file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/ur10/rmpflow_suction/ur10_rmpflow_config.yaml
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. api_version: 1.0 joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 80. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 2.15 velocity_damping_region: 0.5 damping_gain: 300. metric_weight: 100. target_rmp: accel_p_gain: 80. accel_d_gain: 120. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000. min_metric_scalar: 2500. proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 accept_user_weights: false axis_target_rmp: accel_p_gain: 200. accel_d_gain: 40. metric_scalar: 10. proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .05 accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 1200. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_link pt1: [0, 0, 0.22] pt2: [0, 0, 0] radius: .09 body_collision_controllers: - name: wrist_2_link radius: .04 - name: wrist_3_link radius: .04 - name: tool0 radius: .04
2,717
YAML
27.914893
76
0.616489
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/ur10/rmpflow_suction/ur10_rmpflow_config_cortex.yaml
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. api_version: 1.0 joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 80. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 2.15 velocity_damping_region: 0.5 damping_gain: 300. metric_weight: 100. target_rmp: accel_p_gain: 80. accel_d_gain: 120. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000. min_metric_scalar: 2500. proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 accept_user_weights: false axis_target_rmp: accel_p_gain: 200. accel_d_gain: 40. metric_scalar: 10. proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .05 accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 1200. repulsion_std_dev: .03 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .05 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 200. metric_scalar: 200. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_link pt1: [0, 0, 0.22] pt2: [0, 0, 0] radius: .09 body_collision_controllers: - name: wrist_2_link radius: .04 - name: wrist_3_link radius: .04 - name: tool0 radius: .04
2,719
YAML
27.93617
76
0.616771
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/ur10/rmpflow_suction/ur10_robot_description.yaml
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # The robot description file defines the generalized coordinates and how to map # those to the underlying URDF DOFs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF, except when otherwise specified below under # cspace_urdf_bridge. cspace: - shoulder_pan_joint - shoulder_lift_joint - elbow_joint - wrist_1_joint - wrist_2_joint - wrist_3_joint root_link: world default_q: [-1.57, -1.57, -1.57, -1.57, 1.57, 0] collision_spheres: - upper_arm_link: - center: [0.0, -0.045, 0.01] radius: 0.1 - center: [0.0, -0.045, 0.06] radius: 0.09 - center: [0.0, -0.045, 0.12] radius: 0.06 - center: [0.0, -0.045, 0.18] radius: 0.06 - center: [0.0, -0.045, 0.24] radius: 0.06 - center: [0.0, -0.045, 0.3] radius: 0.06 - center: [0.0, -0.045, 0.36] radius: 0.06 - center: [0.0, -0.045, 0.42] radius: 0.06 - center: [0.0, -0.045, 0.48] radius: 0.06 - center: [0.0, -0.045, 0.54] radius: 0.06 - center: [0.0, -0.045, 0.6] radius: 0.08 - forearm_link: - center: [0.0, 0.0, 0.0] radius: 0.08 - center: [0.0, 0.0, 0.06] radius: 0.07 - center: [0.0, 0.0, 0.12] radius: 0.05 - center: [0.0, 0.0, 0.18] radius: 0.05 - center: [0.0, 0.0, 0.24] radius: 0.05 - center: [0.0, 0.0, 0.30] radius: 0.05 - center: [0.0, 0.0, 0.36] radius: 0.05 - center: [0.0, 0.0, 0.42] radius: 0.05 - center: [0.0, 0.0, 0.48] radius: 0.05 - center: [0.0, 0.0, 0.54] radius: 0.05 - center: [0.0, 0.0, 0.57] radius: 0.065 - wrist_1_link: - center: [0.0, 0.0, 0.0] radius: 0.05 - center: [0.0, 0.055, 0.0] radius: 0.05 - center: [0.0, 0.11, 0.0] radius: 0.065 - wrist_2_link: - center: [0.0, 0.0, 0.0] radius: 0.05 - center: [0.0, 0.0, 0.055] radius: 0.05 - center: [0.0, 0, 0.11] radius: 0.065 - wrist_3_link: - center: [0.0, 0.0, 0.0] radius: 0.045 - center: [0.0, 0.05, 0.0] radius: 0.05 - ee_link: - center: [0, 0, 0] radius: 0.03 - center: [0.027, 0.0, 0.0] radius: 0.03 - center: [0.054, 0.0, 0.0] radius: 0.03 - center: [0.081, 0.0, 0.0] radius: 0.03 - center: [0.108, 0.0, 0.0] radius: 0.03
2,971
YAML
27.304762
79
0.531134
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur10/rmpflow/ur10_rmpflow_config.yaml
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. api_version: 1.0 joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 80. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 2.15 velocity_damping_region: 0.5 damping_gain: 300. metric_weight: 100. target_rmp: accel_p_gain: 80. accel_d_gain: 120. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000. min_metric_scalar: 2500. proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 accept_user_weights: false axis_target_rmp: accel_p_gain: 200. accel_d_gain: 40. metric_scalar: 10. proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .05 accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 1200. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_link pt1: [0, 0, 0.22] pt2: [0, 0, 0] radius: .09 body_collision_controllers: - name: wrist_2_link radius: .04 - name: wrist_3_link radius: .04 - name: tool0 radius: .04
2,717
YAML
27.914893
76
0.616489
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur10/rmpflow/ur10_robot_description.yaml
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # The robot description file defines the generalized coordinates and how to map # those to the underlying URDF DOFs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF, except when otherwise specified below under # cspace_urdf_bridge. cspace: - shoulder_pan_joint - shoulder_lift_joint - elbow_joint - wrist_1_joint - wrist_2_joint - wrist_3_joint root_link: world subtree_root_link: base_link default_q: [-1.57, -1.57, -1.57, -1.57, 1.57, 0] # Most dimensions of the cspace have a direct corresponding element # in the URDF. This list of rules defines how unspecified coordinates # should be extracted. cspace_to_urdf_rules: # Example: # - {name: robot_finger_joint1, rule: fixed, value: 0.025} composite_task_spaces: [] collision_spheres: - upper_arm_link: - center: [0.0, -0.045, 0.01] radius: 0.1 - center: [0.0, -0.045, 0.06] radius: 0.09 - center: [0.0, -0.045, 0.12] radius: 0.06 - center: [0.0, -0.045, 0.18] radius: 0.06 - center: [0.0, -0.045, 0.24] radius: 0.06 - center: [0.0, -0.045, 0.3] radius: 0.06 - center: [0.0, -0.045, 0.36] radius: 0.06 - center: [0.0, -0.045, 0.42] radius: 0.06 - center: [0.0, -0.045, 0.48] radius: 0.06 - center: [0.0, -0.045, 0.54] radius: 0.06 - center: [0.0, -0.045, 0.6] radius: 0.08 - forearm_link: - center: [0.0, 0.0, 0.0] radius: 0.08 - center: [0.0, 0.0, 0.06] radius: 0.07 - center: [0.0, 0.0, 0.12] radius: 0.05 - center: [0.0, 0.0, 0.18] radius: 0.05 - center: [0.0, 0.0, 0.24] radius: 0.05 - center: [0.0, 0.0, 0.30] radius: 0.05 - center: [0.0, 0.0, 0.36] radius: 0.05 - center: [0.0, 0.0, 0.42] radius: 0.05 - center: [0.0, 0.0, 0.48] radius: 0.05 - center: [0.0, 0.0, 0.54] radius: 0.05 - center: [0.0, 0.0, 0.57] radius: 0.065 - wrist_1_link: - center: [0.0, 0.0, 0.0] radius: 0.05 - center: [0.0, 0.055, 0.0] radius: 0.05 - center: [0.0, 0.11, 0.0] radius: 0.065 - wrist_2_link: - center: [0.0, 0.0, 0.0] radius: 0.05 - center: [0.0, 0.0, 0.055] radius: 0.05 - center: [0.0, 0, 0.11] radius: 0.065 - wrist_3_link: - center: [0.0, 0.0, 0.0] radius: 0.045 - center: [0.0, 0.05, 0.0] radius: 0.05
3,006
YAML
27.638095
79
0.564205
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur10/rmpflow_suction/ur10_rmpflow_config.yaml
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. api_version: 1.0 joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 80. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 2.15 velocity_damping_region: 0.5 damping_gain: 300. metric_weight: 100. target_rmp: accel_p_gain: 80. accel_d_gain: 120. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000. min_metric_scalar: 2500. proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 accept_user_weights: false axis_target_rmp: accel_p_gain: 200. accel_d_gain: 40. metric_scalar: 10. proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .05 accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 1200. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_link pt1: [0, 0, 0.22] pt2: [0, 0, 0] radius: .09 body_collision_controllers: - name: wrist_2_link radius: .04 - name: wrist_3_link radius: .04 - name: tool0 radius: .04
2,717
YAML
27.914893
76
0.616489
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur10/rmpflow_suction/ur10_rmpflow_config_cortex.yaml
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. api_version: 1.0 joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 80. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 2.15 velocity_damping_region: 0.5 damping_gain: 300. metric_weight: 100. target_rmp: accel_p_gain: 80. accel_d_gain: 120. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000. min_metric_scalar: 2500. proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 accept_user_weights: false axis_target_rmp: accel_p_gain: 200. accel_d_gain: 40. metric_scalar: 10. proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .05 accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 1200. repulsion_std_dev: .03 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .05 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 200. metric_scalar: 200. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_link pt1: [0, 0, 0.22] pt2: [0, 0, 0] radius: .09 body_collision_controllers: - name: wrist_2_link radius: .04 - name: wrist_3_link radius: .04 - name: tool0 radius: .04
2,719
YAML
27.93617
76
0.616771
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur10/rmpflow_suction/ur10_robot_description.yaml
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # The robot description file defines the generalized coordinates and how to map # those to the underlying URDF DOFs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF, except when otherwise specified below under # cspace_urdf_bridge. cspace: - shoulder_pan_joint - shoulder_lift_joint - elbow_joint - wrist_1_joint - wrist_2_joint - wrist_3_joint root_link: world subtree_root_link: base_link default_q: [-1.57, -1.57, -1.57, -1.57, 1.57, 0] # Most dimensions of the cspace have a direct corresponding element # in the URDF. This list of rules defines how unspecified coordinates # should be extracted. cspace_to_urdf_rules: # Example: # - {name: robot_finger_joint1, rule: fixed, value: 0.025} composite_task_spaces: [] collision_spheres: - upper_arm_link: - center: [0.0, -0.045, 0.01] radius: 0.1 - center: [0.0, -0.045, 0.06] radius: 0.09 - center: [0.0, -0.045, 0.12] radius: 0.06 - center: [0.0, -0.045, 0.18] radius: 0.06 - center: [0.0, -0.045, 0.24] radius: 0.06 - center: [0.0, -0.045, 0.3] radius: 0.06 - center: [0.0, -0.045, 0.36] radius: 0.06 - center: [0.0, -0.045, 0.42] radius: 0.06 - center: [0.0, -0.045, 0.48] radius: 0.06 - center: [0.0, -0.045, 0.54] radius: 0.06 - center: [0.0, -0.045, 0.6] radius: 0.08 - forearm_link: - center: [0.0, 0.0, 0.0] radius: 0.08 - center: [0.0, 0.0, 0.06] radius: 0.07 - center: [0.0, 0.0, 0.12] radius: 0.05 - center: [0.0, 0.0, 0.18] radius: 0.05 - center: [0.0, 0.0, 0.24] radius: 0.05 - center: [0.0, 0.0, 0.30] radius: 0.05 - center: [0.0, 0.0, 0.36] radius: 0.05 - center: [0.0, 0.0, 0.42] radius: 0.05 - center: [0.0, 0.0, 0.48] radius: 0.05 - center: [0.0, 0.0, 0.54] radius: 0.05 - center: [0.0, 0.0, 0.57] radius: 0.065 - wrist_1_link: - center: [0.0, 0.0, 0.0] radius: 0.05 - center: [0.0, 0.055, 0.0] radius: 0.05 - center: [0.0, 0.11, 0.0] radius: 0.065 - wrist_2_link: - center: [0.0, 0.0, 0.0] radius: 0.05 - center: [0.0, 0.0, 0.055] radius: 0.05 - center: [0.0, 0, 0.11] radius: 0.065 - wrist_3_link: - center: [0.0, 0.0, 0.0] radius: 0.045 - center: [0.0, 0.05, 0.0] radius: 0.05 - ee_link: - center: [0, 0, 0] radius: 0.03 - center: [0.027, 0.0, 0.0] radius: 0.03 - center: [0.054, 0.0, 0.0] radius: 0.03 - center: [0.081, 0.0, 0.0] radius: 0.03 - center: [0.108, 0.0, 0.0] radius: 0.03
3,285
YAML
27.573913
79
0.551598
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur3/rmpflow/ur3_robot_description.yaml
# The robot description defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF. # Lula will only use these joints to control the robot position. cspace: - shoulder_pan_joint - shoulder_lift_joint - elbow_joint - wrist_1_joint - wrist_2_joint - wrist_3_joint default_q: [ 0.0,-1.0,0.9,0.0,0.0,0.0 ] # Most dimensions of the cspace have a direct corresponding element # in the URDF. This list of rules defines how unspecified coordinates # should be extracted or how values in the URDF should be overwritten. cspace_to_urdf_rules: # Lula uses collision spheres to define the robot geometry in order to avoid # collisions with external obstacles. If no spheres are specified, Lula will # not be able to avoid obstacles. collision_spheres: - shoulder_link: - "center": [-0.0, 0.0, -0.02] "radius": 0.055 - "center": [0.01, -0.019, -0.0] "radius": 0.045 - "center": [0.004, -0.007, 0.019] "radius": 0.05 - upper_arm_link: - "center": [0.003, 0.002, 0.104] "radius": 0.052 - "center": [-0.232, 0.002, 0.112] "radius": 0.043 - "center": [-0.121, -0.001, 0.12] "radius": 0.042 - "center": [-0.163, 0.002, 0.118] "radius": 0.041 - "center": [-0.086, 0.001, 0.121] "radius": 0.041 - "center": [-0.02, 0.014, 0.121] "radius": 0.041 - "center": [-0.026, -0.019, 0.126] "radius": 0.035 - "center": [-0.238, 0.0, 0.146] "radius": 0.04 - forearm_link: - "center": [-0.013, 0.001, 0.04] "radius": 0.042 - "center": [-0.214, -0.002, 0.035] "radius": 0.039 - "center": [-0.171, -0.0, 0.027] "radius": 0.036 - "center": [-0.083, 0.0, 0.029] "radius": 0.036 - "center": [0.009, -0.006, 0.054] "radius": 0.034 - "center": [-0.204, 0.006, 0.003] "radius": 0.036 - "center": [-0.103, 0.002, 0.028] "radius": 0.035 - "center": [0.006, 0.01, 0.054] "radius": 0.034 - "center": [-0.213, 0.005, 0.043] "radius": 0.037 - "center": [-0.022, -0.002, 0.025] "radius": 0.033 - "center": [-0.137, 0.001, 0.027] "radius": 0.036 - "center": [-0.05, 0.0, 0.034] "radius": 0.039 - wrist_1_link: - "center": [0.0, -0.009, -0.002] "radius": 0.041 - "center": [-0.003, 0.019, 0.001] "radius": 0.037 - "center": [0.006, 0.007, -0.024] "radius": 0.033 - wrist_2_link: - "center": [-0.0, 0.0, -0.015] "radius": 0.041 - "center": [-0.0, 0.012, 0.001] "radius": 0.039 - "center": [-0.0, -0.018, -0.001] "radius": 0.04 - wrist_3_link: - "center": [0.0, 0.002, -0.025] "radius": 0.035
2,844
YAML
28.329897
80
0.549226
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur3/rmpflow/ur3_rmpflow_config.yaml
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. api_version: 1.0 joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 80. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 2.15 velocity_damping_region: 0.5 damping_gain: 300. metric_weight: 100. target_rmp: accel_p_gain: 80. accel_d_gain: 120. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000. min_metric_scalar: 2500. proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 accept_user_weights: false axis_target_rmp: accel_p_gain: 200. accel_d_gain: 40. metric_scalar: 10. proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .05 accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 1200. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_link pt1: [0, 0, 0.15] pt2: [0, 0, 0] radius: .065 body_collision_controllers: - name: wrist_2_link radius: .04 - name: wrist_3_link radius: .04 - name: tool0 radius: .04
2,718
YAML
27.925532
76
0.61663
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur16e/rmpflow/ur16e_robot_description.yaml
# The robot descriptor defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF. # Lula will only use these joints to control the robot position. cspace: - shoulder_pan_joint - shoulder_lift_joint - elbow_joint - wrist_1_joint - wrist_2_joint - wrist_3_joint default_q: [ 0.0,-1.2,1.1,0.0,0.0,-0.0 ] # Most dimensions of the cspace have a direct corresponding element # in the URDF. This list of rules defines how unspecified coordinates # should be extracted or how values in the URDF should be overwritten. cspace_to_urdf_rules: # Lula uses collision spheres to define the robot geometry in order to avoid # collisions with external obstacles. If no spheres are specified, Lula will # not be able to avoid obstacles. collision_spheres: - shoulder_link: - "center": [0.0, 0.0, 0.01] "radius": 0.085 - "center": [0.003, -0.022, -0.009] "radius": 0.082 - "center": [-0.021, -0.041, 0.036] "radius": 0.064 - upper_arm_link: - "center": [-0.007, 0.0, 0.177] "radius": 0.085 - "center": [-0.475, -0.0, 0.176] "radius": 0.068 - "center": [-0.061, -0.0, 0.176] "radius": 0.084 - "center": [-0.317, -0.0, 0.176] "radius": 0.065 - "center": [-0.214, -0.001, 0.174] "radius": 0.063 - "center": [-0.382, -0.0, 0.176] "radius": 0.065 - "center": [-0.165, -0.001, 0.175] "radius": 0.064 - "center": [-0.002, 0.002, 0.188] "radius": 0.083 - "center": [-0.265, 0.0, 0.174] "radius": 0.063 - "center": [-0.465, 0.003, 0.034] "radius": 0.088 - forearm_link: - "center": [-0.074, -0.0, 0.04] "radius": 0.068 - "center": [-0.191, 0.0, 0.039] "radius": 0.063 - "center": [-0.301, 0.0, 0.037] "radius": 0.058 - "center": [-0.359, -0.001, 0.059] "radius": 0.055 - "center": [-0.02, 0.003, 0.051] "radius": 0.058 - "center": [-0.138, -0.0, 0.044] "radius": 0.065 - "center": [-0.248, 0.001, 0.056] "radius": 0.059 - "center": [-0.361, 0.004, 0.029] "radius": 0.052 - wrist_1_link: - "center": [0.0, 0.005, -0.007] "radius": 0.056 - "center": [-0.001, -0.02, 0.0] "radius": 0.055 - wrist_2_link: - "center": [-0.0, 0.001, -0.0] "radius": 0.056 - "center": [-0.0, 0.021, 0.0] "radius": 0.055 - "center": [-0.004, -0.011, -0.011] "radius": 0.053 - wrist_3_link: - "center": [-0.016, 0.002, -0.025] "radius": 0.034 - "center": [0.016, -0.011, -0.024] "radius": 0.034 - "center": [0.009, 0.018, -0.025] "radius": 0.034
2,786
YAML
28.336842
79
0.548816
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur16e/rmpflow/ur16e_rmpflow_config.yaml
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. api_version: 1.0 joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 80. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 2.15 velocity_damping_region: 0.5 damping_gain: 300. metric_weight: 100. target_rmp: accel_p_gain: 80. accel_d_gain: 120. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000. min_metric_scalar: 2500. proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 accept_user_weights: false axis_target_rmp: accel_p_gain: 200. accel_d_gain: 40. metric_scalar: 10. proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .05 accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 1200. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_link pt1: [0, 0, 0.22] pt2: [0, 0, 0] radius: .09 body_collision_controllers: - name: wrist_2_link radius: .04 - name: wrist_3_link radius: .04 - name: tool0 radius: .04
2,717
YAML
27.914893
76
0.616489
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur3e/rmpflow/ur3e_rmpflow_config.yaml
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. api_version: 1.0 joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 80. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 2.15 velocity_damping_region: 0.5 damping_gain: 300. metric_weight: 100. target_rmp: accel_p_gain: 80. accel_d_gain: 120. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000. min_metric_scalar: 2500. proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 accept_user_weights: false axis_target_rmp: accel_p_gain: 200. accel_d_gain: 40. metric_scalar: 10. proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .05 accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 1200. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_link pt1: [0, 0, 0.15] pt2: [0, 0, 0] radius: .065 body_collision_controllers: - name: wrist_2_link radius: .04 - name: wrist_3_link radius: .04 - name: tool0 radius: .04
2,718
YAML
27.925532
76
0.61663
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur3e/rmpflow/ur3e_robot_description.yaml
# The robot description defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF. # Lula will only use these joints to control the robot position. cspace: - shoulder_pan_joint - shoulder_lift_joint - elbow_joint - wrist_1_joint - wrist_2_joint - wrist_3_joint default_q: [ 0.0,-1.0,0.9,0.0,0.0,0.0 ] # Most dimensions of the cspace have a direct corresponding element # in the URDF. This list of rules defines how unspecified coordinates # should be extracted or how values in the URDF should be overwritten. cspace_to_urdf_rules: # Lula uses collision spheres to define the robot geometry in order to avoid # collisions with external obstacles. If no spheres are specified, Lula will # not be able to avoid obstacles. collision_spheres: - shoulder_link: - "center": [-0.0, 0.0, -0.02] "radius": 0.055 - "center": [0.01, -0.019, -0.0] "radius": 0.045 - "center": [0.004, -0.007, 0.019] "radius": 0.05 - wrist_1_link: - "center": [0.0, -0.009, -0.002] "radius": 0.041 - "center": [-0.003, 0.019, 0.001] "radius": 0.037 - "center": [0.006, 0.007, -0.024] "radius": 0.033 - wrist_2_link: - "center": [-0.0, 0.0, -0.015] "radius": 0.041 - "center": [-0.0, 0.012, 0.001] "radius": 0.039 - "center": [-0.0, -0.018, -0.001] "radius": 0.04 - wrist_3_link: - "center": [0.0, 0.002, -0.025] "radius": 0.035 - upper_arm_link: - "center": [-0.008, 0.0, 0.127] "radius": 0.056 - "center": [-0.091, 0.0, 0.127] "radius": 0.054 - "center": [-0.174, -0.0, 0.13] "radius": 0.051 - "center": [-0.242, -0.0, 0.106] "radius": 0.048 - "center": [-0.15, 0.0, 0.105] "radius": 0.051 - "center": [0.0, 0.0, 0.11] "radius": 0.056 - "center": [-0.245, 0.005, 0.143] "radius": 0.043 - "center": [-0.058, -0.002, 0.105] "radius": 0.052 - "center": [-0.055, 0.001, 0.132] "radius": 0.055 - "center": [-0.14, 0.0, 0.133] "radius": 0.052 - forearm_link: - "center": [-0.084, -0.0, 0.033] "radius": 0.044 - "center": [-0.157, -0.0, 0.035] "radius": 0.043 - "center": [-0.008, -0.0, 0.053] "radius": 0.043 - "center": [-0.213, 0.0, 0.074] "radius": 0.042 - "center": [-0.213, -0.0, 0.021] "radius": 0.042 - "center": [-0.13, -0.0, 0.022] "radius": 0.044 - "center": [-0.003, -0.003, 0.041] "radius": 0.037 - "center": [-0.118, 0.001, 0.039] "radius": 0.044 - "center": [-0.059, -0.001, 0.037] "radius": 0.044 - "center": [-0.168, -0.0, 0.016] "radius": 0.043
2,830
YAML
28.185567
80
0.544523
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur10e/rmpflow/ur10e_robot_description.yaml
# The robot descriptor defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF. # Lula will only use these joints to control the robot position. cspace: - shoulder_pan_joint - shoulder_lift_joint - elbow_joint - wrist_1_joint - wrist_2_joint - wrist_3_joint default_q: [ -0.0,-1.2,1.1,0.0,0.0,0.0 ] # Most dimensions of the cspace have a direct corresponding element # in the URDF. This list of rules defines how unspecified coordinates # should be extracted or how values in the URDF should be overwritten. cspace_to_urdf_rules: # Lula uses collision spheres to define the robot geometry in order to avoid # collisions with external obstacles. If no spheres are specified, Lula will # not be able to avoid obstacles. collision_spheres: - shoulder_link: - "center": [0.0, 0.0, 0.01] "radius": 0.085 - "center": [0.003, -0.022, -0.009] "radius": 0.082 - upper_arm_link: - "center": [-0.031, 0.0, 0.176] "radius": 0.084 - "center": [-0.589, 0.0, 0.177] "radius": 0.068 - "center": [-0.418, -0.0, 0.176] "radius": 0.064 - "center": [-0.224, -0.0, 0.176] "radius": 0.064 - "center": [-0.309, 0.002, 0.176] "radius": 0.063 - "center": [-0.14, -0.001, 0.177] "radius": 0.064 - "center": [-0.516, 0.0, 0.176] "radius": 0.064 - "center": [0.008, -0.001, 0.184] "radius": 0.077 - "center": [-0.617, -0.002, 0.167] "radius": 0.063 - "center": [-0.068, -0.005, 0.179] "radius": 0.079 - forearm_link: - "center": [-0.056, -0.0, 0.04] "radius": 0.067 - "center": [-0.182, -0.0, 0.038] "radius": 0.065 - "center": [-0.317, -0.0, 0.024] "radius": 0.062 - "center": [-0.429, 0.0, 0.029] "radius": 0.059 - "center": [-0.566, 0.0, 0.056] "radius": 0.057 - "center": [-0.256, 0.0, 0.024] "radius": 0.064 - "center": [-0.565, -0.001, 0.029] "radius": 0.057 - "center": [-0.106, 0.0, 0.044] "radius": 0.067 - "center": [-0.378, -0.0, 0.025] "radius": 0.061 - "center": [-0.017, 0.007, 0.053] "radius": 0.057 - "center": [-0.52, -0.001, 0.029] "radius": 0.058 - "center": [-0.475, -0.0, 0.029] "radius": 0.059 - "center": [-0.0, 0.005, 0.119] "radius": 0.06 - wrist_1_link: - "center": [0.0, 0.005, -0.007] "radius": 0.056 - "center": [-0.001, -0.02, 0.0] "radius": 0.055 - wrist_2_link: - "center": [-0.0, 0.001, -0.0] "radius": 0.056 - "center": [-0.0, 0.021, 0.0] "radius": 0.055 - "center": [-0.004, -0.011, -0.011] "radius": 0.053 - wrist_3_link: - "center": [-0.016, 0.002, -0.025] "radius": 0.034 - "center": [0.016, -0.011, -0.024] "radius": 0.034 - "center": [0.009, 0.018, -0.025] "radius": 0.034
3,020
YAML
28.330097
79
0.539404
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur10e/rmpflow/ur10e_rmpflow_config.yaml
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. api_version: 1.0 joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 80. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 2.15 velocity_damping_region: 0.5 damping_gain: 300. metric_weight: 100. target_rmp: accel_p_gain: 80. accel_d_gain: 120. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000. min_metric_scalar: 2500. proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 accept_user_weights: false axis_target_rmp: accel_p_gain: 200. accel_d_gain: 40. metric_scalar: 10. proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .05 accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 1200. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_link pt1: [0, 0, 0.22] pt2: [0, 0, 0] radius: .09 body_collision_controllers: - name: wrist_2_link radius: .04 - name: wrist_3_link radius: .04 - name: tool0 radius: .04
2,717
YAML
27.914893
76
0.616489
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur5e/rmpflow/ur5e_robot_description.yaml
# The robot description defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF. # Lula will only use these joints to control the robot position. cspace: - shoulder_pan_joint - shoulder_lift_joint - elbow_joint - wrist_1_joint - wrist_2_joint - wrist_3_joint default_q: [ 0.0,-1.0,0.9,0.0,0.0,0.0 ] # Most dimensions of the cspace have a direct corresponding element # in the URDF. This list of rules defines how unspecified coordinates # should be extracted or how values in the URDF should be overwritten. cspace_to_urdf_rules: # Lula uses collision spheres to define the robot geometry in order to avoid # collisions with external obstacles. If no spheres are specified, Lula will # not be able to avoid obstacles. collision_spheres: - wrist_1_link: - "center": [-0.0, 0.027, -0.002] "radius": 0.041 - "center": [-0.003, -0.032, 0.001] "radius": 0.037 - "center": [-0.002, -0.003, -0.0] "radius": 0.039 - "center": [-0.0, 0.0, -0.058] "radius": 0.045 - wrist_2_link: - "center": [-0.0, 0.0, -0.015] "radius": 0.041 - "center": [0.0, 0.018, 0.001] "radius": 0.039 - "center": [0.0, -0.033, -0.001] "radius": 0.04 - wrist_3_link: - "center": [-0.001, 0.002, -0.025] "radius": 0.038 - shoulder_link: - "center": [-0.006, -0.012, 0.027] "radius": 0.059 - "center": [0.011, 0.007, -0.048] "radius": 0.055 - "center": [0.018, -0.031, -0.001] "radius": 0.05 - upper_arm_link: - "center": [-0.183, 0.0, 0.15] "radius": 0.069 - "center": [-0.344, 0.0, 0.126] "radius": 0.069 - "center": [-0.03, 0.0, 0.146] "radius": 0.069 - "center": [-0.425, 0.0, 0.142] "radius": 0.069 - "center": [-0.27, -0.001, 0.151] "radius": 0.069 - "center": [-0.11, 0.0, 0.137] "radius": 0.069 - "center": [0.001, -0.0, 0.135] "radius": 0.068 - "center": [-0.226, -0.001, 0.123] "radius": 0.068 - "center": [-0.426, -0.001, 0.118] "radius": 0.067 - "center": [-0.359, 0.005, 0.155] "radius": 0.064 - "center": [-0.307, 0.0, 0.121] "radius": 0.069 - "center": [-0.156, -0.0, 0.129] "radius": 0.069 - "center": [-0.123, -0.001, 0.151] "radius": 0.068 - "center": [-0.064, 0.005, 0.125] "radius": 0.064 - forearm_link: - "center": [-0.005, 0.001, 0.048] "radius": 0.059 - "center": [-0.317, 0.0, -0.001] "radius": 0.053 - "center": [-0.386, -0.0, 0.021] "radius": 0.049 - "center": [-0.01, 0.001, 0.018] "radius": 0.052 - "center": [-0.268, 0.0, -0.001] "radius": 0.054 - "center": [-0.034, -0.0, 0.014] "radius": 0.058 - "center": [-0.393, 0.001, -0.019] "radius": 0.047 - "center": [-0.326, -0.009, 0.028] "radius": 0.042 - "center": [-0.342, 0.0, -0.008] "radius": 0.051 - "center": [0.031, -0.009, 0.037] "radius": 0.033 - "center": [-0.222, 0.0, 0.002] "radius": 0.055 - "center": [-0.176, 0.0, 0.005] "radius": 0.055 - "center": [-0.129, 0.0, 0.008] "radius": 0.056 - "center": [-0.082, 0.0, 0.011] "radius": 0.057
3,384
YAML
28.434782
80
0.529846
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur5e/rmpflow/ur5e_rmpflow_config.yaml
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. api_version: 1.0 joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 80. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 2.15 velocity_damping_region: 0.5 damping_gain: 300. metric_weight: 100. target_rmp: accel_p_gain: 80. accel_d_gain: 120. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000. min_metric_scalar: 2500. proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 accept_user_weights: false axis_target_rmp: accel_p_gain: 200. accel_d_gain: 40. metric_scalar: 10. proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .05 accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 1200. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_link pt1: [0, 0, 0.15] pt2: [0, 0, 0] radius: .065 body_collision_controllers: - name: wrist_2_link radius: .04 - name: wrist_3_link radius: .04 - name: tool0 radius: .04
2,718
YAML
27.925532
76
0.61663
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur5/rmpflow/ur5_robot_description.yaml
# The robot description defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF. # Lula will only use these joints to control the robot position. cspace: - shoulder_pan_joint - shoulder_lift_joint - elbow_joint - wrist_1_joint - wrist_2_joint - wrist_3_joint default_q: [ 0.0,-1.0,0.9,0.0,0.0,0.0 ] # Most dimensions of the cspace have a direct corresponding element # in the URDF. This list of rules defines how unspecified coordinates # should be extracted or how values in the URDF should be overwritten. cspace_to_urdf_rules: # Lula uses collision spheres to define the robot geometry in order to avoid # collisions with external obstacles. If no spheres are specified, Lula will # not be able to avoid obstacles. collision_spheres: - wrist_1_link: - "center": [-0.0, 0.027, -0.002] "radius": 0.041 - "center": [-0.003, -0.032, 0.001] "radius": 0.037 - "center": [-0.002, -0.003, -0.0] "radius": 0.039 - wrist_2_link: - "center": [-0.0, 0.0, -0.015] "radius": 0.041 - "center": [0.0, 0.018, 0.001] "radius": 0.039 - "center": [0.0, -0.033, -0.001] "radius": 0.04 - wrist_3_link: - "center": [0.0, 0.002, -0.025] "radius": 0.035 - shoulder_link: - "center": [-0.006, -0.012, 0.027] "radius": 0.059 - "center": [0.011, 0.007, -0.048] "radius": 0.055 - "center": [0.018, -0.031, -0.001] "radius": 0.05 - upper_arm_link: - "center": [-0.41, -0.001, 0.121] "radius": 0.06 - "center": [-0.201, 0.0, 0.136] "radius": 0.059 - "center": [-0.016, 0.0, 0.121] "radius": 0.06 - "center": [-0.306, -0.0, 0.135] "radius": 0.059 - "center": [-0.122, -0.0, 0.135] "radius": 0.059 - "center": [-0.006, 0.004, 0.162] "radius": 0.052 - "center": [-0.272, -0.0, 0.136] "radius": 0.059 - "center": [-0.429, 0.006, 0.173] "radius": 0.052 - "center": [-0.388, -0.015, 0.15] "radius": 0.043 - "center": [-0.028, -0.02, 0.142] "radius": 0.047 - "center": [-0.152, 0.0, 0.136] "radius": 0.059 - "center": [-0.387, 0.025, 0.145] "radius": 0.042 - "center": [-0.236, 0.0, 0.136] "radius": 0.059 - "center": [-0.35, 0.013, 0.14] "radius": 0.05 - "center": [-0.062, 0.002, 0.149] "radius": 0.055 - forearm_link: - "center": [-0.021, 0.0, 0.026] "radius": 0.053 - "center": [-0.177, 0.0, 0.016] "radius": 0.047 - "center": [-0.27, -0.0, 0.017] "radius": 0.047 - "center": [-0.392, 0.003, 0.039] "radius": 0.044 - "center": [-0.114, 0.002, 0.019] "radius": 0.044 - "center": [-0.31, 0.0, 0.017] "radius": 0.046 - "center": [0.02, -0.001, 0.039] "radius": 0.042 - "center": [-0.202, 0.001, 0.017] "radius": 0.046 - "center": [-0.392, 0.003, -0.006] "radius": 0.04 - "center": [-0.035, 0.0, 0.018] "radius": 0.049 - "center": [0.008, 0.02, 0.039] "radius": 0.041 - "center": [0.01, -0.029, 0.045] "radius": 0.035 - "center": [-0.134, -0.001, 0.017] "radius": 0.046 - "center": [-0.252, 0.0, 0.016] "radius": 0.047 - "center": [-0.075, 0.001, 0.019] "radius": 0.046 - "center": [-0.348, 0.002, 0.022] "radius": 0.045
3,501
YAML
28.428571
80
0.52842
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/universal_robots/ur5/rmpflow/ur5_rmpflow_config.yaml
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. api_version: 1.0 joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 80. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 2.15 velocity_damping_region: 0.5 damping_gain: 300. metric_weight: 100. target_rmp: accel_p_gain: 80. accel_d_gain: 120. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000. min_metric_scalar: 2500. proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 accept_user_weights: false axis_target_rmp: accel_p_gain: 200. accel_d_gain: 40. metric_scalar: 10. proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .05 accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 1200. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_link pt1: [0, 0, 0.15] pt2: [0, 0, 0] radius: .065 body_collision_controllers: - name: wrist_2_link radius: .04 - name: wrist_3_link radius: .04 - name: tool0 radius: .04
2,718
YAML
27.925532
76
0.61663
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/Flexiv/rizon4/rmpflow/flexiv_rizon4_robot_description.yaml
# The robot descriptor defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF. # Lula will only use these joints to control the robot position. cspace: - joint1 - joint2 - joint3 - joint4 - joint5 - joint6 - joint7 default_q: [ 0.0,-0.5,0.0002,0.5,-0.0,0.0,0.0 ] # Most dimensions of the cspace have a direct corresponding element # in the URDF. This list of rules defines how unspecified coordinates # should be extracted or how values in the URDF should be overwritten. cspace_to_urdf_rules: # Lula uses collision spheres to define the robot geometry in order to avoid # collisions with external obstacles. If no spheres are specified, Lula will # not be able to avoid obstacles. collision_spheres: - link1: - "center": [-0.002, -0.002, 0.071] "radius": 0.069 - "center": [-0.004, -0.011, 0.173] "radius": 0.062 - "center": [0.003, -0.015, 0.22] "radius": 0.058 - "center": [-0.002, -0.006, 0.113] "radius": 0.067 - link2: - "center": [0.001, 0.036, 0.126] "radius": 0.061 - "center": [0.005, 0.041, 0.031] "radius": 0.058 - "center": [-0.007, 0.042, -0.008] "radius": 0.056 - "center": [-0.004, 0.035, 0.151] "radius": 0.059 - link3: - "center": [-0.005, 0.002, 0.06] "radius": 0.059 - "center": [-0.012, 0.008, 0.144] "radius": 0.055 - "center": [-0.018, 0.012, 0.197] "radius": 0.052 - "center": [-0.01, 0.005, 0.105] "radius": 0.057 - link4: - "center": [-0.018, 0.026, 0.139] "radius": 0.06 - "center": [-0.003, 0.034, 0.039] "radius": 0.056 - "center": [-0.006, 0.038, 0.001] "radius": 0.054 - "center": [-0.013, 0.029, 0.096] "radius": 0.058 - link5: - "center": [0.001, -0.003, 0.069] "radius": 0.058 - "center": [0.003, -0.01, 0.169] "radius": 0.054 - "center": [-0.003, -0.006, 0.112] "radius": 0.057 - "center": [-0.0, -0.012, 0.195] "radius": 0.052 - "center": [0.0, 0.0, 0.0] "radius": 0.06 - link6: - "center": [0.014, 0.069, 0.107] "radius": 0.06 - "center": [0.002, 0.049, 0.035] "radius": 0.059 - "center": [-0.001, 0.043, -0.005] "radius": 0.053 - "center": [-0.001, 0.067, 0.106] "radius": 0.059 - link7: - "center": [-0.005, -0.006, 0.041] "radius": 0.05 - "center": [0.009, 0.002, 0.041] "radius": 0.05 - "center": [0.0, 0.0, 0.0] "radius": 0.05
2,661
YAML
27.021052
79
0.547914
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/Flexiv/rizon4/rmpflow/rizon4_rmpflow_config.yaml
# Artificially limit the robot joints. For example: # A joint with range +-pi would be limited to +-(pi-.01) joint_limit_buffers: [.01, .01, .01, .01, .01, .01, .01] # RMPflow has many modifiable parameters, but these serve as a great start. # Most parameters will not need to be modified rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 4. velocity_damping_region: 1.5 damping_gain: 1000.0 metric_weight: 100. target_rmp: accel_p_gain: 60. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false axis_target_rmp: accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false # body_cylinders are used to promote self-collision avoidance between the robot and its base # The example below defines the robot base to be a capsule defined by the absolute coordinates pt1 and pt2. # The semantic name provided for each body_cylinder does not need to be present in the robot URDF. body_cylinders: - name: base_link pt1: [0,0,.333] pt2: [0,0,0.] radius: .07 # body_collision_controllers defines spheres located at specified frames in the robot URDF # These spheres will not be allowed to collide with the capsules enumerated under body_cylinders # By design, most frames in industrial robots are kinematically unable to collide with the robot base. # It is often only necessary to define body_collision_controllers near the end effector body_collision_controllers: - name: flange radius: .05
3,202
YAML
33.074468
107
0.641162
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/Denso/cobotta_pro_900/rmpflow/robot_descriptor.yaml
# Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # The robot descriptor defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF. # RMPflow will only use these joints to control the robot position. cspace: - joint_1 - joint_2 - joint_3 - joint_4 - joint_5 - joint_6 # Global frame of the URDF root_link: world # The default cspace position of this robot default_q: [ 0.0,0.3,1.2,0.0,0.0,0.0 ] # RMPflow uses collision spheres to define the robot geometry in order to avoid # collisions with external obstacles. If no spheres are specified, RMPflow will # not be able to avoid obstacles. collision_spheres: - J1: - "center": [0.0, 0.0, 0.1] "radius": 0.08 - "center": [0.0, 0.0, 0.15] "radius": 0.08 - "center": [0.0, 0.0, 0.2] "radius": 0.08 - J2: - "center": [0.0, 0.08, 0.0] "radius": 0.08 - "center": [0.0, 0.16, 0.0] "radius": 0.08 - "center": [0.0, 0.175, 0.05] "radius": 0.065 - "center": [0.0, 0.175, 0.1] "radius": 0.065 - "center": [0.0, 0.175, 0.15] "radius": 0.065 - "center": [0.0, 0.175, 0.2] "radius": 0.065 - "center": [0.0, 0.175, 0.25] "radius": 0.065 - "center": [0.0, 0.175, 0.3] "radius": 0.065 - "center": [0.0, 0.175, 0.35] "radius": 0.065 - "center": [0.0, 0.175, 0.4] "radius": 0.065 - "center": [0.0, 0.175, 0.45] "radius": 0.065 - "center": [0.0, 0.175, 0.5] "radius": 0.065 - "center": [0.0, 0.1, 0.5] "radius": 0.07 - J3: - "center": [0.0, 0.025, 0] "radius": 0.065 - "center": [0.0, -0.025, 0] "radius": 0.065 - "center": [0.0, -0.025, 0.05] "radius": 0.065 - "center": [0.0, -0.025, 0.1] "radius": 0.065 - "center": [0.0, -0.025, 0.15] "radius": 0.06 - "center": [0.0, -0.025, 0.2] "radius": 0.06 - "center": [0.0, -0.025, 0.25] "radius": 0.06 - "center": [0.0, -0.025, 0.3] "radius": 0.06 - "center": [0.0, -0.025, 0.35] "radius": 0.055 - "center": [0.0, -0.025, 0.4] "radius": 0.055 - J5: - "center": [0.0, 0.05, 0] "radius": 0.055 - "center": [0.0, 0.1, 0] "radius": 0.055 - J6: - "center": [0.0, 0.0, -0.05] "radius": 0.05 - "center": [0.0, 0.0, -0.1] "radius": 0.05 - "center": [0.0, 0.0, -0.15] "radius": 0.05 - "center": [0.0, 0.0, 0.04] "radius": 0.035 - "center": [0.0, 0.0, 0.08] "radius": 0.035 - "center": [0.0, 0.0, 0.12] "radius": 0.035 - right_inner_knuckle: - "center": [0.0, 0.0, 0.0] "radius": 0.02 - "center": [0.0, -0.03, 0.025] "radius": 0.02 - "center": [0.0, -0.05, 0.05] "radius": 0.02 - right_inner_finger: - "center": [0.0, 0.02, 0.0] "radius": 0.015 - "center": [0.0, 0.02, 0.015] "radius": 0.015 - "center": [0.0, 0.02, 0.03] "radius": 0.015 - "center": [0.0, 0.025, 0.04] "radius": 0.01 - left_inner_knuckle: - "center": [0.0, 0.0, 0.0] "radius": 0.02 - "center": [0.0, -0.03, 0.025] "radius": 0.02 - "center": [0.0, -0.05, 0.05] "radius": 0.02 - left_inner_finger: - "center": [0.0, 0.02, 0.0] "radius": 0.015 - "center": [0.0, 0.02, 0.015] "radius": 0.015 - "center": [0.0, 0.02, 0.03] "radius": 0.015 - "center": [0.0, 0.025, 0.04] "radius": 0.01
3,988
YAML
26.701389
80
0.522818
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/Denso/cobotta_pro_900/rmpflow/cobotta_rmpflow_common.yaml
# Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # Artificially limit the robot joints. For example: # A joint with range +-pi would be limited to +-(pi-.01) joint_limit_buffers: [.01, .01, .01, .01, .01, .01] # RMPflow has many modifiable parameters, but these serve as a great start. # Most parameters will not need to be modified rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 1. velocity_damping_region: .3 damping_gain: 1000.0 metric_weight: 100. target_rmp: accel_p_gain: 30. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false axis_target_rmp: accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false # body_cylinders are used to promote self-collision avoidance between the robot and its base # The example below defines the robot base to be a capsule defined by the absolute coordinates pt1 and pt2. # The semantic name provided for each body_cylinder does not need to be present in the robot URDF. body_cylinders: - name: base pt1: [0,0,.12] pt2: [0,0,0.] radius: .08 - name: second_link pt1: [0,0,.12] pt2: [0,0,.12] radius: .16 # body_collision_controllers defines spheres located at specified frames in the robot URDF # These spheres will not be allowed to collide with the capsules enumerated under body_cylinders # By design, most frames in industrial robots are kinematically unable to collide with the robot base. # It is often only necessary to define body_collision_controllers near the end effector body_collision_controllers: - name: J5 radius: .05 - name: J6 radius: .05 - name: right_inner_finger radius: .02 - name: left_inner_finger radius: .02 - name: right_inner_knuckle radius: .02 - name: left_inner_knuckle radius: .02
3,947
YAML
32.743589
107
0.64682
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/Denso/cobotta_pro_1300/rmpflow/robot_descriptor.yaml
# Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # The robot descriptor defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF. # RMPflow will only use these joints to control the robot position. cspace: - joint_1 - joint_2 - joint_3 - joint_4 - joint_5 - joint_6 # Global frame of the URDF root_link: world # The default cspace position of this robot default_q: [ 0.0,0.3,1.2,0.0,0.0,0.0 ] # RMPflow uses collision spheres to define the robot geometry in order to avoid # collisions with external obstacles. If no spheres are specified, RMPflow will # not be able to avoid obstacles. collision_spheres: - J1: - "center": [0.0, 0.0, 0.1] "radius": 0.09 - "center": [0.0, 0.0, 0.15] "radius": 0.09 - "center": [0.0, 0.0, 0.2] "radius": 0.09 - J2: - "center": [0.0, 0.08, 0.0] "radius": 0.09 - "center": [0.0, 0.16, 0.0] "radius": 0.09 - "center": [0.0, 0.2, 0.0] "radius": 0.09 - "center": [0.0, 0.197, 0.05] "radius": 0.08 - "center": [0.0, 0.195, 0.1] "radius": 0.08 - "center": [0.0, 0.192, 0.15] "radius": 0.08 - "center": [0.0, 0.19, 0.2] "radius": 0.065 - "center": [0.0, 0.187, 0.25] "radius": 0.065 - "center": [0.0, 0.185, 0.3] "radius": 0.065 - "center": [0.0, 0.182, 0.35] "radius": 0.065 - "center": [0.0, 0.18, 0.4] "radius": 0.065 - "center": [0.0, 0.177, 0.45] "radius": 0.065 - "center": [0.0, 0.175, 0.5] "radius": 0.065 - "center": [0.0, 0.174, 0.55] "radius": 0.065 - "center": [0.0, 0.173, 0.6] "radius": 0.065 - "center": [0.0, 0.172, 0.65] "radius": 0.075 - "center": [0.0, 0.16, 0.7] "radius": 0.075 - J3: - "center": [0.0, 0.025, 0] "radius": 0.075 - "center": [0.0, -0.045, 0] "radius": 0.065 - "center": [0.0, -0.045, 0.05] "radius": 0.065 - "center": [0.0, -0.045, 0.1] "radius": 0.065 - "center": [0.0, -0.045, 0.15] "radius": 0.06 - "center": [0.0, -0.045, 0.2] "radius": 0.06 - "center": [0.0, -0.045, 0.25] "radius": 0.06 - "center": [0.0, -0.045, 0.3] "radius": 0.06 - "center": [0.0, -0.045, 0.35] "radius": 0.055 - "center": [0.0, -0.05, 0.4] "radius": 0.055 - "center": [0.0, -0.05, 0.45] "radius": 0.055 - "center": [0.0, -0.05, 0.5] "radius": 0.055 - "center": [0.0, -0.05, 0.55] "radius": 0.055 - "center": [0.0, -0.05, 0.59] "radius": 0.055 - J5: - "center": [0.0, 0.05, 0] "radius": 0.055 - "center": [0.0, 0.1, 0] "radius": 0.055 - J6: - "center": [0.0, 0.0, -0.05] "radius": 0.05 - "center": [0.0, 0.0, -0.1] "radius": 0.05 - "center": [0.0, 0.0, -0.15] "radius": 0.05 - "center": [0.0, 0.0, 0.04] "radius": 0.035 - "center": [0.0, 0.0, 0.08] "radius": 0.035 - "center": [0.0, 0.0, 0.12] "radius": 0.035 - right_inner_knuckle: - "center": [0.0, 0.0, 0.0] "radius": 0.02 - "center": [0.0, -0.03, 0.025] "radius": 0.02 - "center": [0.0, -0.05, 0.05] "radius": 0.02 - right_inner_finger: - "center": [0.0, 0.02, 0.0] "radius": 0.015 - "center": [0.0, 0.02, 0.015] "radius": 0.015 - "center": [0.0, 0.02, 0.03] "radius": 0.015 - "center": [0.0, 0.025, 0.04] "radius": 0.01 - left_inner_knuckle: - "center": [0.0, 0.0, 0.0] "radius": 0.02 - "center": [0.0, -0.03, 0.025] "radius": 0.02 - "center": [0.0, -0.05, 0.05] "radius": 0.02 - left_inner_finger: - "center": [0.0, 0.02, 0.0] "radius": 0.015 - "center": [0.0, 0.02, 0.015] "radius": 0.015 - "center": [0.0, 0.02, 0.03] "radius": 0.015 - "center": [0.0, 0.025, 0.04] "radius": 0.01
4,439
YAML
26.407407
80
0.511602
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/Denso/cobotta_pro_1300/rmpflow/cobotta_rmpflow_common.yaml
# Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # Artificially limit the robot joints. For example: # A joint with range +-pi would be limited to +-(pi-.01) joint_limit_buffers: [.01, .01, .01, .01, .01, .01] # RMPflow has many modifiable parameters, but these serve as a great start. # Most parameters will not need to be modified rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 1. velocity_damping_region: .3 damping_gain: 1000.0 metric_weight: 100. target_rmp: accel_p_gain: 30. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false axis_target_rmp: accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false # body_cylinders are used to promote self-collision avoidance between the robot and its base # The example below defines the robot base to be a capsule defined by the absolute coordinates pt1 and pt2. # The semantic name provided for each body_cylinder does not need to be present in the robot URDF. body_cylinders: - name: base pt1: [0,0,.12] pt2: [0,0,0.] radius: .09 - name: second_link pt1: [0,0,.1] pt2: [0,0,.1] radius: .2 # body_collision_controllers defines spheres located at specified frames in the robot URDF # These spheres will not be allowed to collide with the capsules enumerated under body_cylinders # By design, most frames in industrial robots are kinematically unable to collide with the robot base. # It is often only necessary to define body_collision_controllers near the end effector body_collision_controllers: - name: J5 radius: .05 - name: J6 radius: .05 - name: right_inner_finger radius: .02 - name: left_inner_finger radius: .02 - name: right_inner_knuckle radius: .02 - name: left_inner_knuckle radius: .02
3,944
YAML
32.717948
107
0.646552
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/dofbot/rmpflow/robot_descriptor.yaml
# Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # The robot descriptor defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF, except when otherwise specified below under # cspace_urdf_bridge cspace: - joint1 - joint2 - joint3 - joint4 root_link: base_link default_q: [ 0.00, 0.00, 0.00, 0.00 ]
861
YAML
30.925925
79
0.765389
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/dofbot/rmpflow/dofbot_rmpflow_common.yaml
# Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. joint_limit_buffers: [.01, .01, .01, .01] # Note: metric_weight and metric_scalar mean the same thing. Set to zero to turn it off. rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 0. cspace_trajectory_rmp: # Note: unused p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: # Note: unused final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: # Note: Less important max_velocity: 4. # max_xd velocity_damping_region: 1.5 damping_gain: 1000.0 metric_weight: 0. target_rmp: accel_p_gain: 100. accel_d_gain: 400. accel_norm_eps: .025 # TODO: meters metric_alpha_length_scale: .001 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. # TODO: meters proximity_metric_boost_length_scale: .0025 xi_estimator_gate_std_dev: 20000. # unused accept_user_weights: false # Values >= .5 are true and < .5 are false axis_target_rmp: # Note: Won't be used for end effector position control accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. # TODO: meters proximity_metric_boost_length_scale: .01 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: # Note import if no obstacles damping_gain: 50. # TODO: meters damping_std_dev: .005 damping_robustness_eps: 1e-2 # TODO: meters damping_velocity_gate_length_scale: .001 repulsion_gain: 800. # TODO: meters repulsion_std_dev: .001 # TODO: meters metric_modulation_radius: .05 metric_scalar: 10000. # Real value should be this. #metric_scalar: 0. # Turns off collision avoidance. # TODO: meters metric_exploder_std_dev: .0025 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 0. canonical_resolve: max_acceleration_norm: 50. # TODO: try setting much larger projection_tolerance: .01 verbose: false body_cylinders: - name: base_stem pt1: [0,0,.333] pt2: [0,0,0.] radius: .05 body_collision_controllers: - name: link5 radius: .08
3,309
YAML
30.826923
88
0.618918
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/Kawasaki/README.md
The Kawasaki RS robot URDF files have all been modified such that the +X axis lies in front of the robot to fit with Isaac Sim convention. This corresponds to the same change in each URDF: <joint name="world2base" type="fixed"> <parent link="world"/> <child link="base_link"/> <origin rpy="0 0 -1.5707963267948966" xyz="0 0 0"/> </joint> from the original <joint name="world2base" type="fixed"> <parent link="world"/> <child link="base_link"/> <origin rpy="0 0 0" xyz="0 0 0"/> </joint>. The URDFs have also been modified to include a new frame in the center of the robot gripper called "gripper_center". The following has been added at the bottom of each URDF: <link name="gripper_center"/> <joint name="gripper_center_joint" type="fixed"> <origin rpy="0 0 0" xyz="0.0 0.0 .2"/> <parent link="onrobot_rg2_base_link"/> <child link="gripper_center"/> </joint> These modified URDF files were used to generate the Kawasaki RS USD files that are stored on the Nucleus Isaac Sim server.
1,031
Markdown
37.222221
189
0.695441
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/Kawasaki/rs013n/rmpflow/rs013n_rmpflow_config.yaml
joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 100. position_gain: 200. damping_gain: 100. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 1. velocity_damping_region: .3 damping_gain: 1000.0 metric_weight: 100. target_rmp: accel_p_gain: 60. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false axis_target_rmp: accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_link pt1: [0,0,.6] pt2: [0,0,0.] radius: .18 body_collision_controllers: - name: onrobot_rg2_base_link radius: .05 - name: link5 radius: .07
2,324
YAML
28.0625
51
0.582186
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/Kawasaki/rs007l/rmpflow/rs007l_robot_description.yaml
# The robot descriptor defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF. # Lula will only use these joints to control the robot position. cspace: - joint1 - joint2 - joint3 - joint4 - joint5 - joint6 default_q: [ 0.0,-0.2,-1.7,-1.507,0.0,0.0 ] # Most dimensions of the cspace have a direct corresponding element # in the URDF. This list of rules defines how unspecified coordinates # should be extracted or how values in the URDF should be overwritten. cspace_to_urdf_rules: - {name: finger_joint, rule: fixed, value: -0.0} - {name: left_inner_knuckle_joint, rule: fixed, value: 0.0} - {name: right_inner_knuckle_joint, rule: fixed, value: -0.0} - {name: right_outer_knuckle_joint, rule: fixed, value: 0.0} - {name: left_inner_finger_joint, rule: fixed, value: -0.0} - {name: right_inner_finger_joint, rule: fixed, value: 0.0} # Lula uses collision spheres to define the robot geometry in order to avoid # collisions with external obstacles. If no spheres are specified, Lula will # not be able to avoid obstacles. collision_spheres: - link1: - "center": [-0.031, 0.0, -0.07] "radius": 0.083 - "center": [-0.013, -0.001, -0.007] "radius": 0.077 - "center": [-0.079, -0.0, -0.051] "radius": 0.078 - link2: - "center": [0.031, -0.009, -0.106] "radius": 0.061 - "center": [0.103, 0.001, -0.117] "radius": 0.059 - "center": [0.267, -0.001, -0.119] "radius": 0.054 - "center": [0.191, 0.0, -0.121] "radius": 0.054 - "center": [0.351, 0.003, -0.116] "radius": 0.051 - "center": [-0.019, 0.004, -0.101] "radius": 0.056 - "center": [0.47, 0.013, -0.105] "radius": 0.044 - "center": [0.4, 0.011, -0.113] "radius": 0.048 - link3: - "center": [0.004, -0.0, 0.011] "radius": 0.105 - link4: - "center": [0.0, 0.0, 0.0] "radius": 0.05 - "center": [0.001, -0.001, 0.125] "radius": 0.05 - "center": [0.0, -0.0, 0.042] "radius": 0.05 - "center": [0.001, -0.001, 0.084] "radius": 0.05 - "center": [0.0, -0.0, 0.372] "radius": 0.065 - "center": [0.0, -0.0, 0.162] "radius": 0.065 - "center": [0.0, -0.0, 0.318] "radius": 0.064 - "center": [0.0, -0.0, 0.265] "radius": 0.065 - "center": [0.0, -0.0, 0.213] "radius": 0.065 - link5: - "center": [0.04, 0.0, 0.0] "radius": 0.041 - onrobot_rg2_base_link: - "center": [0.0, 0.001, 0.04] "radius": 0.044 - "center": [0.0, -0.002, 0.084] "radius": 0.037 - "center": [0.0, 0.01, 0.12] "radius": 0.031 - "center": [-0.0, -0.011, 0.115] "radius": 0.031 - left_outer_knuckle: - "center": [0.0, 0.0, 0.0] "radius": 0.015 - "center": [-0.0, -0.04, 0.034] "radius": 0.015 - "center": [-0.0, -0.013, 0.011] "radius": 0.015 - "center": [-0.0, -0.027, 0.023] "radius": 0.015 - left_inner_knuckle: - "center": [0.0, -0.014, 0.014] "radius": 0.015 - "center": [-0.001, -0.002, 0.002] "radius": 0.015 - "center": [0.001, -0.031, 0.031] "radius": 0.015 - right_inner_knuckle: - "center": [0.0, -0.014, 0.014] "radius": 0.015 - "center": [-0.001, -0.002, 0.002] "radius": 0.015 - "center": [0.001, -0.031, 0.031] "radius": 0.015 - right_inner_finger: - "center": [0.002, 0.01, 0.028] "radius": 0.013 - "center": [0.003, 0.006, 0.014] "radius": 0.012 - "center": [-0.003, 0.012, 0.037] "radius": 0.012 - left_inner_finger: - "center": [0.002, 0.01, 0.028] "radius": 0.013 - "center": [0.003, 0.006, 0.014] "radius": 0.012 - "center": [-0.003, 0.012, 0.037] "radius": 0.012 - right_outer_knuckle: - "center": [0.0, 0.0, 0.0] "radius": 0.015 - "center": [-0.0, -0.04, 0.034] "radius": 0.015 - "center": [-0.0, -0.013, 0.011] "radius": 0.015 - "center": [-0.0, -0.027, 0.023] "radius": 0.015
4,204
YAML
28.822695
79
0.529258
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/Kawasaki/rs007l/rmpflow/rs007l_rmpflow_config.yaml
joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 100. position_gain: 200. damping_gain: 100. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 1. velocity_damping_region: .3 damping_gain: 1000.0 metric_weight: 100. target_rmp: accel_p_gain: 60. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false axis_target_rmp: accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_link pt1: [0,0,.4] pt2: [0,0,0.] radius: .13 body_collision_controllers: - name: onrobot_rg2_base_link radius: .05 - name: link5 radius: .07
2,324
YAML
28.0625
51
0.582186
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/Kawasaki/rs007n/rmpflow/rs007n_rmpflow_config.yaml
joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 100. position_gain: 200. damping_gain: 100. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 1. velocity_damping_region: .3 damping_gain: 1000.0 metric_weight: 100. target_rmp: accel_p_gain: 60. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false axis_target_rmp: accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_link pt1: [0,0,.4] pt2: [0,0,0.] radius: .13 body_collision_controllers: - name: onrobot_rg2_base_link radius: .05 - name: link5 radius: .07
2,324
YAML
28.0625
51
0.582186
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/Kawasaki/rs007n/rmpflow/rs007n_robot_description.yaml
# The robot descriptor defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF. # Lula will only use these joints to control the robot position. cspace: - joint1 - joint2 - joint3 - joint4 - joint5 - joint6 default_q: [ 0.0,-0.2,-1.7,-1.507,0.0,0.0 ] # Most dimensions of the cspace have a direct corresponding element # in the URDF. This list of rules defines how unspecified coordinates # should be extracted or how values in the URDF should be overwritten. cspace_to_urdf_rules: - {name: finger_joint, rule: fixed, value: -0.0} - {name: left_inner_knuckle_joint, rule: fixed, value: 0.0} - {name: right_inner_knuckle_joint, rule: fixed, value: -0.0} - {name: right_outer_knuckle_joint, rule: fixed, value: 0.0} - {name: left_inner_finger_joint, rule: fixed, value: -0.0} - {name: right_inner_finger_joint, rule: fixed, value: 0.0} # Lula uses collision spheres to define the robot geometry in order to avoid # collisions with external obstacles. If no spheres are specified, Lula will # not be able to avoid obstacles. collision_spheres: - link1: - "center": [-0.031, 0.0, -0.07] "radius": 0.083 - "center": [-0.013, -0.001, -0.007] "radius": 0.077 - "center": [-0.079, -0.0, -0.051] "radius": 0.078 - link3: - "center": [0.004, -0.0, 0.011] "radius": 0.105 - link4: - "center": [0.0, 0.0, 0.0] "radius": 0.05 - "center": [0.001, -0.001, 0.125] "radius": 0.05 - "center": [-0.001, -0.001, 0.11] "radius": 0.067 - "center": [0.0, -0.0, 0.042] "radius": 0.055 - "center": [0.0, -0.0, 0.268] "radius": 0.067 - "center": [0.0, -0.0, 0.228] "radius": 0.067 - "center": [-0.0, -0.0, 0.189] "radius": 0.067 - "center": [-0.001, -0.001, 0.15] "radius": 0.067 - link5: - "center": [0.04, 0.0, 0.0] "radius": 0.041 - onrobot_rg2_base_link: - "center": [0.0, 0.001, 0.04] "radius": 0.044 - "center": [0.0, -0.002, 0.084] "radius": 0.037 - "center": [0.0, 0.01, 0.12] "radius": 0.031 - "center": [-0.0, -0.011, 0.115] "radius": 0.031 - left_outer_knuckle: - "center": [0.0, 0.0, 0.0] "radius": 0.015 - "center": [-0.0, -0.04, 0.034] "radius": 0.015 - "center": [-0.0, -0.013, 0.011] "radius": 0.015 - "center": [-0.0, -0.027, 0.023] "radius": 0.015 - left_inner_knuckle: - "center": [0.0, -0.014, 0.014] "radius": 0.015 - "center": [-0.001, -0.002, 0.002] "radius": 0.015 - "center": [0.001, -0.031, 0.031] "radius": 0.015 - right_inner_knuckle: - "center": [0.0, -0.014, 0.014] "radius": 0.015 - "center": [-0.001, -0.002, 0.002] "radius": 0.015 - "center": [0.001, -0.031, 0.031] "radius": 0.015 - right_inner_finger: - "center": [0.002, 0.01, 0.028] "radius": 0.013 - "center": [0.003, 0.006, 0.014] "radius": 0.012 - "center": [-0.003, 0.012, 0.037] "radius": 0.012 - left_inner_finger: - "center": [0.002, 0.01, 0.028] "radius": 0.013 - "center": [0.003, 0.006, 0.014] "radius": 0.012 - "center": [-0.003, 0.012, 0.037] "radius": 0.012 - right_outer_knuckle: - "center": [0.0, 0.0, 0.0] "radius": 0.015 - "center": [-0.0, -0.04, 0.034] "radius": 0.015 - "center": [-0.0, -0.013, 0.011] "radius": 0.015 - "center": [-0.0, -0.027, 0.023] "radius": 0.015 - link2: - "center": [0.044, 0.001, -0.11] "radius": 0.065 - "center": [0.243, 0.0, -0.119] "radius": 0.055 - "center": [-0.008, 0.002, -0.108] "radius": 0.063 - "center": [0.333, 0.006, -0.114] "radius": 0.049 - "center": [0.373, -0.015, -0.111] "radius": 0.045 - "center": [0.284, 0.001, -0.118] "radius": 0.052 - "center": [0.075, 0.0, -0.116] "radius": 0.061 - "center": [0.133, 0.0, -0.117] "radius": 0.059 - "center": [0.189, 0.0, -0.118] "radius": 0.057
4,210
YAML
28.865248
79
0.529454
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/Kawasaki/rs080n/rmpflow/rs080n_rmpflow_config.yaml
joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 100. position_gain: 200. damping_gain: 100. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 1. velocity_damping_region: .3 damping_gain: 1000.0 metric_weight: 100. target_rmp: accel_p_gain: 60. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false axis_target_rmp: accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_link pt1: [0,0,.7] pt2: [0,0,0.] radius: .23 body_collision_controllers: - name: onrobot_rg2_base_link radius: .05 - name: link5 radius: .12
2,324
YAML
28.0625
51
0.582186
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/motion_policy_configs/Kawasaki/rs025n/rmpflow/rs025n_rmpflow_config.yaml
joint_limit_buffers: [.01, .01, .01, .01, .01, .01] rmp_params: cspace_target_rmp: metric_scalar: 100. position_gain: 200. damping_gain: 100. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 1. velocity_damping_region: .3 damping_gain: 1000.0 metric_weight: 100. target_rmp: accel_p_gain: 60. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false axis_target_rmp: accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false body_cylinders: - name: base_link pt1: [0,0,.7] pt2: [0,0,0.] radius: .23 body_collision_controllers: - name: onrobot_rg2_base_link radius: .05 - name: link5 radius: .12
2,324
YAML
28.0625
51
0.582186
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/path_planner_configs/franka/rrt/franka_planner_config.yaml
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. seed: 123456 step_size: 0.1 max_iterations: 4000 max_sampling: 10000 distance_metric_weights: [3.0, 2.0, 2.0, 1.5, 1.5, 1.0, 1.0] task_space_frame_name: "panda_rightfingertip" task_space_limits: [[-0.8, 0.9], [-0.8, 0.8], [0.0, 1.2]] c_space_planning_params: exploration_fraction: 0.5 task_space_planning_params: x_target_zone_tolerance: [0.01, 0.01, 0.01] x_target_final_tolerance: 1e-5 task_space_exploitation_fraction: 0.4 task_space_exploration_fraction: 0.1
900
YAML
38.173911
76
0.751111
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/PACKAGE-LICENSES/omni.isaac.motion_generation-LICENSE.md
Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. NVIDIA CORPORATION and its licensors retain all intellectual property and proprietary rights in and to this software, related documentation and any modifications thereto. Any use, reproduction, disclosure or distribution of this software and related documentation without an express license agreement from NVIDIA CORPORATION is strictly prohibited.
412
Markdown
57.999992
74
0.839806
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/config/extension.toml
[core] reloadable = true order = 0 [package] version = "4.5.6" category = "Simulation" title = "Isaac Sim Motion Generation" description = "Extension that provides support for generating motion with Lula-based motion policies and an interface for writing arbitrary motion policies" repository = "" authors = ["NVIDIA"] keywords = ["isaac", "motion generation", "lula", "motion policy"] changelog = "docs/CHANGELOG.md" readme = "docs/README.md" icon = "data/icon.png" [dependencies] "omni.isaac.dynamic_control" = {} "omni.isaac.motion_planning" = {} # Fixes issue where ROS was sourced first "omni.isaac.lula" = {} "omni.isaac.core" = {} [[python.module]] name = "omni.isaac.motion_generation" [[python.module]] name = "omni.isaac.motion_generation.tests"
760
TOML
26.17857
156
0.722368
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/kinematics_interface.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np from typing import Tuple, Optional, List from .world_interface import WorldInterface class KinematicsSolver(WorldInterface): """An limitted interface for computing robot kinematics that includes forward and inverse kinematics. This interface ommits more advanced kinematics such as Jacobians, as they are not required for most use-cases. This interface inherits from the WorldInterface to standardize the inputs to collision-aware IK solvers, but it is not necessary for all implementations to implement the WorldInterface. See KinematicsSolver.supports_collision_avoidance() """ def __init__(self): pass def set_robot_base_pose(self, robot_positions: np.array, robot_orientation: np.array) -> None: """Update position of the robot base. This will be used to compute kinematics relative to the USD stage origin. Args: robot_positions (np.array): (3 x 1) translation vector describing the translation of the robot base relative to the USD stage origin. The translation vector should be specified in the units of the USD stage robot_orientation (np.array): (4 x 1) quaternion describing the orientation of the robot base relative to the USD stage global frame """ pass def get_joint_names(self) -> List[str]: """Return a list containing the names of all joints in the given kinematic structure. The order of this list determines the order in which the joint positions are expected in compute_forward_kinematics(joint_positions,...) and the order in which they are returned in compute_inverse_kinematics() Returns: List[str]: Names of all joints in the robot """ return [] def get_all_frame_names(self) -> List[str]: """Return a list of all the frame names in the given kinematic structure Returns: List[str]: All frame names in the kinematic structure. Any of which can be used to compute forward or inverse kinematics. """ return [] def compute_forward_kinematics( self, frame_name: str, joint_positions: np.array, position_only: Optional[bool] = False ) -> Tuple[np.array, np.array]: """ Compute the position of a given frame in the robot relative to the USD stage global frame Args: frame_name (str): Name of robot frame on which to calculate forward kinematics joint_positions (np.array): Joint positions for the joints returned by get_joint_names() position_only (bool): If True, only the frame positions need to be calculated and the returned rotation may be left undefined. Returns: Tuple[np.array,np.array]: frame_positions: (3x1) vector describing the translation of the frame relative to the USD stage origin frame_rotation: (3x3) rotation matrix describing the rotation of the frame relative to the USD stage global frame """ return np.zeros(3), np.eye(3) def compute_inverse_kinematics( self, frame_name: str, target_positions: np.array, target_orientation: Optional[np.array] = None, warm_start: Optional[np.array] = None, position_tolerance: Optional[float] = None, orientation_tolerance: Optional[float] = None, ) -> Tuple[np.array, bool]: """Compute joint positions such that the specified robot frame will reach the desired translations and rotations Args: frame_name (str): name of the target frame for inverse kinematics target_position (np.array): target translation of the target frame (in stage units) relative to the USD stage origin target_orientation (np.array): target orientation of the target frame relative to the USD stage global frame. Defaults to None. warm_start (np.array): a starting position that will be used when solving the IK problem. Defaults to None. position_tolerance (float): l-2 norm of acceptable position error (in stage units) between the target and achieved translations. Defaults to None. orientation tolerance (float): magnitude of rotation (in radians) separating the target orientation from the achieved orienatation. orientation_tolerance is well defined for values between 0 and pi. Defaults to None. Returns: Tuple[np.array,bool]: joint_positions: in the order specified by get_joint_names() which result in the target frame acheiving the desired position success: True if the solver converged to a solution within the given tolerances """ return np.empty() def supports_collision_avoidance(self) -> bool: """Returns a bool describing whether the inverse kinematics support collision avoidance. If the policy does not support collision avoidance, none of the obstacle add/remove/enable/disable functions need to be implemented. Returns: bool: If True, the IK solver will avoid any obstacles that have been added """ return False
5,604
Python
50.422018
158
0.695575
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/trajectory.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np from typing import Tuple, List class Trajectory: """Interface class for defining a continuous-time trajectory for a robot in Isaac Sim. A Trajectory may be passed to an ArticulationTrajectory to have its continuous-time output discretized and converted to a ArticulationActions. """ def __init__(self): pass @property def start_time(self) -> float: """Return the start time of the trajectory. Returns: float: Start time of the trajectory. """ pass @property def end_time(self) -> float: """Return the end time of the trajectory Returns: float: End time of the trajectory """ pass def get_active_joints(self) -> List[str]: """Active joints are directly controlled by this Trajectory A Trajectory may be specified for only a subset of the joints in a robot Articulation. For example, it may include the DOFs in a robot arm, but not in the gripper. Returns: List[str]: Names of active joints. The order of joints in this list determines the order in which a Trajectory will return joint targets for the robot. """ return [] def get_joint_targets(self, time: float) -> Tuple[np.array, np.array]: """Return joint targets for the robot at the given time. The Trajectory interface assumes trajectories to be represented continuously between a start time and end time. In instance of this class that internally generates discrete time trajectories will need to implement some form of interpolation for times that have not been computed. Args: time (float): Time in trajectory at which to return joint targets. Returns: Tuple[np.array,np.array]: joint position targets for the active robot joints\n joint velocity targets for the active robot joints """ pass
2,435
Python
36.476923
143
0.676386
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/interface_config_loader.py
import os import json import carb from omni.isaac.core.utils.extensions import get_extension_path_from_name from typing import List """This InterfaceLoader makes it trivial to load a valid config for supported interface implementations For example, RMPflow has a collection of robot-specific config files stored in the motion_generation extension. This loader makes it simple to load RMPflow for the Franka robot using load_supported_motion_policy_config("Franka","RMPflow") """ def get_supported_robot_policy_pairs() -> dict: """Get a dictionary of MotionPolicy names that are supported for each given robot name Returns: supported_policy_names_by_robot (dict): dictionary mapping robot names (keys) to a list of supported MotionPolicy config files (values) """ mg_extension_path = get_extension_path_from_name("omni.isaac.motion_generation") policy_config_dir = os.path.join(mg_extension_path, "motion_policy_configs") with open(os.path.join(policy_config_dir, "policy_map.json")) as policy_map: policy_map = json.load(policy_map) supported_policy_names_by_robot = dict() for k, v in policy_map.items(): supported_policy_names_by_robot[k] = list(v.keys()) return supported_policy_names_by_robot def get_supported_robots_with_lula_kinematics() -> List[str]: # Currently just uses robots that have RmpFlow supported robots = [] pairs = get_supported_robot_policy_pairs() for k, v in pairs.items(): if "RMPflow" in v: robots.append(k) return robots def get_supported_robot_path_planner_pairs() -> dict: """Get a dictionary of PathPlanner names that are supported for each given robot name Returns: supported_planner_names_by_robot (dict): dictionary mapping robot names (keys) to a list of supported PathPlanner config files (values) """ mg_extension_path = get_extension_path_from_name("omni.isaac.motion_generation") policy_config_dir = os.path.join(mg_extension_path, "path_planner_configs") with open(os.path.join(policy_config_dir, "path_planner_map.json")) as planner_map: planner_map = json.load(planner_map) supported_planner_names_by_robot = dict() for k, v in planner_map.items(): supported_planner_names_by_robot[k] = list(v.keys()) return supported_planner_names_by_robot def load_supported_lula_kinematics_solver_config(robot_name: str, policy_config_dir=None) -> dict: """Load lula kinematics solver for a supported robot. Use get_supported_robots_with_lula_kinematics() to get a list of robots with supported kinematics. Args: robot_name (str): name of robot Returns: solver_config (dict): a dictionary whose keyword arguments are sufficient to load the lula kinematics solver. e.g. lula.LulaKinematicsSolver(**load_supported_lula_kinematics_solver_config("Franka")) """ policy_name = "RMPflow" if policy_config_dir is None: mg_extension_path = get_extension_path_from_name("omni.isaac.motion_generation") policy_config_dir = os.path.join(mg_extension_path, "motion_policy_configs") with open(os.path.join(policy_config_dir, "policy_map.json")) as policy_map: policy_map = json.load(policy_map) if robot_name not in policy_map: carb.log_error( "Unsupported robot passed to InterfaceLoader. Use get_supported_robots_with_lula_kinematics() to get a list of robots with supported kinematics" ) return None if policy_name not in policy_map[robot_name]: carb.log_error( robot_name + " does not have supported lula kinematics. Use get_supported_robots_with_lula_kinematics() to get a list of robots with supported kinematics" ) return None config_path = os.path.join(policy_config_dir, policy_map[robot_name][policy_name]) rmp_config = _process_policy_config(config_path) kinematics_config = dict() kinematics_config["robot_description_path"] = rmp_config["robot_description_path"] kinematics_config["urdf_path"] = rmp_config["urdf_path"] return kinematics_config def load_supported_motion_policy_config(robot_name: str, policy_name: str, policy_config_dir: str = None) -> dict: """Load a MotionPolicy object by specifying the robot name and policy name For a dictionary mapping supported robots to supported policies on those robots, use get_supported_robot_policy_pairs() To use this loader for a new policy, a user may copy the config file structure found under /motion_policy_configs/ in the motion_generation extension, passing in a path to a directory containing a "policy_map.json" Args: robot_name (str): name of robot policy_name (str): name of MotionPolicy policy_config_dir (str): path to directory where a policy_map.json file is stored, defaults to ".../omni.isaac.motion_generation/motion_policy_configs" Returns: policy_config (dict): a dictionary whose keyword arguments are sufficient to load the desired motion policy e.g. lula.motion_policies.RmpFlow(**load_supported_motion_policy_config("Franka","RMPflow")) """ if policy_config_dir is None: mg_extension_path = get_extension_path_from_name("omni.isaac.motion_generation") policy_config_dir = os.path.join(mg_extension_path, "motion_policy_configs") with open(os.path.join(policy_config_dir, "policy_map.json")) as policy_map: policy_map = json.load(policy_map) if robot_name not in policy_map: carb.log_error( "Unsupported robot passed to InterfaceLoader. Use get_supported_robot_policy_pairs() to see supported robots and their corresponding supported policies" ) return None if policy_name not in policy_map[robot_name]: carb.log_error( 'Unsupported policy name passed to InterfaceLoader for robot "' + robot_name + '". Use get_supported_robot_policy_pairs() to see supported robots and their corresponding supported policies' ) return None config_path = os.path.join(policy_config_dir, policy_map[robot_name][policy_name]) config = _process_policy_config(config_path) return config def load_supported_path_planner_config(robot_name: str, planner_name: str, policy_config_dir: str = None) -> dict: if policy_config_dir is None: mg_extension_path = get_extension_path_from_name("omni.isaac.motion_generation") policy_config_dir = os.path.join(mg_extension_path, "path_planner_configs") with open(os.path.join(policy_config_dir, "path_planner_map.json")) as policy_map: policy_map = json.load(policy_map) if robot_name not in policy_map: carb.log_error( "Unsupported robot passed to InterfaceLoader. Use get_supported_robot_policy_pairs() to see supported robots and their corresponding supported policies" ) return None if planner_name not in policy_map[robot_name]: carb.log_error( 'Unsupported policy name passed to InterfaceLoader for robot "' + robot_name + '". Use get_supported_robot_policy_pairs() to see supported robots and their corresponding supported policies' ) return None config_path = os.path.join(policy_config_dir, policy_map[robot_name][planner_name]) config = _process_policy_config(config_path) return config def _process_policy_config(mg_config_file): mp_config_dir = os.path.dirname(mg_config_file) with open(mg_config_file) as config_file: config = json.load(config_file) rel_assets = config.get("relative_asset_paths", {}) for k, v in rel_assets.items(): config[k] = os.path.join(mp_config_dir, v) del config["relative_asset_paths"] return config
7,891
Python
42.60221
165
0.692941
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.motion_generation.articulation_motion_policy import ArticulationMotionPolicy from omni.isaac.motion_generation.world_interface import WorldInterface from omni.isaac.motion_generation.motion_policy_interface import MotionPolicy from omni.isaac.motion_generation.lula.motion_policies import RmpFlow, RmpFlowSmoothed from omni.isaac.motion_generation.lula.kinematics import LulaKinematicsSolver from omni.isaac.motion_generation.articulation_kinematics_solver import ArticulationKinematicsSolver from omni.isaac.motion_generation.kinematics_interface import KinematicsSolver from omni.isaac.motion_generation.trajectory import Trajectory from omni.isaac.motion_generation.articulation_trajectory import ArticulationTrajectory from omni.isaac.motion_generation.lula.trajectory_generator import ( LulaCSpaceTrajectoryGenerator, LulaTaskSpaceTrajectoryGenerator, ) from omni.isaac.motion_generation.path_planning_interface import PathPlanner from omni.isaac.motion_generation.path_planner_visualizer import PathPlannerVisualizer from omni.isaac.motion_generation.motion_policy_controller import MotionPolicyController from omni.isaac.motion_generation.wheel_base_pose_controller import WheelBasePoseController
1,657
Python
60.407405
100
0.858177
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/path_planner_visualizer.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from .path_planning_interface import PathPlanner from omni.isaac.core.articulations import Articulation, ArticulationSubset from omni.isaac.core.utils.types import ArticulationAction import numpy as np import carb from typing import List class PathPlannerVisualizer: """A helper class for quickly visualizing the plans output by a PathPlanner. The main utility of this class lies in the compute_plan_as_articulation_actions() function, which returns a sequence of ArticulationActions that may be directly sent to the robot Articulation in order to visualize the planned path. Args: robot_articulation (Articulation): An Articulation object describing a single simulated robot. path_planner (PathPlanner): A PathPlanner object that has been configured to compute plans for the robot represented by the robot Articulation. """ def __init__(self, robot_articulation: Articulation, path_planner: PathPlanner) -> None: self._robot_articulation = robot_articulation self._planner = path_planner self._articulation_controller = self._robot_articulation.get_articulation_controller() self._active_joints_view = ArticulationSubset(robot_articulation, path_planner.get_active_joints()) self._watched_joints_view = ArticulationSubset(robot_articulation, path_planner.get_watched_joints()) def compute_plan_as_articulation_actions(self, max_cspace_dist: float = 0.05) -> List[ArticulationAction]: """Compute plan using a PathPlanner and linearly interpolate the result to enforce that the maximum distance (l2 norm) between any two points is max_cspace_dist. Args: max_cspace_dist (float, optional): Maximum distance between adjacent points in the path. Defaults to 0.05. Returns: List[ArticulationAction]: Linearly interpolated path given as a sequence of ArticulationActions that can be passed directly to the robot Articulation. This may rearrange and augment the plan output by the PathPlanner to match the number of DOFs available for control in the robot Articulation. """ active_joint_positions = self._active_joints_view.get_joint_positions() if active_joint_positions is None: carb.log_error( "Attempted to compute a path for an uninitialized robot Articulation. Cannot get joint positions" ) watched_joint_positions = self._watched_joints_view.get_joint_positions() path = self._planner.compute_path(active_joint_positions, watched_joint_positions) if path is None: return [] interpolated_path = self.interpolate_path(path, max_cspace_dist) actions_np_array = self._active_joints_view.map_to_articulation_order(interpolated_path) articulation_actions = [ ArticulationAction(joint_positions=actions_np_array[i]) for i in range(len(actions_np_array)) ] return articulation_actions def interpolate_path(self, path: np.array, max_cspace_dist: float = 0.05) -> np.array: """Linearly interpolate a sparse path such that the maximum distance (l2 norm) between any two points is max_cspace_dist Args: path (np.array): Sparse cspace path with shape (N x num_dofs) where N is number of points in the path max_cspace_dist (float, optional): _description_. Defaults to 0.05. Returns: np.array: Linearly interpolated path with shape (M x num_dofs) """ if path.shape[0] == 0: return path interpolated_path = [] for i in range(path.shape[0] - 1): n_pts = int(np.ceil(np.amax(abs(path[i + 1] - path[i])) / max_cspace_dist)) interpolated_path.append(np.array(np.linspace(path[i], path[i + 1], num=n_pts, endpoint=False))) interpolated_path.append(path[np.newaxis, -1, :]) interpolated_path = np.concatenate(interpolated_path) return interpolated_path def get_active_joints_subset(self) -> ArticulationSubset: """Get view into active joints Returns: ArticulationSubset: Returns robot states for active joints in an order compatible with the PathPlanner """ return self._active_joints_view def get_watched_joints_subset(self) -> ArticulationSubset: """Get view into watched joints Returns: ArticulationSubset: Returns robot states for watched joints in an order compatible with the PathPlanner """ return self._watched_joints_view def get_robot_articulation(self) -> Articulation: """Get the robot Articulation Returns: Articulation: Articulation object describing the robot. """ return self._robot_articulation def get_path_planner(self) -> PathPlanner: """Get the PathPlanner that is being used to generate paths Returns: PathPlanner: An instance of the PathPlanner interface for generating sparse paths to a target pose """ return self._planner
5,572
Python
42.881889
128
0.690596
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/motion_policy_interface.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np from typing import Tuple, List from omni.isaac.motion_generation.world_interface import WorldInterface class MotionPolicy(WorldInterface): """Interface for implementing a MotionPolicy: a collision-aware algorithm for dynamically moving a robot to a target. The MotionPolicy interface inherits from the WorldInterface class. A MotionPolicy can be passed to an ArticulationMotionPolicy to streamline moving the simulated robot. """ def __init__(self) -> None: pass def set_robot_base_pose(self, robot_translation: np.array, robot_orientation: np.array): """Update position of the robot base. Args: robot_translation (np.array): (3 x 1) translation vector describing the translation of the robot base relative to the USD stage origin. The translation vector should be specified in the units of the USD stage robot_orientation (np.array): (4 x 1) quaternion describing the orientation of the robot base relative to the USD stage global frame """ pass def compute_joint_targets( self, active_joint_positions: np.array, active_joint_velocities: np.array, watched_joint_positions: np.array, watched_joint_velocities: np.array, frame_duration: float, ) -> Tuple[np.array, np.array]: """Compute position and velocity targets for the next frame given the current robot state. Position and velocity targets are used in Isaac Sim to generate forces using the PD equation kp*(joint_position_targets-joint_positions) + kd*(joint_velocity_targets-joint_velocities). Args: active_joint_positions (np.array): current positions of joints specified by get_active_joints() active_joint_velocities (np.array): current velocities of joints specified by get_active_joints() watched_joint_positions (np.array): current positions of joints specified by get_watched_joints() watched_joint_velocities (np.array): current velocities of joints specified by get_watched_joints() frame_duration (float): duration of the physics frame Returns: Tuple[np.array,np.array]: joint position targets for the active robot joints for the next frame \n joint velocity targets for the active robot joints for the next frame """ return active_joint_positions, np.zeros_like(active_joint_velocities) def get_active_joints(self) -> List[str]: """Active joints are directly controlled by this MotionPolicy Some articulated robot joints may be ignored by some policies. E.g., the gripper of the Franka arm is not used to follow targets, and the RMPflow config files excludes the joints in the gripper from the list of articulated joints. Returns: List[str]: names of active joints. The order of joints in this list determines the order in which a MotionPolicy expects joint states to be specified in functions like compute_joint_targets(active_joint_positions,...) """ return [] def get_watched_joints(self) -> List[str]: """Watched joints are joints whose position/velocity matters to the MotionPolicy, but are not directly controlled. e.g. A MotionPolicy may control a robot arm on a mobile robot. The joint states in the rest of the robot directly affect the position of the arm, but they are not actively controlled by this MotionPolicy Returns: List[str]: Names of joints that are being watched by this MotionPolicy. The order of joints in this list determines the order in which a MotionPolicy expects joint states to be specified in functions like compute_joint_targets(...,watched_joint_positions,...) """ return [] def set_cspace_target(self, active_joint_targets: np.array) -> None: """Set configuration space target for the robot. Args: active_joint_target (np.array): Desired configuration for the robot as (m x 1) vector where m is the number of active joints. Returns: None """ pass def set_end_effector_target(self, target_translation=None, target_orientation=None) -> None: """Set end effector target. Args: target_translation (nd.array): Translation vector (3x1) for robot end effector. Target translation should be specified in the same units as the USD stage, relative to the stage origin. target_orientation (nd.array): Quaternion of desired rotation for robot end effector relative to USD stage global frame Returns: None """ pass
5,224
Python
48.761904
212
0.690084
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/articulation_motion_policy.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import carb from .motion_policy_interface import MotionPolicy from omni.isaac.core.articulations import Articulation, ArticulationSubset from omni.isaac.core.utils.types import ArticulationAction class ArticulationMotionPolicy: """Wrapper class for running MotionPolicy on simulated robots. Args: robot_articulation (Articulation): an initialized robot Articulation object motion_policy (MotionPolicy): an instance of a class that implements the MotionPolicy interface default_physics_dt (float): Default physics step size to use when computing actions. A MotionPolicy computes a target position/velocity for the next frame of the simulation using the provided physics dt to know how far in the future that will be. Isaac Sim can be run with a constant or variable physics framerate. When not specified on an individual frame, the dt of the frame is assumed to be the provided default value. Returns: None """ def __init__( self, robot_articulation: Articulation, motion_policy: MotionPolicy, default_physics_dt: float = 1 / 60.0 ) -> None: self.physics_dt = default_physics_dt self._robot_articulation = robot_articulation self.motion_policy = motion_policy self._articulation_controller = self._robot_articulation.get_articulation_controller() self._active_joints_view = ArticulationSubset(robot_articulation, motion_policy.get_active_joints()) self._watched_joints_view = ArticulationSubset(robot_articulation, motion_policy.get_watched_joints()) self._default_physics_dt = default_physics_dt def move(self, physics_dt: float = None) -> None: """Use underlying MotionPolicy to compute and apply joint targets to the robot over the next frame. Args: physics_dt (float): Physics dt to use on this frame to calculate the next action. This overrides the default_physics_dt argument, but does not change the default on future calls. Return: None """ action = self.get_next_articulation_action(physics_dt=physics_dt) self._articulation_controller.apply_action(action) def get_next_articulation_action(self, physics_dt: float = None) -> ArticulationAction: """Use underlying MotionPolicy to compute joint targets for the robot over the next frame. Args: physics_dt (float): Physics dt to use on this frame to calculate the next action. This overrides the default_physics_dt argument, but does not change the default on future calls. Returns: ArticulationAction: Desired position/velocity target for the robot in the next frame """ if physics_dt is None: physics_dt = self._default_physics_dt joint_positions, joint_velocities = ( self._active_joints_view.get_joint_positions(), self._active_joints_view.get_joint_velocities(), ) watched_joint_positions, watched_joint_velocities = ( self._watched_joints_view.get_joint_positions(), self._watched_joints_view.get_joint_velocities(), ) if joint_positions is None: carb.log_error( "Attempted to compute an action, but the robot Articulation has not been initialized. Cannot get joint positions or velocities." ) # convert to numpy if torch tensor if isinstance(joint_positions, torch.Tensor): joint_positions = joint_positions.cpu().numpy() if isinstance(joint_velocities, torch.Tensor): joint_velocities = joint_velocities.cpu().numpy() if isinstance(watched_joint_positions, torch.Tensor): watched_joint_positions = watched_joint_positions.cpu().numpy() if isinstance(watched_joint_velocities, torch.Tensor): watched_joint_velocities = watched_joint_velocities.cpu().numpy() position_targets, velocity_targets = self.motion_policy.compute_joint_targets( joint_positions, joint_velocities, watched_joint_positions, watched_joint_velocities, physics_dt ) return self._active_joints_view.make_articulation_action(position_targets, velocity_targets) def get_active_joints_subset(self) -> ArticulationSubset: """Get view into active joints Returns: ArticulationSubset: returns robot states for active joints in an order compatible with the MotionPolicy """ return self._active_joints_view def get_watched_joints_subset(self) -> ArticulationSubset: """Get view into watched joints Returns: ArticulationSubset: returns robot states for watched joints in an order compatible with the MotionPolicy """ return self._watched_joints_view def get_robot_articulation(self) -> Articulation: """ Get the underlying Articulation object representing the robot. Returns: Articulation: Articulation object representing the robot. """ return self._robot_articulation def get_motion_policy(self) -> MotionPolicy: """Get MotionPolicy that is being used to compute ArticulationActions Returns: MotionPolicy: MotionPolicy being used to compute ArticulationActions """ return self.motion_policy def get_default_physics_dt(self) -> float: """Get the default value of the physics dt that is used to compute actions when none is provided Returns: float: Default physics dt """ return self._default_physics_dt def set_default_physics_dt(self, physics_dt: float) -> None: """Set the default value of the physics dt that is used to compute actions when none is provided Args: physics_dt (float): Default physics dt Returns: None """ self._default_physics_dt = physics_dt
6,492
Python
40.356688
145
0.677911
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/path_planning_interface.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np from typing import List from omni.isaac.motion_generation.world_interface import WorldInterface class PathPlanner(WorldInterface): """Interface for implementing a PathPlanner: An algorithm that outputs a series of configuration space waypoints, which when linearly interpolated, produce a collision-free path from a starting c-space pose to a c-space or task-space target pose. """ def __init__(self) -> None: pass def set_robot_base_pose(self, robot_translation: np.array, robot_orientation: np.array): """Set the position of the robot base. Computed paths will assume that the robot base remains stationary. Args: robot_translation (np.array): (3 x 1) translation vector describing the translation of the robot base relative to the USD stage origin. The translation vector should be specified in the units of the USD stage robot_orientation (np.array): (4 x 1) quaternion describing the orientation of the robot base relative to the USD stage global frame """ pass def compute_path(self, active_joint_positions: np.array, watched_joint_positions: np.array) -> np.array: """Compute a set of c-space waypoints, which when linearly interpolated, produce a collision-free path from a starting c-space pose to a c-space or task-space target pose. Args: active_joint_positions (np.array): current positions of joints specified by get_active_joints() watched_joint_positions (np.array): current positions of joints specified by get_watched_joints() Returns: np.array or None: path: An (N x m) sequence of joint positions for the active joints in the robot where N is the path length and m is the number of active joints in the robot. If no plan is found, or no target positions have been set, None is returned """ return active_joint_positions def get_active_joints(self) -> List[str]: """Active joints are directly controlled by this PathPlanner Some articulated robot joints may be ignored by some policies. E.g., the gripper of the Franka arm is not used to follow targets, and the RMPflow config files excludes the joints in the gripper from the list of articulated joints. Returns: List[str]: names of active joints. The order of joints in this list determines the order in which a PathPlanner expects joint states to be specified in functions like compute_path(active_joint_positions,...) """ return [] def get_watched_joints(self) -> List[str]: """Watched joints are joints whose position matters to the PathPlanner, but are not directly controlled. e.g. A robot may have a watched joint in the middle of its kinematic chain. Watched joints will be assumed to remain watched during the rollout of a path. Returns: List[str]: Names of joints that are being watched by this PathPlanner. The order of joints in this list determines the order in which a PathPlanner expects joint states to be specified in functions like compute_path(...,watched_joint_positions,...). """ return [] def set_cspace_target(self, active_joint_targets: np.array) -> None: """Set configuration space target for the robot. Args: active_joint_target (np.array): Desired configuration for the robot as (m x 1) vector where m is the number of active joints. Returns: None """ pass def set_end_effector_target(self, target_translation, target_orientation=None) -> None: """Set end effector target. Args: target_translation (nd.array): Translation vector (3x1) for robot end effector. Target translation should be specified in the same units as the USD stage, relative to the stage origin. target_orientation (nd.array): Quaternion of desired rotation for robot end effector relative to USD stage global frame Returns: None """ pass
4,640
Python
47.852631
148
0.685345
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/motion_policy_controller.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.core.controllers import BaseController from omni.isaac.motion_generation import ArticulationMotionPolicy, MotionPolicy from omni.isaac.core.utils.types import ArticulationAction from typing import Optional import omni.isaac.core.objects from omni.isaac.core.utils.rotations import euler_angles_to_quat import numpy as np class MotionPolicyController(BaseController): """A Controller that steps using an arbitrary MotionPolicy Args: name (str): name of this controller articulation_motion_policy (ArticulationMotionPolicy): a wrapper around a MotionPolicy for computing ArticulationActions that can be directly applied to the robot """ def __init__(self, name: str, articulation_motion_policy: ArticulationMotionPolicy) -> None: BaseController.__init__(self, name) self._articulation_motion_policy = articulation_motion_policy self._motion_policy = self._articulation_motion_policy.get_motion_policy() return def forward( self, target_end_effector_position: np.ndarray, target_end_effector_orientation: Optional[np.ndarray] = None ) -> ArticulationAction: """Compute an ArticulationAction representing the desired robot state for the next simulation frame Args: target_translation (nd.array): Translation vector (3x1) for robot end effector. Target translation should be specified in the same units as the USD stage, relative to the stage origin. target_orientation (Optional[np.ndarray], optional): Quaternion of desired rotation for robot end effector relative to USD stage global frame. Target orientation defaults to None, which means that the robot may reach the target with any orientation. Returns: ArticulationAction: A wrapper object containing the desired next state for the robot """ self._motion_policy.set_end_effector_target(target_end_effector_position, target_end_effector_orientation) self._motion_policy.update_world() action = self._articulation_motion_policy.get_next_articulation_action() return action def add_obstacle(self, obstacle: omni.isaac.core.objects, static: bool = False) -> None: """Add an object from omni.isaac.core.objects as an obstacle to the motion_policy Args: obstacle (omni.isaac.core.objects): Dynamic, Visual, or Fixed object from omni.isaac.core.objects static (bool): If True, the obstacle may be assumed by the MotionPolicy to remain stationary over time """ self._motion_policy.add_obstacle(obstacle, static=static) return def remove_obstacle(self, obstacle: omni.isaac.core.objects) -> None: """Remove and added obstacle from the motion_policy Args: obstacle (omni.isaac.core.objects): Object from omni.isaac.core.objects that has been added to the motion_policy """ self._motion_policy.remove_obstacle(obstacle) return def reset(self) -> None: """ """ self._motion_policy.reset() return def get_articulation_motion_policy(self) -> ArticulationMotionPolicy: """Get ArticulationMotionPolicy that was passed to this class on initialization Returns: ArticulationMotionPolicy: a wrapper around a MotionPolicy for computing ArticulationActions that can be directly applied to the robot """ return self._articulation_motion_policy def get_motion_policy(self) -> MotionPolicy: """Get MotionPolicy object that is being used to generate robot motions Returns: MotionPolicy: An instance of a MotionPolicy that is being used to compute robot motions """ return self._motion_policy
4,267
Python
43.458333
174
0.709632
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/wheel_base_pose_controller.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.core.controllers import BaseController from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.utils.rotations import quat_to_euler_angles import numpy as np import math class WheelBasePoseController(BaseController): """[summary] Args: name (str): [description] open_loop_wheel_controller (BaseController): A controller that takes in a command of [longitudinal velocity, steering angle] and returns the ArticulationAction to be applied to the wheels if non holonomic. and [longitudinal velocity, latitude velocity, steering angle] if holonomic. is_holonomic (bool, optional): [description]. Defaults to False. """ def __init__(self, name: str, open_loop_wheel_controller: BaseController, is_holonomic: bool = False) -> None: super().__init__(name) self._open_loop_wheel_controller = open_loop_wheel_controller self._is_holonomic = is_holonomic return def forward( self, start_position: np.ndarray, start_orientation: np.ndarray, goal_position: np.ndarray, lateral_velocity: float = 0.2, yaw_velocity: float = 0.5, heading_tol: float = 0.05, position_tol: float = 0.04, ) -> ArticulationAction: """[summary] Args: start_position (np.ndarray): [description] start_orientation (np.ndarray): [description] goal_position (np.ndarray): [description] lateral_velocity (float, optional): [description]. Defaults to 20.0. yaw_velocity (float, optional): [description]. Defaults to 0.5. heading_tol (float, optional): [description]. Defaults to 0.05. position_tol (float, optional): [description]. Defaults to 4.0. Returns: ArticulationAction: [description] """ steering_yaw = math.atan2( goal_position[1] - start_position[1], float(goal_position[0] - start_position[0] + 1e-5) ) current_yaw_heading = quat_to_euler_angles(start_orientation)[-1] yaw_error = steering_yaw - current_yaw_heading if np.mean(np.abs(start_position[:2] - goal_position[:2])) < position_tol: if self._is_holonomic: command = [0.0, 0.0, 0.0] else: command = [0.0, 0.0] elif abs(yaw_error) > heading_tol: direction = 1 if yaw_error < 0: direction = -1 if self._is_holonomic: command = [0.0, 0.0, direction * yaw_velocity] else: command = [0.0, direction * yaw_velocity] else: if self._is_holonomic: command = [lateral_velocity, 0.0, 0.0] else: command = [lateral_velocity, 0] return self._open_loop_wheel_controller.forward(command) def reset(self) -> None: """[summary] """ return
3,614
Python
40.079545
116
0.586608
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/articulation_kinematics_solver.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import carb from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.articulations import Articulation, ArticulationSubset from omni.isaac.motion_generation.kinematics_interface import KinematicsSolver from typing import Optional, Tuple import numpy as np class ArticulationKinematicsSolver: """Wrapper class for computing robot kinematics in a way that is easily transferable to the simulated robot Articulation. A KinematicsSolver computes FK and IK at any frame, possibly only using a subset of joints available on the simulated robot. This wrapper simplifies computing the current position of the simulated robot's end effector, as well as wrapping an IK result in an ArticulationAction that is recognized by the robot Articulation Args: robot_articulation (Articulation): Initialized robot Articulation object representing the simulated USD robot kinematics_solver (KinematicsSolver): An instance of a class that implements the KinematicsSolver end_effector_frame_name (str): The name of the robot's end effector frame. This frame must appear in kinematics_solver.get_all_frame_names() """ def __init__( self, robot_articulation: Articulation, kinematics_solver: KinematicsSolver, end_effector_frame_name: str ): self._robot_articulation = robot_articulation self._kinematics_solver = kinematics_solver self.set_end_effector_frame(end_effector_frame_name) self._joints_view = ArticulationSubset(robot_articulation, kinematics_solver.get_joint_names()) return def compute_end_effector_pose(self, position_only=False) -> Tuple[np.array, np.array]: """Compute the pose of the robot end effector using the simulated robot's current joint positions Args: position_only (bool): If True, only the frame positions need to be calculated. The returned rotation may be left undefined. Returns: Tuple[np.array,np.array]: position: Translation vector describing the translation of the robot end effector relative to the USD global frame (in stage units) rotation: (3x3) rotation matrix describing the rotation of the frame relative to the USD stage global frame """ joint_positions = self._joints_view.get_joint_positions() if joint_positions is None: carb.log_error( "Attempted to compute forward kinematics for an uninitialized robot Articulation. Cannot get joint positions" ) return self._kinematics_solver.compute_forward_kinematics( self._ee_frame, joint_positions, position_only=position_only ) def compute_inverse_kinematics( self, target_position: np.array, target_orientation: Optional[np.array] = None, position_tolerance: Optional[float] = None, orientation_tolerance: Optional[float] = None, ) -> Tuple[ArticulationAction, bool]: """ Compute inverse kinematics for the end effector frame using the current robot position as a warm start. The result is returned in an articulation action that can be directly applied to the robot. Args: target_position (np.array): target translation of the target frame (in stage units) relative to the USD stage origin target_orientation (np.array): target orientation of the target frame relative to the USD stage global frame. Defaults to None. position_tolerance (float): l-2 norm of acceptable position error (in stage units) between the target and achieved translations. Defaults to None. orientation tolerance (float): magnitude of rotation (in radians) separating the target orientation from the achieved orienatation. orientation_tolerance is well defined for values between 0 and pi. Defaults to None. Returns: Tuple[ArticulationAction, bool]: ik_result: An ArticulationAction that can be applied to the robot to move the end effector frame to the desired position. success: Solver converged successfully """ warm_start = self._joints_view.get_joint_positions() if warm_start is None: carb.log_error( "Attempted to compute inverse kinematics for an uninitialized robot Articulation. Cannot get joint positions" ) ik_result, succ = self._kinematics_solver.compute_inverse_kinematics( self._ee_frame, target_position, target_orientation, warm_start, position_tolerance, orientation_tolerance ) return ArticulationAction(joint_positions=self._joints_view.map_to_articulation_order(ik_result)), succ def set_end_effector_frame(self, end_effector_frame_name: str) -> None: """Set the name for the end effector frame. If the frame is not recognized by the internal KinematicsSolver instance, an error will be thrown Args: end_effector_frame_name (str): Name of the robot end effector frame. """ if end_effector_frame_name not in self._kinematics_solver.get_all_frame_names(): carb.log_error( "Frame name" + end_effector_frame_name + " not recognized by KinematicsSolver. Use KinematicsSolver.get_all_frame_names() to get a list of valid frames" ) self._ee_frame = end_effector_frame_name def get_end_effector_frame(self) -> str: """Get the end effector frame Returns: str: Name of the end effector frame """ return self._ee_frame def get_joints_subset(self) -> ArticulationSubset: """ Returns: ArticulationSubset: A wrapper class for querying USD robot joint states in the order expected by the kinematics solver """ return self._joints_view def get_kinematics_solver(self) -> KinematicsSolver: """Get the underlying KinematicsSolver instance used by this class. Returns: KinematicsSolver: A class that can solve forward and inverse kinematics for a specified robot. """ return self._kinematics_solver
6,659
Python
49.075188
163
0.697402
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/world_interface.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import carb from typing import List, Union, Optional import omni.isaac.core.objects from omni.isaac.core.objects import cuboid, sphere, capsule, cylinder, cone, ground_plane class WorldInterface: """Interface for translating USD world to a generic world-aware algorithm such as a MotionPolicy """ def __init__(self) -> None: pass def update_world(self, updated_obstacles: Optional[List] = None) -> None: """Applies all necessary updates to the internal world representation. Args: updated_obstacles (list, optional): If provided, only the given obstacles will have their poses updated. For motion policies that use obstacle poses relative to the robot base (e.g. Lula based policies), this list will be ignored if the robot base has moved because all object poses will have changed relative to the robot. Defaults to None. Returns: None """ pass def add_obstacle(self, obstacle: omni.isaac.core.objects, static: Optional[bool] = False) -> bool: """Add an obstacle Args: obstacle (omni.isaac.core.objects): An obstacle from the package omni.isaac.core.obstacles The type of the obstacle will be checked, and the appropriate add function will be called \n static (Optional[bool]): When True, the obstacle will be assumed to remain stationary relative to the USD global frame over time Returns: success (bool): Returns True if the obstacle type is valid and the appropriate add function has been implemented """ if ( isinstance(obstacle, cuboid.DynamicCuboid) or isinstance(obstacle, cuboid.VisualCuboid) or isinstance(obstacle, cuboid.FixedCuboid) ): return self.add_cuboid(obstacle, static=static) elif isinstance(obstacle, cylinder.DynamicCylinder) or isinstance(obstacle, cylinder.VisualCylinder): return self.add_cylinder(obstacle, static=static) elif isinstance(obstacle, sphere.DynamicSphere) or isinstance(obstacle, sphere.VisualSphere): return self.add_sphere(obstacle, static=static) elif isinstance(obstacle, capsule.DynamicCapsule) or isinstance(obstacle, capsule.VisualCapsule): return self.add_capsule(obstacle, static=static) elif isinstance(obstacle, cone.DynamicCone) or isinstance(obstacle, cone.VisualCone): return self.add_cone(obstacle, static=static) elif isinstance(obstacle, ground_plane.GroundPlane): return self.add_ground_plane(obstacle) else: carb.log_warning( "Obstacle added with unsuported type: " + str(type(obstacle)) + "\nObstacle should be from the package omni.isaac.core.objects" ) return False def add_cuboid( self, cuboid: Union[cuboid.DynamicCuboid, cuboid.FixedCuboid, cuboid.VisualCuboid], static: bool = False ) -> bool: """Add a block obstacle. Args: cuboid (core.objects.cuboid): Wrapper object for handling rectangular prism Usd Prims. static (bool, optional): If True, indicate that cuboid will never change pose, and may be ignored in internal world updates. Defaults to False. Returns: bool: Return True if underlying WorldInterface has implemented add_cuboid() """ carb.log_warning("Function add_cuboid() has not been implemented for this WorldInterface") return False def add_sphere(self, sphere: Union[sphere.DynamicSphere, sphere.VisualSphere], static: bool = False) -> bool: """Add a sphere obstacle. Args: sphere (core.objects.sphere): Wrapper object for handling sphere Usd Prims. static (bool, optional): If True, indicate that sphere will never change pose, and may be ignored in internal world updates. Defaults to False. Returns: bool: Return True if underlying WorldInterface has implemented add_sphere() """ carb.log_warning("Function add_sphere() has not been implemented for this WorldInterface") return False def add_capsule(self, capsule: Union[capsule.DynamicCapsule, capsule.VisualCapsule], static: bool = False) -> bool: """Add a capsule obstacle. Args: capsule (core.objects.capsule): Wrapper object for handling capsule Usd Prims. static (bool, optional): If True, indicate that capsule will never change pose, and may be ignored in internal world updates. Defaults to False. Returns: bool: Return True if underlying WorldInterface has implemented add_capsule() """ carb.log_warning("Function add_capsule() has not been implemented for this WorldInterface") return False def add_cylinder( self, cylinder: Union[cylinder.DynamicCylinder, cylinder.VisualCylinder], static: bool = False ) -> bool: """Add a cylinder obstacle. Args: cylinder (core.objects.cylinder): Wrapper object for handling rectangular prism Usd Prims. static (bool, optional): If True, indicate that cuboid will never change pose, and may be ignored in internal world updates. Defaults to False. Returns: bool: Return True if underlying WorldInterface has implemented add_cylinder() """ carb.log_warning("Function add_cylinder() has not been implemented for this WorldInterface") return False def add_cone(self, cone: Union[cone.DynamicCone, cone.VisualCone], static: bool = False) -> bool: """Add a cone obstacle. Args: cone (core.objects.cone): Wrapper object for handling cone Usd Prims. static (bool, optional): If True, indicate that cone will never change pose, and may be ignored in internal world updates. Defaults to False. Returns: bool: Return True if underlying WorldInterface has implemented add_cone() """ carb.log_warning("Function add_cone() has not been implemented for this WorldInterface") return False def add_ground_plane(self, ground_plane: ground_plane.GroundPlane) -> bool: """Add a ground_plane Args: ground_plane (core.objects.ground_plane.GroundPlane): Wrapper object for handling ground_plane Usd Prims. Returns: bool: Return True if underlying WorldInterface has implemented add_ground_plane() """ carb.log_warning("Function add_ground_plane() has not been implemented for this WorldInterface") return False def disable_obstacle(self, obstacle: omni.isaac.core.objects) -> bool: """Disable collision avoidance for obstacle. Args: obstacle (core.object): obstacle to be disabled. Returns: bool: Return True if obstacle was identified and successfully disabled. """ carb.log_warning("Function disable_obstacle() has not been implemented for this WorldInterface") return False def enable_obstacle(self, obstacle: omni.isaac.core.objects) -> bool: """Enable collision avoidance for obstacle. Args: obstacle (core.object): obstacle to be enabled. Returns: bool: Return True if obstacle was identified and successfully enabled. """ carb.log_warning("Function enable_obstacle() has not been implemented for this WorldInterface") return False def remove_obstacle(self, obstacle: omni.isaac.core.objects) -> bool: """Remove obstacle from collision avoidance. Obstacle cannot be re-enabled via enable_obstacle() after removal. Args: obstacle (core.object): obstacle to be removed. Returns: bool: Return True if obstacle was identified and successfully removed. """ carb.log_warning("Function remove_obstacle() has not been implemented for this WorldInterface") return False def reset(self) -> None: """Reset all state inside the WorldInterface to its initial values """ pass
8,802
Python
41.941463
140
0.659396
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/articulation_trajectory.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np from .trajectory import Trajectory from omni.isaac.core.articulations import Articulation, ArticulationSubset from omni.isaac.core.utils.types import ArticulationAction from typing import List import carb class ArticulationTrajectory: """Wrapper class which takes in a Trajectory object and converts the output to discrete ArticulationActions that may be sent to the provided robot Articulation. Args: robot_articulation (Articulation): Initialized robot Articulation object representing the simulated USD robot trajectory (Trajectory): An instance of a class that implements the Trajectory interface. physics_dt (float): Duration of a physics step in Isaac Sim (typically 1/60 s). """ def __init__(self, robot_articulation: Articulation, trajectory: Trajectory, physics_dt: float) -> None: self._articulation = robot_articulation self._trajectory = trajectory self._physics_dt = physics_dt self._active_joints_view = ArticulationSubset(robot_articulation, trajectory.get_active_joints()) def get_action_at_time(self, time: float) -> ArticulationAction: """Get an ArticulationAction that will send the robot to the desired position/velocity at a given time in the provided Trajectory. Args: time (float): Time between the start and end times in the provided Trajectory. If the time is out of bounds, an error will be thrown. Returns: ArticulationAction: ArticulationAction that may be passed directly to the robot Articulation to send it to the desired position/velocity at the given time. """ if time < self._trajectory.start_time: carb.log_error( f"Provided time {time} is before the start time {self._trajectory.start_time} of the Trajectory" ) if time > self._trajectory.end_time: carb.log_error(f"Provided time {time} is after the end time {self._trajectory.end_time} of the Trajectory") position_target, velocity_target = self._trajectory.get_joint_targets(time) position_action_np_array = self._active_joints_view.map_to_articulation_order(position_target) velocity_action_np_array = self._active_joints_view.map_to_articulation_order(velocity_target) return ArticulationAction(joint_positions=position_action_np_array, joint_velocities=velocity_action_np_array) def get_action_sequence(self, timestep: float = None) -> List[ArticulationAction]: """Get a sequence of ArticulationActions which sample the entire Trajectory according to the provided timestep. Args: timestep (float, optional): Timestep used for sampling the provided Trajectory. A vlue of 1/60, for example, returns ArticulationActions that represent the desired position/velocity of the robot at 1/60 second intervals. I.e. a one second trajectory with timestep=1/60 would result in 60 ArticulationActions. When not provided, the framerate of Isaac Sim is used. Defaults to None. Returns: List[ArticulationAction]: Sequence of ArticulationActions that may be passed to the robot Articulation to produce the desired trajectory. """ if timestep is None: timestep = self._physics_dt actions = [] for t in np.arange(self._trajectory.start_time, self._trajectory.end_time, timestep): actions.append(self.get_action_at_time(t)) return actions def get_trajectory_duration(self) -> float: """Returns the duration of the provided Trajectory Returns: float: Duration of the provided trajectory """ return self._trajectory.end_time - self._trajectory.start_time def get_active_joints_subset(self) -> ArticulationSubset: """Get view into active joints Returns: ArticulationSubset: Returns robot states for active joints in an order compatible with the TrajectoryGenerator """ return self._active_joints_view def get_robot_articulation(self) -> Articulation: """Get the robot Articulation Returns: Articulation: Articulation object describing the robot. """ return self._articulation def get_trajectory(self) -> Trajectory: return self._trajectory
4,831
Python
46.372549
167
0.704616
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/lula/interface_helper.py
import lula import numpy as np from .world import LulaWorld from typing import List, Tuple, Union, Optional from omni.isaac.core.utils.numpy.rotations import quats_to_rot_matrices from omni.isaac.core.utils.string import find_unique_string_name from omni.isaac.core.utils.prims import is_prim_path_valid, delete_prim from omni.isaac.core.utils.stage import get_stage_units from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core import objects from . import utils as lula_utils class LulaInterfaceHelper(LulaWorld): """ Class containing functions common in Lula based algorithms. The main utility of this class is handling the tracking of the robot base and returning basic robot information """ def __init__(self, robot_description: lula.RobotDescription): LulaWorld.__init__(self) self._robot_description = robot_description self._kinematics = self._robot_description.kinematics() self._robot_base_moved = False self._robot_pos, self._robot_rot = np.zeros(3), np.eye(3) self._meters_per_unit = get_stage_units() def set_robot_base_pose(self, robot_position: np.array, robot_orientation: np.array) -> None: """Update position of the robot base. Until this function is called, Lula will assume the base pose to be at the origin with identity rotation. Args: robot_position (np.array): (3 x 1) translation vector describing the translation of the robot base relative to the USD stage origin. The translation vector should be specified in the units of the USD stage robot_orientation (np.array): (4 x 1) quaternion describing the orientation of the robot base relative to the USD stage global frame """ # all object poses are relative to the position of the robot base robot_position = robot_position * self._meters_per_unit robot_rot = quats_to_rot_matrices(robot_orientation) if np.any(self._robot_pos - robot_position) or np.any(self._robot_rot - robot_rot): self._robot_base_moved = True else: self._robot_base_moved = False self._robot_pos = robot_position self._robot_rot = robot_rot def get_active_joints(self): return [ self._robot_description.c_space_coord_name(i) for i in range(self._robot_description.num_c_space_coords()) ] def get_watched_joints(self) -> List: """Lula does not currently support watching joint states that are not controllable Returns: (List): Always returns an empty list. """ return [] def get_end_effector_pose(self, active_joint_positions: np.array, frame_name: str) -> Tuple[np.array, np.array]: """Return pose of robot end effector given current joint positions. The end effector position will be transformed into world coordinates based on the believed position of the robot base. See set_robot_base_pose() Args: active_joint_positions (np.array): positions of the active joints in the robot Returns: Tuple[np.array,np.array]: end_effector_translation: (3x1) translation vector for the robot end effector relative to the USD stage origin \n end_effector_rotation: (3x3) rotation matrix describing the orientation of the robot end effector relative to the USD global frame \n """ # returns pose of end effector in world coordinates pose = self._kinematics.pose(np.expand_dims(active_joint_positions, 1), frame_name) translation = self._robot_rot @ (pose.translation) + self._robot_pos rotation = self._robot_rot @ pose.rotation.matrix() return translation / self._meters_per_unit, rotation def update_world(self, updated_obstacles: Optional[List] = None): LulaWorld.update_world(self, updated_obstacles, self._robot_pos, self._robot_rot, self._robot_base_moved) self._robot_base_moved = False def add_cuboid( self, cuboid: Union[objects.cuboid.DynamicCuboid, objects.cuboid.FixedCuboid, objects.cuboid.VisualCuboid], static: Optional[bool] = False, ): return LulaWorld.add_cuboid(self, cuboid, static, self._robot_pos, self._robot_rot) def add_sphere( self, sphere: Union[objects.sphere.DynamicSphere, objects.sphere.VisualSphere], static: bool = False ): return LulaWorld.add_sphere(self, sphere, static, self._robot_pos, self._robot_rot) def add_capsule( self, capsule: Union[objects.capsule.DynamicCapsule, objects.capsule.VisualCapsule], static: bool = False ): return LulaWorld.add_capsule(self, capsule, static, self._robot_pos, self._robot_rot) def reset(self): LulaWorld.reset(self) self._robot_base_moved = False self._robot_pos, self._robot_rot = np.zeros(3), np.eye(3) def _get_prim_pose_rel_robot_base(self, prim): # returns the position of a prim relative to the position of the robot return lula_utils.get_prim_pose_in_meters_rel_robot_base( prim, self._meters_per_unit, self._robot_pos, self._robot_rot ) def _get_pose_rel_robot_base(self, trans, rot): return lula_utils.get_pose_rel_robot_base(trans, rot, self._robot_pos, self._robot_rot)
5,404
Python
42.943089
144
0.672835
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/lula/trajectory_generator.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import carb from typing import Tuple, List, Union from ..trajectory import Trajectory from .kinematics import LulaKinematicsSolver from .utils import get_pose3 import lula class LulaTrajectory(Trajectory): """Instance of Trajectory interface class for handling lula.Trajectory objects Args: trajectory (lula.Trajectory): C-space trajectory defined continuously """ def __init__(self, trajectory, active_joints): self.trajectory = trajectory self.active_joints = active_joints @property def start_time(self) -> float: __doc__ = Trajectory.start_time.__doc__ return self.trajectory.domain().lower @property def end_time(self) -> float: __doc__ = Trajectory.end_time.__doc__ return self.trajectory.domain().upper def get_active_joints(self) -> List[str]: __doc__ = Trajectory.get_active_joints.__doc__ return self.active_joints def get_joint_targets(self, time) -> Tuple[np.array, np.array]: __doc__ = Trajectory.get_joint_targets.__doc__ if time > self.end_time or time < self.start_time: carb.log_error("Could not compute joint targets because the provided time is out of bounds") return self.trajectory.eval(time, 0), self.trajectory.eval(time, 1) class LulaCSpaceTrajectoryGenerator: """LulaCSpaceTrajectoryGenerator is a class for generating time-optimal trajectories that connect a series of provided c-space waypoints. Args: robot_description_path (str): path to a robot description yaml file urdf_path (str): path to robot urdf """ def __init__(self, robot_description_path: str, urdf_path: str) -> None: self._robot_description = lula.load_robot(robot_description_path, urdf_path) self._lula_kinematics = self._robot_description.kinematics() self._kinematics_solver = LulaKinematicsSolver(robot_description_path, urdf_path, self._robot_description) self._c_space_trajectory_generator = None self._task_space_trajectory_generator = None self._c_space_trajectory_generator = lula.create_c_space_trajectory_generator(self._lula_kinematics) def compute_c_space_trajectory(self, waypoint_positions: np.array) -> LulaTrajectory: """Produce a trajectory from a set of provided c_space waypoint positions. The resulting trajectory will use spline-based interpolation to connect the waypoints with an initial and final velocity of 0. The trajectory is time-optimal: i.e. either the velocity, acceleration, or jerk limits are saturated at any given time to produce as trajectory with as short a duration as possible. Args: waypoint_positions (np.array): Set of c-space coordinates cooresponding to the output of get_active_joints(). The expected shape is (N x k) where N is the number of waypoints and k is the number of active joints. Returns: LulaTrajectory: Instance of the Trajectory class which specifies continuous joint_targets for the active joints over a span of time. """ if waypoint_positions.shape[0] < 2: carb.log_error("LulaTrajectoryGenerator must be passed at least two waypoints") if waypoint_positions.shape[1] != self._lula_kinematics.num_c_space_coords(): carb.log_error( f"LulaTrajectoryGenerator was passed a set of waypoints with invalid shape: {waypoint_positions.shape}." + f" Expecting shape ({waypoint_positions.shape[0]}, {self._lula_kinematics.num_c_space_coords()})." + " Make sure that the provided waypoint_positions corresponds to the output of get_active_joints()." ) trajectory = self._c_space_trajectory_generator.generate_trajectory(waypoint_positions.astype(np.float64)) if trajectory is None: carb.log_warn( "LulaTrajectoryGenerator could not generate a trajectory connecting the given waypoints. Returning None" ) return return LulaTrajectory(trajectory, self.get_active_joints()) def get_active_joints(self) -> List[str]: """Return the list of joints by name that are considered to be controllable by the TrajectoryGenerator. All inputs and outputs of the LulaTrajectoryGenerator correspond to the joints specified by get_active_joints(). Returns: List[str]: List of joints that are used to generate the desired trajectory. """ return self._kinematics_solver.get_joint_names() def set_c_space_position_limits(self, lower_position_limits: np.array, upper_position_limits: np.array) -> None: """Set the lower and upper position limits of the active joints to be used when generating a trajectory. Args: lower_position_limits (np.array): Lower position limits of active joints. upper_position_limits (np.array): Upper position limits of active joints. """ if lower_position_limits.shape[0] != self._lula_kinematics.num_c_space_coords(): carb.log_error( f"Provided lower position limits have an incorrect shape: {lower_position_limits.shape}\n" + f"Expected shape: ({self._lula_kinematics.num_c_space_coords()},)" + " Make sure that the provided position limits corresponds to the output of get_active_joints()." ) if upper_position_limits.shape[0] != self._lula_kinematics.num_c_space_coords(): carb.log_error( f"Provided upper position limits have an incorrect shape: {upper_position_limits.shape}\n" + f"Expected shape: ({self._lula_kinematics.num_c_space_coords()},)" + " Make sure that the provided position limits corresponds to the output of get_active_joints()." ) c_space_position_lower_limits = lower_position_limits.astype(np.float64) c_space_position_upper_limits = upper_position_limits.astype(np.float64) self._c_space_trajectory_generator.set_position_limits( c_space_position_lower_limits, c_space_position_upper_limits ) def set_c_space_velocity_limits(self, velocity_limits: np.array) -> None: """Set the velocity limits of the active joints to be used when generating a trajectory. Args: velocity_limits (np.array): Velocity limits of active joints. """ if velocity_limits.shape[0] != self._lula_kinematics.num_c_space_coords(): carb.log_error( f"Provided velocity limits have an incorrect shape: {velocity_limits.shape}\n" + f"Expected shape: ({self._lula_kinematics.num_c_space_coords()},)" + " Make sure that the provided velocity limits corresponds to the output of get_active_joints()." ) c_space_velocity_limits = velocity_limits.astype(np.float64) self._c_space_trajectory_generator.set_velocity_limits(c_space_velocity_limits) def set_c_space_acceleration_limits(self, acceleration_limits: np.array) -> None: """Set the acceleration limits of the active joints to be used when generating a trajectory. Args: acceleration_limits (np.array): Acceleration limits of active joints. """ if acceleration_limits.shape[0] != self._lula_kinematics.num_c_space_coords(): carb.log_error( f"Provided acceleration limits have an incorrect shape: {acceleration_limits.shape}\n" + f"Expected shape: ({self._lula_kinematics.num_c_space_coords()},)" + " Make sure that the provided acceleration limits corresponds to the output of get_active_joints()." ) c_space_acceleration_limits = acceleration_limits.astype(np.float64) self._c_space_trajectory_generator.set_acceleration_limits(c_space_acceleration_limits) def set_c_space_jerk_limits(self, jerk_limits: np.array) -> None: """Set the jerk limits of the active joints to be used when generating a trajectory. Args: jerk_limits (np.array): Jerk limits of active joints. """ if jerk_limits.shape[0] != self._lula_kinematics.num_c_space_coords(): carb.log_error( f"Provided jerk limits have an incorrect shape: {jerk_limits.shape}\n" + f"Expected shape: ({self._lula_kinematics.num_c_space_coords()},)" + " Make sure that the provided jerk limits corresponds to the output of get_active_joints()." ) c_space_jerk_limits = jerk_limits.astype(np.float64) self._c_space_trajectory_generator.set_jerk_limits(c_space_jerk_limits) def set_solver_param(self, param_name: str, param_val: Union[int, float, str]): """Set solver parameters for the cspace trajectory generator. A complete list of parameters is provided in this docstring. 'max_segment_iterations': (int) In general, a trajectory is locally time-optimal if at least one derivative for one of the c-space coordinates is fully saturated, with no derivative limits for any of the c-space coordinates exceeded. This time-optimality can be enforced for each `CubicSpline` segment or for each `PiecewiseCubicSpline` as a whole. The former will, in general, generate trajectories with smaller spans, but will require more expensive iterations (and thus more time) to converge. The latter will, in general, require less iterations (and thus less time) to converge, but the generated trajectories will tend to have longer spans. When attempting to find a time-optimal trajectory, the (more expensive) per-segment method will first be attempted for `max_per_segment_iterations`. Then, if not yet converged, the method acting on the entire spline will be attempted for `max_aggregate_iterations`. To maximize speed, `max_segment_iterations` should be relatively low (or even zero to remove this search completely). To maximize time-optimality of the generated trajectory, `max_segment_iterations` should be relatively high. The sum of `max_segment_iterations` and `max_aggregate_iterations` must be at least 1 'max_aggragate_iterations': (int) See max_segment_iterations 'convergence_dt': (float) The search for optimal time values will terminate if the maximum change to any time value during a given iteration is less than the `convergence_dt`. `convergence_dt` must be positive. 'max_dilation_iterations': (int) After the segment-wise and/or aggregate time-optimal search has converged or reached maximum iterations, the resulting set of splines will be tested to see if any derivative limits are exceeded. If any derivative limits are exceeded, the splines will be iteratively scaled in time to reduce the maximum achieved derivative. This process will repeat until no derivative limits are exceeded (success) or `max_dilation_iterations_` are reached (failure). For a well-tuned set of solver parameters, very few dilation steps should be required (often none will be required or a single iteration is sufficient to bring a slightly over-saturated trajectory within the derivative limits). 'dilation_dt': (float) For the iterative dilation step described in `setMaxDilationIterations()` documentation, the `dilation_dt` is the "epsilon" value added to the span of the trajectory that exceeds derivative limits. `dilation_dt` must be positive. 'min_time_span': (float) Specify the minimum allowable time span between adjacent waypoints/endpoints. `min_time_span` must be positive. This is most likely to affect the time span between the endpoints and "free-position" points that are used to enable acceleration bound constraints. If no jerk limit is provided, these free-position points may tend to become arbitrarily close in position and time to the endpoints. This `min_time_span` prevents this time span from approaching zero. In general, a jerk limit is recommended for preventing abrupt changes in acceleration rather than relying on the `min_time_span` for this purpose. 'time_split_method': (string) Often waypoints for a trajectory may specify positions without providing time values for when these waypoint position should be attained. In this case, we can use the distance between waypoints to assign time values for each waypoint. Assuming a unitary time domain s.t. t_0 = 0 and t_N = 1, we can assign the intermediate time values according to: t_k = t_(k-1) + (d_k / d), where d = sum(d_k) for k = [0, N-1] and N is the number of points. Many options exist for the computing the distance metric d_k, with common options described below (and implemented in `ComputeTimeValues()`. See Eqn 4.37 in "Trajectory Planning for Automatic Machines and Robots" (2008) by Biagiotti & Melchiorri for more detailed motivations. Valid distribution choices are given below: 'uniform': For a "uniform distribution" w.r.t time, the positions are ignored and d_k can simply be computed as: d_k = 1 / (N - 1) resulting in uniform time intervals between all points. 'chord_length': For a "chord length distribution", the time intervals between waypoints are proportional to the Euclidean distance between waypoints: d_k = \|q_(k+1) - q_k\| where q represents the position of the waypoint. 'centripetal': For a "centripetal distribution", the time intervals between waypoints are proportional to the square root of the Euclidean distance between waypoints: d_k = \|q_(k+1) - q_k\|^(1/2) where q represents the position of the waypoint. Args: param_name (str): Parameter name from the above list of parameters param_val (Union[int, float, str]): Value to which the given parameter will be set """ self._c_space_trajectory_generator.set_solver_param(param_name, param_val) class LulaTaskSpaceTrajectoryGenerator: get_active_joints = LulaCSpaceTrajectoryGenerator.get_active_joints set_c_space_position_limits = LulaCSpaceTrajectoryGenerator.set_c_space_position_limits set_c_space_velocity_limits = LulaCSpaceTrajectoryGenerator.set_c_space_velocity_limits set_c_space_acceleration_limits = LulaCSpaceTrajectoryGenerator.set_c_space_acceleration_limits set_c_space_jerk_limits = LulaCSpaceTrajectoryGenerator.set_c_space_jerk_limits set_c_space_trajectory_generator_solver_param = LulaCSpaceTrajectoryGenerator.set_solver_param def __init__(self, robot_description_path: str, urdf_path: str) -> None: self._robot_description = lula.load_robot(robot_description_path, urdf_path) self._lula_kinematics = self._robot_description.kinematics() self._kinematics_solver = LulaKinematicsSolver(robot_description_path, urdf_path, self._robot_description) self._c_space_trajectory_generator = None self._task_space_trajectory_generator = None self._c_space_trajectory_generator = lula.create_c_space_trajectory_generator(self._lula_kinematics) self._path_conversion_config = lula.TaskSpacePathConversionConfig() def get_all_frame_names(self) -> List[str]: """Return a list of all frames in the robot URDF that may be used to follow a trajectory Returns: List[str]: List of all frame names in the robot URDF """ return self._lula_kinematics.frame_names() def compute_task_space_trajectory_from_points( self, positions: np.array, orientations: np.array, frame_name: str ) -> LulaTrajectory: """Return a LulaTrajectory that connects the provided positions and orientations at the specified frame in the robot. Args: positions (np.array): Taskspace positions that the robot end effector should pass through with shape (N x 3) where N is the number of provided positions. Positions is assumed to be in meters. orientations (np.array): Taskspace quaternion orientations that the robot end effector should pass through with shape (N x 4) where N is the number of provided orientations. The length of this argument must match the length of the positions argument. frame_name (str): Name of the end effector frame in the robot URDF. Returns: LulaTrajectory: Instance of the omni.isaac.motion_generation.Trajectory class. If no trajectory could be generated, None is returned. """ if positions.shape[0] != orientations.shape[0]: carb.log_error( "Provided positions must have the same number of rows as provided orientations: one for each point in the task_space." ) return None path_spec = lula.create_task_space_path_spec(get_pose3(positions[0], rot_quat=orientations[0])) for i in range(1, len(positions)): path_spec.add_linear_path(get_pose3(positions[i], rot_quat=orientations[i])) return self.compute_task_space_trajectory_from_path_spec(path_spec, frame_name) def compute_task_space_trajectory_from_path_spec( self, task_space_path_spec: lula.TaskSpacePathSpec, frame_name: str ) -> LulaTrajectory: """Return a LulaTrajectory that follows the path specified by the provided TaskSpacePathSpec Args: task_space_path_spec (lula.TaskSpacePathSpec): An object describing a taskspace path frame_name (str): Name of the end effector frame Returns: LulaTrajectory: Instance of the omni.isaac.motion_generation.Trajectory class. If no trajectory could be generated, None is returned. """ c_space_path = lula.convert_task_space_path_spec_to_c_space( task_space_path_spec, self._lula_kinematics, frame_name, self._path_conversion_config ) if c_space_path is None: return None trajectory = self._c_space_trajectory_generator.generate_trajectory(c_space_path.waypoints()) return LulaTrajectory(trajectory, self.get_active_joints()) def get_path_conversion_config(self) -> lula.TaskSpacePathConversionConfig: """Get a reference to the config object that lula uses to convert task-space paths to c-space paths. The values of the returned TaskSpacePathConversionConfig object can be modified directly to affect lula task-space path conversions. See help(lula.TaskSpacePathConversionConfig) for a detailed description of the editable parameters. Returns: lula.TaskSpacePathConversionConfig: Configuration class for converting from task-space paths to c-space paths. """ return self._path_conversion_config
20,057
Python
49.523929
171
0.672184
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/lula/__init__.py
from .motion_policies import RmpFlow from .kinematics import LulaKinematicsSolver from .trajectory_generator import LulaCSpaceTrajectoryGenerator, LulaTaskSpaceTrajectoryGenerator, LulaTrajectory from .path_planners import RRT
227
Python
44.599991
113
0.881057
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/lula/path_planners.py
# # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import carb from typing import List, Union import lula from ..path_planning_interface import PathPlanner from .interface_helper import LulaInterfaceHelper from omni.isaac.core.utils.numpy.rotations import quats_to_rot_matrices from omni.isaac.core import objects class RRT(LulaInterfaceHelper, PathPlanner): """RRT is a stochastic algorithm for quickly finding a feasible path in cspace to move a robot from a starting pose to a target pose. This class implements the PathPlanner interface, as well as exposing RRT-specific parameters. Args: robot_description_path (str): path to a robot description yaml file urdf_path (str): path to robot urdf rrt_config_path (str): path to an rrt parameter yaml file end_effector_frame_name (str): name of the robot end effector frame (must be present in the robot urdf) """ def __init__(self, robot_description_path: str, urdf_path: str, rrt_config_path: str, end_effector_frame_name: str): robot_description = lula.load_robot(robot_description_path, urdf_path) self.end_effector_frame_name = end_effector_frame_name LulaInterfaceHelper.__init__(self, robot_description) world_view = self._world.add_world_view() self.rrt_config_path = rrt_config_path self._rrt = lula.create_motion_planner(self.rrt_config_path, self._robot_description, world_view) self._rrt.set_param("task_space_frame_name", self.end_effector_frame_name) self._seed = 123456 self._plan = None self._cspace_target = None self._taskspace_target_position = None self._taskspace_target_rotation = None def compute_path(self, active_joint_positions, watched_joint_positions) -> np.array: __doc__ = PathPlanner.compute_path.__doc__ active_joint_positions = active_joint_positions.astype(np.float64) if self._taskspace_target_position is None and self._cspace_target is not None: self._generate_plan_to_cspace_target(active_joint_positions) elif self._taskspace_target_position is None: self._plan = None else: self._generate_plan_to_taskspace_target(active_joint_positions) return self._plan def set_robot_base_pose(self, robot_position: np.array, robot_orientation: np.array) -> None: __doc__ = LulaInterfaceHelper.set_robot_base_pose.__doc__ return LulaInterfaceHelper.set_robot_base_pose(self, robot_position, robot_orientation) def set_cspace_target(self, active_joint_targets: np.array) -> None: __doc__ = PathPlanner.set_cspace_target.__doc__ self._cspace_target = active_joint_targets self._taskspace_target_position = None self._taskspace_target_rotation = None def set_end_effector_target(self, target_translation, target_orientation=None) -> None: __doc__ = PathPlanner.set_end_effector_target.__doc__ if target_translation is not None: self._taskspace_target_position = (target_translation * self._meters_per_unit).astype(np.float64) else: self._taskspace_target_position = None if target_orientation is not None: target_rotation = quats_to_rot_matrices(target_orientation) else: target_rotation = None self._taskspace_target_rotation = target_rotation self._cspace_target = None if self._taskspace_target_rotation is not None: carb.log_warn( "Lula's RRT implementation does not currently support orientation targets. The generated plan will ignore the orientation target" ) def get_active_joints(self) -> List: __doc__ = PathPlanner.get_active_joints.__doc__ return LulaInterfaceHelper.get_active_joints(self) def get_watched_joints(self) -> List: return LulaInterfaceHelper.get_watched_joints(self) def add_obstacle(self, obstacle: objects, static: bool = False) -> bool: __doc__ = PathPlanner.add_obstacle.__doc__ return PathPlanner.add_obstacle(self, obstacle, static) def add_cuboid( self, cuboid: Union[objects.cuboid.DynamicCuboid, objects.cuboid.FixedCuboid, objects.cuboid.VisualCuboid], static: bool = False, ) -> bool: return LulaInterfaceHelper.add_cuboid(self, cuboid, static) def add_sphere( self, sphere: Union[objects.sphere.DynamicSphere, objects.sphere.VisualSphere], static: bool = False ) -> bool: return LulaInterfaceHelper.add_sphere(self, sphere, static) def add_capsule( self, capsule: Union[objects.capsule.DynamicCapsule, objects.capsule.VisualCapsule], static: bool = False ) -> bool: return LulaInterfaceHelper.add_capsule(self, capsule, static) def add_ground_plane(self, ground_plane: objects.ground_plane.GroundPlane) -> bool: return LulaInterfaceHelper.add_ground_plane(self, ground_plane) def disable_obstacle(self, obstacle: objects) -> bool: return LulaInterfaceHelper.disable_obstacle(self, obstacle) def enable_obstacle(self, obstacle: objects) -> bool: return LulaInterfaceHelper.enable_obstacle(self, obstacle) def remove_obstacle(self, obstacle: objects) -> bool: return LulaInterfaceHelper.remove_obstacle(self, obstacle) def update_world(self, updated_obstacles: List = None) -> None: LulaInterfaceHelper.update_world(self, updated_obstacles) self._rrt.update_world_view() def reset(self) -> None: LulaInterfaceHelper.reset(self) self._rrt = lula.create_motion_planner( self.rrt_config_path, self._robot_description, self._world.add_world_view() ) self._rrt.set_param("task_space_frame_name", self.end_effector_frame_name) self._seed = 123456 def set_max_iterations(self, max_iter: int) -> None: """Set the maximum number of iterations of RRT before a failure is returned Args: max_iter (int): Maximum number of iterations of RRT before a failure is returned. The time it takes to return a failure scales quadratically with max_iter """ self._rrt.set_param("max_iterations", max_iter) def set_random_seed(self, random_seed: int) -> None: """Set the random seed that RRT uses to generate a solution Args: random_seed (int): Used to initialize random sampling. random_seed must be positive. """ self._seed = random_seed def set_param(self, param_name: str, value: Union[np.array, float, int, str]) -> bool: """Set a parameter for the RRT algorithm. The parameters and their appropriate values are enumerated below: `seed` (int): -Used to initialize random sampling. -`seed` must be positive. -This parameter may also be set through the set_random_seed() function `step_size` (float): -Step size for tree extension. -It is assumed that a straight path connecting two valid c-space configurations with separation distance <= `step_size` is a valid edge, where separation distance is defined as the L2-norm of the difference between the two configurations. -`step_size` must be positive. `max_iterations` (int) - Maximum number of iterations of tree extensions that will be attempted. - If `max_iterations` is reached without finding a valid path, the `Results` will indicate `path_found` is `false` and `path` will be an empty vector. - `max_iterations` must be positive. `distance_metric_weights` (np.array[np.float64[num_dof,]]) - When selecting a node for tree extension, the closest node is defined using a weighted, squared L2-norm: distance = (q0 - q1)^T * W * (q0 - q1) where q0 and q1 represent two configurations and W is a diagonal matrix formed from `distance_metric_weights`. - The length of the `distance_metric_weights` must be equal to the number of c-space coordinates for the robot and each weight must be positive. `task_space_frame_name` (string) - Indicate the name (from URDF) of the frame to be used for task space planning. - With current implementation, setting a `task_space_frame_name` that is not found in the kinematics will throw an exception rather than failing gracefully. `task_space_limits` (np.array[np.float64[3,2]]) - Task space limits define a bounding box used for sampling task space when planning a path to a task space target. - The specified `task_space_limits` should be a (3 x 2) matrix. Rows correspond to the xyz dimensions of the bounding box, and columns 0 and 1 correspond to the lower and upper limit repectively. - Each upper limit must be >= the corresponding lower limit. `c_space_planning_params/exploration_fraction` (float) - The c-space planner uses RRT-Connect to try to find a path to a c-space target. - RRT-Connect attempts to iteratively extend two trees (one from the initial configuration and one from the target configuration) until the two trees can be connected. The configuration to which a tree is extended can be either a random sample (i.e., exploration) or a node on the tree to which connection is desired (i.e., exploitation). The `exploration_fraction` controls the fraction of steps that are exploration steps. It is generally recommended to set `exploration_fraction` in range [0.5, 1), where 1 corresponds to a single initial exploitation step followed by only exploration steps. Values of between [0, 0.5) correspond to more exploitation than exploration and are not recommended. If a value outside range [0, 1] is provided, a warning is logged and the value is clamped to range [0, 1]. - A default value of 0.5 is recommended as a starting value for initial testing with a given system. `task_space_planning_params/x_target_zone_tolerance` (np.array[np.float64[3,]]) - A configuration has reached the task space target when task space position, x(i), is in the range x_target(i) +/- x_target_zone_tolerance(i). - It is assumed that a valid configuration within the target tolerance can be moved directly to the target configuration using Jacobian transpose control. - In general, it is recommended that the target zone bounding box have dimensions close to the `step_size`. `task_space_planning_params/x_target_final_tolerance` (float) - Once a path is found that terminates within `x_target_zone_tolerance`, a numeric solver is used to find a configuration space solution corresponding to the task space target. This solver terminates when the L2-norm of the corresponding task space position is within `x_target_final_tolerance` of the target. - Note: This solver assumes that if a c-space configuration within `x_target_zone_tolerance` is found then this c-space configuration can be extended towards the task space target using the Jacobian transpose method. If this assumption is NOT met, the returned path will not reach the task space target within the `x_target_final_tolerance` and an error is logged. - The recommended default value is 1e-5, but in general this value should be set to a positive value that is considered "good enough" precision for the specific system. `task_space_planning_params/task_space_exploitation_fraction` (float) - Fraction of iterations for which tree is extended towards target position in task space. - Must be in range [0, 1]. Additionally, the sum of `task_space_exploitation_fraction` and `task_space_exploration_fraction` must be <= 1. - A default value of 0.4 is recommended as a starting value for initial testing with a given system. `task_space_planning_params/task_space_exploration_fraction` (float) - Fraction of iterations for which tree is extended towards random position in task space. - Must be in range [0, 1]. Additionally, the sum of `task_space_exploitation_fraction` and `task_space_exploration_fraction` must be <= 1. - A default value of 0.1 is recommended as a starting value for initial testing with a given system. The remaining fraction beyond `task_space_exploitation_fraction` and `task_space_exploration_fraction` is a `c_space_exploration_fraction` that is implicitly defined as: 1 - (`task_space_exploitation_fraction` + `task_space_exploration_fraction`) In general, easier path searches will take less time with higher exploitation fraction while more difficult searches will waste time if the exploitation fraction is too high and benefit from greater combined exploration fraction. Args: param_name (str): Name of parameter value (Union[np.ndarray[np.float64],float,int,str]): value of parameter Returns: bool: True if the parameter was set successfully """ if param_name == "seed": self.set_random_seed(value) return if param_name == "task_space_limits": value = [self._rrt.Limit(row[0], row[1]) for row in value] return self._rrt.set_param(param_name, value) def _generate_plan_to_cspace_target(self, joint_positions): if self._cspace_target is None: self._plan = None return plan = self._rrt.plan_to_cspace_target(joint_positions, self._cspace_target) if plan.path_found: self._plan = np.array(plan.path) else: self._plan = None def _generate_plan_to_taskspace_target(self, joint_positions): if self._taskspace_target_position is None: self._plan = None return trans_rel, _ = LulaInterfaceHelper._get_pose_rel_robot_base(self, self._taskspace_target_position, None) self._rrt.set_param("seed", self._seed) plan = self._rrt.plan_to_task_space_target(joint_positions, trans_rel, generate_interpolated_path=False) if plan.path_found: self._plan = np.array(plan.path) else: self._plan = None
15,356
Python
47.907643
146
0.660328
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/lula/kinematics.py
from ...motion_generation.kinematics_interface import KinematicsSolver from .interface_helper import LulaInterfaceHelper import lula import numpy as np from typing import Tuple, List, Optional from omni.isaac.core.utils.numpy.rotations import quats_to_rot_matrices from omni.isaac.core.utils.stage import get_stage_units from . import utils as lula_utils class LulaKinematicsSolver(KinematicsSolver): """A Lula-based implementaion of the KinematicsSolver interface. Lula uses a URDF file describing the robot and a custom yaml file that specifies the cspace of the robot and other parameters. This class provides functions beyond the specified interface for getting and setting solver parameters. Args: robot_description_path (str): path to a robot description yaml file describing the cspace of the robot and other relevant parameters urdf_path (str): path to a URDF file describing the robot robot_description (Optional[lula.RobotDescription]): An initialized lula.RobotDescription object. Other Lula-based classes such as RmpFlow may use a lula.RobotDescription object that they have already created to initialize a LulaKinematicsSolver. When specified, the provided file paths are unused. Defaults to None. """ def __init__( self, robot_description_path: str, urdf_path: str, robot_description: Optional[lula.RobotDescription] = None ): # Other Lula classes may initialize a KinematicsSolver using a pre-existing lula robot_description if robot_description is None: self._robot_description = lula.load_robot(robot_description_path, urdf_path) else: self._robot_description = robot_description self._kinematics = self._robot_description.kinematics() self._ik_config = lula.CyclicCoordDescentIkConfig() LulaInterfaceHelper.__init__(self, self._robot_description) # for tracking robot base self._meters_per_unit = get_stage_units() self._default_orientation_tolerance = self._lula_orientation_tol_to_rad_tol( self._ik_config.orientation_tolerance ) self._default_position_tolerance = self._ik_config.position_tolerance self._default_orientation_weight = self._ik_config.orientation_weight self._default_max_iter = self._ik_config.max_iterations_per_descent self._default_descent_termination_delta = self._ik_config.descent_termination_delta self._default_cspace_seeds = [] def set_robot_base_pose(self, robot_position: np.array, robot_orientation: np.array) -> None: LulaInterfaceHelper.set_robot_base_pose(self, robot_position, robot_orientation) def get_joint_names(self) -> List[str]: return LulaInterfaceHelper.get_active_joints(self) def get_all_frame_names(self) -> List[str]: return self._kinematics.frame_names() def compute_forward_kinematics( self, frame_name: str, joint_positions: np.array, position_only: Optional[bool] = False ) -> Tuple[np.array, np.array]: """ Compute the position of a given frame in the robot relative to the USD stage global frame Args: frame_name (str): Name of robot frame on which to calculate forward kinematics joint_positions (np.array): Joint positions for the joints returned by get_joint_names() position_only (bool): Lula Kinematics ignore this flag and always computes both position and orientation Returns: Tuple[np.array,np.array]: frame_positions: (3x1) vector describing the translation of the frame relative to the USD stage origin frame_rotation: (3x3) rotation matrix describing the rotation of the frame relative to the USD stage global frame """ return LulaInterfaceHelper.get_end_effector_pose(self, joint_positions, frame_name) def compute_inverse_kinematics( self, frame_name: str, target_position: np.array, target_orientation: np.array = None, warm_start: np.array = None, position_tolerance: float = None, orientation_tolerance: float = None, ) -> Tuple[np.array, bool]: """Compute joint positions such that the specified robot frame will reach the desired translations and rotations. Lula Kinematics interpret the orientation tolerance as being the maximum rotation separating any standard axes. e.g. For a tolerance of .1: The X axes, Y axes, and Z axes of the rotation matrices may independently be as far as .1 radians apart Default values for position and orientation tolerances may be seen and changed with setter and getter functions. Args: frame_name (str): name of the target frame for inverse kinematics target_position (np.array): target translation of the target frame (in stage units) relative to the USD stage origin target_orientation (np.array): target orientation of the target frame relative to the USD stage global frame. Defaults to None. warm_start (np.array): a starting position that will be used when solving the IK problem. If default cspace seeds have been set, the warm start will be given priority, but the default seeds will still be used. Defaults to None. position_tolerance (float): l-2 norm of acceptable position error (in stage units) between the target and achieved translations. Defaults to None. orientation tolerance (float): magnitude of rotation (in radians) separating the target orientation from the achieved orienatation. orientation_tolerance is well defined for values between 0 and pi. Defaults to None. Returns: Tuple[np.array,bool]: joint_positions: in the order specified by get_joint_names() which result in the target frame acheiving the desired position success: True if the solver converged to a solution within the given tolerances """ if position_tolerance is None: self._ik_config.position_tolerance = self._default_position_tolerance else: self._ik_config.position_tolerance = position_tolerance * self._meters_per_unit if orientation_tolerance is None: self._ik_config.orientation_tolerance = self._rad_tol_to_lula_orientation_tol( self._default_orientation_tolerance ) else: self._ik_config.orientation_tolerance = self._rad_tol_to_lula_orientation_tol(orientation_tolerance) if target_orientation is None: target_orientation = np.array([1, 0, 0, 0]) self._ik_config.orientation_tolerance = 2.0 self._ik_config.orientation_weight = 0.0 else: self._ik_config.orientation_weight = self._default_orientation_weight rot = quats_to_rot_matrices(target_orientation).astype(np.float64) pos = target_position.astype(np.float64) * self._meters_per_unit pos, rot = LulaInterfaceHelper._get_pose_rel_robot_base(self, pos, rot) target_pose = lula_utils.get_pose3(pos, rot) if warm_start is not None: seeds = [warm_start] seeds.extend(self._default_cspace_seeds) self._ik_config.cspace_seeds = seeds else: self._ik_config.cspace_seeds = self._default_cspace_seeds results = lula.compute_ik_ccd(self._kinematics, target_pose, frame_name, self._ik_config) return results.cspace_position, results.success def supports_collision_avoidance(self) -> bool: """Lula Inverse Kinematics do not support collision avoidance with USD obstacles Returns: bool: Always False """ return False def set_orientation_weight(self, weight: float) -> None: """Orientation weight describes a ratio of importance betwee hitting the position and orientation target. A weight of 0 implies that the solver cares only about the orientation target. When no orientation target is given to compute_inverse_kinematics(), a weight of 0 is automatically used over the default. Args: weight (float): Ratio describing the relative importance of the orientation target vs. the position target when solving IK """ self._default_orientation_weight = weight def set_default_orientation_tolerance(self, tolerance: float) -> None: """Default orientation tolerance to be used when calculating IK when none is specified Args: tolerance (float): magnitude of rotation (in radians) separating the target orientation from the achieved orienatation. orientation_tolerance is well defined for values between 0 and pi. """ self._default_orientation_tolerance = tolerance def set_default_position_tolerance(self, tolerance: float) -> None: """Default position tolerance to be used when calculating IK when none is specified Args: tolerance (float): l-2 norm of acceptable position error (in stage units) between the target and achieved translations """ self._default_position_tolerance = tolerance * self._meters_per_unit def set_max_iterations(self, max_iterations: int) -> None: """Set the maximum number of iterations that the IK solver will attempt before giving up Args: max_iterations (int): maximum number of iterations that the IK solver will attempt before giving up """ self._ik_config.max_iterations_per_descent = max_iterations def set_descent_termination_delta(self, delta: float) -> None: """Set the minimum delta between two solutions at which the IK solver may terminate due to the solution not improving anymore Args: delta (float): minimum delta between two solutions at which the IK solver may terminate due to the solution not improving anymore """ self._ik_config.descent_termination_delta def set_default_cspace_seeds(self, seeds: np.array) -> None: """Set a list of cspace seeds that the solver may use as starting points for solutions Args: seeds (np.array): An N x num_dof list of cspace seeds """ self._default_cspace_seeds = seeds def get_orientation_weight(self) -> float: """Orientation weight describes a ratio of importance betwee hitting the position and orientation target. A weight of 0 implies that the solver cares only about the orientation target. When no orientation target is given to compute_inverse_kinematics(), a weight of 0 is automatically used over the default. Returns: float: Ratio describing the relative importance of the orientation target vs. the position target when solving IK """ return self._default_orientation_weight def get_default_orientation_tolerance(self) -> float: """Get the default orientation tolerance to be used when calculating IK when none is specified Returns: float: magnitude of rotation (in radians) separating the target orientation from the achieved orienatation. orientation_tolerance is well defined for values between 0 and pi. """ return self._default_orientation_tolerance def get_default_position_tolerance(self) -> float: """Get the default position tolerance to be used when calculating IK when none is specified Returns: float: l-2 norm of acceptable position error (in stage units) between the target and achieved translations """ return self._default_position_tolerance / self._meters_per_unit def get_max_iterations(self) -> int: """Get the maximum number of iterations that the IK solver will attempt before giving up Returns: int: maximum number of iterations that the IK solver will attempt before giving up """ return self._ik_config.max_iterations_per_descent def get_descent_termination_delta(self) -> float: """Get the minimum delta between two solutions at which the IK solver may terminate due to the solution not improving anymore Returns: float: minimum delta between two solutions at which the IK solver may terminate due to the solution not improving anymore """ return self._ik_config.descent_termination_delta def get_default_cspace_seeds(self) -> List[np.array]: """Get a list of cspace seeds that the solver may use as starting points for solutions Returns: List[np.array]: An N x num_dof list of cspace seeds """ return self._default_cspace_seeds def get_cspace_position_limits(self) -> Tuple[np.array, np.array]: """Get the default upper and lower joint limits of the active joints. Returns: Tuple[np.array, np.array]: default_lower_joint_position_limits : Default lower position limits of active joints default_upper_joint_position_limits : Default upper position limits of active joints """ num_coords = self._kinematics.num_c_space_coords() lower = [] upper = [] for i in range(num_coords): limits = self._kinematics.c_space_coord_limits(i) lower.append(limits.lower) upper.append(limits.upper) c_space_position_upper_limits = np.array(upper, dtype=np.float64) c_space_position_lower_limits = np.array(lower, dtype=np.float64) return c_space_position_lower_limits, c_space_position_upper_limits def get_cspace_velocity_limits(self) -> np.array: """Get the default velocity limits of the active joints Returns: np.array: Default velocity limits of the active joints """ num_coords = self._kinematics.num_c_space_coords() c_space_velocity_limits = np.array( [self._kinematics.c_space_coord_velocity_limit(i) for i in range(num_coords)], dtype=np.float64 ) return c_space_velocity_limits def get_cspace_acceleration_limits(self) -> np.array: """Get the default acceleration limits of the active joints. Default acceleration limits are read from the robot_description YAML file. Returns: np.array: Default acceleration limits of the active joints """ num_coords = self._kinematics.num_c_space_coords() if self._kinematics.has_c_space_acceleration_limits(): c_space_acceleration_limits = np.array( [self._kinematics.c_space_coord_acceleration_limit(i) for i in range(num_coords)], dtype=np.float64 ) else: c_space_acceleration_limits = None return c_space_acceleration_limits def get_cspace_jerk_limits(self) -> np.array: """Get the default jerk limits of the active joints. Default jerk limits are read from the robot_description YAML file. Returns: np.array: Default jerk limits of the active joints. """ num_coords = self._kinematics.num_c_space_coords() if self._kinematics.has_c_space_jerk_limits(): c_space_jerk_limits = np.array( [self._kinematics.c_space_coord_jerk_limit(i) for i in range(num_coords)], dtype=np.float64 ) else: c_space_jerk_limits = None return c_space_jerk_limits def _lula_orientation_tol_to_rad_tol(self, tol): # convert from lula IK orientation tolerance to radian magnitude tolerance # This function is the inverse of _rad_tol_to_lula_orientation_tol return np.arccos(1 - tol ** 2 / 2) def _rad_tol_to_lula_orientation_tol(self, tol): # convert from radian magnitude tolerance to lula IK orientation tolerance # Orientation tolerance in Lula is defined as the maximum l2-norm between rotation matrix columns paired by index. # e.g. rotating pi rad about the z axis maps to a norm of 2.0 when comparing the x columns return np.linalg.norm(np.subtract([1, 0], [np.cos(tol), np.sin(tol)]))
16,298
Python
45.971181
164
0.675359
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/lula/utils.py
import lula from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.utils.numpy.rotations import quats_to_rot_matrices def get_prim_pose_in_meters(prim: XFormPrim, meters_per_unit: float): pos, quat_rot = prim.get_world_pose() rot = quats_to_rot_matrices(quat_rot) pos *= meters_per_unit return pos, rot def get_prim_pose_in_meters_rel_robot_base(prim, meters_per_unit, robot_pos, robot_rot): # returns the position of a prim relative to the position of the robot trans, rot = get_prim_pose_in_meters(prim, meters_per_unit) return get_pose_rel_robot_base(trans, rot, robot_pos, robot_rot) def get_pose_rel_robot_base(trans, rot, robot_pos, robot_rot): inv_rob_rot = robot_rot.T if trans is not None: trans_rel = inv_rob_rot @ (trans - robot_pos) else: trans_rel = None if rot is not None: rot_rel = inv_rob_rot @ rot else: rot_rel = None return trans_rel, rot_rel def get_pose3(trans=None, rot_mat=None, rot_quat=None) -> lula.Pose3: """ Get lula.Pose3 type representing a transformation. rot_mat will take precedence over rot_quat if both are supplied """ if trans is None and rot_mat is None and rot_quat is None: return lula.Pose3() if trans is None: if rot_mat is not None: return lula.Pose3.from_rotation(lula.Rotation3(rot_mat)) else: return lula.Pose3.from_rotation(lula.Rotation3(*rot_quat)) if rot_mat is None and rot_quat is None: return lula.Pose3.from_translation(trans) if rot_mat is not None: return lula.Pose3(lula.Rotation3(rot_mat), trans) else: return lula.Pose3(lula.Rotation3(*rot_quat), trans)
1,742
Python
29.578947
88
0.663031
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/lula/world.py
import lula import carb import numpy as np from typing import List, Union, Optional from omni.isaac.motion_generation.world_interface import WorldInterface from omni.isaac.core import objects from omni.isaac.core.utils.string import find_unique_string_name from omni.isaac.core.utils.prims import is_prim_path_valid, delete_prim from omni.isaac.core.utils.stage import get_stage_units from .utils import get_prim_pose_in_meters_rel_robot_base, get_pose3 class LulaWorld(WorldInterface): def __init__(self): self._world = lula.create_world() self._dynamic_obstacles = dict() self._static_obstacles = dict() self._meters_per_unit = get_stage_units() # maintain a map of core.objects.ground_plane to ground-like cuboids that lula made to support the ground plane add function self._ground_plane_map = dict() def update_world( self, updated_obstacles: Optional[List] = None, robot_pos: Optional[np.array] = np.zeros(3), robot_rot: Optional[np.array] = np.eye(3), robot_base_moved: bool = False, ) -> None: """Update the internal world state of Lula. This function automatically tracks the positions of obstacles that have been added with add_obstacle() Args: updated_obstacles (List[core.objects], optional): Obstacles that have been added by add_obstacle() that need to be updated. If not specified, all non-static obstacle positions will be updated. If specified, only the obstacles that have been listed will have their positions updated """ if updated_obstacles is None or robot_base_moved: # assume that all obstacle poses need to be updated updated_obstacles = self._dynamic_obstacles.keys() for obstacle_prim in updated_obstacles: obstacle_handle = self._dynamic_obstacles[obstacle_prim] trans, rot = get_prim_pose_in_meters_rel_robot_base( obstacle_prim, self._meters_per_unit, robot_pos, robot_rot ) pose = get_pose3(trans, rot) self._world.set_pose(obstacle_handle, pose) if robot_base_moved: # update static obstacles for (obstacle_prim, obstacle_handle) in self._static_obstacles.items(): trans, rot = get_prim_pose_in_meters_rel_robot_base( obstacle_prim, self._meters_per_unit, robot_pos, robot_rot ) pose = get_pose3(trans, rot) self._world.set_pose(obstacle_handle, pose) def add_cuboid( self, cuboid: Union[objects.cuboid.DynamicCuboid, objects.cuboid.FixedCuboid, objects.cuboid.VisualCuboid], static: Optional[bool] = False, robot_pos: Optional[np.array] = np.zeros(3), robot_rot: Optional[np.array] = np.eye(3), ): """Add a block obstacle. Args: cuboid (core.objects.cuboid): Wrapper object for handling rectangular prism Usd Prims. static (bool, optional): If True, indicate that cuboid will never change pose, and may be ignored in internal world updates. Since Lula specifies object positions relative to the robot's frame of reference, static obstacles will have their positions queried any time that set_robot_base_pose() is called. Defaults to False. Returns: bool: Always True, indicating that this adder has been implemented """ if cuboid in self._static_obstacles or cuboid in self._dynamic_obstacles: carb.log_warn( "A cuboid was added twice to a Lula based MotionPolicy. This has no effect beyond adding the cuboid once." ) return False side_lengths = cuboid.get_size() * cuboid.get_local_scale() * self._meters_per_unit trans, rot = get_prim_pose_in_meters_rel_robot_base(cuboid, self._meters_per_unit, robot_pos, robot_rot) lula_cuboid = lula.create_obstacle(lula.Obstacle.Type.CUBE) lula_cuboid.set_attribute(lula.Obstacle.Attribute.SIDE_LENGTHS, side_lengths.astype(np.float64)) lula_cuboid_pose = get_pose3(trans, rot) world_view = self._world.add_world_view() lula_cuboid_handle = self._world.add_obstacle(lula_cuboid, lula_cuboid_pose) world_view.update() if static: self._static_obstacles[cuboid] = lula_cuboid_handle else: self._dynamic_obstacles[cuboid] = lula_cuboid_handle return True def add_sphere( self, sphere: Union[objects.sphere.DynamicSphere, objects.sphere.VisualSphere], static: bool = False, robot_pos: Optional[np.array] = np.zeros(3), robot_rot: Optional[np.array] = np.eye(3), ) -> bool: """Add a sphere obstacle. Args: sphere (core.objects.sphere): Wrapper object for handling sphere Usd Prims. static (bool, optional): If True, indicate that sphere will never change pose, and may be ignored in internal world updates. Since Lula specifies object positions relative to the robot's frame of reference, static obstacles will have their positions queried any time that set_robot_base_pose() is called. Defaults to False. Returns: bool: Always True, indicating that this adder has been implemented """ if sphere in self._static_obstacles or sphere in self._dynamic_obstacles: carb.log_warn( "A sphere was added twice to a Lula based MotionPolicy. This has no effect beyond adding the sphere once." ) return False radius = sphere.get_radius() * self._meters_per_unit trans, rot = get_prim_pose_in_meters_rel_robot_base(sphere, self._meters_per_unit, robot_pos, robot_rot) lula_sphere = lula.create_obstacle(lula.Obstacle.Type.SPHERE) lula_sphere.set_attribute(lula.Obstacle.Attribute.RADIUS, radius) lula_sphere_pose = get_pose3(trans, rot) lula_sphere_handle = self._world.add_obstacle(lula_sphere, lula_sphere_pose) if static: self._static_obstacles[sphere] = lula_sphere_handle else: self._dynamic_obstacles[sphere] = lula_sphere_handle return True def add_capsule( self, capsule: Union[objects.capsule.DynamicCapsule, objects.capsule.VisualCapsule], static: bool = False, robot_pos: Optional[np.array] = np.zeros(3), robot_rot: Optional[np.array] = np.eye(3), ) -> bool: """Add a capsule obstacle. Args: capsule (core.objects.capsule): Wrapper object for handling capsule Usd Prims. static (bool, optional): If True, indicate that capsule will never change pose, and may be ignored in internal world updates. Since Lula specifies object positions relative to the robot's frame of reference, static obstacles will have their positions queried any time that set_robot_base_pose() is called. Defaults to False. Returns: bool: Always True, indicating that this function has been implemented """ # As of Lula 0.5.0, what Lula calls a "cylinder" is actually a capsule (i.e., the surface # defined by the set of all points a fixed distance from a line segment). This will be # corrected in a future release of Lula. if capsule in self._static_obstacles or capsule in self._dynamic_obstacles: carb.log_warn( "A capsule was added twice to a Lula based MotionPolicy. This has no effect beyond adding the capsule once." ) return False radius = capsule.get_radius() * self._meters_per_unit height = capsule.get_height() * self._meters_per_unit trans, rot = get_prim_pose_in_meters_rel_robot_base(capsule, self._meters_per_unit, robot_pos, robot_rot) lula_capsule = lula.create_obstacle(lula.Obstacle.Type.CYLINDER) lula_capsule.set_attribute(lula.Obstacle.Attribute.RADIUS, radius) lula_capsule.set_attribute(lula.Obstacle.Attribute.HEIGHT, height) lula_capsule_pose = get_pose3(trans, rot) lula_capsule_handle = self._world.add_obstacle(lula_capsule, lula_capsule_pose) if static: self._static_obstacles[capsule] = lula_capsule_handle else: self._dynamic_obstacles[capsule] = lula_capsule_handle return True def add_ground_plane( self, ground_plane: objects.ground_plane.GroundPlane, plane_width: Optional[float] = 50.0 ) -> bool: """Add a ground_plane. Lula does not support ground planes directly, and instead internally creates a cuboid with an expansive face (dimensions 200x200 stage units) coplanar to the ground_plane. Args: ground_plane (core.objects.ground_plane.GroundPlane): Wrapper object for handling ground_plane Usd Prims. plane_width (Optional[float]): The width of the ground plane (in meters) that Lula creates to constrain this robot. Defaults to 50.0 m Returns: bool: Always True, indicating that this adder has been implemented """ if ground_plane in self._ground_plane_map: carb.log_warn( "A ground plane was added twice to a Lula based MotionPolicy. This has no effect beyond adding the ground plane once." ) return False plane_width = plane_width / self._meters_per_unit # ignore the ground plane and make a block instead, as lula doesn't support ground planes prim_path = find_unique_string_name("/lula/ground_plane", lambda x: not is_prim_path_valid(x)) ground_width = 0.001 # meters lula_ground_plane_cuboid = objects.cuboid.VisualCuboid( prim_path, size=1.0, scale=np.array([plane_width, plane_width, ground_width / self._meters_per_unit]) ) lula_ground_plane_translation = ground_plane.get_world_pose()[0] - ( np.array([0, 0, ground_width / 2]) / self._meters_per_unit ) lula_ground_plane_cuboid.set_world_pose(lula_ground_plane_translation) lula_ground_plane_cuboid.set_visibility(False) self._ground_plane_map[ground_plane] = lula_ground_plane_cuboid self.add_cuboid(lula_ground_plane_cuboid, static=True) return True def disable_obstacle(self, obstacle: objects) -> bool: """Disable collision avoidance for obstacle. Args: obstacle (core.objects): obstacle to be disabled. Returns: bool: Return True if obstacle was identified and successfully disabled. """ if obstacle in self._dynamic_obstacles: obstacle_handle = self._dynamic_obstacles[obstacle] elif obstacle in self._static_obstacles: obstacle_handle = self._static_obstacles[obstacle] elif obstacle in self._ground_plane_map: obstacle_handle = self._static_obstacles[self._ground_plane_map[obstacle]] else: return False self._world.disable_obstacle(obstacle_handle) return True def enable_obstacle(self, obstacle: objects) -> bool: """Enable collision avoidance for obstacle. Args: obstacle (core.objects): obstacle to be enabled. Returns: bool: Return True if obstacle was identified and successfully enabled. """ if obstacle in self._dynamic_obstacles: obstacle_handle = self._dynamic_obstacles[obstacle] elif obstacle in self._static_obstacles: obstacle_handle = self._static_obstacles[obstacle] elif obstacle in self._ground_plane_map: obstacle_handle = self._static_obstacles[self._ground_plane_map[obstacle]] else: return False self._world.enable_obstacle(obstacle_handle) return True def remove_obstacle(self, obstacle: objects) -> bool: """Remove obstacle from collision avoidance. Obstacle cannot be re-enabled via enable_obstacle() after removal. Args: obstacle (core.objects): obstacle to be removed. Returns: bool: Return True if obstacle was identified and successfully removed. """ if obstacle in self._dynamic_obstacles: obstacle_handle = self._dynamic_obstacles[obstacle] del self._dynamic_obstacles[obstacle] elif obstacle in self._static_obstacles: obstacle_handle = self._static_obstacles[obstacle] del self._static_obstacles[obstacle] elif obstacle in self._ground_plane_map: lula_ground_plane_cuboid = self._ground_plane_map[obstacle] obstacle_handle = self._static_obstacles[lula_ground_plane_cuboid] delete_prim(lula_ground_plane_cuboid.prim_path) del self._static_obstacles[lula_ground_plane_cuboid] del self._ground_plane_map[obstacle] else: return False self._world.remove_obstacle(obstacle_handle) return True def reset(self) -> None: """reset the world to its initial state """ self._world = lula.create_world() self._dynamic_obstacles = dict() self._static_obstacles = dict() for lula_ground_plane_cuboid in self._ground_plane_map.values(): delete_prim(lula_ground_plane_cuboid.prim_path) self._ground_plane_map = dict()
13,702
Python
42.640127
147
0.638593
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/lula/motion_policies.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np import time from typing import Tuple, List, Union import lula import carb from ..motion_policy_interface import MotionPolicy from .interface_helper import LulaInterfaceHelper from .kinematics import LulaKinematicsSolver from omni.isaac.core.utils.string import find_unique_string_name from omni.isaac.core.utils.prims import is_prim_path_valid, delete_prim from omni.isaac.core.utils.numpy.rotations import quats_to_rot_matrices, rot_matrices_to_quats from omni.isaac.core.utils.math import normalized from omni.isaac.core import objects from pxr import Sdf class RmpFlow(LulaInterfaceHelper, MotionPolicy): """ RMPflow is a real-time, reactive motion policy that smoothly guides a robot to task space targets while avoiding dynamic obstacles. This class implements the MotionPolicy interface, as well as providing a number of RmpFlow-specific functions such as visualizing the believed robot position and changing internal settings. Args: robot_description_path (str): Path to a robot description yaml file urdf_path (str): Path to robot urdf rmpflow_config_path (str): Path to an rmpflow parameter yaml file end_effector_frame_name (str): Name of the robot end effector frame (must be present in the robot urdf) maximum_substep_size (float): Maximum substep size [sec] that RmpFlow will use when internally integrating between steps of a simulation. For stability and performance, RmpFlow rolls out the robot actions at a higher framerate than Isaac Sim. For example, while Isaac Sim may be running at 60 Hz, RmpFlow can be set to take internal steps that are no larger than 1/300 seconds. In this case, RmpFlow will perform 5 sub-steps every time it returns an action to the 60 Hz simulation. In general, the maximum_substep_size argument should be at most 1/200. Choosing a very small maximum_substep_size such as 1/1000 is unnecessary, as the resulting actions will not significantly differ from a choice of 1/500, but it will internally require twice the steps to compute. ignore_robot_state_updates (bool): Defaults to False. If False: RmpFlow will set the internal robot state to match the arguments to compute_joint_targets(). When paired with ArticulationMotionPolicy, this means that RMPflow uses the simulated robot's state at every frame. If True: RmpFlow will roll out the robot state internally after it is initially specified in the first call to compute_joint_targets(). """ def __init__( self, robot_description_path: str, urdf_path: str, rmpflow_config_path: str, end_effector_frame_name: str, maximum_substep_size: float, ignore_robot_state_updates=False, ) -> None: self.maximum_substep_size = maximum_substep_size if maximum_substep_size <= 0: carb.log_error("maximum_substep_size argument must be positive.") self.ignore_robot_state_updates = ignore_robot_state_updates self.end_effector_frame_name = end_effector_frame_name MotionPolicy.__init__(self) robot_description = lula.load_robot(robot_description_path, urdf_path) LulaInterfaceHelper.__init__(self, robot_description) self._rmpflow_config_path = rmpflow_config_path # Create RMPflow configuration. rmpflow_config = lula.create_rmpflow_config( rmpflow_config_path, self._robot_description, self.end_effector_frame_name, self._world.add_world_view() ) # Create RMPflow policy. self._policy = lula.create_rmpflow(rmpflow_config) self._robot_joint_positions = None self._robot_joint_velocities = None self._end_effector_position_target = None self._end_effector_rotation_target = None self._collision_spheres = [] self._ee_visual = None def set_ignore_state_updates(self, ignore_robot_state_updates) -> None: """An RmpFlow specific method; set an internal flag in RmpFlow: ignore_robot_state_updates Args: ignore_robot_state_updates (bool): If False: RmpFlow will set the internal robot state to match the arguments to compute_joint_targets(). When paired with ArticulationMotionPolicy, this means that RMPflow uses the simulated robot's state at every frame. If True: RmpFlow will roll out the robot state internally after it is initially specified in the first call to compute_joint_targets(). The caller may override this flag and directly change the internal robot state with RmpFlow.set_internal_robot_joint_states(). """ self.ignore_robot_state_updates = ignore_robot_state_updates def set_cspace_target(self, active_joint_targets) -> None: """Set a cspace target for RmpFlow. RmpFlow always has a cspace target, and setting a new cspace target does not override a position target. RmpFlow uses the cspace target to help resolve null space behavior when a position target can be acheived in a variety of ways. If the end effector target is explicitly set to None, RmpFlow will move the robot to the cspace target Args: active_joint_targets (np.array): cspace position target for active joints in the robot """ self._policy.set_cspace_attractor(active_joint_targets.astype(np.float64)) def update_world(self, updated_obstacles: List = None) -> None: LulaInterfaceHelper.update_world(self, updated_obstacles) self._policy.update_world_view() def compute_joint_targets( self, active_joint_positions: np.array, active_joint_velocities: np.array, watched_joint_positions: np.array, watched_joint_velocities: np.array, frame_duration: float, ) -> Tuple[np.array, np.array]: """Compute robot joint targets for the next frame based on the current robot position. RmpFlow will ignore active joint positions and velocities if it has been set to ignore_robot_state_updates RmpFlow does not currently support watching joints that it is not actively controlling. Args: active_joint_positions (np.array): current positions of joints specified by get_active_joints() active_joint_velocities (np.array): current velocities of joints specified by get_active_joints() watched_joint_positions (np.array): current positions of joints specified by get_watched_joints() This will always be empty for RmpFlow. watched_joint_velocities (np.array): current velocities of joints specified by get_watched_joints() This will always be empty for RmpFlow. frame_duration (float): duration of the physics frame Returns: Tuple[np.array,np.array]: active_joint_position_targets : Position targets for the robot in the next frame active_joint_velocity_targets : Velocity targets for the robot in the next frame """ self._update_robot_joint_states(active_joint_positions, active_joint_velocities, frame_duration) return self._robot_joint_positions, self._robot_joint_velocities def visualize_collision_spheres(self) -> None: """An RmpFlow specific debugging method. This function creates visible sphere prims that match the locations and radii of the collision spheres that RmpFlow uses to prevent robot collisions. Once created, RmpFlow will update the sphere locations whenever its internal robot state changes. This can be used alongside RmpFlow.ignore_robot_state_updates(True) to validate RmpFlow's internal representation of the robot as well as help tune the PD gains on the simulated robot; i.e. the simulated robot should match the positions of the RmpFlow collision spheres over time. Visualizing collision spheres as prims on the stage is likely to significantly slow down the framerate of the simulation. This function should only be used for debugging purposes """ if len(self._collision_spheres) == 0: self._create_collision_sphere_prims(True) else: with Sdf.ChangeBlock(): for sphere in self._collision_spheres: sphere.set_visibility(True) def visualize_end_effector_position(self) -> None: """An RmpFlow specific debugging method. This function creates a visible cube whose translation and orientation match where RmpFlow believes the robot end effector to be. Once created, RmpFlow will update the position of the cube whenever its internal robot state changes. """ if self._ee_visual is None: self._create_ee_visual(True) else: self._ee_visual.set_visibility(True) def stop_visualizing_collision_spheres(self) -> None: """An RmpFlow specific debugging method. This function removes the collision sphere prims created by either RmpFlow.visualize_collision_spheres() or RmpFlow.get_collision_spheres_as_prims(). Rather than making the prims invisible, they are deleted from the stage to increase performance """ self.delete_collision_sphere_prims() self._collision_spheres = [] def stop_visualizing_end_effector(self) -> None: """An RmpFlow specific debugging method. This function removes the end effector prim that can be created by visualize_end_effector_position() or get_end_effector_position_as_prim() """ self.delete_end_effector_prim() def get_collision_spheres_as_prims(self) -> List: """An RmpFlow specific debugging method. This function is similar to RmpFlow.visualize_collision_spheres(). If the collision spheres have already been added to the stage as prims, they will be returned. If the collision spheres have not been added to the stage as prims, they will be created and returned. If created in this function, the spheres will be invisible until RmpFlow.visualize_collision_spheres() is called. Visualizing collision spheres on the stage is likely to significantly slow down the framerate of the simulation. This function should only be used for debugging purposes Returns: collision_spheres (List[core.objects.sphere.VisualSphere]): List of prims representing RmpFlow's internal collision spheres """ if len(self._collision_spheres) == 0: self._create_collision_sphere_prims(False) return self._collision_spheres def get_end_effector_as_prim(self) -> objects.cuboid.VisualCuboid: """An RmpFlow specific debugging method. This function is similar to RmpFlow.visualize_end_effector_position(). If the end effector has already been visualized as a prim, it will be returned. If the end effector is not being visualized, a cuboid will be created and returned. If created in this function, the end effector will be invisible until RmpFlow.visualize_end_effector_position() is called. Returns: end_effector_prim (objects.cuboid.VisualCuboid): Cuboid whose translation and orientation match RmpFlow's believed robot end effector position. """ if self._ee_visual is not None: return self._ee_visual self._create_ee_visual(False) return self._ee_visual def delete_collision_sphere_prims(self) -> None: """An RmpFlow specific debugging method. This function deletes any prims that have been created by RmpFlow to visualize its internal collision spheres """ for sphere in self._collision_spheres: delete_prim(sphere.prim_path) self._collision_spheres = [] def delete_end_effector_prim(self) -> None: """An RmpFlow specific debugging method. If RmpFlow is maintaining a prim for its believed end effector position, this function will delete the prim. """ if self._ee_visual is not None: delete_prim(self._ee_visual.prim_path) self._ee_visual = None def reset(self) -> None: """Reset RmpFlow to its initial state """ LulaInterfaceHelper.reset(self) rmpflow_config = lula.create_rmpflow_config( self._rmpflow_config_path, self._robot_description, self.end_effector_frame_name, self._world.add_world_view(), ) self._policy = lula.create_rmpflow(rmpflow_config) self._robot_joint_positions = None self._robot_joint_velocities = None self._end_effector_position_target = None self._end_effector_rotation_target = None self.configure_visualize = False self.delete_collision_sphere_prims() self.delete_end_effector_prim() self._collision_spheres = [] self._ee_visual = None def set_internal_robot_joint_states( self, active_joint_positions: np.array, active_joint_velocities: np.array, watched_joint_positions: np.array, watched_joint_velocities: np.array, ) -> None: """An RmpFlow specific method; this function overwrites the robot state regardless of the ignore_robot_state_updates flag. RmpFlow does not currently support watching joints that it is not actively controlling. Args: active_joint_positions (np.array): current positions of joints specified by get_active_joints() active_joint_velocities (np.array): current velocities of joints specified by get_active_joints() watched_joint_positions (np.array): current positions of joints specified by get_watched_joints(). This will always be empty for RmpFlow. watched_joint_velocities (np.array): current velocities of joints specified by get_watched_joints() This will always be empty for RmpFlow. """ self._robot_joint_positions = active_joint_positions self._robot_joint_velocities = active_joint_velocities self._update_visuals() return def get_internal_robot_joint_states(self) -> Tuple[np.array, np.array, np.array, np.array]: """An RmpFlow specific method; this function returns the internal robot state that is believed by RmpFlow Returns: Tuple[np.array,np.array,np.array,np.array]: active_joint_positions: believed positions of active joints active_joint_velocities: believed velocities of active joints watched_joint_positions: believed positions of watched robot joints. This will always be empty for RmpFlow. watched_joint_velocities: believed velocities of watched robot joints. This will always be empty for RmpFlow. """ return self._robot_joint_positions, self._robot_joint_velocities, np.empty(0), np.empty(0) def get_default_cspace_position_target(self): """An RmpFlow specific method; this function returns the default cspace position specified in the Lula robot_description YAML file Returns: np.array: Default cspace position target used by RMPflow when none is specified. """ return self._robot_description.default_c_space_configuration() def get_active_joints(self) -> List[str]: """Returns a list of joint names that RmpFlow is controlling. Some articulated robot joints may be ignored by some policies. E.g., the gripper of the Franka arm is not used to follow targets, and the RmpFlow config files excludes the joints in the gripper from the list of active joints. Returns: active_joints (List[str]): Names of active joints. The order of the joints in this list matches the order that the joints are expected in functions like RmpFlow.compute_joint_targets(active_joint_positions, active_joint_velocities,...) """ return LulaInterfaceHelper.get_active_joints(self) def get_watched_joints(self) -> List[str]: """Currently, RmpFlow is not capable of watching joint states that are not being directly controlled (active joints) If RmpFlow is controlling a robot arm at the end of an externally controlled body, set_robot_base_pose() can be used to make RmpFlow aware of the robot position This means that RmpFlow is not currently able to support controlling a set of DOFs in a robot that are not sequentially linked to each other or are not connected via fixed transforms to the end effector. Returns: watched_joints (List[str]): Empty list """ return [] def get_end_effector_pose(self, active_joint_positions: np.array) -> Tuple[np.array, np.array]: return LulaInterfaceHelper.get_end_effector_pose(self, active_joint_positions, self.end_effector_frame_name) def get_kinematics_solver(self) -> LulaKinematicsSolver: """Return a LulaKinematicsSolver that uses the same robot description as RmpFlow. The robot base pose of the LulaKinematicsSolver will be set to the same base pose as RmpFlow, but the two objects must then have their base poses updated separately. Returns: LulaKinematicsSolver: Kinematics solver using the same cspace as RmpFlow """ solver = LulaKinematicsSolver(None, None, robot_description=self._robot_description) solver.set_robot_base_pose(self._robot_pos / self._meters_per_unit, rot_matrices_to_quats(self._robot_rot)) return solver def set_end_effector_target(self, target_position=None, target_orientation=None) -> None: __doc__ = MotionPolicy.set_end_effector_target.__doc__ if target_orientation is not None: target_rotation = quats_to_rot_matrices(target_orientation) else: target_rotation = None if target_position is not None: self._end_effector_position_target = target_position * self._meters_per_unit else: self._end_effector_position_target = None self._end_effector_rotation_target = target_rotation self._set_end_effector_target() def set_robot_base_pose(self, robot_position: np.array, robot_orientation: np.array) -> None: LulaInterfaceHelper.set_robot_base_pose(self, robot_position, robot_orientation) self._set_end_effector_target() def add_obstacle(self, obstacle: objects, static: bool = False) -> bool: __doc__ = MotionPolicy.add_obstacle.__doc__ return MotionPolicy.add_obstacle(self, obstacle, static) def add_cuboid( self, cuboid: Union[objects.cuboid.DynamicCuboid, objects.cuboid.FixedCuboid, objects.cuboid.VisualCuboid], static: bool = False, ) -> bool: return LulaInterfaceHelper.add_cuboid(self, cuboid, static) def add_sphere( self, sphere: Union[objects.sphere.DynamicSphere, objects.sphere.VisualSphere], static: bool = False ) -> bool: return LulaInterfaceHelper.add_sphere(self, sphere, static) def add_capsule( self, capsule: Union[objects.capsule.DynamicCapsule, objects.capsule.VisualCapsule], static: bool = False ) -> bool: return LulaInterfaceHelper.add_capsule(self, capsule, static) def add_ground_plane(self, ground_plane: objects.ground_plane.GroundPlane) -> bool: return LulaInterfaceHelper.add_ground_plane(self, ground_plane) def disable_obstacle(self, obstacle: objects) -> bool: return LulaInterfaceHelper.disable_obstacle(self, obstacle) def enable_obstacle(self, obstacle: objects) -> bool: return LulaInterfaceHelper.enable_obstacle(self, obstacle) def remove_obstacle(self, obstacle: objects) -> bool: return LulaInterfaceHelper.remove_obstacle(self, obstacle) def _set_end_effector_target(self): target_position = self._end_effector_position_target target_rotation = self._end_effector_rotation_target if target_position is None and target_rotation is None: self._policy.clear_end_effector_position_attractor() self._policy.clear_end_effector_orientation_attractor() return trans, rot = LulaInterfaceHelper._get_pose_rel_robot_base(self, target_position, target_rotation) if trans is not None: self._policy.set_end_effector_position_attractor(trans) else: self._policy.clear_end_effector_position_attractor() if rot is not None: self._policy.set_end_effector_orientation_attractor(lula.Rotation3(rot)) else: self._policy.clear_end_effector_orientation_attractor() def _create_ee_visual(self, is_visible): if self._robot_joint_positions is None: joint_positions = np.zeros(self._robot_description.num_c_space_coords()) else: joint_positions = self._robot_joint_positions ee_pos, rot_mat = self.get_end_effector_pose(joint_positions) prim_path = find_unique_string_name("/lula/end_effector", lambda x: not is_prim_path_valid(x)) self._ee_visual = objects.cuboid.VisualCuboid(prim_path, size=0.1 / self._meters_per_unit) self._ee_visual.set_world_pose(position=ee_pos, orientation=rot_matrices_to_quats(rot_mat)) self._ee_visual.set_visibility(is_visible) def _create_collision_sphere_prims(self, is_visible): if self._robot_joint_positions is None: joint_positions = self._robot_description.default_c_space_configuration() else: joint_positions = self._robot_joint_positions.astype(np.float64) sphere_poses = self._policy.collision_sphere_positions(joint_positions) sphere_radii = self._policy.collision_sphere_radii() for i, (sphere_pose, sphere_rad) in enumerate(zip(sphere_poses, sphere_radii)): prim_path = find_unique_string_name("/lula/collision_sphere" + str(i), lambda x: not is_prim_path_valid(x)) self._collision_spheres.append( objects.sphere.VisualSphere(prim_path, radius=sphere_rad / self._meters_per_unit) ) with Sdf.ChangeBlock(): for sphere, sphere_pose in zip(self._collision_spheres, sphere_poses): sphere.set_world_pose(sphere_pose / self._meters_per_unit) sphere.set_visibility(is_visible) def _update_collision_sphere_prims(self): if len(self._collision_spheres) == 0: return joint_positions = self._robot_joint_positions.astype(np.float64) sphere_poses = self._policy.collision_sphere_positions(joint_positions) for col_sphere, new_pose in zip(self._collision_spheres, sphere_poses): col_sphere.set_world_pose(position=new_pose / self._meters_per_unit) def _update_end_effector_prim(self): if self._ee_visual is None: return ee_pos, rot_mat = self.get_end_effector_pose(self._robot_joint_positions) self._ee_visual.set_world_pose(ee_pos, rot_matrices_to_quats(rot_mat)) def _update_visuals(self): with Sdf.ChangeBlock(): self._update_collision_sphere_prims() self._update_end_effector_prim() def _update_robot_joint_states(self, joint_positions, joint_velocities, frame_duration): if ( self._robot_joint_positions is None or self._robot_joint_velocities is None or not self.ignore_robot_state_updates ): self._robot_joint_positions, self._robot_joint_velocities = self._euler_integration( joint_positions, joint_velocities, frame_duration ) else: self._robot_joint_positions, self._robot_joint_velocities = self._euler_integration( self._robot_joint_positions, self._robot_joint_velocities, frame_duration ) self._update_visuals() def _euler_integration(self, joint_positions, joint_velocities, frame_duration): num_steps = np.ceil(frame_duration / self.maximum_substep_size).astype(int) policy_timestep = frame_duration / num_steps for i in range(num_steps): joint_accel = self._evaluate_acceleration(joint_positions, joint_velocities) joint_positions += policy_timestep * joint_velocities joint_velocities += policy_timestep * joint_accel return joint_positions, joint_velocities def _evaluate_acceleration(self, joint_positions, joint_velocities): joint_positions = joint_positions.astype(np.float64) joint_velocities = joint_velocities.astype(np.float64) joint_accel = np.zeros_like(joint_positions) self._policy.eval_accel(joint_positions, joint_velocities, joint_accel) return joint_accel class RmpFlowSmoothed(RmpFlow): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.desired_speed_scalar = 1.0 self.speed_scalar = 1.0 self.time_at_last_jerk_reduction = None self.qdd = None # Params self.min_time_between_jerk_reductions = 0.5 self.min_speed_scalar = 0.2 self.use_big_jerk_speed_scaling = True self.big_jerk_limit = 10.0 self.use_medium_jerk_truncation = True self.max_medium_jerk = 7.0 self.speed_scalar_alpha_blend = 0.985 # Used for real world experiments. self.verbose = False def _eval_speed_scaled_accel(self, joint_positions, joint_velocities): qdd_eval = self._evaluate_acceleration(joint_positions, joint_velocities / (self.speed_scalar)) qdd_eval *= self.speed_scalar ** 2 return qdd_eval def _euler_integration(self, joint_positions, joint_velocities, frame_duration): num_steps = np.ceil(frame_duration / self.maximum_substep_size).astype(int) step_dt = frame_duration / num_steps q = joint_positions qd = joint_velocities # Jerk monitoring and reduction is intended to handle jerk in physical robots. It's # important then to use real wall-clock time when monitoring it. now = time.time() for i in range(num_steps): if self.qdd is None: self.qdd = self._eval_speed_scaled_accel(q, qd) continue jerk_reduction_performed = False # Reduces the speed down to a minimum if a big jerk is experience. if self.use_big_jerk_speed_scaling: is_first = True while True: qdd_eval = self._eval_speed_scaled_accel(q, qd) # Just go through this once. We simply want to make sure qdd_eval is evaluated # again after the reduction. if not is_first: break # Don't do jerk reductions too frequently. if ( self.time_at_last_jerk_reduction is not None and (now - self.time_at_last_jerk_reduction) < self.min_time_between_jerk_reductions ): break jerk = np.linalg.norm(qdd_eval - self.qdd) if jerk > self.big_jerk_limit: self.speed_scalar = self.min_speed_scalar if self.verbose: print("<jerk reduction> new speed scalar = %f" % self.speed_scalar) jerk_reduction_performed = True is_first = False # Truncate the jerks. This addresses transient jerks. if self.use_medium_jerk_truncation: qdd_eval = self._eval_speed_scaled_accel(q, qd) jerk = np.linalg.norm(qdd_eval - self.qdd) if jerk > self.max_medium_jerk: if self.verbose: print("<jerk truncation>") jerk_truncation_performed = True v = normalized(qdd_eval - self.qdd) qdd_eval = self.qdd + self.max_medium_jerk * v if jerk_reduction_performed: self.time_at_last_jerk_reduction = now self.qdd = qdd_eval a = self.speed_scalar_alpha_blend self.speed_scalar = a * self.speed_scalar + (1.0 - a) * self.desired_speed_scalar q += step_dt * qd qd += step_dt * self.qdd return q, qd
29,180
Python
46.681372
231
0.664599
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/tests/test_motion_policy.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import omni.kit.test import carb import asyncio from pxr import Gf # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.motion_generation import ArticulationMotionPolicy, interface_config_loader from omni.isaac.motion_generation.lula.motion_policies import RmpFlow from omni.isaac.core.utils import distance_metrics from omni.isaac.core.utils.stage import ( open_stage_async, update_stage_async, add_reference_to_stage, create_new_stage_async, ) from omni.isaac.core.utils.rotations import gf_quat_to_np_array, quat_to_rot_matrix from omni.isaac.core.utils.prims import is_prim_path_valid, delete_prim import omni.isaac.core.objects as objects from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.world import World import os import json import numpy as np # Having a test class derived from omni.kit.test.AsyncTestCase declared on the root of module will # make it auto-discoverable by omni.kit.test class TestMotionPolicy(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): self._physics_dt = 1 / 60 # duration of physics frame in seconds self._timeline = omni.timeline.get_timeline_interface() ext_manager = omni.kit.app.get_app().get_extension_manager() ext_id = ext_manager.get_enabled_extension_id("omni.isaac.motion_generation") self._articulation_policy_extension_path = ext_manager.get_extension_path(ext_id) self._polciy_config_dir = os.path.join(self._articulation_policy_extension_path, "motion_policy_configs") self.assertTrue(os.path.exists(os.path.join(self._polciy_config_dir, "policy_map.json"))) with open(os.path.join(self._polciy_config_dir, "policy_map.json")) as policy_map: self._policy_map = json.load(policy_map) carb.settings.get_settings().set_bool("/app/runLoops/main/rateLimitEnabled", True) carb.settings.get_settings().set_int("/app/runLoops/main/rateLimitFrequency", int(1 / self._physics_dt)) carb.settings.get_settings().set_int("/persistent/simulation/minFrameRate", int(1 / self._physics_dt)) await create_new_stage_async() await update_stage_async() pass # After running each test async def tearDown(self): self._timeline.stop() while omni.usd.get_context().get_stage_loading_status()[2] > 0: print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await update_stage_async() self._articulation_policy = None await update_stage_async() World.clear_instance() pass async def _set_determinism_settings(self, robot): World() carb.settings.get_settings().set_bool("/app/runLoops/main/rateLimitEnabled", True) carb.settings.get_settings().set_int("/app/runLoops/main/rateLimitFrequency", int(1 / self._physics_dt)) carb.settings.get_settings().set_int("/persistent/simulation/minFrameRate", int(1 / self._physics_dt)) robot.disable_gravity() robot.set_solver_position_iteration_count(64) robot.set_solver_velocity_iteration_count(64) async def test_rmpflow_cspace_target(self): usd_path = get_assets_root_path() + "/Isaac/Robots/Franka/franka.usd" robot_prim_path = "/panda" add_reference_to_stage(usd_path, robot_prim_path) self._timeline = omni.timeline.get_timeline_interface() rmp_flow_motion_policy_config = interface_config_loader.load_supported_motion_policy_config("Franka", "RMPflow") rmp_flow_motion_policy = RmpFlow(**rmp_flow_motion_policy_config) self._motion_policy = rmp_flow_motion_policy # Start Simulation and wait self._timeline.play() await update_stage_async() self._robot = Robot(robot_prim_path) self._robot.initialize() await self.reset_robot(self._robot) self._articulation_policy = ArticulationMotionPolicy(self._robot, self._motion_policy, self._physics_dt) default_target = self._motion_policy.get_default_cspace_position_target() active_joints_subset = self._articulation_policy.get_active_joints_subset() # Can reach just a cspace target for i in range(180): action = self._articulation_policy.get_next_articulation_action() self._robot.get_articulation_controller().apply_action(action) await update_stage_async() if np.allclose(default_target, active_joints_subset.get_joint_positions(), atol=0.1): break self.assertTrue( np.allclose(default_target, active_joints_subset.get_joint_positions(), atol=0.1), f"{default_target} vs {active_joints_subset.get_joint_positions()}: Could not reach default cspace target in 300 frames!", ) ee_target_position = np.array([0.5, 0, 0.5]) self._motion_policy.set_end_effector_target(ee_target_position) new_target = np.array([1.0, 0, 1.0, -0.3, 0, 0.2, 0]) self._motion_policy.set_cspace_target(new_target) # Check cspace attractor doesn't override the ee target for i in range(180): action = self._articulation_policy.get_next_articulation_action() self._robot.get_articulation_controller().apply_action(action) await update_stage_async() ee_pose = self._motion_policy.get_end_effector_pose(active_joints_subset.get_joint_positions())[0] if np.linalg.norm(ee_target_position - ee_pose) < 0.01: break ee_pose = self._motion_policy.get_end_effector_pose(active_joints_subset.get_joint_positions())[0] self.assertTrue( np.linalg.norm(ee_target_position - ee_pose) < 0.01, f"Could not reach taskspace target target in 240 frames! {np.linalg.norm(ee_target_position - ee_pose)}", ) self._motion_policy.set_end_effector_target(None) # New cspace target is still active; check that robot reaches it for i in range(250): action = self._articulation_policy.get_next_articulation_action() self._robot.get_articulation_controller().apply_action(action) await update_stage_async() if np.allclose(new_target, active_joints_subset.get_joint_positions(), atol=0.1): break self.assertTrue( np.allclose(new_target, active_joints_subset.get_joint_positions(), atol=0.1), f"Could not reach new cspace target in 250 frames! {new_target} != {active_joints_subset.get_joint_positions()}", ) self.assertTrue( np.allclose(self._motion_policy.get_default_cspace_position_target(), default_target), f"{self._motion_policy.get_default_cspace_position_target()} != {default_target}", ) async def test_rmpflow_cobotta_900(self): assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/Denso/cobotta_pro_900.usd" robot_name = "Cobotta_Pro_900" robot_prim_path = "/cobotta_pro_900" await self._simple_robot_rmpflow_test(usd_path, robot_prim_path, robot_name) async def test_rmpflow_cobotta_1300(self): assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/Denso/cobotta_pro_1300.usd" robot_name = "Cobotta_Pro_1300" robot_prim_path = "/cobotta_pro_1300" await self._simple_robot_rmpflow_test(usd_path, robot_prim_path, robot_name) async def test_rmpflow_ur3(self): assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/UniversalRobots/ur3/ur3.usd" robot_name = "UR3" robot_prim_path = "/ur3" await self._simple_robot_rmpflow_test( usd_path, robot_prim_path, robot_name, target_pos=np.array([0.3, 0.3, 0.5]) ) async def test_rmpflow_ur3e(self): assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/UniversalRobots/ur3e/ur3e.usd" robot_name = "UR3e" robot_prim_path = "/ur3e" await self._simple_robot_rmpflow_test( usd_path, robot_prim_path, robot_name, target_pos=np.array([0.3, 0.3, 0.5]) ) async def test_rmpflow_ur5(self): assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/UniversalRobots/ur5/ur5.usd" robot_name = "UR5" robot_prim_path = "/ur5" await self._simple_robot_rmpflow_test(usd_path, robot_prim_path, robot_name) async def test_rmpflow_ur5e(self): assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/UniversalRobots/ur5e/ur5e.usd" robot_name = "UR5e" robot_prim_path = "/ur5e" await self._simple_robot_rmpflow_test(usd_path, robot_prim_path, robot_name) async def test_rmpflow_ur10(self): assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/UniversalRobots/ur10/ur10.usd" robot_name = "UR10" robot_prim_path = "/ur10" await self._simple_robot_rmpflow_test(usd_path, robot_prim_path, robot_name) async def test_rmpflow_ur10e(self): assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/UniversalRobots/ur10e/ur10e.usd" robot_name = "UR10e" robot_prim_path = "/ur10e" await self._simple_robot_rmpflow_test(usd_path, robot_prim_path, robot_name) async def test_rmpflow_ur16e(self): assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/UniversalRobots/ur16e/ur16e.usd" robot_name = "UR16e" robot_prim_path = "/ur16e" await self._simple_robot_rmpflow_test(usd_path, robot_prim_path, robot_name) async def test_rmpflow_rizon4(self): assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/Flexiv/Rizon4/flexiv_rizon4.usd" robot_name = "Rizon4" robot_prim_path = "/A02L_MP" await self._simple_robot_rmpflow_test(usd_path, robot_prim_path, robot_name) async def test_rmpflow_rs007l(self): assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/Kawasaki/RS007L/rs007l_onrobot_rg2.usd" robot_name = "RS007L" robot_prim_path = "/khi_rs007l" await self._simple_robot_rmpflow_test(usd_path, robot_prim_path, robot_name) async def test_rmpflow_rs007n(self): assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/Kawasaki/RS007N/rs007n_onrobot_rg2.usd" robot_name = "RS007N" robot_prim_path = "/khi_rs007n" await self._simple_robot_rmpflow_test(usd_path, robot_prim_path, robot_name) async def test_rmpflow_rs013n(self): assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/Kawasaki/RS013N/rs013n_onrobot_rg2.usd" robot_name = "RS013N" robot_prim_path = "/khi_rs013n" obstacle_position = np.array([0.8, 0.3, 0.8]) target_position = np.array([0.85, 0.1, 0.55]) await self._simple_robot_rmpflow_test(usd_path, robot_prim_path, robot_name, target_position, obstacle_position) async def test_rmpflow_rs025n(self): assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/Kawasaki/RS025N/rs025n_onrobot_rg2.usd" robot_name = "RS025N" robot_prim_path = "/khi_rs025n" obstacle_position = np.array([0.8, 0.3, 0.8]) target_position = np.array([0.85, 0.1, 0.55]) await self._simple_robot_rmpflow_test(usd_path, robot_prim_path, robot_name, target_position, obstacle_position) async def test_rmpflow_rs080n(self): assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/Kawasaki/RS080N/rs080n_onrobot_rg2.usd" robot_name = "RS080N" robot_prim_path = "/khi_rs080n" obstacle_position = np.array([0.8, 0.3, 0.8]) target_position = np.array([0.85, 0.1, 0.55]) await self._simple_robot_rmpflow_test(usd_path, robot_prim_path, robot_name, target_position, obstacle_position) async def test_rmpflow_festo_cobot(self): assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/Festo/FestoCobot/festo_cobot.usd" robot_name = "FestoCobot" robot_prim_path = "/bettina" obstacle_position = np.array([0.8, 0.3, 0.8]) target_position = np.array([0.78, 0.1, 0.55]) await self._simple_robot_rmpflow_test(usd_path, robot_prim_path, robot_name, target_position, obstacle_position) async def _simple_robot_rmpflow_test( self, usd_path, prim_path, robot_name, target_pos=np.array([0.6, 0.3, 0.5]), obstacle_pos=np.array([0.3, 0.1, 0.5]), ): (result, error) = await open_stage_async(usd_path) rmp_config = interface_config_loader.load_supported_motion_policy_config(robot_name, "RMPflow") self._motion_policy = RmpFlow(**rmp_config) robot_prim_path = prim_path # Start Simulation and wait self._timeline.play() await update_stage_async() self._robot = Robot(robot_prim_path) self._robot.initialize() await self.reset_robot(self._robot) self._articulation_policy = ArticulationMotionPolicy(self._robot, self._motion_policy, self._physics_dt) timeout = 10 await self.verify_robot_convergence(target_pos, timeout, obs_pos=obstacle_pos) pass async def test_rmpflow_visualization_franka(self): usd_path = get_assets_root_path() + "/Isaac/Robots/Franka/franka.usd" robot_prim_path = "/panda" add_reference_to_stage(usd_path, robot_prim_path) self._timeline = omni.timeline.get_timeline_interface() rmp_flow_motion_policy_config = interface_config_loader.load_supported_motion_policy_config("Franka", "RMPflow") rmp_flow_motion_policy = RmpFlow(**rmp_flow_motion_policy_config) self._motion_policy = rmp_flow_motion_policy robot_prim_path = "/panda" # Start Simulation and wait self._timeline.play() await update_stage_async() self._robot = Robot(robot_prim_path) self._robot.initialize() await self.reset_robot(self._robot) self._articulation_policy = ArticulationMotionPolicy(self._robot, self._motion_policy, self._physics_dt) self._motion_policy.set_end_effector_target(np.array([0.4, 0.2, 0.4])) self._motion_policy.visualize_collision_spheres() self._motion_policy.visualize_end_effector_position() test_sphere = self._motion_policy.get_collision_spheres_as_prims()[-1] test_ee_visual = self._motion_policy.get_end_effector_as_prim() panda_hand_prim = XFormPrim("/panda/panda_hand") self._articulation_policy.move() for _ in range(100): sphere_pos, _ = test_sphere.get_world_pose() ee_pos, _ = test_ee_visual.get_world_pose() hand_pose, _ = panda_hand_prim.get_world_pose() self.assertTrue( abs(np.linalg.norm(sphere_pos - ee_pos) - 0.09014) < 0.001, f"End effector visualization is not consistent with sphere visualization: {np.linalg.norm(sphere_pos - ee_pos)}", ) self.assertTrue( abs(np.linalg.norm(hand_pose - ee_pos) - 0.10) < 0.01, f"Simulated robot moved too far from RMP belief robot: {np.linalg.norm(hand_pose - ee_pos)}", ) self._motion_policy.update_world() self._articulation_policy.move() await update_stage_async() self._motion_policy.delete_collision_sphere_prims() self._motion_policy.delete_end_effector_prim() self.assertTrue(not is_prim_path_valid("/lula/end_effector")) self.assertTrue(not is_prim_path_valid("/lula/collision_sphere0")) self._motion_policy.set_end_effector_target(np.array([0.8, 0.2, 0.8])) test_sphere = self._motion_policy.get_collision_spheres_as_prims()[-1] test_ee_visual = self._motion_policy.get_end_effector_as_prim() # self._articulation_policy.move() await update_stage_async() for _ in range(100): sphere_pos, _ = test_sphere.get_world_pose() ee_pos, _ = test_ee_visual.get_world_pose() hand_pose, _ = panda_hand_prim.get_world_pose() self.assertTrue( abs(np.linalg.norm(sphere_pos - ee_pos) - 0.09014) < 0.001, f"End effector visualization is not consistent with sphere visualization: {np.linalg.norm(sphere_pos - ee_pos) }", ) self.assertTrue( abs(np.linalg.norm(hand_pose - ee_pos) - 0.10) < 0.01, f"Simulated robot moved too far from RMP belief robot: {np.linalg.norm(hand_pose - ee_pos)}", ) self._motion_policy.update_world() self._articulation_policy.move() await update_stage_async() self._motion_policy.reset() self.assertTrue(not is_prim_path_valid("/lula/end_effector")) self.assertTrue(not is_prim_path_valid("/lula/collision_sphere0")) async def test_rmpflow_obstacle_adders(self): usd_path = get_assets_root_path() + "/Isaac/Robots/Franka/franka.usd" robot_prim_path = "/panda" add_reference_to_stage(usd_path, robot_prim_path) self._timeline = omni.timeline.get_timeline_interface() rmp_flow_motion_policy_config = interface_config_loader.load_supported_motion_policy_config("Franka", "RMPflow") rmp_flow_motion_policy = RmpFlow(**rmp_flow_motion_policy_config) self._motion_policy = rmp_flow_motion_policy # Start Simulation and wait self._timeline.play() await update_stage_async() self._robot = Robot(robot_prim_path) self._robot.initialize() await self.reset_robot(self._robot) self._articulation_policy = ArticulationMotionPolicy(self._robot, self._motion_policy, self._physics_dt) # These obstacle types are supported by RmpFlow obstacles = [ objects.cuboid.VisualCuboid("/visual_cube"), objects.cuboid.DynamicCuboid("/dynamic_cube"), objects.cuboid.FixedCuboid("/fixed_cube"), objects.sphere.VisualSphere("/visual_sphere"), objects.sphere.DynamicSphere("/dynamic_sphere"), objects.capsule.VisualCapsule("/visual_capsule"), objects.capsule.DynamicCapsule("/dynamic_capsule"), objects.ground_plane.GroundPlane("/ground_plane"), ] # check that all the supported world update functions return successfully without error for obstacle in obstacles: self.assertTrue(self._motion_policy.add_obstacle(obstacle)) self.assertTrue(self._motion_policy.disable_obstacle(obstacle)) self.assertTrue(self._motion_policy.enable_obstacle(obstacle)) self.assertTrue(self._motion_policy.remove_obstacle(obstacle)) # make sure lula cleaned up after removing ground plane : Lula creates a wide, flat cuboid to mimic the ground because it doesn't support ground planes directly self.assertFalse(is_prim_path_valid("/lula/ground_plane")) for obstacle in obstacles: self.assertTrue(self._motion_policy.add_obstacle(obstacle)) for obstacle in obstacles: # obstacle already in there self.assertFalse(self._motion_policy.add_obstacle(obstacle)) self._motion_policy.reset() for obstacle in obstacles: # obstacles should have been deleted in reset self.assertFalse(self._motion_policy.disable_obstacle(obstacle)) self.assertFalse(self._motion_policy.enable_obstacle(obstacle)) self.assertFalse(self._motion_policy.remove_obstacle(obstacle)) self.assertFalse(is_prim_path_valid("/lula/ground_plane")) async def test_articulation_motion_policy_init_order(self): usd_path = get_assets_root_path() + "/Isaac/Robots/Franka/franka.usd" robot_prim_path = "/panda" add_reference_to_stage(usd_path, robot_prim_path) self._timeline = omni.timeline.get_timeline_interface() rmp_flow_motion_policy_config = interface_config_loader.load_supported_motion_policy_config("Franka", "RMPflow") rmp_flow_motion_policy = RmpFlow(**rmp_flow_motion_policy_config) self._motion_policy = rmp_flow_motion_policy self._robot = Robot(robot_prim_path) # Make sure that initializing this before robot is initialized doesn't cause any issues self._articulation_policy = ArticulationMotionPolicy(self._robot, self._motion_policy, self._physics_dt) self._timeline.play() await update_stage_async() self._robot.initialize() await self.reset_robot(self._robot) action = self._articulation_policy.get_next_articulation_action() pass async def test_rmpflow_on_franka(self): usd_path = get_assets_root_path() + "/Isaac/Robots/Franka/franka.usd" robot_prim_path = "/panda" add_reference_to_stage(usd_path, robot_prim_path) self._timeline = omni.timeline.get_timeline_interface() rmp_flow_motion_policy_config = interface_config_loader.load_supported_motion_policy_config("Franka", "RMPflow") rmp_flow_motion_policy = RmpFlow(**rmp_flow_motion_policy_config) rmp_flow_motion_policy.set_ignore_state_updates(False) self._motion_policy = rmp_flow_motion_policy # Start Simulation and wait self._timeline.play() await update_stage_async() self._robot = Robot(robot_prim_path) self._robot.initialize() await self.reset_robot(self._robot) self._articulation_policy = ArticulationMotionPolicy(self._robot, self._motion_policy, self._physics_dt) ground_truths = { "no_target": np.array( [ -0.004417035728693008, -0.2752424478530884, 0.0009353954228572547, 0.032967355102300644, 0.0001806323998607695, -0.43320316076278687, 0.004497386049479246, None, None, ] ), "target_no_obstacle": np.array( [ 0.2209184467792511, -0.27475225925445557, 0.2051529437303543, 0.014692924916744232, -0.0313996896147728, -0.43752315640449524, 0.00518844835460186, None, None, ] ), "target_with_obstacle": np.array( [ -0.016765182837843895, -0.2309315949678421, -0.2107730507850647, -0.06896218657493591, -0.15911254286766052, -0.16595730185508728, -0.004891209304332733, None, None, ] ), "target_pos": np.array([0.40, 0.20, 0.40]), "obs_pos": np.array([0.3, 0.20, 0.50]), } await self.verify_policy_outputs(self._robot, ground_truths, dbg=False) timeout = 10 await self.reset_robot(self._robot) target_pos = np.array([0.5, 0.0, 0.5]) obstacle_pos = np.array([0.5, 0.0, 0.65]) await self.verify_robot_convergence( target_pos, timeout, target_orient=np.array([0.0, 0.0, 0.0, 1.0]), obs_pos=obstacle_pos ) self._robot.set_world_pose(np.array([0.1, 0.6, 0])) await update_stage_async() await self.verify_robot_convergence(target_pos, timeout, obs_pos=obstacle_pos) rot_quat = Gf.Quatf(Gf.Rotation(Gf.Vec3d(1.0, 0.0, 0.0), -15).GetQuat()) self._robot.set_world_pose(np.array([0.1, 0, 0.1]), orientation=gf_quat_to_np_array(rot_quat)) await update_stage_async() await self.verify_robot_convergence(target_pos, timeout, obs_pos=obstacle_pos) rot_quat = Gf.Quatf(Gf.Rotation(Gf.Vec3d(0.1, 0.0, 1.0), 45).GetQuat()) trans = np.array([0.1, -0.5, 0.0]) self._robot.set_world_pose(trans, gf_quat_to_np_array(rot_quat)) await update_stage_async() await self.verify_robot_convergence(target_pos, timeout, obs_pos=obstacle_pos) pass async def test_rmpflow_on_franka_ignore_state(self): # Perform an internal rollout of robot state, ignoring simulated robot state updates usd_path = get_assets_root_path() + "/Isaac/Robots/Franka/franka.usd" robot_prim_path = "/panda" add_reference_to_stage(usd_path, robot_prim_path) self._timeline = omni.timeline.get_timeline_interface() rmp_flow_motion_policy_config = interface_config_loader.load_supported_motion_policy_config("Franka", "RMPflow") rmp_flow_motion_policy = RmpFlow(**rmp_flow_motion_policy_config) rmp_flow_motion_policy.set_ignore_state_updates(True) self._motion_policy = rmp_flow_motion_policy # Start Simulation and wait self._timeline.play() await update_stage_async() self._robot = Robot(robot_prim_path) self._robot.initialize() await self.reset_robot(self._robot) self._articulation_policy = ArticulationMotionPolicy(self._robot, self._motion_policy, self._physics_dt) """ verify_policy_outputs() is not used here because 1: The policy would not pass because it rolls out robot state internally rather than seeing that the robot is not moving, so the outputs become inconsistent. 2: It is sufficient to confirm that the world state is updated correctly in test_rmpflow_on_franka_velocity_control(). """ await self.reset_robot(self._robot) timeout = 10 target_pos = np.array([0.5, 0.0, 0.5]) obstacle_pos = np.array([0.5, 0.0, 0.65]) await self.verify_robot_convergence( target_pos, timeout, target_orient=np.array([0.0, 0.0, 0.0, 1.0]), obs_pos=obstacle_pos ) self._robot.set_world_pose(np.array([0.1, 0.6, 0])) await update_stage_async() await self.verify_robot_convergence(target_pos, timeout, obs_pos=obstacle_pos) rot_quat = Gf.Quatf(Gf.Rotation(Gf.Vec3d(1.0, 0.0, 0.0), -15).GetQuat()) self._robot.set_world_pose(np.array([0.1, 0, 0.1]), orientation=gf_quat_to_np_array(rot_quat)) await update_stage_async() await self.verify_robot_convergence(target_pos, timeout, obs_pos=obstacle_pos) rot_quat = Gf.Quatf(Gf.Rotation(Gf.Vec3d(0.1, 0.0, 1.0), 45).GetQuat()) trans = np.array([0.1, -0.5, 0.0]) self._robot.set_world_pose(trans, gf_quat_to_np_array(rot_quat)) await update_stage_async() await self.verify_robot_convergence(target_pos, timeout, obs_pos=obstacle_pos) pass async def test_rmpflow_static_obstacles_franka(self): # Perform an internal rollout of robot state, ignoring simulated robot state updates usd_path = get_assets_root_path() + "/Isaac/Robots/Franka/franka.usd" robot_prim_path = "/panda" add_reference_to_stage(usd_path, robot_prim_path) self._timeline = omni.timeline.get_timeline_interface() rmp_flow_motion_policy_config = interface_config_loader.load_supported_motion_policy_config("Franka", "RMPflow") rmp_flow_motion_policy = RmpFlow(**rmp_flow_motion_policy_config) rmp_flow_motion_policy.set_ignore_state_updates(True) self._motion_policy = rmp_flow_motion_policy robot_prim_path = "/panda" # Start Simulation and wait self._timeline.play() await update_stage_async() self._robot = Robot(robot_prim_path) self._robot.initialize() await self.reset_robot(self._robot) self._articulation_policy = ArticulationMotionPolicy(self._robot, self._motion_policy, self._physics_dt) self._robot = Robot(robot_prim_path) self._robot.initialize() await self.reset_robot(self._robot) timeout = 10 target_pos = np.array([0.5, 0.0, 0.5]) obstacle_pos = np.array([0.5, 0.0, 0.65]) await self.verify_robot_convergence( target_pos, timeout, target_orient=np.array([0.0, 0.0, 0.0, 1.0]), obs_pos=obstacle_pos, static=True ) self._robot.set_world_pose(np.array([0.1, 0.6, 0])) await update_stage_async() await self.verify_robot_convergence(target_pos, timeout, obs_pos=obstacle_pos, static=True) rot_quat = Gf.Quatf(Gf.Rotation(Gf.Vec3d(1.0, 0.0, 0.0), -15).GetQuat()) self._robot.set_world_pose(np.array([0.1, 0, 0.1]), orientation=gf_quat_to_np_array(rot_quat)) await update_stage_async() await self.verify_robot_convergence(target_pos, timeout, obs_pos=obstacle_pos, static=True) rot_quat = Gf.Quatf(Gf.Rotation(Gf.Vec3d(0.1, 0.0, 1.0), 45).GetQuat()) trans = np.array([0.1, -0.5, 0.0]) self._robot.set_world_pose(trans, gf_quat_to_np_array(rot_quat)) await update_stage_async() await self.verify_robot_convergence(target_pos, timeout, obs_pos=obstacle_pos, static=True) async def test_rmpflow_on_ur10(self): usd_path = get_assets_root_path() + "/Isaac/Robots/UR10/ur10.usd" robot_prim_path = "/ur10" add_reference_to_stage(usd_path, robot_prim_path) self._timeline = omni.timeline.get_timeline_interface() rmp_flow_motion_policy_config = interface_config_loader.load_supported_motion_policy_config("UR10", "RMPflow") rmp_flow_motion_policy = RmpFlow(**rmp_flow_motion_policy_config) rmp_flow_motion_policy.set_ignore_state_updates(False) self._motion_policy = rmp_flow_motion_policy # Start Simulation and wait self._timeline.play() await update_stage_async() self._robot = Robot(robot_prim_path) self._robot.initialize() await self.reset_robot(self._robot) self._articulation_policy = ArticulationMotionPolicy(self._robot, self._motion_policy, self._physics_dt) ground_truths = { "no_target": np.array([-0.07558637, -0.035313368, -0.14294432, -0.24767338, 0.25070193, 2.879336e-10]), "target_no_obstacle": np.array( [-0.43079016, 0.18957902, 0.33274212, 0.46673688, -0.36309126, 6.501429e-10] ), "target_with_obstacle": np.array( [-0.41054526, 0.08853104, 0.3780922, 0.47682625, -0.37121844, 6.5079464e-10] ), "target_pos": np.array([0.5, 0.0, 0.0]), "obs_pos": np.array([0.50, 0.0, -0.20]), } await self.verify_policy_outputs(self._robot, ground_truths, dbg=False) await self.reset_robot(self._robot) timeout = 10 target_pos = np.array([0.5, 0.0, 0.7]) obstacle_pos = np.array([0.8, 0.1, 0.8]) await self.verify_robot_convergence( target_pos, timeout, target_orient=np.array([0.0, 0.0, 0.0, 1.0]), obs_pos=obstacle_pos ) self._robot.set_world_pose(np.array([0.1, 0.7, 0])) await update_stage_async() await self.verify_robot_convergence(target_pos, timeout, obs_pos=obstacle_pos) rot_quat = Gf.Quatf(Gf.Rotation(Gf.Vec3d(1.0, 0.0, 0.0), -15).GetQuat()) self._robot.set_world_pose(np.array([0.1, 0, 0.1]), gf_quat_to_np_array(rot_quat)) await update_stage_async() await self.verify_robot_convergence(target_pos, timeout, obs_pos=obstacle_pos) rot_quat = Gf.Quatf(Gf.Rotation(Gf.Vec3d(0.2, 0.0, 1.0), 90).GetQuat()) trans = np.array([0.1, -0.5, 0.0]) self._robot.set_world_pose(trans, gf_quat_to_np_array(rot_quat)) await update_stage_async() await self.verify_robot_convergence(target_pos, timeout, obs_pos=obstacle_pos) pass async def test_rmpflow_on_ur10_ignore_state(self): # Perform an internal rollout of robot state, ignoring simulated robot state updates usd_path = get_assets_root_path() + "/Isaac/Robots/UR10/ur10.usd" robot_prim_path = "/ur10" add_reference_to_stage(usd_path, robot_prim_path) self._timeline = omni.timeline.get_timeline_interface() rmp_flow_motion_policy_config = interface_config_loader.load_supported_motion_policy_config("UR10", "RMPflow") rmp_flow_motion_policy = RmpFlow(**rmp_flow_motion_policy_config) rmp_flow_motion_policy.set_ignore_state_updates(True) self._motion_policy = rmp_flow_motion_policy # Start Simulation and wait self._timeline.play() await update_stage_async() self._robot = Robot(robot_prim_path) self._robot.initialize() await self.reset_robot(self._robot) self._articulation_policy = ArticulationMotionPolicy(self._robot, self._motion_policy, self._physics_dt) """ verify_policy_outputs() is not used here because 1: The policy would not pass because it rolls out robot state internally rather than seeing that the robot is not moving, so the outputs become inconsistent. 2: It is sufficient to confirm that the world state is updated correctly in test_rmpflow_on_franka_velocity_control(). """ await self.reset_robot(self._robot) timeout = 10 target_pos = np.array([0.5, 0.0, 0.7]) obstacle_pos = np.array([0.8, 0.1, 0.8]) await self.verify_robot_convergence( target_pos, timeout, target_orient=np.array([0.0, 0.0, 0.0, 1.0]), obs_pos=obstacle_pos ) self._robot.set_world_pose(np.array([0.1, 0.7, 0])) await update_stage_async() await self.verify_robot_convergence(target_pos, timeout, obs_pos=obstacle_pos) rot_quat = Gf.Quatf(Gf.Rotation(Gf.Vec3d(1.0, 0.0, 0.0), -15).GetQuat()) self._robot.set_world_pose(np.array([0.1, 0, 0.1]), gf_quat_to_np_array(rot_quat)) await update_stage_async() await self.verify_robot_convergence(target_pos, timeout, obs_pos=obstacle_pos) rot_quat = Gf.Quatf(Gf.Rotation(Gf.Vec3d(0.2, 0.0, 1.0), 90).GetQuat()) trans = np.array([0.1, -0.5, 0.0]) self._robot.set_world_pose(trans, gf_quat_to_np_array(rot_quat)) await update_stage_async() await self.verify_robot_convergence(target_pos, timeout, obs_pos=obstacle_pos) pass async def reached_end_effector_target(self, target_trans, target_orient, trans_thresh=0.02, rot_thresh=0.1): ee_trans, ee_rot = self._motion_policy.get_end_effector_pose( self._articulation_policy.get_active_joints_subset().get_joint_positions() ) # TODO this only works for RMPflow, and will be updated in upcoming MR before there are non-RMPflow tests if target_orient is not None: target_rot = quat_to_rot_matrix(target_orient) else: target_rot = None if target_rot is None and target_trans is None: return True elif target_rot is None: trans_dist = distance_metrics.weighted_translational_distance(ee_trans, target_trans) return trans_dist < trans_thresh elif target_trans is None: rot_dist = distance_metrics.rotational_distance_angle(ee_rot, target_rot) return rot_dist < rot_thresh else: trans_dist = distance_metrics.weighted_translational_distance(ee_trans, target_trans) rot_dist = distance_metrics.rotational_distance_angle(ee_rot, target_rot) return trans_dist < trans_thresh and rot_dist < rot_thresh async def add_block(self, path, offset, size=np.array([0.01, 0.01, 0.01]), collidable=True): if collidable: cuboid = objects.cuboid.FixedCuboid(path, scale=size, size=1.0) await update_stage_async() else: cuboid = objects.cuboid.VisualCuboid(path, scale=size, size=1.0) await update_stage_async() cuboid.set_world_pose(offset, np.array([1.0, 0, 0, 0])) await update_stage_async() return cuboid async def assertAlmostEqual(self, a, b, msg=""): # overriding method because it doesn't support iterables a = np.array(a) b = np.array(b) self.assertFalse(np.any(abs((a[a != np.array(None)] - b[b != np.array(None)])) > 1e-3), msg) pass async def simulate_until_target_reached(self, timeout, target_trans, target_orient=None): for frame in range(int(1 / self._physics_dt * timeout)): self._motion_policy.update_world() self._articulation_policy.move() await omni.kit.app.get_app().next_update_async() if await self.reached_end_effector_target(target_trans, target_orient=target_orient): return True, frame * self._physics_dt return False, timeout async def reset_robot(self, robot): """ To make motion_generation outputs more deterministic, this method may be used to teleport the robot to specified position targets, setting velocity to 0 This prevents changes in dynamic_control from affecting motion_generation tests """ robot.post_reset() await self._set_determinism_settings(robot) await update_stage_async() pass async def verify_policy_outputs(self, robot, ground_truths, dbg=False): """ The ground truths are obtained by running this method in dbg mode when certain that motion_generation is working as intended. If position_control is True, motion_generation is expected to be using position targets In dbg mode, the returned velocity target values will be printed and no assertions will be checked. """ # outputs of mg in different scenarios no_target_truth = ground_truths["no_target"] target_no_obs_truth = ground_truths["target_no_obstacle"] target_obs_truth = ground_truths["target_with_obstacle"] # where to put the target and obstacle target_pos = ground_truths["target_pos"] obs_pos = ground_truths["obs_pos"] target_cube = await self.add_block("/scene/target", target_pos, size=0.05 * np.ones(3), collidable=False) await update_stage_async() obs = await self.add_block("/scene/obstacle", obs_pos, size=0.1 * np.ones(3)) await update_stage_async() await self.reset_robot(robot) await update_stage_async() self._motion_policy.set_end_effector_target(None) self._motion_policy.update_world() action = self._articulation_policy.get_next_articulation_action() mg_velocity_targets = action.joint_velocities if dbg: print("\nNo target:") for target in mg_velocity_targets: print(target, end=",") print() else: await self.assertAlmostEqual( no_target_truth, mg_velocity_targets, f"{no_target_truth} != {mg_velocity_targets}" ) # Just the target self._motion_policy.set_end_effector_target(target_pos) self._motion_policy.update_world() action = self._articulation_policy.get_next_articulation_action() mg_velocity_targets = action.joint_velocities if dbg: print("\nWith target:") for target in mg_velocity_targets: print(target, end=",") print() else: await self.assertAlmostEqual( target_no_obs_truth, mg_velocity_targets, f"{target_no_obs_truth} != {mg_velocity_targets}" ) # Add the obstacle self._motion_policy.add_obstacle(obs) self._motion_policy.update_world() action = self._articulation_policy.get_next_articulation_action() mg_velocity_targets = action.joint_velocities if dbg: print("\nWith target and obstacle:") for target in mg_velocity_targets: print(target, end=",") print() else: await self.assertAlmostEqual( target_obs_truth, mg_velocity_targets, f"{target_obs_truth} != {mg_velocity_targets}" ) # Disable the obstacle: check that it matches no obstacle at all self._motion_policy.disable_obstacle(obs) self._motion_policy.update_world() action = self._articulation_policy.get_next_articulation_action() mg_velocity_targets = action.joint_velocities if dbg: print("\nWith target and disabled obstacle:") for target in mg_velocity_targets: print(target, end=",") print() else: await self.assertAlmostEqual( target_no_obs_truth, mg_velocity_targets, f"{target_no_obs_truth} != {mg_velocity_targets}" ) # Enable the obstacle: check consistency self._motion_policy.enable_obstacle(obs) self._motion_policy.update_world() action = self._articulation_policy.get_next_articulation_action() mg_velocity_targets = action.joint_velocities if dbg: print("\nWith target and enabled obstacle:") for target in mg_velocity_targets: print(target, end=",") print() else: await self.assertAlmostEqual( target_obs_truth, mg_velocity_targets, f"{target_obs_truth} != {mg_velocity_targets}" ) # Delete the obstacle: check consistency self._motion_policy.remove_obstacle(obs) self._motion_policy.update_world() action = self._articulation_policy.get_next_articulation_action() mg_velocity_targets = action.joint_velocities if dbg: print("\nWith target and deleted obstacle:") for target in mg_velocity_targets: print(target, end=",") print() else: await self.assertAlmostEqual( target_no_obs_truth, mg_velocity_targets, f"{target_no_obs_truth} != {mg_velocity_targets}" ) delete_prim(obs.prim_path) delete_prim(target_cube.prim_path) return async def verify_robot_convergence(self, target_pos, timeout, target_orient=None, obs_pos=None, static=False): # Assert that the robot can reach the target within a given timeout target = await self.add_block("/scene/target", target_pos, size=0.05 * np.ones(3), collidable=False) self._motion_policy.set_robot_base_pose(*self._robot.get_world_pose()) await omni.kit.app.get_app().next_update_async() obs_prim = None if obs_pos is not None: cuboid = await self.add_block("/scene/obstacle", obs_pos, size=0.1 * np.array([2.0, 3.0, 1.0])) await update_stage_async() self._motion_policy.add_obstacle(cuboid, static=static) self._motion_policy.set_end_effector_target(target_pos, target_orient) success, time_to_target = await self.simulate_until_target_reached( timeout, target_pos, target_orient=target_orient ) if not success: self.assertTrue(False) if obs_prim is not None: self._motion_policy.remove_obstacle(cuboid) return
44,785
Python
41.211122
168
0.627844
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/tests/test_path_planner.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import omni.kit.test import carb import asyncio # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.motion_generation import ( PathPlannerVisualizer, interface_config_loader, LulaKinematicsSolver, ArticulationKinematicsSolver, ) from omni.isaac.motion_generation.lula.path_planners import RRT from omni.isaac.core.utils.stage import ( open_stage_async, add_reference_to_stage, create_new_stage_async, update_stage_async, ) from omni.isaac.core.objects import FixedCuboid, VisualCuboid from omni.isaac.core.objects.ground_plane import GroundPlane from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.robots import Robot from omni.isaac.core.utils.numpy.rotations import euler_angles_to_quats from omni.isaac.core.prims import GeometryPrimView from omni.isaac.core.utils.viewports import set_camera_view from omni.isaac.core.world import World import os import json import numpy as np # Having a test class derived from omni.kit.test.AsyncTestCase declared on the root of module will # make it auto-discoverable by omni.kit.test class TestPathPlanner(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): self._physics_dt = 1 / 60 # duration of physics frame in seconds self._timeline = omni.timeline.get_timeline_interface() ext_manager = omni.kit.app.get_app().get_extension_manager() ext_id = ext_manager.get_enabled_extension_id("omni.isaac.motion_generation") self._articulation_policy_extension_path = ext_manager.get_extension_path(ext_id) self._polciy_config_dir = os.path.join(self._articulation_policy_extension_path, "motion_policy_configs") self.assertTrue( os.path.exists(os.path.join(self._polciy_config_dir, "policy_map.json")), f'{os.path.join(self._polciy_config_dir, "policy_map.json")}', ) with open(os.path.join(self._polciy_config_dir, "policy_map.json")) as policy_map: self._policy_map = json.load(policy_map) await update_stage_async() robot_prim_path = "/panda" usd_path = get_assets_root_path() + "/Isaac/Robots/Franka/franka.usd" await create_new_stage_async() await update_stage_async() add_reference_to_stage(usd_path, robot_prim_path) self._timeline = omni.timeline.get_timeline_interface() set_camera_view( eye=[0.7 * 2.95, 0.7 * 3.3, 0.7 * 5.5], target=[0, 0, 0], camera_prim_path="/OmniverseKit_Persp" ) rrt_config = interface_config_loader.load_supported_path_planner_config("Franka", "RRT") rrt = RRT(**rrt_config) # rrt.set_random_seed(1234569) rrt.set_max_iterations(10000) rrt.set_param("step_size", 0.01) self._planner = rrt # Start Simulation and wait self._timeline.play() await update_stage_async() self._robot = Robot(robot_prim_path) self._robot.initialize() await self.reset_robot(self._robot) gripper_geoms = GeometryPrimView("/panda/panda_.*finger/geometry", collisions=np.ones(2)) gripper_geoms.disable_collision() hand_geom = GeometryPrimView("/panda/panda_hand/geometry", collisions=np.ones(1)) hand_geom.disable_collision() kinematics_config = interface_config_loader.load_supported_lula_kinematics_solver_config("Franka") self._kinematics_solver = LulaKinematicsSolver(**kinematics_config) self._articulation_kinematics_solver = ArticulationKinematicsSolver( self._robot, self._kinematics_solver, "right_gripper" ) self._planner_visualizer = PathPlannerVisualizer(self._robot, self._planner) self.PRINT_GOLDEN_VALUES = False self.TEST_FOR_DETERMINISM = ( False ) # Right now RRT paths are not deterministic across different machines. Later this will be fixed, and determinism will be tested # After running each test async def tearDown(self): self._timeline.stop() while omni.usd.get_context().get_stage_loading_status()[2] > 0: print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await update_stage_async() self._articulation_policy = None await update_stage_async() World.clear_instance() pass async def _set_determinism_settings(self, robot): World() carb.settings.get_settings().set_bool("/app/runLoops/main/rateLimitEnabled", True) carb.settings.get_settings().set_int("/app/runLoops/main/rateLimitFrequency", int(1 / self._physics_dt)) carb.settings.get_settings().set_int("/persistent/simulation/minFrameRate", int(1 / self._physics_dt)) robot.disable_gravity() robot.set_solver_position_iteration_count(64) robot.set_solver_velocity_iteration_count(64) async def reset_robot(self, robot): """ To make motion_generation outputs more deterministic, this method may be used to teleport the robot to specified position targets, setting velocity to 0 This prevents changes in dynamic_control from affecting motion_generation tests """ robot.post_reset() await self._set_determinism_settings(robot) await update_stage_async() pass async def test_set_params(self): self._planner.set_param("seed", 5) self._planner.set_param("step_size", 0.001) self._planner.set_param("max_iterations", 1000) self._planner.set_param("distance_metric_weights", np.ones(7, dtype=np.float64) * 0.8) self._planner.set_param("task_space_frame_name", "panda_hand") self._planner.set_param("task_space_limits", np.array([[-1, 1], [-1, 1], [0, 1]], dtype=np.float64)) self._planner.set_param("c_space_planning_params/exploration_fraction", 0.6) self._planner.set_param( "task_space_planning_params/x_target_zone_tolerance", np.ones(3, dtype=np.float64) * 0.02 ) self._planner.set_param("task_space_planning_params/x_target_final_tolerance", 1e-4) self._planner.set_param("task_space_planning_params/task_space_exploitation_fraction", 0.5) self._planner.set_param("task_space_planning_params/task_space_exploration_fraction", 0.2) self._planner.reset() async def test_rrt_franka(self): target_pose = np.array([-0.4, 0.3, 0.5]) self._planner.set_end_effector_target(target_pose) # Check that this doesn't mess anything up self._planner.set_cspace_target(np.zeros(7)) # Should just be overridden self._planner.set_end_effector_target(target_pose) left_barrier = FixedCuboid( "/obstacles/left_barrier", size=1.0, scale=np.array([0.01, 0.5, 1]), position=np.array([0, 0.45, 0.5]) ) right_barrier = FixedCuboid( "/obstacles/right_barrier", size=1.0, scale=np.array([0.04, 0.5, 0.5]), position=np.array([0, -0.45, 0.35]) ) back_barrier = FixedCuboid( "/obstacles/back_barrier", size=1.0, scale=np.array([0.5, 0.01, 1]), position=np.array([-0.45, 0, 1]) ) top_barrier = FixedCuboid( "/obstacles/top_barrier", size=1.0, scale=np.array([0.25, 0.25, 0.01]), position=np.array([0, 0, 1.2]) ) ground_plane = GroundPlane("/ground") target_prim = VisualCuboid( "/target", size=1.0, scale=np.full((3,), 0.05), position=target_pose, color=np.array([1, 0, 0]) ) self._planner.add_obstacle(left_barrier) self._planner.add_obstacle(right_barrier) self._planner.add_obstacle(back_barrier) self._planner.add_obstacle(top_barrier) self._planner.add_obstacle(ground_plane) self._planner.update_world() # Generate waypoints no more than .5 radians (l1 norm) from each other actions = self._planner_visualizer.compute_plan_as_articulation_actions(max_cspace_dist=0.3) if self.PRINT_GOLDEN_VALUES: print("Number of actions: ", len(actions)) print("Final action: ", end="") [print(actions[-1].joint_positions[i], ",", end="") for i in range(len(actions[-1].joint_positions))] LOGGED_PATH_LEN = 11 LOGGED_FINAL_POSITION = np.array( [ -2.2235743574338285, 1.2670535347824194, -1.5803078127051602, -2.044557783811974, -0.889700828512457, 1.6705503159953106, 0.41399271401981974, None, None, ] ) if self.TEST_FOR_DETERMINISM: self.assertTrue( len(actions) == LOGGED_PATH_LEN, "Logged plan has length " + str(LOGGED_PATH_LEN) + "; this plan has length " + str(len(actions)), ) await self.assertAlmostEqual( LOGGED_FINAL_POSITION, actions[-1].joint_positions, f"The final position in the path doesn't match the logged position: {LOGGED_FINAL_POSITION} != {actions[-1].joint_positions}", ) else: self.assertTrue(len(actions) > 0, f"{len(actions)}") await self.follow_plan(actions, target_pose) async def test_rrt_franka_moving_base(self): target_pose = np.array([1.4, -0.1, 0.5]) self._planner.set_end_effector_target(target_pose) robot_base_position = np.array([1, 0, 0.2]) robot_base_orientation = euler_angles_to_quats(np.array([0.1, 0, 0.3])) barrier = FixedCuboid( "/obstacles/barrier", size=1.0, scale=np.array([0.01, 0.5, 1]), position=np.array([1.2, -0.3, 0.5]) ) target_prim = VisualCuboid( "/target", size=1.0, scale=np.full((3,), 0.05), position=target_pose, color=np.array([1, 0, 0]) ) self._planner.add_obstacle(barrier) self._planner.set_robot_base_pose(robot_base_position, robot_base_orientation) self._kinematics_solver.set_robot_base_pose(robot_base_position, robot_base_orientation) self._robot.set_world_pose(robot_base_position, robot_base_orientation) self._planner.update_world() # Generate waypoints no more than .5 radians (l1 norm) from each other actions = self._planner_visualizer.compute_plan_as_articulation_actions(max_cspace_dist=0.5) if self.PRINT_GOLDEN_VALUES: print("Number of actions: ", len(actions)) print("Final action: ", end="") [print(actions[-1].joint_positions[i], ",", end="") for i in range(len(actions[-1].joint_positions))] LOGGED_PATH_LEN = 6 LOGGED_FINAL_POSITION = np.array( [ -1.287984743737736, -1.194971983321831, 1.3341467119855843, -3.0448501997009876, 0.229684493139643, 3.1069385805619922, -1.3131528226307583, None, None, ] ) if self.TEST_FOR_DETERMINISM: self.assertTrue( len(actions) == LOGGED_PATH_LEN, "Logged plan has length " + str(LOGGED_PATH_LEN) + "; this plan has length " + str(len(actions)), ) await self.assertAlmostEqual( LOGGED_FINAL_POSITION, actions[-1].joint_positions, f"The final position in the path doesn't match the logged position: {LOGGED_FINAL_POSITION} != {actions[-1].joint_positions}", ) else: self.assertTrue(len(actions) > 0, f"{len(actions)}") await self.follow_plan(actions, target_pose) async def test_rrt_franka_cspace_target(self): cspace_target = np.array( [ -2.2235743574338285, 1.2670535347824194, -1.5803078127051602, -2.044557783811974, -0.889700828512457, 1.6705503159953106, 0.41399271401981974, ] ) target_pose = np.array([-0.4, 0.3, 0.5]) self._planner.set_cspace_target(cspace_target) # Check that this doesn't mess anything up self._planner.set_end_effector_target(np.zeros(3)) # Should just be overridden self._planner.set_cspace_target(cspace_target) left_barrier = FixedCuboid( "/obstacles/left_barrier", size=1.0, scale=np.array([0.01, 0.5, 1]), position=np.array([0, 0.45, 0.5]) ) right_barrier = FixedCuboid( "/obstacles/right_barrier", size=1.0, scale=np.array([0.04, 0.5, 0.5]), position=np.array([0, -0.45, 0.35]) ) back_barrier = FixedCuboid( "/obstacles/back_barrier", size=1.0, scale=np.array([0.5, 0.01, 1]), position=np.array([-0.45, 0, 1]) ) top_barrier = FixedCuboid( "/obstacles/top_barrier", size=1.0, scale=np.array([0.25, 0.25, 0.01]), position=np.array([0, 0, 1.2]) ) ground_plane = GroundPlane("/ground", z_position=-0.0305) target_prim = VisualCuboid( "/target", size=1.0, scale=np.full((3,), 0.05), position=target_pose, color=np.array([1, 0, 0]) ) self._planner.add_obstacle(left_barrier) self._planner.add_obstacle(right_barrier) self._planner.add_obstacle(back_barrier) self._planner.add_obstacle(top_barrier) self._planner.add_obstacle(ground_plane) self._planner.update_world() # Generate waypoints no more than .5 radians (l1 norm) from each other actions = self._planner_visualizer.compute_plan_as_articulation_actions(max_cspace_dist=0.3) if self.PRINT_GOLDEN_VALUES: print("Number of actions: ", len(actions)) print("Final action: ", end="") [print(actions[-1].joint_positions[i], ",", end="") for i in range(len(actions[-1].joint_positions))] LOGGED_PATH_LEN = 11 LOGGED_FINAL_POSITION = np.array( [ -2.2235743574338285, 1.2670535347824194, -1.5803078127051602, -2.044557783811974, -0.889700828512457, 1.6705503159953106, 0.41399271401981974, None, None, ] ) if self.TEST_FOR_DETERMINISM: self.assertTrue( len(actions) == LOGGED_PATH_LEN, "Logged plan has length " + str(LOGGED_PATH_LEN) + "; this plan has length " + str(len(actions)), ) await self.assertAlmostEqual( LOGGED_FINAL_POSITION, actions[-1].joint_positions, f"The final position in the path doesn't match the logged position: {LOGGED_FINAL_POSITION} != {actions[-1].joint_positions}", ) else: self.assertTrue(len(actions) > 0, f"{len(actions)}") await self.follow_plan(actions, target_pose) async def follow_plan(self, actions, target_pose, max_frames_per_waypoint=120): for frame in range(len(actions)): self._robot.get_articulation_controller().apply_action(actions[frame]) # Spend 30 frames getting to each waypoint for i in range(max_frames_per_waypoint): await omni.kit.app.get_app().next_update_async() diff = self._robot.get_joint_positions() - actions[frame].joint_positions # print(np.around(diff.astype(np.float),decimals=3)) # print(np.amax(abs(diff))) if np.linalg.norm(diff) < 0.01: break # Check that the robot hit the waypoint diff = self._robot.get_joint_positions() - actions[frame].joint_positions self.assertTrue(np.linalg.norm(diff) < 0.05, f"np.linalg.norm(diff) = {np.linalg.norm(diff)}") for i in range(20): # extra time to converge very tightly at final position await omni.kit.app.get_app().next_update_async() # Check the the end effector position reached the target ee_position = self._articulation_kinematics_solver.compute_end_effector_pose()[0] self.assertTrue( np.linalg.norm(ee_position - target_pose) < 0.01, "Not close enough to target with distance: " + str(np.linalg.norm(ee_position - target_pose)), ) async def assertAlmostEqual(self, a, b, dbg_msg=""): # overriding method because it doesn't support iterables a = np.array(a) b = np.array(b) self.assertFalse(np.any(abs((a[a != np.array(None)] - b[b != np.array(None)])) > 1e-3), dbg_msg) pass
17,364
Python
41.046005
142
0.61138
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/tests/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .test_motion_policy import * from .test_kinematics import * from .test_path_planner import * from .test_trajectory_generator import *
568
Python
39.642854
76
0.799296
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/tests/test_trajectory_generator.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from omni.isaac.motion_generation.articulation_kinematics_solver import ArticulationKinematicsSolver from omni.isaac.motion_generation.articulation_trajectory import ArticulationTrajectory from omni.isaac.motion_generation.lula.trajectory_generator import ( LulaCSpaceTrajectoryGenerator, LulaTaskSpaceTrajectoryGenerator, ) import omni.kit.test import carb import asyncio # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.motion_generation import interface_config_loader from omni.isaac.motion_generation.lula import LulaKinematicsSolver import lula from omni.isaac.core.utils.stage import update_stage_async, add_reference_to_stage, create_new_stage_async from omni.isaac.core.robots.robot import Robot from omni.isaac.core.objects.cuboid import VisualCuboid from omni.isaac.core.utils.numpy.rotations import rotvecs_to_quats, quats_to_rot_matrices, rot_matrices_to_quats from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import delete_prim from omni.isaac.core.world import World import os import json import numpy as np # Having a test class derived from omni.kit.test.AsyncTestCase declared on the root of module will # make it auto-discoverable by omni.kit.test class TestTrajectoryGenerator(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): self._physics_dt = 1 / 60 # duration of physics frame in seconds self._timeline = omni.timeline.get_timeline_interface() ext_manager = omni.kit.app.get_app().get_extension_manager() ext_id = ext_manager.get_enabled_extension_id("omni.isaac.motion_generation") self._mg_extension_path = ext_manager.get_extension_path(ext_id) self._polciy_config_dir = os.path.join(self._mg_extension_path, "motion_policy_configs") self.assertTrue(os.path.exists(os.path.join(self._polciy_config_dir, "policy_map.json"))) with open(os.path.join(self._polciy_config_dir, "policy_map.json")) as policy_map: self._policy_map = json.load(policy_map) await create_new_stage_async() await update_stage_async() pass async def _set_determinism_settings(self, robot): World() carb.settings.get_settings().set_bool("/app/runLoops/main/rateLimitEnabled", True) carb.settings.get_settings().set_int("/app/runLoops/main/rateLimitFrequency", int(1 / self._physics_dt)) carb.settings.get_settings().set_int("/persistent/simulation/minFrameRate", int(1 / self._physics_dt)) robot.disable_gravity() robot.set_solver_position_iteration_count(64) robot.set_solver_velocity_iteration_count(64) # After running each test async def tearDown(self): self._timeline.stop() while omni.usd.get_context().get_stage_loading_status()[2] > 0: print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await update_stage_async() self._mg = None await update_stage_async() World.clear_instance() pass async def test_lula_c_space_traj_gen_franka(self): usd_path = get_assets_root_path() + "/Isaac/Robots/Franka/franka.usd" robot_name = "Franka" robot_prim_path = "/panda" ee_frame = "panda_rightfinger" task_space_traj = np.array([[0.5, 0, 0.5], [0.3, -0.3, 0.3], [-0.3, -0.3, 0.6], [0, 0, 0.7]]) orientation_target = rotvecs_to_quats(np.array([np.pi, 0, 0])) await self._test_lula_c_space_traj_gen( usd_path, robot_name, robot_prim_path, ee_frame, task_space_traj, orientation_target ) task_space_traj = np.array([[0.5, 0, 0.5], [0, 0.5, 0.5], [-0.5, 0, 0.5]]) await self._test_lula_c_space_traj_gen( usd_path, robot_name, robot_prim_path, ee_frame, task_space_traj, orientation_target ) async def test_lula_c_space_traj_gen_cobotta(self): usd_path = get_assets_root_path() + "/Isaac/Robots/Denso/cobotta_pro_900.usd" robot_name = "Cobotta_Pro_900" robot_prim_path = "/cobotta_pro_900" ee_frame = "gripper_center" task_space_traj = np.array([[0.5, 0, 0.5], [0.3, -0.3, 0.3], [-0.3, -0.3, 0.6]]) orientation_target = rotvecs_to_quats(np.array([np.pi, 0, 0])) await self._test_lula_c_space_traj_gen( usd_path, robot_name, robot_prim_path, ee_frame, task_space_traj, orientation_target ) async def _test_lula_c_space_traj_gen( self, usd_path, robot_name, robot_prim_path, ee_frame, task_space_targets, orientation_target ): add_reference_to_stage(usd_path, robot_prim_path) self._timeline = omni.timeline.get_timeline_interface() kinematics_config = interface_config_loader.load_supported_lula_kinematics_solver_config(robot_name) self._kinematics_solver = LulaKinematicsSolver(**kinematics_config) # Start Simulation and wait self._timeline.play() await update_stage_async() for i, target_pos in enumerate(task_space_targets): VisualCuboid(f"/targets/target_{i}", position=target_pos, size=0.05) self._robot = Robot(robot_prim_path) self._robot.initialize() await self._set_determinism_settings(self._robot) iks = [] ik = None for target_pos in task_space_targets: ik, succ = self._kinematics_solver.compute_inverse_kinematics( ee_frame, target_pos, target_orientation=orientation_target, warm_start=ik ) if not succ: carb.log_error(f"Could not compute ik for given task_space position {target_pos}") iks.append(ik) iks = np.array(iks) self._trajectory_generator = LulaCSpaceTrajectoryGenerator( kinematics_config["robot_description_path"], kinematics_config["urdf_path"] ) self._art_kinematics = ArticulationKinematicsSolver(self._robot, self._kinematics_solver, ee_frame) trajectory = self._trajectory_generator.compute_c_space_trajectory(iks) self.assertFalse(trajectory is None) self._art_trajectory = ArticulationTrajectory(self._robot, trajectory, self._physics_dt) art_traj = self._art_trajectory.get_action_sequence() initial_positions = art_traj[0].joint_positions initial_positions[initial_positions == None] = 0 self._robot.set_joint_positions(initial_positions) self._robot.set_joint_velocities(np.zeros_like(initial_positions)) await update_stage_async() target_dists = np.ones(len(task_space_targets)) for action in art_traj: await update_stage_async() self._robot.apply_action(action) robot_pos = self._art_kinematics.compute_end_effector_pose()[0] diff = np.linalg.norm(task_space_targets - robot_pos, axis=1) mask = target_dists > diff target_dists[mask] = diff[mask] delete_prim("/targets") self.assertTrue( np.all(target_dists < 0.01), f"Did not hit every task_space target: Distance to targets = {target_dists}" ) async def test_set_c_space_trajectory_solver_config_settings(self): robot_name = "Franka" kinematics_config = interface_config_loader.load_supported_lula_kinematics_solver_config(robot_name) self._trajectory_generator = LulaCSpaceTrajectoryGenerator( kinematics_config["robot_description_path"], kinematics_config["urdf_path"] ) lula_kinematics = LulaKinematicsSolver(**kinematics_config) self._trajectory_generator.set_c_space_position_limits(*lula_kinematics.get_cspace_position_limits()) self._trajectory_generator.set_c_space_velocity_limits(lula_kinematics.get_cspace_velocity_limits()) self._trajectory_generator.set_c_space_acceleration_limits(lula_kinematics.get_cspace_acceleration_limits()) self._trajectory_generator.set_c_space_jerk_limits(lula_kinematics.get_cspace_jerk_limits()) self._trajectory_generator.set_solver_param("max_segment_iterations", 10) self._trajectory_generator.set_solver_param("max_aggregate_iterations", 10) self._trajectory_generator.set_solver_param("convergence_dt", 0.5) self._trajectory_generator.set_solver_param("max_dilation_iterations", 5) self._trajectory_generator.set_solver_param("min_time_span", 0.5) self._trajectory_generator.set_solver_param("time_split_method", "uniform") self._trajectory_generator.set_solver_param("time_split_method", "chord_length") self._trajectory_generator.set_solver_param("time_split_method", "centripetal") async def test_lula_task_space_traj_gen_franka(self): usd_path = get_assets_root_path() + "/Isaac/Robots/Franka/franka.usd" robot_name = "Franka" robot_prim_path = "/panda" ee_frame = "panda_hand" pos_targets = np.array([[0.5, 0, 0.5], [0.3, -0.3, 0.3], [-0.3, -0.3, 0.6], [0, 0, 0.7]]) orient_targets = np.tile(rotvecs_to_quats(np.array([np.pi, 0, 0])), (len(pos_targets), 1)) await self._test_lula_task_space_trajectory_generator( usd_path, robot_name, robot_prim_path, ee_frame, pos_targets, orient_targets ) async def test_lula_task_space_traj_gen_ur10(self): usd_path = get_assets_root_path() + "/Isaac/Robots/UR10/ur10.usd" robot_name = "UR10" robot_prim_path = "/ur10" ee_frame = "ee_link" path, pos_targets, orient_targets = await self._build_rect_path() await self._test_lula_task_space_trajectory_generator( usd_path, robot_name, robot_prim_path, ee_frame, pos_targets, orient_targets, path ) path, pos_targets, orient_targets = await self._build_circle_path_with_rotations() await self._test_lula_task_space_trajectory_generator( usd_path, robot_name, robot_prim_path, ee_frame, pos_targets, orient_targets, path ) async def test_lula_task_space_traj_gen_cobotta(self): usd_path = get_assets_root_path() + "/Isaac/Robots/Denso/cobotta_pro_900.usd" robot_name = "Cobotta_Pro_900" robot_prim_path = "/cobotta_pro_900" ee_frame = "gripper_center" path, pos_targets, orient_targets = await self._build_rect_path() await self._test_lula_task_space_trajectory_generator( usd_path, robot_name, robot_prim_path, ee_frame, pos_targets, orient_targets, path ) path, pos_targets, orient_targets = await self._build_circle_path_with_rotations() await self._test_lula_task_space_trajectory_generator( usd_path, robot_name, robot_prim_path, ee_frame, pos_targets, orient_targets, path ) async def _build_rect_path(self, rot_vec=np.array([np.pi, 0, 0])): rect_path = np.array([[0.3, -0.3, 0.1], [0.3, 0.3, 0.1], [0.3, 0.3, 0.5], [0.3, -0.3, 0.5], [0.3, -0.3, 0.1]]) builder = lula.create_task_space_path_spec( lula.Pose3(lula.Rotation3(np.linalg.norm(rot_vec), rot_vec / np.linalg.norm(rot_vec)), rect_path[0]) ) builder.add_translation(rect_path[1]) builder.add_translation(rect_path[2]) builder.add_translation(rect_path[3]) builder.add_translation(rect_path[4]) path = builder position_targets = np.array( [[0.3, -0.3, 0.1], [0.3, 0.3, 0.1], [0.3, 0.3, 0.5], [0.3, -0.3, 0.5], [0.3, -0.3, 0.1]] ) orientation_targets = rotvecs_to_quats(np.tile(rot_vec, (len(position_targets), 1))) return path, position_targets, orientation_targets async def _build_circle_path_with_rotations(self): builder = lula.create_task_space_path_spec( lula.Pose3(lula.Rotation3(np.pi, np.array([1, 0, 0])), np.array([0.3, 0.2, 0.3])) ) builder.add_three_point_arc(np.array([0.3, -0.2, 0.3]), np.array([0.3, 0, 0.6]), True) builder.add_three_point_arc(np.array([0.3, 0.2, 0.3]), np.array([0.3, 0, 0]), True) builder.add_rotation(lula.Rotation3(np.pi / 2, np.array([1, 0, 0]))) position_targets = np.array( [[0.3, 0.2, 0.3], [0.3, 0, 0.6], [0.3, -0.2, 0.3], [0.3, 0, 0], [0.3, 0.2, 0.3], [0.3, 0.2, 0.3]] ) orientation_targets = rotvecs_to_quats(np.tile(np.array([np.pi, 0, 0]), (len(position_targets), 1))) orientation_targets[-1] = rotvecs_to_quats(np.array([np.pi / 2, 0, 0])) return builder, position_targets, orientation_targets async def _test_lula_task_space_trajectory_generator( self, usd_path, robot_name, robot_prim_path, ee_frame, task_space_targets, orientation_targets, built_path=None ): add_reference_to_stage(usd_path, robot_prim_path) self._timeline = omni.timeline.get_timeline_interface() kinematics_config = interface_config_loader.load_supported_lula_kinematics_solver_config(robot_name) self._kinematics_solver = LulaKinematicsSolver(**kinematics_config) self._trajectory_generator = LulaTaskSpaceTrajectoryGenerator( kinematics_config["robot_description_path"], kinematics_config["urdf_path"] ) # Start Simulation and wait self._timeline.play() await update_stage_async() for i, target_pos in enumerate(task_space_targets): VisualCuboid(f"/targets/target_{i}", position=target_pos, size=0.05) self._robot = Robot(robot_prim_path) self._robot.initialize() await self._set_determinism_settings(self._robot) if built_path is None: trajectory = self._trajectory_generator.compute_task_space_trajectory_from_points( task_space_targets, orientation_targets, ee_frame ) self.assertTrue(trajectory is not None, "Failed to generate trajectory") else: trajectory = self._trajectory_generator.compute_task_space_trajectory_from_path_spec(built_path, ee_frame) self.assertTrue(trajectory is not None, "Failed to generate trajectory") self._art_kinematics = ArticulationKinematicsSolver(self._robot, self._kinematics_solver, ee_frame) self._art_trajectory = ArticulationTrajectory(self._robot, trajectory, self._physics_dt) art_traj = self._art_trajectory.get_action_sequence() initial_positions = art_traj[0].joint_positions initial_positions[initial_positions == None] = 0 self._robot.set_joint_positions(initial_positions) self._robot.set_joint_velocities(np.zeros_like(initial_positions)) await update_stage_async() target_dists = np.ones(len(task_space_targets)) for action in art_traj: await update_stage_async() self._robot.apply_action(action) robot_pos, robot_orient = self._art_kinematics.compute_end_effector_pose() pos_diff = np.linalg.norm(task_space_targets - robot_pos, axis=1) orient_diff = np.linalg.norm(orientation_targets - rot_matrices_to_quats(robot_orient), axis=1) diff = pos_diff + orient_diff mask = target_dists > diff target_dists[mask] = diff[mask] delete_prim("/targets") self.assertTrue( np.all(target_dists < 0.01), f"Did not hit every task_space target: Distance to targets = {target_dists}" ) async def test_set_task_space_trajectory_solver_config_settings(self): robot_name = "Franka" kinematics_config = interface_config_loader.load_supported_lula_kinematics_solver_config(robot_name) self._trajectory_generator = LulaTaskSpaceTrajectoryGenerator( kinematics_config["robot_description_path"], kinematics_config["urdf_path"] ) lula_kinematics = LulaKinematicsSolver(**kinematics_config) self._trajectory_generator.set_c_space_position_limits(*lula_kinematics.get_cspace_position_limits()) self._trajectory_generator.set_c_space_velocity_limits(lula_kinematics.get_cspace_velocity_limits()) self._trajectory_generator.set_c_space_acceleration_limits(lula_kinematics.get_cspace_acceleration_limits()) self._trajectory_generator.set_c_space_jerk_limits(lula_kinematics.get_cspace_jerk_limits()) self._trajectory_generator.set_c_space_trajectory_generator_solver_param("max_segment_iterations", 10) self._trajectory_generator.set_c_space_trajectory_generator_solver_param("max_aggregate_iterations", 10) self._trajectory_generator.set_c_space_trajectory_generator_solver_param("convergence_dt", 0.5) self._trajectory_generator.set_c_space_trajectory_generator_solver_param("max_dilation_iterations", 5) self._trajectory_generator.set_c_space_trajectory_generator_solver_param("min_time_span", 0.5) self._trajectory_generator.set_c_space_trajectory_generator_solver_param("time_split_method", "uniform") self._trajectory_generator.set_c_space_trajectory_generator_solver_param("time_split_method", "chord_length") self._trajectory_generator.set_c_space_trajectory_generator_solver_param("time_split_method", "centripetal") conversion_config = self._trajectory_generator.get_path_conversion_config() conversion_config.alpha = 1.3 conversion_config.initial_s_step_size = 0.04 conversion_config.initial_s_step_size_delta = 0.003 conversion_config.max_iterations = 40 conversion_config.max_position_deviation = 0.002 conversion_config.min_position_deviation = 0.0015 conversion_config.min_s_step_size = 1e-4 conversion_config.min_s_step_size_delta = 1e-4
18,274
Python
44.460199
119
0.663018
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/omni/isaac/motion_generation/tests/test_kinematics.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from omni.isaac.motion_generation.articulation_kinematics_solver import ArticulationKinematicsSolver import omni.kit.test import carb import asyncio # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.motion_generation import interface_config_loader from omni.isaac.motion_generation.lula import LulaKinematicsSolver from omni.isaac.core.utils import distance_metrics from omni.isaac.core.utils.stage import update_stage_async, open_stage_async from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.robots.robot import Robot from omni.isaac.core.world import World from omni.isaac.core.utils.viewports import set_camera_view import os import json import numpy as np from omni.isaac.core.utils.prims import is_prim_path_valid from omni.isaac.core.utils.numpy.rotations import quats_to_rot_matrices from omni.isaac.core.world import World # Having a test class derived from omni.kit.test.AsyncTestCase declared on the root of module will # make it auto-discoverable by omni.kit.test class TestKinematics(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): self._physics_dt = 1 / 60 # duration of physics frame in seconds self._timeline = omni.timeline.get_timeline_interface() ext_manager = omni.kit.app.get_app().get_extension_manager() ext_id = ext_manager.get_enabled_extension_id("omni.isaac.motion_generation") self._mg_extension_path = ext_manager.get_extension_path(ext_id) self._polciy_config_dir = os.path.join(self._mg_extension_path, "motion_policy_configs") self.assertTrue(os.path.exists(os.path.join(self._polciy_config_dir, "policy_map.json"))) with open(os.path.join(self._polciy_config_dir, "policy_map.json")) as policy_map: self._policy_map = json.load(policy_map) carb.settings.get_settings().set_bool("/app/runLoops/main/rateLimitEnabled", True) carb.settings.get_settings().set_int("/app/runLoops/main/rateLimitFrequency", int(1 / self._physics_dt)) carb.settings.get_settings().set_int("/persistent/simulation/minFrameRate", int(1 / self._physics_dt)) pass # After running each test async def tearDown(self): self._timeline.stop() while omni.usd.get_context().get_stage_loading_status()[2] > 0: print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await update_stage_async() self._mg = None await update_stage_async() World.clear_instance() pass async def _set_determinism_settings(self, robot): World() carb.settings.get_settings().set_bool("/app/runLoops/main/rateLimitEnabled", True) carb.settings.get_settings().set_int("/app/runLoops/main/rateLimitFrequency", int(1 / self._physics_dt)) carb.settings.get_settings().set_int("/persistent/simulation/minFrameRate", int(1 / self._physics_dt)) robot.disable_gravity() robot.set_solver_position_iteration_count(64) robot.set_solver_velocity_iteration_count(64) async def reset_robot(self, robot): """ To make motion_generation outputs more deterministic, this method may be used to teleport the robot to specified position targets, setting velocity to 0 This prevents changes in dynamic_control from affecting motion_generation tests """ robot.post_reset() await self._set_determinism_settings(robot) await update_stage_async() pass async def test_lula_fk_ur10(self): usd_path = get_assets_root_path() + "/Isaac/Robots/UR10/ur10.usd" robot_name = "UR10" robot_prim_path = "/ur10" trans_dist, rot_dist = await self._test_lula_fk( usd_path, robot_name, robot_prim_path, joint_target=-np.array([0.1, 0.1, 0.1, 0.1, 0.1, 0.2]) ) self.assertTrue(np.all(trans_dist < 0.001)) self.assertTrue(np.all(rot_dist < 0.005)) async def test_lula_fk_franka(self): usd_path = get_assets_root_path() + "/Isaac/Robots/Franka/franka.usd" robot_name = "Franka" robot_prim_path = "/panda" trans_dist, rot_dist = await self._test_lula_fk( usd_path, robot_name, robot_prim_path, base_pose=np.array([0.10, 0, 1.5]), base_orient=np.array([0.1, 0, 0.3, 0.7]), ) # There is a known bug with the kinematics not matching on the Franka finger frames self.assertTrue(np.all(trans_dist[:-2] < 0.005), trans_dist) self.assertTrue(np.all(rot_dist[:] < 0.005), rot_dist) async def _test_lula_fk( self, usd_path, robot_name, robot_prim_path, joint_target=None, base_pose=np.zeros(3), base_orient=np.array([1, 0, 0, 0]), ): await open_stage_async(usd_path) set_camera_view(eye=[3.5, 2.3, 2.1], target=[0, 0, 0], camera_prim_path="/OmniverseKit_Persp") self._timeline = omni.timeline.get_timeline_interface() kinematics_config = interface_config_loader.load_supported_lula_kinematics_solver_config(robot_name) self._kinematics = LulaKinematicsSolver(**kinematics_config) # Start Simulation and wait self._timeline.play() await update_stage_async() self._robot = Robot(robot_prim_path) self._robot.initialize() self._robot.set_world_pose(base_pose, base_orient) self._kinematics.set_robot_base_pose(base_pose, base_orient) if joint_target is not None: self._robot.get_articulation_controller().apply_action(ArticulationAction(joint_target)) # move towards target or default position await self.move_until_still(self._robot) frame_names = self._kinematics.get_all_frame_names() art_fk = ArticulationKinematicsSolver(self._robot, self._kinematics, frame_names[0]) trans_dists = [] rot_dist = [] # save the distance between lula and usd frames for each frame that exists for both robot views for frame in frame_names: if is_prim_path_valid(robot_prim_path + "/" + frame): art_fk.set_end_effector_frame(frame) lula_frame_pos, lula_frame_rot = art_fk.compute_end_effector_pose() usd_frame_pos, usd_frame_rot = XFormPrim(robot_prim_path + "/" + frame).get_world_pose() trans_dists.append(distance_metrics.weighted_translational_distance(lula_frame_pos, usd_frame_pos)) rot_dist.append( distance_metrics.rotational_distance_angle(lula_frame_rot, quats_to_rot_matrices(usd_frame_rot)) ) return np.array(trans_dists), np.array(rot_dist) async def test_lula_ik_ur10(self): usd_path = get_assets_root_path() + "/Isaac/Robots/UR10/ur10.usd" robot_name = "UR10" robot_prim_path = "/ur10" frame = "ee_link" # await self._test_lula_ik(usd_path,robot_name,robot_prim_path,frame,np.array([40,60,80]),np.array([0,1,0,0]),1,.1) await self._test_lula_ik( usd_path, robot_name, robot_prim_path, frame, np.array([0.40, 0.40, 0.80]), None, 1, 0.1, base_pose=np.array([0.10, 0, 0.5]), base_orient=np.array([0.1, 0, 0.3, 0.7]), ) async def test_lula_ik_franka(self): usd_path = get_assets_root_path() + "/Isaac/Robots/Franka/franka.usd" robot_name = "Franka" robot_prim_path = "/panda" frame = "right_gripper" # await self._test_lula_ik(usd_path,robot_name,robot_prim_path,frame,np.array([40,30,60]),np.array([.1,0,0,-1]),1,.1) await self._test_lula_ik( usd_path, robot_name, robot_prim_path, frame, np.array([0.40, 0.30, 0.60]), np.array([0.1, 0, 0, -1]), 1, 0.1, base_pose=np.array([0.10, 0, 0.5]), base_orient=np.array([0.1, 0, 0.3, 0.7]), ) frame = "panda_hand" await self._test_lula_ik( usd_path, robot_name, robot_prim_path, frame, np.array([0.40, 0.30, 0.60]), None, 1, 0.1, base_pose=np.array([0.10, 0, 0.5]), base_orient=np.array([0.1, 0, 0.3, 0.7]), ) async def _test_lula_ik( self, usd_path, robot_name, robot_prim_path, frame, position_target, orientation_target, position_tolerance, orientation_tolerance, base_pose=np.zeros(3), base_orient=np.array([0, 0, 0, 1]), ): await open_stage_async(usd_path) set_camera_view(eye=[3.5, 2.3, 2.1], target=[0, 0, 0], camera_prim_path="/OmniverseKit_Persp") self._timeline = omni.timeline.get_timeline_interface() kinematics_config = interface_config_loader.load_supported_lula_kinematics_solver_config(robot_name) self._kinematics = LulaKinematicsSolver(**kinematics_config) # Start Simulation and wait self._timeline.play() await update_stage_async() self._robot = Robot(robot_prim_path) self._robot.initialize() self._robot.set_world_pose(base_pose, base_orient) self._kinematics.set_robot_base_pose(base_pose, base_orient) art_ik = ArticulationKinematicsSolver(self._robot, self._kinematics, frame) # testing IK and ArticulationKinematicsSolver object wrapping IK alg_ik_action, success = art_ik.compute_inverse_kinematics( position_target, orientation_target, position_tolerance, orientation_tolerance ) alg_ik, _ = self._kinematics.compute_inverse_kinematics( frame, position_target, orientation_target, None, position_tolerance, orientation_tolerance ) self.assertTrue(success, "IK Solver did not converge to a solution") # check if USD robot can get to IK result self._robot.get_articulation_controller().apply_action(alg_ik_action) await self.move_until_still(self._robot) # check IK consistent with FK lula_pos, lula_rot = self._kinematics.compute_forward_kinematics(frame, joint_positions=alg_ik) self.assertTrue( distance_metrics.weighted_translational_distance(lula_pos, position_target) < position_tolerance ) if orientation_target is not None: tgt_rot = quats_to_rot_matrices(orientation_target) rot_dist = distance_metrics.rotational_distance_angle(lula_rot, tgt_rot) self.assertTrue(rot_dist < orientation_tolerance, "Rotational distance too large: " + str(rot_dist)) # check IK consistent with USD robot frames if is_prim_path_valid(robot_prim_path + "/" + frame): usd_pos, usd_rot = XFormPrim(robot_prim_path + "/" + frame).get_world_pose() trans_dist = distance_metrics.weighted_translational_distance(usd_pos, position_target) self.assertTrue(trans_dist < position_tolerance, str(usd_pos) + str(position_target)) if orientation_target is not None: rot_dist = distance_metrics.rotational_distance_angle(quats_to_rot_matrices(usd_rot), tgt_rot) self.assertTrue(rot_dist < orientation_tolerance) else: carb.log_warn("Frame " + frame + " does not exist on USD robot") async def move_until_still(self, robot, timeout=500): h = 10 positions = np.zeros((h, robot.num_dof)) for i in range(timeout): positions[i % h] = robot.get_joint_positions() await update_stage_async() if i > h: std = np.std(positions, axis=0) if np.all(std < 0.001): return i return timeout
12,635
Python
40.70297
125
0.630313
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/docs/CHANGELOG.md
# Changelog ## [4.5.6] - 2023-01-06 ### Fixed - Typo in variable name in ArticulationTrajectory.get_robot_articulation() ## [4.5.5] - 2022-12-12 ### Changed - Updates to API docs ## [4.5.4] - 2022-12-04 ### Changed - Small change to Cobotta RmpFlow configs for consistency with tutorials. ## [4.5.3] - 2022-12-01 ### Changed - Moved Cortex UR10 RMPflow config file and corresponding policy config to new directory (was only in legacy directory and unused). ## [4.5.2] - 2022-11-29 ### Changed - Updated old robot_description YAML files for Franka, UR10, DOFbot, and Cobotta to remove unecessary fields that had no effect. ## [4.5.1] - 2022-11-28 ### Added - Updated file paths to Nucleus assets in RmpFlow tests for Kawasaki, Flexiv, and Festo robots. ## [4.5.0] - 2022-11-28 ### Added - Added RmpFlow config and test for FestoCobot ## [4.4.0] - 2022-11-28 ### Added - Added RmpFlow configs and tests for Kawasaki and Flexiv robots ## [4.3.1] - 2022-11-22 ### Added - Cortex UR10 configs for UR10 bin supporting stacking demo ## [4.3.0] - 2022-11-22 ### Changed - Updated ArticulationSubset to handle sparse ArticulationActions. Previously, it None-padded the ArticulationAction. - Some modifications to ArticulationSubset to simplify the error checking code and change member names. - Updates ArticulationMotionPolicy to use the sparse API. - Moved ArticulationSubset to omni.isaac.core ## [4.2.0] - 2022-11-18 ### Added - Added RmpFlow configs for universal robots ## [4.1.1] - 2022-11-18 ### Fixed - Fixed missing import statement for ArticulationTrajectory in MotionGeneration __init__ ## [4.1.0] - 2022-11-17 ### Added - Added Trajectory interface, ArticulationTrajectory, and Lula Trajectory Generators ## [4.0.3] - 2022-11-10 ### Changed - Updated determinism settings to include omni.isaac.core World ## [4.0.2] - 2022-10-24 ### Changed - Moved Test cases using UR10 asset to use USD from Nucleus ## [4.0.1] - 2022-10-20 ### Changed - Moved Test cases using Franka asset to use USD from Nucleus ## [4.0.0] - 2022-10-17 ### Changed - Allow user to variable physics dt on each frame to an ArticulationMotionPolicy or set a default value. - Change RmpFlow parameter 'evaluations_per_frame' to 'maximum_substep_size' to account for a possibly varying framerate ## [3.6.4] - 2022-10-06 ### Changed - Updated outdated Franka URDF with new joint limits on joint 7 ## [3.6.3] - 2022-09-02 ### Added - Added function to get default rmpflow cspace target - Added test case for setting rmpflow cspace target ## [3.6.2] - 2022-09-01 ### Changed - Remove legacy viewport calls from tests ## [3.6.1] - 2022-08-16 ### Changed - Updated RMPflow parameters in config YAML files for Denso robots: Turned on velocity_cap_rmp ## [3.6.0] - 2022-08-10 ### Added - Added Cobotta Pro 900 and Cobotta Pro 1300 as supported robots with provided RMPflow config files and test cases. ## [3.5.1] - 2022-08-03 ### Fixed - `ArticulationSubset.get_joint_subset_indices()` fixed (was returning function rather than return value of function call.) ## [3.5.0] - 2022-07-26 ### Changed - Changed gripper_controller argument to gripper in the PickPlaceController. - moved PickPlaceController and StackingController to omni.isaac.manipulators ## [3.4.0] - 2022-07-20 ### Added - Added set_param() function to Lula RRT implementation. ### Changed - Changed docstrings for PathPlannerVisualizer and Lula RRT implementation ### Fixed - Fixed unreliable test case for lula RRT by reducing the RRT step size ## [3.3.1] - 2022-07-19 ### Fixed - Fixed bug in RmpFlow.set_cspace_target() which changed the end effector target when it shouldn't have - Fixed bug in RmpFlow.get_internal_robot_joint_states() which resulted in a TypeError ## [3.3.0] - 2022-07-18 ### Changed - Updated ArticulationSubset to wait until robot joint states are queried to access the Articulation object. This avoids annoying errors when attempting to initialize an ArticulationMotionPolicy before the "play" button has been pressed. ## [3.2.1] - 2022-06-28 ### Changed - Updated MotionPolicy to not assume a default orientation. It now passes None to the MotionPolicy. ## [3.2.0] - 2022-06-17 ### Added - Added PathPlanningInterface with Lula RRT implementation and simple class for aiding visualization ## [3.1.2] - 2022-05-23 ### Added - Added conversion to numpy if articulation backend is GPU/torch ## [3.1.1] - 2022-05-18 ### Added - Added getter to get the MotionPolicy from a MotionPolicyController. ## [3.1.0] - 2022-05-09 ### Changed - Updated all hard coded USD object values to meters in motion_generation tests ### Fixed - Fixed bug in RmpFlow.create_ground_plane() related to unit conversion ## [3.0.1] - 2022-05-02 ### Added - Added some accessors to ArticulationMotionPolicy and ArticulationSubset. ## [3.0.0] - 2022-04-29 ### Added - Added Kinematics interface with a Lula implementation - Added ArticulationKinematicsSolver wrapper for interfacing kinematics with USD robot ### Changed - Replaced InverseKinematicsSolver(BaseController) object with ArticulationKinematicsSolver ## [2.0.0] - 2022-04-21 ### Changed - Renamed MotionGenerator to ArticulationMotionPolicy ### Added - Created ArticulationSubset class to handle index mapping between Articulation and MotionPolicy ## [1.3.1] - 2022-04-27 ### Added - Added RmpFlowSmoothed to lula/motion_policies.py to support cortex. ## [1.3.0] - 2022-04-18 ### Changed - Extracted methods from MotionPolicy to form a WorldInterface class. This has no functional effect on any code outside MotionGeneration ## [1.2.0] - 2022-04-15 ### Changed - Obstacles are now marked as static explicitly when added to MotionPolicy ## [1.1.0] - 2022-04-14 ### Added - Separated RmpFlow visualization functions for end effector and collision spheres - Added test case for visualization - Added Sdf.ChangeBlock() to visualization functions for efficiency ## [1.0.3] - 2022-04-13 ### Changed - Fixed typo in interface_config_loader.py. ## [1.0.2] - 2022-04-01 ### Changed - modified default RmpFlow configs have fewer updates per frame (10 was unnecessary) and to not ignore robot state updates by default - updated golden values in tests as a direct result of config change ## [1.0.1] - 2022-04-01 ### Added - test case for motion_generation extension: test for proper behavior when add/enable/disable/remove objects to RmpFlow ### Fixed - ground plane handling: enable/disable/remove ground_plane didn't work - static obstacle handling: dictionary key error when enable/disable/remove static obstacles ## [1.0.0] - 2022-03-25 ### Changed - Restructured MotionGeneration extension to place emphasis on MotionPolicy over MotionGeneration. The user is now expected to interact directly with a MotionPolicy for adding/editing obstacles, and setting targets. MotionGeneration is a light utility class for interfacing the simulated USD robot to the MotionPolicy (get USD robot state and appropriately map the joint indeces). - RmpFlowController -> MotionPolicyController: - The RmpFlowController wrapper that was used to interface Core examples with RmpFlow has been expanded to wrap any MotionPolicy - omni.isaac.motion_generation/policy_configs -> omni.isaac.motion_generation/motion_policy_configs: changed folder containing config files for MotionPolicies to be named "motion_policy_configs" to leave room for future interfaces to have config directories - Path to RmpFlow: omni.isaac.motion_generation.LulaMotionPolicies.RmpFlow -> omni.isaac.motion_generation.lula.motion_policies.RmpFlow ### Added - interface_config_loader: a set of helper functions for checking what config files exist directly in the motion_generation extension and loading the configs as keyword arguments to the appropriate class e.g. RmpFlow(**loaded_config_dict) ## [0.2.1] - 2022-02-15 - Updated internal RMPflow implementation to allow for visualizing Lula collision spheres as prims on the stage ## [0.2.0] - 2022-02-10 ### Changed - Updated MotionGeneration to use Core API to query prim position and control the robot ## [0.1.5] - 2022-02-10 ### Fixed - Undefined joint in dofbot USD referenced by RMPflow config ## [0.1.4] - 2022-01-20 ### Added - moved kinematics.py from omni.isaac.core.utils to this extension ## [0.1.3] - 2021-12-13 ### Changed - Removed deprecated fields from the Lula robot description files and RMPflow configuration files for the DOFBOT and Franka robots. This also corrects an oversight in the Franka robot description file that had resulted in a lack of collision spheres (and thus obstacle avoidance) for panda_link6. ## [0.1.2] - 2021-12-02 ### Changed - event_velocities to events_dt in PickPlaceController - Added new phase of wait in PickPlaceController ## [0.1.1] - 2021-08-04 ### Added - Added a simple wheel base pose controller. ## [0.1.0] - 2021-08-04 ### Added - Initial version of Isaac Sim Motion Generation Extension
8,972
Markdown
27.305994
384
0.741864
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/docs/README.md
# Usage To enable this extension, go to the Extension Manager menu and enable omni.isaac.motion_generation extension.
120
Markdown
23.199995
109
0.8
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.motion_generation/docs/index.rst
Motion Generation Extension [omni.isaac.motion_generation] ########################################################## World Interface ================ .. autoclass:: omni.isaac.motion_generation.WorldInterface :members: :undoc-members: :member-order: bysource Motion Policy Interface ======================= .. autoclass:: omni.isaac.motion_generation.MotionPolicy :members: :undoc-members: :member-order: bysource .. autoclass:: omni.isaac.motion_generation.lula.motion_policies.RmpFlow :members: :undoc-members: :member-order: bysource ArticulationMotionPolicy ========================= .. autoclass:: omni.isaac.motion_generation.ArticulationMotionPolicy :members: :undoc-members: :member-order: bysource KinematicsSolver =========================== .. autoclass:: omni.isaac.motion_generation.KinematicsSolver :members: :undoc-members: :member-order: bysource .. autoclass:: omni.isaac.motion_generation.LulaKinematicsSolver :members: :undoc-members: :member-order: bysource ArticulationKinematicsSolver ============================= .. autoclass:: omni.isaac.motion_generation.ArticulationKinematicsSolver :members: :undoc-members: :member-order: bysource Path Planning Interface ======================== .. autoclass:: omni.isaac.motion_generation.PathPlanner :members: :undoc-members: :member-order: bysource .. autoclass:: omni.isaac.motion_generation.lula.RRT :members: :undoc-members: :member-order: bysource Trajectory =================== .. autoclass:: omni.isaac.motion_generation.Trajectory :members: :undoc-members: :member-order: bysource .. autoclass:: omni.isaac.motion_generation.lula.LulaTrajectory :members: :undoc-members: :member-order: bysource Lula Trajectory Generators ========================== .. autoclass:: omni.isaac.motion_generation.lula.LulaCSpaceTrajectoryGenerator :members: :undoc-members: :member-order: bysource .. autoclass:: omni.isaac.motion_generation.lula.LulaTaskSpaceTrajectoryGenerator :members: :undoc-members: :member-order: bysource ArticulationTrajectory ====================== .. autoclass:: omni.isaac.motion_generation.ArticulationTrajectory :members: :undoc-members: :member-order: bysource Motion Policy Base Controller ============================== .. automodule:: omni.isaac.motion_generation.motion_policy_controller :inherited-members: :members: :undoc-members: :exclude-members: Wheel Base Pose Controller =========================== .. automodule:: omni.isaac.motion_generation.wheel_base_pose_controller :inherited-members: :members: :undoc-members: :exclude-members:
2,677
reStructuredText
21.504201
81
0.663429
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.version/PACKAGE-LICENSES/omni.isaac.version-LICENSE.md
Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. NVIDIA CORPORATION and its licensors retain all intellectual property and proprietary rights in and to this software, related documentation and any modifications thereto. Any use, reproduction, disclosure or distribution of this software and related documentation without an express license agreement from NVIDIA CORPORATION is strictly prohibited.
412
Markdown
57.999992
74
0.839806
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.version/config/extension.toml
[core] reloadable = true order = 0 [package] version = "1.0.0" category = "Other" title = "Isaac Sim Version" description = "Isaac Sim Version" authors = ["NVIDIA"] repository = "" keywords = ["isaac"] changelog = "docs/CHANGELOG.md" readme = "docs/README.md" icon = "data/icon.png" [dependencies] [[python.module]] name = "omni.isaac.version"
347
TOML
15.571428
33
0.682997
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.version/omni/isaac/version/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .version import *
452
Python
40.181815
76
0.803097
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.version/omni/isaac/version/version.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import sys import os.path import typing import carb.settings import carb.tokens class Version: def __init__(self): self.core = "" self.prerelease = "" self.major = "" self.minor = "" self.patch = "" self.pretag = "" self.prebuild = "" self.buildtag = "" def parse_version(full_version: Version): parsed_version = Version() if "+" in full_version: full_version, parsed_version.buildtag = full_version.split("+") if "-" in full_version: parsed_version.core, parsed_version.prerelease = full_version.split("-", maxsplit=1) parsed_version.major, parsed_version.minor, parsed_version.patch = parsed_version.core.split(".", maxsplit=2) parsed_version.pretag, parsed_version.prebuild = parsed_version.prerelease.split(".", maxsplit=1) else: parsed_version.major, parsed_version.minor, parsed_version.patch = full_version.split(".", maxsplit=2) parsed_version.core = full_version return parsed_version def get_version() -> typing.Tuple[str, str, str, str, str, str, str, str]: """Retrieve version from file Returns: Core version (str) Pre-release tag and build number (str) Major version (str) Minor version (str) Patch version (str) Pre-release tag (str) Build number (str) Build tag (str) """ app_folder = carb.settings.get_settings().get_as_string("/app/folder") if not app_folder: app_folder = carb.tokens.get_tokens_interface().resolve("${app}") app_start_folder = os.path.normpath(os.path.join(app_folder, os.pardir)) app_version = open(f"{app_start_folder}/VERSION").readline().strip() parsed_version = parse_version(app_version) return ( parsed_version.core, parsed_version.prerelease, parsed_version.major, parsed_version.minor, parsed_version.patch, parsed_version.pretag, parsed_version.prebuild, parsed_version.buildtag, )
2,476
Python
32.931506
117
0.657512
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.version/docs/CHANGELOG.md
# Changelog ## [1.0.0] - 2022-05-12 ### Added - Added first version of version.
82
Markdown
10.857141
33
0.621951
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.version/docs/README.md
# Usage To enable this extension, go to the Extension Manager menu and enable omni.isaac.version extension
107
Markdown
34.999988
98
0.813084
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.version/docs/index.rst
omni.isaac.version ########################### .. toctree:: :maxdepth: 1 CHANGELOG
93
reStructuredText
8.399999
27
0.44086
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/PACKAGE-LICENSES/omni.isaac.franka-LICENSE.md
Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. NVIDIA CORPORATION and its licensors retain all intellectual property and proprietary rights in and to this software, related documentation and any modifications thereto. Any use, reproduction, disclosure or distribution of this software and related documentation without an express license agreement from NVIDIA CORPORATION is strictly prohibited.
412
Markdown
57.999992
74
0.839806
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/config/extension.toml
[core] reloadable = true order = 0 [package] version = "0.4.0" category = "Simulation" title = "Isaac Franka Robot" description = "Isaac Franka Robot Helper Class" authors = ["NVIDIA"] repository = "" keywords = ["isaac"] changelog = "docs/CHANGELOG.md" readme = "docs/README.md" icon = "data/icon.png" [dependencies] "omni.isaac.core" = {} "omni.isaac.motion_generation" = {} "omni.isaac.manipulators" = {} [[python.module]] name = "omni.isaac.franka"
456
TOML
18.041666
47
0.686404
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/omni/isaac/franka/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.franka.franka import Franka from omni.isaac.franka.kinematics_solver import KinematicsSolver
537
Python
47.909087
76
0.819367
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/omni/isaac/franka/franka.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from typing import Optional, List import numpy as np from omni.isaac.core.robots.robot import Robot from omni.isaac.core.prims.rigid_prim import RigidPrim from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units import carb from omni.isaac.manipulators.grippers.parallel_gripper import ParallelGripper class Franka(Robot): """[summary] Args: prim_path (str): [description] name (str, optional): [description]. Defaults to "franka_robot". usd_path (Optional[str], optional): [description]. Defaults to None. position (Optional[np.ndarray], optional): [description]. Defaults to None. orientation (Optional[np.ndarray], optional): [description]. Defaults to None. end_effector_prim_name (Optional[str], optional): [description]. Defaults to None. gripper_dof_names (Optional[List[str]], optional): [description]. Defaults to None. gripper_open_position (Optional[np.ndarray], optional): [description]. Defaults to None. gripper_closed_position (Optional[np.ndarray], optional): [description]. Defaults to None. """ def __init__( self, prim_path: str, name: str = "franka_robot", usd_path: Optional[str] = None, position: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, end_effector_prim_name: Optional[str] = None, gripper_dof_names: Optional[List[str]] = None, gripper_open_position: Optional[np.ndarray] = None, gripper_closed_position: Optional[np.ndarray] = None, deltas: Optional[np.ndarray] = None, ) -> None: prim = get_prim_at_path(prim_path) self._end_effector = None self._gripper = None self._end_effector_prim_name = end_effector_prim_name if not prim.IsValid(): if usd_path: add_reference_to_stage(usd_path=usd_path, prim_path=prim_path) else: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") usd_path = assets_root_path + "/Isaac/Robots/Franka/franka.usd" add_reference_to_stage(usd_path=usd_path, prim_path=prim_path) if self._end_effector_prim_name is None: self._end_effector_prim_path = prim_path + "/panda_rightfinger" else: self._end_effector_prim_path = prim_path + "/" + end_effector_prim_name if gripper_dof_names is None: gripper_dof_names = ["panda_finger_joint1", "panda_finger_joint2"] if gripper_open_position is None: gripper_open_position = np.array([0.05, 0.05]) / get_stage_units() if gripper_closed_position is None: gripper_closed_position = np.array([0.0, 0.0]) else: if self._end_effector_prim_name is None: self._end_effector_prim_path = prim_path + "/panda_rightfinger" else: self._end_effector_prim_path = prim_path + "/" + end_effector_prim_name if gripper_dof_names is None: gripper_dof_names = ["panda_finger_joint1", "panda_finger_joint2"] if gripper_open_position is None: gripper_open_position = np.array([0.05, 0.05]) / get_stage_units() if gripper_closed_position is None: gripper_closed_position = np.array([0.0, 0.0]) super().__init__( prim_path=prim_path, name=name, position=position, orientation=orientation, articulation_controller=None ) if gripper_dof_names is not None: if deltas is None: deltas = np.array([0.05, 0.05]) / get_stage_units() self._gripper = ParallelGripper( end_effector_prim_path=self._end_effector_prim_path, joint_prim_names=gripper_dof_names, joint_opened_positions=gripper_open_position, joint_closed_positions=gripper_closed_position, action_deltas=deltas, ) return @property def end_effector(self) -> RigidPrim: """[summary] Returns: RigidPrim: [description] """ return self._end_effector @property def gripper(self) -> ParallelGripper: """[summary] Returns: ParallelGripper: [description] """ return self._gripper def initialize(self, physics_sim_view=None) -> None: """[summary] """ super().initialize(physics_sim_view) self._end_effector = RigidPrim(prim_path=self._end_effector_prim_path, name=self.name + "_end_effector") self._end_effector.initialize(physics_sim_view) self._gripper.initialize( physics_sim_view=physics_sim_view, articulation_apply_action_func=self.apply_action, get_joint_positions_func=self.get_joint_positions, set_joint_positions_func=self.set_joint_positions, dof_names=self.dof_names, ) return def post_reset(self) -> None: """[summary] """ super().post_reset() self._gripper.post_reset() self._articulation_controller.switch_dof_control_mode( dof_index=self.gripper.joint_dof_indicies[0], mode="position" ) self._articulation_controller.switch_dof_control_mode( dof_index=self.gripper.joint_dof_indicies[1], mode="position" ) return
6,207
Python
42.71831
116
0.612856
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/omni/isaac/franka/kinematics_solver.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.motion_generation import ArticulationKinematicsSolver, interface_config_loader, LulaKinematicsSolver from omni.isaac.core.articulations import Articulation from typing import Optional class KinematicsSolver(ArticulationKinematicsSolver): """Kinematics Solver for Franka robot. This class loads a LulaKinematicsSovler object Args: robot_articulation (Articulation): An initialized Articulation object representing this Franka end_effector_frame_name (Optional[str]): The name of the Franka end effector. If None, an end effector link will be automatically selected. Defaults to None. """ def __init__(self, robot_articulation: Articulation, end_effector_frame_name: Optional[str] = None) -> None: kinematics_config = interface_config_loader.load_supported_lula_kinematics_solver_config("Franka") self._kinematics = LulaKinematicsSolver(**kinematics_config) if end_effector_frame_name is None: end_effector_frame_name = "right_gripper" ArticulationKinematicsSolver.__init__(self, robot_articulation, self._kinematics, end_effector_frame_name) return
1,598
Python
47.454544
121
0.760951
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/omni/isaac/franka/tasks/pick_place.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni.isaac.core.tasks as tasks from omni.isaac.franka import Franka from omni.isaac.core.utils.prims import is_prim_path_valid from omni.isaac.core.utils.string import find_unique_string_name from typing import Optional import numpy as np class PickPlace(tasks.PickPlace): """[summary] Args: name (str, optional): [description]. Defaults to "franka_pick_place". cube_initial_position (Optional[np.ndarray], optional): [description]. Defaults to None. cube_initial_orientation (Optional[np.ndarray], optional): [description]. Defaults to None. target_position (Optional[np.ndarray], optional): [description]. Defaults to None. cube_size (Optional[np.ndarray], optional): [description]. Defaults to None. offset (Optional[np.ndarray], optional): [description]. Defaults to None. """ def __init__( self, name: str = "franka_pick_place", cube_initial_position: Optional[np.ndarray] = None, cube_initial_orientation: Optional[np.ndarray] = None, target_position: Optional[np.ndarray] = None, cube_size: Optional[np.ndarray] = None, offset: Optional[np.ndarray] = None, ) -> None: tasks.PickPlace.__init__( self, name=name, cube_initial_position=cube_initial_position, cube_initial_orientation=cube_initial_orientation, target_position=target_position, cube_size=cube_size, offset=offset, ) return def set_robot(self) -> Franka: """[summary] Returns: Franka: [description] """ franka_prim_path = find_unique_string_name( initial_name="/World/Franka", is_unique_fn=lambda x: not is_prim_path_valid(x) ) franka_robot_name = find_unique_string_name( initial_name="my_franka", is_unique_fn=lambda x: not self.scene.object_exists(x) ) return Franka(prim_path=franka_prim_path, name=franka_robot_name)
2,499
Python
39.32258
103
0.654662
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/omni/isaac/franka/tasks/stacking.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.core.tasks import Stacking as BaseStacking from omni.isaac.franka import Franka from omni.isaac.core.utils.prims import is_prim_path_valid from omni.isaac.core.utils.string import find_unique_string_name from omni.isaac.core.utils.stage import get_stage_units import numpy as np from typing import Optional class Stacking(BaseStacking): """[summary] Args: name (str, optional): [description]. Defaults to "franka_stacking". target_position (Optional[np.ndarray], optional): [description]. Defaults to None. cube_size (Optional[np.ndarray], optional): [description]. Defaults to None. offset (Optional[np.ndarray], optional): [description]. Defaults to None. """ def __init__( self, name: str = "franka_stacking", target_position: Optional[np.ndarray] = None, cube_size: Optional[np.ndarray] = None, offset: Optional[np.ndarray] = None, ) -> None: if target_position is None: target_position = np.array([0.5, 0.5, 0]) / get_stage_units() BaseStacking.__init__( self, name=name, cube_initial_positions=np.array([[0.3, 0.3, 0.3], [0.3, -0.3, 0.3]]) / get_stage_units(), cube_initial_orientations=None, stack_target_position=target_position, cube_size=cube_size, offset=offset, ) return def set_robot(self) -> Franka: """[summary] Returns: Franka: [description] """ franka_prim_path = find_unique_string_name( initial_name="/World/Franka", is_unique_fn=lambda x: not is_prim_path_valid(x) ) franka_robot_name = find_unique_string_name( initial_name="my_franka", is_unique_fn=lambda x: not self.scene.object_exists(x) ) return Franka(prim_path=franka_prim_path, name=franka_robot_name)
2,379
Python
38.016393
101
0.644388
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/omni/isaac/franka/tasks/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.franka.tasks.follow_target import FollowTarget from omni.isaac.franka.tasks.pick_place import PickPlace from omni.isaac.franka.tasks.stacking import Stacking
602
Python
49.249996
76
0.820598
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/omni/isaac/franka/tasks/follow_target.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni.isaac.core.tasks as tasks from omni.isaac.franka import Franka from omni.isaac.core.utils.prims import is_prim_path_valid from omni.isaac.core.utils.string import find_unique_string_name from typing import Optional import numpy as np class FollowTarget(tasks.FollowTarget): """[summary] Args: name (str, optional): [description]. Defaults to "franka_follow_target". target_prim_path (Optional[str], optional): [description]. Defaults to None. target_name (Optional[str], optional): [description]. Defaults to None. target_position (Optional[np.ndarray], optional): [description]. Defaults to None. target_orientation (Optional[np.ndarray], optional): [description]. Defaults to None. offset (Optional[np.ndarray], optional): [description]. Defaults to None. franka_prim_path (Optional[str], optional): [description]. Defaults to None. franka_robot_name (Optional[str], optional): [description]. Defaults to None. """ def __init__( self, name: str = "franka_follow_target", target_prim_path: Optional[str] = None, target_name: Optional[str] = None, target_position: Optional[np.ndarray] = None, target_orientation: Optional[np.ndarray] = None, offset: Optional[np.ndarray] = None, franka_prim_path: Optional[str] = None, franka_robot_name: Optional[str] = None, ) -> None: tasks.FollowTarget.__init__( self, name=name, target_prim_path=target_prim_path, target_name=target_name, target_position=target_position, target_orientation=target_orientation, offset=offset, ) self._franka_prim_path = franka_prim_path self._franka_robot_name = franka_robot_name return def set_robot(self) -> Franka: """[summary] Returns: Franka: [description] """ if self._franka_prim_path is None: self._franka_prim_path = find_unique_string_name( initial_name="/World/Franka", is_unique_fn=lambda x: not is_prim_path_valid(x) ) if self._franka_robot_name is None: self._franka_robot_name = find_unique_string_name( initial_name="my_franka", is_unique_fn=lambda x: not self.scene.object_exists(x) ) return Franka(prim_path=self._franka_prim_path, name=self._franka_robot_name)
2,963
Python
41.342857
97
0.643267
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/omni/isaac/franka/controllers/rmpflow_controller.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni.isaac.motion_generation as mg from omni.isaac.core.articulations import Articulation class RMPFlowController(mg.MotionPolicyController): """[summary] Args: name (str): [description] robot_articulation (Articulation): [description] physics_dt (float, optional): [description]. Defaults to 1.0/60.0. """ def __init__(self, name: str, robot_articulation: Articulation, physics_dt: float = 1.0 / 60.0) -> None: self.rmp_flow_config = mg.interface_config_loader.load_supported_motion_policy_config("Franka", "RMPflow") self.rmp_flow = mg.lula.motion_policies.RmpFlow(**self.rmp_flow_config) self.articulation_rmp = mg.ArticulationMotionPolicy(robot_articulation, self.rmp_flow, physics_dt) mg.MotionPolicyController.__init__(self, name=name, articulation_motion_policy=self.articulation_rmp) self._default_position, self._default_orientation = ( self._articulation_motion_policy._robot_articulation.get_world_pose() ) self._motion_policy.set_robot_base_pose( robot_position=self._default_position, robot_orientation=self._default_orientation ) return def reset(self): mg.MotionPolicyController.reset(self) self._motion_policy.set_robot_base_pose( robot_position=self._default_position, robot_orientation=self._default_orientation )
1,870
Python
43.547618
114
0.705348
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/omni/isaac/franka/controllers/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.franka.controllers.rmpflow_controller import RMPFlowController from omni.isaac.franka.controllers.pick_place_controller import PickPlaceController from omni.isaac.franka.controllers.stacking_controller import StackingController
672
Python
55.083329
83
0.83631
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/omni/isaac/franka/controllers/pick_place_controller.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.manipulators.grippers.parallel_gripper import ParallelGripper import omni.isaac.manipulators.controllers as manipulators_controllers from omni.isaac.core.articulations import Articulation from omni.isaac.franka.controllers import RMPFlowController from typing import Optional, List class PickPlaceController(manipulators_controllers.PickPlaceController): """[summary] Args: name (str): [description] gripper (ParallelGripper): [description] robot_articulation (Articulation): [description] end_effector_initial_height (Optional[float], optional): [description]. Defaults to None. events_dt (Optional[List[float]], optional): [description]. Defaults to None. """ def __init__( self, name: str, gripper: ParallelGripper, robot_articulation: Articulation, end_effector_initial_height: Optional[float] = None, events_dt: Optional[List[float]] = None, ) -> None: if events_dt is None: events_dt = [0.008, 0.005, 1, 0.1, 0.05, 0.05, 0.0025, 1, 0.008, 0.08] manipulators_controllers.PickPlaceController.__init__( self, name=name, cspace_controller=RMPFlowController( name=name + "_cspace_controller", robot_articulation=robot_articulation ), gripper=gripper, end_effector_initial_height=end_effector_initial_height, events_dt=events_dt, ) return
1,967
Python
39.999999
101
0.677682
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/omni/isaac/franka/controllers/stacking_controller.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni.isaac.manipulators.controllers as manipulators_controllers from omni.isaac.franka.controllers import PickPlaceController from omni.isaac.manipulators.grippers.parallel_gripper import ParallelGripper from omni.isaac.core.articulations import Articulation from typing import List class StackingController(manipulators_controllers.StackingController): """[summary] Args: name (str): [description] gripper (ParallelGripper): [description] robot_prim_path (str): [description] picking_order_cube_names (List[str]): [description] robot_observation_name (str): [description] """ def __init__( self, name: str, gripper: ParallelGripper, robot_articulation: Articulation, picking_order_cube_names: List[str], robot_observation_name: str, ) -> None: manipulators_controllers.StackingController.__init__( self, name=name, pick_place_controller=PickPlaceController( name=name + "_pick_place_controller", gripper=gripper, robot_articulation=robot_articulation ), picking_order_cube_names=picking_order_cube_names, robot_observation_name=robot_observation_name, ) return
1,749
Python
37.888888
108
0.691252
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/docs/CHANGELOG.md
# Changelog ## [0.4.0] - 2022-09-27 ### Removed - usd files local to extension ## [0.3.0] - 2022-07-26 ### Removed - Removed GripperController class and used the new ParallelGripper class instead. ### Changed - Changed gripper_dof_indices argument in PickPlaceController to gripper - Changed gripper_dof_indices argument in StackingController to gripper ### Added - Added deltas argument in Franka class for the gripper action deltas when openning or closing. ## [0.2.1] - 2022-07-22 ### Fixed - Bug with adding a custom usd for manipulator ## [0.2.0] - 2022-05-02 ### Changed - Changed InverseKinematicsSolver class to KinematicsSolver class, using the new LulaKinematicsSolver class in motion_generation ## [0.1.4] - 2022-04-21 ### Changed - Updated RmpFlowController class init alongside modifying motion_generation extension ## [0.1.3] - 2022-04-13 ### Changed - Fix Franka units in gripper open config. ## [0.1.2] - 2022-03-25 ### Changed - Updated RmpFlowController class alongside changes to motion_generation extension ## [0.1.1] - 2022-03-16 ### Changed - Replaced find_nucleus_server() with get_assets_root_path() ## [0.1.0] - 2021-09-01 ### Added - Added Franka class and and Franka Task Follower Class
1,234
Markdown
21.87037
128
0.724473
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/docs/README.md
# Usage To enable this extension, go to the Extension Manager menu and enable omni.isaac.franka extension
106
Markdown
34.666655
97
0.811321
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.franka/docs/index.rst
Franka Robot [omni.isaac.franka] ################################ Franka ============= .. automodule:: omni.isaac.franka.franka :inherited-members: :members: :undoc-members: :exclude-members: Franka Kinematics Solver ========================= .. automodule:: omni.isaac.franka.kinematics_solver :inherited-members: :members: Franka Controllers ================== .. automodule:: omni.isaac.franka.controllers :inherited-members: :imported-members: :members: :undoc-members: :exclude-members: Franka Tasks ============= .. automodule:: omni.isaac.franka.tasks :inherited-members: :imported-members: :members: :undoc-members: :exclude-members:
717
reStructuredText
16.095238
51
0.585774
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/PACKAGE-LICENSES/omni.isaac.debug_draw-LICENSE.md
Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. NVIDIA CORPORATION and its licensors retain all intellectual property and proprietary rights in and to this software, related documentation and any modifications thereto. Any use, reproduction, disclosure or distribution of this software and related documentation without an express license agreement from NVIDIA CORPORATION is strictly prohibited.
412
Markdown
57.999992
74
0.839806
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/config/extension.toml
[core] reloadable = true order = 0 [package] version = "0.2.3" category = "Simulation" title = "Isaac Sim Debug Drawing" description = "Persistent Debug Drawing Helpers" authors = ["NVIDIA"] repository = "" keywords = ["isaac", "physics", "inspect",] changelog = "docs/CHANGELOG.md" readme = "docs/README.md" icon = "data/icon.png" writeTarget.kit = true # Other extensions that must be loaded before this one [dependencies] "omni.graph" = {} "omni.graph.tools" = {} "omni.debugdraw" = {} # needed to access drawing interfaces: "omni.kit.renderer.core" = {} "omni.kit.viewport.window" = {} "omni.hydra.rtx" = {} # The generated tests will make use of these modules "omni.usd" = {} "omni.kit.async_engine" = {} [[python.module]] name = "omni.isaac.debug_draw" [[python.module]] name = "omni.isaac.debug_draw.tests" # Watch the .ogn files for hot reloading (only for Python files) [fswatcher.patterns] include = ["*.ogn", "*.py"] exclude = ["Ogn*Database.py"] [[native.plugin]] path = "bin/*.plugin" recursive = false
1,022
TOML
21.733333
64
0.68591
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/omni/isaac/debug_draw/__init__.py
# Copyright (c) 2018-2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .scripts.extension import *
467
Python
41.545451
76
0.805139
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/omni/isaac/debug_draw/ogn/OgnDebugDrawPointCloudDatabase.py
"""Support for simplified access to data on nodes of type omni.isaac.debug_draw.DebugDrawPointCloud Take a point cloud as input and display it in the scene. """ import omni.graph.core as og import omni.graph.core._omni_graph_core as _og import omni.graph.tools.ogn as ogn import carb import numpy class OgnDebugDrawPointCloudDatabase(og.Database): """Helper class providing simplified access to data on nodes of type omni.isaac.debug_draw.DebugDrawPointCloud Class Members: node: Node being evaluated Attribute Value Properties: Inputs: inputs.color inputs.depthTest inputs.execIn inputs.pointCloudData inputs.transform inputs.width """ # This is an internal object that provides per-class storage of a per-node data dictionary PER_NODE_DATA = {} # This is an internal object that describes unchanging attributes in a generic way # The values in this list are in no particular order, as a per-attribute tuple # Name, Type, ExtendedTypeIndex, UiName, Description, Metadata, # Is_Required, DefaultValue, Is_Deprecated, DeprecationMsg # You should not need to access any of this data directly, use the defined database interfaces INTERFACE = og.Database._get_interface([ ('inputs:color', 'color4f', 0, None, 'Color of points', {ogn.MetadataKeys.DEFAULT: '[0.75, 0.75, 1, 1]'}, True, [0.75, 0.75, 1, 1], False, ''), ('inputs:depthTest', 'bool', 0, 'Depth Test Points', 'If true, the points will not render when behind other objects.', {ogn.MetadataKeys.DEFAULT: 'true'}, True, True, False, ''), ('inputs:execIn', 'execution', 0, None, 'The input execution port', {}, True, None, False, ''), ('inputs:pointCloudData', 'point3f[]', 0, None, 'Buffer of 3d points containing point cloud data', {ogn.MetadataKeys.DEFAULT: '[]'}, True, [], False, ''), ('inputs:transform', 'matrix4d', 0, None, 'The matrix to transform the points by', {}, True, [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]], False, ''), ('inputs:width', 'float', 0, None, 'Size of points', {ogn.MetadataKeys.DEFAULT: '0.02'}, True, 0.02, False, ''), ]) @classmethod def _populate_role_data(cls): """Populate a role structure with the non-default roles on this node type""" role_data = super()._populate_role_data() role_data.inputs.color = og.Database.ROLE_COLOR role_data.inputs.execIn = og.Database.ROLE_EXECUTION role_data.inputs.pointCloudData = og.Database.ROLE_POINT role_data.inputs.transform = og.Database.ROLE_MATRIX return role_data class ValuesForInputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = {"color", "depthTest", "execIn", "transform", "width", "_setting_locked", "_batchedReadAttributes", "_batchedReadValues"} """Helper class that creates natural hierarchical access to input attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedReadAttributes = [self._attributes.color, self._attributes.depthTest, self._attributes.execIn, self._attributes.transform, self._attributes.width] self._batchedReadValues = [[0.75, 0.75, 1, 1], True, None, [1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0], 0.02] @property def pointCloudData(self): data_view = og.AttributeValueHelper(self._attributes.pointCloudData) return data_view.get() @pointCloudData.setter def pointCloudData(self, value): if self._setting_locked: raise og.ReadOnlyError(self._attributes.pointCloudData) data_view = og.AttributeValueHelper(self._attributes.pointCloudData) data_view.set(value) self.pointCloudData_size = data_view.get_array_size() @property def color(self): return self._batchedReadValues[0] @color.setter def color(self, value): self._batchedReadValues[0] = value @property def depthTest(self): return self._batchedReadValues[1] @depthTest.setter def depthTest(self, value): self._batchedReadValues[1] = value @property def execIn(self): return self._batchedReadValues[2] @execIn.setter def execIn(self, value): self._batchedReadValues[2] = value @property def transform(self): return self._batchedReadValues[3] @transform.setter def transform(self, value): self._batchedReadValues[3] = value @property def width(self): return self._batchedReadValues[4] @width.setter def width(self, value): self._batchedReadValues[4] = value def __getattr__(self, item: str): if item in self.LOCAL_PROPERTY_NAMES: return object.__getattribute__(self, item) else: return super().__getattr__(item) def __setattr__(self, item: str, new_value): if item in self.LOCAL_PROPERTY_NAMES: object.__setattr__(self, item, new_value) else: super().__setattr__(item, new_value) def _prefetch(self): readAttributes = self._batchedReadAttributes newValues = _og._prefetch_input_attributes_data(readAttributes) if len(readAttributes) == len(newValues): self._batchedReadValues = newValues class ValuesForOutputs(og.DynamicAttributeAccess): LOCAL_PROPERTY_NAMES = { } """Helper class that creates natural hierarchical access to output attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) self._batchedWriteValues = { } def _commit(self): _og._commit_output_attributes_data(self._batchedWriteValues) self._batchedWriteValues = { } class ValuesForState(og.DynamicAttributeAccess): """Helper class that creates natural hierarchical access to state attributes""" def __init__(self, node: og.Node, attributes, dynamic_attributes: og.DynamicAttributeInterface): """Initialize simplified access for the attribute data""" context = node.get_graph().get_default_graph_context() super().__init__(context, node, attributes, dynamic_attributes) def __init__(self, node): super().__init__(node) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_INPUT) self.inputs = OgnDebugDrawPointCloudDatabase.ValuesForInputs(node, self.attributes.inputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_OUTPUT) self.outputs = OgnDebugDrawPointCloudDatabase.ValuesForOutputs(node, self.attributes.outputs, dynamic_attributes) dynamic_attributes = self.dynamic_attribute_data(node, og.AttributePortType.ATTRIBUTE_PORT_TYPE_STATE) self.state = OgnDebugDrawPointCloudDatabase.ValuesForState(node, self.attributes.state, dynamic_attributes)
7,785
Python
48.910256
202
0.642518
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/omni/isaac/debug_draw/ogn/tests/TestOgnDebugDrawPointCloud.py
import omni.kit.test import omni.graph.core as og import omni.graph.core.tests as ogts import os class TestOgn(ogts.OmniGraphTestCase): async def test_data_access(self): from omni.isaac.debug_draw.ogn.OgnDebugDrawPointCloudDatabase import OgnDebugDrawPointCloudDatabase test_file_name = "OgnDebugDrawPointCloudTemplate.usda" usd_path = os.path.join(os.path.dirname(__file__), "usd", test_file_name) if not os.path.exists(usd_path): self.assertTrue(False, f"{usd_path} not found for loading test") (result, error) = await ogts.load_test_file(usd_path) self.assertTrue(result, f'{error} on {usd_path}') test_node = og.Controller.node("/TestGraph/Template_omni_isaac_debug_draw_DebugDrawPointCloud") database = OgnDebugDrawPointCloudDatabase(test_node) self.assertTrue(test_node.is_valid()) node_type_name = test_node.get_type_name() self.assertEqual(og.GraphRegistry().get_node_type_version(node_type_name), 1) def _attr_error(attribute: og.Attribute, usd_test: bool) -> str: test_type = "USD Load" if usd_test else "Database Access" return f"{node_type_name} {test_type} Test - {attribute.get_name()} value error" self.assertTrue(test_node.get_attribute_exists("inputs:color")) attribute = test_node.get_attribute("inputs:color") db_value = database.inputs.color expected_value = [0.75, 0.75, 1, 1] actual_value = og.Controller.get(attribute) ogts.verify_values(expected_value, actual_value, _attr_error(attribute, True)) ogts.verify_values(expected_value, db_value, _attr_error(attribute, False)) self.assertTrue(test_node.get_attribute_exists("inputs:depthTest")) attribute = test_node.get_attribute("inputs:depthTest") db_value = database.inputs.depthTest expected_value = True actual_value = og.Controller.get(attribute) ogts.verify_values(expected_value, actual_value, _attr_error(attribute, True)) ogts.verify_values(expected_value, db_value, _attr_error(attribute, False)) self.assertTrue(test_node.get_attribute_exists("inputs:execIn")) attribute = test_node.get_attribute("inputs:execIn") db_value = database.inputs.execIn self.assertTrue(test_node.get_attribute_exists("inputs:pointCloudData")) attribute = test_node.get_attribute("inputs:pointCloudData") db_value = database.inputs.pointCloudData expected_value = [] actual_value = og.Controller.get(attribute) ogts.verify_values(expected_value, actual_value, _attr_error(attribute, True)) ogts.verify_values(expected_value, db_value, _attr_error(attribute, False)) self.assertTrue(test_node.get_attribute_exists("inputs:transform")) attribute = test_node.get_attribute("inputs:transform") db_value = database.inputs.transform expected_value = [1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0] actual_value = og.Controller.get(attribute) ogts.verify_values(expected_value, actual_value, _attr_error(attribute, True)) ogts.verify_values(expected_value, db_value, _attr_error(attribute, False)) self.assertTrue(test_node.get_attribute_exists("inputs:width")) attribute = test_node.get_attribute("inputs:width") db_value = database.inputs.width expected_value = 0.02 actual_value = og.Controller.get(attribute) ogts.verify_values(expected_value, actual_value, _attr_error(attribute, True)) ogts.verify_values(expected_value, db_value, _attr_error(attribute, False))
3,705
Python
51.197182
107
0.676923
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/omni/isaac/debug_draw/ogn/tests/__init__.py
"""====== GENERATED BY omni.graph.tools - DO NOT EDIT ======""" import omni.graph.tools as ogt ogt.import_tests_in_directory(__file__, __name__)
145
Python
35.499991
63
0.634483
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/omni/isaac/debug_draw/scripts/extension.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni.ext from .. import _debug_draw class Extension(omni.ext.IExt): def on_startup(self): self._draw = _debug_draw.acquire_debug_draw_interface() def on_shutdown(self): _debug_draw.release_debug_draw_interface(self._draw)
691
Python
31.952379
76
0.758321
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/omni/isaac/debug_draw/tests/test_debug_draw.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test from omni.isaac.debug_draw import _debug_draw import random # Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test class TestDebugDraw(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): self._draw = _debug_draw.acquire_debug_draw_interface() pass # After running each test async def tearDown(self): await omni.kit.app.get_app().next_update_async() pass # Actual test, notice it is "async" function, so "await" can be used if needed async def test_draw_points(self): N = 10000 point_list_1 = [ (random.uniform(-1000, 1000), random.uniform(-1000, 1000), random.uniform(-1000, 1000)) for _ in range(N) ] point_list_2 = [ (random.uniform(-1000, 1000), random.uniform(1000, 3000), random.uniform(-1000, 1000)) for _ in range(N) ] point_list_3 = [ (random.uniform(-1000, 1000), random.uniform(-3000, -1000), random.uniform(-1000, 1000)) for _ in range(N) ] colors = [(random.uniform(0.5, 1), random.uniform(0.5, 1), random.uniform(0.5, 1), 1) for _ in range(N)] sizes = [random.randint(1, 50) for _ in range(N)] self._draw.draw_points(point_list_1, [(1, 0, 0, 1)] * N, [10] * N) self._draw.draw_points(point_list_2, [(0, 1, 0, 1)] * N, [10] * N) self._draw.draw_points(point_list_3, colors, sizes) self.assertEqual(self._draw.get_num_points(), 3 * N) self._draw.clear_points() self.assertEqual(self._draw.get_num_points(), 0) pass async def test_draw_lines(self): N = 10000 point_list_1 = [ (random.uniform(1000, 3000), random.uniform(-1000, 1000), random.uniform(-1000, 1000)) for _ in range(N) ] point_list_2 = [ (random.uniform(1000, 3000), random.uniform(-1000, 1000), random.uniform(-1000, 1000)) for _ in range(N) ] colors = [(random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1), 1) for _ in range(N)] sizes = [random.randint(1, 25) for _ in range(N)] self._draw.draw_lines(point_list_1, point_list_2, colors, sizes) self.assertEqual(self._draw.get_num_lines(), N) self._draw.clear_lines() self.assertEqual(self._draw.get_num_lines(), 0) pass async def test_draw_spline(self): point_list_1 = [ (random.uniform(-300, -100), random.uniform(-100, 100), random.uniform(-100, 100)) for _ in range(10) ] self._draw.draw_lines_spline(point_list_1, (1, 1, 1, 1), 10, False) point_list_2 = [ (random.uniform(-300, -100), random.uniform(-100, 100), random.uniform(-100, 100)) for _ in range(10) ] self._draw.draw_lines_spline(point_list_2, (1, 1, 1, 1), 5, True) self.assertGreater(self._draw.get_num_lines(), 0) self._draw.clear_lines() self.assertEqual(self._draw.get_num_lines(), 0) pass
3,735
Python
44.560975
142
0.627041
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/omni/isaac/debug_draw/tests/__init__.py
# Copyright (c) 2018-2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # """ Presence of this file allows the tests directory to be imported as a module so that all of its contents can be scanned to automatically add tests that are placed into this directory. """
624
Python
47.076919
103
0.799679