file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
superboySB/SBDrone_deprecated/examples/3_ros2_single_vehicle.py
#!/usr/bin/env python """ | File: 3_ros2_single_vehicle.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: This files serves as an example on how to build an app that makes use of the Pegasus API to run a simulation with a single vehicle, controlled using the ROS2 backend system. NOTE: this ROS2 interface only works on Ubuntu 20.04LTS for now. Check the website https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/install_ros.html#enabling-the-ros-ros-2-bridge-extension and follow the steps 1, 2 and 3 to make sure that the ROS2 example runs properly """ # Imports to start Isaac Sim from this script import carb from omni.isaac.kit import SimulationApp # Start Isaac Sim's simulation environment # Note: this simulation app must be instantiated right after the SimulationApp import, otherwise the simulator will crash # as this is the object that will load all the extensions and load the actual simulator. simulation_app = SimulationApp({"headless": False}) # ----------------------------------- # The actual script should start here # ----------------------------------- import omni.timeline from omni.isaac.core.world import World # Import the Pegasus API for simulating drones from pegasus.simulator.params import ROBOTS, SIMULATION_ENVIRONMENTS from pegasus.simulator.logic.state import State from pegasus.simulator.logic.backends.ros2_backend import ROS2Backend from pegasus.simulator.logic.vehicles.multirotor import Multirotor, MultirotorConfig from pegasus.simulator.logic.interface.pegasus_interface import PegasusInterface # Auxiliary scipy and numpy modules from scipy.spatial.transform import Rotation class PegasusApp: """ A Template class that serves as an example on how to build a simple Isaac Sim standalone App. """ def __init__(self): """ Method that initializes the PegasusApp and is used to setup the simulation environment. """ # Acquire the timeline that will be used to start/stop the simulation self.timeline = omni.timeline.get_timeline_interface() # Start the Pegasus Interface self.pg = PegasusInterface() # Acquire the World, .i.e, the singleton that controls that is a one stop shop for setting up physics, # spawning asset primitives, etc. self.pg._world = World(**self.pg._world_settings) self.world = self.pg.world # Launch one of the worlds provided by NVIDIA self.pg.load_environment(SIMULATION_ENVIRONMENTS["Curved Gridroom"]) # Create the vehicle # Try to spawn the selected robot in the world to the specified namespace config_multirotor = MultirotorConfig() config_multirotor.backends = [ROS2Backend(vehicle_id=1)] Multirotor( "/World/quadrotor", ROBOTS['Iris'], 0, [0.0, 0.0, 0.07], Rotation.from_euler("XYZ", [0.0, 0.0, 0.0], degrees=True).as_quat(), config=config_multirotor, ) # Reset the simulation environment so that all articulations (aka robots) are initialized self.world.reset() # Auxiliar variable for the timeline callback example self.stop_sim = False def run(self): """ Method that implements the application main loop, where the physics steps are executed. """ # Start the simulation self.timeline.play() # The "infinite" loop while simulation_app.is_running() and not self.stop_sim: # Update the UI of the app and perform the physics step self.world.step(render=True) # Cleanup and stop carb.log_warn("PegasusApp Simulation App is closing.") self.timeline.stop() simulation_app.close() def main(): # Instantiate the template app pg_app = PegasusApp() # Run the application loop pg_app.run() if __name__ == "__main__": main()
4,049
Python
35.818181
143
0.679674
superboySB/SBDrone_deprecated/examples/5_python_multi_vehicle.py
#!/usr/bin/env python """ | File: python_control_backend.py | Author: Marcelo Jacinto and Joao Pinto ([email protected], [email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: This files serves as an example on how to use the control backends API to create a custom controller for the vehicle from scratch and use it to perform a simulation, without using PX4 nor ROS. """ # Imports to start Isaac Sim from this script import carb from omni.isaac.kit import SimulationApp # Start Isaac Sim's simulation environment # Note: this simulation app must be instantiated right after the SimulationApp import, otherwise the simulator will crash # as this is the object that will load all the extensions and load the actual simulator. simulation_app = SimulationApp({"headless": False}) # ----------------------------------- # The actual script should start here # ----------------------------------- import omni.timeline from omni.isaac.core.world import World # Used for adding extra lights to the environment import omni.isaac.core.utils.prims as prim_utils # Import the Pegasus API for simulating drones from pegasus.simulator.params import ROBOTS from pegasus.simulator.logic.vehicles.multirotor import Multirotor, MultirotorConfig from pegasus.simulator.logic.interface.pegasus_interface import PegasusInterface # Import the custom python control backend from utils.nonlinear_controller import NonlinearController # Auxiliary scipy and numpy modules import numpy as np from scipy.spatial.transform import Rotation # Use os and pathlib for parsing the desired trajectory from a CSV file import os from pathlib import Path import random from omni.isaac.debug_draw import _debug_draw class PegasusApp: """ A Template class that serves as an example on how to build a simple Isaac Sim standalone App. """ def __init__(self): """ Method that initializes the PegasusApp and is used to setup the simulation environment. """ # Acquire the timeline that will be used to start/stop the simulation self.timeline = omni.timeline.get_timeline_interface() # Start the Pegasus Interface self.pg = PegasusInterface() # Acquire the World, .i.e, the singleton that controls that is a one stop shop for setting up physics, # spawning asset primitives, etc. self.pg._world = World(**self.pg._world_settings) self.world = self.pg.world # Add a custom light with a high-definition HDR surround environment of an exhibition hall, # instead of the typical ground plane prim_utils.create_prim( "/World/Light/DomeLight", "DomeLight", attributes={ "texture:file": "omniverse://localhost/NVIDIA/Assets/Skies/Indoor/ZetoCGcom_ExhibitionHall_Interior1.hdr", "intensity": 1000.0 }) # Get the current directory used to read trajectories and save results self.curr_dir = str(Path(os.path.dirname(os.path.realpath(__file__))).resolve()) # Create the vehicle 1 # Try to spawn the selected robot in the world to the specified namespace config_multirotor1 = MultirotorConfig() config_multirotor1.backends = [NonlinearController( trajectory_file=self.curr_dir + "/trajectories/pitch_relay_90_deg_1.csv", results_file=self.curr_dir + "/results/statistics_1.npz", Ki=[0.5, 0.5, 0.5], Kr=[2.0, 2.0, 2.0])] Multirotor( "/World/quadrotor1", ROBOTS['Iris'], 1, [0,-1.5, 8.0], Rotation.from_euler("XYZ", [0.0, 0.0, 0.0], degrees=True).as_quat(), config=config_multirotor1, ) # Create the vehicle 2 #Try to spawn the selected robot in the world to the specified namespace config_multirotor2 = MultirotorConfig() config_multirotor2.backends = [NonlinearController( trajectory_file=self.curr_dir + "/trajectories/pitch_relay_90_deg_2.csv", results_file=self.curr_dir + "/results/statistics_2.npz", Ki=[0.5, 0.5, 0.5], Kr=[2.0, 2.0, 2.0])] Multirotor( "/World/quadrotor2", ROBOTS['Iris'], 2, [2.3,-1.5, 8.0], Rotation.from_euler("XYZ", [0.0, 0.0, 0.0], degrees=True).as_quat(), config=config_multirotor2, ) # Set the camera to a nice position so that we can see the 2 drones almost touching each other self.pg.set_viewport_camera([7.53, -1.6, 4.96], [0.0, 3.3, 7.0]) # Read the trajectories and plot them inside isaac sim trajectory1 = np.flip(np.genfromtxt(self.curr_dir + "/trajectories/pitch_relay_90_deg_1.csv", delimiter=','), axis=0) num_samples1,_ = trajectory1.shape trajectory2 = np.flip(np.genfromtxt(self.curr_dir + "/trajectories/pitch_relay_90_deg_2.csv", delimiter=','), axis=0) num_samples2,_ = trajectory2.shape # Draw the lines of the desired trajectory in Isaac Sim with the same color as the output plots for the paper draw = _debug_draw.acquire_debug_draw_interface() point_list_1 = [(trajectory1[i,1], trajectory1[i,2], trajectory1[i,3]) for i in range(num_samples1)] draw.draw_lines_spline(point_list_1, (31/255, 119/255, 180/255, 1), 5, False) point_list_2 = [(trajectory2[i,1], trajectory2[i,2], trajectory2[i,3]) for i in range(num_samples2)] draw.draw_lines_spline(point_list_2, (255/255, 0, 0, 1), 5, False) self.world.reset() def run(self): """ Method that implements the application main loop, where the physics steps are executed. """ # Start the simulation self.timeline.play() # The "infinite" loop while simulation_app.is_running(): # Update the UI of the app and perform the physics step self.world.step(render=True) # Cleanup and stop carb.log_warn("PegasusApp Simulation App is closing.") self.timeline.stop() simulation_app.close() def main(): # Instantiate the template app pg_app = PegasusApp() # Run the application loop pg_app.run() if __name__ == "__main__": main()
6,397
Python
37.775757
125
0.647647
superboySB/SBDrone_deprecated/examples/4_python_single_vehicle.py
#!/usr/bin/env python """ | File: 4_python_single_vehicle.py | Author: Marcelo Jacinto and Joao Pinto ([email protected], [email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: This files serves as an example on how to use the control backends API to create a custom controller for the vehicle from scratch and use it to perform a simulation, without using PX4 nor ROS. """ # Imports to start Isaac Sim from this script import carb from omni.isaac.kit import SimulationApp # Start Isaac Sim's simulation environment # Note: this simulation app must be instantiated right after the SimulationApp import, otherwise the simulator will crash # as this is the object that will load all the extensions and load the actual simulator. simulation_app = SimulationApp({"headless": False}) # ----------------------------------- # The actual script should start here # ----------------------------------- import omni.timeline from omni.isaac.core.world import World # Import the Pegasus API for simulating drones from pegasus.simulator.params import ROBOTS, SIMULATION_ENVIRONMENTS from pegasus.simulator.logic.vehicles.multirotor import Multirotor, MultirotorConfig from pegasus.simulator.logic.interface.pegasus_interface import PegasusInterface # Import the custom python control backend from utils.nonlinear_controller import NonlinearController # Auxiliary scipy and numpy modules from scipy.spatial.transform import Rotation # Use os and pathlib for parsing the desired trajectory from a CSV file import os from pathlib import Path class PegasusApp: """ A Template class that serves as an example on how to build a simple Isaac Sim standalone App. """ def __init__(self): """ Method that initializes the PegasusApp and is used to setup the simulation environment. """ # Acquire the timeline that will be used to start/stop the simulation self.timeline = omni.timeline.get_timeline_interface() # Start the Pegasus Interface self.pg = PegasusInterface() # Acquire the World, .i.e, the singleton that controls that is a one stop shop for setting up physics, # spawning asset primitives, etc. self.pg._world = World(**self.pg._world_settings) self.world = self.pg.world # Launch one of the worlds provided by NVIDIA self.pg.load_environment(SIMULATION_ENVIRONMENTS["Curved Gridroom"]) # Get the current directory used to read trajectories and save results self.curr_dir = str(Path(os.path.dirname(os.path.realpath(__file__))).resolve()) # Create the vehicle 1 # Try to spawn the selected robot in the world to the specified namespace config_multirotor1 = MultirotorConfig() config_multirotor1.backends = [NonlinearController( trajectory_file=self.curr_dir + "/trajectories/pitch_relay_90_deg_2.csv", results_file=self.curr_dir + "/results/single_statistics.npz", Ki=[0.5, 0.5, 0.5], Kr=[2.0, 2.0, 2.0] )] Multirotor( "/World/quadrotor1", ROBOTS['Iris'], 0, [2.3, -1.5, 0.07], Rotation.from_euler("XYZ", [0.0, 0.0, 0.0], degrees=True).as_quat(), config=config_multirotor1, ) # Reset the simulation environment so that all articulations (aka robots) are initialized self.world.reset() def run(self): """ Method that implements the application main loop, where the physics steps are executed. """ # Start the simulation self.timeline.play() # The "infinite" loop while simulation_app.is_running(): # Update the UI of the app and perform the physics step self.world.step(render=True) # Cleanup and stop carb.log_warn("PegasusApp Simulation App is closing.") self.timeline.stop() simulation_app.close() def main(): # Instantiate the template app pg_app = PegasusApp() # Run the application loop pg_app.run() if __name__ == "__main__": main()
4,221
Python
34.478991
121
0.666667
superboySB/SBDrone_deprecated/examples/0_template_app.py
#!/usr/bin/env python """ | File: 0_template_app.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: This files serves as a template on how to build a clean and simple Isaac Sim based standalone App. """ # Imports to start Isaac Sim from this script import carb from omni.isaac.kit import SimulationApp # Start Isaac Sim's simulation environment # Note: this simulation app must be instantiated right after the SimulationApp import, otherwise the simulator will crash # as this is the object that will load all the extensions and load the actual simulator. simulation_app = SimulationApp({"headless": False}) # ----------------------------------- # The actual script should start here # ----------------------------------- import omni.timeline from omni.isaac.core import World class Template: """ A Template class that serves as an example on how to build a simple Isaac Sim standalone App. """ def __init__(self): """ Method that initializes the template App and is used to setup the simulation environment. """ # Acquire the timeline that will be used to start/stop the simulation self.timeline = omni.timeline.get_timeline_interface() # Acquire the World, .i.e, the singleton that controls that is a one stop shop for setting up physics, # spawning asset primitives, etc. self.world = World() # Create a ground plane for the simulation self.world.scene.add_default_ground_plane() # Create an example physics callback self.world.add_physics_callback('template_physics_callback', self.physics_callback) # Create an example render callback self.world.add_render_callback('template_render_callback', self.render_callback) # Create an example timeline callback self.world.add_timeline_callback('template_timeline_callback', self.timeline_callback) # Reset the simulation environment so that all articulations (aka robots) are initialized self.world.reset() # Auxiliar variable for the timeline callback example self.stop_sim = False def physics_callback(self, dt: float): """An example physics callback. It will get invoked every physics step. Args: dt (float): The time difference between the previous and current function call, in seconds. """ carb.log_info("This is a physics callback. It is called every " + str(dt) + " seconds!") def render_callback(self, data): """An example render callback. It will get invoked for every rendered frame. Args: data: Rendering data. """ carb.log_info("This is a render callback. It is called every frame!") def timeline_callback(self, timeline_event): """An example timeline callback. It will get invoked every time a timeline event occurs. In this example, we will check if the event is for a 'simulation stop'. If so, we will attempt to close the app Args: timeline_event: A timeline event """ if self.world.is_stopped(): self.stop_sim = True def run(self): """ Method that implements the application main loop, where the physics steps are executed. """ # Start the simulation self.timeline.play() # The "infinite" loop while simulation_app.is_running() and not self.stop_sim: # Update the UI of the app and perform the physics step self.world.step(render=True) # Cleanup and stop carb.log_warn("Template Simulation App is closing.") self.timeline.stop() simulation_app.close() def main(): # Instantiate the template app template_app = Template() # Run the application loop template_app.run() if __name__ == "__main__": main()
4,001
Python
34.105263
121
0.652587
superboySB/SBDrone_deprecated/examples/8_camera_vehicle.py
#!/usr/bin/env python """ | File: 8_camera_vehicle.py | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: This files serves as an example on how to build an app that makes use of the Pegasus API to run a simulation with a single vehicle equipped with a camera, producing rgb and camera info ROS2 Humble topics. """ # Imports to start Isaac Sim from this script import carb from omni.isaac.kit import SimulationApp # Start Isaac Sim's simulation environment # Note: this simulation app must be instantiated right after the SimulationApp import, otherwise the simulator will crash # as this is the object that will load all the extensions and load the actual simulator. simulation_app = SimulationApp({"headless": False}) # ----------------------------------- # The actual script should start here # ----------------------------------- import omni.timeline from omni.isaac.core.world import World from omni.isaac.core.utils.extensions import disable_extension, enable_extension # Enable/disable ROS bridge extensions to keep only ROS2 Humble Bridge disable_extension("omni.isaac.ros_bridge") disable_extension("omni.isaac.ros2_bridge") enable_extension("omni.isaac.ros2_bridge-humble") # Import the Pegasus API for simulating drones from pegasus.simulator.params import ROBOTS, SIMULATION_ENVIRONMENTS from pegasus.simulator.logic.state import State from pegasus.simulator.logic.backends.mavlink_backend import MavlinkBackend, MavlinkBackendConfig from pegasus.simulator.logic.vehicles.multirotor import Multirotor, MultirotorConfig from pegasus.simulator.logic.interface.pegasus_interface import PegasusInterface from pegasus.simulator.logic.graphs import ROS2Camera, ROS2Tf from pegasus.simulator.logic.sensors import Camera # Auxiliary scipy and numpy modules from scipy.spatial.transform import Rotation class PegasusApp: """ A Template class that serves as an example on how to build a simple Isaac Sim standalone App. """ def __init__(self): """ Method that initializes the PegasusApp and is used to setup the simulation environment. """ # Acquire the timeline that will be used to start/stop the simulation self.timeline = omni.timeline.get_timeline_interface() # Start the Pegasus Interface self.pg = PegasusInterface() # Acquire the World, .i.e, the singleton that controls that is a one stop shop for setting up physics, # spawning asset primitives, etc. self.pg._world = World(**self.pg._world_settings) self.world = self.pg.world # Launch one of the worlds provided by NVIDIA self.pg.load_environment(SIMULATION_ENVIRONMENTS["Curved Gridroom"]) # Create the vehicle # Try to spawn the selected robot in the world to the specified namespace config_multirotor = MultirotorConfig() # Create the multirotor configuration mavlink_config = MavlinkBackendConfig({ "vehicle_id": 0, "px4_autolaunch": True, "px4_dir": "/home/fstec/Projects/PX4-Autopilot", "px4_vehicle_model": 'iris' }) config_multirotor.backends = [MavlinkBackend(mavlink_config)] # Create Camera sensor on top of the existing camera prim and change its parameters camera_prim_path = "body/Camera" camera_config = { "position": [0.1, 0.0, 0.0], "orientation": Rotation.from_euler("XYZ", [0.0, 0.0, 0.0], degrees=True).as_quat(), "focal_length": 16.0, "overwrite_params": True } config_multirotor.sensors += [Camera(camera_prim_path, config=camera_config)] # Create camera graph for the existing Camera prim on the Iris model, which can be found # at the prim path `/World/quadrotor/body/Camera`. The camera prim path is the local path from the vehicle's prim path # to the camera prim, to which this graph will be connected. All ROS2 topics published by this graph will have # namespace `quadrotor` and frame_id `Camera` followed by the selected camera types (`rgb`, `camera_info`). config_multirotor.graphs = [ROS2Camera(camera_prim_path, config={"types": ['rgb', 'camera_info']}), ROS2Tf()] Multirotor( "/World/quadrotor", ROBOTS['Iris'], 0, [0.0, 0.0, 0.07], Rotation.from_euler("XYZ", [0.0, 0.0, 0.0], degrees=True).as_quat(), config=config_multirotor, ) # Reset the simulation environment so that all articulations (aka robots) are initialized self.world.reset() # Auxiliar variable for the timeline callback example self.stop_sim = False def run(self): """ Method that implements the application main loop, where the physics steps are executed. """ # Start the simulation self.timeline.play() # The "infinite" loop while simulation_app.is_running() and not self.stop_sim: # Update the UI of the app and perform the physics step self.world.step(render=True) # Cleanup and stop carb.log_warn("PegasusApp Simulation App is closing.") self.timeline.stop() simulation_app.close() def main(): # Instantiate the template app pg_app = PegasusApp() # Run the application loop pg_app.run() if __name__ == "__main__": main()
5,471
Python
38.941606
126
0.672272
superboySB/SBDrone_deprecated/examples/2_px4_multi_vehicle.py
#!/usr/bin/env python """ | File: 2_px4_multi_vehicle.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: This files serves as an example on how to build an app that makes use of the Pegasus API to run a simulation with multiple vehicles, controlled using the MAVLink control backend. """ # Imports to start Isaac Sim from this script import carb from omni.isaac.kit import SimulationApp # Start Isaac Sim's simulation environment # Note: this simulation app must be instantiated right after the SimulationApp import, otherwise the simulator will crash # as this is the object that will load all the extensions and load the actual simulator. simulation_app = SimulationApp({"headless": False}) # ----------------------------------- # The actual script should start here # ----------------------------------- import omni.timeline from omni.isaac.core.world import World # Import the Pegasus API for simulating drones from pegasus.simulator.params import ROBOTS, SIMULATION_ENVIRONMENTS from pegasus.simulator.logic.state import State from pegasus.simulator.logic.backends.mavlink_backend import MavlinkBackend, MavlinkBackendConfig from pegasus.simulator.logic.vehicles.multirotor import Multirotor, MultirotorConfig from pegasus.simulator.logic.interface.pegasus_interface import PegasusInterface # Auxiliary scipy and numpy modules from scipy.spatial.transform import Rotation class PegasusApp: """ A Template class that serves as an example on how to build a simple Isaac Sim standalone App. """ def __init__(self): """ Method that initializes the PegasusApp and is used to setup the simulation environment. """ # Acquire the timeline that will be used to start/stop the simulation self.timeline = omni.timeline.get_timeline_interface() # Start the Pegasus Interface self.pg = PegasusInterface() # Acquire the World, .i.e, the singleton that controls that is a one stop shop for setting up physics, # spawning asset primitives, etc. self.pg._world = World(**self.pg._world_settings) self.world = self.pg.world # Launch one of the worlds provided by NVIDIA self.pg.load_environment(SIMULATION_ENVIRONMENTS["Curved Gridroom"]) # Spawn 5 vehicles with the PX4 control backend in the simulation, separated by 1.0 m along the x-axis for i in range(5): self.vehicle_factory(i, gap_x_axis=1.0) # Reset the simulation environment so that all articulations (aka robots) are initialized self.world.reset() # Auxiliar variable for the timeline callback example self.stop_sim = False def vehicle_factory(self, vehicle_id: int, gap_x_axis: float): """Auxiliar method to create multiple multirotor vehicles Args: vehicle_id (_type_): _description_ """ # Create the vehicle # Try to spawn the selected robot in the world to the specified namespace config_multirotor = MultirotorConfig() # Create the multirotor configuration mavlink_config = MavlinkBackendConfig({"vehicle_id": vehicle_id, "px4_autolaunch": True, "px4_dir": "/home/marcelo/PX4-Autopilot", "px4_vehicle_model": 'iris'}) config_multirotor.backends = [MavlinkBackend(mavlink_config)] Multirotor( "/World/quadrotor", ROBOTS['Iris'], vehicle_id, [gap_x_axis * vehicle_id, 0.0, 0.07], Rotation.from_euler("XYZ", [0.0, 0.0, 0.0], degrees=True).as_quat(), config=config_multirotor) def run(self): """ Method that implements the application main loop, where the physics steps are executed. """ # Start the simulation self.timeline.play() # The "infinite" loop while simulation_app.is_running() and not self.stop_sim: # Update the UI of the app and perform the physics step self.world.step(render=True) # Cleanup and stop carb.log_warn("PegasusApp Simulation App is closing.") self.timeline.stop() simulation_app.close() def main(): # Instantiate the template app pg_app = PegasusApp() # Run the application loop pg_app.run() if __name__ == "__main__": main()
4,454
Python
35.818182
193
0.668388
superboySB/SBDrone_deprecated/examples/utils/nonlinear_controller.py
#!/usr/bin/env python """ | File: nonlinear_controller.py | Author: Marcelo Jacinto and Joao Pinto ([email protected], [email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: This files serves as an example on how to use the control backends API to create a custom controller for the vehicle from scratch and use it to perform a simulation, without using PX4 nor ROS. In this controller, we provide a quick way of following a given trajectory specified in csv files or track an hard-coded trajectory based on exponentials! NOTE: This is just an example, to demonstrate the potential of the API. A much more flexible solution can be achieved """ # Imports to be able to log to the terminal with fancy colors import carb # Imports from the Pegasus library from pegasus.simulator.logic.state import State from pegasus.simulator.logic.backends import Backend # Auxiliary scipy and numpy modules import numpy as np from scipy.spatial.transform import Rotation class NonlinearController(Backend): """A nonlinear controller class. It implements a nonlinear controller that allows a vehicle to track aggressive trajectories. This controlers is well described in the papers [1] J. Pinto, B. J. Guerreiro and R. Cunha, "Planning Parcel Relay Manoeuvres for Quadrotors," 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 2021, pp. 137-145, doi: 10.1109/ICUAS51884.2021.9476757. [2] D. Mellinger and V. Kumar, "Minimum snap trajectory generation and control for quadrotors," 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011, pp. 2520-2525, doi: 10.1109/ICRA.2011.5980409. """ def __init__(self, trajectory_file: str = None, results_file: str=None, reverse=False, Kp=[10.0, 10.0, 10.0], Kd=[8.5, 8.5, 8.5], Ki=[1.50, 1.50, 1.50], Kr=[3.5, 3.5, 3.5], Kw=[0.5, 0.5, 0.5]): # The current rotor references [rad/s] self.input_ref = [0.0, 0.0, 0.0, 0.0] # The current state of the vehicle expressed in the inertial frame (in ENU) self.p = np.zeros((3,)) # The vehicle position self.R: Rotation = Rotation.identity() # The vehicle attitude self.w = np.zeros((3,)) # The angular velocity of the vehicle self.v = np.zeros((3,)) # The linear velocity of the vehicle in the inertial frame self.a = np.zeros((3,)) # The linear acceleration of the vehicle in the inertial frame # Define the control gains matrix for the outer-loop self.Kp = np.diag(Kp) self.Kd = np.diag(Kd) self.Ki = np.diag(Ki) self.Kr = np.diag(Kr) self.Kw = np.diag(Kw) self.int = np.array([0.0, 0.0, 0.0]) # Define the dynamic parameters for the vehicle self.m = 1.50 # Mass in Kg self.g = 9.81 # The gravity acceleration ms^-2 # Read the target trajectory from a CSV file inside the trajectories directory # if a trajectory is provided. Otherwise, just perform the hard-coded trajectory provided with this controller if trajectory_file is not None: self.trajectory = self.read_trajectory_from_csv(trajectory_file) self.index = 0 self.max_index, _ = self.trajectory.shape self.total_time = 0.0 # Use the built-in trajectory hard-coded for this controller else: # Set the initial time for starting when using the built-in trajectory (the time is also used in this case # as the parametric value) self.total_time = -5.0 # Signal that we will not used a received trajectory self.trajectory = None self.max_index = 1 self.reverse = reverse # Auxiliar variable, so that we only start sending motor commands once we get the state of the vehicle self.reveived_first_state = False # Lists used for analysing performance statistics self.results_files = results_file self.time_vector = [] self.desired_position_over_time = [] self.position_over_time = [] self.position_error_over_time = [] self.velocity_error_over_time = [] self.atittude_error_over_time = [] self.attitude_rate_error_over_time = [] def read_trajectory_from_csv(self, file_name: str): """Auxiliar method used to read the desired trajectory from a CSV file Args: file_name (str): A string with the name of the trajectory inside the trajectories directory Returns: np.ndarray: A numpy matrix with the trajectory desired states over time """ # Read the trajectory to a pandas frame return np.flip(np.genfromtxt(file_name, delimiter=','), axis=0) def start(self): """ Reset the control and trajectory index """ self.reset_statistics() def stop(self): """ Stopping the controller. Saving the statistics data for plotting later """ # Check if we should save the statistics to some file or not if self.results_files is None: return statistics = {} statistics["time"] = np.array(self.time_vector) statistics["p"] = np.vstack(self.position_over_time) statistics["desired_p"] = np.vstack(self.desired_position_over_time) statistics["ep"] = np.vstack(self.position_error_over_time) statistics["ev"] = np.vstack(self.velocity_error_over_time) statistics["er"] = np.vstack(self.atittude_error_over_time) statistics["ew"] = np.vstack(self.attitude_rate_error_over_time) np.savez(self.results_files, **statistics) carb.log_warn("Statistics saved to: " + self.results_files) self.reset_statistics() def update_sensor(self, sensor_type: str, data): """ Do nothing. For now ignore all the sensor data and just use the state directly for demonstration purposes. This is a callback that is called at every physics step. Args: sensor_type (str): The name of the sensor providing the data data (dict): A dictionary that contains the data produced by the sensor """ pass def update_state(self, state: State): """ Method that updates the current state of the vehicle. This is a callback that is called at every physics step Args: state (State): The current state of the vehicle. """ self.p = state.position self.R = Rotation.from_quat(state.attitude) self.w = state.angular_velocity self.v = state.linear_velocity self.reveived_first_state = True def input_reference(self): """ Method that is used to return the latest target angular velocities to be applied to the vehicle Returns: A list with the target angular velocities for each individual rotor of the vehicle """ return self.input_ref def update(self, dt: float): """Method that implements the nonlinear control law and updates the target angular velocities for each rotor. This method will be called by the simulation on every physics step Args: dt (float): The time elapsed between the previous and current function calls (s). """ if self.reveived_first_state == False: return # ------------------------------------------------- # Update the references for the controller to track # ------------------------------------------------- self.total_time += dt # Check if we need to update to the next trajectory index if self.index < self.max_index - 1 and self.total_time >= self.trajectory[self.index + 1, 0]: self.index += 1 # Update using an external trajectory if self.trajectory is not None: # the target positions [m], velocity [m/s], accelerations [m/s^2], jerk [m/s^3], yaw-angle [rad], yaw-rate [rad/s] p_ref = np.array([self.trajectory[self.index, 1], self.trajectory[self.index, 2], self.trajectory[self.index, 3]]) v_ref = np.array([self.trajectory[self.index, 4], self.trajectory[self.index, 5], self.trajectory[self.index, 6]]) a_ref = np.array([self.trajectory[self.index, 7], self.trajectory[self.index, 8], self.trajectory[self.index, 9]]) j_ref = np.array([self.trajectory[self.index, 10], self.trajectory[self.index, 11], self.trajectory[self.index, 12]]) yaw_ref = self.trajectory[self.index, 13] yaw_rate_ref = self.trajectory[self.index, 14] # Or update the reference using the built-in trajectory else: s = 0.6 p_ref = self.pd(self.total_time, s, self.reverse) v_ref = self.d_pd(self.total_time, s, self.reverse) a_ref = self.dd_pd(self.total_time, s, self.reverse) j_ref = self.ddd_pd(self.total_time, s, self.reverse) yaw_ref = self.yaw_d(self.total_time, s) yaw_rate_ref = self.d_yaw_d(self.total_time, s) # ------------------------------------------------- # Start the controller implementation # ------------------------------------------------- # Compute the tracking errors ep = self.p - p_ref ev = self.v - v_ref self.int = self.int + (ep * dt) ei = self.int # Compute F_des term F_des = -(self.Kp @ ep) - (self.Kd @ ev) - (self.Ki @ ei) + np.array([0.0, 0.0, self.m * self.g]) + (self.m * a_ref) # Get the current axis Z_B (given by the last column of the rotation matrix) Z_B = self.R.as_matrix()[:,2] # Get the desired total thrust in Z_B direction (u_1) u_1 = F_des @ Z_B # Compute the desired body-frame axis Z_b Z_b_des = F_des / np.linalg.norm(F_des) # Compute X_C_des X_c_des = np.array([np.cos(yaw_ref), np.sin(yaw_ref), 0.0]) # Compute Y_b_des Z_b_cross_X_c = np.cross(Z_b_des, X_c_des) Y_b_des = Z_b_cross_X_c / np.linalg.norm(Z_b_cross_X_c) # Compute X_b_des X_b_des = np.cross(Y_b_des, Z_b_des) # Compute the desired rotation R_des = [X_b_des | Y_b_des | Z_b_des] R_des = np.c_[X_b_des, Y_b_des, Z_b_des] R = self.R.as_matrix() # Compute the rotation error e_R = 0.5 * self.vee((R_des.T @ R) - (R.T @ R_des)) # Compute an approximation of the current vehicle acceleration in the inertial frame (since we cannot measure it directly) self.a = (u_1 * Z_B) / self.m - np.array([0.0, 0.0, self.g]) # Compute the desired angular velocity by projecting the angular velocity in the Xb-Yb plane # projection of angular velocity on xB − yB plane # see eqn (7) from [2]. hw = (self.m / u_1) * (j_ref - np.dot(Z_b_des, j_ref) * Z_b_des) # desired angular velocity w_des = np.array([-np.dot(hw, Y_b_des), np.dot(hw, X_b_des), yaw_rate_ref * Z_b_des[2]]) # Compute the angular velocity error e_w = self.w - w_des # Compute the torques to apply on the rigid body tau = -(self.Kr @ e_R) - (self.Kw @ e_w) # Use the allocation matrix provided by the Multirotor vehicle to convert the desired force and torque # to angular velocity [rad/s] references to give to each rotor if self.vehicle: self.input_ref = self.vehicle.force_and_torques_to_velocities(u_1, tau) # ---------------------------- # Statistics to save for later # ---------------------------- self.time_vector.append(self.total_time) self.position_over_time.append(self.p) self.desired_position_over_time.append(p_ref) self.position_error_over_time.append(ep) self.velocity_error_over_time.append(ev) self.atittude_error_over_time.append(e_R) self.attitude_rate_error_over_time.append(e_w) @staticmethod def vee(S): """Auxiliary function that computes the 'v' map which takes elements from so(3) to R^3. Args: S (np.array): A matrix in so(3) """ return np.array([-S[1,2], S[0,2], -S[0,1]]) def reset_statistics(self): self.index = 0 # If we received an external trajectory, reset the time to 0.0 if self.trajectory is not None: self.total_time = 0.0 # if using the internal trajectory, make the parametric value start at -5.0 else: self.total_time = -5.0 # Reset the lists used for analysing performance statistics self.time_vector = [] self.desired_position_over_time = [] self.position_over_time = [] self.position_error_over_time = [] self.velocity_error_over_time = [] self.atittude_error_over_time = [] self.attitude_rate_error_over_time = [] # --------------------------------------------------- # Definition of an exponential trajectory for example # This can be used as a reference if not trajectory file is passed # as an argument to the constructor of this class # --------------------------------------------------- def pd(self, t, s, reverse=False): """The desired position of the built-in trajectory Args: t (float): The parametric value that guides the equation s (float): How steep and agressive the curve is reverse (bool, optional): Choose whether we want to flip the curve (so that we can have 2 drones almost touching). Defaults to False. Returns: np.ndarray: A 3x1 array with the x, y ,z desired [m] """ x = t z = 1 / s * np.exp(-0.5 * np.power(t/s, 2)) + 1.0 y = 1 / s * np.exp(-0.5 * np.power(t/s, 2)) if reverse == True: y = -1 / s * np.exp(-0.5 * np.power(t/s, 2)) + 4.5 return np.array([x,y,z]) def d_pd(self, t, s, reverse=False): """The desired velocity of the built-in trajectory Args: t (float): The parametric value that guides the equation s (float): How steep and agressive the curve is reverse (bool, optional): Choose whether we want to flip the curve (so that we can have 2 drones almost touching). Defaults to False. Returns: np.ndarray: A 3x1 array with the d_x, d_y ,d_z desired [m/s] """ x = 1.0 y = -(t * np.exp(-np.power(t,2)/(2*np.power(s,2))))/np.power(s,3) z = -(t * np.exp(-np.power(t,2)/(2*np.power(s,2))))/np.power(s,3) if reverse == True: y = (t * np.exp(-np.power(t,2)/(2*np.power(s,2))))/np.power(s,3) return np.array([x,y,z]) def dd_pd(self, t, s, reverse=False): """The desired acceleration of the built-in trajectory Args: t (float): The parametric value that guides the equation s (float): How steep and agressive the curve is reverse (bool, optional): Choose whether we want to flip the curve (so that we can have 2 drones almost touching). Defaults to False. Returns: np.ndarray: A 3x1 array with the dd_x, dd_y ,dd_z desired [m/s^2] """ x = 0.0 y = (np.power(t,2)*np.exp(-np.power(t,2)/(2*np.power(s,2))))/np.power(s,5) - np.exp(-np.power(t,2)/(2*np.power(s,2)))/np.power(s,3) z = (np.power(t,2)*np.exp(-np.power(t,2)/(2*np.power(s,2))))/np.power(s,5) - np.exp(-np.power(t,2)/(2*np.power(s,2)))/np.power(s,3) if reverse == True: y = np.exp(-np.power(t,2)/(2*np.power(s,2)))/np.power(s,3) - (np.power(t,2)*np.exp(-np.power(t,2)/(2*np.power(s,2))))/np.power(s,5) return np.array([x,y,z]) def ddd_pd(self, t, s, reverse=False): """The desired jerk of the built-in trajectory Args: t (float): The parametric value that guides the equation s (float): How steep and agressive the curve is reverse (bool, optional): Choose whether we want to flip the curve (so that we can have 2 drones almost touching). Defaults to False. Returns: np.ndarray: A 3x1 array with the ddd_x, ddd_y ,ddd_z desired [m/s^3] """ x = 0.0 y = (3*t*np.exp(-np.power(t,2)/(2*np.power(s,2))))/np.power(s,5) - (np.power(t,3)*np.exp(-np.power(t,2)/(2*np.power(s,2))))/np.power(s,7) z = (3*t*np.exp(-np.power(t,2)/(2*np.power(s,2))))/np.power(s,5) - (np.power(t,3)*np.exp(-np.power(t,2)/(2*np.power(s,2))))/np.power(s,7) if reverse == True: y = (np.power(t,3)*np.exp(-np.power(t,2)/(2*np.power(s,2))))/np.power(s,7) - (3*t*np.exp(-np.power(t,2)/(2*np.power(s,2))))/np.power(s,5) return np.array([x,y,z]) def yaw_d(self, t, s): """The desired yaw of the built-in trajectory Args: t (float): The parametric value that guides the equation s (float): How steep and agressive the curve is reverse (bool, optional): Choose whether we want to flip the curve (so that we can have 2 drones almost touching). Defaults to False. Returns: np.ndarray: A float with the desired yaw in rad """ return 0.0 def d_yaw_d(self, t, s): """The desired yaw_rate of the built-in trajectory Args: t (float): The parametric value that guides the equation s (float): How steep and agressive the curve is reverse (bool, optional): Choose whether we want to flip the curve (so that we can have 2 drones almost touching). Defaults to False. Returns: np.ndarray: A float with the desired yaw_rate in rad/s """ return 0.0
18,171
Python
41.064815
149
0.587144
superboySB/SBDrone_deprecated/src/HITL/drone_env.py
# import setup_path import airsim import numpy as np import math import time from argparse import ArgumentParser import gym from gym import spaces class AirSimDroneEnv(gym.Env): def __init__(self, ip_address, step_length, image_shape): super().__init__(image_shape) self.step_length = step_length self.image_shape = image_shape self.state = { "position": np.zeros(3), "collision": False, "prev_position": np.zeros(3), } self.drone = airsim.MultirotorClient(ip=ip_address) self.action_space = spaces.Discrete(7) self.observation_space = spaces.Box(0, 255, shape=image_shape, dtype=np.uint8) self._setup_flight() self.image_request = airsim.ImageRequest( 3, airsim.ImageType.DepthPerspective, True, False ) def __del__(self): self.drone.reset() def _setup_flight(self): self.drone.reset() self.drone.enableApiControl(True) self.drone.armDisarm(True) # Set home position and velocity self.drone.moveToPositionAsync(-0.55265, -31.9786, -19.0225, 10).join() self.drone.moveByVelocityAsync(1, -0.67, -0.8, 5).join() def transform_obs(self, responses): img1d = np.array(responses[0].image_data_float, dtype=float) img1d = 255 / np.maximum(np.ones(img1d.size), img1d) img2d = np.reshape(img1d, (responses[0].height, responses[0].width)) from PIL import Image image = Image.fromarray(img2d) im_final = np.array(image.resize((84, 84)).convert("L")) return im_final.reshape([84, 84, 1]) def _get_obs(self): responses = self.drone.simGetImages([self.image_request]) image = self.transform_obs(responses) self.drone_state = self.drone.getMultirotorState() self.state["prev_position"] = self.state["position"] self.state["position"] = self.drone_state.kinematics_estimated.position self.state["velocity"] = self.drone_state.kinematics_estimated.linear_velocity collision = self.drone.simGetCollisionInfo().has_collided self.state["collision"] = collision return image def _do_action(self, action): quad_offset = self.interpret_action(action) quad_vel = self.drone.getMultirotorState().kinematics_estimated.linear_velocity self.drone.moveByVelocityAsync( quad_vel.x_val + quad_offset[0], quad_vel.y_val + quad_offset[1], quad_vel.z_val + quad_offset[2], 5, ).join() def _compute_reward(self): thresh_dist = 7 beta = 1 z = -10 pts = [ np.array([-0.55265, -31.9786, -19.0225]), np.array([48.59735, -63.3286, -60.07256]), np.array([193.5974, -55.0786, -46.32256]), np.array([369.2474, 35.32137, -62.5725]), np.array([541.3474, 143.6714, -32.07256]), ] quad_pt = np.array( list( ( self.state["position"].x_val, self.state["position"].y_val, self.state["position"].z_val, ) ) ) if self.state["collision"]: reward = -100 else: dist = 10000000 for i in range(0, len(pts) - 1): dist = min( dist, np.linalg.norm(np.cross((quad_pt - pts[i]), (quad_pt - pts[i + 1]))) / np.linalg.norm(pts[i] - pts[i + 1]), ) if dist > thresh_dist: reward = -10 else: reward_dist = math.exp(-beta * dist) - 0.5 reward_speed = ( np.linalg.norm( [ self.state["velocity"].x_val, self.state["velocity"].y_val, self.state["velocity"].z_val, ] ) - 0.5 ) reward = reward_dist + reward_speed done = 0 if reward <= -10: done = 1 return reward, done def step(self, action): self._do_action(action) obs = self._get_obs() reward, done = self._compute_reward() return obs, reward, done, self.state def reset(self): self._setup_flight() return self._get_obs() def interpret_action(self, action): if action == 0: quad_offset = (self.step_length, 0, 0) elif action == 1: quad_offset = (0, self.step_length, 0) elif action == 2: quad_offset = (0, 0, self.step_length) elif action == 3: quad_offset = (-self.step_length, 0, 0) elif action == 4: quad_offset = (0, -self.step_length, 0) elif action == 5: quad_offset = (0, 0, -self.step_length) else: quad_offset = (0, 0, 0) return quad_offset
5,105
Python
29.945454
88
0.518511
superboySB/SBDrone_deprecated/src/HITL/run_ppo.py
# import setup_path import gym import airgym import time from stable_baselines3 import DQN from stable_baselines3.common.monitor import Monitor from stable_baselines3.common.vec_env import DummyVecEnv, VecTransposeImage from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.callbacks import EvalCallback from drone_env import AirSimDroneEnv # Create a DummyVecEnv for main airsim gym env env = AirSimDroneEnv(ip_address="172.16.13.104", step_length=0.25, image_shape=(84, 84, 1),) env = DummyVecEnv(env) # DummyVecEnv( # [ # lambda: Monitor( # gym.make( # "airsim-drone-sample-v0", # ip_address="172.16.13.104", # step_length=0.25, # image_shape=(84, 84, 1), # ) # ) # ] # ) # Wrap env as VecTransposeImage to allow SB to handle frame observations env = VecTransposeImage(env) # Initialize RL algorithm type and parameters model = DQN( "CnnPolicy", env, learning_rate=0.00025, verbose=1, batch_size=32, train_freq=4, target_update_interval=10000, learning_starts=10000, buffer_size=500000, max_grad_norm=10, exploration_fraction=0.1, exploration_final_eps=0.01, device="cuda", tensorboard_log="./tb_logs/", ) # Create an evaluation callback with the same env, called every 10000 iterations callbacks = [] eval_callback = EvalCallback( env, callback_on_new_best=None, n_eval_episodes=5, best_model_save_path=".", log_path=".", eval_freq=10000, ) callbacks.append(eval_callback) kwargs = {} kwargs["callback"] = callbacks # Train for a certain number of timesteps model.learn( total_timesteps=5e5, tb_log_name="dqn_airsim_drone_run_" + str(time.time()), **kwargs ) # Save policy weights model.save("dqn_airsim_drone_policy")
1,908
Python
23.792207
80
0.658281
superboySB/SBDrone_deprecated/src/HITL/airsim/pfm.py
import numpy as np import matplotlib.pyplot as plt import re import sys import pdb def read_pfm(file): """ Read a pfm file """ file = open(file, 'rb') color = None width = None height = None scale = None endian = None header = file.readline().rstrip() header = str(bytes.decode(header, encoding='utf-8')) if header == 'PF': color = True elif header == 'Pf': color = False else: raise Exception('Not a PFM file.') pattern = r'^(\d+)\s(\d+)\s$' temp_str = str(bytes.decode(file.readline(), encoding='utf-8')) dim_match = re.match(pattern, temp_str) if dim_match: width, height = map(int, dim_match.groups()) else: temp_str += str(bytes.decode(file.readline(), encoding='utf-8')) dim_match = re.match(pattern, temp_str) if dim_match: width, height = map(int, dim_match.groups()) else: raise Exception('Malformed PFM header: width, height cannot be found') scale = float(file.readline().rstrip()) if scale < 0: # little-endian endian = '<' scale = -scale else: endian = '>' # big-endian data = np.fromfile(file, endian + 'f') shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) # DEY: I don't know why this was there. file.close() return data, scale def write_pfm(file, image, scale=1): """ Write a pfm file """ file = open(file, 'wb') color = None if image.dtype.name != 'float32': raise Exception('Image dtype must be float32.') if len(image.shape) == 3 and image.shape[2] == 3: # color image color = True elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale color = False else: raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.') file.write(bytes('PF\n', 'UTF-8') if color else bytes('Pf\n', 'UTF-8')) temp_str = '%d %d\n' % (image.shape[1], image.shape[0]) file.write(bytes(temp_str, 'UTF-8')) endian = image.dtype.byteorder if endian == '<' or endian == '=' and sys.byteorder == 'little': scale = -scale temp_str = '%f\n' % scale file.write(bytes(temp_str, 'UTF-8')) image.tofile(file)
2,323
Python
26.023256
92
0.575118
superboySB/SBDrone_deprecated/src/HITL/airsim/__init__.py
from .client import * from .utils import * from .types import * __version__ = "1.8.1"
87
Python
13.666664
21
0.643678
superboySB/SBDrone_deprecated/src/HITL/airsim/utils.py
import numpy as np #pip install numpy import math import time import sys import os import inspect import types import re import logging from .types import * def string_to_uint8_array(bstr): return np.fromstring(bstr, np.uint8) def string_to_float_array(bstr): return np.fromstring(bstr, np.float32) def list_to_2d_float_array(flst, width, height): return np.reshape(np.asarray(flst, np.float32), (height, width)) def get_pfm_array(response): return list_to_2d_float_array(response.image_data_float, response.width, response.height) def get_public_fields(obj): return [attr for attr in dir(obj) if not (attr.startswith("_") or inspect.isbuiltin(attr) or inspect.isfunction(attr) or inspect.ismethod(attr))] def to_dict(obj): return dict([attr, getattr(obj, attr)] for attr in get_public_fields(obj)) def to_str(obj): return str(to_dict(obj)) def write_file(filename, bstr): """ Write binary data to file. Used for writing compressed PNG images """ with open(filename, 'wb') as afile: afile.write(bstr) # helper method for converting getOrientation to roll/pitch/yaw # https:#en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles def to_eularian_angles(q): z = q.z_val y = q.y_val x = q.x_val w = q.w_val ysqr = y * y # roll (x-axis rotation) t0 = +2.0 * (w*x + y*z) t1 = +1.0 - 2.0*(x*x + ysqr) roll = math.atan2(t0, t1) # pitch (y-axis rotation) t2 = +2.0 * (w*y - z*x) if (t2 > 1.0): t2 = 1 if (t2 < -1.0): t2 = -1.0 pitch = math.asin(t2) # yaw (z-axis rotation) t3 = +2.0 * (w*z + x*y) t4 = +1.0 - 2.0 * (ysqr + z*z) yaw = math.atan2(t3, t4) return (pitch, roll, yaw) def to_quaternion(pitch, roll, yaw): t0 = math.cos(yaw * 0.5) t1 = math.sin(yaw * 0.5) t2 = math.cos(roll * 0.5) t3 = math.sin(roll * 0.5) t4 = math.cos(pitch * 0.5) t5 = math.sin(pitch * 0.5) q = Quaternionr() q.w_val = t0 * t2 * t4 + t1 * t3 * t5 #w q.x_val = t0 * t3 * t4 - t1 * t2 * t5 #x q.y_val = t0 * t2 * t5 + t1 * t3 * t4 #y q.z_val = t1 * t2 * t4 - t0 * t3 * t5 #z return q def wait_key(message = ''): ''' Wait for a key press on the console and return it. ''' if message != '': print (message) result = None if os.name == 'nt': import msvcrt result = msvcrt.getch() else: import termios fd = sys.stdin.fileno() oldterm = termios.tcgetattr(fd) newattr = termios.tcgetattr(fd) newattr[3] = newattr[3] & ~termios.ICANON & ~termios.ECHO termios.tcsetattr(fd, termios.TCSANOW, newattr) try: result = sys.stdin.read(1) except IOError: pass finally: termios.tcsetattr(fd, termios.TCSAFLUSH, oldterm) return result def read_pfm(file): """ Read a pfm file """ file = open(file, 'rb') color = None width = None height = None scale = None endian = None header = file.readline().rstrip() header = str(bytes.decode(header, encoding='utf-8')) if header == 'PF': color = True elif header == 'Pf': color = False else: raise Exception('Not a PFM file.') temp_str = str(bytes.decode(file.readline(), encoding='utf-8')) dim_match = re.match(r'^(\d+)\s(\d+)\s$', temp_str) if dim_match: width, height = map(int, dim_match.groups()) else: raise Exception('Malformed PFM header.') scale = float(file.readline().rstrip()) if scale < 0: # little-endian endian = '<' scale = -scale else: endian = '>' # big-endian data = np.fromfile(file, endian + 'f') shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) # DEY: I don't know why this was there. file.close() return data, scale def write_pfm(file, image, scale=1): """ Write a pfm file """ file = open(file, 'wb') color = None if image.dtype.name != 'float32': raise Exception('Image dtype must be float32.') if len(image.shape) == 3 and image.shape[2] == 3: # color image color = True elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # grayscale color = False else: raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.') file.write('PF\n'.encode('utf-8') if color else 'Pf\n'.encode('utf-8')) temp_str = '%d %d\n' % (image.shape[1], image.shape[0]) file.write(temp_str.encode('utf-8')) endian = image.dtype.byteorder if endian == '<' or endian == '=' and sys.byteorder == 'little': scale = -scale temp_str = '%f\n' % scale file.write(temp_str.encode('utf-8')) image.tofile(file) def write_png(filename, image): """ image must be numpy array H X W X channels """ import cv2 # pip install opencv-python ret = cv2.imwrite(filename, image) if not ret: logging.error(f"Writing PNG file {filename} failed")
5,280
Python
24.267942
93
0.565341
superboySB/SBDrone_deprecated/src/HITL/airsim/types.py
from __future__ import print_function import msgpackrpc #install as admin: pip install msgpack-rpc-python import numpy as np #pip install numpy import math class MsgpackMixin: def __repr__(self): from pprint import pformat return "<" + type(self).__name__ + "> " + pformat(vars(self), indent=4, width=1) def to_msgpack(self, *args, **kwargs): return self.__dict__ @classmethod def from_msgpack(cls, encoded): obj = cls() #obj.__dict__ = {k.decode('utf-8'): (from_msgpack(v.__class__, v) if hasattr(v, "__dict__") else v) for k, v in encoded.items()} obj.__dict__ = { k : (v if not isinstance(v, dict) else getattr(getattr(obj, k).__class__, "from_msgpack")(v)) for k, v in encoded.items()} #return cls(**msgpack.unpack(encoded)) return obj class _ImageType(type): @property def Scene(cls): return 0 def DepthPlanar(cls): return 1 def DepthPerspective(cls): return 2 def DepthVis(cls): return 3 def DisparityNormalized(cls): return 4 def Segmentation(cls): return 5 def SurfaceNormals(cls): return 6 def Infrared(cls): return 7 def OpticalFlow(cls): return 8 def OpticalFlowVis(cls): return 9 def __getattr__(self, key): if key == 'DepthPlanner': print('\033[31m'+"DepthPlanner has been (correctly) renamed to DepthPlanar. Please use ImageType.DepthPlanar instead."+'\033[0m') raise AttributeError class ImageType(metaclass=_ImageType): Scene = 0 DepthPlanar = 1 DepthPerspective = 2 DepthVis = 3 DisparityNormalized = 4 Segmentation = 5 SurfaceNormals = 6 Infrared = 7 OpticalFlow = 8 OpticalFlowVis = 9 class DrivetrainType: MaxDegreeOfFreedom = 0 ForwardOnly = 1 class LandedState: Landed = 0 Flying = 1 class WeatherParameter: Rain = 0 Roadwetness = 1 Snow = 2 RoadSnow = 3 MapleLeaf = 4 RoadLeaf = 5 Dust = 6 Fog = 7 Enabled = 8 class Vector2r(MsgpackMixin): x_val = 0.0 y_val = 0.0 def __init__(self, x_val = 0.0, y_val = 0.0): self.x_val = x_val self.y_val = y_val class Vector3r(MsgpackMixin): x_val = 0.0 y_val = 0.0 z_val = 0.0 def __init__(self, x_val = 0.0, y_val = 0.0, z_val = 0.0): self.x_val = x_val self.y_val = y_val self.z_val = z_val @staticmethod def nanVector3r(): return Vector3r(np.nan, np.nan, np.nan) def containsNan(self): return (math.isnan(self.x_val) or math.isnan(self.y_val) or math.isnan(self.z_val)) def __add__(self, other): return Vector3r(self.x_val + other.x_val, self.y_val + other.y_val, self.z_val + other.z_val) def __sub__(self, other): return Vector3r(self.x_val - other.x_val, self.y_val - other.y_val, self.z_val - other.z_val) def __truediv__(self, other): if type(other) in [int, float] + np.sctypes['int'] + np.sctypes['uint'] + np.sctypes['float']: return Vector3r( self.x_val / other, self.y_val / other, self.z_val / other) else: raise TypeError('unsupported operand type(s) for /: %s and %s' % ( str(type(self)), str(type(other))) ) def __mul__(self, other): if type(other) in [int, float] + np.sctypes['int'] + np.sctypes['uint'] + np.sctypes['float']: return Vector3r(self.x_val*other, self.y_val*other, self.z_val*other) else: raise TypeError('unsupported operand type(s) for *: %s and %s' % ( str(type(self)), str(type(other))) ) def dot(self, other): if type(self) == type(other): return self.x_val*other.x_val + self.y_val*other.y_val + self.z_val*other.z_val else: raise TypeError('unsupported operand type(s) for \'dot\': %s and %s' % ( str(type(self)), str(type(other))) ) def cross(self, other): if type(self) == type(other): cross_product = np.cross(self.to_numpy_array(), other.to_numpy_array()) return Vector3r(cross_product[0], cross_product[1], cross_product[2]) else: raise TypeError('unsupported operand type(s) for \'cross\': %s and %s' % ( str(type(self)), str(type(other))) ) def get_length(self): return ( self.x_val**2 + self.y_val**2 + self.z_val**2 )**0.5 def distance_to(self, other): return ( (self.x_val-other.x_val)**2 + (self.y_val-other.y_val)**2 + (self.z_val-other.z_val)**2 )**0.5 def to_Quaternionr(self): return Quaternionr(self.x_val, self.y_val, self.z_val, 0) def to_numpy_array(self): return np.array([self.x_val, self.y_val, self.z_val], dtype=np.float32) def __iter__(self): return iter((self.x_val, self.y_val, self.z_val)) class Quaternionr(MsgpackMixin): w_val = 0.0 x_val = 0.0 y_val = 0.0 z_val = 0.0 def __init__(self, x_val = 0.0, y_val = 0.0, z_val = 0.0, w_val = 1.0): self.x_val = x_val self.y_val = y_val self.z_val = z_val self.w_val = w_val @staticmethod def nanQuaternionr(): return Quaternionr(np.nan, np.nan, np.nan, np.nan) def containsNan(self): return (math.isnan(self.w_val) or math.isnan(self.x_val) or math.isnan(self.y_val) or math.isnan(self.z_val)) def __add__(self, other): if type(self) == type(other): return Quaternionr( self.x_val+other.x_val, self.y_val+other.y_val, self.z_val+other.z_val, self.w_val+other.w_val ) else: raise TypeError('unsupported operand type(s) for +: %s and %s' % ( str(type(self)), str(type(other))) ) def __mul__(self, other): if type(self) == type(other): t, x, y, z = self.w_val, self.x_val, self.y_val, self.z_val a, b, c, d = other.w_val, other.x_val, other.y_val, other.z_val return Quaternionr( w_val = a*t - b*x - c*y - d*z, x_val = b*t + a*x + d*y - c*z, y_val = c*t + a*y + b*z - d*x, z_val = d*t + z*a + c*x - b*y) else: raise TypeError('unsupported operand type(s) for *: %s and %s' % ( str(type(self)), str(type(other))) ) def __truediv__(self, other): if type(other) == type(self): return self * other.inverse() elif type(other) in [int, float] + np.sctypes['int'] + np.sctypes['uint'] + np.sctypes['float']: return Quaternionr( self.x_val / other, self.y_val / other, self.z_val / other, self.w_val / other) else: raise TypeError('unsupported operand type(s) for /: %s and %s' % ( str(type(self)), str(type(other))) ) def dot(self, other): if type(self) == type(other): return self.x_val*other.x_val + self.y_val*other.y_val + self.z_val*other.z_val + self.w_val*other.w_val else: raise TypeError('unsupported operand type(s) for \'dot\': %s and %s' % ( str(type(self)), str(type(other))) ) def cross(self, other): if type(self) == type(other): return (self * other - other * self) / 2 else: raise TypeError('unsupported operand type(s) for \'cross\': %s and %s' % ( str(type(self)), str(type(other))) ) def outer_product(self, other): if type(self) == type(other): return ( self.inverse()*other - other.inverse()*self ) / 2 else: raise TypeError('unsupported operand type(s) for \'outer_product\': %s and %s' % ( str(type(self)), str(type(other))) ) def rotate(self, other): if type(self) == type(other): if other.get_length() == 1: return other * self * other.inverse() else: raise ValueError('length of the other Quaternionr must be 1') else: raise TypeError('unsupported operand type(s) for \'rotate\': %s and %s' % ( str(type(self)), str(type(other))) ) def conjugate(self): return Quaternionr(-self.x_val, -self.y_val, -self.z_val, self.w_val) def star(self): return self.conjugate() def inverse(self): return self.star() / self.dot(self) def sgn(self): return self/self.get_length() def get_length(self): return ( self.x_val**2 + self.y_val**2 + self.z_val**2 + self.w_val**2 )**0.5 def to_numpy_array(self): return np.array([self.x_val, self.y_val, self.z_val, self.w_val], dtype=np.float32) def __iter__(self): return iter((self.x_val, self.y_val, self.z_val, self.w_val)) class Pose(MsgpackMixin): position = Vector3r() orientation = Quaternionr() def __init__(self, position_val = None, orientation_val = None): position_val = position_val if position_val is not None else Vector3r() orientation_val = orientation_val if orientation_val is not None else Quaternionr() self.position = position_val self.orientation = orientation_val @staticmethod def nanPose(): return Pose(Vector3r.nanVector3r(), Quaternionr.nanQuaternionr()) def containsNan(self): return (self.position.containsNan() or self.orientation.containsNan()) def __iter__(self): return iter((self.position, self.orientation)) class CollisionInfo(MsgpackMixin): has_collided = False normal = Vector3r() impact_point = Vector3r() position = Vector3r() penetration_depth = 0.0 time_stamp = 0.0 object_name = "" object_id = -1 class GeoPoint(MsgpackMixin): latitude = 0.0 longitude = 0.0 altitude = 0.0 class YawMode(MsgpackMixin): is_rate = True yaw_or_rate = 0.0 def __init__(self, is_rate = True, yaw_or_rate = 0.0): self.is_rate = is_rate self.yaw_or_rate = yaw_or_rate class RCData(MsgpackMixin): timestamp = 0 pitch, roll, throttle, yaw = (0.0,)*4 #init 4 variable to 0.0 switch1, switch2, switch3, switch4 = (0,)*4 switch5, switch6, switch7, switch8 = (0,)*4 is_initialized = False is_valid = False def __init__(self, timestamp = 0, pitch = 0.0, roll = 0.0, throttle = 0.0, yaw = 0.0, switch1 = 0, switch2 = 0, switch3 = 0, switch4 = 0, switch5 = 0, switch6 = 0, switch7 = 0, switch8 = 0, is_initialized = False, is_valid = False): self.timestamp = timestamp self.pitch = pitch self.roll = roll self.throttle = throttle self.yaw = yaw self.switch1 = switch1 self.switch2 = switch2 self.switch3 = switch3 self.switch4 = switch4 self.switch5 = switch5 self.switch6 = switch6 self.switch7 = switch7 self.switch8 = switch8 self.is_initialized = is_initialized self.is_valid = is_valid class ImageRequest(MsgpackMixin): camera_name = '0' image_type = ImageType.Scene pixels_as_float = False compress = False def __init__(self, camera_name, image_type, pixels_as_float = False, compress = True): # todo: in future remove str(), it's only for compatibility to pre v1.2 self.camera_name = str(camera_name) self.image_type = image_type self.pixels_as_float = pixels_as_float self.compress = compress class ImageResponse(MsgpackMixin): image_data_uint8 = np.uint8(0) image_data_float = 0.0 camera_position = Vector3r() camera_orientation = Quaternionr() time_stamp = np.uint64(0) message = '' pixels_as_float = 0.0 compress = True width = 0 height = 0 image_type = ImageType.Scene class CarControls(MsgpackMixin): throttle = 0.0 steering = 0.0 brake = 0.0 handbrake = False is_manual_gear = False manual_gear = 0 gear_immediate = True def __init__(self, throttle = 0, steering = 0, brake = 0, handbrake = False, is_manual_gear = False, manual_gear = 0, gear_immediate = True): self.throttle = throttle self.steering = steering self.brake = brake self.handbrake = handbrake self.is_manual_gear = is_manual_gear self.manual_gear = manual_gear self.gear_immediate = gear_immediate def set_throttle(self, throttle_val, forward): if (forward): self.is_manual_gear = False self.manual_gear = 0 self.throttle = abs(throttle_val) else: self.is_manual_gear = False self.manual_gear = -1 self.throttle = - abs(throttle_val) class KinematicsState(MsgpackMixin): position = Vector3r() orientation = Quaternionr() linear_velocity = Vector3r() angular_velocity = Vector3r() linear_acceleration = Vector3r() angular_acceleration = Vector3r() class EnvironmentState(MsgpackMixin): position = Vector3r() geo_point = GeoPoint() gravity = Vector3r() air_pressure = 0.0 temperature = 0.0 air_density = 0.0 class CarState(MsgpackMixin): speed = 0.0 gear = 0 rpm = 0.0 maxrpm = 0.0 handbrake = False collision = CollisionInfo() kinematics_estimated = KinematicsState() timestamp = np.uint64(0) class MultirotorState(MsgpackMixin): collision = CollisionInfo() kinematics_estimated = KinematicsState() gps_location = GeoPoint() timestamp = np.uint64(0) landed_state = LandedState.Landed rc_data = RCData() ready = False ready_message = "" can_arm = False class RotorStates(MsgpackMixin): timestamp = np.uint64(0) rotors = [] class ProjectionMatrix(MsgpackMixin): matrix = [] class CameraInfo(MsgpackMixin): pose = Pose() fov = -1 proj_mat = ProjectionMatrix() class LidarData(MsgpackMixin): point_cloud = 0.0 time_stamp = np.uint64(0) pose = Pose() segmentation = 0 class ImuData(MsgpackMixin): time_stamp = np.uint64(0) orientation = Quaternionr() angular_velocity = Vector3r() linear_acceleration = Vector3r() class BarometerData(MsgpackMixin): time_stamp = np.uint64(0) altitude = Quaternionr() pressure = Vector3r() qnh = Vector3r() class MagnetometerData(MsgpackMixin): time_stamp = np.uint64(0) magnetic_field_body = Vector3r() magnetic_field_covariance = 0.0 class GnssFixType(MsgpackMixin): GNSS_FIX_NO_FIX = 0 GNSS_FIX_TIME_ONLY = 1 GNSS_FIX_2D_FIX = 2 GNSS_FIX_3D_FIX = 3 class GnssReport(MsgpackMixin): geo_point = GeoPoint() eph = 0.0 epv = 0.0 velocity = Vector3r() fix_type = GnssFixType() time_utc = np.uint64(0) class GpsData(MsgpackMixin): time_stamp = np.uint64(0) gnss = GnssReport() is_valid = False class DistanceSensorData(MsgpackMixin): time_stamp = np.uint64(0) distance = 0.0 min_distance = 0.0 max_distance = 0.0 relative_pose = Pose() class Box2D(MsgpackMixin): min = Vector2r() max = Vector2r() class Box3D(MsgpackMixin): min = Vector3r() max = Vector3r() class DetectionInfo(MsgpackMixin): name = '' geo_point = GeoPoint() box2D = Box2D() box3D = Box3D() relative_pose = Pose() class PIDGains(): """ Struct to store values of PID gains. Used to transmit controller gain values while instantiating AngleLevel/AngleRate/Velocity/PositionControllerGains objects. Attributes: kP (float): Proportional gain kI (float): Integrator gain kD (float): Derivative gain """ def __init__(self, kp, ki, kd): self.kp = kp self.ki = ki self.kd = kd def to_list(self): return [self.kp, self.ki, self.kd] class AngleRateControllerGains(): """ Struct to contain controller gains used by angle level PID controller Attributes: roll_gains (PIDGains): kP, kI, kD for roll axis pitch_gains (PIDGains): kP, kI, kD for pitch axis yaw_gains (PIDGains): kP, kI, kD for yaw axis """ def __init__(self, roll_gains = PIDGains(0.25, 0, 0), pitch_gains = PIDGains(0.25, 0, 0), yaw_gains = PIDGains(0.25, 0, 0)): self.roll_gains = roll_gains self.pitch_gains = pitch_gains self.yaw_gains = yaw_gains def to_lists(self): return [self.roll_gains.kp, self.pitch_gains.kp, self.yaw_gains.kp], [self.roll_gains.ki, self.pitch_gains.ki, self.yaw_gains.ki], [self.roll_gains.kd, self.pitch_gains.kd, self.yaw_gains.kd] class AngleLevelControllerGains(): """ Struct to contain controller gains used by angle rate PID controller Attributes: roll_gains (PIDGains): kP, kI, kD for roll axis pitch_gains (PIDGains): kP, kI, kD for pitch axis yaw_gains (PIDGains): kP, kI, kD for yaw axis """ def __init__(self, roll_gains = PIDGains(2.5, 0, 0), pitch_gains = PIDGains(2.5, 0, 0), yaw_gains = PIDGains(2.5, 0, 0)): self.roll_gains = roll_gains self.pitch_gains = pitch_gains self.yaw_gains = yaw_gains def to_lists(self): return [self.roll_gains.kp, self.pitch_gains.kp, self.yaw_gains.kp], [self.roll_gains.ki, self.pitch_gains.ki, self.yaw_gains.ki], [self.roll_gains.kd, self.pitch_gains.kd, self.yaw_gains.kd] class VelocityControllerGains(): """ Struct to contain controller gains used by velocity PID controller Attributes: x_gains (PIDGains): kP, kI, kD for X axis y_gains (PIDGains): kP, kI, kD for Y axis z_gains (PIDGains): kP, kI, kD for Z axis """ def __init__(self, x_gains = PIDGains(0.2, 0, 0), y_gains = PIDGains(0.2, 0, 0), z_gains = PIDGains(2.0, 2.0, 0)): self.x_gains = x_gains self.y_gains = y_gains self.z_gains = z_gains def to_lists(self): return [self.x_gains.kp, self.y_gains.kp, self.z_gains.kp], [self.x_gains.ki, self.y_gains.ki, self.z_gains.ki], [self.x_gains.kd, self.y_gains.kd, self.z_gains.kd] class PositionControllerGains(): """ Struct to contain controller gains used by position PID controller Attributes: x_gains (PIDGains): kP, kI, kD for X axis y_gains (PIDGains): kP, kI, kD for Y axis z_gains (PIDGains): kP, kI, kD for Z axis """ def __init__(self, x_gains = PIDGains(0.25, 0, 0), y_gains = PIDGains(0.25, 0, 0), z_gains = PIDGains(0.25, 0, 0)): self.x_gains = x_gains self.y_gains = y_gains self.z_gains = z_gains def to_lists(self): return [self.x_gains.kp, self.y_gains.kp, self.z_gains.kp], [self.x_gains.ki, self.y_gains.ki, self.z_gains.ki], [self.x_gains.kd, self.y_gains.kd, self.z_gains.kd] class MeshPositionVertexBuffersResponse(MsgpackMixin): position = Vector3r() orientation = Quaternionr() vertices = 0.0 indices = 0.0 name = ''
18,961
Python
31.636833
199
0.594009
superboySB/SBDrone_deprecated/src/HITL/airsim/client.py
from __future__ import print_function from .utils import * from .types import * import msgpackrpc #install as admin: pip install msgpack-rpc-python import numpy as np #pip install numpy import msgpack import time import math import logging class VehicleClient: def __init__(self, ip = "", port = 41451, timeout_value = 3600): if (ip == ""): ip = "127.0.0.1" self.client = msgpackrpc.Client(msgpackrpc.Address(ip, port), timeout = timeout_value, pack_encoding = 'utf-8', unpack_encoding = 'utf-8') #----------------------------------- Common vehicle APIs --------------------------------------------- def reset(self): """ Reset the vehicle to its original starting state Note that you must call `enableApiControl` and `armDisarm` again after the call to reset """ self.client.call('reset') def ping(self): """ If connection is established then this call will return true otherwise it will be blocked until timeout Returns: bool: """ return self.client.call('ping') def getClientVersion(self): return 1 # sync with C++ client def getServerVersion(self): return self.client.call('getServerVersion') def getMinRequiredServerVersion(self): return 1 # sync with C++ client def getMinRequiredClientVersion(self): return self.client.call('getMinRequiredClientVersion') #basic flight control def enableApiControl(self, is_enabled, vehicle_name = ''): """ Enables or disables API control for vehicle corresponding to vehicle_name Args: is_enabled (bool): True to enable, False to disable API control vehicle_name (str, optional): Name of the vehicle to send this command to """ self.client.call('enableApiControl', is_enabled, vehicle_name) def isApiControlEnabled(self, vehicle_name = ''): """ Returns true if API control is established. If false (which is default) then API calls would be ignored. After a successful call to `enableApiControl`, `isApiControlEnabled` should return true. Args: vehicle_name (str, optional): Name of the vehicle Returns: bool: If API control is enabled """ return self.client.call('isApiControlEnabled', vehicle_name) def armDisarm(self, arm, vehicle_name = ''): """ Arms or disarms vehicle Args: arm (bool): True to arm, False to disarm the vehicle vehicle_name (str, optional): Name of the vehicle to send this command to Returns: bool: Success """ return self.client.call('armDisarm', arm, vehicle_name) def simPause(self, is_paused): """ Pauses simulation Args: is_paused (bool): True to pause the simulation, False to release """ self.client.call('simPause', is_paused) def simIsPause(self): """ Returns true if the simulation is paused Returns: bool: If the simulation is paused """ return self.client.call("simIsPaused") def simContinueForTime(self, seconds): """ Continue the simulation for the specified number of seconds Args: seconds (float): Time to run the simulation for """ self.client.call('simContinueForTime', seconds) def simContinueForFrames(self, frames): """ Continue (or resume if paused) the simulation for the specified number of frames, after which the simulation will be paused. Args: frames (int): Frames to run the simulation for """ self.client.call('simContinueForFrames', frames) def getHomeGeoPoint(self, vehicle_name = ''): """ Get the Home location of the vehicle Args: vehicle_name (str, optional): Name of vehicle to get home location of Returns: GeoPoint: Home location of the vehicle """ return GeoPoint.from_msgpack(self.client.call('getHomeGeoPoint', vehicle_name)) def confirmConnection(self): """ Checks state of connection every 1 sec and reports it in Console so user can see the progress for connection. """ if self.ping(): print("Connected!") else: print("Ping returned false!") server_ver = self.getServerVersion() client_ver = self.getClientVersion() server_min_ver = self.getMinRequiredServerVersion() client_min_ver = self.getMinRequiredClientVersion() ver_info = "Client Ver:" + str(client_ver) + " (Min Req: " + str(client_min_ver) + \ "), Server Ver:" + str(server_ver) + " (Min Req: " + str(server_min_ver) + ")" if server_ver < server_min_ver: print(ver_info, file=sys.stderr) print("AirSim server is of older version and not supported by this client. Please upgrade!") elif client_ver < client_min_ver: print(ver_info, file=sys.stderr) print("AirSim client is of older version and not supported by this server. Please upgrade!") else: print(ver_info) print('') def simSetLightIntensity(self, light_name, intensity): """ Change intensity of named light Args: light_name (str): Name of light to change intensity (float): New intensity value Returns: bool: True if successful, otherwise False """ return self.client.call("simSetLightIntensity", light_name, intensity) def simSwapTextures(self, tags, tex_id = 0, component_id = 0, material_id = 0): """ Runtime Swap Texture API See https://microsoft.github.io/AirSim/retexturing/ for details Args: tags (str): string of "," or ", " delimited tags to identify on which actors to perform the swap tex_id (int, optional): indexes the array of textures assigned to each actor undergoing a swap If out-of-bounds for some object's texture set, it will be taken modulo the number of textures that were available component_id (int, optional): material_id (int, optional): Returns: list[str]: List of objects which matched the provided tags and had the texture swap perfomed """ return self.client.call("simSwapTextures", tags, tex_id, component_id, material_id) def simSetObjectMaterial(self, object_name, material_name, component_id = 0): """ Runtime Swap Texture API See https://microsoft.github.io/AirSim/retexturing/ for details Args: object_name (str): name of object to set material for material_name (str): name of material to set for object component_id (int, optional) : index of material elements Returns: bool: True if material was set """ return self.client.call("simSetObjectMaterial", object_name, material_name, component_id) def simSetObjectMaterialFromTexture(self, object_name, texture_path, component_id = 0): """ Runtime Swap Texture API See https://microsoft.github.io/AirSim/retexturing/ for details Args: object_name (str): name of object to set material for texture_path (str): path to texture to set for object component_id (int, optional) : index of material elements Returns: bool: True if material was set """ return self.client.call("simSetObjectMaterialFromTexture", object_name, texture_path, component_id) # time-of-day control #time - of - day control def simSetTimeOfDay(self, is_enabled, start_datetime = "", is_start_datetime_dst = False, celestial_clock_speed = 1, update_interval_secs = 60, move_sun = True): """ Control the position of Sun in the environment Sun's position is computed using the coordinates specified in `OriginGeopoint` in settings for the date-time specified in the argument, else if the string is empty, current date & time is used Args: is_enabled (bool): True to enable time-of-day effect, False to reset the position to original start_datetime (str, optional): Date & Time in %Y-%m-%d %H:%M:%S format, e.g. `2018-02-12 15:20:00` is_start_datetime_dst (bool, optional): True to adjust for Daylight Savings Time celestial_clock_speed (float, optional): Run celestial clock faster or slower than simulation clock E.g. Value 100 means for every 1 second of simulation clock, Sun's position is advanced by 100 seconds so Sun will move in sky much faster update_interval_secs (float, optional): Interval to update the Sun's position move_sun (bool, optional): Whether or not to move the Sun """ self.client.call('simSetTimeOfDay', is_enabled, start_datetime, is_start_datetime_dst, celestial_clock_speed, update_interval_secs, move_sun) #weather def simEnableWeather(self, enable): """ Enable Weather effects. Needs to be called before using `simSetWeatherParameter` API Args: enable (bool): True to enable, False to disable """ self.client.call('simEnableWeather', enable) def simSetWeatherParameter(self, param, val): """ Enable various weather effects Args: param (WeatherParameter): Weather effect to be enabled val (float): Intensity of the effect, Range 0-1 """ self.client.call('simSetWeatherParameter', param, val) #camera control #simGetImage returns compressed png in array of bytes #image_type uses one of the ImageType members def simGetImage(self, camera_name, image_type, vehicle_name = '', external = False): """ Get a single image Returns bytes of png format image which can be dumped into abinary file to create .png image `string_to_uint8_array()` can be used to convert into Numpy unit8 array See https://microsoft.github.io/AirSim/image_apis/ for details Args: camera_name (str): Name of the camera, for backwards compatibility, ID numbers such as 0,1,etc. can also be used image_type (ImageType): Type of image required vehicle_name (str, optional): Name of the vehicle with the camera external (bool, optional): Whether the camera is an External Camera Returns: Binary string literal of compressed png image """ #todo : in future remove below, it's only for compatibility to pre v1.2 camera_name = str(camera_name) #because this method returns std::vector < uint8>, msgpack decides to encode it as a string unfortunately. result = self.client.call('simGetImage', camera_name, image_type, vehicle_name, external) if (result == "" or result == "\0"): return None return result #camera control #simGetImage returns compressed png in array of bytes #image_type uses one of the ImageType members def simGetImages(self, requests, vehicle_name = '', external = False): """ Get multiple images See https://microsoft.github.io/AirSim/image_apis/ for details and examples Args: requests (list[ImageRequest]): Images required vehicle_name (str, optional): Name of vehicle associated with the camera external (bool, optional): Whether the camera is an External Camera Returns: list[ImageResponse]: """ responses_raw = self.client.call('simGetImages', requests, vehicle_name, external) return [ImageResponse.from_msgpack(response_raw) for response_raw in responses_raw] #CinemAirSim def simGetPresetLensSettings(self, camera_name, vehicle_name = '', external = False): result = self.client.call('simGetPresetLensSettings', camera_name, vehicle_name, external) if (result == "" or result == "\0"): return None return result def simGetLensSettings(self, camera_name, vehicle_name = '', external = False): result = self.client.call('simGetLensSettings', camera_name, vehicle_name, external) if (result == "" or result == "\0"): return None return result def simSetPresetLensSettings(self, preset_lens_settings, camera_name, vehicle_name = '', external = False): self.client.call("simSetPresetLensSettings", preset_lens_settings, camera_name, vehicle_name, external) def simGetPresetFilmbackSettings(self, camera_name, vehicle_name = '', external = False): result = self.client.call('simGetPresetFilmbackSettings', camera_name, vehicle_name, external) if (result == "" or result == "\0"): return None return result def simSetPresetFilmbackSettings(self, preset_filmback_settings, camera_name, vehicle_name = '', external = False): self.client.call("simSetPresetFilmbackSettings", preset_filmback_settings, camera_name, vehicle_name, external) def simGetFilmbackSettings(self, camera_name, vehicle_name = '', external = False): result = self.client.call('simGetFilmbackSettings', camera_name, vehicle_name, external) if (result == "" or result == "\0"): return None return result def simSetFilmbackSettings(self, sensor_width, sensor_height, camera_name, vehicle_name = '', external = False): return self.client.call("simSetFilmbackSettings", sensor_width, sensor_height, camera_name, vehicle_name, external) def simGetFocalLength(self, camera_name, vehicle_name = '', external = False): return self.client.call("simGetFocalLength", camera_name, vehicle_name, external) def simSetFocalLength(self, focal_length, camera_name, vehicle_name = '', external = False): self.client.call("simSetFocalLength", focal_length, camera_name, vehicle_name, external) def simEnableManualFocus(self, enable, camera_name, vehicle_name = '', external = False): self.client.call("simEnableManualFocus", enable, camera_name, vehicle_name, external) def simGetFocusDistance(self, camera_name, vehicle_name = '', external = False): return self.client.call("simGetFocusDistance", camera_name, vehicle_name, external) def simSetFocusDistance(self, focus_distance, camera_name, vehicle_name = '', external = False): self.client.call("simSetFocusDistance", focus_distance, camera_name, vehicle_name, external) def simGetFocusAperture(self, camera_name, vehicle_name = '', external = False): return self.client.call("simGetFocusAperture", camera_name, vehicle_name, external) def simSetFocusAperture(self, focus_aperture, camera_name, vehicle_name = '', external = False): self.client.call("simSetFocusAperture", focus_aperture, camera_name, vehicle_name, external) def simEnableFocusPlane(self, enable, camera_name, vehicle_name = '', external = False): self.client.call("simEnableFocusPlane", enable, camera_name, vehicle_name, external) def simGetCurrentFieldOfView(self, camera_name, vehicle_name = '', external = False): return self.client.call("simGetCurrentFieldOfView", camera_name, vehicle_name, external) #End CinemAirSim def simTestLineOfSightToPoint(self, point, vehicle_name = ''): """ Returns whether the target point is visible from the perspective of the inputted vehicle Args: point (GeoPoint): target point vehicle_name (str, optional): Name of vehicle Returns: [bool]: Success """ return self.client.call('simTestLineOfSightToPoint', point, vehicle_name) def simTestLineOfSightBetweenPoints(self, point1, point2): """ Returns whether the target point is visible from the perspective of the source point Args: point1 (GeoPoint): source point point2 (GeoPoint): target point Returns: [bool]: Success """ return self.client.call('simTestLineOfSightBetweenPoints', point1, point2) def simGetWorldExtents(self): """ Returns a list of GeoPoints representing the minimum and maximum extents of the world Returns: list[GeoPoint] """ responses_raw = self.client.call('simGetWorldExtents') return [GeoPoint.from_msgpack(response_raw) for response_raw in responses_raw] def simRunConsoleCommand(self, command): """ Allows the client to execute a command in Unreal's native console, via an API. Affords access to the countless built-in commands such as "stat unit", "stat fps", "open [map]", adjust any config settings, etc. etc. Allows the user to create bespoke APIs very easily, by adding a custom event to the level blueprint, and then calling the console command "ce MyEventName [args]". No recompilation of AirSim needed! Args: command ([string]): Desired Unreal Engine Console command to run Returns: [bool]: Success """ return self.client.call('simRunConsoleCommand', command) #gets the static meshes in the unreal scene def simGetMeshPositionVertexBuffers(self): """ Returns the static meshes that make up the scene See https://microsoft.github.io/AirSim/meshes/ for details and how to use this Returns: list[MeshPositionVertexBuffersResponse]: """ responses_raw = self.client.call('simGetMeshPositionVertexBuffers') return [MeshPositionVertexBuffersResponse.from_msgpack(response_raw) for response_raw in responses_raw] def simGetCollisionInfo(self, vehicle_name = ''): """ Args: vehicle_name (str, optional): Name of the Vehicle to get the info of Returns: CollisionInfo: """ return CollisionInfo.from_msgpack(self.client.call('simGetCollisionInfo', vehicle_name)) def simSetVehiclePose(self, pose, ignore_collision, vehicle_name = ''): """ Set the pose of the vehicle If you don't want to change position (or orientation) then just set components of position (or orientation) to floating point nan values Args: pose (Pose): Desired Pose pf the vehicle ignore_collision (bool): Whether to ignore any collision or not vehicle_name (str, optional): Name of the vehicle to move """ self.client.call('simSetVehiclePose', pose, ignore_collision, vehicle_name) def simGetVehiclePose(self, vehicle_name = ''): """ The position inside the returned Pose is in the frame of the vehicle's starting point Args: vehicle_name (str, optional): Name of the vehicle to get the Pose of Returns: Pose: """ pose = self.client.call('simGetVehiclePose', vehicle_name) return Pose.from_msgpack(pose) def simSetTraceLine(self, color_rgba, thickness=1.0, vehicle_name = ''): """ Modify the color and thickness of the line when Tracing is enabled Tracing can be enabled by pressing T in the Editor or setting `EnableTrace` to `True` in the Vehicle Settings Args: color_rgba (list): desired RGBA values from 0.0 to 1.0 thickness (float, optional): Thickness of the line vehicle_name (string, optional): Name of the vehicle to set Trace line values for """ self.client.call('simSetTraceLine', color_rgba, thickness, vehicle_name) def simGetObjectPose(self, object_name): """ The position inside the returned Pose is in the world frame Args: object_name (str): Object to get the Pose of Returns: Pose: """ pose = self.client.call('simGetObjectPose', object_name) return Pose.from_msgpack(pose) def simSetObjectPose(self, object_name, pose, teleport = True): """ Set the pose of the object(actor) in the environment The specified actor must have Mobility set to movable, otherwise there will be undefined behaviour. See https://www.unrealengine.com/en-US/blog/moving-physical-objects for details on how to set Mobility and the effect of Teleport parameter Args: object_name (str): Name of the object(actor) to move pose (Pose): Desired Pose of the object teleport (bool, optional): Whether to move the object immediately without affecting their velocity Returns: bool: If the move was successful """ return self.client.call('simSetObjectPose', object_name, pose, teleport) def simGetObjectScale(self, object_name): """ Gets scale of an object in the world Args: object_name (str): Object to get the scale of Returns: airsim.Vector3r: Scale """ scale = self.client.call('simGetObjectScale', object_name) return Vector3r.from_msgpack(scale) def simSetObjectScale(self, object_name, scale_vector): """ Sets scale of an object in the world Args: object_name (str): Object to set the scale of scale_vector (airsim.Vector3r): Desired scale of object Returns: bool: True if scale change was successful """ return self.client.call('simSetObjectScale', object_name, scale_vector) def simListSceneObjects(self, name_regex = '.*'): """ Lists the objects present in the environment Default behaviour is to list all objects, regex can be used to return smaller list of matching objects or actors Args: name_regex (str, optional): String to match actor names against, e.g. "Cylinder.*" Returns: list[str]: List containing all the names """ return self.client.call('simListSceneObjects', name_regex) def simLoadLevel(self, level_name): """ Loads a level specified by its name Args: level_name (str): Name of the level to load Returns: bool: True if the level was successfully loaded """ return self.client.call('simLoadLevel', level_name) def simListAssets(self): """ Lists all the assets present in the Asset Registry Returns: list[str]: Names of all the assets """ return self.client.call('simListAssets') def simSpawnObject(self, object_name, asset_name, pose, scale, physics_enabled=False, is_blueprint=False): """Spawned selected object in the world Args: object_name (str): Desired name of new object asset_name (str): Name of asset(mesh) in the project database pose (airsim.Pose): Desired pose of object scale (airsim.Vector3r): Desired scale of object physics_enabled (bool, optional): Whether to enable physics for the object is_blueprint (bool, optional): Whether to spawn a blueprint or an actor Returns: str: Name of spawned object, in case it had to be modified """ return self.client.call('simSpawnObject', object_name, asset_name, pose, scale, physics_enabled, is_blueprint) def simDestroyObject(self, object_name): """Removes selected object from the world Args: object_name (str): Name of object to be removed Returns: bool: True if object is queued up for removal """ return self.client.call('simDestroyObject', object_name) def simSetSegmentationObjectID(self, mesh_name, object_id, is_name_regex = False): """ Set segmentation ID for specific objects See https://microsoft.github.io/AirSim/image_apis/#segmentation for details Args: mesh_name (str): Name of the mesh to set the ID of (supports regex) object_id (int): Object ID to be set, range 0-255 RBG values for IDs can be seen at https://microsoft.github.io/AirSim/seg_rgbs.txt is_name_regex (bool, optional): Whether the mesh name is a regex Returns: bool: If the mesh was found """ return self.client.call('simSetSegmentationObjectID', mesh_name, object_id, is_name_regex) def simGetSegmentationObjectID(self, mesh_name): """ Returns Object ID for the given mesh name Mapping of Object IDs to RGB values can be seen at https://microsoft.github.io/AirSim/seg_rgbs.txt Args: mesh_name (str): Name of the mesh to get the ID of """ return self.client.call('simGetSegmentationObjectID', mesh_name) def simAddDetectionFilterMeshName(self, camera_name, image_type, mesh_name, vehicle_name = '', external = False): """ Add mesh name to detect in wild card format For example: simAddDetectionFilterMeshName("Car_*") will detect all instance named "Car_*" Args: camera_name (str): Name of the camera, for backwards compatibility, ID numbers such as 0,1,etc. can also be used image_type (ImageType): Type of image required mesh_name (str): mesh name in wild card format vehicle_name (str, optional): Vehicle which the camera is associated with external (bool, optional): Whether the camera is an External Camera """ self.client.call('simAddDetectionFilterMeshName', camera_name, image_type, mesh_name, vehicle_name, external) def simSetDetectionFilterRadius(self, camera_name, image_type, radius_cm, vehicle_name = '', external = False): """ Set detection radius for all cameras Args: camera_name (str): Name of the camera, for backwards compatibility, ID numbers such as 0,1,etc. can also be used image_type (ImageType): Type of image required radius_cm (int): Radius in [cm] vehicle_name (str, optional): Vehicle which the camera is associated with external (bool, optional): Whether the camera is an External Camera """ self.client.call('simSetDetectionFilterRadius', camera_name, image_type, radius_cm, vehicle_name, external) def simClearDetectionMeshNames(self, camera_name, image_type, vehicle_name = '', external = False): """ Clear all mesh names from detection filter Args: camera_name (str): Name of the camera, for backwards compatibility, ID numbers such as 0,1,etc. can also be used image_type (ImageType): Type of image required vehicle_name (str, optional): Vehicle which the camera is associated with external (bool, optional): Whether the camera is an External Camera """ self.client.call('simClearDetectionMeshNames', camera_name, image_type, vehicle_name, external) def simGetDetections(self, camera_name, image_type, vehicle_name = '', external = False): """ Get current detections Args: camera_name (str): Name of the camera, for backwards compatibility, ID numbers such as 0,1,etc. can also be used image_type (ImageType): Type of image required vehicle_name (str, optional): Vehicle which the camera is associated with external (bool, optional): Whether the camera is an External Camera Returns: DetectionInfo array """ responses_raw = self.client.call('simGetDetections', camera_name, image_type, vehicle_name, external) return [DetectionInfo.from_msgpack(response_raw) for response_raw in responses_raw] def simPrintLogMessage(self, message, message_param = "", severity = 0): """ Prints the specified message in the simulator's window. If message_param is supplied, then it's printed next to the message and in that case if this API is called with same message value but different message_param again then previous line is overwritten with new line (instead of API creating new line on display). For example, `simPrintLogMessage("Iteration: ", to_string(i))` keeps updating same line on display when API is called with different values of i. The valid values of severity parameter is 0 to 3 inclusive that corresponds to different colors. Args: message (str): Message to be printed message_param (str, optional): Parameter to be printed next to the message severity (int, optional): Range 0-3, inclusive, corresponding to the severity of the message """ self.client.call('simPrintLogMessage', message, message_param, severity) def simGetCameraInfo(self, camera_name, vehicle_name = '', external=False): """ Get details about the camera Args: camera_name (str): Name of the camera, for backwards compatibility, ID numbers such as 0,1,etc. can also be used vehicle_name (str, optional): Vehicle which the camera is associated with external (bool, optional): Whether the camera is an External Camera Returns: CameraInfo: """ #TODO : below str() conversion is only needed for legacy reason and should be removed in future return CameraInfo.from_msgpack(self.client.call('simGetCameraInfo', str(camera_name), vehicle_name, external)) def simGetDistortionParams(self, camera_name, vehicle_name = '', external = False): """ Get camera distortion parameters Args: camera_name (str): Name of the camera, for backwards compatibility, ID numbers such as 0,1,etc. can also be used vehicle_name (str, optional): Vehicle which the camera is associated with external (bool, optional): Whether the camera is an External Camera Returns: List (float): List of distortion parameter values corresponding to K1, K2, K3, P1, P2 respectively. """ return self.client.call('simGetDistortionParams', str(camera_name), vehicle_name, external) def simSetDistortionParams(self, camera_name, distortion_params, vehicle_name = '', external = False): """ Set camera distortion parameters Args: camera_name (str): Name of the camera, for backwards compatibility, ID numbers such as 0,1,etc. can also be used distortion_params (dict): Dictionary of distortion param names and corresponding values {"K1": 0.0, "K2": 0.0, "K3": 0.0, "P1": 0.0, "P2": 0.0} vehicle_name (str, optional): Vehicle which the camera is associated with external (bool, optional): Whether the camera is an External Camera """ for param_name, value in distortion_params.items(): self.simSetDistortionParam(camera_name, param_name, value, vehicle_name, external) def simSetDistortionParam(self, camera_name, param_name, value, vehicle_name = '', external = False): """ Set single camera distortion parameter Args: camera_name (str): Name of the camera, for backwards compatibility, ID numbers such as 0,1,etc. can also be used param_name (str): Name of distortion parameter value (float): Value of distortion parameter vehicle_name (str, optional): Vehicle which the camera is associated with external (bool, optional): Whether the camera is an External Camera """ self.client.call('simSetDistortionParam', str(camera_name), param_name, value, vehicle_name, external) def simSetCameraPose(self, camera_name, pose, vehicle_name = '', external = False): """ - Control the pose of a selected camera Args: camera_name (str): Name of the camera to be controlled pose (Pose): Pose representing the desired position and orientation of the camera vehicle_name (str, optional): Name of vehicle which the camera corresponds to external (bool, optional): Whether the camera is an External Camera """ #TODO : below str() conversion is only needed for legacy reason and should be removed in future self.client.call('simSetCameraPose', str(camera_name), pose, vehicle_name, external) def simSetCameraFov(self, camera_name, fov_degrees, vehicle_name = '', external = False): """ - Control the field of view of a selected camera Args: camera_name (str): Name of the camera to be controlled fov_degrees (float): Value of field of view in degrees vehicle_name (str, optional): Name of vehicle which the camera corresponds to external (bool, optional): Whether the camera is an External Camera """ #TODO : below str() conversion is only needed for legacy reason and should be removed in future self.client.call('simSetCameraFov', str(camera_name), fov_degrees, vehicle_name, external) def simGetGroundTruthKinematics(self, vehicle_name = ''): """ Get Ground truth kinematics of the vehicle The position inside the returned KinematicsState is in the frame of the vehicle's starting point Args: vehicle_name (str, optional): Name of the vehicle Returns: KinematicsState: Ground truth of the vehicle """ kinematics_state = self.client.call('simGetGroundTruthKinematics', vehicle_name) return KinematicsState.from_msgpack(kinematics_state) simGetGroundTruthKinematics.__annotations__ = {'return': KinematicsState} def simSetKinematics(self, state, ignore_collision, vehicle_name = ''): """ Set the kinematics state of the vehicle If you don't want to change position (or orientation) then just set components of position (or orientation) to floating point nan values Args: state (KinematicsState): Desired Pose pf the vehicle ignore_collision (bool): Whether to ignore any collision or not vehicle_name (str, optional): Name of the vehicle to move """ self.client.call('simSetKinematics', state, ignore_collision, vehicle_name) def simGetGroundTruthEnvironment(self, vehicle_name = ''): """ Get ground truth environment state The position inside the returned EnvironmentState is in the frame of the vehicle's starting point Args: vehicle_name (str, optional): Name of the vehicle Returns: EnvironmentState: Ground truth environment state """ env_state = self.client.call('simGetGroundTruthEnvironment', vehicle_name) return EnvironmentState.from_msgpack(env_state) simGetGroundTruthEnvironment.__annotations__ = {'return': EnvironmentState} #sensor APIs def getImuData(self, imu_name = '', vehicle_name = ''): """ Args: imu_name (str, optional): Name of IMU to get data from, specified in settings.json vehicle_name (str, optional): Name of vehicle to which the sensor corresponds to Returns: ImuData: """ return ImuData.from_msgpack(self.client.call('getImuData', imu_name, vehicle_name)) def getBarometerData(self, barometer_name = '', vehicle_name = ''): """ Args: barometer_name (str, optional): Name of Barometer to get data from, specified in settings.json vehicle_name (str, optional): Name of vehicle to which the sensor corresponds to Returns: BarometerData: """ return BarometerData.from_msgpack(self.client.call('getBarometerData', barometer_name, vehicle_name)) def getMagnetometerData(self, magnetometer_name = '', vehicle_name = ''): """ Args: magnetometer_name (str, optional): Name of Magnetometer to get data from, specified in settings.json vehicle_name (str, optional): Name of vehicle to which the sensor corresponds to Returns: MagnetometerData: """ return MagnetometerData.from_msgpack(self.client.call('getMagnetometerData', magnetometer_name, vehicle_name)) def getGpsData(self, gps_name = '', vehicle_name = ''): """ Args: gps_name (str, optional): Name of GPS to get data from, specified in settings.json vehicle_name (str, optional): Name of vehicle to which the sensor corresponds to Returns: GpsData: """ return GpsData.from_msgpack(self.client.call('getGpsData', gps_name, vehicle_name)) def getDistanceSensorData(self, distance_sensor_name = '', vehicle_name = ''): """ Args: distance_sensor_name (str, optional): Name of Distance Sensor to get data from, specified in settings.json vehicle_name (str, optional): Name of vehicle to which the sensor corresponds to Returns: DistanceSensorData: """ return DistanceSensorData.from_msgpack(self.client.call('getDistanceSensorData', distance_sensor_name, vehicle_name)) def getLidarData(self, lidar_name = '', vehicle_name = ''): """ Args: lidar_name (str, optional): Name of Lidar to get data from, specified in settings.json vehicle_name (str, optional): Name of vehicle to which the sensor corresponds to Returns: LidarData: """ return LidarData.from_msgpack(self.client.call('getLidarData', lidar_name, vehicle_name)) def simGetLidarSegmentation(self, lidar_name = '', vehicle_name = ''): """ NOTE: Deprecated API, use `getLidarData()` API instead Returns Segmentation ID of each point's collided object in the last Lidar update Args: lidar_name (str, optional): Name of Lidar sensor vehicle_name (str, optional): Name of the vehicle wth the sensor Returns: list[int]: Segmentation IDs of the objects """ logging.warning("simGetLidarSegmentation API is deprecated, use getLidarData() API instead") return self.getLidarData(lidar_name, vehicle_name).segmentation #Plotting APIs def simFlushPersistentMarkers(self): """ Clear any persistent markers - those plotted with setting `is_persistent=True` in the APIs below """ self.client.call('simFlushPersistentMarkers') def simPlotPoints(self, points, color_rgba=[1.0, 0.0, 0.0, 1.0], size = 10.0, duration = -1.0, is_persistent = False): """ Plot a list of 3D points in World NED frame Args: points (list[Vector3r]): List of Vector3r objects color_rgba (list, optional): desired RGBA values from 0.0 to 1.0 size (float, optional): Size of plotted point duration (float, optional): Duration (seconds) to plot for is_persistent (bool, optional): If set to True, the desired object will be plotted for infinite time. """ self.client.call('simPlotPoints', points, color_rgba, size, duration, is_persistent) def simPlotLineStrip(self, points, color_rgba=[1.0, 0.0, 0.0, 1.0], thickness = 5.0, duration = -1.0, is_persistent = False): """ Plots a line strip in World NED frame, defined from points[0] to points[1], points[1] to points[2], ... , points[n-2] to points[n-1] Args: points (list[Vector3r]): List of 3D locations of line start and end points, specified as Vector3r objects color_rgba (list, optional): desired RGBA values from 0.0 to 1.0 thickness (float, optional): Thickness of line duration (float, optional): Duration (seconds) to plot for is_persistent (bool, optional): If set to True, the desired object will be plotted for infinite time. """ self.client.call('simPlotLineStrip', points, color_rgba, thickness, duration, is_persistent) def simPlotLineList(self, points, color_rgba=[1.0, 0.0, 0.0, 1.0], thickness = 5.0, duration = -1.0, is_persistent = False): """ Plots a line strip in World NED frame, defined from points[0] to points[1], points[2] to points[3], ... , points[n-2] to points[n-1] Args: points (list[Vector3r]): List of 3D locations of line start and end points, specified as Vector3r objects. Must be even color_rgba (list, optional): desired RGBA values from 0.0 to 1.0 thickness (float, optional): Thickness of line duration (float, optional): Duration (seconds) to plot for is_persistent (bool, optional): If set to True, the desired object will be plotted for infinite time. """ self.client.call('simPlotLineList', points, color_rgba, thickness, duration, is_persistent) def simPlotArrows(self, points_start, points_end, color_rgba=[1.0, 0.0, 0.0, 1.0], thickness = 5.0, arrow_size = 2.0, duration = -1.0, is_persistent = False): """ Plots a list of arrows in World NED frame, defined from points_start[0] to points_end[0], points_start[1] to points_end[1], ... , points_start[n-1] to points_end[n-1] Args: points_start (list[Vector3r]): List of 3D start positions of arrow start positions, specified as Vector3r objects points_end (list[Vector3r]): List of 3D end positions of arrow start positions, specified as Vector3r objects color_rgba (list, optional): desired RGBA values from 0.0 to 1.0 thickness (float, optional): Thickness of line arrow_size (float, optional): Size of arrow head duration (float, optional): Duration (seconds) to plot for is_persistent (bool, optional): If set to True, the desired object will be plotted for infinite time. """ self.client.call('simPlotArrows', points_start, points_end, color_rgba, thickness, arrow_size, duration, is_persistent) def simPlotStrings(self, strings, positions, scale = 5, color_rgba=[1.0, 0.0, 0.0, 1.0], duration = -1.0): """ Plots a list of strings at desired positions in World NED frame. Args: strings (list[String], optional): List of strings to plot positions (list[Vector3r]): List of positions where the strings should be plotted. Should be in one-to-one correspondence with the strings' list scale (float, optional): Font scale of transform name color_rgba (list, optional): desired RGBA values from 0.0 to 1.0 duration (float, optional): Duration (seconds) to plot for """ self.client.call('simPlotStrings', strings, positions, scale, color_rgba, duration) def simPlotTransforms(self, poses, scale = 5.0, thickness = 5.0, duration = -1.0, is_persistent = False): """ Plots a list of transforms in World NED frame. Args: poses (list[Pose]): List of Pose objects representing the transforms to plot scale (float, optional): Length of transforms' axes thickness (float, optional): Thickness of transforms' axes duration (float, optional): Duration (seconds) to plot for is_persistent (bool, optional): If set to True, the desired object will be plotted for infinite time. """ self.client.call('simPlotTransforms', poses, scale, thickness, duration, is_persistent) def simPlotTransformsWithNames(self, poses, names, tf_scale = 5.0, tf_thickness = 5.0, text_scale = 10.0, text_color_rgba = [1.0, 0.0, 0.0, 1.0], duration = -1.0): """ Plots a list of transforms with their names in World NED frame. Args: poses (list[Pose]): List of Pose objects representing the transforms to plot names (list[string]): List of strings with one-to-one correspondence to list of poses tf_scale (float, optional): Length of transforms' axes tf_thickness (float, optional): Thickness of transforms' axes text_scale (float, optional): Font scale of transform name text_color_rgba (list, optional): desired RGBA values from 0.0 to 1.0 for the transform name duration (float, optional): Duration (seconds) to plot for """ self.client.call('simPlotTransformsWithNames', poses, names, tf_scale, tf_thickness, text_scale, text_color_rgba, duration) def cancelLastTask(self, vehicle_name = ''): """ Cancel previous Async task Args: vehicle_name (str, optional): Name of the vehicle """ self.client.call('cancelLastTask', vehicle_name) #Recording APIs def startRecording(self): """ Start Recording Recording will be done according to the settings """ self.client.call('startRecording') def stopRecording(self): """ Stop Recording """ self.client.call('stopRecording') def isRecording(self): """ Whether Recording is running or not Returns: bool: True if Recording, else False """ return self.client.call('isRecording') def simSetWind(self, wind): """ Set simulated wind, in World frame, NED direction, m/s Args: wind (Vector3r): Wind, in World frame, NED direction, in m/s """ self.client.call('simSetWind', wind) def simCreateVoxelGrid(self, position, x, y, z, res, of): """ Construct and save a binvox-formatted voxel grid of environment Args: position (Vector3r): Position around which voxel grid is centered in m x, y, z (int): Size of each voxel grid dimension in m res (float): Resolution of voxel grid in m of (str): Name of output file to save voxel grid as Returns: bool: True if output written to file successfully, else False """ return self.client.call('simCreateVoxelGrid', position, x, y, z, res, of) #Add new vehicle via RPC def simAddVehicle(self, vehicle_name, vehicle_type, pose, pawn_path = ""): """ Create vehicle at runtime Args: vehicle_name (str): Name of the vehicle being created vehicle_type (str): Type of vehicle, e.g. "simpleflight" pose (Pose): Initial pose of the vehicle pawn_path (str, optional): Vehicle blueprint path, default empty wbich uses the default blueprint for the vehicle type Returns: bool: Whether vehicle was created """ return self.client.call('simAddVehicle', vehicle_name, vehicle_type, pose, pawn_path) def listVehicles(self): """ Lists the names of current vehicles Returns: list[str]: List containing names of all vehicles """ return self.client.call('listVehicles') def getSettingsString(self): """ Fetch the settings text being used by AirSim Returns: str: Settings text in JSON format """ return self.client.call('getSettingsString') #----------------------------------- Multirotor APIs --------------------------------------------- class MultirotorClient(VehicleClient, object): def __init__(self, ip = "", port = 41451, timeout_value = 3600): super(MultirotorClient, self).__init__(ip, port, timeout_value) def takeoffAsync(self, timeout_sec = 20, vehicle_name = ''): """ Takeoff vehicle to 3m above ground. Vehicle should not be moving when this API is used Args: timeout_sec (int, optional): Timeout for the vehicle to reach desired altitude vehicle_name (str, optional): Name of the vehicle to send this command to Returns: msgpackrpc.future.Future: future. call .join() to wait for method to finish. Example: client.METHOD().join() """ return self.client.call_async('takeoff', timeout_sec, vehicle_name) def landAsync(self, timeout_sec = 60, vehicle_name = ''): """ Land the vehicle Args: timeout_sec (int, optional): Timeout for the vehicle to land vehicle_name (str, optional): Name of the vehicle to send this command to Returns: msgpackrpc.future.Future: future. call .join() to wait for method to finish. Example: client.METHOD().join() """ return self.client.call_async('land', timeout_sec, vehicle_name) def goHomeAsync(self, timeout_sec = 3e+38, vehicle_name = ''): """ Return vehicle to Home i.e. Launch location Args: timeout_sec (int, optional): Timeout for the vehicle to reach desired altitude vehicle_name (str, optional): Name of the vehicle to send this command to Returns: msgpackrpc.future.Future: future. call .join() to wait for method to finish. Example: client.METHOD().join() """ return self.client.call_async('goHome', timeout_sec, vehicle_name) #APIs for control def moveByVelocityBodyFrameAsync(self, vx, vy, vz, duration, drivetrain = DrivetrainType.MaxDegreeOfFreedom, yaw_mode = YawMode(), vehicle_name = ''): """ Args: vx (float): desired velocity in the X axis of the vehicle's local NED frame. vy (float): desired velocity in the Y axis of the vehicle's local NED frame. vz (float): desired velocity in the Z axis of the vehicle's local NED frame. duration (float): Desired amount of time (seconds), to send this command for drivetrain (DrivetrainType, optional): yaw_mode (YawMode, optional): vehicle_name (str, optional): Name of the multirotor to send this command to Returns: msgpackrpc.future.Future: future. call .join() to wait for method to finish. Example: client.METHOD().join() """ return self.client.call_async('moveByVelocityBodyFrame', vx, vy, vz, duration, drivetrain, yaw_mode, vehicle_name) def moveByVelocityZBodyFrameAsync(self, vx, vy, z, duration, drivetrain = DrivetrainType.MaxDegreeOfFreedom, yaw_mode = YawMode(), vehicle_name = ''): """ Args: vx (float): desired velocity in the X axis of the vehicle's local NED frame vy (float): desired velocity in the Y axis of the vehicle's local NED frame z (float): desired Z value (in local NED frame of the vehicle) duration (float): Desired amount of time (seconds), to send this command for drivetrain (DrivetrainType, optional): yaw_mode (YawMode, optional): vehicle_name (str, optional): Name of the multirotor to send this command to Returns: msgpackrpc.future.Future: future. call .join() to wait for method to finish. Example: client.METHOD().join() """ return self.client.call_async('moveByVelocityZBodyFrame', vx, vy, z, duration, drivetrain, yaw_mode, vehicle_name) def moveByAngleZAsync(self, pitch, roll, z, yaw, duration, vehicle_name = ''): logging.warning("moveByAngleZAsync API is deprecated, use moveByRollPitchYawZAsync() API instead") return self.client.call_async('moveByRollPitchYawZ', roll, -pitch, -yaw, z, duration, vehicle_name) def moveByAngleThrottleAsync(self, pitch, roll, throttle, yaw_rate, duration, vehicle_name = ''): logging.warning("moveByAngleThrottleAsync API is deprecated, use moveByRollPitchYawrateThrottleAsync() API instead") return self.client.call_async('moveByRollPitchYawrateThrottle', roll, -pitch, -yaw_rate, throttle, duration, vehicle_name) def moveByVelocityAsync(self, vx, vy, vz, duration, drivetrain = DrivetrainType.MaxDegreeOfFreedom, yaw_mode = YawMode(), vehicle_name = ''): """ Args: vx (float): desired velocity in world (NED) X axis vy (float): desired velocity in world (NED) Y axis vz (float): desired velocity in world (NED) Z axis duration (float): Desired amount of time (seconds), to send this command for drivetrain (DrivetrainType, optional): yaw_mode (YawMode, optional): vehicle_name (str, optional): Name of the multirotor to send this command to Returns: msgpackrpc.future.Future: future. call .join() to wait for method to finish. Example: client.METHOD().join() """ return self.client.call_async('moveByVelocity', vx, vy, vz, duration, drivetrain, yaw_mode, vehicle_name) def moveByVelocityZAsync(self, vx, vy, z, duration, drivetrain = DrivetrainType.MaxDegreeOfFreedom, yaw_mode = YawMode(), vehicle_name = ''): return self.client.call_async('moveByVelocityZ', vx, vy, z, duration, drivetrain, yaw_mode, vehicle_name) def moveOnPathAsync(self, path, velocity, timeout_sec = 3e+38, drivetrain = DrivetrainType.MaxDegreeOfFreedom, yaw_mode = YawMode(), lookahead = -1, adaptive_lookahead = 1, vehicle_name = ''): return self.client.call_async('moveOnPath', path, velocity, timeout_sec, drivetrain, yaw_mode, lookahead, adaptive_lookahead, vehicle_name) def moveToPositionAsync(self, x, y, z, velocity, timeout_sec = 3e+38, drivetrain = DrivetrainType.MaxDegreeOfFreedom, yaw_mode = YawMode(), lookahead = -1, adaptive_lookahead = 1, vehicle_name = ''): return self.client.call_async('moveToPosition', x, y, z, velocity, timeout_sec, drivetrain, yaw_mode, lookahead, adaptive_lookahead, vehicle_name) def moveToGPSAsync(self, latitude, longitude, altitude, velocity, timeout_sec = 3e+38, drivetrain = DrivetrainType.MaxDegreeOfFreedom, yaw_mode = YawMode(), lookahead = -1, adaptive_lookahead = 1, vehicle_name = ''): return self.client.call_async('moveToGPS', latitude, longitude, altitude, velocity, timeout_sec, drivetrain, yaw_mode, lookahead, adaptive_lookahead, vehicle_name) def moveToZAsync(self, z, velocity, timeout_sec = 3e+38, yaw_mode = YawMode(), lookahead = -1, adaptive_lookahead = 1, vehicle_name = ''): return self.client.call_async('moveToZ', z, velocity, timeout_sec, yaw_mode, lookahead, adaptive_lookahead, vehicle_name) def moveByManualAsync(self, vx_max, vy_max, z_min, duration, drivetrain = DrivetrainType.MaxDegreeOfFreedom, yaw_mode = YawMode(), vehicle_name = ''): """ - Read current RC state and use it to control the vehicles. Parameters sets up the constraints on velocity and minimum altitude while flying. If RC state is detected to violate these constraints then that RC state would be ignored. Args: vx_max (float): max velocity allowed in x direction vy_max (float): max velocity allowed in y direction vz_max (float): max velocity allowed in z direction z_min (float): min z allowed for vehicle position duration (float): after this duration vehicle would switch back to non-manual mode drivetrain (DrivetrainType): when ForwardOnly, vehicle rotates itself so that its front is always facing the direction of travel. If MaxDegreeOfFreedom then it doesn't do that (crab-like movement) yaw_mode (YawMode): Specifies if vehicle should face at given angle (is_rate=False) or should be rotating around its axis at given rate (is_rate=True) vehicle_name (str, optional): Name of the multirotor to send this command to Returns: msgpackrpc.future.Future: future. call .join() to wait for method to finish. Example: client.METHOD().join() """ return self.client.call_async('moveByManual', vx_max, vy_max, z_min, duration, drivetrain, yaw_mode, vehicle_name) def rotateToYawAsync(self, yaw, timeout_sec = 3e+38, margin = 5, vehicle_name = ''): return self.client.call_async('rotateToYaw', yaw, timeout_sec, margin, vehicle_name) def rotateByYawRateAsync(self, yaw_rate, duration, vehicle_name = ''): return self.client.call_async('rotateByYawRate', yaw_rate, duration, vehicle_name) def hoverAsync(self, vehicle_name = ''): return self.client.call_async('hover', vehicle_name) def moveByRC(self, rcdata = RCData(), vehicle_name = ''): return self.client.call('moveByRC', rcdata, vehicle_name) #low - level control API def moveByMotorPWMsAsync(self, front_right_pwm, rear_left_pwm, front_left_pwm, rear_right_pwm, duration, vehicle_name = ''): """ - Directly control the motors using PWM values Args: front_right_pwm (float): PWM value for the front right motor (between 0.0 to 1.0) rear_left_pwm (float): PWM value for the rear left motor (between 0.0 to 1.0) front_left_pwm (float): PWM value for the front left motor (between 0.0 to 1.0) rear_right_pwm (float): PWM value for the rear right motor (between 0.0 to 1.0) duration (float): Desired amount of time (seconds), to send this command for vehicle_name (str, optional): Name of the multirotor to send this command to Returns: msgpackrpc.future.Future: future. call .join() to wait for method to finish. Example: client.METHOD().join() """ return self.client.call_async('moveByMotorPWMs', front_right_pwm, rear_left_pwm, front_left_pwm, rear_right_pwm, duration, vehicle_name) def moveByRollPitchYawZAsync(self, roll, pitch, yaw, z, duration, vehicle_name = ''): """ - z is given in local NED frame of the vehicle. - Roll angle, pitch angle, and yaw angle set points are given in **radians**, in the body frame. - The body frame follows the Front Left Up (FLU) convention, and right-handedness. - Frame Convention: - X axis is along the **Front** direction of the quadrotor. | Clockwise rotation about this axis defines a positive **roll** angle. | Hence, rolling with a positive angle is equivalent to translating in the **right** direction, w.r.t. our FLU body frame. - Y axis is along the **Left** direction of the quadrotor. | Clockwise rotation about this axis defines a positive **pitch** angle. | Hence, pitching with a positive angle is equivalent to translating in the **front** direction, w.r.t. our FLU body frame. - Z axis is along the **Up** direction. | Clockwise rotation about this axis defines a positive **yaw** angle. | Hence, yawing with a positive angle is equivalent to rotated towards the **left** direction wrt our FLU body frame. Or in an anticlockwise fashion in the body XY / FL plane. Args: roll (float): Desired roll angle, in radians. pitch (float): Desired pitch angle, in radians. yaw (float): Desired yaw angle, in radians. z (float): Desired Z value (in local NED frame of the vehicle) duration (float): Desired amount of time (seconds), to send this command for vehicle_name (str, optional): Name of the multirotor to send this command to Returns: msgpackrpc.future.Future: future. call .join() to wait for method to finish. Example: client.METHOD().join() """ return self.client.call_async('moveByRollPitchYawZ', roll, -pitch, -yaw, z, duration, vehicle_name) def moveByRollPitchYawThrottleAsync(self, roll, pitch, yaw, throttle, duration, vehicle_name = ''): """ - Desired throttle is between 0.0 to 1.0 - Roll angle, pitch angle, and yaw angle are given in **degrees** when using PX4 and in **radians** when using SimpleFlight, in the body frame. - The body frame follows the Front Left Up (FLU) convention, and right-handedness. - Frame Convention: - X axis is along the **Front** direction of the quadrotor. | Clockwise rotation about this axis defines a positive **roll** angle. | Hence, rolling with a positive angle is equivalent to translating in the **right** direction, w.r.t. our FLU body frame. - Y axis is along the **Left** direction of the quadrotor. | Clockwise rotation about this axis defines a positive **pitch** angle. | Hence, pitching with a positive angle is equivalent to translating in the **front** direction, w.r.t. our FLU body frame. - Z axis is along the **Up** direction. | Clockwise rotation about this axis defines a positive **yaw** angle. | Hence, yawing with a positive angle is equivalent to rotated towards the **left** direction wrt our FLU body frame. Or in an anticlockwise fashion in the body XY / FL plane. Args: roll (float): Desired roll angle. pitch (float): Desired pitch angle. yaw (float): Desired yaw angle. throttle (float): Desired throttle (between 0.0 to 1.0) duration (float): Desired amount of time (seconds), to send this command for vehicle_name (str, optional): Name of the multirotor to send this command to Returns: msgpackrpc.future.Future: future. call .join() to wait for method to finish. Example: client.METHOD().join() """ return self.client.call_async('moveByRollPitchYawThrottle', roll, -pitch, -yaw, throttle, duration, vehicle_name) def moveByRollPitchYawrateThrottleAsync(self, roll, pitch, yaw_rate, throttle, duration, vehicle_name = ''): """ - Desired throttle is between 0.0 to 1.0 - Roll angle, pitch angle, and yaw rate set points are given in **radians**, in the body frame. - The body frame follows the Front Left Up (FLU) convention, and right-handedness. - Frame Convention: - X axis is along the **Front** direction of the quadrotor. | Clockwise rotation about this axis defines a positive **roll** angle. | Hence, rolling with a positive angle is equivalent to translating in the **right** direction, w.r.t. our FLU body frame. - Y axis is along the **Left** direction of the quadrotor. | Clockwise rotation about this axis defines a positive **pitch** angle. | Hence, pitching with a positive angle is equivalent to translating in the **front** direction, w.r.t. our FLU body frame. - Z axis is along the **Up** direction. | Clockwise rotation about this axis defines a positive **yaw** angle. | Hence, yawing with a positive angle is equivalent to rotated towards the **left** direction wrt our FLU body frame. Or in an anticlockwise fashion in the body XY / FL plane. Args: roll (float): Desired roll angle, in radians. pitch (float): Desired pitch angle, in radians. yaw_rate (float): Desired yaw rate, in radian per second. throttle (float): Desired throttle (between 0.0 to 1.0) duration (float): Desired amount of time (seconds), to send this command for vehicle_name (str, optional): Name of the multirotor to send this command to Returns: msgpackrpc.future.Future: future. call .join() to wait for method to finish. Example: client.METHOD().join() """ return self.client.call_async('moveByRollPitchYawrateThrottle', roll, -pitch, -yaw_rate, throttle, duration, vehicle_name) def moveByRollPitchYawrateZAsync(self, roll, pitch, yaw_rate, z, duration, vehicle_name = ''): """ - z is given in local NED frame of the vehicle. - Roll angle, pitch angle, and yaw rate set points are given in **radians**, in the body frame. - The body frame follows the Front Left Up (FLU) convention, and right-handedness. - Frame Convention: - X axis is along the **Front** direction of the quadrotor. | Clockwise rotation about this axis defines a positive **roll** angle. | Hence, rolling with a positive angle is equivalent to translating in the **right** direction, w.r.t. our FLU body frame. - Y axis is along the **Left** direction of the quadrotor. | Clockwise rotation about this axis defines a positive **pitch** angle. | Hence, pitching with a positive angle is equivalent to translating in the **front** direction, w.r.t. our FLU body frame. - Z axis is along the **Up** direction. | Clockwise rotation about this axis defines a positive **yaw** angle. | Hence, yawing with a positive angle is equivalent to rotated towards the **left** direction wrt our FLU body frame. Or in an anticlockwise fashion in the body XY / FL plane. Args: roll (float): Desired roll angle, in radians. pitch (float): Desired pitch angle, in radians. yaw_rate (float): Desired yaw rate, in radian per second. z (float): Desired Z value (in local NED frame of the vehicle) duration (float): Desired amount of time (seconds), to send this command for vehicle_name (str, optional): Name of the multirotor to send this command to Returns: msgpackrpc.future.Future: future. call .join() to wait for method to finish. Example: client.METHOD().join() """ return self.client.call_async('moveByRollPitchYawrateZ', roll, -pitch, -yaw_rate, z, duration, vehicle_name) def moveByAngleRatesZAsync(self, roll_rate, pitch_rate, yaw_rate, z, duration, vehicle_name = ''): """ - z is given in local NED frame of the vehicle. - Roll rate, pitch rate, and yaw rate set points are given in **radians**, in the body frame. - The body frame follows the Front Left Up (FLU) convention, and right-handedness. - Frame Convention: - X axis is along the **Front** direction of the quadrotor. | Clockwise rotation about this axis defines a positive **roll** angle. | Hence, rolling with a positive angle is equivalent to translating in the **right** direction, w.r.t. our FLU body frame. - Y axis is along the **Left** direction of the quadrotor. | Clockwise rotation about this axis defines a positive **pitch** angle. | Hence, pitching with a positive angle is equivalent to translating in the **front** direction, w.r.t. our FLU body frame. - Z axis is along the **Up** direction. | Clockwise rotation about this axis defines a positive **yaw** angle. | Hence, yawing with a positive angle is equivalent to rotated towards the **left** direction wrt our FLU body frame. Or in an anticlockwise fashion in the body XY / FL plane. Args: roll_rate (float): Desired roll rate, in radians / second pitch_rate (float): Desired pitch rate, in radians / second yaw_rate (float): Desired yaw rate, in radians / second z (float): Desired Z value (in local NED frame of the vehicle) duration (float): Desired amount of time (seconds), to send this command for vehicle_name (str, optional): Name of the multirotor to send this command to Returns: msgpackrpc.future.Future: future. call .join() to wait for method to finish. Example: client.METHOD().join() """ return self.client.call_async('moveByAngleRatesZ', roll_rate, -pitch_rate, -yaw_rate, z, duration, vehicle_name) def moveByAngleRatesThrottleAsync(self, roll_rate, pitch_rate, yaw_rate, throttle, duration, vehicle_name = ''): """ - Desired throttle is between 0.0 to 1.0 - Roll rate, pitch rate, and yaw rate set points are given in **radians**, in the body frame. - The body frame follows the Front Left Up (FLU) convention, and right-handedness. - Frame Convention: - X axis is along the **Front** direction of the quadrotor. | Clockwise rotation about this axis defines a positive **roll** angle. | Hence, rolling with a positive angle is equivalent to translating in the **right** direction, w.r.t. our FLU body frame. - Y axis is along the **Left** direction of the quadrotor. | Clockwise rotation about this axis defines a positive **pitch** angle. | Hence, pitching with a positive angle is equivalent to translating in the **front** direction, w.r.t. our FLU body frame. - Z axis is along the **Up** direction. | Clockwise rotation about this axis defines a positive **yaw** angle. | Hence, yawing with a positive angle is equivalent to rotated towards the **left** direction wrt our FLU body frame. Or in an anticlockwise fashion in the body XY / FL plane. Args: roll_rate (float): Desired roll rate, in radians / second pitch_rate (float): Desired pitch rate, in radians / second yaw_rate (float): Desired yaw rate, in radians / second throttle (float): Desired throttle (between 0.0 to 1.0) duration (float): Desired amount of time (seconds), to send this command for vehicle_name (str, optional): Name of the multirotor to send this command to Returns: msgpackrpc.future.Future: future. call .join() to wait for method to finish. Example: client.METHOD().join() """ return self.client.call_async('moveByAngleRatesThrottle', roll_rate, -pitch_rate, -yaw_rate, throttle, duration, vehicle_name) def setAngleRateControllerGains(self, angle_rate_gains=AngleRateControllerGains(), vehicle_name = ''): """ - Modifying these gains will have an affect on *ALL* move*() APIs. This is because any velocity setpoint is converted to an angle level setpoint which is tracked with an angle level controllers. That angle level setpoint is itself tracked with and angle rate controller. - This function should only be called if the default angle rate control PID gains need to be modified. Args: angle_rate_gains (AngleRateControllerGains): - Correspond to the roll, pitch, yaw axes, defined in the body frame. - Pass AngleRateControllerGains() to reset gains to default recommended values. vehicle_name (str, optional): Name of the multirotor to send this command to """ self.client.call('setAngleRateControllerGains', *(angle_rate_gains.to_lists()+(vehicle_name,))) def setAngleLevelControllerGains(self, angle_level_gains=AngleLevelControllerGains(), vehicle_name = ''): """ - Sets angle level controller gains (used by any API setting angle references - for ex: moveByRollPitchYawZAsync(), moveByRollPitchYawThrottleAsync(), etc) - Modifying these gains will also affect the behaviour of moveByVelocityAsync() API. This is because the AirSim flight controller will track velocity setpoints by converting them to angle set points. - This function should only be called if the default angle level control PID gains need to be modified. - Passing AngleLevelControllerGains() sets gains to default airsim values. Args: angle_level_gains (AngleLevelControllerGains): - Correspond to the roll, pitch, yaw axes, defined in the body frame. - Pass AngleLevelControllerGains() to reset gains to default recommended values. vehicle_name (str, optional): Name of the multirotor to send this command to """ self.client.call('setAngleLevelControllerGains', *(angle_level_gains.to_lists()+(vehicle_name,))) def setVelocityControllerGains(self, velocity_gains=VelocityControllerGains(), vehicle_name = ''): """ - Sets velocity controller gains for moveByVelocityAsync(). - This function should only be called if the default velocity control PID gains need to be modified. - Passing VelocityControllerGains() sets gains to default airsim values. Args: velocity_gains (VelocityControllerGains): - Correspond to the world X, Y, Z axes. - Pass VelocityControllerGains() to reset gains to default recommended values. - Modifying velocity controller gains will have an affect on the behaviour of moveOnSplineAsync() and moveOnSplineVelConstraintsAsync(), as they both use velocity control to track the trajectory. vehicle_name (str, optional): Name of the multirotor to send this command to """ self.client.call('setVelocityControllerGains', *(velocity_gains.to_lists()+(vehicle_name,))) def setPositionControllerGains(self, position_gains=PositionControllerGains(), vehicle_name = ''): """ Sets position controller gains for moveByPositionAsync. This function should only be called if the default position control PID gains need to be modified. Args: position_gains (PositionControllerGains): - Correspond to the X, Y, Z axes. - Pass PositionControllerGains() to reset gains to default recommended values. vehicle_name (str, optional): Name of the multirotor to send this command to """ self.client.call('setPositionControllerGains', *(position_gains.to_lists()+(vehicle_name,))) #query vehicle state def getMultirotorState(self, vehicle_name = ''): """ The position inside the returned MultirotorState is in the frame of the vehicle's starting point Args: vehicle_name (str, optional): Vehicle to get the state of Returns: MultirotorState: """ return MultirotorState.from_msgpack(self.client.call('getMultirotorState', vehicle_name)) getMultirotorState.__annotations__ = {'return': MultirotorState} #query rotor states def getRotorStates(self, vehicle_name = ''): """ Used to obtain the current state of all a multirotor's rotors. The state includes the speeds, thrusts and torques for all rotors. Args: vehicle_name (str, optional): Vehicle to get the rotor state of Returns: RotorStates: Containing a timestamp and the speed, thrust and torque of all rotors. """ return RotorStates.from_msgpack(self.client.call('getRotorStates', vehicle_name)) getRotorStates.__annotations__ = {'return': RotorStates} #----------------------------------- Car APIs --------------------------------------------- class CarClient(VehicleClient, object): def __init__(self, ip = "", port = 41451, timeout_value = 3600): super(CarClient, self).__init__(ip, port, timeout_value) def setCarControls(self, controls, vehicle_name = ''): """ Control the car using throttle, steering, brake, etc. Args: controls (CarControls): Struct containing control values vehicle_name (str, optional): Name of vehicle to be controlled """ self.client.call('setCarControls', controls, vehicle_name) def getCarState(self, vehicle_name = ''): """ The position inside the returned CarState is in the frame of the vehicle's starting point Args: vehicle_name (str, optional): Name of vehicle Returns: CarState: """ state_raw = self.client.call('getCarState', vehicle_name) return CarState.from_msgpack(state_raw) def getCarControls(self, vehicle_name=''): """ Args: vehicle_name (str, optional): Name of vehicle Returns: CarControls: """ controls_raw = self.client.call('getCarControls', vehicle_name) return CarControls.from_msgpack(controls_raw)
76,649
Python
46.285626
211
0.64434
superboySB/SBDrone_deprecated/src/HITL/toturials/deprecated/flightmare/README.md
# SBDrone (Flightmare) use sim-to-real RL to achieve a perception-aware velocity controller. This is note for runing codes in x86_64 machines # Configure the enironment ## Install dependencies ```sh sudo apt-get update && sudo apt-get install -y --no-install-recommends build-essential cmake libzmqpp-dev libopencv-dev libgoogle-glog-dev protobuf-compiler ros-$ROS_DISTRO-octomap-msgs ros-$ROS_DISTRO-octomap-ros ros-$ROS_DISTRO-joy python3-vcstool python-catkin-tools git python3-pip lsb-core vim gedit locate wget desktop-file-utils python3-empy gcc g++ cmake git gnuplot doxygen graphviz software-properties-common apt-transport-https curl libqglviewer-dev-qt5 libzmqpp-dev libeigen3-dev libglfw3-dev libglm-dev libvulkan1 vulkan-utils gdb libsdl-image1.2-dev libsdl-dev ros-melodic-octomap-mapping libomp-dev libompl-dev ompl-demos && curl -sSL https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key add - && sudo add-apt-repository "deb [arch=amd64] https://packages.microsoft.com/repos/vscode stable main" && sudo apt update && sudo apt install code -y && sudo pip3 install catkin-tools numpy -i https://pypi.tuna.tsinghua.edu.cn/simple ``` ## Install Open3D ```sh tar -C ~/ -zxvf ~/dependencies/Open3D.tgz && cd ~/Open3D/ && util/scripts/install-deps-ubuntu.sh assume-yes && mkdir build && cd build && cmake -DBUILD_SHARED_LIBS=ON .. && make -j16 && sudo make install ``` ## Install cv_bridge ```sh mkdir -p ~/cv_bridge_ws/src && tar -C ~/cv_bridge_ws/src/ -zxvf ~/dependencies/vision_opencv.tgz && apt-cache show ros-melodic-cv-bridge | grep Version && cd ~/cv_bridge_ws/ && catkin config --install && catkin config -DPYTHON_EXECUTABLE=/usr/bin/python3 -DPYTHON_INCLUDE_DIR=/usr/include/python3.6m -DPYTHON_LIBRARY=/usr/lib/x86_64-linux-gnu/libpython3.6m.so && catkin build && source install/setup.bash --extend ``` --------- ## Install Python Package: ```sh sudo pip3 install --upgrade pip && pip3 install tensorflow-gpu==1.14 markupsafe scikit-build -i https://pypi.tuna.tsinghua.edu.cn/simple && cd ~/flightmare_ws/src/flightmare/flightlib && pip3 install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple ``` ## Compile our project **Every time when you change the code in other machines**, you can delete the project and then restart by: ```sh cd ~ && git clone https://github.com/superboySB/flightmare_ws.git ``` ```sh echo "export FLIGHTMARE_PATH=~/flightmare_ws/src/flightmare" >> ~/.bashrc && source ~/.bashrc ``` Download the Flightmare Unity Binary **RPG_Flightmare.tar.xz** for rendering from the [Releases](https://github.com/uzh-rpg/flightmare/releases) and extract it into the /home/qiyuan/flightmare_ws/src/flightmare/flightrender/ ```sh cd ~/flightmare_ws/ && catkin init && catkin config --extend /opt/ros/melodic && catkin config --merge-devel && catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS=-fdiagnostics-color && catkin config -DPYTHON_EXECUTABLE=/usr/bin/python3 -DPYTHON_INCLUDE_DIR=/usr/include/python3.6m -DPYTHON_LIBRARY=/usr/lib/x86_64-linux-gnu/libpython3.6m.so && catkin build ``` ## Install Python Package: flightlib + flightrl flightlib ```sh sudo pip3 install --upgrade pip && pip3 install tensorflow-gpu==1.14 markupsafe scikit-build -i https://pypi.tuna.tsinghua.edu.cn/simple && cd ~/flightmare_ws/src/flightmare/flightlib && pip3 install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple ``` flightrl (main) ```sh cd ~/flightmare_ws/src/flightmare/flightrl && pip3 install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple ``` # Basic Usage with ROS ## Launch Flightmare (use gazebo-based dynamics) In this example, we show how to use the [RotorS](https://github.com/ethz-asl/rotors_simulator) for the quadrotor dynamics modelling, [rpg_quadrotor_control](https://github.com/uzh-rpg/rpg_quadrotor_control) for model-based controller, and Flightmare for image rendering. ```sh cd ~/flightmare_ws && source ./devel/setup.bash && roslaunch flightros rotors_gazebo.launch ``` We hope this example can serve as a starting point for many other applications. For example, Flightmare can be used with other multirotor models that comes with RotorS such as AscTec Hummingbird, the AscTec Pelican, or the AscTec Firefly. The default controller in [rpg_quadrotor_control](https://github.com/uzh-rpg/rpg_quadrotor_control) is a PID controller. Users have the option to use more advanced controller in this framework, such as [Perception-Aware Model Predictive Control](https://github.com/uzh-rpg/rpg_mpc). # Basic Usage with Python ## Train neural network controller using PPO ```sh cd ~/flightmare_ws/examples && python3 run_drone_control.py --train 1 ``` ## Test a pre-trained neural network controller ```sh cd ~/flightmare_ws/examples && python3 run_drone_control.py --train 0 ``` ## With Unity Rendering To enable unity for visualization, double click the extracted executable file RPG_Flightmare.x84-64 ```sh ~/flightmare_ws/src/flightmare/flightrender/RPG_Flightmare.x86_64 ``` and then test a pre-trained controller ```sh cd ~/flightmare_ws/examples && python3 run_drone_control.py --train 0 --render 1 ```
5,099
Markdown
59.714285
954
0.751324
superboySB/SBDrone_deprecated/src/HITL/toturials/deprecated/use_mavros/README.md
# Toturials of mavros and px4 如何在airsim上面用MAVROS给PX4无人机发送话题控制 ## 从Source安装mavros 源码编译方式同单无人机教程,需要先在“编译用容器”里编译,然后再启动“运行用容器”如下 ```sh docker run -itd --privileged --env=LOCAL_USER_ID="$(id -u)" --env=PX4_SIM_HOST_ADDR=172.16.13.104 -v /home/wangchao/daizipeng/SBDrone:/src:rw -v /tmp/.X11-unix:/tmp/.X11-unix:ro -e DISPLAY=:0 --network=host --name=mypx4-0 mypx4_image:v1 /bin/bash ``` 其中,`–-env=PX4_SIM_HOST_ADDR=172.16.13.104` 容器添加`PX4_SIM_HOST_ADDR`环境变量,指定远端airsim主机地址;`–-name`后面指定此容器名称。 ## 逐步开启mavros服务 在windows设备中,先检查AirSim中setting.json,启动AirSim的某一个map,进入等待服务状态。然后,登录容器 ```sh docker exec -it --user $(id -u) mypx4-0 /bin/bash ``` 打开一个窗口,运行2个PX4实例,需要观察到Airsim中有QGC(GPS lock)相关的提示才算成功: ```sh bash /src/Scripts/run_airsim_sitl.sh 0 bash /src/Scripts/run_airsim_sitl.sh 1 ``` 注意每次使用ros相关命令时需要输入 ```sh source /opt/ros/melodic/setup.bash ``` 打开一个窗口,运行mavros服务,其中第一个端口指定本地主机(127.0.0.1)上的接收端口号(udp_onboard_payload_port_remote),第二个端口指定飞行控制器上的发送端口号(udp_onboard_payload_port_local)。这些可以在上一个窗口的运行日志中,在mavlink的onboard udp port对应上。 ```sh roslaunch mavros px4.launch fcu_url:=udp://:[email protected]:14280 roslaunch mavros px4.launch fcu_url:=udp://:[email protected]:14281 ``` ## 使用mavros话题通信在Airsim里手动控制PX4无人机(有点受限于版本V1.12.1) 参考[教程](https://www.youtube.com/watch?v=ZonkdMcwXH4),打开一个窗口,基于mavros发送服务调用指令给px4,实现对无人机的控制,这里给出依次玩耍这些指令的结果: ```sh # 发起起飞指令,此时不能起飞 rosservice call /mavros/cmd/takeoff "{min_pitch: 0.0, yaw: 0.0, latitude: 0.0, longitude: 0.0, altitude: 0.0}" # 解锁无人机,此时可以起飞 rosservice call /mavros/cmd/arming "value: true" # 无人机起飞 rosservice call /mavros/cmd/arming "value: true" # 无人机降落 rosservice call /mavros/cmd/land "{min_pitch: 0.0, yaw: 0.0, latitude: 0.0, longitude: 0.0, altitude: 0.0}" ``` 也可以基于mavros发送话题给px4,以下是开一个窗口跑position controller: ```sh # 发送position controller的话题指令 rostopic pub /mavros/setpoint_position/local geometry_msgs/PoseStamped "header: seq: 0 stamp: secs: 0 nsecs: 0 frame_id: '' pose: position: x: 1.0 y: 0.0 z: 2.0 orientation: x: 0.0 y: 0.0 z: 0.0 w: 0.0" -r 20 ``` 然后再换个窗口设置飞行模式 ```sh # 该服务的目的是让飞行控制器(例如PX4)切换到特定的飞行模式,这里使用的是'OFFBOARD'模式,该模式允许飞行控制器接受来自外部计算机的指令控制飞行。 rosservice call /mavros/set_mode "base mode: 0 custom_mode: 'OFFBOARD'" # 解锁无人机,执行指令 rosservice call /mavros/cmd/arming "value: true" # 可以继续发送其它position controller的话题指令 ``` 以下是velocity controller的画圈demo: ```sh rostopic pub /mavros/setpoint_velocity/cmd_vel geometry_msgs/TwistStamped "header seq: 0 stamp: secs: 0 nsecs: 0 frame_id: '' twist: linear: x: 1.0 y: 0.0 z: 0.0 angular: x: 0.0 y: 0.0 z: 1.0" -r 20 ```
2,690
Markdown
26.742268
247
0.693309
superboySB/SBDrone_deprecated/src/HITL/toturials/2_rl_single_px4_drone/README.md
# Notes for re-implementing paper "PRL4AirSim" 尝试带着PX4做强化学习,从一个无人机开始 ## Requirements 集成必要的环境 ```sh docker build -t mypx4_image:v1 . docker run -itd --privileged -v /tmp/.X11-unix:/tmp/.X11-unix:ro -e DISPLAY=$DISPLAY --gpus all --user=user --env=PX4_SIM_HOST_ADDR=172.16.13.104 --network=host --name=mypx4-dev mypx4_image:v1 /bin/bash docker exec -it --user=user mypx4-dev /bin/bash git clone https://github.com/superboySB/SBDrone && cd cd SBDrone && pip install -r requirements.txt ``` ```sh bash /home/user/PX4-Autopilot/Tools/simulation/sitl_multiple_run.sh 1 ``` /home/user/PX4-Autopilot/build/px4_sitl_default/bin/px4 -i 0 -d /home/user/PX4-Autopilot/build/px4_sitl_default/etc >out.log 2>err.log & ## TroubleShooting ### 1. 可以换一台网络好的机器解决docker拉不下来的问题。 ```sh docker save > <image-name>.tar <repository>:<tag> docker load < <image-name>.tar ``` ### 2. 修改AirSim屏幕分辨率 https://blog.csdn.net/qq_33727884/article/details/89487292 ### 3. 建飞老师打的命令 ```sh mavlink status listener manual_control_setpoint -r 10 listener input_rc ```
1,038
Markdown
24.974999
202
0.725434
superboySB/SBDrone_deprecated/src/HITL/toturials/3_rl_multiple_px4_drones/README.md
# Notes for re-implementing paper "PRL4AirSim" 复现论文PRL4AirSim. ## Requirements 这个原论文自带的binary编译自某个windows editor项目,但开源只提供了linux版本,所以应该整个项目暂时都是将一台linux的机器作为host machine ## Install ```sh docker build -t mypx4_image:v1 . docker run -itd --privileged -v /tmp/.X11-unix:/tmp/.X11-unix:ro -e DISPLAY=$DISPLAY --gpus all --user=user --env=PX4_SIM_HOST_ADDR=172.16.13.104 --network=host --name=mypx4-dev mypx4_image:v1 /bin/bash docker exec -it --user=user mypx4-dev /bin/bash bash PX4-Autopilot/Tools/simulation/sitl_multiple_run.sh 2 cd PRL4AirSim && pip install -r requirements.txt ``` ## TroubleShooting ### 1. 可以换一台网络好的机器解决docker拉不下来的问题。 ```sh docker save > <image-name>.tar <repository>:<tag> docker load < <image-name>.tar ``` ### 2. 如果使用原版AirSim,遇到UE4.27跑不了Blocks实例的问题
782
Markdown
22.727272
202
0.742967
superboySB/SBDrone_deprecated/src/HITL/sbrl/PyClient.py
import Utils as Utils import DQNTrainer as DQNTrainer import datetime import time import Simulation as Simulation import argparse if __name__ == "__main__": """ Model Server port 29000 UE Server port 29001 """ parser = argparse.ArgumentParser(description="PyClient", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("UE_Port") parser.add_argument("UE_Address") parser.add_argument("storage_port") args = parser.parse_args() arguments = vars(args) trainer_ip_address = '127.0.0.1' #os.environ['BUFFER_SERVER_IP'] #trainer_port = int(29000) #int(os.environ['BUFFER_SERVER_PORT']) storage_port = int(arguments["storage_port"]) ue_ip_address = arguments["UE_Address"] #os.environ['UE_SERVER_IP'] #ue_ip_address = str(arguments["IP_Address"]) ue_port = int(arguments["UE_Port"]) #int(os.environ['UE_SERVER_PORT']) client, model_server = Utils.connectClient(trainer_ip_address=trainer_ip_address, ue_ip_address=ue_ip_address, trainer_port=storage_port, ue_port=ue_port) times = [] ## Setup Environment image_shape = (2, 32, 32) now = datetime.datetime.now() current_time = now.strftime("%H:%M:%S") print("start time: ", current_time) agent = DQNTrainer.DQNTrainer(image_input_dims=Utils.getConfig()['state_space'], n_actions=Utils.getConfig()['action_space'], replayMemory_size=Utils.getConfig()['buffer_Size'], batch_size=Utils.getConfig()['batch_size'], learningRate=Utils.getConfig()['learning_rate'], discount_factor=Utils.getConfig()['discount_factor'], epsilon=1.0, replace_target_count_episode=Utils.getConfig()['replace_target_count_episode']) #print("loaded best model") #agent.load('{}/BestModelSaves/dqn.pth'.format(pathlib.Path().resolve())) run_name = now.strftime("%Y_%m_%d_%Hh%Mm%Ss") simulation = Simulation.Sim(image_shape=Utils.getConfig()['state_space'], num_drones=Utils.getConfig()['num_drones']) train = Utils.getConfig()['from_artifact'] == '' start = (time.perf_counter() / 3600) Utils.getModelServer().call("startSimulation") while simulation.episodes < Utils.getConfig()['max_episodes']: finished = simulation.tick(agent) end = datetime.datetime.now() current_time = end.strftime("%H:%M:%S") print("End time: ", current_time)
2,618
Python
38.681818
158
0.612299
superboySB/SBDrone_deprecated/src/HITL/sbrl/Storage.py
import msgpackrpc #install as admin: pip install msgpack-rpc-python #import distributed.model.DQNTrainer as DQNTrainer #https://linuxtut.com/en/70b626ca3ac6fbcdf939/ import numpy as np import torch import pathlib import wandb import DQNTrainer as DQNTrainer import datetime import time import Utils as Utils from collections import deque import ReplayMemory as ReplayMemory class Storage(object): def __init__(self): self.run_name = datetime.datetime.now().strftime("%Y_%m_%d_%Hh%Mm%Ss") self.run = wandb.init( project="drone", config=Utils.getConfig(), name=self.run_name, ) self.total_episodes = 0 self.start_time = None self.agent = DQNTrainer.DQNTrainer(image_input_dims=Utils.getConfig()['state_space'], n_actions=Utils.getConfig()['action_space'], replayMemory_size=Utils.getConfig()['buffer_Size'], batch_size=Utils.getConfig()['batch_size'], learningRate=Utils.getConfig()['learning_rate'], discount_factor=Utils.getConfig()['discount_factor'], epsilon=1.0, replace_target_count_episode=Utils.getConfig()['replace_target_count_episode']) self.start_time = time.perf_counter() def pushMemory(self, state, action, next_state, reward, not_done): self.agent.memory.push(Utils.convertStateDicToNumpyDic(state), action, Utils.convertStateDicToNumpyDic(next_state), reward, not_done) if (len(self.agent.memory) % 100 == 0): wandb.log({"metric/Observations" : self.agent.memory.pushCounter}, step=self.total_episodes) if not len(self.agent.memory) == self.agent.memory.maxSize: print(len(self.agent.memory)) def getMemoryPushCounter(self): return self.agent.memory.pushCounter def startSimulation(self): self.start_time = (time.perf_counter() / 3600) wandb.log({"metric/HoursRun" : 0, "metric/Observations" : self.agent.memory.pushCounter}, step=self.total_episodes) print("============ START SIMULATION ===========") def getEpsilon(self): return self.agent.epsilon def finishEpisode(self, finalDistance, totalReward): self.total_episodes += 1 self.agent.decrement_epsilon() wandb.log({ "metric/Distance From Goal": finalDistance, "metric/Total Reward" : totalReward, "metric/Wall-Time /h" : (time.perf_counter()-self.start_time) / 3600.0, "metric/Epsilon" : self.agent.epsilon }, step=self.total_episodes) if self.total_episodes % 1000 == 0 and self.total_episodes != 0: print("saving model parameters in wandb") artifact = wandb.Artifact('dqn_3D_{}_EP_{}'.format(self.run_name, self.total_episodes), type='model', description='Episode {}'.format(self.total_episodes)) artifact.add_file('{}/ModelSaves/dqn.pth'.format(pathlib.Path().resolve())) self.run.log_artifact(artifact) def setNetworkTrainIteration(self, trainIteration): wandb.log({ "metric/Train Iteration": trainIteration }, step=self.total_episodes) def sampleFromStorage(self): if len(self.agent.memory) >= self.agent.replayMemory_size or len(self.agent.memory) >= self.agent.batch_size: sample = self.agent.memory.sample(self.agent.batch_size) batch = ReplayMemory.Transition(*zip(*sample)) state = [Utils.convertStateDicToListDic(i) for i in batch.state] action = [int(i) for i in batch.action] next_state = [Utils.convertStateDicToListDic(i) for i in batch.next_state] reward = [float(i) for i in batch.reward] not_done = [int(i) for i in batch.not_done] return state, \ action, \ next_state, \ reward, \ not_done else: return None, None, None, None, None def confirmConnection(self): return 'Storage Server Connected!' def testSampleFromStorage(): storage_server = Storage() for i in range(50): storage_server.agent.memory.push({'image': np.zeros(shape=(32, 32)), 'position': np.zeros(shape=(3,))}, 1, {'image': np.zeros(shape=(32, 32)), 'position': np.zeros(shape=(3,))}, 0.1, 1) storage_server.sampleFromStorage() import argparse if __name__ == "__main__": parser = argparse.ArgumentParser(description="Storage", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("storage_port") args = parser.parse_args() arguments = vars(args) storage_server = Storage() server = msgpackrpc.Server(storage_server) server.listen(msgpackrpc.Address("127.0.0.1", int(arguments["storage_port"]))) print("========== STARTING STORAGE SERVER ============") server.start() print("========== FINISH STORAGE SERVER ============") storage_server.run.finish()
5,554
Python
41.083333
167
0.567699
superboySB/SBDrone_deprecated/src/HITL/sbrl/DQNTrainer.py
import numpy as np import torch #import distributed.distributed_22_06_02.ReplayMemory as ReplayMemory #import distributed.distributed_22_06_02.model.DQNetwork as DQNetwork import ReplayMemory as ReplayMemory import DQNetwork as DQNetwork class DQNTrainer(object): def __init__(self, image_input_dims : np.array, n_actions : int, replayMemory_size : int, batch_size : int, learningRate : float = 0.01, discount_factor : float = 0.99, epsilon : float = 1.0, replace_target_count_episode : int = 100, save_model_count_episode : int = 250, checkpoint_episode : int = 250, checkpoint_file : str = 'model_saves/dqn', number_dimensions : int = 2): self.image_input_dims = image_input_dims self.n_actions = n_actions self.discount_factor = discount_factor self.epsilon = epsilon self.replace_target_count_episode = replace_target_count_episode self.save_model_count_episode = save_model_count_episode self.network = DQNetwork.DQNetwork(learningRate, self.n_actions, image_input_dims) self.target_network = DQNetwork.DQNetwork(learningRate, self.n_actions, image_input_dims) self.batch_size = batch_size self.memory = ReplayMemory.ReplayMemory(replayMemory_size) self.replayMemory_size = replayMemory_size self.checkpoint_episode = checkpoint_episode self.checkpoint_file = checkpoint_file def load(self, state_dict): self.network.load_state_dict(state_dict=torch.load(state_dict)) self.target_network.load_state_dict(state_dict=torch.load(state_dict)) print("Loaded from state dictionary") # Epsilon Greedy action selection. def choose_action(self, observation : dict): maxValue = None # Expecting (Batch, Channels, Height, Width) image = torch.tensor(np.reshape(np.array(observation['image']), (1, *self.image_input_dims)), dtype=torch.float).to(self.network.device) velocity = torch.tensor(np.array(observation['velocity']).reshape((1, 3)), dtype=torch.float).to(self.network.device) actions = self.network.forward(image, velocity) if np.random.random() > self.epsilon: action = torch.argmax(actions).item() else: action = np.random.choice([i for i in range(self.n_actions)]) #action = torch.argmax(actions).item() maxValue = torch.max(actions).item() #self.decrement_epsilon() return action, maxValue def learn(self, transitions): self.network.optimizer.zero_grad() self.memory.pushCounter += 1 if self.memory.pushCounter % self.replace_target_count_episode == 0: print("Transfer weights to target network at step {}".format(self.memory.pushCounter)) self.target_network.load_state_dict(self.network.state_dict()) batch = ReplayMemory.Transition(*zip(*transitions)) state = (torch.tensor(np.array([i[b'image'].reshape(*self.image_input_dims) for i in batch.state])).to(self.network.device).float(), torch.tensor(np.array([i[b'velocity'] for i in batch.state])).to(self.network.device).float()) next_state = (torch.tensor(np.array([i[b'image'].reshape(*self.image_input_dims) for i in batch.next_state])).to(self.network.device).float(), torch.tensor(np.array([i[b'velocity'] for i in batch.next_state])).to(self.network.device).float()) actions = torch.tensor(batch.action).to(self.network.device) rewards = torch.tensor(batch.reward).to(self.network.device) not_done = torch.tensor(batch.not_done).to(self.network.device) indices = np.arange(self.batch_size) # https://en.wikipedia.org/wiki/Q-learning # Old quality value Q_old = self.network.forward(*state)[indices, actions] Q_target = rewards + self.target_network.forward(*next_state).max(dim=1)[0] * self.discount_factor * not_done loss = self.network.loss(Q_old.double(), Q_target.double()).to(self.network.device) loss.backward() self.network.optimizer.step() def decrement_epsilon(self): #if self.memory.pushCounter < self.replayMemory_size and self.memory.pushCounter > self.replayMemory_size * 0.2 * 0.99: if self.memory.pushCounter > self.replayMemory_size: self.epsilon = max(0, 1. - ((self.memory.pushCounter - self.replayMemory_size) / self.replayMemory_size))
4,616
Python
47.599999
150
0.647964
superboySB/SBDrone_deprecated/src/HITL/sbrl/Start.py
import os import json import os import pathlib import time import Utils import subprocess import atexit homeDir = str(pathlib.Path.home()) projectName = Utils.getConfig()['projectName'] envProcesses = int(Utils.getConfig()['envProcesses']) storage_port = int(Utils.getConfig()['storage_port']) headless = bool(Utils.getConfig()['headless']) def changeUEIPJson(port): with open(str(pathlib.Path.home()) + "/Documents/AirSim/settings.json", "r") as jsonFile: data = json.load(jsonFile) data["ApiServerPort"] = port with open(str(pathlib.Path.home()) + "/Documents/AirSim/settings.json", "w") as jsonFile: json.dump(data, jsonFile, indent=4) # os.system('gnome-terminal -- python Storage.py {}'.format(storage_port)) # time.sleep(5) # os.system('gnome-terminal -- python Trainer.py {}'.format(storage_port)) storage_procress = subprocess.Popen(['python3','Storage.py',f"{storage_port}"],shell=False, bufsize=0) atexit.register(storage_procress.terminate) time.sleep(5) trainer_procress = subprocess.Popen(['python3','Trainer.py',f"{storage_port}"],shell=False,bufsize=0) atexit.register(trainer_procress.terminate) for i in range(envProcesses): port = storage_port + i + 1 changeUEIPJson(port) if headless: # os.system('gnome-terminal -- ./UEBinary/{projectName}.sh -RenderOffscreen -windowed -NoVSync'.format(projectName=projectName)) ue_procress = subprocess.Popen([f'./UEBinary/{projectName}.sh','-RenderOffscreen','-windowed','-NoVSync'],shell=False,bufsize=0) atexit.register(ue_procress.terminate) else: windowX = 1000 * i windowY = 1000 # os.system('gnome-terminal -- ./UEBinary/{projectName}.sh -windowed -WinX={WinX} -WinY={WinY} -NoVSync'.format( # projectName=projectName, # WinX=windowX, # WinY=windowY)) ue_procress = subprocess.Popen([f'./UEBinary/{projectName}.sh','--windowed',f'-WinX={windowX}',f'-WinY={windowY}','-NoVSync'],shell=False,bufsize=0) atexit.register(ue_procress.terminate) time.sleep(4) time.sleep(5) for i in range(envProcesses): UE_port = storage_port + i + 1 UE_Address = "127.0.0.1" # os.system('gnome-terminal -- python PyClient.py {UE_port} {UE_Address} {storage_port}'.format(UE_port=UE_port, UE_Address="127.0.0.1", storage_port=storage_port)) agent_procress = subprocess.Popen(['python3','PyClient.py',f'{UE_port}',f'{UE_Address}',f'{storage_port}'],shell=False, bufsize=0) atexit.register(agent_procress.terminate)
2,533
Python
39.222222
168
0.686932
superboySB/SBDrone_deprecated/src/HITL/sbrl/Utils.py
import airsim import numpy as np import cv2 as cv import msgpackrpc import json config = json.load(open("config.json", "r")) print(config) client = None model_server = None def connectClient(trainer_ip_address, ue_ip_address, trainer_port = 29000, ue_port = 41451): global client, model_server try: client = airsim.MultirotorClient(ip=ue_ip_address, port=ue_port) client.confirmConnection() except Exception as e: print("Cannot Connect to Multirotor Client, please ensure Unreal Engine is running with AirSim plugin") print("Ip address = {} and port {}".format(ue_ip_address, ue_port)) print(e) exit(1) try: model_server = msgpackrpc.Client(msgpackrpc.Address(trainer_ip_address, trainer_port)) print(model_server.call("confirmConnection")) except Exception as e: print("Cannot connect to the model server, please ") print("Ip address = {} and port {}".format(trainer_ip_address, trainer_port)) print(e) exit(1) return client, model_server def getClient() -> airsim.MultirotorClient: return client def getModelServer() -> msgpackrpc.Client: return model_server def getConfig(): return config def convertStateDicToListDic(state): listState = {} for key in state: listState[key] = state[key].tolist() #print(listState) return listState def convertStateDicToNumpyDic(state): listState = {} for key in state: listState[key] = np.array(state[key]) #print(listState) return listState # API call in AirSim can sometimes be broken depending on version, easier to call using RPC directly def fixed_simGetImages(requests, vehicle_name = '', external : bool = False): responses_raw = getClient().client.call('simGetImages', requests, vehicle_name, external) return [airsim.ImageResponse.from_msgpack(response_raw) for response_raw in responses_raw] def handleImage(droneName : str, cameraName : str, imageType : airsim.ImageType) -> np.array: if (imageType == airsim.ImageType.Scene): imageRequests = [airsim.ImageRequest(cameraName, imageType, False, False)] imageResponses = fixed_simGetImages(imageRequests, droneName, False) image1d = np.fromstring(imageResponses[0].image_data_uint8, dtype=np.uint8) imageRGB = image1d.reshape((imageResponses[0].height, imageResponses[0].width, 3)) return imageRGB elif (imageType == airsim.ImageType.DepthPlanar or imageType == airsim.ImageType.DepthVis or imageType == airsim.ImageType.DepthPerspective): imageResponses = fixed_simGetImages([airsim.ImageRequest(cameraName, airsim.ImageType.DepthPlanar, True, True)], droneName, False) imageDepth = airsim.list_to_2d_float_array(imageResponses[0].image_data_float, imageResponses[0].width, imageResponses[0].height) return imageDepth else: print("NOT CODED THE HANDLING OF THIS IMAGE TYPE YET") return np.array([]) def showRGBImage(droneName : str): image = handleImage(droneName, 'scene_cam', airsim.ImageType.Scene) cv.imshow("RGB image", image) cv.waitKey(0) def showDepthImage(droneName : str): imageResponses = fixed_simGetImages([airsim.ImageRequest('depth_cam', airsim.ImageType.DepthPlanar, True, True)], droneName, False) imageDepth = airsim.list_to_2d_float_array(imageResponses[0].image_data_float, imageResponses[0].width, imageResponses[0].height) cv.imshow("depth image", imageDepth) cv.waitKey(0) def convert_pos_UE_to_AS(origin_UE : np.array, pos_UE : np.array): pos = np.zeros(3, dtype=np.float) pos[0] = pos_UE[0] - origin_UE[0] pos[1] = pos_UE[1] - origin_UE[1] pos[2] = - pos_UE[2] + origin_UE[2] return pos / 100
3,819
Python
39.210526
145
0.686305
superboySB/SBDrone_deprecated/src/HITL/sbrl/DQNetwork.py
import torch.nn as nn import torch.optim as optim import torch import torch.nn.functional as functional import numpy as np class DQNetwork(nn.Module): def __init__(self, learningRate: float, num_actions: int, image_input_dims: tuple): super(DQNetwork, self).__init__() self.learningRate = learningRate self.num_actions = num_actions self.image_input_dims = image_input_dims self.maxpooling = nn.MaxPool2d((2, 2), stride=2) self.image_conv1 = nn.Conv2d(image_input_dims[0], 16, kernel_size=(6, 6), stride=(2, 2)) self.image_conv2 = nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1)) self.vel_fc1 = nn.Linear(3, 16) conv_output_dim = self.calculate_conv_output_dims() self.out_fc1 = nn.Linear(conv_output_dim + 16, 16) self.out_fc2 = nn.Linear(16, num_actions) self.optimizer = optim.RMSprop(self.parameters(), lr=learningRate) self.loss = nn.MSELoss() self.device = torch.device('cuda:0') self.to(self.device) def calculate_conv_output_dims(self): state = torch.zeros(1, *self.image_input_dims).float() print("inpute state :", state.size()) x = self.maxpooling(functional.relu(self.image_conv1(state))) print("layer 1", x.size()) x = self.maxpooling(functional.relu(self.image_conv2(x))) print("layer 2", x.size()) return int(np.prod(x.size())) def forward(self, image : torch.tensor, velocity : torch.tensor): image = self.maxpooling(functional.relu(self.image_conv1(image))) image = self.maxpooling(functional.relu(self.image_conv2(image))) image_flattened = image.view(image.size()[0], -1) velocity = functional.relu(self.vel_fc1(velocity)) concatinated_tensor = torch.cat((image_flattened, velocity), 1) x = functional.relu(self.out_fc1(concatinated_tensor)) x = self.out_fc2(x) return x def test(self): print("Testing network") image = torch.zeros(1, *self.image_input_dims).float().to(self.device) velocity = torch.zeros((1, 3)).float().to(self.device) print("Input shapes: [image]: {} [velocity]: {}".format(image.size(), velocity.size())) output = self.forward(image, velocity) print("Output: {}".format(output)) if __name__ == "__main__": print("test") model = DQNetwork(learningRate=0.001, num_actions=2, image_input_dims=(2, 64, 64)) print("total parameters: ", sum(p.numel() for p in model.parameters())) print("total trainable parameters: ", sum(p.numel() for p in model.parameters() if p.requires_grad)) print("total data points: ", (10 * 32 * 5000) / 30) model.test()
2,727
Python
38.536231
104
0.627429
superboySB/SBDrone_deprecated/src/HITL/sbrl/Trainer.py
import msgpackrpc #install as admin: pip install msgpack-rpc-python #import distributed.model.DQNTrainer as DQNTrainer #https://linuxtut.com/en/70b626ca3ac6fbcdf939/ import torch import pathlib import DQNTrainer as DQNTrainer import datetime import time import Utils as Utils from collections import deque import ReplayMemory as ReplayMemory import os from os.path import exists class Trainer(object): def __init__(self): self.total_episodes = 0 self.start_time = None self.agent = DQNTrainer.DQNTrainer(image_input_dims=Utils.getConfig()['state_space'], n_actions=Utils.getConfig()['action_space'], replayMemory_size=Utils.getConfig()['buffer_Size'], batch_size=Utils.getConfig()['batch_size'], learningRate=Utils.getConfig()['learning_rate'], discount_factor=Utils.getConfig()['discount_factor'], epsilon=1.0, replace_target_count_episode=Utils.getConfig()['replace_target_count_episode']) def confirmConnection(self): return 'Model Server Connected!' def learn(self): return def saveModel(self): return def testSampleFromStorageTrainer(): import Storage import numpy as np storage_server = Storage.Storage() for i in range(50): storage_server.agent.memory.push({'image': np.zeros(shape=(2, 32, 32)), 'velocity': np.zeros(shape=(3,))}, 1, {'image': np.zeros(shape=(2, 32, 32)), 'velocity': np.zeros(shape=(3,))}, 0.1, 1) state, action, next_state, reward, not_done = storage_server.sampleFromStorage() transitions = [] for i in range(len(state)): transition = ReplayMemory.Transition(Utils.convertStateDicToNumpyDic(state[i]), action[i], Utils.convertStateDicToNumpyDic(next_state[i]), reward[i], not_done[i]) transitions.append(transition) trainer = Trainer() trainer.agent.learn(transitions) import argparse if __name__ == "__main__": parser = argparse.ArgumentParser(description="Storage", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("storage_port") args = parser.parse_args() arguments = vars(args) run_tests = False if run_tests: testSampleFromStorageTrainer() print("========== STARTING TRAINING CLIENT ============") trainer = Trainer() try: model_server = msgpackrpc.Client(msgpackrpc.Address("127.0.0.1", int(arguments["storage_port"]))) print(model_server.call("confirmConnection")) except Exception as e: print("Cannot connect to the model server, please ") print("Ip address = {} and port {}".format("127.0.0.1", int(arguments["storage_port"]))) print(e) exit(1) trainIteration = 0 previous_time = time.perf_counter() while True: state, action, next_state, reward, not_done = model_server.call("sampleFromStorage") if state == None: print("Waiting for transitions") time.sleep(2) else: transitions = [] for i in range(len(state)): transition = ReplayMemory.Transition(Utils.convertStateDicToNumpyDic(state[i]), action[i], Utils.convertStateDicToNumpyDic(next_state[i]), reward[i], not_done[i]) transitions.append(transition) trainer.agent.learn(transitions) trainIteration += 1 if trainIteration % 200 == 0: model_server.call("setNetworkTrainIteration", trainIteration) print("Saving model") #torch.save(trainer.agent.network.state_dict(), '{}/ModelSaves/dqn.pth'.format(pathlib.Path().resolve())) print("train iteration ", trainIteration, time.perf_counter() - previous_time) if exists('{}/ModelSaves/dqn.pth'.format(pathlib.Path().resolve())): os.rename('{}/ModelSaves/dqn.pth'.format(pathlib.Path().resolve()), '{}/ModelSaves/dqn_read.pth'.format(pathlib.Path().resolve())) torch.save(trainer.agent.network.state_dict(), '{}/ModelSaves/dqn_read.pth'.format(pathlib.Path().resolve())) os.rename('{}/ModelSaves/dqn_read.pth'.format(pathlib.Path().resolve()), '{}/ModelSaves/dqn.pth'.format(pathlib.Path().resolve())) else: torch.save(trainer.agent.network.state_dict(), '{}/ModelSaves/dqn.pth'.format(pathlib.Path().resolve())) previous_time = time.perf_counter()
5,394
Python
43.221311
150
0.531516
superboySB/SBDrone_deprecated/src/HITL/sbrl/Start_UEEditor.py
import os import json import os import pathlib import time import Utils UEEditor_port = 29001 storage_port = 29000 def changeUEIPJson(port): with open(str(pathlib.Path.home()) + "/Documents/AirSim/settings.json", "r") as jsonFile: data = json.load(jsonFile) data["ApiServerPort"] = port with open(str(pathlib.Path.home()) + "/Documents/AirSim/settings.json", "w") as jsonFile: json.dump(data, jsonFile, indent=4) changeUEIPJson(UEEditor_port) os.system('gnome-terminal -- python Storage.py {}'.format(storage_port)) time.sleep(10) os.system('gnome-terminal -- python PyClient.py {UE_port} {UE_Address} {storage_port}'.format(UE_port=UEEditor_port, UE_Address="127.0.0.1", storage_port=storage_port)) os.system('gnome-terminal -- python Trainer.py {}'.format(storage_port))
807
Python
30.076922
168
0.714994
superboySB/SBDrone_deprecated/src/HITL/sbrl/Simulation.py
import Utils as Utils import airsim import numpy as np import time import DroneObj as DroneObj import random import argparse from os.path import exists import os import pathlib beforeTime = None afterTime = None class Sim(object): def __init__(self, image_shape, num_drones): self.image_shape = image_shape self.origin_UE = np.array([0.0, 0.0, 910.0]) self.areans_train_long = np.array([ # Using larger environment #[Utils.convert_pos_UE_to_AS(self.origin_UE, np.array([41156.0, 20459.0, 1000.0])), Utils.convert_pos_UE_to_AS(self.origin_UE, np.array([56206.0, 21019.0, 1000.0]))] # Using smaller environment [Utils.convert_pos_UE_to_AS(self.origin_UE, np.array([9030.0, -6760.0, 1000.0])), Utils.convert_pos_UE_to_AS(self.origin_UE, np.array([14060.0, -6760.0, 1000.0]))] ]) self.areans = self.areans_train_long self.droneObjects = [DroneObj.DroneObject(i) for i in range(num_drones)] self.episodes = 0 self.model_download_at_episode = 0 self.numImagesSent = 0 #TODO: HyperParameters self.step_length = 0.25 self.constant_x_vel = 1.0 self.constant_z_pos = Utils.convert_pos_UE_to_AS(origin_UE=self.origin_UE, pos_UE=[8600.0, -4160.0, 1510.0])[2] self.actionTime = 1.0 self.resetBatch() def gatherAllObservations(self): useNewMethod = True nonResetingDrones = [] for droneObject in self.droneObjects: if droneObject.reseting == False: nonResetingDrones.append(droneObject) if len(nonResetingDrones) == 0: return if useNewMethod: requests = [airsim.ImageRequest('depth_cam_{}'.format(droneObject.droneId), airsim.ImageType.DepthPlanar, True, True) for droneObject in nonResetingDrones] names = [droneObject.droneName for droneObject in nonResetingDrones] beforeTime = time.perf_counter() responses_raw = Utils.getClient().client.call('simGetBatchImages', requests, names) afterTime = time.perf_counter() print("Gather images: ", afterTime - beforeTime) responses = [airsim.ImageResponse.from_msgpack(response_raw) for response_raw in responses_raw] imageDepths = [airsim.list_to_2d_float_array(responses[i].image_data_float, responses[i].width, responses[i].height) for i in range(len(responses))] else: beforeTime = time.perf_counter() responses_raw = [Utils.getClient().client.call('simGetImages', [airsim.ImageRequest('depth_cam_{}'.format(droneObject.droneId), airsim.ImageType.DepthPlanar, True, True)], 'Drone{}'.format(droneObject.droneId), False) for droneObject in nonResetingDrones] afterTime = time.perf_counter() print("Gather images (old method): ", afterTime - beforeTime) responses = [airsim.ImageResponse.from_msgpack(response_raw[0]) for response_raw in responses_raw] imageDepths = [airsim.list_to_2d_float_array(responses[i].image_data_float, responses[i].width, responses[i].height) for i in range(len(responses))] for i, droneObject in enumerate(nonResetingDrones): imageDepth = imageDepths[i] if (imageDepth.size == 0): print("Image size is 0") imageDepth = np.ones(shape=(self.image_shape[1], self.image_shape[2])) * 30 maxDistance = 50 imageDepth[imageDepth > maxDistance] = maxDistance imageDepth = imageDepth.astype(np.uint8) if droneObject.currentStep == 0: droneObject.previous_depth_image = imageDepth stacked_images = np.array([imageDepth, droneObject.previous_depth_image]) multirotorState = Utils.getClient().getMultirotorState(droneObject.droneName) velocity = multirotorState.kinematics_estimated.linear_velocity.to_numpy_array() droneObject.previous_depth_image = imageDepth droneObject.previousState = droneObject.currentState droneObject.currentState = {'image': stacked_images, 'velocity': velocity} droneObject.currentStatePos = multirotorState.kinematics_estimated.position.to_numpy_array() def doActionBatch(self): droneNames = [] vx_vec = [] vy_vec = [] z_vec = [] for droneObject in self.droneObjects: droneNames.append(droneObject.droneName) quad_vel = Utils.getClient().getMultirotorState(droneObject.droneName).kinematics_estimated.linear_velocity y_val_offset = 0 if droneObject.currentAction == 0: y_val_offset = self.step_length elif droneObject.currentAction == 1: y_val_offset = -self.step_length vx_vec.append(self.constant_x_vel if droneObject.reseting == False else 0) vy_vec.append(quad_vel.y_val + y_val_offset if droneObject.reseting == False else 0) z_vec.append(self.constant_z_pos) droneObject.currentStep += 1 Utils.getClient().simPause(False) Utils.getClient().client.call_async('moveByVelocityZBatch', vx_vec, vy_vec, z_vec, self.actionTime, airsim.DrivetrainType.MaxDegreeOfFreedom, airsim.YawMode(), droneNames).join() Utils.getClient().simPause(True) def randomPoseInArena(self): width = 1600 // 100 min = -(width // 2) max = (width // 2) return random.uniform(min, max) def resetBatch(self): windows = False # Size difference: -7710.0, -6070.0 Utils.getClient().simPause(False) Utils.getClient().reset() time.sleep(5) if windows else time.sleep(0.25) randomArenas = np.random.randint(len(self.areans), size=len(self.droneObjects)) for i in range(len(self.droneObjects)): self.droneObjects[i].currentArena = randomArenas[i] # airsim.Quaternionr(0.0, 0.0, 1.0, 0.0) = 180 degrees poses = [airsim.Pose(airsim.Vector3r(self.areans[droneObject.currentArena][0][0], self.areans[droneObject.currentArena][0][1] + self.randomPoseInArena(), self.areans[droneObject.currentArena][0][2]), airsim.Quaternionr(0.0, 0.0, 0.0, 0.0)) for droneObject in self.droneObjects] Utils.getClient().client.call('simSetVehiclePoseBatch', poses, [droneObject.droneName for droneObject in self.droneObjects]) time.sleep(5) if windows else time.sleep(0.25) for droneObject in self.droneObjects: Utils.getClient().armDisarm(True, droneObject.droneName) Utils.getClient().enableApiControl(True, droneObject.droneName) Utils.getClient().takeoffAsync(vehicle_name=droneObject.droneName) if windows: time.sleep(1) # Move up 3m time.sleep(5) if windows else time.sleep(0.25) for droneObject in self.droneObjects: quad_position = Utils.getClient().getMultirotorState(droneObject.droneName).kinematics_estimated.position #Utils.getClient().takeoffAsync(vehicle_name=droneObject.droneName).join() #Utils.getClient().hoverAsync(vehicle_name=droneObject.droneName).join() Utils.getClient().moveToPositionAsync(quad_position.x_val, quad_position.y_val, self.constant_z_pos, 3.0, vehicle_name=droneObject.droneName) droneObject.currentStep = 0 currentPos_x_AS = Utils.getClient().getMultirotorState(droneObject.droneName).kinematics_estimated.position.to_numpy_array()[0] droneObject.distanceFromGoal = abs(currentPos_x_AS - self.areans[droneObject.currentArena][1][0]) droneObject.reseting = False droneObject.currentTotalReward = 0 if windows: time.sleep(1) #time.sleep(5) self.gatherAllObservations() time.sleep(5) if windows else time.sleep(0.25) Utils.getClient().simPause(True) self.episodes += 1 def calculateReward(self, droneObject : DroneObj): image = droneObject.currentState['image'] currentPos_x_AS = Utils.getClient().getMultirotorState(droneObject.droneName).kinematics_estimated.position.to_numpy_array()[0] distanceFromGoal = abs(currentPos_x_AS - self.areans[droneObject.currentArena][1][0]) collisionInfo = Utils.getClient().simGetCollisionInfo(droneObject.droneName) hasCollided = collisionInfo.has_collided or image.min() < 0.55 if droneObject.currentStep < 2: hasCollided = False done = 0 reward_States = { "Collided": 0, "Won": 0, "approaching_collision": 0, "constant_reward" : 0, "max_actions" : 0, "goal_distance" : 0, } reward_States["goal_distance"] = 3.0 if hasCollided: done = 1 reward_States["Collided"] = -100 elif distanceFromGoal <= 5: done = 1 #reward_States["Won"] = 100 elif droneObject.currentStep > 400: done = 1 reward_States["max_actions"] = -10 reward = sum(reward_States.values()) droneObject.distanceFromGoal = distanceFromGoal droneObject.currentTotalReward += reward return reward, done def resetStep(self, droneObject : DroneObj): if droneObject.reseting == True: if droneObject.resetTick == 0 and time.perf_counter() - droneObject.resetingTime > 1: print("RESETING DRONE ", droneObject.droneId, print("len "), len(self.droneObjects)) randomArena = np.random.randint(len(self.areans), size=(1,))[0] droneObject.currentArena = randomArena Utils.getClient().client.call_async("resetVehicle", droneObject.droneName, airsim.Pose(airsim.Vector3r(self.areans[droneObject.currentArena][0][0], self.areans[droneObject.currentArena][0][1] + self.randomPoseInArena(), self.areans[droneObject.currentArena][0][2]), airsim.Quaternionr(0.0, 0.0, 0.0, 0.0))) droneObject.resetTick = 1 droneObject.resetingTime = time.perf_counter() if droneObject.resetTick == 1 and time.perf_counter() - droneObject.resetingTime > 1: Utils.getClient().armDisarm(True, droneObject.droneName) Utils.getClient().enableApiControl(True, droneObject.droneName) Utils.getClient().takeoffAsync(vehicle_name=droneObject.droneName) droneObject.resetingTime = droneObject.resetingTime droneObject.resetTick = 3 if droneObject.resetTick == 3 and time.perf_counter() - droneObject.resetingTime > 2: droneObject.reseting = False droneObject.resetTick = 0 state = Utils.getClient().getMultirotorState(droneObject.droneName) quad_position = state.kinematics_estimated.position Utils.getClient().moveToPositionAsync(quad_position.x_val, quad_position.y_val, self.constant_z_pos, 3.0, vehicle_name=droneObject.droneName) currentPos_x_AS = state.kinematics_estimated.position.to_numpy_array()[0] droneObject.distanceFromGoal = abs(currentPos_x_AS - self.areans[droneObject.currentArena][1][0]) droneObject.currentStep = 0 droneObject.currentTotalReward = 0 self.episodes += 1 def tick(self, agent): for droneObject in self.droneObjects: if droneObject.currentStatePos[0] < 5: droneObject.reseting = True self.resetStep(droneObject) if droneObject.reseting == False: maxAction, _ = agent.choose_action(droneObject.currentState) droneObject.currentAction = maxAction self.doActionBatch() self.gatherAllObservations() loadDQNFile = False for droneObject in self.droneObjects: if droneObject.reseting == False: self.numImagesSent += 1 reward, done = self.calculateReward(droneObject) Utils.getModelServer().call_async("pushMemory", Utils.convertStateDicToListDic(droneObject.previousState), int(droneObject.currentAction), #was considered np.int rather than int. Utils.convertStateDicToListDic(droneObject.currentState), reward, 1 - int(done)) if done: Utils.getModelServer().call_async("finishEpisode", droneObject.distanceFromGoal, droneObject.currentTotalReward) droneObject.reseting = True droneObject.resetingTime = time.perf_counter() agent.epsilon = Utils.getModelServer().call("getEpsilon") agent.memory.pushCounter = Utils.getModelServer().call("getMemoryPushCounter") loadDQNFile = True if loadDQNFile and exists('{}/ModelSaves/dqn.pth'.format(pathlib.Path().resolve())): try: os.rename('{}/ModelSaves/dqn.pth'.format(pathlib.Path().resolve()), '{}/ModelSaves/dqn_read.pth'.format(pathlib.Path().resolve())) agent.load('{}/ModelSaves/dqn_read.pth'.format(pathlib.Path().resolve())) os.rename('{}/ModelSaves/dqn_read.pth'.format(pathlib.Path().resolve()), '{}/ModelSaves/dqn.pth'.format(pathlib.Path().resolve())) except: print("issue reading file") print("NumImagesSent: ", self.numImagesSent) finished = True for droneObject in self.droneObjects: if droneObject.reseting == False: finished = False finished = False return finished #libUE4Editor-AirSim.so!_ZNSt3__110__function6__funcIZN3rpc6detail10dispatcher4bindIZN3msr6airlib22MultirotorRpcLibServerC1EPNS7_11ApiProviderENS_12basic_stringIcNS_11char_traitsIcEENS_9allocatorIcEEEEtE4$_14EEvRKSG_T_RKNS3_4tags14nonvoid_resultERKNSL_11nonzero_argEEUlRKN14clmdep_msgpack2v26objectEE_NSE_ISX_EEFNS_10unique_ptrINSS_2v113object_handleENS_14default_deleteIS11_EEEESW_EEclESW_()
15,043
Python
46.457413
392
0.605797
superboySB/SBDrone_deprecated/src/HITL/sbrl/DroneObj.py
import time import numpy as np class DroneObject(object): def __init__(self, droneId): self.droneId = droneId self.droneName = 'Drone{}'.format(droneId) self.currentArena = None self.currentStep = 0 self.droneSpawnOffset = np.array([0, 0 * droneId, 0]) self.previous_depth_image = None self.currentState = None self.currentStatePos = None # Used to create the value heat map self.previousState = None self.currentAction = None self.currentTotalReward = 0 self.distanceFromGoal = None self.reseting = True self.reseting_API = False self.reseting_API_2 = False self.resetTick = 0 self.resetingTime = time.perf_counter() def getCurrentArena(self): return -1 if self.currentArena == None else self.currentArena
864
Python
28.827585
71
0.630787
superboySB/SBDrone_deprecated/src/HITL/sbrl/ReplayMemory.py
import random from collections import namedtuple, deque #state_image, state_velocity, action, next_state_image, next_state_velocity, reward, not_done Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward', 'not_done')) class ReplayMemory(object): def __init__(self, maxSize : int): self.maxSize = maxSize self.pushCounter = 0 self.memory = deque([], maxlen=self.maxSize) def push(self, *args): """Save transition""" self.memory.append(Transition(*args)) self.pushCounter += 1 def sample(self, batch_size): return random.sample(self.memory, batch_size) def __len__(self): return len(self.memory)
705
Python
31.090908
94
0.648227
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/setup.py
""" | File: setup.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: File that defines the installation requirements for this python package. """ import os import toml from setuptools import setup # Obtain the extension data from the extension.toml file EXTENSION_PATH = os.path.dirname(os.path.realpath(__file__)) # Read the extension.toml file EXTENSION_TOML_DATA = toml.load(os.path.join(EXTENSION_PATH, "config", "extension.toml")) # Minimum dependencies required prior to installation INSTALL_REQUIRES = [ # generic "numpy", "pymavlink", "scipy", "pyyaml", ] # Installation operation setup( name="pegasus-simulator", author="Marcelo Jacinto", maintainer="Marcelo Jacinto", maintainer_email="[email protected]", url=EXTENSION_TOML_DATA["package"]["repository"], version=EXTENSION_TOML_DATA["package"]["version"], description=EXTENSION_TOML_DATA["package"]["description"], keywords=EXTENSION_TOML_DATA["package"]["keywords"], license="BSD-3-Clause", include_package_data=True, python_requires=">=3.7.*", install_requires=INSTALL_REQUIRES, packages=["pegasus.simulator"], classifiers=["Natural Language :: English", "Programming Language :: Python :: 3.7"], zip_safe=False, )
1,391
Python
31.372092
89
0.711718
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/extension.py
""" | File: extension.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: Implements the Pegasus_SimulatorExtension which omni.ext.IExt that is created when this class is enabled. In turn, this class initializes the extension widget. """ __all__ = ["Pegasus_SimulatorExtension"] # Python garbage collenction and asyncronous API import gc import asyncio from functools import partial from threading import Timer # Omniverse general API import pxr import carb import omni.ext import omni.usd import omni.kit.ui import omni.kit.app import omni.ui as ui from omni.kit.viewport.utility import get_active_viewport # Pegasus Extension Files and API from pegasus.simulator.params import MENU_PATH, WINDOW_TITLE from pegasus.simulator.logic.interface.pegasus_interface import PegasusInterface # Setting up the UI for the extension's Widget from pegasus.simulator.ui.ui_window import WidgetWindow from pegasus.simulator.ui.ui_delegate import UIDelegate # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class Pegasus_SimulatorExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): carb.log_info("Pegasus Simulator is starting up") # Save the extension id self._ext_id = ext_id # Create the UI of the app and its manager self.ui_delegate = None self.ui_window = None # Start the extension backend self._pegasus_sim = PegasusInterface() # Check if we already have a stage loaded (when using autoload feature, it might not be ready yet) # This is a limitation of the simulator, and we are doing this to make sure that the # extension does no crash when using the GUI with autoload feature # If autoload was not enabled, and we are enabling the extension from the Extension widget, then # we will always have a state open, and the auxiliary timer will never run if omni.usd.get_context().get_stage_state() != omni.usd.StageState.CLOSED: self._pegasus_sim.initialize_world() else: # We need to create a timer to check until the window is properly open and the stage created. This is a limitation # of the current Isaac Sim simulator and the way it loads extensions :( self.autoload_helper() # Add the ability to show the window if the system requires it (QuickLayout feature) ui.Workspace.set_show_window_fn(WINDOW_TITLE, partial(self.show_window, None)) # Add the extension to the editor menu inside isaac sim editor_menu = omni.kit.ui.get_editor_menu() if editor_menu: self._menu = editor_menu.add_item(MENU_PATH, self.show_window, toggle=True, value=True) # Show the window (It call the self.show_window) ui.Workspace.show_window(WINDOW_TITLE, show=True) def autoload_helper(self): # Check if we already have a viewport and a camera of interest if get_active_viewport() != None and type(get_active_viewport().stage) == pxr.Usd.Stage and str(get_active_viewport().stage.GetPrimAtPath("/OmniverseKit_Persp")) != "invalid null prim": self._pegasus_sim.initialize_world() else: Timer(0.1, self.autoload_helper).start() def show_window(self, menu, show): """ Method that controls whether a widget window is created or not """ if show == True: # Create a window and its delegate self.ui_delegate = UIDelegate() self.ui_window = WidgetWindow(self.ui_delegate) self.ui_window.set_visibility_changed_fn(self._visibility_changed_fn) # If we have a window and we are not supposed to show it, then change its visibility elif self.ui_window: self.ui_window.visible = False def _visibility_changed_fn(self, visible): """ This method is invoked when the user pressed the "X" to close the extension window """ # Update the Isaac sim menu visibility self._set_menu(visible) if not visible: # Destroy the window, because we create a new one in the show window method asyncio.ensure_future(self._destroy_window_async()) def _set_menu(self, visible): """ Method that updates the isaac sim ui menu to create the Widget window on and off """ editor_menu = omni.kit.ui.get_editor_menu() if editor_menu: editor_menu.set_value(MENU_PATH, visible) async def _destroy_window_async(self): # Wait one frame before it gets destructed (from NVidia example) await omni.kit.app.get_app().next_update_async() # Destroy the window UI if it exists if self.ui_window: self.ui_window.destroy() self.ui_window = None def on_shutdown(self): """ Callback called when the extension is shutdown """ carb.log_info("Pegasus Isaac extension shutdown") # Destroy the isaac sim menu object self._menu = None # Destroy the window if self.ui_window: self.ui_window.destroy() self.ui_window = None # Destroy the UI delegate if self.ui_delegate: self.ui_delegate = None # De-register the function taht shows the window from the isaac sim ui ui.Workspace.set_show_window_fn(WINDOW_TITLE, None) editor_menu = omni.kit.ui.get_editor_menu() if editor_menu: editor_menu.remove_item(MENU_PATH) # Call the garbage collector gc.collect()
6,081
Python
37.493671
193
0.666996
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/__init__.py
""" | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ __author__ = "Marcelo Jacinto" __email__ = "[email protected]" from .extension import Pegasus_SimulatorExtension
285
Python
30.777774
82
0.740351
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/params.py
""" | File: params.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: File that defines the base configurations for the Pegasus Simulator. """ import os from pathlib import Path import omni.isaac.core.utils.nucleus as nucleus # Extension configuration EXTENSION_NAME = "Pegasus Simulator" WINDOW_TITLE = "Pegasus Simulator" MENU_PATH = "Window/" + WINDOW_TITLE DOC_LINK = "https://docs.omniverse.nvidia.com" EXTENSION_OVERVIEW = "This extension shows how to incorporate drones into Isaac Sim" # Get the current directory of where this extension is located EXTENSION_FOLDER_PATH = Path(os.path.dirname(os.path.realpath(__file__))) ROOT = str(EXTENSION_FOLDER_PATH.parent.parent.parent.resolve()) # Get the configurations file path CONFIG_FILE = ROOT + "/pegasus.simulator/config/configs.yaml" # Define the Extension Assets Path ASSET_PATH = ROOT + "/pegasus.simulator/pegasus/simulator/assets" ROBOTS_ASSETS = ASSET_PATH + "/Robots" # Define the built in robots of the extension ROBOTS = {"Iris": ROBOTS_ASSETS + "/Iris/iris.usd"} #, "Flying Cube": ROBOTS_ASSETS + "/iris_cube.usda"} # Setup the default simulation environments path NVIDIA_ASSETS_PATH = str(nucleus.get_assets_root_path()) ISAAC_SIM_ENVIRONMENTS = "/Isaac/Environments" NVIDIA_SIMULATION_ENVIRONMENTS = { "Default Environment": "Grid/default_environment.usd", "Black Gridroom": "Grid/gridroom_black.usd", "Curved Gridroom": "Grid/gridroom_curved.usd", "Hospital": "Hospital/hospital.usd", "Office": "Office/office.usd", "Simple Room": "Simple_Room/simple_room.usd", "Warehouse": "Simple_Warehouse/warehouse.usd", "Warehouse with Forklifts": "Simple_Warehouse/warehouse_with_forklifts.usd", "Warehouse with Shelves": "Simple_Warehouse/warehouse_multiple_shelves.usd", "Full Warehouse": "Simple_Warehouse/full_warehouse.usd", "Flat Plane": "Terrains/flat_plane.usd", "Rough Plane": "Terrains/rough_plane.usd", "Slope Plane": "Terrains/slope.usd", "Stairs Plane": "Terrains/stairs.usd", } OMNIVERSE_ENVIRONMENTS = { "Exhibition Hall": "omniverse://localhost/NVIDIA/Assets/Scenes/Templates/Interior/ZetCG_ExhibitionHall.usd" } SIMULATION_ENVIRONMENTS = {} # Add the Isaac Sim assets to the list for asset in NVIDIA_SIMULATION_ENVIRONMENTS: SIMULATION_ENVIRONMENTS[asset] = ( NVIDIA_ASSETS_PATH + ISAAC_SIM_ENVIRONMENTS + "/" + NVIDIA_SIMULATION_ENVIRONMENTS[asset] ) # Add the omniverse assets to the list for asset in OMNIVERSE_ENVIRONMENTS: SIMULATION_ENVIRONMENTS[asset] = OMNIVERSE_ENVIRONMENTS[asset] # Define the default settings for the simulation environment DEFAULT_WORLD_SETTINGS = {"physics_dt": 1.0 / 250.0, "stage_units_in_meters": 1.0, "rendering_dt": 1.0 / 60.0} # Define where the thumbnail of the vehicle is located THUMBNAIL = ROBOTS_ASSETS + "/Iris/iris_thumbnail.png" # Define where the thumbail of the world is located WORLD_THUMBNAIL = ASSET_PATH + "/Worlds/Empty_thumbnail.png"
3,070
Python
38.883116
111
0.739414
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/parser/dynamics_parser.py
# Copyright (c) 2023, Marcelo Jacinto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # Sensors that can be used with the vehicles from pegasus.simulator.parser import Parser from pegasus.simulator.logic.dynamics import LinearDrag class DynamicsParser(Parser): def __init__(self): # Dictionary of available sensors to instantiate self.dynamics = {"linear_drag": LinearDrag} def parse(self, data_type: str, data_dict): # Get the class of the sensor dynamics_cls = self.dynamics[data_type] # Create an instance of that sensor return dynamics_cls(data_dict)
635
Python
25.499999
56
0.699213
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/parser/parser.py
# Copyright (c) 2023, Marcelo Jacinto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause class Parser: def __init__(self): pass def parse(self, data_type: str, data_dict): pass
218
Python
15.846153
47
0.62844
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/parser/thrusters_parser.py
# Copyright (c) 2023, Marcelo Jacinto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # Sensors that can be used with the vehicles from pegasus.simulator.parser import Parser from pegasus.simulator.logic.thrusters import QuadraticThrustCurve class ThrustersParser(Parser): def __init__(self): # Dictionary of available thrust curves to instantiate self.thrust_curves = {"quadratic_thrust_curve": QuadraticThrustCurve} def parse(self, data_type: str, data_dict): # Get the class of the sensor thrust_curve_cls = self.thrust_curves[data_type] # Create an instance of that sensor return thrust_curve_cls(data_dict)
692
Python
27.874999
77
0.715318
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/parser/vehicle_parser.py
# Copyright (c) 2023, Marcelo Jacinto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import carb # Sensors that can be used with the vehicles from pegasus.simulator.parser import Parser, SensorParser, ThrustersParser, DynamicsParser, BackendsParser from pegasus.simulator.logic.vehicles import MultirotorConfig class VehicleParser(Parser): def __init__(self): # Initialize the Parser object super().__init__() # Initialize Parsers for the sensors, dynamics and backends for control and communications self.sensor_parser = SensorParser() self.thrusters_parser = ThrustersParser() self.dynamics_parser = DynamicsParser() self.backends_parser = BackendsParser() def parse(self, data_type: str, data_dict={}): # Get the USD model associated with the vehicle usd_model = data_dict.get("usd_model", "") # Get the model thumbnail of the vehicle thumbnail = data_dict.get("thumbnail", "") # --------------------------------------- # Generate the sensors for the multirotor # --------------------------------------- sensors = [] sensors_config = data_dict.get("sensors", {}) for sensor_name in sensors_config: sensor = self.sensor_parser.parse(sensor_name, sensors_config[sensor_name]) if sensor is not None: sensors.append(sensor) # ----------------------------------------- # Generate the thrusters for the multirotor # ----------------------------------------- thrusters = None thrusters_config = data_dict.get("thrusters", {}) # Note: if a dictionary/yaml file contains more than one thrust curve configuration, # only the last one will be kept for thrust_curve_name in thrusters_config: curve = self.thrusters_parser.parse(thrust_curve_name, thrusters_config[thrust_curve_name]) if curve is not None: thrusters = curve # ---------------------------------------- # Generate the dynamics for the multirotor # ---------------------------------------- dynamics = None dynamics_config = data_dict.get("drag", {}) for dynamics_name in dynamics_config: carb.log_warn(dynamics_config[dynamics_name]) dynamic = self.dynamics_parser.parse(dynamics_name, dynamics_config[dynamics_name]) if dynamic is not None: dynamics = dynamic # ---------------------------------------- # Generate the backends for the multirotor # ---------------------------------------- backends = [] backends_config = data_dict.get("backends", {}) for backends_name in backends_config: backend = self.backends_parser.parse(backends_name, backends_config[backends_name]) if backend is not None: backends.append(backend) # Create a Multirotor config from the parsed data multirotor_configuration = MultirotorConfig() multirotor_configuration.usd_file = usd_model multirotor_configuration.thrust_curve = thrusters multirotor_configuration.drag = dynamics multirotor_configuration.sensors = sensors multirotor_configuration.backends = backends return multirotor_configuration
3,406
Python
37.715909
106
0.57751
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/parser/__init__.py
# Copyright (c) 2023, Marcelo Jacinto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from .parser import Parser from .sensor_parser import SensorParser from .thrusters_parser import ThrustersParser from .dynamics_parser import DynamicsParser from .backends_parser import BackendsParser from .graphs_parser import GraphParser
343
Python
30.272725
45
0.819242
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/parser/sensor_parser.py
# Copyright (c) 2023, Marcelo Jacinto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # Sensors that can be used with the vehicles from pegasus.simulator.parser import Parser from pegasus.simulator.logic.sensors import Barometer, GPS, IMU, Magnetometer, Vision, Camera, Lidar class SensorParser(Parser): def __init__(self): # Dictionary of available sensors to instantiate self.sensors = { "barometer": Barometer, "gps": GPS, "imu": IMU, "magnetometer": Magnetometer, "vision": Vision, "camera": Camera, "lidar": Lidar } def parse(self, data_type: str, data_dict): # Get the class of the sensor sensor_cls = self.sensors[data_type] # Create an instance of that sensor return sensor_cls(data_dict)
869
Python
26.187499
100
0.617952
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/parser/backends_parser.py
# Copyright (c) 2023, Marcelo Jacinto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # Sensors that can be used with the vehicles from pegasus.simulator.parser import Parser from pegasus.simulator.logic.backends import MavlinkBackendConfig, MavlinkBackend, ROS2Backend class BackendsParser(Parser): # TODO - improve the structure of the backends in order to clean this parser def __init__(self): # Dictionary of available sensors to instantiate self.backends = {"mavlink": MavlinkBackendConfig, "ros2": ROS2Backend} def parse(self, data_type: str, data_dict): # Get the class of the sensor backends_cls = self.backends[data_type] if backends_cls == MavlinkBackendConfig: return MavlinkBackend(backends_cls(data_dict)) # Create an instance of that sensor return backends_cls(data_dict)
892
Python
29.793102
94
0.709641
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/parser/graphs_parser.py
# Copyright (c) 2023, Marcelo Jacinto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # Graphs that can be used with the vehicles from pegasus.simulator.parser import Parser from pegasus.simulator.logic.graphs import ROS2Camera, ROS2Tf, ROS2Odometry, ROS2Lidar class GraphParser(Parser): def __init__(self): # Dictionary of available graphs to instantiate self.graphs = { "ROS2 Camera": ROS2Camera, "ROS2 Tf": ROS2Tf, "ROS2 Odometry": ROS2Odometry, "ROS2 Lidar": ROS2Lidar } def parse(self, data_type: str, data_dict): # Get the class of the graph graph_cls = self.graphs[data_type] # Create an instance of that graph return graph_cls(data_dict)
781
Python
26.92857
86
0.647887
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/ui/ui_window.py
""" | File: ui_window.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: Definition of WidgetWindow which contains all the UI code that defines the extension GUI """ __all__ = ["WidgetWindow"] # External packages import numpy as np # Omniverse general API import carb import omni.ui as ui from omni.ui import color as cl from pegasus.simulator.ui.ui_delegate import UIDelegate from pegasus.simulator.params import ROBOTS, SIMULATION_ENVIRONMENTS, THUMBNAIL, WORLD_THUMBNAIL, WINDOW_TITLE class WidgetWindow(ui.Window): # Design constants for the widgets LABEL_PADDING = 120 BUTTON_HEIGHT = 50 GENERAL_SPACING = 5 WINDOW_WIDTH = 300 WINDOW_HEIGHT = 850 BUTTON_SELECTED_STYLE = { "Button": { "background_color": 0xFF5555AA, "border_color": 0xFF5555AA, "border_width": 2, "border_radius": 5, "padding": 5, } } BUTTON_BASE_STYLE = { "Button": { "background_color": cl("#292929"), "border_color": cl("#292929"), "border_width": 2, "border_radius": 5, "padding": 5, } } def __init__(self, delegate: UIDelegate, **kwargs): """ Constructor for the Window UI widget of the extension. Receives as input a UIDelegate that implements all the callbacks to handle button clicks, drop-down menu actions, etc. (abstracting the interface between the logic of the code and the ui) """ # Setup the base widget window super().__init__( WINDOW_TITLE, width=WidgetWindow.WINDOW_WIDTH, height=WidgetWindow.WINDOW_HEIGHT, visible=True, **kwargs ) self.deferred_dock_in("Property", ui.DockPolicy.CURRENT_WINDOW_IS_ACTIVE) # Setup the delegate that will bridge between the logic and the UI self._delegate = delegate # Bind the UI delegate to this window self._delegate.set_window_bind(self) # Auxiliar attributes for getting the transforms of the vehicle and the camera from the UI self._camera_transform_models = [] self._vehicle_transform_models = [] # Build the actual window UI self._build_window() def destroy(self): # Clear the world and the stage correctly self._delegate.on_clear_scene() # It will destroy all the children super().destroy() def _build_window(self): # Define the UI of the widget window with self.frame: # Vertical Stack of menus with ui.VStack(): # Create a frame for selecting which scene to load self._scene_selection_frame() ui.Spacer(height=5) # Create a frame for selecting which vehicle to load in the simulation environment self._robot_selection_frame() ui.Spacer(height=5) # Create a frame for selecting the camera position, and what it should point torwards to self._viewport_camera_frame() ui.Spacer() def _scene_selection_frame(self): """ Method that implements a dropdown menu with the list of available simulation environemts for the vehicle """ # Frame for selecting the simulation environment to load with ui.CollapsableFrame("Scene Selection"): with ui.VStack(height=0, spacing=10, name="frame_v_stack"): ui.Spacer(height=WidgetWindow.GENERAL_SPACING) # Iterate over all existing pre-made worlds bundled with this extension with ui.HStack(): ui.Label("World Assets", width=WidgetWindow.LABEL_PADDING, height=10.0) # Combo box with the available environments to select from dropdown_menu = ui.ComboBox(0, height=10, name="environments") for environment in SIMULATION_ENVIRONMENTS: dropdown_menu.model.append_child_item(None, ui.SimpleStringModel(environment)) # Allow the delegate to know which option was selected in the dropdown menu self._delegate.set_scene_dropdown(dropdown_menu.model) ui.Spacer(height=0) # UI to configure the default latitude, longitude and altitude coordinates with ui.CollapsableFrame("Geographic Coordinates", collapsed=False): with ui.VStack(height=0, spacing=10, name="frame_v_stack"): with ui.HStack(): # Latitude ui.Label("Latitude", name="label", width=WidgetWindow.LABEL_PADDING-50) latitude_field = ui.FloatField(name="latitude", precision=6) latitude_field.model.set_value(self._delegate._latitude) self._delegate.set_latitude_field(latitude_field.model) ui.Circle(name="transform", width=20, height=20, radius=3.5, size_policy=ui.CircleSizePolicy.FIXED) # Longitude ui.Label("Longitude", name="label", width=WidgetWindow.LABEL_PADDING-50) longitude_field = ui.FloatField(name="longitude", precision=6) longitude_field.model.set_value(self._delegate._longitude) self._delegate.set_longitude_field(longitude_field.model) ui.Circle(name="transform", width=20, height=20, radius=3.5, size_policy=ui.CircleSizePolicy.FIXED) # Altitude ui.Label("Altitude", name="label", width=WidgetWindow.LABEL_PADDING-50) altitude_field = ui.FloatField(name="altitude", precision=6) altitude_field.model.set_value(self._delegate._altitude) self._delegate.set_altitude_field(altitude_field.model) ui.Circle(name="transform", width=20, height=20, radius=3.5, size_policy=ui.CircleSizePolicy.FIXED) with ui.HStack(): ui.Button("Set", enabled=True, clicked_fn=self._delegate.on_set_new_global_coordinates) ui.Button("Reset", enabled=True, clicked_fn=self._delegate.on_reset_global_coordinates) ui.Button("Make Default", enabled=True, clicked_fn=self._delegate.on_set_new_default_global_coordinates) ui.Spacer(height=0) with ui.HStack(): # Add a thumbnail image to have a preview of the world that is about to be loaded with ui.ZStack(width=WidgetWindow.LABEL_PADDING, height=WidgetWindow.BUTTON_HEIGHT * 2): ui.Rectangle() ui.Image( WORLD_THUMBNAIL, fill_policy=ui.FillPolicy.PRESERVE_ASPECT_FIT, alignment=ui.Alignment.LEFT_CENTER, ) ui.Spacer(width=WidgetWindow.GENERAL_SPACING) with ui.VStack(): # Button for loading a desired scene ui.Button( "Load Scene", height=WidgetWindow.BUTTON_HEIGHT, clicked_fn=self._delegate.on_load_scene, style=WidgetWindow.BUTTON_BASE_STYLE, ) # Button to reset the stage ui.Button( "Clear Scene", height=WidgetWindow.BUTTON_HEIGHT, clicked_fn=self._delegate.on_clear_scene, style=WidgetWindow.BUTTON_BASE_STYLE, ) def _robot_selection_frame(self): """ Method that implements a frame that allows the user to choose which robot that is about to be spawned """ # Auxiliary function to handle the "switch behaviour" of the buttons that are used to choose between a px4 or ROS2 backend def handle_px4_ros_switch(self, px4_button, ros2_button, button): # Handle the UI of both buttons switching of and on (To make it prettier) if button == "px4": px4_button.enabled = False ros2_button.enabled = True px4_button.set_style(WidgetWindow.BUTTON_SELECTED_STYLE) ros2_button.set_style(WidgetWindow.BUTTON_BASE_STYLE) else: px4_button.enabled = True ros2_button.enabled = False ros2_button.set_style(WidgetWindow.BUTTON_SELECTED_STYLE) px4_button.set_style(WidgetWindow.BUTTON_BASE_STYLE) # Handle the logic of switching between the two operating modes self._delegate.set_streaming_backend(button) # -------------------------- # Function UI starts here # -------------------------- # Frame for selecting the vehicle to load with ui.CollapsableFrame(title="Vehicle Selection"): with ui.VStack(height=0, spacing=10, name="frame_v_stack"): ui.Spacer(height=WidgetWindow.GENERAL_SPACING) # Iterate over all existing robots in the extension with ui.HStack(): ui.Label("Vehicle Model", name="label", width=WidgetWindow.LABEL_PADDING) # Combo box with the available vehicles to select from dropdown_menu = ui.ComboBox(0, height=10, name="robots") for robot in ROBOTS: dropdown_menu.model.append_child_item(None, ui.SimpleStringModel(robot)) self._delegate.set_vehicle_dropdown(dropdown_menu.model) with ui.HStack(): ui.Label("Vehicle ID", name="label", width=WidgetWindow.LABEL_PADDING) vehicle_id_field = ui.IntField() self._delegate.set_vehicle_id_field(vehicle_id_field.model) # Add a frame transform to select the position of where to place the selected robot in the world self._transform_frame() ui.Label("Streaming Backend") with ui.HStack(): # Add a thumbnail image to have a preview of the world that is about to be loaded with ui.ZStack(width=WidgetWindow.LABEL_PADDING, height=WidgetWindow.BUTTON_HEIGHT * 2): ui.Rectangle() ui.Image( THUMBNAIL, fill_policy=ui.FillPolicy.PRESERVE_ASPECT_FIT, alignment=ui.Alignment.LEFT_CENTER ) ui.Spacer(width=WidgetWindow.GENERAL_SPACING) with ui.VStack(): # Buttons that behave like switches to choose which network interface to use to simulate the control of the vehicle px4_button = ui.Button( "PX4", height=WidgetWindow.BUTTON_HEIGHT * 2, style=WidgetWindow.BUTTON_SELECTED_STYLE, enabled=False, ) ros2_button = ui.Button( "ROS 2", height=WidgetWindow.BUTTON_HEIGHT, style=WidgetWindow.BUTTON_BASE_STYLE, enabled=True, visible=False ) # Set the auxiliary function to handle the switch between both backends px4_button.set_clicked_fn(lambda: handle_px4_ros_switch(self, px4_button, ros2_button, "px4")) ros2_button.set_clicked_fn(lambda: handle_px4_ros_switch(self, px4_button, ros2_button, "ros")) # UI to configure the PX4 settings with ui.CollapsableFrame("PX4 Configurations", collapsed=False): with ui.VStack(height=0, spacing=10, name="frame_v_stack"): with ui.HStack(): ui.Label("Auto-launch PX4", name="label", width=WidgetWindow.LABEL_PADDING - 20) px4_checkbox = ui.CheckBox() px4_checkbox.model.set_value(self._delegate._autostart_px4) self._delegate.set_px4_autostart_checkbox(px4_checkbox.model) with ui.HStack(): ui.Label("PX4 Path", name="label", width=WidgetWindow.LABEL_PADDING - 20) px4_path_field = ui.StringField(name="px4_path", width=300) px4_path_field.model.set_value(self._delegate._px4_dir) self._delegate.set_px4_directory_field(px4_path_field.model) ui.Button("Reset", enabled=True, clicked_fn=self._delegate.on_reset_px4_path) ui.Button("Make Default", enabled=True, clicked_fn=self._delegate.on_set_new_default_px4_path) with ui.HStack(): ui.Label("PX4 airframe", name="label", width=WidgetWindow.LABEL_PADDING - 20) px4_airframe_field = ui.StringField(name="px4_model") px4_airframe_field.model.set_value(self._delegate._px4_airframe) self._delegate.set_px4_airframe_field(px4_airframe_field.model) # Button to load the drone ui.Button( "Load Vehicle", height=WidgetWindow.BUTTON_HEIGHT, clicked_fn=self._delegate.on_load_vehicle, style=WidgetWindow.BUTTON_BASE_STYLE, ) def _viewport_camera_frame(self): """ Method that implements a frame that allows the user to choose what is the viewport camera pose easily """ all_axis = ["X", "Y", "Z"] colors = {"X": 0xFF5555AA, "Y": 0xFF76A371, "Z": 0xFFA07D4F} default_values = [5.0, 5.0, 5.0] target_default_values = [0.0, 0.0, 0.0] # Frame for setting the camera to visualize the vehicle in the simulator viewport with ui.CollapsableFrame("Viewport Camera"): with ui.VStack(spacing=8): ui.Spacer(height=0) # Iterate over the position and rotation menus with ui.HStack(): with ui.HStack(): ui.Label("Position", name="transform", width=50, height=20) ui.Spacer() # Fields X, Y and Z for axis, default_value in zip(all_axis, default_values): with ui.HStack(): with ui.ZStack(width=15): ui.Rectangle( width=15, height=20, style={ "background_color": colors[axis], "border_radius": 3, "corner_flag": ui.CornerFlag.LEFT, }, ) ui.Label(axis, height=20, name="transform_label", alignment=ui.Alignment.CENTER) float_drag = ui.FloatDrag(name="transform", min=-1000000, max=1000000, step=0.01) float_drag.model.set_value(default_value) # Save the model of each FloatDrag such that we can access its values later on self._camera_transform_models.append(float_drag.model) ui.Circle( name="transform", width=20, height=20, radius=3.5, size_policy=ui.CircleSizePolicy.FIXED ) # Iterate over the position and rotation menus with ui.HStack(): with ui.HStack(): ui.Label("Target", name="transform", width=50, height=20) ui.Spacer() # Fields X, Y and Z for axis, default_value in zip(all_axis, target_default_values): with ui.HStack(): with ui.ZStack(width=15): ui.Rectangle( width=15, height=20, style={ "background_color": colors[axis], "border_radius": 3, "corner_flag": ui.CornerFlag.LEFT, }, ) ui.Label(axis, height=20, name="transform_label", alignment=ui.Alignment.CENTER) float_drag = ui.FloatDrag(name="transform", min=-1000000, max=1000000, step=0.01) float_drag.model.set_value(default_value) # Save the model of each FloatDrag such that we can access its values later on self._camera_transform_models.append(float_drag.model) ui.Circle( name="transform", width=20, height=20, radius=3.5, size_policy=ui.CircleSizePolicy.FIXED ) # Button to set the camera view ui.Button( "Set Camera Pose", height=WidgetWindow.BUTTON_HEIGHT, clicked_fn=self._delegate.on_set_viewport_camera, style=WidgetWindow.BUTTON_BASE_STYLE, ) ui.Spacer() def _transform_frame(self): """ Method that implements a transform frame to translate and rotate an object that is about to be spawned """ components = ["Position", "Rotation"] all_axis = ["X", "Y", "Z"] colors = {"X": 0xFF5555AA, "Y": 0xFF76A371, "Z": 0xFFA07D4F} default_values = [0.0, 0.0, 0.1] with ui.CollapsableFrame("Position and Orientation"): with ui.VStack(spacing=8): ui.Spacer(height=0) # Iterate over the position and rotation menus for component in components: with ui.HStack(): with ui.HStack(): ui.Label(component, name="transform", width=50) ui.Spacer() # Fields X, Y and Z for axis, default_value in zip(all_axis, default_values): with ui.HStack(): with ui.ZStack(width=15): ui.Rectangle( width=15, height=20, style={ "background_color": colors[axis], "border_radius": 3, "corner_flag": ui.CornerFlag.LEFT, }, ) ui.Label(axis, name="transform_label", alignment=ui.Alignment.CENTER) if component == "Position": float_drag = ui.FloatDrag(name="transform", min=-1000000, max=1000000, step=0.01) float_drag.model.set_value(default_value) else: float_drag = ui.FloatDrag(name="transform", min=-180.0, max=180.0, step=0.01) # Save the model of each FloatDrag such that we can access its values later on self._vehicle_transform_models.append(float_drag.model) ui.Circle(name="transform", width=20, radius=3.5, size_policy=ui.CircleSizePolicy.FIXED) ui.Spacer(height=0) # ------------------------------------------------------------------------------------------------ # TODO - optimize the reading of values from the transform widget. This could be one function only # ------------------------------------------------------------------------------------------------ def get_selected_vehicle_attitude(self): # Extract the vehicle desired position and orientation for spawning if len(self._vehicle_transform_models) == 6: vehicle_pos = np.array([self._vehicle_transform_models[i].get_value_as_float() for i in range(3)]) vehicel_orientation = np.array( [self._vehicle_transform_models[i].get_value_as_float() for i in range(3, 6)] ) return vehicle_pos, vehicel_orientation return None, None def get_selected_camera_pos(self): """ Method that returns the currently selected camera position in the camera transform widget """ # Extract the camera desired position and the target it is pointing to if len(self._camera_transform_models) == 6: camera_pos = np.array([self._camera_transform_models[i].get_value_as_float() for i in range(3)]) camera_target = np.array([self._camera_transform_models[i].get_value_as_float() for i in range(3, 6)]) return camera_pos, camera_target return None, None
22,183
Python
47.756044
139
0.511428
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/ui/ui_delegate.py
""" | File: ui_delegate.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: Definition of the UiDelegate which is an abstraction layer betweeen the extension UI and code logic features """ # External packages import os import asyncio from scipy.spatial.transform import Rotation # Omniverse extensions import carb import omni.ui as ui # Extension Configurations from pegasus.simulator.params import ROBOTS, SIMULATION_ENVIRONMENTS from pegasus.simulator.logic.interface.pegasus_interface import PegasusInterface # Vehicle Manager to spawn Vehicles from pegasus.simulator.logic.backends import MavlinkBackend, MavlinkBackendConfig #, ROS2Backend from pegasus.simulator.logic.vehicles.multirotor import Multirotor, MultirotorConfig from pegasus.simulator.logic.vehicle_manager import VehicleManager class UIDelegate: """ Object that will interface between the logic/dynamic simulation part of the extension and the Widget UI """ def __init__(self): # The window that will be bound to this delegate self._window = None # Get an instance of the pegasus simulator self._pegasus_sim: PegasusInterface = PegasusInterface() # Attribute that holds the currently selected scene from the dropdown menu self._scene_dropdown: ui.AbstractItemModel = None self._scene_names = list(SIMULATION_ENVIRONMENTS.keys()) # Selected latitude, longitude and altitude self._latitude_field: ui.AbstractValueModel = None self._latitude = PegasusInterface().latitude self._longitude_field: ui.AbstractValueModel = None self._longitude = PegasusInterface().longitude self._altitude_field: ui.AbstractValueModel = None self._altitude = PegasusInterface().altitude # Attribute that hold the currently selected vehicle from the dropdown menu self._vehicle_dropdown: ui.AbstractItemModel = None self._vehicles_names = list(ROBOTS.keys()) # Get an instance of the vehicle manager self._vehicle_manager = VehicleManager() # Selected option for broadcasting the simulated vehicle (PX4+ROS2 or just ROS2) # By default we assume PX4 self._streaming_backend: str = "px4" # Selected value for the the id of the vehicle self._vehicle_id_field: ui.AbstractValueModel = None self._vehicle_id: int = 0 # Attribute that will save the model for the px4-autostart checkbox self._px4_autostart_checkbox: ui.AbstractValueModel = None self._autostart_px4: bool = True # Atributes to store the path for the Px4 directory self._px4_directory_field: ui.AbstractValueModel = None self._px4_dir: str = PegasusInterface().px4_path # Atributes to store the PX4 airframe self._px4_airframe_field: ui.AbstractValueModel = None self._px4_airframe: str = 'iris' def set_window_bind(self, window): self._window = window def set_scene_dropdown(self, scene_dropdown_model: ui.AbstractItemModel): self._scene_dropdown = scene_dropdown_model def set_latitude_field(self, latitude_model: ui.AbstractValueModel): self._latitude_field = latitude_model def set_longitude_field(self, longitude_model: ui.AbstractValueModel): self._longitude_field = longitude_model def set_altitude_field(self, altitude_model: ui.AbstractValueModel): self._altitude_field = altitude_model def set_vehicle_dropdown(self, vehicle_dropdown_model: ui.AbstractItemModel): self._vehicle_dropdown = vehicle_dropdown_model def set_vehicle_id_field(self, vehicle_id_field: ui.AbstractValueModel): self._vehicle_id_field = vehicle_id_field def set_streaming_backend(self, backend: str = "px4"): carb.log_info("Chosen option: " + backend) self._streaming_backend = backend def set_px4_autostart_checkbox(self, checkbox_model:ui.AbstractValueModel): self._px4_autostart_checkbox = checkbox_model def set_px4_directory_field(self, directory_field_model: ui.AbstractValueModel): self._px4_directory_field = directory_field_model def set_px4_airframe_field(self, airframe_field_model: ui.AbstractValueModel): self._px4_airframe_field = airframe_field_model """ --------------------------------------------------------------------- Callbacks to handle user interaction with the extension widget window --------------------------------------------------------------------- """ def on_load_scene(self): """ Method that should be invoked when the button to load the selected world is pressed """ # Check if a scene is selected in the drop-down menu if self._scene_dropdown is not None: # Get the id of the selected environment from the list environemnt_index = self._scene_dropdown.get_item_value_model().as_int # Get the name of the selected world selected_world = self._scene_names[environemnt_index] # Try to spawn the selected world asyncio.ensure_future(self._pegasus_sim.load_environment_async(SIMULATION_ENVIRONMENTS[selected_world], force_clear=True)) def on_set_new_global_coordinates(self): """ Method that gets invoked to set new global coordinates for this simulation """ self._pegasus_sim.set_global_coordinates( self._latitude_field.get_value_as_float(), self._longitude_field.get_value_as_float(), self._altitude_field.get_value_as_float()) def on_reset_global_coordinates(self): """ Method that gets invoked to set the global coordinates to the defaults saved in the extension configuration file """ self._pegasus_sim.set_default_global_coordinates() self._latitude_field.set_value(self._pegasus_sim.latitude) self._longitude_field.set_value(self._pegasus_sim.longitude) self._altitude_field.set_value(self._pegasus_sim.altitude) def on_set_new_default_global_coordinates(self): """ Method that gets invoked to set new defualt global coordinates for this simulation. This will attempt to save the current coordinates as new defaults for the extension itself """ self._pegasus_sim.set_new_default_global_coordinates( self._latitude_field.get_value_as_float(), self._longitude_field.get_value_as_float(), self._altitude_field.get_value_as_float() ) def on_clear_scene(self): """ Method that should be invoked when the clear world button is pressed """ self._pegasus_sim.clear_scene() def on_load_vehicle(self): """ Method that should be invoked when the button to load the selected vehicle is pressed """ async def async_load_vehicle(): # Check if we already have a physics environment activated. If not, then activate it # and only after spawn the vehicle. This is to avoid trying to spawn a vehicle without a physics # environment setup. This way we can even spawn a vehicle in an empty world and it won't care if hasattr(self._pegasus_sim.world, "_physics_context") == False: await self._pegasus_sim.world.initialize_simulation_context_async() # Check if a vehicle is selected in the drop-down menu if self._vehicle_dropdown is not None and self._window is not None: # Get the id of the selected vehicle from the list vehicle_index = self._vehicle_dropdown.get_item_value_model().as_int # Get the name of the selected vehicle selected_robot = self._vehicles_names[vehicle_index] # Get the id of the selected vehicle self._vehicle_id = self._vehicle_id_field.get_value_as_int() # Get the desired position and orientation of the vehicle from the UI transform pos, euler_angles = self._window.get_selected_vehicle_attitude() # Read if we should auto-start px4 from the checkbox px4_autostart = self._px4_autostart_checkbox.get_value_as_bool() # Read the PX4 path from the field px4_path = os.path.expanduser(self._px4_directory_field.get_value_as_string()) # Read the PX4 airframe from the field px4_airframe = self._px4_airframe_field.get_value_as_string() # Create the multirotor configuration mavlink_config = MavlinkBackendConfig({ "vehicle_id": self._vehicle_id, "px4_autolaunch": px4_autostart, "px4_dir": px4_path, "px4_vehicle_model": px4_airframe }) config_multirotor = MultirotorConfig() config_multirotor.backends = [MavlinkBackend(mavlink_config)] #ros2 = ROS2Backend(self._vehicle_id) # Try to spawn the selected robot in the world to the specified namespace Multirotor( "/World/quadrotor", ROBOTS[selected_robot], self._vehicle_id, pos, Rotation.from_euler("XYZ", euler_angles, degrees=True).as_quat(), config=config_multirotor, ) # Log that a vehicle of the type multirotor was spawned in the world via the extension UI carb.log_info("Spawned the robot: " + selected_robot + " using the Pegasus Simulator UI") else: # Log that it was not possible to spawn the vehicle in the world using the Pegasus Simulator UI carb.log_error("Could not spawn the robot using the Pegasus Simulator UI") # Run the actual vehicle spawn async so that the UI does not freeze asyncio.ensure_future(async_load_vehicle()) def on_set_viewport_camera(self): """ Method that should be invoked when the button to set the viewport camera pose is pressed """ carb.log_warn("The viewport camera pose has been adjusted") if self._window: # Get the current camera position value camera_position, camera_target = self._window.get_selected_camera_pos() if camera_position is not None and camera_target is not None: # Set the camera view to a fixed value self._pegasus_sim.set_viewport_camera(eye=camera_position, target=camera_target) def on_set_new_default_px4_path(self): """ Method that will try to update the new PX4 autopilot path with whatever is passed on the string field """ carb.log_warn("A new default PX4 Path will be set for the extension.") # Read the current path from the field path = self._px4_directory_field.get_value_as_string() # Set the path using the pegasus interface self._pegasus_sim.set_px4_path(path) def on_reset_px4_path(self): """ Method that will reset the string field to the default PX4 path """ carb.log_warn("Reseting the path to the default one") self._px4_directory_field.set_value(self._pegasus_sim.px4_path)
11,564
Python
41.208029
134
0.642771
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/ui/__init__.py
# Copyright (c) 2023, Marcelo Jacinto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from .ui_delegate import UIDelegate from .ui_window import WidgetWindow
175
Python
24.142854
39
0.777143
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/vehicle_manager.py
""" | File: vehicle_manager.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: Definition of the VehicleManager class - a singleton used to manage the vehiles that are spawned in the simulation world """ __all__ = ["VehicleManager"] import carb from threading import Lock class VehicleManager: """The VehicleManager class is implemented following a singleton pattern. This means that once a vehicle is spawned on the world or an instance of the VehicleManager is created, no either will be running at the same time. This class keeps track of all the vehicles that are spawned in the simulation world, either trough the extension UI or via Python script. Every time a new vehicle object is created, the 'add_vehicle' method is invoked. Additionally, a vehicle is removed, i.e. 'remove_vehicle' gets invoked, every time the '__del__' function of the "Vehicle" object gets invoked. """ # The object instance of the Vehicle Manager _instance = None _is_initialized = False # A dictionary of vehicles that are spawned in the simulator _vehicles = {} # Lock for safe multi-threading _lock: Lock = Lock() def __init__(self): """ Constructor for the vehicle manager class. """ pass """ Properties """ @property def vehicles(self): """ Returns: (list) List of vehicles that were spawned. """ return VehicleManager._vehicles """ Operations """ @staticmethod def get_vehicle_manager(): """ Method that returns the current vehicle manager. """ return VehicleManager() def add_vehicle(self, stage_prefix: str, vehicle): """ Method that adds the vehicles to the vehicle manager. Args: stage_prefix (str): A string with the name that the vehicle is spawned in the simulator vehicle (Vehicle): The vehicle object being added to the vehicle manager. """ VehicleManager._vehicles[stage_prefix] = vehicle def get_vehicle(self, stage_prefix: str): """Method that returns the vehicle object given its stage prefix. Returns None if there is no vehicle associated with that stage prefix Args: stage_prefix (str): A string with the name that the vehicle is spawned in the simulator Returns: Vehicle: The vehicle object associated with the stage_prefix """ return VehicleManager._vehicles.get(stage_prefix, None) def remove_vehicle(self, stage_prefix: str): """ Method that deletes a vehicle from the vehicle manager. Args: stage_prefix (str): A string with the name that the vehicle is spawned in the simulator. """ try: VehicleManager._vehicles.pop(stage_prefix) except: pass def remove_all_vehicles(self): """ Method that will delete all the vehicles that were spawned from the vehicle manager. """ VehicleManager._vehicles.clear() def __new__(cls): """Method that allocated memory for a new vehicle_manager. Since the VehicleManager follows a singleton pattern, only one instance of VehicleManger object can be in memory at any time. Returns: VehicleManger: the single instance of the VehicleManager class. """ # Use a lock in here to make sure we do not have a race condition # when using multi-threading and creating the first instance of the VehicleManager with cls._lock: if cls._instance is None: cls._instance = object.__new__(cls) else: carb.log_info("Vehicle Manager is defined already, returning the previously defined one") return VehicleManager._instance def __del__(self): """Destructor for the object""" VehicleManager._instance = None return
4,124
Python
31.738095
135
0.640883
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/state.py
""" | File: state.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: Describes the state of a vehicle (or rigidbody). """ __all__ = ["State"] import numpy as np from scipy.spatial.transform import Rotation from pegasus.simulator.logic.rotations import rot_ENU_to_NED, rot_FLU_to_FRD class State: """ Stores the state of a given vehicle. Note: - position - A numpy array with the [x,y,z] of the vehicle expressed in the inertial frame according to an ENU convention. - orientation - A numpy array with the quaternion [qx, qy, qz, qw] that encodes the attitude of the vehicle's FLU body frame, relative to an ENU inertial frame, expressed in the ENU inertial frame. - linear_velocity - A numpy array with [vx,vy,vz] that defines the velocity of the vehicle expressed in the inertial frame according to an ENU convention. - linear_body_velocity - A numpy array with [u,v,w] that defines the velocity of the vehicle expressed in the FLU body frame. - angular_velocity - A numpy array with [p,q,r] with the angular velocity of the vehicle's FLU body frame, relative to an ENU inertial frame, expressed in the FLU body frame. - linear acceleration - An array with [x_ddot, y_ddot, z_ddot] with the acceleration of the vehicle expressed in the inertial frame according to an ENU convention. """ def __init__(self): """ Initialize the State object """ # The position [x,y,z] of the vehicle's body frame relative to the inertial frame, expressed in the inertial frame self.position = np.array([0.0, 0.0, 0.0]) # The attitude (orientation) of the vehicle's body frame relative to the inertial frame of reference, # expressed in the inertial frame. This quaternion should follow the convention [qx, qy, qz, qw], such that "no rotation" # equates to the quaternion=[0, 0, 0, 1] self.attitude = np.array([0.0, 0.0, 0.0, 1.0]) # The linear velocity [u,v,w] of the vehicle's body frame expressed in the body frame of reference self.linear_body_velocity = np.array([0.0, 0.0, 0.0]) # The linear velocity [x_dot, y_dot, z_dot] of the vehicle's body frame expressed in the inertial frame of reference self.linear_velocity = np.array([0.0, 0.0, 0.0]) # The angular velocity [wx, wy, wz] of the vehicle's body frame relative to the inertial frame, expressed in the body frame self.angular_velocity = np.array([0.0, 0.0, 0.0]) # The linear acceleration [ax, ay, az] of the vehicle's body frame relative to the inertial frame, expressed in the inertial frame self.linear_acceleration = np.array([0.0, 0.0, 0.0]) def get_position_ned(self): """ Method that, assuming that a state is encoded in ENU standard (the Isaac Sim standard), converts the position to the NED convention used by PX4 and other onboard flight controllers Returns: np.ndarray: A numpy array with the [x,y,z] of the vehicle expressed in the inertial frame according to an NED convention. """ return rot_ENU_to_NED.apply(self.position) def get_attitude_ned_frd(self): """ Method that, assuming that a state is encoded in ENU-FLU standard (the Isaac Sim standard), converts the attitude of the vehicle it to the NED-FRD convention used by PX4 and other onboard flight controllers Returns: np.ndarray: A numpy array with the quaternion [qx, qy, qz, qw] that encodes the attitude of the vehicle's FRD body frame, relative to an NED inertial frame, expressed in the NED inertial frame. """ attitude_frd_ned = rot_ENU_to_NED * Rotation.from_quat(self.attitude) * rot_FLU_to_FRD return attitude_frd_ned.as_quat() def get_linear_body_velocity_ned_frd(self): """ Method that, assuming that a state is encoded in ENU-FLU standard (the Isaac Sim standard), converts the linear body velocity of the vehicle it to the NED-FRD convention used by PX4 and other onboard flight controllers Returns: np.ndarray: A numpy array with [u,v,w] that defines the velocity of the vehicle expressed in the FRD body frame. """ # Get the linear acceleration in FLU convention linear_acc_body_flu = Rotation.from_quat(self.attitude).inv().apply(self.linear_acceleration) # Convert the linear acceleration in the body frame expressed in FLU convention to the FRD convention return rot_FLU_to_FRD.apply(linear_acc_body_flu) def get_linear_velocity_ned(self): """ Method that, assuming that a state is enconded in ENU-FLU standard (the Isaac Sim standard), converts the linear velocity expressed in the inertial frame to the NED convention used by PX4 and other onboard flight controllers Returns: np.ndarray: A numpy array with [vx,vy,vz] that defines the velocity of the vehicle expressed in the inertial frame according to a NED convention. """ return rot_ENU_to_NED.apply(self.linear_velocity) def get_angular_velocity_frd(self): """ Method that, assuming that a state is enconded in ENU-FLU standard (the Isaac Sim standard), converts the angular velocity expressed in the body frame to the NED-FRD convention used by PX4 and other onboard flight controllers Returns: np.ndarray: A numpy array with [p,q,r] with the angular velocity of the vehicle's FRD body frame, relative to an NED inertial frame, expressed in the FRD body frame. """ return rot_FLU_to_FRD.apply(self.angular_velocity) def get_linear_acceleration_ned(self): """ Method that, assuming that a state is enconded in ENU-FLU standard (the Isaac Sim standard), converts the linear acceleration expressed in the inertial frame to the NED convention used by PX4 and other onboard flight controllers Returns: np.ndarray: An array with [x_ddot, y_ddot, z_ddot] with the acceleration of the vehicle expressed in the inertial frame according to an NED convention. """ return rot_ENU_to_NED.apply(self.linear_acceleration)
6,384
Python
52.208333
205
0.684211
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/__init__.py
""" | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ from .interface.pegasus_interface import PegasusInterface
212
Python
34.499994
82
0.768868
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/rotations.py
""" | File: rotations.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: Implements utilitary rotations between ENU and NED inertial frame conventions and FLU and FRD body frame conventions. """ import numpy as np from scipy.spatial.transform import Rotation # Quaternion for rotation between ENU and NED INERTIAL frames # NED to ENU: +PI/2 rotation about Z (Down) followed by a +PI rotation around X (old North/new East) # ENU to NED: +PI/2 rotation about Z (Up) followed by a +PI rotation about X (old East/new North) # This rotation is symmetric, so q_ENU_to_NED == q_NED_to_ENU. # Note: this quaternion follows the convention [qx, qy, qz, qw] q_ENU_to_NED = np.array([0.70711, 0.70711, 0.0, 0.0]) # A scipy rotation from the ENU inertial frame to the NED inertial frame of reference rot_ENU_to_NED = Rotation.from_quat(q_ENU_to_NED) # Quaternion for rotation between body FLU and body FRD frames # +PI rotation around X (Forward) axis rotates from Forward, Right, Down (aircraft) # to Forward, Left, Up (base_link) frames and vice-versa. # This rotation is symmetric, so q_FLU_to_FRD == q_FRD_to_FLU. # Note: this quaternion follows the convention [qx, qy, qz, qw] q_FLU_to_FRD = np.array([1.0, 0.0, 0.0, 0.0]) # A scipe rotation from the FLU body frame to the FRD body frame rot_FLU_to_FRD = Rotation.from_quat(q_FLU_to_FRD)
1,447
Python
48.931033
132
0.735314
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/thrusters/__init__.py
""" | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ from .thrust_curve import ThrustCurve from .quadratic_thrust_curve import QuadraticThrustCurve
249
Python
34.714281
82
0.779116
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/thrusters/quadratic_thrust_curve.py
""" | File: quadratic_thrust_curve.py | Author: Marcelo Jacinto ([email protected]) | Descriptio: File that implements a quadratic thrust curve for rotors | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ import numpy as np from pegasus.simulator.logic.state import State from pegasus.simulator.logic.thrusters.thrust_curve import ThrustCurve class QuadraticThrustCurve(ThrustCurve): """Class that implements the dynamics of rotors that can be described by a quadratic thrust curve """ def __init__(self, config={}): """_summary_ Args: config (dict): A Dictionary that contains all the parameters for configuring the QuadraticThrustCurve - it can be empty or only have some of the parameters used by the QuadraticThrustCurve. Examples: The dictionary default parameters are >>> {"num_rotors": 4, >>> "rotor_constant": [5.84e-6, 5.84e-6, 5.84e-6, 5.84e-6], >>> "rolling_moment_coefficient": [1e-6, 1e-6, 1e-6, 1e-6], >>> "rot_dir": [-1, -1, 1, 1], >>> "min_rotor_velocity": [0, 0, 0, 0], # rad/s >>> "max_rotor_velocity": [1100, 1100, 1100, 1100], # rad/s >>> } """ # Get the total number of rotors to simulate self._num_rotors = config.get("num_rotors", 4) # The rotor constant used for computing the total thrust produced by the rotor: T = rotor_constant * omega^2 self._rotor_constant = config.get("rotor_constant", [8.54858e-6, 8.54858e-6, 8.54858e-6, 8.54858e-6]) assert len(self._rotor_constant) == self._num_rotors # The rotor constant used for computing the total torque generated about the vehicle Z-axis self._rolling_moment_coefficient = config.get("rolling_moment_coefficient", [1e-6, 1e-6, 1e-6, 1e-6]) assert len(self._rolling_moment_coefficient) == self._num_rotors # Save the rotor direction of rotation self._rot_dir = config.get("rot_dir", [-1, -1, 1, 1]) assert len(self._rot_dir) == self._num_rotors # Values for the minimum and maximum rotor velocity in rad/s self.min_rotor_velocity = config.get("min_rotor_velocity", [0, 0, 0, 0]) assert len(self.min_rotor_velocity) == self._num_rotors self.max_rotor_velocity = config.get("max_rotor_velocity", [1100, 1100, 1100, 1100]) assert len(self.max_rotor_velocity) == self._num_rotors # The actual speed references to apply to the vehicle rotor joints self._input_reference = [0.0 for i in range(self._num_rotors)] # The actual velocity that each rotor is spinning at self._velocity = [0.0 for i in range(self._num_rotors)] # The actual force that each rotor is generating self._force = [0.0 for i in range(self._num_rotors)] # The actual rolling moment that is generated on the body frame of the vehicle self._rolling_moment = 0.0 def set_input_reference(self, input_reference): """ Receives as input a list of target angular velocities of each rotor in rad/s """ # The target angular velocity of the rotor self._input_reference = input_reference def update(self, state: State, dt: float): """ Note: the state and dt variables are not used in this implementation, but left to add support to other rotor models where the total thrust is dependent on states such as vehicle linear velocity Args: state (State): The current state of the vehicle. dt (float): The time elapsed between the previous and current function calls (s). """ rolling_moment = 0.0 # Compute the actual force to apply to the rotors and the rolling moment contribution for i in range(self._num_rotors): # Set the actual velocity that each rotor is spinning at (instanenous model - no delay introduced) # Only apply clipping of the input reference self._velocity[i] = np.maximum( self.min_rotor_velocity[i], np.minimum(self._input_reference[i], self.max_rotor_velocity[i]) ) # Set the force using a quadratic thrust curve self._force[i] = self._rotor_constant[i] * np.power(self._velocity[i], 2) # Compute the rolling moment coefficient rolling_moment += self._rolling_moment_coefficient[i] * np.power(self._velocity[i], 2.0) * self._rot_dir[i] # Update the rolling moment variable self._rolling_moment = rolling_moment # Return the forces and velocities on each rotor and total torque applied on the body frame return self._force, self._velocity, self._rolling_moment @property def force(self): """The force to apply to each rotor of the vehicle at any given time instant Returns: list: A list of forces (in Newton N) to apply to each rotor of the vehicle (on its Z-axis) at any given time instant """ return self._force @property def velocity(self): """The velocity at which each rotor of the vehicle should be rotating at any given time instant Returns: list: A list of angular velocities (in rad/s) of each rotor (about its Z-axis) at any given time instant """ return self._velocity @property def rolling_moment(self): """The total rolling moment being generated on the body frame of the vehicle by the rotating propellers Returns: float: The total rolling moment to apply to the vehicle body frame (Torque about the Z-axis) in Nm """ return self._rolling_moment @property def rot_dir(self): """The direction of rotation of each rotor of the vehicle Returns: list(int): A list with the rotation direction of each rotor (-1 is counter-clockwise and 1 for clockwise) """ return self._rot_dir
6,097
Python
41.643356
201
0.632606
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/thrusters/thrust_curve.py
""" | File: thrust_curve.py | Author: Marcelo Jacinto ([email protected]) | Descriptio: File that implements the base interface for defining thrust curves for vehicles | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ from pegasus.simulator.logic.state import State class ThrustCurve: """Class that implements the dynamics of rotors that can be described by a quadratic thrust curve """ def __init__(self): pass def set_input_reference(self, input_reference): """ Receives as input a list of target angular velocities of each rotor in rad/s """ pass def update(self, state: State, dt: float): """ Note: the state and dt variables are not used in this implementation, but left to add support to other rotor models where the total thrust is dependent on states such as vehicle linear velocity Args: state (State): The current state of the vehicle. dt (float): The time elapsed between the previous and current function calls (s). """ pass @property def force(self): """The force to apply to each rotor of the vehicle at any given time instant Returns: list: A list of forces (in Newton N) to apply to each rotor of the vehicle (on its Z-axis) at any given time instant """ pass @property def velocity(self): """The velocity at which each rotor of the vehicle should be rotating at any given time instant Returns: list: A list of angular velocities (in rad/s) of each rotor (about its Z-axis) at any given time instant """ pass @property def rolling_moment(self): """The total rolling moment being generated on the body frame of the vehicle by the rotating propellers Returns: float: The total rolling moment to apply to the vehicle body frame (Torque about the Z-axis) in Nm """ pass @property def rot_dir(self): """The direction of rotation of each rotor of the vehicle Returns: list(int): A list with the rotation direction of each rotor (-1 is counter-clockwise and 1 for clockwise) """ pass
2,307
Python
32.941176
128
0.642826
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/graphs/ros2_camera.py
""" | File: ros2_camera.py | License: BSD-3-Clause. Copyright (c) 2023, Micah Nye. All rights reserved. """ __all__ = ["ROS2Camera"] import carb from omni.isaac.core.utils import stage import omni.graph.core as og from omni.isaac.core.utils.prims import is_prim_path_valid from omni.isaac.core.utils.prims import set_targets from pegasus.simulator.logic.graphs import Graph from pegasus.simulator.logic.vehicles import Vehicle import numpy as np class ROS2Camera(Graph): """The class that implements the ROS2 Camera graph. This class inherits the base class Graph. """ def __init__(self, camera_prim_path: str, config: dict = {}): """Initialize the ROS2 Camera class Args: camera_prim_path (str): Path to the camera prim. Global path when it starts with `/`, else local to vehicle prim path config (dict): A Dictionary that contains all the parameters for configuring the ROS2Camera - it can be empty or only have some of the parameters used by the ROS2Camera. Examples: The dictionary default parameters are >>> {"graph_evaluator": "execution", # type of the omnigraph to create (execution, push) >>> "resolution": [640, 480], # output video stream resolution in pixels [width, height] >>> "types": ['rgb', 'camera_info'], # rgb, depth, depth_pcl, instance_segmentation, semantic_segmentation, bbox_2d_tight, bbox_2d_loose, bbox_3d, camera_info >>> "publish_labels": True} # publish labels for instance_segmentation, semantic_segmentation, bbox_2d_tight, bbox_2d_loose and bbox_3d camera types """ # Initialize the Super class "object" attribute super().__init__(graph_type="ROS2Camera") # Save camera path, frame id and ros topic name self._camera_prim_path = camera_prim_path self._frame_id = camera_prim_path.rpartition("/")[-1] # frame_id of the camera is the last prim path part after `/` self._base_topic = "" # Process the config dictionary self._graph_evaluator = config.get("graph_evaluator", "execution") self._resolution = config.get("resolution", [640, 480]) self._types = np.array(config.get("types", ['rgb', 'camera_info'])) self._publish_labels = config.get("publish_labels", True) def initialize(self, vehicle: Vehicle): """Method that initializes the graph of the camera. Args: vehicle (Vehicle): The vehicle that this graph is attached to. """ self._namespace = f"/{vehicle.vehicle_name}" self._base_topic = f"/{self._frame_id}" # Set the prim_path for the camera if self._camera_prim_path[0] != '/': self._camera_prim_path = f"{vehicle.prim_path}/{self._camera_prim_path}" # Create camera prism if not is_prim_path_valid(self._camera_prim_path): carb.log_error(f"Cannot create ROS2 Camera graph, the camera prim path \"{self._camera_prim_path}\" is not valid") return # Set the prim paths for camera and tf graphs graph_path = f"{self._camera_prim_path}_pub" # Graph configuration if self._graph_evaluator == "execution": graph_specs = { "graph_path": graph_path, "evaluator_name": "execution", } elif self._graph_evaluator == "push": graph_specs = { "graph_path": graph_path, "evaluator_name": "push", "pipeline_stage": og.GraphPipelineStage.GRAPH_PIPELINE_STAGE_ONDEMAND, } else: carb.log_error(f"Cannot create ROS2 Camera graph, graph evaluator type \"{self._graph_evaluator}\" is not valid") return # Creating a graph edit configuration with cameraHelper nodes to generate ROS image publishers keys = og.Controller.Keys graph_config = { keys.CREATE_NODES: [ ("on_tick", "omni.graph.action.OnTick"), ("create_viewport", "omni.isaac.core_nodes.IsaacCreateViewport"), ("get_render_product", "omni.isaac.core_nodes.IsaacGetViewportRenderProduct"), ("set_viewport_resolution", "omni.isaac.core_nodes.IsaacSetViewportResolution"), ("set_camera", "omni.isaac.core_nodes.IsaacSetCameraOnRenderProduct"), ], keys.CONNECT: [ ("on_tick.outputs:tick", "create_viewport.inputs:execIn"), ("create_viewport.outputs:execOut", "get_render_product.inputs:execIn"), ("create_viewport.outputs:viewport", "get_render_product.inputs:viewport"), ("create_viewport.outputs:execOut", "set_viewport_resolution.inputs:execIn"), ("create_viewport.outputs:viewport", "set_viewport_resolution.inputs:viewport"), ("set_viewport_resolution.outputs:execOut", "set_camera.inputs:execIn"), ("get_render_product.outputs:renderProductPath", "set_camera.inputs:renderProductPath"), ], keys.SET_VALUES: [ ("create_viewport.inputs:viewportId", 0), ("create_viewport.inputs:name", f"{self._namespace}/{self._frame_id}"), ("set_viewport_resolution.inputs:width", self._resolution[0]), ("set_viewport_resolution.inputs:height", self._resolution[1]), ], } # Add camerasHelper for each selected camera type valid_camera_type = False for camera_type in self._types: if not camera_type in ["rgb", "depth", "depth_pcl", "semantic_segmentation", "instance_segmentation", "bbox_2d_tight", "bbox_2d_loose", "bbox_3d", "camera_info"]: continue camera_helper_name = f"camera_helper_{camera_type}" graph_config[keys.CREATE_NODES] += [ (camera_helper_name, "omni.isaac.ros2_bridge.ROS2CameraHelper") ] graph_config[keys.CONNECT] += [ ("set_camera.outputs:execOut", f"{camera_helper_name}.inputs:execIn"), ("get_render_product.outputs:renderProductPath", f"{camera_helper_name}.inputs:renderProductPath") ] graph_config[keys.SET_VALUES] += [ (f"{camera_helper_name}.inputs:nodeNamespace", self._namespace), (f"{camera_helper_name}.inputs:frameId", self._frame_id), (f"{camera_helper_name}.inputs:topicName", f"{self._base_topic}/{camera_type}"), (f"{camera_helper_name}.inputs:type", camera_type) ] # Publish labels for specific camera types if self._publish_labels and camera_type in ["semantic_segmentation", "instance_segmentation", "bbox_2d_tight", "bbox_2d_loose", "bbox_3d"]: graph_config[keys.SET_VALUES] += [ (camera_helper_name + ".inputs:enableSemanticLabels", True), (camera_helper_name + ".inputs:semanticLabelsTopicName", f"{self._frame_id}/{camera_type}_labels") ] valid_camera_type = True if not valid_camera_type: carb.log_error(f"Cannot create ROS2 Camera graph, no valid camera type was selected") return # Create the camera graph (graph, _, _, _) = og.Controller.edit( graph_specs, graph_config ) # Connect camera to the graphs set_targets( prim=stage.get_current_stage().GetPrimAtPath(f"{graph_path}/set_camera"), attribute="inputs:cameraPrim", target_prim_paths=[self._camera_prim_path] ) # Run the ROS Camera graph once to generate ROS image publishers in SDGPipeline og.Controller.evaluate_sync(graph) # Also initialize the Super class with updated prim path (only camera graph path) super().initialize(graph_path) def camera_topic(self, camera_type: str) -> str: """ (str) Path to the camera topic. Args: camera_type (str): one of the supported camera output types Returns: Camera topic name (str) if the camera type exists, else empty string """ return f"{self._namespace}{self._base_topic}/{camera_type}" if camera_type in self._types else "" def camera_labels_topic(self, camera_type: str) -> str: """ (str) Path to the camera labels topic. Args: camera_type (str): one of the supported camera output types Returns: Camera labels topic name (str) if the camera type exists, else empty string """ if not self._publish_labels or \ not camera_type in self._types or \ not camera_type in ["semantic_segmentation", "instance_segmentation", "bbox_2d_tight", "bbox_2d_loose", "bbox_3d"]: return "" return f"{self._namespace}{self._base_topic}/{camera_type}_labels"
9,070
Python
44.813131
181
0.600551
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/graphs/__init__.py
""" | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ from .graph import Graph from .ros2_camera import ROS2Camera from .ros2_tf import ROS2Tf from .ros2_odometry import ROS2Odometry from .ros2_lidar import ROS2Lidar
254
Python
27.33333
82
0.771654
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/graphs/ros2_odometry.py
""" | File: ros2_odometry.py | License: BSD-3-Clause. Copyright (c) 2023, Micah Nye. All rights reserved. """ __all__ = ["ROS2Tf"] import carb from omni.isaac.core.utils import stage import omni.graph.core as og from omni.isaac.core.utils.prims import is_prim_path_valid, set_targets from pegasus.simulator.logic.graphs import Graph from pegasus.simulator.logic.vehicles import Vehicle class ROS2Odometry(Graph): """The class that implements the ROS2 Odometry graph. This class inherits the base class Graph. """ def __init__(self, config: dict = {}): """Initialize the ROS2 Odometry class Args: config (dict): A Dictionary that contains all the parameters for configuring the ROS2Odometry - it can be empty or only have some of the parameters used by the ROS2Odometry. Examples: The dictionary default parameters are >>> {"odom_topic": "odom", # String for odometry topic >>> "publish_odom_to_base_tf": True, # Enable tf broadcaster for odom_frame->base_frame transform >>> "publish_map_to_odom_tf": True, # Enable tf broadcaster for map_frame->odom_frame transform >>> "map_frame": "map", # String name for the map_frame >>> "odom_frame": "odom", # String name for the odom_frame >>> "base_frame": "base_link"} # String name for the base_frame """ # Initialize the Super class "object" attribute super().__init__(graph_type="ROS2Odometry") # Process the config dictionary self._odom_topic = config.get("odom_topic", "odom") self._publish_odom_to_base_tf = config.get("publish_map_to_odom_tf", True) self._publish_map_to_odom_tf = config.get("publish_map_to_odom_tf", True) self._map_frame = config.get("map_frame", "map") self._odom_frame = config.get("odom_frame", "odom") self._base_frame = config.get("base_frame", "base_link") def initialize(self, vehicle: Vehicle): """Method that initializes the graph. Args: vehicle (Vehicle): The vehicle that this graph is attached to. """ self._namespace = f"/{vehicle.vehicle_name}" # Create the graph under vehicle with graph name odom_pub and allow only one per vehicle. graph_path = f"{vehicle.prim_path}/odom_pub" if is_prim_path_valid(graph_path): carb.log_warn(f"ROS2 Odometry Graph for vehicle {vehicle.vehicle_name} already exists") return # Graph configuration graph_specs = { "graph_path": graph_path, "evaluator_name": "execution", } # Creating a graph edit configuration with transform tree publishers keys = og.Controller.Keys graph_config = { keys.CREATE_NODES: [ ("on_playback_tick", "omni.graph.action.OnPlaybackTick"), ("isaac_read_simulation_time", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("isaac_compute_odometry", "omni.isaac.core_nodes.IsaacComputeOdometry"), ("publish_odometry", "omni.isaac.ros2_bridge.ROS2PublishOdometry") ], keys.CONNECT: [ ("on_playback_tick.outputs:tick", "isaac_compute_odometry.inputs:execIn"), ("isaac_read_simulation_time.outputs:simulationTime", "publish_odometry.inputs:timeStamp"), ("isaac_compute_odometry.outputs:execOut", "publish_odometry.inputs:execIn"), ("isaac_compute_odometry.outputs:linearVelocity", "publish_odometry.inputs:linearVelocity"), ("isaac_compute_odometry.outputs:orientation", "publish_odometry.inputs:orientation"), ("isaac_compute_odometry.outputs:position", "publish_odometry.inputs:position") ], keys.SET_VALUES: [ ("publish_odometry.inputs:odomFrameId", self._odom_frame), ("publish_odometry.inputs:chassisFrameId", self._base_frame), ("publish_odometry.inputs:nodeNamespace", self._namespace), ("publish_odometry.inputs:topicName", self._odom_topic) ] } # Create odom_frame->base_frame publisher if self._publish_odom_to_base_tf: graph_config[keys.CREATE_NODES] += [ ("publish_odom_transform_tree", "omni.isaac.ros2_bridge.ROS2PublishRawTransformTree") ] graph_config[keys.CONNECT] += [ ("on_playback_tick.outputs:tick", "publish_odom_transform_tree.inputs:execIn"), ("isaac_read_simulation_time.outputs:simulationTime", "publish_odom_transform_tree.inputs:timeStamp"), ("isaac_compute_odometry.outputs:orientation", "publish_odom_transform_tree.inputs:rotation"), ("isaac_compute_odometry.outputs:position", "publish_odom_transform_tree.inputs:translation") ] graph_config[keys.SET_VALUES] += [ ("publish_odom_transform_tree.inputs:parentFrameId", self._odom_frame), ("publish_odom_transform_tree.inputs:childFrameId", self._base_frame) ] # Create map_frame->odom_frame publisher # Because there is no drift or pose jumps in simulated odometry, map_frame->base_frame == odom_frame->base_frame if self._publish_odom_to_base_tf: graph_config[keys.CREATE_NODES] += [ ("publish_map_transform_tree", "omni.isaac.ros2_bridge.ROS2PublishRawTransformTree") ] graph_config[keys.CONNECT] += [ ("on_playback_tick.outputs:tick", "publish_map_transform_tree.inputs:execIn"), ("isaac_read_simulation_time.outputs:simulationTime", "publish_map_transform_tree.inputs:timeStamp") ] graph_config[keys.SET_VALUES] += [ ("publish_map_transform_tree.inputs:parentFrameId", self._map_frame), ("publish_map_transform_tree.inputs:childFrameId", self._odom_frame) ] # Create the camera graph (graph, _, _, _) = og.Controller.edit( graph_specs, graph_config ) # Set the odometry chassis prim, which should be the vehicle prim path set_targets( prim=stage.get_current_stage().GetPrimAtPath(f"{graph_path}/isaac_compute_odometry"), attribute="inputs:chassisPrim", target_prim_paths=[vehicle.prim_path] ) # Run the ROS Camera graph once to generate ROS image publishers in SDGPipeline og.Controller.evaluate_sync(graph) # Also initialize the Super class with updated prim path (only camera graph path) super().initialize(graph_path) @property def odometry_topic(self) -> str: """ (str) Path to the odometry topic. Returns: Odometry topic name (str) """ return f"{self._namespace}/{self._odom_topic}"
7,131
Python
45.921052
185
0.603422
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/graphs/ros2_tf.py
""" | File: ros2_tf.py | License: BSD-3-Clause. Copyright (c) 2023, Micah Nye. All rights reserved. """ __all__ = ["ROS2Tf"] import carb from omni.isaac.core.utils import stage import omni.graph.core as og from omni.isaac.core.utils.prims import is_prim_path_valid, set_targets from omni.isaac.core.prims import XFormPrim from pegasus.simulator.logic.graphs import Graph from pegasus.simulator.logic.vehicles import Vehicle class ROS2Tf(Graph): """The class that implements the ROS2 TF graph. This class inherits the base class Graph. """ def __init__(self): """Initialize the ROS2 TF class """ # Initialize the Super class "object" attribute super().__init__(graph_type="ROS2Tf") def initialize(self, vehicle: Vehicle): """Method that initializes the graph. Args: vehicle (Vehicle): The vehicle that this graph is attached to. """ self._namespace = f"/{vehicle.vehicle_name}" # The vehicle uses body instead of standardized base_link, # so we need to create the base_link and connect the body to it base_link_xform_path = f"{vehicle.prim_path}/body/base_link" XFormPrim( prim_path=base_link_xform_path ) # Create the graph under vehicle with graph name tf and allow only one per vehicle. graph_path = f"{vehicle.prim_path}/tf_pub" if is_prim_path_valid(graph_path): carb.log_warn(f"ROS2 TF Graph for vehicle {vehicle.vehicle_name} already exists") return # Graph configuration graph_specs = { "graph_path": graph_path, "evaluator_name": "execution", } # Creating a graph edit configuration with transform tree publishers keys = og.Controller.Keys graph_config = { keys.CREATE_NODES: [ ("on_playback_tick", "omni.graph.action.OnPlaybackTick"), ("isaac_read_simulation_time", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("publish_transform_tree", "omni.isaac.ros2_bridge.ROS2PublishTransformTree") ], keys.CONNECT: [ ("on_playback_tick.outputs:tick", "publish_transform_tree.inputs:execIn"), ("isaac_read_simulation_time.outputs:simulationTime", "publish_transform_tree.inputs:timeStamp") ], keys.SET_VALUES: [ ("publish_transform_tree.inputs:nodeNamespace", self._namespace) ] } # Create the camera graph (graph, _, _, _) = og.Controller.edit( graph_specs, graph_config ) # Set the parent frame, it should be the base_link set_targets( prim=stage.get_current_stage().GetPrimAtPath(f"{graph_path}/publish_transform_tree"), attribute="inputs:parentPrim", target_prim_paths=[base_link_xform_path] ) # Create list of target prims, which will contain articulation root # and all sensors with frame_path filled target_prim_paths = [vehicle.prim_path] for sensor in vehicle._sensors: if len(sensor.frame_path) and is_prim_path_valid(sensor.frame_path): target_prim_paths.append(sensor.frame_path) set_targets( prim=stage.get_current_stage().GetPrimAtPath(f"{graph_path}/publish_transform_tree"), attribute="inputs:targetPrims", target_prim_paths=target_prim_paths ) # Run the ROS Camera graph once to generate ROS image publishers in SDGPipeline og.Controller.evaluate_sync(graph) # Also initialize the Super class with updated prim path (only camera graph path) super().initialize(graph_path)
3,809
Python
35.634615
112
0.618273
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/graphs/graph.py
""" | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ __all__ = ["Graph"] class Graph: """The base class for implementing OmniGraphs Attributes: graph_prim_path """ def __init__(self, graph_type: str): """Initialize Graph class Args: graph_type (str): A name that describes the type of graph """ self._graph_type = graph_type self._graph_prim_path = None def initialize(self, graph_prim_path: str): """ Method that should be implemented and called by the class that inherits the graph object. """ self._graph_prim_path = graph_prim_path @property def graph_type(self) -> str: """ (str) A name that describes the type of graph. """ return self._graph_type @property def graph_prim_path(self) -> str: """ (str) Path to the graph. """ return self._graph_prim_path
996
Python
23.924999
97
0.565261
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/graphs/ros2_lidar.py
""" | File: ros2_lidar.py | License: BSD-3-Clause. Copyright (c) 2023, Micah Nye. All rights reserved. """ __all__ = ["ROS2Lidar"] import carb from omni.isaac.core.utils import stage import omni.graph.core as og from omni.isaac.core.utils.prims import is_prim_path_valid from omni.isaac.core.utils.prims import set_targets from pegasus.simulator.logic.graphs import Graph from pegasus.simulator.logic.vehicles import Vehicle import numpy as np class ROS2Lidar(Graph): """The class that implements the ROS2 Lidar graph. This class inherits the base class Graph. """ def __init__(self, lidar_prim_path: str, config: dict = {}): """Initialize the ROS2 Lidar class Args: lidar_prim_path (str): Path to the lidar prim. Global path when it starts with `/`, else local to vehicle prim path config (dict): A Dictionary that contains all the parameters for configuring the ROS2Lidar - it can be empty or only have some of the parameters used by the ROS2Lidar. Examples: The dictionary default parameters are >>> {"publish_scan": False, # publish scanner data as sensor_msgs/LaserScan (requires high_lod turned off) >>> "publish_point_cloud": True} # publish scanner data as sensor_msgs/PointCloud2 (for 2D data, requires high_lod turned on) """ # Initialize the Super class "object" attribute super().__init__(graph_type="ROS2Lidar") # Save lidar path, frame id and ros topic name self._lidar_prim_path = lidar_prim_path self._frame_id = lidar_prim_path.rpartition("/")[-1] # frame_id of the lidar is the last prim path part after `/` self._base_topic = "" # Process the config dictionary self._publish_scan = config.get("publish_scan", False) self._publish_point_cloud = config.get("publish_point_cloud", True) def initialize(self, vehicle: Vehicle): """Method that initializes the graph of the lidar. Args: vehicle (Vehicle): The vehicle that this graph is attached to. """ self._namespace = f"/{vehicle.vehicle_name}" self._base_topic = f"/{self._frame_id}" # Set the prim_path for the camera if self._lidar_prim_path[0] != '/': self._lidar_prim_path = f"{vehicle.prim_path}/{self._lidar_prim_path}" # Check if the prim path is valid if not is_prim_path_valid(self._lidar_prim_path): carb.log_error(f"Cannot create ROS2 Lidar graph, the lidar prim path \"{self._lidar_prim_path}\" is not valid") return # Set the prim paths for camera and tf graphs graph_path = f"{self._lidar_prim_path}_pub" # Graph configuration graph_specs = { "graph_path": graph_path, "evaluator_name": "execution", } # Creating a default graph edit configuration keys = og.Controller.Keys graph_config = { keys.CREATE_NODES: [ ("on_tick", "omni.graph.action.OnTick"), ("isaac_read_simulation_time", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ], keys.CONNECT: [], keys.SET_VALUES: [], } # Add laser scan publishing to the graph if self._publish_scan: graph_config[keys.CREATE_NODES] += [ ("isaac_read_lidar_beams", "omni.isaac.range_sensor.IsaacReadLidarBeams"), ("publish_laser_scan", "omni.isaac.ros2_bridge.ROS2PublishLaserScan") ] graph_config[keys.CONNECT] += [ ("on_tick.outputs:tick", "isaac_read_lidar_beams.inputs:execIn"), ("isaac_read_lidar_beams.outputs:execOut", "publish_laser_scan.inputs:execIn"), ("isaac_read_lidar_beams.outputs:azimuthRange", "publish_laser_scan.inputs:azimuthRange"), ("isaac_read_lidar_beams.outputs:depthRange", "publish_laser_scan.inputs:depthRange"), ("isaac_read_lidar_beams.outputs:horizontalFov", "publish_laser_scan.inputs:horizontalFov"), ("isaac_read_lidar_beams.outputs:horizontalResolution", "publish_laser_scan.inputs:horizontalResolution"), ("isaac_read_lidar_beams.outputs:intensitiesData", "publish_laser_scan.inputs:intensitiesData"), ("isaac_read_lidar_beams.outputs:linearDepthData", "publish_laser_scan.inputs:linearDepthData"), ("isaac_read_lidar_beams.outputs:numCols", "publish_laser_scan.inputs:numCols"), ("isaac_read_lidar_beams.outputs:numRows", "publish_laser_scan.inputs:numRows"), ("isaac_read_lidar_beams.outputs:rotationRate", "publish_laser_scan.inputs:rotationRate"), ("isaac_read_simulation_time.outputs:simulationTime", "publish_laser_scan.inputs:timeStamp") ] graph_config[keys.SET_VALUES] += [ ("publish_laser_scan.inputs:frameId", self._frame_id), ("publish_laser_scan.inputs:nodeNamespace", self._namespace), ("publish_laser_scan.inputs:topicName", f"{self._base_topic}/scan") ] # Add point cloud publishing to the graph if self._publish_point_cloud: graph_config[keys.CREATE_NODES] += [ ("isaac_read_lidar_point_cloud", "omni.isaac.range_sensor.IsaacReadLidarPointCloud"), ("publish_point_cloud", "omni.isaac.ros2_bridge.ROS2PublishPointCloud") ] graph_config[keys.CONNECT] += [ ("on_tick.outputs:tick", "isaac_read_lidar_point_cloud.inputs:execIn"), ("isaac_read_lidar_point_cloud.outputs:execOut", "publish_point_cloud.inputs:execIn"), ("isaac_read_lidar_point_cloud.outputs:pointCloudData", "publish_point_cloud.inputs:pointCloudData"), ("isaac_read_simulation_time.outputs:simulationTime", "publish_point_cloud.inputs:timeStamp") ] graph_config[keys.SET_VALUES] += [ ("publish_point_cloud.inputs:frameId", self._frame_id), ("publish_point_cloud.inputs:nodeNamespace", self._namespace), ("publish_point_cloud.inputs:topicName", f"{self._base_topic}/point_cloud") ] # Create the camera graph (graph, _, _, _) = og.Controller.edit( graph_specs, graph_config ) # Connect lidar to the graphs if self._publish_scan: set_targets( prim=stage.get_current_stage().GetPrimAtPath(f"{graph_path}/isaac_read_lidar_beams"), attribute="inputs:lidarPrim", target_prim_paths=[self._lidar_prim_path] ) if self._publish_point_cloud: set_targets( prim=stage.get_current_stage().GetPrimAtPath(f"{graph_path}/isaac_read_lidar_point_cloud"), attribute="inputs:lidarPrim", target_prim_paths=[self._lidar_prim_path] ) # Run the ROS Lidar graph once to generate ROS publishers in SDGPipeline og.Controller.evaluate_sync(graph) # Also initialize the Super class with updated prim path (only lidar graph path) super().initialize(graph_path) def laser_scan_topic(self) -> str: """ Returns: (str) Lidar laser scan topic name if exists, else empty string """ return f"{self._namespace}{self._base_topic}/scan" if self._publish_scan else "" def camera_labels_topic(self) -> str: """ Returns: (str) Lidar point cloud topic name if exists, else empty string """ return f"{self._namespace}{self._base_topic}/point_cloud" if self._publish_point_cloud else ""
7,872
Python
45.863095
179
0.607342
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/sensors/camera.py
""" | File: camera.py | License: BSD-3-Clause. Copyright (c) 2023, Micah Nye. All rights reserved. | Description: Creates or connects to a Camera prim for higher level functionality """ __all__ = ["Camera"] import carb from omni.isaac.core.utils.prims import is_prim_path_valid from omni.isaac.sensor import Camera as CameraPrim from pegasus.simulator.logic.state import State from pegasus.simulator.logic.sensors import Sensor from pegasus.simulator.logic.vehicles import Vehicle import numpy as np class Camera(Sensor): """The class that implements the Camera sensor. This class inherits the base class Sensor. """ def __init__(self, camera_prim_path: str, config: dict = {}): """Initialize the Camera class Args: camera_prim_path (str): Path to the camera prim. Global path when it starts with `/`, else local to vehicle prim path config (dict): A Dictionary that contains all the parameters for configuring the Camera - it can be empty or only have some of the parameters used by the Camera. Examples: The dictionary default parameters are >>> {"position": [0.0, 0.0, 0.0], # Meters >>> "orientation": [0.0, 0.0, 0.0, 1.0], # Quaternion [qx, qy, qz, qw] >>> "focal_length": 24.0, # Millimeters >>> "focus_distance", 400.0, # Stage units >>> "resolution": [640, 480], # Pixels >>> "set_projection_type": "pinhole", # pinhole, fisheyeOrthographic, fisheyeEquidistant, fisheyeEquisolid, fisheyePolynomial, fisheyeSpherical >>> "update_rate": 30.0, # Hz >>> "overwrite_params": False} # Overwrite params if the camera prim already exists """ # Initialize the Super class "object" attribute # update_rate not necessary super().__init__(sensor_type="Camera", update_rate=config.get("update_rate", 30.0)) # Save the id of the sensor self._camera_prim_path = camera_prim_path self._frame_id = camera_prim_path.rpartition("/")[-1] # frame_id of the camera is the last prim path part after `/` # Reference to the actual camera object. This is set when the camera is initialized self.camera = None # Get the position of the camera relative to the vehicle self._position = np.array(config.get("position", [0.0, 0.0, 0.0])) self._orientation = np.array(config.get("orientation", [0.0, 0.0, 0.0, 1.0])) # Quaternion [qx, qy, qz, qw] # Get the camera parameters self._focal_length = config.get("focal_length", 24.0) self._focus_distance = config.get("focus_distance", 400.0) self._clipping_range = config.get("clipping_range", [0.05, 1000000.0]) self._resolution = config.get("resolution", [640, 480]) self._set_projection_type = config.get("set_projection_type", "pinhole") self._horizonal_aperture = config.get("horizontal_aperture", 20.9550) self._vertical_aperture = config.get("vertical_aperture", 15.2908) self._overwrite = config.get("overwrite_params", False) # Save the current state of the camera sensor self._state = { "frame_id": self._frame_id } def initialize(self, vehicle: Vehicle): """Method that initializes the action graph of the camera. It also initalizes the sensor latitude, longitude and altitude attributes as well as the vehicle that the sensor is attached to. Args: vehicle (Vehicle): The vehicle that this sensor is attached to. """ # Set the prim path for the camera if self._camera_prim_path[0] != '/': self._camera_prim_path = f"{vehicle.prim_path}/{self._camera_prim_path}" else: self._camera_prim_path = self._camera_prim_path # Create camera prim if not is_prim_path_valid(self._camera_prim_path) or self._overwrite: self.camera = CameraPrim( prim_path=self._camera_prim_path, frequency=self._update_rate, resolution=self._resolution, translation=np.array(self._position), orientation=[self._orientation[3], self._orientation[0], self._orientation[1], self._orientation[2]] ) # Set camera parameters self.camera.set_focal_length(self._focal_length) self.camera.set_focus_distance(self._focus_distance) self.camera.set_clipping_range(self._clipping_range[0], self._clipping_range[1]) self.camera.set_projection_type(self._set_projection_type) self.camera.set_horizontal_aperture(self._horizonal_aperture) self.camera.set_vertical_aperture(self._vertical_aperture) else: self.camera = CameraPrim( prim_path=self._camera_prim_path, frequency=self._update_rate, resolution=self._resolution ) # Set the sensor's frame path self.frame_path = self._camera_prim_path @property def state(self): """ (dict) The 'state' of the sensor, i.e. the data produced by the sensor at any given point in time """ return self._state @Sensor.update_at_rate def update(self, state: State, dt: float): """ Args: state (State): The current state of the vehicle. UNUSED IN THIS SENSOR dt (float): The time elapsed between the previous and current function calls (s). UNUSED IN THIS SENSOR Returns: None """ return None
5,720
Python
44.404762
173
0.61049
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/sensors/lidar.py
""" | File: lidar.py | License: BSD-3-Clause. Copyright (c) 2023, Micah Nye. All rights reserved. | Description: Creates a lidar sensor """ __all__ = ["Lidar"] from omni.usd import get_context from omni.isaac.range_sensor import _range_sensor import omni.isaac.RangeSensorSchema as RangeSensorSchema from pxr import Sdf, Gf from pegasus.simulator.logic.state import State from pegasus.simulator.logic.sensors import Sensor from pegasus.simulator.logic.vehicles import Vehicle import numpy as np class Lidar(Sensor): """The class that implements the Lidar sensor. This class inherits the base class Sensor. """ def __init__(self, prim_path: str, config: dict = {}): """Initialize the Camera class Args: prim_path (str): Path to the lidar prim. Global path when it starts with `/`, else local to vehicle prim path config (dict): A Dictionary that contains all the parameters for configuring the lidar - it can be empty or only have some of the parameters used by the lidar. Examples: The dictionary default parameters are >>> {"position": [0.0, 0.0, 0.0], # Meters >>> "yaw_offset": 0.0, # Degrees >>> "rotation_rate": 20.0, # Hz >>> "horizontal_fov": 360.0, # Degrees >>> "horizontal_resolution": 1.0, # Degrees >>> "vertical_fov": 10.0, # Degrees >>> "vertical_resolution": 1.0, # Degrees >>> "min_range": 0.4, # Meters >>> "max_range": 100.0, # Meters >>> "high_lod": True, # High level of detail (True - draw all rays, False - draw horizontal rays) >>> "draw_points": False, # Draw lidar points where they hit an object >>> "draw_lines": False, # Draw lidar ray lines >>> "fill_state: False} # Fill state with sensor data """ # Initialize the Super class "object" attribute # update_rate not necessary super().__init__(sensor_type="Lidar", update_rate=config.get("rotation_rate", 20.0)) # Save the id of the sensor self._prim_path = prim_path self._frame_id = prim_path.rpartition("/")[-1] # frame_id of the camera is the last prim path part after `/` # The extension acquires the LIDAR interface at startup. It will be released during extension shutdown. We # create a LIDAR prim using our schema, and then we interact with / query that prim using the python API found # in lidar/bindings self._li = _range_sensor.acquire_lidar_sensor_interface() self.lidar = None # Get the lidar position relative to its parent prim self._position = np.array(config.get("position", [0.0, 0.0, 0.0])) # Get the lidar parameters self._yaw_offset = config.get("yaw_offset", 0.0) self._rotation_rate = config.get("rotation_rate", 20.0) self._horizontal_fov = config.get("horizontal_fov", 360.0) self._horizontal_resolution = config.get("horizontal_resolution", 1.0) self._vertical_fov = config.get("vertical_fov", 10.0) self._vertical_resolution = config.get("vertical_resolution", 1.0) self._min_range = config.get("min_range", 0.4) self._max_range = config.get("max_range", 100.0) self._high_lod = config.get("high_lod", True) self._draw_points = config.get("draw_points", False) self._draw_lines = config.get("draw_lines", False) # Save the current state of the range sensor self._fill_state = config.get("fill_state", False) if self._fill_state: self._state = { "frame_id": self._frame_id, "depth": None, "zenith": None, "azimuth": None } else: self._state = None def initialize(self, vehicle: Vehicle): """Method that initializes the lidar sensor. It also initalizes the sensor latitude, longitude and altitude attributes as well as the vehicle that the sensor is attached to. Args: vehicle (Vehicle): The vehicle that this sensor is attached to. """ # Set the prim path for the camera if self._prim_path[0] != '/': self._prim_path = f"{vehicle.prim_path}/{self._prim_path}" else: self._prim_path = self._prim_path # create the LIDAR. Before we can set any attributes on our LIDAR, we must first create the prim using our # LIDAR schema, and then populate it with the parameters we will be manipulating. If you try to manipulate # a parameter before creating it, you will get a runtime error stage = get_context().get_stage() self.lidar = RangeSensorSchema.Lidar.Define(stage, Sdf.Path(self._prim_path)) # Set lidar parameters self.lidar.AddTranslateOp().Set(Gf.Vec3f(*self._position)) self.lidar.CreateYawOffsetAttr().Set(self._yaw_offset) self.lidar.CreateRotationRateAttr().Set(self._rotation_rate) self.lidar.CreateHorizontalFovAttr().Set(self._horizontal_fov) self.lidar.CreateHorizontalResolutionAttr().Set(self._horizontal_resolution) self.lidar.CreateVerticalFovAttr().Set(self._vertical_fov) self.lidar.CreateVerticalResolutionAttr().Set(self._vertical_resolution) self.lidar.CreateMinRangeAttr().Set(self._min_range) self.lidar.CreateMaxRangeAttr().Set(self._max_range) self.lidar.CreateHighLodAttr().Set(self._high_lod) self.lidar.CreateDrawPointsAttr().Set(self._draw_points) self.lidar.CreateDrawLinesAttr().Set(self._draw_lines) # Set the sensor's frame path self.frame_path = self._prim_path @property def state(self): """ (dict) The 'state' of the sensor, i.e. the data produced by the sensor at any given point in time """ return self._state @Sensor.update_at_rate def update(self, state: State, dt: float): """ Args: state (State): The current state of the vehicle. dt (float): The time elapsed between the previous and current function calls (s). Returns: (dict) A dictionary containing the current state of the sensor (the data produced by the sensor) or None """ # Add the values to the dictionary and return it if self._fill_state: self._state = { "frame_id": self._frame_id, "depth": self._li.get_depth_data(self._prim_path), "zenith": self._li.get_zenith_data(self._prim_path), "azimuth": self._li.get_azimuth_data(self._prim_path), } return self._state
6,991
Python
45.613333
171
0.595766
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/sensors/magnetometer.py
""" | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: Simulates a magnetometer. Based on the original implementation provided in PX4 stil_gazebo (https://github.com/PX4/PX4-SITL_gazebo) by Elia Tarasov """ __all__ = ["Magnetometer"] import numpy as np from scipy.spatial.transform import Rotation from pegasus.simulator.logic.state import State from pegasus.simulator.logic.sensors import Sensor from pegasus.simulator.logic.rotations import rot_ENU_to_NED, rot_FLU_to_FRD from pegasus.simulator.logic.sensors.geo_mag_utils import ( get_mag_declination, get_mag_inclination, get_mag_strength, reprojection, ) class Magnetometer(Sensor): """The class that implements a magnetometer sensor. This class inherits the base class Sensor. """ def __init__(self, config={}): """Initialize the Magnetometer class Args: config (dict): A Dictionary that contains all the parameters for configuring the Magnetometer - it can be empty or only have some of the parameters used by the Magnetometer. Examples: The dictionary default parameters are >>> {"noise_density": 0.4e-3, # gauss / sqrt(hz) >>> "random_walk": 6.4e-6, # gauss * sqrt(hz) >>> "bias_correlation_time": 6.0e2, # s >>> "update_rate": 250.0} # Hz """ # Initialize the Super class "object" attributes super().__init__(sensor_type="Magnetometer", update_rate=config.get("update_rate", 250.0)) # Set the noise parameters self._bias: np.ndarray = np.array([0.0, 0.0, 0.0]) self._noise_density = config.get("noise_density", 0.4e-3) # gauss / sqrt(hz) self._random_walk = config.get("random_walk", 6.4e-6) # gauss * sqrt(hz) self._bias_correlation_time = config.get("bias_correlation_time", 6.0e2) # s # Initial state measured by the Magnetometer self._state = {"magnetic_field": np.zeros((3,))} @property def state(self): """ (dict) The 'state' of the sensor, i.e. the data produced by the sensor at any given point in time """ return self._state @Sensor.update_at_rate def update(self, state: State, dt: float): """Method that implements the logic of a magnetometer. In this method we start by computing the projection of the vehicle body frame such in the elipsoidal model of the earth in order to get its current latitude and longitude. From here the declination and inclination are computed and used to get the strength of the magnetic field, expressed in the inertial frame of reference (in ENU convention). This magnetic field is then rotated to the body frame such that it becomes expressed in a FRD body frame relative to a NED inertial reference frame. (The convention adopted by PX4). Random noise and bias are added to this magnetic field. Args: state (State): The current state of the vehicle. dt (float): The time elapsed between the previous and current function calls (s). Returns: (dict) A dictionary containing the current state of the sensor (the data produced by the sensor) """ # Get the latitude and longitude from the current state latitude, longitude = reprojection(state.position, np.radians(self._origin_lat), np.radians(self._origin_lon)) # Magnetic declination and inclination (radians) declination_rad: float = np.radians(get_mag_declination(np.degrees(latitude), np.degrees(longitude))) inclination_rad: float = np.radians(get_mag_inclination(np.degrees(latitude), np.degrees(longitude))) # Compute the magnetic strength (10^5xnanoTesla) strength_ga: float = 0.01 * get_mag_strength(np.degrees(latitude), np.degrees(longitude)) # Compute the Magnetic filed components according to: http://geomag.nrcan.gc.ca/mag_fld/comp-en.php H: float = strength_ga * np.cos(inclination_rad) Z: float = np.tan(inclination_rad) * H X: float = H * np.cos(declination_rad) Y: float = H * np.sin(declination_rad) # Magnetic field of a body following a front-left-up (FLU) convention expressed in a East-North-Up (ENU) inertial frame magnetic_field_inertial: np.ndarray = np.array([X, Y, Z]) # Rotate the magnetic field vector such that it expresses a field of a body frame according to the front-right-down (FRD) # expressed in a North-East-Down (NED) inertial frame (the standard used in magnetometer units) attitude_flu_enu = Rotation.from_quat(state.attitude) # Rotate the magnetic field from the inertial frame to the body frame of reference according to the FLU frame convention rot_body_to_world = rot_ENU_to_NED * attitude_flu_enu * rot_FLU_to_FRD.inv() # The magnetic field expressed in the body frame according to the front-right-down (FRD) convention magnetic_field_body = rot_body_to_world.inv().apply(magnetic_field_inertial) # ------------------------------- # Add noise to the magnetic field # ------------------------------- tau = self._bias_correlation_time # Discrete-time standard deviation equivalent to an "integrating" sampler with integration time dt. sigma_d: float = 1 / np.sqrt(dt) * self._noise_density sigma_b: float = self._random_walk # Compute exact covariance of the process after dt [Maybeck 4-114]. sigma_b_d: float = np.sqrt(-sigma_b * sigma_b * tau / 2.0 * (np.exp(-2.0 * dt / tau) - 1.0)) # Compute state-transition. phi_d: float = np.exp(-1.0 / tau * dt) # Add the noise to the magnetic field magnetic_field_noisy: np.ndarray = np.zeros((3,)) for i in range(3): self._bias[i] = phi_d * self._bias[i] + sigma_b_d * np.random.randn() magnetic_field_noisy[i] = magnetic_field_body[i] + sigma_d * np.random.randn() + self._bias[i] # Add the values to the dictionary and return it self._state = {"magnetic_field": [magnetic_field_noisy[0], magnetic_field_noisy[1], magnetic_field_noisy[2]]} return self._state
6,384
Python
48.115384
185
0.649593
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/sensors/geo_mag_utils.py
""" | File: geo_mag_utils.py | Description: Provides utilities for computing latitude, longitude, and magnetic strength given the position of the vehicle in the simulated world. These computations and table constants are in agreement with the PX4 stil_gazebo implementation (https://github.com/PX4/PX4-SITL_gazebo). Therefore, PX4 should behave similarly to a gazebo-based simulation. """ import numpy as np # Declare which functions are visible from this file __all__ = ["get_mag_declination", "get_mag_inclination", "get_mag_strength", "reprojection", "GRAVITY_VECTOR"] # -------------------------------------------------------------------- # Magnetic field data from WMM2018 (10^5xnanoTesla (N, E D) n-frame ) # -------------------------------------------------------------------- # Declination data in degrees DECLINATION_TABLE = [ [ 47,46,45,43,42,41,39,37,33,29,23,16,10,4,-1,-6,-10,-15,-20,-27,-34,-42,-49,-56,-62,-67,-72,-74,-75,-73,-61,-22,26,42,47,48,47 ], [ 31,31,31,30,30,30,30,29,27,24,18,11,3,-4,-9,-13,-15,-18,-21,-27,-33,-40,-47,-52,-56,-57,-56,-52,-44,-30,-14,2,14,22,27,30,31 ], [ 22,23,23,23,22,22,22,23,22,19,13,5,-4,-12,-17,-20,-22,-22,-23,-25,-30,-36,-41,-45,-46,-44,-39,-31,-21,-11,-3,4,10,15,19,21,22 ], [ 17,17,17,18,17,17,17,17,16,13,8,-1,-10,-18,-22,-25,-26,-25,-22,-20,-21,-25,-29,-32,-31,-28,-23,-16,-9,-3,0,4,7,11,14,16,17 ], [ 13,13,14,14,14,13,13,12,11,9,3,-5,-14,-20,-24,-25,-24,-21,-17,-12,-9,-11,-14,-17,-18,-16,-12,-8,-3,-0,1,3,6,8,11,12,13 ], [ 11,11,11,11,11,10,10,10,9,6,-0,-8,-15,-21,-23,-22,-19,-15,-10,-5,-2,-2,-4,-7,-9,-8,-7,-4,-1,1,1,2,4,7,9,10,11 ], [ 10,9,9,9,9,9,9,8,7,3,-3,-10,-16,-20,-20,-18,-14,-9,-5,-2,1,2,0,-2,-4,-4,-3,-2,-0,0,0,1,3,5,7,9,10 ], [ 9,9,9,9,9,9,9,8,6,1,-4,-11,-16,-18,-17,-14,-10,-5,-2,-0,2,3,2,0,-1,-2,-2,-1,-0,-1,-1,-1,1,3,6,8,9 ], [ 8,9,9,10,10,10,10,8,5,0,-6,-12,-15,-16,-15,-11,-7,-4,-1,1,3,4,3,2,1,0,-0,-0,-1,-2,-3,-4,-2,0,3,6,8 ], [ 7,9,10,11,12,12,12,9,5,-1,-7,-13,-15,-15,-13,-10,-6,-3,0,2,3,4,4,4,3,2,1,0,-1,-3,-5,-6,-6,-3,0,4,7 ], [ 5,8,11,13,14,15,14,11,5,-2,-9,-15,-17,-16,-13,-10,-6,-3,0,3,4,5,6,6,6,5,4,2,-1,-5,-8,-9,-9,-6,-3,1,5 ], [ 3,8,11,15,17,17,16,12,5,-4,-12,-18,-19,-18,-16,-12,-8,-4,-0,3,5,7,9,10,10,9,7,4,-1,-6,-10,-12,-12,-9,-5,-1,3 ], [ 3,8,12,16,19,20,18,13,4,-8,-18,-24,-25,-23,-20,-16,-11,-6,-1,3,7,11,14,16,17,17,14,8,-0,-8,-13,-15,-14,-11,-7,-2,3 ]] # Inclination data in degrees INCLINATION_TABLE = [ [ -78,-76,-74,-72,-70,-68,-65,-63,-60,-57,-55,-54,-54,-55,-56,-57,-58,-59,-59,-59,-59,-60,-61,-63,-66,-69,-73,-76,-79,-83,-86,-87,-86,-84,-82,-80,-78 ], [ -72,-70,-68,-66,-64,-62,-60,-57,-54,-51,-49,-48,-49,-51,-55,-58,-60,-61,-61,-61,-60,-60,-61,-63,-66,-69,-72,-76,-78,-80,-81,-80,-79,-77,-76,-74,-72 ], [ -64,-62,-60,-59,-57,-55,-53,-50,-47,-44,-41,-41,-43,-47,-53,-58,-62,-65,-66,-65,-63,-62,-61,-63,-65,-68,-71,-73,-74,-74,-73,-72,-71,-70,-68,-66,-64 ], [ -55,-53,-51,-49,-46,-44,-42,-40,-37,-33,-30,-30,-34,-41,-48,-55,-60,-65,-67,-68,-66,-63,-61,-61,-62,-64,-65,-66,-66,-65,-64,-63,-62,-61,-59,-57,-55 ], [ -42,-40,-37,-35,-33,-30,-28,-25,-22,-18,-15,-16,-22,-31,-40,-48,-55,-59,-62,-63,-61,-58,-55,-53,-53,-54,-55,-55,-54,-53,-51,-51,-50,-49,-47,-45,-42 ], [ -25,-22,-20,-17,-15,-12,-10,-7,-3,1,3,2,-5,-16,-27,-37,-44,-48,-50,-50,-48,-44,-41,-38,-38,-38,-39,-39,-38,-37,-36,-35,-35,-34,-31,-28,-25 ], [ -5,-2,1,3,5,8,10,13,16,20,21,19,12,2,-10,-20,-27,-30,-30,-29,-27,-23,-19,-17,-17,-17,-18,-18,-17,-16,-16,-16,-16,-15,-12,-9,-5 ], [ 15,18,21,22,24,26,29,31,34,36,37,34,28,20,10,2,-3,-5,-5,-4,-2,2,5,7,8,7,7,6,7,7,7,6,5,6,8,11,15 ], [ 31,34,36,38,39,41,43,46,48,49,49,46,42,36,29,24,20,19,20,21,23,25,28,30,30,30,29,29,29,29,28,27,25,25,26,28,31 ], [ 43,45,47,49,51,53,55,57,58,59,59,56,53,49,45,42,40,40,40,41,43,44,46,47,47,47,47,47,47,47,46,44,42,41,40,42,43 ], [ 53,54,56,57,59,61,64,66,67,68,67,65,62,60,57,55,55,54,55,56,57,58,59,59,60,60,60,60,60,60,59,57,55,53,52,52,53 ], [ 62,63,64,65,67,69,71,73,75,75,74,73,70,68,67,66,65,65,65,66,66,67,68,68,69,70,70,71,71,70,69,67,65,63,62,62,62 ], [ 71,71,72,73,75,77,78,80,81,81,80,79,77,76,74,73,73,73,73,73,73,74,74,75,76,77,78,78,78,78,77,75,73,72,71,71,71 ]] # Strength data in centi-Tesla STRENGTH_TABLE = [ [ 62,60,58,56,54,52,49,46,43,41,38,36,34,32,31,31,30,30,30,31,33,35,38,42,46,51,55,59,62,64,66,67,67,66,65,64,62 ], [ 59,56,54,52,50,47,44,41,38,35,32,29,28,27,26,26,26,25,25,26,28,30,34,39,44,49,54,58,61,64,65,66,65,64,63,61,59 ], [ 54,52,49,47,45,42,40,37,34,30,27,25,24,24,24,24,24,24,24,24,25,28,32,37,42,48,52,56,59,61,62,62,62,60,59,56,54 ], [ 49,47,44,42,40,37,35,33,30,28,25,23,22,23,23,24,25,25,26,26,26,28,31,36,41,46,51,54,56,57,57,57,56,55,53,51,49 ], [ 43,41,39,37,35,33,32,30,28,26,25,23,23,23,24,25,26,28,29,29,29,30,32,36,40,44,48,51,52,52,51,51,50,49,47,45,43 ], [ 38,36,35,33,32,31,30,29,28,27,26,25,24,24,25,26,28,30,31,32,32,32,33,35,38,42,44,46,47,46,45,45,44,43,41,40,38 ], [ 34,33,32,32,31,31,31,30,30,30,29,28,27,27,27,28,29,31,32,33,33,33,34,35,37,39,41,42,43,42,41,40,39,38,36,35,34 ], [ 33,33,32,32,33,33,34,34,35,35,34,33,32,31,30,30,31,32,33,34,35,35,36,37,38,40,41,42,42,41,40,39,37,36,34,33,33 ], [ 34,34,34,35,36,37,39,40,41,41,40,39,37,35,35,34,35,35,36,37,38,39,40,41,42,43,44,45,45,45,43,41,39,37,35,34,34 ], [ 37,37,38,39,41,42,44,46,47,47,46,45,43,41,40,39,39,40,41,41,42,43,45,46,47,48,49,50,50,50,48,46,43,41,39,38,37 ], [ 42,42,43,44,46,48,50,52,53,53,52,51,49,47,45,45,44,44,45,46,46,47,48,50,51,53,54,55,56,55,54,52,49,46,44,43,42 ], [ 48,48,49,50,52,53,55,56,57,57,56,55,53,51,50,49,48,48,48,49,49,50,51,53,55,56,58,59,60,60,58,56,54,52,50,49,48 ], [ 54,54,54,55,56,57,58,58,59,58,58,57,56,54,53,52,51,51,51,51,52,53,54,55,57,58,60,61,62,61,61,59,58,56,55,54,54 ]] SAMPLING_RES = 10.0 SAMPLING_MIN_LAT = -60 # deg SAMPLING_MAX_LAT = 60 # deg SAMPLING_MIN_LON = -180 # deg SAMPLING_MAX_LON = 180 # deg EARTH_RADIUS = 6353000.0 # meters # Gravity vector expressed in ENU GRAVITY_VECTOR = np.array([0.0, 0.0, -9.80665]) # m/s^2 def get_lookup_table_index(val: int, min: int, max: int): # for the rare case of hitting the bounds exactly # the rounding logic wouldn't fit, so enforce it. # limit to table bounds - required for maxima even when table spans full globe range # limit to (table bounds - 1) because bilinear interpolation requires checking (index + 1) val = np.clip(val, min, max - SAMPLING_RES) return int((-min + val) / SAMPLING_RES) def get_table_data(lat: float, lon: float, table): # If the values exceed valid ranges, return zero as default # as we have no way of knowing what the closest real value # would be. if lat < -90.0 or lat > 90.0 or lon < -180.0 or lon > 180.0: return 0.0 # round down to nearest sampling resolution min_lat = int(lat / SAMPLING_RES) * SAMPLING_RES min_lon = int(lon / SAMPLING_RES) * SAMPLING_RES # find index of nearest low sampling point min_lat_index = get_lookup_table_index(min_lat, SAMPLING_MIN_LAT, SAMPLING_MAX_LAT) min_lon_index = get_lookup_table_index(min_lon, SAMPLING_MIN_LON, SAMPLING_MAX_LON) data_sw = table[min_lat_index][min_lon_index] data_se = table[min_lat_index][min_lon_index + 1] data_ne = table[min_lat_index + 1][min_lon_index + 1] data_nw = table[min_lat_index + 1][min_lon_index] # perform bilinear interpolation on the four grid corners lat_scale = np.clip((lat - min_lat) / SAMPLING_RES, 0.0, 1.0) lon_scale = np.clip((lon - min_lon) / SAMPLING_RES, 0.0, 1.0) data_min = lon_scale * (data_se - data_sw) + data_sw data_max = lon_scale * (data_ne - data_nw) + data_nw return lat_scale * (data_max - data_min) + data_min def get_mag_declination(latitude: float, longitude: float): return get_table_data(latitude, longitude, DECLINATION_TABLE) def get_mag_inclination(latitude: float, longitude: float): return get_table_data(latitude, longitude, INCLINATION_TABLE) def get_mag_strength(latitude: float, longitude: float): return get_table_data(latitude, longitude, STRENGTH_TABLE) def reprojection(position: np.ndarray, origin_lat=-999, origin_long=-999): """ Compute the latitude and longitude coordinates from a local position """ # reproject local position to gps coordinates x_rad: float = position[1] / EARTH_RADIUS # north y_rad: float = position[0] / EARTH_RADIUS # east c: float = np.sqrt(x_rad * x_rad + y_rad * y_rad) sin_c: float = np.sin(c) cos_c: float = np.cos(c) if c != 0.0: latitude_rad = np.arcsin(cos_c * np.sin(origin_lat) + (x_rad * sin_c * np.cos(origin_lat)) / c) longitude_rad = origin_long + np.arctan2(y_rad * sin_c, c * np.cos(origin_lat) * cos_c - x_rad * np.sin(origin_lat) * sin_c) else: latitude_rad = origin_lat longitude_rad = origin_long return latitude_rad, longitude_rad
8,992
Python
58.953333
156
0.590747
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/sensors/__init__.py
""" | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ from .sensor import Sensor from .barometer import Barometer from .gps import GPS from .imu import IMU from .magnetometer import Magnetometer from .vision import Vision from .camera import Camera from .lidar import Lidar
374
Python
27.846152
82
0.780749
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/sensors/sensor.py
""" | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: Definition of the Sensor class which is used as the base for all the sensors. """ __all__ = ["Sensor"] from pegasus.simulator.logic.state import State class Sensor: """The base class for implementing a sensor Attributes: update_period (float): The period for each sensor update: update_period = 1 / update_rate (in s). origin_lat (float): The latitude of the origin of the world in degrees (might get used by some sensors). origin_lon (float): The longitude of the origin of the world in degrees (might get used by some sensors). origin_alt (float): The altitude of the origin of the world relative to sea water level (might get used by some sensors) """ def __init__(self, sensor_type: str, update_rate: float): """Initialize the Sensor class Args: sensor_type (str): A name that describes the type of sensor update_rate (float): The rate at which the data in the sensor should be refreshed (in Hz) """ # Set the sensor type and update rate self._sensor_type = sensor_type self._update_rate = update_rate self._update_period = 1.0 / self._update_rate # Auxiliar variables used to control whether to update the sensor or not given the time elapsed self._first_update = True self._total_time = 0.0 # Set the "configuration of the world" - some sensors might need it self._origin_lat = -999 self._origin_lon = -999 self._origin_alt = 0.0 # Path to a prim describing the sensor's frame self.frame_path = "" def initialize(self, origin_lat, origin_lon, origin_alt): """Method that initializes the sensor latitude, longitude and altitude attributes. Note: Given that some sensors require the knowledge of the latitude, longitude and altitude of the [0, 0, 0] coordinate of the world, then we might as well just save this information for whatever sensor that comes Args: origin_lat (float): The latitude of the origin of the world in degrees (might get used by some sensors). origin_lon (float): The longitude of the origin of the world in degrees (might get used by some sensors). origin_alt (float): The altitude of the origin of the world relative to sea water level (might get used by some sensors). """ self._origin_lat = origin_lat self._origin_lon = origin_lon self._origin_alt = origin_alt def set_update_rate(self, update_rate: float): """Method that changes the update rate and period of the sensor Args: update_rate (float): The new rate at which the data in the sensor should be refreshed (in Hz) """ self._update_rate = update_rate self._update_period = 1.0 / self._update_rate def update_at_rate(fnc): """Decorator function used to check if the time elapsed between the last sensor update call and the current sensor update call is higher than the defined update_rate of the sensor. If so, we need to actually compute new values to simulate a measurement of the sensor at a given rate. Args: fnc (function): The function that we want to enforce a specific update rate. Examples: >>> class GPS(Sensor): >>> @Sensor.update_at_rate >>> def update(self): >>> (do some logic here) Returns: [None, Dict]: This decorator function returns None if there was no data to be produced by the sensor at the specified timestamp or a dict with the current state of the sensor otherwise. """ # # Define a wrapper function so that the "self" of the object can be passed to the function as well def wrapper(self, state: State, dt: float): # Add the total time passed between the last time the sensor was updated and the current call self._total_time += dt # If it is time to update the sensor data, then just call the update function of the sensor if self._total_time >= self._update_period or self._first_update: # Result of the update function for the sensor result = fnc(self, state, self._total_time) # Reset the auxiliar counter variables self._first_update = False self._total_time = 0.0 return result return None return wrapper @property def sensor_type(self): """ (str) A name that describes the type of sensor. """ return self._sensor_type @property def update_rate(self): """ (float) The rate at which the data in the sensor should be refreshed (in Hz). """ return self._update_rate @property def state(self): """ (dict) A dictionary which contains the data produced by the sensor at any given time. """ return None @property def frame_path(self): """ (str) Path to the sensor's frame """ return self._frame_path @frame_path.setter def frame_path(self, value): self._frame_path = value def update(self, state: State, dt: float): """Method that should be implemented by the class that inherits Sensor. This is where the actual implementation of the sensor should be performed. Args: state (State): The current state of the vehicle. dt (float): The time elapsed between the previous and current function calls (s). Returns: (dict) A dictionary containing the current state of the sensor (the data produced by the sensor) """ pass def config_from_dict(self, config_dict): """Method that should be implemented by the class that inherits Sensor. This is where the configuration of the sensor based on a dictionary input should be performed. Args: config_dict (dict): A dictionary containing the configurations of the sensor """ pass
6,398
Python
38.257668
133
0.623163
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/sensors/barometer.py
""" | File: barometer.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: Simulates a barometer. Based on the implementation provided in PX4 stil_gazebo (https://github.com/PX4/PX4-SITL_gazebo) by Elia Tarasov. | References: Both the original implementation provided in the gazebo based simulation and this one are based on the following article - 'A brief summary of atmospheric modeling', Cavcar, M., http://fisicaatmo.at.fcen.uba.ar/practicas/ISAweb.pdf """ __all__ = ["Barometer"] import numpy as np from pegasus.simulator.logic.state import State from pegasus.simulator.logic.sensors import Sensor from pegasus.simulator.logic.sensors.geo_mag_utils import GRAVITY_VECTOR DEFAULT_HOME_ALT_AMSL = 488.0 class Barometer(Sensor): """The class that implements a barometer sensor. This class inherits the base class Sensor. """ def __init__(self, config={}): """Initialize the Barometer class Args: config (dict): A Dictionary that contains all the parameters for configuring the Barometer - it can be empty or only have some of the parameters used by the Barometer. Examples: The dictionary default parameters are >>> {"temperature_msl": 288.15, # temperature at MSL [K] (15 [C]) >>> "pressure_msl": 101325.0, # pressure at MSL [Pa] >>> "lapse_rate": 0.0065, # reduction in temperature with altitude for troposphere [K/m] >>> "air_density_msl": 1.225, # air density at MSL [kg/m^3] >>> "absolute_zero": -273.15, # [C] >>> "drift_pa_per_sec": 0.0, # Pa >>> "update_rate": 250.0} # Hz """ # Initialize the Super class "object" attributes super().__init__(sensor_type="Barometer", update_rate=config.get("update_rate", 250.0)) self._z_start: float = None # Setup the default home altitude (aka the altitude at the [0.0, 0.0, 0.0] coordinate on the simulated world) # If desired, the user can override this default by calling the initialize() method defined inside the Sensor # implementation self._origin_alt = DEFAULT_HOME_ALT_AMSL # Define the constants for the barometer # International standard atmosphere (troposphere model - valid up to 11km) see [1] self._TEMPERATURE_MSL: float = config.get("temperature_msl", 288.15) # temperature at MSL [K] (15 [C]) self._PRESSURE_MSL: float = config.get("pressure_msl", 101325.0) # pressure at MSL [Pa] self._LAPSE_RATE: float = config.get( "lapse_rate", 0.0065 ) # reduction in temperature with altitude for troposphere [K/m] self._AIR_DENSITY_MSL: float = config.get("air_density_msl", 1.225) # air density at MSL [kg/m^3] self._ABSOLUTE_ZERO_C: float = config.get("absolute_zero", -273.15) # [C] # Set the drift for the sensor self._baro_drift_pa_per_sec: float = config.get("drift_pa_per_sec", 0.0) # Auxiliar variables for generating the noise self._baro_rnd_use_last: bool = False self._baro_rnd_y2: float = 0.0 self._baro_drift_pa: float = 0.0 # Save the current state measured by the Baramoter self._state = {"absolute_pressure": 0.0, "pressure_altitude": 0.0, "temperature": 0.0} @property def state(self): """ (dict) The 'state' of the sensor, i.e. the data produced by the sensor at any given point in time """ return self._state @Sensor.update_at_rate def update(self, state: State, dt: float): """Method that implements the logic of a barometer. In this method we compute the relative altitude of the vehicle relative to the origin's altitude. Aditionally, we compute the actual altitude of the vehicle, local temperature and absolute presure, based on the reference - [A brief summary of atmospheric modeling, Cavcar, M., http://fisicaatmo.at.fcen.uba.ar/practicas/ISAweb.pdf] Args: state (State): The current state of the vehicle. dt (float): The time elapsed between the previous and current function calls (s). Returns: (dict) A dictionary containing the current state of the sensor (the data produced by the sensor) """ # Set the initial altitude if not yet defined if self._z_start is None: self._z_start = state.position[2] # Compute the temperature at the current altitude alt_rel: float = state.position[2] - self._z_start alt_amsl: float = self._origin_alt + alt_rel temperature_local: float = self._TEMPERATURE_MSL - self._LAPSE_RATE * alt_amsl # Compute the absolute pressure at local temperature pressure_ratio: float = np.power(self._TEMPERATURE_MSL / temperature_local, 5.2561) absolute_pressure: float = self._PRESSURE_MSL / pressure_ratio # Generate a Gaussian noise sequence using polar form of Box-Muller transformation # Honestly, this is overkill and will get replaced by numpys random.randn. if not self._baro_rnd_use_last: w: float = 1.0 while w >= 1.0: x1: float = 2.0 * np.random.randn() - 1.0 x2: float = 2.0 * np.random.randn() - 1.0 w = (x1 * x1) + (x2 * x2) w = np.sqrt((-2.0 * np.log(w)) / w) y1: float = x1 * w self._baro_rnd_y2 = x2 * w self._baro_rnd_use_last = True else: y1: float = self._baro_rnd_y2 self._baro_rnd_use_last = False # Apply noise and drift abs_pressure_noise: float = y1 # 1 Pa RMS noise self._baro_drift_pa = self._baro_drift_pa + (self._baro_drift_pa_per_sec * dt) # Update the drift absolute_pressure_noisy: float = absolute_pressure + abs_pressure_noise + self._baro_drift_pa_per_sec # Convert to hPa (Note: 1 hPa = 100 Pa) absolute_pressure_noisy_hpa: float = absolute_pressure_noisy * 0.01 # Compute air density at local temperature density_ratio: float = np.power(self._TEMPERATURE_MSL / temperature_local, 4.256) air_density: float = self._AIR_DENSITY_MSL / density_ratio # Compute pressure altitude including effect of pressure noise pressure_altitude: float = alt_amsl - (abs_pressure_noise + self._baro_drift_pa) / (np.linalg.norm(GRAVITY_VECTOR) * air_density) #pressure_altitude: float = alt_amsl - (abs_pressure_noise) / (np.linalg.norm(GRAVITY_VECTOR) * air_density) # Compute temperature in celsius temperature_celsius: float = temperature_local + self._ABSOLUTE_ZERO_C # Add the values to the dictionary and return it self._state = { "absolute_pressure": absolute_pressure_noisy_hpa, "pressure_altitude": pressure_altitude, "temperature": temperature_celsius, } return self._state
7,189
Python
46.615894
245
0.626095
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/sensors/gps.py
""" | File: gps.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: Simulates a gps. Based on the implementation provided in PX4 stil_gazebo (https://github.com/PX4/PX4-SITL_gazebo) by Amy Wagoner and Nuno Marques """ __all__ = ["GPS"] import numpy as np from pegasus.simulator.logic.sensors import Sensor from pegasus.simulator.logic.sensors.geo_mag_utils import reprojection # TODO - Introduce delay on the GPS data class GPS(Sensor): """The class that implements a GPS sensor. This class inherits the base class Sensor. """ def __init__(self, config={}): """Initialize the GPS class. Args: config (dict): A Dictionary that contains all the parameters for configuring the GPS - it can be empty or only have some of the parameters used by the GPS. Examples: The dictionary default parameters are >>> {"fix_type": 3, >>> "eph": 1.0, >>> "epv": 1.0, >>> "sattelites_visible": 10, >>> "gps_xy_random_walk": 2.0, # (m/s) / sqrt(hz) >>> "gps_z_random_walk": 4.0, # (m/s) / sqrt(hz) >>> "gps_xy_noise_density": 2.0e-4, # (m) / sqrt(hz) >>> "gps_z_noise_density": 4.0e-4, # (m) / sqrt(hz) >>> "gps_vxy_noise_density": 0.2, # (m/s) / sqrt(hz) >>> "gps_vz_noise_density": 0.4, # (m/s) / sqrt(hz) >>> "gps_correlation_time": 60, # s >>> "update_rate": 1.0 # Hz >>> } """ # Initialize the Super class "object" attributes super().__init__(sensor_type="GPS", update_rate=config.get("update_rate", 250.0)) # Define the GPS simulated/fixed values self._fix_type = config.get("fix_type", 3) self._eph = config.get("eph", 1.0) self._epv = config.get("epv", 1.0) self._sattelites_visible = config.get("sattelites_visible", 10) # Parameters for GPS random walk self._random_walk_gps = np.array([0.0, 0.0, 0.0]) self._gps_xy_random_walk = config.get("gps_xy_random_walk", 2.0) # (m/s) / sqrt(hz) self._gps_z_random_walk = config.get("gps_z_random_walk", 4.0) # (m/s) / sqrt(hz) # Parameters for the position noise self._noise_gps_pos = np.array([0.0, 0.0, 0.0]) self._gps_xy_noise_density = config.get("gps_xy_noise_density", 2.0e-4) # (m) / sqrt(hz) self._gps_z_noise_density = config.get("gps_z_noise_density", 4.0e-4) # (m) / sqrt(hz) # Parameters for the velocity noise self._noise_gps_vel = np.array([0.0, 0.0, 0.0]) self._gps_vxy_noise_density = config.get("gps_vxy_noise_density", 0.2) # (m/s) / sqrt(hz) self._gps_vz_noise_density = config.get("gps_vz_noise_density", 0.4) # (m/s) / sqrt(hz) # Parameters for the GPS bias self._gps_bias = np.array([0.0, 0.0, 0.0]) self._gps_correlation_time = config.get("gps_correlation_time", 60) # Save the current state measured by the GPS (and initialize at the origin) self._state = { "latitude": np.radians(self._origin_lat), "longitude": np.radians(self._origin_lon), "altitude": self._origin_alt, "eph": 1.0, "epv": 1.0, "speed": 0.0, "velocity_north": 0.0, "velocity_east": 0.0, "velocity_down": 0.0, # Constant values "fix_type": self._fix_type, "eph": self._eph, "epv": self._epv, "cog": 0.0, "sattelites_visible": self._sattelites_visible, "latitude_gt": np.radians(self._origin_lat), "longitude_gt": np.radians(self._origin_lon), "altitude_gt": self._origin_alt, } @property def state(self): """ (dict) The 'state' of the sensor, i.e. the data produced by the sensor at any given point in time """ return self._state @Sensor.update_at_rate def update(self, state: np.ndarray, dt: float): """Method that implements the logic of a gps. In this method we start by generating the GPS bias terms which are then added to the real position of the vehicle, expressed in ENU inertial frame. This position affected by noise is reprojected in order to obtain the corresponding latitude and longitude. Additionally, to the linear velocity, noise is added. Args: state (State): The current state of the vehicle. dt (float): The time elapsed between the previous and current function calls (s). Returns: (dict) A dictionary containing the current state of the sensor (the data produced by the sensor) """ # Update noise parameters self._random_walk_gps[0] = self._gps_xy_random_walk * np.sqrt(dt) * np.random.randn() self._random_walk_gps[1] = self._gps_xy_random_walk * np.sqrt(dt) * np.random.randn() self._random_walk_gps[2] = self._gps_z_random_walk * np.sqrt(dt) * np.random.randn() self._noise_gps_pos[0] = self._gps_xy_noise_density * np.sqrt(dt) * np.random.randn() self._noise_gps_pos[1] = self._gps_xy_noise_density * np.sqrt(dt) * np.random.randn() self._noise_gps_pos[2] = self._gps_z_noise_density * np.sqrt(dt) * np.random.randn() self._noise_gps_vel[0] = self._gps_vxy_noise_density * np.sqrt(dt) * np.random.randn() self._noise_gps_vel[1] = self._gps_vxy_noise_density * np.sqrt(dt) * np.random.randn() self._noise_gps_vel[2] = self._gps_vz_noise_density * np.sqrt(dt) * np.random.randn() # Perform GPS bias integration (using euler integration -> to be improved) self._gps_bias[0] = ( self._gps_bias[0] + self._random_walk_gps[0] * dt - self._gps_bias[0] / self._gps_correlation_time ) self._gps_bias[1] = ( self._gps_bias[1] + self._random_walk_gps[1] * dt - self._gps_bias[1] / self._gps_correlation_time ) self._gps_bias[2] = ( self._gps_bias[2] + self._random_walk_gps[2] * dt - self._gps_bias[2] / self._gps_correlation_time ) # reproject position with noise into geographic coordinates pos_with_noise: np.ndarray = state.position + self._noise_gps_pos + self._gps_bias latitude, longitude = reprojection(pos_with_noise, np.radians(self._origin_lat), np.radians(self._origin_lon)) # Compute the values of the latitude and longitude without noise (for groundtruth measurements) latitude_gt, longitude_gt = reprojection( state.position, np.radians(self._origin_lat), np.radians(self._origin_lon) ) # Add noise to the velocity expressed in the world frame velocity: np.ndarray = state.linear_velocity # + self._noise_gps_vel # Compute the xy speed speed: float = np.linalg.norm(velocity[:2]) # Course over ground (NOT heading, but direction of movement), # 0.0..359.99 degrees. If unknown, set to: 65535 [cdeg] (type:uint16_t) ve = velocity[0] vn = velocity[1] cog = np.degrees(np.arctan2(ve, vn)) if cog < 0.0: cog = cog + 360.0 cog = cog * 100 # Add the values to the dictionary and return it self._state = { "latitude": np.degrees(latitude), "longitude": np.degrees(longitude), "altitude": state.position[2] + self._origin_alt - self._noise_gps_pos[2] + self._gps_bias[2], "eph": 1.0, "epv": 1.0, "speed": speed, # Conversion from ENU (standard of Isaac Sim to NED - used in GPS sensors) "velocity_north": velocity[1], "velocity_east": velocity[0], "velocity_down": -velocity[2], # Constant values "fix_type": self._fix_type, "eph": self._eph, "epv": self._epv, "cog": 0.0, # cog, "sattelites_visible": self._sattelites_visible, "latitude_gt": latitude_gt, "longitude_gt": longitude_gt, "altitude_gt": state.position[2] + self._origin_alt, } return self._state
8,406
Python
43.481481
167
0.571259
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/sensors/imu.py
""" | File: imu.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: Simulates an imu. Based on the implementation provided in PX4 stil_gazebo (https://github.com/PX4/PX4-SITL_gazebo) """ __all__ = ["IMU"] import numpy as np from scipy.spatial.transform import Rotation from pegasus.simulator.logic.state import State from pegasus.simulator.logic.sensors import Sensor from pegasus.simulator.logic.rotations import rot_FLU_to_FRD, rot_ENU_to_NED from pegasus.simulator.logic.sensors.geo_mag_utils import GRAVITY_VECTOR class IMU(Sensor): """The class that implements the IMU sensor. This class inherits the base class Sensor. """ def __init__(self, config={}): """Initialize the IMU class Args: config (dict): A Dictionary that contains all teh parameters for configuring the IMU - it can be empty or only have some of the parameters used by the IMU. Examples: The dictionary default parameters are >>> {"gyroscope": { >>> "noise_density": 2.0 * 35.0 / 3600.0 / 180.0 * pi, >>> "random_walk": 2.0 * 4.0 / 3600.0 / 180.0 * pi, >>> "bias_correlation_time": 1.0e3, >>> "turn_on_bias_sigma": 0.5 / 180.0 * pi}, >>> "accelerometer": { >>> "noise_density": 2.0 * 2.0e-3, >>> "random_walk": 2.0 * 3.0e-3, >>> "bias_correlation_time": 300.0, >>> "turn_on_bias_sigma": 20.0e-3 * 9.8 >>> }, >>> "update_rate": 1.0} # Hz """ # Initialize the Super class "object" attributes super().__init__(sensor_type="IMU", update_rate=config.get("update_rate", 250.0)) # Orientation noise constant self._orientation_noise: float = 0.0 # Gyroscope noise constants self._gyroscope_bias: np.ndarray = np.zeros((3,)) gyroscope_config = config.get("gyroscope", {}) self._gyroscope_noise_density = gyroscope_config.get("noise_density", 0.0003393695767766752) self._gyroscope_random_walk = gyroscope_config.get("random_walk", 3.878509448876288E-05) self._gyroscope_bias_correlation_time = gyroscope_config.get("bias_correlation_time", 1.0E3) self._gyroscope_turn_on_bias_sigma = gyroscope_config.get("turn_on_bias_sigma", 0.008726646259971648) # Accelerometer noise constants self._accelerometer_bias: np.ndarray = np.zeros((3,)) accelerometer_config = config.get("accelerometer", {}) self._accelerometer_noise_density = accelerometer_config.get("noise_density", 0.004) self._accelerometer_random_walk = accelerometer_config.get("random_walk", 0.006) self._accelerometer_bias_correlation_time = accelerometer_config.get("bias_correlation_time", 300.0) self._accelerometer_turn_on_bias_sigma = accelerometer_config.get("turn_on_bias_sigma", 0.196) # Auxiliar variable used to compute the linear acceleration of the vehicle self._prev_linear_velocity = np.zeros((3,)) # Save the current state measured by the IMU self._state = { "orientation": np.array([1.0, 0.0, 0.0, 0.0]), "angular_velocity": np.array([0.0, 0.0, 0.0]), "linear_acceleration": np.array([0.0, 0.0, 0.0]), } @property def state(self): """ (dict) The 'state' of the sensor, i.e. the data produced by the sensor at any given point in time """ return self._state @Sensor.update_at_rate def update(self, state: State, dt: float): """Method that implements the logic of an IMU. In this method we start by generating the random walk of the gyroscope. This value is then added to the real angular velocity of the vehicle (FLU relative to ENU inertial frame expressed in FLU body frame). The same logic is followed for the accelerometer and the accelerations. After this step, the angular velocity is rotated such that it expressed a FRD body frame, relative to a NED inertial frame, expressed in the FRD body frame. Additionally, the acceleration is also rotated, such that it becomes expressed in the body FRD frame of the vehicle. This sensor outputs data that follows the PX4 adopted standard. Args: state (State): The current state of the vehicle. dt (float): The time elapsed between the previous and current function calls (s). Returns: (dict) A dictionary containing the current state of the sensor (the data produced by the sensor) """ # Gyroscopic terms tau_g: float = self._accelerometer_bias_correlation_time # Discrete-time standard deviation equivalent to an "integrating" sampler with integration time dt sigma_g_d: float = 1 / np.sqrt(dt) * self._gyroscope_noise_density sigma_b_g: float = self._gyroscope_random_walk # Compute exact covariance of the process after dt [Maybeck 4-114] sigma_b_g_d: float = np.sqrt(-sigma_b_g * sigma_b_g * tau_g / 2.0 * (np.exp(-2.0 * dt / tau_g) - 1.0)) # Compute state-transition phi_g_d: float = np.exp(-1.0 / tau_g * dt) # Simulate gyroscope noise processes and add them to the true angular rate. angular_velocity: np.ndarray = np.zeros((3,)) for i in range(3): self._gyroscope_bias[i] = phi_g_d * self._gyroscope_bias[i] + sigma_b_g_d * np.random.randn() angular_velocity[i] = state.angular_velocity[i] + sigma_g_d * np.random.randn() + self._gyroscope_bias[i] # Accelerometer terms tau_a: float = self._accelerometer_bias_correlation_time # Discrete-time standard deviation equivalent to an "integrating" sampler with integration time dt sigma_a_d: float = 1.0 / np.sqrt(dt) * self._accelerometer_noise_density sigma_b_a: float = self._accelerometer_random_walk # Compute exact covariance of the process after dt [Maybeck 4-114]. sigma_b_a_d: float = np.sqrt(-sigma_b_a * sigma_b_a * tau_a / 2.0 * (np.exp(-2.0 * dt / tau_a) - 1.0)) # Compute state-transition. phi_a_d: float = np.exp(-1.0 / tau_a * dt) # Compute the linear acceleration from diferentiating the velocity of the vehicle expressed in the inertial frame linear_acceleration_inertial = (state.linear_velocity - self._prev_linear_velocity) / dt linear_acceleration_inertial = linear_acceleration_inertial - GRAVITY_VECTOR # Update the previous linear velocity for the next computation self._prev_linear_velocity = state.linear_velocity # Compute the linear acceleration of the body frame, with respect to the inertial frame, expressed in the body frame linear_acceleration = np.array(Rotation.from_quat(state.attitude).inv().apply(linear_acceleration_inertial)) # Simulate the accelerometer noise processes and add them to the true linear aceleration values for i in range(3): self._accelerometer_bias[i] = phi_a_d * self._accelerometer_bias[i] + sigma_b_a_d * np.random.rand() linear_acceleration[i] = ( linear_acceleration[i] + sigma_a_d * np.random.randn() ) #+ self._accelerometer_bias[i] # TODO - Add small "noisy" to the attitude # -------------------------------------------------------------------------------------------- # Apply rotations such that we express the IMU data according to the FRD body frame convention # -------------------------------------------------------------------------------------------- # Convert the orientation to the FRD-NED standard attitude_flu_enu = Rotation.from_quat(state.attitude) attitude_frd_enu = attitude_flu_enu * rot_FLU_to_FRD attitude_frd_ned = rot_ENU_to_NED * attitude_frd_enu # Convert the angular velocity from FLU to FRD standard angular_velocity_frd = rot_FLU_to_FRD.apply(angular_velocity) # Convert the linear acceleration in the body frame from FLU to FRD standard linear_acceleration_frd = rot_FLU_to_FRD.apply(linear_acceleration) # Add the values to the dictionary and return it self._state = { "orientation": attitude_frd_ned.as_quat(), "angular_velocity": angular_velocity_frd, "linear_acceleration": linear_acceleration_frd, } return self._state
8,652
Python
48.445714
167
0.624942
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/sensors/vision.py
""" | File: vision.py | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: Simulates a visual odometry. Based on the implementation provided in PX4 stil_gazebo (https://github.com/PX4/PX4-SITL_gazebo) by Amy Wagoner and Nuno Marques """ __all__ = ["Vision"] import numpy as np from scipy.spatial.transform import Rotation from pegasus.simulator.logic.sensors import Sensor class Vision(Sensor): """The class that implements a Vision sensor. This class inherits the base class Sensor. """ def __init__(self, config={}): """Initialize the Vision class. Args: config (dict): A Dictionary that contains all the parameters for configuring the Vision - it can be empty or only have some of the parameters used by the Vision. Examples: The dictionary default parameters are >>> {"reset_counter": 0, >>> "vision_random_walk": 0.1, # (m/s) / sqrt(hz) >>> "vision_noise_density": 0.01, # (m) / sqrt(hz) >>> "vision_correlation_time": 60, # s >>> "update_rate": 30.0 # Hz >>> } """ # Initialize the Super class "object" attributes super().__init__(sensor_type="Vision", update_rate=config.get("update_rate", 30.0)) # Define the Vision simulated/fixed values self._reset_counter = config.get("reset_counter", 0) # Parameters for Vision random walk self._random_walk = np.array([0.0, 0.0, 0.0]) self._vision_random_walk = config.get("vision_random_walk", 0.1) # Parameters for Vision position and linear/angular velocity noise self._noise_pos = np.array([0.0, 0.0, 0.0]) self._noise_linvel = np.array([0.0, 0.0, 0.0]) self._noise_angvel = np.array([0.0, 0.0, 0.0]) self._vision_noise_density = config.get("vision_noise_density", 0.01) # Parameters for Vision bias self._bias = np.array([0.0, 0.0, 0.0]) self._vision_correlation_time = config.get("vision_correlation_time", 60.0) # Position covariance is constant, so prepare it in advance self._vision_covariance = np.array( [self._vision_noise_density * self._vision_noise_density if i in [0, 6, 11, 15, 18, 20] else 0.0 for i in range(21)], dtype=float) # Save the current state measured by the GPS (and initialize at the origin) self._state = { "x": 0.0, "y": 0.0, "z": 0.0, "roll": 0.0, "pitch": 0.0, "yaw": 0.0, "covariance": self._vision_covariance, "reset_counter": self._reset_counter, } @property def state(self): """ (dict) The 'state' of the sensor, i.e. the data produced by the sensor at any given point in time """ return self._state @Sensor.update_at_rate def update(self, state: np.ndarray, dt: float): """Method that implements the logic of a visual odometry. Args: state (State): The current state of the vehicle. dt (float): The time elapsed between the previous and current function calls (s). Returns: (dict) A dictionary containing the current state of the sensor (the data produced by the sensor) """ # Update noise parameters self._random_walk[0] = self._vision_random_walk * np.sqrt(dt) * np.random.randn() self._random_walk[1] = self._vision_random_walk * np.sqrt(dt) * np.random.randn() self._random_walk[2] = self._vision_random_walk * np.sqrt(dt) * np.random.randn() self._noise_pos[0] = self._vision_noise_density * np.sqrt(dt) * np.random.randn() self._noise_pos[1] = self._vision_noise_density * np.sqrt(dt) * np.random.randn() self._noise_pos[2] = self._vision_noise_density * np.sqrt(dt) * np.random.randn() self._noise_linvel[0] = self._vision_noise_density * np.sqrt(dt) * np.random.randn() self._noise_linvel[1] = self._vision_noise_density * np.sqrt(dt) * np.random.randn() self._noise_linvel[2] = self._vision_noise_density * np.sqrt(dt) * np.random.randn() tau_g = self._vision_correlation_time sigma_g_d = 1 / np.sqrt(dt) * self._vision_noise_density sigma_b_g = self._vision_random_walk sigma_b_g_d = np.sqrt(-sigma_b_g * sigma_b_g * tau_g / 2.0 * (np.exp(-2.0 * dt / tau_g) - 1.0)) phi_g_d = np.exp(-1.0 / tau_g * dt) self._noise_angvel[0] = phi_g_d * self._noise_angvel[0] + sigma_b_g_d * np.sqrt(dt) * np.random.randn() # self._noise_angvel[0] might need to be 0.0 self._noise_angvel[1] = phi_g_d * self._noise_angvel[1] + sigma_b_g_d * np.sqrt(dt) * np.random.randn() self._noise_angvel[2] = phi_g_d * self._noise_angvel[2] + sigma_b_g_d * np.sqrt(dt) * np.random.randn() # Perform Vision bias integration self._bias[0] = ( self._bias[0] + self._random_walk[0] * dt - self._bias[0] / self._vision_correlation_time ) self._bias[1] = ( self._bias[1] + self._random_walk[1] * dt - self._bias[1] / self._vision_correlation_time ) self._bias[2] = ( self._bias[2] + self._random_walk[2] * dt - self._bias[2] / self._vision_correlation_time ) # Get resulting values position: np.ndarray = state.get_position_ned() + self._noise_pos + self._bias orientation: np.ndarray = Rotation.from_quat(state.get_attitude_ned_frd()).as_euler('xyz', degrees=False) linear_velocity: np.ndarray = state.get_linear_velocity_ned() + self._noise_linvel angular_velocity: np.ndarray = state.get_angular_velocity_frd() + self._noise_angvel self._state = { "x": position[0], "y": position[1], "z": position[2], "roll": orientation[0], "pitch": orientation[1], "yaw": orientation[2], "covariance": self._vision_covariance, "reset_counter": self._reset_counter, } return self._state
6,195
Python
42.943262
173
0.580791
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/interface/__init__.py
""" | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ from .pegasus_interface import PegasusInterface
203
Python
28.142853
82
0.758621
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/interface/pegasus_interface.py
""" | File: pegasus_interface.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: Definition of the PegasusInterface class (a singleton) that is used to manage the Pegasus framework. """ __all__ = ["PegasusInterface"] # Importing Lock in ordef to have a multithread safe Pegasus singleton that manages the entire Pegasus extension import gc import yaml import asyncio import os from threading import Lock # NVidia API imports import carb from omni.isaac.core.world import World from omni.isaac.core.utils.stage import clear_stage from omni.isaac.core.utils.viewports import set_camera_view import omni.isaac.core.utils.nucleus as nucleus # Pegasus Simulator internal API from pegasus.simulator.params import DEFAULT_WORLD_SETTINGS, SIMULATION_ENVIRONMENTS, CONFIG_FILE from pegasus.simulator.logic.vehicle_manager import VehicleManager class PegasusInterface: """ PegasusInterface is a singleton class (there is only one object instance at any given time) that will be used to """ # The object instance of the Vehicle Manager _instance = None _is_initialized = False # Lock for safe multi-threading _lock: Lock = Lock() def __init__(self): """ Initialize the PegasusInterface singleton object (only runs once at a time) """ # If we already have an instance of the PegasusInterface, do not overwrite it! if PegasusInterface._is_initialized: return carb.log_info("Initializing the Pegasus Simulator Extension") PegasusInterface._is_initialized = True # Get a handle to the vehicle manager instance which will manage which vehicles are spawned in the world # to be controlled and simulated self._vehicle_manager = VehicleManager() # Initialize the world with the default simulation settings self._world_settings = DEFAULT_WORLD_SETTINGS self._world = None #self.initialize_world() # Initialize the latitude, longitude and altitude of the simulated environment at the (0.0, 0.0, 0.0) coordinate # from the extension configuration file self._latitude, self._longitude, self._altitude = self._get_global_coordinates_from_config() # Get the px4_path from the extension configuration file self._px4_path: str = self._get_px4_path_from_config() carb.log_info("Default PX4 path:" + str(self._px4_path)) @property def world(self): """The current omni.isaac.core.world World instance Returns: omni.isaac.core.world: The world instance """ return self._world @property def vehicle_manager(self): """The instance of the VehicleManager. Returns: VehicleManager: The current instance of the VehicleManager. """ return self._vehicle_manager @property def latitude(self): """The latitude of the origin of the simulated world in degrees. Returns: float: The latitude of the origin of the simulated world in degrees. """ return self._latitude @property def longitude(self): """The longitude of the origin of the simulated world in degrees. Returns: float: The longitude of the origin of the simulated world in degrees. """ return self._longitude @property def altitude(self): """The altitude of the origin of the simulated world in meters. Returns: float: The latitude of the origin of the simulated world in meters. """ return self._altitude @property def px4_path(self): """A string with the installation directory for PX4 (if it was setup). Otherwise it is None. Returns: str: A string with the installation directory for PX4 (if it was setup). Otherwise it is None. """ return self._px4_path def set_global_coordinates(self, latitude=None, longitude=None, altitude=None): """Method that can be used to set the latitude, longitude and altitude of the simulation world at the origin. Args: latitude (float): The latitude of the origin of the simulated world in degrees. Defaults to None. longitude (float): The longitude of the origin of the simulated world in degrees. Defaults to None. altitude (float): The altitude of the origin of the simulated world in meters. Defaults to None. """ if latitude is not None: self._latitude = latitude if longitude is not None: self._longitude = longitude if self.altitude is not None: self._altitude = altitude carb.log_warn("New global coordinates set to: " + str(self._latitude) + ", " + str(self._longitude) + ", " + str(self._altitude)) def initialize_world(self): """Method that initializes the world object """ self._world = World(**self._world_settings) #asyncio.ensure_future(self._world.initialize_simulation_context_async()) def get_vehicle(self, stage_prefix: str): """Method that returns the vehicle object given its 'stage_prefix', i.e., the name the vehicle was spawned with in the simulator. Args: stage_prefix (str): The name the vehicle will present in the simulator when spawned. Returns: Vehicle: Returns a vehicle object that was spawned with the given 'stage_prefix' """ return self._vehicle_manager.vehicles[stage_prefix] def get_all_vehicles(self): """ Method that returns a list of vehicles that are considered active in the simulator Returns: list: A list of all vehicles that are currently instantiated. """ return self._vehicle_manager.vehicles def get_default_environments(self): """ Method that returns a dictionary containing all the default simulation environments and their path """ return SIMULATION_ENVIRONMENTS def generate_quadrotor_config_from_yaml(self, file: str): """_summary_ Args: file (str): _description_ Returns: _type_: _description_ """ # Load the quadrotor configuration data from the given yaml file with open(file) as f: data = yaml.safe_load(f) return self.generate_quadrotor_config_from_dict(data) def clear_scene(self): """ Method that when invoked will clear all vehicles and the simulation environment, leaving only an empty world with a physics environment. """ # If the physics simulation was running, stop it first if self.world is not None: self.world.stop() # Clear the world if self.world is not None: self.world.clear_all_callbacks() self.world.clear() # Clear the stage clear_stage() # Remove all the robots that were spawned self._vehicle_manager.remove_all_vehicles() # Call python's garbage collection gc.collect() # Re-initialize the physics context asyncio.ensure_future(self._world.initialize_simulation_context_async()) carb.log_info("Current scene and its vehicles has been deleted") async def load_environment_async(self, usd_path: str, force_clear: bool=False): """Method that loads a given world (specified in the usd_path) into the simulator asynchronously. Args: usd_path (str): The path where the USD file describing the world is located. force_clear (bool): Whether to perform a clear before loading the asset. Defaults to False. """ # Reset and pause the world simulation (only if force_clear is true) # This is done to maximize the support between running in GUI as extension vs App if force_clear == True: await self.world.reset_async() await self.world.stop_async() # Load the USD asset that will be used for the environment try: self.load_asset(usd_path, "/World/layout") except Exception as e: carb.log_warn("Could not load the desired environment: " + str(e)) carb.log_info("A new environment has been loaded successfully") def load_environment(self, usd_path: str, force_clear: bool=False): """Method that loads a given world (specified in the usd_path) into the simulator. If invoked from a python app, this method should have force_clear=False, as the world reset and stop are performed asynchronously by this method, and when we are operating in App mode, we want everything to run in sync. Args: usd_path (str): The path where the USD file describing the world is located. force_clear (bool): Whether to perform a clear before loading the asset. Defaults to False. """ asyncio.ensure_future(self.load_environment_async(usd_path, force_clear)) def load_nvidia_environment(self, environment_asset: str = "Hospital/hospital.usd"): """ Method that is used to load NVidia internally provided USD stages into the simulaton World Args: environment_asset (str): The name of the nvidia asset inside the /Isaac/Environments folder. Default to Hospital/hospital.usd. """ # Get the nvidia assets root path nvidia_assets_path = nucleus.get_assets_root_path() # Define the environments path inside the NVidia assets environments_path = "/Isaac/Environments" # Get the complete usd path usd_path = nvidia_assets_path + environments_path + "/" + environment_asset # Try to load the asset into the world self.load_asset(usd_path, "/World/layout") def load_asset(self, usd_asset: str, stage_prefix: str): """ Method that will attempt to load an asset into the current simulation world, given the USD asset path. Args: usd_asset (str): The path where the USD file describing the world is located. stage_prefix (str): The name the vehicle will present in the simulator when spawned. """ # Try to check if there is already a prim with the same stage prefix in the stage if self._world.stage.GetPrimAtPath(stage_prefix): raise Exception("A primitive already exists at the specified path") # Create the stage primitive and load the usd into it prim = self._world.stage.DefinePrim(stage_prefix) success = prim.GetReferences().AddReference(usd_asset) if not success: raise Exception("The usd asset" + usd_asset + "is not load at stage path " + stage_prefix) def set_viewport_camera(self, camera_position, camera_target): """Sets the viewport camera to given position and makes it point to another target position. Args: camera_position (list): A list with [X, Y, Z] coordinates of the camera in ENU inertial frame. camera_target (list): A list with [X, Y, Z] coordinates of the target that the camera should point to in the ENU inertial frame. """ # Set the camera view to a fixed value set_camera_view(eye=camera_position, target=camera_target) def set_world_settings(self, physics_dt=None, stage_units_in_meters=None, rendering_dt=None): """ Set the current world settings to the pre-defined settings. TODO - finish the implementation of this method. For now these new setting will never override the default ones. """ # Set the physics engine update rate if physics_dt is not None: self._world_settings["physics_dt"] = physics_dt # Set the units of the simulator to meters if stage_units_in_meters is not None: self._world_settings["stage_units_in_meters"] = stage_units_in_meters # Set the render engine update rate (might not be the same as the physics engine) if rendering_dt is not None: self._world_settings["rendering_dt"] = rendering_dt def _get_px4_path_from_config(self): """ Method that reads the configured PX4 installation directory from the extension configuration file Returns: str: A string with the path to the px4 configuration directory or empty string '' """ px4_dir = "" # Open the configuration file. If it fails, just return the empty path try: with open(CONFIG_FILE, 'r') as f: data = yaml.safe_load(f) px4_dir = os.path.expanduser(data.get("px4_dir", None)) except: carb.log_warn("Could not retrieve px4_dir from: " + str(CONFIG_FILE)) return px4_dir def _get_global_coordinates_from_config(self): """Method that reads the default latitude, longitude and altitude from the extension configuration file Returns: (float, float, float): A tuple of 3 floats with the latitude, longitude and altitude to use as the origin of the world """ latitude = 0.0 longitude = 0.0 altitude = 0.0 # Open the configuration file. If it fails, just return the empty path try: with open(CONFIG_FILE, 'r') as f: data = yaml.safe_load(f) # Try to read the coordinates from the configuration file global_coordinates = data.get("global_coordinates", {}) latitude = global_coordinates.get("latitude", 0.0) longitude = global_coordinates.get("longitude", 0.0) altitude = global_coordinates.get("altitude", 0.0) except: carb.log_warn("Could not retrieve the global coordinates from: " + str(CONFIG_FILE)) return (latitude, longitude, altitude) def set_px4_path(self, path: str): """Method that allows a user to save a new px4 directory in the configuration files of the extension. Args: absolute_path (str): The new path of the px4-autopilot installation directory """ # Save the new path for current use during this simulation self._px4_path = os.path.expanduser(path) # Save the new path in the configurations file for the next simulations try: # Open the configuration file and the all the configurations that it contains with open(CONFIG_FILE, 'r') as f: data = yaml.safe_load(f) # Open the configuration file. If it fails, just warn in the console with open(CONFIG_FILE, 'w') as f: data["px4_dir"] = path yaml.dump(data, f) except: carb.log_warn("Could not save px4_dir to: " + str(CONFIG_FILE)) carb.log_warn("New px4_dir set to: " + str(self._px4_path)) def set_default_global_coordinates(self): """ Method that sets the latitude, longitude and altitude from the pegasus interface to the default global coordinates specified in the extension configuration file """ self._latitude, self._longitude, self._altitude = self._get_global_coordinates_from_config() def set_new_default_global_coordinates(self, latitude: float=None, longitude: float=None, altitude: float=None): # Set the current global coordinates to the new default global coordinates self.set_global_coordinates(latitude, longitude, altitude) # Update the default global coordinates in the configuration file try: # Open the configuration file and the all the configurations that it contains with open(CONFIG_FILE, 'r') as f: data = yaml.safe_load(f) # Open the configuration file. If it fails, just warn in the console with open(CONFIG_FILE, 'w') as f: if latitude is not None: data["global_coordinates"]["latitude"] = latitude if longitude is not None: data["global_coordinates"]["longitude"] = longitude if altitude is not None: data["global_coordinates"]["altitude"] = altitude # Save the updated configurations yaml.dump(data, f) except: carb.log_warn("Could not save the new global coordinates to: " + str(CONFIG_FILE)) carb.log_warn("New global coordinates set to: latitude=" + str(latitude) + ", longitude=" + str(longitude) + ", altitude=" + str(altitude)) def __new__(cls): """Allocates the memory and creates the actual PegasusInterface object is not instance exists yet. Otherwise, returns the existing instance of the PegasusInterface class. Returns: VehicleManger: the single instance of the VehicleManager class """ # Use a lock in here to make sure we do not have a race condition # when using multi-threading and creating the first instance of the Pegasus extension manager with cls._lock: if cls._instance is None: cls._instance = object.__new__(cls) return PegasusInterface._instance def __del__(self): """Destructor for the object. Destroys the only existing instance of this class.""" PegasusInterface._instance = None PegasusInterface._is_initialized = False
17,722
Python
38.384444
147
0.638698
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/backends/backend.py
""" | File: backend.py | Author: Marcelo Jacinto ([email protected]) | Description: | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ class Backend: """ This class defines the templates for the communication and control backend. Every vehicle can have at least one backend at the same time. Every timestep, the methods 'update_state' and 'update_sensor' are called to update the data produced by the simulation, i.e. for every time step the backend will receive teh current state of the vehicle and its sensors. Additionally, the backend must provide a method named 'input_reference' which will be used by the vehicle simulation to know the desired angular velocities to apply to the rotors of the vehicle. The method 'update' is called on every physics step and can be use to implement some logic or send data to another interface (such as PX4 through mavlink or ROS2). The methods 'start', 'stop' and 'reset' are callbacks that get called when the simulation is started, stoped and reset as the name implies. """ def __init__(self): """Initialize the Backend class """ self._vehicle = None """ Properties """ @property def vehicle(self): """A reference to the vehicle associated with this backend. Returns: Vehicle: A reference to the vehicle associated with this backend. """ return self._vehicle def initialize(self, vehicle): """A method that can be invoked when the simulation is starting to give access to the control backend to the entire vehicle object. Even though we provide update_sensor and update_state callbacks that are called at every physics step with the latest vehicle state and its sensor data, having access to the full vehicle object may prove usefull under some circumstances. This is nice to give users the possibility of overiding default vehicle behaviour via this control backend structure. Args: vehicle (Vehicle): A reference to the vehicle that this sensor is associated with """ self._vehicle = vehicle def update_sensor(self, sensor_type: str, data): """Method that when implemented, should handle the receival of sensor data Args: sensor_type (str): A name that describes the type of sensor data (dict): A dictionary that contains the data produced by the sensor """ pass def update_state(self, state): """Method that when implemented, should handle the receival of the state of the vehicle using this callback Args: state (State): The current state of the vehicle. """ pass def input_reference(self): """Method that when implemented, should return a list of desired angular velocities to apply to the vehicle rotors """ return [] def update(self, dt: float): """Method that when implemented, should be used to update the state of the backend and the information being sent/received from the communication interface. This method will be called by the simulation on every physics step Args: dt (float): The time elapsed between the previous and current function calls (s). """ pass def start(self): """Method that when implemented should handle the begining of the simulation of vehicle """ pass def stop(self): """Method that when implemented should handle the stopping of the simulation of vehicle """ pass def reset(self): """Method that when implemented, should handle the reset of the vehicle simulation to its original state """ pass
3,830
Python
40.193548
143
0.674935
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/backends/__init__.py
""" | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ from .backend import Backend from .mavlink_backend import MavlinkBackend, MavlinkBackendConfig from .ros2_backend import ROS2Backend
288
Python
31.111108
82
0.784722
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/backends/ros2_backend.py
""" | File: ros2_backend.py | Author: Marcelo Jacinto ([email protected]) | Description: File that implements the ROS2 Backend for communication/control with/of the vehicle simulation through ROS2 topics | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ import carb from omni.isaac.core.utils.extensions import disable_extension, enable_extension # Perform some checks, because Isaac Sim some times does not play nice when using ROS/ROS2 disable_extension("omni.isaac.ros_bridge") enable_extension("omni.isaac.ros2_bridge") # Inform the user that now we are actually import the ROS2 dependencies # Note: we are performing the imports here to make sure that ROS2 extension was load correctly import rclpy from std_msgs.msg import Float64 from sensor_msgs.msg import Imu, MagneticField, NavSatFix, NavSatStatus from geometry_msgs.msg import PoseStamped, TwistStamped, AccelStamped import omni.kit.app from pegasus.simulator.logic.backends.backend import Backend class ROS2Backend(Backend): def __init__(self, vehicle_id: int, num_rotors=4): # Save the configurations for this backend self._id = vehicle_id self._num_rotors = num_rotors # Start the actual ROS2 setup here rclpy.init() self.node = rclpy.create_node("vehicle_" + str(vehicle_id)) # Create publishers for the state of the vehicle in ENU self.pose_pub = self.node.create_publisher(PoseStamped, "vehicle" + str(self._id) + "/state/pose", 10) self.twist_pub = self.node.create_publisher(TwistStamped, "vehicle" + str(self._id) + "/state/twist", 10) self.twist_inertial_pub = self.node.create_publisher(TwistStamped, "vehicle" + str(self._id) + "/state/twist_inertial", 10) self.accel_pub = self.node.create_publisher(AccelStamped, "vehicle" + str(self._id) + "/state/accel", 10) # Create publishers for some sensor data self.imu_pub = self.node.create_publisher(Imu, "vehicle" + str(self._id) + "/sensors/imu", 10) self.mag_pub = self.node.create_publisher(MagneticField, "vehicle" + str(self._id) + "/sensors/imu", 10) self.gps_pub = self.node.create_publisher(NavSatFix, "vehicle" + str(self._id) + "/sensors/gps", 10) self.gps_vel_pub = self.node.create_publisher(TwistStamped, "vehicle" + str(self._id) + "/sensors/gps_twist", 10) # Subscribe to vector of floats with the target angular velocities to control the vehicle # This is not ideal, but we need to reach out to NVIDIA so that they can improve the ROS2 support with custom messages # The current setup as it is.... its a pain!!!! self.rotor_subs = [] for i in range(self._num_rotors): self.rotor_subs.append(self.node.create_subscription(Float64, "vehicle" + str(self._id) + "/control/rotor" + str(i) + "/ref", lambda x: self.rotor_callback(x, i),10)) # Setup zero input reference for the thrusters self.input_ref = [0.0 for i in range(self._num_rotors)] def update_state(self, state): """ Method that when implemented, should handle the receivel of the state of the vehicle using this callback """ pose = PoseStamped() twist = TwistStamped() twist_inertial = TwistStamped() accel = AccelStamped() # Update the header pose.header.stamp = self.node.get_clock().now().to_msg() twist.header.stamp = pose.header.stamp twist_inertial.header.stamp = pose.header.stamp accel.header.stamp = pose.header.stamp pose.header.frame_id = "world" twist.header.frame_id = "base_link" twist_inertial.header.frame_id = "world" accel.header.frame_id = "world" # Fill the position and attitude of the vehicle in ENU pose.pose.position.x = state.position[0] pose.pose.position.y = state.position[1] pose.pose.position.z = state.position[2] pose.pose.orientation.x = state.attitude[0] pose.pose.orientation.y = state.attitude[1] pose.pose.orientation.z = state.attitude[2] pose.pose.orientation.w = state.attitude[3] # Fill the linear and angular velocities in the body frame of the vehicle twist.twist.linear.x = state.linear_body_velocity[0] twist.twist.linear.y = state.linear_body_velocity[1] twist.twist.linear.z = state.linear_body_velocity[2] twist.twist.angular.x = state.angular_velocity[0] twist.twist.angular.y = state.angular_velocity[1] twist.twist.angular.z = state.angular_velocity[2] # Fill the linear velocity of the vehicle in the inertial frame twist_inertial.twist.linear.x = state.linear_velocity[0] twist_inertial.twist.linear.y = state.linear_velocity[1] twist_inertial.twist.linear.z = state.linear_velocity[2] # Fill the linear acceleration in the inertial frame accel.accel.linear.x = state.linear_acceleration[0] accel.accel.linear.y = state.linear_acceleration[1] accel.accel.linear.z = state.linear_acceleration[2] # Publish the messages containing the state of the vehicle self.pose_pub.publish(pose) self.twist_pub.publish(twist) self.twist_inertial_pub.publish(twist_inertial) self.accel_pub.publish(accel) def rotor_callback(self, ros_msg: Float64, rotor_id): # Update the reference for the rotor of the vehicle self.input_ref[rotor_id] = float(ros_msg.data) def update_sensor(self, sensor_type: str, data): """ Method that when implemented, should handle the receival of sensor data """ if sensor_type == "IMU": self.update_imu_data(data) elif sensor_type == "GPS": self.update_gps_data(data) elif sensor_type == "Magnetometer": self.update_mag_data(data) elif sensor_type == "Barometer": # TODO - create a topic for the barometer later on pass def update_imu_data(self, data): msg = Imu() # Update the header msg.header.stamp = self.node.get_clock().now().to_msg() msg.header.frame_id = "base_link_frd" # Update the angular velocity (NED + FRD) msg.angular_velocity.x = data["angular_velocity"][0] msg.angular_velocity.y = data["angular_velocity"][1] msg.angular_velocity.z = data["angular_velocity"][2] # Update the linear acceleration (NED) msg.linear_acceleration.x = data["linear_acceleration"][0] msg.linear_acceleration.y = data["linear_acceleration"][1] msg.linear_acceleration.z = data["linear_acceleration"][2] # Publish the message with the current imu state self.imu_pub.publish(msg) def update_gps_data(self, data): msg = NavSatFix() msg_vel = TwistStamped() # Update the headers msg.header.stamp = self.node.get_clock().now().to_msg() msg.header.frame_id = "world_ned" msg_vel.header.stamp = msg.header.stamp msg_vel.header.frame_id = msg.header.frame_id # Update the status of the GPS status_msg = NavSatStatus() status_msg.status = 0 # unaugmented fix position status_msg.service = 1 # GPS service msg.status = status_msg # Update the latitude, longitude and altitude msg.latitude = data["latitude"] msg.longitude = data["longitude"] msg.altitude = data["altitude"] # Update the velocity of the vehicle measured by the GPS in the inertial frame (NED) msg_vel.twist.linear.x = data["velocity_north"] msg_vel.twist.linear.y = data["velocity_east"] msg_vel.twist.linear.z = data["velocity_down"] # Publish the message with the current GPS state self.gps_pub.publish(msg) self.gps_vel_pub.publish(msg_vel) def update_mag_data(self, data): msg = MagneticField() # Update the headers msg.header.stamp = self.node.get_clock().now().to_msg() msg.header.frame_id = "base_link_frd" msg.magnetic_field.x = data["magnetic_field"][0] msg.magnetic_field.y = data["magnetic_field"][1] msg.magnetic_field.z = data["magnetic_field"][2] # Publish the message with the current magnetic data self.mag_pub.publish(msg) def input_reference(self): """ Method that is used to return the latest target angular velocities to be applied to the vehicle Returns: A list with the target angular velocities for each individual rotor of the vehicle """ return self.input_ref def update(self, dt: float): """ Method that when implemented, should be used to update the state of the backend and the information being sent/received from the communication interface. This method will be called by the simulation on every physics step """ # In this case, do nothing as we are sending messages as soon as new data arrives from the sensors and state # and updating the reference for the thrusters as soon as receiving from ROS2 topics # Just poll for new ROS 2 messages in a non-blocking way rclpy.spin_once(self.node, timeout_sec=0) def start(self): """ Method that when implemented should handle the begining of the simulation of vehicle """ # Reset the reference for the thrusters self.input_ref = [0.0 for i in range(self._num_rotors)] def stop(self): """ Method that when implemented should handle the stopping of the simulation of vehicle """ # Reset the reference for the thrusters self.input_ref = [0.0 for i in range(self._num_rotors)] def reset(self): """ Method that when implemented, should handle the reset of the vehicle simulation to its original state """ # Reset the reference for the thrusters self.input_ref = [0.0 for i in range(self._num_rotors)] def check_ros_extension(self): """ Method that checks which ROS extension is installed. """ # Get the handle for the extension manager extension_manager = omni.kit.app.get_app().get_extension_manager() version = "" if self._ext_manager.is_extension_enabled("omni.isaac.ros_bridge"): version = "ros" elif self._ext_manager.is_extension_enabled("omni.isaac.ros2_bridge"): version = "ros2" else: carb.log_warn("Neither extension 'omni.isaac.ros_bridge' nor 'omni.isaac.ros2_bridge' is enabled")
10,744
Python
40.972656
178
0.648827
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/backends/mavlink_backend.py
""" | File: mavlink_backend.py | Author: Marcelo Jacinto ([email protected]) | Description: File that implements the Mavlink Backend for communication/control with/of the vehicle simulation | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ __all__ = ["MavlinkBackend", "MavlinkBackendConfig"] import carb import time import numpy as np from pymavlink import mavutil from pegasus.simulator.logic.state import State from pegasus.simulator.logic.backends.backend import Backend from pegasus.simulator.logic.interface.pegasus_interface import PegasusInterface from pegasus.simulator.logic.backends.tools.px4_launch_tool import PX4LaunchTool class SensorSource: """ The binary codes to signal which simulated data is being sent through mavlink Atribute: | ACCEL (int): mavlink binary code for the accelerometer (0b0000000000111 = 7) | GYRO (int): mavlink binary code for the gyroscope (0b0000000111000 = 56) | MAG (int): mavlink binary code for the magnetometer (0b0000111000000=448) | BARO (int): mavlink binary code for the barometer (0b1101000000000=6656) | DIFF_PRESS (int): mavlink binary code for the pressure sensor (0b0010000000000=1024) """ ACCEL: int = 7 GYRO: int = 56 MAG: int = 448 BARO: int = 6656 DIFF_PRESS: int = 1024 class SensorMsg: """ An auxiliary data class where we write all the sensor data that is going to be sent through mavlink """ def __init__(self): # IMU Data self.new_imu_data: bool = False self.received_first_imu: bool = False self.xacc: float = 0.0 self.yacc: float = 0.0 self.zacc: float = 0.0 self.xgyro: float = 0.0 self.ygyro: float = 0.0 self.zgyro: float = 0.0 # Baro Data self.new_bar_data: bool = False self.abs_pressure: float = 0.0 self.pressure_alt: float = 0.0 self.temperature: float = 0.0 # Magnetometer Data self.new_mag_data: bool = False self.xmag: float = 0.0 self.ymag: float = 0.0 self.zmag: float = 0.0 # Airspeed Data self.new_press_data: bool = False self.diff_pressure: float = 0.0 # GPS Data self.new_gps_data: bool = False self.fix_type: int = 0 self.latitude_deg: float = -999 self.longitude_deg: float = -999 self.altitude: float = -999 self.eph: float = 1.0 self.epv: float = 1.0 self.velocity: float = 0.0 self.velocity_north: float = 0.0 self.velocity_east: float = 0.0 self.velocity_down: float = 0.0 self.cog: float = 0.0 self.satellites_visible: int = 0 # Vision Pose self.new_vision_data: bool = False self.vision_x: float = 0.0 self.vision_y: float = 0.0 self.vision_z: float = 0.0 self.vision_roll: float = 0.0 self.vision_pitch: float = 0.0 self.vision_yaw: float = 0.0 self.vision_covariance = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) self.vision_reset_counter: int = 0 # Simulation State self.new_sim_state: bool = False self.sim_attitude = [1.0, 0.0, 0.0, 0.0] # [w, x, y, z] self.sim_acceleration = [0.0, 0.0, 0.0] # [x,y,z body acceleration] self.sim_angular_vel = [0.0, 0.0, 0.0] # [roll-rate, pitch-rate, yaw-rate] rad/s self.sim_lat = 0.0 # [deg] self.sim_lon = 0.0 # [deg] self.sim_alt = 0.0 # [m] self.sim_ind_airspeed = 0.0 # Indicated air speed self.sim_true_airspeed = 0.0 # Indicated air speed self.sim_velocity_inertial = [0.0, 0.0, 0.0] # North-east-down [m/s] class ThrusterControl: """ An auxiliary data class that saves the thrusters command data received via mavlink and scales them into individual angular velocities expressed in rad/s to apply to each rotor """ def __init__( self, num_rotors: int = 4, input_offset=[0, 0, 0, 0], input_scaling=[0, 0, 0, 0], zero_position_armed=[100, 100, 100, 100], ): """Initialize the ThrusterControl object Args: num_rotors (int): The number of rotors that the actual system has 4. input_offset (list): A list with the offsets to apply to the rotor values received via mavlink. Defaults to [0, 0, 0, 0]. input_scaling (list): A list with the scaling to apply to the rotor values received via mavlink. Defaults to [0, 0, 0, 0]. zero_position_armed (list): Another list of offsets to apply to the rotor values received via mavlink. Defaults to [100, 100, 100, 100]. """ self.num_rotors: int = num_rotors # Values to scale and offset the rotor control inputs received from PX4 assert len(input_offset) == self.num_rotors self.input_offset = input_offset assert len(input_scaling) == self.num_rotors self.input_scaling = input_scaling assert len(zero_position_armed) == self.num_rotors self.zero_position_armed = zero_position_armed # The actual speed references to apply to the vehicle rotor joints self._input_reference = [0.0 for i in range(self.num_rotors)] @property def input_reference(self): """A list of floats with the angular velocities in rad/s Returns: list: A list of floats with the angular velocities to apply to each rotor, expressed in rad/s """ return self._input_reference def update_input_reference(self, controls): """Takes a list with the thrust controls received via mavlink and scales them in order to generated the equivalent angular velocities in rad/s Args: controls (list): A list of ints with thrust controls received via mavlink """ # Check if the number of controls received is correct if len(controls) < self.num_rotors: carb.log_warn("Did not receive enough inputs for all the rotors") return # Update the desired reference for every rotor (and saturate according to the min and max values) for i in range(self.num_rotors): # Compute the actual velocity reference to apply to each rotor self._input_reference[i] = (controls[i] + self.input_offset[i]) * self.input_scaling[ i ] + self.zero_position_armed[i] def zero_input_reference(self): """ When this method is called, the input_reference is updated such that every rotor is stopped """ self._input_reference = [0.0 for i in range(self.num_rotors)] class MavlinkBackendConfig: """ An auxiliary data class used to store all the configurations for the mavlink communications. """ def __init__(self, config={}): """ Initialize the MavlinkBackendConfig class Args: config (dict): A Dictionary that contains all the parameters for configuring the Mavlink interface - it can be empty or only have some of the parameters used by this backend. Examples: The dictionary default parameters are >>> {"vehicle_id": 0, >>> "connection_type": "tcpin", >>> "connection_ip": "localhost", >>> "connection_baseport": 4560, >>> "px4_autolaunch": True, >>> "px4_dir": "PegasusInterface().px4_path", >>> "px4_vehicle_model": "iris", >>> "enable_lockstep": True, >>> "num_rotors": 4, >>> "input_offset": [0.0, 0.0, 0.0, 0.0], >>> "input_scaling": [1000.0, 1000.0, 1000.0, 1000.0], >>> "zero_position_armed": [100.0, 100.0, 100.0, 100.0], >>> "update_rate": 250.0 >>> } """ # Configurations for the mavlink communication protocol (note: the vehicle id is sumed to the connection_baseport) self.vehicle_id = config.get("vehicle_id", 0) self.connection_type = config.get("connection_type", "tcpin") self.connection_ip = config.get("connection_ip", "localhost") self.connection_baseport = config.get("connection_baseport", 4560) # Configure whether to launch px4 in the background automatically or not for every vehicle launched self.px4_autolaunch: bool = config.get("px4_autolaunch", True) self.px4_dir: str = config.get("px4_dir", PegasusInterface().px4_path) self.px4_vehicle_model: str = config.get("px4_vehicle_model", "iris") # Configurations to interpret the rotors control messages coming from mavlink self.enable_lockstep: bool = config.get("enable_lockstep", True) self.num_rotors: int = config.get("num_rotors", 4) self.input_offset = config.get("input_offset", [0.0, 0.0, 0.0, 0.0]) self.input_scaling = config.get("input_scaling", [1000.0, 1000.0, 1000.0, 1000.0]) self.zero_position_armed = config.get("zero_position_armed", [100.0, 100.0, 100.0, 100.0]) # The update rate at which we will be sending data to mavlink (TODO - remove this from here in the future # and infer directly from the function calls) self.update_rate: float = config.get("update_rate", 250.0) # [Hz] class MavlinkBackend(Backend): """ The Mavlink Backend used to receive the vehicle's state and sensor data in order to send to PX4 through mavlink. It also receives via mavlink the thruster commands to apply to each vehicle rotor. """ def __init__(self, config=MavlinkBackendConfig()): """Initialize the MavlinkBackend Args: config (MavlinkBackendConfig): The configuration class for the MavlinkBackend. Defaults to MavlinkBackendConfig(). """ # Initialize the Backend object super().__init__() # Setup the desired mavlink connection port # The connection will only be created once the simulation starts self._vehicle_id = config.vehicle_id self._connection = None self._connection_port = ( config.connection_type + ":" + config.connection_ip + ":" + str(config.connection_baseport + config.vehicle_id) ) # Check if we need to autolaunch px4 in the background or not self.px4_autolaunch: bool = config.px4_autolaunch self.px4_vehicle_model: str = config.px4_vehicle_model # only needed if px4_autolaunch == True self.px4_tool: PX4LaunchTool = None self.px4_dir: str = config.px4_dir # Set the update rate used for sending the messages (TODO - remove this hardcoded value from here) self._update_rate: float = config.update_rate self._time_step: float = 1.0 / self._update_rate # s self._is_running: bool = False # Vehicle Sensor data to send through mavlink self._sensor_data: SensorMsg = SensorMsg() # Vehicle Rotor data received from mavlink self._rotor_data: ThrusterControl = ThrusterControl( config.num_rotors, config.input_offset, config.input_scaling, config.zero_position_armed ) # Vehicle actuator control data self._num_inputs: int = config.num_rotors self._input_reference: np.ndarray = np.zeros((self._num_inputs,)) self._armed: bool = False self._input_offset: np.ndarray = np.zeros((self._num_inputs,)) self._input_scaling: np.ndarray = np.zeros((self._num_inputs,)) # Select whether lockstep is enabled self._enable_lockstep: bool = config.enable_lockstep # Auxiliar variables to handle the lockstep between receiving sensor data and actuator control self._received_first_actuator: bool = False self._received_actuator: bool = False # Auxiliar variables to check if we have already received an hearbeat from the software in the loop simulation self._received_first_hearbeat: bool = False self._last_heartbeat_sent_time = 0 # Auxiliar variables for setting the u_time when sending sensor data to px4 self._current_utime: int = 0 def update_sensor(self, sensor_type: str, data): """Method that is used as callback for the vehicle for every iteration that a sensor produces new data. Only the IMU, GPS, Barometer and Magnetometer sensor data are stored to be sent through mavlink. Every other sensor data that gets passed to this function is discarded. Args: sensor_type (str): A name that describes the type of sensor data (dict): A dictionary that contains the data produced by the sensor """ if sensor_type == "IMU": self.update_imu_data(data) elif sensor_type == "GPS": self.update_gps_data(data) elif sensor_type == "Vision": self.update_vision_data(data) elif sensor_type == "Barometer": self.update_bar_data(data) elif sensor_type == "Magnetometer": self.update_mag_data(data) # If the data received is not from one of the above sensors, then this backend does # not support that sensor and it will just ignore it else: pass def update_imu_data(self, data): """Gets called by the 'update_sensor' method to update the current IMU data Args: data (dict): The data produced by an IMU sensor """ # Acelerometer data self._sensor_data.xacc = data["linear_acceleration"][0] self._sensor_data.yacc = data["linear_acceleration"][1] self._sensor_data.zacc = data["linear_acceleration"][2] # Gyro data self._sensor_data.xgyro = data["angular_velocity"][0] self._sensor_data.ygyro = data["angular_velocity"][1] self._sensor_data.zgyro = data["angular_velocity"][2] # Signal that we have new IMU data self._sensor_data.new_imu_data = True self._sensor_data.received_first_imu = True def update_gps_data(self, data): """Gets called by the 'update_sensor' method to update the current GPS data Args: data (dict): The data produced by an GPS sensor """ # GPS data self._sensor_data.fix_type = int(data["fix_type"]) self._sensor_data.latitude_deg = int(data["latitude"] * 10000000) self._sensor_data.longitude_deg = int(data["longitude"] * 10000000) self._sensor_data.altitude = int(data["altitude"] * 1000) self._sensor_data.eph = int(data["eph"]) self._sensor_data.epv = int(data["epv"]) self._sensor_data.velocity = int(data["speed"] * 100) self._sensor_data.velocity_north = int(data["velocity_north"] * 100) self._sensor_data.velocity_east = int(data["velocity_east"] * 100) self._sensor_data.velocity_down = int(data["velocity_down"] * 100) self._sensor_data.cog = int(data["cog"] * 100) self._sensor_data.satellites_visible = int(data["sattelites_visible"]) # Signal that we have new GPS data self._sensor_data.new_gps_data = True # Also update the groundtruth for the latitude and longitude self._sensor_data.sim_lat = int(data["latitude_gt"] * 10000000) self._sensor_data.sim_lon = int(data["longitude_gt"] * 10000000) self._sensor_data.sim_alt = int(data["altitude_gt"] * 1000) def update_bar_data(self, data): """Gets called by the 'update_sensor' method to update the current Barometer data Args: data (dict): The data produced by an Barometer sensor """ # Barometer data self._sensor_data.temperature = data["temperature"] self._sensor_data.abs_pressure = data["absolute_pressure"] self._sensor_data.pressure_alt = data["pressure_altitude"] # Signal that we have new Barometer data self._sensor_data.new_bar_data = True def update_mag_data(self, data): """Gets called by the 'update_sensor' method to update the current Vision data Args: data (dict): The data produced by an Vision sensor """ # Magnetometer data self._sensor_data.xmag = data["magnetic_field"][0] self._sensor_data.ymag = data["magnetic_field"][1] self._sensor_data.zmag = data["magnetic_field"][2] # Signal that we have new Magnetometer data self._sensor_data.new_mag_data = True def update_vision_data(self, data): """Method that 'in the future' will get called by the 'update_sensor' method to update the current Vision data This callback is currently not being called (TODO in a future simulator version) Args: data (dict): The data produced by an Vision sensor """ # Vision or MOCAP data self._sensor_data.vision_x = data["x"] self._sensor_data.vision_y = data["y"] self._sensor_data.vision_z = data["z"] self._sensor_data.vision_roll = data["roll"] self._sensor_data.vision_pitch = data["pitch"] self._sensor_data.vision_yaw = data["yaw"] self._sensor_data.vision_covariance = data["covariance"] self._sensor_data.vision_reset_counter = data["reset_counter"] # Signal that we have new vision or mocap data self._sensor_data.new_vision_data = True def update_state(self, state: State): """Method that is used as callback and gets called at every physics step with the current state of the vehicle. This state is then stored in order to be sent as groundtruth via mavlink Args: state (State): The current state of the vehicle. """ # Get the quaternion in the convention [x, y, z, w] attitude = state.get_attitude_ned_frd() # Rotate the quaternion to the mavlink standard self._sensor_data.sim_attitude[0] = attitude[3] self._sensor_data.sim_attitude[1] = attitude[0] self._sensor_data.sim_attitude[2] = attitude[1] self._sensor_data.sim_attitude[3] = attitude[2] # Get the angular velocity ang_vel = state.get_angular_velocity_frd() self._sensor_data.sim_angular_vel[0] = ang_vel[0] self._sensor_data.sim_angular_vel[1] = ang_vel[1] self._sensor_data.sim_angular_vel[2] = ang_vel[2] # Get the acceleration acc_vel = state.get_linear_acceleration_ned() self._sensor_data.sim_acceleration[0] = int(acc_vel[0] * 1000) self._sensor_data.sim_acceleration[1] = int(acc_vel[1] * 1000) self._sensor_data.sim_acceleration[2] = int(acc_vel[2] * 1000) # Get the latitude, longitude and altitude directly from the GPS # Get the linear velocity of the vehicle in the inertial frame lin_vel = state.get_linear_velocity_ned() self._sensor_data.sim_velocity_inertial[0] = int(lin_vel[0] * 100) self._sensor_data.sim_velocity_inertial[1] = int(lin_vel[1] * 100) self._sensor_data.sim_velocity_inertial[2] = int(lin_vel[2] * 100) # Compute the air_speed - assumed indicated airspeed due to flow aligned with pitot (body x) body_vel = state.get_linear_body_velocity_ned_frd() self._sensor_data.sim_ind_airspeed = int(body_vel[0] * 100) self._sensor_data.sim_true_airspeed = int(np.linalg.norm(lin_vel) * 100) # TODO - add wind here self._sensor_data.new_sim_state = True def input_reference(self): """Method that when implemented, should return a list of desired angular velocities to apply to the vehicle rotors """ return self._rotor_data.input_reference def __del__(self): """Gets called when the MavlinkBackend object gets destroyed. When this happens, we make sure to close any mavlink connection open for this vehicle. """ # When this object gets destroyed, close the mavlink connection to free the communication port try: self._connection.close() self._connection = None except: carb.log_info("Mavlink connection was not closed, because it was never opened") def start(self): """Method that handles the begining of the simulation of vehicle. It will try to open the mavlink connection interface and also attemp to launch px4 in a background process if that option as specified in the config class """ # If we are already running the mavlink interface, then ignore the function call if self._is_running == True: return # If the connection no longer exists (we stoped and re-started the stream, then re_intialize the interface) if self._connection is None: self.re_initialize_interface() # Set the flag to signal that the mavlink transmission has started self._is_running = True # Launch the PX4 in the background if needed if self.px4_autolaunch and self.px4_tool is None: carb.log_info("Attempting to launch PX4 in background process") self.px4_tool = PX4LaunchTool(self.px4_dir, self._vehicle_id, self.px4_vehicle_model) self.px4_tool.launch_px4() def stop(self): """Method that when called will handle the stopping of the simulation of vehicle. It will make sure that any open mavlink connection will be closed and also that the PX4 background process gets killed (if it was auto-initialized) """ # If the simulation was already stoped, then ignore the function call if self._is_running == False: return # Set the flag so that we are no longer running the mavlink interface self._is_running = False # Close the mavlink connection self._connection.close() self._connection = None # Close the PX4 if it was running if self.px4_autolaunch and self.px4_autolaunch is not None: carb.log_info("Attempting to kill PX4 background process") self.px4_tool.kill_px4() self.px4_tool = None def reset(self): """For now does nothing. Here for compatibility purposes only """ return def re_initialize_interface(self): """Auxiliar method used to get the MavlinkInterface to reset the MavlinkInterface to its initial state """ self._is_running = False # Restart the sensor data self._sensor_data = SensorMsg() # Restart the connection self._connection = mavutil.mavlink_connection(self._connection_port) # Auxiliar variables to handle the lockstep between receiving sensor data and actuator control self._received_first_actuator: bool = False self._received_actuator: bool = False # Auxiliar variables to check if we have already received an hearbeat from the software in the loop simulation self._received_first_hearbeat: bool = False self._last_heartbeat_sent_time = 0 def wait_for_first_hearbeat(self): """ Responsible for waiting for the first hearbeat. This method is locking and will only return if an hearbeat is received via mavlink. When this first heartbeat is received poll for mavlink messages """ carb.log_warn("Waiting for first hearbeat") result = self._connection.wait_heartbeat(blocking=False) if result is not None: self._received_first_hearbeat = True carb.log_warn("Received first hearbeat") def update(self, dt): """ Method that is called at every physics step to send data to px4 and receive the control inputs via mavlink Args: dt (float): The time elapsed between the previous and current function calls (s). """ # Check for the first hearbeat on the first few iterations if not self._received_first_hearbeat: self.wait_for_first_hearbeat() return # Check if we have already received IMU data. If not, start the lockstep and wait for more data if self._sensor_data.received_first_imu: while not self._sensor_data.new_imu_data and self._is_running: # Just go for the next update and then try to check if we have new simulated sensor data # DO not continue and get mavlink thrusters commands until we have simulated IMU data available return # Check if we have received any mavlink messages self.poll_mavlink_messages() # Send hearbeats at 1Hz if (time.time() - self._last_heartbeat_sent_time) > 1.0 or self._received_first_hearbeat == False: self.send_heartbeat() self._last_heartbeat_sent_time = time.time() # Update the current u_time for px4 self._current_utime += int(dt * 1000000) # Send sensor messages self.send_sensor_msgs(self._current_utime) # Send the GPS messages self.send_gps_msgs(self._current_utime) # Send the Vision messages self.send_vision_msgs(self._current_utime) def poll_mavlink_messages(self): """ Method that is used to check if new mavlink messages were received """ # If we have not received the first hearbeat yet, do not poll for mavlink messages if self._received_first_hearbeat == False: return # Check if we need to lock and wait for actuator control data needs_to_wait_for_actuator: bool = self._received_first_actuator and self._enable_lockstep # Start by assuming that we have not received data for the actuators for the current step self._received_actuator = False # Use this loop to emulate a do-while loop (make sure this runs at least once) while True: # Try to get a message msg = self._connection.recv_match(blocking=needs_to_wait_for_actuator) # If a message was received if msg is not None: # Check if it is of the type that contains actuator controls if msg.id == mavutil.mavlink.MAVLINK_MSG_ID_HIL_ACTUATOR_CONTROLS: self._received_first_actuator = True self._received_actuator = True # Handle the control of the actuation commands received by PX4 self.handle_control(msg.time_usec, msg.controls, msg.mode, msg.flags) # Check if we do not need to wait for an actuator message or we just received actuator input # If so, break out of the infinite loop if not needs_to_wait_for_actuator or self._received_actuator: break def send_heartbeat(self, mav_type=mavutil.mavlink.MAV_TYPE_GENERIC): """ Method that is used to publish an heartbear through mavlink protocol Args: mav_type (int): The ID that indicates the type of vehicle. Defaults to MAV_TYPE_GENERIC=0 """ carb.log_info("Sending heartbeat") # Note: to know more about these functions, go to pymavlink->dialects->v20->standard.py # This contains the definitions for sending the hearbeat and simulated sensor messages self._connection.mav.heartbeat_send(mav_type, mavutil.mavlink.MAV_AUTOPILOT_INVALID, 0, 0, 0) def send_sensor_msgs(self, time_usec: int): """ Method that when invoked, will send the simulated sensor data through mavlink Args: time_usec (int): The total time elapsed since the simulation started """ carb.log_info("Sending sensor msgs") # Check which sensors have new data to send fields_updated: int = 0 if self._sensor_data.new_imu_data: # Set the bit field to signal that we are sending updated accelerometer and gyro data fields_updated = fields_updated | SensorSource.ACCEL | SensorSource.GYRO self._sensor_data.new_imu_data = False if self._sensor_data.new_mag_data: # Set the bit field to signal that we are sending updated magnetometer data fields_updated = fields_updated | SensorSource.MAG self._sensor_data.new_mag_data = False if self._sensor_data.new_bar_data: # Set the bit field to signal that we are sending updated barometer data fields_updated = fields_updated | SensorSource.BARO self._sensor_data.new_bar_data = False if self._sensor_data.new_press_data: # Set the bit field to signal that we are sending updated diff pressure data fields_updated = fields_updated | SensorSource.DIFF_PRESS self._sensor_data.new_press_data = False try: self._connection.mav.hil_sensor_send( time_usec, self._sensor_data.xacc, self._sensor_data.yacc, self._sensor_data.zacc, self._sensor_data.xgyro, self._sensor_data.ygyro, self._sensor_data.zgyro, self._sensor_data.xmag, self._sensor_data.ymag, self._sensor_data.zmag, self._sensor_data.abs_pressure, self._sensor_data.diff_pressure, self._sensor_data.pressure_alt, self._sensor_data.altitude, fields_updated, ) except: carb.log_warn("Could not send sensor data through mavlink") def send_gps_msgs(self, time_usec: int): """ Method that is used to send simulated GPS data through the mavlink protocol. Args: time_usec (int): The total time elapsed since the simulation started """ carb.log_info("Sending GPS msgs") # Do not send GPS data, if no new data was received if not self._sensor_data.new_gps_data: return self._sensor_data.new_gps_data = False # Latitude, longitude and altitude (all in integers) try: self._connection.mav.hil_gps_send( time_usec, self._sensor_data.fix_type, self._sensor_data.latitude_deg, self._sensor_data.longitude_deg, self._sensor_data.altitude, self._sensor_data.eph, self._sensor_data.epv, self._sensor_data.velocity, self._sensor_data.velocity_north, self._sensor_data.velocity_east, self._sensor_data.velocity_down, self._sensor_data.cog, self._sensor_data.satellites_visible, ) except: carb.log_warn("Could not send gps data through mavlink") def send_vision_msgs(self, time_usec: int): """ Method that is used to send simulated vision/mocap data through the mavlink protocol. Args: time_usec (int): The total time elapsed since the simulation started """ carb.log_info("Sending vision/mocap msgs") # Do not send vision/mocap data, if not new data was received if not self._sensor_data.new_vision_data: return self._sensor_data.new_vision_data = False try: self._connection.mav.vision_position_estimate_send( time_usec, self._sensor_data.vision_x, self._sensor_data.vision_y, self._sensor_data.vision_z, self._sensor_data.vision_roll, self._sensor_data.vision_pitch, self._sensor_data.vision_yaw, self._sensor_data.vision_covariance, self._sensor_data.vision_reset_counter, ) except: carb.log_warn("Could not send vision/mocap data through mavlink") def send_ground_truth(self, time_usec: int): """ Method that is used to send the groundtruth data of the vehicle through mavlink Args: time_usec (int): The total time elapsed since the simulation started """ carb.log_info("Sending groundtruth msgs") # Do not send vision/mocap data, if not new data was received if not self._sensor_data.new_sim_state or self._sensor_data.sim_alt == 0: return self._sensor_data.new_sim_state = False try: self._connection.mav.hil_state_quaternion_send( time_usec, self._sensor_data.sim_attitude, self._sensor_data.sim_angular_vel[0], self._sensor_data.sim_angular_vel[1], self._sensor_data.sim_angular_vel[2], self._sensor_data.sim_lat, self._sensor_data.sim_lon, self._sensor_data.sim_alt, self._sensor_data.sim_velocity_inertial[0], self._sensor_data.sim_velocity_inertial[1], self._sensor_data.sim_velocity_inertial[2], self._sensor_data.sim_ind_airspeed, self._sensor_data.sim_true_airspeed, self._sensor_data.sim_acceleration[0], self._sensor_data.sim_acceleration[1], self._sensor_data.sim_acceleration[2], ) except: carb.log_warn("Could not send groundtruth through mavlink") def handle_control(self, time_usec, controls, mode, flags): """ Method that when received a control message, compute the forces simulated force that should be applied on each rotor of the vehicle Args: time_usec (int): The total time elapsed since the simulation started - Ignored argument controls (list): A list of ints which contains the thrust_control received via mavlink flags: Ignored argument """ # Check if the vehicle is armed - Note: here we have to add a +1 since the code for armed is 128, but # pymavlink is return 129 (the end of the buffer) if mode == mavutil.mavlink.MAV_MODE_FLAG_SAFETY_ARMED + 1: carb.log_info("Parsing control input") # Set the rotor target speeds self._rotor_data.update_input_reference(controls) # If the vehicle is not armed, do not rotate the propellers else: self._rotor_data.zero_input_reference()
34,705
Python
39.878681
186
0.61677
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/backends/tools/px4_launch_tool.py
""" | File: px4_launch_tool.py | Author: Marcelo Jacinto ([email protected]) | Description: Defines an auxiliary tool to launch the PX4 process in the background | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ # System tools used to launch the px4 process in the brackground import os import tempfile import subprocess class PX4LaunchTool: """ A class that manages the start/stop of a px4 process. It requires only the path to the PX4 installation (assuming that PX4 was already built with 'make px4_sitl_default none'), the vehicle id and the vehicle model. """ def __init__(self, px4_dir, vehicle_id: int = 0, px4_model: str = "iris"): """Construct the PX4LaunchTool object Args: px4_dir (str): A string with the path to the PX4-Autopilot directory vehicle_id (int): The ID of the vehicle. Defaults to 0. px4_model (str): The vehicle model. Defaults to "iris". """ # Attribute that will hold the px4 process once it is running self.px4_process = None # The vehicle id (used for the mavlink port open in the system) self.vehicle_id = vehicle_id # Configurations to whether autostart px4 (SITL) automatically or have the user launch it manually on another # terminal self.px4_dir = px4_dir self.rc_script = self.px4_dir + "/ROMFS/px4fmu_common/init.d-posix/rcS" # Create a temporary filesystem for px4 to write data to/from (and modify the origin rcS files) self.root_fs = tempfile.TemporaryDirectory() # Set the environement variables that let PX4 know which vehicle model to use internally self.environment = os.environ self.environment["PX4_SIM_MODEL"] = px4_model def launch_px4(self): """ Method that will launch a px4 instance with the specified configuration """ self.px4_process = subprocess.Popen( [ self.px4_dir + "/build/px4_sitl_default/bin/px4", self.px4_dir + "/ROMFS/px4fmu_common/", "-s", self.rc_script, "-i", str(self.vehicle_id), "-d", ], cwd=self.root_fs.name, shell=False, env=self.environment, ) def kill_px4(self): """ Method that will kill a px4 instance with the specified configuration """ if self.px4_process is not None: self.px4_process.kill() self.px4_process = None def __del__(self): """ If the px4 process is still running when the PX4 launch tool object is whiped from memory, then make sure we kill the px4 instance so we don't end up with hanged px4 instances """ # Make sure the PX4 process gets killed if self.px4_process: self.kill_px4() # Make sure we clean the temporary filesystem used for the simulation self.root_fs.cleanup() # ---- Code used for debugging the px4 tool ---- def main(): px4_tool = PX4LaunchTool(os.environ["HOME"] + "/PX4-Autopilot") px4_tool.launch_px4() import time time.sleep(60) if __name__ == "__main__": main()
3,317
Python
31.851485
122
0.611396
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/vehicles/vehicle.py
""" | File: vehicle.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: Definition of the Vehicle class which is used as the base for all the vehicles. """ # Numerical computations import numpy as np from scipy.spatial.transform import Rotation # Low level APIs import carb from pxr import Usd, Gf # High level Isaac sim APIs import omni.usd from omni.isaac.core.world import World from omni.isaac.core.utils.prims import define_prim, get_prim_at_path from omni.usd import get_stage_next_free_path from omni.isaac.core.robots.robot import Robot # Extension APIs from pegasus.simulator.logic.state import State from pegasus.simulator.logic.interface.pegasus_interface import PegasusInterface from pegasus.simulator.logic.vehicle_manager import VehicleManager def get_world_transform_xform(prim: Usd.Prim): """ Get the local transformation of a prim using omni.usd.get_world_transform_matrix(). See https://docs.omniverse.nvidia.com/kit/docs/omni.usd/latest/omni.usd/omni.usd.get_world_transform_matrix.html Args: prim (Usd.Prim): The prim to calculate the world transformation. Returns: A tuple of: - Translation vector. - Rotation quaternion, i.e. 3d vector plus angle. - Scale vector. """ world_transform: Gf.Matrix4d = omni.usd.get_world_transform_matrix(prim) rotation: Gf.Rotation = world_transform.ExtractRotation() return rotation class Vehicle(Robot): def __init__( self, stage_prefix: str, usd_path: str = None, init_pos=[0.0, 0.0, 0.0], init_orientation=[0.0, 0.0, 0.0, 1.0], ): """ Class that initializes a vehicle in the isaac sim's curent stage Args: stage_prefix (str): The name the vehicle will present in the simulator when spawned. Defaults to "quadrotor". usd_path (str): The USD file that describes the looks and shape of the vehicle. Defaults to "". init_pos (list): The initial position of the vehicle in the inertial frame (in ENU convention). Defaults to [0.0, 0.0, 0.0]. init_orientation (list): The initial orientation of the vehicle in quaternion [qx, qy, qz, qw]. Defaults to [0.0, 0.0, 0.0, 1.0]. """ # Get the current world at which we want to spawn the vehicle self._world = PegasusInterface().world self._current_stage = self._world.stage # Save the name with which the vehicle will appear in the stage # and the name of the .usd file that contains its description self._stage_prefix = get_stage_next_free_path(self._current_stage, stage_prefix, False) self._usd_file = usd_path # Get the vehicle name by taking the last part of vehicle stage prefix self._vehicle_name = self._stage_prefix.rpartition("/")[-1] # Spawn the vehicle primitive in the world's stage self._prim = define_prim(self._stage_prefix, "Xform") self._prim = get_prim_at_path(self._stage_prefix) self._prim.GetReferences().AddReference(self._usd_file) # Initialize the "Robot" class # Note: we need to change the rotation to have qw first, because NVidia # does not keep a standard of quaternions inside its own libraries (not good, but okay) super().__init__( prim_path=self._stage_prefix, name=self._stage_prefix, position=init_pos, orientation=[init_orientation[3], init_orientation[0], init_orientation[1], init_orientation[2]], articulation_controller=None, ) # Add this object for the world to track, so that if we clear the world, this object is deleted from memory and # as a consequence, from the VehicleManager as well self._world.scene.add(self) # Add the current vehicle to the vehicle manager, so that it knows # that a vehicle was instantiated VehicleManager.get_vehicle_manager().add_vehicle(self._stage_prefix, self) # Variable that will hold the current state of the vehicle self._state = State() # Motor that is given as reference self._motor_speed = [] # Add a callback to the physics engine to update the current state of the system self._world.add_physics_callback(self._stage_prefix + "/state", self.update_state) # Add the update method to the physics callback if the world was received # so that we can apply forces and torques to the vehicle. Note, this method should # be implemented in classes that inherit the vehicle object self._world.add_physics_callback(self._stage_prefix + "/update", self.update) # Set the flag that signals if the simulation is running or not self._sim_running = False # Add a callback to start/stop of the simulation once the play/stop button is hit self._world.add_timeline_callback(self._stage_prefix + "/start_stop_sim", self.sim_start_stop) def __del__(self): """ Method that is invoked when a vehicle object gets destroyed. When this happens, we also invoke the 'remove_vehicle' from the VehicleManager in order to remove the vehicle from the list of active vehicles. """ # Remove this object from the vehicleHandler VehicleManager.get_vehicle_manager().remove_vehicle(self._stage_prefix) """ Properties """ @property def state(self): """The state of the vehicle. Returns: State: The current state of the vehicle, i.e., position, orientation, linear and angular velocities... """ return self._state @property def vehicle_name(self) -> str: """Vehicle name. Returns: Vehicle name (str): last prim name in vehicle prim path """ return self._vehicle_name """ Operations """ def sim_start_stop(self, event): """ Callback that is called every time there is a timeline event such as starting/stoping the simulation. Args: event: A timeline event generated from Isaac Sim, such as starting or stoping the simulation. """ # If the start/stop button was pressed, then call the start and stop methods accordingly if self._world.is_playing() and self._sim_running == False: self._sim_running = True self.start() if self._world.is_stopped() and self._sim_running == True: self._sim_running = False self.stop() def apply_force(self, force, pos=[0.0, 0.0, 0.0], body_part="/body"): """ Method that will apply a force on the rigidbody, on the part specified in the 'body_part' at its relative position given by 'pos' (following a FLU) convention. Args: force (list): A 3-dimensional vector of floats with the force [Fx, Fy, Fz] on the body axis of the vehicle according to a FLU convention. pos (list): _description_. Defaults to [0.0, 0.0, 0.0]. body_part (str): . Defaults to "/body". """ # Get the handle of the rigidbody that we will apply the force to rb = self._world.dc_interface.get_rigid_body(self._stage_prefix + body_part) # Apply the force to the rigidbody. The force should be expressed in the rigidbody frame self._world.dc_interface.apply_body_force(rb, carb._carb.Float3(force), carb._carb.Float3(pos), False) def apply_torque(self, torque, body_part="/body"): """ Method that when invoked applies a given torque vector to /<rigid_body_name>/"body" or to /<rigid_body_name>/<body_part>. Args: torque (list): A 3-dimensional vector of floats with the force [Tx, Ty, Tz] on the body axis of the vehicle according to a FLU convention. body_part (str): . Defaults to "/body". """ # Get the handle of the rigidbody that we will apply a torque to rb = self._world.dc_interface.get_rigid_body(self._stage_prefix + body_part) # Apply the torque to the rigidbody. The torque should be expressed in the rigidbody frame self._world.dc_interface.apply_body_torque(rb, carb._carb.Float3(torque), False) def update_state(self, dt: float): """ Method that is called at every physics step to retrieve and update the current state of the vehicle, i.e., get the current position, orientation, linear and angular velocities and acceleration of the vehicle. Args: dt (float): The time elapsed between the previous and current function calls (s). """ # Get the body frame interface of the vehicle (this will be the frame used to get the position, orientation, etc.) body = self._world.dc_interface.get_rigid_body(self._stage_prefix + "/body") # Get the current position and orientation in the inertial frame pose = self._world.dc_interface.get_rigid_body_pose(body) # Get the attitude according to the convention [w, x, y, z] prim = self._world.stage.GetPrimAtPath(self._stage_prefix + "/body") rotation_quat = get_world_transform_xform(prim).GetQuaternion() rotation_quat_real = rotation_quat.GetReal() rotation_quat_img = rotation_quat.GetImaginary() # Get the angular velocity of the vehicle expressed in the body frame of reference ang_vel = self._world.dc_interface.get_rigid_body_angular_velocity(body) # The linear velocity [x_dot, y_dot, z_dot] of the vehicle's body frame expressed in the inertial frame of reference linear_vel = self._world.dc_interface.get_rigid_body_linear_velocity(body) # Get the linear acceleration of the body relative to the inertial frame, expressed in the inertial frame # Note: we must do this approximation, since the Isaac sim does not output the acceleration of the rigid body directly linear_acceleration = (np.array(linear_vel) - self._state.linear_velocity) / dt # Update the state variable X = [x,y,z] self._state.position = np.array(pose.p) # Get the quaternion according in the [qx,qy,qz,qw] standard self._state.attitude = np.array( [rotation_quat_img[0], rotation_quat_img[1], rotation_quat_img[2], rotation_quat_real] ) # Express the velocity of the vehicle in the inertial frame X_dot = [x_dot, y_dot, z_dot] self._state.linear_velocity = np.array(linear_vel) # The linear velocity V =[u,v,w] of the vehicle's body frame expressed in the body frame of reference # Note that: x_dot = Rot * V self._state.linear_body_velocity = ( Rotation.from_quat(self._state.attitude).inv().apply(self._state.linear_velocity) ) # omega = [p,q,r] self._state.angular_velocity = Rotation.from_quat(self._state.attitude).inv().apply(np.array(ang_vel)) # The acceleration of the vehicle expressed in the inertial frame X_ddot = [x_ddot, y_ddot, z_ddot] self._state.linear_acceleration = linear_acceleration def start(self): """ Method that should be implemented by the class that inherits the vehicle object. """ pass def stop(self): """ Method that should be implemented by the class that inherits the vehicle object. """ pass def update(self, dt: float): """ Method that computes and applies the forces to the vehicle in simulation based on the motor speed. This method must be implemented by a class that inherits this type and it's called periodically by the physics engine. Args: dt (float): The time elapsed between the previous and current function calls (s). """ pass
11,970
Python
41.601423
150
0.653133
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/vehicles/multirotor.py
""" | File: multirotor.py | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. | Description: Definition of the Multirotor class which is used as the base for all the multirotor vehicles. """ import numpy as np # The vehicle interface from pegasus.simulator.logic.vehicles.vehicle import Vehicle # Mavlink interface from pegasus.simulator.logic.backends.mavlink_backend import MavlinkBackend # Sensors and dynamics setup from pegasus.simulator.logic.dynamics import LinearDrag from pegasus.simulator.logic.thrusters import QuadraticThrustCurve from pegasus.simulator.logic.sensors import Barometer, IMU, Magnetometer, GPS from pegasus.simulator.logic.interface.pegasus_interface import PegasusInterface class MultirotorConfig: """ A data class that is used for configuring a Multirotor """ def __init__(self): """ Initialization of the MultirotorConfig class """ # Stage prefix of the vehicle when spawning in the world self.stage_prefix = "quadrotor" # The USD file that describes the visual aspect of the vehicle (and some properties such as mass and moments of inertia) self.usd_file = "" # The default thrust curve for a quadrotor and dynamics relating to drag self.thrust_curve = QuadraticThrustCurve() self.drag = LinearDrag([0.50, 0.30, 0.0]) # The default sensors for a quadrotor self.sensors = [Barometer(), IMU(), Magnetometer(), GPS()] # The default graphs self.graphs = [] # The backends for actually sending commands to the vehicle. By default use mavlink (with default mavlink configurations) # [Can be None as well, if we do not desired to use PX4 with this simulated vehicle]. It can also be a ROS2 backend # or your own custom Backend implementation! self.backends = [MavlinkBackend()] class Multirotor(Vehicle): """Multirotor class - It defines a base interface for creating a multirotor """ def __init__( self, # Simulation specific configurations stage_prefix: str = "quadrotor", usd_file: str = "", vehicle_id: int = 0, # Spawning pose of the vehicle init_pos=[0.0, 0.0, 0.07], init_orientation=[0.0, 0.0, 0.0, 1.0], config=MultirotorConfig(), ): """Initializes the multirotor object Args: stage_prefix (str): The name the vehicle will present in the simulator when spawned. Defaults to "quadrotor". usd_file (str): The USD file that describes the looks and shape of the vehicle. Defaults to "". vehicle_id (int): The id to be used for the vehicle. Defaults to 0. init_pos (list): The initial position of the vehicle in the inertial frame (in ENU convention). Defaults to [0.0, 0.0, 0.07]. init_orientation (list): The initial orientation of the vehicle in quaternion [qx, qy, qz, qw]. Defaults to [0.0, 0.0, 0.0, 1.0]. config (_type_, optional): _description_. Defaults to MultirotorConfig(). """ # 1. Initiate the Vehicle object itself super().__init__(stage_prefix, usd_file, init_pos, init_orientation) # 2. Initialize all the vehicle sensors self._sensors = config.sensors for sensor in self._sensors: if sensor.sensor_type in ["Camera", "Lidar"]: sensor.initialize(self) else: sensor.initialize(PegasusInterface().latitude, PegasusInterface().longitude, PegasusInterface().altitude) # Add callbacks to the physics engine to update each sensor at every timestep # and let the sensor decide depending on its internal update rate whether to generate new data self._world.add_physics_callback(self._stage_prefix + "/Sensors", self.update_sensors) # 3. Initialize all the vehicle graphs self._graphs = config.graphs for graph in self._graphs: graph.initialize(self) # 4. Setup the dynamics of the system # Get the thrust curve of the vehicle from the configuration self._thrusters = config.thrust_curve self._drag = config.drag # 5. Save the backend interface (if given in the configuration of the multirotor) # and initialize them self._backends = config.backends for backend in self._backends: backend.initialize(self) # Add a callbacks for the self._world.add_physics_callback(self._stage_prefix + "/mav_state", self.update_sim_state) def update_sensors(self, dt: float): """Callback that is called at every physics steps and will call the sensor.update method to generate new sensor data. For each data that the sensor generates, the backend.update_sensor method will also be called for every backend. For example, if new data is generated for an IMU and we have a MavlinkBackend, then the update_sensor method will be called for that backend so that this data can latter be sent thorugh mavlink. Args: dt (float): The time elapsed between the previous and current function calls (s). """ # Call the update method for the sensor to update its values internally (if applicable) for sensor in self._sensors: sensor_data = sensor.update(self._state, dt) # If some data was updated and we have a mavlink backend or ros backend (or other), then just update it if sensor_data is not None: for backend in self._backends: backend.update_sensor(sensor.sensor_type, sensor_data) def update_sim_state(self, dt: float): """ Callback that is used to "send" the current state for each backend being used to control the vehicle. This callback is called on every physics step. Args: dt (float): The time elapsed between the previous and current function calls (s). """ for backend in self._backends: backend.update_state(self._state) def start(self): """ Intializes the communication with all the backends. This method is invoked automatically when the simulation starts """ for backend in self._backends: backend.start() def stop(self): """ Signal all the backends that the simulation has stoped. This method is invoked automatically when the simulation stops """ for backend in self._backends: backend.stop() def update(self, dt: float): """ Method that computes and applies the forces to the vehicle in simulation based on the motor speed. This method must be implemented by a class that inherits this type. This callback is called on every physics step. Args: dt (float): The time elapsed between the previous and current function calls (s). """ # Get the articulation root of the vehicle articulation = self._world.dc_interface.get_articulation(self._stage_prefix) # Get the desired angular velocities for each rotor from the first backend (can be mavlink or other) expressed in rad/s if len(self._backends) != 0: desired_rotor_velocities = self._backends[0].input_reference() else: desired_rotor_velocities = [0.0 for i in range(self._thrusters._num_rotors)] # Input the desired rotor velocities in the thruster model self._thrusters.set_input_reference(desired_rotor_velocities) # Get the desired forces to apply to the vehicle forces_z, _, rolling_moment = self._thrusters.update(self._state, dt) # Apply force to each rotor for i in range(4): # Apply the force in Z on the rotor frame self.apply_force([0.0, 0.0, forces_z[i]], body_part="/rotor" + str(i)) # Generate the rotating propeller visual effect self.handle_propeller_visual(i, forces_z[i], articulation) # Apply the torque to the body frame of the vehicle that corresponds to the rolling moment self.apply_torque([0.0, 0.0, rolling_moment], "/body") # Compute the total linear drag force to apply to the vehicle's body frame drag = self._drag.update(self._state, dt) self.apply_force(drag, body_part="/body") # Call the update methods in all backends for backend in self._backends: backend.update(dt) def handle_propeller_visual(self, rotor_number, force: float, articulation): """ Auxiliar method used to set the joint velocity of each rotor (for animation purposes) based on the amount of force being applied on each joint Args: rotor_number (int): The number of the rotor to generate the rotation animation force (float): The force that is being applied on that rotor articulation (_type_): The articulation group the joints of the rotors belong to """ # Rotate the joint to yield the visual of a rotor spinning (for animation purposes only) joint = self._world.dc_interface.find_articulation_dof(articulation, "joint" + str(rotor_number)) # Spinning when armed but not applying force if 0.0 < force < 0.1: self._world.dc_interface.set_dof_velocity(joint, 5 * self._thrusters.rot_dir[rotor_number]) # Spinning when armed and applying force elif 0.1 <= force: self._world.dc_interface.set_dof_velocity(joint, 100 * self._thrusters.rot_dir[rotor_number]) # Not spinning else: self._world.dc_interface.set_dof_velocity(joint, 0) def force_and_torques_to_velocities(self, force: float, torque: np.ndarray): """ Auxiliar method used to get the target angular velocities for each rotor, given the total desired thrust [N] and torque [Nm] to be applied in the multirotor's body frame. Note: This method assumes a quadratic thrust curve. This method will be improved in a future update, and a general thrust allocation scheme will be adopted. For now, it is made to work with multirotors directly. Args: force (np.ndarray): A vector of the force to be applied in the body frame of the vehicle [N] torque (np.ndarray): A vector of the torque to be applied in the body frame of the vehicle [Nm] Returns: list: A list of angular velocities [rad/s] to apply in reach rotor to accomplish suchs forces and torques """ # Get the body frame of the vehicle rb = self._world.dc_interface.get_rigid_body(self._stage_prefix + "/body") # Get the rotors of the vehicle rotors = [self._world.dc_interface.get_rigid_body(self._stage_prefix + "/rotor" + str(i)) for i in range(self._thrusters._num_rotors)] # Get the relative position of the rotors with respect to the body frame of the vehicle (ignoring the orientation for now) relative_poses = self._world.dc_interface.get_relative_body_poses(rb, rotors) # Define the alocation matrix aloc_matrix = np.zeros((4, self._thrusters._num_rotors)) # Define the first line of the matrix (T [N]) aloc_matrix[0, :] = np.array(self._thrusters._rotor_constant) # Define the second and third lines of the matrix (\tau_x [Nm] and \tau_y [Nm]) aloc_matrix[1, :] = np.array([relative_poses[i].p[1] * self._thrusters._rotor_constant[i] for i in range(self._thrusters._num_rotors)]) aloc_matrix[2, :] = np.array([-relative_poses[i].p[0] * self._thrusters._rotor_constant[i] for i in range(self._thrusters._num_rotors)]) # Define the forth line of the matrix (\tau_z [Nm]) aloc_matrix[3, :] = np.array([self._thrusters._rolling_moment_coefficient[i] * self._thrusters._rot_dir[i] for i in range(self._thrusters._num_rotors)]) # Compute the inverse allocation matrix, so that we can get the angular velocities (squared) from the total thrust and torques aloc_inv = np.linalg.pinv(aloc_matrix) # Compute the target angular velocities (squared) squared_ang_vel = aloc_inv @ np.array([force, torque[0], torque[1], torque[2]]) # Making sure that there is no negative value on the target squared angular velocities squared_ang_vel[squared_ang_vel < 0] = 0.0 # ------------------------------------------------------------------------------------------------ # Saturate the inputs while preserving their relation to each other, by performing a normalization # ------------------------------------------------------------------------------------------------ max_thrust_vel_squared = np.power(self._thrusters.max_rotor_velocity[0], 2) max_val = np.max(squared_ang_vel) if max_val >= max_thrust_vel_squared: normalize = np.maximum(max_val / max_thrust_vel_squared, 1.0) squared_ang_vel = squared_ang_vel / normalize # Compute the angular velocities for each rotor in [rad/s] ang_vel = np.sqrt(squared_ang_vel) return ang_vel
13,372
Python
45.434028
160
0.642911
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/vehicles/__init__.py
""" | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ from .vehicle import Vehicle from .multirotor import Multirotor, MultirotorConfig
237
Python
28.749996
82
0.767932
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/vehicles/multirotors/iris.py
# Copyright (c) 2023, Marcelo Jacinto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from pegasus.simulator.logic.vehicles.multirotor import Multirotor, MultirotorConfig # Sensors and dynamics setup from pegasus.simulator.logic.dynamics import LinearDrag from pegasus.simulator.logic.thrusters import QuadraticThrustCurve from pegasus.simulator.logic.sensors import Barometer, IMU, Magnetometer, GPS # Mavlink interface from pegasus.simulator.logic.backends.mavlink_backend import MavlinkBackend # Get the location of the IRIS asset from pegasus.simulator.params import ROBOTS class IrisConfig(MultirotorConfig): def __init__(self): # Stage prefix of the vehicle when spawning in the world self.stage_prefix = "quadrotor" # The USD file that describes the visual aspect of the vehicle (and some properties such as mass and moments of inertia) self.usd_file = ROBOTS["Iris"] # The default thrust curve for a quadrotor and dynamics relating to drag self.thrust_curve = QuadraticThrustCurve() self.drag = LinearDrag([0.50, 0.30, 0.0]) # The default sensors for a quadrotor self.sensors = [Barometer(), IMU(), Magnetometer(), GPS()] # The backends for actually sending commands to the vehicle. By default use mavlink (with default mavlink configurations) # [Can be None as well, if we do not desired to use PX4 with this simulated vehicle]. It can also be a ROS2 backend # or your own custom Backend implementation! self.backends = [MavlinkBackend()] class Iris(Multirotor): def __init__(self, id: int, world, init_pos=[0.0, 0.0, 0.07, init_orientation=[0.0, 0.0, 0.0, 1.0]], config=IrisConfig()): super.__init__(config.stage_prefix, config.usd_file, id, world, init_pos, init_orientation, config=config)
1,850
Python
42.046511
129
0.721081
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/dynamics/__init__.py
""" | Author: Marcelo Jacinto ([email protected]) | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ from .drag import Drag from .linear_drag import LinearDrag
214
Python
25.874997
82
0.747664
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/dynamics/drag.py
""" | File: drag.py | Author: Marcelo Jacinto ([email protected]) | Description: Base interface used to implement forces that should actuate on a rigidbody such as linear drag | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ from pegasus.simulator.logic.state import State class Drag: """ Class that serves as a template for the implementation of Drag forces that actuate on a rigid body """ def __init__(self): """ Receives as input the drag coefficients of the vehicle as a 3x1 vector of constants """ @property def drag(self): """The drag force to be applied on the body frame of the vehicle Returns: list: A list with len==3 containing the drag force to be applied on the rigid body according to a FLU body reference frame, expressed in Newton (N) [dx, dy, dz] """ return [0.0, 0.0, 0.0] def update(self, state: State, dt: float): """Method that should be implemented to update the drag force to be applied on the body frame of the vehicle Args: state (State): The current state of the vehicle. dt (float): The time elapsed between the previous and current function calls (s). Returns: list: A list with len==3 containing the drag force to be applied on the rigid body according to a FLU body reference """ return [0.0, 0.0, 0.0]
1,481
Python
36.049999
128
0.649561
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/logic/dynamics/linear_drag.py
""" | File: linear_drag.py | Author: Marcelo Jacinto ([email protected]) | Description: Computes the forces that should actuate on a rigidbody affected by linear drag | License: BSD-3-Clause. Copyright (c) 2023, Marcelo Jacinto. All rights reserved. """ import numpy as np from pegasus.simulator.logic.dynamics.drag import Drag from pegasus.simulator.logic.state import State class LinearDrag(Drag): """ Class that implements linear drag computations afftecting a rigid body. It inherits the Drag base class. """ def __init__(self, drag_coefficients=[0.0, 0.0, 0.0]): """ Receives as input the drag coefficients of the vehicle as a 3x1 vector of constants Args: drag_coefficients (list[float]): The constant linear drag coefficients to used to compute the total drag forces affecting the rigid body. The linear drag is given by diag(dx, dy, dz) * [v_x, v_y, v_z] where the velocities are expressed in the body frame of the rigid body (using the FRU frame convention). """ # Initialize the base Drag class super().__init__() # The linear drag coefficients of the vehicle's body frame self._drag_coefficients = np.diag(drag_coefficients) # The drag force to apply on the vehicle's body frame self._drag_force = np.array([0.0, 0.0, 0.0]) @property def drag(self): """The drag force to be applied on the body frame of the vehicle Returns: list: A list with len==3 containing the drag force to be applied on the rigid body according to a FLU body reference frame, expressed in Newton (N) [dx, dy, dz] """ return self._drag_force def update(self, state: State, dt: float): """Method that updates the drag force to be applied on the body frame of the vehicle. The total drag force applied on the body reference frame (FLU convention) is given by diag(dx,dy,dz) * R' * v where v is the velocity of the vehicle expressed in the inertial frame and R' * v = velocity_body_frame Args: state (State): The current state of the vehicle. dt (float): The time elapsed between the previous and current function calls (s). Returns: list: A list with len==3 containing the drag force to be applied on the rigid body according to a FLU body reference """ # Get the velocity of the vehicle expressed in the body frame of reference body_vel = state.linear_body_velocity # Compute the component of the drag force to be applied in the body frame self._drag_force = -np.dot(self._drag_coefficients, body_vel) return self._drag_force
2,762
Python
42.171874
128
0.663287
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/tests/__init__.py
# Copyright (c) 2023, Marcelo Jacinto # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from .test_hello_world import *
135
Python
21.666663
39
0.740741
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/pegasus/simulator/tests/test_hello_world.py
# NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test # Extnsion for writing UI tests (simulate UI interaction) import omni.kit.ui_test as ui_test # Import extension python module we are testing with absolute import path, as if we are external user (other extension) import pegasus.simulator # Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test class Test(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): pass # After running each test async def tearDown(self): pass # Actual test, notice it is "async" function, so "await" can be used if needed async def test_hello_public_function(self): result = pegasus.simulator.some_public_function(4) self.assertEqual(result, 256) async def test_window_button(self): # Find a label in our window label = ui_test.find("My Window//Frame/**/Label[*]") # Find buttons in our window add_button = ui_test.find("My Window//Frame/**/Button[*].text=='Add'") reset_button = ui_test.find("My Window//Frame/**/Button[*].text=='Reset'") # Click reset button await reset_button.click() self.assertEqual(label.widget.text, "empty") await add_button.click() self.assertEqual(label.widget.text, "count: 1") await add_button.click() self.assertEqual(label.widget.text, "count: 2")
1,669
Python
35.304347
142
0.683044
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/config/extension.toml
[package] # Semantic Versioning is used: https://semver.org/ version = "1.0.0" # Lists people or organizations that are considered the "authors" of the package. authors = ["Marcelo Jacinto"] # The title and description fields are primarily for displaying extension info in UI title = "Pegasus Simulator" description="Extension providing the main framework interfaces for simulating aerial vehicles using PX4, Python or ROS 2 as a backend" # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "" # One of categories for UI. category = "Simulation" # Keywords for the extension keywords = ["drone", "quadrotor", "multirotor", "UAV", "px4", "sitl", "robotics"] # Location of change log file in target (final) folder of extension, relative to the root. # More info on writing changelog: https://keepachangelog.com/en/1.0.0/ changelog="docs/CHANGELOG.md" # Preview image and icon. Folder named "data" automatically goes in git lfs (see .gitattributes file). # Preview image is shown in "Overview" of Extensions window. Screenshot of an extension might be a good preview image. preview_image = "data/preview.png" # Icon is shown in Extensions window, it is recommended to be square, of size 256x256. icon = "data/icon.png" # Use omni.ui to build simple UI [dependencies] "omni.ui" = {} "omni.usd" = {} "omni.kit.uiapp" = {} "omni.isaac.core" = {} "omni.ui.scene" = {} "omni.kit.window.viewport" = {} # Main python module this extension provides, it will be publicly available as "import pegasus.simulator". [[python.module]] name = "pegasus.simulator" [python.pipapi] requirements = ["numpy", "scipy", "pymavlink", "pyyaml"] use_online_index = true [[test]] # Extra dependencies only to be used during test run dependencies = [ "omni.kit.ui_test" # UI testing extension ]
1,885
TOML
32.087719
134
0.731565
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/config/configs.yaml
global_coordinates: altitude: 90.0 latitude: 38.736832 longitude: -9.137977 px4_dir: ~/PX4-Autopilot
107
YAML
16.999997
24
0.728972
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/docs/CHANGELOG.md
# Changelog The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). ## [1.0.0] - 2023-02-17 - Initial version of Pegasus Simulator extension ### Added - A widget GUI to spawn a limited set of simulation environments and drones using the PX4-bakend. - A powerful sensors, drag, thrusters, control and vehicle API. - Barometer, IMU, magnetometer and GPS sensors. - Linear drag model. - Quadratic thrust curve model. - Multirotor model. - The 3DR Iris quadrotor simulation model. - MAVLink communications control support. - ROS 2 communications control support (needs fixing). - A library for implementing rotations from NED to ENU and FLU to FRD frame conventions. - Examples on how to use the framework in standalone scripting mode. - Demo with a nonlinear controller implemented in python. - A PX4 tool for automatically launching PX4 in SITL mode when provided with the PX4-Autopilot installation directory. - A paper describing the motivation for this framework and its inner-workings. - Basic documentation generation using sphinx.
1,063
Markdown
43.333332
118
0.780809
superboySB/SBDrone_deprecated/extensions/pegasus.simulator/docs/README.md
# Pegasus Simulator Pegasus Simulator is a framework built on top of NVIDIA Omniverse and Isaac Sim. It is designed to provide an easy, yet powerfull way of simulating the dynamics of vehicles. It provides a simulation interface for PX4 integration as well as a custom python control interface. At the moment, only multirotor vehicles are supported, with support for other vehicle topologies planned for future versions. ## Contributing The developers of the Pegasus simulator welcome any positive contributions and ideas from the robotics comunity to make in order to allow this extension to mature. If you think you have a nice contribution to make or just a simple suggestion, feel free to create bug reports, feature requests or open pull requests for direct code contributions. ## Acknowledgement NVIDIA Isaac Sim is available freely under https://www.nvidia.com/en-us/omniverse/download/. Pegasus Simulator is released under BSD-3 License. The license files of its dependencies and assets are present in the docs/licenses directory. ## Citation Please cite if you use this extension in your work: ``` @misc{jacinto2023pegasus, author = {Marcelo Jacinto and Rita Cunha}, title = {Pegasus Simulator: An Isaac Sim Framework for Multiple Aerial Vehicles Simulation}, year = {2023}, eprint = {}, } ``` ## Main Developer Team This simulation framework is an open-source effort, started by me, Marcelo Jacinto in January/2023. It is a tool that was created with the original purpose of serving my Ph.D. workplan for the next 4 years, which means that you can expect this repository to be mantained, hopefully at least until 2027. * Project Founder * Marcelo Jacinto], under the supervision of Prof. Rita Cunha and Prof. Antonio Pascoal (IST/ISR-Lisbon) * Architecture * Marcelo Jacinto * João Pinto * Multirotor Dynamic Simulation and Control * Marcelo Jacinto * Example Applications * Marcelo Jacinto * João Pinto * Paper Writting and Revision * Marcelo Jacinto * João Pinto * Rita Cunha * António Pascoal
2,036
Markdown
39.739999
324
0.783399
superboySB/SBDrone_deprecated/scripts/README.md
# Toturials of mavros and px4 如何在airsim上面用MAVROS给PX4无人机发送话题控制 ## 从Source安装mavros 源码编译方式同单无人机教程,需要先在“编译用容器”里编译,然后再启动“运行用容器”如下 ```sh docker run -itd --privileged --env=LOCAL_USER_ID="$(id -u)" --env=PX4_SIM_HOST_ADDR=172.16.13.104 -v /home/wangchao/daizipeng/SBDrone:/src:rw -v /tmp/.X11-unix:/tmp/.X11-unix:ro -e DISPLAY=:0 --network=host --name=mypx4-0 mypx4_image:v1 /bin/bash ``` 其中,`–-env=PX4_SIM_HOST_ADDR=172.16.13.104` 容器添加`PX4_SIM_HOST_ADDR`环境变量,指定远端airsim主机地址;`–-name`后面指定此容器名称。 ## 逐步开启mavros服务 在windows设备中,先检查AirSim中setting.json,启动AirSim的某一个map,进入等待服务状态。然后,登录容器 ```sh docker exec -it --user $(id -u) mypx4-0 /bin/bash ``` 打开一个窗口,运行2个PX4实例,需要观察到Airsim中有QGC(GPS lock)相关的提示才算成功: ```sh bash /src/Scripts/run_airsim_sitl.sh 0 bash /src/Scripts/run_airsim_sitl.sh 1 ``` 注意每次使用ros相关命令时需要输入 ```sh source /opt/ros/melodic/setup.bash ``` 打开一个窗口,运行mavros服务,其中第一个端口指定本地主机(127.0.0.1)上的接收端口号(udp_onboard_payload_port_remote),第二个端口指定飞行控制器上的发送端口号(udp_onboard_payload_port_local)。这些可以在上一个窗口的运行日志中,在mavlink的onboard udp port对应上。 ```sh roslaunch mavros px4.launch fcu_url:=udp://:[email protected]:14280 roslaunch mavros px4.launch fcu_url:=udp://:[email protected]:14281 ``` ## 使用mavros话题通信在Airsim里手动控制PX4无人机(有点受限于版本V1.12.1) 参考[教程](https://www.youtube.com/watch?v=ZonkdMcwXH4),打开一个窗口,基于mavros发送服务调用指令给px4,实现对无人机的控制,这里给出依次玩耍这些指令的结果: ```sh # 发起起飞指令,此时不能起飞 rosservice call /mavros/cmd/takeoff "{min_pitch: 0.0, yaw: 0.0, latitude: 0.0, longitude: 0.0, altitude: 0.0}" # 解锁无人机,此时可以起飞 rosservice call /mavros/cmd/arming "value: true" # 无人机起飞 rosservice call /mavros/cmd/arming "value: true" # 无人机降落 rosservice call /mavros/cmd/land "{min_pitch: 0.0, yaw: 0.0, latitude: 0.0, longitude: 0.0, altitude: 0.0}" ``` 也可以基于mavros发送话题给px4,以下是开一个窗口跑position controller: ```sh # 发送position controller的话题指令 rostopic pub /mavros/setpoint_position/local geometry_msgs/PoseStamped "header: seq: 0 stamp: secs: 0 nsecs: 0 frame_id: '' pose: position: x: 1.0 y: 0.0 z: 2.0 orientation: x: 0.0 y: 0.0 z: 0.0 w: 0.0" -r 20 ``` 然后再换个窗口设置飞行模式 ```sh # 该服务的目的是让飞行控制器(例如PX4)切换到特定的飞行模式,这里使用的是'OFFBOARD'模式,该模式允许飞行控制器接受来自外部计算机的指令控制飞行。 rosservice call /mavros/set_mode "base mode: 0 custom_mode: 'OFFBOARD'" # 解锁无人机,执行指令 rosservice call /mavros/cmd/arming "value: true" # 可以继续发送其它position controller的话题指令 ``` 以下是velocity controller的画圈demo: ```sh rostopic pub /mavros/setpoint_velocity/cmd_vel geometry_msgs/TwistStamped "header seq: 0 stamp: secs: 0 nsecs: 0 frame_id: '' twist: linear: x: 1.0 y: 0.0 z: 0.0 angular: x: 0.0 y: 0.0 z: 1.0" -r 20 ```
2,690
Markdown
26.742268
247
0.693309
superboySB/SBDrone_deprecated/tests/test_api_control.py
# ready to run example: PythonClient/multirotor/hello_drone.py import airsim import os # connect to the AirSim simulator client = airsim.MultirotorClient(ip="172.16.13.104") client.confirmConnection() client.enableApiControl(True) client.armDisarm(True) # Async methods returns Future. Call join() to wait for task to complete. client.takeoffAsync() state = client.getMultirotorState(vehicle_name = 'UAV_0') client.landAsync().join() # take images # responses = client.simGetImages([ # airsim.ImageRequest("0", airsim.ImageType.DepthVis), # airsim.ImageRequest("1", airsim.ImageType.DepthPlanar, True)]) # print('Retrieved images: %d', len(responses)) # # do something with the images # for response in responses: # if response.pixels_as_float: # print("Type %d, size %d" % (response.image_type, len(response.image_data_float))) # airsim.write_pfm('./py1.pfm', airsim.get_pfm_array(response)) # else: # print("Type %d, size %d" % (response.image_type, len(response.image_data_uint8))) # airsim.write_file('./py1.png', response.image_data_uint8)
1,100
Python
32.363635
91
0.708182
superboySB/SBDrone_deprecated/tests/test_manual_control.py
""" For connecting to the AirSim drone environment and testing API functionality """ import airsim import os import tempfile import pprint # connect to the AirSim simulator client = airsim.MultirotorClient(ip="172.16.13.104") client.confirmConnection() client.enableApiControl(True) client.armDisarm(True,vehicle_name='UAV_1') state = client.getMultirotorState(vehicle_name='UAV_1') s = pprint.pformat(state) print("state: %s" % s) client.takeoffAsync(timeout_sec = 20, vehicle_name = 'UAV_1') # client.moveByManualAsync(vx_max = 1E6, vy_max = 1E6, z_min = -1E6, duration = 1, vehicle_name='UAV_1') # 控制杆量 # airsim.wait_key('Manual mode is setup. Press any key to send RC data to takeoff') # 会持续控制,需要下一条命令覆盖 client.moveByRC(rcdata = airsim.RCData(pitch = 1, throttle = 0.5, is_initialized = True, is_valid = True), vehicle_name='UAV_1') client.moveByRC(rcdata = airsim.RCData(pitch = 0, throttle = 0.1, is_initialized = True, is_valid = True), vehicle_name='UAV_1')
975
Python
32.655171
128
0.732308
superboySB/SBDrone_deprecated/tests/test_get_state.py
import airsim import time # this script moves the drone to a location, then rests it thousands of time # purpose of this script is to stress test reset API # connect to the AirSim simulator client = airsim.MultirotorClient(ip="172.16.13.104",port=41451) client.confirmConnection() client.enableApiControl(True) client.armDisarm(True) for idx in range(3000): # client.moveToPositionAsync(0, 0, -10, 5).join() # client.reset() # client.enableApiControl(True) print(client.getMultirotorState()) print("%d" % idx) time.sleep(1) # that's enough fun for now. let's quite cleanly client.enableApiControl(False)
635
Python
24.439999
76
0.733858
superboySB/SBDrone_deprecated/tests/test_functions.py
import time import airsim import numpy as np def convert_pos_UE_to_AS(origin_UE : np.array, pos_UE : np.array): pos = np.zeros(3, dtype=float) pos[0] = pos_UE[0] - origin_UE[0] pos[1] = pos_UE[1] - origin_UE[1] pos[2] = - pos_UE[2] + origin_UE[2] return pos / 100 droneName = "Drone0" origin_UE = np.array([0.0, 0.0, 910.0]) areans_train_long = np.array([ # Using larger environment # [Utils.convert_pos_UE_to_AS(self.origin_UE, np.array([41156.0, 20459.0, 1000.0])), Utils.convert_pos_UE_to_AS(self.origin_UE, np.array([56206.0, 21019.0, 1000.0]))] # Using smaller environment [convert_pos_UE_to_AS(origin_UE, np.array([8430.0, -6760.0, 1000.0])), convert_pos_UE_to_AS(origin_UE, np.array([14060.0, -6760.0, 1000.0]))] ]) client = airsim.MultirotorClient(ip="172.16.13.104") client.confirmConnection() client.reset() client.enableApiControl(True, vehicle_name = droneName) client.armDisarm(True, vehicle_name = droneName) client.takeoffAsync(vehicle_name=droneName) time.sleep(10) client.client.call_async("resetVehicle", droneName, airsim.Pose(airsim.Vector3r(areans_train_long[0][0][0], areans_train_long[0][0][1], areans_train_long[0][0][2]), airsim.Quaternionr(0.0, 0.0, 0.0, 0.0)))
1,450
Python
35.274999
170
0.577931
superboySB/SBDrone_deprecated/tests/test_subprocress.py
import subprocess # 定义要执行的脚本命令 command = "ls -l" # 以ls -l命令为例,你可以换成你要执行的任何其他脚本命令 # 执行脚本命令 try: # 使用subprocess.run()来执行命令 # capture_output=True 表示捕获标准输出和标准错误 result = subprocess.run(command, shell=True, text=True, capture_output=True) # 输出命令执行结果 print("标准输出:") print(result.stdout) print("\n标准错误:") print(result.stderr) print("\n返回代码:", result.returncode) except subprocess.CalledProcessError as e: print("命令执行出错:", e)
464
Python
20.136363
80
0.68319
AshisGhosh/roboai/docker-compose.yml
services: isaac-sim: build: context: . dockerfile: ./isaac_sim/Dockerfile volumes: - /tmp/.X11-unix:/tmp/.X11-unix - /run/user/1000/gdm/Xauthority:/root/.Xauthority:rw - ~/docker/isaac-sim/cache/kit:/isaac-sim/kit/cache:rw - ~/docker/isaac-sim/cache/ov:/root/.cache/ov:rw - ~/docker/isaac-sim/cache/pip:/root/.cache/pip:rw - ~/docker/isaac-sim/cache/glcache:/root/.cache/nvidia/GLCache:rw - ~/docker/isaac-sim/cache/computecache:/root/.nv/ComputeCache:rw - ~/docker/isaac-sim/logs:/root/.nvidia-omniverse/logs:rw - ~/docker/isaac-sim/data:/root/.local/share/ov/data:rw - ~/docker/isaac-sim/documents:/root/Documents:rw - ./isaac_sim/isaac_sim:/isaac-sim/roboai/ - ./shared:/isaac-sim/roboai/shared - ./isaac_sim/humble_ws/src:/isaac-sim/humble_ws/src - ./isaac_sim/bin:/isaac-sim/roboai/bin environment: - DISPLAY=${DISPLAY} - XAUTHORITY=/root/.Xauthority - ACCEPT_EULA=Y - PRIVACY_CONSENT=Y - ROS_DOMAIN_ID=${ROS_DOMAIN_ID:-0} entrypoint: /bin/bash -c "while true; do sleep 30; done" network_mode: host deploy: resources: reservations: devices: - driver: nvidia count: 1 capabilities: [gpu] franka: image: franka_isaac_moveit_tutorial build: context: ./franka_moveit dockerfile: Dockerfile stdin_open: true tty: true network_mode: host ipc: host privileged: true environment: - ROS_DOMAIN_ID=${ROS_DOMAIN_ID:-0} - DISPLAY=${DISPLAY} - QT_X11_NO_MITSHM=1 volumes: - /tmp/.X11-unix:/tmp/.X11-unix:rw - ${XAUTHORITY:-$HOME/.Xauthority}:/root/.Xauthority - ./franka_moveit/config:/root/ws_moveit/src/moveit2_tutorials/doc/how_to_guides/isaac_panda/config command: ros2 launch moveit2_tutorials isaac_demo.launch.py deploy: resources: reservations: devices: - capabilities: [gpu] grasp-server: build: context: ./grasping/grasp_server dockerfile: Dockerfile volumes: - ./grasping/grasp_server:/app - /run/user/1000/gdm/Xauthority:/root/.Xauthority:rw - ./shared:/app/shared environment: - DISPLAY=${DISPLAY} - XAUTHORITY=/root/.Xauthority command: poetry run uvicorn app.main:app --host 0.0.0.0 --port 8005 --reload network_mode: host deploy: resources: reservations: devices: - capabilities: [gpu] ollama-server: image: ollama/ollama:latest volumes: - ~/.cache/ollama:/root/.ollama ports: - 11434:11434 roboai: build: context: . dockerfile: ./roboai/Dockerfile volumes: - ./roboai:/app - /run/user/1000/gdm/Xauthority:/root/.Xauthority:rw - ./shared:/app/shared - ~/.burr:/root/.burr environment: - DISPLAY=${DISPLAY} - MUJOCO_GL=osmesa - XAUTHORITY=/root/.Xauthority # command: python -u -m roboai.roboai command: bash -c "python -m streamlit run roboai/streamlit_app.py --server.headless true --server.port=8501 --server.address=0.0.0.0 & burr --no-open" # command: /bin/bash -c "while true; do sleep 30; done" network_mode: host roboai-demo: extends: roboai command: python -u -m roboai.roboai_demo
3,455
YAML
30.706422
154
0.597685
AshisGhosh/roboai/README.md
# RoboAI: Playground + Framework for applying LLM/VLMs to Robots in Sim ### Update Videos: * **May 27 2024** - [VIDEO](https://www.youtube.com/watch?v=ycvPWq4JfEI) - Robot learning task relevant information and factoring that in the plan -- integrated with [OmniGibson](https://behavior.stanford.edu/omnigibson/) from Stanford/NVIDIA * **May 8 2024** - [VIDEO](https://www.youtube.com/watch?v=sg3PTz5q6kc) - Robot going from plain text to grasping attempt -- integrated with ROS2, MoveIt2, a grasping model and Isaac Sim. ## Simulation Frameworks ### MuJoCo & Robosuite [Mujoco](https://mujoco.org/) is Google DeepMind's physics simulation. [Robosuite](https://robosuite.ai/) is a modular framework built on top of MuJoCo. In the `/robosim` folder you'll find a Robosuite/MuJoCo sim environment: * Focused on Panda arm grasping objects in pick and place environment * Camera views to focus on objects * Markers to indicate robot goal and grasp targets * Simple API to control the robot ### Isaac Sim [Isaac Sim](https://docs.omniverse.nvidia.com/isaacsim/latest/index.html) is NVIDIA's robot simulation powered by GPUs. Isaac Sim offers advanced tooling as well as close to real rendering. This was adopted to better test vision models. Isaac Sim does not support external async frameworks as well - the development towards it in this project is still in progress and may need some re-architecting. The simulation * Focuses on the Panda arm on a table with objects to grasp * Cameras for different views * Initial work on Markers - rendering/material support is still WIP ## Models & LLM Framework The high-level goal is to be able to command a robot to complete a long-horizon task with natural language. An example would be to "clear the messy table". ### LLMs LLMs are used in planning layer. Once the scene is understood an LLM (either iteratively or with CoT/ToT) to generate a robot affordable plan. Currently focused on free models hosted on [openrouter.ai](https://openrouter.ai). ### VLMs VLMs are an extremely fast changing space. Current work is focused on: * [moondream2](https://huggingface.co/vikhyatk/moondream2) * [VILA-2.7b](https://huggingface.co/Efficient-Large-Model/VILA-2.7b) -- inference running on a Jetson Orin Nano (not in this repo) using [NanoLLM](https://dusty-nv.github.io/NanoLLM/index.html)
2,351
Markdown
43.377358
242
0.762654
AshisGhosh/roboai/model_server/pyproject.toml
[tool.poetry] name = "model-server" version = "0.1.0" description = "" authors = ["AshisGhosh <[email protected]>"] readme = "README.md" [tool.poetry.dependencies] python = "^3.10" fastapi = "^0.110.1" uvicorn = "^0.29.0" transformers = "^4.39.3" timm = "^0.9.16" einops = "^0.7.0" python-multipart = "^0.0.9" [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api"
399
TOML
18.047618
46
0.651629
AshisGhosh/roboai/model_server/model_server/hf_cerule.py
from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import time import logging log = logging.getLogger("model-server") log.setLevel(logging.DEBUG) handler = logging.StreamHandler() handler.setLevel(logging.DEBUG) log.addHandler(handler) class HuggingFaceCerule: def __init__(self): self.model_id = "Tensoic/Cerule-v0.1" model_load_start = time.time() self.model = AutoModelForCausalLM.from_pretrained( self.model_id, trust_remote_code=True ) log.info(f"Model loaded in {time.time() - model_load_start} seconds.") self.tokenizer = AutoTokenizer.from_pretrained(self.model_id) def encode_image(self, image): start_encode = time.time() encoded_image = self.model.encode_image(image) log.info(f"Image encoded in {time.time() - start_encode} seconds.") return encoded_image def answer_question(self, enc_image, question): start_model = time.time() answer = self.model.answer_question(enc_image, question, self.tokenizer) log.info(f"Answered question in {time.time() - start_model} seconds.") return answer def answer_question_from_image(self, image, question): enc_image = self.encode_image(image) return self.answer_question(enc_image, question) if __name__ == "__main__": model = HuggingFaceCerule() img_path = "/app/shared/data/test2.png" image = Image.open(img_path) enc_image = model.encode_image(image) question = "Describe this image." print(model.answer_question(enc_image, question))
1,609
Python
31.857142
80
0.674953
AshisGhosh/roboai/model_server/model_server/hf_idefics.py
# Load model directly from transformers import AutoProcessor, AutoModelForVision2Seq from transformers.image_utils import load_image import torch from PIL import Image import time import logging log = logging.getLogger("model-server") log.setLevel(logging.DEBUG) handler = logging.StreamHandler() handler.setLevel(logging.DEBUG) log.addHandler(handler) DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu" class HuggingFaceIdefics: def __init__(self): model_load_start = time.time() self.processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b") self.model = AutoModelForVision2Seq.from_pretrained( "HuggingFaceM4/idefics2-8b" ).to(DEVICE) log.info(f"Model loaded in {time.time() - model_load_start} seconds.") def answer_question_from_image(self, image, question): image1 = load_image("/app/shared/data/test2.png") messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What do we see in this image?"}, ], }, ] prompt = self.processor.apply_chat_template( messages, add_generation_prompt=True ) inputs = self.processor(text=prompt, images=[image1], return_tensors="pt") inputs = {k: v.to(DEVICE) for k, v in inputs.items()} start_time = time.time() generated_ids = self.model.generate(**inputs, max_new_tokens=500) log.info(f"Generated in {time.time() - start_time} seconds.") start_time = time.time() generated_texts = self.processor.batch_decode( generated_ids, skip_special_tokens=True ) log.info(f"Decoded in {time.time() - start_time} seconds.") return generated_texts if __name__ == "__main__": log.info("Loading model...") model = HuggingFaceIdefics() log.info("Model loaded.") img_path = "/app/shared/data/test2.png" image = Image.open(img_path) question = "Describe this image." log.info("Answering question...") log.info(model.answer_question_from_image(image, question))
2,195
Python
31.294117
83
0.617768
AshisGhosh/roboai/model_server/model_server/hf_moondream2.py
from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import time import logging log = logging.getLogger("model-server") log.setLevel(logging.DEBUG) handler = logging.StreamHandler() handler.setLevel(logging.DEBUG) log.addHandler(handler) class HuggingFaceMoonDream2: def __init__(self): self.model_id = "vikhyatk/moondream2" self.revision = "2024-04-02" model_load_start = time.time() self.model = AutoModelForCausalLM.from_pretrained( self.model_id, trust_remote_code=True, revision=self.revision ) log.info(f"Model loaded in {time.time() - model_load_start} seconds.") self.tokenizer = AutoTokenizer.from_pretrained( self.model_id, revision=self.revision ) def encode_image(self, image): start_encode = time.time() encoded_image = self.model.encode_image(image) log.info(f"Image encoded in {time.time() - start_encode} seconds.") return encoded_image def answer_question(self, enc_image, question): start_model = time.time() answer = self.model.answer_question(enc_image, question, self.tokenizer) log.info(f"Answered question in {time.time() - start_model} seconds.") return answer def answer_question_from_image(self, image, question): enc_image = self.encode_image(image) return self.answer_question(enc_image, question) if __name__ == "__main__": model = HuggingFaceMoonDream2() img_path = "/app/shared/data/test2.png" image = Image.open(img_path) enc_image = model.encode_image(image) question = "Describe this image." log.info(model.answer_question(enc_image, question))
1,727
Python
32.230769
80
0.670527
AshisGhosh/roboai/model_server/model_server/hf_nanollava.py
from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import time import torch import logging log = logging.getLogger("model-server") log.setLevel(logging.DEBUG) handler = logging.StreamHandler() handler.setLevel(logging.DEBUG) log.addHandler(handler) class HuggingFaceNanoLLaVA: def __init__(self): torch.set_default_device("cpu") model_load_start = time.time() self.model = AutoModelForCausalLM.from_pretrained( "qnguyen3/nanoLLaVA", torch_dtype=torch.float16, device_map="auto", trust_remote_code=True, ) log.info(f"Model loaded in {time.time() - model_load_start} seconds.") self.tokenizer = AutoTokenizer.from_pretrained( "qnguyen3/nanoLLaVA", trust_remote_code=True ) def process_image(self, image): start_process = time.time() image_tensor = self.model.process_images([image], model.config).to( dtype=model.dtype ) log.info(f"Image processed in {time.time() - start_process} seconds.") return image_tensor def answer_question(self, image_tensor, prompt): messages = [{"role": "user", "content": f"<image>\n{prompt}"}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) text_chunks = [ self.tokenizer(chunk).input_ids for chunk in text.split("<image>") ] input_ids = torch.tensor( text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long ).unsqueeze(0) start_model = time.time() output_ids = model.generate( input_ids, images=image_tensor, max_new_tokens=2048, use_cache=True )[0] log.info(f"Answered question in {time.time() - start_model} seconds.") output = self.tokenizer.decode( output_ids[input_ids.shape[1] :], skip_special_tokens=True ).strip() return output if __name__ == "__main__": model = HuggingFaceNanoLLaVA() img_path = "/app/shared/data/test2.png" image = Image.open(img_path) image_tensor = model.encode_image(image) question = "Describe this image." print(model.answer_question(image_tensor, question))
2,292
Python
32.231884
79
0.623473