file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
swadaskar/Isaac_Sim_Folder/extension_examples/tests/test_bin_filling.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test import omni.kit import asyncio # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.bin_filling import BinFilling from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async class TestBinFillingExampleExtension(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() await update_stage_async() self._sample = BinFilling() self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0) await self._sample.load_world_async() await update_stage_async() while is_stage_loading(): await update_stage_async() return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await self._sample.clear_async() await update_stage_async() self._sample = None pass # Run all functions with simulation enabled async def test_bin_filling(self): await self._sample.reset_async() await update_stage_async() world = self._sample.get_world() ur10_task = world.get_task(name="bin_filling") task_params = ur10_task.get_params() my_ur10 = world.scene.get_object(task_params["robot_name"]["value"]) bin = world.scene.get_object(task_params["bin_name"]["value"]) await self._sample.on_fill_bin_event_async() await update_stage_async() # run for 2500 frames and print time for i in range(2500): await update_stage_async() if self._sample._controller.get_current_event() in [4, 5]: self.assertTrue(my_ur10.gripper.is_closed()) if self._sample._controller.get_current_event() == 5: self.assertGreater(bin.get_world_pose()[0][-1], 0.15) self.assertTrue(not my_ur10.gripper.is_closed()) self.assertLess(bin.get_world_pose()[0][-1], 0) pass async def test_reset(self): await self._sample.reset_async() await update_stage_async() await self._sample.on_fill_bin_event_async() await update_stage_async() for i in range(2500): await update_stage_async() await self._sample.reset_async() await update_stage_async() await self._sample.on_fill_bin_event_async() await update_stage_async() for i in range(2500): await update_stage_async() pass
3,460
Python
40.698795
119
0.661272
swadaskar/Isaac_Sim_Folder/extension_examples/tests/test_robo_factory.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test import omni.kit import asyncio # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.robo_factory import RoboFactory from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async class TestRoboFactoryExampleExtension(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() await update_stage_async() self._sample = RoboFactory() self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0) await self._sample.load_world_async() await update_stage_async() while is_stage_loading(): await update_stage_async() return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await self._sample.clear_async() await update_stage_async() self._sample = None pass # Run all functions with simulation enabled async def test_stacking(self): await self._sample.reset_async() await update_stage_async() await self._sample._on_start_stacking_event_async() await update_stage_async() # run for 2500 frames and print time for i in range(500): await update_stage_async() pass async def test_reset(self): await self._sample.reset_async() await update_stage_async() await update_stage_async() await self._sample.reset_async() await update_stage_async() await update_stage_async() pass
2,553
Python
37.696969
119
0.68821
swadaskar/Isaac_Sim_Folder/extension_examples/tests/test_robo_party.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test import omni.kit import asyncio # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.robo_party import RoboParty from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async class TestRoboPartyExampleExtension(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() await update_stage_async() self._sample = RoboParty() self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0) await self._sample.load_world_async() await update_stage_async() while is_stage_loading(): await update_stage_async() return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await self._sample.clear_async() await update_stage_async() self._sample = None pass # Run all functions with simulation enabled async def test_stacking(self): await self._sample.reset_async() await update_stage_async() await self._sample._on_start_party_event_async() await update_stage_async() # run for 2500 frames and print time for i in range(500): await update_stage_async() pass async def test_reset(self): await self._sample.reset_async() await update_stage_async() await update_stage_async() await self._sample.reset_async() await update_stage_async() await update_stage_async() pass
2,542
Python
37.530302
119
0.686861
swadaskar/Isaac_Sim_Folder/extension_examples/tests/test_simple_stack.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test import omni.kit import asyncio # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.simple_stack import SimpleStack from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async class TestSimpleStackExampleExtension(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() await update_stage_async() self._sample = SimpleStack() self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0) await self._sample.load_world_async() await update_stage_async() while is_stage_loading(): await update_stage_async() return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await self._sample.clear_async() await update_stage_async() self._sample = None pass # Run all functions with simulation enabled async def test_stacking(self): await self._sample.reset_async() await update_stage_async() await self._sample._on_stacking_event_async() await update_stage_async() # run for 2500 frames and print time for i in range(500): await update_stage_async() pass async def test_reset(self): await self._sample.reset_async() await update_stage_async() await update_stage_async() await self._sample.reset_async() await update_stage_async() await update_stage_async() pass
2,547
Python
37.60606
119
0.687868
swadaskar/Isaac_Sim_Folder/extension_examples/tests/test_follow_target.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test import omni.kit import asyncio # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.follow_target import FollowTarget from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async class TestFollowTargetExampleExtension(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() await update_stage_async() self._sample = FollowTarget() self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0) await self._sample.load_world_async() await update_stage_async() while is_stage_loading(): await update_stage_async() return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await self._sample.clear_async() await update_stage_async() self._sample = None pass # Run all functions with simulation enabled async def test_follow_target(self): await self._sample.reset_async() await update_stage_async() await self._sample._on_follow_target_event_async(True) await update_stage_async() # run for 2500 frames and print time for i in range(500): await update_stage_async() pass # Run all functions with simulation enabled async def test_add_obstacle(self): await self._sample.reset_async() await update_stage_async() await self._sample._on_follow_target_event_async(True) await update_stage_async() # run for 2500 frames and print time for i in range(500): await update_stage_async() if i % 50 == 0: self._sample._on_add_obstacle_event() await update_stage_async() await self._sample.reset_async() await update_stage_async() pass async def test_reset(self): await self._sample.reset_async() await update_stage_async() pass
3,000
Python
37.474358
119
0.673667
swadaskar/Isaac_Sim_Folder/extension_examples/tests/test_kaya_gamepad.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test import omni.kit import asyncio import carb # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.kaya_gamepad import KayaGamepad from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async from omni.isaac.core.world.world import World class TestKayaGamepadSample(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() self._physics_rate = 60 self._provider = carb.input.acquire_input_provider() self._gamepad = self._provider.create_gamepad("test", "0") carb.settings.get_settings().set_int("/app/runLoops/main/rateLimitFrequency", int(self._physics_rate)) carb.settings.get_settings().set_bool("/app/runLoops/main/rateLimitEnabled", True) carb.settings.get_settings().set_int("/persistent/simulation/minFrameRate", int(self._physics_rate)) await create_new_stage_async() await update_stage_async() self._sample = KayaGamepad() World.clear_instance() self._sample.set_world_settings(physics_dt=1.0 / self._physics_rate, stage_units_in_meters=1.0) await self._sample.load_world_async() return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await omni.kit.app.get_app().next_update_async() self._sample._world_cleanup() self._sample = None await update_stage_async() self._provider.destroy_gamepad(self._gamepad) await update_stage_async() World.clear_instance() pass # # Run all functions with simulation enabled # async def test_simulation(self): # await update_stage_async() # while is_stage_loading(): # await update_stage_async() # self._provider.set_gamepad_connected(self._gamepad, True) # self.assertLess(self._sample._kaya.get_world_pose()[0][1], 1) # await update_stage_async() # for i in range(100): # self._provider.buffer_gamepad_event(self._gamepad, carb.input.GamepadInput.LEFT_STICK_UP, 1.0) # await update_stage_async() # self._provider.set_gamepad_connected(self._gamepad, False) # await update_stage_async() # self.assertGreater(self._sample._kaya.get_world_pose()[0][1], 64.0) # pass
3,334
Python
44.684931
119
0.686863
swadaskar/Isaac_Sim_Folder/extension_examples/tests/test_hello_world.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test import omni.kit import asyncio # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.hello_world import HelloWorld from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async class TestHelloWorldExampleExtension(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() await update_stage_async() self._sample = HelloWorld() self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0) await self._sample.load_world_async() await update_stage_async() while is_stage_loading(): await update_stage_async() return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await self._sample.clear_async() await update_stage_async() self._sample = None pass async def test_reset(self): await self._sample.reset_async() await update_stage_async() await update_stage_async() await self._sample.reset_async() await update_stage_async() await update_stage_async() pass
2,168
Python
38.436363
119
0.700646
swadaskar/Isaac_Sim_Folder/extension_examples/tests/test_omnigraph_keyboard.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test import omni.kit import asyncio # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.omnigraph_keyboard import OmnigraphKeyboard from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async class TestOmnigraphKeyboardExampleExtension(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() await update_stage_async() self._sample = OmnigraphKeyboard() self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0) await self._sample.load_world_async() await update_stage_async() while is_stage_loading(): await update_stage_async() return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await self._sample.clear_async() await update_stage_async() self._sample = None pass async def test_reset(self): await self._sample.reset_async() await update_stage_async() await update_stage_async() await self._sample.reset_async() await update_stage_async() await update_stage_async() pass
2,191
Python
38.854545
119
0.704245
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/util.py
import carb import numpy as np import math from omni.isaac.core.utils import prims from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.universal_robots import KinematicsSolver from omni.isaac.motion_generation import WheelBasePoseController from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.controllers import BaseController from tf.transformations import euler_from_quaternion, quaternion_from_euler from omni.isaac.core.prims import GeometryPrim, XFormPrim class CustomDifferentialController(BaseController): def __init__(self): super().__init__(name="my_cool_controller") # An open loop controller that uses a unicycle model self._wheel_radius = 0.125 self._wheel_base = 1.152 return def forward(self, command): # command will have two elements, first element is the forward velocity # second element is the angular velocity (yaw only). joint_velocities = [0.0, 0.0, 0.0, 0.0] joint_velocities[0] = ((2 * command[0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius) joint_velocities[1] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius) joint_velocities[2] = ((2 * command[0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius) joint_velocities[3] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius) # A controller has to return an ArticulationAction return ArticulationAction(joint_velocities=joint_velocities) def turn(self, command): # command will have two elements, first element is the forward velocity # second element is the angular velocity (yaw only). joint_velocities = [0.0, 0.0, 0.0, 0.0] joint_velocities[0] = ((2 * command[0][0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius) joint_velocities[1] = ((2 * command[0][1]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius) joint_velocities[2] = ((2 * command[0][2]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius) joint_velocities[3] = ((2 * command[0][3]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius) # A controller has to return an ArticulationAction return ArticulationAction(joint_velocities=joint_velocities) class Utils: def __init__(self) -> None: self.world = None self.delay = 0 self.beta = 1 self.path_plan_counter = 0 self.motion_task_counter = 0 self.motion_task_counterl = 0 self.bool_done = [False]*1000 self.curr_way = False self.id = None # Engine cell set up ---------------------------------------------------------------------------- # bring in moving platforms self.moving_platform = None self._my_custom_controller = CustomDifferentialController() self._my_controller = WheelBasePoseController(name="cool_controller", open_loop_wheel_controller=DifferentialController(name="simple_control", wheel_radius=0.125, wheel_base=0.46), is_holonomic=False) self.my_controller = None self.screw_my_controller = None self.articulation_controller = None self.screw_articulation_controller = None # Suspension cell set up ------------------------------------------------------------------------ self.my_controller_suspension = None self.screw_my_controller_suspension = None self.articulation_controller_suspension = None self.screw_articulation_controller_suspension = None # Fuel cell set up --------------------------------------------------------------------------------- self.my_controller_fuel = None self.screw_my_controller_fuel = None self.articulation_controller_fuel = None self.screw_articulation_controller_fuel = None # battery cell set up --------------------------------------------------------------------------------- self.my_controller_battery = None self.screw_my_controller_battery = None self.articulation_controller_battery = None self.screw_articulation_controller_battery = None # trunk cell set up --------------------------------------------------------------------------------- self.my_controller_trunk = None self.screw_my_controller_trunk = None self.articulation_controller_trunk = None self.screw_articulation_controller_trunk = None # wheel cell set up --------------------------------------------------------------------------------- self.my_controller_wheel = None self.screw_my_controller_wheel = None self.articulation_controller_wheel = None self.screw_articulation_controller_wheel = None self.my_controller_wheel_01 = None self.screw_my_controller_wheel_01 = None self.articulation_controller_wheel_01 = None self.screw_articulation_controller_wheel_01 = None # lower_cover cell set up --------------------------------------------------------------------------------- self.my_controller_lower_cover = None self.screw_my_controller_lower_cover = None self.articulation_controller_lower_cover = None self.screw_articulation_controller_lower_cover = None self.my_controller_lower_cover_01 = None self.screw_my_controller_lower_cover_01 = None self.articulation_controller_lower_cover_01 = None self.screw_articulation_controller_lower_cover_01 = None self.my_controller_main_cover = None self.articulation_controller_main_cover = None # handle cell set up --------------------------------------------------------------------------------- self.my_controller_handle = None self.screw_my_controller_handle = None self.articulation_controller_handle = None self.screw_articulation_controller_handle = None # light cell set up -------------------------------------------------------------------------------- self.my_controller_light = None self.screw_my_controller_light = None self.articulation_controller_light = None self.screw_articulation_controller_light = None def give_location(self, prim_path): dc=_dynamic_control.acquire_dynamic_control_interface() object=dc.get_rigid_body(prim_path) object_pose=dc.get_rigid_body_pose(object) return object_pose # position: object_pose.p, rotation: object_pose.r def move_ur10(self, locations, task_name=""): print("Motion task counter", self.motion_task_counter) target_location = locations[self.motion_task_counter] print("Doing "+str(target_location["index"])+"th motion plan") controller_name = getattr(self,"my_controller"+task_name) actions, success = controller_name.compute_inverse_kinematics( target_position=target_location["position"], target_orientation=target_location["orientation"], ) if success: print("still homing on this location") articulation_controller_name = getattr(self,"articulation_controller"+task_name) articulation_controller_name.apply_action(actions) else: carb.log_warn("IK did not converge to a solution. No action is being taken.") # check if reached location curr_location = self.give_location(f"/World/UR10{task_name}/ee_link") print("Curr:",curr_location.p) print("Goal:", target_location["goal_position"]) print(np.mean(np.abs(curr_location.p - target_location["goal_position"]))) diff = np.mean(np.abs(curr_location.p - target_location["goal_position"])) if diff<0.02: self.motion_task_counter+=1 # time.sleep(0.3) print("Completed one motion plan: ", self.motion_task_counter) def move_ur10_extra(self, locations, task_name=""): print("Motion task counter", self.motion_task_counterl) target_location = locations[self.motion_task_counterl] print("Doing "+str(target_location["index"])+"th motion plan") controller_name = getattr(self,"my_controller"+task_name) actions, success = controller_name.compute_inverse_kinematics( target_position=target_location["position"], target_orientation=target_location["orientation"], ) if success: print("still homing on this location") articulation_controller_name = getattr(self,"articulation_controller"+task_name) articulation_controller_name.apply_action(actions) else: carb.log_warn("IK did not converge to a solution. No action is being taken.") # check if reached location curr_location = self.give_location(f"/World/UR10{task_name}/ee_link") print("Curr:",curr_location.p) print("Goal:", target_location["goal_position"]) print(np.mean(np.abs(curr_location.p - target_location["goal_position"]))) diff = np.mean(np.abs(curr_location.p - target_location["goal_position"])) if diff<0.02: self.motion_task_counterl+=1 # time.sleep(0.3) print("Completed one motion plan: ", self.motion_task_counterl) def do_screw_driving(self, locations, task_name=""): print(self.motion_task_counter) target_location = locations[self.motion_task_counter] print("Doing "+str(target_location["index"])+"th motion plan") controller_name = getattr(self,"screw_my_controller"+task_name) actions, success = controller_name.compute_inverse_kinematics( target_position=target_location["position"], target_orientation=target_location["orientation"], ) if success: print("still homing on this location") articulation_controller_name = getattr(self,"screw_articulation_controller"+task_name) # print(articulation_controller_name, task_name, "screw_articulation_controller"+task_name, self.screw_articulation_controller_wheel) # print(self.articulation_controller_wheel_01) # print(self.screw_articulation_controller_wheel_01) articulation_controller_name.apply_action(actions) else: carb.log_warn("IK did not converge to a solution. No action is being taken.") # check if reached location curr_location = self.give_location(f"/World/Screw_driving_UR10{task_name}/ee_link") print("Curr:",curr_location.p) print("Goal:", target_location["goal_position"]) print(np.mean(np.abs(curr_location.p - target_location["goal_position"]))) if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.02: self.motion_task_counter+=1 print("Completed one motion plan: ", self.motion_task_counter) def do_screw_driving_extra(self, locations, task_name=""): print(self.motion_task_counterl) target_location = locations[self.motion_task_counterl] print("Doing "+str(target_location["index"])+"th motion plan") controller_name = getattr(self,"screw_my_controller"+task_name) actions, success = controller_name.compute_inverse_kinematics( target_position=target_location["position"], target_orientation=target_location["orientation"], ) if success: print("still homing on this location") articulation_controller_name = getattr(self,"screw_articulation_controller"+task_name) articulation_controller_name.apply_action(actions) else: carb.log_warn("IK did not converge to a solution. No action is being taken.") # check if reached location curr_location = self.give_location(f"/World/Screw_driving_UR10{task_name}/ee_link") print("Curr:",curr_location.p) print("Goal:", target_location["goal_position"]) print(np.mean(np.abs(curr_location.p - target_location["goal_position"]))) if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.02: self.motion_task_counterl+=1 print("Completed one motion plan: ", self.motion_task_counterl) def transform_for_screw_ur10(self, position): position[0]+=0.16171 position[1]+=0.00752 position[2]+=-0 return position def transform_for_ur10(self, position): position[0]+=0.16171 position[1]+=0.00752 position[2]+=-0.00419 return position def transform_for_screw_ur10_suspension(self, position): position[0]-=0 position[1]+=0 position[2]+=-0 return position def transform_for_screw_ur10_fuel(self, position): position[0]+=0.16171 position[1]+=0.00752 position[2]+=-0.00419 return position def move_mp_wbpc(self, path_plan_last): print("Using wheel base pose controller") _, _, goal_position = path_plan_last position, orientation = self.moving_platform.get_world_pose() # In the function where you are sending robot commands print(goal_position) action = self._my_controller.forward(start_position=position, start_orientation=orientation, goal_position=goal_position["position"]) # Change the goal position to what you want full_action = ArticulationAction(joint_efforts=np.concatenate([action.joint_efforts, action.joint_efforts]) if action.joint_efforts else None, joint_velocities=np.concatenate([action.joint_velocities, action.joint_velocities]), joint_positions=np.concatenate([action.joint_positions, action.joint_positions]) if action.joint_positions else None) self.moving_platform.apply_action(full_action) print("Current", position) print("Goal", goal_position["position"]) print(np.mean(np.abs(position-goal_position["position"]))) if np.mean(np.abs(position-goal_position["position"])) <0.033: self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0,0])) self.path_plan_counter+=1 def move_mp(self, path_plan): if not path_plan: return # if len(path_plan)-1 == self.path_plan_counter and path_plan[self.path_plan_counter][0]!="rotate" and path_plan[self.path_plan_counter][0]!="wait": # self.move_mp_wbpc(path_plan[self.path_plan_counter]) # return current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose() move_type, goal = path_plan[self.path_plan_counter][0], path_plan[self.path_plan_counter][1] if move_type == "translate": goal_pos, axis, _ = goal print(current_mp_position[axis], goal_pos, abs(current_mp_position[axis]-goal_pos)) # getting current z angle of mp in degrees curr_euler_orientation = euler_from_quaternion(current_mp_orientation)[0] print(curr_euler_orientation) if curr_euler_orientation<0: curr_euler_orientation = math.pi*2 + curr_euler_orientation curr_euler_degree_orientation = curr_euler_orientation*(180/math.pi) print(curr_euler_degree_orientation) # logic for determining to reverse or not if axis == 0: # if : # if goal_pos<current_mp_position[axis]: # reverse = False # else: # reverse = True # elif (curr_euler_degree_orientation-360)<0.1 or (curr_euler_degree_orientation)<0.1: if abs(curr_euler_degree_orientation-180)<30: if goal_pos>current_mp_position[axis]: reverse = False else: reverse = True else: if goal_pos<current_mp_position[axis]: reverse = False else: reverse = True else: if abs(curr_euler_degree_orientation-270)<30: if goal_pos<current_mp_position[axis]: reverse = False else: reverse = True else: if goal_pos>current_mp_position[axis]: reverse = False else: reverse = True # check if reverse swap happened if not self.bool_done[0]: print("iniitial\n\n") self.bool_done[0]=True self.curr_way = reverse self.speed = 0.5 if self.curr_way != reverse: self.speed/=1.0001 print(self.speed) if reverse: self.moving_platform.apply_action(self._my_custom_controller.forward(command=[-self.speed,0])) # 0.5 else: self.moving_platform.apply_action(self._my_custom_controller.forward(command=[self.speed,0])) if abs(current_mp_position[axis]-goal_pos)<0.001: # 0.002 self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0,0])) self.path_plan_counter+=1 self.speed = 0.5 elif move_type == "rotate": goal_ori, error_threshold, rotate_right = goal curr_euler_orientation = euler_from_quaternion(current_mp_orientation)[0] goal_euler_orientation = euler_from_quaternion(goal_ori)[0] print(current_mp_orientation, goal_ori) print(curr_euler_orientation, goal_euler_orientation) if curr_euler_orientation<0: curr_euler_orientation = math.pi*2 + curr_euler_orientation if goal_euler_orientation<0: goal_euler_orientation = math.pi*2 + goal_euler_orientation print(curr_euler_orientation, goal_euler_orientation) if goal_euler_orientation > curr_euler_orientation: if curr_euler_orientation+math.pi < goal_euler_orientation: rotate_right = False else: rotate_right = True else: if goal_euler_orientation+math.pi > curr_euler_orientation: rotate_right = False else: rotate_right = True print("Rotate right:","True" if rotate_right else "False") if rotate_right: self.moving_platform.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],np.pi/4])) # 2 else: self.moving_platform.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],-np.pi/4])) curr_error = abs(curr_euler_orientation-goal_euler_orientation) print(curr_error) if curr_error <=0.001: # 0.002 self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0,0])) self.path_plan_counter+=1 else: self.beta*=1.00001 elif move_type == "wait": print("Waiting ...") self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0,0])) if self.delay>60: print("Done waiting") self.delay=0 self.path_plan_counter+=1 self.delay+=1 def add_part(self, part_name, prim_name, scale, position, orientation): world = self.get_world() base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/" add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/mock_robot/platform/{prim_name}") # gives asset ref path part= world.scene.add(XFormPrim(prim_path=f'/mock_robot_{self.id}/platform/{prim_name}', name=f"q{prim_name}")) # declares in the world ## add part part.set_local_scale(scale) part.set_local_pose(translation=position, orientation=orientation) def add_part_custom(self, parent_prim_name, part_name, prim_name, scale, position, orientation): base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/" add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/{parent_prim_name}/{prim_name}") # gives asset ref path part= self.world.scene.add(XFormPrim(prim_path=f'/{parent_prim_name}/{prim_name}', name=f"q{prim_name}")) # declares in the world ## add part part.set_local_scale(scale) part.set_local_pose(translation=position, orientation=orientation) return part def add_part_without_parent(self, part_name, prim_name, scale, position, orientation): world = self.get_world() base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/" add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/World/{prim_name}") # gives asset ref path part= world.scene.add(XFormPrim(prim_path=f'/World/{prim_name}', name=f"q{prim_name}")) # declares in the world ## add part part.set_local_scale(scale) part.set_local_pose(translation=position, orientation=orientation) return part def remove_part(self, parent_prim_name, child_prim_name): prim_path = f"/{parent_prim_name}/{child_prim_name}" if parent_prim_name else f"/{child_prim_name}" # world = self.get_world() prims.delete_prim(prim_path) def check_prim_exists(self, prim_path): curr_prim = self.world.stage.GetPrimAtPath("/"+prim_path) if curr_prim.IsValid(): return True return False def move_mp_battery(self, path_plan): if not path_plan: return current_mp_position, current_mp_orientation = self.battery_bringer.get_world_pose() move_type, goal = path_plan[self.path_plan_counter] if move_type == "translate": goal_pos, axis, reverse = goal print(current_mp_position[axis], goal_pos, abs(current_mp_position[axis]-goal_pos)) if reverse: self.battery_bringer.apply_action(self._my_custom_controller.forward(command=[-0.5,0])) else: self.battery_bringer.apply_action(self._my_custom_controller.forward(command=[0.5,0])) if abs(current_mp_position[axis]-goal_pos)<0.01: self.battery_bringer.apply_action(self._my_custom_controller.forward(command=[0,0])) self.path_plan_counter+=1 elif move_type == "rotate": goal_ori, error_threshold, rotate_right = goal if rotate_right: self.battery_bringer.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],np.pi/2])) else: self.battery_bringer.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],-np.pi/2])) curr_error = np.mean(np.abs(current_mp_orientation-goal_ori)) print(current_mp_orientation, goal_ori, curr_error) if curr_error< error_threshold: self.battery_bringer.apply_action(self._my_custom_controller.forward(command=[0,0])) self.path_plan_counter+=1 elif move_type == "wait": print("Waiting ...") self.battery_bringer.apply_action(self._my_custom_controller.forward(command=[0,0])) if self.delay>60: print("Done waiting") self.delay=0 self.path_plan_counter+=1 self.delay+=1 def move_mp_fuel(self, path_plan): if not path_plan: return current_mp_position, current_mp_orientation = self.fuel_bringer.get_world_pose() move_type, goal = path_plan[self.path_plan_counter] if move_type == "translate": goal_pos, axis, reverse = goal print(current_mp_position[axis], goal_pos, abs(current_mp_position[axis]-goal_pos)) if reverse: self.fuel_bringer.apply_action(self._my_custom_controller.forward(command=[-0.5,0])) else: self.fuel_bringer.apply_action(self._my_custom_controller.forward(command=[0.5,0])) if abs(current_mp_position[axis]-goal_pos)<0.01: self.fuel_bringer.apply_action(self._my_custom_controller.forward(command=[0,0])) self.path_plan_counter+=1 elif move_type == "rotate": goal_ori, error_threshold, rotate_right = goal if rotate_right: self.fuel_bringer.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],np.pi/2])) else: self.fuel_bringer.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],-np.pi/2])) curr_error = np.mean(np.abs(current_mp_orientation-goal_ori)) print(current_mp_orientation, goal_ori, curr_error) if curr_error< error_threshold: self.fuel_bringer.apply_action(self._my_custom_controller.forward(command=[0,0])) self.path_plan_counter+=1 elif move_type == "wait": print("Waiting ...") self.fuel_bringer.apply_action(self._my_custom_controller.forward(command=[0,0])) if self.delay>60: print("Done waiting") self.delay=0 self.path_plan_counter+=1 self.delay+=1 def move_mp_suspension(self, path_plan): if not path_plan: return current_mp_position, current_mp_orientation = self.suspension_bringer.get_world_pose() move_type, goal = path_plan[self.path_plan_counter] if move_type == "translate": goal_pos, axis, reverse = goal print(current_mp_position[axis], goal_pos, abs(current_mp_position[axis]-goal_pos)) if reverse: self.suspension_bringer.apply_action(self._my_custom_controller.forward(command=[-0.5,0])) else: self.suspension_bringer.apply_action(self._my_custom_controller.forward(command=[0.5,0])) if abs(current_mp_position[axis]-goal_pos)<0.01: self.suspension_bringer.apply_action(self._my_custom_controller.forward(command=[0,0])) self.path_plan_counter+=1 elif move_type == "rotate": goal_ori, error_threshold, rotate_right = goal if rotate_right: self.suspension_bringer.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],np.pi/2])) else: self.suspension_bringer.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],-np.pi/2])) curr_error = np.mean(np.abs(current_mp_orientation-goal_ori)) print(current_mp_orientation, goal_ori, curr_error) if curr_error< error_threshold: self.suspension_bringer.apply_action(self._my_custom_controller.forward(command=[0,0])) self.path_plan_counter+=1 elif move_type == "wait": print("Waiting ...") self.suspension_bringer.apply_action(self._my_custom_controller.forward(command=[0,0])) if self.delay>60: print("Done waiting") self.delay=0 self.path_plan_counter+=1 self.delay+=1 def move_mp_engine(self, path_plan): if not path_plan: return current_mp_position, current_mp_orientation = self.engine_bringer.get_world_pose() move_type, goal = path_plan[self.path_plan_counter] if move_type == "translate": goal_pos, axis, reverse = goal print(current_mp_position[axis], goal_pos, abs(current_mp_position[axis]-goal_pos)) if reverse: self.engine_bringer.apply_action(self._my_custom_controller.forward(command=[-0.5,0])) else: self.engine_bringer.apply_action(self._my_custom_controller.forward(command=[0.5,0])) if abs(current_mp_position[axis]-goal_pos)<0.01: self.engine_bringer.apply_action(self._my_custom_controller.forward(command=[0,0])) self.path_plan_counter+=1 elif move_type == "rotate": goal_ori, error_threshold, rotate_right = goal if rotate_right: self.engine_bringer.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],np.pi/2])) else: self.engine_bringer.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],-np.pi/2])) curr_error = np.mean(np.abs(current_mp_orientation-goal_ori)) print(current_mp_orientation, goal_ori, curr_error) if curr_error< error_threshold: self.engine_bringer.apply_action(self._my_custom_controller.forward(command=[0,0])) self.path_plan_counter+=1 elif move_type == "wait": print("Waiting ...") self.engine_bringer.apply_action(self._my_custom_controller.forward(command=[0,0])) if self.delay>60: print("Done waiting") self.delay=0 self.path_plan_counter+=1 self.delay+=1
29,871
Python
47.651466
353
0.597637
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/suspension_task.py
from omni.isaac.core.prims import GeometryPrim, XFormPrim from omni.isaac.examples.base_sample import BaseSample from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController from omni.isaac.wheeled_robots.robots import WheeledRobot from omni.isaac.core.utils.types import ArticulationAction # This extension includes several generic controllers that could be used with multiple robots from omni.isaac.motion_generation import WheelBasePoseController # Robot specific controller from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController from omni.isaac.core.controllers import BaseController from omni.isaac.core.tasks import BaseTask from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import SurfaceGripper import numpy as np from omni.isaac.core.objects import VisualCuboid, DynamicCuboid from omni.isaac.core.utils import prims from pxr import UsdLux, Sdf, UsdGeom import omni.usd from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.universal_robots import KinematicsSolver import carb from collections import deque, defaultdict import time class SuspensionTask(BaseTask): def __init__(self, name): super().__init__(name=name, offset=None) # self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])] # self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])] self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -2.628, 0.03551]), np.array([-5.40137, -15.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])] self.eb_goal_position = np.array([-4.39666, 7.64828, 0.035]) self.ur10_suspension_goal_position = np.array([]) # self.mp_goal_orientation = np.array([1, 0, 0, 0]) self._task_event = 0 self.task_done = [False]*120 self.motion_event = 0 self.motion_done = [False]*120 self._bool_event = 0 self.count=0 self.delay=0 return def set_up_scene(self, scene): super().set_up_scene(scene) assets_root_path = get_assets_root_path() # http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2022.2.1 asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/photos/real_microfactory_1_2.usd" robot_arm_path = assets_root_path + "/Isaac/Robots/UR10/ur10.usd" # adding UR10_suspension for pick and place add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_suspension") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_suspension/ee_link") gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_suspension/ee_link", translate=0.1611, direction="x") self.ur10_suspension = scene.add( SingleManipulator(prim_path="/World/UR10_suspension", name="my_ur10_suspension", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-6.10078, -5.19303, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1])) ) self.ur10_suspension.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # adding UR10_suspension for screwing in part add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_suspension") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_suspension/ee_link") screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_suspension/ee_link", translate=0, direction="x") self.screw_ur10_suspension = scene.add( SingleManipulator(prim_path="/World/Screw_driving_UR10_suspension", name="my_screw_ur10_suspension", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-3.78767, -5.00871, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1])) ) self.screw_ur10_suspension.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) large_robot_asset_path = small_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform/mobile_platform.usd" # add floor add_reference_to_stage(usd_path=asset_path, prim_path="/World/Environment") # # add moving platform # self.moving_platform = scene.add( # WheeledRobot( # prim_path="/mock_robot", # name="moving_platform", # wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"], # create_robot=True, # usd_path=large_robot_asset_path, # position=np.array([-5.26025, 1.25718, 0.03551]), # orientation=np.array([0.5, 0.5, -0.5, -0.5]), # ) # ) self.suspension_bringer = scene.add( WheeledRobot( prim_path="/suspension_bringer", name="suspension_bringer", wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"], create_robot=True, usd_path=small_robot_asset_path, position=np.array([-7.60277, -5.70312, 0.035]), orientation=np.array([0,0,0.70711, 0.70711]), ) ) return def get_observations(self): # current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose() current_eb_position, current_eb_orientation = self.suspension_bringer.get_world_pose() current_joint_positions_ur10_suspension = self.ur10_suspension.get_joint_positions() observations= { # "task_event": self._task_event, "suspension_task_event": self._task_event, # self.moving_platform.name: { # "position": current_mp_position, # "orientation": current_mp_orientation, # "goal_position": self.mp_goal_position # }, self.suspension_bringer.name: { "position": current_eb_position, "orientation": current_eb_orientation, "goal_position": self.eb_goal_position }, self.ur10_suspension.name: { "joint_positions": current_joint_positions_ur10_suspension, }, self.screw_ur10_suspension.name: { "joint_positions": current_joint_positions_ur10_suspension, } } return observations def get_params(self): params_representation = {} params_representation["arm_name"] = {"value": self.ur10_suspension.name, "modifiable": False} params_representation["screw_arm"] = {"value": self.screw_ur10_suspension.name, "modifiable": False} # params_representation["mp_name"] = {"value": self.moving_platform.name, "modifiable": False} params_representation["eb_name"] = {"value": self.suspension_bringer.name, "modifiable": False} return params_representation def check_prim_exists(self, prim): if prim: return True return False def give_location(self, prim_path): dc=_dynamic_control.acquire_dynamic_control_interface() object=dc.get_rigid_body(prim_path) object_pose=dc.get_rigid_body_pose(object) return object_pose # position: object_pose.p, rotation: object_pose.r def pre_step(self, control_index, simulation_time): # current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose() current_eb_position, current_eb_orientation = self.suspension_bringer.get_world_pose() ee_pose = self.give_location("/World/UR10_suspension/ee_link") screw_ee_pose = self.give_location("/World/Screw_driving_UR10_suspension/ee_link") # iteration 1 if self._task_event == 0: if self.task_done[self._task_event]: self._task_event = 101 self.task_done[self._task_event] = True elif self._task_event == 101: # if self.task_done[self._task_event] and current_mp_position[1]<-5.3: self._task_event = 151 self._bool_event+=1 # self.task_done[self._task_event] = True elif self._task_event == 151: if np.mean(np.abs(ee_pose.p - np.array([-5.00127, -4.80822, 0.53949])))<0.02: self._task_event = 171 self._bool_event+=1 elif self._task_event == 171: if np.mean(np.abs(screw_ee_pose.p - np.array([-3.70349, -4.41856, 0.56125])))<0.058: self._task_event=102 elif self._task_event == 102: if self.task_done[self._task_event]: if self.delay == 100: self._task_event +=1 self.delay=0 else: self.delay+=1 self.task_done[self._task_event] = True elif self._task_event == 103: pass return def post_reset(self): self._task_event = 0 return
10,957
Python
52.194175
441
0.612668
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/fuel_task.py
from omni.isaac.core.prims import GeometryPrim, XFormPrim from omni.isaac.examples.base_sample import BaseSample from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController from omni.isaac.wheeled_robots.robots import WheeledRobot from omni.isaac.core.utils.types import ArticulationAction # This extension includes several generic controllers that could be used with multiple robots from omni.isaac.motion_generation import WheelBasePoseController # Robot specific controller from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController from omni.isaac.core.controllers import BaseController from omni.isaac.core.tasks import BaseTask from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import SurfaceGripper import numpy as np from omni.isaac.core.objects import VisualCuboid, DynamicCuboid from omni.isaac.core.utils import prims from pxr import UsdLux, Sdf, UsdGeom import omni.usd from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.universal_robots import KinematicsSolver import carb from collections import deque, defaultdict import time class FuelTask(BaseTask): def __init__(self, name): super().__init__(name=name, offset=None) # self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])] # self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])] self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -2.628, 0.03551]), np.array([-5.40137, -15.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])] self.eb_goal_position = np.array([-4.39666, 7.64828, 0.035]) self.ur10_fuel_goal_position = np.array([]) # self.mp_goal_orientation = np.array([1, 0, 0, 0]) self._task_event = 0 self.task_done = [False]*120 self.motion_event = 0 self.motion_done = [False]*120 self._bool_event = 0 self.count=0 return def set_up_scene(self, scene): super().set_up_scene(scene) assets_root_path = get_assets_root_path() # http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2022.2.1 asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/photos/real_microfactory_1_2.usd" robot_arm_path = assets_root_path + "/Isaac/Robots/UR10_fuel/ur10_fuel.usd" # adding UR10_fuel for pick and place add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_fuel") # gripper_usd = assets_root_path + "/Isaac/Robots/UR10_fuel/Props/short_gripper.usd" gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_fuel/ee_link") gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_fuel/ee_link", translate=0.1611, direction="x") self.ur10_fuel = scene.add( SingleManipulator(prim_path="/World/UR10_fuel", name="my_ur10_fuel", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-6.09744, -16.5124, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1])) ) self.ur10_fuel.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # adding UR10_fuel for screwing in part add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_fuel") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_fuel/ee_link") screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_fuel/ee_link", translate=0, direction="x") self.screw_ur10_fuel = scene.add( SingleManipulator(prim_path="/World/Screw_driving_UR10_fuel", name="my_screw_ur10_fuel", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-4.02094, -16.52902, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1])) ) self.screw_ur10_fuel.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) large_robot_asset_path = small_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform/mobile_platform.usd" # add floor add_reference_to_stage(usd_path=asset_path, prim_path="/World/Environment") # add moving platform self.moving_platform = scene.add( WheeledRobot( prim_path="/mock_robot", name="moving_platform", wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"], create_robot=True, usd_path=large_robot_asset_path, position=np.array([-5.26025, -9.96157, 0.03551]), orientation=np.array([0.5, 0.5, -0.5, -0.5]), ) ) self.engine_bringer = scene.add( WheeledRobot( prim_path="/engine_bringer", name="engine_bringer", wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"], create_robot=True, usd_path=small_robot_asset_path, position=np.array([-7.47898, -16.15971, 0.035]), orientation=np.array([0,0,0.70711, 0.70711]), ) ) return def get_observations(self): current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose() current_eb_position, current_eb_orientation = self.engine_bringer.get_world_pose() current_joint_positions_ur10_fuel = self.ur10_fuel.get_joint_positions() observations= { "task_event": self._task_event, "task_event": self._task_event, self.moving_platform.name: { "position": current_mp_position, "orientation": current_mp_orientation, "goal_position": self.mp_goal_position }, self.engine_bringer.name: { "position": current_eb_position, "orientation": current_eb_orientation, "goal_position": self.eb_goal_position }, self.ur10_fuel.name: { "joint_positions": current_joint_positions_ur10_fuel, }, self.screw_ur10_fuel.name: { "joint_positions": current_joint_positions_ur10_fuel, }, "bool_counter": self._bool_event } return observations def get_params(self): params_representation = {} params_representation["arm_name_fuel"] = {"value": self.ur10_fuel.name, "modifiable": False} params_representation["screw_arm_fuel"] = {"value": self.screw_ur10_fuel.name, "modifiable": False} params_representation["mp_name"] = {"value": self.moving_platform.name, "modifiable": False} params_representation["eb_name_fuel"] = {"value": self.engine_bringer.name, "modifiable": False} return params_representation def check_prim_exists(self, prim): if prim: return True return False def give_location(self, prim_path): dc=_dynamic_control.acquire_dynamic_control_interface() object=dc.get_rigid_body(prim_path) object_pose=dc.get_rigid_body_pose(object) return object_pose # position: object_pose.p, rotation: object_pose.r def pre_step(self, control_index, simulation_time): current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose() ee_pose = self.give_location("/World/UR10_fuel/ee_link") screw_ee_pose = self.give_location("/World/Screw_driving_UR10_fuel/ee_link") # iteration 1 if self._task_event == 0: if self.task_done[self._task_event]: self._task_event += 1 self.task_done[self._task_event] = True elif self._task_event == 1: if self.task_done[self._task_event] and current_mp_position[1]<-16.69: self._task_event = 51 self._bool_event+=1 self.task_done[self._task_event] = True elif self._task_event == 51: if np.mean(np.abs(ee_pose.p - np.array([-5.005, -16.7606, 0.76714])))<0.02: self._task_event = 71 self._bool_event+=1 elif self._task_event == 71: if np.mean(np.abs(ee_pose.p - np.array([-4.18372, 7.03628, 0.44567])))<0.058: self._task_event=2 pass elif self._task_event == 2: pass return def post_reset(self): self._task_event = 0 return
10,469
Python
51.089552
441
0.611233
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.hello_world.hello_world import HelloWorld from omni.isaac.examples.hello_world.hello_world_extension import HelloWorldExtension
582
Python
47.583329
85
0.821306
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/hello_world.py
import carb from omni.isaac.core.prims import GeometryPrim, XFormPrim from omni.isaac.examples.base_sample import BaseSample from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController from omni.isaac.wheeled_robots.robots import WheeledRobot from omni.isaac.core.utils.types import ArticulationAction # This extension includes several generic controllers that could be used with multiple robots from omni.isaac.motion_generation import WheelBasePoseController # Robot specific controller from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController from omni.isaac.core.controllers import BaseController from omni.isaac.core.tasks import BaseTask from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import SurfaceGripper import numpy as np from omni.isaac.core.objects import VisualCuboid, DynamicCuboid from omni.isaac.core.utils import prims from pxr import UsdLux, Sdf, UsdGeom import omni.usd from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.universal_robots import KinematicsSolver from collections import deque, defaultdict from geometry_msgs.msg import PoseStamped import rosgraph from tf.transformations import euler_from_quaternion, quaternion_from_euler from math import pi from omni.isaac.examples.hello_world.assembly_task import AssemblyTask from omni.isaac.examples.hello_world.ATV_task import ATVTask import time import asyncio import rospy from omni.isaac.examples.hello_world.executor_functions import ExecutorFunctions from omni.isaac.examples.hello_world.pf_functions import PartFeederFunctions from omni.isaac.core import SimulationContext import omni.graph.core as og # def func(): # try: # rospy.init_node("hello", anonymous=True, disable_signals=True, log_level=rospy.ERROR) # except rospy.exceptions.ROSException as e: # print("Node has already been initialized, do nothing") # async def my_task(): # from std_msgs.msg import String # pub = rospy.Publisher("/hello_topic", String, queue_size=10) # for frame in range(20): # pub.publish("hello world " + str(frame)) # await asyncio.sleep(1.0) # pub.unregister() # pub = None # asyncio.ensure_future(my_task()) class HelloWorld(BaseSample): def __init__(self) -> None: super().__init__() self.done = False self.isThere = [False]*1000 return def setup_scene(self): world = self.get_world() # step_size=1 # world.set_physics_step_size(step_size) # adding light l = UsdLux.SphereLight.Define(world.stage, Sdf.Path("/World/Lights")) # l.CreateExposureAttr(...) l.CreateColorTemperatureAttr(10000) l.CreateIntensityAttr(7500) l.CreateRadiusAttr(75) l.AddTranslateOp() XFormPrim("/World/Lights").set_local_pose(translation=np.array([0,0,100])) world.add_task(AssemblyTask(name="assembly_task")) self.isDone = [False]*1000 self.bool_done = [False]*1000 self.motion_task_counter=0 self.motion_task_counterl=0 self.motion_task_counterr=0 self.path_plan_counter=0 self.delay=0 # ATV declarations ------------------------------------------------------------------------- self.num_of_ATVs = 8 for i in range(self.num_of_ATVs): world.add_task(ATVTask(name=f"ATV_{i}",offset=np.array([0, i*2, 0]))) # part feeder declarations ------------------------------------------------------------------------- self.num_of_PFs = 5 self.name_of_PFs = [{"name":"engine","prim_name":"engine_small","position":np.array([0.07038, 0.03535, 0.42908]),"orientation":np.array([0, 0.12268, 0, 0.99245]),"mp_pos":np.array([8.61707, 17.63327, 0.03551]),"mp_ori":np.array([0,0,0,1])}, {"name":"trunk","prim_name":"trunk_02","position":np.array([-0.1389, -0.2191, 0.28512]),"orientation":np.array([0.5, 0.5, 0.5, 0.5]),"mp_pos":np.array([-42.76706, 5.21645, 0.03551]),"mp_ori":np.array([1,0,0,0])}, {"name":"wheels","prim_name":"wheel_02","position":np.array([0.45216, -0.32084, 0.28512]),"orientation":np.array([0, 0, 0.70711, 0.70711]),"mp_pos":np.array([-42.71662, 17.56147, 0.03551]),"mp_ori":np.array([1,0,0,0])}, {"name":"main_cover","prim_name":"main_cover","position":np.array([0.74446, -0.26918, -0.03119]),"orientation":np.array([0, 0, -0.70711, -0.70711]),"mp_pos":np.array([-28.65, -31.19876, 0.03551]),"mp_ori":np.array([0.70711, 0, 0, 0.70711])}, {"name":"handle","prim_name":"handle","position":np.array([-0.4248, 0.46934, 0.94076]),"orientation":np.array([0, 1, 0, 0]),"mp_pos":np.array([-42.77298, -7.93, 0.03551]),"mp_ori":np.array([0,0,0,1])}] for i in range(self.num_of_PFs): world.add_task(ATVTask(name=f"PF_{i}", offset=np.array([0, i*2, 0]), mp_name=f"pf_{self.name_of_PFs[i]['name']}_{i}",mp_pos=self.name_of_PFs[i]['mp_pos'],mp_ori=self.name_of_PFs[i]['mp_ori'])) print("inside setup_scene", self.motion_task_counter) # self.schedules = [deque(['790']) for _ in range(self.num_of_ATVs)] # "1","71","2","72","3","4","6","101","151","171","181","102","301","351","371","381","302","201","251","271","281","202","401","451","471","481","402", self.schedules = [deque(["1","71","2","72","3","4","6","101","151","171","181","102","301","351","371","381","302","201","251","271","281","202","401","451","471","481","402","501","590","591","505","592","593","502","701","790","791","702","721","731","703","801","851","871","802","901","951","971","902","1000"]) for _ in range(self.num_of_ATVs)] for i in range(3, len(self.schedules)): self.schedules[i]=deque(["1","71","2","72","3","4","6","101","151","171","181","102","301","351","371","381","302","201","251","271","281","202","401","402","501","590","591","505","592","593","502","701","790","791","702","721","731","703","801","851","871","802","901","951","971","902","1000"]) # self.schedules = [deque(["701","790","791","702","721","731","703","801","851","871","802","901","951","971","902","1000"]) for _ in range(self.num_of_ATVs)] # # for i in range(len(self.schedules)): # # self.schedules[i]=deque([]) # self.schedules[1]=deque(["71","2","72","4","151","171","181","351","371","381","251","271","281","451","471","481","590","591","592","593","701","790","791","702","721","731","703","801","851","871","802","901","951","971","902","1000"]) # self.schedules[0] = deque(["1","6","6","6","6","6","6","6","6","6","6","6","4","6","101","151","171","181","102","301","351","371","381","302","201","251","271","281","202","401","451","471","481","402","501","590","591","505","592","593","502","701","790","791","702","721","731","703","801","851","871","802","901","951","971","902","1000"]) self.wait_queue = [deque([0,1,2,3,4]) for _ in range(self.num_of_ATVs)] self.pf_schedules = [deque([]) for _ in range(self.num_of_PFs)] self.right_side = self.left_side = False # navigation declarations ----------------------------------------------- if not rosgraph.is_master_online(): print("Please run roscore before executing this script") return try: rospy.init_node("set_goal_py",anonymous=True, disable_signals=True, log_level=rospy.ERROR) except rospy.exceptions.ROSException as e: print("Node has already been initialized, do nothing") # FIXME # self._initial_goal_publisher = rospy.Publisher("initialpose", PoseWithCovarianceStamped, queue_size=1) # self.__send_initial_pose() # await asyncio.sleep(1.0) # self._action_client = actionlib.SimpleActionClient("move_base", MoveBaseAction) return async def setup_post_load(self): self._world = self.get_world() # part feeders set up ---------------------------------------------------------------------------- self.PF_tasks = [] self.part_feeders = [] self.PF_executions = [] for i in range(self.num_of_PFs): self.PF_tasks.append(self._world.get_task(f"PF_{i}")) task_params = self.PF_tasks[i].get_params() self.part_feeders.append(self._world.scene.get_object(task_params["mp_name"]["value"])) if self.name_of_PFs[i]['name'] == "engine": self.add_part_custom("pf_"+self.name_of_PFs[i]["name"]+"/platform","engine_no_rigid", "pf_"+self.name_of_PFs[i]["name"]+f"_{0}", np.array([0.001, 0.001, 0.001]), self.name_of_PFs[i]["position"], self.name_of_PFs[i]["orientation"]) elif self.name_of_PFs[i]['name'] != "wheels": if self.name_of_PFs[i]['name'] == "main_cover": self.add_part_custom("pf_"+self.name_of_PFs[i]["name"]+"/platform","main_cover_orange", "pf_"+self.name_of_PFs[i]["name"]+f"_{0}", np.array([0.001, 0.001, 0.001]), self.name_of_PFs[i]["position"], self.name_of_PFs[i]["orientation"]) else: self.add_part_custom("pf_"+self.name_of_PFs[i]["name"]+"/platform",self.name_of_PFs[i]["name"], "pf_"+self.name_of_PFs[i]["name"]+f"_{0}", np.array([0.001, 0.001, 0.001]), self.name_of_PFs[i]["position"], self.name_of_PFs[i]["orientation"]) else: # self.add_part_custom("pf_"+self.name_of_PFs[i]["name"]+"/platform","FWheel", "pf_"+self.name_of_PFs[i]["name"]+f"_1_{0}", np.array([0.001, 0.001, 0.001]), self.name_of_PFs[i]["position"], self.name_of_PFs[i]["orientation"]) # self.add_part_custom("pf_"+self.name_of_PFs[i]["name"]+"/platform","FWheel", "pf_"+self.name_of_PFs[i]["name"]+f"_2_{0}", np.array([0.001, 0.001, 0.001]), self.name_of_PFs[i]["position"], self.name_of_PFs[i]["orientation"]) # self.add_part_custom("pf_"+self.name_of_PFs[i]["name"]+"/platform","FWheel", "pf_"+self.name_of_PFs[i]["name"]+f"_3_{0}", np.array([0.001, 0.001, 0.001]), self.name_of_PFs[i]["position"], self.name_of_PFs[i]["orientation"]) # self.add_part_custom("pf_"+self.name_of_PFs[i]["name"]+"/platform","FWheel", "pf_"+self.name_of_PFs[i]["name"]+f"_4_{0}", np.array([0.001, 0.001, 0.001]), self.name_of_PFs[i]["position"], self.name_of_PFs[i]["orientation"]) self.add_part_custom("pf_wheels/platform","FWheel", f"pf_wheels_1_{0}", np.array([0.001, 0.001, 0.001]), np.array([0.42089, -0.1821, 0.56097]), np.array([0.5, -0.5, 0.5, 0.5])) self.add_part_custom("pf_wheels/platform","FWheel", f"pf_wheels_2_{0}", np.array([0.001, 0.001, 0.001]), np.array([-0.04856, -0.1821, 0.56097]), np.array([0.5, -0.5, 0.5, 0.5])) self.add_part_custom("pf_wheels/platform","FWheel", f"pf_wheels_3_{0}", np.array([0.001, 0.001, 0.001]), np.array([0.42089, -0.1821, 0.41917]), np.array([0.5, -0.5, 0.5, 0.5])) self.add_part_custom("pf_wheels/platform","FWheel", f"pf_wheels_4_{0}", np.array([0.001, 0.001, 0.001]), np.array([-0.04856, -0.1821, 0.41917]), np.array([0.5, -0.5, 0.5, 0.5])) pf = PartFeederFunctions() self.PF_executions.append(pf) # mobile platform set up ------------------------------------------------------------------------- self.ATV_tasks = [] self.moving_platforms = [] self.ATV_executions = [] for i in range(self.num_of_ATVs): self.ATV_tasks.append(self._world.get_task(f"ATV_{i}")) task_params = self.ATV_tasks[i].get_params() self.moving_platforms.append(self._world.scene.get_object(task_params["mp_name"]["value"])) self.add_part_custom(f"mock_robot_{i}/platform","FFrame", f"frame_{i}", np.array([0.001, 0.001, 0.001]), np.array([0.45216, -0.32084, 0.28512]), np.array([0, 0, 0.70711, 0.70711])) atv = ExecutorFunctions() self.ATV_executions.append(atv) # og.Controller.set(og.Controller.attribute(f"/mock_robot_{i}/TwistSub" + "/node_namespace.inputs:value"), f"mp{i+1}") # og.Controller.set(og.Controller.attribute(f"/mock_robot_{i}/LidarPub" + "/node_namespace.inputs:value"), f"mp{i+1}") # og.Controller.set(og.Controller.attribute(f"/mock_robot_{i}/TfAndOdomPub" + "/node_namespace.inputs:value"), f"mp{i+1}") # Engine cell set up ---------------------------------------------------------------------------- task_params = self._world.get_task("assembly_task").get_params() # bring in moving platforms # self.moving_platform = self._world.scene.get_object(task_params["mp_name"]["value"]) self.engine_bringer = self._world.scene.get_object(task_params["eb_name"]["value"]) self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions) # Initialize our controller after load and the first reset # self._my_custom_controller = CustomDifferentialController() # self._my_controller = WheelBasePoseController(name="cool_controller", open_loop_wheel_controller=DifferentialController(name="simple_control", wheel_radius=0.125, wheel_base=0.46), is_holonomic=False) self.ur10 = self._world.scene.get_object(task_params["arm_name"]["value"]) self.screw_ur10 = self._world.scene.get_object(task_params["screw_arm"]["value"]) self.my_controller = KinematicsSolver(self.ur10, attach_gripper=True) self.screw_my_controller = KinematicsSolver(self.screw_ur10, attach_gripper=True) self.articulation_controller = self.ur10.get_articulation_controller() self.screw_articulation_controller = self.screw_ur10.get_articulation_controller() # self.add_part("FFrame", "frame", np.array([0.001, 0.001, 0.001]), np.array([0.45216, -0.32084, 0.28512]), np.array([0, 0, 0.70711, 0.70711])) self.add_part_custom("World/Environment","engine_no_rigid", "engine_small_0", np.array([0.001, 0.001, 0.001]), np.array([-4.86938, 8.14712, 0.59038]), np.array([0.99457, 0, -0.10411, 0])) # Suspension cell set up ------------------------------------------------------------------------ # bring in moving platforms self.suspension_bringer = self._world.scene.get_object(task_params["eb_name_suspension"]["value"]) # static suspensions on the table self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_00", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.83704, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5])) # self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_01_0", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.69733, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5])) self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_01", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.69733, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5])) self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_02", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.54469, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5])) self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_03", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.3843, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5])) self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_04", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.22546, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5])) self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_05", np.array([0.001,0.001,0.001]), np.array([-6.10203, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0])) self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_06", np.array([0.001,0.001,0.001]), np.array([-5.96018, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0])) self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_07", np.array([0.001,0.001,0.001]), np.array([-5.7941, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0])) self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_08", np.array([0.001,0.001,0.001]), np.array([-5.63427, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0])) self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_09", np.array([0.001,0.001,0.001]), np.array([-5.47625, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0])) # self.add_part_custom("mock_robot/platform","engine_no_rigid", "engine", np.array([0.001,0.001,0.001]), np.array([-0.16041, -0.00551, 0.46581]), np.array([0.98404, -0.00148, -0.17792, -0.00274])) # self.add_part("FFrame", "frame", np.array([0.001, 0.001, 0.001]), np.array([0.45216, -0.32084, 0.28512]), np.array([0, 0, 0.70711, 0.70711])) self.ur10_suspension = self._world.scene.get_object(task_params["arm_name_suspension"]["value"]) self.screw_ur10_suspension = self._world.scene.get_object(task_params["screw_arm_suspension"]["value"]) self.my_controller_suspension = KinematicsSolver(self.ur10_suspension, attach_gripper=True) self.screw_my_controller_suspension = KinematicsSolver(self.screw_ur10_suspension, attach_gripper=True) self.articulation_controller_suspension = self.ur10_suspension.get_articulation_controller() self.screw_articulation_controller_suspension = self.screw_ur10_suspension.get_articulation_controller() # Fuel cell set up --------------------------------------------------------------------------------- # bring in moving platforms self.fuel_bringer = self._world.scene.get_object(task_params["eb_name_fuel"]["value"]) # self.add_part_custom("fuel_bringer/platform","fuel", "fuel", np.array([0.001,0.001,0.001]), np.array([-0.1769, 0.13468, 0.24931]), np.array([0.5,0.5,-0.5,-0.5])) # self.add_part_custom("World/Environment","fuel", "fuel_01_0", np.array([0.001,0.001,0.001]), np.array([-7.01712, -15.89918, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5])) self.offset = -0.35894 self.add_part_custom("World/Environment","fuel", "fuel_00", np.array([0.001,0.001,0.001]), np.array([-6.96448, -16.13794+self.offset, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5])) self.add_part_custom("World/Environment","fuel_yellow", "fuel_01", np.array([0.001,0.001,0.001]), np.array([-6.96448, -15.83793+self.offset, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5])) self.add_part_custom("World/Environment","fuel", "fuel_02", np.array([0.001,0.001,0.001]), np.array([-6.96448, -15.53714+self.offset, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5])) self.add_part_custom("World/Environment","fuel_yellow", "fuel_03", np.array([0.001,0.001,0.001]), np.array([-6.96448, -15.23127+self.offset, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5])) self.add_part_custom("World/Environment","fuel", "fuel_04", np.array([0.001,0.001,0.001]), np.array([-7.22495, -16.13794+self.offset, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5])) self.add_part_custom("World/Environment","fuel_yellow", "fuel_05", np.array([0.001,0.001,0.001]), np.array([-7.22495, -15.83793+self.offset, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5])) self.add_part_custom("World/Environment","fuel", "fuel_06", np.array([0.001,0.001,0.001]), np.array([-7.22495, -15.53714+self.offset, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5])) self.add_part_custom("World/Environment","fuel_yellow", "fuel_07", np.array([0.001,0.001,0.001]), np.array([-7.22495, -15.23127+self.offset, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5])) # self.add_part_custom("World/Environment","fuel", "fuel_3", np.array([0.001,0.001,0.001]), np.array([-6.54859, -15.46717, 0.41958]), np.array([0, 0, -0.70711, -0.70711])) # self.add_part_custom("World/Environment","fuel", "fuel_4", np.array([0.001,0.001,0.001]), np.array([-6.14395, -15.47402, 0.41958]), np.array([0, 0, -0.70711, -0.70711])) # self.add_part_custom("mock_robot/platform","FSuspensionBack", "xFSuspensionBack", np.array([0.001,0.001,0.001]), np.array([-0.90761, 0.03096, 0.69056]), np.array([0.48732, -0.51946, 0.50085, -0.49176])) # self.add_part_custom("mock_robot/platform","engine_no_rigid", "engine", np.array([0.001,0.001,0.001]), np.array([-0.16041, -0.00551, 0.46581]), np.array([0.98404, -0.00148, -0.17792, -0.00274])) # self.add_part_custom("mock_robot/platform","fuel", "xfuel", np.array([0.001,0.001,0.001]), np.array([0.11281, -0.08612, 0.59517]), np.array([0, 0, -0.70711, -0.70711])) # Initialize our controller after load and the first reset self.ur10_fuel = self._world.scene.get_object(task_params["arm_name_fuel"]["value"]) self.screw_ur10_fuel = self._world.scene.get_object(task_params["screw_arm_fuel"]["value"]) self.my_controller_fuel = KinematicsSolver(self.ur10_fuel, attach_gripper=True) self.screw_my_controller_fuel = KinematicsSolver(self.screw_ur10_fuel, attach_gripper=True) self.articulation_controller_fuel = self.ur10_fuel.get_articulation_controller() self.screw_articulation_controller_fuel = self.screw_ur10_fuel.get_articulation_controller() # battery cell set up --------------------------------------------------------------------------------- # bring in moving platforms self.battery_bringer = self._world.scene.get_object(task_params["eb_name_battery"]["value"]) # self.add_part_custom("World/Environment","battery", "battery_01_0", np.array([0.001,0.001,0.001]), np.array([-16.47861, -15.68368, 0.41467]), np.array([0.70711, 0.70711, 0, 0])) self.add_part_custom("World/Environment","battery", "battery_00", np.array([0.001,0.001,0.001]), np.array([-16.66421, -15.68368, 0.41467]), np.array([0.70711, 0.70711, 0, 0])) self.add_part_custom("World/Environment","battery", "battery_01", np.array([0.001,0.001,0.001]), np.array([-16.47861, -15.68368, 0.41467]), np.array([0.70711, 0.70711, 0, 0])) self.add_part_custom("World/Environment","battery", "battery_02", np.array([0.001,0.001,0.001]), np.array([-16.29557, -15.68368, 0.41467]), np.array([0.70711, 0.70711, 0, 0])) self.add_part_custom("World/Environment","battery", "battery_03", np.array([0.001,0.001,0.001]), np.array([-16.11273, -15.68368, 0.41467]), np.array([0.70711, 0.70711, 0, 0])) self.add_part_custom("World/Environment","battery", "battery_04", np.array([0.001,0.001,0.001]), np.array([-16.66421, -15.55639, 0.41467]), np.array([0.70711, 0.70711, 0, 0])) self.add_part_custom("World/Environment","battery", "battery_05", np.array([0.001,0.001,0.001]), np.array([-16.47861, -15.55639, 0.41467]), np.array([0.70711, 0.70711, 0, 0])) self.add_part_custom("World/Environment","battery", "battery_06", np.array([0.001,0.001,0.001]), np.array([-16.29557, -15.55639, 0.41467]), np.array([0.70711, 0.70711, 0, 0])) self.add_part_custom("World/Environment","battery", "battery_07", np.array([0.001,0.001,0.001]), np.array([-16.11273, -15.55639, 0.41467]), np.array([0.70711, 0.70711, 0, 0])) # part feeding battery -------------------------------------- # self.add_part_custom("battery_bringer/platform","battery", "battery_01", np.array([0.001,0.001,0.001]), np.array([-0.23374, 0.08958, 0.2623]), np.array([0, 0, 0.70711, 0.70711])) # self.add_part_custom("battery_bringer/platform","battery", "battery_02", np.array([0.001,0.001,0.001]), np.array([-0.23374, -0.13743, 0.2623]), np.array([0, 0, 0.70711, 0.70711])) # self.add_part_custom("battery_bringer/platform","battery", "battery_03", np.array([0.001,0.001,0.001]), np.array([0.04161, -0.13743, 0.2623]), np.array([0, 0, 0.70711, 0.70711])) # self.add_part_custom("battery_bringer/platform","battery", "battery_04", np.array([0.001,0.001,0.001]), np.array([0.30769, -0.13743, 0.2623]), np.array([0, 0, 0.70711, 0.70711])) # self.add_part_custom("battery_bringer/platform","battery", "battery_05", np.array([0.001,0.001,0.001]), np.array([0.03519, 0.08958, 0.2623]), np.array([0, 0, 0.70711, 0.70711])) # self.add_part_custom("battery_bringer/platform","battery", "battery_06", np.array([0.001,0.001,0.001]), np.array([0.30894, 0.08958, 0.2623]), np.array([0, 0, 0.70711, 0.70711])) # Initialize our controller after load and the first reset self.ur10_battery = self._world.scene.get_object(task_params["arm_name_battery"]["value"]) self.screw_ur10_battery = self._world.scene.get_object(task_params["screw_arm_battery"]["value"]) self.my_controller_battery = KinematicsSolver(self.ur10_battery, attach_gripper=True) self.screw_my_controller_battery = KinematicsSolver(self.screw_ur10_battery, attach_gripper=True) self.articulation_controller_battery = self.ur10_battery.get_articulation_controller() self.screw_articulation_controller_battery = self.screw_ur10_battery.get_articulation_controller() # trunk cell set up --------------------------------------------------------------------------------- # bring in moving platforms self.trunk_bringer = self._world.scene.get_object(task_params["eb_name_trunk"]["value"]) self.add_part_custom("World/Environment","trunk", "trunk_01", np.array([0.001,0.001,0.001]), np.array([-27.84904, 3.75405, 0.41467]), np.array([0, 0, -0.70711, -0.70711])) self.add_part_custom("World/Environment","trunk", "trunk_02_0", np.array([0.001,0.001,0.001]), np.array([-27.84904, 4.26505, 0.41467]), np.array([0, 0, -0.70711, -0.70711])) # Initialize our controller after load and the first reset self.ur10_trunk = self._world.scene.get_object(task_params["arm_name_trunk"]["value"]) self.screw_ur10_trunk = self._world.scene.get_object(task_params["screw_arm_trunk"]["value"]) self.my_controller_trunk = KinematicsSolver(self.ur10_trunk, attach_gripper=True) self.screw_my_controller_trunk = KinematicsSolver(self.screw_ur10_trunk, attach_gripper=True) self.articulation_controller_trunk = self.ur10_trunk.get_articulation_controller() self.screw_articulation_controller_trunk = self.screw_ur10_trunk.get_articulation_controller() # wheel cell set up --------------------------------------------------------------------------------- # bring in moving platforms self.wheel_bringer = self._world.scene.get_object(task_params["eb_name_wheel"]["value"]) self.add_part_custom("World/Environment","FWheel", "wheel_01_0", np.array([0.001,0.001,0.001]), np.array([-15.17319, 4.72577, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5])) self.add_part_custom("World/Environment","FWheel", "wheel_02_0", np.array([0.001,0.001,0.001]), np.array([-15.17319, 5.24566, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5])) self.add_part_custom("World/Environment","FWheel", "wheel_03_0", np.array([0.001,0.001,0.001]), np.array([-18.97836, 4.72577, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5])) self.add_part_custom("World/Environment","FWheel", "wheel_04_0", np.array([0.001,0.001,0.001]), np.array([-18.97836, 5.24566, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5])) # Initialize our controller after load and the first reset self.ur10_wheel = self._world.scene.get_object(task_params["arm_name_wheel"]["value"]) self.screw_ur10_wheel = self._world.scene.get_object(task_params["screw_arm_wheel"]["value"]) self.my_controller_wheel = KinematicsSolver(self.ur10_wheel, attach_gripper=True) self.screw_my_controller_wheel = KinematicsSolver(self.screw_ur10_wheel, attach_gripper=True) self.articulation_controller_wheel = self.ur10_wheel.get_articulation_controller() self.screw_articulation_controller_wheel = self.screw_ur10_wheel.get_articulation_controller() self.ur10_wheel_01 = self._world.scene.get_object(task_params["arm_name_wheel_01"]["value"]) self.screw_ur10_wheel_01 = self._world.scene.get_object(task_params["screw_arm_wheel_01"]["value"]) self.my_controller_wheel_01 = KinematicsSolver(self.ur10_wheel_01, attach_gripper=True) self.screw_my_controller_wheel_01 = KinematicsSolver(self.screw_ur10_wheel_01, attach_gripper=True) self.articulation_controller_wheel_01 = self.ur10_wheel_01.get_articulation_controller() self.screw_articulation_controller_wheel_01 = self.screw_ur10_wheel_01.get_articulation_controller() # lower_cover cell set up --------------------------------------------------------------------------------- # bring in moving platforms # self.lower_cover_bringer = self._world.scene.get_object(task_params["eb_name_lower_cover"]["value"]) # self.add_part_custom("World/Environment","lower_cover", "lower_cover_01_0", np.array([0.001,0.001,0.001]), np.array([-26.2541, -15.57458, 0.40595]), np.array([0, 0, 0.70711, 0.70711])) # self.add_part_custom("World/Environment","lower_cover", "lower_cover_02", np.array([0.001,0.001,0.001]), np.array([-26.2541, -15.30883, 0.40595]), np.array([0, 0, 0.70711, 0.70711])) # self.add_part_custom("World/Environment","lower_cover", "lower_cover_03", np.array([0.001,0.001,0.001]), np.array([-25.86789, -15.30883, 0.40595]), np.array([0, 0, 0.70711, 0.70711])) # self.add_part_custom("World/Environment","lower_cover", "lower_cover_04_0", np.array([0.001,0.001,0.001]), np.array([-26.26153, -19.13631, 0.40595]), np.array([0, 0, -0.70711, -0.70711])) # self.add_part_custom("World/Environment","lower_cover", "lower_cover_05", np.array([0.001,0.001,0.001]), np.array([-26.26153, -19.3805, 0.40595]), np.array([0, 0, -0.70711, -0.70711])) # self.add_part_custom("World/Environment","lower_cover", "lower_cover_06", np.array([0.001,0.001,0.001]), np.array([-25.88587, -19.3805, 0.40595]), np.array([0, 0, -0.70711, -0.70711])) # right lower covers self.add_part_custom("World/Environment","lower_cover", "lower_coverr_3", np.array([0.001,0.001,0.001]), np.array([-26.2541, -15.47486, 0.40595]), np.array([0, 0, 0.70711, 0.70711])) self.add_part_custom("World/Environment","lower_cover", "lower_coverr_2", np.array([0.001,0.001,0.001]), np.array([-26.2541, -15.47486, 0.44595]), np.array([0, 0, 0.70711, 0.70711])) self.add_part_custom("World/Environment","lower_cover", "lower_coverr_1", np.array([0.001,0.001,0.001]), np.array([-26.2541, -15.47486, 0.48595]), np.array([0, 0, 0.70711, 0.70711])) self.add_part_custom("World/Environment","lower_cover", "lower_coverr_0", np.array([0.001,0.001,0.001]), np.array([-26.2541, -15.47486, 0.52595]), np.array([0, 0, 0.70711, 0.70711])) self.add_part_custom("World/Environment","lower_cover", "lower_coverr_7", np.array([0.001,0.001,0.001]), np.array([-25.86789, -15.47486, 0.40595]), np.array([0, 0, 0.70711, 0.70711])) self.add_part_custom("World/Environment","lower_cover", "lower_coverr_6", np.array([0.001,0.001,0.001]), np.array([-25.86789, -15.47486, 0.44595]), np.array([0, 0, 0.70711, 0.70711])) self.add_part_custom("World/Environment","lower_cover", "lower_coverr_5", np.array([0.001,0.001,0.001]), np.array([-25.86789, -15.47486, 0.48595]), np.array([0, 0, 0.70711, 0.70711])) self.add_part_custom("World/Environment","lower_cover", "lower_coverr_4", np.array([0.001,0.001,0.001]), np.array([-25.86789, -15.47486, 0.52595]), np.array([0, 0, 0.70711, 0.70711])) # left lower covers self.add_part_custom("World/Environment","lower_cover", "lower_coverl_3", np.array([0.001,0.001,0.001]), np.array([-26.26153, -19.25546, 0.40595]), np.array([0, 0, -0.70711, -0.70711])) self.add_part_custom("World/Environment","lower_cover", "lower_coverl_2", np.array([0.001,0.001,0.001]), np.array([-26.26153, -19.25546, 0.44595]), np.array([0, 0, -0.70711, -0.70711])) self.add_part_custom("World/Environment","lower_cover", "lower_coverl_1", np.array([0.001,0.001,0.001]), np.array([-26.26153, -19.25546, 0.48595]), np.array([0, 0, -0.70711, -0.70711])) self.add_part_custom("World/Environment","lower_cover", "lower_coverl_0", np.array([0.001,0.001,0.001]), np.array([-26.26153, -19.25546, 0.52595]), np.array([0, 0, -0.70711, -0.70711])) self.add_part_custom("World/Environment","lower_cover", "lower_coverl_7", np.array([0.001,0.001,0.001]), np.array([-25.92747, -19.25546, 0.40595]), np.array([0, 0, -0.70711, -0.70711])) self.add_part_custom("World/Environment","lower_cover", "lower_coverl_6", np.array([0.001,0.001,0.001]), np.array([-25.92747, -19.25546, 0.44595]), np.array([0, 0, -0.70711, -0.70711])) self.add_part_custom("World/Environment","lower_cover", "lower_coverl_5", np.array([0.001,0.001,0.001]), np.array([-25.92747, -19.25546, 0.48595]), np.array([0, 0, -0.70711, -0.70711])) self.add_part_custom("World/Environment","lower_cover", "lower_coverl_4", np.array([0.001,0.001,0.001]), np.array([-25.92747, -19.25546, 0.52595]), np.array([0, 0, -0.70711, -0.70711])) self.add_part_custom("World/Environment","main_cover", "main_cover_0", np.array([0.001,0.001,0.001]), np.array([-18.7095-11.83808, -15.70872, 0.28822]), np.array([0.70711, 0.70711,0,0])) # Initialize our controller after load and the first reset self.ur10_lower_cover = self._world.scene.get_object(task_params["arm_name_lower_cover"]["value"]) self.screw_ur10_lower_cover = self._world.scene.get_object(task_params["screw_arm_lower_cover"]["value"]) self.my_controller_lower_cover = KinematicsSolver(self.ur10_lower_cover, attach_gripper=True) self.screw_my_controller_lower_cover = KinematicsSolver(self.screw_ur10_lower_cover, attach_gripper=True) self.articulation_controller_lower_cover = self.ur10_lower_cover.get_articulation_controller() self.screw_articulation_controller_lower_cover = self.screw_ur10_lower_cover.get_articulation_controller() self.ur10_lower_cover_01 = self._world.scene.get_object(task_params["arm_name_lower_cover_01"]["value"]) self.screw_ur10_lower_cover_01 = self._world.scene.get_object(task_params["screw_arm_lower_cover_01"]["value"]) self.my_controller_lower_cover_01 = KinematicsSolver(self.ur10_lower_cover_01, attach_gripper=True) self.screw_my_controller_lower_cover_01 = KinematicsSolver(self.screw_ur10_lower_cover_01, attach_gripper=True) self.articulation_controller_lower_cover_01 = self.ur10_lower_cover_01.get_articulation_controller() self.screw_articulation_controller_lower_cover_01 = self.screw_ur10_lower_cover_01.get_articulation_controller() self.ur10_main_cover = self._world.scene.get_object(task_params["arm_name_main_cover"]["value"]) self.my_controller_main_cover = KinematicsSolver(self.ur10_main_cover, attach_gripper=True) self.articulation_controller_main_cover = self.ur10_main_cover.get_articulation_controller() # handle cell set up --------------------------------------------------------------------------------- # bring in moving platforms self.handle_bringer = self._world.scene.get_object(task_params["eb_name_handle"]["value"]) self.add_part_custom("World/Environment","handle", "handle_0", np.array([0.001,0.001,0.001]), np.array([-29.70213, -7.25934, 1.08875]), np.array([0, 0.70711, 0.70711, 0])) # Initialize our controller after load and the first reset self.ur10_handle = self._world.scene.get_object(task_params["arm_name_handle"]["value"]) self.screw_ur10_handle = self._world.scene.get_object(task_params["screw_arm_handle"]["value"]) self.my_controller_handle = KinematicsSolver(self.ur10_handle, attach_gripper=True) self.screw_my_controller_handle = KinematicsSolver(self.screw_ur10_handle, attach_gripper=True) self.articulation_controller_handle = self.ur10_handle.get_articulation_controller() self.screw_articulation_controller_handle = self.screw_ur10_handle.get_articulation_controller() # self.add_part_custom("World/UR10_main_cover/ee_link","main_cover", f"qmain_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.71735, 0.26961, -0.69234]), np.array([0.5, 0.5, -0.5, 0.5])) # light cell set up --------------------------------------------------------------------------------- # bring in moving platforms self.light_bringer = self._world.scene.get_object(task_params["eb_name_light"]["value"]) self.light_offset = 0.19384 # self.add_part_custom("World/Environment","FFrontLightAssembly", "light_00", np.array([0.001,0.001,0.001]), np.array([-18.07685, -6.94324 + self.light_offset, -0.71703]), np.array([0.28511, -0.28511, -0.64708, -0.64708])) self.add_part_custom("World/Environment","FFrontLightAssembly", "light_00", np.array([0.001,0.001,0.001]), np.array([-18.07685, -6.94324, -0.71703]), np.array([0.28511, -0.28511, -0.64708, -0.64708])) self.add_part_custom("World/Environment","FFrontLightAssembly", "light_01", np.array([0.001,0.001,0.001]), np.array([-18.07685, -7.14276, -0.71703]), np.array([0.28511, -0.28511, -0.64708, -0.64708])) self.add_part_custom("World/Environment","FFrontLightAssembly", "light_02", np.array([0.001,0.001,0.001]), np.array([-18.07685, -7.35866, -0.71703]), np.array([0.28511, -0.28511, -0.64708, -0.64708])) # self.add_part_custom("World/Environment","FFrontLightAssembly", "light_03", np.array([0.001,0.001,0.001]), np.array([-18.07685, -7.56251, -0.71703]), np.array([0.28511, -0.28511, -0.64708, -0.64708])) # self.add_part_custom("World/Environment","FFrontLightAssembly", "light_03", np.array([0.001,0.001,0.001]), np.array([-18.21921, -7.19762, -0.71703]), np.array([0.65916, 0.25595, -0.65916, -0.25595])) self.add_part_custom("World/Environment","FFrontLightAssembly", "light_03", np.array([0.001,0.001,0.001]), np.array([-18.02266, -7.19762, -0.71703]), np.array([0.65916, 0.25595, -0.65916, -0.25595])) self.add_part_custom("World/Environment","FFrontLightAssembly", "light_04", np.array([0.001,0.001,0.001]), np.array([-17.82314, -7.19762, -0.71703]), np.array([0.65916, 0.25595, -0.65916, -0.25595])) self.add_part_custom("World/Environment","FFrontLightAssembly", "light_05", np.array([0.001,0.001,0.001]), np.array([-17.60725, -7.19762, -0.71703]), np.array([0.65916, 0.25595, -0.65916, -0.25595])) self.add_part_custom("World/Environment","FFrontLightAssembly", "light_06", np.array([0.001,0.001,0.001]), np.array([-17.40341, -7.19762, -0.71703]), np.array([0.65916, 0.25595, -0.65916, -0.25595])) self.add_part_custom("World/Environment","FFrontLightAssembly", "light_07", np.array([0.001,0.001,0.001]), np.array([-17.40341+self.light_offset, -7.19762, -0.71703]), np.array([0.65916, 0.25595, -0.65916, -0.25595])) # self.add_part_custom("mock_robot/platform","handle", "xhandle", np.array([0.001,0.001,0.001]), np.array([0.82439, 0.44736, 1.16068]), np.array([0.20721, 0.68156, -0.67309, -0.19874])) # self.add_part_custom("mock_robot/platform","main_cover", "xmain_cover", np.array([0.001,0.001,0.001]), np.array([-0.81508, 0.27909, 0.19789]), np.array([0.70711, 0.70711, 0, 0])) # Initialize our controller after load and the first reset self.ur10_light = self._world.scene.get_object(task_params["arm_name_light"]["value"]) self.screw_ur10_light = self._world.scene.get_object(task_params["screw_arm_light"]["value"]) self.my_controller_light = KinematicsSolver(self.ur10_light, attach_gripper=True) self.screw_my_controller_light = KinematicsSolver(self.screw_ur10_light, attach_gripper=True) self.articulation_controller_light = self.ur10_light.get_articulation_controller() self.screw_articulation_controller_light = self.screw_ur10_light.get_articulation_controller() # temporary additions ------------------------------------------------- # self.add_part_custom("mock_robot/platform","FWheel", "xwheel_02", np.array([0.001,0.001,0.001]), np.array([-0.80934, 0.35041, 0.43888]), np.array([0.5, -0.5, 0.5, -0.5])) # self.add_part_custom("mock_robot/platform","FWheel", "xwheel_04", np.array([0.001,0.001,0.001]), np.array([-0.80845, -0.22143, 0.43737]), np.array([0.5, -0.5, 0.5, -0.5])) # self.add_part_custom("mock_robot/platform","FWheel", "xwheel_01", np.array([0.001,0.001,0.001]), np.array([0.1522, 0.33709, 0.56377]), np.array([0.5, -0.5, 0.5, -0.5])) # self.add_part_custom("mock_robot/platform","FWheel", "xwheel_03", np.array([0.001,0.001,0.001]), np.array([0.15255, -0.1948, 0.56377]), np.array([0.5, -0.5, 0.5, -0.5])) # self.add_part_custom("mock_robot/platform","trunk", "xtrunk", np.array([0.001,0.001,0.001]), np.array([-0.79319, -0.21112, 0.70114]), np.array([0.5, 0.5, 0.5, 0.5])) # self.add_part_custom("mock_robot/platform","battery", "xbattery", np.array([0.001,0.001,0.001]), np.array([-0.20126, 0.06146, 0.58443]), np.array([0.4099, 0.55722, -0.58171, -0.42791])) # self.add_part_custom("mock_robot/platform","fuel", "xfuel", np.array([0.001,0.001,0.001]), np.array([0.11281, -0.08612, 0.59517]), np.array([0, 0, -0.70711, -0.70711])) # self.add_part_custom("mock_robot/platform","FSuspensionBack", "xFSuspensionBack", np.array([0.001,0.001,0.001]), np.array([-0.87892, 0.0239, 0.82432]), np.array([0.40364, -0.58922, 0.57252, -0.40262])) # self.add_part_custom("mock_robot/platform","engine_no_rigid", "engine", np.array([0.001,0.001,0.001]), np.array([-0.16041, -0.00551, 0.46581]), np.array([0.98404, -0.00148, -0.17792, -0.00274])) # # part feeder stuff ---------------------------- # self.add_part_custom("fuel_bringer/platform","fuel", "fuel_05", np.array([0.001,0.001,0.001]), np.array([-0.17458, 0.136, 0.26034]), np.array([0.5 ,0.5, -0.5, -0.5])) # self.add_part_custom("fuel_bringer/platform","fuel", "fuel_06", np.array([0.001,0.001,0.001]), np.array([0.10727, 0.136, 0.26034]), np.array([0.5 ,0.5, -0.5, -0.5])) # self.add_part_custom("fuel_bringer/platform","fuel", "fuel_07", np.array([0.001,0.001,0.001]), np.array([0.375, 0.136, 0.26034]), np.array([0.5 ,0.5, -0.5, -0.5])) # self.add_part_custom("suspension_bringer/platform","FSuspensionBack", "FSuspensionBack_10", np.array([0.001,0.001,0.001]), np.array([0.16356, -0.19391, 0.25373]), np.array([0.70711, 0, -0.70711, 0])) # self.add_part_custom("suspension_bringer/platform","FSuspensionBack", "FSuspensionBack_11", np.array([0.001,0.001,0.001]), np.array([0.31896, -0.19391, 0.25373]), np.array([0.70711, 0, -0.70711, 0])) # self.add_part_custom("suspension_bringer/platform","FSuspensionBack", "FSuspensionBack_12", np.array([0.001,0.001,0.001]), np.array([0.47319, -0.19391, 0.25373]), np.array([0.70711, 0, -0.70711, 0])) # self.add_part_custom("suspension_bringer/platform","FSuspensionBack", "FSuspensionBack_13", np.array([0.001,0.001,0.001]), np.array([0.6372, -0.19391, 0.25373]), np.array([0.70711, 0, -0.70711, 0])) # self.add_part_custom("suspension_bringer/platform","FSuspensionBack", "FSuspensionBack_14", np.array([0.001,0.001,0.001]), np.array([0.80216, -0.19391, 0.25373]), np.array([0.70711, 0, -0.70711, 0])) # self.add_part_custom("engine_bringer/platform","engine_no_rigid", "engine_11", np.array([0.001,0.001,0.001]), np.array([0, 0, 0.43148]), np.array([0.99457, 0, -0.10407, 0])) # ATV executor class declaration ------------------------------------------------- self.suspension = [[{"index":0, "position": np.array([0.72034, 0.08607, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -5.27931, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":1, "position": np.array([0.72034, 0.08607, 0.33852-0.16]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -5.27931, 0.58122]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":2, "position": np.array([0.72034, 0.08607, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -5.27931, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}], [{"index":0, "position": np.array([0.72034, -0.05477, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.822, -5.13962, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":1, "position": np.array([0.72034, -0.05477, 0.33852-0.16]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.822, -5.13962, 0.58122]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":2, "position": np.array([0.72034, -0.05477, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.822, -5.13962, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}], [{"index":0, "position": np.array([0.72034, -0.20689, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.98634, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":1, "position": np.array([0.72034, -0.20689, 0.33852-0.16]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.98634, 0.58122]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":2, "position": np.array([0.72034, -0.20689, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.98634, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}], [{"index":0, "position": np.array([0.72034, -0.36659, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.82664, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":1, "position": np.array([0.72034, -0.36659, 0.33852-0.16]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.82664, 0.58122]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":2, "position": np.array([0.72034, -0.36659, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.82664, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}], [{"index":0, "position": np.array([0.72034, -0.52521, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.66802, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":1, "position": np.array([0.72034, -0.52521, 0.33852-0.16]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.66802, 0.58122]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":2, "position": np.array([0.72034, -0.52521, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.8209, -4.66802, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}], [{"index":0, "position": np.array([0.44319, -0.60758, 0.33852-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.54418, -4.58567, 0.58122+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":1, "position": np.array([0.44319, -0.60758, 0.33852-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.54418, -4.58567, 0.58122]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":2, "position": np.array([0.44319, -0.60758, 0.33852-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.54418, -4.58567, 0.58122+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}], [{"index":0, "position": np.array([0.30166, -0.60758, 0.33852-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.40265, -4.58567, 0.58122+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":1, "position": np.array([0.30166, -0.60758, 0.33852-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.40265, -4.58567, 0.58122]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":2, "position": np.array([0.30166, -0.60758, 0.33852-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.40265, -4.58567, 0.58122+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}], [{"index":0, "position": np.array([0.1356, -0.60758, 0.33852-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.23659, -4.58567, 0.58122+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":1, "position": np.array([0.1356, -0.60758, 0.33852-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.23659, -4.58567, 0.58122]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":2, "position": np.array([0.1356, -0.60758, 0.33852-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.23659, -4.58567, 0.58122+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}], ] self.battery = [[{"index":0, "position": np.array([0.05713, -0.61362, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.61088, -15.71631, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([0.05713, -0.61362, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.61088, -15.71631, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([0.05713, -0.61362, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.61088, -15.71631, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}], [{"index":0, "position": np.array([-0.12728, -0.61362, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.71631, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([-0.12728, -0.61362, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.71631, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([-0.12728, -0.61362, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.71631, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}], [{"index":0, "position": np.array([-0.31243, -0.61362, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.24132, -15.71631, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([-0.31243, -0.61362, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.24132, -15.71631, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([-0.31243, -0.61362, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.24132, -15.71631, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}], [{"index":0, "position": np.array([-0.49671, -0.61362, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.05704, -15.71631, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([-0.49671, -0.61362, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.05704, -15.71631, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([-0.49671, -0.61362, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.05704, -15.71631, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}], [{"index":0, "position": np.array([0.05713, -0.74178, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.61088, -15.58815, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([0.05713, -0.74178, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.61088, -15.58815, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([0.05713, -0.74178, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.61088, -15.58815, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}], [{"index":0, "position": np.array([-0.12728, -0.74178, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.58815, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([-0.12728, -0.74178, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.58815, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([-0.12728, -0.74178, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.58815, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}], [{"index":0, "position": np.array([-0.31243, -0.74178, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.24132, -15.58815, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([-0.31243, -0.74178, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.24132, -15.58815, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([-0.31243, -0.74178, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.24132, -15.58815, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}], [{"index":0, "position": np.array([-0.49671, -0.74178, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.05704, -15.58815, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([-0.49671, -0.74178, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.05704, -15.58815, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([-0.49671, -0.74178, 0.4+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.05704, -15.58815, 0.64303+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}], ] self.fuel = [[{"index":0, "position": np.array([0.71705+0.16, 0.06232-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443, -16.22609+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":1, "position": np.array([0.87135+0.16, 0.06232-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -16.22609+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":2, "position": np.array([0.87135+0.16, 0.06232-self.offset, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -16.22609+self.offset, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}], [{"index":0, "position": np.array([0.71705+0.16, -0.2367-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443, -15.92707+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":1, "position": np.array([0.87135+0.16, -0.2367-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -15.92707+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":2, "position": np.array([0.87135+0.16, -0.2367-self.offset, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -15.92707+self.offset, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}], [{"index":0, "position": np.array([0.71705+0.16, -0.53766-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443, -15.62611+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":1, "position": np.array([0.87135+0.16, -0.53766-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -15.62611+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":2, "position": np.array([0.87135+0.16, -0.53766-self.offset, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -15.62611+self.offset, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}], [{"index":0, "position": np.array([0.71705+0.16, -0.8428-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443, -15.32097+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":1, "position": np.array([0.87135+0.16, -0.8428-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -15.32097+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":2, "position": np.array([0.87135+0.16, -0.8428-self.offset, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -15.32097+self.offset, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}], [{"index":0, "position": np.array([0.71705+0.16+0.26557, 0.06232-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443-0.26557, -16.22609+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":1, "position": np.array([0.87135+0.16+0.26557, 0.06232-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -16.22609+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":2, "position": np.array([0.87135+0.16+0.26557, 0.06232-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -16.22609+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])} # {"index":2, "position": np.array([0.87135+0.16+0.26557, 0.06232-self.offset, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -16.22609+self.offset, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])} ], [{"index":0, "position": np.array([0.71705+0.16+0.26557, -0.2367-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443-0.26557, -15.92707+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":1, "position": np.array([0.87135+0.16+0.26557, -0.2367-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -15.92707+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":2, "position": np.array([0.87135+0.16+0.26557, -0.2367-self.offset, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -15.92707+self.offset, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}], [{"index":0, "position": np.array([0.71705+0.16+0.26557, -0.53766-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443-0.26557, -15.62611+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":1, "position": np.array([0.87135+0.16+0.26557, -0.53766-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -15.62611+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":2, "position": np.array([0.87135+0.16+0.26557, -0.53766-self.offset, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -15.62611+self.offset, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}], [{"index":0, "position": np.array([0.71705+0.16+0.26557, -0.8428-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443-0.26557, -15.32097+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":1, "position": np.array([0.87135+0.16+0.26557, -0.8428-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -15.32097+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":2, "position": np.array([0.87135+0.16+0.26557, -0.8428-self.offset, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -15.32097+self.offset, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])} # {"index":2, "position": np.array([0.87135+0.16+0.26557, -0.8428-self.offset, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873-0.26557, -15.32097+self.offset, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])} ], ] self.lower_coverr = [ [{"index":0, "position": np.array([-0.49105, 0.8665, -0.16+0.56397+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.80567+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":1, "position": np.array([-0.49105, 0.8665, -0.16+0.56397]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.80567]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":2, "position": np.array([-0.49105, 0.8665, -0.16+0.56397+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.80567+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}], [{"index":0, "position": np.array([-0.49105, 0.8665, -0.16+0.52368+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.76538+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":1, "position": np.array([-0.49105, 0.8665, -0.16+0.52368]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.76538]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":2, "position": np.array([-0.49105, 0.8665, -0.16+0.52368+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.76538+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}], [{"index":0, "position": np.array([-0.49105, 0.8665, -0.16+0.48417+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.72587+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":1, "position": np.array([-0.49105, 0.8665, -0.16+0.48417]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.72587]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":2, "position": np.array([-0.49105, 0.8665, -0.16+0.48417+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.72587+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}], [{"index":0, "position": np.array([-0.49105, 0.8665, -0.16+0.4434+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.6851+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":1, "position": np.array([-0.49105, 0.8665, -0.16+0.4434]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.6851]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":2, "position": np.array([-0.49105, 0.8665, -0.16+0.4434+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.3925, 0.6851+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}], [{"index":0, "position": np.array([-0.10504, 0.8665, -0.16+0.56397+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.80567+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":1, "position": np.array([-0.10504, 0.8665, -0.16+0.56397]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.80567]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":2, "position": np.array([-0.10504, 0.8665, -0.16+0.56397+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.80567+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}], [{"index":0, "position": np.array([-0.10504, 0.8665, -0.16+0.52368+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.76538+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":1, "position": np.array([-0.10504, 0.8665, -0.16+0.52368]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.76538]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":2, "position": np.array([-0.10504, 0.8665, -0.16+0.52368+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.76538+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}], [{"index":0, "position": np.array([-0.10504, 0.8665, -0.16+0.48417+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.72587+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":1, "position": np.array([-0.10504, 0.8665, -0.16+0.48417]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.72587]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":2, "position": np.array([-0.10504, 0.8665, -0.16+0.48417+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.72587+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}], [{"index":0, "position": np.array([-0.10504, 0.8665, -0.16+0.4434+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.6851+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":1, "position": np.array([-0.10504, 0.8665, -0.16+0.4434]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.6851]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":2, "position": np.array([-0.10504, 0.8665, -0.16+0.4434+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.16393, -15.3925, 0.6851+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}], ] self.lower_coverl = [ [{"index":0, "position": np.array([0.49458, 0.86119, -0.16+0.56518+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.80656+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":1, "position": np.array([0.49458, 0.86119, -0.16+0.56518]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.80656]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":2, "position": np.array([0.49458, 0.86119, -0.16+0.56518+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.80656+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}], [{"index":0, "position": np.array([0.49458, 0.86119, -0.16+0.52494+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.76632+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":1, "position": np.array([0.49458, 0.86119, -0.16+0.52494]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.76632]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":2, "position": np.array([0.49458, 0.86119, -0.16+0.52494+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.76632+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}], [{"index":0, "position": np.array([0.49458, 0.86119, -0.16+0.48451+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.72589+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":1, "position": np.array([0.49458, 0.86119, -0.16+0.48451]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.72589]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":2, "position": np.array([0.49458, 0.86119, -0.16+0.48451+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.72589+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}], [{"index":0, "position": np.array([0.49458, 0.86119, -0.16+0.44428+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.68566+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":1, "position": np.array([0.49458, 0.86119, -0.16+0.44428]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.68566]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":2, "position": np.array([0.49458, 0.86119, -0.16+0.44428+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.18024, 0.68566+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}], [{"index":0, "position": np.array([0.1613, 0.86119, -0.16+0.56518+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.80656+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":1, "position": np.array([0.1613, 0.86119, -0.16+0.56518]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.80656]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":2, "position": np.array([0.1613, 0.86119, -0.16+0.56518+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.80656+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}], [{"index":0, "position": np.array([0.1613, 0.86119, -0.16+0.52494+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.76632+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":1, "position": np.array([0.1613, 0.86119, -0.16+0.52494]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.76632]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":2, "position": np.array([0.1613, 0.86119, -0.16+0.52494+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.76632+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}], [{"index":0, "position": np.array([0.1613, 0.86119, -0.16+0.48451+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.72589+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":1, "position": np.array([0.1613, 0.86119, -0.16+0.48451]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.72589]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":2, "position": np.array([0.1613, 0.86119, -0.16+0.48451+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.72589+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}], [{"index":0, "position": np.array([0.1613, 0.86119, -0.16+0.44428+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.68566+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":1, "position": np.array([0.1613, 0.86119, -0.16+0.44428]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.68566]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":2, "position": np.array([0.1613, 0.86119, -0.16+0.44428+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.22055, -19.18024, 0.68566+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}], ] self.light = [ # [{"index":0, "position": np.array([0.5517, 0.26622-self.light_offset, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -6.81919+self.light_offset, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, # {"index":1, "position": np.array([0.5517, 0.26622-self.light_offset, -0.16+0.34371]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -6.81919+self.light_offset, 0.58583]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, # {"index":2, "position": np.array([0.5517, 0.26622-self.light_offset, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -6.81919+self.light_offset, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}], [{"index":0, "position": np.array([0.5517, 0.26622, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -6.81919, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([0.5517, 0.26622, -0.16+0.34371]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -6.81919, 0.58583]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([0.5517, 0.26622, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -6.81919, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}], [{"index":0, "position": np.array([0.5517, 0.46812, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.02109, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([0.5517, 0.46812, -0.16+0.34371]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.02109, 0.58583]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([0.5517, 0.46812, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.02109, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}], [{"index":0, "position": np.array([0.5517, 0.68287, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.23584, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([0.5517, 0.68287, -0.16+0.34371]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.23584, 0.58583]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([0.5517, 0.68287, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.23584, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}], # [ # {"index":0, "position": np.array([0.50855, 0.76133, -0.16+0.58629]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.43924, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, # # {"index":0, "position": np.array([-0.57726, -0.00505, -0.16+0.65911]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.25466, -6.54783, 0.90123]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, # {"index":1, "position": np.array([0.5517, 0.88627, -0.16+0.34371]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.43924, 0.58583]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, # {"index":2, "position": np.array([0.5517, 0.88627, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.43924, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}], # [{"index":0, "position": np.array([0.31451+self.light_offset, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.14657-self.light_offset, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, # {"index":1, "position": np.array([0.31451+self.light_offset, 0.9514, -0.16+0.34371]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.14657-self.light_offset, -7.50448, 0.58583]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, # {"index":2, "position": np.array([0.31451+self.light_offset, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.14657-self.light_offset, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}], [{"index":0, "position": np.array([0.31451, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.14657, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":1, "position": np.array([0.31451, 0.9514, -0.16+0.34371]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.14657, -7.50448, 0.58583]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":2, "position": np.array([0.31451, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.14657, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}], [{"index":0, "position": np.array([0.11405, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.94611, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":1, "position": np.array([0.11405, 0.9514, -0.16+0.34371]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.94611, -7.50448, 0.58583]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":2, "position": np.array([0.11405, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.94611, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}], [{"index":0, "position": np.array([-0.10054, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.73152, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":1, "position": np.array([-0.10054, 0.9514, -0.16+0.34371]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.73152, -7.50448, 0.58583]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":2, "position": np.array([-0.10054, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.73152, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}], [{"index":0, "position": np.array([-0.30438, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.52768, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":1, "position": np.array([-0.30438, 0.9514, -0.16+0.34371]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.52768, -7.50448, 0.58583]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":2, "position": np.array([-0.30438, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.52768, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}], [{"index":0, "position": np.array([-0.30438-self.light_offset, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.52768+self.light_offset, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":1, "position": np.array([-0.30438-self.light_offset, 0.9514, -0.16+0.34371]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.52768+self.light_offset, -7.50448, 0.58583]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":2, "position": np.array([-0.30438-self.light_offset, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.52768+self.light_offset, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}], ] for i,ATV in enumerate(self.ATV_executions): # id ---------------- ATV.id = i # no part feeding parts ATV.suspension = self.suspension[i] ATV.battery = self.battery[i] ATV.fuel = self.fuel[i] ATV.light = self.light[i] ATV.lower_cover = [self.lower_coverr[i], self.lower_coverl[i]] # ATV declarations ---------------------------------------------------------- ATV.moving_platform = self.moving_platforms[i] # Engine cell setup ------------------------- ATV.my_controller = self.my_controller ATV.screw_my_controller = self.screw_my_controller ATV.articulation_controller = self.articulation_controller ATV.screw_articulation_controller = self.screw_articulation_controller # Suspension cell set up ------------------------------------------------------------------------ ATV.my_controller_suspension = self.my_controller_suspension ATV.screw_my_controller_suspension = self.screw_my_controller_suspension ATV.articulation_controller_suspension = self.articulation_controller_suspension ATV.screw_articulation_controller_suspension = self.screw_articulation_controller_suspension # Fuel cell set up --------------------------------------------------------------------------------- ATV.my_controller_fuel = self.my_controller_fuel ATV.screw_my_controller_fuel = self.screw_my_controller_fuel ATV.articulation_controller_fuel = self.articulation_controller_fuel ATV.screw_articulation_controller_fuel = self.screw_articulation_controller_fuel # battery cell set up --------------------------------------------------------------------------------- ATV.my_controller_battery = self.my_controller_battery ATV.screw_my_controller_battery = self.screw_my_controller_battery ATV.articulation_controller_battery = self.articulation_controller_battery ATV.screw_articulation_controller_battery = self.screw_articulation_controller_battery # trunk cell set up --------------------------------------------------------------------------------- ATV.my_controller_trunk = self.my_controller_trunk ATV.screw_my_controller_trunk = self.screw_my_controller_trunk ATV.articulation_controller_trunk = self.articulation_controller_trunk ATV.screw_articulation_controller_trunk = self.screw_articulation_controller_trunk # wheel cell set up --------------------------------------------------------------------------------- ATV.my_controller_wheel = self.my_controller_wheel ATV.screw_my_controller_wheel = self.screw_my_controller_wheel ATV.articulation_controller_wheel = self.articulation_controller_wheel ATV.screw_articulation_controller_wheel = self.screw_articulation_controller_wheel ATV.my_controller_wheel_01 = self.my_controller_wheel_01 ATV.screw_my_controller_wheel_01 = self.screw_my_controller_wheel_01 ATV.articulation_controller_wheel_01 = self.articulation_controller_wheel_01 ATV.screw_articulation_controller_wheel_01 = self.screw_articulation_controller_wheel_01 # lower_cover cell set up --------------------------------------------------------------------------------- ATV.my_controller_lower_cover = self.my_controller_lower_cover ATV.screw_my_controller_lower_cover = self.screw_my_controller_lower_cover ATV.articulation_controller_lower_cover = self.articulation_controller_lower_cover ATV.screw_articulation_controller_lower_cover = self.screw_articulation_controller_lower_cover ATV.my_controller_lower_cover_01 = self.my_controller_lower_cover_01 ATV.screw_my_controller_lower_cover_01 = self.screw_my_controller_lower_cover_01 ATV.articulation_controller_lower_cover_01 = self.articulation_controller_lower_cover_01 ATV.screw_articulation_controller_lower_cover_01 = self.screw_articulation_controller_lower_cover_01 ATV.my_controller_main_cover = self.my_controller_main_cover ATV.articulation_controller_main_cover = self.articulation_controller_main_cover # handle cell set up --------------------------------------------------------------------------------- ATV.my_controller_handle = self.my_controller_handle ATV.screw_my_controller_handle = self.screw_my_controller_handle ATV.articulation_controller_handle = self.articulation_controller_handle ATV.screw_articulation_controller_handle = self.screw_articulation_controller_handle # light cell set up -------------------------------------------------------------------------------- ATV.my_controller_light = self.my_controller_light ATV.screw_my_controller_light = self.screw_my_controller_light ATV.articulation_controller_light = self.articulation_controller_light ATV.screw_articulation_controller_light = self.screw_articulation_controller_light ATV.world = self._world ATV.declare_utils() # PF executor class declaration ------------------------------------------------- for i,PF in enumerate(self.PF_executions): # id ---------------- PF.id = 0 # PF declarations ---------------------------------------------------------- PF.moving_platform = self.part_feeders[i] # Engine cell setup ------------------------- PF.my_controller = self.my_controller PF.screw_my_controller = self.screw_my_controller PF.articulation_controller = self.articulation_controller PF.screw_articulation_controller = self.screw_articulation_controller # Suspension cell set up ------------------------------------------------------------------------ PF.my_controller_suspension = self.my_controller_suspension PF.screw_my_controller_suspension = self.screw_my_controller_suspension PF.articulation_controller_suspension = self.articulation_controller_suspension PF.screw_articulation_controller_suspension = self.screw_articulation_controller_suspension # Fuel cell set up --------------------------------------------------------------------------------- PF.my_controller_fuel = self.my_controller_fuel PF.screw_my_controller_fuel = self.screw_my_controller_fuel PF.articulation_controller_fuel = self.articulation_controller_fuel PF.screw_articulation_controller_fuel = self.screw_articulation_controller_fuel # battery cell set up --------------------------------------------------------------------------------- PF.my_controller_battery = self.my_controller_battery PF.screw_my_controller_battery = self.screw_my_controller_battery PF.articulation_controller_battery = self.articulation_controller_battery PF.screw_articulation_controller_battery = self.screw_articulation_controller_battery # trunk cell set up --------------------------------------------------------------------------------- PF.my_controller_trunk = self.my_controller_trunk PF.screw_my_controller_trunk = self.screw_my_controller_trunk PF.articulation_controller_trunk = self.articulation_controller_trunk PF.screw_articulation_controller_trunk = self.screw_articulation_controller_trunk # wheel cell set up --------------------------------------------------------------------------------- PF.my_controller_wheel = self.my_controller_wheel PF.screw_my_controller_wheel = self.screw_my_controller_wheel PF.articulation_controller_wheel = self.articulation_controller_wheel PF.screw_articulation_controller_wheel = self.screw_articulation_controller_wheel PF.my_controller_wheel_01 = self.my_controller_wheel_01 PF.screw_my_controller_wheel_01 = self.screw_my_controller_wheel_01 PF.articulation_controller_wheel_01 = self.articulation_controller_wheel_01 PF.screw_articulation_controller_wheel_01 = self.screw_articulation_controller_wheel_01 # lower_cover cell set up --------------------------------------------------------------------------------- PF.my_controller_lower_cover = self.my_controller_lower_cover PF.screw_my_controller_lower_cover = self.screw_my_controller_lower_cover PF.articulation_controller_lower_cover = self.articulation_controller_lower_cover PF.screw_articulation_controller_lower_cover = self.screw_articulation_controller_lower_cover PF.my_controller_lower_cover_01 = self.my_controller_lower_cover_01 PF.screw_my_controller_lower_cover_01 = self.screw_my_controller_lower_cover_01 PF.articulation_controller_lower_cover_01 = self.articulation_controller_lower_cover_01 PF.screw_articulation_controller_lower_cover_01 = self.screw_articulation_controller_lower_cover_01 PF.my_controller_main_cover = self.my_controller_main_cover PF.articulation_controller_main_cover = self.articulation_controller_main_cover # handle cell set up --------------------------------------------------------------------------------- PF.my_controller_handle = self.my_controller_handle PF.screw_my_controller_handle = self.screw_my_controller_handle PF.articulation_controller_handle = self.articulation_controller_handle PF.screw_articulation_controller_handle = self.screw_articulation_controller_handle # light cell set up -------------------------------------------------------------------------------- PF.my_controller_light = self.my_controller_light PF.screw_my_controller_light = self.screw_my_controller_light PF.articulation_controller_light = self.articulation_controller_light PF.screw_articulation_controller_light = self.screw_articulation_controller_light PF.world = self._world PF.declare_utils() return async def setup_post_reset(self): self._my_controller.reset() await self._world.play_async() return def give_location(self, prim_path): dc=_dynamic_control.acquire_dynamic_control_interface() object=dc.get_rigid_body(prim_path) object_pose=dc.get_rigid_body_pose(object) return object_pose # position: object_pose.p, rotation: object_pose.r def _check_goal_reached(self, goal_pose): # Cannot get result from ROS because /move_base/result also uses move_base_msgs module mp_position, mp_orientation = self.moving_platforms[0].get_world_pose() _, _, mp_yaw = euler_from_quaternion(mp_orientation) _, _, goal_yaw = euler_from_quaternion(goal_pose[3:]) # FIXME: pi needed for yaw tolerance here because map rotated 180 degrees if np.allclose(mp_position[:2], goal_pose[:2], atol=self._xy_goal_tolerance) \ and abs(mp_yaw-goal_yaw) <= pi + self._yaw_goal_tolerance: print("Goal "+str(goal_pose)+" reached!") # This seems to crash Isaac sim... # self.get_world().remove_physics_callback("mp_nav_check") # Goal hardcoded for now def _send_navigation_goal(self, x=None, y=None, a=None): # x, y, a = -18, 14, 3.14 # x,y,a = -4.65, 5.65,3.14 orient_x, orient_y, orient_z, orient_w = quaternion_from_euler(0, 0, a) pose = [x, y, 0, orient_x, orient_y, orient_z, orient_w] goal_msg = PoseStamped() goal_msg.header.frame_id = "map" goal_msg.header.stamp = rospy.get_rostime() print("goal pose: "+str(pose)) goal_msg.pose.position.x = pose[0] goal_msg.pose.position.y = pose[1] goal_msg.pose.position.z = pose[2] goal_msg.pose.orientation.x = pose[3] goal_msg.pose.orientation.y = pose[4] goal_msg.pose.orientation.z = pose[5] goal_msg.pose.orientation.w = pose[6] world = self.get_world() self._goal_pub.publish(goal_msg) # self._check_goal_reached(pose) world = self.get_world() if not world.physics_callback_exists("mp_nav_check"): world.add_physics_callback("mp_nav_check", lambda step_size: self._check_goal_reached(pose)) # Overwrite check with new goal else: world.remove_physics_callback("mp_nav_check") world.add_physics_callback("mp_nav_check", lambda step_size: self._check_goal_reached(pose)) def move_to_engine_cell(self): # # print("sending nav goal") if not self.bool_done[123]: self._send_navigation_goal(-4.65, 5.65, 3.14) self.bool_done[123] = True return False def send_robot_actions(self, step_size): current_observations = self._world.get_observations() # print("\n\n\n\nCurrent observations:",current_observations) # naming convention # {product number}_{station name}_{operation}_{part}_{task number} # p1_stationB_install_chain_engine_31 task_to_func_map = { "0":"move_to_engine_cell_nav", "1": "move_to_engine_cell", "71":"arm_place_engine", "2":"screw_engine", "72":"arm_remove_engine", "3":"turn_mobile_platform", "4":"screw_engine_two", "6":"wait", "101":"move_to_suspension_cell", "151":"arm_place_suspension", "171":"screw_suspension", "181":"arm_remove_suspension", "102":"wait", "301":"move_to_battery_cell", "351":"arm_place_battery", "371":"screw_battery", "381":"arm_remove_battery", "302":"wait", "305":"move_mp_to_battery_cell", "306":"battery_part_feeding", "307":"moving_part_feeders", "201":"move_to_fuel_cell", "251":"arm_place_fuel", "271":"screw_fuel", "281":"arm_remove_fuel", "202":"wait", "401":"move_to_trunk_cell", "451":"arm_place_trunk", "471":"screw_trunk", "481":"arm_remove_trunk", "402":"wait", "501":"move_to_wheel_cell", "590":"arm_place_fwheel_together", "591":"screw_fwheel_together", "505":"move_ahead_in_wheel_cell", "592":"arm_place_bwheel_together", "593":"screw_bwheel_together", "502":"wait", "701":"move_to_lower_cover_cell", "790":"arm_place_lower_cover_together", "791":"screw_lower_cover_together", "702":"wait", "721":"move_to_main_cover_cell", "731":"arm_place_main_cover", "703":"wait", "801":"move_to_handle_cell", "851":"arm_place_handle", "871":"screw_handle", "802":"wait", "901":"move_to_light_cell", "951":"arm_place_light", "971":"screw_light", "902":"wait", "1000":"go_to_end_goal", "1100":"move_to_contingency_cell", "1101":"disassemble", "1102":"carry_on" } # schedule = deque(["1","71","2","72","3","4","6","101","151","171","181","102","301","351","371","381","302","201","251","271","281","202","401","451","471","481","402","501","590","591","505","592","593","502","701","790","791","702","721","731","703","801","851","871","881","802","901","951","971","902"]) # schedule = deque(["1","71","2","72","3","4","6","101","102","301","302","201","202","401","402","501","505","502","701","721","703","801","851","871","881","802","901","902"]) # schedule = deque(["1","71"]) sc = SimulationContext() print("Time:", sc.current_time) time_threshold = 180 for i in range(len(self.schedules)): # # wait for part feeder check # if i>0: # # print("ATV "+str(i)+":", self.schedules[i][0], self.schedules[i-1][0], self.schedules[i][0] == self.schedules[i-1][0]) # isWait = self.wait_for_parts(i) # if isWait and self.schedules[i][0]=="401": # print("ATV "+str(i)+": ", self.schedules[i]) # print("Wait status:",isWait) # self.ATV_executions[i].wait_infinitely() # continue # if self.schedules[i-1] and self.schedules[i] and (self.schedules[i][0] == self.schedules[i-1][0] and self.schedules[i-1][0]!="401"): # isWait=True # if isWait and sc.current_time>i*time_threshold: # print("ATV "+str(i)+": ", self.schedules[i]) # print("Waiting for next mp to move...") # else: # if isWait and sc.current_time>i*time_threshold: # print("ATV "+str(i)+": ", self.schedules[i]) # print("Waiting for part...") # else: # isWait = False if self.schedules[i] and sc.current_time>i*time_threshold: # if self.schedules[i] and sc.current_time>i*50: print("ATV "+str(i)+": ", self.schedules[i]) curr_schedule = self.schedules[i][0] curr_schedule_function = getattr(self.ATV_executions[i], task_to_func_map[curr_schedule]) function_done = curr_schedule_function() if function_done: print("Done with", task_to_func_map[curr_schedule]) self.schedules[i].popleft() # updating visited status for each ATV if self.schedules[i]: new_schedule = self.schedules[i][0] if not self.ATV_executions[i].visited["engine"] and any(int(new_schedule) >= x for x in [0,1,2,3,4,6,71,72]): self.ATV_executions[i].visited["engine"]=True # if i==0: if not self.ATV_executions[i].visited["trunk"] and any(int(new_schedule) >= x for x in [401,451,471,481,402]): self.ATV_executions[i].visited["trunk"]=True if not self.ATV_executions[i].visited["wheels"] and any(int(new_schedule) >= x for x in [501,590,591,505,592,593,502]): self.ATV_executions[i].visited["wheels"]=True # if not self.ATV_executions[i].visited["cover"] and any(int(new_schedule) >= x for x in [701,790,791,702,721,731,703]): # self.ATV_executions[i].visited["cover"]=True # if not self.ATV_executions[i].visited["handle"] and any(int(new_schedule) >= x for x in [801,851,871,802]): # self.ATV_executions[i].visited["handle"]=True pf_to_function = {"6":"wait", "81":"move_pf_engine", "82":"place_engine", "83":"move_pf_engine_back", "181":"move_pf_trunk", "182":"place_trunk", "183":"move_pf_trunk_back", "281":"move_pf_wheels", "282":"place_wheels", "283":"place_wheels_01", "284":"move_pf_wheels_back", "381":"move_pf_main_cover", "382":"place_main_cover", "383":"move_pf_main_cover_back", "481":"move_pf_handle", "482":"place_handle", "483":"move_pf_handle_back"} for i in range(len(self.pf_schedules)): # for i in range(5): if not self.check_prim_exists_extra("World/Environment/"+self.name_of_PFs[i]["prim_name"]) and not self.pf_schedules[i]: if self.name_of_PFs[i]["name"]=="engine": self.pf_schedules[i] = deque(["81","82","83"]) elif self.name_of_PFs[i]["name"]=="trunk": self.pf_schedules[i] = deque(["181","182","183"]) elif self.name_of_PFs[i]["name"]=="wheels": self.pf_schedules[i] = deque(["281","282","283","284"]) elif self.name_of_PFs[i]["name"]=="main_cover": self.pf_schedules[i] = deque(["381","382","383"]) elif self.name_of_PFs[i]["name"]=="handle": self.pf_schedules[i] = deque(["481","482","483"]) print("PF "+self.name_of_PFs[i]["name"]+": ", self.pf_schedules[i]) if self.pf_schedules[i]: # print("PF "+str(i)+": ", self.pf_schedules[i]) curr_schedule = self.pf_schedules[i][0] curr_schedule_function = getattr(self.PF_executions[i], pf_to_function[curr_schedule]) function_done = curr_schedule_function() if function_done: print("Done with", pf_to_function[curr_schedule]) self.pf_schedules[i].popleft() # for i in range(1,self.num_of_ATVs): # if self.schedules[i-1] and self.schedules[i]: # # print("Task "+str(i), int(self.schedules[i-1][0])//100, int(self.schedules[i][0])//100) # if int(self.schedules[i-1][0])//100 > int(self.schedules[i][0])//100: # self.ATV_executions[i].spawn_new_parts() # else: # # print("Task "+str(i), "F", int(self.schedules[i][0])//100) # self.ATV_executions[i].spawn_new_parts() return def add_part_custom(self, parent_prim_name, part_name, prim_name, scale, position, orientation): base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/" add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/{parent_prim_name}/{prim_name}") # gives asset ref path part= self._world.scene.add(XFormPrim(prim_path=f'/{parent_prim_name}/{prim_name}', name=f"q{prim_name}")) # declares in the world ## add part part.set_local_scale(scale) part.set_local_pose(translation=position, orientation=orientation) return part def wait(self): print("Waiting ...") if self.delay>100: print("Done waiting") self.delay=0 return True self.delay+=1 return False def check_prim_exists_extra(self, prim_path): for i in range(self.num_of_ATVs+3): curr_prim = self._world.stage.GetPrimAtPath("/"+prim_path+f"_{i}") if curr_prim.IsValid(): return True return False def check_prim_exists(self, prim_path): curr_prim = self._world.stage.GetPrimAtPath("/"+prim_path) if curr_prim.IsValid(): return True return False def wait_for_parts(self, id): curr_pf = self.wait_queue[id][0] name = self.name_of_PFs[curr_pf]['name'] prim_name = self.name_of_PFs[curr_pf]['prim_name'] print(id) print(curr_pf,name,prim_name) isWait = False if name=='main_cover': isWait |= not self.check_prim_exists(f"World/Environment/{prim_name}_{id}") and not self.ATV_executions[id].visited["cover"] and self.ATV_executions[id-1].visited["cover"] if name!='trunk': isWait |= not self.check_prim_exists(f"World/Environment/{prim_name}_{id}") and not self.ATV_executions[id].visited[f"{name}"] and self.ATV_executions[id-1].visited[f"{name}"] # elif name=='wheels': # isWait |= not self.check_prim_exists(f"World/Environment/{prim_name}_{id}") and not self.ATV_executions[id].visited[f"{name}"] and self.ATV_executions[id-1].visited[f"{name}"] and self.check_prim_exists(f"World/Environment/{prim_name}_{id-1}") if self.check_prim_exists(f"World/Environment/{prim_name}_{id}"): if name =='trunk' and self.check_prim_exists(f"mock_robot_{id}/platform/xtrunk_{id}"): self.wait_queue[id].popleft() else: self.wait_queue[id].popleft() # isWait |= not self.check_prim_exists(f"World/Environment/trunk_02_{id}") and not self.ATV_executions[id].visited["trunk"] and self.ATV_executions[id-1].visited["trunk"] print(isWait) # isWait |= not self.check_prim_exists(f"World/Environment/wheel_02_{id}") and not self.ATV_executions[id].visited["wheels"] and self.ATV_executions[id-1].visited["wheels"] # isWait |= not self.check_prim_exists(f"World/Environment/main_cover_{id}") and not self.ATV_executions[id].visited["cover"] and self.ATV_executions[id-1].visited["cover"] # isWait |= not self.check_prim_exists(f"World/Environment/handle_{id}") and not self.ATV_executions[id].visited["handle"] and self.ATV_executions[id-1].visited["handle"] return isWait
112,601
Python
88.22504
357
0.577242
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/assembly_task.py
from omni.isaac.core.prims import GeometryPrim, XFormPrim from omni.isaac.examples.base_sample import BaseSample from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController from omni.isaac.wheeled_robots.robots import WheeledRobot from omni.isaac.core.utils.types import ArticulationAction # This extension includes several generic controllers that could be used with multiple robots from omni.isaac.motion_generation import WheelBasePoseController # Robot specific controller from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController from omni.isaac.core.controllers import BaseController from omni.isaac.core.tasks import BaseTask from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import SurfaceGripper import numpy as np from omni.isaac.core.objects import VisualCuboid, DynamicCuboid from omni.isaac.core.utils import prims from pxr import UsdLux, Sdf, UsdGeom import omni.usd from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.universal_robots import KinematicsSolver import carb from collections import deque, defaultdict import time class AssemblyTask(BaseTask): def __init__(self, name): super().__init__(name=name, offset=None) # self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])] # self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])] self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -2.628, 0.03551]), np.array([-5.40137, -15.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])] self.eb_goal_position = np.array([-4.39666, 7.64828, 0.035]) self.ur10_goal_position = np.array([]) # self.mp_goal_orientation = np.array([1, 0, 0, 0]) self._task_event = 0 self.task_done = [False]*1000 self.motion_event = 0 self.motion_done = [False]*1000 self._bool_event = 0 self.count=0 # self.num_of_ATVs = 2 return def set_up_scene(self, scene): super().set_up_scene(scene) assets_root_path = get_assets_root_path() # http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2022.2.1 asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/photos/real_microfactory_show_without_robots_l.usd" robot_arm_path = assets_root_path + "/Isaac/Robots/UR10/ur10.usd" # adding UR10 for pick and place add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10") # gripper_usd = assets_root_path + "/Isaac/Robots/UR10/Props/short_gripper.usd" gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/version3_j_hook/version3_j_hook.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10/ee_link") gripper = SurfaceGripper(end_effector_prim_path="/World/UR10/ee_link", translate=0.1611, direction="x") self.ur10 = scene.add( SingleManipulator(prim_path="/World/UR10", name="my_ur10", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-4.98573, 6.97238, 0.24168]), orientation=np.array([0.70711, 0, 0, 0.70711]), scale=np.array([1,1,1])) ) self.ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # adding UR10 for screwing in part add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10/ee_link") screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10/ee_link", translate=0, direction="x") self.screw_ur10 = scene.add( SingleManipulator(prim_path="/World/Screw_driving_UR10", name="my_screw_ur10", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-4.73889, 4.66511, 0.24168]), orientation=np.array([0.70711, 0, 0, 0.70711]), scale=np.array([1,1,1])) ) self.screw_ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # Floorplan = 0, -4.26389, 0 # Station_ = 1.50338, -4.95641, 0 # large_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform/mobile_platform1.usd" # small_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform/mobile_platform1.usd" large_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform_unfinished/mobile_platform_flattened.usd" small_robot_asset_path= "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform_unfinished/mobile_platform_flattened.usd" # large_robot_asset_path = "/home/lm-2023/Isaac_Sim/navigation/Collected_real_microfactory_show/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform/mobile_platform_ag.usd" # add floor add_reference_to_stage(usd_path=asset_path, prim_path="/World/Environment") # # add moving platform # self.moving_platform = scene.add( # WheeledRobot( # prim_path=f"/mock_robot", # name=f"moving_platform", # wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"], # create_robot=True, # usd_path=large_robot_asset_path, # # position=np.array([2.5, 5.65, 0.03551]), orientation=np.array([0,0,0,1]), # start position # position=np.array([-0.378, 5.65, 0.03551]), orientation=np.array([0,0,0,1]), # start position # # position=np.array([-4.78521, -10.1757,0.03551]), orientation=np.array([0.70711, 0, 0, -0.70711]),# initial before fuel cell # # position=np.array([-9.60803, -17.35671, 0.03551]), orientation=np.array([0, 0, 0, 1]),# initial before battery cell # # position=np.array([-32.5, 3.516, 0.03551]), orientation=np.array([0.70711, 0, 0, 0.70711]),# initial before trunk cell # # position=np.array([-19.86208, 9.65617, 0.03551]), orientation=np.array([1, 0, 0, 0]),# initial before wheel cell # # position=np.array([-20.84299, 6.46358, 0.03551]), orientation=np.array([-0.70711, 0, 0, -0.70711]),# initial before wheel cell # # position=np.array([-21.13755, -15.54504, 0.03551]), orientation=np.array([0.70711, 0, 0, -0.70711]),# initial before cover cell # # position=np.array([-27.52625, -7.11835, 0.03551]), orientation=np.array([0.70711, 0, 0, -0.70711]),# initial before light cell # ) # ) # # Second view from contingency # self.moving_platform = scene.add( # WheeledRobot( # prim_path="/mock_robot", # name="moving_platform", # wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"], # create_robot=True, # usd_path=large_robot_asset_path, # position=np.array([-3.28741, 10.79225, 0.03551]), # orientation=np.array([0.5, 0.5,-0.5, -0.5]), # ) # ) self.engine_bringer = scene.add( WheeledRobot( prim_path="/engine_bringer", name="engine_bringer", wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"], create_robot=True, usd_path=small_robot_asset_path, # position=np.array([-6.919, 7.764, 0.03551]), orientation=np.array([0.70711,0, 0,-0.70711]), position=np.array([-9.76, 10.697, 0.03551]), orientation=np.array([0, 0,0 ,-1]), ) ) # Suspension task assembly --------------------------------------------- # adding UR10_suspension for pick and place add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_suspension") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_suspension/ee_link") gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_suspension/ee_link", translate=0.1611, direction="x") self.ur10_suspension = scene.add( SingleManipulator(prim_path="/World/UR10_suspension", name="my_ur10_suspension", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-6.10078, -5.19303, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1])) ) self.ur10_suspension.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # adding UR10_suspension for screwing in part add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_suspension") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_suspension/ee_link") screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_suspension/ee_link", translate=0, direction="x") self.screw_ur10_suspension = scene.add( SingleManipulator(prim_path="/World/Screw_driving_UR10_suspension", name="my_screw_ur10_suspension", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-3.78767, -5.00871, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1])) ) self.screw_ur10_suspension.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) self.suspension_bringer = scene.add( WheeledRobot( prim_path="/suspension_bringer", name="suspension_bringer", wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"], create_robot=True, usd_path=small_robot_asset_path, position=np.array([-0.927, -1.334, 0.035]), orientation=np.array([0, 0, 0, -1]), # initial position # position=np.array([3.19, -6.04631, 0.035]), orientation=np.array([0, 0, 0, -1]), # for part feeding ) ) # Fuel task assembly -------------------------------------------------- # adding UR10_fuel for pick and place add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_fuel") # gripper_usd = assets_root_path + "/Isaac/Robots/UR10_fuel/Props/short_gripper.usd" gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_fuel/ee_link") gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_fuel/ee_link", translate=0.1611, direction="x") self.ur10_fuel = scene.add( SingleManipulator(prim_path="/World/UR10_fuel", name="my_ur10_fuel", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-6.09744, -16.16324, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1])) ) self.ur10_fuel.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # adding UR10_fuel for screwing in part add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_fuel") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_fuel/ee_link") screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_fuel/ee_link", translate=0, direction="x") self.screw_ur10_fuel = scene.add( SingleManipulator(prim_path="/World/Screw_driving_UR10_fuel", name="my_screw_ur10_fuel", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-4.24592, -15.9399, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1])) ) self.screw_ur10_fuel.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) self.fuel_bringer = scene.add( WheeledRobot( prim_path="/fuel_bringer", name="fuel_bringer", wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"], create_robot=True, usd_path=small_robot_asset_path, position=np.array([-0.8, -12.874, 0.035]), orientation=np.array([0, 0, 0, 1]), # initial position # position=np.array([3.19, -17.511, 0.035]), orientation=np.array([0, 0, 0, 1]), # for part feeding ) ) # battery task assembly -------------------------------------------------- # adding UR10_battery for pick and place add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_battery") # gripper_usd = assets_root_path + "/Isaac/Robots/UR10_battery/Props/short_gripper.usd" gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_battery/ee_link") gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_battery/ee_link", translate=0.1611, direction="x") self.ur10_battery = scene.add( SingleManipulator(prim_path="/World/UR10_battery", name="my_ur10_battery", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-16.55392, -16.32998, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1])) ) self.ur10_battery.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # adding UR10_battery for screwing in part add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_battery") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_battery/ee_link") screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_battery/ee_link", translate=0, direction="x") self.screw_ur10_battery = scene.add( SingleManipulator(prim_path="/World/Screw_driving_UR10_battery", name="my_screw_ur10_battery", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-16.35174, -18.16947, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1])) ) self.screw_ur10_battery.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) self.battery_bringer = scene.add( WheeledRobot( prim_path="/battery_bringer", name="battery_bringer", wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"], create_robot=True, usd_path=small_robot_asset_path, position=np.array([-18.36667, -15.53466, 0.035]), orientation=np.array([0.70711,0, 0,-0.70711]), # position=np.array([-17.409, -25.38847, 0.035]), orientation=np.array([0.70711,0, 0,-0.70711]), ) ) # trunk task assembly -------------------------------------------------- # adding UR10_trunk for pick and place add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_trunk") # gripper_usd = assets_root_path + "/Isaac/Robots/UR10_trunk/Props/short_gripper.usd" gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_trunk/ee_link") gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_trunk/ee_link", translate=0.1611, direction="x") self.ur10_trunk = scene.add( SingleManipulator(prim_path="/World/UR10_trunk", name="my_ur10_trunk", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-27.1031, 4.48605, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1])) ) self.ur10_trunk.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # adding UR10_trunk for screwing in part add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_trunk") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_trunk/ee_link") screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_trunk/ee_link", translate=0, direction="x") self.screw_ur10_trunk = scene.add( SingleManipulator(prim_path="/World/Screw_driving_UR10_trunk", name="my_screw_ur10_trunk", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-27.29981, 6.46287+0.08474, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1])) ) self.screw_ur10_trunk.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) self.trunk_bringer = scene.add( WheeledRobot( prim_path="/trunk_bringer", name="trunk_bringer", wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"], create_robot=True, usd_path=small_robot_asset_path, position=np.array([-30.518, 3.516, 0.035]), orientation=np.array([1,0,0,0]), ) ) # wheel task assembly -------------------------------------------------- # adding UR10_wheel for pick and place add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_wheel") # gripper_usd = assets_root_path + "/Isaac/Robots/UR10_wheel/Props/short_gripper.usd" gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_wheel/ee_link") gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_wheel/ee_link", translate=0, direction="x") self.ur10_wheel = scene.add( SingleManipulator(prim_path="/World/UR10_wheel", name="my_ur10_wheel", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-15.8658, 4.89369, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1])) ) self.ur10_wheel.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # adding UR10_wheel for screwing in part add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_wheel") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_wheel/ee_link") screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_wheel/ee_link", translate=0, direction="x") self.screw_ur10_wheel = scene.add( SingleManipulator(prim_path="/World/Screw_driving_UR10_wheel", name="my_screw_ur10_wheel", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-15.86269, 6.30393, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1])) ) self.screw_ur10_wheel.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # adding UR10_wheel_01 for pick and place add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_wheel_01") # gripper_usd = assets_root_path + "/Isaac/Robots/UR10_wheel_01/Props/short_gripper.usd" gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_wheel_01/ee_link") gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_wheel_01/ee_link", translate=0, direction="x") self.ur10_wheel_01 = scene.add( SingleManipulator(prim_path="/World/UR10_wheel_01", name="my_ur10_wheel_01", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-17.92841, 4.88203, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1])) ) self.ur10_wheel_01.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # adding UR10_wheel_01 for screwing in part add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_wheel_01") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_wheel_01/ee_link") screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_wheel_01/ee_link", translate=0, direction="x") self.screw_ur10_wheel_01 = scene.add( SingleManipulator(prim_path="/World/Screw_driving_UR10_wheel_01", name="my_screw_ur10_wheel_01", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-17.93068, 6.29611, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1])) ) self.screw_ur10_wheel_01.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) self.wheel_bringer = scene.add( WheeledRobot( prim_path="/wheel_bringer", name="wheel_bringer", wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"], create_robot=True, usd_path=small_robot_asset_path, position=np.array([-19.211, 3.516, 0.035]), orientation=np.array([1,0,0,0]), ) ) # main and lower cover task assembly -------------------------------------------------- # adding UR10_main_cover for pick and place add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_main_cover") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/Cover_Gripper/Cover_Gripper.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_main_cover/ee_link") gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_main_cover/ee_link", translate=0.1611, direction="x") self.ur10_main_cover = scene.add( SingleManipulator(prim_path="/World/UR10_main_cover", name="my_ur10_main_cover", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-17.73638-11.83808,-17.06779, 0.81965]), orientation=np.array([0.70711, 0, 0, -0.70711]), scale=np.array([1,1,1])) ) self.ur10_main_cover.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # adding UR10_lower_cover for pick and place add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_lower_cover") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_lower_cover/ee_link") gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_lower_cover/ee_link", translate=0, direction="x") self.ur10_lower_cover = scene.add( SingleManipulator(prim_path="/World/UR10_lower_cover", name="my_ur10_lower_cover", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-26.05908, -16.25914, 0.24133]), orientation=np.array([1,0,0,0]), scale=np.array([1,1,1])) ) self.ur10_lower_cover.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # adding UR10_lower_cover_01 for pick and place add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_lower_cover_01") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_lower_cover_01/ee_link") gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_lower_cover_01/ee_link", translate=0, direction="x") self.ur10_lower_cover_01 = scene.add( SingleManipulator(prim_path="/World/UR10_lower_cover_01", name="my_ur10_lower_cover_01", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-26.05908, -18.31912, 0.24133]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1])) ) self.ur10_lower_cover_01.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # adding UR10_lower_cover for screwing in part add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_lower_cover") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_lower_cover/ee_link") screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_lower_cover/ee_link", translate=0, direction="x") self.screw_ur10_lower_cover = scene.add( SingleManipulator(prim_path="/World/Screw_driving_UR10_lower_cover", name="my_screw_ur10_lower_cover", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-27.48836, -16.25905, 0.24133]), orientation=np.array([1,0,0,0]), scale=np.array([1,1,1])) ) self.screw_ur10_lower_cover.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # adding UR10_lower_cover_01 for screwing in part add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_lower_cover_01") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_lower_cover_01/ee_link") screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_lower_cover_01/ee_link", translate=0, direction="x") self.screw_ur10_lower_cover_01 = scene.add( SingleManipulator(prim_path="/World/Screw_driving_UR10_lower_cover_01", name="my_screw_ur10_lower_cover_01", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-27.47893, -18.31682, 0.24133]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1])) ) self.screw_ur10_lower_cover_01.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # handle task assembly -------------------------------------------------- # adding UR10_handle for pick and place add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_handle") # gripper_usd = assets_root_path + "/Isaac/Robots/UR10_handle/Props/short_gripper.usd" gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_handle/ee_link") gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_handle/ee_link", translate=0, direction="x") self.ur10_handle = scene.add( SingleManipulator(prim_path="/World/UR10_handle", name="my_ur10_handle", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-28.50252, -7.19638, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1])) ) self.ur10_handle.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # adding UR10_handle for screwing in part add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_handle") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_handle/ee_link") screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_handle/ee_link", translate=0, direction="x") self.screw_ur10_handle = scene.add( SingleManipulator(prim_path="/World/Screw_driving_UR10_handle", name="my_screw_ur10_handle", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-26.69603, -6.99305, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1])) ) self.screw_ur10_handle.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) self.handle_bringer = scene.add( WheeledRobot( prim_path="/handle_bringer", name="handle_bringer", wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"], create_robot=True, usd_path=small_robot_asset_path, position=np.array([-30.61162, -6.93058, 0.035]), orientation=np.array([0.70711, 0, 0, -0.70711]), ) ) # light task assembly -------------------------------------------------- # adding UR10_light for pick and place add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_light") # gripper_usd = assets_root_path + "/Isaac/Robots/UR10_light/Props/short_gripper.usd" gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_light/ee_link") gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_light/ee_link", translate=0, direction="x") self.ur10_light = scene.add( SingleManipulator(prim_path="/World/UR10_light", name="my_ur10_light", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-17.83209, -6.55292, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1])) ) self.ur10_light.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) # adding UR10_light for screwing in part add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_light") gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_light/ee_link") screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_light/ee_link", translate=0, direction="x") self.screw_ur10_light = scene.add( SingleManipulator(prim_path="/World/Screw_driving_UR10_light", name="my_screw_ur10_light", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-18.03193, -5.1195, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1])) ) self.screw_ur10_light.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) self.light_bringer = scene.add( WheeledRobot( prim_path="/light_bringer", name="light_bringer", wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"], create_robot=True, usd_path=small_robot_asset_path, position=np.array([-18.20414, -2.99376, 0.035]), orientation=np.array([1,0,0,0]), ) ) return def get_observations(self): # current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose() current_eb_position, current_eb_orientation = self.engine_bringer.get_world_pose() current_joint_positions_ur10 = self.ur10.get_joint_positions() current_eb_position_suspension, current_eb_orientation_suspension = self.suspension_bringer.get_world_pose() current_joint_positions_ur10_suspension = self.ur10_suspension.get_joint_positions() current_eb_position_fuel, current_eb_orientation_fuel = self.fuel_bringer.get_world_pose() current_joint_positions_ur10_fuel = self.ur10_fuel.get_joint_positions() current_eb_position_battery, current_eb_orientation_battery = self.battery_bringer.get_world_pose() current_joint_positions_ur10_battery = self.ur10_battery.get_joint_positions() current_eb_position_trunk, current_eb_orientation_trunk = self.trunk_bringer.get_world_pose() current_joint_positions_ur10_trunk = self.ur10_trunk.get_joint_positions() current_eb_position_wheel, current_eb_orientation_wheel = self.wheel_bringer.get_world_pose() current_joint_positions_ur10_wheel = self.ur10_wheel.get_joint_positions() current_joint_positions_ur10_wheel_01 = self.ur10_wheel_01.get_joint_positions() # current_eb_position_lower_cover, current_eb_orientation_lower_cover = self.lower_cover_bringer.get_world_pose() current_joint_positions_ur10_lower_cover = self.ur10_lower_cover.get_joint_positions() current_joint_positions_ur10_main_cover = self.ur10_main_cover.get_joint_positions() current_joint_positions_ur10_lower_cover_01 = self.ur10_lower_cover_01.get_joint_positions() current_eb_position_handle, current_eb_orientation_handle = self.handle_bringer.get_world_pose() current_joint_positions_ur10_handle = self.ur10_handle.get_joint_positions() current_eb_position_light, current_eb_orientation_light = self.light_bringer.get_world_pose() current_joint_positions_ur10_light = self.ur10_light.get_joint_positions() observations= { "task_event": self._task_event, # self.moving_platform.name: { # "position": current_mp_position, # "orientation": current_mp_orientation, # "goal_position": self.mp_goal_position # }, self.engine_bringer.name: { "position": current_eb_position, "orientation": current_eb_orientation, "goal_position": self.eb_goal_position }, self.ur10.name: { "joint_positions": current_joint_positions_ur10, }, self.screw_ur10.name: { "joint_positions": current_joint_positions_ur10, }, "bool_counter": self._bool_event, self.suspension_bringer.name: { "position": current_eb_position_suspension, "orientation": current_eb_orientation_suspension, "goal_position": self.eb_goal_position }, self.ur10_suspension.name: { "joint_positions": current_joint_positions_ur10_suspension, }, self.screw_ur10_suspension.name: { "joint_positions": current_joint_positions_ur10_suspension, }, self.ur10_fuel.name: { "joint_positions": current_joint_positions_ur10_fuel, }, self.screw_ur10_fuel.name: { "joint_positions": current_joint_positions_ur10_fuel, }, self.ur10_battery.name: { "joint_positions": current_joint_positions_ur10_battery, }, self.screw_ur10_battery.name: { "joint_positions": current_joint_positions_ur10_battery, }, self.ur10_trunk.name: { "joint_positions": current_joint_positions_ur10_trunk, }, self.screw_ur10_trunk.name: { "joint_positions": current_joint_positions_ur10_trunk, }, self.ur10_wheel.name: { "joint_positions": current_joint_positions_ur10_wheel, }, self.screw_ur10_wheel.name: { "joint_positions": current_joint_positions_ur10_wheel, }, self.ur10_wheel_01.name: { "joint_positions": current_joint_positions_ur10_wheel_01, }, self.screw_ur10_wheel_01.name: { "joint_positions": current_joint_positions_ur10_wheel_01, }, self.ur10_lower_cover.name: { "joint_positions": current_joint_positions_ur10_lower_cover, }, self.screw_ur10_lower_cover.name: { "joint_positions": current_joint_positions_ur10_lower_cover, }, self.ur10_lower_cover_01.name: { "joint_positions": current_joint_positions_ur10_lower_cover_01, }, self.screw_ur10_lower_cover_01.name: { "joint_positions": current_joint_positions_ur10_lower_cover_01, }, self.ur10_main_cover.name: { "joint_positions": current_joint_positions_ur10_main_cover, }, self.ur10_handle.name: { "joint_positions": current_joint_positions_ur10_handle, }, self.screw_ur10_handle.name: { "joint_positions": current_joint_positions_ur10_handle, }, self.ur10_light.name: { "joint_positions": current_joint_positions_ur10_light, }, self.screw_ur10_light.name: { "joint_positions": current_joint_positions_ur10_light, } } return observations def get_params(self): params_representation = {} params_representation["arm_name"] = {"value": self.ur10.name, "modifiable": False} params_representation["screw_arm"] = {"value": self.screw_ur10.name, "modifiable": False} # params_representation["mp_name"] = {"value": self.moving_platform.name, "modifiable": False} params_representation["eb_name"] = {"value": self.engine_bringer.name, "modifiable": False} # suspension task params_representation["arm_name_suspension"] = {"value": self.ur10_suspension.name, "modifiable": False} params_representation["screw_arm_suspension"] = {"value": self.screw_ur10_suspension.name, "modifiable": False} params_representation["eb_name_suspension"] = {"value": self.suspension_bringer.name, "modifiable": False} # fuel task params_representation["arm_name_fuel"] = {"value": self.ur10_fuel.name, "modifiable": False} params_representation["screw_arm_fuel"] = {"value": self.screw_ur10_fuel.name, "modifiable": False} params_representation["eb_name_fuel"] = {"value": self.fuel_bringer.name, "modifiable": False} # battery task params_representation["arm_name_battery"] = {"value": self.ur10_battery.name, "modifiable": False} params_representation["screw_arm_battery"] = {"value": self.screw_ur10_battery.name, "modifiable": False} params_representation["eb_name_battery"] = {"value": self.battery_bringer.name, "modifiable": False} # trunk task params_representation["arm_name_trunk"] = {"value": self.ur10_trunk.name, "modifiable": False} params_representation["screw_arm_trunk"] = {"value": self.screw_ur10_trunk.name, "modifiable": False} params_representation["eb_name_trunk"] = {"value": self.trunk_bringer.name, "modifiable": False} # wheel task params_representation["arm_name_wheel"] = {"value": self.ur10_wheel.name, "modifiable": False} params_representation["screw_arm_wheel"] = {"value": self.screw_ur10_wheel.name, "modifiable": False} params_representation["arm_name_wheel_01"] = {"value": self.ur10_wheel_01.name, "modifiable": False} params_representation["screw_arm_wheel_01"] = {"value": self.screw_ur10_wheel_01.name, "modifiable": False} params_representation["eb_name_wheel"] = {"value": self.wheel_bringer.name, "modifiable": False} # lower_cover task params_representation["arm_name_main_cover"] = {"value": self.ur10_main_cover.name, "modifiable": False} params_representation["arm_name_lower_cover"] = {"value": self.ur10_lower_cover.name, "modifiable": False} params_representation["screw_arm_lower_cover"] = {"value": self.screw_ur10_lower_cover.name, "modifiable": False} params_representation["arm_name_lower_cover_01"] = {"value": self.ur10_lower_cover_01.name, "modifiable": False} params_representation["screw_arm_lower_cover_01"] = {"value": self.screw_ur10_lower_cover_01.name, "modifiable": False} # params_representation["eb_name_lower_cover"] = {"value": self.lower_cover_bringer.name, "modifiable": False} # handle task params_representation["arm_name_handle"] = {"value": self.ur10_handle.name, "modifiable": False} params_representation["screw_arm_handle"] = {"value": self.screw_ur10_handle.name, "modifiable": False} params_representation["eb_name_handle"] = {"value": self.handle_bringer.name, "modifiable": False} # front light task params_representation["arm_name_light"] = {"value": self.ur10_light.name, "modifiable": False} params_representation["screw_arm_light"] = {"value": self.screw_ur10_light.name, "modifiable": False} params_representation["eb_name_light"] = {"value": self.light_bringer.name, "modifiable": False} return params_representation def check_prim_exists(self, prim): if prim: return True return False def give_location(self, prim_path): dc=_dynamic_control.acquire_dynamic_control_interface() object=dc.get_rigid_body(prim_path) object_pose=dc.get_rigid_body_pose(object) return object_pose # position: object_pose.p, rotation: object_pose.r def pre_step(self, control_index, simulation_time): # current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose() return def post_reset(self): self._task_event = 0 return
45,638
Python
67.941088
441
0.63079
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/hello_world_extension.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.examples.hello_world import HelloWorld class HelloWorldExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="", submenu_name="", name="cell 1 engine", title="Hello World Example", doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_core_hello_world.html", overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.", file_path=os.path.abspath(__file__), sample=HelloWorld(), ) return
1,206
Python
42.107141
135
0.705638
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/ATV_task.py
from omni.isaac.core.prims import GeometryPrim, XFormPrim from omni.isaac.examples.base_sample import BaseSample from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController from omni.isaac.wheeled_robots.robots import WheeledRobot from omni.isaac.core.utils.types import ArticulationAction # This extension includes several generic controllers that could be used with multiple robots from omni.isaac.motion_generation import WheelBasePoseController # Robot specific controller from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController from omni.isaac.core.controllers import BaseController from omni.isaac.core.tasks import BaseTask from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import SurfaceGripper import numpy as np from omni.isaac.core.objects import VisualCuboid, DynamicCuboid from omni.isaac.core.utils import prims from pxr import UsdLux, Sdf, UsdGeom import omni.usd from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.universal_robots import KinematicsSolver import carb from collections import deque, defaultdict import time class ATVTask(BaseTask): def __init__(self, name, offset=None, mp_name=None, mp_pos=None, mp_ori=None): super().__init__(name=name, offset=offset) self.mp_name = mp_name self.mp_pos = mp_pos self.mp_ori = mp_ori self._task_event = 0 self.task_done = [False]*1000 self._bool_event = 0 self.delay=0 return def set_up_scene(self, scene): super().set_up_scene(scene) large_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform_unfinished/mobile_platform_flattened.usd" # large_robot_asset_path = "/home/lm-2023/Isaac_Sim/navigation/Collected_real_microfactory_show/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform/mobile_platform_ag.usd" # large_robot_asset_path = "/home/lm-2023/Isaac_Sim/navigation/Collected_real_microfactory_multiple_mp/Collected_real_microfactory_show/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform/mobile_platform_ag.usd" # add floor # add moving platform if not self.mp_name: _,num = self.name.split("_") self.moving_platform = scene.add( WheeledRobot( prim_path=f"/mock_robot_{num}", name=f"moving_platform_{num}", wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"], create_robot=True, usd_path=large_robot_asset_path, # position=np.array([2.5, 5.65, 0.03551]), orientation=np.array([0,0,0,1]), # start position position=np.array([1.622+int(num)*2, 5.65, 0.03551]), orientation=np.array([0,0,0,1]), # start position # position=np.array([-4.78521, -10.1757+int(num)*2,0.03551]), orientation=np.array([0.70711, 0, 0, -0.70711]),# initial before fuel cell # position=np.array([-9.60803, -17.35671+int(num)*2, 0.03551]), orientation=np.array([0, 0, 0, 1]),# initial before battery cell # position=np.array([-32.5-int(num)*2, 3.516, 0.03551]), orientation=np.array([0.70711, 0, 0, 0.70711]),# initial before trunk cell # position=np.array([-19.86208-int(num)*2, 9.65617, 0.03551]), orientation=np.array([1, 0, 0, 0]),# initial before wheel cell # position=np.array([-20.84299, 6.46358, 0.03551]), orientation=np.array([-0.70711, 0, 0, -0.70711]),# initial before wheel cell # position=np.array([-21.13755, -15.54504+int(num)*2, 0.03551]), orientation=np.array([0.70711, 0, 0, -0.70711]),# initial before cover cell # position=np.array([-27.52625-int(num)*2, -7.11835, 0.03551]), orientation=np.array([0.70711, 0, 0, -0.70711]),# initial before light cell ) ) else: pf_name,num = self.mp_name.rsplit("_", 1) self.moving_platform = scene.add( WheeledRobot( prim_path=f"/{pf_name}", name=f"part_feeder_{num}", wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"], create_robot=True, usd_path=large_robot_asset_path, position=self.mp_pos, orientation=self.mp_ori, # start position ) ) return def get_observations(self): current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose() observations= { self.name+"_event": self._task_event, self.moving_platform.name: { "position": current_mp_position, "orientation": current_mp_orientation } } return observations def get_params(self): params_representation = {} params_representation["mp_name"] = {"value": self.moving_platform.name, "modifiable": False} return params_representation def give_location(self, prim_path): dc=_dynamic_control.acquire_dynamic_control_interface() object=dc.get_rigid_body(prim_path) object_pose=dc.get_rigid_body_pose(object) return object_pose # position: object_pose.p, rotation: object_pose.r def pre_step(self, control_index, simulation_time): return def post_reset(self): self._task_event = 0 return
5,932
Python
49.279661
266
0.645819
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/pf_functions.py
import numpy as np from omni.isaac.examples.hello_world.util import Utils import asyncio import rospy from geometry_msgs.msg import PoseStamped import rosgraph from tf.transformations import euler_from_quaternion, quaternion_from_euler from math import pi class PartFeederFunctions: def __init__(self) -> None: self.util = Utils() self.isDone = [False]*1000 self.bool_done = [False]*1000 self.delay=0 self.right_side = self.left_side = False self.world = None self.id = None # visited array # meaning of its values: # False - not visited # True - visiting or visited self.visited = {"engine":False, "trunk":False, "wheels":False, "cover":False, "handle":False} # Engine cell set up ---------------------------------------------------------------------------- # bring in moving platforms self.moving_platform = None self.my_controller = None self.screw_my_controller = None self.articulation_controller = None self.screw_articulation_controller = None # Suspension cell set up ------------------------------------------------------------------------ self.my_controller_suspension = None self.screw_my_controller_suspension = None self.articulation_controller_suspension = None self.screw_articulation_controller_suspension = None # Fuel cell set up --------------------------------------------------------------------------------- self.my_controller_fuel = None self.screw_my_controller_fuel = None self.articulation_controller_fuel = None self.screw_articulation_controller_fuel = None # battery cell set up --------------------------------------------------------------------------------- self.my_controller_battery = None self.screw_my_controller_battery = None self.articulation_controller_battery = None self.screw_articulation_controller_battery = None # trunk cell set up --------------------------------------------------------------------------------- self.my_controller_trunk = None self.screw_my_controller_trunk = None self.articulation_controller_trunk = None self.screw_articulation_controller_trunk = None # wheel cell set up --------------------------------------------------------------------------------- self.my_controller_wheel = None self.screw_my_controller_wheel = None self.articulation_controller_wheel = None self.screw_articulation_controller_wheel = None self.my_controller_wheel_01 = None self.screw_my_controller_wheel_01 = None self.articulation_controller_wheel_01 = None self.screw_articulation_controller_wheel_01 = None # lower_cover cell set up --------------------------------------------------------------------------------- self.my_controller_lower_cover = None self.screw_my_controller_lower_cover = None self.articulation_controller_lower_cover = None self.screw_articulation_controller_lower_cover = None self.my_controller_lower_cover_01 = None self.screw_my_controller_lower_cover_01 = None self.articulation_controller_lower_cover_01 = None self.screw_articulation_controller_lower_cover_01 = None self.my_controller_main_cover = None self.articulation_controller_main_cover = None # handle cell set up --------------------------------------------------------------------------------- self.my_controller_handle = None self.screw_my_controller_handle = None self.articulation_controller_handle = None self.screw_articulation_controller_handle = None # light cell set up -------------------------------------------------------------------------------- self.my_controller_light = None self.screw_my_controller_light = None self.articulation_controller_light = None self.screw_articulation_controller_light = None # Util declarations ---------------------------------------------------------------------------------- def declare_utils(self): self.util.world = self.world self.util.id = self.id # Engine cell set up ---------------------------------------------------------------------------- # bring in moving platforms self.util.moving_platform = self.moving_platform self.util.my_controller = self.my_controller self.util.screw_my_controller = self.screw_my_controller self.util.articulation_controller = self.articulation_controller self.util.screw_articulation_controller = self.screw_articulation_controller # Suspension cell set up ------------------------------------------------------------------------ self.util.my_controller_suspension = self.my_controller_suspension self.util.screw_my_controller_suspension = self.screw_my_controller_suspension self.util.articulation_controller_suspension = self.articulation_controller_suspension self.util.screw_articulation_controller_suspension = self.screw_articulation_controller_suspension # Fuel cell set up --------------------------------------------------------------------------------- self.util.my_controller_fuel = self.my_controller_fuel self.util.screw_my_controller_fuel = self.screw_my_controller_fuel self.util.articulation_controller_fuel = self.articulation_controller_fuel self.util.screw_articulation_controller_fuel = self.screw_articulation_controller_fuel # battery cell set up --------------------------------------------------------------------------------- self.util.my_controller_battery = self.my_controller_battery self.util.screw_my_controller_battery = self.screw_my_controller_battery self.util.articulation_controller_battery = self.articulation_controller_battery self.util.screw_articulation_controller_battery = self.screw_articulation_controller_battery # trunk cell set up --------------------------------------------------------------------------------- self.util.my_controller_trunk = self.my_controller_trunk self.util.screw_my_controller_trunk = self.screw_my_controller_trunk self.util.articulation_controller_trunk = self.articulation_controller_trunk self.util.screw_articulation_controller_trunk = self.screw_articulation_controller_trunk # wheel cell set up --------------------------------------------------------------------------------- self.util.my_controller_wheel = self.my_controller_wheel self.util.screw_my_controller_wheel = self.screw_my_controller_wheel self.util.articulation_controller_wheel = self.articulation_controller_wheel self.util.screw_articulation_controller_wheel = self.screw_articulation_controller_wheel self.util.my_controller_wheel_01 = self.my_controller_wheel_01 self.util.screw_my_controller_wheel_01 = self.screw_my_controller_wheel_01 self.util.articulation_controller_wheel_01 = self.articulation_controller_wheel_01 self.util.screw_articulation_controller_wheel_01 = self.screw_articulation_controller_wheel_01 # lower_cover cell set up --------------------------------------------------------------------------------- self.util.my_controller_lower_cover = self.my_controller_lower_cover self.util.screw_my_controller_lower_cover = self.screw_my_controller_lower_cover self.util.articulation_controller_lower_cover = self.articulation_controller_lower_cover self.util.screw_articulation_controller_lower_cover = self.screw_articulation_controller_lower_cover self.util.my_controller_lower_cover_01 = self.my_controller_lower_cover_01 self.util.screw_my_controller_lower_cover_01 = self.screw_my_controller_lower_cover_01 self.util.articulation_controller_lower_cover_01 = self.articulation_controller_lower_cover_01 self.util.screw_articulation_controller_lower_cover_01 = self.screw_articulation_controller_lower_cover_01 self.util.my_controller_main_cover = self.my_controller_main_cover self.util.articulation_controller_main_cover = self.articulation_controller_main_cover # handle cell set up --------------------------------------------------------------------------------- self.util.my_controller_handle = self.my_controller_handle self.util.screw_my_controller_handle = self.screw_my_controller_handle self.util.articulation_controller_handle = self.articulation_controller_handle self.util.screw_articulation_controller_handle = self.screw_articulation_controller_handle # light cell set up -------------------------------------------------------------------------------- self.util.my_controller_light = self.my_controller_light self.util.screw_my_controller_light = self.screw_my_controller_light self.util.articulation_controller_light = self.articulation_controller_light self.util.screw_articulation_controller_light = self.screw_articulation_controller_light # if self.id%2!=0: # self.color_path = ["main_cover","main_cover_orange"] # else: # self.color_path = ["main_cover_orange","main_cover"] def update_color(self): if self.id%2!=0: self.color_path = ["main_cover","main_cover_orange"] else: self.color_path = ["main_cover_orange","main_cover"] def spawn_new_parts(self): if self.id ==2: # print(not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id}") and not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/engine_{self.id-1}")) pass if self.id!=0: # Engine cell set up ---------------------------------------------------------------------------- # if not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id}") and not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id-1}") and not self.util.check_prim_exists(f"mock_robot_{self.id}/platform/engine_{self.id}"): if not self.isDone[0] and not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id}") and not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/engine_{self.id-1}"): self.isDone[0] = True self.util.add_part_custom("World/Environment","engine_no_rigid", f"engine_small_{self.id}", np.array([0.001, 0.001, 0.001]), np.array([-4.86938, 8.14712, 0.59038]), np.array([0.99457, 0, -0.10411, 0])) # print(" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n --------------------------------------spawned engine "+str(self.id)+" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n") # Suspension cell set up ------------------------------------------------------------------------ # if not self.util.check_prim_exists(f"World/Environment/FSuspensionBack_01_{self.id}") and not self.util.check_prim_exists(f"World/Environment/FSuspensionBack_01_{self.id-1}") and not self.util.check_prim_exists(f"mock_robot_{self.id}/platform/xFSuspensionBack_{self.id}"): if not self.isDone[1] and not self.util.check_prim_exists(f"World/Environment/FSuspensionBack_01_{self.id}") and not self.util.check_prim_exists(f"World/Environment/FSuspensionBack_01_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xFSuspensionBack_{self.id-1}"): self.isDone[1] = True self.util.add_part_custom("World/Environment","FSuspensionBack", f"FSuspensionBack_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.69733, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5])) # print(" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n --------------------------------------spawned suspension "+str(self.id)+" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n") # Fuel cell set up --------------------------------------------------------------------------------- if not self.isDone[2] and not self.util.check_prim_exists(f"World/Environment/fuel_01_{self.id}") and not self.util.check_prim_exists(f"World/Environment/fuel_01_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xfuel_{self.id-1}"): self.isDone[2] = True if self.id%2==0: self.util.add_part_custom("World/Environment","fuel", f"fuel_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-7.01712, -15.89918, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5])) else: self.util.add_part_custom("World/Environment","fuel_yellow", f"fuel_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-7.01712, -15.89918, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5])) # battery cell set up --------------------------------------------------------------------------------- if not self.isDone[3] and not self.util.check_prim_exists(f"World/Environment/battery_01_{self.id}") and not self.util.check_prim_exists(f"World/Environment/battery_01_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xbattery_{self.id-1}"): self.isDone[3] = True self.util.add_part_custom("World/Environment","battery", f"battery_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-16.47861, -15.68368, 0.41467]), np.array([0.70711, 0.70711, 0, 0])) # trunk cell set up --------------------------------------------------------------------------------- if not self.isDone[4] and not self.util.check_prim_exists(f"World/Environment/trunk_02_{self.id}") and not self.util.check_prim_exists(f"World/Environment/trunk_02_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xtrunk_{self.id-1}"): self.isDone[4] = True self.util.add_part_custom("World/Environment","trunk", f"trunk_02_{self.id}", np.array([0.001,0.001,0.001]), np.array([-27.84904, 4.26505, 0.41467]), np.array([0, 0, -0.70711, -0.70711])) # wheel cell set up --------------------------------------------------------------------------------- if not self.isDone[5] and not self.util.check_prim_exists(f"World/Environment/wheel_02_{self.id}") and not self.util.check_prim_exists(f"World/Environment/wheel_02_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xwheel_02_{self.id-1}"): self.isDone[5] = True self.util.add_part_custom("World/Environment","FWheel", f"wheel_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-15.17319, 4.72577, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5])) self.util.add_part_custom("World/Environment","FWheel", f"wheel_02_{self.id}", np.array([0.001,0.001,0.001]), np.array([-15.17319, 5.24566, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5])) self.util.add_part_custom("World/Environment","FWheel", f"wheel_03_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.97836, 4.72577, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5])) self.util.add_part_custom("World/Environment","FWheel", f"wheel_04_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.97836, 5.24566, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5])) # lower_cover cell set up --------------------------------------------------------------------------------- if not self.isDone[6] and not self.util.check_prim_exists(f"World/Environment/main_cover_{self.id}") and not self.util.check_prim_exists(f"World/Environment/main_cover_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xmain_cover_{self.id-1}"): self.isDone[6] = True self.util.add_part_custom("World/Environment","lower_cover", f"lower_cover_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-26.2541, -15.57458, 0.40595]), np.array([0, 0, 0.70711, 0.70711])) self.util.add_part_custom("World/Environment","lower_cover", f"lower_cover_04_{self.id}", np.array([0.001,0.001,0.001]), np.array([-26.26153, -19.13631, 0.40595]), np.array([0, 0, -0.70711, -0.70711])) if self.id%2==0: self.util.add_part_custom("World/Environment","main_cover", f"main_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.7095-11.83808, -15.70872, 0.28822]), np.array([0.70711, 0.70711,0,0])) else: self.util.add_part_custom("World/Environment","main_cover_orange", f"main_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.7095-11.83808, -15.70872, 0.28822]), np.array([0.70711, 0.70711,0,0])) # handle cell set up --------------------------------------------------------------------------------- if not self.isDone[7] and not self.util.check_prim_exists(f"World/Environment/handle_{self.id}") and not self.util.check_prim_exists(f"World/Environment/handle_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xhandle_{self.id-1}"): self.isDone[7] = True self.util.add_part_custom("World/Environment","handle", f"handle_{self.id}", np.array([0.001,0.001,0.001]), np.array([-29.70213, -7.25934, 1.08875]), np.array([0, 0.70711, 0.70711, 0])) # light cell set up --------------------------------------------------------------------------------- if not self.isDone[8] and not self.util.check_prim_exists(f"World/Environment/light_03_{self.id}") and not self.util.check_prim_exists(f"World/Environment/light_03_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xlight_{self.id-1}"): self.isDone[8] = True self.util.add_part_custom("World/Environment","FFrontLightAssembly", f"light_03_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.07685, -7.35866, -0.71703]), np.array([0.28511, -0.28511, -0.64708, -0.64708])) # ---------------------------------------------------- part feeder functions ------------------------------------------------------------ # -----------------------------engine--------------------------------- def move_pf_engine(self): print(self.util.path_plan_counter) path_plan = [["translate", [-0.8, 0, False]], ["wait",[]], ["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, False]], ["wait",[]], ["translate", [13.65, 1, False]], ["wait",[]], ["rotate", [np.array([0, 0, 0, 1]), 0.0042, True]], ["wait",[]], ["translate", [-4.947, 0, False]], ["wait",[]], ["rotate", [np.array([0.70711,0,0,-0.70711]), 0.0042, False]], ["wait",[]], ["translate", [10.042, 1, False]], ["wait",[]], ["rotate", [np.array([0, 0, 0, 1]), 0.0042, False]], ["wait",[]], ["translate", [-6.28358, 0, False]], ["wait",[]], ["rotate", [np.array([0.70711,0,0,-0.70711]), 0.0042, False]], ["wait",[]], ["translate", [7.1069, 1, False]]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def place_engine(self): print("doing motion plan") motion_plan = [{"index":0, "position": np.array([0.16871, 0.73405+0.16, 0.08489]), "orientation": np.array([0.70711, 0, 0, 0.70711]), "goal_position":np.array([-5.71975, 7.14096, 0.32698]), "goal_orientation":np.array([0,0,0,-1])}, {"index":1, "position": np.array([0.16871, 1.09027+0.16, 0.08489]), "orientation": np.array([0.70711, 0, 0, 0.70711]), "goal_position":np.array([-6.07597, 7.14096, 0.32698]), "goal_orientation":np.array([0,0,0,-1])}, {"index":2, "position": np.array([0.16871, 1.09027+0.16, 0.35359]), "orientation": np.array([0.70711, 0, 0, 0.70711]), "goal_position":np.array([-6.07597, 7.14096, 0.59568]), "goal_orientation":np.array([0,0,0,-1])}, {"index":3, "position": np.array([0.71113, 0.57884, 0.65168]), "orientation": np.array([0.94313, 0, 0, 0.33242]), "goal_position":np.array([-5.46465, 7.557, 0.89377]), "goal_orientation":np.array([0.43184, 0, 0, 0.90195])},# -5.56465, 7.68341, 0.89377 {"index":4, "position": np.array([0.97986+0.16, -0.22219, 0.54922]), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.76367, 7.95221, 0.79131]), "goal_orientation":np.array([0.70711, 0, 0, 0.70711])}, {"index":5, "position": np.array([0.97986+0.16, -0.22219, 0.23754]), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.76367, 7.95221, 0.47963]), "goal_orientation":np.array([0.70711, 0, 0, 0.70711])}, {"index":6, "position": np.array([0.60234+0.16, -0.22219, 0.23754]), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.76367, 7.57469, 0.47963]), "goal_orientation":np.array([0.70711, 0, 0, 0.70711])}, {"index":7, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.67382, 7.1364, 1.04897]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}] self.util.move_ur10(motion_plan) if self.util.motion_task_counter==2 and not self.bool_done[self.id*10]: self.bool_done[self.id*10] = True self.util.remove_part("pf_engine/platform", f"pf_engine_{self.id}") self.util.add_part_custom("World/UR10/ee_link","engine_no_rigid", f"pf_qengine_small_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.19536, 0.10279, 0.11708]), np.array([0.70177, -0.08674, -0.08674, -0.70177])) if self.util.motion_task_counter==6 and not self.bool_done[self.id*10+1]: self.bool_done[self.id*10+1] = True self.util.remove_part("World/UR10/ee_link", f"pf_qengine_small_{self.id}") self.util.add_part_custom(f"World/Environment","engine_no_rigid", f"engine_small_{self.id+1}", np.array([0.001,0.001,0.001]), np.array([-4.86938, 8.14712, 0.59038]), np.array([0.99457, 0, -0.10411, 0])) if self.util.motion_task_counter==8: self.util.motion_task_counter=0 print("Done placing engine") return True return False def move_pf_engine_back(self): print(self.util.path_plan_counter) path_plan = [["translate", [9.65, 1, False]], ["wait", []], ["rotate", [np.array([0, 0, 0, 1]), 0.0042, False]], ["wait", []], ["translate", [-4.947, 0, False]], ["wait", []], ["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, False]], ["wait", []], ["translate", [12.8358, 1, False]], ["wait", []], ["rotate", [np.array([0, 0, 0, 1]), 0.0042, False]], ["wait", []], ["translate", [-1.22, 0, False]], ["wait", []], ["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, True]], ["wait", []], ["translate", [17.63327, 1, False]], ["wait", []], ["rotate", [np.array([0, 0, 0, 1]), 0.0042, False]], ["wait", []], ["translate", [8.61707, 0, False]], ["wait", []]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 self.util.add_part_custom("pf_engine/platform","engine_no_rigid", "pf_engine"+f"_{self.id+1}", np.array([0.001, 0.001, 0.001]), np.array([0.07038, 0.03535, 0.42908]), np.array([0, 0.12268, 0, 0.99245])) self.id+=1 return True return False # -----------------------------trunk--------------------------------- def move_pf_trunk(self): print(self.util.path_plan_counter) path_plan = [["translate", [-27.271, 0, False]], ["wait",[]]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def place_trunk(self): motion_plan = [{"index":0, "position": np.array([0.95548, 0.21169, 0.45316+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-28.05854, 4.27434, 0.69518+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([0.854, -0.22549, 0.56746-0.16]), "orientation": np.array([0.26914, 0.65388, 0.26914, -0.65388]), "goal_position":np.array([-27.95709, 4.7115, 0.80948]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":2, "position": np.array([0.28794, -0.72111, 0.34571+0.2-0.16]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-27.39105, 5.20712, 0.58774+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":3, "position": np.array([0.28794, -0.72111, 0.34571-0.16]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-27.39105, 5.20712, 0.58774]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":4, "position": np.array([0.28794, -0.72111, 0.34571+0.2-0.16]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-27.39105, 5.20712, 0.58774+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":5, "position": np.array([0.854, -0.22549, 0.56746-0.16]), "orientation": np.array([0.26914, 0.65388, 0.26914, -0.65388]), "goal_position":np.array([-27.95709, 4.7115, 0.80948]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":6, "position": np.array([0.95548, 0.21169, 0.45316+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-28.05854, 4.27434, 0.69518+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":7, "position": np.array([0.95548, 0.21169, 0.45316-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-28.05854, 4.27434, 0.69518]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":8, "position": np.array([0.95548, 0.21169, 0.45316+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-28.05854, 4.27434, 0.69518+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":9, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.2673, 3.79761, 1.04836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}] self.util.move_ur10(motion_plan, "_trunk") if self.util.motion_task_counter==4 and not self.bool_done[self.id*10]: self.bool_done[self.id*10] = True self.util.remove_part("pf_trunk/platform", f"pf_trunk_{self.id}") self.util.add_part_custom("World/UR10_trunk/ee_link","trunk", f"pf_qtrunk_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.28167, -0.21084, -0.00861]), np.array([0.70711, 0, 0, 0.70711])) if self.util.motion_task_counter==8 and not self.bool_done[self.id*10+1]: self.bool_done[self.id*10+1] = True self.util.remove_part("World/UR10_trunk/ee_link", f"pf_qtrunk_{self.id}") self.util.add_part_custom(f"World/Environment","trunk", f"trunk_02_{self.id+1}", np.array([0.001,0.001,0.001]), np.array([-27.84904, 4.26505, 0.41467]), np.array([0, 0, -0.70711, -0.70711])) if self.util.motion_task_counter==10: self.util.motion_task_counter=0 print("Done placing trunk") return True return False def move_pf_trunk_back(self): print(self.util.path_plan_counter) path_plan = [["translate", [-42.76, 0, False]], ["wait", []]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 self.util.add_part_custom("pf_trunk/platform","trunk", f"pf_trunk_{self.id+1}", np.array([0.001, 0.001, 0.001]), np.array([-0.1389, -0.2191, 0.28512]), np.array([0.5, 0.5, 0.5, 0.5])) self.id+=1 return True return False # -----------------------------wheels--------------------------------- def move_pf_wheels(self): # return True print(self.util.path_plan_counter) path_plan = [["translate", [-16.85, 0, False]], ["wait",[]], ["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, True]], ["wait", []], ["translate", [5.00712, 1, False]], ["wait", []], ["rotate", [np.array([1,0,0,0]), 0.0042, False]],] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def place_wheels_1eft(self): tire_offset = 0.1462+0.2 motion_plan = [ {"index":0, "position": np.array([0.16286, 0.68548, 0.63765-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.02865, 4.20818, 0.87901]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":1, "position": np.array([0.69558, -0.10273, 0.42205+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.5615, 4.99639, 0.66395+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([0.69558, -0.10273, 0.42205-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.5615, 4.99639, 0.66395]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":3, "position": np.array([0.69558, -0.10273, 0.42205+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.5615, 4.99639, 0.66395+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":4, "position": np.array([0.16286, 0.68548, 0.63765-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.02865, 4.20818, 0.87901]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":5, "position": np.array([-0.87307, -0.01687, 0.436-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.9927, 4.91057, 0.67736+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":6, "position": np.array([-0.87307, -0.01687, 0.436-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.9927, 4.91057, 0.67736]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":7, "position": np.array([-0.87307, -0.01687, 0.436-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.9927, 4.91057, 0.67736+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, ] self.util.move_ur10_extra(motion_plan, "_wheel") if self.util.motion_task_counterl==3 and not self.bool_done[self.id*10]: self.bool_done[self.id*10] = True self.util.remove_part("pf_wheels/platform", f"pf_wheels_1_{self.id}") self.util.add_part_custom("World/UR10_wheel/ee_link","FWheel", f"pf_qwheels_1_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.25604, -0.18047, -0.18125]), np.array([0, 0, 0.70711, 0.70711])) if self.util.motion_task_counterl==7 and not self.bool_done[self.id*10+1]: self.bool_done[self.id*10+1] = True self.util.remove_part("World/UR10_wheel/ee_link", f"pf_qwheels_1_{self.id}") self.util.add_part_custom(f"World/Environment","FWheel", f"wheel_01_{self.id+1}", np.array([0.001,0.001,0.001]), np.array([-15.17319, 4.72577, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5])) if self.util.motion_task_counterl==8: self.util.motion_task_counterl=0 print("Done placing wheel") return True return False def place_wheels_1eft_01(self): tire_offset = 0.52214 motion_plan = [ {"index":0, "position": np.array([-0.87307, -0.01687-tire_offset, 0.436-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.9927, 4.91057+tire_offset, 0.67736+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":1, "position": np.array([0.69558, -0.10273, 0.30352+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.5615, 4.99639, 0.54541+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([0.69558, -0.10273, 0.30352-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.5615, 4.99639, 0.54541]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":3, "position": np.array([0.69558, -0.10273, 0.30352+0.2-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.5615, 4.99639, 0.54541+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":4, "position": np.array([0.16286, 0.68548, 0.63765-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.02865, 4.20818, 0.87901]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":5, "position": np.array([-0.87307, -0.01687-tire_offset, 0.436-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.9927, 4.91057+tire_offset, 0.67736+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":6, "position": np.array([-0.87307, -0.01687-tire_offset, 0.436-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.9927, 4.91057+tire_offset, 0.67736]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":7, "position": np.array([-0.87307, -0.01687-tire_offset, 0.436-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.9927, 4.91057+tire_offset, 0.67736+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":8, "position": np.array([0.16286, 0.68548, 0.63765-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.02865, 4.20818, 0.87901]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, ] self.util.move_ur10_extra(motion_plan, "_wheel") if self.util.motion_task_counterl==3 and not self.bool_done[self.id*10+2]: self.bool_done[self.id*10+2] = True self.util.remove_part("pf_wheels/platform", f"pf_wheels_3_{self.id}") self.util.add_part_custom("World/UR10_wheel/ee_link","FWheel", f"pf_qwheels_2_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.25604, -0.18047, -0.18125]), np.array([0, 0, 0.70711, 0.70711])) if self.util.motion_task_counterl==7 and not self.bool_done[self.id*10+3]: self.bool_done[self.id*10+3] = True self.util.remove_part("World/UR10_wheel/ee_link", f"pf_qwheels_2_{self.id}") self.util.add_part_custom(f"World/Environment","FWheel", f"wheel_02_{self.id+1}", np.array([0.001,0.001,0.001]), np.array([-15.17319, 5.24566, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5])) if self.util.motion_task_counterl==9: self.util.motion_task_counterl=0 print("Done placing wheel") return True return False def place_wheels_right(self): tire_offset = 0.1462+0.2 motion_plan = [ {"index":0, "position": np.array([0.16345, 0.69284, 0.62942-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.09182, 4.18911, 0.87105]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":1, "position": np.array([-0.89369, -0.11909, 0.44644+0.2-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.03464, 5.00114, 0.68807+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":2, "position": np.array([-0.89369, -0.11909, 0.44644-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.03464, 5.00114, 0.68807]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":3, "position": np.array([-0.89369, -0.11909, 0.44644+0.2-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.03464, 5.00114, 0.68807+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":4, "position": np.array([0.16345, 0.69284, 0.62942-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.09182, 4.18911, 0.87105]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":5, "position": np.array([0.86452, -0.02427, 0.4366-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.79301, 4.90626, 0.67823+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":6, "position": np.array([0.86452, -0.02427, 0.4366-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.79301, 4.90626, 0.67823+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":7, "position": np.array([0.86452, -0.02427, 0.4366-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.79301, 4.90626, 0.67823+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, ] self.util.move_ur10(motion_plan, "_wheel_01") if self.util.motion_task_counter==3 and not self.bool_done[self.id*10+4]: self.bool_done[self.id*10+4] = True self.util.remove_part("pf_wheels/platform", f"pf_wheels_2_{self.id}") self.util.add_part_custom("World/UR10_wheel_01/ee_link","FWheel", f"pf_qwheels_3_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.25604, -0.18047, -0.18125]), np.array([0, 0, 0.70711, 0.70711])) if self.util.motion_task_counter==7 and not self.bool_done[self.id*10+5]: self.bool_done[self.id*10+5] = True self.util.remove_part("World/UR10_wheel_01/ee_link", f"pf_qwheels_3_{self.id}") self.util.add_part_custom(f"World/Environment","FWheel", f"wheel_03_{self.id+1}", np.array([0.001,0.001,0.001]), np.array([-18.97836, 4.72577, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5])) if self.util.motion_task_counter==8: self.util.motion_task_counter=0 print("Done placing wheel") return True return False def place_wheels_right_01(self): tire_offset = 0.1462+0.2 motion_plan = [ {"index":0, "position": np.array([0.16345, 0.69284, 0.62942-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.09182, 4.18911, 0.87105]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":1, "position": np.array([-0.89369, -0.11909, 0.30402+0.2-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.03464, 5.00114, 0.54564+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":2, "position": np.array([-0.89369, -0.11909, 0.30402-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.03464, 5.00114, 0.54564]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":3, "position": np.array([-0.89369, -0.11909, 0.30402+0.2-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.03464, 5.00114, 0.54564+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":4, "position": np.array([0.16345, 0.69284, 0.62942-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.09182, 4.18911, 0.87105]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":4, "position": np.array([0.86452, -0.54305, 0.4366-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.79301, 5.42505, 0.67823+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":5, "position": np.array([0.86452, -0.54305, 0.4366-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.79301, 5.42505, 0.67823+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":6, "position": np.array([0.86452, -0.54305, 0.4366-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.79301, 5.42505, 0.67823+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":7, "position": np.array([0.16345, 0.69284, 0.62942-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.09182, 4.18911, 0.87105]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])} ] self.util.move_ur10(motion_plan, "_wheel_01") if self.util.motion_task_counter==3 and not self.bool_done[self.id*10+6]: self.bool_done[self.id*10+6] = True self.util.remove_part("pf_wheels/platform", f"pf_wheels_4_{self.id}") self.util.add_part_custom("World/UR10_wheel_01/ee_link","FWheel", f"pf_qwheels_4_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.25604, -0.18047, -0.18125]), np.array([0, 0, 0.70711, 0.70711])) if self.util.motion_task_counter==6 and not self.bool_done[self.id*10+7]: self.bool_done[self.id*10+7] = True self.util.remove_part("World/UR10_wheel_01/ee_link", f"pf_qwheels_4_{self.id}") self.util.add_part_custom(f"World/Environment","FWheel", f"wheel_04_{self.id+1}", np.array([0.001,0.001,0.001]), np.array([-18.97836, 5.24566, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5])) if self.util.motion_task_counter==8: self.util.motion_task_counter=0 print("Done placing wheel") return True return False def place_wheels(self): if not self.right_side: self.right_side = self.place_wheels_right() if not self.left_side: self.left_side = self.place_wheels_1eft() if self.left_side and self.right_side: self.left_side = self.right_side = False return True return False def place_wheels_01(self): if not self.right_side: self.right_side = self.place_wheels_right_01() if not self.left_side: self.left_side = self.place_wheels_1eft_01() if self.left_side and self.right_side: self.left_side = self.right_side = False return True return False def move_pf_wheels_back(self): print(self.util.path_plan_counter) path_plan = [ ["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, True]], ["wait", []], ["translate", [17.56147, 1, False]], ["wait", []], ["rotate", [np.array([1,0,0,0]), 0.0042, False]], ["wait", []], ["translate", [-42.71662, 0, False]], ["wait", []]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 self.util.add_part_custom("pf_wheels/platform","FWheel", f"pf_wheels_1_{self.id+1}", np.array([0.001, 0.001, 0.001]), np.array([0.42089, -0.1821, 0.56097]), np.array([0.5, -0.5, 0.5, 0.5])) self.util.add_part_custom("pf_wheels/platform","FWheel", f"pf_wheels_2_{self.id+1}", np.array([0.001, 0.001, 0.001]), np.array([-0.04856, -0.1821, 0.56097]), np.array([0.5, -0.5, 0.5, 0.5])) self.util.add_part_custom("pf_wheels/platform","FWheel", f"pf_wheels_3_{self.id+1}", np.array([0.001, 0.001, 0.001]), np.array([0.42089, -0.1821, 0.41917]), np.array([0.5, -0.5, 0.5, 0.5])) self.util.add_part_custom("pf_wheels/platform","FWheel", f"pf_wheels_4_{self.id+1}", np.array([0.001, 0.001, 0.001]), np.array([-0.04856, -0.1821, 0.41917]), np.array([0.5, -0.5, 0.5, 0.5])) self.id+=1 return True return False # -----------------------------cover--------------------------------- def move_pf_main_cover(self): print(self.util.path_plan_counter) path_plan = [["translate", [-17.18, 1, False]], ["wait",[]]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 self.update_color() return True return False def place_main_cover(self): motion_plan = [ {"index":0, "position": np.array([0.11095-0.11, 0.94, 0.49096-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 1.31062]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":1, "position": np.array([0.11095-0.11, 0.94, 0.2926-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 1.11226]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":2, "position": np.array([0.11095-0.11, 0.94, 0.19682-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 1.01648]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":3, "position": np.array([0.11095-0.11, 0.94, 0.15697-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 0.97663]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":4, "position": np.array([0.11095-0.11, 0.94, 0.11895-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 0.93861]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":5, "position": np.array([0.11095-0.11, 0.94, 0.07882-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 0.89848]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":6, "position": np.array([0.06726, 0.93507, -0.1155-0.16+0.09]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-28.639, -17.135, 0.705+0.09]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":7, "position": np.array([0.06726, 0.93507, -0.1155-0.16+0.05]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-28.639, -17.135, 0.705+0.05]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":8, "position": np.array([0.06726, 0.93507, -0.1155-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-28.639, -17.135, 0.705]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":9, "position": np.array([0.06726, 0.93507, -0.1155-0.16+0.05]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-28.639, -17.135, 0.705+0.05]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":10, "position": np.array([0.06726, 0.93507, -0.1155-0.16+0.09]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-28.639, -17.135, 0.705+0.09]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":11, "position": np.array([0.11095-0.11, 0.94, 0.07882-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 0.89848]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":12, "position": np.array([0.11095, 0.94627, 0.49096-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995, 1.31062]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":13, "position": np.array([-0.28875, 0.74261, 0.51038-0.16]), "orientation": np.array([0.70458, -0.0597, 0.70458, 0.0597]), "goal_position":np.array([-16.99268-11.83808, -16.77844, 1.33072]), "goal_orientation":np.array([0.54043, 0.456, 0.54043, -0.456])}, {"index":14, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.6954, -0.12814, 0.6954, 0.12814]), "goal_position":np.array([-17.17748-11.83808, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])}, {'index': 15, 'position': np.array([-0.74286, 0.42878, 0.35038]), 'orientation': np.array([ 0.6511, -0.2758, 0.6511, 0.2758]), 'goal_position': np.array([-29.14515, -16.32381, 1.33072]), 'goal_orientation': np.array([ 0.65542, 0.26538, 0.65542, -0.26538])}, {'index': 16, 'position': np.array([-0.89016, 0.32513, 0.35038]), 'orientation': np.array([ 0.60698, -0.36274, 0.60698, 0.36274]), 'goal_position': np.array([-29.24913, -16.1764 , 1.33072]), 'goal_orientation': np.array([ 0.68569, 0.1727 , 0.68569, -0.1727 ])}, {'index': 17, 'position': np.array([-1.09352, -0.27789, 0.42455]), 'orientation': np.array([ 0.5, -0.5, 0.5, 0.5]), 'goal_position': np.array([-29.85252, -15.97435, 1.40075]), 'goal_orientation': np.array([0.70711, 0. , 0.70711, 0. ])}, {'index': 18, 'position': np.array([-1.09352, -0.27789, 0.03772]), 'orientation': np.array([ 0.5, -0.5, 0.5, 0.5]), 'goal_position': np.array([-29.85252, -15.97435, 1.01392]), 'goal_orientation': np.array([0.70711, 0. , 0.70711, 0. ])}, {'index': 19, 'position': np.array([-1.09352, -0.27789, 0.42455]), 'orientation': np.array([ 0.5, -0.5, 0.5, 0.5]), 'goal_position': np.array([-29.85252, -15.97435, 1.40075]), 'goal_orientation': np.array([0.70711, 0. , 0.70711, 0. ])}, {'index': 20, 'position': np.array([-0.89016, 0.32513, 0.35038]), 'orientation': np.array([ 0.60698, -0.36274, 0.60698, 0.36274]), 'goal_position': np.array([-29.24913, -16.1764 , 1.33072]), 'goal_orientation': np.array([ 0.68569, 0.1727 , 0.68569, -0.1727 ])}, {'index': 21, 'position': np.array([-0.74286, 0.42878, 0.35038]), 'orientation': np.array([ 0.6511, -0.2758, 0.6511, 0.2758]), 'goal_position': np.array([-29.14515, -16.32381, 1.33072]), 'goal_orientation': np.array([ 0.65542, 0.26538, 0.65542, -0.26538])}, {"index": 22, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.6954, -0.12814, 0.6954, 0.12814]), "goal_position":np.array([-17.17748-11.83808, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])}, {"index": 23, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.17748-11.83808, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])}] # {'index': 23, 'position': np.array([0.16394, 0.68799, 0.44663]), 'orientation': np.array([ 0.70711, 0, 0.70711, 0]), 'goal_position': np.array([-28.88652, -17.23535, 1.42725]), 'goal_orientation': np.array([0.70711, 0. , 0.70711, 0. ])}] self.util.move_ur10(motion_plan, "_main_cover") if self.util.motion_task_counter==9 and not self.bool_done[self.id*10]: self.bool_done[self.id*10] = True self.util.remove_part("pf_main_cover/platform", f"pf_main_cover_{self.id}") self.util.add_part_custom("World/UR10_main_cover/ee_link",self.color_path[0], f"pf_qmain_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.71735, 0.26961, -0.69234]), np.array([0.5, 0.5, -0.5, 0.5])) if self.util.motion_task_counter==19 and not self.bool_done[self.id*10+1]: self.bool_done[self.id*10+1] = True self.util.remove_part("World/UR10_main_cover/ee_link", f"pf_qmain_cover_{self.id}") self.util.add_part_custom("World/Environment",self.color_path[0], f"main_cover_{self.id+1}", np.array([0.001,0.001,0.001]), np.array([-18.7095-11.83808, -15.70872, 0.28822]), np.array([0.70711, 0.70711,0,0])) if self.util.motion_task_counter==24: self.util.motion_task_counter=0 print("Done placing main_cover") return True return False def move_pf_main_cover_back(self): print(self.util.path_plan_counter) path_plan = [["translate", [-31.2, 1, False]], ["wait", []]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 self.util.add_part_custom("pf_main_cover/platform",self.color_path[1], f"pf_main_cover_{self.id+1}", np.array([0.001, 0.001, 0.001]), np.array([0.74446, -0.26918, -0.03119]), np.array([0, 0, -0.70711, -0.70711])) self.id+=1 return True return False # -----------------------------handle--------------------------------- def move_pf_handle(self): print(self.util.path_plan_counter) path_plan = [ # ["translate", [-32.52, 0, False]], # ["wait",[]], # ["rotate", [np.array([0.70711, 0, 0, 0.70711]), 0.0042, True]], # ["wait", []], # ["translate", [-7.93, 1, False]], # ["wait", []], # ["rotate", [np.array([0, 0, 0, 1]), 0.0042, False]], # ["wait", []], ["translate", [-28.661, 0, False]]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def place_handle(self): motion_plan = [{"index":0, "position": np.array([0.15669, 0.84626, 0.19321-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-28.6592, -8.04267, 0.4333+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([0.15669, 0.84626, 0.19321-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-28.6592, -8.04267, 0.4333]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([0.15669, 0.84626, 0.19321-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-28.6592, -8.04267, 0.4333+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":3, "position": np.array([0.63197, 0.53467, 0.5295-0.16]), "orientation": np.array([0.67393, -0.21407, 0.67393, 0.21407]), "goal_position":np.array([-29.13451, -7.73107, 0.76958]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":4, "position": np.array([0.83727, -0.35853, 0.3259-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-29.33982, -6.83787, 0.56599+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":5, "position": np.array([0.83727, -0.35853, 0.3259-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-29.33982, -6.83787, 0.56599]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":6, "position": np.array([0.83727, -0.35853, 0.3259-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-29.33982, -6.83787, 0.56599+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":7, "position": np.array([-0.00141, 0.74106, -0.16+0.61331]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-28.5011, -7.93748, 0.85506]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}] self.util.move_ur10(motion_plan, "_handle") if self.util.motion_task_counter==2 and not self.bool_done[self.id*10]: self.bool_done[self.id*10] = True self.util.remove_part("pf_handle/platform", f"pf_handle_{self.id}") self.util.add_part_custom("World/UR10_handle/ee_link","handle", f"pf_qhandle_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.5218, 0.42317, 0.36311]), np.array([0.5, -0.5, 0.5, -0.5])) if self.util.motion_task_counter==6 and not self.bool_done[self.id*10+1]: self.bool_done[self.id*10+1] = True self.util.remove_part("World/UR10_handle/ee_link", f"pf_qhandle_{self.id}") self.util.add_part_custom(f"World/Environment","handle", f"handle_{self.id+1}", np.array([0.001,0.001,0.001]), np.array([-29.70213, -7.25934, 1.08875]), np.array([0, 0.70711, 0.70711, 0])) if self.util.motion_task_counter==8: self.util.motion_task_counter=0 print("Done placing handle") return True return False def move_pf_handle_back(self): print(self.util.path_plan_counter) path_plan = [ # ["translate", [-32.52, 0, False]], # ["wait",[]], # ["rotate", [np.array([0.70711, 0, 0, 0.70711]), 0.0042, True]], # ["wait", []], # ["translate", [-5.63293, 1, False]], # ["wait", []], # ["rotate", [np.array([0, 0, 0, 1]), 0.0042, False]], # ["wait", []], ["translate", [-42.77298, 0, False]], ["wait", []]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 self.util.add_part_custom("pf_handle/platform","handle", f"pf_handle_{self.id+1}", np.array([0.001, 0.001, 0.001]), np.array([-0.4248, 0.46934, 0.94076]), np.array([0, 1, 0, 0])) self.id+=1 return True return False
60,249
Python
74.218477
307
0.546349
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/executor_functions.py
import numpy as np from omni.isaac.examples.hello_world.util import Utils import asyncio import rospy from geometry_msgs.msg import PoseStamped import rosgraph from tf.transformations import euler_from_quaternion, quaternion_from_euler from math import pi class ExecutorFunctions: def __init__(self) -> None: self.util = Utils() self.isDone = [False]*1000 self.bool_done = [False]*1000 self.delay=0 self.right_side = self.left_side = False # disassembly counter self.disassembly_event=0 self.world = None self.id = None # non part feeder parts self.suspension = None self.battery = None self.fuel = None self.light = None self.lower_cover = None # visited array # meaning of its values: # False - not visited # True - visiting or visited self.visited = {"engine":False, "trunk":False, "wheels":False, "cover":False, "handle":False} # Engine cell set up ---------------------------------------------------------------------------- # bring in moving platforms self.moving_platform = None self.my_controller = None self.screw_my_controller = None self.articulation_controller = None self.screw_articulation_controller = None # Suspension cell set up ------------------------------------------------------------------------ self.my_controller_suspension = None self.screw_my_controller_suspension = None self.articulation_controller_suspension = None self.screw_articulation_controller_suspension = None # Fuel cell set up --------------------------------------------------------------------------------- self.my_controller_fuel = None self.screw_my_controller_fuel = None self.articulation_controller_fuel = None self.screw_articulation_controller_fuel = None # battery cell set up --------------------------------------------------------------------------------- self.my_controller_battery = None self.screw_my_controller_battery = None self.articulation_controller_battery = None self.screw_articulation_controller_battery = None # trunk cell set up --------------------------------------------------------------------------------- self.my_controller_trunk = None self.screw_my_controller_trunk = None self.articulation_controller_trunk = None self.screw_articulation_controller_trunk = None # wheel cell set up --------------------------------------------------------------------------------- self.my_controller_wheel = None self.screw_my_controller_wheel = None self.articulation_controller_wheel = None self.screw_articulation_controller_wheel = None self.my_controller_wheel_01 = None self.screw_my_controller_wheel_01 = None self.articulation_controller_wheel_01 = None self.screw_articulation_controller_wheel_01 = None # lower_cover cell set up --------------------------------------------------------------------------------- self.my_controller_lower_cover = None self.screw_my_controller_lower_cover = None self.articulation_controller_lower_cover = None self.screw_articulation_controller_lower_cover = None self.my_controller_lower_cover_01 = None self.screw_my_controller_lower_cover_01 = None self.articulation_controller_lower_cover_01 = None self.screw_articulation_controller_lower_cover_01 = None self.my_controller_main_cover = None self.articulation_controller_main_cover = None # handle cell set up --------------------------------------------------------------------------------- self.my_controller_handle = None self.screw_my_controller_handle = None self.articulation_controller_handle = None self.screw_articulation_controller_handle = None # light cell set up -------------------------------------------------------------------------------- self.my_controller_light = None self.screw_my_controller_light = None self.articulation_controller_light = None self.screw_articulation_controller_light = None # self._goal_pub = rospy.Publisher(f"/mp{self.id+1}/move_base_simple/goal", PoseStamped, queue_size=1) # self._xy_goal_tolerance = 0.25 # self._yaw_goal_tolerance = 0.05 # Util declarations ---------------------------------------------------------------------------------- def declare_utils(self): self.util.world = self.world self.util.id = self.id # Engine cell set up ---------------------------------------------------------------------------- # bring in moving platforms self.util.moving_platform = self.moving_platform self.util.my_controller = self.my_controller self.util.screw_my_controller = self.screw_my_controller self.util.articulation_controller = self.articulation_controller self.util.screw_articulation_controller = self.screw_articulation_controller # Suspension cell set up ------------------------------------------------------------------------ self.util.my_controller_suspension = self.my_controller_suspension self.util.screw_my_controller_suspension = self.screw_my_controller_suspension self.util.articulation_controller_suspension = self.articulation_controller_suspension self.util.screw_articulation_controller_suspension = self.screw_articulation_controller_suspension # Fuel cell set up --------------------------------------------------------------------------------- self.util.my_controller_fuel = self.my_controller_fuel self.util.screw_my_controller_fuel = self.screw_my_controller_fuel self.util.articulation_controller_fuel = self.articulation_controller_fuel self.util.screw_articulation_controller_fuel = self.screw_articulation_controller_fuel # battery cell set up --------------------------------------------------------------------------------- self.util.my_controller_battery = self.my_controller_battery self.util.screw_my_controller_battery = self.screw_my_controller_battery self.util.articulation_controller_battery = self.articulation_controller_battery self.util.screw_articulation_controller_battery = self.screw_articulation_controller_battery # trunk cell set up --------------------------------------------------------------------------------- self.util.my_controller_trunk = self.my_controller_trunk self.util.screw_my_controller_trunk = self.screw_my_controller_trunk self.util.articulation_controller_trunk = self.articulation_controller_trunk self.util.screw_articulation_controller_trunk = self.screw_articulation_controller_trunk # wheel cell set up --------------------------------------------------------------------------------- self.util.my_controller_wheel = self.my_controller_wheel self.util.screw_my_controller_wheel = self.screw_my_controller_wheel self.util.articulation_controller_wheel = self.articulation_controller_wheel self.util.screw_articulation_controller_wheel = self.screw_articulation_controller_wheel self.util.my_controller_wheel_01 = self.my_controller_wheel_01 self.util.screw_my_controller_wheel_01 = self.screw_my_controller_wheel_01 self.util.articulation_controller_wheel_01 = self.articulation_controller_wheel_01 self.util.screw_articulation_controller_wheel_01 = self.screw_articulation_controller_wheel_01 # lower_cover cell set up --------------------------------------------------------------------------------- self.util.my_controller_lower_cover = self.my_controller_lower_cover self.util.screw_my_controller_lower_cover = self.screw_my_controller_lower_cover self.util.articulation_controller_lower_cover = self.articulation_controller_lower_cover self.util.screw_articulation_controller_lower_cover = self.screw_articulation_controller_lower_cover self.util.my_controller_lower_cover_01 = self.my_controller_lower_cover_01 self.util.screw_my_controller_lower_cover_01 = self.screw_my_controller_lower_cover_01 self.util.articulation_controller_lower_cover_01 = self.articulation_controller_lower_cover_01 self.util.screw_articulation_controller_lower_cover_01 = self.screw_articulation_controller_lower_cover_01 self.util.my_controller_main_cover = self.my_controller_main_cover self.util.articulation_controller_main_cover = self.articulation_controller_main_cover # handle cell set up --------------------------------------------------------------------------------- self.util.my_controller_handle = self.my_controller_handle self.util.screw_my_controller_handle = self.screw_my_controller_handle self.util.articulation_controller_handle = self.articulation_controller_handle self.util.screw_articulation_controller_handle = self.screw_articulation_controller_handle # light cell set up -------------------------------------------------------------------------------- self.util.my_controller_light = self.my_controller_light self.util.screw_my_controller_light = self.screw_my_controller_light self.util.articulation_controller_light = self.articulation_controller_light self.util.screw_articulation_controller_light = self.screw_articulation_controller_light def spawn_new_parts(self): if self.id ==2: # print(not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id}") and not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/engine_{self.id-1}")) pass if self.id!=0: # Engine cell set up ---------------------------------------------------------------------------- # if not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id}") and not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id-1}") and not self.util.check_prim_exists(f"mock_robot_{self.id}/platform/engine_{self.id}"): if not self.isDone[0] and not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id}") and not self.util.check_prim_exists(f"World/Environment/engine_small_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/engine_{self.id-1}"): self.isDone[0] = True self.util.add_part_custom("World/Environment","engine_no_rigid", f"engine_small_{self.id}", np.array([0.001, 0.001, 0.001]), np.array([-4.86938, 8.14712, 0.59038]), np.array([0.99457, 0, -0.10411, 0])) # print(" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n --------------------------------------spawned engine "+str(self.id)+" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n") # Suspension cell set up ------------------------------------------------------------------------ # if not self.util.check_prim_exists(f"World/Environment/FSuspensionBack_01_{self.id}") and not self.util.check_prim_exists(f"World/Environment/FSuspensionBack_01_{self.id-1}") and not self.util.check_prim_exists(f"mock_robot_{self.id}/platform/xFSuspensionBack_{self.id}"): if not self.isDone[1] and not self.util.check_prim_exists(f"World/Environment/FSuspensionBack_01_{self.id}") and not self.util.check_prim_exists(f"World/Environment/FSuspensionBack_01_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xFSuspensionBack_{self.id-1}"): self.isDone[1] = True self.util.add_part_custom("World/Environment","FSuspensionBack", f"FSuspensionBack_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.69733, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5])) # print(" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n --------------------------------------spawned suspension "+str(self.id)+" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n") # Fuel cell set up --------------------------------------------------------------------------------- if not self.isDone[2] and not self.util.check_prim_exists(f"World/Environment/fuel_01_{self.id}") and not self.util.check_prim_exists(f"World/Environment/fuel_01_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xfuel_{self.id-1}"): self.isDone[2] = True if self.id%2==0: self.util.add_part_custom("World/Environment","fuel", f"fuel_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-7.01712, -15.89918, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5])) else: self.util.add_part_custom("World/Environment","fuel_yellow", f"fuel_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-7.01712, -15.89918, 0.41958]), np.array([0.5, 0.5, -0.5, -0.5])) # battery cell set up --------------------------------------------------------------------------------- if not self.isDone[3] and not self.util.check_prim_exists(f"World/Environment/battery_01_{self.id}") and not self.util.check_prim_exists(f"World/Environment/battery_01_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xbattery_{self.id-1}"): self.isDone[3] = True self.util.add_part_custom("World/Environment","battery", f"battery_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-16.47861, -15.68368, 0.41467]), np.array([0.70711, 0.70711, 0, 0])) # trunk cell set up --------------------------------------------------------------------------------- if not self.isDone[4] and not self.util.check_prim_exists(f"World/Environment/trunk_02_{self.id}") and not self.util.check_prim_exists(f"World/Environment/trunk_02_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xtrunk_{self.id-1}"): self.isDone[4] = True self.util.add_part_custom("World/Environment","trunk", f"trunk_02_{self.id}", np.array([0.001,0.001,0.001]), np.array([-27.84904, 4.26505, 0.41467]), np.array([0, 0, -0.70711, -0.70711])) # wheel cell set up --------------------------------------------------------------------------------- if not self.isDone[5] and not self.util.check_prim_exists(f"World/Environment/wheel_02_{self.id}") and not self.util.check_prim_exists(f"World/Environment/wheel_02_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xwheel_02_{self.id-1}"): self.isDone[5] = True self.util.add_part_custom("World/Environment","FWheel", f"wheel_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-15.17319, 4.72577, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5])) self.util.add_part_custom("World/Environment","FWheel", f"wheel_02_{self.id}", np.array([0.001,0.001,0.001]), np.array([-15.17319, 5.24566, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5])) self.util.add_part_custom("World/Environment","FWheel", f"wheel_03_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.97836, 4.72577, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5])) self.util.add_part_custom("World/Environment","FWheel", f"wheel_04_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.97836, 5.24566, 0.42127]), np.array([0.5, -0.5, -0.5, -0.5])) # lower_cover cell set up --------------------------------------------------------------------------------- if not self.isDone[6] and not self.util.check_prim_exists(f"World/Environment/main_cover_{self.id}") and not self.util.check_prim_exists(f"World/Environment/main_cover_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xmain_cover_{self.id-1}"): self.isDone[6] = True self.util.add_part_custom("World/Environment","lower_cover", f"lower_cover_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([-26.2541, -15.57458, 0.40595]), np.array([0, 0, 0.70711, 0.70711])) self.util.add_part_custom("World/Environment","lower_cover", f"lower_cover_04_{self.id}", np.array([0.001,0.001,0.001]), np.array([-26.26153, -19.13631, 0.40595]), np.array([0, 0, -0.70711, -0.70711])) if self.id%2==0: self.util.add_part_custom("World/Environment","main_cover", f"main_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.7095-11.83808, -15.70872, 0.28822]), np.array([0.70711, 0.70711,0,0])) else: self.util.add_part_custom("World/Environment","main_cover_orange", f"main_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.7095-11.83808, -15.70872, 0.28822]), np.array([0.70711, 0.70711,0,0])) # handle cell set up --------------------------------------------------------------------------------- if not self.isDone[7] and not self.util.check_prim_exists(f"World/Environment/handle_{self.id}") and not self.util.check_prim_exists(f"World/Environment/handle_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xhandle_{self.id-1}"): self.isDone[7] = True self.util.add_part_custom("World/Environment","handle", f"handle_{self.id}", np.array([0.001,0.001,0.001]), np.array([-29.70213, -7.25934, 1.08875]), np.array([0, 0.70711, 0.70711, 0])) # light cell set up --------------------------------------------------------------------------------- if not self.isDone[8] and not self.util.check_prim_exists(f"World/Environment/light_03_{self.id}") and not self.util.check_prim_exists(f"World/Environment/light_03_{self.id-1}") and self.util.check_prim_exists(f"mock_robot_{self.id-1}/platform/xlight_{self.id-1}"): self.isDone[8] = True self.util.add_part_custom("World/Environment","FFrontLightAssembly", f"light_03_{self.id}", np.array([0.001,0.001,0.001]), np.array([-18.07685, -7.35866, -0.71703]), np.array([0.28511, -0.28511, -0.64708, -0.64708])) def _check_goal_reached(self, goal_pose): # Cannot get result from ROS because /move_base/result also uses move_base_msgs module mp_position, mp_orientation = self.moving_platform.get_world_pose() _, _, mp_yaw = euler_from_quaternion(mp_orientation) _, _, goal_yaw = euler_from_quaternion(goal_pose[3:]) # FIXME: pi needed for yaw tolerance here because map rotated 180 degrees if np.allclose(mp_position[:2], goal_pose[:2], atol=self._xy_goal_tolerance) \ and abs(mp_yaw-goal_yaw) <= pi + self._yaw_goal_tolerance: print(f"Goal for mp_{self.id} "+str(goal_pose)+" reached!") # This seems to crash Isaac sim... # self.get_world().remove_physics_callback("mp_nav_check") # Goal hardcoded for now def _send_navigation_goal(self, x=None, y=None, a=None): # x, y, a = -18, 14, 3.14 # x,y,a = -4.65, 5.65,3.14 orient_x, orient_y, orient_z, orient_w = quaternion_from_euler(0, 0, a) pose = [x, y, 0, orient_x, orient_y, orient_z, orient_w] goal_msg = PoseStamped() goal_msg.header.frame_id = "map" goal_msg.header.stamp = rospy.get_rostime() print("goal pose: "+str(pose)) goal_msg.pose.position.x = pose[0] goal_msg.pose.position.y = pose[1] goal_msg.pose.position.z = pose[2] goal_msg.pose.orientation.x = pose[3] goal_msg.pose.orientation.y = pose[4] goal_msg.pose.orientation.z = pose[5] goal_msg.pose.orientation.w = pose[6] world = self.get_world() self._goal_pub.publish(goal_msg) # self._check_goal_reached(pose) world = self.get_world() if not world.physics_callback_exists(f"mp_nav_check_{self.id}"): world.add_physics_callback(f"mp_nav_check_{self.id}", lambda step_size: self._check_goal_reached(pose)) # Overwrite check with new goal else: world.remove_physics_callback(f"mp_nav_check_{self.id}") world.add_physics_callback(f"mp_nav_check_{self.id}", lambda step_size: self._check_goal_reached(pose)) def move_to_engine_cell_nav(self): # # print("sending nav goal") if not self.bool_done[123]: self._send_navigation_goal(-4.65, 5.65, 3.14) self.bool_done[123] = True return False def move_to_engine_cell(self): print(self.util.path_plan_counter) path_plan = [["translate", [-4.98951, 0, False], {"position": np.array([-4.98951, 5.65, 0.03551]), "orientation": np.array([0, 0, 0, 1])}]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def arm_place_engine(self): print("doing motion plan") motion_plan = [{"index":0, "position": np.array([0.97858+0.14-0.3, -0.12572, 0.21991]), "orientation": np.array([1, 0, 0, 0]), "goal_position":np.array([-4.86054, 7.95174-0.3, 0.46095]), "goal_orientation":np.array([0.70711, 0, 0, 0.70711])}, {"index":1, "position": np.array([0.97858+0.14, -0.12572, 0.21991]), "orientation": np.array([1, 0, 0, 0]), "goal_position":np.array([-4.86054, 7.95174, 0.46095]), "goal_orientation":np.array([0.70711, 0, 0, 0.70711])}, {"index":2, "position": np.array([0.93302+0.14, -0.12572, 0.54475]), "orientation": np.array([1, 0, 0, 0]), "goal_position":np.array([-4.86054, 7.90617, 0.78578]), "goal_orientation":np.array([0.70711, 0, 0, 0.70711])}, # {"index":3, "position": np.array([1.00103, -0.12198, 0.24084]), "orientation": np.array([1, 0, 0, 0]), "goal_position":np.array([-4.86409, 7.96971, 0.48132]), "goal_orientation":np.array([0.70711, 0, 0, 0.70711])}, {"index":3, "position": np.array([0.80658+0.15, 0.24732, 0.54475]), "orientation": np.array([0.99217, 0, 0, 0.12489]), "goal_position":np.array([-5.23375, 7.77959, 0.78578]), "goal_orientation":np.array([0.61326, 0, 0, 0.78988])}, {"index":4, "position": np.array([0.65068+0.15, 0.39893, 0.54475]), "orientation": np.array([0.97001, 0, 0, 0.24305]), "goal_position":np.array([-5.38549+0.08, 7.6235, 0.78578]), "goal_orientation":np.array([0.51404, 0, 0, 0.85777])}, {"index":5, "position": np.array([0.53837+0.15, 0.63504, 0.54475]), "orientation": np.array([0.92149, 0, 0, 0.38841]), "goal_position":np.array([-5.62169+0.12, 7.51092, 0.78578]), "goal_orientation":np.array([0.37695, 0, 0, 0.92624])}, {"index":6, "position": np.array([0.33707, 0.82498, 0.54475]), "orientation": np.array([0.77061, 0, 0, 0.6373]), "goal_position":np.array([-5.81157+0.16, 7.30908, 0.78578]), "goal_orientation":np.array([0.09427, 0, 0, 0.99555])}, {"index":7, "position": np.array([0.04974, 0.90202, 0.54475]), "orientation": np.array([0.65945, 0, 0, 0.75175]), "goal_position":np.array([-5.88845+0.16, 7.0215, 0.78578]), "goal_orientation":np.array([0.06527, 0, 0, -0.99787])}, {"index":8, "position": np.array([-0.25724, 0.83912, 0.54475]), "orientation": np.array([0.41054, 0, 0, 0.91184]), "goal_position":np.array([-5.82509+0.12, 6.71424+0.11, 0.78578]), "goal_orientation":np.array([0.35448, 0, 0, -0.93506])}, {"index":9, "position": np.array([-0.54443, 0.27481, 0.37107]), "orientation": np.array([0.14679, 0, 0, 0.98917]), "goal_position":np.array([-5.26026+0.05, 6.42705+0.16, 0.61211]), "goal_orientation":np.array([0.59565, 0, 0, -0.80324])}, {"index":10, "position": np.array([-0.60965, -0.03841, 0.37107]), "orientation": np.array([0,0,0,-1]), "goal_position":np.array([-4.94679, 6.36196+0.16, 0.61211]), "goal_orientation":np.array([0.70711,0,0,-0.70711])}, {"index":11, "position": np.array([-0.67167, -0.03841, 0.16822]), "orientation": np.array([0,0,0,-1]), "goal_position":np.array([-4.94679, 6.29994+0.16, 0.40925]), "goal_orientation":np.array([0.70711, 0, 0, -0.70711])}, {"index":12, "position": np.array([-1.05735, -0.06372, 0.1323]), "orientation": np.array([0,0,0,-1]), "goal_position":np.array([-4.92148, 5.91425+0.16, 0.37333]), "goal_orientation":np.array([0.70711, 0, 0, -0.70711])}, {"index":13, "position": np.array([-1.10475-0.16+0.06, -0.11984, 0.13512]), "orientation": np.array([0,0,0.08495,-0.99639]), "goal_position":np.array([-4.86552, 5.86784+0.06, 0.37552]), "goal_orientation":np.array([0.70455, -0.06007, 0.6007, -0.70455])}] self.util.move_ur10(motion_plan) if self.util.motion_task_counter==2 and not self.bool_done[1]: self.bool_done[1] = True self.util.remove_part("World/Environment", f"engine_small_{self.id}") self.util.add_part_custom("World/UR10/ee_link","engine_no_rigid", f"qengine_small_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.17441, 0.00314, 0.11018]), np.array([0.70365, -0.06987, -0.06987, -0.70365])) if self.util.motion_task_counter==14: self.util.motion_task_counter=0 print("Done placing engine") self.util.remove_part("World/UR10/ee_link", f"qengine_small_{self.id}") self.util.add_part_custom(f"mock_robot_{self.id}/platform","engine_no_rigid", f"engine_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.16041, -0.00551, 0.46581]), np.array([0.98404, -0.00148, -0.17792, -0.00274])) return True return False def screw_engine(self): # motion_plan = [{"index":0, "position": np.array([-0.68114, -0.10741, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":1, "position": np.array([-0.68114, -0.10741, -0.16+0.43038]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":2, "position": np.array([-0.68114, -0.10741, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":3, "position": self.util.transform_for_screw_ur10(np.array([0.74286, 0.3942, 0.24203])), "orientation": np.array([0.24137, -0.97029, -0.00397, -0.0163]), "goal_position":np.array([-5.14051,5.40792,0.477701]), "goal_orientation":np.array([0.18255, -0.68481, -0.68739, 0.15875])}, # {"index":4, "position": self.util.transform_for_screw_ur10(np.array([0.60205, 0.3942, 0.24203])), "orientation": np.array([0.24137, -0.97029, -0.00397, -0.0163]), "goal_position":np.array([-5.14051,5.40792-0.14,0.477701]), "goal_orientation":np.array([0.18255, -0.68481, -0.68739, 0.15875])}, # {"index":5, "position": self.util.transform_for_screw_ur10(np.array([0.74286, 0.3942, 0.24203])), "orientation": np.array([0.24137, -0.97029, -0.00397, -0.0163]), "goal_position":np.array([-5.14051,5.40792,0.477701]), "goal_orientation":np.array([0.18255, -0.68481, -0.68739, 0.15875])}, # {"index":6, "position": np.array([-0.68114, -0.10741, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":7, "position": np.array([-0.68114, -0.10741, -0.16+0.43038]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":8, "position": np.array([-0.68114, -0.10741, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":9, "position": self.util.transform_for_screw_ur10(np.array([0.82391-0.2, -0.02307, 0.15366])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70797, 5.48974-0.2, 0.40163]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])}, # {"index":10, "position": self.util.transform_for_screw_ur10(np.array([0.96984-0.2, -0.03195, 0.16514])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70384, 5.63505-0.2, 0.40916]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])}, # {"index":11, "position": self.util.transform_for_screw_ur10(np.array([0.82391-0.2, -0.02307, 0.15366])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70797, 5.48974-0.2, 0.40163]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])}, # {"index":12, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.42692, 4.82896, 1.04836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}] motion_plan = [{"index":0, "position": np.array([-0.68114, -0.10741, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":1, "position": np.array([-0.68114, -0.10741, -0.16+0.43038]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":2, "position": np.array([-0.68114, -0.10741, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":3, "position": self.util.transform_for_screw_ur10(np.array([0.82391-0.2, -0.02307, 0.15366])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70797, 5.48974-0.2, 0.40163]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])}, {"index":4, "position": self.util.transform_for_screw_ur10(np.array([0.96984-0.2, -0.03195, 0.16514])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70384, 5.63505-0.2, 0.40916]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])}, {"index":5, "position": self.util.transform_for_screw_ur10(np.array([0.82391-0.2, -0.02307, 0.15366])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70797, 5.48974-0.2, 0.40163]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])}, ] self.util.do_screw_driving(motion_plan) if self.util.motion_task_counter==6: print("Done screwing engine") self.util.motion_task_counter=0 return True return False def arm_remove_engine(self): motion_plan = [{"index":0, "position": np.array([-0.60965-0.16, -0.03841, 0.37107]), "orientation": np.array([0,0,0,-1]), "goal_position":np.array([-4.94679, 6.36196, 0.61211]), "goal_orientation":np.array([0.70711,0,0,-0.70711])}, {"index":1, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.67382, 7.1364, 1.04897]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}] self.util.move_ur10(motion_plan) if self.util.motion_task_counter==2: print("Done arm removal") self.util.motion_task_counter=0 return True return False def turn_mobile_platform(self): print(self.util.path_plan_counter) path_plan = [["rotate", [np.array([1, 0, 0, 0]), 0.0042, True]]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def screw_engine_two(self): # motion_plan = [{"index":0, "position": np.array([-0.68984, 0.06874, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.80693, 3.97591, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":1, "position": np.array([-0.68984, 0.06874, -0.16+0.43038]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.80693, 3.97591, 0.67129]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":2, "position": np.array([-0.68984, 0.06874, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.80693, 3.97591, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":3, "position": self.util.transform_for_screw_ur10(np.array([0.7558-0.2, 0.59565, 0.17559])), "orientation": np.array([0.24137, -0.97029, -0.00397, -0.0163]), "goal_position":np.array([-5.3358, 5.42428-0.2, 0.41358]), "goal_orientation":np.array([0.18255, -0.68481, -0.68739, 0.15875])}, # {"index":4, "position": self.util.transform_for_screw_ur10(np.array([0.92167-0.2, 0.59565, 0.17559])), "orientation": np.array([0.24137, -0.97029, -0.00397, -0.0163]), "goal_position":np.array([-5.3358, 5.59014-0.2, 0.41358]), "goal_orientation":np.array([0.18255, -0.68481, -0.68739, 0.15875])}, # {"index":5, "position": np.array([-0.68984, 0.06874, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.80693, 3.97591, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":6, "position": np.array([-0.68984, 0.06874, -0.16+0.43038]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.80693, 3.97591, 0.67129]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":7, "position": np.array([-0.68984, 0.06874, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.80693, 3.97591, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":8, "position": self.util.transform_for_screw_ur10(np.array([0.7743-0.2, 0.13044, 0.24968])), "orientation": np.array([0.14946, 0.98863, 0.00992, 0.01353]), "goal_position":np.array([-4.8676, 5.44277-0.2, 0.48787]), "goal_orientation":np.array([0.09521, 0.6933, 0.70482, 0.1162])}, # {"index":9, "position": self.util.transform_for_screw_ur10(np.array([0.92789-0.2, 0.13045, 0.24968])), "orientation": np.array([0.14946, 0.98863, 0.00992, 0.01353]), "goal_position":np.array([-4.8676, 5.59636-0.2, 0.48787]), "goal_orientation":np.array([0.09521, 0.6933, 0.70482, 0.1162])}, # {"index":10, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.42692, 4.82896, 1.048836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}] motion_plan = [{"index":0 , "position": self.util.transform_for_screw_ur10(np.array([0.82391-0.2, -0.02307, 0.15366])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70797, 5.48974-0.2, 0.40163]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])}, {"index":1, "position": self.util.transform_for_screw_ur10(np.array([0.96984-0.2, -0.03195, 0.16514])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70384, 5.63505-0.2, 0.40916]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])}, {"index":2, "position": self.util.transform_for_screw_ur10(np.array([0.82391-0.2, -0.02307, 0.15366])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70797, 5.48974-0.2, 0.40163]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])}, {"index":3, "position": np.array([-0.68114, -0.10741, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":4, "position": np.array([-0.68114, -0.10741, -0.16+0.43038]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":5, "position": np.array([-0.68114, -0.10741, -0.16+0.43038+0.2]), "orientation": np.array([0,-0.70711, 0, 0.70711]), "goal_position":np.array([-4.63079, 3.98461, 0.67129+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":6, "position": self.util.transform_for_screw_ur10(np.array([0.82391-0.2, -0.02307, 0.15366])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70797, 5.48974-0.2, 0.40163]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])}, {"index":7, "position": self.util.transform_for_screw_ur10(np.array([0.96984-0.2, -0.03195, 0.16514])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70384, 5.63505-0.2, 0.40916]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])}, {"index":8, "position": self.util.transform_for_screw_ur10(np.array([0.82391-0.2, -0.02307, 0.15366])), "orientation": np.array([0.34479, 0.93825, -0.02095, 0.019]), "goal_position":np.array([-4.70797, 5.48974-0.2, 0.40163]), "goal_orientation":np.array([0.20664, 0.69092, 0.65241, 0.233])}, {"index":9, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.42692, 4.82896, 1.04836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}] self.util.do_screw_driving(motion_plan) if self.util.motion_task_counter==10: self.util.motion_task_counter=0 print("Done screwing engine 2nd time") return True return False def wait(self): print("Waiting ...") if self.delay>100: print("Done waiting") self.delay=0 return True self.delay+=1 return False def wait_infinitely(self): print("Waiting ...") self.moving_platform.apply_action(self.util._my_custom_controller.forward(command=[0,0])) return False # if self.delay>100: # print("Done waiting") # self.delay=0 # return True # self.delay+=1 # return False def move_to_suspension_cell(self): print(self.util.path_plan_counter) path_plan = [["translate", [-1, 0, False]], ["wait",[]], ["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, True]], ["wait",[]], ["translate", [2.29, 1, False]], ["wait",[]], ["rotate", [np.array([0, 0, 0, -1]), 0.0042, True]], # 503 ["wait",[]], # ["translate", [-4.22, 0, False]], ["translate", [-4.7, 0, False]], ["wait",[]], ["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, False]], ["wait",[]], ["translate", [-5.3, 1, False], {"position": np.array([-5.3, -4.876, 0.03551]), "orientation": np.array([0, 0, 0, 1])}]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def arm_place_suspension(self): motion_plan = [*self.suspension, {"index":3, "position": np.array([-0.96615-0.16, -0.56853+0.12, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-5.13459, -4.62413-0.12, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])}, {"index":4, "position": np.array([-1.10845-0.16, -0.56853+0.12, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-4.99229, -4.62413-0.12, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])}, {"index":5, "position": np.array([-1.10842-0.16, -0.39583, 0.29724]), "orientation": np.array([-0.00055, 0.0008, -0.82242, -0.56888]), "goal_position":np.array([-5.00127, -4.80822, 0.53949]), "goal_orientation":np.array([0.56437, 0.82479, 0.02914, 0.01902])}] self.util.move_ur10(motion_plan, "_suspension") if self.util.motion_task_counter==2 and not self.bool_done[2]: self.bool_done[2] = True self.util.remove_part("World/Environment", f"FSuspensionBack_0{self.id}") self.util.add_part_custom("World/UR10_suspension/ee_link","FSuspensionBack", f"qFSuspensionBack_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.16839, 0.158, -0.44332]), np.array([0,0,0,1])) if self.util.motion_task_counter==6: print("Done placing fuel") self.util.motion_task_counter=0 self.util.remove_part("World/UR10_suspension/ee_link", f"qFSuspensionBack_{self.id}") self.util.add_part_custom(f"mock_robot_{self.id}/platform","FSuspensionBack", f"xFSuspensionBack_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.87892, 0.0239, 0.82432]), np.array([0.40364, -0.58922, 0.57252, -0.40262])) return True return False def screw_suspension(self): motion_plan = [{"index":0, "position": self.util.transform_for_screw_ur10_suspension(np.array([-0.56003, 0.05522, -0.16+0.43437+0.25])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.2273, -5.06269, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":1, "position": self.util.transform_for_screw_ur10_suspension(np.array([-0.56003, 0.05522, -0.16+0.43437])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.2273, -5.06269, 0.67593]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":2, "position": self.util.transform_for_screw_ur10_suspension(np.array([-0.56003, 0.05522, -0.16+0.43437+0.25])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.2273, -5.06269, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":3, "position": self.util.transform_for_screw_ur10_suspension(np.array([0.83141+0.16-0.2, -0.16343, 0.34189])), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.61995+0.2, -4.84629, 0.58477]), "goal_orientation":np.array([0,0,0,1])}, {"index":4, "position": self.util.transform_for_screw_ur10_suspension(np.array([0.87215+0.16, -0.16343, 0.34189])), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.66069, -4.84629,0.58477]), "goal_orientation":np.array([0,0,0,1])}, {"index":5, "position": self.util.transform_for_screw_ur10_suspension(np.array([0.83141+0.16-0.2, -0.16343, 0.34189])), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.61995+0.2, -4.84629, 0.58477]), "goal_orientation":np.array([0,0,0,1])}, {"index":6, "position": self.util.transform_for_screw_ur10_suspension(np.array([-0.55625, -0.1223, -0.16+0.43437+0.2])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.23108, -4.88517, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":7, "position": self.util.transform_for_screw_ur10_suspension(np.array([-0.55625, -0.1223, -0.16+0.43437])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.23108, -4.88517, 0.67593]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":8, "position": self.util.transform_for_screw_ur10_suspension(np.array([-0.55625, -0.1223, -0.16+0.43437+0.2])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.23108, -4.88517, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":9, "position": self.util.transform_for_screw_ur10_suspension(np.array([0.81036+0.16-0.1, -0.26815, 0.24723])), "orientation": np.array([0,-1, 0, 0]), "goal_position":np.array([-4.59801+0.1, -4.7396, 0.49012]), "goal_orientation":np.array([0,0,1,0])}, {"index":10, "position": self.util.transform_for_screw_ur10_suspension(np.array([0.91167+0.16, -0.26815, 0.24723])), "orientation": np.array([0,-1, 0, 0]), "goal_position":np.array([-4.69933, -4.7396, 0.49012]), "goal_orientation":np.array([0,0,1,0])}, {"index":11, "position": self.util.transform_for_screw_ur10_suspension(np.array([0.81036+0.16-0.1, -0.26815, 0.24723])), "orientation": np.array([0,-1, 0, 0]), "goal_position":np.array([-4.59801+0.1, -4.7396, 0.49012]), "goal_orientation":np.array([0,0,1,0])}, {"index":12, "position": self.util.transform_for_screw_ur10_suspension(np.array([-0.08295-0.16, -0.58914, 0.32041-0.15])), "orientation": np.array([0,0.70711, 0, -0.70711]), "goal_position":np.array([-3.544, -4.41856, 0.56125]), "goal_orientation":np.array([0.70711,0,0.70711,0])}] self.util.do_screw_driving(motion_plan, "_suspension") if self.util.motion_task_counter==13: print("Done screwing suspension") self.util.motion_task_counter=0 return True return False def arm_remove_suspension(self): motion_plan = [{"index":0, "position": np.array([-0.95325-0.16, -0.38757, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-5.14749, -4.80509, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])}, {"index":1, "position": np.array([0.03492, 0.9236, 0.80354]), "orientation": np.array([0.70711, 0, 0, 0.70711]), "goal_position":np.array([-6.13579,-5.95519, 1.04451]), "goal_orientation":np.array([0.70711, 0, 0, -0.70711])}] self.util.move_ur10(motion_plan, "_suspension") if self.util.motion_task_counter==2: print("Done arm removal") self.util.motion_task_counter=0 return True return False def move_to_fuel_cell(self): print(self.util.path_plan_counter) # path_plan = [["translate", [-5.15, 0, True]], # ["wait",[]], # ["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, False]], # ["wait",[]], # ["translate", [-15.945, 1, True]]] path_plan = [["translate", [-9.69, 0, True]], ["wait",[]], ["rotate", [np.array([0.06883, 0, 0, 0.99763]), 0.0042, False]], ["wait",[]], ["translate", [-8.53, 0, True]], ["wait",[]], ["rotate", [np.array([0, 0, 0, 1]), 0.0042, False]], ["wait",[]], ["translate", [-5.15, 0, True]], ["wait",[]], ["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, False]], ["wait",[]], ["translate", [-15.945, 1, True]]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def arm_place_fuel(self): motion_plan = [ # {"index":0, "position": np.array([0.71705+0.16, -0.17496, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.81443, -15.98881, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, # {"index":1, "position": np.array([0.87135+0.16, -0.17496, 0.34496]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -15.98881, 0.58618]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, # {"index":2, "position": np.array([0.87135+0.16, -0.17496, 0.48867]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-6.96873, -15.98881, 0.72989]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, *self.fuel, {"index":3, "position": np.array([-0.70299-0.16-0.04247, -0.19609, 0.65442]), "orientation": np.array([0, 0, -0.70711, -0.70711]), "goal_position":np.array([-5.39448+0.04247, -15.9671, 0.89604]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])}, {"index":4, "position": np.array([-0.70299-0.16-0.04247, -0.19609, 0.53588]), "orientation": np.array([0, 0, -0.70711, -0.70711]), "goal_position":np.array([-5.39448+0.04247, -15.9671, 0.77749]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])}] self.util.move_ur10(motion_plan, "_fuel") if self.util.motion_task_counter==2 and not self.bool_done[4]: self.bool_done[4] = True self.util.remove_part("World/Environment", f"fuel_0{self.id}") if self.id%2==0: self.util.add_part_custom("World/UR10_fuel/ee_link","fuel", f"qfuel_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.05467, -0.16886, 0.08908]), np.array([0.70711,0,0.70711,0])) else: self.util.add_part_custom("World/UR10_fuel/ee_link","fuel_yellow", f"qfuel_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.05467, -0.16886, 0.08908]), np.array([0.70711,0,0.70711,0])) if self.util.motion_task_counter==5: print("Done placing fuel") self.util.motion_task_counter=0 self.util.remove_part("World/UR10_fuel/ee_link", f"qfuel_{self.id}") if self.id%2==0: self.util.add_part_custom(f"mock_robot_{self.id}/platform","fuel", f"xfuel_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.11281, -0.08612, 0.59517]), np.array([0, 0, -0.70711, -0.70711])) else: self.util.add_part_custom(f"mock_robot_{self.id}/platform","fuel_yellow", f"xfuel_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.11281, -0.08612, 0.59517]), np.array([0, 0, -0.70711, -0.70711])) return True return False def screw_fuel(self): def transform(points): points[0]-=0 points[2]-=0.16 return points motion_plan = [{"index":0, "position": transform(np.array([-0.6864, 0.07591, 0.42514+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.55952, -16.016, 0.666+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":1, "position": transform(np.array([-0.6864, 0.07591, 0.42514])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.55952, -16.016, 0.666]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":2, "position": transform(np.array([-0.6864, 0.07591, 0.42514+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.55952, -16.016, 0.666+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":3, "position": transform(np.array([0.915+0.04247-0.08717, -0.1488, 0.572+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.161-0.04247+0.08717, -15.791, 0.814+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":4, "position": transform(np.array([0.915+0.04247-0.08717, -0.1488, 0.572])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.161-0.04247+0.08717, -15.791, 0.814]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":5, "position": transform(np.array([0.915+0.04247-0.08717, -0.1488, 0.572+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.161-0.04247+0.08717, -15.791, 0.814+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":6, "position": transform(np.array([-0.68202, -0.09908, 0.42514+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.5639, -15.84102, 0.666+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":7, "position": transform(np.array([-0.68202, -0.09908, 0.42514])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.5639, -15.84102, 0.666]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":8, "position": transform(np.array([-0.68202, -0.09908, 0.42514+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.5639, -15.84102, 0.666+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":9, "position": transform(np.array([0.908+0.04247-0.08717, 0.104, 0.572+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.154-0.04247+0.08717, -16.044, 0.814+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":10, "position": transform(np.array([0.908+0.04247-0.08717, 0.104, 0.572])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.154-0.04247+0.08717, -16.044, 0.814]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":11, "position": transform(np.array([0.908+0.04247-0.08717, 0.104, 0.572+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-5.154-0.04247+0.08717, -16.044, 0.814+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":12, "position": transform(np.array([-0.68202, -0.09908, 0.42514+0.3])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.5639, -15.84102, 0.666+0.3]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}] # motion_plan = [{"index":0, "position": self.util.transform_for_screw_ur10_fuel(transform(np.array([0.74393, 0.15931, 0.61626]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.68786, 0.85892]), "goal_orientation":np.array([0,-0.70711,0,0.70711])}, # {"index":1, "position": self.util.transform_for_screw_ur10_fuel(transform(np.array([0.74393, 0.15931, 0.5447]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.68786, 0.78736]), "goal_orientation":np.array([0,-0.70711,0,0.70711])}, # {"index":2, "position": self.util.transform_for_screw_ur10_fuel(transform(np.array([0.74393, 0.15931, 0.61626]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.68786, 0.85892]), "goal_orientation":np.array([0,-0.70711,0,0.70711])}, # {"index":3, "position": self.util.transform_for_screw_ur10_fuel(transform(np.array([0.74393, 0.4077, 0.61626]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.93625, 0.85892]), "goal_orientation":np.array([0,-0.70711,0,0.70711])}, # {"index":4, "position": self.util.transform_for_screw_ur10_fuel(transform(np.array([0.74393, 0.4077, 0.5447]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.93625, 0.78736]), "goal_orientation":np.array([0,-0.70711,0,0.70711])}, # {"index":5, "position": self.util.transform_for_screw_ur10_fuel(transform(np.array([0.74393, 0.4077, 0.61626]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.93625, 0.85892]), "goal_orientation":np.array([0,-0.70711,0,0.70711])}, # {"index":6, "position": self.util.transform_for_screw_ur10_fuel(transform(np.array([-0.04511, 0.7374, 0.41493]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.97604, -17.26595,0.6576]), "goal_orientation":np.array([0,-0.70711,0,0.70711])}] self.util.do_screw_driving(motion_plan,"_fuel") if self.util.motion_task_counter==13: print("Done screwing fuel") self.util.motion_task_counter=0 return True return False def arm_remove_fuel(self): motion_plan = [{"index":0, "position": np.array([-0.70299-0.16-0.04247, -0.19609, 0.65442]), "orientation": np.array([0, 0, -0.70711, -0.70711]), "goal_position":np.array([-5.39448+0.04247, -15.9671, 0.89604]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])}, {"index":1, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-6.2616, -16.8517, 1.04836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}] self.util.move_ur10(motion_plan,"_fuel") if self.util.motion_task_counter==2: print("Done arm removal") self.util.motion_task_counter=0 return True return False def move_to_battery_cell(self): print(self.util.path_plan_counter) path_plan = [ ["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, True]], ["wait",[]], ["translate", [-12.5, 1, False]], ["wait",[]], ["rotate", [np.array([0, 0, 0, 1]), 0.503, True]], ["wait",[]], ["translate", [-9.54, 0, False]], ["wait",[]], ["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, False]], ["wait",[]], ["translate", [-17.17, 1, False]], ["wait",[]], ["rotate", [np.array([0, 0, 0, -1]), 0.0042, True]], ["wait",[]], ["translate", [-16.7, 0, False]]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def arm_place_battery(self): motion_plan = [ # {"index":0, "position": np.array([-0.12728, -0.61362, 0.4+0.1-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.71631, 0.64303+0.1]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, # {"index":1, "position": np.array([-0.12728, -0.61362, 0.4-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.71631, 0.64303]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, # {"index":2, "position": np.array([-0.12728, -0.61362, 0.4+0.1-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.42647, -15.71631, 0.64303+0.1]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, *self.battery, # {"index":3, "position": np.array([0.87593, -0.08943, 0.60328-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.42989, -16.24038, 0.8463]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":3, "position": np.array([-0.15683+0.05, 0.95185-0.09326, 0.57477+0.1-0.16]), "orientation": np.array([0.81202, 0, 0.58362, 0]), "goal_position":np.array([-16.39705, -17.18895, 0.81657+0.1]), "goal_orientation":np.array([0, -0.58362, 0, 0.81202])}, {"index":4, "position": np.array([-0.15683+0.05, 0.95185-0.09326, 0.57477-0.16]), "orientation": np.array([0.81202, 0, 0.58362, 0]), "goal_position":np.array([-16.39705, -17.18895, 0.81657]), "goal_orientation":np.array([0, -0.58362, 0, 0.81202])}] self.util.move_ur10(motion_plan, "_battery") if self.util.motion_task_counter==2 and not self.bool_done[3]: self.bool_done[3] = True self.util.remove_part("World/Environment", f"battery_0{self.id}") self.util.add_part_custom("World/UR10_battery/ee_link","battery", f"qbattery_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.2361, 0.05277, 0.03064]), np.array([0.00253, -0.7071, 0.7071, 0.00253])) if self.util.motion_task_counter==5: print("Done placing battery") self.util.motion_task_counter=0 self.util.remove_part("World/UR10_battery/ee_link", f"qbattery_{self.id}") self.util.add_part_custom(f"mock_robot_{self.id}/platform","battery", f"xbattery_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.20126, 0.06146, 0.58443]), np.array([0.4099, 0.55722, -0.58171, -0.42791])) return True return False def screw_battery(self): def transform(points): points[0]-=0 points[2]-=0.16 return points motion_plan = [{"index":0, "position": transform(np.array([-0.03593, 0.62489, 0.44932+0.1])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.3161, -18.79419, 0.69132+0.1]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":2, "position": transform(np.array([-0.03593, 0.62489, 0.44932])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.3161, -18.79419, 0.69132]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":1, "position": transform(np.array([-0.03593, 0.62489, 0.44932+0.1])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.3161, -18.79419, 0.69132+0.1]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":3, "position": transform(np.array([0.28749, -1.04157+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.12807-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])}, {"index":4, "position": transform(np.array([0.255, -1.04157+0, 0.53925])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.60656, -17.12807-0, 0.78133]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])}, {"index":5, "position": transform(np.array([0.28749, -1.04157+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.12807-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])}, {"index":6, "position": transform(np.array([-0.21277, 0.62489, 0.44932+0.1])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.13927, -18.79419, 0.69132+0.1]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":7, "position": transform(np.array([-0.21277, 0.62489, 0.44932])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.13927, -18.79419, 0.69132]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":8, "position": transform(np.array([-0.21277, 0.62489, 0.44932+0.1])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.13927, -18.79419, 0.69132+0.1]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, {"index":9, "position": transform(np.array([0.28749, -0.92175+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.24789-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])}, {"index":10, "position": transform(np.array([0.255, -0.92175+0, 0.53925])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.60656, -17.24789-0, 0.78133]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])}, {"index":11, "position": transform(np.array([0.28749, -0.92175+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.24789-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])}, {"index":12, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.515, -18.858, 1.04836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}] # motion_plan = [{"index":0, "position": transform(np.array([-0.03593, 0.62489, 0.44932+0.1])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.3161, -18.79419, 0.69132+0.1]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, # {"index":1, "position": transform(np.array([-0.03593, 0.62489, 0.44932])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.3161, -18.79419, 0.69132]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, # {"index":2, "position": transform(np.array([-0.03593, 0.62489, 0.44932+0.1])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.3161, -18.79419, 0.69132+0.1]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, # {"index":3, "position": transform(np.array([0.28749, -1.04157+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.12807-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])}, # {"index":4, "position": transform(np.array([0.255, -1.04157+0, 0.53925])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.60656, -17.12807-0, 0.78133]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])}, # {"index":5, "position": transform(np.array([0.28749, -1.04157+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.12807-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])}, # {"index":6, "position": transform(np.array([0.28749, -1.04157+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.12807-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])}, # {"index":7, "position": transform(np.array([0.255, -1.04157+0, 0.53925])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.60656, -17.12807-0, 0.78133]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])}, # {"index":8, "position": transform(np.array([0.28749, -1.04157+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.12807-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])}, # {"index":9, "position": transform(np.array([-0.21277, 0.62489, 0.44932+0.1])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.13927, -18.79419, 0.69132+0.1]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, # {"index":10, "position": transform(np.array([-0.21277, 0.62489, 0.44932])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.13927, -18.79419, 0.69132]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, # {"index":11, "position": transform(np.array([-0.21277, 0.62489, 0.44932+0.1])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.13927, -18.79419, 0.69132+0.1]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}, # {"index":12, "position": transform(np.array([0.28749, -1.04157+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.12807-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])}, # {"index":13, "position": transform(np.array([0.255, -1.04157+0, 0.53925])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.60656, -17.12807-0, 0.78133]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])}, # {"index":14, "position": transform(np.array([0.28749, -1.04157+0, 0.61049])), "orientation": np.array([0, 0.58727, 0, -0.80939]), "goal_position":np.array([-16.63905, -17.12807-0, 0.85257]), "goal_orientation":np.array([0.80939, 0, 0.58727, 0])}, # {"index":15, "position": transform(np.array([-0.21277, 0.62489, 0.44932+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.13927, -18.79419, 0.69132+0.2]), "goal_orientation":np.array([0,0.70711,0,-0.70711])}] self.util.do_screw_driving(motion_plan,"_battery") if self.util.motion_task_counter==13: print("Done screwing battery") self.util.motion_task_counter=0 return True return False def arm_remove_battery(self): motion_plan = [ {"index":0, "position": np.array([-0.15683+0.05, 0.95185, 0.57477+0.1-0.16]), "orientation": np.array([0.81202, 0, 0.58362, 0]), "goal_position":np.array([-16.39705, -17.18895-0.09326, 0.81657+0.1]), "goal_orientation":np.array([0, -0.58362, 0, 0.81202])}, {"index":1, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.7179, -17.0181, 1.04897]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}] self.util.move_ur10(motion_plan, "_battery") if self.util.motion_task_counter==2: print("Done arm removal") self.util.motion_task_counter=0 return True return False def move_mp_to_battery_cell(self): print(self.util.path_plan_counter) path_plan = [ ["translate", [-16.41, 1, False]]] self.util.move_mp_battery(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def moving_part_feeders(self): print(self.util.path_plan_counter) if not self.bool_done[0]: path_plan = [ ["translate", [-16.41, 1, True]]] self.util.move_mp_battery(path_plan) if len(path_plan) == self.util.path_plan_counter: self.bool_done[0]=True if not self.bool_done[1]: path_plan = [ ["translate", [-6.84552, 0, False]]] self.util.move_mp_fuel(path_plan) if len(path_plan) == self.util.path_plan_counter: self.bool_done[1]=True if not self.bool_done[2]: path_plan = [ ["translate", [-6.491, 0, False]]] self.util.move_mp_suspension(path_plan) if len(path_plan) == self.util.path_plan_counter: self.bool_done[2]=True if not self.bool_done[3]: path_plan = [ ["translate", [-5.07, 0, False]]] self.util.move_mp_engine(path_plan) if len(path_plan) == self.util.path_plan_counter: self.bool_done[3]=True if self.bool_done[0] and self.bool_done[1] and self.bool_done[2] and self.bool_done[3]: return True return False def battery_part_feeding(self): motion_plan = [{"index":0, "position": np.array([0.73384, 0.33739, 0.27353-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.66717, 0.51553+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([0.73384, 0.33739, 0.27353-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.66717, 0.51553]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([0.73384, 0.33739, 0.27353-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.66717, 0.51553+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":3, "position": np.array([-0.07017, -0.70695, 0.4101-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.48356, -15.62279, 0.65211+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":4, "position": np.array([-0.07017, -0.70695, 0.4101-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.48356, -15.62279, 0.65211]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":5, "position": np.array([-0.07017, -0.70695, 0.4101-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.48356, -15.62279, 0.65211+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":6, "position": np.array([0.73384, 0.06664, 0.27353-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.39642, 0.51553+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":7, "position": np.array([0.73384, 0.06664, 0.27353-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.39642, 0.51553]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":8, "position": np.array([0.73384, 0.06664, 0.27353-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.39642, 0.51553+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":9, "position": np.array([-0.36564, -0.70695, 0.4101-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.18809, -15.62279, 0.65211+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":10, "position": np.array([-0.36564, -0.70695, 0.4101-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.18809, -15.62279, 0.65211]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":11, "position": np.array([-0.36564, -0.70695, 0.4101-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-16.18809, -15.62279, 0.65211+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":12, "position": np.array([0.73384, -0.20396, 0.27353-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.12582, 0.51553+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":13, "position": np.array([0.73384, -0.20396, 0.27353-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.12582, 0.51553]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":14, "position": np.array([0.73384, -0.20396, 0.27353-0.16+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.288, -16.12582, 0.51553+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":15, "position": np.array([-0.66681, -0.70695, 0.4101-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-15.88692, -15.62279, 0.65211+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":16, "position": np.array([-0.66681, -0.70695, 0.4101-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-15.88692, -15.62279, 0.65211]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":17, "position": np.array([-0.66681, -0.70695, 0.4101-0.16+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-15.88692, -15.62279, 0.65211+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":18, "position": np.array([-0.15683+0.05, 0.95185-0.09326, 0.57477-0.16]), "orientation": np.array([0.81202, 0, 0.58362, 0]), "goal_position":np.array([-16.39705, -17.18895, 0.81657]), "goal_orientation":np.array([0, -0.58362, 0, 0.81202])}] self.util.move_ur10(motion_plan, "_battery") if self.util.motion_task_counter==2 and not self.bool_done[3]: self.bool_done[3] = True self.util.remove_part("battery_bringer/platform", "battery_06") self.util.add_part_custom("World/UR10_battery/ee_link","battery", "qbattery_06", np.array([0.001,0.001,0.001]), np.array([0.2361, 0.05277, 0.03064]), np.array([0, -0.70711, 0.70711, 0])) if self.util.motion_task_counter==8 and not self.bool_done[4]: self.bool_done[4] = True self.util.remove_part("battery_bringer/platform", "battery_05") self.util.add_part_custom("World/UR10_battery/ee_link","battery", "qbattery_05", np.array([0.001,0.001,0.001]), np.array([0.2361, 0.05277, 0.03064]), np.array([0, -0.70711, 0.70711, 0])) if self.util.motion_task_counter==14 and not self.bool_done[5]: self.bool_done[5] = True self.util.remove_part("battery_bringer/platform", "battery_01") self.util.add_part_custom("World/UR10_battery/ee_link","battery", "qbattery_01", np.array([0.001,0.001,0.001]), np.array([0.2361, 0.05277, 0.03064]), np.array([0, -0.70711, 0.70711, 0])) if self.util.motion_task_counter==5 and not self.bool_done[6]: self.bool_done[6] = True print("Done placing battery 1") self.util.remove_part("World/UR10_battery/ee_link", "qbattery_06") self.util.add_part_custom("World/Environment","battery", "xbattery_06", np.array([0.001,0.001,0.001]), np.array([-16.53656, -15.59236, 0.41568]), np.array([0.70711, 0.70711, 0, 0])) if self.util.motion_task_counter==11 and not self.bool_done[7]: self.bool_done[7] = True print("Done placing battery 2") self.util.remove_part("World/UR10_battery/ee_link", "qbattery_05") self.util.add_part_custom("World/Environment","battery", "xbattery_05", np.array([0.001,0.001,0.001]), np.array([-16.23873, -15.59236, 0.41568]), np.array([0.70711, 0.70711, 0, 0])) if self.util.motion_task_counter==17 and not self.bool_done[8]: self.bool_done[8] = True print("Done placing battery 3") self.util.remove_part("World/UR10_battery/ee_link", "qbattery_01") self.util.add_part_custom("World/Environment","battery", "xbattery_01", np.array([0.001,0.001,0.001]), np.array([-15.942, -15.59236, 0.41568]), np.array([0.70711, 0.70711, 0, 0])) if self.util.motion_task_counter == 18: print("Done placing 3 batterys") self.util.motion_task_counter=0 return True return False def move_to_trunk_cell(self): print(self.util.path_plan_counter) path_plan = [ ["translate", [-23.49, 1, False]], ["wait",[]], ["rotate", [np.array([0, 0, 0, -1]), 0.0042, True]], ["wait",[]], ["translate", [-35.47, 0, False]], ["wait",[]], ["rotate", [np.array([-0.70711, 0, 0, -0.70711]), 0.0042, True]], ["wait",[]], ["translate", [5.35, 1, False]], ["wait",[]], ["rotate", [np.array([1, 0, 0, 0]), 0.0032, True]], ["wait",[]], ["translate", [-26.75, 0, False]]] if self.id==1: path_plan = [ ["translate", [-23.49, 1, False]], ["wait",[]], ["rotate", [np.array([0, 0, 0, -1]), 0.0042, True]], ["wait",[]], ["translate", [-35.47, 0, False]], ["wait",[]], ["rotate", [np.array([-0.70711, 0, 0, -0.70711]), 0.0042, True]], ["wait",[]], ["translate", [5.45, 1, False]], ["wait",[]], ["rotate", [np.array([1, 0, 0, 0]), 0.0032, True]], ["wait",[]], ["translate", [-26.75, 0, False]]] if self.id==2: path_plan = [ ["translate", [-23.49, 1, False]], ["wait",[]], ["rotate", [np.array([0, 0, 0, -1]), 0.0042, True]], ["wait",[]], ["translate", [-35.47, 0, False]], ["wait",[]], ["rotate", [np.array([-0.70711, 0, 0, -0.70711]), 0.0042, True]], ["wait",[]], ["translate", [5.45, 1, False]], ["wait",[]], ["rotate", [np.array([1, 0, 0, 0]), 0.0032, True]], ["wait",[]], ["translate", [-26.75, 0, False]]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def arm_place_trunk(self): motion_plan = [{"index":0, "position": np.array([0.9596, 0.21244, -0.16+0.4547+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-28.06, 4.27349, 0.69642+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([0.9596, 0.21244, -0.16+0.4547]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-28.06, 4.27349, 0.69642]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([0.9596, 0.21244, -0.16+0.4547+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-28.06, 4.27349, 0.69642+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":3, "position": np.array([0.74919, -0.50484, -0.16+0.64833]), "orientation": np.array([-0.20088, -0.67797, -0.20088, 0.67797]), "goal_position":np.array([-27.85221, 4.99054, 0.89005]), "goal_orientation":np.array([0.67797, -0.20088, 0.67797, 0.20088])}, # {"index":4, "position": np.array([0.41663, -0.77637, -0.16+0.75942]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-27.519, 5.262, 1.00113]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":4, "position": np.array([0.55084, -0.81339+0.02396+0, -0.16+0.75942]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-27.65404, 5.26-0.02396-0, 1.00113]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":5, "position": np.array([0.42543, -0.81339+0.02396+0, -0.16+0.75942]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-27.52862, 5.26-0.02396-0, 1.00113]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}] self.util.move_ur10(motion_plan, "_trunk") if self.util.motion_task_counter==2 and not self.bool_done[5]: self.bool_done[5] = True self.util.remove_part("World/Environment", f"trunk_02_{self.id}") self.util.add_part_custom("World/UR10_trunk/ee_link","trunk", f"qtrunk_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.28167, -0.21084, -0.00861]), np.array([0.70711, 0, 0, 0.70711])) if self.util.motion_task_counter==6: print("Done placing trunk") self.util.motion_task_counter=0 self.util.remove_part("World/UR10_trunk/ee_link", f"qtrunk_{self.id}") self.util.add_part_custom(f"mock_robot_{self.id}/platform","trunk", f"xtrunk_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.79319, -0.21112, 0.70114]), np.array([0.5, 0.5, 0.5, 0.5])) return True return False def screw_trunk(self): def transform(points): points[0]-=0 points[2]-=0 return points motion_plan = [{"index":0, "position": transform(np.array([-0.15245, -0.65087-0.24329, -0.16+0.43677+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.14748, 7.43945, 0.67876+0.2]), "goal_orientation":np.array([0,-0.70711,0,0.70711])}, {"index":1, "position": transform(np.array([-0.15245, -0.65087-0.24329, -0.16+0.43677])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.14748, 7.43945, 0.67876]), "goal_orientation":np.array([0,-0.70711,0,0.70711])}, {"index":2, "position": transform(np.array([-0.15245, -0.65087-0.24329, -0.16+0.43677+0.2])), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.14748, 7.43945, 0.67876+0.2]), "goal_orientation":np.array([0,-0.70711,0,0.70711])}, {"index":3, "position": transform(np.array([-0.12592, 1.126+0.16-0.24329+0.02396+0.11321-0.2, 0.48602])), "orientation": np.array([0.5, 0.5, 0.5, 0.5]), "goal_position":np.array([-27.17401, 5.66311-0.02396-0.11321+0.2, 0.7279]), "goal_orientation":np.array([0.5, 0.5, -0.5, -0.5])}, {"index":4, "position": transform(np.array([-0.12592, 1.33575+0.16-0.24329+0.02396+0.11321-0.2, 0.48602])), "orientation": np.array([0.5, 0.5, 0.5, 0.5]), "goal_position":np.array([-27.17401, 5.45335-0.02396-0.11321+0.2, 0.7279]), "goal_orientation":np.array([0.5, 0.5, -0.5, -0.5])}, {"index":5, "position": transform(np.array([-0.12592, 1.126+0.16-0.24329+0.02396+0.11321-0.2, 0.48602])), "orientation": np.array([0.5, 0.5, 0.5, 0.5]), "goal_position":np.array([-27.17401, 5.66311-0.02396-0.11321+0.2, 0.7279]), "goal_orientation":np.array([0.5, 0.5, -0.5, -0.5])}, {"index":6, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.4637, 5.85911, 1.04836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}] self.util.do_screw_driving(motion_plan,"_trunk") if self.util.motion_task_counter==7: print("Done screwing trunk") self.util.motion_task_counter=0 return True return False def arm_remove_trunk(self): motion_plan = [{"index":0, "position": np.array([0.42543, -0.81339+0.02396+0, -0.16+0.75942+0.1]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-27.52862, 5.26-0.02396-0, 1.00113+0.1]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":1, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.2673, 3.79761, 1.04836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}] self.util.move_ur10(motion_plan, "_trunk") if self.util.motion_task_counter==2: print("Done arm removal") self.util.motion_task_counter=0 return True return False def move_to_wheel_cell(self): print(self.util.path_plan_counter) path_plan = [ ["translate", [-21.3, 0, False]], ["wait",[]], ["rotate", [np.array([-0.70711, 0, 0, -0.70711]), 0.0042, False]], ["wait",[]], ["translate", [9.3, 1, False]], ["wait",[]], ["rotate", [np.array([-1, 0, 0, 0]), 0.0042, True]], ["wait",[]], ["translate", [-16.965, 0, False]], ["wait",[]], ["rotate", [np.array([-0.70711, 0, 0, 0.70711]), 0.0042, True]], ["wait",[]], # ["translate", [5.39, 1, False]], ["translate", [6, 1, False]] ] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def arm_place_wheel_01(self): motion_plan = [{"index":0, "position": np.array([0.86671, -0.02468, -0.16+0.4353+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.79517, 4.90661, 0.67666+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([0.86671, -0.02468, -0.16+0.4353]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.79517, 4.90661, 0.67666]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([0.86671, -0.02468, -0.16+0.4353+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.79517, 4.90661, 0.67666+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":3, "position": np.array([0.00762, 0.77686, -0.16+0.48217]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.935, 4.105, 0.723]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, # {"index":4, "position": np.array([-0.39779, 0.19418, -0.16+0.51592]), "orientation": np.array([0.62501, -0.3307, 0.62501, 0.3307]), "goal_position":np.array([-17.53, 4.68, 0.758]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":5, "position": np.array([-0.35597, -0.15914, -0.16+0.48217]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.572, 5.04127, 0.723]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":6, "position": np.array([-0.48413-0.16, -0.28768, 0.29642]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.446, 5.16, 0.537]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":7, "position": np.array([-0.27412-0.16, -0.61531, 0.25146]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.656, 5.497, 0.492]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":8, "position": np.array([-0.3-0.16, -0.75, 0.2]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.62, 5.63, 0.44]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":4, "position": np.array([-0.33031-0.16, -0.78789, 0.15369]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.596, 5.671, 0.394]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])}, {"index":5, "position": np.array([-0.49798-0.16, -0.78789, 0.15369]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.42945, 5.671, 0.394]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])}, {"index":6, "position": np.array([-0.33031-0.16, -0.78789, 0.15369]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.596, 5.671, 0.394]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])}, {"index":7, "position": np.array([-0.35597, -0.15914, -0.16+0.48217]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.572, 5.04127, 0.723]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":8, "position": np.array([0.00762, 0.77686, -0.16+0.48217]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.935, 4.105, 0.723]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":9, "position": np.array([0.16345, 0.69284, 0.62942-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.09182, 4.18911, 0.87105]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}] self.util.move_ur10(motion_plan, "_wheel_01") if self.util.motion_task_counter==2 and not self.bool_done[45]: self.bool_done[45] = True self.util.remove_part("World/Environment", f"wheel_03_{self.id}") self.util.add_part_custom("World/UR10_wheel_01/ee_link","FWheel", f"qwheel_03_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.25604, -0.18047, -0.18125]), np.array([0, 0, 0.70711, 0.70711])) if self.util.motion_task_counter==5 and not self.bool_done[6]: self.bool_done[6] = True print("Done placing wheel") self.util.remove_part("World/UR10_wheel_01/ee_link", f"qwheel_03_{self.id}") self.util.add_part_custom(f"mock_robot_{self.id}/platform","FWheel", f"xwheel_03_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.15255, -0.1948, 0.56377]), np.array([0.5, -0.5, 0.5, -0.5])) if self.util.motion_task_counter==10: self.util.motion_task_counter=0 return True return False def screw_wheel_01(self): motion_plan = [{"index":0, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":1, "position": np.array([0.67966, -0.08619, -0.16+0.44283]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":2, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":3, "position": np.array([-0.49561+0.1-0.16, 0.61097, 0.22823]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.68598, 0.46965]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":4, "position": np.array([-0.49561-0.16, 0.61097, 0.22823]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516, 5.68598, 0.46965]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":5, "position": np.array([-0.49561+0.1-0.16, 0.61097, 0.22823]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.68598, 0.46965]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":6, "position": np.array([0.67966, 0.09013, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.20682, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":7, "position": np.array([0.67966, 0.09013, -0.16+0.44283]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.20682, 0.68464]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":8, "position": np.array([0.67966, 0.09013, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.20682, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":9, "position": np.array([-0.49561+0.1-0.16, 0.66261, 0.23808]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.63434, 0.47951]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":10, "position": np.array([-0.49561-0.16, 0.66261, 0.23808]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516, 5.63434, 0.47951]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":11, "position": np.array([-0.49561+0.1-0.16, 0.66261, 0.23808]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.63434, 0.47951]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":12, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":13, "position": np.array([0.67966, -0.08619, -0.16+0.44283]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":14, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":15, "position": np.array([-0.49561+0.1-0.16, 0.6234, 0.27624]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.67355, 0.51766]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":16, "position": np.array([-0.49561-0.16, 0.6234, 0.27624]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516, 5.67355, 0.51766]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":17, "position": np.array([-0.49561+0.1-0.16, 0.6234, 0.27624]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.67355, 0.51766]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":18, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}] self.util.do_screw_driving(motion_plan,"_wheel_01") if self.util.motion_task_counter==19: print("Done screwing wheel") self.util.motion_task_counter=0 return True return False def arm_place_wheel(self): print("here") motion_plan = [{"index":0, "position": np.array([-0.86671, -0.02468, -0.16+0.4353+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.99517, 4.90661, 0.67666+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([-0.86671, -0.02468, -0.16+0.4353]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.99517, 4.90661, 0.67666]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([-0.86671, -0.02468, -0.16+0.4353+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.99517, 4.90661, 0.67666+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":3, "position": np.array([-0.00762, 0.77686, -0.16+0.48217]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-15.858, 4.105, 0.723]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, # {"index":4, "position": np.array([-0.39779, 0.19418, -0.16+0.51592]), "orientation": np.array([0.62501, -0.3307, 0.62501, 0.3307]), "goal_position":np.array([-17.53, 4.68, 0.758]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":5, "position": np.array([-0.35597, -0.15914, -0.16+0.48217]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.572, 5.04127, 0.723]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":6, "position": np.array([-0.48413-0.16, -0.28768, 0.29642]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.446, 5.16, 0.537]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":7, "position": np.array([-0.27412-0.16, -0.61531, 0.25146]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.656, 5.497, 0.492]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":4, "position": np.array([0.5+0.16, -0.112, 0.410]), "orientation": np.array([0.70711, 0.70711, 0, 0]), "goal_position":np.array([-16.364, 5, 0.651]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":5, "position": np.array([0.46203+0.16, -0.76392, 0.15278]), "orientation": np.array([0.70711, 0.70711, 0, 0]), "goal_position":np.array([-16.32833, 5.65751, 0.3945]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])}, {"index":6, "position": np.array([0.65863+0.16, -0.76392, 0.15278]), "orientation": np.array([0.70711, 0.70711, 0, 0]), "goal_position":np.array([-16.52493, 5.65751, 0.3945]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":7, "position": np.array([0.46203+0.16, -0.76392, 0.15278]), "orientation": np.array([0.70711, 0.70711, 0, 0]), "goal_position":np.array([-16.32833, 5.65751, 0.3945]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])}, {"index":8, "position": np.array([0.35597, -0.15914, -0.16+0.48217]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-16.221, 5.05282, 0.725]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":9, "position": np.array([0.16394, 0.68797, 0.64637]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.0297, 4.20519, 1.04836]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}] self.util.move_ur10_extra(motion_plan, "_wheel") if self.util.motion_task_counterl==2 and not self.bool_done[7]: self.bool_done[7] = True self.util.remove_part("World/Environment", f"wheel_01_{self.id}") self.util.add_part_custom("World/UR10_wheel/ee_link","FWheel", f"qwheel_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.25604, -0.18047, -0.18125]), np.array([0, 0, 0.70711, 0.70711])) if self.util.motion_task_counterl==7 and not self.bool_done[8]: self.bool_done[8] = True print("Done placing wheel") self.util.remove_part("World/UR10_wheel/ee_link", f"qwheel_01_{self.id}") self.util.add_part_custom(f"mock_robot_{self.id}/platform","FWheel", f"xwheel_01_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.1522, 0.33709, 0.56377]), np.array([0.5, -0.5, 0.5, -0.5])) if self.util.motion_task_counterl==10: self.util.motion_task_counterl=0 return True return False def screw_wheel(self): motion_plan = [{"index":0, "position": np.array([-0.67966, -0.08051, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":1, "position": np.array([-0.67966, -0.08051, -0.16+0.44283]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":2, "position": np.array([-0.67966, -0.08051, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":3, "position": np.array([0.67955-0.1+0.16, 0.62439, 0.22894]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.67963, 0.4704]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":4, "position": np.array([0.67955+0.16, 0.62439, 0.22894]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236, 5.67963, 0.4704]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":5, "position": np.array([0.67955-0.1+0.16, 0.62439, 0.22894]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.67963, 0.4704]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":6, "position": np.array([-0.67572, 0.09613, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18675, 6.20788, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":7, "position": np.array([-0.67572, 0.09613, -0.16+0.44283]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18675, 6.20788, 0.68279]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":8, "position": np.array([-0.67572, 0.09613, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18675, 6.20788, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":9, "position": np.array([0.67955-0.1+0.16, 0.67241, 0.23225]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.6316, 0.47372]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":10, "position": np.array([0.67955+0.16, 0.67241, 0.23225]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236, 5.6316, 0.47372]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":11, "position": np.array([0.67955-0.1+0.16, 0.67241, 0.23225]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.6316, 0.47372]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":12, "position": np.array([-0.67966, -0.08051, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":13, "position": np.array([-0.67966, -0.08051, -0.16+0.44283]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":14, "position": np.array([-0.67966, -0.08051, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":15, "position": np.array([0.67955-0.1+0.16, 0.64605, 0.27773]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.65797, 0.51919]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":16, "position": np.array([0.67955+0.16, 0.64605, 0.27773]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236, 5.65797, 0.51919]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":17, "position": np.array([0.67955-0.1+0.16, 0.64605, 0.27773]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.65797, 0.51919]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":18, "position": np.array([-0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}] self.util.do_screw_driving_extra(motion_plan,"_wheel") if self.util.motion_task_counterl==19: print("Done screwing wheel") self.util.motion_task_counterl=0 return True return False def move_ahead_in_wheel_cell(self): print(self.util.path_plan_counter) path_plan = [ ["translate", [5.04, 1, False]] ] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def arm_place_wheel_03(self): motion_plan = [{"index":0, "position": np.array([0.86671, -0.54558, -0.16+0.4353+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.79517, 4.90661+0.521, 0.67666+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([0.86671, -0.54558, -0.16+0.4353]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.79517, 4.90661+0.521, 0.67666]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([0.86671, -0.54558, -0.16+0.4353+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.79517, 4.90661+0.521, 0.67666+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":3, "position": np.array([0.00762, 0.77686, -0.16+0.48217]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.935, 4.105, 0.723]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":4, "position": np.array([-0.31937-0.16, -0.78789, 0.0258]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.596, 5.671, 0.274]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])}, {"index":5, "position": np.array([-0.47413-0.16, -0.78789, 0.0258]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.42945, 5.671, 0.274]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])}, {"index":6, "position": np.array([-0.31937-0.16, -0.78789, 0.0258]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.596, 5.671, 0.274]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])}, {"index":7, "position": np.array([-0.35597, -0.15914, -0.16+0.48217]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.572, 5.04127, 0.723]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":8, "position": np.array([0.00762, 0.77686, -0.16+0.48217]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.935, 4.105, 0.723]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":9, "position": np.array([0.16345, 0.69284, 0.62942-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.09182, 4.18911, 0.87105]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}] self.util.move_ur10(motion_plan, "_wheel_01") if self.util.motion_task_counter==2 and not self.bool_done[9]: self.bool_done[9] = True self.util.remove_part("World/Environment", f"wheel_04_{self.id}") self.util.add_part_custom("World/UR10_wheel_01/ee_link","FWheel", f"qwheel_04_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.25604, -0.18047, -0.18125]), np.array([0, 0, 0.70711, 0.70711])) if self.util.motion_task_counter==5 and not self.bool_done[10]: self.bool_done[10] = True print("Done placing wheel") self.util.remove_part("World/UR10_wheel_01/ee_link", f"qwheel_04_{self.id}") self.util.add_part_custom(f"mock_robot_{self.id}/platform","FWheel", f"xwheel_04_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.80845, -0.22143, 0.43737]), np.array([0.5, -0.5, 0.5, -0.5])) if self.util.motion_task_counter==10: self.util.motion_task_counter=0 return True return False def screw_wheel_03(self): motion_plan = [{"index":0, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":1, "position": np.array([0.67966, -0.08619, -0.16+0.44283]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":2, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":3, "position": np.array([-0.49561+0.1-0.16, 0.61097, 0.22823-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.68598, 0.46965-0.12]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":4, "position": np.array([-0.49561-0.16, 0.61097, 0.22823-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516, 5.68598, 0.46965-0.12]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":5, "position": np.array([-0.49561+0.1-0.16, 0.61097, 0.22823-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.68598, 0.46965-0.12]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":6, "position": np.array([0.67966, 0.09013, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.20682, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":7, "position": np.array([0.67966, 0.09013, -0.16+0.44283]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.20682, 0.68464]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":8, "position": np.array([0.67966, 0.09013, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.20682, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":9, "position": np.array([-0.49561+0.1-0.16, 0.66261, 0.23808-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.63434, 0.47951-0.12]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":10, "position": np.array([-0.49561-0.16, 0.66261, 0.23808-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516, 5.63434, 0.47951-0.12]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":11, "position": np.array([-0.49561+0.1-0.16, 0.66261, 0.23808-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.63434, 0.47951-0.12]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":12, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":13, "position": np.array([0.67966, -0.08619, -0.16+0.44283]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":14, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":15, "position": np.array([-0.49561+0.1-0.16, 0.6234, 0.27624-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.67355, 0.51766-0.12]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":16, "position": np.array([-0.49561-0.16, 0.6234, 0.27624-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516, 5.67355, 0.51766-0.12]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":17, "position": np.array([-0.49561+0.1-0.16, 0.6234, 0.27624-0.12]), "orientation": np.array([0,0,1,0]), "goal_position":np.array([-17.43516-0.1, 5.67355, 0.51766-0.12]), "goal_orientation":np.array([0, -1, 0, 0])}, {"index":18, "position": np.array([0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.61058, 6.38314, 0.68464+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}] self.util.do_screw_driving(motion_plan,"_wheel_01") if self.util.motion_task_counter==19: print("Done screwing wheel") self.util.motion_task_counter=0 return True return False def arm_place_wheel_02(self): tire_offset = 0.52214 motion_plan = [{"index":0, "position": np.array([-0.86671, -0.53748, -0.16+0.4353+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.99517, 4.90661+0.512, 0.67666+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":1, "position": np.array([-0.86671, -0.53748, -0.16+0.4353]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.99517, 4.90661+0.512, 0.67666]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":2, "position": np.array([-0.86671, -0.53748, -0.16+0.4353+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.99517, 4.90661+0.512, 0.67666+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":3, "position": np.array([-0.00762, 0.77686, -0.16+0.48217]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-15.858, 4.105, 0.723]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, # {"index":4, "position": np.array([-0.39779, 0.19418, -0.16+0.51592]), "orientation": np.array([0.62501, -0.3307, 0.62501, 0.3307]), "goal_position":np.array([-17.53, 4.68, 0.758]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":5, "position": np.array([-0.35597, -0.15914, -0.16+0.48217]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.572, 5.04127, 0.723]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":6, "position": np.array([-0.48413-0.16, -0.28768, 0.29642]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.446, 5.16, 0.537]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":7, "position": np.array([-0.27412-0.16, -0.61531, 0.25146]), "orientation": np.array([0, 0, 0.70711, 0.70711]), "goal_position":np.array([-17.656, 5.497, 0.492]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":4, "position": np.array([0.5+0.16, -0.112, 0.410]), "orientation": np.array([0.70711, 0.70711, 0, 0]), "goal_position":np.array([-16.364, 5, 0.651]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":5, "position": np.array([0.46203+0.16, -0.76392, 0.0258]), "orientation": np.array([0.70711, 0.70711, 0, 0]), "goal_position":np.array([-16.32833, 5.65751, 0.274]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])}, {"index":6, "position": np.array([0.65863+0.16, -0.76392, 0.0258]), "orientation": np.array([0.70711, 0.70711, 0, 0]), "goal_position":np.array([-16.52493, 5.65751, 0.274]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])}, {"index":7, "position": np.array([0.46203+0.16, -0.76392, 0.0258]), "orientation": np.array([0.70711, 0.70711, 0, 0]), "goal_position":np.array([-16.32833, 5.65751, 0.274]), "goal_orientation":np.array([0.70711, 0.70711, 0, 0])}, {"index":8, "position": np.array([0.35597, -0.15914, -0.16+0.48217]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-16.221, 5.05282, 0.725]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":9, "position": np.array([-0.00762, 0.77686, -0.16+0.48217]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-15.858, 4.105, 0.723]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":10, "position": np.array([0.16286, 0.68548, 0.63765-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.02865, 4.20818, 0.87901]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, # {"index":11, "position": np.array([-0.87307, -0.01687-tire_offset, 0.436-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-14.9927, 4.91057+tire_offset, 0.67736+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])} ] self.util.move_ur10_extra(motion_plan, "_wheel") if self.util.motion_task_counterl==2 and not self.bool_done[11]: self.bool_done[11] = True self.util.remove_part("World/Environment", f"wheel_02_{self.id}") self.util.add_part_custom("World/UR10_wheel/ee_link","FWheel", f"qwheel_02_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.25604, -0.18047, -0.18125]), np.array([0, 0, 0.70711, 0.70711])) if self.util.motion_task_counterl==7 and not self.bool_done[12]: self.bool_done[12] = True print("Done placing wheel") self.util.remove_part("World/UR10_wheel/ee_link", f"qwheel_02_{self.id}") self.util.add_part_custom(f"mock_robot_{self.id}/platform","FWheel", f"xwheel_02_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.80934, 0.35041, 0.43888]), np.array([0.5, -0.5, 0.5, -0.5])) if self.util.motion_task_counterl==11: self.util.motion_task_counterl=0 return True return False def screw_wheel_02(self): motion_plan = [{"index":0, "position": np.array([-0.67966, -0.08051, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":1, "position": np.array([-0.67966, -0.08051, -0.16+0.44283]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":2, "position": np.array([-0.67966, -0.08051, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":3, "position": np.array([0.67955-0.1+0.16, 0.62439, 0.22894-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.67963, 0.4704-0.12]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":4, "position": np.array([0.67955+0.16, 0.62439, 0.22894-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236, 5.67963, 0.4704-0.12]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":5, "position": np.array([0.67955-0.1+0.16, 0.62439, 0.22894-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.67963, 0.4704-0.12]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":6, "position": np.array([-0.67572, 0.09613, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18675, 6.20788, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":7, "position": np.array([-0.67572, 0.09613, -0.16+0.44283]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18675, 6.20788, 0.68279]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":8, "position": np.array([-0.67572, 0.09613, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18675, 6.20788, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":9, "position": np.array([0.67955-0.1+0.16, 0.67241, 0.23225-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.6316, 0.47372-0.12]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":10, "position": np.array([0.67955+0.16, 0.67241, 0.23225-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236, 5.6316, 0.47372-0.12]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":11, "position": np.array([0.67955-0.1+0.16, 0.67241, 0.23225-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.6316, 0.47372-0.12]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":12, "position": np.array([-0.67966, -0.08051, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":13, "position": np.array([-0.67966, -0.08051, -0.16+0.44283]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":14, "position": np.array([-0.67966, -0.08051, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":15, "position": np.array([0.67955-0.1+0.16, 0.64605, 0.27773-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.65797, 0.51919-0.12]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":16, "position": np.array([0.67955+0.16, 0.64605, 0.27773-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236, 5.65797, 0.51919-0.12]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":17, "position": np.array([0.67955-0.1+0.16, 0.64605, 0.27773-0.12]), "orientation": np.array([0,-1,0,0]), "goal_position":np.array([-16.54236+0.1, 5.65797, 0.51919-0.12]), "goal_orientation":np.array([0, 0, 1, 0])}, {"index":18, "position": np.array([-0.67966, -0.08619, -0.16+0.44283+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-15.18282, 6.38452, 0.68279+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}] self.util.do_screw_driving_extra(motion_plan,"_wheel") if self.util.motion_task_counterl==19: print("Done screwing wheel") self.util.motion_task_counterl=0 return True return False def arm_place_fwheel_together(self): if not self.right_side: self.right_side = self.arm_place_wheel_01() if not self.left_side: self.left_side = self.arm_place_wheel() if self.left_side and self.right_side: self.left_side = self.right_side = False return True return False def screw_fwheel_together(self): if not self.right_side: self.right_side = self.screw_wheel_01() if not self.left_side: self.left_side = self.screw_wheel() if self.left_side and self.right_side: self.left_side = self.right_side = False return True return False def arm_place_bwheel_together(self): if not self.right_side: self.right_side = self.arm_place_wheel_03() if not self.left_side: self.left_side = self.arm_place_wheel_02() if self.left_side and self.right_side: self.left_side = self.right_side = False return True return False def screw_bwheel_together(self): if not self.right_side: self.right_side = self.screw_wheel_03() if not self.left_side: self.left_side = self.screw_wheel_02() if self.left_side and self.right_side: self.left_side = self.right_side = False return True return False def move_to_lower_cover_cell(self): print(self.util.path_plan_counter) # path_plan = [ # ["rotate", [np.array([0.73548, 0, 0, -0.67755]), 0.0042, False]], # ["translate", [-0.64, 1, False]], # ["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, True]], # ["translate", [-12.037, 1, False]], # ["rotate", [np.array([0, 0, 0, -1]), 0.0042, True]], # ["translate", [-20.15, 0, False]], # ["rotate", [np.array([0.70711, 0, 0, -0.70711]), 0.0042, False]], # ["translate", [-17, 1, False]], # ["rotate", [np.array([0, 0, 0, 1]), 0.0042, True]], # ["translate", [-26.9114, 0, False]]] path_plan = [ ["rotate", [np.array([-0.73548, 0, 0, 0.67755]), 0.0042, False]], ["wait",[]], ["translate", [-0.64, 1, False]], ["wait",[]], ["rotate", [np.array([-0.70711, 0, 0, 0.70711]), 0.0042, True]], ["wait",[]], ["translate", [-12.1, 1, False]], ["wait",[]], ["rotate", [np.array([0, 0, 0, 1]), 0.0042, True]], ["wait",[]], ["translate", [-21.13755, 0, False]], # 20.2 earlier ["wait",[]], ["rotate", [np.array([-0.70711, 0, 0, 0.70711]), 0.0042, False]], ["wait",[]], ["translate", [-17.1, 1, False]], ["translate", [-17.34, 1, False]], ["wait",[]], ["rotate", [np.array([0, 0, 0, 1]), 0.0042, True]], ["wait",[]], ["translate", [-26.9114, 0, False]]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def arm_place_lower_cover(self): motion_plan = [ # {"index":0, "position": np.array([-0.49105, 0.76464, -0.16+0.4434+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.49436, 0.6851+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, # {"index":1, "position": np.array([-0.49105, 0.76464, -0.16+0.4434]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.49436, 0.6851]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, # {"index":2, "position": np.array([-0.49105, 0.76464, -0.16+0.4434+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.49436, 0.6851+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, *self.lower_cover[0], {"index":3, "position": np.array([-0.70739, -0.00943, -0.16+0.52441]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-26.76661, -16.26838, 0.76611]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":4, "position": np.array([-0.59828, -0.85859, -0.16+0.36403+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-26.65756, -17.11785, 0.60573+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":5, "position": np.array([-0.59828, -0.85859, -0.16+0.36403]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-26.65756, -17.11785, 0.60573]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":6, "position": np.array([-0.59828, -0.85859, -0.16+0.36403+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-26.65756, -17.11785, 0.60573+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":7, "position": np.array([-0.49105, 0.76464, -0.16+0.4434+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.54994, -15.49436, 0.6851+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, # {"index":8, "position": np.array([0.16286, 0.68548, 0.63765-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-25.8962, -15.5737, 0.879938]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])} {"index":8, "position": np.array([0.54581, 0.04547, 0.73769-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-25.5133, -16.2136, 0.9801]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])} ] self.util.move_ur10(motion_plan, "_lower_cover") if self.util.motion_task_counter==2 and not self.bool_done[20]: self.bool_done[20] = True self.util.remove_part("World/Environment", f"lower_coverr_{self.id}") self.util.add_part_custom("World/UR10_lower_cover/ee_link","lower_cover", f"qlower_coverr_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.27893, -0.08083, 0.29584]), np.array([0.5, -0.5, 0.5, 0.5])) if self.util.motion_task_counter==6 and not self.bool_done[21]: self.bool_done[21] = True print("Done placing right lower cover") self.util.remove_part("World/UR10_lower_cover/ee_link", f"qlower_coverr_{self.id}") self.util.add_part_custom(f"mock_robot_{self.id}/platform","lower_cover", f"xlower_coverr_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.03325, -0.29278, 0.31255]), np.array([0, 0, 0.70711, 0.70711])) # np.array([435.65021, 418.57531,21.83379]), np.array([0.50942, 0.50942,0.4904, 0.4904]) if self.util.motion_task_counter==9: self.util.motion_task_counter=0 return True return False def screw_lower_cover(self): motion_plan = [{"index":0, "position": np.array([0.00434, 0.77877, -0.16+0.43196+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.48421, -15.4803, 0.67396+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":1, "position": np.array([0.00434, 0.77877, -0.16+0.43196]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.48421, -15.4803, 0.67396]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":2, "position": np.array([0.00434, 0.77877, -0.16+0.43196+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.48421, -15.4803, 0.67396+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":3, "position": np.array([0.71996, -0.73759, -0.16+0.26658+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76846, -16.99645, 0.50858+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":4, "position": np.array([0.71996, -0.73759, -0.16+0.26658]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76846, -16.99645, 0.50858]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":5, "position": np.array([0.71996, -0.73759, -0.16+0.26658+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76846, -16.99645, 0.50858+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":6, "position": np.array([-0.17139, 0.78152, -0.16+0.43196+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.65994, -15.47755, 0.67396+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":7, "position": np.array([-0.17139, 0.78152, -0.16+0.43196]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.65994, -15.47755, 0.67396]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":8, "position": np.array([-0.17139, 0.78152, -0.16+0.43196+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.65994, -15.47755, 0.67396+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":9, "position": np.array([0.71996, -0.80562, -0.16+0.26658+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76846, -17.06448, 0.50858+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":10, "position": np.array([0.71996, -0.80562, -0.16+0.26658]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76846, -17.06448, 0.50858]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":11, "position": np.array([0.71996, -0.80562, -0.16+0.26658+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76846, -17.06448, 0.50858+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":12, "position": np.array([0.00434, 0.77877, -0.16+0.43196+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.48421, -15.4803, 0.67396+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}] self.util.do_screw_driving(motion_plan,"_lower_cover") if self.util.motion_task_counter==13: print("Done screwing right lower cover") self.util.motion_task_counter=0 return True return False def arm_place_lower_cover_01(self): motion_plan = [ # {"index":0, "position": np.array([0.49458, 0.74269, -0.16+0.44428+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.06174, 0.68566+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, # {"index":1, "position": np.array([0.49458, 0.74269, -0.16+0.44428]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.06174, 0.68566]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, # {"index":2, "position": np.array([0.49458, 0.74269, -0.16+0.44428+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.06174, 0.68566+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, *self.lower_cover[1], {"index":3, "position": np.array([0.79817, 0.02534, -0.16+0.58377]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.85719, -18.34429, 0.82514]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":4, "position": np.array([0.59724, -0.78253, -0.16+0.36033+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-26.65614, -17.53666, 0.6017+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":5, "position": np.array([0.59724, -0.78253, -0.16+0.36033]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-26.65614, -17.53666, 0.6017]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":6, "position": np.array([0.59724, -0.78253, -0.16+0.36033+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-26.65614, -17.53666, 0.6017+0.2]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":7, "position": np.array([0.49458, 0.74269, -0.16+0.44428+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.55383, -19.06174, 0.68566+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, # {"index":8, "position": np.array([0.16286, 0.68548, 0.63765-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-26.222, -19.0046, 0.879939]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])} {"index":8, "position": np.array([-0.54581, 0.04547, 0.73769-0.16]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-25.513, -18.3647, 0.98016]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])} ] self.util.move_ur10_extra(motion_plan, "_lower_cover_01") if self.util.motion_task_counterl==2 and not self.bool_done[22]: self.bool_done[22] = True self.util.remove_part("World/Environment", f"lower_coverl_{self.id}") self.util.add_part_custom("World/UR10_lower_cover_01/ee_link","lower_cover", f"qlower_coverl_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.28058, 0.07474, -0.29292]), np.array([0.5, 0.5, -0.5, 0.5])) if self.util.motion_task_counterl==6 and not self.bool_done[23]: self.bool_done[23] = True print("Done placing right lower cover") self.util.remove_part("World/UR10_lower_cover_01/ee_link", f"qlower_coverl_{self.id}") self.util.add_part_custom(f"mock_robot_{self.id}/platform","lower_cover", f"xlower_coverl_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.03589, 0.13349, 0.30227]), np.array([0, 0, -0.70711, -0.70711])) if self.util.motion_task_counterl==9: self.util.motion_task_counterl=0 return True return False def screw_lower_cover_01(self): motion_plan = [{"index":0, "position": np.array([-0.00975, 0.77293, -0.16+0.42757+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.46819, -19.08897, 0.66977+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":1, "position": np.array([-0.00975, 0.77293, -0.16+0.42757]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.46819, -19.08897, 0.66977]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":2, "position": np.array([-0.00975, 0.77293, -0.16+0.42757+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.46819, -19.08897, 0.66977+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":3, "position": np.array([-0.71345, -0.63679, -0.16+0.26949+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.681, 0.51169+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":4, "position": np.array([-0.71345, -0.63679, -0.16+0.26949]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.681, 0.51169]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":5, "position": np.array([-0.71345, -0.63679, -0.16+0.26949+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.681, 0.51169+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":6, "position": np.array([-0.18665, 0.77293, -0.16+0.42757+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.29128, -19.08897, 0.66977+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":7, "position": np.array([-0.18665, 0.77293, -0.16+0.42757]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.29128, -19.08897, 0.66977]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":8, "position": np.array([-0.18665, 0.77293, -0.16+0.42757+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.29128, -19.08897, 0.66977+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":9, "position": np.array([-0.00975, 0.77293, -0.16+0.42757+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.46819, -19.08897, 0.66977+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":10, "position": np.array([-0.71345, -0.63679, -0.16+0.26949+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.681, 0.51169+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":11, "position": np.array([-0.71345, -0.68679, -0.16+0.26949+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.681+0.05, 0.51169+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":12, "position": np.array([-0.71345, -0.68679, -0.16+0.26949]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.681+0.05, 0.51169]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":13, "position": np.array([-0.71345, -0.68679, -0.16+0.26949+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.681+0.05, 0.51169+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":9, "position": np.array([-0.71345, -0.70416, -0.16+0.26949+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.61363, 0.51169+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":10, "position": np.array([-0.71345, -0.70416, -0.16+0.26949]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.61363, 0.51169]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":11, "position": np.array([-0.71345, -0.70416, -0.16+0.26949+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-26.76467, -17.61363, 0.51169+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":14, "position": np.array([-0.00975, 0.77293, -0.16+0.42757+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-27.46819, -19.08897, 0.66977+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}] self.util.do_screw_driving_extra(motion_plan,"_lower_cover_01") if self.util.motion_task_counterl==15: print("Done screwing right lower cover") self.util.motion_task_counterl=0 return True return False def arm_place_lower_cover_together(self): if not self.right_side: self.right_side = self.arm_place_lower_cover() if not self.left_side: self.left_side = self.arm_place_lower_cover_01() if self.left_side and self.right_side: self.left_side = self.right_side = False return True return False def screw_lower_cover_together(self): if not self.right_side: self.right_side = self.screw_lower_cover() if not self.left_side: self.left_side = self.screw_lower_cover_01() if self.left_side and self.right_side: self.left_side = self.right_side = False return True return False def move_to_main_cover_cell(self): print(self.util.path_plan_counter) # path_plan = [ # ["translate", [-27.9, 0, False]], # ["rotate", [np.array([-0.70711, 0, 0, 0.70711]), 0.0042, False]], # ["translate", [-17.18, 1, True]]] path_plan = [ ["translate", [-28.6, 0, False]], ["wait",[]], ["rotate", [np.array([-0.70711, 0, 0, 0.70711]), 0.0042, False]], ["wait",[]], ["translate", [-17.18, 1, True]]] if self.id == 0: path_plan = [ ["translate", [-28.7, 0, False]], ["wait",[]], ["rotate", [np.array([-0.70711, 0, 0, 0.70711]), 0.0042, False]], ["wait",[]], ["translate", [-17.18, 1, True]]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def arm_place_main_cover(self): motion_plan = [ # {'index': 15, 'position': np.array([-0.74286, 0.42878, 0.35038]), 'orientation': np.array([ 0.6511, -0.2758, 0.6511, 0.2758]), 'goal_position': np.array([-29.14515, -16.32381, 1.33072]), 'goal_orientation': np.array([ 0.65542, 0.26538, 0.65542, -0.26538])}, # {'index': 16, 'position': np.array([-0.89016, 0.32513, 0.35038]), 'orientation': np.array([ 0.60698, -0.36274, 0.60698, 0.36274]), 'goal_position': np.array([-29.24913, -16.1764 , 1.33072]), 'goal_orientation': np.array([ 0.68569, 0.1727 , 0.68569, -0.1727 ])}, # {'index': 17, 'position': np.array([-1.09352, -0.27789, 0.42455]), 'orientation': np.array([ 0.5, -0.5, 0.5, 0.5]), 'goal_position': np.array([-29.85252, -15.97435, 1.40075]), 'goal_orientation': np.array([0.70711, 0. , 0.70711, 0. ])}, {"index":0, "position": np.array([-1.09352, -0.27789, 0.58455-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.01444-11.83808, -15.97435, 1.40075]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":1, "position": np.array([-1.09352, -0.27789, 0.19772-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.01444-11.83808, -15.97435, 1.01392]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":2, "position": np.array([-1.09352, -0.27789, 0.58455-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.01444-11.83808, -15.97435, 1.40075]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, {"index":3, "position": np.array([-0.89016, 0.32513, 0.51038-0.16]), "orientation": np.array([0.60698, -0.36274, 0.60698, 0.36274]), "goal_position":np.array([-17.41105-11.83808, -16.1764, 1.33072]), "goal_orientation":np.array([0.68569, 0.1727, 0.68569, -0.1727])}, {"index":4, "position": np.array([-0.74286, 0.42878, 0.51038-0.16]), "orientation": np.array([0.6511, -0.2758, 0.6511, 0.2758]), "goal_position":np.array([-17.30707-11.83808, -16.32381, 1.33072]), "goal_orientation":np.array([0.65542, 0.26538, 0.65542, -0.26538])}, {"index":5, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.6954, -0.12814, 0.6954, 0.12814]), "goal_position":np.array([-17.17748-11.83808, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])}, {"index":6, "position": np.array([-0.28875, 0.74261, 0.51038-0.16]), "orientation": np.array([0.70458, -0.0597, 0.70458, 0.0597]), "goal_position":np.array([-16.99268-11.83808, -16.77844, 1.33072]), "goal_orientation":np.array([0.54043, 0.456, 0.54043, -0.456])}, {"index":7, "position": np.array([0.11095-0.11, 0.94, 0.49096-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 1.31062]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":8, "position": np.array([0.11095-0.11, 0.94, 0.2926-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 1.11226]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":9, "position": np.array([0.11095-0.11, 0.94, 0.19682-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 1.01648]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":10, "position": np.array([0.11095-0.11, 0.94, 0.15697-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 0.97663]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":11, "position": np.array([0.11095-0.11, 0.94, 0.11895-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 0.93861]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":12, "position": np.array([0.11095-0.11, 0.94, 0.07882-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995+0.11, 0.89848]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":13, "position": np.array([0.11095, 0.94627, 0.49096-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175-11.83808, -17.17995, 1.31062]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])}, {"index":14, "position": np.array([-0.28875, 0.74261, 0.51038-0.16]), "orientation": np.array([0.70458, -0.0597, 0.70458, 0.0597]), "goal_position":np.array([-16.99268-11.83808, -16.77844, 1.33072]), "goal_orientation":np.array([0.54043, 0.456, 0.54043, -0.456])}, {"index":15, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.6954, -0.12814, 0.6954, 0.12814]), "goal_position":np.array([-17.17748-11.83808, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])}, # {"index":16, "position": np.array([-0.74286, 0.42878, 0.51038-0.16]), "orientation": np.array([0.6511, -0.2758, 0.6511, 0.2758]), "goal_position":np.array([-17.30707-11.83808, -16.32381, 1.33072]), "goal_orientation":np.array([0.65542, 0.26538, 0.65542, -0.26538])}, # {"index":17, "position": np.array([-0.89016, 0.32513, 0.51038-0.16]), "orientation": np.array([0.60698, -0.36274, 0.60698, 0.36274]), "goal_position":np.array([-17.41105-11.83808, -16.1764, 1.33072]), "goal_orientation":np.array([0.68569, 0.1727, 0.68569, -0.1727])}, # {"index":18, "position": np.array([-1.09352, -0.27789, 0.58455-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.01444-11.83808, -15.97435, 1.40075]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}, # {'index': 19, 'position': np.array([-0.89016, 0.32513, 0.35038]), 'orientation': np.array([ 0.60698, -0.36274, 0.60698, 0.36274]), 'goal_position': np.array([-29.24913, -16.1764 , 1.33072]), 'goal_orientation': np.array([ 0.68569, 0.1727 , 0.68569, -0.1727 ])}, # {'index': 20, 'position': np.array([-0.74286, 0.42878, 0.35038]), 'orientation': np.array([ 0.6511, -0.2758, 0.6511, 0.2758]), 'goal_position': np.array([-29.14515, -16.32381, 1.33072]), 'goal_orientation': np.array([ 0.65542, 0.26538, 0.65542, -0.26538])}, # {"index": 21, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.6954, -0.12814, 0.6954, 0.12814]), "goal_position":np.array([-17.17748-11.83808, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])}, {"index": 16, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.17748-11.83808, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])}] # {'index': 22, 'position': np.array([0.16394, 0.68799, 0.44663]), 'orientation': np.array([ 0.70711, 0, 0.70711, 0]), 'goal_position': np.array([-28.88652, -17.23535, 1.42725]), 'goal_orientation': np.array([0.70711, 0. , 0.70711, 0. ])}] self.util.move_ur10(motion_plan, "_main_cover") # remove world main cover and add ee main cover if self.util.motion_task_counter==2 and not self.bool_done[24]: self.bool_done[24] = True self.util.remove_part("World/Environment", f"main_cover_{self.id}") if self.id%2==0: self.util.add_part_custom("World/UR10_main_cover/ee_link","main_cover", f"qmain_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.71735, 0.26961, -0.69234]), np.array([0.5, 0.5, -0.5, 0.5])) else: self.util.add_part_custom("World/UR10_main_cover/ee_link","main_cover_orange", f"qmain_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.71735, 0.26961, -0.69234]), np.array([0.5, 0.5, -0.5, 0.5])) # remove ee main cover and add mobile platform main cover if self.util.motion_task_counter==13 and not self.bool_done[25]: self.bool_done[25] = True self.util.remove_part("World/UR10_main_cover/ee_link", f"qmain_cover_{self.id}") if self.id%2==0: self.util.add_part_custom(f"mock_robot_{self.id}/platform","main_cover", f"xmain_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.81508, 0.27909, 0.19789]), np.array([0.70711, 0.70711, 0, 0])) else: self.util.add_part_custom(f"mock_robot_{self.id}/platform","main_cover_orange", f"xmain_cover_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.81508, 0.27909, 0.19789]), np.array([0.70711, 0.70711, 0, 0])) if self.util.motion_task_counter==17: print("Done placing main cover") self.util.motion_task_counter=0 return True return False def move_to_handle_cell(self): print(self.util.path_plan_counter) # path_plan = [ # ["translate", [-13.2, 1, True]], # ["rotate", [np.array([-0.56641, 0, 0, 0.82413]), 0.0042, True]], # ["translate", [-10.46, 1, True]], # ["rotate", [np.array([-0.70711, 0, 0, 0.70711]), 0.0042, False]], # ["translate", [-6.69, 1, True]]] path_plan = [ ["translate", [-13.2, 1, True]], ["wait",[]], ["rotate", [np.array([-0.56641, 0, 0, 0.82413]), 0.0042, True]], ["wait",[]], # ["translate", [-10.46, 1, True]], # ["translate", [-10.3, 1, True]], ["translate", [-10.43, 1, True]], ["wait",[]], ["rotate", [np.array([-0.70711, 0, 0, 0.70711]), 0.0042, False]], ["wait",[]], ["translate", [-6.69, 1, True]]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def arm_place_handle(self): motion_plan = [{"index":0, "position": np.array([0.83713, -0.36166, -0.16+0.31902+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-29.33969, -6.83473, 0.56077+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":1, "position": np.array([0.83713, -0.36166, -0.16+0.31902]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-29.33969, -6.83473, 0.56077]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":2, "position": np.array([0.83713, -0.36166, -0.16+0.31902+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-29.33969, -6.83473, 0.56077+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":3, "position": np.array([-0.00141, 0.74106, -0.16+0.61331]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-28.5011, -7.93748, 0.85506]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":4, "position": np.array([-1.01604+0.07, -0.16743-0.09, -0.13+0.76104]), "orientation": np.array([0.34531, -0.61706, 0.61706, 0.34531]), "goal_position":np.array([-27.48648-0.07, -7.02902, 1.00275]), "goal_orientation":np.array([-0.34531, -0.61706, -0.61706, 0.34531])}, {"index":5, "position": np.array([-1.01604+0.07, -0.26045-0.09, -0.13+0.7032]), "orientation": np.array([0.34531, -0.61706, 0.61706, 0.34531]), "goal_position":np.array([-27.48648-0.07, -6.93599, 0.94492]), "goal_orientation":np.array([-0.34531, -0.61706, -0.61706, 0.34531])}, {"index":6, "position": np.array([-1.01604+0.07, -0.16743-0.09, -0.13+0.76104]), "orientation": np.array([0.34531, -0.61706, 0.61706, 0.34531]), "goal_position":np.array([-27.48648-0.07, -7.02902, 1.00275]), "goal_orientation":np.array([-0.34531, -0.61706, -0.61706, 0.34531])}, {"index":7, "position": np.array([-0.00141, 0.74106, -0.16+0.61331]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-28.5011, -7.93748, 0.85506]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}] self.util.move_ur10(motion_plan, "_handle") if self.util.motion_task_counter==2 and not self.bool_done[26]: self.bool_done[26] = True self.util.remove_part("World/Environment", f"handle_{self.id}") self.util.add_part_custom("World/UR10_handle/ee_link","handle", f"qhandle_{self.id}", np.array([0.001,0.001,0.001]), np.array([-0.5218, 0.42317, 0.36311]), np.array([0.5, -0.5, 0.5, -0.5])) if self.util.motion_task_counter==6 and not self.bool_done[27]: self.bool_done[27] = True print("Done placing handle") self.util.remove_part("World/UR10_handle/ee_link", f"qhandle_{self.id}") self.util.add_part_custom(f"mock_robot_{self.id}/platform","handle", f"xhandle_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.82439, 0.44736, 1.16068]), np.array([0.20721, 0.68156, -0.67309, -0.19874])) if self.util.motion_task_counter==8: self.util.motion_task_counter=0 return True return False def screw_handle(self): motion_plan = [{"index":0, "position": np.array([-0.78213, -0.03592, -0.16+0.4263+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-25.91341, -6.95701, 0.66945+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":1, "position": np.array([-0.78213, -0.03592, -0.16+0.4263]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-25.91341, -6.95701, 0.66945]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":2, "position": np.array([-0.78213, -0.03592, -0.16+0.4263+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-25.91341, -6.95701, 0.66945+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":3, "position": np.array([0.7448+0.13899, -0.02487, -0.16+0.7457+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-27.4413-0.13899, -6.96836, 0.98886+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":4, "position": np.array([0.7448+0.13899, -0.02487, -0.16+0.7457]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-27.4413-0.13899, -6.96836, 0.98886]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":5, "position": np.array([0.7448+0.13899, -0.02487, -0.16+0.7457+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-27.4413-0.13899, -6.96836, 0.98886+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":6, "position": np.array([-0.77943, -0.21316, -0.16+0.4263+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-25.91611, -6.77978, 0.66945+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":7, "position": np.array([-0.77943, -0.21316, -0.16+0.4263]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-25.91611, -6.77978, 0.66945]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":8, "position": np.array([-0.77943, -0.21316, -0.16+0.4263+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-25.91611, -6.77978, 0.66945+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":9, "position": np.array([0.83599-0.024, -0.02487, -0.16+0.7457+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-27.53249+0.024, -6.96836, 0.98886+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":10, "position": np.array([0.83599-0.024, -0.02487, -0.16+0.7457]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-27.53249+0.024, -6.96836, 0.98886]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":11, "position": np.array([0.83599-0.024, -0.02487, -0.16+0.7457+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-27.53249+0.024, -6.96836, 0.98886+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, {"index":12, "position": np.array([-0.77943, -0.21316, -0.16+0.4263+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-25.91611, -6.77978, 0.66945+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}] self.util.do_screw_driving(motion_plan,"_handle") if self.util.motion_task_counter==13: print("Done screwing handle") self.util.motion_task_counter=0 return True return False def move_to_light_cell(self): print(self.util.path_plan_counter) # path_plan = [["translate", [-6.41, 1, True]], # ["rotate", [np.array([-1, 0, 0, 0]), 0.0042, False]], # ["translate", [-18.56, 0, False]]] path_plan = [["translate", [-5.8, 1, True]], ["wait",[]], # ["rotate", [np.array([-1, 0, 0, 0]), 0.008, False]], ["rotate", [np.array([-1, 0, 0, 0]), 0.0042, False]], ["wait",[]], ["translate", [-18.56, 0, False]]] if self.id==1 or self.id==2: path_plan = [["translate", [-5.77, 1, True]], ["wait",[]], # ["rotate", [np.array([-1, 0, 0, 0]), 0.008, False]], ["rotate", [np.array([-1, 0, 0, 0]), 0.0042, False]], ["wait",[]], ["translate", [-18.56, 0, False]]] if self.id==6: path_plan = [["translate", [-5.85, 1, True]], ["wait",[]], # ["rotate", [np.array([-1, 0, 0, 0]), 0.008, False]], ["rotate", [np.array([-1, 0, 0, 0]), 0.0042, False]], ["wait",[]], ["translate", [-18.56, 0, False]]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def arm_place_light(self): if not self.bool_done[30]: self.bool_done[30] = True motion_plan = [{"index":0, "position": np.array([0.03769, -0.74077, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.06964, -4.37873, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}] self.util.do_screw_driving(motion_plan, "_light") self.util.motion_task_counter=0 light_offset=0.1098 motion_plan = [ # {"index":0, "position": np.array([0.5517, 0.68287, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.23584, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, # {"index":1, "position": np.array([0.5517, 0.68287, -0.16+0.34371]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.23584, 0.58583]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, # {"index":2, "position": np.array([0.5517, 0.68287, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.23584, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])}, *self.light, {"index":3, "position": np.array([-0.57726, -0.00505, -0.16+0.65911]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.25466, -6.54783, 0.90123]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, # {"index":4, "position": np.array([0.32558+0.12, -0.65596+0.04105-light_offset, -0.16+0.65947]), "orientation": np.array([0.65861, -0.65861, 0.25736, 0.25736]), "goal_position":np.array([-18.15724, -5.8969-0.04105, 0.90133]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":5, "position": np.array([0.36852+0.12, -0.65596+0.04105-light_offset, -0.16+0.61986]), "orientation": np.array([0.65861, -0.65861, 0.25736, 0.25736]), "goal_position":np.array([-18.2, -5.8969-0.04105, 0.86172]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":6, "position": np.array([0.32558+0.12, -0.65596+0.04105-light_offset, -0.16+0.65947]), "orientation": np.array([0.65861, -0.65861, 0.25736, 0.25736]), "goal_position":np.array([-18.15724, -5.8969-0.04105, 0.90133]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":4, "position": np.array([0.29868+0.12, -0.76576+0, -0.16+0.68019]), "orientation": np.array([0.659, -0.65796, 0.25749, 0.25789]), "goal_position":np.array([-18.13043, -5.78712-0, 0.922310]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":5, "position": np.array([0.3648+0.12, -0.76576+0, -0.16+0.61948]), "orientation": np.array([0.659, -0.65796, 0.25749, 0.25789]), "goal_position":np.array([-18.19655, -5.78712-0, 0.8616]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":6, "position": np.array([0.29868+0.12, -0.76576+0, -0.16+0.68019]), "orientation": np.array([0.659, -0.65796, 0.25749, 0.25789]), "goal_position":np.array([-18.13043, -5.78712-0, 0.922310]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":7, "position": np.array([0.11405, 0.9514, -0.16+0.34371+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-17.94611, -7.50448, 0.58583+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])} # {"index":7, "position": np.array([-0.57726, -0.00505, -0.16+0.65911]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-17.25466, -6.54783, 0.90123]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":7, "position": np.array([0.5517, 0.68287, -0.16+0.34371+0.2]), "orientation": np.array([0.5, 0.5, 0.5, -0.5]), "goal_position":np.array([-18.38395, -7.23584, 0.58583+0.2]), "goal_orientation":np.array([0.5, -0.5, 0.5, 0.5])} ] self.util.move_ur10(motion_plan, "_light") if self.util.motion_task_counter==2 and not self.bool_done[28]: self.bool_done[28] = True self.util.remove_part("World/Environment", f"light_0{self.id}") self.util.add_part_custom("World/UR10_light/ee_link","FFrontLightAssembly", f"qlight_{self.id}", np.array([0.001,0.001,0.001]), np.array([1.30826, -0.30485, -0.12023]), np.array([0.36036, -0.00194, 0.00463, 0.9328])) if self.util.motion_task_counter==6 and not self.bool_done[29]: self.bool_done[29] = True print("Done placing light") self.util.remove_part("World/UR10_light/ee_link", f"qlight_{self.id}") self.util.add_part_custom(f"mock_robot_{self.id}/platform","FFrontLightAssembly", f"xlight_{self.id}", np.array([0.001,0.001,0.001]), np.array([0.8669, -0.10851, 1.76492]), np.array([0.47905, -0.49076, 0.50734, 0.52179])) if self.util.motion_task_counter==8: self.util.motion_task_counter=0 return True return False def screw_light(self): light_offset=0.12284 # motion_plan = [{"index":0, "position": np.array([0.03769, -0.74077, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.06964, -4.37873, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":1, "position": np.array([0.03769, -0.74077, -0.16+0.43386]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.06964, -4.37873, 0.67627]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":2, "position": np.array([0.03769, -0.74077, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.06964, -4.37873, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":3, "position": np.array([0.10078, 0.73338+0.04105-light_offset, -0.16+0.5969+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.13269, -5.85288-0.04105, 0.83931+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, # {"index":4, "position": np.array([0.10078, 0.73338+0.04105-light_offset, -0.16+0.5969]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.13269, -5.85288-0.04105, 0.83931]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, # {"index":5, "position": np.array([0.10078, 0.73338+0.04105-light_offset, -0.16+0.5969+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.13269, -5.85288-0.04105, 0.83931+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, # {"index":6, "position": np.array([0.21628, -0.7386, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.24824, -4.38091, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":7, "position": np.array([0.21628, -0.7386, -0.16+0.43386]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.24824, -4.38091, 0.67627]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":8, "position": np.array([0.21628, -0.7386, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.24824, -4.38091, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, # {"index":9, "position": np.array([0.10078, 0.82997+0.04105-light_offset, -0.16+0.5969+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.13269, -5.94947-0.04105, 0.83931+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, # {"index":10, "position": np.array([0.10078, 0.82997+0.04105-light_offset, -0.16+0.5969]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.13269, -5.94947-0.04105, 0.83931]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, # {"index":11, "position": np.array([0.10078, 0.82997+0.04105-light_offset, -0.16+0.5969+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.13269, -5.94947-0.04105, 0.83931+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, # {"index":12, "position": np.array([0.03932, -0.71305, -0.16+0.42576+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.0712, -4.4, 0.66799+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}] motion_plan = [{"index":0, "position": np.array([0.03769, -0.74077, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.06964, -4.37873, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":1, "position": np.array([0.03769, -0.74077, -0.16+0.43386]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.06964, -4.37873, 0.67627]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":2, "position": np.array([0.03769, -0.74077, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.06964, -4.37873, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":3, "position": np.array([0.07394, 0.72035+0, -0.16+0.57846+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.10573, -5.84019-0, 0.82088+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":4, "position": np.array([0.07394, 0.72035+0, -0.16+0.57846]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.10573, -5.84019-0, 0.82088]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":5, "position": np.array([0.07394, 0.72035+0, -0.16+0.57846+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.10573, -5.84019-0, 0.82088+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":6, "position": np.array([0.21628, -0.7386, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.24824, -4.38091, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":7, "position": np.array([0.21628, -0.7386, -0.16+0.43386]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.24824, -4.38091, 0.67627]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":8, "position": np.array([0.21628, -0.7386, -0.16+0.43386+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.24824, -4.38091, 0.67627+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}, {"index":9, "position": np.array([0.07394, 0.61525+0, -0.16+0.57846+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.10573, -5.73509-0, 0.82088+0.2]), "goal_orientation":np.array([0, 0.70711, 0, -0.70711])}, {"index":10, "position": np.array([0.07394, 0.61525+0, -0.16+0.57846]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.10573, -5.73509-0, 0.82088]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":11, "position": np.array([0.07394, 0.61525+0, -0.16+0.57846+0.2]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-18.10573, -5.73509-0, 0.82088+0.2]), "goal_orientation":np.array([0, -0.70711, 0, 0.70711])}, {"index":12, "position": np.array([0.03932, -0.71305, -0.16+0.42576+0.2]), "orientation": np.array([0, 0.70711, 0, -0.70711]), "goal_position":np.array([-18.0712, -4.4, 0.66799+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}] self.util.do_screw_driving(motion_plan,"_light") if self.util.motion_task_counter==13: print("Done screwing light") self.util.motion_task_counter=0 return True return False def go_to_end_goal(self): print(self.util.path_plan_counter) path_plan = [["translate", [-9.95, 0, True]], ["wait",[]], ["rotate", [np.array([0.99341, 0, 0, -0.11458]), 0.0042, True]], ["wait",[]], ["translate", [-9.16, 0, True]], ["wait",[]], ["rotate", [np.array([1,0,0,0]), 0.0042, False]], ["wait",[]], ["translate", [8, 0, True]], ] if self.id==2 or self.id==4: path_plan = [["translate", [-9.95, 0, True]], ["wait",[]], ["rotate", [np.array([0.99341, 0, 0, -0.11458]), 0.0042, True]], ["wait",[]], ["translate", [-9.16, 0, True]], ["wait",[]], ["rotate", [np.array([1,0,0,0]), 0.0042, False]], ["wait",[]], ["wait",[]], ["wait",[]], ["wait",[]], ["wait",[]], ["wait",[]], ["translate", [8, 0, True]], ] self.util.move_mp(path_plan) # current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose() if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 self.moving_platform.apply_action(self.util._my_custom_controller.forward(command=[0.5,0])) self.util.remove_part(f"mock_robot_{self.id}","platform") self.util.remove_part(f"mock_robot_{self.id}","wheel_top_right") self.util.remove_part(f"mock_robot_{self.id}","wheel_top_left") self.util.remove_part(f"mock_robot_{self.id}","wheel_bottom_right") self.util.remove_part(f"mock_robot_{self.id}","wheel_bottom_left") # self.util.remove_part(None,f"mock_robot_{self.id}") # self.util.remove_part(None,f"mock_robot_{self.id}") # self.util.remove_part(None,f"mock_robot_{self.id}") # self.util.remove_part(None,f"mock_robot_{self.id}") # self.util.remove_part(None,f"mock_robot_{self.id}") # self.util.remove_part(None,f"mock_robot_{self.id}") return True return False def move_to_contingency_cell(self): print(self.util.path_plan_counter) path_plan = [ ["translate", [-23.937, 1, True]], ["wait",[]], ["rotate", [np.array([0,0,0,1]), 0.0042, True]], ["wait",[]], ["translate", [-35.63314, 0, True]], ["wait",[]], ["rotate", [np.array([0.70711, 0, 0, 0.70711]), 0.0042, True]], ["wait",[]], ["translate", [17.6, 1, True]], ["wait",[]], ["rotate", [np.array([1,0,0,0]), 0.0042, True]], ["wait",[]], ["translate", [-20.876, 0, True]]] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False def disassemble(self): print(self.disassembly_event) def delay_for(amount): if self.delay == amount: self.delay=0 self.disassembly_event+=1 return True else: self.delay+=1 return False # remove and add part if self.disassembly_event == 0: if not self.isDone[self.disassembly_event] and delay_for(100): self.util.remove_part(f"mock_robot_{self.id}/platform",f"xmain_cover_{self.id}") self.util.add_part_custom("World/Environment","main_cover", "qmain_cover", np.array([0.001, 0.001, 0.001]), np.array([-24.35262, 19.39603, -0.02519]), np.array([0.70711, 0.70711, 0, 0])) self.isDone[self.disassembly_event-1]=True # remove and add part elif self.disassembly_event == 1: if not self.isDone[self.disassembly_event] and delay_for(100): self.util.remove_part(f"mock_robot_{self.id}/platform",f"xlower_coverr_{self.id}") self.util.remove_part(f"mock_robot_{self.id}/platform",f"xlower_coverl_{self.id}") self.util.add_part_custom("World/Environment","lower_cover", "qlower_coverr", np.array([0.001, 0.001, 0.001]), np.array([-20.65511, 19.03402, 0.25662]), np.array([0,0,0.70711,0.70711])) self.util.add_part_custom("World/Environment","lower_cover", "qlower_coverl", np.array([0.001, 0.001, 0.001]), np.array([-20.29928, 19.04322, 0.25662]), np.array([0,0,-0.70711,-0.70711])) self.isDone[self.disassembly_event-1]=True # remove and add part elif self.disassembly_event == 2: if not self.isDone[self.disassembly_event] and delay_for(100): self.util.remove_part(f"mock_robot_{self.id}/platform",f"xwheel_01_{self.id}") self.util.remove_part(f"mock_robot_{self.id}/platform",f"xwheel_02_{self.id}") self.util.remove_part(f"mock_robot_{self.id}/platform",f"xwheel_03_{self.id}") self.util.remove_part(f"mock_robot_{self.id}/platform",f"xwheel_04_{self.id}") self.util.add_part_custom("World/Environment","FWheel", "qwheel_01", np.array([0.001, 0.001, 0.001]), np.array([-18.86967, 18.93091, 0.25559]), np.array([0.70711, 0, -0.70711, 0])) self.util.add_part_custom("World/Environment","FWheel", "qwheel_02", np.array([0.001, 0.001, 0.001]), np.array([-18.34981, 18.93091, 0.25559]), np.array([0.70711, 0, -0.70711, 0])) self.util.add_part_custom("World/Environment","FWheel", "qwheel_03", np.array([0.001, 0.001, 0.001]), np.array([-17.85765, 18.93091, 0.25559]), np.array([0.70711, 0, -0.70711, 0])) self.util.add_part_custom("World/Environment","FWheel", "qwheel_04", np.array([0.001, 0.001, 0.001]), np.array([-17.33776, 18.93091, 0.25559]), np.array([0.70711, 0, -0.70711, 0])) self.isDone[self.disassembly_event-1]=True # remove and add part elif self.disassembly_event == 3: if not self.isDone[self.disassembly_event] and delay_for(100): self.util.remove_part(f"mock_robot_{self.id}/platform",f"xfuel_{self.id}") self.util.add_part_custom("World/Environment","fuel", "qfuel", np.array([0.001, 0.001, 0.001]), np.array([-23.63045, 16.54196, 0.26478]), np.array([0.5,0.5,-0.5,-0.5])) self.isDone[self.disassembly_event-1]=True # remove and add part elif self.disassembly_event == 4: if not self.isDone[self.disassembly_event] and delay_for(100): self.util.remove_part(f"mock_robot_{self.id}/platform",f"xbattery_{self.id}") self.util.add_part_custom("World/Environment","battery", "qbattery", np.array([0.001, 0.001, 0.001]), np.array([-21.87392, 16.38365, 0.25864]), np.array([0.70711, 0.70711, 0, 0])) self.isDone[self.disassembly_event-1]=True # remove and add part elif self.disassembly_event == 5: if not self.isDone[self.disassembly_event] and delay_for(100): self.util.remove_part(f"mock_robot_{self.id}/platform",f"xFSuspensionBack_{self.id}") self.util.add_part_custom("World/Environment","FSuspensionBack", "qsuspension_back", np.array([0.001, 0.001, 0.001]), np.array([-20.82231, 16.78007, 0.24643]), np.array([0.5, 0.5, -0.5, 0.5])) self.isDone[self.disassembly_event-1]=True elif self.disassembly_event == 6: if not self.isDone[self.disassembly_event] and delay_for(100): self.util.remove_part(f"mock_robot_{self.id}/platform",f"engine_{self.id}") self.util.add_part_custom("World/Environment","engine_no_rigid", "qengine", np.array([0.001, 0.001, 0.001]), np.array([-19.07782, 16.35288, 0.43253]), np.array([0.99457,0,-0.10407,0])) self.isDone[self.disassembly_event-1]=True elif self.disassembly_event == 7: return True return False def carry_on(self): print(self.util.path_plan_counter) path_plan = [ ["translate", [-10.0529, 0, True]] ] self.util.move_mp(path_plan) if len(path_plan) == self.util.path_plan_counter: self.util.path_plan_counter=0 return True return False
191,906
Python
93.909496
322
0.554746
swadaskar/Isaac_Sim_Folder/extension_examples/hello_world/README.md
# Microfactory
17
Markdown
4.999998
14
0.705882
swadaskar/Isaac_Sim_Folder/extension_examples/simple_stack/simple_stack_extension.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.examples.simple_stack import SimpleStack import asyncio import omni.ui as ui from omni.isaac.ui.ui_utils import btn_builder class SimpleStackExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="Manipulation", submenu_name="", name="Simple Stack", title="Stack Two Cubes", doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html", overview="This Example shows how to stack two cubes using Franka robot in Isaac Sim.\n\nPress the 'Open in IDE' button to view the source code.", sample=SimpleStack(), file_path=os.path.abspath(__file__), number_of_extra_frames=1, ) self.task_ui_elements = {} frame = self.get_frame(index=0) self.build_task_controls_ui(frame) return def _on_stacking_button_event(self): asyncio.ensure_future(self.sample._on_stacking_event_async()) self.task_ui_elements["Start Stacking"].enabled = False return def post_reset_button_event(self): self.task_ui_elements["Start Stacking"].enabled = True return def post_load_button_event(self): self.task_ui_elements["Start Stacking"].enabled = True return def post_clear_button_event(self): self.task_ui_elements["Start Stacking"].enabled = False return def build_task_controls_ui(self, frame): with frame: with ui.VStack(spacing=5): # Update the Frame Title frame.title = "Task Controls" frame.visible = True dict = { "label": "Start Stacking", "type": "button", "text": "Start Stacking", "tooltip": "Start Stacking", "on_clicked_fn": self._on_stacking_button_event, } self.task_ui_elements["Start Stacking"] = btn_builder(**dict) self.task_ui_elements["Start Stacking"].enabled = False
2,678
Python
37.826086
157
0.626587
swadaskar/Isaac_Sim_Folder/extension_examples/simple_stack/simple_stack.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.base_sample import BaseSample from omni.isaac.franka.tasks import Stacking from omni.isaac.franka.controllers import StackingController class SimpleStack(BaseSample): def __init__(self) -> None: super().__init__() self._controller = None self._articulation_controller = None def setup_scene(self): world = self.get_world() world.add_task(Stacking(name="stacking_task")) return async def setup_post_load(self): self._franka_task = self._world.get_task(name="stacking_task") self._task_params = self._franka_task.get_params() my_franka = self._world.scene.get_object(self._task_params["robot_name"]["value"]) self._controller = StackingController( name="stacking_controller", gripper=my_franka.gripper, robot_articulation=my_franka, picking_order_cube_names=self._franka_task.get_cube_names(), robot_observation_name=my_franka.name, ) self._articulation_controller = my_franka.get_articulation_controller() return def _on_stacking_physics_step(self, step_size): observations = self._world.get_observations() actions = self._controller.forward(observations=observations) self._articulation_controller.apply_action(actions) if self._controller.is_done(): self._world.pause() return async def _on_stacking_event_async(self): world = self.get_world() world.add_physics_callback("sim_step", self._on_stacking_physics_step) await world.play_async() return async def setup_pre_reset(self): world = self.get_world() if world.physics_callback_exists("sim_step"): world.remove_physics_callback("sim_step") self._controller.reset() return def world_cleanup(self): self._controller = None return
2,380
Python
36.203124
90
0.667227
swadaskar/Isaac_Sim_Folder/extension_examples/simple_stack/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.simple_stack.simple_stack import SimpleStack from omni.isaac.examples.simple_stack.simple_stack_extension import SimpleStackExtension
588
Python
48.083329
88
0.823129
swadaskar/Isaac_Sim_Folder/extension_examples/kaya_gamepad/kaya_gamepad_extension.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.examples.kaya_gamepad import KayaGamepad class KayaGamepadExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) overview = "This Example shows how to drive a NVIDIA Kaya robot using a Gamepad in Isaac Sim." overview += "\n\nConnect a gamepad to the robot, and the press PLAY to begin simulating." overview += "\n\nPress the 'Open in IDE' button to view the source code." super().start_extension( menu_name="Input Devices", submenu_name="", name="Kaya Gamepad", title="NVIDIA Kaya Gamepad Example", doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_advanced_input_devices.html", overview=overview, file_path=os.path.abspath(__file__), sample=KayaGamepad(), ) return
1,415
Python
43.249999
120
0.698233
swadaskar/Isaac_Sim_Folder/extension_examples/kaya_gamepad/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.kaya_gamepad.kaya_gamepad import KayaGamepad from omni.isaac.examples.kaya_gamepad.kaya_gamepad_extension import KayaGamepadExtension
588
Python
48.083329
88
0.823129
swadaskar/Isaac_Sim_Folder/extension_examples/kaya_gamepad/kaya_gamepad.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from omni.isaac.examples.base_sample import BaseSample from omni.isaac.core.utils.nucleus import get_assets_root_path import omni.usd import carb import omni.graph.core as og class KayaGamepad(BaseSample): def __init__(self) -> None: super().__init__() def setup_scene(self): assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") return kaya_usd = assets_root_path + "/Isaac/Robots/Kaya/kaya.usd" kaya_ogn_usd = assets_root_path + "/Isaac/Robots/Kaya/kaya_ogn_gamepad.usd" stage = omni.usd.get_context().get_stage() graph_prim = stage.DefinePrim("/World", "Xform") graph_prim.GetReferences().AddReference(kaya_ogn_usd) def world_cleanup(self): pass
1,268
Python
36.323528
83
0.705836
pkoprov/CNC_robot_cell_DT/README.md
# Extension Project Template This project was automatically generated. - `app` - It is a folder link to the location of your *Omniverse Kit* based app. - `exts` - It is a folder where you can add new extensions. It was automatically added to extension search path. (Extension Manager -> Gear Icon -> Extension Search Path). Open this folder using Visual Studio Code. It will suggest you to install few extensions that will make python experience better. Look for "cell.dt" extension in extension manager and enable it. Try applying changes to any python files, it will hot-reload and you can observe results immediately. Alternatively, you can launch your app from console with this folder added to search path and your extension enabled, e.g.: ``` > app\omni.code.bat --ext-folder exts --enable company.hello.world ``` # App Link Setup If `app` folder link doesn't exist or broken it can be created again. For better developer experience it is recommended to create a folder link named `app` to the *Omniverse Kit* app installed from *Omniverse Launcher*. Convenience script to use is included. Run: ``` > link_app.bat ``` If successful you should see `app` folder link in the root of this repo. If multiple Omniverse apps is installed script will select recommended one. Or you can explicitly pass an app: ``` > link_app.bat --app create ``` You can also just pass a path to create link to: ``` > link_app.bat --path "C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4" ``` # Sharing Your Extensions This folder is ready to be pushed to any git repository. Once pushed direct link to a git repository can be added to *Omniverse Kit* extension search paths. Link might look like this: `git://github.com/[user]/[your_repo].git?branch=main&dir=exts` Notice `exts` is repo subfolder with extensions. More information can be found in "Git URL as Extension Search Paths" section of developers manual. To add a link to your *Omniverse Kit* based app go into: Extension Manager -> Gear Icon -> Extension Search Path
2,031
Markdown
37.339622
258
0.756278
pkoprov/CNC_robot_cell_DT/tools/scripts/link_app.py
import argparse import json import os import sys import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,814
Python
32.117647
133
0.562189
pkoprov/CNC_robot_cell_DT/tools/packman/config.packman.xml
<config remotes="cloudfront"> <remote2 name="cloudfront"> <transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" /> </remote2> </config>
211
XML
34.333328
123
0.691943
pkoprov/CNC_robot_cell_DT/tools/packman/bootstrap/install_package.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import shutil import sys import tempfile import zipfile __author__ = "hfannar" logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") class TemporaryDirectory: def __init__(self): self.path = None def __enter__(self): self.path = tempfile.mkdtemp() return self.path def __exit__(self, type, value, traceback): # Remove temporary data created shutil.rmtree(self.path) def install_package(package_src_path, package_dst_path): with zipfile.ZipFile(package_src_path, allowZip64=True) as zip_file, TemporaryDirectory() as temp_dir: zip_file.extractall(temp_dir) # Recursively copy (temp_dir will be automatically cleaned up on exit) try: # Recursive copy is needed because both package name and version folder could be missing in # target directory: shutil.copytree(temp_dir, package_dst_path) except OSError as exc: logger.warning("Directory %s already present, packaged installation aborted" % package_dst_path) else: logger.info("Package successfully installed to %s" % package_dst_path) install_package(sys.argv[1], sys.argv[2])
1,844
Python
33.166666
108
0.703362
pkoprov/CNC_robot_cell_DT/exts/cell.dt/cell/dt/extension.py
import omni.ext import omni.ui as ui from paho.mqtt import client as mqtt_client from pxr import UsdGeom, Gf from .models import Cube import carb.events # Event is unique integer id. Create it from string by hashing, using helper function. NEW_MESSAGE = carb.events.type_from_string("cell.dt.NEW_MESSAGE_EVENT") BUS = omni.kit.app.get_app().get_message_bus_event_stream() class SyncTwinMqttSampleExtension(omni.ext.IExt): def load_usd_model(self): print("loading model...") self.context = omni.usd.get_context() self_cube = Cube() def on_startup(self, ext_id): print("Digital Twin startup") # init data self.mqtt_connected = False self.target_prim = "/World/Cube" self.current_coord = ui.SimpleFloatModel(0) # init ui self.context = omni.usd.get_context() self._window = ui.Window("Digital Twin", width=300, height=350) with self._window.frame: with ui.VStack(): ui.Button("load model",clicked_fn=self.load_usd_model) ui.Label("Current Z coord") ui.StringField(self.current_coord) self.status_label = ui.Label("- not connected -") ui.Button("connect MQTT", clicked_fn=self.connect_mqtt) ui.Button("disconnect MQTT", clicked_fn=self.disconnect) # we want to know when model changes self._sub_stage_event = self.context.get_stage_event_stream().create_subscription_to_pop( self._on_stage_event) # find our xf prim if model already present self.find_xf_prim() # and we need a callback on each frame to update our xf prim self._app_update_sub = BUS.create_subscription_to_pop_by_type(NEW_MESSAGE, self._on_app_update_event, name="synctwin.mqtt_sample._on_app_update_event") # # called on every frame, be careful what to put there def _on_app_update_event(self, evt): # if we have found the transform lets update the translation if self.xf: translation_matrix = Gf.Matrix4d().SetTranslate(Gf.Vec3d(0, 0, evt.payload["Z"])) self.xf.MakeMatrixXform().Set(translation_matrix) # called on load def _on_stage_event(self, event): if event.type == int(omni.usd.StageEventType.OPENED): print("opened new model") self.find_xf_prim() # find the prim to be transformed def find_xf_prim(self): # get prim from input stage = self.context.get_stage() prim = stage.GetPrimAtPath(self.target_prim) self.xf = UsdGeom.Xformable(prim) if self.xf: msg = "found xf." else: msg = "## xf not found." self.status_label.text = msg print(msg) # connect to mqtt broker def connect_mqtt(self): # this is called when a message arrives def on_message(client, userdata, msg): msg_content = msg.payload.decode() print(f"Received `{msg_content}` from `{msg.topic}` topic") # userdata is self userdata.current_coord.set_value(float(msg_content)) BUS.push(NEW_MESSAGE, payload={'Z':float(msg_content)}) # called when connection to mqtt broker has been established def on_connect(client, userdata, flags, rc): print(f">> connected {client} {rc}") if rc == 0: userdata.status_label.text = "Connected to MQTT Broker!" topic = "ncsu/digital_twin/Cube" print(f"subscribing topic {topic}") client.subscribe(topic) else: userdata.status_label.text = f"Failed to connect, return code {rc}" # let us know when we've subscribed def on_subscribe(client, userdata, mid, granted_qos): print(f"subscribed {mid} {granted_qos}") # now connect broker if self.mqtt_connected: print("Already connected to MQTT Broker!") self.status_label.text = "Already connected to MQTT Broker!" return # Set Connecting Client ID self.client = mqtt_client.Client(mqtt_client.CallbackAPIVersion.VERSION1, 'Omni Cube Client') self.client.user_data_set(self) self.client.on_connect = on_connect self.client.on_message = on_message self.client.on_subscribe = on_subscribe self.client.connect("192.168.10.4") self.client.loop_start() self.mqtt_connected = True return def disconnect(self): print("disconnecting") self.client.disconnect() self.client.loop_stop() self.mqtt_connected = False self.status_label.text = "Disonnected from MQTT Broker!" def on_shutdown(self): print("Digital Twin shutdown") self.client = None self._app_update_sub = None
5,081
Python
36.367647
111
0.588073
pkoprov/CNC_robot_cell_DT/exts/cell.dt/cell/dt/__init__.py
from .extension import *
25
Python
11.999994
24
0.76
pkoprov/CNC_robot_cell_DT/exts/cell.dt/cell/dt/models.py
import omni.kit.commands as commands # from pxr import Usd # import omni.isaac.core.utils.prims as prim_utils class Cube(): def __init__(self): commands.execute('CreateMeshPrimWithDefaultXform',prim_type='Cube') class Light(): def __init__(self): commands.execute('CreatePrim', prim_type='DistantLight', attributes={'angle': 1.0, 'intensity': 3000}) # stage: Usd.Stage = Usd.Stage.CreateInMemory()
453
Python
24.222221
75
0.651214
pkoprov/CNC_robot_cell_DT/exts/cell.dt/cell/dt/tests/__init__.py
from .test_hello_world import *
31
Python
30.999969
31
0.774194
pkoprov/CNC_robot_cell_DT/exts/cell.dt/cell/dt/tests/test_hello_world.py
# NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test # Extnsion for writing UI tests (simulate UI interaction) import omni.kit.ui_test as ui_test # Import extension python module we are testing with absolute import path, as if we are external user (other extension) import cell.dt # Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test class Test(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): pass # After running each test async def tearDown(self): pass # Actual test, notice it is "async" function, so "await" can be used if needed async def test_hello_public_function(self): result = cell.dt.some_public_function(4) self.assertEqual(result, 256) async def test_window_button(self): # Find a label in our window label = ui_test.find("My Window//Frame/**/Label[*]") # Find buttons in our window add_button = ui_test.find("My Window//Frame/**/Button[*].text=='Add'") reset_button = ui_test.find("My Window//Frame/**/Button[*].text=='Reset'") # Click reset button await reset_button.click() self.assertEqual(label.widget.text, "empty") await add_button.click() self.assertEqual(label.widget.text, "count: 1") await add_button.click() self.assertEqual(label.widget.text, "count: 2")
1,650
Python
34.127659
142
0.678788
pkoprov/CNC_robot_cell_DT/exts/cell.dt/config/extension.toml
[package] # Semantic Versioning is used: https://semver.org/ version = "1.0.0" # Lists people or organizations that are considered the "authors" of the package. authors = ["Pavel Koprov"] # The title and description fields are primarily for displaying extension info in UI title = "cell dt" description="An extension to run the Digital Twin of CNC and Robot cell" # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "https://github.com/pkoprov/CNC_robot_cell_DT" # One of categories for UI. category = "other" # Keywords for the extension keywords = ["digital twin"] # Location of change log file in target (final) folder of extension, relative to the root. # More info on writing changelog: https://keepachangelog.com/en/1.0.0/ changelog="docs/CHANGELOG.md" # Preview image and icon. Folder named "data" automatically goes in git lfs (see .gitattributes file). # Preview image is shown in "Overview" of Extensions window. Screenshot of an extension might be a good preview image. preview_image = "data/preview.jpg" # Icon is shown in Extensions window, it is recommended to be square, of size 256x256. icon = "data/icon.png" # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} # Main python module this extension provides, it will be publicly available as "import cell.dt". [[python.module]] name = "cell.dt" [python.pipapi] requirements = ["paho-mqtt"] use_online_index = true [[test]] # Extra dependencies only to be used during test run dependencies = [ "omni.kit.ui_test" # UI testing extension ]
1,642
TOML
29.425925
118
0.74056
pkoprov/CNC_robot_cell_DT/exts/cell.dt/docs/CHANGELOG.md
# Changelog The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). ## [1.0.0] - 2021-04-26 - Initial version of extension UI template with a window
178
Markdown
18.888887
80
0.702247
pkoprov/CNC_robot_cell_DT/exts/cell.dt/docs/README.md
# Python Extension Example [cell.dt] This is an example of pure python Kit extension. It is intended to be copied and serve as a template to create new extensions.
166
Markdown
32.399994
126
0.777108
pkoprov/CNC_robot_cell_DT/exts/cell.dt/docs/index.rst
cell.dt ############################# Example of Python only extension .. toctree:: :maxdepth: 1 README CHANGELOG .. automodule::"cell.dt" :platform: Windows-x86_64, Linux-x86_64 :members: :undoc-members: :show-inheritance: :imported-members: :exclude-members: contextmanager
315
reStructuredText
14.047618
43
0.596825
zoctipus/cse542Project/pyproject.toml
[tool.isort] py_version = 310 line_length = 120 group_by_package = true # Files to skip skip_glob = ["docs/*", "logs/*", "_isaac_sim/*", ".vscode/*"] # Order of imports sections = [ "FUTURE", "STDLIB", "THIRDPARTY", "ASSETS_FIRSTPARTY", "FIRSTPARTY", "EXTRA_FIRSTPARTY", "LOCALFOLDER", ] # Extra standard libraries considered as part of python (permissive licenses extra_standard_library = [ "numpy", "h5py", "open3d", "torch", "tensordict", "bpy", "matplotlib", "gymnasium", "gym", "scipy", "hid", "yaml", "prettytable", "toml", "trimesh", "tqdm", ] # Imports from Isaac Sim and Omniverse known_third_party = [ "omni.isaac.core", "omni.replicator.isaac", "omni.replicator.core", "pxr", "omni.kit.*", "warp", "carb", ] # Imports from this repository known_first_party = "omni.isaac.orbit" known_assets_firstparty = "omni.isaac.orbit_assets" known_extra_firstparty = [ "omni.isaac.orbit_tasks" ] # Imports from the local folder known_local_folder = "config" [tool.pyright] include = ["source/extensions", "source/standalone"] exclude = [ "**/__pycache__", "**/_isaac_sim", "**/docs", "**/logs", ".git", ".vscode", ] typeCheckingMode = "basic" pythonVersion = "3.10" pythonPlatform = "Linux" enableTypeIgnoreComments = true # This is required as the CI pre-commit does not download the module (i.e. numpy, torch, prettytable) # Therefore, we have to ignore missing imports reportMissingImports = "none" # This is required to ignore for type checks of modules with stubs missing. reportMissingModuleSource = "none" # -> most common: prettytable in mdp managers reportGeneralTypeIssues = "none" # -> raises 218 errors (usage of literal MISSING in dataclasses) reportOptionalMemberAccess = "warning" # -> raises 8 errors reportPrivateUsage = "warning" [tool.codespell] skip = '*.usd,*.svg,*.png,_isaac_sim*,*.bib,*.css,*/_build' quiet-level = 0 # the world list should always have words in lower case ignore-words-list = "haa,slq,collapsable" # todo: this is hack to deal with incorrect spelling of "Environment" in the Isaac Sim grid world asset exclude-file = "source/extensions/omni.isaac.orbit/omni/isaac/orbit/sim/spawners/from_files/from_files.py"
2,314
TOML
23.627659
106
0.665946
zoctipus/cse542Project/CONTRIBUTING.md
# Contribution Guidelines Orbit is a community maintained project. We wholeheartedly welcome contributions to the project to make the framework more mature and useful for everyone. These may happen in forms of bug reports, feature requests, design proposals and more. For general information on how to contribute see <https://isaac-orbit.github.io/orbit/source/refs/contributing.html>.
388
Markdown
42.222218
110
0.81701
zoctipus/cse542Project/CONTRIBUTORS.md
# Orbit Developers and Contributors This is the official list of Orbit Project developers and contributors. To see the full list of contributors, please check the revision history in the source control. Guidelines for modifications: * Please keep the lists sorted alphabetically. * Names should be added to this file as: *individual names* or *organizations*. * E-mail addresses are tracked elsewhere to avoid spam. ## Developers * Boston Dynamics AI Institute, Inc. * ETH Zurich * NVIDIA Corporation & Affiliates * University of Toronto --- * David Hoeller * Farbod Farshidian * Hunter Hansen * James Smith * **Mayank Mittal** (maintainer) * Nikita Rudin * Pascal Roth ## Contributors * Anton Bjørndahl Mortensen * Alice Zhou * Andrej Orsula * Antonio Serrano-Muñoz * Arjun Bhardwaj * Calvin Yu * Chenyu Yang * Jia Lin Yuan * Jingzhou Liu * Muhong Guo * Kourosh Darvish * Özhan Özen * Qinxi Yu * René Zurbrügg * Ritvik Singh * Rosario Scalise * Shafeef Omar * Vladimir Fokow ## Acknowledgements * Ajay Mandlekar * Animesh Garg * Buck Babich * Gavriel State * Hammad Mazhar * Marco Hutter * Yunrong Guo
1,115
Markdown
17.6
94
0.756054
zoctipus/cse542Project/README.md
![Example Tasks created with ORBIT](docs/source/_static/tasks.jpg) --- # Orbit [![IsaacSim](https://img.shields.io/badge/IsaacSim-2023.1.1-silver.svg)](https://docs.omniverse.nvidia.com/isaacsim/latest/overview.html) [![Python](https://img.shields.io/badge/python-3.10-blue.svg)](https://docs.python.org/3/whatsnew/3.10.html) [![Linux platform](https://img.shields.io/badge/platform-linux--64-orange.svg)](https://releases.ubuntu.com/20.04/) [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://pre-commit.com/) [![Docs status](https://img.shields.io/badge/docs-passing-brightgreen.svg)](https://isaac-orbit.github.io/orbit) [![License](https://img.shields.io/badge/license-BSD--3-yellow.svg)](https://opensource.org/licenses/BSD-3-Clause) <!-- TODO: Replace docs status with workflow badge? Link: https://github.com/isaac-orbit/orbit/actions/workflows/docs.yaml/badge.svg --> **Orbit** is a unified and modular framework for robot learning that aims to simplify common workflows in robotics research (such as RL, learning from demonstrations, and motion planning). It is built upon [NVIDIA Isaac Sim](https://docs.omniverse.nvidia.com/isaacsim/latest/overview.html) to leverage the latest simulation capabilities for photo-realistic scenes and fast and accurate simulation. Please refer to our [documentation page](https://isaac-orbit.github.io/orbit) to learn more about the installation steps, features, tutorials, and how to set up your project with Orbit. ## Announcements * [17.04.2024] [**v0.3.0**](https://github.com/NVIDIA-Omniverse/orbit/releases/tag/v0.3.0): Several improvements and bug fixes to the framework. Includes cabinet opening and dexterous manipulation environments, terrain-aware patch sampling, and animation recording. * [22.12.2023] [**v0.2.0**](https://github.com/NVIDIA-Omniverse/orbit/releases/tag/v0.2.0): Significant breaking updates to enhance the modularity and user-friendliness of the framework. Also includes procedural terrain generation, warp-based custom ray-casters, and legged-locomotion environments. ## Contributing to Orbit We wholeheartedly welcome contributions from the community to make this framework mature and useful for everyone. These may happen as bug reports, feature requests, or code contributions. For details, please check our [contribution guidelines](https://isaac-orbit.github.io/orbit/source/refs/contributing.html). ## Troubleshooting Please see the [troubleshooting](https://isaac-orbit.github.io/orbit/source/refs/troubleshooting.html) section for common fixes or [submit an issue](https://github.com/NVIDIA-Omniverse/orbit/issues). For issues related to Isaac Sim, we recommend checking its [documentation](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html) or opening a question on its [forums](https://forums.developer.nvidia.com/c/agx-autonomous-machines/isaac/67). ## Support * Please use GitHub [Discussions](https://github.com/NVIDIA-Omniverse/Orbit/discussions) for discussing ideas, asking questions, and requests for new features. * Github [Issues](https://github.com/NVIDIA-Omniverse/orbit/issues) should only be used to track executable pieces of work with a definite scope and a clear deliverable. These can be fixing bugs, documentation issues, new features, or general updates. ## Acknowledgement NVIDIA Isaac Sim is available freely under [individual license](https://www.nvidia.com/en-us/omniverse/download/). For more information about its license terms, please check [here](https://docs.omniverse.nvidia.com/app_isaacsim/common/NVIDIA_Omniverse_License_Agreement.html#software-support-supplement). Orbit framework is released under [BSD-3 License](LICENSE). The license files of its dependencies and assets are present in the [`docs/licenses`](docs/licenses) directory. ## Citing If you use this framework in your work, please cite [this paper](https://arxiv.org/abs/2301.04195): ```text @article{mittal2023orbit, author={Mittal, Mayank and Yu, Calvin and Yu, Qinxi and Liu, Jingzhou and Rudin, Nikita and Hoeller, David and Yuan, Jia Lin and Singh, Ritvik and Guo, Yunrong and Mazhar, Hammad and Mandlekar, Ajay and Babich, Buck and State, Gavriel and Hutter, Marco and Garg, Animesh}, journal={IEEE Robotics and Automation Letters}, title={Orbit: A Unified Simulation Framework for Interactive Robot Learning Environments}, year={2023}, volume={8}, number={6}, pages={3740-3747}, doi={10.1109/LRA.2023.3270034} } ```
4,547
Markdown
59.639999
304
0.773257
zoctipus/cse542Project/tools/install_deps.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ A script with various methods of installing dependencies defined in an extension.toml """ import argparse import os import shutil import sys import toml from subprocess import SubprocessError, run # add argparse arguments parser = argparse.ArgumentParser(description="Utility to install dependencies based on an extension.toml") parser.add_argument("type", type=str, choices=["all", "apt", "rosdep"], help="The type of packages to install") parser.add_argument("path", type=str, help="The path to the extension which will have its deps installed") def install_apt_packages(path): """ A function which attempts to install apt packages for Orbit extensions. It looks in {extension_root}/config/extension.toml for [orbit_settings][apt_deps] and then attempts to install them. Exits on failure to stop the build process from continuing despite missing dependencies. Args: path: A path to the extension root """ try: if shutil.which("apt"): with open(f"{path}/config/extension.toml") as fd: ext_toml = toml.load(fd) if "orbit_settings" in ext_toml and "apt_deps" in ext_toml["orbit_settings"]: deps = ext_toml["orbit_settings"]["apt_deps"] print(f"[INFO] Installing the following apt packages: {deps}") run_and_print(["apt-get", "update"]) run_and_print(["apt-get", "install", "-y"] + deps) else: print("[INFO] No apt packages to install") else: raise RuntimeError("Exiting because 'apt' is not a known command") except SubprocessError as e: print(f"[ERROR]: {str(e.stderr, encoding='utf-8')}") sys.exit(1) except Exception as e: print(f"[ERROR]: {e}") sys.exit(1) def install_rosdep_packages(path): """ A function which attempts to install rosdep packages for Orbit extensions. It looks in {extension_root}/config/extension.toml for [orbit_settings][ros_ws] and then attempts to install all rosdeps under that workspace. Exits on failure to stop the build process from continuing despite missing dependencies. Args: path: A path to the extension root """ try: if shutil.which("rosdep"): with open(f"{path}/config/extension.toml") as fd: ext_toml = toml.load(fd) if "orbit_settings" in ext_toml and "ros_ws" in ext_toml["orbit_settings"]: ws_path = ext_toml["orbit_settings"]["ros_ws"] if not os.path.exists("/etc/ros/rosdep/sources.list.d/20-default.list"): run_and_print(["rosdep", "init"]) run_and_print(["rosdep", "update", "--rosdistro=humble"]) run_and_print([ "rosdep", "install", "--from-paths", f"{path}/{ws_path}/src", "--ignore-src", "-y", "--rosdistro=humble", ]) else: print("[INFO] No rosdep packages to install") else: raise RuntimeError("Exiting because 'rosdep' is not a known command") except SubprocessError as e: print(f"[ERROR]: {str(e.stderr, encoding='utf-8')}") sys.exit(1) except Exception as e: print(f"[ERROR]: {e}") sys.exit(1) def run_and_print(args): """ Runs a subprocess.run(args=args, capture_output=True, check=True), and prints the output """ completed_process = run(args=args, capture_output=True, check=True) print(f"{str(completed_process.stdout, encoding='utf-8')}") def main(): args = parser.parse_args() if args.type == "all": install_apt_packages(args.path) install_rosdep_packages(args.path) elif args.type == "apt": install_apt_packages(args.path) elif args.type == "rosdep": install_rosdep_packages(args.path) else: print(f"[ERROR] '{args.type}' type dependencies not installable") sys.exit(1) if __name__ == "__main__": main()
4,357
Python
35.316666
111
0.586413
zoctipus/cse542Project/tools/tests_to_skip.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # The following tests are skipped by run_tests.py TESTS_TO_SKIP = [ # orbit "test_argparser_launch.py", # app.close issue "test_env_var_launch.py", # app.close issue "test_kwarg_launch.py", # app.close issue "test_differential_ik.py", # Failing # orbit_tasks "test_data_collector.py", # Failing "test_record_video.py", # Failing ]
492
Python
27.999998
56
0.666667
zoctipus/cse542Project/tools/run_all_tests.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """A runner script for all the tests within source directory. .. code-block:: bash ./orbit.sh -p tools/run_all_tests.py # for dry run ./orbit.sh -p tools/run_all_tests.py --discover_only # for quiet run ./orbit.sh -p tools/run_all_tests.py --quiet # for increasing timeout (default is 600 seconds) ./orbit.sh -p tools/run_all_tests.py --timeout 1000 """ import argparse import logging import os import subprocess import sys import time from datetime import datetime from pathlib import Path from prettytable import PrettyTable # Tests to skip from tests_to_skip import TESTS_TO_SKIP ORBIT_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) """Path to the root directory of Orbit repository.""" def parse_args() -> argparse.Namespace: """Parse command line arguments.""" parser = argparse.ArgumentParser(description="Run all tests under current directory.") # add arguments parser.add_argument( "--skip_tests", default="", help="Space separated list of tests to skip in addition to those in tests_to_skip.py.", type=str, nargs="*", ) # configure default test directory (source directory) default_test_dir = os.path.join(ORBIT_PATH, "source") parser.add_argument( "--test_dir", type=str, default=default_test_dir, help="Path to the directory containing the tests." ) # configure default logging path based on time stamp log_file_name = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") + ".log" default_log_path = os.path.join(ORBIT_PATH, "logs", "test_results", log_file_name) parser.add_argument( "--log_path", type=str, default=default_log_path, help="Path to the log file to store the results in." ) parser.add_argument("--discover_only", action="store_true", help="Only discover and print tests, don't run them.") parser.add_argument("--quiet", action="store_true", help="Don't print to console, only log to file.") parser.add_argument("--timeout", type=int, default=600, help="Timeout for each test in seconds.") # parse arguments args = parser.parse_args() return args def test_all( test_dir: str, tests_to_skip: list[str], log_path: str, timeout: float = 600.0, discover_only: bool = False, quiet: bool = False, ) -> bool: """Run all tests under the given directory. Args: test_dir: Path to the directory containing the tests. tests_to_skip: List of tests to skip. log_path: Path to the log file to store the results in. timeout: Timeout for each test in seconds. Defaults to 600 seconds (10 minutes). discover_only: If True, only discover and print the tests without running them. Defaults to False. quiet: If False, print the output of the tests to the terminal console (in addition to the log file). Defaults to False. Returns: True if all un-skipped tests pass or `discover_only` is True. Otherwise, False. Raises: ValueError: If any test to skip is not found under the given `test_dir`. """ # Create the log directory if it doesn't exist os.makedirs(os.path.dirname(log_path), exist_ok=True) # Add file handler to log to file logging_handlers = [logging.FileHandler(log_path)] # We also want to print to console if not quiet: logging_handlers.append(logging.StreamHandler()) # Set up logger logging.basicConfig(level=logging.INFO, format="%(message)s", handlers=logging_handlers) # Discover all tests under current directory all_test_paths = [str(path) for path in Path(test_dir).resolve().rglob("*test_*.py")] skipped_test_paths = [] test_paths = [] # Check that all tests to skip are actually in the tests for test_to_skip in tests_to_skip: for test_path in all_test_paths: if test_to_skip in test_path: break else: raise ValueError(f"Test to skip '{test_to_skip}' not found in tests.") # Remove tests to skip from the list of tests to run if len(tests_to_skip) != 0: for test_path in all_test_paths: if any([test_to_skip in test_path for test_to_skip in tests_to_skip]): skipped_test_paths.append(test_path) else: test_paths.append(test_path) else: test_paths = all_test_paths # Sort test paths so they're always in the same order all_test_paths.sort() test_paths.sort() skipped_test_paths.sort() # Print tests to be run logging.info("\n" + "=" * 60 + "\n") logging.info(f"The following {len(all_test_paths)} tests were found:") for i, test_path in enumerate(all_test_paths): logging.info(f"{i + 1:02d}: {test_path}") logging.info("\n" + "=" * 60 + "\n") logging.info(f"The following {len(skipped_test_paths)} tests are marked to be skipped:") for i, test_path in enumerate(skipped_test_paths): logging.info(f"{i + 1:02d}: {test_path}") logging.info("\n" + "=" * 60 + "\n") # Exit if only discovering tests if discover_only: return True results = {} # Run each script and store results for test_path in test_paths: results[test_path] = {} before = time.time() logging.info("\n" + "-" * 60 + "\n") logging.info(f"[INFO] Running '{test_path}'\n") try: completed_process = subprocess.run( [sys.executable, test_path], check=True, capture_output=True, timeout=timeout ) except subprocess.TimeoutExpired as e: logging.error(f"Timeout occurred: {e}") result = "TIMEDOUT" stdout = e.stdout stderr = e.stderr except subprocess.CalledProcessError as e: # When check=True is passed to subprocess.run() above, CalledProcessError is raised if the process returns a # non-zero exit code. The caveat is returncode is not correctly updated in this case, so we simply # catch the exception and set this test as FAILED result = "FAILED" stdout = e.stdout stderr = e.stderr except Exception as e: logging.error(f"Unexpected exception {e}. Please report this issue on the repository.") result = "FAILED" stdout = e.stdout stderr = e.stderr else: # Should only get here if the process ran successfully, e.g. no exceptions were raised # but we still check the returncode just in case result = "PASSED" if completed_process.returncode == 0 else "FAILED" stdout = completed_process.stdout stderr = completed_process.stderr after = time.time() time_elapsed = after - before # Decode stdout and stderr and write to file and print to console if desired stdout_str = stdout.decode("utf-8") if stdout is not None else "" stderr_str = stderr.decode("utf-8") if stderr is not None else "" # Write to log file logging.info(stdout_str) logging.info(stderr_str) logging.info(f"[INFO] Time elapsed: {time_elapsed:.2f} s") logging.info(f"[INFO] Result '{test_path}': {result}") # Collect results results[test_path]["time_elapsed"] = time_elapsed results[test_path]["result"] = result # Calculate the number and percentage of passing tests num_tests = len(all_test_paths) num_passing = len([test_path for test_path in test_paths if results[test_path]["result"] == "PASSED"]) num_failing = len([test_path for test_path in test_paths if results[test_path]["result"] == "FAILED"]) num_timing_out = len([test_path for test_path in test_paths if results[test_path]["result"] == "TIMEDOUT"]) num_skipped = len(skipped_test_paths) if num_tests == 0: passing_percentage = 100 else: passing_percentage = (num_passing + num_skipped) / num_tests * 100 # Print summaries of test results summary_str = "\n\n" summary_str += "===================\n" summary_str += "Test Result Summary\n" summary_str += "===================\n" summary_str += f"Total: {num_tests}\n" summary_str += f"Passing: {num_passing}\n" summary_str += f"Failing: {num_failing}\n" summary_str += f"Skipped: {num_skipped}\n" summary_str += f"Timing Out: {num_timing_out}\n" summary_str += f"Passing Percentage: {passing_percentage:.2f}%\n" # Print time elapsed in hours, minutes, seconds total_time = sum([results[test_path]["time_elapsed"] for test_path in test_paths]) summary_str += f"Total Time Elapsed: {total_time // 3600}h" summary_str += f"{total_time // 60 % 60}m" summary_str += f"{total_time % 60:.2f}s" summary_str += "\n\n=======================\n" summary_str += "Per Test Result Summary\n" summary_str += "=======================\n" # Construct table of results per test per_test_result_table = PrettyTable(field_names=["Test Path", "Result", "Time (s)"]) per_test_result_table.align["Test Path"] = "l" per_test_result_table.align["Time (s)"] = "r" for test_path in test_paths: per_test_result_table.add_row( [test_path, results[test_path]["result"], f"{results[test_path]['time_elapsed']:0.2f}"] ) for test_path in skipped_test_paths: per_test_result_table.add_row([test_path, "SKIPPED", "N/A"]) summary_str += per_test_result_table.get_string() # Print summary to console and log file logging.info(summary_str) # Only count failing and timing out tests towards failure return num_failing + num_timing_out == 0 if __name__ == "__main__": # parse command line arguments args = parse_args() # add tests to skip to the list of tests to skip tests_to_skip = TESTS_TO_SKIP tests_to_skip += args.skip_tests # run all tests test_success = test_all( test_dir=args.test_dir, tests_to_skip=tests_to_skip, log_path=args.log_path, timeout=args.timeout, discover_only=args.discover_only, quiet=args.quiet, ) # update exit status based on all tests passing or not if not test_success: exit(1)
10,432
Python
36.394265
120
0.625863
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/setup.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Installation script for the 'omni.isaac.orbit_tasks' python package.""" import itertools import os import toml from setuptools import setup # Obtain the extension data from the extension.toml file EXTENSION_PATH = os.path.dirname(os.path.realpath(__file__)) # Read the extension.toml file EXTENSION_TOML_DATA = toml.load(os.path.join(EXTENSION_PATH, "config", "extension.toml")) # Minimum dependencies required prior to installation INSTALL_REQUIRES = [ # generic "numpy", "torch==2.0.1", "torchvision>=0.14.1", # ensure compatibility with torch 1.13.1 "protobuf>=3.20.2", # data collection "h5py", # basic logger "tensorboard", # video recording "moviepy", ] # Extra dependencies for RL agents EXTRAS_REQUIRE = { "sb3": ["stable-baselines3>=2.0"], "skrl": ["skrl>=1.1.0"], "rl_games": ["rl-games==1.6.1", "gym"], # rl-games still needs gym :( "rsl_rl": ["rsl_rl@git+https://github.com/leggedrobotics/rsl_rl.git"], "robomimic": ["robomimic@git+https://github.com/ARISE-Initiative/robomimic.git"], } # cumulation of all extra-requires EXTRAS_REQUIRE["all"] = list(itertools.chain.from_iterable(EXTRAS_REQUIRE.values())) # Installation operation setup( name="omni-isaac-orbit_tasks", author="ORBIT Project Developers", maintainer="Mayank Mittal", maintainer_email="[email protected]", url=EXTENSION_TOML_DATA["package"]["repository"], version=EXTENSION_TOML_DATA["package"]["version"], description=EXTENSION_TOML_DATA["package"]["description"], keywords=EXTENSION_TOML_DATA["package"]["keywords"], include_package_data=True, python_requires=">=3.10", install_requires=INSTALL_REQUIRES, extras_require=EXTRAS_REQUIRE, packages=["omni.isaac.orbit_tasks"], classifiers=[ "Natural Language :: English", "Programming Language :: Python :: 3.10", "Isaac Sim :: 2023.1.0-hotfix.1", "Isaac Sim :: 2023.1.1", ], zip_safe=False, )
2,113
Python
29.637681
89
0.67345
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/test/test_environments.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import torch import unittest import omni.usd from omni.isaac.orbit.envs import RLTaskEnv, RLTaskEnvCfg import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils.parse_cfg import parse_env_cfg class TestEnvironments(unittest.TestCase): """Test cases for all registered environments.""" @classmethod def setUpClass(cls): # acquire all Isaac environments names cls.registered_tasks = list() for task_spec in gym.registry.values(): if "Isaac" in task_spec.id: cls.registered_tasks.append(task_spec.id) # sort environments by name cls.registered_tasks.sort() # print all existing task names print(">>> All registered environments:", cls.registered_tasks) """ Test fixtures. """ def test_multiple_instances_gpu(self): """Run all environments with multiple instances and check environments return valid signals.""" # common parameters num_envs = 32 use_gpu = True # iterate over all registered environments for task_name in self.registered_tasks: with self.subTest(task_name=task_name): print(f">>> Running test for environment: {task_name}") # check environment self._check_random_actions(task_name, use_gpu, num_envs, num_steps=100) # close the environment print(f">>> Closing environment: {task_name}") print("-" * 80) def test_single_instance_gpu(self): """Run all environments with single instance and check environments return valid signals.""" # common parameters num_envs = 1 use_gpu = True # iterate over all registered environments for task_name in self.registered_tasks: with self.subTest(task_name=task_name): print(f">>> Running test for environment: {task_name}") # check environment self._check_random_actions(task_name, use_gpu, num_envs, num_steps=100) # close the environment print(f">>> Closing environment: {task_name}") print("-" * 80) """ Helper functions. """ def _check_random_actions(self, task_name: str, use_gpu: bool, num_envs: int, num_steps: int = 1000): """Run random actions and check environments return valid signals.""" # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: RLTaskEnvCfg = parse_env_cfg(task_name, use_gpu=use_gpu, num_envs=num_envs) # create environment env: RLTaskEnv = gym.make(task_name, cfg=env_cfg) # reset environment obs, _ = env.reset() # check signal self.assertTrue(self._check_valid_tensor(obs)) # simulate environment for num_steps steps with torch.inference_mode(): for _ in range(num_steps): # sample actions from -1 to 1 actions = 2 * torch.rand(env.action_space.shape, device=env.unwrapped.device) - 1 # apply actions transition = env.step(actions) # check signals for data in transition: self.assertTrue(self._check_valid_tensor(data), msg=f"Invalid data: {data}") # close the environment env.close() @staticmethod def _check_valid_tensor(data: torch.Tensor | dict) -> bool: """Checks if given data does not have corrupted values. Args: data: Data buffer. Returns: True if the data is valid. """ if isinstance(data, torch.Tensor): return not torch.any(torch.isnan(data)) elif isinstance(data, dict): valid_tensor = True for value in data.values(): if isinstance(value, dict): valid_tensor &= TestEnvironments._check_valid_tensor(value) elif isinstance(value, torch.Tensor): valid_tensor &= not torch.any(torch.isnan(value)) return valid_tensor else: raise ValueError(f"Input data of invalid type: {type(data)}.") if __name__ == "__main__": run_tests()
4,679
Python
33.666666
105
0.600769
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/test/test_data_collector.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import os import torch import unittest from omni.isaac.orbit_tasks.utils.data_collector import RobomimicDataCollector class TestRobomimicDataCollector(unittest.TestCase): """Test dataset flushing behavior of robomimic data collector.""" def test_basic_flushing(self): """Adds random data into the collector and checks saving of the data.""" # name of the environment (needed by robomimic) task_name = "My-Task-v0" # specify directory for logging experiments test_dir = os.path.dirname(os.path.abspath(__file__)) log_dir = os.path.join(test_dir, "output", "demos") # name of the file to save data filename = "hdf_dataset.hdf5" # number of episodes to collect num_demos = 10 # number of environments to simulate num_envs = 4 # create data-collector collector_interface = RobomimicDataCollector(task_name, log_dir, filename, num_demos) # reset the collector collector_interface.reset() while not collector_interface.is_stopped(): # generate random data to store # -- obs obs = {"joint_pos": torch.randn(num_envs, 7), "joint_vel": torch.randn(num_envs, 7)} # -- actions actions = torch.randn(num_envs, 7) # -- next obs next_obs = {"joint_pos": torch.randn(num_envs, 7), "joint_vel": torch.randn(num_envs, 7)} # -- rewards rewards = torch.randn(num_envs) # -- dones dones = torch.rand(num_envs) > 0.5 # store signals # -- obs for key, value in obs.items(): collector_interface.add(f"obs/{key}", value) # -- actions collector_interface.add("actions", actions) # -- next_obs for key, value in next_obs.items(): collector_interface.add(f"next_obs/{key}", value.cpu().numpy()) # -- rewards collector_interface.add("rewards", rewards) # -- dones collector_interface.add("dones", dones) # flush data from collector for successful environments # note: in this case we flush all the time reset_env_ids = dones.nonzero(as_tuple=False).squeeze(-1) collector_interface.flush(reset_env_ids) # close collector collector_interface.close() # TODO: Add inspection of the saved dataset as part of the test. if __name__ == "__main__": run_tests()
2,906
Python
32.802325
101
0.602546
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/test/test_record_video.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True, offscreen_render=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import os import torch import unittest import omni.usd from omni.isaac.orbit.envs import RLTaskEnvCfg import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils import parse_env_cfg class TestRecordVideoWrapper(unittest.TestCase): """Test recording videos using the RecordVideo wrapper.""" @classmethod def setUpClass(cls): # acquire all Isaac environments names cls.registered_tasks = list() for task_spec in gym.registry.values(): if "Isaac" in task_spec.id: cls.registered_tasks.append(task_spec.id) # sort environments by name cls.registered_tasks.sort() # print all existing task names print(">>> All registered environments:", cls.registered_tasks) # directory to save videos cls.videos_dir = os.path.join(os.path.dirname(__file__), "output", "videos") def setUp(self) -> None: # common parameters self.num_envs = 16 self.use_gpu = True # video parameters self.step_trigger = lambda step: step % 225 == 0 self.video_length = 200 def test_record_video(self): """Run random actions agent with recording of videos.""" for task_name in self.registered_tasks: with self.subTest(task_name=task_name): print(f">>> Running test for environment: {task_name}") # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: RLTaskEnvCfg = parse_env_cfg(task_name, use_gpu=self.use_gpu, num_envs=self.num_envs) # create environment env = gym.make(task_name, cfg=env_cfg, render_mode="rgb_array") # directory to save videos videos_dir = os.path.join(self.videos_dir, task_name) # wrap environment to record videos env = gym.wrappers.RecordVideo( env, videos_dir, step_trigger=self.step_trigger, video_length=self.video_length, disable_logger=True, ) # reset environment env.reset() # simulate environment with torch.inference_mode(): for _ in range(500): # compute zero actions actions = 2 * torch.rand(env.action_space.shape, device=env.unwrapped.device) - 1 # apply actions _ = env.step(actions) # close the simulator env.close() if __name__ == "__main__": run_tests()
3,127
Python
31.926315
110
0.579789
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/test/wrappers/test_rsl_rl_wrapper.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import torch import unittest import omni.usd from omni.isaac.orbit.envs import RLTaskEnvCfg import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils.parse_cfg import parse_env_cfg from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import RslRlVecEnvWrapper class TestRslRlVecEnvWrapper(unittest.TestCase): """Test that RSL-RL VecEnv wrapper works as expected.""" @classmethod def setUpClass(cls): # acquire all Isaac environments names cls.registered_tasks = list() for task_spec in gym.registry.values(): if "Isaac" in task_spec.id: cls.registered_tasks.append(task_spec.id) # sort environments by name cls.registered_tasks.sort() # only pick the first four environments to test cls.registered_tasks = cls.registered_tasks[:4] # print all existing task names print(">>> All registered environments:", cls.registered_tasks) def setUp(self) -> None: # common parameters self.num_envs = 64 self.use_gpu = True def test_random_actions(self): """Run random actions and check environments return valid signals.""" for task_name in self.registered_tasks: with self.subTest(task_name=task_name): print(f">>> Running test for environment: {task_name}") # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: RLTaskEnvCfg = parse_env_cfg(task_name, use_gpu=self.use_gpu, num_envs=self.num_envs) # create environment env = gym.make(task_name, cfg=env_cfg) # wrap environment env = RslRlVecEnvWrapper(env) # reset environment obs, extras = env.reset() # check signal self.assertTrue(self._check_valid_tensor(obs)) self.assertTrue(self._check_valid_tensor(extras)) # simulate environment for 1000 steps with torch.inference_mode(): for _ in range(1000): # sample actions from -1 to 1 actions = 2 * torch.rand(env.action_space.shape, device=env.unwrapped.device) - 1 # apply actions transition = env.step(actions) # check signals for data in transition: self.assertTrue(self._check_valid_tensor(data), msg=f"Invalid data: {data}") # close the environment print(f">>> Closing environment: {task_name}") env.close() def test_no_time_outs(self): """Check that environments with finite horizon do not send time-out signals.""" for task_name in self.registered_tasks: with self.subTest(task_name=task_name): print(f">>> Running test for environment: {task_name}") # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: RLTaskEnvCfg = parse_env_cfg(task_name, use_gpu=self.use_gpu, num_envs=self.num_envs) # change to finite horizon env_cfg.is_finite_horizon = True # create environment env = gym.make(task_name, cfg=env_cfg) # wrap environment env = RslRlVecEnvWrapper(env) # reset environment _, extras = env.reset() # check signal self.assertNotIn("time_outs", extras, msg="Time-out signal found in finite horizon environment.") # simulate environment for 10 steps with torch.inference_mode(): for _ in range(10): # sample actions from -1 to 1 actions = 2 * torch.rand(env.action_space.shape, device=env.unwrapped.device) - 1 # apply actions extras = env.step(actions)[-1] # check signals self.assertNotIn( "time_outs", extras, msg="Time-out signal found in finite horizon environment." ) # close the environment print(f">>> Closing environment: {task_name}") env.close() """ Helper functions. """ @staticmethod def _check_valid_tensor(data: torch.Tensor | dict) -> bool: """Checks if given data does not have corrupted values. Args: data: Data buffer. Returns: True if the data is valid. """ if isinstance(data, torch.Tensor): return not torch.any(torch.isnan(data)) elif isinstance(data, dict): valid_tensor = True for value in data.values(): if isinstance(value, dict): valid_tensor &= TestRslRlVecEnvWrapper._check_valid_tensor(value) elif isinstance(value, torch.Tensor): valid_tensor &= not torch.any(torch.isnan(value)) return valid_tensor else: raise ValueError(f"Input data of invalid type: {type(data)}.") if __name__ == "__main__": run_tests()
5,796
Python
36.160256
113
0.559179
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/test/wrappers/test_rl_games_wrapper.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import torch import unittest import omni.usd from omni.isaac.orbit.envs import RLTaskEnvCfg import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils.parse_cfg import parse_env_cfg from omni.isaac.orbit_tasks.utils.wrappers.rl_games import RlGamesVecEnvWrapper class TestRlGamesVecEnvWrapper(unittest.TestCase): """Test that RL-Games VecEnv wrapper works as expected.""" @classmethod def setUpClass(cls): # acquire all Isaac environments names cls.registered_tasks = list() for task_spec in gym.registry.values(): if "Isaac" in task_spec.id: cls.registered_tasks.append(task_spec.id) # sort environments by name cls.registered_tasks.sort() # only pick the first four environments to test cls.registered_tasks = cls.registered_tasks[:4] # print all existing task names print(">>> All registered environments:", cls.registered_tasks) def setUp(self) -> None: # common parameters self.num_envs = 64 self.use_gpu = True def test_random_actions(self): """Run random actions and check environments return valid signals.""" for task_name in self.registered_tasks: with self.subTest(task_name=task_name): print(f">>> Running test for environment: {task_name}") # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: RLTaskEnvCfg = parse_env_cfg(task_name, use_gpu=self.use_gpu, num_envs=self.num_envs) # create environment env = gym.make(task_name, cfg=env_cfg) # wrap environment env = RlGamesVecEnvWrapper(env, "cuda:0", 100, 100) # reset environment obs = env.reset() # check signal self.assertTrue(self._check_valid_tensor(obs)) # simulate environment for 100 steps with torch.inference_mode(): for _ in range(100): # sample actions from -1 to 1 actions = 2 * torch.rand(env.num_envs, *env.action_space.shape, device=env.device) - 1 # apply actions transition = env.step(actions) # check signals for data in transition: self.assertTrue(self._check_valid_tensor(data), msg=f"Invalid data: {data}") # close the environment print(f">>> Closing environment: {task_name}") env.close() """ Helper functions. """ @staticmethod def _check_valid_tensor(data: torch.Tensor | dict) -> bool: """Checks if given data does not have corrupted values. Args: data: Data buffer. Returns: True if the data is valid. """ if isinstance(data, torch.Tensor): return not torch.any(torch.isnan(data)) elif isinstance(data, dict): valid_tensor = True for value in data.values(): if isinstance(value, dict): valid_tensor &= TestRlGamesVecEnvWrapper._check_valid_tensor(value) elif isinstance(value, torch.Tensor): valid_tensor &= not torch.any(torch.isnan(value)) return valid_tensor else: raise ValueError(f"Input data of invalid type: {type(data)}.") if __name__ == "__main__": run_tests()
3,997
Python
33.17094
110
0.583688
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/test/wrappers/test_sb3_wrapper.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Launch Isaac Sim Simulator first.""" from omni.isaac.orbit.app import AppLauncher, run_tests # launch the simulator app_launcher = AppLauncher(headless=True) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import numpy as np import torch import unittest import omni.usd from omni.isaac.orbit.envs import RLTaskEnvCfg import omni.isaac.orbit_tasks # noqa: F401 from omni.isaac.orbit_tasks.utils.parse_cfg import parse_env_cfg from omni.isaac.orbit_tasks.utils.wrappers.sb3 import Sb3VecEnvWrapper class TestStableBaselines3VecEnvWrapper(unittest.TestCase): """Test that RSL-RL VecEnv wrapper works as expected.""" @classmethod def setUpClass(cls): # acquire all Isaac environments names cls.registered_tasks = list() for task_spec in gym.registry.values(): if "Isaac" in task_spec.id: cls.registered_tasks.append(task_spec.id) # sort environments by name cls.registered_tasks.sort() # only pick the first four environments to test cls.registered_tasks = cls.registered_tasks[:4] # print all existing task names print(">>> All registered environments:", cls.registered_tasks) def setUp(self) -> None: # common parameters self.num_envs = 64 self.use_gpu = True def test_random_actions(self): """Run random actions and check environments return valid signals.""" for task_name in self.registered_tasks: with self.subTest(task_name=task_name): print(f">>> Running test for environment: {task_name}") # create a new stage omni.usd.get_context().new_stage() # parse configuration env_cfg: RLTaskEnvCfg = parse_env_cfg(task_name, use_gpu=self.use_gpu, num_envs=self.num_envs) # create environment env = gym.make(task_name, cfg=env_cfg) # wrap environment env = Sb3VecEnvWrapper(env) # reset environment obs = env.reset() # check signal self.assertTrue(self._check_valid_array(obs)) # simulate environment for 1000 steps with torch.inference_mode(): for _ in range(1000): # sample actions from -1 to 1 actions = 2 * np.random.rand(env.num_envs, *env.action_space.shape) - 1 # apply actions transition = env.step(actions) # check signals for data in transition: self.assertTrue(self._check_valid_array(data), msg=f"Invalid data: {data}") # close the environment print(f">>> Closing environment: {task_name}") env.close() """ Helper functions. """ @staticmethod def _check_valid_array(data: np.ndarray | dict | list) -> bool: """Checks if given data does not have corrupted values. Args: data: Data buffer. Returns: True if the data is valid. """ if isinstance(data, np.ndarray): return not np.any(np.isnan(data)) elif isinstance(data, dict): valid_array = True for value in data.values(): if isinstance(value, dict): valid_array &= TestStableBaselines3VecEnvWrapper._check_valid_array(value) elif isinstance(value, np.ndarray): valid_array &= not np.any(np.isnan(value)) return valid_array elif isinstance(data, list): valid_array = True for value in data: valid_array &= TestStableBaselines3VecEnvWrapper._check_valid_array(value) return valid_array else: raise ValueError(f"Input data of invalid type: {type(data)}.") if __name__ == "__main__": run_tests()
4,188
Python
33.05691
110
0.582139
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/config/extension.toml
[package] # Note: Semantic Versioning is used: https://semver.org/ version = "0.6.1" # Description title = "ORBIT Environments" description="Extension containing suite of environments for robot learning." readme = "docs/README.md" repository = "https://github.com/NVIDIA-Omniverse/Orbit" category = "robotics" keywords = ["robotics", "rl", "il", "learning"] [dependencies] "omni.isaac.orbit" = {} "omni.isaac.orbit_assets" = {} "omni.isaac.core" = {} "omni.isaac.gym" = {} "omni.replicator.isaac" = {} [[python.module]] name = "omni.isaac.orbit_tasks"
557
TOML
23.260869
76
0.696589
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Package containing task implementations for various robotic environments.""" import os import toml # Conveniences to other module directories via relative paths ORBIT_TASKS_EXT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../../")) """Path to the extension source directory.""" ORBIT_TASKS_METADATA = toml.load(os.path.join(ORBIT_TASKS_EXT_DIR, "config", "extension.toml")) """Extension metadata dictionary parsed from the extension.toml file.""" # Configure the module-level variables __version__ = ORBIT_TASKS_METADATA["package"]["version"] ## # Register Gym environments. ## from .utils import import_packages # The blacklist is used to prevent importing configs from sub-packages _BLACKLIST_PKGS = ["utils"] # Import all configs in this package import_packages(__name__, _BLACKLIST_PKGS)
946
Python
29.548386
95
0.742072
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Classic environments for control. These environments are based on the MuJoCo environments provided by OpenAI. Reference: https://github.com/openai/gym/tree/master/gym/envs/mujoco """
315
Python
23.307691
75
0.75873
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/ant/ant_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators import ImplicitActuatorCfg from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.terrains import TerrainImporterCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR import omni.isaac.orbit_tasks.classic.humanoid.mdp as mdp ## # Scene definition ## @configclass class MySceneCfg(InteractiveSceneCfg): """Configuration for the terrain scene with an ant robot.""" # terrain terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="average", restitution_combine_mode="average", static_friction=1.0, dynamic_friction=1.0, restitution=0.0, ), debug_vis=False, ) # robot robot = ArticulationCfg( prim_path="{ENV_REGEX_NS}/Robot", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Ant/ant_instanceable.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=False, max_depenetration_velocity=10.0, enable_gyroscopic_forces=True, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=False, solver_position_iteration_count=4, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.001, ), copy_from_source=False, ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 0.5), joint_pos={ ".*_leg": 0.0, "front_left_foot": 0.785398, # 45 degrees "front_right_foot": -0.785398, "left_back_foot": -0.785398, "right_back_foot": 0.785398, }, ), actuators={ "body": ImplicitActuatorCfg( joint_names_expr=[".*"], stiffness=0.0, damping=0.0, ), }, ) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(color=(0.75, 0.75, 0.75), intensity=3000.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command terms for the MDP.""" # no commands for this MDP null = mdp.NullCommandCfg() @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_effort = mdp.JointEffortActionCfg(asset_name="robot", joint_names=[".*"], scale=7.5) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for the policy.""" base_height = ObsTerm(func=mdp.base_pos_z) base_lin_vel = ObsTerm(func=mdp.base_lin_vel) base_ang_vel = ObsTerm(func=mdp.base_ang_vel) base_yaw_roll = ObsTerm(func=mdp.base_yaw_roll) base_angle_to_target = ObsTerm(func=mdp.base_angle_to_target, params={"target_pos": (1000.0, 0.0, 0.0)}) base_up_proj = ObsTerm(func=mdp.base_up_proj) base_heading_proj = ObsTerm(func=mdp.base_heading_proj, params={"target_pos": (1000.0, 0.0, 0.0)}) joint_pos_norm = ObsTerm(func=mdp.joint_pos_limit_normalized) joint_vel_rel = ObsTerm(func=mdp.joint_vel_rel, scale=0.2) feet_body_forces = ObsTerm( func=mdp.body_incoming_wrench, scale=0.1, params={ "asset_cfg": SceneEntityCfg( "robot", body_names=["front_left_foot", "front_right_foot", "left_back_foot", "right_back_foot"] ) }, ) actions = ObsTerm(func=mdp.last_action) def __post_init__(self): self.enable_corruption = False self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" reset_base = EventTerm( func=mdp.reset_root_state_uniform, mode="reset", params={"pose_range": {}, "velocity_range": {}}, ) reset_robot_joints = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "position_range": (-0.2, 0.2), "velocity_range": (-0.1, 0.1), }, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # (1) Reward for moving forward progress = RewTerm(func=mdp.progress_reward, weight=1.0, params={"target_pos": (1000.0, 0.0, 0.0)}) # (2) Stay alive bonus alive = RewTerm(func=mdp.is_alive, weight=0.5) # (3) Reward for non-upright posture upright = RewTerm(func=mdp.upright_posture_bonus, weight=0.1, params={"threshold": 0.93}) # (4) Reward for moving in the right direction move_to_target = RewTerm( func=mdp.move_to_target_bonus, weight=0.5, params={"threshold": 0.8, "target_pos": (1000.0, 0.0, 0.0)} ) # (5) Penalty for large action commands action_l2 = RewTerm(func=mdp.action_l2, weight=-0.005) # (6) Penalty for energy consumption energy = RewTerm(func=mdp.power_consumption, weight=-0.05, params={"gear_ratio": {".*": 15.0}}) # (7) Penalty for reaching close to joint limits joint_limits = RewTerm( func=mdp.joint_limits_penalty_ratio, weight=-0.1, params={"threshold": 0.99, "gear_ratio": {".*": 15.0}} ) @configclass class TerminationsCfg: """Termination terms for the MDP.""" # (1) Terminate if the episode length is exceeded time_out = DoneTerm(func=mdp.time_out, time_out=True) # (2) Terminate if the robot falls torso_height = DoneTerm(func=mdp.root_height_below_minimum, params={"minimum_height": 0.31}) @configclass class CurriculumCfg: """Curriculum terms for the MDP.""" pass @configclass class AntEnvCfg(RLTaskEnvCfg): """Configuration for the MuJoCo-style Ant walking environment.""" # Scene settings scene: MySceneCfg = MySceneCfg(num_envs=4096, env_spacing=5.0) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # MDP settings rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() events: EventCfg = EventCfg() curriculum: CurriculumCfg = CurriculumCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 2 self.episode_length_s = 16.0 # simulation settings self.sim.dt = 1 / 120.0 self.sim.physx.bounce_threshold_velocity = 0.2 # default friction material self.sim.physics_material.static_friction = 1.0 self.sim.physics_material.dynamic_friction = 1.0 self.sim.physics_material.restitution = 0.0
7,721
Python
31.445378
116
0.627898
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/ant/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Ant locomotion environment (similar to OpenAI Gym Ant-v2). """ import gymnasium as gym from . import agents, ant_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Ant-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": ant_env_cfg.AntEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.AntPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml", }, )
776
Python
24.899999
79
0.653351
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/ant/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class AntPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 32 max_iterations = 1000 save_interval = 50 experiment_name = "ant" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[400, 200, 100], critic_hidden_dims=[400, 200, 100], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.0, num_learning_epochs=5, num_mini_batches=4, learning_rate=5.0e-4, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,068
Python
24.45238
58
0.641386
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/ant/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/develop/modules/skrl.utils.model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.gaussian_model for parameter details clip_actions: True clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [256, 128, 64] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "tanh" output_scale: 1.0 value: # see skrl.utils.model_instantiators.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [256, 128, 64] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html agent: rollouts: 16 learning_epochs: 8 mini_batches: 4 discount_factor: 0.99 lambda: 0.95 learning_rate: 3.e-4 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.008 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 1.0 kl_threshold: 0 rewards_shaper_scale: 0.01 # logging and checkpoint experiment: directory: "ant" experiment_name: "" write_interval: 40 checkpoint_interval: 400 # Sequential trainer # https://skrl.readthedocs.io/en/latest/modules/skrl.trainers.sequential.html trainer: timesteps: 8000
1,888
YAML
27.194029
88
0.710805
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/ant/agents/sb3_ppo_cfg.yaml
# Reference: https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/ppo.yml#L161 seed: 42 n_timesteps: !!float 1e7 policy: 'MlpPolicy' batch_size: 128 n_steps: 512 gamma: 0.99 gae_lambda: 0.9 n_epochs: 20 ent_coef: 0.0 sde_sample_freq: 4 max_grad_norm: 0.5 vf_coef: 0.5 learning_rate: !!float 3e-5 use_sde: True clip_range: 0.4 policy_kwargs: "dict( log_std_init=-1, ortho_init=False, activation_fn=nn.ReLU, net_arch=dict(pi=[256, 256], vf=[256, 256]) )"
557
YAML
22.249999
93
0.597846
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/ant/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_ppo_cfg
152
Python
20.85714
56
0.736842
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/ant/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: ant env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: -1 reward_shaper: scale_value: 0.6 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.008 score_to_win: 20000 max_epochs: 500 save_best_after: 100 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 4 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,502
YAML
18.51948
73
0.601198
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Cartpole balancing environment. """ import gymnasium as gym from . import agents from .cartpole_env_cfg import CartpoleEnvCfg ## # Register Gym environments. ## gym.register( id="Isaac-Cartpole-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": CartpoleEnvCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.CartpolePPORunnerCfg, "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml", }, )
784
Python
24.32258
79
0.667092
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/cartpole_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import math import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.utils import configclass import omni.isaac.orbit_tasks.classic.cartpole.mdp as mdp ## # Pre-defined configs ## from omni.isaac.orbit_assets.cartpole import CARTPOLE_CFG # isort:skip ## # Scene definition ## @configclass class CartpoleSceneCfg(InteractiveSceneCfg): """Configuration for a cart-pole scene.""" # ground plane ground = AssetBaseCfg( prim_path="/World/ground", spawn=sim_utils.GroundPlaneCfg(size=(100.0, 100.0)), ) # cartpole robot: ArticulationCfg = CARTPOLE_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") # lights dome_light = AssetBaseCfg( prim_path="/World/DomeLight", spawn=sim_utils.DomeLightCfg(color=(0.9, 0.9, 0.9), intensity=500.0), ) distant_light = AssetBaseCfg( prim_path="/World/DistantLight", spawn=sim_utils.DistantLightCfg(color=(0.9, 0.9, 0.9), intensity=2500.0), init_state=AssetBaseCfg.InitialStateCfg(rot=(0.738, 0.477, 0.477, 0.0)), ) ## # MDP settings ## @configclass class CommandsCfg: """Command terms for the MDP.""" # no commands for this MDP null = mdp.NullCommandCfg() @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_effort = mdp.JointEffortActionCfg(asset_name="robot", joint_names=["slider_to_cart"], scale=100.0) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" # observation terms (order preserved) joint_pos_rel = ObsTerm(func=mdp.joint_pos_rel) joint_vel_rel = ObsTerm(func=mdp.joint_vel_rel) def __post_init__(self) -> None: self.enable_corruption = False self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" # reset reset_cart_position = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=["slider_to_cart"]), "position_range": (-1.0, 1.0), "velocity_range": (-0.5, 0.5), }, ) reset_pole_position = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=["cart_to_pole"]), "position_range": (-0.25 * math.pi, 0.25 * math.pi), "velocity_range": (-0.25 * math.pi, 0.25 * math.pi), }, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # (1) Constant running reward alive = RewTerm(func=mdp.is_alive, weight=1.0) # (2) Failure penalty terminating = RewTerm(func=mdp.is_terminated, weight=-2.0) # (3) Primary task: keep pole upright pole_pos = RewTerm( func=mdp.joint_pos_target_l2, weight=-1.0, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["cart_to_pole"]), "target": 0.0}, ) # (4) Shaping tasks: lower cart velocity cart_vel = RewTerm( func=mdp.joint_vel_l1, weight=-0.01, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["slider_to_cart"])}, ) # (5) Shaping tasks: lower pole angular velocity pole_vel = RewTerm( func=mdp.joint_vel_l1, weight=-0.005, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["cart_to_pole"])}, ) @configclass class TerminationsCfg: """Termination terms for the MDP.""" # (1) Time out time_out = DoneTerm(func=mdp.time_out, time_out=True) # (2) Cart out of bounds cart_out_of_bounds = DoneTerm( func=mdp.joint_pos_out_of_manual_limit, params={"asset_cfg": SceneEntityCfg("robot", joint_names=["slider_to_cart"]), "bounds": (-3.0, 3.0)}, ) @configclass class CurriculumCfg: """Configuration for the curriculum.""" pass ## # Environment configuration ## @configclass class CartpoleEnvCfg(RLTaskEnvCfg): """Configuration for the locomotion velocity-tracking environment.""" # Scene settings scene: CartpoleSceneCfg = CartpoleSceneCfg(num_envs=4096, env_spacing=4.0) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() events: EventCfg = EventCfg() # MDP settings curriculum: CurriculumCfg = CurriculumCfg() rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() # No command generator commands: CommandsCfg = CommandsCfg() # Post initialization def __post_init__(self) -> None: """Post initialization.""" # general settings self.decimation = 2 self.episode_length_s = 5 # viewer settings self.viewer.eye = (8.0, 0.0, 5.0) # simulation settings self.sim.dt = 1 / 120
5,678
Python
26.838235
109
0.653575
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class CartpolePPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 16 max_iterations = 150 save_interval = 50 experiment_name = "cartpole" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[32, 32], critic_hidden_dims=[32, 32], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.005, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,065
Python
24.380952
58
0.644131
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/develop/modules/skrl.utils.model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.gaussian_model for parameter details clip_actions: True clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [32, 32] hidden_activation: ["elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "tanh" output_scale: 1.0 value: # see skrl.utils.model_instantiators.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [32, 32] hidden_activation: ["elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html agent: rollouts: 16 learning_epochs: 5 mini_batches: 4 discount_factor: 0.99 lambda: 0.95 learning_rate: 1.e-3 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.01 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 2.0 kl_threshold: 0 rewards_shaper_scale: 1.0 # logging and checkpoint experiment: directory: "cartpole" experiment_name: "" write_interval: 12 checkpoint_interval: 120 # Sequential trainer # https://skrl.readthedocs.io/en/latest/modules/skrl.trainers.sequential.html trainer: timesteps: 2400
1,865
YAML
26.850746
88
0.713673
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/agents/sb3_ppo_cfg.yaml
# Reference: https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/ppo.yml#L32 seed: 42 n_timesteps: !!float 1e6 policy: 'MlpPolicy' n_steps: 16 batch_size: 4096 gae_lambda: 0.95 gamma: 0.99 n_epochs: 20 ent_coef: 0.01 learning_rate: !!float 3e-4 clip_range: !!float 0.2 policy_kwargs: "dict( activation_fn=nn.ELU, net_arch=[32, 32], squash_output=False, )" vf_coef: 1.0 max_grad_norm: 1.0
475
YAML
21.666666
92
0.610526
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_ppo_cfg # noqa: F401, F403
172
Python
23.714282
56
0.72093
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: # added to the wrapper clip_observations: 5.0 # can make custom wrapper? clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd # doesn't have this fine grained control but made it close network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [32, 32] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: cartpole env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: False normalize_value: False num_actors: -1 # configured from the script (based on num_envs) reward_shaper: scale_value: 1.0 normalize_advantage: False gamma: 0.99 tau : 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 150 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,648
YAML
19.873417
73
0.61165
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/mdp/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This sub-module contains the functions that are specific to the cartpole environments.""" from omni.isaac.orbit.envs.mdp import * # noqa: F401, F403 from .rewards import * # noqa: F401, F403
321
Python
28.272725
92
0.735202
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/cartpole/mdp/rewards.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.utils.math import wrap_to_pi if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def joint_pos_target_l2(env: RLTaskEnv, target: float, asset_cfg: SceneEntityCfg) -> torch.Tensor: """Penalize joint position deviation from a target value.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # wrap the joint positions to (-pi, pi) joint_pos = wrap_to_pi(asset.data.joint_pos[:, asset_cfg.joint_ids]) # compute the reward return torch.sum(torch.square(joint_pos - target), dim=1)
907
Python
32.629628
98
0.742007
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Humanoid locomotion environment (similar to OpenAI Gym Humanoid-v2). """ import gymnasium as gym from . import agents, humanoid_env_cfg ## # Register Gym environments. ## gym.register( id="Isaac-Humanoid-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": humanoid_env_cfg.HumanoidEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.HumanoidPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", "skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml", "sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml", }, )
811
Python
26.066666
79
0.668311
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/humanoid_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.actuators import ImplicitActuatorCfg from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.terrains import TerrainImporterCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR import omni.isaac.orbit_tasks.classic.humanoid.mdp as mdp ## # Scene definition ## @configclass class MySceneCfg(InteractiveSceneCfg): """Configuration for the terrain scene with a humanoid robot.""" # terrain terrain = TerrainImporterCfg( prim_path="/World/ground", terrain_type="plane", collision_group=-1, physics_material=sim_utils.RigidBodyMaterialCfg(static_friction=1.0, dynamic_friction=1.0, restitution=0.0), debug_vis=False, ) # robot robot = ArticulationCfg( prim_path="{ENV_REGEX_NS}/Robot", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Humanoid/humanoid_instanceable.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( disable_gravity=None, max_depenetration_velocity=10.0, enable_gyroscopic_forces=True, ), articulation_props=sim_utils.ArticulationRootPropertiesCfg( enabled_self_collisions=True, solver_position_iteration_count=4, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.001, ), copy_from_source=False, ), init_state=ArticulationCfg.InitialStateCfg( pos=(0.0, 0.0, 1.34), joint_pos={".*": 0.0}, ), actuators={ "body": ImplicitActuatorCfg( joint_names_expr=[".*"], stiffness={ ".*_waist.*": 20.0, ".*_upper_arm.*": 10.0, "pelvis": 10.0, ".*_lower_arm": 2.0, ".*_thigh:0": 10.0, ".*_thigh:1": 20.0, ".*_thigh:2": 10.0, ".*_shin": 5.0, ".*_foot.*": 2.0, }, damping={ ".*_waist.*": 5.0, ".*_upper_arm.*": 5.0, "pelvis": 5.0, ".*_lower_arm": 1.0, ".*_thigh:0": 5.0, ".*_thigh:1": 5.0, ".*_thigh:2": 5.0, ".*_shin": 0.1, ".*_foot.*": 1.0, }, ), }, ) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(color=(0.75, 0.75, 0.75), intensity=3000.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command terms for the MDP.""" # no commands for this MDP null = mdp.NullCommandCfg() @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_effort = mdp.JointEffortActionCfg( asset_name="robot", joint_names=[".*"], scale={ ".*_waist.*": 67.5, ".*_upper_arm.*": 67.5, "pelvis": 67.5, ".*_lower_arm": 45.0, ".*_thigh:0": 45.0, ".*_thigh:1": 135.0, ".*_thigh:2": 45.0, ".*_shin": 90.0, ".*_foot.*": 22.5, }, ) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for the policy.""" base_height = ObsTerm(func=mdp.base_pos_z) base_lin_vel = ObsTerm(func=mdp.base_lin_vel) base_ang_vel = ObsTerm(func=mdp.base_ang_vel, scale=0.25) base_yaw_roll = ObsTerm(func=mdp.base_yaw_roll) base_angle_to_target = ObsTerm(func=mdp.base_angle_to_target, params={"target_pos": (1000.0, 0.0, 0.0)}) base_up_proj = ObsTerm(func=mdp.base_up_proj) base_heading_proj = ObsTerm(func=mdp.base_heading_proj, params={"target_pos": (1000.0, 0.0, 0.0)}) joint_pos_norm = ObsTerm(func=mdp.joint_pos_limit_normalized) joint_vel_rel = ObsTerm(func=mdp.joint_vel_rel, scale=0.1) feet_body_forces = ObsTerm( func=mdp.body_incoming_wrench, scale=0.01, params={"asset_cfg": SceneEntityCfg("robot", body_names=["left_foot", "right_foot"])}, ) actions = ObsTerm(func=mdp.last_action) def __post_init__(self): self.enable_corruption = False self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" reset_base = EventTerm( func=mdp.reset_root_state_uniform, mode="reset", params={"pose_range": {}, "velocity_range": {}}, ) reset_robot_joints = EventTerm( func=mdp.reset_joints_by_offset, mode="reset", params={ "position_range": (-0.2, 0.2), "velocity_range": (-0.1, 0.1), }, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # (1) Reward for moving forward progress = RewTerm(func=mdp.progress_reward, weight=1.0, params={"target_pos": (1000.0, 0.0, 0.0)}) # (2) Stay alive bonus alive = RewTerm(func=mdp.is_alive, weight=2.0) # (3) Reward for non-upright posture upright = RewTerm(func=mdp.upright_posture_bonus, weight=0.1, params={"threshold": 0.93}) # (4) Reward for moving in the right direction move_to_target = RewTerm( func=mdp.move_to_target_bonus, weight=0.5, params={"threshold": 0.8, "target_pos": (1000.0, 0.0, 0.0)} ) # (5) Penalty for large action commands action_l2 = RewTerm(func=mdp.action_l2, weight=-0.01) # (6) Penalty for energy consumption energy = RewTerm( func=mdp.power_consumption, weight=-0.005, params={ "gear_ratio": { ".*_waist.*": 67.5, ".*_upper_arm.*": 67.5, "pelvis": 67.5, ".*_lower_arm": 45.0, ".*_thigh:0": 45.0, ".*_thigh:1": 135.0, ".*_thigh:2": 45.0, ".*_shin": 90.0, ".*_foot.*": 22.5, } }, ) # (7) Penalty for reaching close to joint limits joint_limits = RewTerm( func=mdp.joint_limits_penalty_ratio, weight=-0.25, params={ "threshold": 0.98, "gear_ratio": { ".*_waist.*": 67.5, ".*_upper_arm.*": 67.5, "pelvis": 67.5, ".*_lower_arm": 45.0, ".*_thigh:0": 45.0, ".*_thigh:1": 135.0, ".*_thigh:2": 45.0, ".*_shin": 90.0, ".*_foot.*": 22.5, }, }, ) @configclass class TerminationsCfg: """Termination terms for the MDP.""" # (1) Terminate if the episode length is exceeded time_out = DoneTerm(func=mdp.time_out, time_out=True) # (2) Terminate if the robot falls torso_height = DoneTerm(func=mdp.root_height_below_minimum, params={"minimum_height": 0.8}) @configclass class CurriculumCfg: """Curriculum terms for the MDP.""" pass @configclass class HumanoidEnvCfg(RLTaskEnvCfg): """Configuration for the MuJoCo-style Humanoid walking environment.""" # Scene settings scene: MySceneCfg = MySceneCfg(num_envs=4096, env_spacing=5.0) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # MDP settings rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() events: EventCfg = EventCfg() curriculum: CurriculumCfg = CurriculumCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 2 self.episode_length_s = 16.0 # simulation settings self.sim.dt = 1 / 120.0 self.sim.physx.bounce_threshold_velocity = 0.2 # default friction material self.sim.physics_material.static_friction = 1.0 self.sim.physics_material.dynamic_friction = 1.0 self.sim.physics_material.restitution = 0.0
9,088
Python
30.668989
116
0.558649
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/agents/rsl_rl_ppo_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class HumanoidPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 32 max_iterations = 1000 save_interval = 50 experiment_name = "humanoid" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[400, 200, 100], critic_hidden_dims=[400, 200, 100], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.0, num_learning_epochs=5, num_mini_batches=4, learning_rate=5.0e-4, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, )
1,078
Python
24.690476
58
0.644712
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/agents/skrl_ppo_cfg.yaml
seed: 42 # Models are instantiated using skrl's model instantiator utility # https://skrl.readthedocs.io/en/develop/modules/skrl.utils.model_instantiators.html models: separate: False policy: # see skrl.utils.model_instantiators.gaussian_model for parameter details clip_actions: True clip_log_std: True initial_log_std: 0 min_log_std: -20.0 max_log_std: 2.0 input_shape: "Shape.STATES" hiddens: [400, 200, 100] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ACTIONS" output_activation: "tanh" output_scale: 1.0 value: # see skrl.utils.model_instantiators.deterministic_model for parameter details clip_actions: False input_shape: "Shape.STATES" hiddens: [400, 200, 100] hidden_activation: ["elu", "elu", "elu"] output_shape: "Shape.ONE" output_activation: "" output_scale: 1.0 # PPO agent configuration (field names are from PPO_DEFAULT_CONFIG) # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html agent: rollouts: 32 learning_epochs: 8 mini_batches: 8 discount_factor: 0.99 lambda: 0.95 learning_rate: 3.e-4 learning_rate_scheduler: "KLAdaptiveLR" learning_rate_scheduler_kwargs: kl_threshold: 0.008 state_preprocessor: "RunningStandardScaler" state_preprocessor_kwargs: null value_preprocessor: "RunningStandardScaler" value_preprocessor_kwargs: null random_timesteps: 0 learning_starts: 0 grad_norm_clip: 1.0 ratio_clip: 0.2 value_clip: 0.2 clip_predicted_values: True entropy_loss_scale: 0.0 value_loss_scale: 1.0 kl_threshold: 0 rewards_shaper_scale: 0.01 # logging and checkpoint experiment: directory: "humanoid" experiment_name: "" write_interval: 80 checkpoint_interval: 800 # Sequential trainer # https://skrl.readthedocs.io/en/latest/modules/skrl.trainers.sequential.html trainer: timesteps: 16000
1,896
YAML
27.313432
88
0.712025
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/agents/sb3_ppo_cfg.yaml
# Reference: https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/ppo.yml#L245 seed: 42 policy: 'MlpPolicy' n_timesteps: !!float 5e7 batch_size: 256 n_steps: 512 gamma: 0.99 learning_rate: !!float 2.5e-4 ent_coef: 0.0 clip_range: 0.2 n_epochs: 10 gae_lambda: 0.95 max_grad_norm: 1.0 vf_coef: 0.5 policy_kwargs: "dict( log_std_init=-2, ortho_init=False, activation_fn=nn.ReLU, net_arch=dict(pi=[256, 256], vf=[256, 256]) )"
527
YAML
22.999999
93
0.590133
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_ppo_cfg # noqa: F401, F403
172
Python
23.714282
56
0.72093
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [400, 200, 100] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False # flag which sets whether to load the checkpoint load_path: '' # path to the checkpoint to load config: name: humanoid env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: -1 reward_shaper: scale_value: 0.6 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.01 score_to_win: 20000 max_epochs: 1000 save_best_after: 100 save_frequency: 100 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 32 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,483
YAML
18.526316
73
0.601483
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/mdp/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This sub-module contains the functions that are specific to the humanoid environment.""" from omni.isaac.orbit.envs.mdp import * # noqa: F401, F403 from .observations import * from .rewards import *
328
Python
26.416664
91
0.746951
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/mdp/rewards.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING import omni.isaac.orbit.utils.math as math_utils import omni.isaac.orbit.utils.string as string_utils from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.managers import ManagerTermBase, RewardTermCfg, SceneEntityCfg from . import observations as obs if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv def upright_posture_bonus( env: RLTaskEnv, threshold: float, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Reward for maintaining an upright posture.""" up_proj = obs.base_up_proj(env, asset_cfg).squeeze(-1) return (up_proj > threshold).float() def move_to_target_bonus( env: RLTaskEnv, threshold: float, target_pos: tuple[float, float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ) -> torch.Tensor: """Reward for moving to the target heading.""" heading_proj = obs.base_heading_proj(env, target_pos, asset_cfg).squeeze(-1) return torch.where(heading_proj > threshold, 1.0, heading_proj / threshold) class progress_reward(ManagerTermBase): """Reward for making progress towards the target.""" def __init__(self, env: RLTaskEnv, cfg: RewardTermCfg): # initialize the base class super().__init__(cfg, env) # create history buffer self.potentials = torch.zeros(env.num_envs, device=env.device) self.prev_potentials = torch.zeros_like(self.potentials) def reset(self, env_ids: torch.Tensor): # extract the used quantities (to enable type-hinting) asset: Articulation = self._env.scene["robot"] # compute projection of current heading to desired heading vector target_pos = torch.tensor(self.cfg.params["target_pos"], device=self.device) to_target_pos = target_pos - asset.data.root_pos_w[env_ids, :3] # reward terms self.potentials[env_ids] = -torch.norm(to_target_pos, p=2, dim=-1) / self._env.step_dt self.prev_potentials[env_ids] = self.potentials[env_ids] def __call__( self, env: RLTaskEnv, target_pos: tuple[float, float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), ) -> torch.Tensor: # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute vector to target target_pos = torch.tensor(target_pos, device=env.device) to_target_pos = target_pos - asset.data.root_pos_w[:, :3] to_target_pos[:, 2] = 0.0 # update history buffer and compute new potential self.prev_potentials[:] = self.potentials[:] self.potentials[:] = -torch.norm(to_target_pos, p=2, dim=-1) / env.step_dt return self.potentials - self.prev_potentials class joint_limits_penalty_ratio(ManagerTermBase): """Penalty for violating joint limits weighted by the gear ratio.""" def __init__(self, env: RLTaskEnv, cfg: RewardTermCfg): # add default argument if "asset_cfg" not in cfg.params: cfg.params["asset_cfg"] = SceneEntityCfg("robot") # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[cfg.params["asset_cfg"].name] # resolve the gear ratio for each joint self.gear_ratio = torch.ones(env.num_envs, asset.num_joints, device=env.device) index_list, _, value_list = string_utils.resolve_matching_names_values( cfg.params["gear_ratio"], asset.joint_names ) self.gear_ratio[:, index_list] = torch.tensor(value_list, device=env.device) self.gear_ratio_scaled = self.gear_ratio / torch.max(self.gear_ratio) def __call__( self, env: RLTaskEnv, threshold: float, gear_ratio: dict[str, float], asset_cfg: SceneEntityCfg ) -> torch.Tensor: # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute the penalty over normalized joints joint_pos_scaled = math_utils.scale_transform( asset.data.joint_pos, asset.data.soft_joint_pos_limits[..., 0], asset.data.soft_joint_pos_limits[..., 1] ) # scale the violation amount by the gear ratio violation_amount = (torch.abs(joint_pos_scaled) - threshold) / (1 - threshold) violation_amount = violation_amount * self.gear_ratio_scaled return torch.sum((torch.abs(joint_pos_scaled) > threshold) * violation_amount, dim=-1) class power_consumption(ManagerTermBase): """Penalty for the power consumed by the actions to the environment. This is computed as commanded torque times the joint velocity. """ def __init__(self, env: RLTaskEnv, cfg: RewardTermCfg): # add default argument if "asset_cfg" not in cfg.params: cfg.params["asset_cfg"] = SceneEntityCfg("robot") # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[cfg.params["asset_cfg"].name] # resolve the gear ratio for each joint self.gear_ratio = torch.ones(env.num_envs, asset.num_joints, device=env.device) index_list, _, value_list = string_utils.resolve_matching_names_values( cfg.params["gear_ratio"], asset.joint_names ) self.gear_ratio[:, index_list] = torch.tensor(value_list, device=env.device) self.gear_ratio_scaled = self.gear_ratio / torch.max(self.gear_ratio) def __call__(self, env: RLTaskEnv, gear_ratio: dict[str, float], asset_cfg: SceneEntityCfg) -> torch.Tensor: # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # return power = torque * velocity (here actions: joint torques) return torch.sum(torch.abs(env.action_manager.action * asset.data.joint_vel * self.gear_ratio_scaled), dim=-1)
6,069
Python
42.985507
118
0.66782
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/classic/humanoid/mdp/observations.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import torch from typing import TYPE_CHECKING import omni.isaac.orbit.utils.math as math_utils from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.managers import SceneEntityCfg if TYPE_CHECKING: from omni.isaac.orbit.envs import BaseEnv def base_yaw_roll(env: BaseEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Yaw and roll of the base in the simulation world frame.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # extract euler angles (in world frame) roll, _, yaw = math_utils.euler_xyz_from_quat(asset.data.root_quat_w) # normalize angle to [-pi, pi] roll = torch.atan2(torch.sin(roll), torch.cos(roll)) yaw = torch.atan2(torch.sin(yaw), torch.cos(yaw)) return torch.cat((yaw.unsqueeze(-1), roll.unsqueeze(-1)), dim=-1) def base_up_proj(env: BaseEnv, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot")) -> torch.Tensor: """Projection of the base up vector onto the world up vector.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute base up vector base_up_vec = math_utils.quat_rotate(asset.data.root_quat_w, -asset.GRAVITY_VEC_W) return base_up_vec[:, 2].unsqueeze(-1) def base_heading_proj( env: BaseEnv, target_pos: tuple[float, float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Projection of the base forward vector onto the world forward vector.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute desired heading direction to_target_pos = torch.tensor(target_pos, device=env.device) - asset.data.root_pos_w[:, :3] to_target_pos[:, 2] = 0.0 to_target_dir = math_utils.normalize(to_target_pos) # compute base forward vector heading_vec = math_utils.quat_rotate(asset.data.root_quat_w, asset.FORWARD_VEC_B) # compute dot product between heading and target direction heading_proj = torch.bmm(heading_vec.view(env.num_envs, 1, 3), to_target_dir.view(env.num_envs, 3, 1)) return heading_proj.view(env.num_envs, 1) def base_angle_to_target( env: BaseEnv, target_pos: tuple[float, float, float], asset_cfg: SceneEntityCfg = SceneEntityCfg("robot") ) -> torch.Tensor: """Angle between the base forward vector and the vector to the target.""" # extract the used quantities (to enable type-hinting) asset: Articulation = env.scene[asset_cfg.name] # compute desired heading direction to_target_pos = torch.tensor(target_pos, device=env.device) - asset.data.root_pos_w[:, :3] walk_target_angle = torch.atan2(to_target_pos[:, 1], to_target_pos[:, 0]) # compute base forward vector _, _, yaw = math_utils.euler_xyz_from_quat(asset.data.root_quat_w) # normalize angle to target to [-pi, pi] angle_to_target = walk_target_angle - yaw angle_to_target = torch.atan2(torch.sin(angle_to_target), torch.cos(angle_to_target)) return angle_to_target.unsqueeze(-1)
3,270
Python
42.039473
109
0.705505
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Manipulation environments for fixed-arm robots.""" from .reach import * # noqa
207
Python
22.111109
56
0.729469
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/inhand_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations from dataclasses import MISSING import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg, RigidObjectCfg from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.sim.simulation_cfg import PhysxCfg, SimulationCfg from omni.isaac.orbit.sim.spawners.materials.physics_materials_cfg import RigidBodyMaterialCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR from omni.isaac.orbit.utils.noise import AdditiveGaussianNoiseCfg as Gnoise import omni.isaac.orbit_tasks.manipulation.inhand.mdp as mdp ## # Scene definition ## @configclass class InHandObjectSceneCfg(InteractiveSceneCfg): """Configuration for a scene with an object and a dexterous hand.""" # robots robot: ArticulationCfg = MISSING # objects object: RigidObjectCfg = RigidObjectCfg( prim_path="{ENV_REGEX_NS}/object", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Blocks/DexCube/dex_cube_instanceable.usd", rigid_props=sim_utils.RigidBodyPropertiesCfg( kinematic_enabled=False, disable_gravity=False, enable_gyroscopic_forces=True, solver_position_iteration_count=8, solver_velocity_iteration_count=0, sleep_threshold=0.005, stabilization_threshold=0.0025, max_depenetration_velocity=1000.0, ), mass_props=sim_utils.MassPropertiesCfg(density=400.0), ), init_state=RigidObjectCfg.InitialStateCfg(pos=(0.0, -0.19, 0.56), rot=(1.0, 0.0, 0.0, 0.0)), ) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg(color=(0.95, 0.95, 0.95), intensity=1000.0), ) dome_light = AssetBaseCfg( prim_path="/World/domeLight", spawn=sim_utils.DomeLightCfg(color=(0.02, 0.02, 0.02), intensity=1000.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command specifications for the MDP.""" object_pose = mdp.InHandReOrientationCommandCfg( asset_name="object", init_pos_offset=(0.0, 0.0, -0.04), update_goal_on_success=True, orientation_success_threshold=0.1, make_quat_unique=False, marker_pos_offset=(-0.2, -0.06, 0.08), debug_vis=True, ) @configclass class ActionsCfg: """Action specifications for the MDP.""" joint_pos = mdp.EMAJointPositionToLimitsActionCfg( asset_name="robot", joint_names=[".*"], alpha=0.95, rescale_to_limits=True, ) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class KinematicObsGroupCfg(ObsGroup): """Observations with full-kinematic state information. This does not include acceleration or force information. """ # observation terms (order preserved) # -- robot terms joint_pos = ObsTerm(func=mdp.joint_pos_limit_normalized, noise=Gnoise(std=0.005)) joint_vel = ObsTerm(func=mdp.joint_vel_rel, scale=0.2, noise=Gnoise(std=0.01)) # -- object terms object_pos = ObsTerm( func=mdp.root_pos_w, noise=Gnoise(std=0.002), params={"asset_cfg": SceneEntityCfg("object")} ) object_quat = ObsTerm( func=mdp.root_quat_w, params={"asset_cfg": SceneEntityCfg("object"), "make_quat_unique": False} ) object_lin_vel = ObsTerm( func=mdp.root_lin_vel_w, noise=Gnoise(std=0.002), params={"asset_cfg": SceneEntityCfg("object")} ) object_ang_vel = ObsTerm( func=mdp.root_ang_vel_w, scale=0.2, noise=Gnoise(std=0.002), params={"asset_cfg": SceneEntityCfg("object")}, ) # -- command terms goal_pose = ObsTerm(func=mdp.generated_commands, params={"command_name": "object_pose"}) goal_quat_diff = ObsTerm( func=mdp.goal_quat_diff, params={"asset_cfg": SceneEntityCfg("object"), "command_name": "object_pose", "make_quat_unique": False}, ) # -- action terms last_action = ObsTerm(func=mdp.last_action) def __post_init__(self): self.enable_corruption = True self.concatenate_terms = True @configclass class NoVelocityKinematicObsGroupCfg(KinematicObsGroupCfg): """Observations with partial kinematic state information. In contrast to the full-kinematic state group, this group does not include velocity information about the robot joints and the object root frame. This is useful for tasks where velocity information is not available or has a lot of noise. """ def __post_init__(self): # call parent post init super().__post_init__() # set unused terms to None self.joint_vel = None self.object_lin_vel = None self.object_ang_vel = None # observation groups policy: KinematicObsGroupCfg = KinematicObsGroupCfg() @configclass class EventCfg: """Configuration for randomization.""" # startup # -- robot robot_physics_material = EventTerm( func=mdp.randomize_rigid_body_material, mode="startup", params={ "asset_cfg": SceneEntityCfg("robot", body_names=".*"), "static_friction_range": (0.7, 1.3), "dynamic_friction_range": (0.7, 1.3), "restitution_range": (0.0, 0.0), "num_buckets": 250, }, ) robot_scale_mass = EventTerm( func=mdp.randomize_rigid_body_mass, mode="startup", params={ "asset_cfg": SceneEntityCfg("robot", body_names=".*"), "mass_range": (0.95, 1.05), "operation": "scale", }, ) robot_joint_stiffness_and_damping = EventTerm( func=mdp.randomize_actuator_gains, mode="startup", params={ "asset_cfg": SceneEntityCfg("robot", joint_names=".*"), "stiffness_range": (0.3, 3.0), # default: 3.0 "damping_range": (0.75, 1.5), # default: 0.1 "operation": "scale", "distribution": "log_uniform", }, ) # -- object object_physics_material = EventTerm( func=mdp.randomize_rigid_body_material, mode="startup", params={ "asset_cfg": SceneEntityCfg("object", body_names=".*"), "static_friction_range": (0.7, 1.3), "dynamic_friction_range": (0.7, 1.3), "restitution_range": (0.0, 0.0), "num_buckets": 250, }, ) object_scale_mass = EventTerm( func=mdp.randomize_rigid_body_mass, mode="startup", params={ "asset_cfg": SceneEntityCfg("object"), "mass_range": (0.4, 1.6), "operation": "scale", }, ) # reset reset_object = EventTerm( func=mdp.reset_root_state_uniform, mode="reset", params={ "pose_range": {"x": [-0.01, 0.01], "y": [-0.01, 0.01], "z": [-0.01, 0.01]}, "velocity_range": {}, "asset_cfg": SceneEntityCfg("object", body_names=".*"), }, ) reset_robot_joints = EventTerm( func=mdp.reset_joints_within_limits_range, mode="reset", params={ "position_range": {".*": [0.2, 0.2]}, "velocity_range": {".*": [0.0, 0.0]}, "use_default_offset": True, "operation": "scale", }, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # -- task # track_pos_l2 = RewTerm( # func=mdp.track_pos_l2, # weight=-10.0, # params={"object_cfg": SceneEntityCfg("object"), "command_name": "object_pose"}, # ) track_orientation_inv_l2 = RewTerm( func=mdp.track_orientation_inv_l2, weight=1.0, params={"object_cfg": SceneEntityCfg("object"), "rot_eps": 0.1, "command_name": "object_pose"}, ) success_bonus = RewTerm( func=mdp.success_bonus, weight=250.0, params={"object_cfg": SceneEntityCfg("object"), "command_name": "object_pose"}, ) # -- penalties joint_vel_l2 = RewTerm(func=mdp.joint_vel_l2, weight=-2.5e-5) action_l2 = RewTerm(func=mdp.action_l2, weight=-0.0001) action_rate_l2 = RewTerm(func=mdp.action_rate_l2, weight=-0.01) # -- optional penalties (these are disabled by default) # object_away_penalty = RewTerm( # func=mdp.is_terminated_term, # weight=-0.0, # params={"term_keys": "object_out_of_reach"}, # ) @configclass class TerminationsCfg: """Termination terms for the MDP.""" time_out = DoneTerm(func=mdp.time_out, time_out=True) max_consecutive_success = DoneTerm( func=mdp.max_consecutive_success, params={"num_success": 50, "command_name": "object_pose"} ) object_out_of_reach = DoneTerm(func=mdp.object_away_from_robot, params={"threshold": 0.3}) # object_out_of_reach = DoneTerm( # func=mdp.object_away_from_goal, params={"threshold": 0.24, "command_name": "object_pose"} # ) ## # Environment configuration ## @configclass class InHandObjectEnvCfg(RLTaskEnvCfg): """Configuration for the in hand reorientation environment.""" # Scene settings scene: InHandObjectSceneCfg = InHandObjectSceneCfg(num_envs=8192, env_spacing=0.6) # Simulation settings sim: SimulationCfg = SimulationCfg( physics_material=RigidBodyMaterialCfg( static_friction=1.0, dynamic_friction=1.0, ), physx=PhysxCfg( bounce_threshold_velocity=0.2, gpu_max_rigid_contact_count=2**20, gpu_max_rigid_patch_count=2**23, ), ) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # MDP settings rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() events: EventCfg = EventCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 4 self.episode_length_s = 20.0 # simulation settings self.sim.dt = 1.0 / 120.0 # change viewer settings self.viewer.eye = (2.0, 2.0, 2.0)
11,130
Python
31.17052
117
0.608805
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """In-hand object reorientation environment. These environments are based on the `dexterous cube manipulation`_ environments provided in IsaacGymEnvs repository from NVIDIA. However, they contain certain modifications and additional features. .. _dexterous cube manipulation: https://github.com/NVIDIA-Omniverse/IsaacGymEnvs/blob/main/isaacgymenvs/tasks/allegro_hand.py """
500
Python
32.399998
126
0.798
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/mdp/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """This sub-module contains the functions that are specific to the in-hand manipulation environments.""" from omni.isaac.orbit.envs.mdp import * # noqa: F401, F403 from .commands import * # noqa: F401, F403 from .events import * # noqa: F401, F403 from .observations import * # noqa: F401, F403 from .rewards import * # noqa: F401, F403 from .terminations import * # noqa: F401, F403
515
Python
33.399998
104
0.72233
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/mdp/rewards.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Functions specific to the in-hand dexterous manipulation environments.""" import torch from typing import TYPE_CHECKING import omni.isaac.orbit.utils.math as math_utils from omni.isaac.orbit.assets import RigidObject from omni.isaac.orbit.envs import RLTaskEnv from omni.isaac.orbit.managers import SceneEntityCfg if TYPE_CHECKING: from .commands import InHandReOrientationCommand def success_bonus( env: RLTaskEnv, command_name: str, object_cfg: SceneEntityCfg = SceneEntityCfg("object") ) -> torch.Tensor: """Bonus reward for successfully reaching the goal. The object is considered to have reached the goal when the object orientation is within the threshold. The reward is 1.0 if the object has reached the goal, otherwise 0.0. Args: env: The environment object. command_name: The command term to be used for extracting the goal. object_cfg: The configuration for the scene entity. Default is "object". """ # extract useful elements asset: RigidObject = env.scene[object_cfg.name] command_term: InHandReOrientationCommand = env.command_manager.get_term(command_name) # obtain the goal orientation goal_quat_w = command_term.command[:, 3:7] # obtain the threshold for the orientation error threshold = command_term.cfg.orientation_success_threshold # calculate the orientation error dtheta = math_utils.quat_error_magnitude(asset.data.root_quat_w, goal_quat_w) return dtheta <= threshold def track_pos_l2( env: RLTaskEnv, command_name: str, object_cfg: SceneEntityCfg = SceneEntityCfg("object") ) -> torch.Tensor: """Reward for tracking the object position using the L2 norm. The reward is the distance between the object position and the goal position. Args: env: The environment object. command_term: The command term to be used for extracting the goal. object_cfg: The configuration for the scene entity. Default is "object". """ # extract useful elements asset: RigidObject = env.scene[object_cfg.name] command_term: InHandReOrientationCommand = env.command_manager.get_term(command_name) # obtain the goal position goal_pos_e = command_term.command[:, 0:3] # obtain the object position in the environment frame object_pos_e = asset.data.root_pos_w - env.scene.env_origins return torch.norm(goal_pos_e - object_pos_e, p=2, dim=-1) def track_orientation_inv_l2( env: RLTaskEnv, command_name: str, object_cfg: SceneEntityCfg = SceneEntityCfg("object"), rot_eps: float = 1e-3, ) -> torch.Tensor: """Reward for tracking the object orientation using the inverse of the orientation error. The reward is the inverse of the orientation error between the object orientation and the goal orientation. Args: env: The environment object. command_name: The command term to be used for extracting the goal. object_cfg: The configuration for the scene entity. Default is "object". rot_eps: The threshold for the orientation error. Default is 1e-3. """ # extract useful elements asset: RigidObject = env.scene[object_cfg.name] command_term: InHandReOrientationCommand = env.command_manager.get_term(command_name) # obtain the goal orientation goal_quat_w = command_term.command[:, 3:7] # calculate the orientation error dtheta = math_utils.quat_error_magnitude(asset.data.root_quat_w, goal_quat_w) return 1.0 / (dtheta + rot_eps)
3,632
Python
36.453608
111
0.719989
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/mdp/events.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Functions specific to the in-hand dexterous manipulation environments.""" from __future__ import annotations import torch from typing import TYPE_CHECKING, Literal from omni.isaac.orbit.assets import Articulation from omni.isaac.orbit.managers import EventTermCfg, ManagerTermBase, SceneEntityCfg from omni.isaac.orbit.utils.math import sample_uniform if TYPE_CHECKING: from omni.isaac.orbit.envs import BaseEnv class reset_joints_within_limits_range(ManagerTermBase): """Reset an articulation's joints to a random position in the given limit ranges. This function samples random values for the joint position and velocities from the given limit ranges. The values are then set into the physics simulation. The parameters to the function are: * :attr:`position_range` - a dictionary of position ranges for each joint. The keys of the dictionary are the joint names (or regular expressions) of the asset. * :attr:`velocity_range` - a dictionary of velocity ranges for each joint. The keys of the dictionary are the joint names (or regular expressions) of the asset. * :attr:`use_default_offset` - a boolean flag to indicate if the ranges are offset by the default joint state. Defaults to False. * :attr:`asset_cfg` - the configuration of the asset to reset. Defaults to the entity named "robot" in the scene. * :attr:`operation` - whether the ranges are scaled values of the joint limits, or absolute limits. Defaults to "abs". The dictionary values are a tuple of the form ``(a, b)``. Based on the operation, these values are interpreted differently: * If the operation is "abs", the values are the absolute minimum and maximum values for the joint, i.e. the joint range becomes ``[a, b]``. * If the operation is "scale", the values are the scaling factors for the joint limits, i.e. the joint range becomes ``[a * min_joint_limit, b * max_joint_limit]``. If the ``a`` or the ``b`` value is ``None``, the joint limits are used instead. Note: If the dictionary does not contain a key, the joint position or joint velocity is set to the default value for that joint. """ def __init__(self, cfg: EventTermCfg, env: BaseEnv): # initialize the base class super().__init__(cfg, env) # check if the cfg has the required parameters if "position_range" not in cfg.params or "velocity_range" not in cfg.params: raise ValueError( "The term 'reset_joints_within_range' requires parameters: 'position_range' and 'velocity_range'." f" Received: {list(cfg.params.keys())}." ) # parse the parameters asset_cfg: SceneEntityCfg = cfg.params.get("asset_cfg", SceneEntityCfg("robot")) use_default_offset = cfg.params.get("use_default_offset", False) operation = cfg.params.get("operation", "abs") # check if the operation is valid if operation not in ["abs", "scale"]: raise ValueError( f"For event 'reset_joints_within_limits_range', unknown operation: '{operation}'." " Please use 'abs' or 'scale'." ) # extract the used quantities (to enable type-hinting) self._asset: Articulation = env.scene[asset_cfg.name] default_joint_pos = self._asset.data.default_joint_pos[0] default_joint_vel = self._asset.data.default_joint_vel[0] # create buffers to store the joint position range self._pos_ranges = self._asset.data.soft_joint_pos_limits[0].clone() # parse joint position ranges pos_joint_ids = [] for joint_name, joint_range in cfg.params["position_range"].items(): # find the joint ids joint_ids = self._asset.find_joints(joint_name)[0] pos_joint_ids.extend(joint_ids) # set the joint position ranges based on the given values if operation == "abs": if joint_range[0] is not None: self._pos_ranges[joint_ids, 0] = joint_range[0] if joint_range[1] is not None: self._pos_ranges[joint_ids, 1] = joint_range[1] elif operation == "scale": if joint_range[0] is not None: self._pos_ranges[joint_ids, 0] *= joint_range[0] if joint_range[1] is not None: self._pos_ranges[joint_ids, 1] *= joint_range[1] else: raise ValueError( f"Unknown operation: '{operation}' for joint position ranges. Please use 'abs' or 'scale'." ) # add the default offset if use_default_offset: self._pos_ranges[joint_ids] += default_joint_pos[joint_ids].unsqueeze(1) # store the joint pos ids (used later to sample the joint positions) self._pos_joint_ids = torch.tensor(pos_joint_ids, device=self._pos_ranges.device) self._pos_ranges = self._pos_ranges[self._pos_joint_ids] # create buffers to store the joint velocity range self._vel_ranges = torch.stack( [-self._asset.data.soft_joint_vel_limits[0], self._asset.data.soft_joint_vel_limits[0]], dim=1 ) # parse joint velocity ranges vel_joint_ids = [] for joint_name, joint_range in cfg.params["velocity_range"].items(): # find the joint ids joint_ids = self._asset.find_joints(joint_name)[0] vel_joint_ids.extend(joint_ids) # set the joint position ranges based on the given values if operation == "abs": if joint_range[0] is not None: self._vel_ranges[joint_ids, 0] = joint_range[0] if joint_range[1] is not None: self._vel_ranges[joint_ids, 1] = joint_range[1] elif operation == "scale": if joint_range[0] is not None: self._vel_ranges[joint_ids, 0] = joint_range[0] * self._vel_ranges[joint_ids, 0] if joint_range[1] is not None: self._vel_ranges[joint_ids, 1] = joint_range[1] * self._vel_ranges[joint_ids, 1] else: raise ValueError( f"Unknown operation: '{operation}' for joint velocity ranges. Please use 'abs' or 'scale'." ) # add the default offset if use_default_offset: self._vel_ranges[joint_ids] += default_joint_vel[joint_ids].unsqueeze(1) # store the joint vel ids (used later to sample the joint positions) self._vel_joint_ids = torch.tensor(vel_joint_ids, device=self._vel_ranges.device) self._vel_ranges = self._vel_ranges[self._vel_joint_ids] def __call__( self, env: BaseEnv, env_ids: torch.Tensor, position_range: dict[str, tuple[float | None, float | None]], velocity_range: dict[str, tuple[float | None, float | None]], use_default_offset: bool = False, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), operation: Literal["abs", "scale"] = "abs", ): # get default joint state joint_pos = self._asset.data.default_joint_pos[env_ids].clone() joint_vel = self._asset.data.default_joint_vel[env_ids].clone() # sample random joint positions for each joint if len(self._pos_joint_ids) > 0: joint_pos_shape = (len(env_ids), len(self._pos_joint_ids)) joint_pos[:, self._pos_joint_ids] = sample_uniform( self._pos_ranges[:, 0], self._pos_ranges[:, 1], joint_pos_shape, device=joint_pos.device ) # clip the joint positions to the joint limits joint_pos_limits = self._asset.data.soft_joint_pos_limits[0, self._pos_joint_ids] joint_pos = joint_pos.clamp(joint_pos_limits[:, 0], joint_pos_limits[:, 1]) # sample random joint velocities for each joint if len(self._vel_joint_ids) > 0: joint_vel_shape = (len(env_ids), len(self._vel_joint_ids)) joint_vel[:, self._vel_joint_ids] = sample_uniform( self._vel_ranges[:, 0], self._vel_ranges[:, 1], joint_vel_shape, device=joint_vel.device ) # clip the joint velocities to the joint limits joint_vel_limits = self._asset.data.soft_joint_vel_limits[0, self._vel_joint_ids] joint_vel = joint_vel.clamp(-joint_vel_limits, joint_vel_limits) # set into the physics simulation self._asset.write_joint_state_to_sim(joint_pos, joint_vel, env_ids=env_ids)
8,820
Python
46.681081
118
0.613719
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/mdp/terminations.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Functions specific to the in-hand dexterous manipulation environments.""" import torch from typing import TYPE_CHECKING from omni.isaac.orbit.envs import RLTaskEnv from omni.isaac.orbit.managers import SceneEntityCfg if TYPE_CHECKING: from .commands import InHandReOrientationCommand def max_consecutive_success(env: RLTaskEnv, num_success: int, command_name: str) -> torch.Tensor: """Check if the task has been completed consecutively for a certain number of times. Args: env: The environment object. num_success: Threshold for the number of consecutive successes required. command_name: The command term to be used for extracting the goal. """ command_term: InHandReOrientationCommand = env.command_manager.get_term(command_name) return command_term.metrics["consecutive_success"] >= num_success def object_away_from_goal( env: RLTaskEnv, threshold: float, command_name: str, object_cfg: SceneEntityCfg = SceneEntityCfg("object"), ) -> torch.Tensor: """Check if object has gone far from the goal. The object is considered to be out-of-reach if the distance between the goal and the object is greater than the threshold. Args: env: The environment object. threshold: The threshold for the distance between the robot and the object. command_name: The command term to be used for extracting the goal. object_cfg: The configuration for the scene entity. Default is "object". """ # extract useful elements command_term: InHandReOrientationCommand = env.command_manager.get_term(command_name) asset = env.scene[object_cfg.name] # object pos asset_pos_e = asset.data.root_pos_w - env.scene.env_origins goal_pos_e = command_term.command[:, :3] return torch.norm(asset_pos_e - goal_pos_e, p=2, dim=1) > threshold def object_away_from_robot( env: RLTaskEnv, threshold: float, asset_cfg: SceneEntityCfg = SceneEntityCfg("robot"), object_cfg: SceneEntityCfg = SceneEntityCfg("object"), ) -> torch.Tensor: """Check if object has gone far from the robot. The object is considered to be out-of-reach if the distance between the robot and the object is greater than the threshold. Args: env: The environment object. threshold: The threshold for the distance between the robot and the object. asset_cfg: The configuration for the robot entity. Default is "robot". object_cfg: The configuration for the object entity. Default is "object". """ # extract useful elements robot = env.scene[asset_cfg.name] object = env.scene[object_cfg.name] # compute distance dist = torch.norm(robot.data.root_pos_w - object.data.root_pos_w, dim=1) return dist > threshold
2,920
Python
33.773809
107
0.708904
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/mdp/observations.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Functions specific to the in-hand dexterous manipulation environments.""" import torch from typing import TYPE_CHECKING import omni.isaac.orbit.utils.math as math_utils from omni.isaac.orbit.assets import RigidObject from omni.isaac.orbit.envs import RLTaskEnv from omni.isaac.orbit.managers import SceneEntityCfg if TYPE_CHECKING: from .commands import InHandReOrientationCommand def goal_quat_diff( env: RLTaskEnv, asset_cfg: SceneEntityCfg, command_name: str, make_quat_unique: bool ) -> torch.Tensor: """Goal orientation relative to the asset's root frame. The quaternion is represented as (w, x, y, z). The real part is always positive. """ # extract useful elements asset: RigidObject = env.scene[asset_cfg.name] command_term: InHandReOrientationCommand = env.command_manager.get_term(command_name) # obtain the orientations goal_quat_w = command_term.command[:, 3:7] asset_quat_w = asset.data.root_quat_w # compute quaternion difference quat = math_utils.quat_mul(asset_quat_w, math_utils.quat_conjugate(goal_quat_w)) # make sure the quaternion real-part is always positive return math_utils.quat_unique(quat) if make_quat_unique else quat
1,341
Python
33.410256
89
0.745712
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/mdp/commands/commands_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from dataclasses import MISSING import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.managers import CommandTermCfg from omni.isaac.orbit.markers import VisualizationMarkersCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR from .orientation_command import InHandReOrientationCommand @configclass class InHandReOrientationCommandCfg(CommandTermCfg): """Configuration for the uniform 3D orientation command term. Please refer to the :class:`InHandReOrientationCommand` class for more details. """ class_type: type = InHandReOrientationCommand resampling_time_range: tuple[float, float] = (1e6, 1e6) # no resampling based on time asset_name: str = MISSING """Name of the asset in the environment for which the commands are generated.""" init_pos_offset: tuple[float, float, float] = (0.0, 0.0, 0.0) """Position offset of the asset from its default position. This is used to account for the offset typically present in the object's default position so that the object is spawned at a height above the robot's palm. When the position command is generated, the object's default position is used as the reference and the offset specified is added to it to get the desired position of the object. """ make_quat_unique: bool = MISSING """Whether to make the quaternion unique or not. If True, the quaternion is made unique by ensuring the real part is positive. """ orientation_success_threshold: float = MISSING """Threshold for the orientation error to consider the goal orientation to be reached.""" update_goal_on_success: bool = MISSING """Whether to update the goal orientation when the goal orientation is reached.""" marker_pos_offset: tuple[float, float, float] = (0.0, 0.0, 0.0) """Position offset of the marker from the object's desired position. This is useful to position the marker at a height above the object's desired position. Otherwise, the marker may occlude the object in the visualization. """ visualizer_cfg: VisualizationMarkersCfg = VisualizationMarkersCfg( prim_path="/Visuals/Command/goal_marker", markers={ "goal": sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Blocks/DexCube/dex_cube_instanceable.usd", scale=(1.0, 1.0, 1.0), ), }, ) """Configuration for the visualization markers. Default is a cube marker."""
2,655
Python
38.058823
97
0.718267
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/mdp/commands/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing command terms for 3D orientation goals.""" from .commands_cfg import InHandReOrientationCommandCfg # noqa: F401 from .orientation_command import InHandReOrientationCommand # noqa: F401
336
Python
32.699997
73
0.782738
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/mdp/commands/orientation_command.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing command generators for 3D orientation goals for objects.""" from __future__ import annotations import torch from collections.abc import Sequence from typing import TYPE_CHECKING import omni.isaac.orbit.utils.math as math_utils from omni.isaac.orbit.assets import RigidObject from omni.isaac.orbit.managers import CommandTerm from omni.isaac.orbit.markers.visualization_markers import VisualizationMarkers if TYPE_CHECKING: from omni.isaac.orbit.envs import RLTaskEnv from .commands_cfg import InHandReOrientationCommandCfg class InHandReOrientationCommand(CommandTerm): """Command term that generates 3D pose commands for in-hand manipulation task. This command term generates 3D orientation commands for the object. The orientation commands are sampled uniformly from the 3D orientation space. The position commands are the default root state of the object. The constant position commands is to encourage that the object does not move during the task. For instance, the object should not fall off the robot's palm. Unlike typical command terms, where the goals are resampled based on time, this command term does not resample the goals based on time. Instead, the goals are resampled when the object reaches the goal orientation. The goal orientation is considered to be reached when the orientation error is below a certain threshold. """ cfg: InHandReOrientationCommandCfg """Configuration for the command term.""" def __init__(self, cfg: InHandReOrientationCommandCfg, env: RLTaskEnv): """Initialize the command term class. Args: cfg: The configuration parameters for the command term. env: The environment object. """ # initialize the base class super().__init__(cfg, env) # object self.object: RigidObject = env.scene[cfg.asset_name] # create buffers to store the command # -- command: (x, y, z) init_pos_offset = torch.tensor(cfg.init_pos_offset, dtype=torch.float, device=self.device) self.pos_command_e = self.object.data.default_root_state[:, :3] + init_pos_offset self.pos_command_w = self.pos_command_e + self._env.scene.env_origins # -- orientation: (w, x, y, z) self.quat_command_w = torch.zeros(self.num_envs, 4, device=self.device) self.quat_command_w[:, 0] = 1.0 # set the scalar component to 1.0 # -- unit vectors self._X_UNIT_VEC = torch.tensor([1.0, 0, 0], device=self.device).repeat((self.num_envs, 1)) self._Y_UNIT_VEC = torch.tensor([0, 1.0, 0], device=self.device).repeat((self.num_envs, 1)) self._Z_UNIT_VEC = torch.tensor([0, 0, 1.0], device=self.device).repeat((self.num_envs, 1)) # -- metrics self.metrics["orientation_error"] = torch.zeros(self.num_envs, device=self.device) self.metrics["position_error"] = torch.zeros(self.num_envs, device=self.device) self.metrics["consecutive_success"] = torch.zeros(self.num_envs, device=self.device) def __str__(self) -> str: msg = "InHandManipulationCommandGenerator:\n" msg += f"\tCommand dimension: {tuple(self.command.shape[1:])}\n" return msg """ Properties """ @property def command(self) -> torch.Tensor: """The desired goal pose in the environment frame. Shape is (num_envs, 7).""" return torch.cat((self.pos_command_e, self.quat_command_w), dim=-1) """ Implementation specific functions. """ def _update_metrics(self): # logs data # -- compute the orientation error self.metrics["orientation_error"] = math_utils.quat_error_magnitude( self.object.data.root_quat_w, self.quat_command_w ) # -- compute the position error self.metrics["position_error"] = torch.norm(self.object.data.root_pos_w - self.pos_command_w, dim=1) # -- compute the number of consecutive successes successes = self.metrics["orientation_error"] < self.cfg.orientation_success_threshold self.metrics["consecutive_success"] += successes.float() def _resample_command(self, env_ids: Sequence[int]): # sample new orientation targets rand_floats = 2.0 * torch.rand((len(env_ids), 2), device=self.device) - 1.0 # rotate randomly about x-axis and then y-axis quat = math_utils.quat_mul( math_utils.quat_from_angle_axis(rand_floats[:, 0] * torch.pi, self._X_UNIT_VEC[env_ids]), math_utils.quat_from_angle_axis(rand_floats[:, 1] * torch.pi, self._Y_UNIT_VEC[env_ids]), ) # make sure the quaternion real-part is always positive self.quat_command_w[env_ids] = math_utils.quat_unique(quat) if self.cfg.make_quat_unique else quat def _update_command(self): # update the command if goal is reached if self.cfg.update_goal_on_success: # compute the goal resets goal_resets = self.metrics["orientation_error"] < self.cfg.orientation_success_threshold goal_reset_ids = goal_resets.nonzero(as_tuple=False).squeeze(-1) # resample the goals self._resample(goal_reset_ids) def _set_debug_vis_impl(self, debug_vis: TYPE_CHECKING): # set visibility of markers # note: parent only deals with callbacks. not their visibility if debug_vis: # create markers if necessary for the first time if not hasattr(self, "goal_marker_visualizer"): self.goal_marker_visualizer = VisualizationMarkers(self.cfg.visualizer_cfg) # set visibility self.goal_marker_visualizer.set_visibility(True) else: if hasattr(self, "goal_marker_visualizer"): self.goal_marker_visualizer.set_visibility(False) def _debug_vis_callback(self, event): # add an offset to the marker position to visualize the goal marker_pos = self.pos_command_w + torch.tensor(self.cfg.marker_pos_offset, device=self.device) marker_quat = self.quat_command_w # visualize the goal marker self.goal_marker_visualizer.visualize(translations=marker_pos, orientations=marker_quat)
6,393
Python
43.096551
108
0.668074
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/config/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Configurations for in-hand manipulation environments.""" # We leave this file empty since we don't want to expose any configs in this package directly. # We still need this file to import the "config" module in the parent package.
358
Python
34.899997
94
0.759777
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/config/allegro_hand/allegro_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass import omni.isaac.orbit_tasks.manipulation.inhand.inhand_env_cfg as inhand_env_cfg ## # Pre-defined configs ## from omni.isaac.orbit_assets import ALLEGRO_HAND_CFG # isort: skip @configclass class AllegroCubeEnvCfg(inhand_env_cfg.InHandObjectEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # switch robot to allegro hand self.scene.robot = ALLEGRO_HAND_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") @configclass class AllegroCubeEnvCfg_PLAY(AllegroCubeEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 # disable randomization for play self.observations.policy.enable_corruption = False # remove termination due to timeouts self.terminations.time_out = None ## # Environment configuration with no velocity observations. ## @configclass class AllegroCubeNoVelObsEnvCfg(AllegroCubeEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # switch observation group to no velocity group self.observations.policy = inhand_env_cfg.ObservationsCfg.NoVelocityKinematicObsGroupCfg() @configclass class AllegroCubeNoVelObsEnvCfg_PLAY(AllegroCubeNoVelObsEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 # disable randomization for play self.observations.policy.enable_corruption = False # remove termination due to timeouts self.terminations.time_out = None
1,870
Python
27.784615
98
0.683957
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/config/allegro_hand/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, allegro_env_cfg ## # Register Gym environments. ## ## # Full kinematic state observations. ## gym.register( id="Isaac-Repose-Cube-Allegro-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": allegro_env_cfg.AllegroCubeEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AllegroCubePPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Repose-Cube-Allegro-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": allegro_env_cfg.AllegroCubeEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AllegroCubePPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", }, ) ## # Kinematic state observations without velocity information. ## gym.register( id="Isaac-Repose-Cube-Allegro-NoVelObs-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": allegro_env_cfg.AllegroCubeNoVelObsEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AllegroCubeNoVelObsPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", }, ) gym.register( id="Isaac-Repose-Cube-Allegro-NoVelObs-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": allegro_env_cfg.AllegroCubeNoVelObsEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AllegroCubeNoVelObsPPORunnerCfg, "rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml", }, )
1,924
Python
28.615384
84
0.680353
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/config/allegro_hand/agents/rsl_rl_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class AllegroCubePPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 5000 save_interval = 50 experiment_name = "allegro_cube" empirical_normalization = True policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[512, 256, 128], critic_hidden_dims=[512, 256, 128], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.002, num_learning_epochs=5, num_mini_batches=4, learning_rate=0.001, schedule="adaptive", gamma=0.998, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, ) @configclass class AllegroCubeNoVelObsPPORunnerCfg(AllegroCubePPORunnerCfg): experiment_name = "allegro_cube_no_vel_obs"
1,213
Python
24.829787
63
0.664468
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/config/allegro_hand/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_cfg # noqa: F401, F403
168
Python
23.142854
56
0.720238
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/inhand/config/allegro_hand/agents/rl_games_ppo_cfg.yaml
params: seed: 42 # environment wrapper clipping env: clip_observations: 5.0 clip_actions: 1.0 algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: False load_path: '' config: name: allegro_cube env_name: rlgpu device: 'cuda:0' device_name: 'cuda:0' multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: -1 # configured from the script (based on num_envs) reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: 5000 save_best_after: 500 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.002 truncate_grads: True e_clip: 0.2 horizon_length: 24 minibatch_size: 16384 # 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0005 player: #render: True deterministic: True games_num: 100000 print_stats: True
1,655
YAML
18.255814
68
0.599396
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/reach_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from dataclasses import MISSING import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import ArticulationCfg, AssetBaseCfg from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.managers import ActionTermCfg as ActionTerm from omni.isaac.orbit.managers import CurriculumTermCfg as CurrTerm from omni.isaac.orbit.managers import EventTermCfg as EventTerm from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RewardTermCfg as RewTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR from omni.isaac.orbit.utils.noise import AdditiveUniformNoiseCfg as Unoise import omni.isaac.orbit_tasks.manipulation.reach.mdp as mdp ## # Scene definition ## @configclass class ReachSceneCfg(InteractiveSceneCfg): """Configuration for the scene with a robotic arm.""" # world ground = AssetBaseCfg( prim_path="/World/ground", spawn=sim_utils.GroundPlaneCfg(), init_state=AssetBaseCfg.InitialStateCfg(pos=(0.0, 0.0, -1.05)), ) table = AssetBaseCfg( prim_path="{ENV_REGEX_NS}/Table", spawn=sim_utils.UsdFileCfg( usd_path=f"{ISAAC_NUCLEUS_DIR}/Props/Mounts/SeattleLabTable/table_instanceable.usd", ), init_state=AssetBaseCfg.InitialStateCfg(pos=(0.55, 0.0, 0.0), rot=(0.70711, 0.0, 0.0, 0.70711)), ) # robots robot: ArticulationCfg = MISSING # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DomeLightCfg(color=(0.75, 0.75, 0.75), intensity=2500.0), ) ## # MDP settings ## @configclass class CommandsCfg: """Command terms for the MDP.""" ee_pose = mdp.UniformPoseCommandCfg( asset_name="robot", body_name=MISSING, resampling_time_range=(4.0, 4.0), debug_vis=True, ranges=mdp.UniformPoseCommandCfg.Ranges( pos_x=(0.35, 0.65), pos_y=(-0.2, 0.2), pos_z=(0.15, 0.5), roll=(0.0, 0.0), pitch=MISSING, # depends on end-effector axis yaw=(-3.14, 3.14), ), ) @configclass class ActionsCfg: """Action specifications for the MDP.""" arm_action: ActionTerm = MISSING gripper_action: ActionTerm | None = None @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" # observation terms (order preserved) joint_pos = ObsTerm(func=mdp.joint_pos_rel, noise=Unoise(n_min=-0.01, n_max=0.01)) joint_vel = ObsTerm(func=mdp.joint_vel_rel, noise=Unoise(n_min=-0.01, n_max=0.01)) pose_command = ObsTerm(func=mdp.generated_commands, params={"command_name": "ee_pose"}) actions = ObsTerm(func=mdp.last_action) def __post_init__(self): self.enable_corruption = True self.concatenate_terms = True # observation groups policy: PolicyCfg = PolicyCfg() @configclass class EventCfg: """Configuration for events.""" reset_robot_joints = EventTerm( func=mdp.reset_joints_by_scale, mode="reset", params={ "position_range": (0.5, 1.5), "velocity_range": (0.0, 0.0), }, ) @configclass class RewardsCfg: """Reward terms for the MDP.""" # task terms end_effector_position_tracking = RewTerm( func=mdp.position_command_error, weight=-0.2, params={"asset_cfg": SceneEntityCfg("robot", body_names=MISSING), "command_name": "ee_pose"}, ) end_effector_orientation_tracking = RewTerm( func=mdp.orientation_command_error, weight=-0.05, params={"asset_cfg": SceneEntityCfg("robot", body_names=MISSING), "command_name": "ee_pose"}, ) # action penalty action_rate = RewTerm(func=mdp.action_rate_l2, weight=-0.0001) joint_vel = RewTerm( func=mdp.joint_vel_l2, weight=-0.0001, params={"asset_cfg": SceneEntityCfg("robot")}, ) @configclass class TerminationsCfg: """Termination terms for the MDP.""" time_out = DoneTerm(func=mdp.time_out, time_out=True) @configclass class CurriculumCfg: """Curriculum terms for the MDP.""" action_rate = CurrTerm( func=mdp.modify_reward_weight, params={"term_name": "action_rate", "weight": -0.005, "num_steps": 4500} ) ## # Environment configuration ## @configclass class ReachEnvCfg(RLTaskEnvCfg): """Configuration for the reach end-effector pose tracking environment.""" # Scene settings scene: ReachSceneCfg = ReachSceneCfg(num_envs=4096, env_spacing=2.5) # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # MDP settings rewards: RewardsCfg = RewardsCfg() terminations: TerminationsCfg = TerminationsCfg() events: EventCfg = EventCfg() curriculum: CurriculumCfg = CurriculumCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 2 self.episode_length_s = 12.0 self.viewer.eye = (3.5, 3.5, 3.5) # simulation settings self.sim.dt = 1.0 / 60.0
5,704
Python
27.668342
111
0.660764
zoctipus/cse542Project/source/extensions/omni.isaac.orbit_tasks/omni/isaac/orbit_tasks/manipulation/reach/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Fixed-arm environments with end-effector pose tracking commands."""
194
Python
26.857139
70
0.752577