view_id}_mask.png" cv2.imwrite(occ_save_path, combined_mask*255) vis_img_list = glob.glob(f"{instance_dir}/{scene_index}_{view_id}_*.png") if len(vis_img_list) > 0: vis_img = rgb_img.copy() overlay = rgb_img.copy() background = f"{instance_dir}/{scene_index}_{view_id}_background.png" # iterate through all occlusion masks for i in range(len(vis_img_list)): vis_mask_path = vis_img_list[i] if vis_mask_path == background: vis_img_back = rgb_img.copy() overlay_back = rgb_img.copy() visible_mask = cv2.imread(vis_mask_path, cv2.IMREAD_UNCHANGED) visible_mask = visible_mask.astype(bool) # boolean mask overlay_back[visible_mask] = [0, 0, 255] alpha =0.5 vis_img_back = cv2.addWeighted(overlay_back, alpha, vis_img_back, 1 - alpha, 0, vis_img_back) vis_save_path = f"{vis_instance_dir}/{scene_index}_{view_id}_background.png" cv2.imwrite(vis_save_path, vis_img_back) else: visible_mask = cv2.imread(vis_mask_path, cv2.IMREAD_UNCHANGED) vis_combined_mask = visible_mask.astype(bool) # boolean mask colour = list(np.random.choice(range(256), size=3)) overlay[vis_combined_mask] = colour alpha =0.5 vis_img = cv2.addWeighted(overlay, alpha, vis_img, 1 - alpha, 0, vis_img) vis_save_path = f"{vis_instance_dir}/{scene_index}_{view_id}.png" cv2.imwrite(vis_save_path,vis_img)
33,426
Python
43.274172
185
0.55397
ngzhili/SynTable/syntable_composer/src/input/parse.py
import copy import numpy as np import os import yaml from distributions import Distribution, Choice, Normal, Range, Uniform, Walk class Parser: """ For parsing the input parameterization to Composer. """ def __init__(self, args): """ Construct Parser. Parse input file. """ self.args = args self.global_group = "[[global]]" self.param_suffix_to_file_type = { "model": [".usd", ".usdz", ".usda", ".usdc"], "texture": [".png", ".jpg", ".jpeg", ".hdr", ".exr"], "material": [".mdl"], } self.no_eval_check_params = {"output_dir", "nucleus_server", "inherit", "profiles"} Distribution.mount = args.mount Distribution.param_suffix_to_file_type = self.param_suffix_to_file_type self.default_params = self.parse_param_set("parameters/profiles/default.yaml", default=True) additional_params_to_default_set = {"inherit": "", "profiles": [], "file_path": "", "profile_files": []} self.default_params = {**additional_params_to_default_set, **self.default_params} self.initialize_params(self.default_params) self.params = self.parse_input(self.args.input) def evaluate_param(self, key, val): """ Evaluate a parameter value in Python """ # Skip evaluation on certain parameter with string values if not self.param_is_evaluated(key, val): return val if type(val) is str and len(val) > 0: val = eval(val) if type(val) in (tuple, list): try: val = np.array(val, dtype=np.float32) except: pass if isinstance(val, Distribution): val.setup(key) if type(val) in (tuple, list): elems = val val = [self.evaluate_param(key, sub_elem) for sub_elem in elems] return val def param_is_evaluated(self, key, val): if type(val) is np.ndarray: return True return not (key in self.no_eval_check_params or not val or (type(val) is str and val.startswith("/"))) def initialize_params(self, params, default=False): """ Evaluate parameter values in Python. Verify parameter name and value type. """ for key, val in params.items(): if type(val) is dict: self.initialize_params(val) else: # Evaluate parameter try: val = self.evaluate_param(key, val) params[key] = val except Exception: raise ValueError("Unable to evaluate parameter '{}' with value '{}'".format(key, val)) # Verify parameter if not default: if key.startswith("obj") or key.startswith("light"): default_param_set = self.default_params["groups"][self.global_group] else: default_param_set = self.default_params # Verify parameter name if key not in default_param_set and key: raise ValueError("Parameter '{}' is not a parameter.".format(key)) # Verify parameter value type default_val = default_param_set[key] if isinstance(val, Distribution): val_type = val.get_type() else: val_type = type(val) if isinstance(default_val, Distribution): default_val_type = default_val.get_type() else: default_val_type = type(default_val) if default_val_type in (int, float): # Integer and Float equivalence default_val_type = [int, float] elif default_val_type in (tuple, list, np.ndarray): # Tuple, List, and Array equivalence default_val_type = [tuple, list, np.ndarray] else: default_val_type = [default_val_type] if val_type not in default_val_type: raise ValueError( "Parameter '{}' has incorrect value type {}. Value type must be in {}.".format( key, val_type, default_val_type ) ) def verify_nucleus_paths(self, params): """ Verify parameter values that point to Nucleus server file paths. """ import omni.client for key, val in params.items(): if type(val) is dict: self.verify_nucleus_paths(val) # Check Nucleus server file path of certain parameters elif key.endswith(("model", "texture", "material")) and not isinstance(val, Distribution) and val: # Check path starts with "/" if not val.startswith("/"): raise ValueError( "Parameter '{}' has path '{}' which must start with a forward slash.".format(key, val) ) # Check file type param_file_type = val[val.rfind(".") :].lower() correct_file_types = self.param_suffix_to_file_type.get(key[key.rfind("_") + 1 :], []) if param_file_type not in correct_file_types: raise ValueError( "Parameter '{}' has path '{}' with incorrect file type. File type must be one of {}.".format( key, val, correct_file_types ) ) # Check file can be found file_path = self.nucleus_server + val (exists_result, _, _) = omni.client.read_file(file_path) is_file = exists_result.name.startswith("OK") if not is_file: raise ValueError( "Parameter '{}' has path '{}' not found on '{}'.".format(key, val, self.nucleus_server) ) def override_params(self, params): """ Override params with CLI args. """ if self.args.output: params["output_dir"] = self.args.output if self.args.num_scenes is not None: params["num_scenes"] = self.args.num_scenes if self.args.mount: params["mount"] = self.args.mount params["overwrite"] = self.args.overwrite params["headless"] = self.args.headless params["nap"] = self.args.nap params["visualize_models"] = self.args.visualize_models def parse_param_set(self, input, parse_from_file=True, default=False): """ Parse input parameter file. """ if parse_from_file: # Determine parameter file path if input.startswith("/"): input_file = input elif input.startswith("*"): input_file = os.path.join(Distribution.mount, input[2:]) else: input_file = os.path.join(os.path.dirname(__file__), "../../", input) # Read parameter file with open(input_file, "r") as f: params = yaml.safe_load(f) # Add a parameter for the input file path params["file_path"] = input_file else: params = input # Process parameter groups groups = {} groups[self.global_group] = {} for key, val in list(params.items()): # Add group if type(val) is dict: if key in groups: raise ValueError("Parameter group name is not unique: {}".format(key)) groups[key] = val params.pop(key) # Add param to global group if key.startswith("obj_") or key.startswith("light_"): groups[self.global_group][key] = val params.pop(key) params["groups"] = groups return params def parse_params(self, params): """ Parse params into a final parameter set. """ import omni.client # Add a global group, if needed if self.global_group not in params["groups"]: params["groups"][self.global_group] = {} # Parse all profile parameter sets profile_param_sets = [self.parse_param_set(profile) for profile in params.get("profiles", [])[::-1]] # Set default as lowest param set and input file param set as highest param_sets = [copy.deepcopy(self.default_params)] + profile_param_sets + [params] # Union parameters sets final_params = param_sets[0] for params in param_sets[1:]: global_group_params = params["groups"][self.global_group] sub_global_group_params = final_params["groups"][self.global_group] for group in params["groups"]: if group == self.global_group: continue group_params = params["groups"][group] if "inherit" in group_params: inherited_group = group_params["inherit"] if inherited_group not in final_params["groups"]: raise ValueError( "In group '{}' cannot find the inherited group '{}'".format(group, inherited_group) ) inherited_params = final_params["groups"][inherited_group] else: inherited_params = {} final_params["groups"][group] = { **sub_global_group_params, **inherited_params, **global_group_params, **group_params, } final_params["groups"][self.global_group] = { **final_params["groups"][self.global_group], **params["groups"][self.global_group], } final_groups = final_params["groups"].copy() final_params = {**final_params, **params} final_params["groups"] = final_groups # Remove non-final groups for group in list(final_params["groups"].keys()): if group not in param_sets[-1]["groups"]: final_params["groups"].pop(group) final_params["groups"].pop(self.global_group) params = final_params # Set profile file paths params["profile_files"] = [profile_params["file_path"] for profile_params in profile_param_sets] # Set Nucleus server and check connection if self.args.nucleus_server: params["nucleus_server"] = self.args.nucleus_server if "://" not in params["nucleus_server"]: params["nucleus_server"] = "omniverse://" + params["nucleus_server"] self.nucleus_server = params["nucleus_server"] (result, _) = omni.client.stat(self.nucleus_server) if not result.name.startswith("OK"): raise ConnectionError("Could not connect to the Nucleus server: {}".format(self.nucleus_server)) Distribution.nucleus_server = params["nucleus_server"] # Initialize params self.initialize_params(params) # Verify Nucleus server paths self.verify_nucleus_paths(params) return params def parse_input(self, input, parse_from_file=True): """ Parse all input parameter files. """ if parse_from_file: print("Parsing and checking input parameterization.") # Parse input parameter file params = self.parse_param_set(input, parse_from_file=parse_from_file) # Process params params = self.parse_params(params) # Override parameters with CLI args self.override_params(params) return params
11,936
Python
37.631068
117
0.528988
ngzhili/SynTable/syntable_composer/src/input/__init__.py
from .parse import Parser
26
Python
12.499994
25
0.807692
ngzhili/SynTable/syntable_composer/src/input/parse1.py
import copy import numpy as np import os import yaml from distributions import Distribution, Choice, Normal, Range, Uniform, Walk class Parser: """ For parsing the input parameterization to Composer. """ def __init__(self, args): """ Construct Parser. Parse input file. """ self.args = args self.global_group = "[[global]]" self.param_suffix_to_file_type = { "model": [".usd", ".usdz", ".usda", ".usdc"], "texture": [".png", ".jpg", ".jpeg", ".hdr", ".exr"], "material": [".mdl"], } self.no_eval_check_params = {"output_dir", "nucleus_server", "inherit", "profiles"} Distribution.mount = args.mount Distribution.param_suffix_to_file_type = self.param_suffix_to_file_type self.default_params = self.parse_param_set("parameters/profiles/default1.yaml", default=True) additional_params_to_default_set = {"inherit": "", "profiles": [], "file_path": "", "profile_files": []} self.default_params = {**additional_params_to_default_set, **self.default_params} self.initialize_params(self.default_params) self.params = self.parse_input(self.args.input) def evaluate_param(self, key, val): """ Evaluate a parameter value in Python """ # Skip evaluation on certain parameter with string values if not self.param_is_evaluated(key, val): return val if type(val) is str and len(val) > 0: val = eval(val) if type(val) in (tuple, list): try: val = np.array(val, dtype=np.float32) except: pass if isinstance(val, Distribution): val.setup(key) if type(val) in (tuple, list): elems = val val = [self.evaluate_param(key, sub_elem) for sub_elem in elems] return val def param_is_evaluated(self, key, val): if type(val) is np.ndarray: return True return not (key in self.no_eval_check_params or not val or (type(val) is str and val.startswith("/"))) def initialize_params(self, params, default=False): """ Evaluate parameter values in Python. Verify parameter name and value type. """ for key, val in params.items(): if type(val) is dict: self.initialize_params(val) else: # Evaluate parameter try: val = self.evaluate_param(key, val) params[key] = val except Exception: raise ValueError("Unable to evaluate parameter '{}' with value '{}'".format(key, val)) # Verify parameter if not default: if key.startswith("obj") or key.startswith("light"): default_param_set = self.default_params["groups"][self.global_group] else: default_param_set = self.default_params # Verify parameter name if key not in default_param_set and key: raise ValueError("Parameter '{}' is not a parameter.".format(key)) # Verify parameter value type default_val = default_param_set[key] if isinstance(val, Distribution): val_type = val.get_type() else: val_type = type(val) if isinstance(default_val, Distribution): default_val_type = default_val.get_type() else: default_val_type = type(default_val) if default_val_type in (int, float): # Integer and Float equivalence default_val_type = [int, float] elif default_val_type in (tuple, list, np.ndarray): # Tuple, List, and Array equivalence default_val_type = [tuple, list, np.ndarray] else: default_val_type = [default_val_type] if val_type not in default_val_type: raise ValueError( "Parameter '{}' has incorrect value type {}. Value type must be in {}.".format( key, val_type, default_val_type ) ) def verify_nucleus_paths(self, params): """ Verify parameter values that point to Nucleus server file paths. """ import omni.client for key, val in params.items(): if type(val) is dict: self.verify_nucleus_paths(val) # Check Nucleus server file path of certain parameters elif key.endswith(("model", "texture", "material")) and not isinstance(val, Distribution) and val: # Check path starts with "/" if not val.startswith("/"): raise ValueError( "Parameter '{}' has path '{}' which must start with a forward slash.".format(key, val) ) # Check file type param_file_type = val[val.rfind(".") :].lower() correct_file_types = self.param_suffix_to_file_type.get(key[key.rfind("_") + 1 :], []) if param_file_type not in correct_file_types: raise ValueError( "Parameter '{}' has path '{}' with incorrect file type. File type must be one of {}.".format( key, val, correct_file_types ) ) # Check file can be found file_path = self.nucleus_server + val (exists_result, _, _) = omni.client.read_file(file_path) is_file = exists_result.name.startswith("OK") if not is_file: raise ValueError( "Parameter '{}' has path '{}' not found on '{}'.".format(key, val, self.nucleus_server) ) def override_params(self, params): """ Override params with CLI args. """ if self.args.output: params["output_dir"] = self.args.output if self.args.num_scenes is not None: params["num_scenes"] = self.args.num_scenes if self.args.num_views is not None: # added params["num_views"] = self.args.num_views if self.args.save_segmentation_data is not None: # added params["save_segmentation_data"] = self.args.save_segmentation_data if self.args.mount: params["mount"] = self.args.mount params["overwrite"] = self.args.overwrite params["headless"] = self.args.headless params["nap"] = self.args.nap params["visualize_models"] = self.args.visualize_models def parse_param_set(self, input, parse_from_file=True, default=False): """ Parse input parameter file. """ if parse_from_file: # Determine parameter file path if input.startswith("/"): input_file = input elif input.startswith("*"): input_file = os.path.join(Distribution.mount, input[2:]) else: input_file = os.path.join(os.path.dirname(__file__), "../../", input) # Read parameter file with open(input_file, "r") as f: params = yaml.safe_load(f) # Add a parameter for the input file path params["file_path"] = input_file else: params = input # Process parameter groups groups = {} groups[self.global_group] = {} for key, val in list(params.items()): # Add group if type(val) is dict: if key in groups: raise ValueError("Parameter group name is not unique: {}".format(key)) groups[key] = val params.pop(key) # Add param to global group if key.startswith("obj_") or key.startswith("light_"): groups[self.global_group][key] = val params.pop(key) params["groups"] = groups return params def parse_params(self, params): """ Parse params into a final parameter set. """ import omni.client # Add a global group, if needed if self.global_group not in params["groups"]: params["groups"][self.global_group] = {} # Parse all profile parameter sets profile_param_sets = [self.parse_param_set(profile) for profile in params.get("profiles", [])[::-1]] # Set default as lowest param set and input file param set as highest param_sets = [copy.deepcopy(self.default_params)] + profile_param_sets + [params] # Union parameters sets final_params = param_sets[0] for params in param_sets[1:]: global_group_params = params["groups"][self.global_group] sub_global_group_params = final_params["groups"][self.global_group] for group in params["groups"]: if group == self.global_group: continue group_params = params["groups"][group] if "inherit" in group_params: inherited_group = group_params["inherit"] if inherited_group not in final_params["groups"]: raise ValueError( "In group '{}' cannot find the inherited group '{}'".format(group, inherited_group) ) inherited_params = final_params["groups"][inherited_group] else: inherited_params = {} final_params["groups"][group] = { **sub_global_group_params, **inherited_params, **global_group_params, **group_params, } final_params["groups"][self.global_group] = { **final_params["groups"][self.global_group], **params["groups"][self.global_group], } final_groups = final_params["groups"].copy() final_params = {**final_params, **params} final_params["groups"] = final_groups # Remove non-final groups for group in list(final_params["groups"].keys()): if group not in param_sets[-1]["groups"]: final_params["groups"].pop(group) final_params["groups"].pop(self.global_group) params = final_params # Set profile file paths params["profile_files"] = [profile_params["file_path"] for profile_params in profile_param_sets] # Set Nucleus server and check connection if self.args.nucleus_server: params["nucleus_server"] = self.args.nucleus_server if "://" not in params["nucleus_server"]: params["nucleus_server"] = "omniverse://" + params["nucleus_server"] self.nucleus_server = params["nucleus_server"] (result, _) = omni.client.stat(self.nucleus_server) if not result.name.startswith("OK"): raise ConnectionError("Could not connect to the Nucleus server: {}".format(self.nucleus_server)) Distribution.nucleus_server = params["nucleus_server"] # Initialize params self.initialize_params(params) # Verify Nucleus server paths self.verify_nucleus_paths(params) return params def parse_input(self, input, parse_from_file=True): """ Parse all input parameter files. """ if parse_from_file: print("Parsing and checking input parameterization.") # Parse input parameter file params = self.parse_param_set(input, parse_from_file=parse_from_file) # Process params params = self.parse_params(params) # Override parameters with CLI args self.override_params(params) return params
12,196
Python
37.968051
117
0.530912
ngzhili/SynTable/syntable_composer/src/visualize/visualize.py
import numpy as np import os import sys from PIL import Image, ImageDraw, ImageFont from distributions import Choice, Walk from main import Composer from sampling import Sampler class Visualizer: """ For generating visuals of each input object model in the input parameterization. """ def __init__(self, parser, input_params, output_dir): """ Construct Visualizer. Parameterize Composer to generate the data needed to post-process into model visuals. """ self.parser = parser self.input_params = input_params self.output_dir = os.path.join(output_dir, "visuals") os.makedirs(self.output_dir, exist_ok=True) # Get all object models from input parameter file self.obj_models = self.get_all_obj_models() self.nucleus_server = self.input_params["nucleus_server"] # Copy model list to output file model_list = os.path.join(self.output_dir, "models.txt") with open(model_list, "w") as f: for obj_model in self.obj_models: f.write(obj_model) f.write("\n") # Filter obj models if not self.input_params["overwrite"]: self.filter_obj_models(self.obj_models) if not self.obj_models: print("All object model visuals are already created.") sys.exit() self.tile_width = 500 self.tile_height = 500 self.obj_size = 1 self.room_size = 10 * self.obj_size self.cam_distance = 4 * self.obj_size self.camera_coord = np.array((-self.cam_distance, 0, self.room_size / 2)) self.background_color = (160, 185, 190) self.group_name = "photoshoot" # Set hard-coded parameters self.params = {self.group_name: {}} self.set_obj_params() self.set_light_params() self.set_room_params() self.set_cam_params() self.set_other_params() # Parse parameters self.params = parser.parse_input(self.params, parse_from_file=False) # Set parameters Sampler.params = self.params # Initiate Composer self.composer = Composer(self.params, 0, self.output_dir) def visualize_models(self): """ Generate samples and post-process captured data into visuals. """ num_models = len(self.obj_models) for i, obj_model in enumerate(self.obj_models): print("Model {}/{} - {}".format(i, num_models, obj_model)) self.set_obj_model(obj_model) # Capture 4 angles per model outputs = [self.composer.generate_scene() for j in range(4)] image_matrix = self.process_outputs(outputs) self.save_visual(obj_model, image_matrix) def get_all_obj_models(self): """ Get all object models from input parameterization. """ obj_models = [] groups = self.input_params["groups"] for group_name, group in groups.items(): obj_count = group["obj_count"] group_models = group["obj_model"] if group_models and obj_count: if type(group_models) is Choice or type(group_models) is Walk: group_models = group_models.elems else: group_models = [group_models] obj_models.extend(group_models) # Remove repeats obj_models = list(set(obj_models)) return obj_models def filter_obj_models(self, obj_models): """ Filter out obj models that have already been visualized. """ existing_filenames = set([f for f in os.listdir(self.output_dir)]) for obj_model in obj_models: filename = self.model_to_filename(obj_model) if filename in existing_filenames: obj_models.remove(obj_model) def model_to_filename(self, obj_model): """ Map object model's Nucleus path to a filename. """ filename = obj_model.replace("/", "__") r_index = filename.rfind(".") filename = filename[:r_index] filename += ".jpg" return filename def process_outputs(self, outputs): """ Tile output data from scene into one image matrix. """ rgbs = [groundtruth["DATA"]["RGB"] for groundtruth in outputs] wireframes = [groundtruth["DATA"]["WIREFRAME"] for groundtruth in outputs] rgbs = [rgb[:, :, :3] for rgb in rgbs] top_row_matrix = np.concatenate(rgbs, axis=1) wireframes = [wireframe[:, :, :3] for wireframe in wireframes] bottom_row_matrix = np.concatenate(wireframes, axis=1) image_matrix = np.concatenate([top_row_matrix, bottom_row_matrix], axis=0) image_matrix = np.array(image_matrix, dtype=np.uint8) return image_matrix def save_visual(self, obj_model, image_matrix): """ Save image matrix as image. """ image = Image.fromarray(image_matrix, "RGB") font_path = os.path.join(os.path.dirname(__file__), "RobotoMono-Regular.ttf") font = ImageFont.truetype(font_path, 24) draw = ImageDraw.Draw(image) width, height = image.size draw.text((10, 10), obj_model, font=font) model_name = self.model_to_filename(obj_model) filename = os.path.join(self.output_dir, model_name) image.save(filename, "JPEG", quality=90) def set_cam_params(self): """ Set camera parameters. """ self.params["camera_coord"] = str(self.camera_coord.tolist()) self.params["camera_rot"] = str((0, 0, 0)) self.params["focal_length"] = 50 def set_room_params(self): """ Set room parameters. """ self.params["scenario_room_enabled"] = str(True) self.params["floor_size"] = str(self.room_size) self.params["wall_height"] = str(self.room_size) self.params["floor_color"] = str(self.background_color) self.params["wall_color"] = str(self.background_color) self.params["ceiling_color"] = str(self.background_color) self.params["floor_reflectance"] = str(0) self.params["wall_reflectance"] = str(0) self.params["ceiling_reflectance"] = str(0) def set_obj_params(self): """ Set object parameters. """ group = self.params[self.group_name] group["obj_coord_camera_relative"] = str(False) group["obj_rot_camera_relative"] = str(False) group["obj_coord"] = str((0, 0, self.room_size / 2)) group["obj_rot"] = "Walk([(25, -25, -45), (-25, 25, -225), (-25, 25, -45), (25, -25, -225)])" group["obj_size"] = str(self.obj_size) group["obj_count"] = str(1) def set_light_params(self): """ Set light parameters. """ group = self.params[self.group_name] group["light_count"] = str(4) group["light_coord_camera_relative"] = str(False) light_offset = 2 * self.obj_size light_coords = [ self.camera_coord + (0, -light_offset, 0), self.camera_coord + (0, 0, light_offset), self.camera_coord + (0, light_offset, 0), self.camera_coord + (0, 0, -light_offset), ] light_coords = str([tuple(coord.tolist()) for coord in light_coords]) group["light_coord"] = "Walk(" + light_coords + ")" group["light_intensity"] = str(40000) group["light_radius"] = str(0.50) group["light_color"] = str([200, 200, 200]) def set_other_params(self): """ Set other parameters. """ self.params["img_width"] = str(self.tile_width) self.params["img_height"] = str(self.tile_height) self.params["write_data"] = str(False) self.params["verbose"] = str(False) self.params["rgb"] = str(True) self.params["wireframe"] = str(True) self.params["nucleus_server"] = str(self.nucleus_server) self.params["pause"] = str(0.5) self.params["path_tracing"] = True def set_obj_model(self, obj_model): """ Set obj_model parameter. """ group = self.params["groups"][self.group_name] group["obj_model"] = str(obj_model)
8,145
Python
34.885462
123
0.590055
ngzhili/SynTable/syntable_composer/src/visualize/__init__.py
from .visualize import Visualizer
35
Python
10.999996
33
0.828571
ngzhili/SynTable/syntable_composer/src/sampling/__init__.py
from .sample import Sampler
28
Python
13.499993
27
0.821429
ngzhili/SynTable/syntable_composer/src/sampling/sample1.py
import numpy as np from distributions import Distribution from output import Logger class Sampler: """ For managing parameter sampling. """ # Static variable of parameter set params = None def __init__(self, group=None): """ Construct a Sampler. Potentially set an associated group. """ self.group = group def evaluate(self, val): """ Evaluate a parameter into a primitive. """ if isinstance(val, Distribution): val = val.sample() elif isinstance(val, (list, tuple)): elems = val val = [self.evaluate(sub_elem) for sub_elem in elems] is_numeric = all([type(elem) == int or type(elem) == float for elem in val]) if is_numeric: val = np.array(val, dtype=np.float32) return val def sample(self, key, group=None,tableBounds=None): """ Sample a parameter. """ if group is None: group = self.group if key.startswith("obj") or key.startswith("light") and group: param_set = Sampler.params["groups"][group] else: param_set = Sampler.params if key in param_set: val = param_set[key] else: print('Warning key "{}" in group "{}" not found in parameter set.'.format(key, group)) return None if key == "obj_coord" and group != "table" and tableBounds: min_val = tableBounds[0] max_val = tableBounds[1] val.min_val = min_val val.max_val = max_val val = self.evaluate(val) Logger.write_parameter(key, val, group=group) return val
1,686
Python
28.086206
98
0.561684
ngzhili/SynTable/syntable_composer/src/sampling/sample.py
import numpy as np from distributions import Distribution from output import Logger class Sampler: """ For managing parameter sampling. """ # Static variable of parameter set params = None def __init__(self, group=None): """ Construct a Sampler. Potentially set an associated group. """ self.group = group def evaluate(self, val): """ Evaluate a parameter into a primitive. """ if isinstance(val, Distribution): val = val.sample() elif isinstance(val, (list, tuple)): elems = val val = [self.evaluate(sub_elem) for sub_elem in elems] is_numeric = all([type(elem) == int or type(elem) == float for elem in val]) if is_numeric: val = np.array(val, dtype=np.float32) return val def sample(self, key, group=None): """ Sample a parameter. """ if group is None: group = self.group if key.startswith("obj") or key.startswith("light") and group: param_set = Sampler.params["groups"][group] else: param_set = Sampler.params if key in param_set: val = param_set[key] else: print('Warning key "{}" in group "{}" not found in parameter set.'.format(key, group)) return None val = self.evaluate(val) Logger.write_parameter(key, val, group=group) return val
1,452
Python
25.907407
98
0.568871
ngzhili/SynTable/syntable_composer/src/scene/scene1.py
import time import numpy as np from random import randint from output import Logger # from sampling import Sampler from sampling.sample1 import Sampler # from scene import Camera, Light from scene.light1 import Light from scene.camera1 import Camera from scene.object1 import Object from scene.room1 import Room def randomNumObjList(num_objs, total_sum): """ Function to sample a list of m random non-negative integers whose sum is n """ # Create an array of size m where every element is initialized to 0 arr = [0] * num_objs # To make the sum of the final list as n for i in range(total_sum) : # Increment any random element from the array by 1 # arr[randint(0, n) % m] += 1 arr[randint(0, num_objs-1)] += 1 return arr class SceneManager: """ For managing scene set-up and generation. """ def __init__(self, sim_app, sim_context): """ Construct SceneManager. Set-up scenario in Isaac Sim. """ import omni self.sim_app = sim_app self.sim_context = sim_context self.stage = omni.usd.get_context().get_stage() self.sample = Sampler().sample self.scene_path = "/World/Scene" self.scenario_label = "[[scenario]]" self.play_frame = False self.objs = [] self.lights = [] self.camera = Camera(self.sim_app, self.sim_context, "/World/CameraRig", None, group=None) self.setup_scenario() def setup_scenario(self): """ Load in base scenario(s) """ import omni from omni.isaac.core import SimulationContext from omni.isaac.core.utils import stage from omni.isaac.core.utils.stage import get_stage_units cached_physics_dt = self.sim_context.get_physics_dt() cached_rendering_dt = self.sim_context.get_rendering_dt() cached_stage_units = get_stage_units() self.room = None if self.sample("scenario_room_enabled"): # Generate a parameterizable room self.room = Room(self.sim_app, self.sim_context) # add table from scene.room_face1 import RoomTable group = "table" path = "/World/Room/table_{}".format(1) ref = self.sample("nucleus_server") + self.sample("obj_model", group=group) obj = RoomTable(self.sim_app, self.sim_context, ref, path, "obj", self.camera, group=group) roomTableMinBounds, roomTableMaxBounds = obj.get_bounds() roomTableSize = roomTableMaxBounds - roomTableMinBounds # (x,y,z size of table) roomTableHeight = roomTableSize[-1] roomTableZCenter = roomTableHeight/2 obj.translate(np.array([0,0,roomTableZCenter])) self.roomTableSize = roomTableSize self.roomTable = obj else: # Load in a USD scenario self.load_scenario_model() # Re-initialize context after we open a stage self.sim_context = SimulationContext( physics_dt=cached_physics_dt, rendering_dt=cached_rendering_dt, stage_units_in_meters=cached_stage_units ) self.stage = omni.usd.get_context().get_stage() # Set the up axis to the z axis stage.set_stage_up_axis("z") # Set scenario label to stage prims self.set_scenario_label() # Reset rendering settings self.sim_app.reset_render_settings() def set_scenario_label(self): """ Set scenario label to all prims in stage. """ from pxr import Semantics for prim in self.stage.Traverse(): path = prim.GetPath() # print(path) if path == "/World": continue if not prim.HasAPI(Semantics.SemanticsAPI): sem = Semantics.SemanticsAPI.Apply(prim, "Semantics") sem.CreateSemanticTypeAttr() sem.CreateSemanticDataAttr() else: sem = Semantics.SemanticsAPI.Get(prim, "Semantics") continue typeAttr = sem.GetSemanticTypeAttr() dataAttr = sem.GetSemanticDataAttr() typeAttr.Set("class") dataAttr.Set(self.scenario_label) def load_scenario_model(self): """ Load in a USD scenario. """ from omni.isaac.core.utils.stage import open_stage # Load in base scenario from Nucleus if self.sample("scenario_model"): scenario_ref = self.sample("nucleus_server") + self.sample("scenario_model") open_stage(scenario_ref) def populate_scene(self, tableBounds=None): """ Populate a sample's scene a camera, objects, and lights. """ # Update camera self.camera.place_in_scene() # Iterate through each group self.objs = [] self.lights = [] self.ceilinglights = [] if self.sample("randomise_num_of_objs_in_scene"): MaxObjInScene = self.sample("max_obj_in_scene") numUniqueObjs = len([i for i in self.sample("groups") if i.lower().startswith("object")]) ObjNumList = randomNumObjList(numUniqueObjs, MaxObjInScene) for grp_index, group in enumerate(self.sample("groups")): # spawn objects to scene if group not in ["table","lights","ceilinglights","backgroundobject"]: # do not add Roomtable here if self.sample("randomise_num_of_objs_in_scene"): num_objs = ObjNumList[grp_index] # get number of objects to be generated else: num_objs = self.sample("obj_count", group=group) for i in range(num_objs): path = "{}/Objects/object_{}".format(self.scene_path, len(self.objs)) ref = self.sample("nucleus_server") + self.sample("obj_model", group=group) obj = Object(self.sim_app, self.sim_context, ref, path, "obj", self.camera, group,tableBounds=tableBounds) self.objs.append(obj) elif group == "ceilinglights": # Spawn lights num_lights = self.sample("light_count", group=group) for i in range(num_lights): path = "{}/Ceilinglights/ceilinglights_{}".format(self.scene_path, len(self.ceilinglights)) light = Light(self.sim_app, self.sim_context, path, self.camera, group) self.ceilinglights.append(light) elif group == "lights": # Spawn lights num_lights = self.sample("light_count", group=group) for i in range(num_lights): path = "{}/Lights/lights_{}".format(self.scene_path, len(self.lights)) light = Light(self.sim_app, self.sim_context, path, self.camera, group) self.lights.append(light) # Update room if self.room: self.room.update() self.roomTable.add_material() # Add skybox, if needed self.add_skybox() def update_scene(self, step_time=None, step_index=0): """ Update Omniverse after scene is generated. """ from omni.isaac.core.utils.stage import is_stage_loading # Step positions of objs and lights if step_time: self.camera.step(step_time) for obj in self.objs: obj.step(step_time) for light in self.lights: light.step(step_time) # Wait for scene to finish loading while is_stage_loading(): self.sim_context.render() # Determine if scene is played scene_assets = self.objs + self.lights self.play_frame = any([asset.physics for asset in scene_assets]) # Play scene, if needed if self.play_frame and step_index == 0: Logger.print("\nPhysically simulating...") self.sim_context.play() render = not self.sample("headless") sim_time = self.sample("physics_simulate_time") frames_to_simulate = int(sim_time * 60) + 1 for i in range(frames_to_simulate): self.sim_context.step(render=render) # Napping if self.sample("nap"): print("napping") while True: self.sim_context.render() # Update if step_index == 0: Logger.print("\nLoading textures...") self.sim_context.render() # Pausing if step_index == 0: pause_time = self.sample("pause") start_time = time.time() while time.time() - start_time < pause_time: self.sim_context.render() def add_skybox(self): """ Add a DomeLight that creates a textured skybox, if needed. """ from pxr import UsdGeom, UsdLux from omni.isaac.core.utils.prims import create_prim sky_texture = self.sample("sky_texture") sky_light_intensity = self.sample("sky_light_intensity") if sky_texture: create_prim( prim_path="{}/Lights/skybox".format(self.scene_path), prim_type="DomeLight", attributes={ UsdLux.Tokens.intensity: sky_light_intensity, UsdLux.Tokens.specular: 1, UsdLux.Tokens.textureFile: self.sample("nucleus_server") + sky_texture, UsdLux.Tokens.textureFormat: UsdLux.Tokens.latlong, UsdGeom.Tokens.visibility: "inherited", }, ) def prepare_scene(self, index): """ Scene preparation step. """ self.valid_sample = True Logger.start_log_entry(index) Logger.print("===== Generating Scene: " + str(index) + " =====\n") def finish_scene(self): """ Scene finish step. Clean-up variables, Isaac Sim stage. """ from omni.isaac.core.utils.prims import delete_prim self.objs = [] self.lights = [] self.ceilinglights = [] delete_prim(self.scene_path) delete_prim("/Looks") self.sim_context.stop() self.sim_context.render() self.play_frame = False Logger.finish_log_entry() def print_instance_attributes(self): for attribute, value in self.__dict__.items(): print(attribute, '=', value) def reload_table(self): from omni.isaac.core.utils.prims import delete_prim from scene.room_face1 import RoomTable group = "table" path = "/World/Room/table_{}".format(1) delete_prim(path) # delete old tables ref = self.sample("nucleus_server") + self.sample("obj_model", group=group) obj = RoomTable(self.sim_app, self.sim_context, ref, path, "obj", self.camera, group=group) roomTableMinBounds, roomTableMaxBounds = obj.get_bounds() roomTableSize = roomTableMaxBounds - roomTableMinBounds # (x,y,z size of table) roomTableHeight = roomTableSize[-1] roomTableZCenter = roomTableHeight/2 obj.translate(np.array([0,0,roomTableZCenter])) self.roomTableSize = roomTableSize self.roomTable = obj
11,333
Python
35.679612
136
0.578752
ngzhili/SynTable/syntable_composer/src/scene/room_face1.py
from scene.object1 import Object import numpy as np import os class RoomFace(Object): """ For managing an Xform asset in Isaac Sim. """ def __init__(self, sim_app, sim_context, path, prefix, coord, rotation, scaling): """ Construct Object. """ self.coord = coord self.rotation = rotation self.scaling = scaling super().__init__(sim_app, sim_context, "", path, prefix, None, None) def load_asset(self): """ Create asset from object parameters. """ from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils.prims import move_prim from pxr import PhysxSchema, UsdPhysics if self.prefix == "floor": # Create invisible ground plane path = "/World/Room/ground" planeGeom = PhysxSchema.Plane.Define(self.stage, path) planeGeom.CreatePurposeAttr().Set("guide") planeGeom.CreateAxisAttr().Set("Z") prim = self.stage.GetPrimAtPath(path) UsdPhysics.CollisionAPI.Apply(prim) # Create plane from omni.kit.primitive.mesh import CreateMeshPrimWithDefaultXformCommand CreateMeshPrimWithDefaultXformCommand(prim_type="Plane").do() move_prim(path_from="/Plane", path_to=self.path) self.prim = self.stage.GetPrimAtPath(self.path) self.xform_prim = XFormPrim(self.path) def place_in_scene(self): """ Scale, rotate, and translate asset. """ self.translate(self.coord) self.rotate(self.rotation) self.scale(self.scaling) def step(self): """ Room Face does not update in a scene's sequence. """ return class RoomTable(Object): """ For managing an Xform asset in Isaac Sim. """ def __init__(self, sim_app, sim_context, ref, path, prefix, camera, group): super().__init__(sim_app, sim_context, ref, path, prefix, camera, group, None) def load_asset(self): """ Create asset from object parameters. """ from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils import prims # print(self.path) # Create object self.prim = prims.create_prim(self.path, "Xform", semantic_label="[[scenario]]") self.xform_prim = XFormPrim(self.path) nested_path = os.path.join(self.path, "nested_prim") self.nested_prim = prims.create_prim(nested_path, "Xform", usd_path=self.ref, semantic_label="[[scenario]]") self.nested_xform_prim = XFormPrim(nested_path) self.add_material() self.add_collision()
2,607
Python
31.6
116
0.624473
ngzhili/SynTable/syntable_composer/src/scene/asset1.py
from abc import ABC, abstractmethod import math import numpy as np from scipy.spatial.transform import Rotation from output import Logger from sampling.sample1 import Sampler class Asset(ABC): """ For managing an asset in Isaac Sim. """ def __init__(self, sim_app, sim_context, path, prefix, name, group=None, camera=None): """ Construct Asset. """ self.sim_app = sim_app self.sim_context = sim_context self.path = path self.camera = camera self.name = name self.prefix = prefix self.stage = self.sim_context.stage self.sample = Sampler(group=group).sample self.class_name = self.__class__.__name__ if self.class_name != "RoomFace": self.vel = self.sample(self.concat("vel")) self.rot_vel = self.sample(self.concat("rot_vel")) self.accel = self.sample(self.concat("accel")) self.rot_accel = self.sample(self.concat("rot_accel")) self.label = group self.physics = False @abstractmethod def place_in_scene(self): """ Place asset in scene. """ pass def is_given(self, param): """ Is a parameter value is given. """ if type(param) in (np.ndarray, list, tuple, str): return len(param) > 0 elif type(param) is float: return not math.isnan(param) else: return param is not None def translate(self, coord, xform_prim=None): """ Translate asset. """ if xform_prim is None: xform_prim = self.xform_prim xform_prim.set_world_pose(position=coord) def scale(self, scaling, xform_prim=None): """ Scale asset uniformly across all axes. """ if xform_prim is None: xform_prim = self.xform_prim xform_prim.set_local_scale(scaling) def rotate(self, rotation, xform_prim=None): """ Rotate asset. """ from omni.isaac.core.utils.rotations import euler_angles_to_quat if xform_prim is None: xform_prim = self.xform_prim xform_prim.set_world_pose(orientation=euler_angles_to_quat(rotation.tolist(), degrees=True)) def is_coord_camera_relative(self): return self.sample(self.concat("coord_camera_relative")) def is_rot_camera_relative(self): return self.sample(self.concat("rot_camera_relative")) def concat(self, parameter_suffix): """ Concatenate the parameter prefix and suffix. """ return self.prefix + "_" + parameter_suffix def get_initial_coord(self,tableBounds=None): """ Get coordinates of asset across 3 axes. """ if self.is_coord_camera_relative(): cam_coord = self.camera.coords[0] cam_rot = self.camera.rotation horiz_fov = -1 * self.camera.intrinsics[0]["horiz_fov"] vert_fov = self.camera.intrinsics[0]["vert_fov"] radius = self.sample(self.concat("distance")) theta = horiz_fov * self.sample(self.concat("horiz_fov_loc")) / 2 phi = vert_fov * self.sample(self.concat("vert_fov_loc")) / 2 # Convert from polar to cartesian rads = np.radians(cam_rot[2] + theta) x = cam_coord[0] + radius * np.cos(rads) y = cam_coord[1] + radius * np.sin(rads) rads = np.radians(cam_rot[0] + phi) z = cam_coord[2] + radius * np.sin(rads) coord = np.array([x, y, z]) elif tableBounds: coord = self.sample(self.concat("coord"),tableBounds=tableBounds) else: coord = self.sample(self.concat("coord")) pretty_coord = tuple([round(v, 1) for v in coord.tolist()]) return coord def get_initial_rotation(self): """ Get rotation of asset across 3 axes. """ rotation = self.sample(self.concat("rot")) rotation = np.array(rotation) if self.is_rot_camera_relative(): cam_rot = self.camera.rotation rotation += cam_rot return rotation def step(self, step_time): """ Step asset forward in its sequence. """ from omni.isaac.core.utils.rotations import quat_to_euler_angles if self.class_name != "Camera": self.coord, quaternion = self.xform_prim.get_world_pose() self.coord = np.array(self.coord, dtype=np.float32) self.rotation = np.degrees(quat_to_euler_angles(quaternion)) vel_vector = self.vel accel_vector = self.accel if self.sample(self.concat("movement") + "_" + self.concat("relative")): radians = np.radians(self.rotation) direction_cosine_matrix = Rotation.from_rotvec(radians).as_matrix() vel_vector = direction_cosine_matrix.dot(vel_vector) accel_vector = direction_cosine_matrix.dot(accel_vector) self.coord += vel_vector * step_time + 0.5 * accel_vector * step_time ** 2 self.translate(self.coord) self.rotation += self.rot_vel * step_time + 0.5 * self.rot_accel * step_time ** 2 self.rotate(self.rotation)
5,129
Python
32.529412
100
0.594463
ngzhili/SynTable/syntable_composer/src/scene/scene.py
import time from output import Logger from sampling import Sampler from scene import Camera, Light, Object, Room class SceneManager: """ For managing scene set-up and generation. """ def __init__(self, sim_app, sim_context): """ Construct SceneManager. Set-up scenario in Isaac Sim. """ import omni self.sim_app = sim_app self.sim_context = sim_context self.stage = omni.usd.get_context().get_stage() self.sample = Sampler().sample self.scene_path = "/World/Scene" self.scenario_label = "[[scenario]]" self.play_frame = False self.objs = [] self.lights = [] self.setup_scenario() self.camera = Camera(self.sim_app, self.sim_context, "/World/CameraRig", None, group=None) def setup_scenario(self): """ Load in base scenario(s) """ import omni from omni.isaac.core import SimulationContext from omni.isaac.core.utils import stage from omni.isaac.core.utils.stage import get_stage_units cached_physics_dt = self.sim_context.get_physics_dt() cached_rendering_dt = self.sim_context.get_rendering_dt() cached_stage_units = get_stage_units() self.room = None if self.sample("scenario_room_enabled"): # Generate a parameterizable room self.room = Room(self.sim_app, self.sim_context) else: # Load in a USD scenario self.load_scenario_model() # Re-initialize context after we open a stage self.sim_context = SimulationContext( physics_dt=cached_physics_dt, rendering_dt=cached_rendering_dt, stage_units_in_meters=cached_stage_units ) self.stage = omni.usd.get_context().get_stage() # Set the up axis to the z axis stage.set_stage_up_axis("z") # Set scenario label to stage prims self.set_scenario_label() # Reset rendering settings self.sim_app.reset_render_settings() def set_scenario_label(self): """ Set scenario label to all prims in stage. """ from pxr import Semantics for prim in self.stage.Traverse(): path = prim.GetPath() if path == "/World": continue if not prim.HasAPI(Semantics.SemanticsAPI): sem = Semantics.SemanticsAPI.Apply(prim, "Semantics") sem.CreateSemanticTypeAttr() sem.CreateSemanticDataAttr() else: sem = Semantics.SemanticsAPI.Get(prim, "Semantics") continue typeAttr = sem.GetSemanticTypeAttr() dataAttr = sem.GetSemanticDataAttr() typeAttr.Set("class") dataAttr.Set(self.scenario_label) def load_scenario_model(self): """ Load in a USD scenario. """ from omni.isaac.core.utils.stage import open_stage # Load in base scenario from Nucleus if self.sample("scenario_model"): scenario_ref = self.sample("nucleus_server") + self.sample("scenario_model") open_stage(scenario_ref) def populate_scene(self): """ Populate a sample's scene a camera, objects, and lights. """ # Update camera self.camera.place_in_scene() # Iterate through each group self.objs = [] self.lights = [] for group in self.sample("groups"): # Spawn objects num_objs = self.sample("obj_count", group=group) for i in range(num_objs): path = "{}/Objects/object_{}".format(self.scene_path, len(self.objs)) ref = self.sample("nucleus_server") + self.sample("obj_model", group=group) obj = Object(self.sim_app, self.sim_context, ref, path, "obj", self.camera, group) self.objs.append(obj) # Spawn lights num_lights = self.sample("light_count", group=group) for i in range(num_lights): path = "{}/Lights/lights_{}".format(self.scene_path, len(self.lights)) light = Light(self.sim_app, self.sim_context, path, self.camera, group) self.lights.append(light) # Update room if self.room: self.room.update() # Add skybox, if needed self.add_skybox() def update_scene(self, step_time=None, step_index=0): """ Update Omniverse after scene is generated. """ from omni.isaac.core.utils.stage import is_stage_loading # Step positions of objs and lights if step_time: self.camera.step(step_time) for obj in self.objs: obj.step(step_time) for light in self.lights: light.step(step_time) # Wait for scene to finish loading while is_stage_loading(): self.sim_context.render() # Determine if scene is played scene_assets = self.objs + self.lights self.play_frame = any([asset.physics for asset in scene_assets]) # Play scene, if needed if self.play_frame and step_index == 0: Logger.print("physically simulating...") self.sim_context.play() render = not self.sample("headless") sim_time = self.sample("physics_simulate_time") frames_to_simulate = int(sim_time * 60) + 1 for i in range(frames_to_simulate): self.sim_context.step(render=render) # Napping if self.sample("nap"): print("napping") while True: self.sim_context.render() # Update if step_index == 0: Logger.print("loading textures...") self.sim_context.render() # Pausing if step_index == 0: pause_time = self.sample("pause") start_time = time.time() while time.time() - start_time < pause_time: self.sim_context.render() def add_skybox(self): """ Add a DomeLight that creates a textured skybox, if needed. """ from pxr import UsdGeom, UsdLux from omni.isaac.core.utils.prims import create_prim sky_texture = self.sample("sky_texture") sky_light_intensity = self.sample("sky_light_intensity") if sky_texture: create_prim( prim_path="{}/Lights/skybox".format(self.scene_path), prim_type="DomeLight", attributes={ UsdLux.Tokens.intensity: sky_light_intensity, UsdLux.Tokens.specular: 1, UsdLux.Tokens.textureFile: self.sample("nucleus_server") + sky_texture, UsdLux.Tokens.textureFormat: UsdLux.Tokens.latlong, UsdGeom.Tokens.visibility: "inherited", }, ) def prepare_scene(self, index): """ Scene preparation step. """ self.valid_sample = True Logger.start_log_entry(index) Logger.print("Scene: " + str(index) + "\n") def finish_scene(self): """ Scene finish step. Clean-up variables, Isaac Sim stage. """ from omni.isaac.core.utils.prims import delete_prim self.objs = [] self.lights = [] delete_prim(self.scene_path) delete_prim("/Looks") self.sim_context.stop() self.sim_context.render() self.play_frame = False Logger.finish_log_entry()
7,513
Python
31.95614
116
0.570212
ngzhili/SynTable/syntable_composer/src/scene/__init__.py
from .asset import * from .room import Room from .scene import SceneManager
77
Python
14.599997
31
0.779221
ngzhili/SynTable/syntable_composer/src/scene/room.py
import numpy as np from sampling import Sampler from scene import RoomFace class Room: """ For managing a parameterizable rectangular prism centered at the origin. """ def __init__(self, sim_app, sim_context): """ Construct Room. Generate room in Isaac SIM. """ self.sim_app = sim_app self.sim_context = sim_context self.stage = self.sim_context.stage self.sample = Sampler().sample self.room = self.scenario_room() def scenario_room(self): """ Generate and return assets creating a rectangular prism at the origin. """ wall_height = self.sample("wall_height") floor_size = self.sample("floor_size") self.room_faces = [] faces = [] coords = [] scalings = [] rotations = [] if self.sample("floor"): faces.append("floor") coords.append((0, 0, 0)) scalings.append((floor_size / 100, floor_size / 100, 1)) rotations.append((0, 0, 0)) if self.sample("wall"): faces.extend(4 * ["wall"]) coords.append((floor_size / 2, 0, wall_height / 2)) coords.append((0, floor_size / 2, wall_height / 2)) coords.append((-floor_size / 2, 0, wall_height / 2)) coords.append((0, -floor_size / 2, wall_height / 2)) scalings.extend(4 * [(floor_size / 100, wall_height / 100, 1)]) rotations.append((90, 0, 90)) rotations.append((90, 0, 0)) rotations.append((90, 0, 90)) rotations.append((90, 0, 0)) if self.sample("ceiling"): faces.append("ceiling") coords.append((0, 0, wall_height)) scalings.append((floor_size / 100, floor_size / 100, 1)) rotations.append((0, 0, 0)) room = [] for i, face in enumerate(faces): coord = np.array(coords[i]) rotation = np.array(rotations[i]) scaling = np.array(scalings[i]) path = "/World/Room/{}_{}".format(face, i) room_face = RoomFace(self.sim_app, self.sim_context, path, face, coord, rotation, scaling) room.append(room_face) return room def update(self): """ Update room components. """ for room_face in self.room: room_face.add_material()
2,363
Python
30.945946
102
0.544223
ngzhili/SynTable/syntable_composer/src/scene/camera1.py
import math import numpy as np import carb from scene.asset1 import Asset from output import Logger # from sampling import Sampler from sampling.sample1 import Sampler class Camera(Asset): """ For managing a camera in Isaac Sim. """ def __init__(self, sim_app, sim_context, path, camera, group): """ Construct Camera. """ self.sample = Sampler(group=group).sample self.stereo = self.sample("stereo") if self.stereo: name = "stereo_cams" else: name = "mono_cam" super().__init__(sim_app, sim_context, path, "camera", name, camera=camera, group=group) self.load_camera() def is_coord_camera_relative(self): return False def is_rot_camera_relative(self): return False def load_camera(self): """ Create a camera in Isaac Sim. """ import omni from pxr import Sdf, UsdGeom from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils import prims self.prim = prims.create_prim(self.path, "Xform") self.xform_prim = XFormPrim(self.path) self.camera_rig = UsdGeom.Xformable(self.prim) camera_prim_paths = [] if self.stereo: camera_prim_paths.append(self.path + "/LeftCamera") camera_prim_paths.append(self.path + "/RightCamera") else: camera_prim_paths.append(self.path + "/MonoCamera") self.cameras = [ self.stage.DefinePrim(Sdf.Path(camera_prim_path), "Camera") for camera_prim_path in camera_prim_paths ] focal_length = self.sample("focal_length") focus_distance = self.sample("focus_distance") horiz_aperture = self.sample("horiz_aperture") vert_aperture = self.sample("vert_aperture") f_stop = self.sample("f_stop") for camera in self.cameras: camera = UsdGeom.Camera(camera) camera.GetFocalLengthAttr().Set(focal_length) camera.GetFocusDistanceAttr().Set(focus_distance) camera.GetHorizontalApertureAttr().Set(horiz_aperture) camera.GetVerticalApertureAttr().Set(vert_aperture) camera.GetFStopAttr().Set(f_stop) # Set viewports carb.settings.acquire_settings_interface().set_int("/app/renderer/resolution/width", -1) carb.settings.acquire_settings_interface().set_int("/app/renderer/resolution/height", -1) self.viewports = [] for i in range(len(self.cameras)): if i == 0: viewport_handle = omni.kit.viewport_legacy.get_viewport_interface().get_instance("Viewport") else: viewport_handle = omni.kit.viewport_legacy.get_viewport_interface().create_instance() viewport_window = omni.kit.viewport_legacy.get_viewport_interface().get_viewport_window(viewport_handle) viewport_window.set_texture_resolution(self.sample("img_width"), self.sample("img_height")) viewport_window.set_active_camera(camera_prim_paths[i]) if self.stereo: if i == 0: viewport_name = "left" else: viewport_name = "right" else: viewport_name = "mono" self.viewports.append((viewport_name, viewport_window)) self.sim_context.render() self.sim_app.update() # Set viewport window size if self.stereo: left_viewport = omni.ui.Workspace.get_window("Viewport") right_viewport = omni.ui.Workspace.get_window("Viewport 2") right_viewport.dock_in(left_viewport, omni.ui.DockPosition.RIGHT) self.intrinsics = [self.get_intrinsics(camera) for camera in self.cameras] # print(self.intrinsics) def translate(self, coord): """ Translate each camera asset. Find stereo positions, if needed. """ self.coord = coord if self.sample("stereo"): self.coords = self.get_stereo_coords(self.coord, self.rotation) else: self.coords = [self.coord] for i, camera in enumerate(self.cameras): viewport_name, viewport_window = self.viewports[i] viewport_window.set_camera_position( str(camera.GetPath()), self.coords[i][0], self.coords[i][1], self.coords[i][2], True ) def rotate(self, rotation): """ Rotate each camera asset. """ from pxr import UsdGeom self.rotation = rotation for i, camera in enumerate(self.cameras): offset_cam_rot = self.rotation + np.array((90, 0, 270), dtype=np.float32) UsdGeom.XformCommonAPI(camera).SetRotate(offset_cam_rot.tolist()) def place_in_scene(self): """ Place camera in scene. """ rotation = self.get_initial_rotation() self.rotate(rotation) coord = self.get_initial_coord() self.translate(coord) self.step(0) def get_stereo_coords(self, coord, rotation): """ Convert camera center coord and rotation and return stereo camera coords. """ coords = [] for i in range(len(self.cameras)): sign = 1 if i == 0 else -1 theta = np.radians(rotation[0] + sign * 90) phi = np.radians(rotation[1]) radius = self.sample("stereo_baseline") / 2 # Add offset such that center of stereo cameras is at cam_coord x = coord[0] + radius * np.cos(theta) * np.cos(phi) y = coord[1] + radius * np.sin(theta) * np.cos(phi) z = coord[2] + radius * sign * np.sin(phi) coords.append(np.array((x, y, z))) return coords def get_intrinsics(self, camera): """ Compute, print, and return camera intrinsics. """ from omni.syntheticdata import helpers width = self.sample("img_width") height = self.sample("img_height") aspect_ratio = width / height camera.GetAttribute("clippingRange").Set((0.01, 1000000)) # set clipping range near, far = camera.GetAttribute("clippingRange").Get() focal_length = camera.GetAttribute("focalLength").Get() horiz_aperture = camera.GetAttribute("horizontalAperture").Get() vert_aperture = camera.GetAttribute("verticalAperture").Get() horiz_fov = 2 * math.atan(horiz_aperture / (2 * focal_length)) horiz_fov = np.degrees(horiz_fov) vert_fov = 2 * math.atan(vert_aperture / (2 * focal_length)) vert_fov = np.degrees(vert_fov) fx = width * focal_length / horiz_aperture fy = height * focal_length / vert_aperture cx = width * 0.5 cy = height * 0.5 proj_mat = helpers.get_projection_matrix(np.radians(horiz_fov), aspect_ratio, near, far) with np.printoptions(precision=2, suppress=True): proj_mat_str = str(proj_mat) Logger.print("") Logger.print("Camera intrinsics") Logger.print("- width, height: {}, {}".format(round(width), round(height))) Logger.print("- focal_length: {}".format(focal_length, 2)) Logger.print( "- horiz_aperture, vert_aperture: {}, {}".format(round(horiz_aperture, 2), round(vert_aperture, 2)) ) Logger.print("- horiz_fov, vert_fov: {}, {}".format(round(horiz_fov, 2), round(vert_fov, 2))) Logger.print("- focal_x, focal_y: {}, {}".format(round(fx, 2), round(fy, 2))) Logger.print("- proj_mat: \n {}".format(str(proj_mat_str))) Logger.print("") cam_intrinsics = { "width": width, "height": height, "focal_length": focal_length, "horiz_aperture": horiz_aperture, "vert_aperture": vert_aperture, "horiz_fov": horiz_fov, "vert_fov": vert_fov, "fx": fx, "fy": fy, "cx": cx, "cy": cy, "proj_mat": proj_mat, "near":near, "far":far } return cam_intrinsics def print_instance_attributes(self): for attribute, value in self.__dict__.items(): print(attribute, '=', value) def translate_rotate(self,target=(0,0,0)): """ Translate each camera asset. Find stereo positions, if needed. """ for i, camera in enumerate(self.cameras): viewport_name, viewport_window = self.viewports[i] viewport_window.set_camera_target(str(camera.GetPath()), target[0], target[1], target[2], True)
8,574
Python
34.878661
116
0.586774
ngzhili/SynTable/syntable_composer/src/scene/light1.py
from sampling.sample1 import Sampler from scene.asset1 import Asset class Light(Asset): """ For managing a light asset in Isaac Sim. """ def __init__(self, sim_app, sim_context, path, camera, group): """ Construct Light. """ self.sample = Sampler(group=group).sample self.distant = self.sample("light_distant") self.directed = self.sample("light_directed") if self.distant: name = "distant_light" elif self.directed: name = "directed_light" else: name = "sphere_light" super().__init__(sim_app, sim_context, path, "light", name, camera=camera, group=group) self.load_light() self.place_in_scene() def place_in_scene(self): """ Place light in scene. """ self.coord = self.get_initial_coord() self.translate(self.coord) self.rotation = self.get_initial_rotation() self.rotate(self.rotation) def load_light(self): """ Create a light in Isaac Sim. """ from pxr import Sdf from omni.usd.commands import ChangePropertyCommand from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils import prims intensity = self.sample("light_intensity") color = tuple(self.sample("light_color") / 255) temp_enabled = self.sample("light_temp_enabled") temp = self.sample("light_temp") radius = self.sample("light_radius") focus = self.sample("light_directed_focus") focus_softness = self.sample("light_directed_focus_softness") width = self.sample("light_width") height = self.sample("light_height") attributes = {} if self.distant: light_shape = "DistantLight" elif self.directed: light_shape = "RectLight" attributes["width"] = width attributes["height"] = height else: light_shape = "SphereLight" attributes["radius"] = radius attributes["intensity"] = intensity attributes["color"] = color if temp_enabled: attributes["enableColorTemperature"] = True attributes["colorTemperature"] = temp self.attributes = attributes # added self.prim = prims.create_prim(self.path, light_shape, attributes=attributes) self.xform_prim = XFormPrim(self.path) if self.directed: ChangePropertyCommand(prop_path=Sdf.Path(self.path + ".shaping:focus"), value=focus, prev=0.0).do() ChangePropertyCommand( prop_path=Sdf.Path(self.path + ".shaping:cone:softness"), value=focus_softness, prev=0.0 ) def off_prim(self): """ Turn Object Visibility off """ from omni.isaac.core.utils import prims prims.set_prim_visibility(self.prim, False)
2,880
Python
34.134146
111
0.599653
ngzhili/SynTable/syntable_composer/src/scene/room1.py
import numpy as np from sampling.sample1 import Sampler from scene.room_face1 import RoomFace, RoomTable class Room: """ For managing a parameterizable rectangular prism centered at the origin. """ def __init__(self, sim_app, sim_context): """ Construct Room. Generate room in Isaac SIM. """ self.sim_app = sim_app self.sim_context = sim_context self.stage = self.sim_context.stage self.sample = Sampler().sample self.room = self.scenario_room() def scenario_room(self): """ Generate and return assets creating a rectangular prism at the origin. """ wall_height = self.sample("wall_height") floor_size = self.sample("floor_size") self.room_faces = [] faces = [] coords = [] scalings = [] rotations = [] if self.sample("floor"): faces.append("floor") coords.append((0, 0, 0)) scalings.append((floor_size / 100, floor_size / 100, 1)) rotations.append((0, 0, 0)) if self.sample("wall"): faces.extend(4 * ["wall"]) coords.append((floor_size / 2, 0, wall_height / 2)) coords.append((0, floor_size / 2, wall_height / 2)) coords.append((-floor_size / 2, 0, wall_height / 2)) coords.append((0, -floor_size / 2, wall_height / 2)) scalings.extend(4 * [(floor_size / 100, wall_height / 100, 1)]) rotations.append((90, 0, 90)) rotations.append((90, 0, 0)) rotations.append((90, 0, 90)) rotations.append((90, 0, 0)) if self.sample("ceiling"): faces.append("ceiling") coords.append((0, 0, wall_height)) scalings.append((floor_size / 100, floor_size / 100, 1)) rotations.append((0, 0, 0)) room = [] for i, face in enumerate(faces): coord = np.array(coords[i]) rotation = np.array(rotations[i]) scaling = np.array(scalings[i]) path = "/World/Room/{}_{}".format(face, i) room_face = RoomFace(self.sim_app, self.sim_context, path, face, coord, rotation, scaling) room.append(room_face) return room def update(self): """ Update room components. """ for room_face in self.room: room_face.add_material()
2,393
Python
31.351351
102
0.547848
ngzhili/SynTable/syntable_composer/src/scene/object1.py
import numpy as np import os from scene.asset1 import Asset class Object(Asset): """ For managing an Xform asset in Isaac Sim. """ def __init__(self, sim_app, sim_context, ref, path, prefix, camera, group,tableBounds=None): """ Construct Object. """ self.tableBounds = tableBounds self.ref = ref name = self.ref[self.ref.rfind("/") + 1 : self.ref.rfind(".")] super().__init__(sim_app, sim_context, path, prefix, name, camera=camera, group=group) self.load_asset() self.place_in_scene() if self.class_name != "RoomFace" and self.sample("obj_physics"): self.add_physics() def load_asset(self): """ Create asset from object parameters. """ from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils import prims #print(self.path) # Create object self.prim = prims.create_prim(self.path, "Xform", semantic_label=self.label) self.xform_prim = XFormPrim(self.path) nested_path = os.path.join(self.path, "nested_prim") self.nested_prim = prims.create_prim(nested_path, "Xform", usd_path=self.ref, semantic_label=self.label) self.nested_xform_prim = XFormPrim(nested_path) self.add_material() def place_in_scene(self): """ Scale, rotate, and translate asset. """ # Get asset dimensions min_bound, max_bound = self.get_bounds() size = max_bound - min_bound # Get asset scaling obj_size_is_enabled = self.sample("obj_size_enabled") if obj_size_is_enabled: obj_size = self.sample("obj_size") max_size = max(size) self.scaling = obj_size / max_size else: self.scaling = self.sample("obj_scale") # Offset nested asset obj_centered = self.sample("obj_centered") if obj_centered: offset = (max_bound + min_bound) / 2 self.translate(-offset, xform_prim=self.nested_xform_prim) # Scale asset self.scaling = np.array([self.scaling, self.scaling, self.scaling]) self.scale(self.scaling) # Get asset coord and rotation self.coord = self.get_initial_coord(tableBounds=self.tableBounds) self.rotation = self.get_initial_rotation() # Rotate asset self.rotate(self.rotation) # Place asset self.translate(self.coord) def get_bounds(self): """ Compute min and max bounds of an asset. """ from omni.isaac.core.utils.bounds import compute_aabb, create_bbox_cache, recompute_extents # recompute_extents(self.nested_prim) cache = create_bbox_cache() bound = compute_aabb(cache, self.path).tolist() min_bound = np.array(bound[:3]) max_bound = np.array(bound[3:]) return min_bound, max_bound def add_material(self): """ Add material to asset, if needed. """ from pxr import UsdShade material = self.sample(self.concat("material")) color = self.sample(self.concat("color")) texture = self.sample(self.concat("texture")) texture_scale = self.sample(self.concat("texture_scale")) texture_rot = self.sample(self.concat("texture_rot")) reflectance = self.sample(self.concat("reflectance")) metallic = self.sample(self.concat("metallicness")) mtl_prim_path = None if self.is_given(material): # Load a material mtl_prim_path = self.load_material_from_nucleus(material) elif self.is_given(color) or self.is_given(texture): # Load a new material mtl_prim_path = self.create_material() if mtl_prim_path: # print(f"Adding {mtl_prim_path} to {self.path}") # Update material properties and assign to asset mtl_prim = self.update_material( mtl_prim_path, color, texture, texture_scale, texture_rot, reflectance, metallic ) UsdShade.MaterialBindingAPI(self.prim).Bind(mtl_prim, UsdShade.Tokens.strongerThanDescendants) def load_material_from_nucleus(self, material): """ Create material from Nucleus path. """ from pxr import Sdf from omni.usd.commands import CreateMdlMaterialPrimCommand mtl_url = self.sample("nucleus_server") + material left_index = material.rfind("/") + 1 if "/" in material else 0 right_index = material.rfind(".") if "." in material else -1 mtl_name = material[left_index:right_index] left_index = self.path.rfind("/") + 1 if "/" in self.path else 0 path_name = self.path[left_index:] mtl_prim_path = "/Looks/" + mtl_name + "_" + path_name mtl_prim_path = Sdf.Path(mtl_prim_path.replace("-", "_")) CreateMdlMaterialPrimCommand(mtl_url=mtl_url, mtl_name=mtl_name, mtl_path=mtl_prim_path).do() return mtl_prim_path def create_material(self): """ Create a OmniPBR material with provided properties and assign to asset. """ from pxr import Sdf import omni from omni.isaac.core.utils.prims import move_prim from omni.kit.material.library import CreateAndBindMdlMaterialFromLibrary mtl_created_list = [] CreateAndBindMdlMaterialFromLibrary( mdl_name="OmniPBR.mdl", mtl_name="OmniPBR", mtl_created_list=mtl_created_list ).do() mtl_prim_path = Sdf.Path(mtl_created_list[0]) new_mtl_prim_path = omni.usd.get_stage_next_free_path(self.stage, "/Looks/OmniPBR", False) move_prim(path_from=mtl_prim_path, path_to=new_mtl_prim_path) mtl_prim_path = new_mtl_prim_path return mtl_prim_path def update_material(self, mtl_prim_path, color, texture, texture_scale, texture_rot, reflectance, metallic): """ Update properties of an existing material. """ import omni from pxr import Sdf, UsdShade mtl_prim = UsdShade.Material(self.stage.GetPrimAtPath(mtl_prim_path)) if self.is_given(color): color = tuple(color / 255) omni.usd.create_material_input(mtl_prim, "diffuse_color_constant", color, Sdf.ValueTypeNames.Color3f) omni.usd.create_material_input(mtl_prim, "diffuse_tint", color, Sdf.ValueTypeNames.Color3f) if self.is_given(texture): texture = self.sample("nucleus_server") + texture omni.usd.create_material_input(mtl_prim, "diffuse_texture", texture, Sdf.ValueTypeNames.Asset) if self.is_given(texture_scale): texture_scale = 1 / texture_scale omni.usd.create_material_input( mtl_prim, "texture_scale", (texture_scale, texture_scale), Sdf.ValueTypeNames.Float2 ) if self.is_given(texture_rot): omni.usd.create_material_input(mtl_prim, "texture_rotate", texture_rot, Sdf.ValueTypeNames.Float) if self.is_given(reflectance): roughness = 1 - reflectance omni.usd.create_material_input( mtl_prim, "reflection_roughness_constant", roughness, Sdf.ValueTypeNames.Float ) if self.is_given(metallic): omni.usd.create_material_input(mtl_prim, "metallic_constant", metallic, Sdf.ValueTypeNames.Float) return mtl_prim def add_physics(self): """ Make asset a rigid body to enable gravity and collision. """ from omni.isaac.core.utils.prims import get_all_matching_child_prims, get_prim_at_path from omni.physx.scripts import utils from pxr import UsdPhysics def is_rigid_body(prim_path): prim = get_prim_at_path(prim_path) if prim.HasAPI(UsdPhysics.RigidBodyAPI): return True return False has_physics_already = len(get_all_matching_child_prims(self.path, predicate=is_rigid_body)) > 0 if has_physics_already: self.physics = True return utils.setRigidBody(self.prim, "convexHull", False) # Set mass to 1 kg mass_api = UsdPhysics.MassAPI.Apply(self.prim) mass_api.CreateMassAttr(1) self.physics = True def print_instance_attributes(self): for attribute, value in self.__dict__.items(): print(attribute, '=', value) def off_physics_prim(self): """ Turn Off Object Physics """ self.vel = (0,0,0) self.rot_vel = (0,0,0) self.accel = (0,0,0) self.rot_accel = (0,0,0) self.physics = False def off_prim(self): """ Turn Object Visibility off """ from omni.isaac.core.utils import prims prims.set_prim_visibility(self.prim, False) #print("\nTurn off visibility of prim;",self.prim) #print("\n") def on_prim(self): """ Turn Object Visibility on """ from omni.isaac.core.utils import prims prims.set_prim_visibility(self.prim, True) #print("\nTurn on visibility of prim;",self.prim) #print("\n") def add_collision(self): """ Turn Object Collision on """ from pxr import UsdPhysics # prim = self.stage.GetPrimAtPath(path) UsdPhysics.CollisionAPI.Apply(self.prim)
9,291
Python
35.582677
113
0.613712
ngzhili/SynTable/syntable_composer/src/scene/asset/camera.py
import math import numpy as np import carb from scene.asset import Asset from output import Logger from sampling import Sampler class Camera(Asset): """ For managing a camera in Isaac Sim. """ def __init__(self, sim_app, sim_context, path, camera, group): """ Construct Camera. """ self.sample = Sampler(group=group).sample self.stereo = self.sample("stereo") if self.stereo: name = "stereo_cams" else: name = "mono_cam" super().__init__(sim_app, sim_context, path, "camera", name, camera=camera, group=group) self.load_camera() def is_coord_camera_relative(self): return False def is_rot_camera_relative(self): return False def load_camera(self): """ Create a camera in Isaac Sim. """ import omni from pxr import Sdf, UsdGeom from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils import prims self.prim = prims.create_prim(self.path, "Xform") self.xform_prim = XFormPrim(self.path) self.camera_rig = UsdGeom.Xformable(self.prim) camera_prim_paths = [] if self.stereo: camera_prim_paths.append(self.path + "/LeftCamera") camera_prim_paths.append(self.path + "/RightCamera") else: camera_prim_paths.append(self.path + "/MonoCamera") self.cameras = [ self.stage.DefinePrim(Sdf.Path(camera_prim_path), "Camera") for camera_prim_path in camera_prim_paths ] focal_length = self.sample("focal_length") focus_distance = self.sample("focus_distance") horiz_aperture = self.sample("horiz_aperture") vert_aperture = self.sample("vert_aperture") f_stop = self.sample("f_stop") for camera in self.cameras: camera = UsdGeom.Camera(camera) camera.GetFocalLengthAttr().Set(focal_length) camera.GetFocusDistanceAttr().Set(focus_distance) camera.GetHorizontalApertureAttr().Set(horiz_aperture) camera.GetVerticalApertureAttr().Set(vert_aperture) camera.GetFStopAttr().Set(f_stop) # Set viewports carb.settings.acquire_settings_interface().set_int("/app/renderer/resolution/width", -1) carb.settings.acquire_settings_interface().set_int("/app/renderer/resolution/height", -1) self.viewports = [] for i in range(len(self.cameras)): if i == 0: viewport_handle = omni.kit.viewport_legacy.get_viewport_interface().get_instance("Viewport") else: viewport_handle = omni.kit.viewport_legacy.get_viewport_interface().create_instance() viewport_window = omni.kit.viewport_legacy.get_viewport_interface().get_viewport_window(viewport_handle) viewport_window.set_texture_resolution(self.sample("img_width"), self.sample("img_height")) viewport_window.set_active_camera(camera_prim_paths[i]) if self.stereo: if i == 0: viewport_name = "left" else: viewport_name = "right" else: viewport_name = "mono" self.viewports.append((viewport_name, viewport_window)) self.sim_context.render() self.sim_app.update() # Set viewport window size if self.stereo: left_viewport = omni.ui.Workspace.get_window("Viewport") right_viewport = omni.ui.Workspace.get_window("Viewport 2") right_viewport.dock_in(left_viewport, omni.ui.DockPosition.RIGHT) self.intrinsics = [self.get_intrinsics(camera) for camera in self.cameras] def translate(self, coord): """ Translate each camera asset. Find stereo positions, if needed. """ self.coord = coord if self.sample("stereo"): self.coords = self.get_stereo_coords(self.coord, self.rotation) else: self.coords = [self.coord] for i, camera in enumerate(self.cameras): viewport_name, viewport_window = self.viewports[i] viewport_window.set_camera_position( str(camera.GetPath()), self.coords[i][0], self.coords[i][1], self.coords[i][2], True ) def rotate(self, rotation): """ Rotate each camera asset. """ from pxr import UsdGeom self.rotation = rotation for i, camera in enumerate(self.cameras): offset_cam_rot = self.rotation + np.array((90, 0, 270), dtype=np.float32) UsdGeom.XformCommonAPI(camera).SetRotate(offset_cam_rot.tolist()) def place_in_scene(self): """ Place camera in scene. """ rotation = self.get_initial_rotation() self.rotate(rotation) coord = self.get_initial_coord() self.translate(coord) self.step(0) def get_stereo_coords(self, coord, rotation): """ Convert camera center coord and rotation and return stereo camera coords. """ coords = [] for i in range(len(self.cameras)): sign = 1 if i == 0 else -1 theta = np.radians(rotation[0] + sign * 90) phi = np.radians(rotation[1]) radius = self.sample("stereo_baseline") / 2 # Add offset such that center of stereo cameras is at cam_coord x = coord[0] + radius * np.cos(theta) * np.cos(phi) y = coord[1] + radius * np.sin(theta) * np.cos(phi) z = coord[2] + radius * sign * np.sin(phi) coords.append(np.array((x, y, z))) return coords def get_intrinsics(self, camera): """ Compute, print, and return camera intrinsics. """ from omni.syntheticdata import helpers width = self.sample("img_width") height = self.sample("img_height") aspect_ratio = width / height near, far = camera.GetAttribute("clippingRange").Get() focal_length = camera.GetAttribute("focalLength").Get() horiz_aperture = camera.GetAttribute("horizontalAperture").Get() vert_aperture = camera.GetAttribute("verticalAperture").Get() horiz_fov = 2 * math.atan(horiz_aperture / (2 * focal_length)) horiz_fov = np.degrees(horiz_fov) vert_fov = 2 * math.atan(vert_aperture / (2 * focal_length)) vert_fov = np.degrees(vert_fov) fx = width * focal_length / horiz_aperture fy = height * focal_length / vert_aperture cx = width * 0.5 cy = height * 0.5 proj_mat = helpers.get_projection_matrix(np.radians(horiz_fov), aspect_ratio, near, far) with np.printoptions(precision=2, suppress=True): proj_mat_str = str(proj_mat) Logger.print("") Logger.print("Camera intrinsics") Logger.print("- width, height: {}, {}".format(round(width), round(height))) Logger.print("- focal_length: {}".format(focal_length, 2)) Logger.print( "- horiz_aperture, vert_aperture: {}, {}".format(round(horiz_aperture, 2), round(vert_aperture, 2)) ) Logger.print("- horiz_fov, vert_fov: {}, {}".format(round(horiz_fov, 2), round(vert_fov, 2))) Logger.print("- focal_x, focal_y: {}, {}".format(round(fx, 2), round(fy, 2))) Logger.print("- proj_mat: \n {}".format(str(proj_mat_str))) Logger.print("") cam_intrinsics = { "width": width, "height": height, "focal_length": focal_length, "horiz_aperture": horiz_aperture, "vert_aperture": vert_aperture, "horiz_fov": horiz_fov, "vert_fov": vert_fov, "fx": fx, "fy": fy, "cx": cx, "cy": cy, "proj_mat": proj_mat, } return cam_intrinsics
7,863
Python
34.264574
116
0.585018
ngzhili/SynTable/syntable_composer/src/scene/asset/room_face.py
from scene.asset import Object class RoomFace(Object): """ For managing an Xform asset in Isaac Sim. """ def __init__(self, sim_app, sim_context, path, prefix, coord, rotation, scaling): """ Construct Object. """ self.coord = coord self.rotation = rotation self.scaling = scaling super().__init__(sim_app, sim_context, "", path, prefix, None, None) def load_asset(self): """ Create asset from object parameters. """ from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils.prims import move_prim from pxr import PhysxSchema, UsdPhysics if self.prefix == "floor": # Create invisible ground plane path = "/World/Room/ground" planeGeom = PhysxSchema.Plane.Define(self.stage, path) planeGeom.CreatePurposeAttr().Set("guide") planeGeom.CreateAxisAttr().Set("Z") prim = self.stage.GetPrimAtPath(path) UsdPhysics.CollisionAPI.Apply(prim) # Create plane from omni.kit.primitive.mesh import CreateMeshPrimWithDefaultXformCommand CreateMeshPrimWithDefaultXformCommand(prim_type="Plane").do() move_prim(path_from="/Plane", path_to=self.path) self.prim = self.stage.GetPrimAtPath(self.path) self.xform_prim = XFormPrim(self.path) def place_in_scene(self): """ Scale, rotate, and translate asset. """ self.translate(self.coord) self.rotate(self.rotation) self.scale(self.scaling) def step(self): """ Room Face does not update in a scene's sequence. """ return
1,656
Python
30.865384
85
0.622585
ngzhili/SynTable/syntable_composer/src/scene/asset/__init__.py
from .asset import Asset from .camera import Camera from .object import Object from .light import Light from .room_face import RoomFace
136
Python
21.83333
31
0.808824
ngzhili/SynTable/syntable_composer/src/scene/asset/asset.py
from abc import ABC, abstractmethod import math import numpy as np from scipy.spatial.transform import Rotation from output import Logger from sampling import Sampler class Asset(ABC): """ For managing an asset in Isaac Sim. """ def __init__(self, sim_app, sim_context, path, prefix, name, group=None, camera=None): """ Construct Asset. """ self.sim_app = sim_app self.sim_context = sim_context self.path = path self.camera = camera self.name = name self.prefix = prefix self.stage = self.sim_context.stage self.sample = Sampler(group=group).sample self.class_name = self.__class__.__name__ if self.class_name != "RoomFace": self.vel = self.sample(self.concat("vel")) self.rot_vel = self.sample(self.concat("rot_vel")) self.accel = self.sample(self.concat("accel")) self.rot_accel = self.sample(self.concat("rot_accel")) self.label = group self.physics = False @abstractmethod def place_in_scene(self): """ Place asset in scene. """ pass def is_given(self, param): """ Is a parameter value is given. """ if type(param) in (np.ndarray, list, tuple, str): return len(param) > 0 elif type(param) is float: return not math.isnan(param) else: return param is not None def translate(self, coord, xform_prim=None): """ Translate asset. """ if xform_prim is None: xform_prim = self.xform_prim xform_prim.set_world_pose(position=coord) def scale(self, scaling, xform_prim=None): """ Scale asset uniformly across all axes. """ if xform_prim is None: xform_prim = self.xform_prim xform_prim.set_local_scale(scaling) def rotate(self, rotation, xform_prim=None): """ Rotate asset. """ from omni.isaac.core.utils.rotations import euler_angles_to_quat if xform_prim is None: xform_prim = self.xform_prim xform_prim.set_world_pose(orientation=euler_angles_to_quat(rotation.tolist(), degrees=True)) def is_coord_camera_relative(self): return self.sample(self.concat("coord_camera_relative")) def is_rot_camera_relative(self): return self.sample(self.concat("rot_camera_relative")) def concat(self, parameter_suffix): """ Concatenate the parameter prefix and suffix. """ return self.prefix + "_" + parameter_suffix def get_initial_coord(self): """ Get coordinates of asset across 3 axes. """ if self.is_coord_camera_relative(): cam_coord = self.camera.coords[0] cam_rot = self.camera.rotation horiz_fov = -1 * self.camera.intrinsics[0]["horiz_fov"] vert_fov = self.camera.intrinsics[0]["vert_fov"] radius = self.sample(self.concat("distance")) theta = horiz_fov * self.sample(self.concat("horiz_fov_loc")) / 2 phi = vert_fov * self.sample(self.concat("vert_fov_loc")) / 2 # Convert from polar to cartesian rads = np.radians(cam_rot[2] + theta) x = cam_coord[0] + radius * np.cos(rads) y = cam_coord[1] + radius * np.sin(rads) rads = np.radians(cam_rot[0] + phi) z = cam_coord[2] + radius * np.sin(rads) coord = np.array([x, y, z]) else: coord = self.sample(self.concat("coord")) pretty_coord = tuple([round(v, 1) for v in coord.tolist()]) Logger.print("adding {} {} at coords{}".format(self.prefix.upper(), self.name, pretty_coord)) return coord def get_initial_rotation(self): """ Get rotation of asset across 3 axes. """ rotation = self.sample(self.concat("rot")) rotation = np.array(rotation) if self.is_rot_camera_relative(): cam_rot = self.camera.rotation rotation += cam_rot return rotation def step(self, step_time): """ Step asset forward in its sequence. """ from omni.isaac.core.utils.rotations import quat_to_euler_angles if self.class_name != "Camera": self.coord, quaternion = self.xform_prim.get_world_pose() self.coord = np.array(self.coord, dtype=np.float32) self.rotation = np.degrees(quat_to_euler_angles(quaternion)) vel_vector = self.vel accel_vector = self.accel if self.sample(self.concat("movement") + "_" + self.concat("relative")): radians = np.radians(self.rotation) direction_cosine_matrix = Rotation.from_rotvec(radians).as_matrix() vel_vector = direction_cosine_matrix.dot(vel_vector) accel_vector = direction_cosine_matrix.dot(accel_vector) self.coord += vel_vector * step_time + 0.5 * accel_vector * step_time ** 2 self.translate(self.coord) self.rotation += self.rot_vel * step_time + 0.5 * self.rot_accel * step_time ** 2 self.rotate(self.rotation)
5,103
Python
32.359477
101
0.592789
ngzhili/SynTable/syntable_composer/src/scene/asset/light.py
from sampling import Sampler from scene.asset import Asset class Light(Asset): """ For managing a light asset in Isaac Sim. """ def __init__(self, sim_app, sim_context, path, camera, group): """ Construct Light. """ self.sample = Sampler(group=group).sample self.distant = self.sample("light_distant") self.directed = self.sample("light_directed") if self.distant: name = "distant_light" elif self.directed: name = "directed_light" else: name = "sphere_light" super().__init__(sim_app, sim_context, path, "light", name, camera=camera, group=group) self.load_light() self.place_in_scene() def place_in_scene(self): """ Place light in scene. """ self.coord = self.get_initial_coord() self.translate(self.coord) self.rotation = self.get_initial_rotation() self.rotate(self.rotation) def load_light(self): """ Create a light in Isaac Sim. """ from pxr import Sdf from omni.usd.commands import ChangePropertyCommand from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils import prims intensity = self.sample("light_intensity") color = tuple(self.sample("light_color") / 255) temp_enabled = self.sample("light_temp_enabled") temp = self.sample("light_temp") radius = self.sample("light_radius") focus = self.sample("light_directed_focus") focus_softness = self.sample("light_directed_focus_softness") attributes = {} if self.distant: light_shape = "DistantLight" elif self.directed: light_shape = "DiskLight" attributes["radius"] = radius else: light_shape = "SphereLight" attributes["radius"] = radius attributes["intensity"] = intensity attributes["color"] = color if temp_enabled: attributes["enableColorTemperature"] = True attributes["colorTemperature"] = temp self.prim = prims.create_prim(self.path, light_shape, attributes=attributes) self.xform_prim = XFormPrim(self.path) if self.directed: ChangePropertyCommand(prop_path=Sdf.Path(self.path + ".shaping:focus"), value=focus, prev=0.0).do() ChangePropertyCommand( prop_path=Sdf.Path(self.path + ".shaping:cone:softness"), value=focus_softness, prev=0.0 )
2,525
Python
32.236842
111
0.599208
ngzhili/SynTable/syntable_composer/src/scene/asset/object.py
import numpy as np import os from scene.asset import Asset class Object(Asset): """ For managing an Xform asset in Isaac Sim. """ def __init__(self, sim_app, sim_context, ref, path, prefix, camera, group): """ Construct Object. """ self.ref = ref name = self.ref[self.ref.rfind("/") + 1 : self.ref.rfind(".")] super().__init__(sim_app, sim_context, path, prefix, name, camera=camera, group=group) self.load_asset() self.place_in_scene() if self.class_name != "RoomFace" and self.sample("obj_physics"): self.add_physics() def load_asset(self): """ Create asset from object parameters. """ from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils import prims print(self.path) # Create object self.prim = prims.create_prim(self.path, "Xform", semantic_label=self.label) self.xform_prim = XFormPrim(self.path) nested_path = os.path.join(self.path, "nested_prim") self.nested_prim = prims.create_prim(nested_path, "Xform", usd_path=self.ref, semantic_label=self.label) self.nested_xform_prim = XFormPrim(nested_path) self.add_material() def place_in_scene(self): """ Scale, rotate, and translate asset. """ # Get asset dimensions min_bound, max_bound = self.get_bounds() size = max_bound - min_bound # Get asset scaling obj_size_is_enabled = self.sample("obj_size_enabled") if obj_size_is_enabled: obj_size = self.sample("obj_size") max_size = max(size) self.scaling = obj_size / max_size else: self.scaling = self.sample("obj_scale") # Offset nested asset obj_centered = self.sample("obj_centered") if obj_centered: offset = (max_bound + min_bound) / 2 self.translate(-offset, xform_prim=self.nested_xform_prim) # Scale asset self.scaling = np.array([self.scaling, self.scaling, self.scaling]) self.scale(self.scaling) # Get asset coord and rotation self.coord = self.get_initial_coord() self.rotation = self.get_initial_rotation() # Rotate asset self.rotate(self.rotation) # Place asset self.translate(self.coord) def get_bounds(self): """ Compute min and max bounds of an asset. """ from omni.isaac.core.utils.bounds import compute_aabb, create_bbox_cache, recompute_extents # recompute_extents(self.nested_prim) cache = create_bbox_cache() bound = compute_aabb(cache, self.path).tolist() min_bound = np.array(bound[:3]) max_bound = np.array(bound[3:]) return min_bound, max_bound def add_material(self): """ Add material to asset, if needed. """ from pxr import UsdShade material = self.sample(self.concat("material")) color = self.sample(self.concat("color")) texture = self.sample(self.concat("texture")) texture_scale = self.sample(self.concat("texture_scale")) texture_rot = self.sample(self.concat("texture_rot")) reflectance = self.sample(self.concat("reflectance")) metallic = self.sample(self.concat("metallicness")) mtl_prim_path = None if self.is_given(material): # Load a material mtl_prim_path = self.load_material_from_nucleus(material) elif self.is_given(color) or self.is_given(texture): # Load a new material mtl_prim_path = self.create_material() if mtl_prim_path: # Update material properties and assign to asset mtl_prim = self.update_material( mtl_prim_path, color, texture, texture_scale, texture_rot, reflectance, metallic ) UsdShade.MaterialBindingAPI(self.prim).Bind(mtl_prim, UsdShade.Tokens.strongerThanDescendants) def load_material_from_nucleus(self, material): """ Create material from Nucleus path. """ from pxr import Sdf from omni.usd.commands import CreateMdlMaterialPrimCommand mtl_url = self.sample("nucleus_server") + material left_index = material.rfind("/") + 1 if "/" in material else 0 right_index = material.rfind(".") if "." in material else -1 mtl_name = material[left_index:right_index] left_index = self.path.rfind("/") + 1 if "/" in self.path else 0 path_name = self.path[left_index:] mtl_prim_path = "/Looks/" + mtl_name + "_" + path_name mtl_prim_path = Sdf.Path(mtl_prim_path.replace("-", "_")) CreateMdlMaterialPrimCommand(mtl_url=mtl_url, mtl_name=mtl_name, mtl_path=mtl_prim_path).do() return mtl_prim_path def create_material(self): """ Create a OmniPBR material with provided properties and assign to asset. """ from pxr import Sdf import omni from omni.isaac.core.utils.prims import move_prim from omni.kit.material.library import CreateAndBindMdlMaterialFromLibrary mtl_created_list = [] CreateAndBindMdlMaterialFromLibrary( mdl_name="OmniPBR.mdl", mtl_name="OmniPBR", mtl_created_list=mtl_created_list ).do() mtl_prim_path = Sdf.Path(mtl_created_list[0]) new_mtl_prim_path = omni.usd.get_stage_next_free_path(self.stage, "/Looks/OmniPBR", False) move_prim(path_from=mtl_prim_path, path_to=new_mtl_prim_path) mtl_prim_path = new_mtl_prim_path return mtl_prim_path def update_material(self, mtl_prim_path, color, texture, texture_scale, texture_rot, reflectance, metallic): """ Update properties of an existing material. """ import omni from pxr import Sdf, UsdShade mtl_prim = UsdShade.Material(self.stage.GetPrimAtPath(mtl_prim_path)) if self.is_given(color): color = tuple(color / 255) omni.usd.create_material_input(mtl_prim, "diffuse_color_constant", color, Sdf.ValueTypeNames.Color3f) omni.usd.create_material_input(mtl_prim, "diffuse_tint", color, Sdf.ValueTypeNames.Color3f) if self.is_given(texture): texture = self.sample("nucleus_server") + texture omni.usd.create_material_input(mtl_prim, "diffuse_texture", texture, Sdf.ValueTypeNames.Asset) if self.is_given(texture_scale): texture_scale = 1 / texture_scale omni.usd.create_material_input( mtl_prim, "texture_scale", (texture_scale, texture_scale), Sdf.ValueTypeNames.Float2 ) if self.is_given(texture_rot): omni.usd.create_material_input(mtl_prim, "texture_rotate", texture_rot, Sdf.ValueTypeNames.Float) if self.is_given(reflectance): roughness = 1 - reflectance omni.usd.create_material_input( mtl_prim, "reflection_roughness_constant", roughness, Sdf.ValueTypeNames.Float ) if self.is_given(metallic): omni.usd.create_material_input(mtl_prim, "metallic_constant", metallic, Sdf.ValueTypeNames.Float) return mtl_prim def add_physics(self): """ Make asset a rigid body to enable gravity and collision. """ from omni.isaac.core.utils.prims import get_all_matching_child_prims, get_prim_at_path from omni.physx.scripts import utils from pxr import UsdPhysics def is_rigid_body(prim_path): prim = get_prim_at_path(prim_path) if prim.HasAPI(UsdPhysics.RigidBodyAPI): return True return False has_physics_already = len(get_all_matching_child_prims(self.path, predicate=is_rigid_body)) > 0 if has_physics_already: self.physics = True return utils.setRigidBody(self.prim, "convexHull", False) # Set mass to 1 kg mass_api = UsdPhysics.MassAPI.Apply(self.prim) mass_api.CreateMassAttr(1) self.physics = True
8,080
Python
35.731818
113
0.617946
ngzhili/SynTable/syntable_composer/src/distributions/choice.py
import numpy as np import os from distributions import Distribution class Choice(Distribution): """ For sampling from a list of elems. """ def __init__(self, input, p=None, filter_list=None): """ Construct Choice distribution. """ self.input = input self.p = p self.filter_list = filter_list if self.p: self.p = np.array(self.p) self.p = self.p / np.sum(self.p) def __repr__(self): return "Choice(name={}, input={}, p={}, filter_list={})".format(self.name, self.input, self.p, self.filter_list) def setup(self, name): """ Process input into a list of elems, with filter_list elems removed. """ self.name = name self.valid_file_types = Distribution.param_suffix_to_file_type.get(self.name[self.name.rfind("_") + 1 :], []) self.elems = self.get_elem_list(self.input) if self.filter_list: filter_listed_elems = self.get_elem_list(self.filter_list) elem_set = set(self.elems) for elem in filter_listed_elems: if elem in elem_set: self.elems.remove(self.elems) self.elems = self.unpack_elem_list(self.elems) self.verify_args() def verify_args(self): """ Verify elem list derived from input args. """ if len(self.elems) == 0: raise ValueError(repr(self) + " has no elems.") if self.p != None: if len(self.elems) != len(self.p): raise ValueError( repr(self) + " must have equal num p weights '{}' and num elems '{}'".format(len(self.elems), len(self.p)) ) if len(self.elems) > 1: type_checks = [] for elem in self.elems: if type(elem) in (int, float): # Integer and Float equivalence elem_types = [int, float] elif type(elem) in (tuple, list, np.ndarray): # Tuple and List equivalence elem_types = [tuple, list, np.ndarray] else: elem_types = [type(elem)] type_check = type(self.elems[0]) in elem_types type_checks.append(type_check) all_elems_same_val_type = all(type_checks) if not all_elems_same_val_type: raise ValueError(repr(self) + " must have elems that are all the same value type.") def sample(self): """ Samples from the list of elems. """ # print(self.__repr__()) # print('len(self.elems):',len(self.elems)) # print("self.elems:",self.elems) if self.elems: index = np.random.choice(len(self.elems), p=self.p) sample = self.elems[index] if type(sample) in (tuple, list): sample = np.array(sample) return sample else: return None def get_type(self): """ Get value type of elem list, which are all the same. """ return type(self.elems[0]) def get_elem_list(self, input): """ Process input into a list of elems. """ elems = [] if type(input) is str and input[-4:] == ".txt": input_file = input file_elems = self.parse_input_file(input_file) elems.extend(file_elems) elif type(input) is list: for elem in input: list_elems = self.get_elem_list(elem) elems.extend(list_elems) else: elem = input if type(elem) in (tuple, list): elem = np.array(elem) elems.append(input) return elems def parse_input_file(self, input_file): """ Parse an input file into a list of elems. """ if input_file.startswith("/"): input_file = input_file elif input_file.startswith("*"): input_file = os.path.join(Distribution.mount, input_file[2:]) else: input_file = os.path.join(os.path.dirname(__file__), "../../", input_file) if not os.path.exists(input_file): raise ValueError(repr(self) + " is unable to find file '{}'".format(input_file)) with open(input_file) as f: lines = f.readlines() lines = [line.strip() for line in lines] file_elems = [] for elem in lines: if elem and not elem.startswith("#"): try: elem = eval(elem) if type(elem) in (tuple, list): try: elem = np.array(elem, dtype=np.float32) except: pass except Exception as e: pass file_elems.append(elem) return file_elems def unpack_elem_list(self, elems): """ Unpack all potential Nucleus server directories referenced in the parameter values. """ all_unpacked_elems = [] for elem in elems: unpacked_elems = [elem] if type(elem) is str: if not elem.startswith("/"): raise ValueError(repr(self) + " with path elem '{}' must start with a forward slash.".format(elem)) directory_elems = self.get_directory_elems(elem) if directory_elems: directory = elem unpacked_elems = self.unpack_directory(directory_elems, directory) # if "." in elem: # file_type = elem[elem.rfind(".") :].lower() # if file_type not in self.valid_file_types: # raise ValueError( # repr(self) # + " has elem '{}' with incorrect file type. File type must be in '{}'.".format( # elem, self.valid_file_types # ) # ) all_unpacked_elems.extend(unpacked_elems) elems = all_unpacked_elems return elems def unpack_directory(self, directory_elems, directory): """ Unpack a directory on Nucleus into a list of file paths. """ unpacked_elems = [] for directory_elem in directory_elems: directory_elem = os.path.join(directory, directory_elem) file_type = directory_elem[directory_elem.rfind(".") :].lower() if file_type in self.valid_file_types: elem = os.path.join(directory, directory_elem) unpacked_elems.append(elem) else: sub_directory_elems = self.get_directory_elems(directory_elem) if sub_directory_elems: # Recurse on subdirectories unpacked_elems.extend(self.unpack_directory(sub_directory_elems, directory_elem)) return unpacked_elems def get_directory_elems(self, elem): """ Grab files in a potential Nucleus server directory. """ import omni.client elem_can_be_nucleus_dir = "." not in os.path.basename(elem) if elem_can_be_nucleus_dir: (_, directory_elems) = omni.client.list(self.nucleus_server + elem) directory_elems = [str(elem.relative_path) for elem in directory_elems] return directory_elems else: return ()
7,523
Python
35
120
0.516682
ngzhili/SynTable/syntable_composer/src/distributions/__init__.py
from .distribution import Distribution from .choice import Choice from .normal import Normal from .range import Range from .uniform import Uniform from .walk import Walk
172
Python
18.22222
38
0.813953
ngzhili/SynTable/syntable_composer/src/distributions/distribution.py
from abc import ABC, abstractmethod class Distribution: # Static variables mount = None nucleus_server = None param_suffix_to_file_type = None @abstractmethod def __init__(self): pass @abstractmethod def setup(self): pass @abstractmethod def verify_args(self): pass @abstractmethod def sample(self): pass @abstractmethod def get_type(self): pass
451
Python
13.580645
36
0.59867
ngzhili/SynTable/syntable_composer/src/distributions/normal.py
import numpy as np from distributions import Distribution class Normal(Distribution): """ For sampling a Gaussian. """ def __init__(self, mean, var, min=None, max=None): """ Construct Normal distribution. """ self.mean = mean self.var = var self.min_val = min self.max_val = max def __repr__(self): return "Normal(name={}, mean={}, var={}, min_bound={}, max_bound={})".format( self.name, self.mean, self.var, self.min_val, self.max_val ) def setup(self, name): """ Parse input arguments. """ self.name = name self.std_dev = np.sqrt(self.var) self.verify_args() def verify_args(self): """ Verify input arguments. """ def verify_arg_i(mean, var, min_val, max_val): """ Verify number values. """ if type(mean) not in (int, float): raise ValueError(repr(self) + " has incorrect mean type.") if type(var) not in (int, float): raise ValueError(repr(self) + " has incorrect variance type.") if var < 0: raise ValueError(repr(self) + " must have non-negative variance.") if min_val != None and type(min_val) not in (int, float): raise ValueError(repr(self) + " has incorrect min type.") if max_val != None and type(max_val) not in (int, float): raise ValueError(repr(self) + " has incorrect max type.") return True valid = False if type(self.mean) in (tuple, list) and type(self.var) in (tuple, list): if len(self.mean) != len(self.var): raise ValueError(repr(self) + " must have mean and variance with same length.") if self.min_val and len(self.min_val) != len(self.mean): raise ValueError(repr(self) + " must have mean and min bound with same length.") if self.max_val and len(self.max_val) != len(self.mean): raise ValueError(repr(self) + " must have mean and max bound with same length.") valid = all( [ verify_arg_i( self.mean[i], self.var[i], self.min_val[i] if self.min_val else None, self.max_val[i] if self.max_val else None, ) for i in range(len(self.mean)) ] ) else: valid = verify_arg_i(self.mean, self.var, self.min_val, self.max_val) if not valid: raise ValueError(repr(self) + " is invalid.") def sample(self): """ Sample from Gaussian. """ sample = np.random.normal(self.mean, self.std_dev) if self.min_val is not None or self.max_val is not None: sample = np.clip(sample, a_min=self.min_val, a_max=self.max_val) return sample def get_type(self): if type(self.mean) in (tuple, list): return tuple else: return float
3,091
Python
32.978022
96
0.524426
ngzhili/SynTable/syntable_composer/src/distributions/range.py
import numpy as np from distributions import Distribution class Range(Distribution): """ For sampling from a range of integers. """ def __init__(self, min_val, max_val): """ Construct Range distribution. """ self.min_val = min_val self.max_val = max_val def __repr__(self): return "Range(name={}, min={}, max={})".format(self.name, self.min_val, self.max_val) def setup(self, name): """ Parse input arguments. """ self.name = name self.range = range(self.min_val, self.max_val + 1) self.verify_args() def verify_args(self): """ Verify input arguments. """ def verify_args_i(min_val, max_val): """ Verify number values. """ valid = False if type(min_val) is int and type(max_val) is int: valid = min_val <= max_val return valid valid = False if type(self.min_val) in (tuple, list) and type(self.max_val) in (tuple, list): if len(self.min_val) != len(self.max_val): raise ValueError(repr(self) + " must have min and max with same length.") valid = all([verify_args_i(self.min_val[i], self.max_val[i]) for i in range(len(self.min_val))]) else: valid = verify_args_i(self.min_val, self.max_val) if not valid: raise ValueError(repr(self) + " is invalid.") def sample(self): """ Sample from discrete range. """ return np.random.choice(self.range) def get_type(self): """ Get value type. """ if type(self.min_val) in (tuple, list): return tuple else: return int
1,707
Python
26.548387
108
0.54833
ngzhili/SynTable/syntable_composer/src/distributions/uniform.py
import numpy as np from distributions import Distribution class Uniform(Distribution): """ For sampling uniformly from a continuous range. """ def __init__(self, min_val, max_val): """ Construct Uniform distribution.""" self.min_val = min_val self.max_val = max_val def __repr__(self): return "Uniform(name={}, min={}, max={})".format(self.name, self.min_val, self.max_val) def setup(self, name): """ Parse input arguments. """ self.name = name self.verify_args() def verify_args(self): """ Verify input arguments. """ def verify_args_i(min_val, max_val): """ Verify number values. """ valid = False if type(min_val) in (int, float) and type(max_val) in (int, float): valid = min_val <= max_val return valid valid = False if type(self.min_val) in (tuple, list) and type(self.max_val) in (tuple, list): if len(self.min_val) != len(self.max_val): raise ValueError(repr(self) + " must have min and max with same length.") valid = all([verify_args_i(self.min_val[i], self.max_val[i]) for i in range(len(self.min_val))]) else: valid = verify_args_i(self.min_val, self.max_val) if not valid: raise ValueError(repr(self) + " is invalid.") def sample(self): """ Sample from continuous range. """ return np.random.uniform(self.min_val, self.max_val) def get_type(self): """ Get value type. """ if type(self.min_val) in (tuple, list): return tuple else: return float
1,700
Python
27.35
108
0.554118
ngzhili/SynTable/syntable_composer/src/distributions/walk.py
import numpy as np from distributions import Choice class Walk(Choice): """ For sampling from a list of elems without replacement. """ def __init__(self, input, filter_list=None, ordered=True): """ Constructs a Walk distribution. """ super().__init__(input, filter_list=filter_list) self.ordered = ordered self.completed = False self.index = 0 def __repr__(self): return "Walk(name={}, input={}, filter_list={}, ordered={})".format( self.name, self.input, self.filter_list, self.ordered ) def setup(self, name): """ Parse input arguments. """ self.name = name if not self.ordered: self.sampled_indices = list(range(len(self.elems))) super().setup(name) def sample(self): """ Samples from list of elems and updates the index tracker. """ if self.ordered: self.index %= len(self.elems) sample = self.elems[self.index] self.index += 1 else: if len(self.sampled_indices) == 0: self.sampled_indices = list(range(len(self.elems))) self.index = np.choice(self.sampled_indices) self.sampled_indices.remove(self.index) sample = self.elems[self.index] if type(sample) in (tuple, list): sample = np.array(sample) return sample
1,416
Python
26.249999
76
0.567797
ngzhili/SynTable/syntable_composer/src/output/disparity.py
import numpy as np class DisparityConverter: """ For converting stereo depth maps to stereo disparity maps. """ def __init__(self, depth_l, depth_r, fx, fy, cx, cy, baseline): """ Construct DisparityConverter. """ self.depth_l = np.array(depth_l, dtype=np.float32) self.depth_r = np.array(depth_r, dtype=np.float32) self.fx = fx self.fy = fy self.cx = cx self.cy = cy self.baseline = baseline def compute_disparity(self): """ Computes a disparity map from left and right depth maps. """ # List all valid depths in the depth map (y, x) = np.nonzero(np.invert(np.isnan(self.depth_l))) depth_l = self.depth_l[y, x] depth_r = self.depth_r[y, x] # Compute disparity maps disp_lr = self.depth_to_disparity(x, depth_l, self.baseline) disp_rl = self.depth_to_disparity(x, depth_r, -self.baseline) # Use numpy vectorization to get pixel coordinates disp_l, disp_r = np.zeros(self.depth_l.shape), np.zeros(self.depth_r.shape) disp_l[y, x] = np.abs(disp_lr) disp_r[y, x] = np.abs(disp_rl) disp_l = np.array(disp_l, dtype=np.float32) disp_r = np.array(disp_r, dtype=np.float32) return disp_l, disp_r def depth_to_disparity(self, x, depth, baseline_offset): """ Convert depth map to disparity map. """ # Backproject image to 3D world x_est = (x - self.cx) * (depth / self.fx) # Add baseline offset to 3D world position x_est += baseline_offset # Project to the other stereo image domain x_pt = self.cx + (x_est / depth * self.fx) # Compute disparity with the x-axis only since the left and right images are rectified disp = x_pt - x return disp
1,827
Python
32.236363
94
0.595512
ngzhili/SynTable/syntable_composer/src/output/log.py
import datetime import os import time import yaml class Logger: """ For logging parameter samples and dataset generation metadata. """ # Static variables set outside class verbose = None content_log_path = None def start_log_entry(index): """ Initialize a sample's log message. """ Logger.start_time = time.time() Logger.log_entry = [{}] Logger.log_entry[0]["index"] = index Logger.log_entry[0]["metadata"] = {"params": [], "lines": []} Logger.log_entry[0]["metadata"]["timestamp"] = str(datetime.datetime.now()) if Logger.verbose: print() def finish_log_entry(): """ Output a sample's log message to the end of the content log. """ duration = time.time() - Logger.start_time Logger.log_entry[0]["time_elapsed"] = duration if Logger.content_log_path: with open(Logger.content_log_path, "a") as f: yaml.safe_dump(Logger.log_entry, f) def write_parameter(key, val, group=None): """ Record a sample parameter value. """ if key == "groups": return param_dict = {} param_dict["parameter"] = key param_dict["val"] = str(val) param_dict["group"] = group Logger.log_entry[0]["metadata"]["params"].append(param_dict) def print(line, force_print=False): """ Record a string and potentially output it to console. """ Logger.log_entry[0]["metadata"]["lines"].append(line) if Logger.verbose or force_print: line = str(line) print(line)
1,615
Python
27.350877
83
0.580805
ngzhili/SynTable/syntable_composer/src/output/__init__.py
from .writer import DataWriter from .disparity import DisparityConverter from .metrics import Metrics from .log import Logger from .output import OutputManager
161
Python
22.142854
41
0.838509
ngzhili/SynTable/syntable_composer/src/output/metrics.py
import os import yaml class Metrics: """ For managing performance metrics of dataset generation. """ def __init__(self, log_dir, content_log_path): """ Construct Metrics. """ self.metric_path = os.path.join(log_dir, "metrics.txt") self.content_log_path = content_log_path def output_performance_metrics(self): """ Collect per-scene metrics and calculate and output summary metrics. """ with open(self.content_log_path, "r") as f: log = yaml.safe_load(f) durations = [] for log_entry in log: if type(log_entry["index"]) is int: durations.append(log_entry["time_elapsed"]) durations.sort() metric_packet = {} n = len(durations) metric_packet["time_per_sample_min"] = durations[0] metric_packet["time_per_sample_first_quartile"] = durations[n // 4] metric_packet["time_per_sample_median"] = durations[n // 2] metric_packet["time_per_sample_third_quartile"] = durations[3 * n // 4] metric_packet["time_per_sample_max"] = durations[-1] metric_packet["time_per_sample_mean"] = sum(durations) / n with open(self.metric_path, "w") as f: yaml.safe_dump(metric_packet, f)
1,273
Python
31.666666
83
0.598586
ngzhili/SynTable/syntable_composer/src/output/output.py
import copy import numpy as np import carb from output import DataWriter, DisparityConverter, Logger from sampling import Sampler class OutputManager: """ For managing Composer outputs, including sending data to the data writer. """ def __init__(self, sim_app, sim_context, scene_manager, output_data_dir, scene_units_in_meters): """ Construct OutputManager. Start data writer threads. """ from omni.isaac.synthetic_utils import SyntheticDataHelper self.sim_app = sim_app self.sim_context = sim_context self.scene_manager = scene_manager self.output_data_dir = output_data_dir self.scene_units_in_meters = scene_units_in_meters self.camera = self.scene_manager.camera self.viewports = self.camera.viewports self.stage = self.sim_context.stage self.sample = Sampler().sample self.groundtruth_visuals = self.sample("groundtruth_visuals") self.label_to_class_id = self.get_label_to_class_id() max_queue_size = 500 self.write_data = self.sample("write_data") if self.write_data: self.data_writer = DataWriter(self.output_data_dir, self.sample("num_data_writer_threads"), max_queue_size) self.data_writer.start_threads() self.sd_helper = SyntheticDataHelper() self.gt_list = [] if self.sample("rgb") or ( self.sample("bbox_2d_tight") or self.sample("bbox_2d_loose") or self.sample("bbox_3d") and self.groundtruth_visuals ): self.gt_list.append("rgb") if (self.sample("depth")) or (self.sample("disparity") and self.sample("stereo")): self.gt_list.append("depthLinear") if self.sample("instance_seg"): self.gt_list.append("instanceSegmentation") if self.sample("semantic_seg"): self.gt_list.append("semanticSegmentation") if self.sample("bbox_2d_tight"): self.gt_list.append("boundingBox2DTight") if self.sample("bbox_2d_loose"): self.gt_list.append("boundingBox2DLoose") if self.sample("bbox_3d"): self.gt_list.append("boundingBox3D") for viewport_name, viewport_window in self.viewports: self.sd_helper.initialize(sensor_names=self.gt_list, viewport=viewport_window) self.sim_app.update() self.carb_settings = carb.settings.acquire_settings_interface() def get_label_to_class_id(self): """ Get mapping of object semantic labels to class ids. """ label_to_class_id = {} groups = self.sample("groups") for group in groups: class_id = self.sample("obj_class_id", group=group) label_to_class_id[group] = class_id label_to_class_id["[[scenario]]"] = self.sample("scenario_class_id") return label_to_class_id def capture_groundtruth(self, index, step_index=0, sequence_length=0): """ Capture groundtruth data from Isaac Sim. Send data to data writer. """ depths = [] all_viewport_data = [] for i in range(len(self.viewports)): self.sim_context.render() self.sim_context.render() viewport_name, viewport_window = self.viewports[i] num_digits = len(str(self.sample("num_scenes") - 1)) id = str(index) id = id.zfill(num_digits) if self.sample("sequential"): num_digits = len(str(sequence_length - 1)) suffix_id = str(step_index) suffix_id = suffix_id.zfill(num_digits) id = id + "_" + suffix_id groundtruth = { "METADATA": { "image_id": id, "viewport_name": viewport_name, "DEPTH": {}, "INSTANCE": {}, "SEMANTIC": {}, "BBOX2DTIGHT": {}, "BBOX2DLOOSE": {}, "BBOX3D": {}, }, "DATA": {}, } # Collect Groundtruth self.sim_context.render() self.sim_context.render() gt = copy.deepcopy(self.sd_helper.get_groundtruth(self.gt_list, viewport_window, wait_for_sensor_data=0.2)) # RGB if "rgb" in gt["state"]: if gt["state"]["rgb"]: groundtruth["DATA"]["RGB"] = gt["rgb"] # Depth (for Disparity) if "depthLinear" in gt["state"]: depth_data = copy.deepcopy(gt["depthLinear"]).squeeze() # Convert to scene units depth_data /= self.scene_units_in_meters depths.append(depth_data) if i == 0 or self.sample("groundtruth_stereo"): # Depth if "depthLinear" in gt["state"]: if self.sample("depth"): depth_data = gt["depthLinear"].squeeze() # Convert to scene units depth_data /= self.scene_units_in_meters groundtruth["DATA"]["DEPTH"] = depth_data groundtruth["METADATA"]["DEPTH"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["DEPTH"]["NPY"] = True # Instance Segmentation if "instanceSegmentation" in gt["state"]: instance_data = gt["instanceSegmentation"][0] groundtruth["DATA"]["INSTANCE"] = instance_data groundtruth["METADATA"]["INSTANCE"]["WIDTH"] = instance_data.shape[1] groundtruth["METADATA"]["INSTANCE"]["HEIGHT"] = instance_data.shape[0] groundtruth["METADATA"]["INSTANCE"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["INSTANCE"]["NPY"] = True # Semantic Segmentation if "semanticSegmentation" in gt["state"]: semantic_data = gt["semanticSegmentation"] semantic_data = self.sd_helper.get_mapped_semantic_data( semantic_data, self.label_to_class_id, remap_using_base_class=True ) semantic_data = np.array(semantic_data) semantic_data[semantic_data == 65535] = 0 # deals with invalid semantic id groundtruth["DATA"]["SEMANTIC"] = semantic_data groundtruth["METADATA"]["SEMANTIC"]["WIDTH"] = semantic_data.shape[1] groundtruth["METADATA"]["SEMANTIC"]["HEIGHT"] = semantic_data.shape[0] groundtruth["METADATA"]["SEMANTIC"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["SEMANTIC"]["NPY"] = True # 2D Tight BBox if "boundingBox2DTight" in gt["state"]: groundtruth["DATA"]["BBOX2DTIGHT"] = gt["boundingBox2DTight"] groundtruth["METADATA"]["BBOX2DTIGHT"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["BBOX2DTIGHT"]["NPY"] = True # 2D Loose BBox if "boundingBox2DLoose" in gt["state"]: groundtruth["DATA"]["BBOX2DLOOSE"] = gt["boundingBox2DLoose"] groundtruth["METADATA"]["BBOX2DLOOSE"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["BBOX2DLOOSE"]["NPY"] = True # 3D BBox if "boundingBox3D" in gt["state"]: groundtruth["DATA"]["BBOX3D"] = gt["boundingBox3D"] groundtruth["METADATA"]["BBOX3D"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["BBOX3D"]["NPY"] = True all_viewport_data.append(groundtruth) # Wireframe if self.sample("wireframe"): self.carb_settings.set("/rtx/wireframe/mode", 2.0) # Need two updates for all viewports to have wireframe properly self.sim_context.render() self.sim_context.render() for i in range(len(self.viewports)): viewport_name, viewport_window = self.viewports[i] gt = copy.deepcopy(self.sd_helper.get_groundtruth(["rgb"], viewport_window)) all_viewport_data[i]["DATA"]["WIREFRAME"] = gt["rgb"] self.carb_settings.set("/rtx/wireframe/mode", 0) self.sim_context.render() for i in range(len(self.viewports)): if self.write_data: self.data_writer.q.put(copy.deepcopy(all_viewport_data[i])) # Disparity if self.sample("disparity") and self.sample("stereo"): depth_l, depth_r = depths cam_intrinsics = self.camera.intrinsics[0] disp_convert = DisparityConverter( depth_l, depth_r, cam_intrinsics["fx"], cam_intrinsics["fy"], cam_intrinsics["cx"], cam_intrinsics["cy"], self.sample("stereo_baseline"), ) disp_l, disp_r = disp_convert.compute_disparity() disparities = [disp_l, disp_r] for i in range(len(self.viewports)): if i == 0 or self.sample("groundtruth_stereo"): viewport_name, viewport_window = self.viewports[i] groundtruth = { "METADATA": {"image_id": id, "viewport_name": viewport_name, "DISPARITY": {}}, "DATA": {}, } disparity_data = disparities[i] groundtruth["DATA"]["DISPARITY"] = disparity_data groundtruth["METADATA"]["DISPARITY"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["DISPARITY"]["NPY"] = True if self.write_data: self.data_writer.q.put(copy.deepcopy(groundtruth)) return groundtruth
10,140
Python
41.970339
126
0.537673
ngzhili/SynTable/syntable_composer/src/output/writer.py
import atexit import numpy as np import os from PIL import Image import queue import sys import threading class DataWriter: """ For processing and writing output data to files. """ def __init__(self, data_dir, num_worker_threads, max_queue_size=500): """ Construct DataWriter. """ from omni.isaac.synthetic_utils import visualization self.visualization = visualization atexit.register(self.stop_threads) self.data_dir = data_dir # Threading for multiple scenes self.num_worker_threads = num_worker_threads # Initialize queue with a specified size self.q = queue.Queue(max_queue_size) self.threads = [] def start_threads(self): """ Start worker threads. """ for _ in range(self.num_worker_threads): t = threading.Thread(target=self.worker, daemon=True) t.start() self.threads.append(t) def stop_threads(self): """ Waits for all tasks to be completed before stopping worker threads. """ print("Finish writing data...") # Block until all tasks are done self.q.join() print("Done.") def worker(self): """ Processes task from queue. Each tasks contains groundtruth data and metadata which is used to transform the output and write it to disk. """ while True: groundtruth = self.q.get() if groundtruth is None: break filename = groundtruth["METADATA"]["image_id"] viewport_name = groundtruth["METADATA"]["viewport_name"] for gt_type, data in groundtruth["DATA"].items(): if gt_type == "RGB": self.save_image(viewport_name, gt_type, data, filename) elif gt_type == "WIREFRAME": self.save_image(viewport_name, gt_type, data, filename) elif gt_type == "DEPTH": if groundtruth["METADATA"]["DEPTH"]["NPY"]: self.save_PFM(viewport_name, gt_type, data, filename) if groundtruth["METADATA"]["DEPTH"]["COLORIZE"]: self.save_image(viewport_name, gt_type, data, filename) elif gt_type == "DISPARITY": if groundtruth["METADATA"]["DISPARITY"]["NPY"]: self.save_PFM(viewport_name, gt_type, data, filename) if groundtruth["METADATA"]["DISPARITY"]["COLORIZE"]: self.save_image(viewport_name, gt_type, data, filename) elif gt_type == "INSTANCE": self.save_segmentation( viewport_name, gt_type, data, filename, groundtruth["METADATA"]["INSTANCE"]["WIDTH"], groundtruth["METADATA"]["INSTANCE"]["HEIGHT"], groundtruth["METADATA"]["INSTANCE"]["COLORIZE"], groundtruth["METADATA"]["INSTANCE"]["NPY"], ) elif gt_type == "SEMANTIC": self.save_segmentation( viewport_name, gt_type, data, filename, groundtruth["METADATA"]["SEMANTIC"]["WIDTH"], groundtruth["METADATA"]["SEMANTIC"]["HEIGHT"], groundtruth["METADATA"]["SEMANTIC"]["COLORIZE"], groundtruth["METADATA"]["SEMANTIC"]["NPY"], ) elif gt_type in ["BBOX2DTIGHT", "BBOX2DLOOSE", "BBOX3D"]: self.save_bbox( viewport_name, gt_type, data, filename, groundtruth["METADATA"][gt_type]["COLORIZE"], groundtruth["DATA"]["RGB"], groundtruth["METADATA"][gt_type]["NPY"], ) elif gt_type == "CAMERA": self.camera_folder = self.data_dir + "/" + str(viewport_name) + "/camera/" np.save(self.camera_folder + filename + ".npy", data) elif gt_type == "POSES": self.poses_folder = self.data_dir + "/" + str(viewport_name) + "/poses/" np.save(self.poses_folder + filename + ".npy", data) else: raise NotImplementedError self.q.task_done() def save_segmentation( self, viewport_name, data_type, data, filename, width=1280, height=720, display_rgb=True, save_npy=True ): """ Save segmentation mask data and visuals. """ # Save ground truth data as 16-bit single channel png if save_npy: if data_type == "INSTANCE": data_folder = os.path.join(self.data_dir, viewport_name, "instance") data = np.array(data, dtype=np.uint8) img = Image.fromarray(data, mode="L") elif data_type == "SEMANTIC": data_folder = os.path.join(self.data_dir, viewport_name, "semantic") data = np.array(data, dtype=np.uint8) img = Image.fromarray(data, mode="L") os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename + ".png") img.save(file, "PNG", bits=16) # Save ground truth data as visuals if display_rgb: image_data = np.frombuffer(data, dtype=np.uint8).reshape(*data.shape, -1) image_data += 1 if data_type == "SEMANTIC": # Move close values apart to allow color values to separate more image_data = np.array((image_data * 17) % 256, dtype=np.uint8) color_image = self.visualization.colorize_segmentation(image_data, width, height, 3, None) color_image = color_image[:, :, :3] color_image_rgb = Image.fromarray(color_image, "RGB") if data_type == "INSTANCE": data_folder = os.path.join(self.data_dir, viewport_name, "instance", "visuals") elif data_type == "SEMANTIC": data_folder = os.path.join(self.data_dir, viewport_name, "semantic", "visuals") os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename + ".png") color_image_rgb.save(file, "PNG") def save_image(self, viewport_name, img_type, image_data, filename): """ Save rgb data, depth visuals, and disparity visuals. """ # Convert 1-channel groundtruth data to visualization image data def normalize_greyscale_image(image_data): image_data = np.reciprocal(image_data) image_data[image_data == 0.0] = 1e-5 image_data = np.clip(image_data, 0, 255) image_data -= np.min(image_data) if np.max(image_data) > 0: image_data /= np.max(image_data) image_data *= 255 image_data = image_data.astype(np.uint8) return image_data # Save image data as png if img_type == "RGB": data_folder = os.path.join(self.data_dir, viewport_name, "rgb") image_data = image_data[:, :, :3] img = Image.fromarray(image_data, "RGB") elif img_type == "WIREFRAME": data_folder = os.path.join(self.data_dir, viewport_name, "wireframe") image_data = np.average(image_data, axis=2) image_data = image_data.astype(np.uint8) img = Image.fromarray(image_data, "L") elif img_type == "DEPTH": image_data = image_data * 100 image_data = normalize_greyscale_image(image_data) data_folder = os.path.join(self.data_dir, viewport_name, "depth", "visuals") img = Image.fromarray(image_data, mode="L") elif img_type == "DISPARITY": image_data = normalize_greyscale_image(image_data) data_folder = os.path.join(self.data_dir, viewport_name, "disparity", "visuals") img = Image.fromarray(image_data, mode="L") os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename + ".png") img.save(file, "PNG") def save_bbox(self, viewport_name, data_type, data, filename, display_rgb=True, rgb_data=None, save_npy=True): """ Save bbox data and visuals. """ # Save ground truth data as npy if save_npy: if data_type == "BBOX2DTIGHT": data_folder = os.path.join(self.data_dir, viewport_name, "bbox_2d_tight") elif data_type == "BBOX2DLOOSE": data_folder = os.path.join(self.data_dir, viewport_name, "bbox_2d_loose") elif data_type == "BBOX3D": data_folder = os.path.join(self.data_dir, viewport_name, "bbox_3d") os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename) np.save(file, data) # Save ground truth data and rgb data as visuals if display_rgb and rgb_data is not None: color_image = self.visualization.colorize_bboxes(data, rgb_data) color_image = color_image[:, :, :3] color_image_rgb = Image.fromarray(color_image, "RGB") if data_type == "BBOX2DTIGHT": data_folder = os.path.join(self.data_dir, viewport_name, "bbox_2d_tight", "visuals") if data_type == "BBOX2DLOOSE": data_folder = os.path.join(self.data_dir, viewport_name, "bbox_2d_loose", "visuals") if data_type == "BBOX3D": # 3D BBox visuals are not yet supported return os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename + ".png") color_image_rgb.save(file, "PNG") def save_PFM(self, viewport_name, data_type, data, filename): """ Save Depth and Disparity data. """ if data_type == "DEPTH": data_folder = os.path.join(self.data_dir, viewport_name, "depth") elif data_type == "DISPARITY": data_folder = os.path.join(self.data_dir, viewport_name, "disparity") os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename + ".pfm") self.write_PFM(file, data) def write_PFM(self, file, image, scale=1): """ Convert numpy matrix into PFM and save. """ file = open(file, "wb") color = None if image.dtype.name != "float32": raise Exception("Image dtype must be float32") image = np.flipud(image) if len(image.shape) == 3 and image.shape[2] == 3: # color image color = True elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale color = False else: raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.") file.write(b"PF\n" if color else b"Pf\n") file.write(b"%d %d\n" % (image.shape[1], image.shape[0])) endian = image.dtype.byteorder if endian == "<" or endian == "=" and sys.byteorder == "little": scale = -scale file.write(b"%f\n" % scale) image.tofile(file)
11,473
Python
41.496296
152
0.537784
ngzhili/SynTable/syntable_composer/src/output/output1.py
import os import copy import numpy as np import cv2 import carb import datetime from output import DisparityConverter, Logger # from sampling import Sampler from sampling.sample1 import Sampler # from omni.isaac.core.utils import prims from output.writer1 import DataWriter from helper_functions import compute_occluded_masks, GenericMask, bbox_from_binary_mask # Added import pycocotools.mask as mask_util class OutputManager: """ For managing Composer outputs, including sending data to the data writer. """ def __init__(self, sim_app, sim_context, scene_manager, output_data_dir, scene_units_in_meters): """ Construct OutputManager. Start data writer threads. """ from omni.isaac.synthetic_utils.syntheticdata import SyntheticDataHelper self.sim_app = sim_app self.sim_context = sim_context self.scene_manager = scene_manager self.output_data_dir = output_data_dir self.scene_units_in_meters = scene_units_in_meters self.camera = self.scene_manager.camera self.viewports = self.camera.viewports self.stage = self.sim_context.stage self.sample = Sampler().sample self.groundtruth_visuals = self.sample("groundtruth_visuals") self.label_to_class_id = self.get_label_to_class_id1() max_queue_size = 500 self.save_segmentation_data = self.sample("save_segmentation_data") self.write_data = self.sample("write_data") if self.write_data: self.data_writer = DataWriter(self.output_data_dir, self.sample("num_data_writer_threads"), self.save_segmentation_data, max_queue_size) self.data_writer.start_threads() self.sd_helper = SyntheticDataHelper() self.gt_list = [] if self.sample("rgb") or ( self.sample("bbox_2d_tight") or self.sample("bbox_2d_loose") or self.sample("bbox_3d") and self.groundtruth_visuals ): self.gt_list.append("rgb") if (self.sample("depth")) or (self.sample("disparity") and self.sample("stereo")): self.gt_list.append("depthLinear") if self.sample("instance_seg"): self.gt_list.append("instanceSegmentation") if self.sample("semantic_seg"): self.gt_list.append("semanticSegmentation") if self.sample("bbox_2d_tight"): self.gt_list.append("boundingBox2DTight") if self.sample("bbox_2d_loose"): self.gt_list.append("boundingBox2DLoose") if self.sample("bbox_3d"): self.gt_list.append("boundingBox3D") for viewport_name, viewport_window in self.viewports: self.sd_helper.initialize(sensor_names=self.gt_list, viewport=viewport_window) self.sim_app.update() self.carb_settings = carb.settings.acquire_settings_interface() def get_label_to_class_id(self): """ Get mapping of object semantic labels to class ids. """ label_to_class_id = {} groups = self.sample("groups") for group in groups: class_id = self.sample("obj_class_id", group=group) label_to_class_id[group] = class_id label_to_class_id["[[scenario]]"] = self.sample("scenario_class_id") return label_to_class_id def get_label_to_class_id1(self): """ Get mapping of object semantic labels to class ids. """ label_to_class_id = {} groups = self.sample("groups") for group in groups: class_id = self.sample("obj_class_id", group=group) label_to_class_id[group] = class_id label_to_class_id["[[scenario]]"] = self.sample("scenario_class_id") return label_to_class_id def capture_amodal_groundtruth(self, index, scene_manager, img_index, ann_index, view_id, img_list, ann_list, step_index=0, sequence_length=0): """ Capture groundtruth data from Isaac Sim. Send data to data writer. """ num_objects = len(scene_manager.objs) # get number of objects in scene objects = scene_manager.objs # get all objects in scene depths = [] all_viewport_data = [] for i in range(len(self.viewports)): viewport_name, viewport_window = self.viewports[i] num_digits = len(str(self.sample("num_scenes") - 1)) img_id = str(index) + "_" + str(view_id) groundtruth = { "METADATA": { "image_id": img_id, "viewport_name": viewport_name, "RGB":{}, "DEPTH": {}, "INSTANCE": {}, "SEMANTIC": {}, "BBOX2DTIGHT": {}, "BBOX2DLOOSE": {}, "BBOX3D": {}, }, "DATA": {}, } """ ================================================================= ===== Collect Viewport's RGB/DEPTH and object visible masks ===== ================================================================= """ gt = copy.deepcopy(self.sd_helper.get_groundtruth(self.gt_list, viewport_window, wait_for_sensor_data=0.1)) # RGB if "rgb" in gt["state"]: if gt["state"]["rgb"]: groundtruth["DATA"]["RGB"] = gt["rgb"] # Depth (for Disparity) if "depthLinear" in gt["state"]: depth_data = copy.deepcopy(gt["depthLinear"]).squeeze() # Convert to scene units depth_data /= self.scene_units_in_meters depths.append(depth_data) if i == 0 or self.sample("groundtruth_stereo"): # Depth if "depthLinear" in gt["state"]: if self.sample("depth"): depth_data = gt["depthLinear"].squeeze() # Convert to scene units depth_data /= self.scene_units_in_meters groundtruth["DATA"]["DEPTH"] = depth_data groundtruth["METADATA"]["DEPTH"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["DEPTH"]["NPY"] = True # Instance Segmentation if "instanceSegmentation" in gt["state"]: semantics = list(self.label_to_class_id.keys()) instance_data, instance_mappings = self.sd_helper.sensor_helpers["instanceSegmentation"]( viewport_window, parsed=False, return_mapping=True) instances_list = [(im[0], im[4], im["semanticLabel"]) for im in instance_mappings][::-1] max_instance_id_list = max([max(il[1]) for il in instances_list]) max_instance_id = instance_data.max() lut = np.zeros(max(max_instance_id, max_instance_id_list) + 1, dtype=np.uint32) for uid, il, sem in instances_list: if sem in semantics and sem != "[[scenario]]": lut[np.array(il)] = uid instance_data = np.take(lut, instance_data) if self.save_segmentation_data: groundtruth["DATA"]["INSTANCE"] = instance_data groundtruth["METADATA"]["INSTANCE"]["WIDTH"] = instance_data.shape[1] groundtruth["METADATA"]["INSTANCE"]["HEIGHT"] = instance_data.shape[0] groundtruth["METADATA"]["INSTANCE"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["INSTANCE"]["NPY"] = True # get visible instance segmentation of all objects in scene instance_map = list(np.unique(instance_data))[1:] org_instance_data_np = np.array(instance_data) org_instance_data = instance_data instance_mappings_dict ={} for obj_prim in instance_mappings: inst_id = obj_prim[0] inst_path = obj_prim[1] instance_mappings_dict[inst_path]= inst_id all_viewport_data.append(groundtruth) """ ==== define image info dict ==== """ height, width, _ = gt["rgb"].shape date_captured = str(datetime.datetime.now()) image_info = { "id": img_index, "file_name": f"data/mono/rgb/{img_id}.png", "depth_file_name": f"data/mono/depth/{img_id}.png", "occlusion_order_file_name": f"data/mono/occlusion_order/{img_id}.npy", "width": width, "height": height, "date_captured": date_captured, "license": 1, "coco_url": "", "flickr_url": "" } """ ===================================== ===== Collect Background Masks ====== ===================================== """ if self.sample("save_background"): groundtruth = { "METADATA": { "image_id": str(img_index) + "_background", "viewport_name": viewport_name, "DEPTH": {}, "INSTANCE": {}, "SEMANTIC": {}, "AMODAL": {}, "OCCLUSION": {}, "BBOX2DTIGHT": {}, "BBOX2DLOOSE": {}, "BBOX3D": {}, }, "DATA": {}, } ann_info = { "id": ann_index, "image_id": img_index, "category_id": 0, "bbox": [], "height": height, "width": width, "object_name":"", "iscrowd": 0, "segmentation": { "size": [ height, width ], "counts": "", "area": 0 }, "area": 0, "visible_mask": { "size": [ height, width ], "counts": "", "area": 0 }, "visible_bbox": [], "occluded_mask": { "size": [ height, width ], "counts": "", "area": 0 }, "occluded_rate": 0.0 } ann_info["object_name"] = "background" """ ===== extract visible mask ===== """ curr_instance_data_np = org_instance_data_np.copy() # find pixels that belong to background class instance_id = 0 curr_instance_data_np[np.where(org_instance_data != instance_id)] = 0 curr_instance_data_np[np.where(org_instance_data == instance_id)] = 1 background_visible_mask = curr_instance_data_np.astype(np.uint8) """ ===== extract amodal mask ===== """ # background assumed to be binary mask of np.ones background_amodal_mask = np.ones(background_visible_mask.shape).astype(np.uint8) # get object amodal mask """ ===== calculate occlusion mask ===== """ background_occ_mask = cv2.absdiff(background_amodal_mask, background_visible_mask) """ ===== calculate occlusion rate ===== """ # assumes binary mask (True == 1) background_occ_mask_pixel_count = background_occ_mask.sum() background_amodal_mask_pixel_count = background_amodal_mask.sum() occlusion_rate = round(background_occ_mask_pixel_count / background_amodal_mask_pixel_count, 2) if occlusion_rate < 1: # fully occluded objects are not considered if self.save_segmentation_data: groundtruth["DATA"]["INSTANCE"] = background_visible_mask groundtruth["METADATA"]["INSTANCE"]["WIDTH"] = background_visible_mask.shape[1] groundtruth["METADATA"]["INSTANCE"]["HEIGHT"] = background_visible_mask.shape[0] groundtruth["METADATA"]["INSTANCE"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["INSTANCE"]["NPY"] = True groundtruth["DATA"]["AMODAL"] = background_amodal_mask groundtruth["METADATA"]["AMODAL"]["WIDTH"] = background_amodal_mask.shape[1] groundtruth["METADATA"]["AMODAL"]["HEIGHT"] = background_amodal_mask.shape[0] groundtruth["METADATA"]["AMODAL"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["AMODAL"]["NPY"] = True #if occlusion_rate > 0: # if object is occluded, save occlusion mask if self.save_segmentation_data: # print(background_occ_mask) # print(background_occ_mask.shape) groundtruth["DATA"]["OCCLUSION"] = background_occ_mask groundtruth["METADATA"]["OCCLUSION"]["WIDTH"] = background_occ_mask.shape[1] groundtruth["METADATA"]["OCCLUSION"]["HEIGHT"] = background_occ_mask.shape[0] groundtruth["METADATA"]["OCCLUSION"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["OCCLUSION"]["NPY"] = True # Assign Mask to Generic Mask Class background_amodal_mask_class = GenericMask(background_amodal_mask.astype("uint8"),height, width) background_visible_mask_class = GenericMask(background_visible_mask.astype("uint8"),height, width) background_occ_mask_class = GenericMask(background_occ_mask.astype("uint8"),height, width) # Encode binary masks to bytes background_amodal_mask= mask_util.encode(np.array(background_amodal_mask[:, :, None], order="F", dtype="uint8"))[0] background_visible_mask= mask_util.encode(np.array(background_visible_mask[:, :, None], order="F", dtype="uint8"))[0] background_occ_mask= mask_util.encode(np.array(background_occ_mask[:, :, None], order="F", dtype="uint8"))[0] # append annotations to dict ann_info["segmentation"]["counts"] = background_amodal_mask['counts'].decode('UTF-8') # amodal mask ann_info["visible_mask"]["counts"] = background_visible_mask['counts'].decode('UTF-8') # obj_visible_mask ann_info["occluded_mask"]["counts"] =background_occ_mask['counts'].decode('UTF-8') # obj_visible_mask ann_info["visible_bbox"] = list(background_visible_mask_class.bbox()) ann_info["bbox"] = list(background_visible_mask_class.bbox()) ann_info["segmentation"]["area"] = int(background_amodal_mask_class.area()) ann_info["visible_mask"]["area"] = int(background_visible_mask_class.area()) ann_info["occluded_mask"]["area"] = int(background_occ_mask_class.area()) ann_info["occluded_rate"] = occlusion_rate ann_index += 1 all_viewport_data.append(groundtruth) ann_list.append(ann_info) img_list.append(image_info) """ ================================================= ===== Collect Object Amodal/Occlusion Masks ===== ================================================= """ # turn off visibility of all objects for obj in objects: obj.off_prim() visible_obj_paths = instance_mappings_dict.keys() """ ======= START OBJ LOOP ======= """ obj_visible_mask_list = [] obj_occlusion_mask_list = [] # loop through objects and capture mask of each object for obj in objects: # turn on visibility of object obj.on_prim() ann_info = { "id": ann_index, "image_id": img_index, "category_id": 1, "bbox": [], "width": width, "height": height, "object_name":"", "iscrowd": 0, "segmentation": { "size": [ height, width ], "counts": "", "area": 0 }, "area": 0, "visible_mask": { "size": [ height, width ], "counts": "", "area": 0 }, "visible_bbox": [], "occluded_mask": { "size": [ height, width ], "counts": "", "area": 0 }, "occluded_rate": 0.0 } ann_info["object_name"] = obj.name """ ===== get object j index and attributes ===== """ obj_path = obj.path obj_index = int(obj.path.split("/")[-1].split("_")[1]) id = f"{img_id}_{obj_index}" #image id obj_nested_prim_path = obj_path+"/nested_prim" if obj_nested_prim_path in instance_mappings_dict: instance_id = instance_mappings_dict[obj_nested_prim_path] else: print(f"{obj_nested_prim_path} does not exist") instance_id = -1 print(f"instance_mappings_dict:{instance_mappings_dict}") """ ===== Check if Object j is visible from viewport ===== """ # Remove Fully Occluded Objects from viewport if obj_path in visible_obj_paths and instance_id in instance_map: # if object is fully occluded pass else: # object is not visible, skipping object obj.off_prim() continue groundtruth = { "METADATA": { "image_id": id, "viewport_name": viewport_name, "RGB":{}, "DEPTH": {}, "INSTANCE": {}, "SEMANTIC": {}, "AMODAL": {}, "OCCLUSION": {}, "BBOX2DTIGHT": {}, "BBOX2DLOOSE": {}, "BBOX3D": {}, }, "DATA": {}, } """ ===== extract visible mask of object j ===== """ curr_instance_data_np = org_instance_data_np.copy() if instance_id != 0: # find object instance segmentation curr_instance_data_np[np.where(org_instance_data_np != instance_id)] = 0 curr_instance_data_np[np.where(org_instance_data_np == instance_id)] = 1 obj_visible_mask = curr_instance_data_np.astype(np.uint8) """ ===== extract amodal mask of object j ===== """ # Collect Groundtruth gt = copy.deepcopy(self.sd_helper.get_groundtruth(self.gt_list, viewport_window, wait_for_sensor_data=0.01)) obj.off_prim() # turn off visibility of object # RGB if self.save_segmentation_data: if "rgb" in gt["state"]: if gt["state"]["rgb"]: groundtruth["DATA"]["RGB"] = gt["rgb"] if i == 0 or self.sample("groundtruth_stereo"): # Instance Segmentation if "instanceSegmentation" in gt["state"]: semantics = list(self.label_to_class_id.keys()) instance_data, instance_mappings = self.sd_helper.sensor_helpers["instanceSegmentation"]( viewport_window, parsed=False, return_mapping=True) instances_list = [(im[0], im[4], im["semanticLabel"]) for im in instance_mappings][::-1] max_instance_id_list = max([max(il[1]) for il in instances_list]) max_instance_id = instance_data.max() lut = np.zeros(max(max_instance_id, max_instance_id_list) + 1, dtype=np.uint32) for uid, il, sem in instances_list: if sem in semantics and sem != "[[scenario]]": lut[np.array(il)] = uid instance_data = np.take(lut, instance_data) # get object amodal mask obj_amodal_mask = instance_data.astype(np.uint8) obj_amodal_mask[np.where(instance_data > 0)] = 1 """ ===== calculate occlusion mask of object j ===== """ obj_occ_mask = cv2.absdiff(obj_amodal_mask, obj_visible_mask) """ ===== calculate occlusion rate of object j ===== """ # assumes binary mask (True == 1) obj_occ_mask_pixel_count = obj_occ_mask.sum() obj_amodal_mask_pixel_count = obj_amodal_mask.sum() occlusion_rate = round(obj_occ_mask_pixel_count / obj_amodal_mask_pixel_count, 2) """ ===== Save Segmentation Masks ==== """ if occlusion_rate < 1: # fully occluded objects are not considered # append visible and occlusion masks for generation of occlusion order matrix obj_visible_mask_list.append(obj_visible_mask) obj_occlusion_mask_list.append(obj_occ_mask) if self.save_segmentation_data: groundtruth["DATA"]["INSTANCE"] = obj_visible_mask groundtruth["METADATA"]["INSTANCE"]["WIDTH"] = obj_visible_mask.shape[1] groundtruth["METADATA"]["INSTANCE"]["HEIGHT"] = obj_visible_mask.shape[0] groundtruth["METADATA"]["INSTANCE"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["INSTANCE"]["NPY"] = True groundtruth["DATA"]["AMODAL"] = instance_data groundtruth["METADATA"]["AMODAL"]["WIDTH"] = instance_data.shape[1] groundtruth["METADATA"]["AMODAL"]["HEIGHT"] = instance_data.shape[0] groundtruth["METADATA"]["AMODAL"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["AMODAL"]["NPY"] = True # if occlusion_rate > 0: # if object is occluded, save occlusion mask groundtruth["DATA"]["OCCLUSION"] = obj_occ_mask groundtruth["METADATA"]["OCCLUSION"]["WIDTH"] = obj_occ_mask.shape[1] groundtruth["METADATA"]["OCCLUSION"]["HEIGHT"] = obj_occ_mask.shape[0] groundtruth["METADATA"]["OCCLUSION"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["OCCLUSION"]["NPY"] = True ann_info["visible_bbox"] = bbox_from_binary_mask(obj_visible_mask) ann_info["bbox"] = ann_info["visible_bbox"] """ ===== Add Segmentation Mask into COCO.JSON ===== """ instance_mask_class = GenericMask(instance_data.astype("uint8"),height, width) obj_visible_mask_class = GenericMask(obj_visible_mask.astype("uint8"),height, width) obj_occ_mask_class = GenericMask(obj_occ_mask.astype("uint8"),height, width) # Encode binary masks to bytes instance_data= mask_util.encode(np.array(instance_data[:, :, None], order="F", dtype="uint8"))[0] obj_visible_mask= mask_util.encode(np.array(obj_visible_mask[:, :, None], order="F", dtype="uint8"))[0] obj_occ_mask= mask_util.encode(np.array(obj_occ_mask[:, :, None], order="F", dtype="uint8"))[0] # append annotations to dict ann_info["segmentation"]["counts"] = instance_data['counts'].decode('UTF-8') # amodal mask ann_info["visible_mask"]["counts"] = obj_visible_mask['counts'].decode('UTF-8') # obj_visible_mask ann_info["occluded_mask"]["counts"] = obj_occ_mask['counts'].decode('UTF-8') # obj_visible_mask ann_info["segmentation"]["area"] = int(instance_mask_class.area()) ann_info["visible_mask"]["area"] = int(obj_visible_mask_class.area()) ann_info["occluded_mask"]["area"] = int(obj_occ_mask_class.area()) ann_info["occluded_rate"] = occlusion_rate ann_index += 1 all_viewport_data.append(groundtruth) ann_list.append(ann_info) img_list.append(image_info) """ ======= END OBJ LOOP ======= """ # Wireframe if self.sample("wireframe"): self.carb_settings.set("/rtx/wireframe/mode", 2.0) # Need two updates for all viewports to have wireframe properly self.sim_context.render() self.sim_context.render() for i in range(len(self.viewports)): viewport_name, viewport_window = self.viewports[i] gt = copy.deepcopy(self.sd_helper.get_groundtruth(["rgb"], viewport_window)) all_viewport_data[i]["DATA"]["WIREFRAME"] = gt["rgb"] self.carb_settings.set("/rtx/wireframe/mode", 0) self.sim_context.render() for j in range(len(all_viewport_data)): if self.write_data: self.data_writer.q.put(copy.deepcopy(all_viewport_data[j])) # Disparity if self.sample("disparity") and self.sample("stereo"): depth_l, depth_r = depths cam_intrinsics = self.camera.intrinsics[0] disp_convert = DisparityConverter( depth_l, depth_r, cam_intrinsics["fx"], cam_intrinsics["fy"], cam_intrinsics["cx"], cam_intrinsics["cy"], self.sample("stereo_baseline"), ) disp_l, disp_r = disp_convert.compute_disparity() disparities = [disp_l, disp_r] for i in range(len(self.viewports)): if i == 0 or self.sample("groundtruth_stereo"): viewport_name, viewport_window = self.viewports[i] groundtruth = { "METADATA": {"image_id": id, "viewport_name": viewport_name, "DISPARITY": {}}, "DATA": {}, } disparity_data = disparities[i] groundtruth["DATA"]["DISPARITY"] = disparity_data groundtruth["METADATA"]["DISPARITY"]["COLORIZE"] = self.groundtruth_visuals groundtruth["METADATA"]["DISPARITY"]["NPY"] = True if self.write_data: self.data_writer.q.put(copy.deepcopy(groundtruth)) # turn on visibility of all objects (for next camera viewport) for obj in objects: obj.on_prim() # generate occlusion ordering for current viewport rows = cols = len(obj_visible_mask_list) occlusion_adjacency_matrix = np.zeros((rows,cols)) # A(i,j), col j, row i. row i --> col j for i in range(0,len(obj_visible_mask_list)): visible_mask_i = obj_visible_mask_list[i] # occluder for j in range(0,len(obj_visible_mask_list)): if j != i: occluded_mask_j = obj_occlusion_mask_list[j] # occludee iou, _ = compute_occluded_masks(visible_mask_i,occluded_mask_j) if iou > 0: # object i's visible mask is overlapping object j's occluded mask occlusion_adjacency_matrix[i][j] = 1 data_folder = os.path.join(self.output_data_dir, viewport_name, "occlusion_order") os.makedirs(data_folder, exist_ok=True) filename = os.path.join(data_folder, f"{img_id}.npy") # save occlusion adjacency matrix np.save(filename, occlusion_adjacency_matrix) # increment img index (next viewport) img_index += 1 return groundtruth, img_index, ann_index, img_list, ann_list
30,498
Python
48.75367
148
0.474457
ngzhili/SynTable/syntable_composer/src/output/writer1.py
import atexit import numpy as np import os from PIL import Image import queue import sys import threading class DataWriter: """ For processing and writing output data to files. """ def __init__(self, data_dir, num_worker_threads, save_segmentation_data, max_queue_size=500): """ Construct DataWriter. """ from omni.isaac.synthetic_utils import visualization self.visualization = visualization atexit.register(self.stop_threads) self.data_dir = data_dir self.save_segmentation_data = save_segmentation_data # Threading for multiple scenes self.num_worker_threads = num_worker_threads # Initialize queue with a specified size self.q = queue.Queue(max_queue_size) self.threads = [] def start_threads(self): """ Start worker threads. """ for _ in range(self.num_worker_threads): t = threading.Thread(target=self.worker, daemon=True) t.start() self.threads.append(t) def stop_threads(self): """ Waits for all tasks to be completed before stopping worker threads. """ print("\nFinish writing data...") # Block until all tasks are done self.q.join() print("Done.") def worker(self): """ Processes task from queue. Each tasks contains groundtruth data and metadata which is used to transform the output and write it to disk. """ while True: groundtruth = self.q.get() if groundtruth is None: break filename = groundtruth["METADATA"]["image_id"] viewport_name = groundtruth["METADATA"]["viewport_name"] for gt_type, data in groundtruth["DATA"].items(): if gt_type == "RGB": self.save_image(viewport_name, gt_type, data, filename) elif gt_type == "WIREFRAME": self.save_image(viewport_name, gt_type, data, filename) elif gt_type == "DEPTH": if self.save_segmentation_data: if groundtruth["METADATA"]["DEPTH"]["NPY"]: self.save_PFM(viewport_name, gt_type, data, filename) if groundtruth["METADATA"]["DEPTH"]["COLORIZE"]: self.save_image(viewport_name, gt_type, data, filename) else: if groundtruth["METADATA"]["DEPTH"]["NPY"]: self.save_image(viewport_name, gt_type, data, filename) elif gt_type == "DISPARITY": if groundtruth["METADATA"]["DISPARITY"]["NPY"]: self.save_PFM(viewport_name, gt_type, data, filename) if groundtruth["METADATA"]["DISPARITY"]["COLORIZE"]: self.save_image(viewport_name, gt_type, data, filename) elif gt_type == "INSTANCE": self.save_segmentation( viewport_name, gt_type, data, filename, groundtruth["METADATA"]["INSTANCE"]["WIDTH"], groundtruth["METADATA"]["INSTANCE"]["HEIGHT"], groundtruth["METADATA"]["INSTANCE"]["COLORIZE"], groundtruth["METADATA"]["INSTANCE"]["NPY"], ) elif gt_type == "SEMANTIC": self.save_segmentation( viewport_name, gt_type, data, filename, groundtruth["METADATA"]["SEMANTIC"]["WIDTH"], groundtruth["METADATA"]["SEMANTIC"]["HEIGHT"], groundtruth["METADATA"]["SEMANTIC"]["COLORIZE"], groundtruth["METADATA"]["SEMANTIC"]["NPY"], ) elif gt_type == "AMODAL": self.save_segmentation( viewport_name, gt_type, data, filename, groundtruth["METADATA"]["AMODAL"]["WIDTH"], groundtruth["METADATA"]["AMODAL"]["HEIGHT"], groundtruth["METADATA"]["AMODAL"]["COLORIZE"], groundtruth["METADATA"]["AMODAL"]["NPY"], ) elif gt_type == "OCCLUSION": self.save_segmentation( viewport_name, gt_type, data, filename, groundtruth["METADATA"]["OCCLUSION"]["WIDTH"], groundtruth["METADATA"]["OCCLUSION"]["HEIGHT"], groundtruth["METADATA"]["OCCLUSION"]["COLORIZE"], groundtruth["METADATA"]["OCCLUSION"]["NPY"], ) elif gt_type in ["BBOX2DTIGHT", "BBOX2DLOOSE", "BBOX3D"]: self.save_bbox( viewport_name, gt_type, data, filename, groundtruth["METADATA"][gt_type]["COLORIZE"], groundtruth["DATA"]["RGB"], groundtruth["METADATA"][gt_type]["NPY"], ) elif gt_type == "CAMERA": self.camera_folder = self.data_dir + "/" + str(viewport_name) + "/camera/" np.save(self.camera_folder + filename + ".npy", data) elif gt_type == "POSES": self.poses_folder = self.data_dir + "/" + str(viewport_name) + "/poses/" np.save(self.poses_folder + filename + ".npy", data) else: raise NotImplementedError self.q.task_done() def save_segmentation( self, viewport_name, data_type, data, filename, width=1280, height=720, display_rgb=True, save_npy=True ): """ Save segmentation mask data and visuals. """ # Save ground truth data as 16-bit single channel png if save_npy: if data_type == "INSTANCE": data_folder = os.path.join(self.data_dir, viewport_name, "instance") data = np.array(data, dtype=np.uint8) img = Image.fromarray(data, mode="L") elif data_type == "SEMANTIC": data_folder = os.path.join(self.data_dir, viewport_name, "semantic") data = np.array(data, dtype=np.uint8) img = Image.fromarray(data, mode="L") elif data_type == "AMODAL": data_folder = os.path.join(self.data_dir, viewport_name, "amodal") data = np.array(data, dtype=np.uint8) img = Image.fromarray(data, mode="L") elif data_type == "OCCLUSION": data_folder = os.path.join(self.data_dir, viewport_name, "occlusion") data = np.array(data, dtype=np.uint8) img = Image.fromarray(data, mode="L") os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename + ".png") img.save(file, "PNG", bits=16) # Save ground truth data as visuals if display_rgb: image_data = np.frombuffer(data, dtype=np.uint8).reshape(*data.shape, -1) image_data += 1 if data_type == "SEMANTIC": # Move close values apart to allow color values to separate more image_data = np.array((image_data * 17) % 256, dtype=np.uint8) color_image = self.visualization.colorize_segmentation(image_data, width, height, 3, None) color_image = color_image[:, :, :3] color_image_rgb = Image.fromarray(color_image, "RGB") if data_type == "INSTANCE": data_folder = os.path.join(self.data_dir, viewport_name, "instance", "visuals") elif data_type == "SEMANTIC": data_folder = os.path.join(self.data_dir, viewport_name, "semantic", "visuals") elif data_type == "AMODAL": data_folder = os.path.join(self.data_dir, viewport_name, "amodal", "visuals") elif data_type == "OCCLUSION": data_folder = os.path.join(self.data_dir, viewport_name, "occlusion", "visuals") os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename + ".png") color_image_rgb.save(file, "PNG") def save_image(self, viewport_name, img_type, image_data, filename): """ Save rgb data, depth visuals, and disparity visuals. """ # Convert 1-channel groundtruth data to visualization image data def normalize_greyscale_image(image_data): image_data = np.reciprocal(image_data) image_data[image_data == 0.0] = 1e-5 image_data = np.clip(image_data, 0, 255) image_data -= np.min(image_data) if np.max(image_data) > 0: image_data /= np.max(image_data) image_data *= 255 image_data = image_data.astype(np.uint8) return image_data # Save image data as png if img_type == "RGB": data_folder = os.path.join(self.data_dir, viewport_name, "rgb") image_data = image_data[:, :, :3] img = Image.fromarray(image_data, "RGB") elif img_type == "WIREFRAME": data_folder = os.path.join(self.data_dir, viewport_name, "wireframe") image_data = np.average(image_data, axis=2) image_data = image_data.astype(np.uint8) img = Image.fromarray(image_data, "L") elif img_type == "DEPTH": image_data = image_data * 1000 # converty to mm depth_img = image_data.copy().astype("int32") image_data = normalize_greyscale_image(image_data) if self.save_segmentation_data: data_folder = os.path.join(self.data_dir, viewport_name, "depth", "visuals") img = Image.fromarray(image_data, mode="L") depth_data_folder = os.path.join(self.data_dir, viewport_name, "depth") depth_img = Image.fromarray(depth_img) os.makedirs(depth_data_folder, exist_ok=True) file = os.path.join(depth_data_folder, filename + ".png") depth_img.save(file, "PNG") elif img_type == "DISPARITY": image_data = normalize_greyscale_image(image_data) data_folder = os.path.join(self.data_dir, viewport_name, "disparity", "visuals") img = Image.fromarray(image_data, mode="L") if self.save_segmentation_data or img_type == "RGB": os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename + ".png") img.save(file, "PNG") def save_bbox(self, viewport_name, data_type, data, filename, display_rgb=True, rgb_data=None, save_npy=True): """ Save bbox data and visuals. """ # Save ground truth data as npy if save_npy: if data_type == "BBOX2DTIGHT": data_folder = os.path.join(self.data_dir, viewport_name, "bbox_2d_tight") elif data_type == "BBOX2DLOOSE": data_folder = os.path.join(self.data_dir, viewport_name, "bbox_2d_loose") elif data_type == "BBOX3D": data_folder = os.path.join(self.data_dir, viewport_name, "bbox_3d") os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename) np.save(file, data) # Save ground truth data and rgb data as visuals if display_rgb and rgb_data is not None: color_image = self.visualization.colorize_bboxes(data, rgb_data) color_image = color_image[:, :, :3] color_image_rgb = Image.fromarray(color_image, "RGB") if data_type == "BBOX2DTIGHT": data_folder = os.path.join(self.data_dir, viewport_name, "bbox_2d_tight", "visuals") if data_type == "BBOX2DLOOSE": data_folder = os.path.join(self.data_dir, viewport_name, "bbox_2d_loose", "visuals") if data_type == "BBOX3D": # 3D BBox visuals are not yet supported return os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename + ".png") color_image_rgb.save(file, "PNG") def save_PFM(self, viewport_name, data_type, data, filename): """ Save Depth and Disparity data. """ if data_type == "DEPTH": data_folder = os.path.join(self.data_dir, viewport_name, "depth") elif data_type == "DISPARITY": data_folder = os.path.join(self.data_dir, viewport_name, "disparity") os.makedirs(data_folder, exist_ok=True) file = os.path.join(data_folder, filename + ".pfm") self.write_PFM(file, data) def write_PFM(self, file, image, scale=1): """ Convert numpy matrix into PFM and save. """ file = open(file, "wb") color = None if image.dtype.name != "float32": raise Exception("Image dtype must be float32") image = np.flipud(image) if len(image.shape) == 3 and image.shape[2] == 3: # color image color = True elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale color = False else: raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.") file.write(b"PF\n" if color else b"Pf\n") file.write(b"%d %d\n" % (image.shape[1], image.shape[0])) endian = image.dtype.byteorder if endian == "<" or endian == "=" and sys.byteorder == "little": scale = -scale file.write(b"%f\n" % scale) image.tofile(file)
14,136
Python
42.903727
152
0.524547
ngzhili/SynTable/syntable_composer/datasets/dataset/parameters/warehouse.yaml
# dropped warehouse objects objects: obj_model: Choice(["assets/models/warehouse.txt"]) obj_count: Range(5, 15) obj_size_enabled: False obj_scale: Uniform(0.75, 1.25) obj_vert_fov_loc: Uniform(0, 0.5) obj_distance: Uniform(3, 10) obj_rot: (Normal(0, 45), Normal(0, 45), Uniform(0, 360)) obj_class_id: 1 obj_physics: True # colorful ceiling lights lights: light_count: Range(0, 2) light_coord_camera_relative: False light_coord: (Uniform(-2, 2), Uniform(-2, 2), 5) light_color: Uniform((0, 0, 0), (255, 255, 255)) light_intensity: Uniform(0, 300000) light_radius: 1 # warehouse scenario scenario_model: /NVIDIA/Assets/Isaac/2022.1/Isaac/Environments/Simple_Warehouse/warehouse.usd scenario_class_id: 0 # camera camera_coord: (0, 0, Uniform(.20, 1)) camera_rot: (Normal(0, 1), 0, Uniform(0, 360)) # output output_dir: dataset num_scenes: 10 img_width: 1920 img_height: 1080 rgb: True depth: True semantic_seg: True groundtruth_visuals: True # simulate physics_simulate_time: 2
1,029
YAML
16.457627
93
0.688047
ngzhili/SynTable/syntable_composer/parameters/flying_things_4d.yaml
# object groups inherited from flying_things_3d objs: inherit: objs objs_color_dr: inherit: objs_color_dr objs_texture_dr: inherit: objs_texture_dr objs_material_dr: inherit: objs_material_dr midground_shapes: inherit: midground_shapes midground_shapes_material_dr: inherit: midground_shapes_material_dr background_shapes: inherit: background_shapes background_plane: obj_vel: (0, 0, 0) obj_rot_vel: (0, 0, 0) inherit: background_plane # global object movement parameters obj_vel: Normal((0, 0, 0), (1, 1, 1)) obj_rot_vel: Normal((0, 0, 0), (20, 20, 20)) # light groups inherited from flying_things_3d lights: inherit: lights lights_color: inherit: lights_color distant_light: inherit: distant_light camera_light: inherit: camera_light # camera movement parameters (uncomment to add) # camera_vel: Normal((.30, 0, 0), (.10, .10, .10)) # camera_accel: Normal((0, 0, 0), (.05, .05, .05)) # camera_rot_vel: Normal((0, 0, 0), (.05, .05, .05)) # camera_movement_camera_relative: True # sequence parameters sequential: True sequence_step_count: 20 sequence_step_time: Uniform(0.5, 1) profiles: - parameters/flying_things_3d.yaml - parameters/profiles/base_groups.yaml
1,206
YAML
20.553571
52
0.707297
ngzhili/SynTable/syntable_composer/parameters/flying_things_3d.yaml
# flying objects objs: obj_count: Range(0, 15) inherit: flying_objs # flying objects (color randomized) objs_color_dr: obj_color: Uniform((0, 0, 0), (255, 255, 255)) obj_count: Range(0, 10) inherit: flying_objs # flying objects (texture randomized) objs_texture_dr: obj_texture: Choice(["assets/textures/patterns.txt", "assets/textures/synthetic.txt"]) obj_texture_scale: Choice([0.1, 1]) obj_count: Range(0, 10) inherit: flying_objs # flying objects (material randomized) objs_material_dr: obj_material: Choice("assets/materials/materials.txt") obj_count: Range(0, 10) inherit: flying_objs # flying midground shapes (texture randomized) midground_shapes: obj_texture: Choice(["assets/textures/patterns.txt", "assets/textures/synthetic.txt"]) obj_texture_scale: Choice([0.01, 1]) obj_count: Range(0, 5) inherit: flying_shapes # flying midground shapes (material randomized) midground_shapes_material_dr: obj_material: Choice("assets/materials/materials.txt") obj_count: Range(0, 5) inherit: flying_shapes # flying background shapes (material randomized) background_shapes: obj_material: Choice("assets/materials/materials.txt") obj_count: Range(0, 10) obj_horiz_fov_loc: Uniform(-0.7, 0.7) obj_vert_fov_loc: Uniform(-0.3, 0.7) obj_size: Uniform(3, 5) obj_distance: Uniform(20, 30) inherit: flying_shapes # background plane background_plane: obj_model: /NVIDIA/Assets/Isaac/2022.1/Isaac/Props/Shapes/plane.usd obj_material: Choice("assets/materials/materials.txt") obj_texture_rot: Uniform(0, 360) obj_count: 1 obj_size: 5000 obj_distance: Uniform(30, 40) obj_horiz_fov_loc: 0 obj_vert_fov_loc: 0 obj_rot: Normal((0, 90, 0), (10, 10, 10)) obj_class_id: 0 # flying lights lights: light_count: Range(1, 2) light_color: (200, 200, 200) inherit: flying_lights # flying lights (colorful) lights_color: light_count: Range(0, 2) light_color: Choice([(255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255), (0, 255, 255)]) inherit: flying_lights # sky light distant_light: light_distant: True light_count: 1 light_color: Uniform((0, 0, 0), (255, 255, 255)) light_intensity: Uniform(2000, 10000) light_rot: Normal((0, 0, 0), (20, 20, 20)) # light at camera coordinate camera_light: light_count: 1 light_color: Uniform((0, 0, 0), (255, 255, 255)) light_coord_camera_relative: True light_distance: 0 light_intensity: Uniform(0, 100000) light_radius: .50 # randomized floor scenario_room_enabled: True scenario_class_id: 0 floor: True wall: False ceiling: False floor_size: 50 floor_material: Choice("assets/materials/materials.txt") # camera focal_length: 40 stereo: True stereo_baseline: .20 camera_coord: Uniform((-2, -2, 1), (2, 2, 4)) camera_rot: Normal((0, 0, 0), (3, 3, 20)) # output img_width: 1920 img_height: 1080 rgb: True disparity: True instance_seg: True semantic_seg: True bbox_2d_tight: True groundtruth_visuals: True groundtruth_stereo: False profiles: - parameters/profiles/base_groups.yaml
3,052
YAML
19.085526
94
0.695282
ngzhili/SynTable/syntable_composer/parameters/warehouse.yaml
# dropped warehouse objects objects: obj_model: Choice(["assets/models/warehouse.txt"]) obj_count: Range(5, 15) obj_size_enabled: False obj_scale: Uniform(0.75, 1.25) obj_vert_fov_loc: Uniform(0, 0.5) obj_distance: Uniform(3, 10) obj_rot: (Normal(0, 45), Normal(0, 45), Uniform(0, 360)) obj_class_id: 1 obj_physics: True # colorful ceiling lights lights: light_count: Range(0, 2) light_coord_camera_relative: False light_coord: (Uniform(-2, 2), Uniform(-2, 2), 5) light_color: Uniform((0, 0, 0), (255, 255, 255)) light_intensity: Uniform(0, 300000) light_radius: 1 # warehouse scenario scenario_model: /NVIDIA/Assets/Isaac/2022.1/Isaac/Environments/Simple_Warehouse/warehouse.usd scenario_class_id: 0 # camera camera_coord: (0, 0, Uniform(.20, 1)) camera_rot: (Normal(0, 1), 0, Uniform(0, 360)) # output output_dir: dataset num_scenes: 10 img_width: 1920 img_height: 1080 rgb: True depth: True semantic_seg: True groundtruth_visuals: True # simulate physics_simulate_time: 2
1,029
YAML
16.457627
93
0.688047
ngzhili/SynTable/syntable_composer/parameters/profiles/default.yaml
# Default parameters. Do not edit, move, or delete. # default object parameters obj_model: /NVIDIA/Assets/Isaac/2022.1/Isaac/Props/Forklift/forklift.usd obj_color: () obj_texture: "" obj_material: "" obj_metallicness: float("NaN") obj_reflectance: float("NaN") obj_size_enabled: True obj_size: 1 obj_scale: 1 obj_texture_scale: 1 obj_texture_rot: 0 obj_rot: (0, 0, 0) obj_coord: (0, 0, 0) obj_centered: True obj_physics: False obj_rot_camera_relative: True obj_coord_camera_relative: True obj_count: 0 obj_distance: Uniform(300, 800) obj_horiz_fov_loc: Uniform(-1, 1) obj_vert_fov_loc: Uniform(-1, 1) obj_vel: (0, 0, 0) obj_rot_vel: (0, 0, 0) obj_accel: (0, 0, 0) obj_rot_accel: (0, 0, 0) obj_movement_obj_relative: False obj_class_id: 1 # default light parameters light_intensity: 100000 light_radius: 0.25 light_temp_enabled: False light_color: (255, 255, 255) light_temp: 6500 light_directed: False light_directed_focus: 20 light_directed_focus_softness: 0 light_distant: False light_camera_relative: True light_rot: (0, 0, 0) light_coord: (0, 0, 0) light_count: 0 light_distance: Uniform(3, 8) light_horiz_fov_loc: Uniform(-1, 1) light_vert_fov_loc: Uniform(-1, 1) light_coord_camera_relative: True light_rot_camera_relative: True light_vel: (0, 0, 0) light_rot_vel: (0, 0, 0) light_accel: (0, 0, 0) light_rot_accel: (0, 0, 0) light_movement_light_relative: False # default scenario parameters scenario_room_enabled: False scenario_model: /NVIDIA/Assets/Isaac/2022.1/Isaac/Environments/Simple_Warehouse/warehouse.usd scenario_class_id: 0 sky_texture: "" sky_light_intensity: 1000 floor: True wall: True ceiling: True wall_height: 20 floor_size: 20 floor_color: () wall_color: () ceiling_color: () floor_texture: "" wall_texture: "" ceiling_texture: "" floor_texture_scale: 1 wall_texture_scale: 1 ceiling_texture_scale: 1 floor_texture_rot: 0 wall_texture_rot: 0 ceiling_texture_rot: 0 floor_material: "" wall_material: "" ceiling_material: "" floor_reflectance: float("NaN") wall_reflectance: float("NaN") ceiling_reflectance: float("NaN") floor_metallicness: float("NaN") wall_metallicness: float("NaN") ceiling_metallicness: float("NaN") # default camera parameters focal_length: 18.15 focus_distance: 4 horiz_aperture: 20.955 vert_aperture: 15.2908 f_stop: 0 stereo: False stereo_baseline: 20 camera_coord: (0, 0, 50) camera_rot: (0, 0, 0) camera_vel: (0, 0, 0) camera_rot_vel: (0, 0, 0) camera_accel: (0, 0, 0) camera_rot_accel: (0, 0, 0) camera_movement_camera_relative: False # default output parameters output_dir: dataset num_scenes: 10 img_width: 1280 img_height: 720 write_data: True num_data_writer_threads: 4 sequential: False sequence_step_count: 10 sequence_step_time: 1 rgb: True depth: False disparity: False instance_seg: False semantic_seg: False bbox_2d_tight: False bbox_2d_loose: False bbox_3d: False wireframe: False groundtruth_stereo: False groundtruth_visuals: False # default model store parameters nucleus_server: localhost # default debug parameters pause: 0 verbose: True # simulation parameters physics_simulate_time: 1 scene_units_in_meters: 1 path_tracing: False samples_per_pixel_per_frame: 32
3,194
YAML
15.554404
93
0.725736
ngzhili/SynTable/syntable_composer/parameters/profiles/default1.yaml
# Default parameters. Do not edit, move, or delete. # default object parameters obj_model: /NVIDIA/Assets/Isaac/2022.1/Isaac/Props/Forklift/forklift.usd obj_color: () obj_texture: "" obj_material: "" obj_metallicness: float("NaN") obj_reflectance: float("NaN") obj_size_enabled: True obj_size: 1 obj_scale: 1 obj_texture_scale: 1 obj_texture_rot: 0 obj_rot: (0, 0, 0) obj_coord: (0, 0, 0) obj_centered: True obj_physics: False obj_rot_camera_relative: True obj_coord_camera_relative: True obj_count: 0 obj_distance: Uniform(300, 800) obj_horiz_fov_loc: Uniform(-1, 1) obj_vert_fov_loc: Uniform(-1, 1) obj_vel: (0, 0, 0) obj_rot_vel: (0, 0, 0) obj_accel: (0, 0, 0) obj_rot_accel: (0, 0, 0) obj_movement_obj_relative: False obj_class_id: 1 # default light parameters light_intensity: 100000 light_radius: 0.5 light_temp_enabled: False light_color: (255, 255, 255) light_temp: 6500 light_directed: False light_directed_focus: 20 light_directed_focus_softness: 0 light_height: 15 light_width: 15 light_distant: False light_camera_relative: True light_rot: (0, 0, 0) light_coord: (0, 0, 0) light_count: 0 light_distance: Uniform(3, 8) light_horiz_fov_loc: Uniform(-1, 1) light_vert_fov_loc: Uniform(-1, 1) light_coord_camera_relative: True light_rot_camera_relative: True light_vel: (0, 0, 0) light_rot_vel: (0, 0, 0) light_accel: (0, 0, 0) light_rot_accel: (0, 0, 0) light_movement_light_relative: False spherelight_hemisphere_radius_min: 1.5 spherelight_hemisphere_radius_max: 2.5 # default scenario parameters scenario_room_enabled: False scenario_model: /NVIDIA/Assets/Isaac/2022.1/Isaac/Environments/Simple_Warehouse/warehouse.usd scenario_class_id: 0 sky_texture: "" sky_light_intensity: 1000 floor: True wall: True ceiling: True wall_height: 20 floor_size: 20 floor_color: () wall_color: () ceiling_color: () floor_texture: "" wall_texture: "" ceiling_texture: "" floor_texture_scale: 1 wall_texture_scale: 1 ceiling_texture_scale: 1 floor_texture_rot: 0 wall_texture_rot: 0 ceiling_texture_rot: 0 floor_material: "" wall_material: "" ceiling_material: "" floor_reflectance: float("NaN") wall_reflectance: float("NaN") ceiling_reflectance: float("NaN") floor_metallicness: float("NaN") wall_metallicness: float("NaN") ceiling_metallicness: float("NaN") # default camera parameters focal_length: 18.15 focus_distance: 4 horiz_aperture: 20.955 vert_aperture: 15.2908 f_stop: 0 stereo: False stereo_baseline: 20 camera_coord: (0, 0, 50) camera_rot: (0, 0, 0) camera_vel: (0, 0, 0) camera_rot_vel: (0, 0, 0) camera_accel: (0, 0, 0) camera_rot_accel: (0, 0, 0) camera_movement_camera_relative: False cam_hemisphere_radius_min: 0.7 cam_hemisphere_radius_max: 1.4 # Camera and Light Parameters auto_hemisphere_radius: False # Scene Settings max_obj_in_scene: 10 randomise_num_of_objs_in_scene: False save_segmentation_data: False save_background: False checkpoint_interval: 10 # default output parameters output_dir: dataset num_scenes: 10 num_views: 1 img_width: 1280 img_height: 720 write_data: True num_data_writer_threads: 4 sequential: False sequence_step_count: 10 sequence_step_time: 1 rgb: True depth: False disparity: False instance_seg: False semantic_seg: False bbox_2d_tight: False bbox_2d_loose: False bbox_3d: False wireframe: False groundtruth_stereo: False groundtruth_visuals: False # default model store parameters nucleus_server: localhost # default debug parameters pause: 0 verbose: True # simulation parameters physics_simulate_time: 1 scene_units_in_meters: 1 path_tracing: False samples_per_pixel_per_frame: 32
3,598
YAML
15.817757
93
0.732073
ngzhili/SynTable/syntable_composer/parameters/profiles/base_groups.yaml
flying_objs: obj_model: Choice(["assets/models/warehouse.txt", "assets/models/hospital.txt", "assets/models/office.txt"]) obj_size: Uniform(.50, .75) obj_distance: Uniform(4, 20) flying_shapes: obj_model: Choice(["assets/models/shapes.txt"]) obj_size: Uniform(1, 2) obj_distance: Uniform(15, 25) flying_lights: light_intensity: Uniform(0, 100000) light_radius: Uniform(.50, 1) light_vert_fov_loc: Uniform(0, 1) light_distance: Uniform(4, 15) # global parameters obj_rot: Uniform((0, 0, 0), (360, 360, 360)) obj_horiz_fov_loc: Uniform(-1, 1) obj_vert_fov_loc: Uniform(-0.7, 1) obj_metallicness: Uniform(0.1, 0.8) obj_reflectance: Uniform(0.1, 0.8)
679
YAML
20.249999
110
0.680412
ngzhili/SynTable/mount_dir/parameters/profiles/default.yaml
# Default parameters. Do not edit, move, or delete. # default object parameters obj_model: /NVIDIA/Assets/Isaac/2022.1/Isaac/Props/Forklift/forklift.usd obj_color: () obj_texture: "" obj_material: "" obj_metallicness: float("NaN") obj_reflectance: float("NaN") obj_size_enabled: True obj_size: 1 obj_scale: 1 obj_texture_scale: 1 obj_texture_rot: 0 obj_rot: (0, 0, 0) obj_coord: (0, 0, 0) obj_centered: True obj_physics: False obj_rot_camera_relative: True obj_coord_camera_relative: True obj_count: 0 obj_distance: Uniform(300, 800) obj_horiz_fov_loc: Uniform(-1, 1) obj_vert_fov_loc: Uniform(-1, 1) obj_vel: (0, 0, 0) obj_rot_vel: (0, 0, 0) obj_accel: (0, 0, 0) obj_rot_accel: (0, 0, 0) obj_movement_obj_relative: False obj_class_id: 1 # default light parameters light_intensity: 100000 light_radius: 0.25 light_temp_enabled: False light_color: (255, 255, 255) light_temp: 6500 light_directed: False light_directed_focus: 20 light_directed_focus_softness: 0 light_distant: False light_camera_relative: True light_rot: (0, 0, 0) light_coord: (0, 0, 0) light_count: 0 light_distance: Uniform(3, 8) light_horiz_fov_loc: Uniform(-1, 1) light_vert_fov_loc: Uniform(-1, 1) light_coord_camera_relative: True light_rot_camera_relative: True light_vel: (0, 0, 0) light_rot_vel: (0, 0, 0) light_accel: (0, 0, 0) light_rot_accel: (0, 0, 0) light_movement_light_relative: False # default scenario parameters scenario_room_enabled: False scenario_model: /NVIDIA/Assets/Isaac/2022.1/Isaac/Environments/Simple_Warehouse/warehouse.usd scenario_class_id: 0 sky_texture: "" sky_light_intensity: 1000 floor: True wall: True ceiling: True wall_height: 20 floor_size: 20 floor_color: () wall_color: () ceiling_color: () floor_texture: "" wall_texture: "" ceiling_texture: "" floor_texture_scale: 1 wall_texture_scale: 1 ceiling_texture_scale: 1 floor_texture_rot: 0 wall_texture_rot: 0 ceiling_texture_rot: 0 floor_material: "" wall_material: "" ceiling_material: "" floor_reflectance: float("NaN") wall_reflectance: float("NaN") ceiling_reflectance: float("NaN") floor_metallicness: float("NaN") wall_metallicness: float("NaN") ceiling_metallicness: float("NaN") # default camera parameters focal_length: 18.15 focus_distance: 4 horiz_aperture: 20.955 vert_aperture: 15.2908 f_stop: 0 stereo: False stereo_baseline: 20 camera_coord: (0, 0, 50) camera_rot: (0, 0, 0) camera_vel: (0, 0, 0) camera_rot_vel: (0, 0, 0) camera_accel: (0, 0, 0) camera_rot_accel: (0, 0, 0) camera_movement_camera_relative: False # default output parameters output_dir: dataset num_scenes: 10 img_width: 1280 img_height: 720 write_data: True num_data_writer_threads: 4 sequential: False sequence_step_count: 10 sequence_step_time: 1 rgb: True depth: False disparity: False instance_seg: False semantic_seg: False bbox_2d_tight: False bbox_2d_loose: False bbox_3d: False wireframe: False groundtruth_stereo: False groundtruth_visuals: False # default model store parameters nucleus_server: localhost # default debug parameters pause: 0 verbose: True # simulation parameters physics_simulate_time: 1 scene_units_in_meters: 1 path_tracing: False samples_per_pixel_per_frame: 32
3,194
YAML
15.554404
93
0.725736
ngzhili/SynTable/mount_dir/parameters/profiles/default1.yaml
# Default parameters. Do not edit, move, or delete. # default object parameters obj_model: /NVIDIA/Assets/Isaac/2022.1/Isaac/Props/Forklift/forklift.usd obj_color: () obj_texture: "" obj_material: "" obj_metallicness: float("NaN") obj_reflectance: float("NaN") obj_size_enabled: True obj_size: 1 obj_scale: 1 obj_texture_scale: 1 obj_texture_rot: 0 obj_rot: (0, 0, 0) obj_coord: (0, 0, 0) obj_centered: True obj_physics: False obj_rot_camera_relative: True obj_coord_camera_relative: True obj_count: 0 obj_distance: Uniform(300, 800) obj_horiz_fov_loc: Uniform(-1, 1) obj_vert_fov_loc: Uniform(-1, 1) obj_vel: (0, 0, 0) obj_rot_vel: (0, 0, 0) obj_accel: (0, 0, 0) obj_rot_accel: (0, 0, 0) obj_movement_obj_relative: False obj_class_id: 1 # default light parameters light_intensity: 100000 light_radius: 0.5 light_temp_enabled: False light_color: (255, 255, 255) light_temp: 6500 light_directed: False light_directed_focus: 20 light_directed_focus_softness: 0 light_height: 15 light_width: 15 light_distant: False light_camera_relative: True light_rot: (0, 0, 0) light_coord: (0, 0, 0) light_count: 0 light_distance: Uniform(3, 8) light_horiz_fov_loc: Uniform(-1, 1) light_vert_fov_loc: Uniform(-1, 1) light_coord_camera_relative: True light_rot_camera_relative: True light_vel: (0, 0, 0) light_rot_vel: (0, 0, 0) light_accel: (0, 0, 0) light_rot_accel: (0, 0, 0) light_movement_light_relative: False lights_hemisphere_radius_min: 1.5 lights_hemisphere_radius_max: 2.5 # default scenario parameters scenario_room_enabled: False scenario_model: /NVIDIA/Assets/Isaac/2022.1/Isaac/Environments/Simple_Warehouse/warehouse.usd scenario_class_id: 0 sky_texture: "" sky_light_intensity: 1000 floor: True wall: True ceiling: True wall_height: 20 floor_size: 20 floor_color: () wall_color: () ceiling_color: () floor_texture: "" wall_texture: "" ceiling_texture: "" floor_texture_scale: 1 wall_texture_scale: 1 ceiling_texture_scale: 1 floor_texture_rot: 0 wall_texture_rot: 0 ceiling_texture_rot: 0 floor_material: "" wall_material: "" ceiling_material: "" floor_reflectance: float("NaN") wall_reflectance: float("NaN") ceiling_reflectance: float("NaN") floor_metallicness: float("NaN") wall_metallicness: float("NaN") ceiling_metallicness: float("NaN") # default camera parameters focal_length: 18.15 focus_distance: 4 horiz_aperture: 20.955 vert_aperture: 15.2908 f_stop: 0 stereo: False stereo_baseline: 20 camera_coord: (0, 0, 50) camera_rot: (0, 0, 0) camera_vel: (0, 0, 0) camera_rot_vel: (0, 0, 0) camera_accel: (0, 0, 0) camera_rot_accel: (0, 0, 0) camera_movement_camera_relative: False cam_hemisphere_radius_min: 0.7 cam_hemisphere_radius_max: 1.4 # Camera and Light Parameters auto_hemisphere_radius: False # Scene Settings max_obj_in_scene: 10 randomise_num_of_objs_in_scene: False save_segmentation_data: False save_background: False checkpoint_interval: 10 # default output parameters output_dir: dataset num_scenes: 10 num_views: 1 img_width: 1280 img_height: 720 write_data: True num_data_writer_threads: 4 sequential: False sequence_step_count: 10 sequence_step_time: 1 rgb: True depth: False disparity: False instance_seg: False semantic_seg: False bbox_2d_tight: False bbox_2d_loose: False bbox_3d: False wireframe: False groundtruth_stereo: False groundtruth_visuals: False # default model store parameters nucleus_server: localhost # default debug parameters pause: 0 verbose: True # simulation parameters physics_simulate_time: 1 scene_units_in_meters: 1 path_tracing: False samples_per_pixel_per_frame: 32
3,589
YAML
15.697674
93
0.731123
ngzhili/SynTable/mount_dir/parameters/profiles/base_groups.yaml
flying_objs: obj_model: Choice(["assets/models/warehouse.txt", "assets/models/hospital.txt", "assets/models/office.txt"]) obj_size: Uniform(.50, .75) obj_distance: Uniform(4, 20) flying_shapes: obj_model: Choice(["assets/models/shapes.txt"]) obj_size: Uniform(1, 2) obj_distance: Uniform(15, 25) flying_lights: light_intensity: Uniform(0, 100000) light_radius: Uniform(.50, 1) light_vert_fov_loc: Uniform(0, 1) light_distance: Uniform(4, 15) # global parameters obj_rot: Uniform((0, 0, 0), (360, 360, 360)) obj_horiz_fov_loc: Uniform(-1, 1) obj_vert_fov_loc: Uniform(-0.7, 1) obj_metallicness: Uniform(0.1, 0.8) obj_reflectance: Uniform(0.1, 0.8)
679
YAML
20.249999
110
0.680412
selinaxiao/MeshToUsd/README.md
# Extension Project Template This project was automatically generated. - `app` - It is a folder link to the location of your *Omniverse Kit* based app. - `exts` - It is a folder where you can add new extensions. It was automatically added to extension search path. (Extension Manager -> Gear Icon -> Extension Search Path). Open this folder using Visual Studio Code. It will suggest you to install few extensions that will make python experience better. Look for "mesh.to.usd" extension in extension manager and enable it. Try applying changes to any python files, it will hot-reload and you can observe results immediately. Alternatively, you can launch your app from console with this folder added to search path and your extension enabled, e.g.: ``` > app\omni.code.bat --ext-folder exts --enable company.hello.world ``` # App Link Setup If `app` folder link doesn't exist or broken it can be created again. For better developer experience it is recommended to create a folder link named `app` to the *Omniverse Kit* app installed from *Omniverse Launcher*. Convenience script to use is included. Run: ``` > link_app.bat ``` If successful you should see `app` folder link in the root of this repo. If multiple Omniverse apps is installed script will select recommended one. Or you can explicitly pass an app: ``` > link_app.bat --app create ``` You can also just pass a path to create link to: ``` > link_app.bat --path "C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4" ``` # Sharing Your Extensions This folder is ready to be pushed to any git repository. Once pushed direct link to a git repository can be added to *Omniverse Kit* extension search paths. Link might look like this: `git://github.com/[user]/[your_repo].git?branch=main&dir=exts` Notice `exts` is repo subfolder with extensions. More information can be found in "Git URL as Extension Search Paths" section of developers manual. To add a link to your *Omniverse Kit* based app go into: Extension Manager -> Gear Icon -> Extension Search Path
2,035
Markdown
37.415094
258
0.756265
selinaxiao/MeshToUsd/tools/scripts/link_app.py
import argparse import json import os import sys import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,814
Python
32.117647
133
0.562189
selinaxiao/MeshToUsd/tools/packman/config.packman.xml
<config remotes="cloudfront"> <remote2 name="cloudfront"> <transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" /> </remote2> </config>
211
XML
34.333328
123
0.691943
selinaxiao/MeshToUsd/tools/packman/bootstrap/install_package.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import shutil import sys import tempfile import zipfile __author__ = "hfannar" logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") class TemporaryDirectory: def __init__(self): self.path = None def __enter__(self): self.path = tempfile.mkdtemp() return self.path def __exit__(self, type, value, traceback): # Remove temporary data created shutil.rmtree(self.path) def install_package(package_src_path, package_dst_path): with zipfile.ZipFile(package_src_path, allowZip64=True) as zip_file, TemporaryDirectory() as temp_dir: zip_file.extractall(temp_dir) # Recursively copy (temp_dir will be automatically cleaned up on exit) try: # Recursive copy is needed because both package name and version folder could be missing in # target directory: shutil.copytree(temp_dir, package_dst_path) except OSError as exc: logger.warning("Directory %s already present, packaged installation aborted" % package_dst_path) else: logger.info("Package successfully installed to %s" % package_dst_path) install_package(sys.argv[1], sys.argv[2])
1,844
Python
33.166666
108
0.703362