file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
AshisGhosh/roboai/model_server/model_server/hf_mxbai_embed.py
from sentence_transformers import SentenceTransformer class HuggingFaceMXBaiEmbedLarge: def __init__(self): self.model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") def embed(self, text): return self.model.encode(text).tolist()
269
Python
25.999997
78
0.724907
AshisGhosh/roboai/model_server/app/main.py
#!/usr/bin/python -u import io import logging from PIL import Image from fastapi import FastAPI, File, UploadFile from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse from model_server.hf_moondream2 import HuggingFaceMoonDream2 from model_server.hf_mxbai_embed import HuggingFaceMXBaiEmbedLarge moondream = HuggingFaceMoonDream2() mxbai_embed = HuggingFaceMXBaiEmbedLarge() logging.basicConfig(level=logging.INFO) # Create FastAPI instance app = FastAPI() # List of allowed origins (you can use '*' to allow all origins) origins = [ "http://localhost:3000", # Allow your Next.js app # Add any other origins as needed ] # Add CORSMiddleware to the application app.add_middleware( CORSMiddleware, allow_origins=origins, # List of allowed origins allow_credentials=True, allow_methods=["*"], # Allow all methods allow_headers=["*"], # Allow all headers ) # Example route @app.get("/") async def read_root(): return {"message": "Hello, FastAPI! This is the model server."} @app.post("/answer_question") async def answer_question(file: UploadFile = File(...), question: str = ""): # Read the image file image_bytes = await file.read() # Convert bytes to a file-like object image_stream = io.BytesIO(image_bytes) # Use PIL to open the image image = Image.open(image_stream) # Perform object detection result = moondream.answer_question_from_image(image, question) # Return the result return JSONResponse(content={"result": result}) @app.post("/embed") async def embed(text: str = ""): # Perform embedding result = mxbai_embed.embed(text) # Return the result return JSONResponse(content={"embedding": result})
1,753
Python
25.179104
76
0.715345
AshisGhosh/roboai/robosuite/robosim/pyproject.toml
[tool.poetry] name = "robosim" version = "0.1.0" description = "" authors = ["AshisGhosh <[email protected]>"] readme = "README.md" [tool.poetry.dependencies] python = "^3.8" fastapi = "^0.110.0" uvicorn = "^0.29.0" python-multipart = "^0.0.9" h5py = "^3.10.0" [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api"
350
TOML
17.473683
46
0.657143
AshisGhosh/roboai/robosuite/robosim/robosim/camera.py
import numpy as np from robosuite.utils.camera_utils import ( get_camera_intrinsic_matrix, get_camera_extrinsic_matrix, get_camera_transform_matrix, get_real_depth_map, transform_from_pixels_to_world, ) import logging log = logging.getLogger("robosim robot camera") log.setLevel(logging.DEBUG) class Camera: def __init__(self, env, name, camera_height=480, camera_width=640): self.env = env self.name = name self.camera_height = camera_height self.camera_width = camera_width log.debug(f"Getting intrinsic matrix for {name}") self.intrinsic_matrix = get_camera_intrinsic_matrix( env.sim, name, camera_height, camera_width ) log.debug(f"Getting extrinsic matrix for {name}") self.extrinsic_matrix = get_camera_extrinsic_matrix(env.sim, name) log.debug(f"Getting transform matrix for {name}") self.transform_matrix = get_camera_transform_matrix( env.sim, name, camera_height, camera_width ) log.debug(f"Getting camera to world transform for {name}") self.camera_to_world_transform = np.linalg.inv(self.transform_matrix) log.debug(f"Camera initialized for {name}") def get_world_coords_from_pixels(self, pixels, depth): # cv2.imshow("Depth", depth) # cv2.waitKey(0) log.debug( f"Getting world coordinates from pixels {pixels} and depth {depth.shape}" ) real_depth_map = get_real_depth_map(self.env.sim, depth) log.debug(f"Real depth map: {real_depth_map.shape}") log.debug( f"pixels leading shape: depth map leading shape -- {pixels.shape[:-1]} -- {real_depth_map.shape[:-3]}" ) return transform_from_pixels_to_world( pixels, real_depth_map, self.camera_to_world_transform ) def pixel_to_world(self, pixel): depth = self.env._get_observations()["robot0_eye_in_hand_depth"][::-1] return self.get_world_coords_from_pixels(np.array(pixel), depth)
2,055
Python
37.074073
114
0.640876
AshisGhosh/roboai/robosuite/robosim/robosim/grasp_handler.py
import base64 import numpy as np from PIL import Image import cv2 from enum import Enum from robosim.camera import Camera from shared.utils.grasp_client import _check_server, _get_grasp_from_image from shared.utils.robotic_grasping_client import _get_grasps_from_rgb_and_depth import shared.utils.llm_utils as llm_utils import logging log = logging.getLogger("robosim robot grasp") log.setLevel(logging.DEBUG) class GraspMethod(Enum): GRASP_DET_SEG = "grasp_det_seg" GR_CONVNET = "gr_convnet" class Grasp: def __init__( self, r_bbox, image, depth, env, bbox=None, cls=None, cls_name=None, score=None ): log.debug("Initializing Grasp object.") self.r_bbox = r_bbox self.image = image self.depth = depth self.env = env log.debug("Initializing camera") self.camera = Camera(self.env, "robot0_eye_in_hand") self.cls = cls self.cls_name = cls_name self.score = score self.bbox = bbox self.appoach_poses = [] self.grasp_pose = None self.retract_poses = [] log.debug(f"Generated grasp for {self}") def generate_grasp_sequence(self): log.info(f"Generating grasp sequence for {self}") self.grasp_pose = self.get_grasp_pose_from_r_bbox() return self.appoach_poses, self.grasp_pose, self.retract_poses def get_grasp_pose_from_r_bbox(self): # Get the center of the bounding box log.debug(f"Getting grasp pose from r_bbox: {self.r_bbox}") # pixels work in y, x not x, y center = ( int(np.mean([coord[1] for coord in self.r_bbox])), int(np.mean([coord[0] for coord in self.r_bbox])), ) log.debug(f"Center of the bounding box: {center}") # Get the world coordinates of the center log.debug(f"{np.array(center).shape} -- {np.array(self.depth).shape}") world_coords = self.camera.get_world_coords_from_pixels( np.array(center), np.array(self.depth) ) log.debug(f"World coordinates of the center: {world_coords}") self.grasp_postion = world_coords # Get grasp orientation # Get the angle from the bounding box pt1 = self.r_bbox[0] pt2 = self.r_bbox[1] angle = np.arctan2(pt2[1] - pt1[1], pt2[0] - pt1[0]) + np.pi / 2 self.grasp_orientation = angle log.debug(f"Grasp orientation: {angle}") return world_coords, angle def __str__(self): return f"Grasp: {self.cls_name} with score {self.score} at r_bbox {self.r_bbox}" class GraspHandler: def __init__(self, robot): self.robot = robot self.env = robot.robosim.env async def get_grasps_from_image(self, image: Image, visualize=True): res = await _get_grasp_from_image(image) if visualize: self.show_image(res["image"]) return res["result"] async def get_grasp_image(self) -> Image: # turn off marker visualization markers = [ "gripper0_grip_site", "gripper0_grip_site_cylinder", "gripper_goal", "grasp_marker", ] for marker in markers: self.env.sim.model.site_rgba[self.env.sim.model.site_name2id(marker)][3] = 0 im = self.env._get_observations()["robot0_eye_in_hand_image"] img = Image.fromarray(im[::-1]) # turn on marker visualization for marker in markers: self.env.sim.model.site_rgba[self.env.sim.model.site_name2id(marker)][3] = ( 0.25 ) return img async def get_grasp_image_and_depth(self): # turn off marker visualization markers = [ "gripper0_grip_site", "gripper0_grip_site_cylinder", "gripper_goal", "grasp_marker", ] for marker in markers: self.env.sim.model.site_rgba[ self.robot.robosim.env.sim.model.site_name2id(marker) ][3] = 0 self.env.step(np.zeros(self.env.action_dim)) im = self.env._get_observations() img = Image.fromarray(im["robot0_eye_in_hand_image"][::-1]) depth = im["robot0_eye_in_hand_depth"][::-1] # turn on marker visualization for marker in markers: self.env.sim.model.site_rgba[self.env.sim.model.site_name2id(marker)][3] = ( 0.25 ) return img, depth async def get_grasp_image_and_depth_image(self): img, depth = await self.get_grasp_image_and_depth() squeezed_depth = np.squeeze(depth) normalized_depth = ( (squeezed_depth - np.min(squeezed_depth)) / (np.max(squeezed_depth) - np.min(squeezed_depth)) * 255 ) depth_uint8 = normalized_depth.astype(np.uint8) depth_image = Image.fromarray(depth_uint8) return img, depth_image, depth async def get_grasp(self, obj_name, method=GraspMethod.GRASP_DET_SEG): if method == GraspMethod.GRASP_DET_SEG: log.debug("Getting grasp from grasp_det_seg...") return await self.get_grasp_grasp_det_seg(obj_name) elif method == GraspMethod.GR_CONVNET: log.debug("Getting grasp from grasp convnet...") return await self.get_grasp_gr_convnet(obj_name) else: raise ValueError(f"Invalid grasp method: {method}") async def get_grasp_grasp_det_seg(self, obj_name): # return await self.get_grasps() log.debug("Getting grasp image and depth...") img, depth = await self.get_grasp_image_and_depth() log.debug("Getting grasp from image...") grasps = await self.get_grasps_from_image(img) if len(grasps) == 0: log.error("No grasps found.") return None candidate_objs = [obj["cls_name"].replace("_", " ") for obj in grasps] log.info(f"Getting closest object to '{obj_name}' from {candidate_objs}") closest_obj = await llm_utils.get_closest_text(obj_name, candidate_objs) log.info(f"Closest object: {closest_obj}") grasp = grasps[candidate_objs.index(closest_obj)] g_obj = Grasp( cls=grasp["cls"], cls_name=grasp["cls_name"], score=grasp["obj"], bbox=grasp["bbox"], r_bbox=grasp["r_bbox"], image=img, depth=depth, env=self.robot.robosim.env, ) return grasp, g_obj.generate_grasp_sequence() async def get_grasp_gr_convnet(self, obj_name): log.debug("Getting grasp image and depth...") img, depth_image, depth = await self.get_grasp_image_and_depth_image() log.debug("Getting grasp from image...") grasps = await _get_grasps_from_rgb_and_depth(img, depth_image) grasp = grasps[0] log.debug(f"r_bbox: {grasp['r_bbox']}") g_obj = Grasp( cls=None, cls_name=None, score=None, bbox=None, r_bbox=grasp["r_bbox"], image=img, depth=depth, env=self.robot.robosim.env, ) return grasp, g_obj.generate_grasp_sequence() async def check_server(self): return await _check_server() def show_image(self, base64_image): image_bytes = base64.b64decode(base64_image) nparr = np.frombuffer(image_bytes, np.uint8) image = cv2.imdecode(nparr, cv2.IMREAD_COLOR) # Display the image using OpenCV cv2.imshow("Image", image) cv2.waitKey(0) cv2.destroyAllWindows()
7,655
Python
33.486486
88
0.585761
AshisGhosh/roboai/robosuite/robosim/robosim/robosim.py
import numpy as np from dataclasses import dataclass from enum import Enum import asyncio import copy from PIL import Image import httpx import robosuite as suite from robosuite import load_controller_config from robosuite.wrappers import VisualizationWrapper from robosuite.utils.transform_utils import mat2quat, euler2mat from robosuite.utils.camera_utils import CameraMover from robosuite.utils.mjcf_utils import new_body, new_site from robosim.task import TaskFactory, TaskClass, TaskStatus from robosim.robot import Robot from robosim.grasp_handler import Camera import shared.utils.gradio_client as gradio from shared.utils.model_server_client import _answer_question_from_image import shared.utils.replicate_client as replicate # noqa: F401 import logging log = logging.getLogger("robosim") log.setLevel(logging.INFO) class ControllerType(Enum): JOINT_VELOCITY = 1 OSC_POSE = 2 @dataclass class OSCControlStep: dx: float = 0 dy: float = 0 dz: float = 0 droll: float = 0 dpitch: float = 0 dyaw: float = 0 gripper: float = 0 def to_list(self): return [ self.dx, self.dy, self.dz, self.droll, self.dpitch, self.dyaw, self.gripper, ] class RoboSim: def __init__(self, controller_type=ControllerType.OSC_POSE): self.controller_type = controller_type self.env = None self.task_factory = TaskFactory() self.tasks = [] self.current_task = None self._last_task = None self._last_task_finish_status = None self.render_task = None self.execute_async_task = None self.__close_renderer_flag = asyncio.Event() self.__executing_async = asyncio.Event() self.__pause_execution = asyncio.Event() self.__stop_execution = asyncio.Event() self.__getting_image = asyncio.Event() self.__getting_image_ts = None def setup(self): self.env = self.setup_env() self.setup_markers() self.setup_cameras() self.robot = Robot(self) self.register_tasks() # self.test_action([0,0,0,0,0,0,0,0]) def register_tasks(self): self.task_factory = TaskFactory() self.task_factory.register_task(self.robot.go_to_position) self.task_factory.register_task(self.robot.go_to_relative_position) self.task_factory.register_task(self.robot.go_to_orientation) self.task_factory.register_task(self.robot.go_to_pick_center) self.task_factory.register_task(self.robot.go_to_object) self.task_factory.register_task(self.robot.get_grasp, TaskClass.DATA_TASK) self.task_factory.register_task(self.robot.go_to_grasp_orientation) self.task_factory.register_task(self.robot.go_to_grasp_position) self.task_factory.register_task(self.robot.go_to_pose) self.task_factory.register_task(self.robot.go_to_pre_grasp) self.task_factory.register_task(self.add_grasp_marker, TaskClass.DATA_TASK) self.task_factory.register_task(self.robot.close_gripper) self.task_factory.register_task(self.robot.open_gripper) self.task_factory.register_task(self.robot.go_to_drop) def setup_env(self): config = load_controller_config( default_controller=self.controller_type.name ) # load default controller config # create environment instance env = suite.make( env_name="PickPlace", # try with other tasks like "Stack" and "Door" robots="Panda", # try with other robots like "Sawyer" and "Jaco" gripper_types="default", controller_configs=config, control_freq=20, has_renderer=True, render_camera="frontview", # render_camera="robot0_eye_in_hand", camera_names=["frontview", "agentview", "robot0_eye_in_hand"], camera_heights=[672, 672, 480], camera_widths=[672, 672, 640], camera_depths=[False, False, True], # set to true for using depth sensor has_offscreen_renderer=True, use_object_obs=False, use_camera_obs=True, ) # reset the environment env.reset() return env def setup_cameras(self): self.camera_mover = CameraMover(self.env, "agentview") self.camera_mover.set_camera_pose(pos=[0.65, -0.25, 1.4]) log.info(f"Camera Pose: {self.camera_mover.get_camera_pose()}") self.env.sim.forward() self.env.sim.step() self.env.step(np.zeros(self.env.action_dim)) def setup_markers(self): self.markers = [] # self.add_marker([0.5, 0, 1.0], size=0.3, name="indicator_ball") self.add_marker( [0.5, 0, 2.0], size=0.05, name="grasp_marker", rgba=[0, 0, 1, 0.65] ) self.add_marker( [0.5, 0, 1.0], type="box", size=(0.03, 0.05, 0.1), name="gripper_goal" ) def test_action(self, action, *args): obs, reward, done, info = self.env.step(action) def add_marker( self, pos, type="sphere", size=0.03, name="indicator_ball", rgba=[1, 0, 0, 0.65] ): indicator_config = { "name": name, "type": type, "size": size, "rgba": rgba, "pos": pos, } self.markers.append(indicator_config) self.env = VisualizationWrapper(self.env, self.markers) self.env.sim.forward() self.env.sim.step() self.env.set_xml_processor(processor=None) def _add_indicators(self, xml): import xml.etree.ElementTree as ET root = ET.fromstring(xml) worldbody = root.find("worldbody") for indicator_config in self.markers: config = copy.deepcopy(indicator_config) indicator_body = new_body( name=config["name"] + "_body", pos=config.pop("pos", (0, 0, 0)) ) indicator_body.append(new_site(**config)) worldbody.append(indicator_body) xml = ET.tostring(root, encoding="utf8").decode("utf8") return xml async def add_grasp_marker(self, *args): grasp_pos = self.robot.get_grasp_pose()[0] self.add_marker(grasp_pos, name="grasp_marker") self.env.render() return f"Marker added at {grasp_pos}." def reset(self): self.env.reset() self.setup_markers() self.setup_cameras() def move_gripper_goal_to_gripper(self): gripper_pos = self.robot.get_gripper_position() gripper_ori = mat2quat(self.robot.get_gripper_orientation()) self.move_marker(gripper_pos, gripper_ori, name="gripper_goal") return f"Marker moved to gripper position: {gripper_pos}." def move_marker(self, position=None, orientation=None, name="grasp_marker", *args): if position is None and orientation is None: raise ValueError("Either position or orientation must be provided.") if position is not None: self.env.sim.model.body_pos[ self.env.sim.model.body_name2id(name + "_body") ] = position if orientation is not None: if len(orientation) == 3: base_orientation = np.array([np.pi, 0, np.pi / 2]) o = copy.deepcopy(orientation) o = np.array(o) - base_orientation orientation = base_orientation + [-o[1], o[2], -o[0]] orientation = euler2mat(orientation) orientation = mat2quat(orientation) self.env.sim.model.body_quat[ self.env.sim.model.body_name2id(name + "_body") ] = orientation self.env.sim.forward() self.env.sim.step() self.env.render() resp = f"Marker {name} moved to {position} with orientation {orientation}." log.debug(resp) return resp def pixel_to_marker(self, pixel, camera_name="robot0_eye_in_hand"): if camera_name != "robot0_eye_in_hand": raise NotImplementedError( "pixel_to_marker only supports robot0_eye_in_hand currently." ) camera = Camera(self.env, camera_name) marker_pose = camera.pixel_to_world(pixel) log.debug(f"Marker Pose: {marker_pose}") self.move_marker(marker_pose) return str(marker_pose) def start(self): log.info("Starting Robosuite Simulation...") # self.env.reset() self.reset() self.env.render() action = None for i in range(1000): action = self.check_for_action() if action is None: action = OSCControlStep().to_list() obs, reward, done, info = self.env.step( action ) # take action in the environment self.env.render() # render on display async def start_async(self): if self.render_task is None or self.render_task.done(): self.__close_renderer_flag.clear() # self.env.reset() self.reset() self.render_task = asyncio.create_task(self.render()) return True async def render(self): hz = 5 while not self.__close_renderer_flag.is_set(): # Use the Event for checking if not self.__executing_async.is_set(): self.env.render() await asyncio.sleep(1 / hz) async def close_renderer(self): self.__close_renderer_flag.set() if self.render_task and not self.render_task.done(): await self.render_task self.env.close_renderer() return True async def start_execution(self): self.execute_async_task = asyncio.create_task(self.execute_async()) return True async def execute_async(self): if not self.render_task or self.render_task.done(): await self.start_async() self.__pause_execution.clear() self.__executing_async.set() while self.tasks or self.current_task: if self.__stop_execution.is_set(): self.__executing_async.clear() return "Execution stopped." if self.__pause_execution.is_set(): await self.manage_execution_delay() continue action = await self.check_for_action() if action is None: action = OSCControlStep().to_list() obs, reward, done, info = self.env.step(action) if self.__getting_image.is_set(): continue else: self.env.render() await self.manage_execution_delay() self.__executing_async.clear() return "All tasks executed." async def manage_execution_delay(self): delay = 0.0 if self.__getting_image.is_set(): delay = 0.1 else: if self.__getting_image_ts is not None: current_time = asyncio.get_event_loop().time() if current_time - self.__getting_image_ts < 1: delay = 0.1 else: self.__getting_image_ts = None await asyncio.sleep(delay) async def stop_execution(self): log.info("Stopping execution...") self.__stop_execution.set() return True async def pause_execution(self): log.info("Pausing execution...") self.__pause_execution.set() return True async def resume_execution(self): log.info("Resuming execution...") self.__pause_execution.clear() self.__executing_async.set() return True async def check_for_action(self): """ Check if there is a task in the queue. If there is, execute it. """ if self.current_task is None and self.tasks: self.current_task = self.tasks.pop(0) log.info(f"Current Task: {self.current_task.name}") if self.current_task: if self.current_task.task_class != TaskClass.CONTROL_TASK: log.info(f"Executing Task: {self.current_task.name}") data = await self.current_task.execute() log.info(f"Data: {data}") if data is None: self.finish_current_task( status=TaskStatus.FAILED, status_msg="Task failed." ) self.finish_current_task() return OSCControlStep().to_list() return await self.do_current_task() return None async def do_current_task(self): """ Execute the current task in the queue. """ action = self.current_task.execute() log.debug(f"Action: {action}") self.check_if_task_finished(action) return action def check_if_task_finished(self, action): if action == OSCControlStep().to_list(): self.finish_current_task() if not self.robot.is_gripper_moving(action): self.finish_current_task( status=TaskStatus.FAILED, status_msg="Gripper not moving." ) def finish_current_task(self, status=TaskStatus.COMPLETED, status_msg=None): """ Finish the current task in the queue. """ log.info( f"Task finished: {self.current_task.name} with status {status} and message {status_msg}." ) self._last_task = self.current_task self._last_task_finish_status = {"status": status, "status_msg": status_msg} self.current_task = None self.robot.__goal_position = None self.robot.__goal_orientation = None def add_task(self, name, function, *args, **kwargs): """ Add a task to the queue. """ task = self.task_factory.create_task(function, name, *args, **kwargs) self.tasks.append(task) log.info(f"Task added: {task}") def get_tasks(self): return self.tasks def clear_tasks(self): self.tasks = [] if self.current_task: self.finish_current_task() async def get_image_realtime( self, camera_name="agentview", width=512, height=512 ) -> Image: self.__getting_image.set() self.__getting_image_ts = asyncio.get_event_loop().time() im = self.env.sim.render(width=width, height=height, camera_name=camera_name) img = Image.fromarray(im[::-1]) self.__getting_image.clear() return img async def get_image(self, camera_name="agentview") -> Image: markers = [ "gripper0_grip_site", "gripper0_grip_site_cylinder", "gripper_goal", "grasp_marker", ] for marker in markers: self.env.sim.model.site_rgba[self.env.sim.model.site_name2id(marker)][3] = 0 self.env.step(np.zeros(self.env.action_dim)) im = self.env._get_observations()[camera_name + "_image"] img = Image.fromarray(im[::-1]) # turn on marker visualization for marker in markers: self.env.sim.model.site_rgba[self.env.sim.model.site_name2id(marker)][3] = ( 0.25 ) return img async def get_image_with_markers(self, camera_name="agentview") -> Image: self.env.step(np.zeros(self.env.action_dim)) im = self.env._get_observations()[camera_name + "_image"] img = Image.fromarray(im[::-1]) return img def get_object_names(self): return [obj.name for obj in self.env.objects] def get_object_pose(self): for obj in self.env.objects: dist = self.env._gripper_to_target( gripper=self.env.robots[0].gripper, target=obj.root_body, target_type="body", return_distance=True, ) log.info(f"Object {obj.name}: {dist}") async def pick(self, object_name): self.clear_tasks() await self.start_async() # self.add_task("go to object", "go_to_object", object_name) self.add_task("go to pick center", "go_to_pick_center", "") self.add_task("get grasp", "get_grasp", object_name) await self.execute_async() if self._last_task_finish_status["status"] == TaskStatus.FAILED: retry_attempts = 3 for i in range(retry_attempts): log.info(f"Retrying pick attempt {i+1}...") self.add_task("go to pick center", "go_to_pick_center", "") self.add_task("get grasp", "get_grasp", object_name) if self._last_task_finish_status["status"] == TaskStatus.COMPLETED: break success, _ = await self.get_feedback("grasp-selection-feedback", object_name) if not success: log.info("Grasp selection feedback failed.") return False self.add_task("move to pre-grasp", "go_to_pre_grasp", "") self.add_task("open gripper", "open_gripper", "") self.add_task("go to grasp position", "go_to_grasp_position", "") self.add_task("close gripper", "close_gripper", "") await self.execute_async() if self._last_task_finish_status["status"] != TaskStatus.COMPLETED: log.info("Pick failed.") return False success, _ = await self.get_feedback("grasp-feedback", object_name) async def get_feedback(self, feedback_type, object_name): if feedback_type == "grasp-selection-feedback": image = await self.get_image_with_markers() question = f"Is the the blue sphere marker over the {object_name}?" elif feedback_type == "grasp-feedback": image = await self.get_image() question = f"Is the object {object_name} grasped by the robot?" log.info(f"Giving feedback for {feedback_type}...") log.info(f"Question: {question}") # output = await _answer_question_from_image(image, question) try: # output = gradio.moondream_answer_question_from_image(image, question) # output = replicate.moondream_answer_question_from_image(image, question) output = gradio.qwen_vl_max_answer_question_from_image(image, question) except httpx.ConnectError as e: log.error(f"Error connecting to the model server: {e}") output = await _answer_question_from_image(image, question) log.warn(output) if "yes" in output["result"].lower(): return True, output return False, output if __name__ == "__main__": sim = RoboSim() sim.setup() available_tasks = sim.task_factory.get_task_types() log.info(f"Available Tasks: {available_tasks}") sim.add_task("Position Check", "go_to_position", [-0.3, -0.3, 1]) sim.add_task("Relative Position Check", "go_to_relative_position", [0.3, 0.1, 0.1]) sim.add_task("Go to can", "go_to_object", "Can") sim.start()
19,083
Python
35.489484
101
0.584394
AshisGhosh/roboai/robosuite/robosim/robosim/robot.py
import numpy as np import copy from robosim.grasp_handler import GraspHandler from robosuite.utils.transform_utils import euler2mat, mat2euler, mat2quat from robosuite.utils.sim_utils import get_contacts import logging logging.basicConfig(level=logging.WARN) log = logging.getLogger("robosim robot") log.setLevel(logging.INFO) class Robot: def __init__(self, robosim): self.robosim = robosim self.env = robosim.env self.grasp = GraspHandler(self) self._last_position = None self._last_orientation = None self.__goal_position = None self.__goal_orientation = None self.__grasp_sequence = None self.__gripper_contact_started = None def go_to_position(self, position): if self.__goal_position is None: self.__goal_position = position marker_orientation = ( self.__goal_orientation if self.__goal_orientation is not None else self.get_gripper_orientation_in_world_as_euler() ) self.robosim.move_marker( name="gripper_goal", position=self.__goal_position, orientation=marker_orientation, ) if len(position) != 3: raise ValueError("Position must be a 3D point.") dist = self.distance_to_position(position) # log.debug(f"Distance: {dist}") action = self.simple_velocity_control(dist) if action[:-1] == [0, 0, 0, 0, 0, 0]: self.__goal_position = None return action def go_to_relative_position(self, position, frame="gripper"): if len(position) != 3: raise ValueError("Position must be a 3D point.") if frame != "gripper": raise NotImplementedError("Only gripper frame is supported for now.") if self.__goal_position is None: self.__goal_position = self.get_gripper_position() + np.array(position) self.robosim.move_marker( name="gripper_goal", position=self.__goal_position, orientation=mat2quat(self.get_gripper_orientation_in_world()), ) dist = self.distance_to_position(self.__goal_position) return self.simple_velocity_control(dist) def go_to_pick_center(self, *args): return self.go_to_pose(pose=[-0.02, -0.27, 1.1, 0, 0, 0]) def go_to_drop(self, *args): return self.go_to_pose(pose=[0.1, -0.57, 1.1, 0, 0, 0]) def go_to_orientation(self, orientation, roll_only=False): if len(orientation) != 3: raise ValueError("Orientation must be a 3D rotation.") dist = self.delta_to_orientation(orientation) log.debug(f"Distance (orientation): {dist}") if roll_only: dist[0] = dist[1] = 0 log.debug(f"Distance (roll only): {dist}") action = self.simple_orientation_control(dist) if action[:-1] == [0, 0, 0, 0, 0, 0]: self.__goal_orientation = None return action def go_to_pose(self, pose, gripper=0): position = pose[:3] orientation = pose[3:] if self.__goal_position is None: self.__goal_position = position dist = self.distance_to_position(position) position_action = self.simple_velocity_control(dist)[:3] dist = self.delta_to_orientation(orientation) orientation_action = self.simple_orientation_control(dist)[3:-1] if (position_action == [0, 0, 0]) and (orientation_action == [0, 0, 0]): self.__goal_position = None self.__goal_orientation = None action = [*position_action, *orientation_action, gripper] log.debug(f"ACTION: {action}") return action async def get_grasp(self, object_name="Cereal", *args): log.debug(f"Getting grasp for object: {object_name}") grasp, grasp_sequence = await self.grasp.get_grasp(obj_name=object_name) self.__grasp_sequence = grasp_sequence self.robosim.move_marker(grasp_sequence[1][0]) return grasp def get_grasp_sequence(self): return self.__grasp_sequence def get_grasp_pose(self): return self.__grasp_sequence[1] def go_to_grasp_orientation(self, *args): grasp_pose = self.__grasp_sequence[1] grasp_ori = [0, 0, grasp_pose[1]] return self.go_to_orientation(grasp_ori) def go_to_grasp_position(self, *args): grasp_pose = copy.deepcopy(self.__grasp_sequence[1]) grasp_position = grasp_pose[0] grasp_position[2] -= 0.01 return self.go_to_position(grasp_position) def go_to_pre_grasp(self, *args): grasp_pose = self.__grasp_sequence[1] pre_grasp_pos = [grasp_pose[0][0], grasp_pose[0][1], 1.05] pre_grasp_ori = [0, 0, grasp_pose[1]] return self.go_to_pose([*pre_grasp_pos, *pre_grasp_ori]) def get_gripper_position(self): gripper = self.env.robots[0].gripper gripper_pos = copy.deepcopy( self.env.sim.data.get_site_xpos(gripper.important_sites["grip_site"]) ) return gripper_pos def get_gripper_orientation_in_world(self): gripper_ori = self.robosim.env._eef_xmat return gripper_ori def get_gripper_orientation_in_world_as_euler(self): gripper_ori = self.get_gripper_orientation_in_world() gripper_ori = mat2euler(gripper_ori, axes="rxyz") return gripper_ori def is_gripper_moving(self, action): if action[-1]: return True if self._last_position is None: self._last_position = [self.get_gripper_position()] return True if self._last_orientation is None: self._last_orientation = [self.get_gripper_orientation_in_world_as_euler()] return True if len(self._last_position) < 10: self._last_position.append(self.get_gripper_position()) self._last_position = None self._last_orientation = None return True if len(self._last_orientation) < 10: self._last_orientation.append( self.get_gripper_orientation_in_world_as_euler() ) self._last_position = None self._last_orientation = None return True if len(self._last_position) > 10: self._last_position.pop(0) if len(self._last_orientation) > 10: self._last_orientation.pop(0) current_pos = self.get_gripper_position() current_ori = self.get_gripper_orientation_in_world_as_euler() delta_pos = np.linalg.norm(self._last_position[-1] - current_pos) delta_ori = np.linalg.norm( np.array( [ self._get_closest_distance(a, b) for a, b in zip(self._last_orientation[-1], current_ori) ] ) ) self._last_position.append(current_pos) self._last_orientation.append(current_ori) log.info(f"Delta Position: {delta_pos}, Delta Orientation: {delta_ori}") if delta_pos < 0.001 and delta_ori < 0.01: return False return True def distance_to_position(self, position): log.debug(f" Goal Position: {position}") gripper_pos = self.get_gripper_position() log.debug(f" Gripper Position: {gripper_pos}") dist = position - gripper_pos log.debug(f" Distance: {dist}") return dist def _get_closest_distance(self, a, b): dist = np.remainder(a - b, 2 * np.pi) if dist > np.pi: dist -= 2 * np.pi elif dist < -np.pi: dist += 2 * np.pi return dist def delta_to_orientation(self, orientation): gripper_calibration_euler = [3.13, 0.14, -1.56] gripper_calibration = euler2mat(gripper_calibration_euler) gripper_calibration_quat = mat2quat(gripper_calibration) log.debug("-----") log.debug(f" request: {orientation}") goal_mat = euler2mat(orientation) goal_in_world_mat = np.dot(gripper_calibration, goal_mat) goal_in_world_euler = mat2euler(goal_in_world_mat, axes="rxyz") goal_in_world_quat = mat2quat(goal_in_world_mat) current_gripper_ori_mat = self.robosim.env._eef_xmat current_ori = mat2euler(current_gripper_ori_mat, axes="rxyz") current_ori_quat = mat2quat(current_gripper_ori_mat) actual_dist = np.array( [ self._get_closest_distance(a, b) for a, b in zip(goal_in_world_euler, current_ori) ] ) dist = actual_dist dist[1] *= -1 dist[2] *= -1 if self.__goal_orientation is None: self.__goal_orientation = goal_in_world_euler marker_position = ( self.__goal_position if self.__goal_position is not None else self.get_gripper_position() ) self.robosim.move_marker( name="gripper_goal", orientation=goal_in_world_euler, position=marker_position, ) log.debug(f" Gripper Calibration: {gripper_calibration_euler}") log.debug(f" Goal in world: {goal_in_world_euler}") log.debug(f" Current in world: {current_ori}") log.debug(" ") log.debug(f" Gripper Calibration [quat]: {gripper_calibration_quat}") log.debug(f" Goal in world [quat]: {goal_in_world_quat}") log.debug(f" Current in world [quat]: {current_ori_quat}") return dist def go_to_object(self, target_obj_name="Can"): obj = self.env.objects[self.env.object_to_id[target_obj_name.lower()]] dist = self.env._gripper_to_target( gripper=self.env.robots[0].gripper, target=obj.root_body, target_type="body", ) return self.simple_velocity_control(dist) def simple_velocity_control(self, dist): euclidean_dist = np.linalg.norm(dist) if euclidean_dist < 0.01: return [0, 0, 0, 0, 0, 0, 0] cartesian_velocities = dist / euclidean_dist log.debug(f" Cartesian Velocities: {cartesian_velocities}") action = [*cartesian_velocities, 0, 0, 0, 0] log.debug(f"XYZ Action: {action}") return action def simple_orientation_control(self, orientation): euclidean_dist = np.linalg.norm(orientation) if euclidean_dist < 0.02: return [0, 0, 0, 0, 0, 0, 0] max_vel = 0.4 if euclidean_dist < 0.4: max_vel = 0.1 if euclidean_dist < 0.2: max_vel = 0.05 # if euclidean_dist < 0.05: # max_vel = 0.02 cartesian_velocities = orientation / euclidean_dist cartesian_velocities = np.clip(cartesian_velocities, -max_vel, max_vel) for i in range(3): if abs(orientation[i]) < 0.02: # ~ 1 degree threshold cartesian_velocities[i] = 0 action = [0, 0, 0, *cartesian_velocities, 0] log.debug(f"RPY Action: {action} (euclidean_dist: {euclidean_dist})") return action def close_gripper(self, *args): # get current gripper position gripper = self.env.robots[0].gripper gripper_contacts = get_contacts(self.robosim.env.sim, gripper) log.info(f"Gripper contacts: {gripper_contacts}") right_fingerpad_pos = self.env.sim.data.get_geom_xpos( gripper.important_geoms["right_fingerpad"][0] ) left_fingerpad_pos = self.env.sim.data.get_geom_xpos( gripper.important_geoms["left_fingerpad"][0] ) log.debug(f" Right fingerpad position: {right_fingerpad_pos}") log.debug(f" Left fingerpad position: {left_fingerpad_pos}") distance = np.linalg.norm(right_fingerpad_pos - left_fingerpad_pos) log.debug(f" Distance: {distance}") if self._is_gripper_closed(): return [0, 0, 0, 0, 0, 0, 0] return [0, 0, 0, 0, 0, 0, 1] def _is_gripper_closed(self): gripper = self.env.robots[0].gripper gripper_contacts = get_contacts(self.robosim.env.sim, gripper) log.info(f"Gripper contacts: {gripper_contacts}") right_fingerpad_pos = self.env.sim.data.get_geom_xpos( gripper.important_geoms["right_fingerpad"][0] ) left_fingerpad_pos = self.env.sim.data.get_geom_xpos( gripper.important_geoms["left_fingerpad"][0] ) log.debug(f" Right fingerpad position: {right_fingerpad_pos}") log.debug(f" Left fingerpad position: {left_fingerpad_pos}") distance = np.linalg.norm(right_fingerpad_pos - left_fingerpad_pos) log.debug(f" Distance: {distance}") if gripper_contacts: if self.__gripper_contact_started is None: self.__gripper_contact_started = [ left_fingerpad_pos, right_fingerpad_pos, ] else: if ( np.linalg.norm( self.__gripper_contact_started[0] - left_fingerpad_pos ) > 0.01 and np.linalg.norm( self.__gripper_contact_started[1] - right_fingerpad_pos ) > 0.01 ): return False return True else: self.__gripper_contact_started = None if distance < 0.01: return True return False def open_gripper(self, *args): gripper = self.env.robots[0].gripper right_fingerpad_pos = self.env.sim.data.get_geom_xpos( gripper.important_geoms["right_fingerpad"][0] ) left_fingerpad_pos = self.env.sim.data.get_geom_xpos( gripper.important_geoms["left_fingerpad"][0] ) log.debug(f" Right fingerpad position: {right_fingerpad_pos}") log.debug(f" Left fingerpad position: {left_fingerpad_pos}") distance = np.linalg.norm(right_fingerpad_pos - left_fingerpad_pos) log.debug(f" Distance: {distance}") if distance > 0.08: return [0, 0, 0, 0, 0, 0, 0] return [0, 0, 0, 0, 0, 0, -1]
14,488
Python
36.246787
87
0.571162
AshisGhosh/roboai/robosuite/robosim/robosim/task.py
from enum import Enum import logging logging.basicConfig(level=logging.INFO) class TaskClass(Enum): CONTROL_TASK = 0 DATA_TASK = 1 ASYNC_DATA_TASK = 2 class TaskStatus(Enum): PENDING = 0 RUNNING = 1 COMPLETED = 2 FAILED = 3 class TaskFactory: def __init__(self): self._creators = {} def register_task(self, creator, task_class=TaskClass.CONTROL_TASK): self.register_task_type( creator.__name__, lambda name, *args, **kwargs: Task( name, creator, task_class, *args, **kwargs ), ) def register_task_type(self, task_type, creator): self._creators[task_type] = creator def create_task(self, task_type, task_name=None, *args, **kwargs): creator = self._creators.get(task_type) if not creator: raise ValueError(f"Task type {task_type} not registered.") if task_name is not None: # Use the provided task_name or fallback to a default naming convention return creator(task_name, *args, **kwargs) else: return creator(task_type, *args, **kwargs) def get_task_types(self): return self._creators.keys() class Task: def __init__(self, name, function, task_class, *args, **kwargs): self.name = name self.function = function self.task_class = task_class self.args = args self.kwargs = kwargs def execute(self): try: return self.function(*self.args, **self.kwargs) except Exception as e: logging.error(f"Error executing task {self.name}: {e}") def __str__(self): return f"Task: {self.name}\n Function: {self.function}\n Args: {self.args}\n Kwargs: {self.kwargs}"
1,793
Python
26.181818
116
0.588957
AshisGhosh/roboai/robosuite/robosim/robosim/quick_start.py
import numpy as np from dataclasses import dataclass from enum import Enum import robosuite as suite from robosuite import load_controller_config class ControllerType(Enum): JOINT_VELOCITY = 1 OSC_POSE = 2 @dataclass class OSCControlStep: dx: float dy: float dz: float droll: float dpitch: float dyaw: float gripper: float def to_list(self): return [ self.dx, self.dy, self.dz, self.droll, self.dpitch, self.dyaw, self.gripper, ] def dummy_joint_vel_control(action, env, step): """ Dummy control function for joint velocity control """ if action is None: action = np.random.randn(env.robots[0].dof) # sample random action for i, a in enumerate(action): action[i] += 0.1 * np.sin(step / 100) # add some oscillation to the action print(f"Action {i}: {action}") return action def dummy_osc_control(action, env, step): """ Dummy control function for OSC control dx, dy, dz, droll, dpitch, dyaw, gripper """ if action is None: action = OSCControlStep(0, 0, 0, 0, 0, 0, 0) else: action = OSCControlStep(*action) action.dx = 0.1 * np.sin(step / 100) action.dy = 0.1 * np.cos(step / 100) action.dz = 0.1 * np.sin(step / 100) action.droll = 0.1 * np.cos(step / 100) action.dpitch = 0.1 * np.sin(step / 100) action.dyaw = 0.1 * np.cos(step / 100) action.gripper = 0.1 * np.sin(step / 100) print(f"Action: {action.to_list()}") return action.to_list() class robosim: def __init__(self, controller_type=ControllerType.OSC_POSE): self.controller_type = controller_type self.update_action = self.get_action_func() def get_action_func(self): if self.controller_type == ControllerType.JOINT_VELOCITY: return dummy_joint_vel_control elif self.controller_type == ControllerType.OSC_POSE: return dummy_osc_control else: raise ValueError("Invalid controller type") def start(self): print("Starting Robosuite Simulation...") config = load_controller_config( default_controller=self.controller_type.name ) # load default controller config # create environment instance env = suite.make( env_name="Lift", # try with other tasks like "Stack" and "Door" robots="Panda", # try with other robots like "Sawyer" and "Jaco" gripper_types="default", controller_configs=config, control_freq=20, has_renderer=True, render_camera="frontview", camera_names=["frontview", "agentview"], has_offscreen_renderer=True, use_object_obs=False, use_camera_obs=True, ) # reset the environment env.reset() action = None for i in range(1000): action = self.update_action(action, env, i) obs, reward, done, info = env.step(action) # take action in the environment env.render() # render on display if __name__ == "__main__": sim = robosim() sim.start()
3,246
Python
26.991379
88
0.587184
AshisGhosh/roboai/robosuite/robosim/app/main.py
#!/usr/bin/python -u import io from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from starlette.responses import StreamingResponse from pydantic import BaseModel from robosim.robosim import RoboSim import logging logging.basicConfig(level=logging.DEBUG) # Create FastAPI instance app = FastAPI() robosim = RoboSim() # List of allowed origins (you can use '*' to allow all origins) origins = [ "http://localhost:3000", # Allow your Next.js app # Add any other origins as needed ] # Add CORSMiddleware to the application app.add_middleware( CORSMiddleware, allow_origins=origins, # List of allowed origins allow_credentials=True, allow_methods=["*"], # Allow all methods allow_headers=["*"], # Allow all headers ) class Task(BaseModel): name: str type: str args: list | str # Example route @app.get("/") async def read_root(): return {"message": "Hello, FastAPI! This is the robosim server."} @app.on_event("startup") async def startup_event(): return robosim.setup() @app.post("/get_feedback") async def get_feedback(): return await robosim.get_feedback("grasp-selection-feedback", "cereal") @app.post("/pick") async def pick(object_name: str): return await robosim.pick(object_name) @app.post("/test") async def test(): robosim.clear_tasks() await add_task(Task(name="go to pick", type="go_to_pick_center", args="")) await add_task(Task(name="get grasp", type="get_grasp", args="cereal")) await add_task(Task(name="go to pre grasp", type="go_to_pre_grasp", args="")) await add_task(Task(name="open gripper", type="open_gripper", args="")) await add_task(Task(name="go to grasp pos", type="go_to_grasp_position", args="")) await add_task(Task(name="close gripper", type="close_gripper", args="")) await add_task(Task(name="go to pre grasp", type="go_to_pre_grasp", args="")) await add_task(Task(name="go to drop", type="go_to_drop", args="")) await add_task(Task(name="open gripper", type="open_gripper", args="")) await robosim.start_execution() return {"msg": "Test task added and execution started."} @app.post("/start") async def start(): return await robosim.start_async() @app.post("/move_pose") async def move_pose(pose: list[float]): await add_task(Task(name="move pose", type="go_to_pose", args=pose)) await robosim.start_execution() return {"msg": "Pose move task added and execution started."} @app.post("/move_orientation") async def move_orientation(orientation: list[float]): await add_task( Task(name="move orientation", type="go_to_orientation", args=orientation) ) await robosim.start_execution() return {"msg": "Orientation move task added and execution started."} @app.post("/move_position") async def move_position(position: list[float]): await add_task(Task(name="move position", type="go_to_position", args=position)) await robosim.start_execution() return {"msg": "Position move task added and execution started."} @app.get("/move_gripper_goal_to_gripper") async def move_gripper_goal_to_gripper(): return robosim.move_gripper_goal_to_gripper() @app.get("/get_gripper_orientation") async def get_gripper_orientation(): return str(robosim.robot.get_gripper_orientation_as_euler()) @app.get("/get_gripper_orientation_in_world") async def get_gripper_orientation_in_world(): return str(robosim.robot.get_gripper_orientation_in_world_as_euler()) @app.post("/pixel_to_marker") async def pixel_to_marker(pixel: list[int]): return robosim.pixel_to_marker(pixel) @app.post("/add_marker") async def add_marker(position: list[float]): return robosim.add_marker(position) @app.post("/move_marker") async def move_marker( name: str, position: list[float] | None, orientation: list[float] | None ): return robosim.move_marker(name=name, position=position, orientation=orientation) @app.get("/get_grasp_image") async def get_grasp_image(): logging.info("Getting grasp image...") img = await robosim.robot.grasp.get_grasp_image() logging.debug("Image received.") buf = io.BytesIO() img.save(buf, format="PNG") buf.seek(0) logging.debug("Image saved. Ready to stream.") return StreamingResponse(buf, media_type="image/png") @app.get("/get_grasp_image_and_depth") async def get_grasp_image_and_depth(): logging.info("Getting grasp image and depth...") img, depth = await robosim.robot.grasp.get_grasp_image_and_depth() logging.debug("Image and depth received.") buf = io.BytesIO() img.save(buf, format="PNG") buf.seek(0) logging.debug("Image saved. Ready to stream.") return StreamingResponse(buf, media_type="image/png") @app.get("/get_grasp_depth_image") async def get_grasp_image_and_depth_image(): logging.info("Getting grasp image and depth...") _img, depth = await robosim.robot.grasp.get_grasp_image_and_depth_image() logging.debug("Image and depth received.") buf_depth = io.BytesIO() depth.save(buf_depth, format="PNG") buf_depth.seek(0) return StreamingResponse(buf_depth, media_type="image/png") @app.get("/get_image") async def get_image(): logging.info("Getting image...") img = await robosim.get_image() logging.debug("Image received.") buf = io.BytesIO() img.save(buf, format="PNG") buf.seek(0) logging.debug("Image saved. Ready to stream.") return StreamingResponse(buf, media_type="image/png") @app.get("/get_image_with_markers") async def get_image_with_markers(): logging.info("Getting image with markers...") img = await robosim.get_image_with_markers() logging.debug("Image received.") buf = io.BytesIO() img.save(buf, format="PNG") buf.seek(0) logging.debug("Image saved. Ready to stream.") return StreamingResponse(buf, media_type="image/png") @app.post("/pause") async def pause(): return await robosim.pause_execution() @app.post("/resume") async def resume(): return await robosim.resume_execution() @app.post("/close") async def close(): return await robosim.close_renderer() @app.post("/execute_tasks") async def execute_tasks(): return await robosim.execute_async() @app.post("/add_task") async def add_task(task: Task): logging.info(f"Adding task: {task.name} of type {task.type} with args {task.args}") try: robosim.add_task(task.name, task.type, task.args) return {"msg": "Task added"} except ValueError as e: raise HTTPException(status_code=400, detail=str(e)) @app.get("/get_tasks") async def get_tasks(): tasks = [ Task(name=t.name, type=t.function.__name__, args=t.args) for t in robosim.get_tasks() ] return tasks @app.get("/get_objects") async def get_objects(): return robosim.get_object_names()
6,879
Python
27.312757
87
0.682657
AshisGhosh/roboai/robosuite/robomimic_sim/pyproject.toml
[tool.poetry] name = "robomimic-sim" version = "0.1.0" description = "" authors = ["AshisGhosh <[email protected]>"] readme = "README.md" [tool.poetry.dependencies] python = "^3.10" fastapi = "^0.110.0" uvicorn = "^0.29.0" [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api"
312
TOML
17.411764
46
0.673077
AshisGhosh/roboai/robosuite/robomimic_sim/robomimic_sim/robomimic_sim.py
import imageio import numpy as np import os from copy import deepcopy import asyncio from PIL import Image import torch import robosuite from robosuite import load_controller_config import robomimic.utils.file_utils as FileUtils import robomimic.utils.torch_utils as TorchUtils from robomimic.envs.env_base import EnvBase from robomimic.algo import RolloutPolicy import urllib.request class RobomimicSim: def __init__(self): self.rollout_visualizing = False self.rollout_task = None self.render_task = None self.close_renderer_flag = ( asyncio.Event() ) # Use an asyncio Event for better coordination def setup(self): # Get pretrained checkpooint from the model zoo ckpt_path = "models/lift_ph_low_dim_epoch_1000_succ_100.pth" # Lift (Proficient Human) urllib.request.urlretrieve( "http://downloads.cs.stanford.edu/downloads/rt_benchmark/model_zoo/lift/bc_rnn/lift_ph_low_dim_epoch_1000_succ_100.pth", filename=ckpt_path, ) assert os.path.exists(ckpt_path) device = TorchUtils.get_torch_device(try_to_use_cuda=True) # restore policy policy, ckpt_dict = FileUtils.policy_from_checkpoint( ckpt_path=ckpt_path, device=device, verbose=True ) # create environment from saved checkpoint env, _ = FileUtils.env_from_checkpoint( ckpt_dict=ckpt_dict, render=True, render_offscreen=True, # render to RGB images for video verbose=True, ) self.policy = policy self.env = env def custom_env(self): load_controller_config( default_controller="OSC_POSE" ) # load default controller config # create environment from scratch env = robosuite.make( env_name="Lift", # try with other tasks like "Stack" and "Door" robots="Panda", # try with other robots like "Sawyer" and "Jaco" gripper_types="default", controller_configs=None, control_freq=20, has_renderer=True, render_camera="frontview", camera_names=["frontview", "agentview"], has_offscreen_renderer=True, use_object_obs=False, use_camera_obs=True, ) self.env = env async def start_rollout(self): if self.rollout_task is None or self.rollout_task.done(): self.close_renderer_flag.clear() await self.start_renderer() self.rollout_task = asyncio.create_task(self.run()) async def close_renderer(self): self.close_renderer_flag.set() # Signal to stop the tasks if self.render_task and not self.render_task.done(): await self.render_task # Await the task to ensure it completes if self.rollout_task and not self.rollout_task.done(): self.rollout_task.cancel() # Cancel rollout task as it might be waiting for external input try: await ( self.rollout_task ) # Attempt to await the task to handle any cleanup except asyncio.CancelledError: pass # Expected if the task was cancelled self.env.base_env.close_renderer() async def render(self): hz = 5 while not self.close_renderer_flag.is_set(): # Use the Event for checking if not self.rollout_visualizing: self.env.render(mode="human", camera_name="frontview") await asyncio.sleep(1 / hz) async def start_renderer(self): if self.render_task is None or self.render_task.done(): self.close_renderer_flag.clear() self.env.reset() print("Now starting renderer...") self.render_task = asyncio.create_task(self.render()) return True async def reset(self): self.env.reset() return True async def rollout( self, policy, env, horizon, render=False, video_writer=None, video_skip=5, camera_names=None, ): """ Helper function to carry out rollouts. Supports on-screen rendering, off-screen rendering to a video, and returns the rollout trajectory. Args: policy (instance of RolloutPolicy): policy loaded from a checkpoint env (instance of EnvBase): env loaded from a checkpoint or demonstration metadata horizon (int): maximum horizon for the rollout render (bool): whether to render rollout on-screen video_writer (imageio writer): if provided, use to write rollout to video video_skip (int): how often to write video frames camera_names (list): determines which camera(s) are used for rendering. Pass more than one to output a video with multiple camera views concatenated horizontally. Returns: stats (dict): some statistics for the rollout - such as return, horizon, and task success """ print("Rolling out policy...") assert isinstance(env, EnvBase) assert isinstance(policy, RolloutPolicy) assert not (render and (video_writer is not None)) policy.start_episode() # obs = env.reset() # state_dict = env.get_state() # # hack that is necessary for robosuite tasks for deterministic action playback # obs = env.reset_to(state_dict) obs = env.get_observation() video_count = 0 # video frame counter total_reward = 0.0 self.rollout_visualizing = True try: for step_i in range(horizon): await asyncio.sleep(0) # Allow other tasks to run if self.close_renderer_flag.is_set(): print("Stopping rollout due to renderer close request...") break # get action from policy act = policy(ob=obs) # play action next_obs, r, done, _ = env.step(act) # compute reward total_reward += r success = env.is_success()["task"] # visualization if render: env.render(mode="human", camera_name=camera_names[0]) if video_writer is not None: if video_count % video_skip == 0: video_img = [] for cam_name in camera_names: video_img.append( env.render( mode="rgb_array", height=512, width=512, camera_name=cam_name, ) ) video_img = np.concatenate( video_img, axis=1 ) # concatenate horizontally video_writer.append_data(video_img) video_count += 1 # break if done or if success if done or success: break # update for next iter obs = deepcopy(next_obs) env.get_state() except env.rollout_exceptions as e: print("WARNING: got rollout exception {}".format(e)) self.rollout_visualizing = False stats = dict( Return=total_reward, Horizon=(step_i + 1), Success_Rate=float(success) ) return stats async def run(self): rollout_horizon = 400 np.random.seed(0) torch.manual_seed(0) video_path = "output/rollout.mp4" video_writer = imageio.get_writer(video_path, fps=20) policy = self.policy env = self.env stats = await self.rollout( policy=policy, env=env, horizon=rollout_horizon, render=True, # render=False, # video_writer=video_writer, # video_skip=5, camera_names=["frontview", "agentview"], ) print(stats) video_writer.close() def get_image(self): img = self.env.render( mode="rgb_array", height=512, width=512, camera_name="frontview" ) img = Image.fromarray(img) return img
8,536
Python
33.28514
132
0.554944
AshisGhosh/roboai/robosuite/robomimic_sim/robomimic_sim/train_bc_rnn.py
""" WARNING: This script is only for instructive purposes, to point out different portions of the config -- the preferred way to launch training runs is still with external jsons and scripts/train.py (and optionally using scripts/hyperparameter_helper.py to generate several config jsons by sweeping config settings). See the online documentation for more information about launching training. Example script for training a BC-RNN agent by manually setting portions of the config in python code. To see a quick training run, use the following command: python train_bc_rnn.py --debug To run a full length training run on your own dataset, use the following command: python train_bc_rnn.py --dataset /path/to/dataset.hdf5 --output /path/to/output_dir """ import argparse import robomimic.utils.torch_utils as TorchUtils import robomimic.utils.test_utils as TestUtils import robomimic.macros as Macros from robomimic.config import config_factory from robomimic.scripts.train import train def robosuite_hyperparameters(config): """ Sets robosuite-specific hyperparameters. Args: config (Config): Config to modify Returns: Config: Modified config """ ## save config - if and when to save checkpoints ## config.experiment.save.enabled = ( True # whether model saving should be enabled or disabled ) config.experiment.save.every_n_seconds = ( None # save model every n seconds (set to None to disable) ) config.experiment.save.every_n_epochs = ( 50 # save model every n epochs (set to None to disable) ) config.experiment.save.epochs = [] # save model on these specific epochs config.experiment.save.on_best_validation = ( False # save models that achieve best validation score ) config.experiment.save.on_best_rollout_return = ( False # save models that achieve best rollout return ) config.experiment.save.on_best_rollout_success_rate = ( True # save models that achieve best success rate ) # epoch definition - if not None, set an epoch to be this many gradient steps, else the full dataset size will be used config.experiment.epoch_every_n_steps = 100 # each epoch is 100 gradient steps config.experiment.validation_epoch_every_n_steps = ( 10 # each validation epoch is 10 gradient steps ) # envs to evaluate model on (assuming rollouts are enabled), to override the metadata stored in dataset config.experiment.env = None # no need to set this (unless you want to override) config.experiment.additional_envs = ( None # additional environments that should get evaluated ) ## rendering config ## config.experiment.render = False # render on-screen or not config.experiment.render_video = True # render evaluation rollouts to videos config.experiment.keep_all_videos = False # save all videos, instead of only saving those for saved model checkpoints config.experiment.video_skip = ( 5 # render video frame every n environment steps during rollout ) ## evaluation rollout config ## config.experiment.rollout.enabled = True # enable evaluation rollouts config.experiment.rollout.n = 50 # number of rollouts per evaluation config.experiment.rollout.horizon = 400 # set horizon based on length of demonstrations (can be obtained with scripts/get_dataset_info.py) config.experiment.rollout.rate = 50 # do rollouts every @rate epochs config.experiment.rollout.warmstart = ( 0 # number of epochs to wait before starting rollouts ) config.experiment.rollout.terminate_on_success = ( True # end rollout early after task success ) ## dataset loader config ## # num workers for loading data - generally set to 0 for low-dim datasets, and 2 for image datasets config.train.num_data_workers = 0 # assume low-dim dataset # One of ["all", "low_dim", or None]. Set to "all" to cache entire hdf5 in memory - this is # by far the fastest for data loading. Set to "low_dim" to cache all non-image data. Set # to None to use no caching - in this case, every batch sample is retrieved via file i/o. # You should almost never set this to None, even for large image datasets. config.train.hdf5_cache_mode = "all" config.train.hdf5_use_swmr = True # used for parallel data loading # if true, normalize observations at train and test time, using the global mean and standard deviation # of each observation in each dimension, computed across the training set. See SequenceDataset.normalize_obs # in utils/dataset.py for more information. config.train.hdf5_normalize_obs = False # no obs normalization # if provided, demonstrations are filtered by the list of demo keys under "mask/@hdf5_filter_key" config.train.hdf5_filter_key = "train" # by default, use "train" and "valid" filter keys corresponding to train-valid split config.train.hdf5_validation_filter_key = "valid" # fetch sequences of length 10 from dataset for RNN training config.train.seq_length = 10 # keys from hdf5 to load per demonstration, besides "obs" and "next_obs" config.train.dataset_keys = ( "actions", "rewards", "dones", ) # one of [None, "last"] - set to "last" to include goal observations in each batch config.train.goal_mode = None # no need for goal observations ## learning config ## config.train.cuda = True # try to use GPU (if present) or not config.train.batch_size = 100 # batch size config.train.num_epochs = 2000 # number of training epochs config.train.seed = 1 # seed for training ### Observation Config ### config.observation.modalities.obs.low_dim = [ # specify low-dim observations for agent "robot0_eef_pos", "robot0_eef_quat", "robot0_gripper_qpos", "object", ] config.observation.modalities.obs.rgb = [] # no image observations config.observation.modalities.goal.low_dim = [] # no low-dim goals config.observation.modalities.goal.rgb = [] # no image goals # observation encoder architecture - applies to all networks that take observation dicts as input config.observation.encoder.rgb.core_class = "VisualCore" config.observation.encoder.rgb.core_kwargs.feature_dimension = 64 config.observation.encoder.rgb.core_kwargs.backbone_class = "ResNet18Conv" # ResNet backbone for image observations (unused if no image observations) config.observation.encoder.rgb.core_kwargs.backbone_kwargs.pretrained = ( False # kwargs for visual core ) config.observation.encoder.rgb.core_kwargs.backbone_kwargs.input_coord_conv = False config.observation.encoder.rgb.core_kwargs.pool_class = ( "SpatialSoftmax" # Alternate options are "SpatialMeanPool" or None (no pooling) ) config.observation.encoder.rgb.core_kwargs.pool_kwargs.num_kp = ( 32 # Default arguments for "SpatialSoftmax" ) config.observation.encoder.rgb.core_kwargs.pool_kwargs.learnable_temperature = ( False # Default arguments for "SpatialSoftmax" ) config.observation.encoder.rgb.core_kwargs.pool_kwargs.temperature = ( 1.0 # Default arguments for "SpatialSoftmax" ) config.observation.encoder.rgb.core_kwargs.pool_kwargs.noise_std = ( 0.0 # Default arguments for "SpatialSoftmax" ) # if you prefer to use pre-trained visual representations, uncomment the following lines # R3M # config.observation.encoder.rgb.core_kwargs.backbone_class = 'R3MConv' # R3M backbone for image observations (unused if no image observations) # config.observation.encoder.rgb.core_kwargs.backbone_kwargs.r3m_model_class = 'resnet18' # R3M model class (resnet18, resnet34, resnet50) # config.observation.encoder.rgb.core_kwargs.backbone_kwargs.freeze = True # whether to freeze network during training or allow finetuning # config.observation.encoder.rgb.core_kwargs.pool_class = None # no pooling class for pretraining model # MVP # config.observation.encoder.rgb.core_kwargs.backbone_class = 'MVPConv' # MVP backbone for image observations (unused if no image observations) # config.observation.encoder.rgb.core_kwargs.backbone_kwargs.mvp_model_class = 'vitb-mae-egosoup' # MVP model class (vits-mae-hoi, vits-mae-in, vits-sup-in, vitb-mae-egosoup, vitl-256-mae-egosoup) # config.observation.encoder.rgb.core_kwargs.backbone_kwargs.freeze = True # whether to freeze network during training or allow finetuning # config.observation.encoder.rgb.core_kwargs.pool_class = None # no pooling class for pretraining model # observation randomizer class - set to None to use no randomization, or 'CropRandomizer' to use crop randomization config.observation.encoder.rgb.obs_randomizer_class = None # kwargs for observation randomizers (for the CropRandomizer, this is size and number of crops) config.observation.encoder.rgb.obs_randomizer_kwargs.crop_height = 76 config.observation.encoder.rgb.obs_randomizer_kwargs.crop_width = 76 config.observation.encoder.rgb.obs_randomizer_kwargs.num_crops = 1 config.observation.encoder.rgb.obs_randomizer_kwargs.pos_enc = False ### Algo Config ### # optimization parameters config.algo.optim_params.policy.learning_rate.initial = 1e-4 # policy learning rate config.algo.optim_params.policy.learning_rate.decay_factor = ( 0.1 # factor to decay LR by (if epoch schedule non-empty) ) config.algo.optim_params.policy.learning_rate.epoch_schedule = [] # epochs where LR decay occurs config.algo.optim_params.policy.regularization.L2 = ( 0.00 # L2 regularization strength ) # loss weights config.algo.loss.l2_weight = 1.0 # L2 loss weight config.algo.loss.l1_weight = 0.0 # L1 loss weight config.algo.loss.cos_weight = 0.0 # cosine loss weight # MLP network architecture (layers after observation encoder and RNN, if present) config.algo.actor_layer_dims = () # empty MLP - go from RNN layer directly to action output # stochastic GMM policy config.algo.gmm.enabled = ( True # enable GMM policy - policy outputs GMM action distribution ) config.algo.gmm.num_modes = 5 # number of GMM modes config.algo.gmm.min_std = 0.0001 # minimum std output from network config.algo.gmm.std_activation = ( "softplus" # activation to use for std output from policy net ) config.algo.gmm.low_noise_eval = True # low-std at test-time # rnn policy config config.algo.rnn.enabled = True # enable RNN policy config.algo.rnn.horizon = ( 10 # unroll length for RNN - should usually match train.seq_length ) config.algo.rnn.hidden_dim = 400 # hidden dimension size config.algo.rnn.rnn_type = "LSTM" # rnn type - one of "LSTM" or "GRU" config.algo.rnn.num_layers = 2 # number of RNN layers that are stacked config.algo.rnn.open_loop = False # if True, action predictions are only based on a single observation (not sequence) + hidden state config.algo.rnn.kwargs.bidirectional = False # rnn kwargs return config def momart_hyperparameters(config): """ Sets momart-specific hyperparameters. Args: config (Config): Config to modify Returns: Config: Modified config """ ## save config - if and when to save checkpoints ## config.experiment.save.enabled = ( True # whether model saving should be enabled or disabled ) config.experiment.save.every_n_seconds = ( None # save model every n seconds (set to None to disable) ) config.experiment.save.every_n_epochs = ( 3 # save model every n epochs (set to None to disable) ) config.experiment.save.epochs = [] # save model on these specific epochs config.experiment.save.on_best_validation = ( True # save models that achieve best validation score ) config.experiment.save.on_best_rollout_return = ( False # save models that achieve best rollout return ) config.experiment.save.on_best_rollout_success_rate = ( True # save models that achieve best success rate ) # epoch definition - if not None, set an epoch to be this many gradient steps, else the full dataset size will be used config.experiment.epoch_every_n_steps = None # each epoch is 100 gradient steps config.experiment.validation_epoch_every_n_steps = ( 10 # each validation epoch is 10 gradient steps ) # envs to evaluate model on (assuming rollouts are enabled), to override the metadata stored in dataset config.experiment.env = None # no need to set this (unless you want to override) config.experiment.additional_envs = ( None # additional environments that should get evaluated ) ## rendering config ## config.experiment.render = False # render on-screen or not config.experiment.render_video = True # render evaluation rollouts to videos config.experiment.keep_all_videos = False # save all videos, instead of only saving those for saved model checkpoints config.experiment.video_skip = ( 5 # render video frame every n environment steps during rollout ) ## evaluation rollout config ## config.experiment.rollout.enabled = True # enable evaluation rollouts config.experiment.rollout.n = 30 # number of rollouts per evaluation config.experiment.rollout.horizon = 1500 # maximum number of env steps per rollout config.experiment.rollout.rate = 3 # do rollouts every @rate epochs config.experiment.rollout.warmstart = ( 0 # number of epochs to wait before starting rollouts ) config.experiment.rollout.terminate_on_success = ( True # end rollout early after task success ) ## dataset loader config ## # num workers for loading data - generally set to 0 for low-dim datasets, and 2 for image datasets config.train.num_data_workers = 2 # assume low-dim dataset # One of ["all", "low_dim", or None]. Set to "all" to cache entire hdf5 in memory - this is # by far the fastest for data loading. Set to "low_dim" to cache all non-image data. Set # to None to use no caching - in this case, every batch sample is retrieved via file i/o. # You should almost never set this to None, even for large image datasets. config.train.hdf5_cache_mode = "low_dim" config.train.hdf5_use_swmr = True # used for parallel data loading # if true, normalize observations at train and test time, using the global mean and standard deviation # of each observation in each dimension, computed across the training set. See SequenceDataset.normalize_obs # in utils/dataset.py for more information. config.train.hdf5_normalize_obs = False # no obs normalization # if provided, demonstrations are filtered by the list of demo keys under "mask/@hdf5_filter_key" config.train.hdf5_filter_key = "train" # by default, use "train" and "valid" filter keys corresponding to train-valid split config.train.hdf5_validation_filter_key = "valid" # fetch sequences of length 10 from dataset for RNN training config.train.seq_length = 50 # keys from hdf5 to load per demonstration, besides "obs" and "next_obs" config.train.dataset_keys = ( "actions", "rewards", "dones", ) # one of [None, "last"] - set to "last" to include goal observations in each batch config.train.goal_mode = "last" # no need for goal observations ## learning config ## config.train.cuda = True # try to use GPU (if present) or not config.train.batch_size = 4 # batch size config.train.num_epochs = 31 # number of training epochs config.train.seed = 1 # seed for training ### Observation Config ### config.observation.modalities.obs.low_dim = [ # specify low-dim observations for agent "proprio", ] config.observation.modalities.obs.rgb = [ "rgb", "rgb_wrist", ] config.observation.modalities.obs.depth = [ "depth", "depth_wrist", ] config.observation.modalities.obs.scan = [ "scan", ] config.observation.modalities.goal.low_dim = [] # no low-dim goals config.observation.modalities.goal.rgb = [] # no rgb image goals ### Algo Config ### # optimization parameters config.algo.optim_params.policy.learning_rate.initial = 1e-4 # policy learning rate config.algo.optim_params.policy.learning_rate.decay_factor = ( 0.1 # factor to decay LR by (if epoch schedule non-empty) ) config.algo.optim_params.policy.learning_rate.epoch_schedule = [] # epochs where LR decay occurs config.algo.optim_params.policy.regularization.L2 = ( 0.00 # L2 regularization strength ) # loss weights config.algo.loss.l2_weight = 1.0 # L2 loss weight config.algo.loss.l1_weight = 0.0 # L1 loss weight config.algo.loss.cos_weight = 0.0 # cosine loss weight # MLP network architecture (layers after observation encoder and RNN, if present) config.algo.actor_layer_dims = ( 300, 400, ) # MLP layers between RNN layer and action output # stochastic GMM policy config.algo.gmm.enabled = ( True # enable GMM policy - policy outputs GMM action distribution ) config.algo.gmm.num_modes = 5 # number of GMM modes config.algo.gmm.min_std = 0.01 # minimum std output from network config.algo.gmm.std_activation = ( "softplus" # activation to use for std output from policy net ) config.algo.gmm.low_noise_eval = True # low-std at test-time # rnn policy config config.algo.rnn.enabled = True # enable RNN policy config.algo.rnn.horizon = ( 50 # unroll length for RNN - should usually match train.seq_length ) config.algo.rnn.hidden_dim = 1200 # hidden dimension size config.algo.rnn.rnn_type = "LSTM" # rnn type - one of "LSTM" or "GRU" config.algo.rnn.num_layers = 2 # number of RNN layers that are stacked config.algo.rnn.open_loop = False # if True, action predictions are only based on a single observation (not sequence) + hidden state config.algo.rnn.kwargs.bidirectional = False # rnn kwargs return config # Valid dataset types to use DATASET_TYPES = { "robosuite": { "default_dataset_func": TestUtils.example_dataset_path, "hp": robosuite_hyperparameters, }, "momart": { "default_dataset_func": TestUtils.example_momart_dataset_path, "hp": momart_hyperparameters, }, } def get_config( dataset_type="robosuite", dataset_path=None, output_dir=None, debug=False ): """ Construct config for training. Args: dataset_type (str): Dataset type to use. Valid options are DATASET_TYPES. Default is "robosuite" dataset_path (str or None): path to hdf5 dataset. Pass None to use a small default dataset. output_dir (str): path to output folder, where logs, model checkpoints, and videos will be written. If it doesn't exist, the directory will be created. Pass None to use a default directory in /tmp. debug (bool): if True, shrink training and rollout times to test a full training run quickly. """ assert ( dataset_type in DATASET_TYPES ), f"Invalid dataset type. Valid options are: {list(DATASET_TYPES.keys())}, got: {dataset_type}" # handle args if dataset_path is None: # small dataset with a handful of trajectories dataset_path = DATASET_TYPES[dataset_type]["default_dataset_func"]() if output_dir is None: # default output directory created in /tmp output_dir = TestUtils.temp_model_dir_path() # make default BC config config = config_factory(algo_name="bc") ### Experiment Config ### config.experiment.name = ( f"{dataset_type}_bc_rnn_example" # name of experiment used to make log files ) config.experiment.validate = True # whether to do validation or not config.experiment.logging.terminal_output_to_txt = ( False # whether to log stdout to txt file ) config.experiment.logging.log_tb = True # enable tensorboard logging ### Train Config ### config.train.data = dataset_path # path to hdf5 dataset # Write all results to this directory. A new folder with the timestamp will be created # in this directory, and it will contain three subfolders - "log", "models", and "videos". # The "log" directory will contain tensorboard and stdout txt logs. The "models" directory # will contain saved model checkpoints. The "videos" directory contains evaluation rollout # videos. config.train.output_dir = output_dir # path to output folder # Load default hyperparameters based on dataset type config = DATASET_TYPES[dataset_type]["hp"](config) # maybe make training length small for a quick run if debug: # train and validate for 3 gradient steps per epoch, and 2 total epochs config.experiment.epoch_every_n_steps = 3 config.experiment.validation_epoch_every_n_steps = 3 config.train.num_epochs = 2 # rollout and model saving every epoch, and make rollouts short config.experiment.save.every_n_epochs = 1 config.experiment.rollout.rate = 1 config.experiment.rollout.n = 2 config.experiment.rollout.horizon = 10 return config if __name__ == "__main__": parser = argparse.ArgumentParser() # Dataset path parser.add_argument( "--dataset", type=str, default=None, help="(optional) path to input hdf5 dataset to use in example script. If not provided, \ a default hdf5 packaged with the repository will be used.", ) # Output dir parser.add_argument( "--output", type=str, default=None, help="(optional) path to folder to use (or create) to output logs, model checkpoints, and rollout \ videos. If not provided, a folder in /tmp will be used.", ) # debug flag for quick training run parser.add_argument( "--debug", action="store_true", help="set this flag to run a quick training run for debugging purposes", ) # type parser.add_argument( "--dataset_type", type=str, default="robosuite", choices=list(DATASET_TYPES.keys()), help=f"Dataset type to use. This will determine the default hyperparameter settings to use for training." f"Valid options are: {list(DATASET_TYPES.keys())}. Default is robosuite.", ) args = parser.parse_args() # Turn debug mode on possibly if args.debug: Macros.DEBUG = True # config for training config = get_config( dataset_type=args.dataset_type, dataset_path=args.dataset, output_dir=args.output, debug=args.debug, ) # set torch device device = TorchUtils.get_torch_device(try_to_use_cuda=config.train.cuda) # run training train(config, device=device)
23,496
Python
42.034798
208
0.682074
AshisGhosh/roboai/robosuite/robomimic_sim/robomimic_sim/run_policy.py
import imageio import numpy as np import os from copy import deepcopy import torch import robomimic.utils.file_utils as FileUtils import robomimic.utils.torch_utils as TorchUtils from robomimic.envs.env_base import EnvBase from robomimic.algo import RolloutPolicy import urllib.request # Get pretrained checkpooint from the model zoo ckpt_path = "models/lift_ph_low_dim_epoch_1000_succ_100.pth" # Lift (Proficient Human) urllib.request.urlretrieve( "http://downloads.cs.stanford.edu/downloads/rt_benchmark/model_zoo/lift/bc_rnn/lift_ph_low_dim_epoch_1000_succ_100.pth", filename=ckpt_path, ) assert os.path.exists(ckpt_path) device = TorchUtils.get_torch_device(try_to_use_cuda=True) # restore policy policy, ckpt_dict = FileUtils.policy_from_checkpoint( ckpt_path=ckpt_path, device=device, verbose=True ) # create environment from saved checkpoint env, _ = FileUtils.env_from_checkpoint( ckpt_dict=ckpt_dict, render=True, # we won't do on-screen rendering in the notebook render_offscreen=True, # render to RGB images for video verbose=True, ) def rollout( policy, env, horizon, render=False, video_writer=None, video_skip=5, camera_names=None, ): """ Helper function to carry out rollouts. Supports on-screen rendering, off-screen rendering to a video, and returns the rollout trajectory. Args: policy (instance of RolloutPolicy): policy loaded from a checkpoint env (instance of EnvBase): env loaded from a checkpoint or demonstration metadata horizon (int): maximum horizon for the rollout render (bool): whether to render rollout on-screen video_writer (imageio writer): if provided, use to write rollout to video video_skip (int): how often to write video frames camera_names (list): determines which camera(s) are used for rendering. Pass more than one to output a video with multiple camera views concatenated horizontally. Returns: stats (dict): some statistics for the rollout - such as return, horizon, and task success """ assert isinstance(env, EnvBase) assert isinstance(policy, RolloutPolicy) assert not (render and (video_writer is not None)) policy.start_episode() obs = env.reset() state_dict = env.get_state() # hack that is necessary for robosuite tasks for deterministic action playback obs = env.reset_to(state_dict) video_count = 0 # video frame counter total_reward = 0.0 if render: env.render(mode="human", camera_name=camera_names[0]) try: for step_i in range(horizon): # get action from policy act = policy(ob=obs) # play action next_obs, r, done, _ = env.step(act) # compute reward total_reward += r success = env.is_success()["task"] # visualization if render: env.render(mode="human", camera_name=camera_names[0]) if video_writer is not None: if video_count % video_skip == 0: video_img = [] for cam_name in camera_names: video_img.append( env.render( mode="rgb_array", height=512, width=512, camera_name=cam_name, ) ) video_img = np.concatenate( video_img, axis=1 ) # concatenate horizontally video_writer.append_data(video_img) video_count += 1 # break if done or if success if done or success: break # update for next iter obs = deepcopy(next_obs) state_dict = env.get_state() except env.rollout_exceptions as e: print("WARNING: got rollout exception {}".format(e)) stats = dict(Return=total_reward, Horizon=(step_i + 1), Success_Rate=float(success)) return stats rollout_horizon = 400 np.random.seed(0) torch.manual_seed(0) video_path = "output/rollout.mp4" video_writer = imageio.get_writer(video_path, fps=20) stats = rollout( policy=policy, env=env, horizon=rollout_horizon, render=True, # render=False, # video_writer=video_writer, # video_skip=5, camera_names=["frontview", "agentview"], ) print(stats) video_writer.close()
4,566
Python
29.446666
124
0.613666
AshisGhosh/roboai/robosuite/robomimic_sim/app/main.py
#!/usr/bin/python -u from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from starlette.responses import StreamingResponse import io from robomimic_sim.robomimic_sim import RobomimicSim # Create FastAPI instance app = FastAPI() robosim = RobomimicSim() # List of allowed origins (you can use '*' to allow all origins) origins = [ "http://localhost:3000", # Allow your Next.js app # Add any other origins as needed ] # Add CORSMiddleware to the application app.add_middleware( CORSMiddleware, allow_origins=origins, # List of allowed origins allow_credentials=True, allow_methods=["*"], # Allow all methods allow_headers=["*"], # Allow all headers ) # Example route @app.get("/") async def read_root(): return {"message": "Hello, FastAPI! This is the robomimic server."} @app.on_event("startup") async def startup_event(): return robosim.setup() @app.post("/run") async def run(): print("Running robomimic simulation...") return await robosim.start_rollout() @app.post("/reset") async def reset(): print("Resetting robomimic simulation...") return await robosim.reset() @app.post("/start_renderer") async def start_renderer(): print("Starting robomimic simulation...") return await robosim.start_renderer() @app.post("/close_renderer") async def close_renderer(): print("Closing robomimic simulation...") return await robosim.close_renderer() @app.get("/get_policy") async def get_policy(): return repr(robosim.policy) @app.get("/get_image") async def get_image(): print("Getting image...") img = robosim.get_image() buf = io.BytesIO() img.save(buf, format="PNG") buf.seek(0) return StreamingResponse(buf, media_type="image/png")
1,778
Python
21.518987
71
0.692351
AshisGhosh/roboai/agent_frameworks/crewai_roboai/pyproject.toml
[tool.poetry] name = "crewai-roboai" version = "0.1.0" description = "" authors = ["AshisGhosh <[email protected]>"] readme = "README.md" [tool.poetry.dependencies] python = ">=3.10,<=3.13" crewai = {extras = ["tools"], version = "^0.22.5"} [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api"
330
TOML
19.687499
50
0.660606
AshisGhosh/roboai/agent_frameworks/crewai_roboai/crewai_roboai/test.py
from crewai import Crew, Process, Agent, Task from crewai_tools import tool from dotenv import load_dotenv load_dotenv() # take environment variables from .env. @tool("Get objects on the table.") def get_objects_on_the_table() -> str: """Get objects on the table""" return "Milk, Cereal" # string to be sent back to the agent # Define your agents planner = Agent( role="Planner", goal="Create plans for robots.", backstory="An experienced planner that breaks down tasks into steps for robots.", tools=[], verbose=True, allow_delegation=False, ) analyst = Agent( role="Scene Analyzer", goal="Identify objects in the scene.", backstory="An experienced analyst that can identify objects in a scene.", tools=[get_objects_on_the_table], verbose=True, allow_delegation=False, ) # Define the tasks in sequence planner_task = Task( description="Create a plan for a robot to clear the table.", agent=planner, expected_output="List of steps for a robot.", ) analysis_task = Task( description="List the objects that are on the table", agent=analyst, expected_output="List of objects.", ) # Form the crew with a sequential process crew = Crew( agents=[planner, analyst], tasks=[analysis_task, planner_task], process=Process.sequential, verbose=2, ) crew.kickoff()
1,360
Python
23.745454
85
0.691176
AshisGhosh/roboai/agent_frameworks/langroid_roboai/pyproject.toml
[tool.poetry] name = "langroid-roboai" version = "0.1.0" description = "" authors = ["AshisGhosh <[email protected]>"] readme = "README.md" [tool.poetry.dependencies] python = "<3.12,>=3.9.1" langroid = {extras = ["litellm"], version = "^0.1.222"} [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api"
337
TOML
20.124999
55
0.667656
AshisGhosh/roboai/agent_frameworks/langroid_roboai/langroid_roboai/test.py
import langroid as lr import langroid.language_models as lm # set up LLM llm_cfg = lm.OpenAIGPTConfig( # or OpenAIAssistant to use Assistant API # any model served via an OpenAI-compatible API # chat_model="litellm/openrouter/mistralai/mistral-7b-instruct:free" chat_model="litellm/openrouter/huggingfaceh4/zephyr-7b-beta:free" ) # # use LLM directly # mdl = lm.OpenAIGPT(llm_cfg) # response = mdl.chat("What is the capital of Ontario?", max_tokens=10) # # use LLM in an Agent # agent_cfg = lr.ChatAgentConfig(llm=llm_cfg) # agent = lr.ChatAgent(agent_cfg) # agent.llm_response("What is the capital of China?") # response = agent.llm_response("And India?") # maintains conversation state # wrap Agent in a Task to run interactive loop with user (or other agents) # task = lr.Task(agent, name="Bot", system_message="You are a helpful assistant") # task.run("Hello") # kick off with user saying "Hello" # 2-Agent chat loop: Teacher Agent asks questions to Student Agent agent_cfg = lr.ChatAgentConfig(llm=llm_cfg) robot_agent = lr.ChatAgent(agent_cfg) robot_task = lr.Task( robot_agent, name="Robot", system_message=""" You are a robot and have a high level task. You must ask the planner to break it down into steps you can do. Your skills involve 'pick' and 'place' actions. """, # done_if_response=[Entity.LLM], interactive=False, ) planner_agent = lr.ChatAgent(agent_cfg) planner_task = lr.Task( planner_agent, name="Planner", system_message=""" Concisely return numbered steps of a plan for a robot. The plan can only involve 'pick' and 'place' actions. If the plan is valid, respond with 'DONE'. """, single_round=True, interactive=False, ) robot_task.add_sub_task(planner_task) robot_task.run( "The task is to clear the table, it has the following objects: 'Milk', 'Cereal', and a 'Can'." )
1,912
Python
33.160714
98
0.695607
AshisGhosh/roboai/agent_frameworks/autogen_roboai/pyproject.toml
[tool.poetry] name = "roboai" version = "0.1.0" description = "" authors = ["AshisGhosh <[email protected]>"] readme = "README.md" [tool.poetry.dependencies] python = ">=3.10,<3.13" pyautogen = "^0.2.21" [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api"
293
TOML
17.374999
46
0.672355
AshisGhosh/roboai/agent_frameworks/autogen_roboai/autogen_roboai/test.py
import autogen from autogen import AssistantAgent, UserProxyAgent import tempfile from autogen.coding import LocalCommandLineCodeExecutor from typing_extensions import Annotated import logging logging.basicConfig(level=logging.INFO) filter_dict = {"tags": ["zephyr"]} config_list = autogen.config_list_from_json( env_or_file="OAI_CONFIG_LIST", filter_dict=filter_dict ) assert len(config_list) == 1 llm_config = { "config_list": config_list, "timeout": 120, } task = "Create a list of steps for a robot to clear the table." # create an AssistantAgent instance named "assistant" with the LLM configuration. assistant = AssistantAgent( name="assistant", llm_config=llm_config, system_message=""" You are a helpful assistant who can break down tasks into steps. Please help the user with their task. Use the functions provided to learn more about the task. Respond with 'TERMINATE' when you are done. """, ) # Create a temporary directory to store the code files. temp_dir = tempfile.TemporaryDirectory() # Create a local command line code executor. executor = LocalCommandLineCodeExecutor( timeout=10, # Timeout for each code execution in seconds. work_dir=temp_dir.name, # Use the temporary directory to store the code files. ) user_proxy = UserProxyAgent( name="user_proxy", human_input_mode="NEVER", system_message="A proxy for the user for executing code.", code_execution_config={"executor": executor}, is_termination_msg=lambda x: "content" in x and x["content"] is not None and "TERMINATE" in x["content"] and "``" not in x["content"], ) @user_proxy.register_for_execution() @assistant.register_for_llm( name="identify_objs_on_table", description="Python function to get a list of objects on the table.", ) def identify_objs_on_table( message: Annotated[ str, "Message to ask the inspector for the objects on the table." ], ) -> str: logging.info("Asked for objects.") return "Milk, Cereal, a Can." # inspector = AssistantAgent( # name="inspector", # llm_config=llm_config, # system_message="You are an inspector who can identify objects in a scene. There is 'Milk', 'Cereal' and a 'Can' on the table. Please respond with 'TERMINATE' when you are done." # ) # user_inspector = UserProxyAgent( # name="user_inspector", # human_input_mode="NEVER", # is_termination_msg=lambda x: "content" in x # and x["content"] is not None # and "TERMINATE" in x["content"] # ) # @user_inspector.register_for_execution() # @inspector.register_for_llm( # name="identify_objects", # description="Identify objects in the scene.", # ) # def identify_objects(message: Annotated[str, "Message to identify objects in the scene."]): # return "Milk, Cereal, a Can." user_proxy.initiate_chat(assistant, message=task) # logging.info(f"Chat result: {chat_result}")
2,951
Python
29.122449
183
0.694341
AshisGhosh/roboai/franka_moveit/isaac_demo.launch.py
import os from launch import LaunchDescription from launch.actions import DeclareLaunchArgument from launch.substitutions import LaunchConfiguration from launch_ros.actions import Node from ament_index_python.packages import get_package_share_directory from moveit_configs_utils import MoveItConfigsBuilder def generate_launch_description(): # Command-line arguments ros2_control_hardware_type = DeclareLaunchArgument( "ros2_control_hardware_type", default_value="isaac", description="ROS2 control hardware interface type to use for the launch file -- possible values: [mock_components, isaac]", ) moveit_config = ( MoveItConfigsBuilder("moveit_resources_panda") .robot_description( file_path="config/panda.urdf.xacro", mappings={ "ros2_control_hardware_type": LaunchConfiguration( "ros2_control_hardware_type" ) }, ) .robot_description_semantic(file_path="config/panda.srdf") .trajectory_execution(file_path="config/gripper_moveit_controllers.yaml") .planning_scene_monitor( publish_robot_description=True, publish_robot_description_semantic=True ) .planning_pipelines(pipelines=["ompl", "pilz_industrial_motion_planner"]) .to_moveit_configs() ) # Start the actual move_group node/action server move_group_node = Node( package="moveit_ros_move_group", executable="move_group", output="screen", parameters=[moveit_config.to_dict()], arguments=["--ros-args", "--log-level", "info"], ) # RViz rviz_config_file = os.path.join( get_package_share_directory("moveit2_tutorials"), "config", "panda_moveit_config.rviz", ) rviz_node = Node( package="rviz2", executable="rviz2", name="rviz2", output="log", arguments=["-d", rviz_config_file], parameters=[ moveit_config.robot_description, moveit_config.robot_description_semantic, moveit_config.robot_description_kinematics, moveit_config.planning_pipelines, moveit_config.joint_limits, ], ) # Static TF world2robot_tf_node = Node( package="tf2_ros", executable="static_transform_publisher", name="static_transform_publisher", output="log", arguments=["--frame-id", "world", "--child-frame-id", "panda_link0"], ) hand2camera_tf_node = Node( package="tf2_ros", executable="static_transform_publisher", name="static_transform_publisher", output="log", arguments=[ "0.04", "0.0", "0.04", "1.57", "0.0", "0.0", "panda_hand", "sim_camera", ], ) # Publish TF robot_state_publisher = Node( package="robot_state_publisher", executable="robot_state_publisher", name="robot_state_publisher", output="both", parameters=[moveit_config.robot_description], ) # ros2_control using FakeSystem as hardware ros2_controllers_path = os.path.join( get_package_share_directory("moveit_resources_panda_moveit_config"), "config", "ros2_controllers.yaml", ) ros2_control_node = Node( package="controller_manager", executable="ros2_control_node", parameters=[ros2_controllers_path], remappings=[ ("/controller_manager/robot_description", "/robot_description"), ], output="screen", ) joint_state_broadcaster_spawner = Node( package="controller_manager", executable="spawner", arguments=[ "joint_state_broadcaster", "--controller-manager", "/controller_manager", ], ) panda_arm_controller_spawner = Node( package="controller_manager", executable="spawner", arguments=["panda_arm_controller", "-c", "/controller_manager"], ) panda_hand_controller_spawner = Node( package="controller_manager", executable="spawner", arguments=["panda_hand_controller", "-c", "/controller_manager"], ) return LaunchDescription( [ ros2_control_hardware_type, rviz_node, world2robot_tf_node, hand2camera_tf_node, robot_state_publisher, move_group_node, ros2_control_node, joint_state_broadcaster_spawner, panda_arm_controller_spawner, panda_hand_controller_spawner, ] )
4,745
Python
29.818182
131
0.589041
AshisGhosh/roboai/roboai/pyproject.toml
[tool.poetry] name = "roboai" version = "0.1.0" description = "" authors = ["AshisGhosh <[email protected]>"] readme = "README.md" [tool.poetry.dependencies] python = "^3.10" litellm = "^1.34.16" langfuse = "^2.21.1" burr = {version = "0.19.1", extras = ["start", "streamlit"]} graphviz = "^0.20.3" [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api"
388
TOML
19.473683
60
0.649485
AshisGhosh/roboai/roboai/roboai/roboai.py
import time from typing import List, Optional, Tuple from PIL import Image # noqa: F401 from enum import Enum from uuid import uuid4 from burr.core import Application, ApplicationBuilder, State, default, when from burr.core.action import action from burr.lifecycle import LifecycleAdapter from burr.tracking import LocalTrackingClient from shared.utils.llm_utils import ( get_closest_text_sync as get_closest_text, get_most_important_sync as get_most_important, ) # from shared.utils.isaacsim_client import get_image as get_image_from_sim, pick, place # noqa: F401 from shared.utils.omnigibson_client import ( get_image as get_image_from_sim, pick, place, navigate_to, get_obj_in_hand, wait_until_ready, ) # noqa: F401 from shared.utils.image_utils import pil_to_b64, b64_to_pil from shared.utils.gradio_client import moondream_answer_question_from_image as moondream from task import Task from agent import Agent from plans import PLANS from skills import SKILLS from semantic_locations import SEMANTIC_LOCATIONS from role_context import ROBOT_CONTEXT, ROLE_CONTEXT, EMPLOYEE_HANDBOOK from knowledge_base_utils import KnowledgeBase import logging log = logging.getLogger(__name__) log.setLevel(logging.INFO) knowledge_base = KnowledgeBase() DEFAULT_MODEL = "openrouter/meta-llama/llama-3-8b-instruct:free" # DEFAULT_MODEL = "openrouter/huggingfaceh4/zephyr-7b-beta:free" # DEFAULT_MODEL = "ollama/llama3:latest" # DEFAULT_MODEL = "ollama/phi3" # CODING_MODEL = "ollama/codegemma:instruct" CODING_MODEL = DEFAULT_MODEL class LogColors: HEADER = "\033[95m" OKBLUE = "\033[94m" OKCYAN = "\033[96m" OKGREEN = "\033[92m" WARNING = "\033[93m" FAIL = "\033[91m" ENDC = "\033[0m" BOLD = "\033[1m" UNDERLINE = "\033[4m" def pick_mock(object_name: str): name = pick_mock.__name__ print(f"Called {name} TEST MODE ENABLED") return True def place_mock(location: str): name = place_mock.__name__ print(f"Called {name} TEST MODE ENABLED") return True def extract_code(raw_input, language="python"): start_delimiter = f"```{language}" if start_delimiter not in raw_input: start_delimiter = "```" code_start_index = raw_input.find(start_delimiter) if code_start_index == -1: code_start_index = 0 else: code_start_index += len(start_delimiter) end_delimiter = "```" code_end_index = raw_input.find(end_delimiter, code_start_index) if code_end_index == -1: code_end_index = len(raw_input) code = raw_input[code_start_index:code_end_index].strip() log.debug(f"Extracted code: \n{code}") return code def exec_code(code, exec_vars, attempts=3): success = False history = [] for _ in range(attempts): try: if history: log.warn( f"{LogColors.WARNING}Executing code, retry attempt {len(history)}{LogColors.ENDC}" ) coder_task = Task( f"""Given the following error, fix the syntax. Here is the error: {history[-1][1]}\n{code} Ensure any explanations are formatted as comments. """, expected_output_format=""" ```python # explanatations are only formatted as comments my_variable = "proper_python_syntax" my_list = ["proper_python_syntax"] ``` """, ) coder_agent = Agent( name="Coder", model=CODING_MODEL, system_message="You are an expert coder. Only return proper syntax.", ) coder_task.add_solving_agent(coder_agent) output = coder_task.run() code = extract_code(output) log.info(f"{LogColors.OKBLUE}Fixed code: \n{code}{LogColors.ENDC}") exec(code, exec_vars) success = True break except Exception as e: log.error(f"Error executing code: {e}") history.append((code, f"Error executing code: {e}")) time.sleep(1) return success @action(reads=["current_state"], writes=["chat_history", "prompt"]) def process_prompt(state: State, prompt: str) -> Tuple[dict, State]: result = {"chat_item": {"role": "user", "content": prompt, "type": "text"}} if state["current_state"] == "FAILED": original_prompt = state["prompt"] if isinstance(original_prompt, str): prompt = [original_prompt, prompt] elif isinstance(original_prompt, list): prompt = original_prompt.append(prompt) log.info(f"{LogColors.OKCYAN}Prompt: {prompt}{LogColors.ENDC}") return result, state.append(chat_history=result["chat_item"]).update(prompt=prompt) class PromptType(Enum): UNKNOWN = "unknown" PERFORM_NEW_TASK = "perform new task" RESPOND_TO_QUESTION = "respond to question" UPDATE_KNOWLEDGE_BASE = "update knowledge base" RETRY_EXISTING_TASK = "retry existing task" MODIFY_EXISTING_TASK = "modify existing task" @classmethod def all_values(cls): return [prompt.value for prompt in cls] def __eq__(self, other): if isinstance(other, str): return self.value == other if isinstance(other, PromptType): return self.value == other.value return NotImplemented @action(reads=["prompt"], writes=["current_state", "prompt_cls", "task_state_idx"]) def parse_prompt(state: State) -> Tuple[dict, State]: # determine the mode of the prompt prompt = state["prompt"] if state["current_state"] == "FAILED": prompt = state["prompt"][-1] options = PromptType.all_values() classify_prompt = Task( f"""Given the following prompt, classify the type of prompt it is: {prompt} Options: {options} Examples - Prompt: "Go to the kitchen and grab the items" Output: "perform new task" - Prompt: "What skills do you have?" Output: "respond to question" - Prompt: "Don't handle bottles." Output: "update knowledge base" - Prompt: "Remember to ignore the red cup." Output: "update knowledge base" - Prompt: "You can find the items in the kitchen." Output: "update knowledge base" - Prompt: "The beer is in the fridge." Output: "update knowledge base" - Prompt: "Beer goes in the fridge." Output: "update knowledge base" - Prompt: "I want to retry the task" Output: "retry existing task" - Prompt: "Don't pick up the items, just scan the scene" Output: "modify existing task" """, expected_output_format="A string respresenting the classification.", ) classify_prompt_agent = Agent( name="Update Classifier", model=DEFAULT_MODEL, system_message=""" You are a helpful agent that concisely responds. """, ) classify_prompt.add_solving_agent(classify_prompt_agent) output = classify_prompt.run() prompt_cls = get_closest_text(output, options) log.info(f"{LogColors.OKGREEN}Prompt classification: {prompt_cls}{LogColors.ENDC}") task_state_idx = 0 if prompt_cls == PromptType.PERFORM_NEW_TASK: current_state = "STARTING" content = "Starting a new task..." elif prompt_cls == PromptType.RESPOND_TO_QUESTION: current_state = "PENDING" content = "Responding to a question..." elif prompt_cls == PromptType.UPDATE_KNOWLEDGE_BASE: current_state = "PENDING" content = "Updating knowledge..." elif prompt_cls == PromptType.RETRY_EXISTING_TASK: current_state = "RUNNING" content = "Retrying the task..." task_state_idx = state["task_state_idx"] - 1 if state["current_state"] != "FAILED": current_state = "PENDING" prompt_cls = PromptType.UNKNOWN content = "There is no task to retry." elif prompt_cls == PromptType.MODIFY_EXISTING_TASK: current_state = "PENDING" content = "Modifying existing task...\n\nThis feature is not supported yet." else: prompt_cls = PromptType.UNKNOWN current_state = "PENDING" content = "Unknown prompt. Please provide a valid prompt." result = { "current_state": current_state, "prompt_cls": prompt_cls, "task_state_idx": task_state_idx, } chat_item = { "content": content, "type": "text", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action(reads=["prompt"], writes=[]) def respond_to_question(state: State) -> Tuple[dict, State]: answer_question = Task( f""" Given the following prompt, answer the question. Here is the prompt: \n{state['prompt']} Here is context: {ROBOT_CONTEXT} {ROLE_CONTEXT} {EMPLOYEE_HANDBOOK} Locations available: {list(SEMANTIC_LOCATIONS.keys())} Skills available: {list(SKILLS.keys())} Previous plans: {list(PLANS.keys())} Here is additional knowledge you've learned: {knowledge_base.get_knowledge_as_string()} If you do not know the answer, return "I do not know." """, expected_output_format="A string representing the answer.", ) answer_question_agent = Agent( name="Answerer", model=DEFAULT_MODEL, system_message=""" You are an agent that answers questions. """, ) answer_question.add_solving_agent(answer_question_agent) output = answer_question.run() chat_item = { "content": output, "type": "text", "role": "assistant", } return {}, state.append(chat_history=chat_item) @action(reads=["prompt"], writes=[]) def update_knowledge_base(state: State) -> Tuple[dict, State]: parse_knowledge = Task( f"""Given the following text, extract the knowledge: \n{state['prompt']} Do not include any other text that is not the extracted knowledge. Examples: - Text: "Don't handle bottles." Output: "Don't handle bottles" - Text: "Remember to ignore the red cup." Output: "Ignore the red cup" - Text: "If you're looking for the cheese, there's a very high chance you could find it in the kitchen." Output: "Cheese in the kitchen" """, expected_output_format="A string representing the knowledge.", ) parse_knowledge_agent = Agent( name="Knowledge Extractor", model=DEFAULT_MODEL, system_message=""" You are an agent that extracts knowledge. """, ) parse_knowledge.add_solving_agent(parse_knowledge_agent) new_knowledge = parse_knowledge.run() knowledge_tags = get_most_important(new_knowledge, 2) # make tags lower case and strip any non-alphanumeric characters knowledge_tags = [tag.lower().strip() for tag in knowledge_tags] knowledge_base.add_data(uuid4().hex, new_knowledge, knowledge_tags) chat_item = { "content": f"""Updated knowledge base with: {new_knowledge} Tags: {knowledge_tags}""", "type": "text", "role": "assistant", } return {}, state.append(chat_history=chat_item) @action(reads=["prompt"], writes=["task"]) def determine_if_task_in_skill_library(state: State) -> Tuple[dict, State]: closest_text = get_closest_text(state["prompt"], list(PLANS.keys()), threshold=0.75) if closest_text: result = {"task": closest_text} content = f"Task determined to be **{result['task']}**" else: result = {"task": "unknown"} content = f"Parsing unknown task... **{state['prompt']}**" chat_item = {"role": "assistant", "content": content, "type": "text"} return result, state.append(chat_history=chat_item).update(**result) @action(reads=["prompt"], writes=["task"]) def create_plan_for_unknown_task(state: State) -> Tuple[dict, State]: result = {"task": state["prompt"]} chat_item = { "content": f"Creating plan for **{state['prompt']}**", "type": "text", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action(reads=["prompt"], writes=["closest_plans"]) def get_closest_plans(state: State) -> Tuple[dict, State]: closest_plans = get_closest_text( state["prompt"], list(PLANS.keys()), k=2, threshold=0.75 ) chat_item = { "content": f"Closest plans: {closest_plans}", "type": "text", "role": "assistant", } result = {"closest_plans": closest_plans} return result, state.append(chat_history=chat_item).update( closest_plans=closest_plans ) @action( reads=["prompt", "closest_plans"], writes=[ "robot_context", "role_context", "employee_context", ], ) def get_role_and_location_context(state: State) -> Tuple[dict, State]: result = { "robot_context": ROBOT_CONTEXT, "role_context": ROLE_CONTEXT, "employee_context": EMPLOYEE_HANDBOOK, } chat_item = { "content": "Getting role and location context. Creating initial plan.", "type": "text", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action( reads=[ "prompt", "closest_plans", "robot_context", "role_context", "employee_context", ], writes=["plan"], ) def create_initial_plan(state: State) -> Tuple[dict, State]: closest_plans = state["closest_plans"] if closest_plans: closest_plans = [f"{k}:\n {PLANS[k]}" for k in closest_plans] closest_plans = "\n".join(closest_plans) task = Task( f""" Given the following prompt and current robot state, return a simplified high level plan for a robot to perform. Do not include steps related to confirming successful execution or getting feedback. Do not include steps that indicate to repeat steps. Prompt: {state['prompt']} Current robot location: {state['location'] if 'location' in state else 'living room'} Examples: {closest_plans if closest_plans else "No examples available."} If information is needed, use the skills to get observe or scan the scene. Context: Robot: {state['robot_context']} Role: {state['role_context']} Employee Handbook: {state['employee_context']} Here is a list of locations that the robot can go to: {list(SEMANTIC_LOCATIONS.keys())} Here is additional knowledge you've learned: {knowledge_base.get_knowledge_as_string()} """, expected_output_format="A numbered list of steps.", ) parser_agent = Agent( name="Parser", model=DEFAULT_MODEL, system_message=""" You are a helpful agent that concisely responds. """, ) task.add_solving_agent(parser_agent) plan = task.run() chat_item = { "content": f"Initial plan: \n\n{plan}", "type": "text", "role": "assistant", } return {"plan": plan}, state.append(chat_history=chat_item).update(plan=plan) @action(reads=["plan"], writes=["plan"]) def create_robot_grounded_plan(state: State) -> Tuple[dict, State]: plan = state["plan"] skills_verbose = "\n".join([f"{k} : {v['description']}" for k, v in SKILLS.items()]) robot_grounded_plan = Task( f""" Map and consolidate the following steps to the Available Robot Skills and locations. {plan} Try to match the number of steps. Do not add any additional steps. Available Robot Skills: {skills_verbose} If there is no match for that step, return 'False'. Be conservative in the matching. There shall only be one skill per step. Summarize if the plan if feasible at the end. Here is a list of locations that the robot can go to: {list(SEMANTIC_LOCATIONS.keys())} If there are pick and place steps following an observation or scanning step, consolidate those steps into a rollout step for a pick and place plan. """, expected_output_format="A numbered list of steps mapped to single skill each or 'False' followed by a summary if the task is feasible.", ) robot_grounded_agent = Agent( name="Robot Grounded", model=DEFAULT_MODEL, system_message=""" You are an agent that grounds a set of actions to robot skills. """, ) robot_grounded_plan.add_solving_agent(robot_grounded_agent) robot_grounded_plan_output = robot_grounded_plan.run() chat_item = { "content": f"**Robot grounded plan**: \n\n{robot_grounded_plan_output}", "type": "text", "role": "assistant", } return {"plan": robot_grounded_plan_output}, state.append( chat_history=chat_item ).update(plan=robot_grounded_plan_output) @action(reads=["plan"], writes=["feasible"]) def determine_if_plan_is_feasibile(state: State) -> Tuple[dict, State]: robot_grounded_plan_output = state["plan"] extract_feasibility = Task( f"Given the following summary, return if the task is feasible. Summary: \n{robot_grounded_plan_output}", expected_output_format="True or False. Do not add any other information.", ) feasibility_agent = Agent( name="Feasibility", # model="openrouter/huggingfaceh4/zephyr-7b-beta:free", model=DEFAULT_MODEL, system_message=""" You are a conservative agent that determines if a plan is feasible. """, ) extract_feasibility.add_solving_agent(feasibility_agent) feasibility_output = extract_feasibility.run() feasible = get_closest_text(feasibility_output, ["True", "False"]) feasible = True if feasible == "True" else False if feasible is not None else None result = { "task": robot_grounded_plan_output, "feasible": feasible, } chat_item = { "content": f"Feasible: `{result['feasible']}`", "type": "text", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action(reads=["task", "feasible"], writes=["response", "current_state", "task"]) def convert_plan_to_steps(state: State) -> Tuple[dict, State]: plan = state["task"] plan_to_list_of_steps = Task( f"""Given the following output, take the numbered list and return is as a python list assigned to `list_of_steps`. Do not remove any relevant information. Include information about skills and locations into the correct list item. Here is the plan: {plan} Here is an example: Plan: 1. navigate to location, the location is the kitchen 2. scan the kitchen for relevant objects 3. roll out a plan to pick and place the objects Output: ```python list_of_steps = ["navigate to location, the location is the kitchen", "scan the kitchen for relevant objects", "roll out a plan to pick and place the objects"] ``` """, expected_output_format=""" ```python list_of_steps = ["step 1", "step 2", "step 3"] ``` """, ) plan_to_list_of_steps_agent = Agent( name="Plan to List of Steps", model=DEFAULT_MODEL, system_message=""" You are a helpful agent that concisely responds with only code. """, ) plan_to_list_of_steps.add_solving_agent(plan_to_list_of_steps_agent) output = plan_to_list_of_steps.run() code = extract_code(output) try: exec_vars = {} exec_code(code, exec_vars) log.info(exec_vars.get("list_of_steps", None)) steps = exec_vars.get("list_of_steps", None) content = "Steps:\n\n" + "\n".join( [f"{i+1}. {step}" for i, step in enumerate(steps)] ) except Exception as e: log.error(f"Error executing code: {e}") steps = None content = "Failed to extract steps. Please check the plan and try again." # formatted_steps = "\n".join([f"{i+1}. {step}" for i, step in enumerate(steps)]) feasible = state["feasible"] current_state = "STARTING" if feasible else "DONE" result = { "response": { "content": content, "type": "text" if steps is not None else "error", "role": "assistant", }, "current_state": current_state, "task": steps, } return result, state.append(chat_history=result["response"]).update(**result) def get_closest_state_from_skills(step: str, skills: dict) -> str: skill_descriptions = [s["description"] for s in skills.values()] closest_description = get_closest_text(step, skill_descriptions) state_idx = skill_descriptions.index(closest_description) return list(skills.keys())[state_idx] @action( reads=["task"], writes=["state_machine", "task_state", "task_state_idx", "current_state", "task"], ) def create_state_machine(state: State) -> Tuple[dict, State]: """ Create a viable state machine for the task. Every task requires: * the robot and environment state * ensuring the robot has the skills to perform the required steps """ task = state["task"] if state["task"] == "What is on the table?": result = { "state_machine": [ "get_image", "ask_vla", "get_list_of_objects", ], "task_state": "not_started", "current_state": "RUNNING", } elif state["task"] == "Clear the table": result = { "state_machine": [ "get_image", "ask_vla", "get_list_of_objects", "create_plan", "code", "execute_code", ], "task_state": "not_started", "current_state": "RUNNING", } elif state["task"] == "unknown": result = { "state_machine": "unknown", "task_state": "unknown", "current_state": "DONE", } else: plan = state["task"] state_machine = [get_closest_state_from_skills(step, SKILLS) for step in plan] log.info(f"STATE_MACHINE:\n\n{state_machine}\n") ### Use symbolic logic to prune plan # Ensure that there are only rollout steps after an observation step until the next observation or navigation step observation_steps = ["scan the scene"] observation_step_idxs = [ i for i, step in enumerate(state_machine) if step in observation_steps ] pick_and_place_steps = [ "rollout pick and place plan", "pick object", "place in location", ] pick_and_place_step_idxs = [ i for i, step in enumerate(state_machine) if step in pick_and_place_steps ] if len(observation_step_idxs) > 0 and len(pick_and_place_step_idxs) > 0: for i, observation_idx in enumerate(observation_step_idxs): pick_and_place_exists = False if observation_idx + 1 < len(state_machine): while state_machine[observation_idx + 1] in pick_and_place_steps: pick_and_place_exists = observation_idx + 1 state_machine.pop(observation_idx + 1) task.pop(observation_idx + 1) print(state_machine[observation_idx + 1 :]) if observation_idx + 1 >= len(state_machine): break if pick_and_place_exists: state_machine.insert( pick_and_place_exists, "rollout pick and place plan" ) task.insert(pick_and_place_exists, "rollout pick and place plan") log.info(f"UPDATED STATE_MACHINE (prune for rollout):\n\n{state_machine}\n") # Consolidate adjacent roll out steps rollout_steps = ["rollout pick and place plan"] rollout_step_idxs = [ i for i, step in enumerate(state_machine) if step in rollout_steps ] if len(rollout_step_idxs) > 1: consolidated_state_machine = [] for i, s in enumerate(state_machine): if s in rollout_steps: if i > 0 and state_machine[i - 1] not in rollout_steps: consolidated_state_machine.append("rollout pick and place plan") else: consolidated_state_machine.append(s) state_machine = consolidated_state_machine log.info( f"UPDATED STATE_MACHINE (consolidate rollout steps):\n\n{state_machine}\n" ) result = { "state_machine": state_machine, "task_state": "not_started", "current_state": "RUNNING", } result["task"] = task result["task_state_idx"] = 0 log.info(f"Task: {task}") log.info(f"State machine: {state_machine}") output = "Here is the consolidated task:" output += "\n\n" output += "```\n" output += "\n".join([f"{idx+1}. {step}" for idx, step in enumerate(task)]) output += "\n```" output += "\n\n" output += "Here is the state machine:" output += "\n\n" output += "```\n" output += "\n".join([f"{idx+1}. {step}" for idx, step in enumerate(state_machine)]) output += "\n```" chat_item = { "content": output, "type": "text", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action( reads=["state_machine", "task_state_idx"], writes=["task_state", "task_state_idx", "current_state", "state_machine", "task"], ) def execute_state_machine(state: State) -> Tuple[dict, State]: """ State machine manages the execution of fully observable steps """ task = state["task"] current_state = "RUNNING" state_machine = state["state_machine"] if state["task_state"] == "not_started": task_state = state["state_machine"][0] task_state_idx = state["task_state_idx"] else: task_state_idx = state["task_state_idx"] + 1 if task_state_idx < len(state["state_machine"]): task_state = state["state_machine"][task_state_idx] else: task_state = "done" current_state = "DONE" result = { "task_state": task_state, "task_state_idx": task_state_idx, "current_state": current_state, "state_machine": state_machine, "task": task, } if task_state_idx < len(state_machine): content = f"Executing task: **{task[task_state_idx]}**\n\nTask state: `{task_state}`\n\nStep {task_state_idx+1} of {len(state_machine)}" else: content = f"Task completed: **{state['prompt']}**" chat_item = { "content": content, "type": "text", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action( reads=["state_machine", "task", "task_state", "task_state_idx"], writes=["location"] ) def navigate_to_location(state: State) -> Tuple[dict, State]: step = state["task"][state["task_state_idx"]] extract_location = Task( f""" Given the following step, extract the location (e.g. kitchen), item (e.g. sink) or destination and return it. Here is the string to extract the location: {step} Examples: - Text: "navigate to the kitchen" Output: "kitchen" """, expected_output_format="A string representing the location, item or destination.", ) extract_location_agent = Agent( name="Location Extractor", model=DEFAULT_MODEL, system_message=""" You are a helpful agent that concisely responds. """, ) extract_location.add_solving_agent(extract_location_agent) output = extract_location.run() try: location = get_closest_text(output, list(SEMANTIC_LOCATIONS.keys())) if not navigate_to( SEMANTIC_LOCATIONS[location]["name"], SEMANTIC_LOCATIONS[location]["location"], ): raise Exception(f"Error navigating to location: {location}") if not wait_until_ready(): raise Exception(f"Error navigating to location: {location}") content = f"Navigating to location: **{location}**" except Exception as e: log.error(f"Error: {e}") location = None content = f"{e}" result = {"location": location} chat_item = { "content": content, "type": "text" if location is not None else "error", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action(reads=["state_machine"], writes=[]) def scan_the_scene(state: State) -> Tuple[dict, State]: result = {} chat_item = { "content": "Scanning the scene...", "type": "text", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action(reads=["state_machine"], writes=["image"]) def get_image(state: State) -> Tuple[dict, State]: try: image = get_image_from_sim() # image = Image.open("shared/data/test1.png") image = pil_to_b64(image) result = {"image": image} chat_item = { "content": image, "type": "image", "role": "assistant", } except Exception as e: log.error(f"Error getting image: {e}") result = {"image": None} chat_item = { "content": f"Error getting image: {e}", "type": "text", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action(reads=["image"], writes=["vla_response"]) def ask_vla( state: State, vla_prompt: str = "Describe the image." ) -> Tuple[dict, State]: image = b64_to_pil(state["image"]) result = {"vla_response": moondream(image, vla_prompt)["result"]} chat_item = { "content": f"**Image Description:**:\n\n{result['vla_response']}", "type": "text", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action(reads=["vla_response"], writes=["observations"]) def get_list_of_objects(state: State) -> Tuple[dict, State]: task = Task( f"""Given the following, return a list assigned to `objects_on_table` of the objects on the table. The table is not an object. Summary: {state['vla_response']} Example: Summary: There is an object on the table called "Object 1", an object on the table called "Object 2", and an object on the table called "Object 3". Output: ``` objects_on_table = ["Object 1", "Object 2", "Object 3"] ``` Don't use any functions, manually identify the objects on the table from the summary. """, expected_output_format=""" ``` objects_on_table = ["Object 1", "Object 2", "Object 3"] ``` """, ) analyzer_agent = Agent( name="Analyzer", model=DEFAULT_MODEL, system_message=""" You are a helpful agent that concisely responds with lists. """, ) task.add_solving_agent(analyzer_agent) output = task.run() code = extract_code(output) try: exec_vars = {} exec_code(code, exec_vars) log.info(exec_vars.get("objects_on_table", None)) objects_on_table = exec_vars.get("objects_on_table", None) observations = {"objects_on_table": objects_on_table} except Exception as e: log.error(f"Error executing code: {e}") result = {"observations": observations} chat_item = { "content": f"Objects on table: \n\n`{objects_on_table}`", "type": "text", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action( reads=["observations", "task_state_idx", "location"], writes=["state_machine", "task"], ) def rollout_pick_and_place_plan(state: State) -> Tuple[dict, State]: task_idx = state["task_state_idx"] state_machine = state["state_machine"] task = state["task"] rollout_task = Task( f"""Rollout a pick and place plan for the robot given the following objects: {state['observations']} The robot and the objects are at {state['location']} Here are the locations the robot can go to: {list(SEMANTIC_LOCATIONS.keys())} Here is additional knowledge you've learned: {knowledge_base.get_knowledge_as_string()} Here is an example: '{{'objects_on_table': ['cheese', 'milk', 'book']}} The robot and the objects are at {{'counter'}} Output: ``` pick_and_place_tasks = ["Pick cheese at counter and place at kitchen", "Pick milk at counter and place at kitchen", "Pick book at counter and place at shelf"] ``` Don't use any functions, manually synthesize the pick and place tasks from the summary. Here is additional knowledge you've learned, factor this into the plan: {knowledge_base.get_knowledge_as_string()} """, expected_output_format=""" ``` pick_and_place_tasks = ["Pick object1 at location and place at destination", "Pick object2 at location and place at destination", "Pick object3 at location and place at destination"] ``` """, ) planner_agent = Agent( name="Planner", model=DEFAULT_MODEL, system_message=""" You are a helpful agent that concisely responds with lists. """, ) rollout_task.add_solving_agent(planner_agent) output = rollout_task.run() code = extract_code(output) try: exec_vars = {} exec_code(code, exec_vars) log.info(exec_vars.get("pick_and_place_tasks", None)) pick_and_place_tasks = exec_vars.get("pick_and_place_tasks", None) task = task[: task_idx + 1] + pick_and_place_tasks + task[task_idx + 1 :] state_machine = ( state_machine[: task_idx + 1] + ["pick_and_place"] * len(pick_and_place_tasks) + state_machine[task_idx + 1 :] ) except Exception as e: log.error(f"Error executing code: {e}") raise NotImplementedError( "error handling for Rollout pick and place plan not implemented" ) result = {"state_machine": state_machine, "task": task} log.info(f"Task: {task}") log.info(f"State machine: {state_machine}") output = "Here is the task:" output += "\n\n" output += "```\n" output += "\n".join([f"{idx+1}. {step}" for idx, step in enumerate(task)]) output += "\n```" output += "\n\n" output += "Here is the state machine:" output += "\n\n" output += "```\n" output += "\n".join([f"{idx+1}. {step}" for idx, step in enumerate(state_machine)]) output += "\n```" chat_item = { "content": output, "type": "text", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action( reads=["task", "state_machine", "task_state_idx", "location"], writes=["obj_to_grasp", "obj_location", "obj_destination"], ) def pick_and_place(state: State) -> Tuple[dict, State]: get_object = Task( f"""Given the following, extract the object of interest as a string assigned to `obj_to_grasp`. Here is the string to extract the object: {state["task"][state["task_state_idx"]]} Here is an example: Here is the string to extract the object: Pick cheese at counter and place in kitchen Output: ``` obj_to_grasp = "cheese" ``` Don't use any functions. Manually identify the object from the summary. """, expected_output_format=""" ``` obj_to_grasp = "object1" ``` """, ) analyzer_agent = Agent( name="Analyzer", model=DEFAULT_MODEL, system_message=""" You are a helpful agent that concisely responds with variables. """, ) get_object.add_solving_agent(analyzer_agent) output = get_object.run() code = extract_code(output) try: exec_vars = {} exec_code(code, exec_vars) obj_to_grasp = exec_vars.get("obj_to_grasp", None) except Exception as e: log.error(f"Error executing code: {e}") # Assume object location is current unless previously stored location = state["location"] if "obj_location" in state: location = state["obj_location"] get_obj_destination = Task( f"""Given the following, extract the destination as a string assigned to `obj_destination`. Here is the string to extract the destination: {state["task"][state["task_state_idx"]]} Example: Here is the string to extract the destination: Pick cheese at counter and place in kitchen Output: 'kitchen' """, expected_output_format="String representing the destination.", ) get_obj_destination_agent = Agent( name="Destination Extractor", model=DEFAULT_MODEL, system_message=""" You are a helpful agent that concisely responds with variables. """, ) get_obj_destination.add_solving_agent(get_obj_destination_agent) output = get_obj_destination.run() destination = get_closest_text(output, list(SEMANTIC_LOCATIONS.keys())) result = { "obj_to_grasp": obj_to_grasp, "obj_location": location, "obj_destination": destination, } chat_item = { "content": f"Pick and place **{obj_to_grasp}** at **{location}**", "type": "text", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action(reads=["obj_to_grasp", "obj_location"], writes=["location"]) def navigate_for_pick(state: State) -> Tuple[dict, State]: location = state["obj_location"] obj_to_grasp = state["obj_to_grasp"] location = get_closest_text(location, list(SEMANTIC_LOCATIONS.keys())) log.info(f"Pick and place {obj_to_grasp} at {location}") try: if state["location"] != location: log.info(f"Changing location from {state['location']} to {location}") if not navigate_to( SEMANTIC_LOCATIONS[location]["name"], SEMANTIC_LOCATIONS[location]["location"], ): raise Exception(f"Error navigating to location: {location}") if not wait_until_ready(): raise Exception(f"Error navigating to location: {location}") content = f"Navigated to **{location}** to pick **{obj_to_grasp}**" except Exception as e: log.error(f"Error navigating to location: {e}") location = None content = f"{e}" result = {"location": location} chat_item = { "content": content, "type": "text" if location is not None else "error", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action(reads=["obj_to_grasp", "obj_location"], writes=["obj_in_hand", "obj_to_grasp"]) def pick_object(state: State) -> Tuple[dict, State]: PICK_TIMEOUT = 30.0 obj_to_grasp = state["obj_to_grasp"] print(f"Pick {obj_to_grasp}") try: if not pick(obj_to_grasp): raise Exception(f"Error picking object: {obj_to_grasp}") pick_start_time = time.time() obj_in_hand = None while not obj_in_hand and time.time() - pick_start_time < PICK_TIMEOUT: obj_in_hand = get_obj_in_hand() time.sleep(0.1) if obj_in_hand: print(f"Object in hand: {obj_in_hand}") obj_to_grasp = None if not wait_until_ready(): raise Exception(f"Error picking object: {obj_to_grasp}") content = f"Picked **{obj_in_hand}**" except Exception as e: log.error(f"Error picking object: {e}") obj_in_hand = None content = f"{e}" result = {"obj_in_hand": obj_in_hand, "obj_to_grasp": obj_to_grasp} chat_item = { "content": content, "type": "text" if obj_in_hand else "error", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action(reads=["obj_destination", "location"], writes=["location"]) def navigate_for_place(state: State) -> Tuple[dict, State]: destination = state["obj_destination"] try: if state["location"] != destination: log.info(f"Changing location from {state['location']} to {destination}") if not navigate_to( SEMANTIC_LOCATIONS[destination]["name"], SEMANTIC_LOCATIONS[destination]["location"], ): raise Exception(f"Error navigating to destination: {destination}") if not wait_until_ready(): raise Exception(f"Error navigating to destination: {destination}") content = f"Navigated to **{destination}** to place **{state['obj_in_hand']}**" location = destination except Exception as e: log.error(f"Error navigating to destination: {e}") location = None content = f"{e}" result = {"location": location} chat_item = { "content": content, "type": "text", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action(reads=["obj_in_hand"], writes=["obj_in_hand"]) def place_object(state: State) -> Tuple[dict, State]: obj_to_place = state["obj_in_hand"] try: if not place(SEMANTIC_LOCATIONS[state["location"]]["name"]): raise Exception(f"Error placing object: {obj_to_place}") if not wait_until_ready(): raise Exception(f"Error placing object: {obj_to_place}") obj_in_hand = None content = f"Placed object **{obj_to_place}**" except Exception as e: log.error(f"Error placing object: {e}") obj_in_hand = obj_to_place content = f"{e}" result = {"obj_in_hand": obj_in_hand} chat_item = { "content": content, "type": "text" if obj_in_hand is None else "error", "role": "assistant", } return result, state.append(chat_history=chat_item).update(**result) @action(reads=["task", "safe"], writes=["response"]) def prompt_for_more(state: State) -> Tuple[dict, State]: result = { "response": { "content": "None of the response modes I support apply to your question. Please clarify?", "type": "text", "role": "assistant", } } return result, state.update(**result) @action( reads=["current_state"], writes=["response", "current_state", "code_attempts"], ) def create_error_response(state: State) -> Tuple[dict, State]: content = "Could not complete the task." if "task_state" in state: content += f" I have failed on {state['task_state']}." result = { "response": { "content": content, "type": "error", "role": "assistant", }, "current_state": "FAILED", "code_attempts": 0, } return result, state.append(chat_history=result["response"]).update(**result) @action(reads=["current_state"], writes=["response", "current_state"]) def finish_and_score_task(state: State) -> Tuple[dict, State]: response = { "content": "I'm done. Goodbye!", "type": "text", "role": "assistant", } current_state = "PENDING" result = {"response": response, "current_state": current_state} return result, state.append(chat_history=result["response"]).update(**result) @action(reads=["current_state"], writes=["chat_history", "current_state"]) def response(state: State) -> Tuple[dict, State]: if state["current_state"] == "DONE": current_state = "PENDING" response = { "content": "**Task execution successful :+1:**", "type": "text", "role": "assistant", } elif state["current_state"] == "FAILED": current_state = "FAILED" response = { "content": "**Task execution failed**\nLet me know if you'd like me to retry or just give me a new task.", "type": "error", "role": "assistant", } else: current_state = state["current_state"] response = { "content": "Ready for next prompt.", "type": "text", "role": "assistant", } result = {"chat_item": response, "current_state": current_state} return result, state.append(chat_history=response).update(**result) MAX_CODE_ATTEMPTS = 3 def base_application( hooks: List[LifecycleAdapter], app_id: str, storage_dir: str, project_id: str, ): if hooks is None: hooks = [] # we're initializing above so we can load from this as well # we could also use `with_tracker("local", project=project_id, params={"storage_dir": storage_dir})` tracker = LocalTrackingClient(project=project_id, storage_dir=storage_dir) sequence_id = None return ( ApplicationBuilder() .with_actions( prompt=process_prompt, parse_prompt=parse_prompt, respond_to_question=respond_to_question, update_knowledge_base=update_knowledge_base, determine_if_task_in_skill_library=determine_if_task_in_skill_library, create_plan_for_unknown_task=create_plan_for_unknown_task, get_closest_plans=get_closest_plans, get_role_and_location_context=get_role_and_location_context, create_initial_plan=create_initial_plan, create_robot_grounded_plan=create_robot_grounded_plan, determine_if_plan_is_feasibile=determine_if_plan_is_feasibile, convert_plan_to_steps=convert_plan_to_steps, create_state_machine=create_state_machine, execute_state_machine=execute_state_machine, navigate_to_location=navigate_to_location, scan_the_scene=scan_the_scene, get_image=get_image, ask_vla=ask_vla, get_list_of_objects=get_list_of_objects, rollout_pick_and_place_plan=rollout_pick_and_place_plan, pick_and_place=pick_and_place, navigate_for_pick=navigate_for_pick, pick_object=pick_object, navigate_for_place=navigate_for_place, place_object=place_object, finish_and_score_task=finish_and_score_task, create_error_response=create_error_response, prompt_for_more=prompt_for_more, response=response, ) .with_transitions( ("prompt", "parse_prompt", default), ( "parse_prompt", "determine_if_task_in_skill_library", when(prompt_cls=PromptType.PERFORM_NEW_TASK), ), ( "parse_prompt", "respond_to_question", when(prompt_cls=PromptType.RESPOND_TO_QUESTION), ), ( "parse_prompt", "update_knowledge_base", when(prompt_cls=PromptType.UPDATE_KNOWLEDGE_BASE), ), ( "parse_prompt", "execute_state_machine", when(prompt_cls=PromptType.RETRY_EXISTING_TASK), ), ("parse_prompt", "response", default), ("respond_to_question", "response", default), ("update_knowledge_base", "response", default), ( "determine_if_task_in_skill_library", "create_plan_for_unknown_task", when(task="unknown"), ), ("create_plan_for_unknown_task", "get_closest_plans", default), ("get_closest_plans", "get_role_and_location_context", default), ("get_role_and_location_context", "create_initial_plan", default), ("create_initial_plan", "create_robot_grounded_plan", default), ("create_robot_grounded_plan", "determine_if_plan_is_feasibile", default), ( "determine_if_plan_is_feasibile", "create_error_response", when(feasible=False), ), ("determine_if_plan_is_feasibile", "convert_plan_to_steps", default), ( "convert_plan_to_steps", "create_error_response", when(task="unknown"), ), ("convert_plan_to_steps", "create_state_machine", default), ("determine_if_task_in_skill_library", "create_state_machine", default), ("create_state_machine", "execute_state_machine", default), ("create_state_machine", "prompt_for_more", when(state_machine="unknown")), ( "execute_state_machine", "navigate_to_location", when(task_state="navigate to location"), ), ( "execute_state_machine", "scan_the_scene", when(task_state="scan the scene"), ), ( "execute_state_machine", "rollout_pick_and_place_plan", when(task_state="rollout pick and place plan"), ), ("rollout_pick_and_place_plan", "execute_state_machine", default), ( "execute_state_machine", "pick_and_place", when(task_state="pick_and_place"), ), ("pick_and_place", "navigate_for_pick", default), ("navigate_for_pick", "create_error_response", when(location=None)), ("navigate_for_pick", "pick_object", default), ("pick_object", "create_error_response", when(obj_in_hand=None)), ("pick_object", "navigate_for_place", default), ("navigate_for_place", "place_object", default), ("place_object", "execute_state_machine", default), ("navigate_to_location", "create_error_response", when(location=None)), ("navigate_to_location", "execute_state_machine", default), ("scan_the_scene", "get_image", default), ("get_image", "create_error_response", when(image=None)), ("get_image", "ask_vla", default), ("ask_vla", "get_list_of_objects", default), ("get_list_of_objects", "execute_state_machine", default), ("execute_state_machine", "finish_and_score_task", when(task_state="done")), ("finish_and_score_task", "prompt", default), ("response", "prompt", when(current_state="PENDING")), ("response", "execute_state_machine", when(current_state="RUNNING")), ("prompt_for_more", "response", default), ("create_error_response", "response", default), ("response", "prompt", when(current_state="FAILED")), ) # initializes from the tracking log if it does not already exist .initialize_from( tracker, resume_at_next_action=True, # always resume from entrypoint in the case of failure default_state={"chat_history": [], "current_state": "PENDING"}, default_entrypoint="prompt", # fork_from_app_id="670b9f83-d0fa-49ce-b396-dcaba416edc8", # fork_from_sequence_id=55, ) .with_hooks(*hooks) .with_tracker(tracker) .with_identifiers(app_id=app_id, sequence_id=sequence_id) .build() ) def application( app_id: Optional[str] = None, project_id: str = "roboai", storage_dir: Optional[str] = "~/.burr", hooks: Optional[List[LifecycleAdapter]] = None, ) -> Application: return base_application(hooks, app_id, storage_dir, project_id=project_id) if __name__ == "__main__": app = application() # app.visualize( # output_file_path="statemachine", include_conditions=False, view=False, format="png" # ) app.run(halt_after=["response"])
53,152
Python
35.158503
194
0.582988
AshisGhosh/roboai/roboai/roboai/role_context.py
ROBOT_CONTEXT = """ You are creating a plan for a robot with 2 arms and a mobile base. The arms can pick and place objects. The mobile base can navigate to different locations in the environment. You can also call for support if you need help. You can update the plan if needed. """ ROLE_CONTEXT = """ The robot is in a house environment where it does useful tasks such as cleaning or fetching items. """ EMPLOYEE_HANDBOOK = """ This is the employee handbook for the robot. The following are basic instructions: Cleaning: - Remove objects and placing them in the cabinet Fetching: - Towels can be found in the kitchen """
644
Python
31.249998
154
0.736025
AshisGhosh/roboai/roboai/roboai/roboai_demo.py
from pydantic import BaseModel from typing import Callable import base64 # noqa: F401 from PIL import Image # noqa: F401 from abc import ABC, abstractmethod from roboai.agent import Agent from roboai.task import Task # from shared.utils.robosim_client import ( # noqa: F401 # get_objects_on_table, # pick, # place, # get_image, # get_grasp_image, # ) from shared.utils.isaacsim_client import get_image, pick, place from shared.utils.model_server_client import answer_question_from_image # noqa: F401 import shared.utils.gradio_client as gradio # noqa: F401 import shared.utils.replicate_client as replicate # noqa: F401 from shared.utils.llm_utils import get_closest_text_sync as get_closest_text import gradio as gr import logging log = logging.getLogger("roboai") log.setLevel(logging.DEBUG) class Tool(BaseModel): name: str func: Callable description: str example: str def extract_code(raw_input, language="python"): start_delimiter = f"```{language}" if start_delimiter not in raw_input: start_delimiter = "```" code_start_index = raw_input.find(start_delimiter) if code_start_index == -1: code_start_index = 0 else: code_start_index += len(start_delimiter) end_delimiter = "```" code_end_index = raw_input.find(end_delimiter, code_start_index) if code_end_index == -1: code_end_index = len(raw_input) code = raw_input[code_start_index:code_end_index].strip() log.debug(f"Extracted code: \n{code}") return code class RobotJob(ABC): def __init__(self): pass @abstractmethod def run(self): pass class ClearTableJob(RobotJob): def __init__(self): pass def run(self, chat_history=None): """ Job to: 1. Understand the scene 2. Create a plan to clear the table """ if chat_history: if not chat_history[-1][1]: chat_history[-1][1] = "" else: chat_history[-1][1] += "\n" chat_history[-1][1] += "Getting image...\n" yield chat_history im = get_image() prompt = "What objects are on the table?" if chat_history: chat_history[-1][1] += "Asking VLA model...\n" yield chat_history output = gradio.moondream_answer_question_from_image(im, prompt)["result"] if chat_history: chat_history[-1][1] += f"Response:\n{output}\n" yield chat_history if chat_history: chat_history[-1][1] += "Creating plan...\n" yield chat_history task = Task( f"Given the following summary, return just a list in python of the objects on the table. The table is not an object. Summary: \n{output}", expected_output_format=""" objects_on_table = ["Object 1", "Object 2", "Object 3"] """, ) analyzer_agent = Agent( name="Analyzer", model="openrouter/huggingfaceh4/zephyr-7b-beta:free", system_message=""" You are a helpful agent that concisely responds with only code. Use only the provided functions, do not add any extra code. """, ) task.add_solving_agent(analyzer_agent) output = task.run() # output = '```objects_on_table = ["Box of Cereal", "Carton of Milk", "Can of Soup"]```' code = extract_code(output) try: exec_vars = {} exec(code, exec_vars) log.info(exec_vars.get("objects_on_table", None)) list_of_objects = exec_vars.get("objects_on_table", None) except Exception as e: log.error(f"Error executing code: {e}") list_of_objects = None if chat_history: chat_history[-1][1] += f"Error executing code: {e}" yield chat_history return plan_task = Task( f"""Create a plan for a robot to remove the following objects from the table: {list_of_objects} Do not add any extra steps. """, # expected_output_format=""" # 1. pick object1 # 2. place object1 # 3. pick object2 # 4. place object2 # 5. pick object3 # 6. place object3 # """ expected_output_format="A numbered list of steps constrained to the provided functions.", ) plan_task.register_tool( name="pick", func=pick, description="Robot picks up the provided arg 'object_name'", example='"pick_success = pick(object_name="Object 1")" --> Returns: True ', ) plan_task.register_tool( name="place", func=place, description="Robot places the provided arg 'object_name'", example='"place_success = place(object_name="Object 1")" --> Returns: True ', ) planner_agent = Agent( name="Planner", model="openrouter/huggingfaceh4/zephyr-7b-beta:free", system_message=""" You are a planner that breaks down tasks into steps for robots. Create a conscise set of steps that a robot can do. Do not add any extra steps. """ + plan_task.generate_tool_prompt(), ) plan_task.add_solving_agent(planner_agent) # log.info(plan_task) output = plan_task.run() log.info(output) if chat_history: chat_history[-1][1] += f"Response:\n{output}" yield chat_history if chat_history: chat_history[-1][1] += "Converting plan to code...\n" yield chat_history plan_generated = True code = extract_code(output) exec_vars = plan_task.get_exec_vars() try: exec(code, exec_vars) except Exception as e: log.error(f"Error executing plan: {e}") plan_generated = False # Validate the plan? # Execute the plan if not plan_generated: coder_task = Task( f"""Return python code to execute the plan using only the provided functions. {output} """ ) coder_task.register_tool( name="pick", func=pick, description="Robot picks up the provided arg 'object_name'", example='"pick_success = pick(object_name="Object 1")" --> Returns: True ', ) coder_task.register_tool( name="place", func=place, description="Robot places the provided arg 'object_name'", example='"place_success = place(object_name="Object 1")" --> Returns: True ', ) coder_agent = Agent( name="Coder", # model="ollama/gemma:7b", model="openrouter/huggingfaceh4/zephyr-7b-beta:free", system_message=""" You are a coder that writes concise and exact code to execute the plan. Use only the provided functions. """ + coder_task.generate_tool_prompt(), ) coder_task.add_solving_agent(coder_agent) log.info(coder_task) output = coder_task.run() if chat_history: chat_history[-1][1] += f"Response:\n{output}\n" yield chat_history if chat_history: chat_history[-1][1] += "Extracting and running code...\n" yield chat_history code = extract_code(output) if chat_history: chat_history[-1][1] += f"Response:\n```{code}\n```" yield chat_history try: exec_vars = coder_task.get_exec_vars() exec(code, exec_vars) result = "Successful execution of plan." except Exception as e: log.error(f"Error executing code: {e}") result = "Error executing plan." finally: if chat_history: chat_history[-1][1] += f"\nResponse:\n**{result}**" yield chat_history class WhatIsOnTableJob(RobotJob): image = None def __init__(self): self.image = get_image() def get_image(self): if not self.image: self.image = get_image() return self.image def run(self, chat_history=None): if chat_history: if not chat_history[-1][1]: chat_history[-1][1] = "" else: chat_history[-1][1] += "\n" yield chat_history chat_history[-1][1] += "Getting image...\n" yield chat_history im = get_image() prompt = "What objects are on the table?" if chat_history: chat_history[-1][1] += "Asking VLA model...\n" yield chat_history output = gradio.moondream_answer_question_from_image(im, prompt) if chat_history: chat_history[-1][1] += f"Response:\n{output['result']}" yield chat_history return output["result"] class TestJob(RobotJob): def __init__(self): pass def run(self, chat_history=None): responses = [ "I am a robot.", "I can help you with tasks.", "Ask me to do something", ] if chat_history: if not chat_history[-1][1]: chat_history[-1][1] = "" else: chat_history[-1][1] += "\n" yield chat_history for response in responses: chat_history[-1][1] += response yield chat_history def chat(): with gr.Blocks() as demo: gr.Markdown("## RoboAI Chatbot") chatbot = gr.Chatbot(height=700) msg = gr.Textbox(placeholder="Ask me to do a task.", container=False, scale=7) image_output = gr.Image(label="Response Image") clear = gr.ClearButton([msg, chatbot]) # noqa: F841 current_task = [None] def respond(message, chat_history): nonlocal current_task closest_text = get_closest_text( message, ["Clear the table", "What is on the table?"] ) image = None if closest_text: print(f"Closest text: {closest_text}") current_task[0] = closest_text chat_history.append((message, None)) return "", chat_history, image def do_function(chat_history): nonlocal current_task if not current_task: return "", chat_history, None chat_history[-1][1] = f"**{current_task[0]}**" yield chat_history if current_task[0] == "What is on the table?": job = WhatIsOnTableJob() image = job.get_image() yield from job.run(chat_history) elif current_task[0] == "Clear the table": job = ClearTableJob() yield from job.run(chat_history) image = WhatIsOnTableJob().get_image() elif current_task[0] == "Test Job": job = TestJob() yield from job.run(chat_history) else: chat_history[-1][1] = "Sorry, I don't understand that command." image = None return None, chat_history, image def get_image_output(): image_output = WhatIsOnTableJob().get_image() return image_output msg.submit( respond, [msg, chatbot], [msg, chatbot, image_output], queue=False ).then(get_image_output, [], [image_output]).then(do_function, chatbot, chatbot) demo.queue() demo.launch() if __name__ == "__main__": chat()
12,136
Python
31.365333
150
0.528593
AshisGhosh/roboai/roboai/roboai/test.py
import logging from litellm import completion from roboai.agent import Agent from roboai.task import Task from dotenv import load_dotenv load_dotenv() # take environment variables from .env. logging.basicConfig(level=logging.WARN) log = logging.getLogger("roboai") log.setLevel(logging.DEBUG) # litellm.success_callback = ["langfuse"] # litellm.set_verbose=True def test_task(): planner_agent = Agent( name="Planner", model="openrouter/huggingfaceh4/zephyr-7b-beta:free", system_message="""You are a planner that breaks down tasks into steps for robots. Create a set of steps that a robot with wheels and one arm can do. """, ) # task_handler = Agent( # name="Task Handler", # model="openrouter/huggingfaceh4/zephyr-7b-beta:free", # system_message=""" # You are a task handler that can handle tasks for robots. # """ # ) task_handler = "Create a plan to clear the table" task = Task(task_handler, [planner_agent]) task.run() def test(): messages = [{"content": "Hello, how are you?", "role": "user"}] response = completion( model="openrouter/huggingfaceh4/zephyr-7b-beta:free", messages=messages ) print(response) def test_agent(): agent = Agent(name="test", model="openrouter/huggingfaceh4/zephyr-7b-beta:free") response = agent.chat("Hello, how are you?") print(response) print(agent.get_last_response()) print(agent.get_last_response_obj()) agent.clear_messages() print(agent.messages) response = agent.chat("What is the capital of China?") print(response) print(agent.get_last_response()) print(agent.get_last_response_obj()) agent.clear_messages() print(agent.messages) response = agent.chat("And India?") print(response) print(agent.get_last_response()) print(agent.get_last_response_obj()) agent.clear_messages() print(agent.messages) if __name__ == "__main__": # test() # test_agent() test_task()
2,191
Python
27.467532
94
0.61068
AshisGhosh/roboai/roboai/roboai/server.py
import functools import importlib from typing import List, Literal import pydantic from fastapi import APIRouter from burr.core import Application """This file represents a simple chatbot API backed with Burr. We manage an application, write to it with post endpoints, and read with get/ endpoints. This demonstrates how you can build interactive web applications with Burr! """ # We're doing dynamic import cause this lives within examples/ (and that module has dashes) # navigate to the examples directory to read more about this! chat_application = importlib.import_module( "burr.examples.multi-modal-chatbot.application" ) # noqa: F401 # the app is commented out as we include the router. # app = FastAPI() router = APIRouter() class ChatItem(pydantic.BaseModel): """Pydantic model for a chat item. This is used to render the chat history.""" content: str type: Literal["image", "text", "code", "error"] role: Literal["user", "assistant"] @functools.lru_cache(maxsize=128) def _get_application(project_id: str, app_id: str) -> Application: """Quick tool to get the application -- caches it""" chat_app = chat_application.application(app_id=app_id, project_id=project_id) return chat_app @router.post("/response/{{project_id}}/{{app_id}}", response_model=List[ChatItem]) def chat_response(project_id: str, app_id: str, prompt: str) -> List[ChatItem]: """Chat response endpoint. User passes in a prompt and the system returns the full chat history, so its easier to render. :param project_id: Project ID to run :param app_id: Application ID to run :param prompt: Prompt to send to the chatbot :return: """ burr_app = _get_application(project_id, app_id) _, _, state = burr_app.run(halt_after=["response"], inputs=dict(prompt=prompt)) return state.get("chat_history", []) @router.get("/response/{project_id}/{app_id}", response_model=List[ChatItem]) def chat_history(project_id: str, app_id: str) -> List[ChatItem]: """Endpoint to get chat history. Gets the application and returns the chat history from state. :param project_id: Project ID :param app_id: App ID. :return: The list of chat items in the state """ chat_app = _get_application(project_id, app_id) state = chat_app.state return state.get("chat_history", []) @router.post("/create/{project_id}/{app_id}", response_model=str) async def create_new_application(project_id: str, app_id: str) -> str: """Endpoint to create a new application -- used by the FE when the user types in a new App ID :param project_id: Project ID :param app_id: App ID :return: The app ID """ # side-effect of this persists it -- see the application function for details chat_application.application(app_id=app_id, project_id=project_id) return app_id # just return it for now # comment this back in fro a standalone chatbot API # app.include_router(router, prefix="/api/v0/chatbot")
2,984
Python
33.310344
98
0.704424
AshisGhosh/roboai/roboai/roboai/semantic_locations.py
COFFEE_TABLE = { "coffee_table": { "name": "coffee_table_fqluyq_0", "location": "0.75 -1.1 3.14", } } TABLE = { "table": { "name": "table", "location": None, } } SUPPLY_CABINET = { "supply_cabinet": {"name": "bottom_cabinet_bamfsz_0", "location": "-1.0 -0.5 3.14"} } FRIDGE = {"fridge": {"name": "fridge_xyejdx_0", "location": "0.2 2.0 1.57"}} TRASH_CAN = {"trash_can": {"name": "trash_can_zotrbg_0", "location": "0.0 2.4 3.14"}} SEMANTIC_LOCATIONS = {**COFFEE_TABLE, **TABLE, **SUPPLY_CABINET, **FRIDGE}
562
Python
22.458332
87
0.537367
AshisGhosh/roboai/roboai/roboai/streamlit_app.py
import time from typing import Optional import roboai as chatbot_application import streamlit as st from burr.integrations.streamlit import ( AppState, Record, get_state, render_explorer, set_slider_to_current, update_state, ) st.set_page_config(layout="wide") st.markdown("This is a demo of RoboAI - LLM based planning for robots.") def render_chat_message(record: Record): # if record.action in ["prompt", "response"]: recent_chat_message = record.state["chat_history"][-1] content = recent_chat_message["content"] content_type = recent_chat_message["type"] role = recent_chat_message["role"] with st.chat_message(role): if content_type == "image": st.image(content) elif content_type == "code": st.code(content) elif content_type == "text": st.write(content) elif content_type == "error": st.error(content) def retrieve_state(): if "burr_state" not in st.session_state: # TODO --enable usage of hamilton. Currently its not wiring in inputs # But it should be easy enough state = AppState.from_empty( app=chatbot_application.application(), ) else: state = get_state() return state def chatbot_step(app_state: AppState, prompt: Optional[str]) -> bool: """Pushes state forward for the chatbot. Returns whether or not to rerun the app. :param app_state: State of the app :param prompt: Prompt to set the chatbot to. If this is None it means it should continue and not be reset. :return: """ inputs = None if prompt is not None: # We need to update inputs = {"prompt": prompt} # app_state.app.update_state(app_state.app.state.update(prompt=prompt)) st.session_state.running = True # set to running # if its not running this is a no-op if not st.session_state.get("running", False): return False application = app_state.app step_output = application.step(inputs=inputs) # if step_output is None: # st.session_state.running = False # return False action, result, state = step_output app_state.history.append(Record(state.get_all(), action.name, result)) set_slider_to_current() if action.name in ["response", "finish_and_score_task"] and state[ "current_state" ] in ["PENDING", "FAILED"]: # we've gotten to the end st.session_state.running = False return True return True def main(): st.title("RoboAI") app_state = retrieve_state() # retrieve first so we can use for the ret of the step columns = st.columns(2) with columns[0]: prompt = st.chat_input( "...", disabled=st.session_state.get("running", False), key="chat_input" ) should_rerun = chatbot_step(app_state, prompt) with st.container(height=850): for item in app_state.history: render_chat_message(item) # wait for 0.1 seconds to allow the UI to update time.sleep(0.1) with columns[1]: render_explorer(app_state) update_state(app_state) # update so the next iteration knows what to do if should_rerun: st.rerun() if __name__ == "__main__": main()
3,307
Python
30.207547
110
0.625038
AshisGhosh/roboai/roboai/roboai/agent.py
import time import logging from litellm import completion from dotenv import load_dotenv logging.basicConfig(level=logging.WARN) load_dotenv("shared/.env") # take environment variables from .env. log = logging.getLogger("roboai") log.setLevel(logging.INFO) # litellm.success_callback = ["langfuse"] class Agent: def __init__(self, name, model, system_message="", base_url=None): self.name = name self.model = model self._last_response = None self._last_response_content = None self.messages = [] self.system_message = system_message self.set_system_message(system_message) self.base_url = base_url def chat(self, message): self.messages.append({"content": message, "role": "user"}) completion_args = { "model": self.model, "messages": self.messages, } if self.base_url: completion_args["base_url"] = self.base_url response = completion(**completion_args) self._last_response = response self._last_response_content = response["choices"][0]["message"]["content"] self.messages.append( {"content": self._last_response_content, "role": "assistant"} ) return self._last_response_content def task_chat(self, messages): completion_args = { "model": self.model, "messages": messages, } if self.base_url: completion_args["base_url"] = self.base_url start = time.time() response = completion(**completion_args) log.debug(f"Completion time: {time.time() - start}") self._last_response = response self._last_response_content = response["choices"][0]["message"]["content"] return self._last_response_content def get_last_response(self): return self._last_response_content def get_last_response_obj(self): return self._last_response def clear_messages(self): self.messages = [] def set_system_message(self, message): if not message: log.warn(f"System message for agent '{self.name}' is empty.") return system_message = None for m in self.messages: if m["role"] == "system": system_message = m break if system_message: system_message["content"] = message else: self.messages.append({"content": message, "role": "system"}) self.system_message = message
2,547
Python
28.97647
82
0.591676
AshisGhosh/roboai/roboai/roboai/skills.py
SCAN_THE_SCENE = { "scan the scene": { "symbol": "scan_the_scene", "description": """ Can scan to scene to retreieve information. Can also be used to identify objects in the scene. Should already be at the required location. """, } } PICK_OBJECT = { "pick object": { "symbol": "pick", "description": """ Can pick up an object in the scene. Requires specifying the object. """, } } PLACE_IN_LOCATION = { "place in location": { "symbol": "place", "description": """ Can place an object in the scene. Requires already holding the object. Requires specifying the location. """, } } NAVIGATE_TO_LOCATION = { "navigate to location": { "symbol": "navigate_to", "description": """ Can navigate to a location in the scene. Location can also be specified by an object. """, } } CALL_SUPPORT = { "call support": { "symbol": "call_support", "description": """ Can call support for an issue in the scene. """, } } UPDATE_PLAN = { "update plan": { "symbol": "update_plan", "description": """ Can update the plan to a new one. """, } } ROLLOUT_PICK_AND_PLACE_PLAN = { "rollout pick and place plan": { "symbol": "rollout", "description": """ Given an observation or a scan step, can rollout a pick and place plan. """, } } SKILLS = { **SCAN_THE_SCENE, **PICK_OBJECT, **PLACE_IN_LOCATION, **NAVIGATE_TO_LOCATION, **CALL_SUPPORT, **UPDATE_PLAN, **ROLLOUT_PICK_AND_PLACE_PLAN, }
2,047
Python
24.28395
95
0.447484
AshisGhosh/roboai/roboai/roboai/task.py
import io import base64 import logging from pydantic import BaseModel from typing import Callable logging.basicConfig(level=logging.WARN) log = logging.getLogger("roboai") log.setLevel(logging.INFO) class Tool(BaseModel): name: str func: Callable description: str example: str def extract_code(raw_input, language="python"): start_delimiter = f"```{language}\n" end_delimiter = "\n```" code_start_index = raw_input.find(start_delimiter) + len(start_delimiter) code_end_index = raw_input.find(end_delimiter, code_start_index) code = raw_input[code_start_index:code_end_index].strip() return code def str_from_messages(messages): # Extract the text from the messages, ignore images text = "" for m in messages: if isinstance(m["content"], str): text += m["role"] + ": " + m["content"] + "\n" else: text += m["role"] + ": " + m["content"]["text"] + "\n" return text class Task: def __init__( self, task_description, solving_agents=None, expected_output_format=None, finish_when=None, ): self.task_description = task_description self.solving_agents = solving_agents if solving_agents else [] self.expected_output_format = expected_output_format self.finish_when = finish_when self.chat_messages = [] self.tools = [] def add_solving_agent(self, agent): self.solving_agents.append(agent) @property def task_description_str(self): if isinstance(self.task_description, list): return self.task_description[0]["text"] return self.task_description def add_task_image(self, image): try: # Create a bytes buffer to hold the image data buffer = io.BytesIO() # Save the Pillow image object to the buffer in a specific format (e.g., JPEG) image.save(buffer, format="JPEG") # Seek to the start of the buffer buffer.seek(0) # Read the buffer content and encode it to Base64 image_str = base64.b64encode(buffer.read()).decode("utf-8") # Format the Base64 string as a data URL, specifying the MIME type # data_url = f"data:image/jpeg;base64,{image_str}" data_url = image_str # Update the task description with the text and the image data URL self.task_description = [ {"type": "text", "text": self.task_description}, {"type": "image_url", "image_url": {"url": data_url}}, ] log.info("Task image added.") except Exception as e: log.error(f"Failed to add task image: {e}") def register_tool(self, name, func, description, example): self.tools.append( Tool(name=name, func=func, description=description, example=example) ) log.debug(f"Tool {name} added.") def generate_tool_prompt(self): tool_prompt = """ You can use the following python functions: """ for tool in self.tools: tool_prompt += f"""'{tool.name}()' Description: {tool.description} Usage: {tool.example} """ return tool_prompt def get_exec_vars(self): exec_vars = {} for tool in self.tools: exec_vars[tool.name] = tool.func return exec_vars def get_exec_vars_serialized(self): exec_vars = {} for tool in self.tools: exec_vars[tool.name] = tool.func.__name__ return exec_vars def get_complete_prompt(self, agentid: int): task_description = self.task_description if self.expected_output_format: task_description += f""" Ensure your output follows the following format strictly: \n{self.expected_output_format}""" prompt = f""" {task_description} """ if self.tools: prompt += self.generate_tool_prompt() return prompt def run(self): task_description = self.task_description if self.expected_output_format: task_description += f""" Ensure your output follows the following format strictly: \n{self.expected_output_format}""" self.chat_messages.append( {"task": {"content": task_description, "role": "user"}} ) log.info(f"Task: '{self.task_description_str}'") for agent in self.solving_agents: response = self.task_chat(agent, self.chat_messages) log.info(f"> AGENT '{agent.name}': {response}") self.chat_messages.append( {agent.name: {"content": response, "role": "assistant"}} ) return next(iter(self.chat_messages[-1].values()))["content"] def task_chat(self, agent, messages): agent_messages = [] if agent.system_message: agent_messages.append({"role": "system", "content": agent.system_message}) for m in messages: if next(iter(m)) == "task": agent_messages.append(m["task"]) elif next(iter(m)) in [a.name for a in self.solving_agents if a != agent]: message = m[next(iter(m))] message["role"] = "user" agent_messages.append(message) elif next(iter(m)) == agent.name: message = m[next(iter(m))] agent_messages.append(message) log.debug(f"{str_from_messages(agent_messages)}") response = agent.task_chat(agent_messages) return response def __str__(self): task_info = f"Task: {self.task_description_str}" if self.expected_output_format: task_info += f"\n Expected Output Format: {self.expected_output_format}" if self.solving_agents: task_info += "\n Solving Agents:" for a in self.solving_agents: task_info += f"\n - {a.name}" if self.tools: task_info += "\n Registered Tools:" for t in self.tools: task_info += f"\n - {t.name}" return task_info
6,279
Python
33.31694
116
0.565058
AshisGhosh/roboai/roboai/roboai/plans.py
CLEAR_TABLE_PLAN = { "clear the table": """ 1. Navigate to the table 2. Scan the table for objects 3. Rollout pick and place plan to remove objects """ } CLEAN_BATHROOM_PLAN = { "clean the bathroom": """ Given the bathroom is dirty and has a toilet, sink, and shower 1. Spray the shower with cleaner 2. Spray the sink with cleaner 3. Spray the toilet with cleaner 4. Scrub the sink 5. Scrub the toilet 6. Scrub the shower """ } PLANS = { **CLEAR_TABLE_PLAN, **CLEAN_BATHROOM_PLAN, }
597
Python
22.919999
70
0.577889
AshisGhosh/roboai/roboai/roboai/knowledge_base_utils.py
import os import json import pydantic from datetime import datetime class KnowledgeBaseItem(pydantic.BaseModel): key: str value: pydantic.Json tags: list[str] = [] timestamp: str = pydantic.Field(default_factory=lambda: datetime.now().isoformat()) class KnowledgeBase: def __init__(self, file_path: str = "/app/roboai/knowledge_base.json"): self.file_path = file_path self.data = self.load_data() def load_data(self): print("Current working directory:", os.getcwd()) print("Files in the directory:", os.listdir()) with open(self.file_path, "r") as f: data = json.load(f) return data @property def all_data(self): return self.data @property def knowledge(self): return [ KnowledgeBaseItem( key=key, value=value["value"], tags=value["tags"], timestamp=value["timestamp"], ) for key, value in self.data.items() ] def get_knowledge_as_string(self): return "\n".join([f"{value['value']}" for value in self.data.values()]) def get_data(self, key: str): return self.data.get(key, None) def add_data(self, key: str, value, tags: list[str] = []): self.data[key] = { "value": value, "tags": tags, "timestamp": datetime.now().isoformat(), } self.save_data() def save_data(self): with open(self.file_path, "w") as f: json.dump(self.data, f, indent=4)
1,586
Python
25.898305
87
0.558008
AshisGhosh/roboai/omnigibson/roboai/tiago_primitives.yaml
env: action_frequency: 30 # (int): environment executes action at the action_frequency rate physics_frequency: 120 # (int): physics frequency (1 / physics_timestep for physx) device: null # (None or str): specifies the device to be used if running on the gpu with torch backend automatic_reset: false # (bool): whether to automatic reset after an episode finishes flatten_action_space: false # (bool): whether to flatten the action space as a sinle 1D-array flatten_obs_space: false # (bool): whether the observation space should be flattened when generated use_external_obs: false # (bool): Whether to use external observations or not initial_pos_z_offset: 0.1 external_sensors: null # (None or list): If specified, list of sensor configurations for external sensors to add. Should specify sensor "type" and any additional kwargs to instantiate the sensor. Each entry should be the kwargs passed to @create_sensor, in addition to position, orientation render: viewer_width: 1280 viewer_height: 720 scene: type: InteractiveTraversableScene scene_model: Rs_int trav_map_resolution: 0.1 default_erosion_radius: 0.0 trav_map_with_objects: true num_waypoints: 1 waypoint_resolution: 0.1 load_object_categories: null not_load_object_categories: null load_room_types: null load_room_instances: null load_task_relevant_only: true seg_map_resolution: 0.1 scene_source: OG include_robots: false robots: - type: Tiago obs_modalities: ["rgb", "depth", "seg_instance", "seg_instance_id", "normal", "scan", "occupancy_grid"] scale: 1.0 self_collisions: true action_normalize: false action_type: continuous grasping_mode: physical rigid_trunk: false default_trunk_offset: 0.365 default_arm_pose: horizontal controller_config: base: name: JointController arm_left: name: JointController use_delta_commands: true arm_right: name: JointController use_delta_commands: true gripper_left: name: JointController motor_type: position command_input_limits: [-1, 1] command_output_limits: null use_delta_commands: true gripper_right: name: JointController motor_type: position command_input_limits: [-1, 1] command_output_limits: null use_delta_commands: true camera: name: JointController use_delta_commands: False sensor_config: VisionSensor: sensor_kwargs: image_height: 480 image_width: 640 objects: [] task: type: DummyTask # task: # type: BehaviorTask # activity_name: putting_away_Halloween_decorations # activity_definition_id: 0 # activity_instance_id: 0 # predefined_problem: null # online_object_sampling: false # debug_object_sampling: null # highlight_task_relevant_objects: false # termination_config: # max_steps: 500 # reward_config: # r_potential: 1.0 scene_graph: egocentric: true full_obs: true only_true: true merge_parallel_edges: false
3,215
YAML
32.5
307
0.66283
AshisGhosh/roboai/omnigibson/roboai/roboai.py
import os import yaml import numpy as np import asyncio import multiprocessing import time import omnigibson as og from omnigibson.macros import gm # noqa F401 from omnigibson.action_primitives.starter_semantic_action_primitives import ( # noqa F401 StarterSemanticActionPrimitives, StarterSemanticActionPrimitiveSet, ) from omnigibson.action_primitives.symbolic_semantic_action_primitives import ( SymbolicSemanticActionPrimitives, SymbolicSemanticActionPrimitiveSet, ) from omnigibson.robots import Tiago from .visualize_scene_graph import visualize_scene_graph, visualize_ascii_scene_graph # noqa F401 from .primitive_patches import _quick_settle_robot, _simplified_place_with_predicate from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware import io from PIL import Image from starlette.responses import StreamingResponse # gm.USE_GPU_DYNAMICS = True # gm.ENABLE_FLATCACHE = True class ActionHandler: def __init__(self, env, controller, scene, task_queue): self.env = env self.controller = controller self.scene = scene self.actions = task_queue self._last_camera_action = None async def add_action(self, action: str): """ Add an action to the list of actions to be executed """ self.actions.put(action) def execute_controller(self, ctrl_gen): robot = self.env.robots[0] for action in ctrl_gen: state, reward, done, info = self.env.step(action) self._last_camera_action = action[robot.controller_action_idx["camera"]] def execute_action(self, action): """ Execute the action at the top of the list """ # robot = self.env.robots[0] action, args = action[0], action[1:] if action == "pick": print(f"Attempting: 'pick' with args: {args}") obj_name = args[0] grasp_obj = self.scene.object_registry("name", obj_name) # grasp_obj.disable_gravity() # print(f"navigating to object {grasp_obj.name}") self.controller._tracking_object = grasp_obj # self.execute_controller( # self.controller.apply_ref( # SymbolicSemanticActionPrimitiveSet.NAVIGATE_TO, # grasp_obj, # attempts=10, # ) # ) print(f"grasping object {grasp_obj.name}") self.execute_controller( self.controller.apply_ref( SymbolicSemanticActionPrimitiveSet.GRASP, grasp_obj ) ) print("Finished executing pick") elif action == "place": print(f"Attempting: 'place' with args: {args}") obj_name = args[0] if obj_name in ["None", "", None]: obj_name = "table" print(f"no object specified, defaulting to {obj_name}") destination = self.scene.object_registry("name", obj_name) # print(f"navigating to object {destination.name}") self.controller._tracking_object = destination # self.execute_controller( # self.controller.apply_ref( # SymbolicSemanticActionPrimitiveSet.NAVIGATE_TO, destination, attempts=10 # ) # ) print(f"placing object on top of {destination.name}") self.execute_controller( self.controller.apply_ref( SymbolicSemanticActionPrimitiveSet.PLACE_ON_TOP, destination, attempts=1, ) ) print("Finished executing place") elif action == "navigate_to": print(f"Attempting: 'navigate_to' with args: {args}") obj_name = args[0] obj = self.scene.object_registry("name", obj_name) self.controller._tracking_object = obj pose = args[1] pose = [float(p) for p in pose.split(" ")] print(f"navigating to object {obj.name}") self.execute_controller( self.controller.apply_ref("navigate_to_pose", pose, attempts=10) ) print("Finished executing navigate_to") elif action == "navigate_to_object": print(f"Attempting: 'navigate_to_object' with args: {args}") obj_name = args[0] obj = self.scene.object_registry("name", obj_name) self.controller._tracking_object = obj print(f"navigating to object {obj.name}") self.execute_controller( self.controller.apply_ref( SymbolicSemanticActionPrimitiveSet.NAVIGATE_TO, obj, attempts=10 ) ) print("Finished executing navigate_to_object") elif action == "pick_test": print("Executing pick") grasp_obj = self.scene.object_registry("name", "black_cologne_bottle") print(f"navigating to object {grasp_obj.name}") self.controller._tracking_object = grasp_obj self.execute_controller( self.controller.apply_ref( SymbolicSemanticActionPrimitiveSet.NAVIGATE_TO, grasp_obj, attempts=10, ) ) print(f"grasping object {grasp_obj.name}") # self.execute_controller(self.controller.apply_ref(StarterSemanticActionPrimitiveSet.GRASP, grasp_obj)) self.execute_controller( self.controller.apply_ref( SymbolicSemanticActionPrimitiveSet.GRASP, grasp_obj ) ) print("Finished executing pick") elif action == "place_test": print("Executing place") table = self.scene.object_registry("name", "table") # print(f"navigating to object {table.name}") self.controller._tracking_object = table # self.execute_controller(self.controller.apply_ref(SymbolicSemanticActionPrimitiveSet.NAVIGATE_TO, table, attempts=10)) print(f"placing object on top of {table.name}") # self.execute_controller(self.controller.apply_ref(StarterSemanticActionPrimitiveSet.PLACE_ON_TOP, table)) self.execute_controller( self.controller.apply_ref( SymbolicSemanticActionPrimitiveSet.PLACE_ON_TOP, table ) ) print("Finished executing place") elif action == "navigate_to_coffee_table": # print("Executing navigate_to_coffee_table") coffee_table = self.scene.object_registry("name", "coffee_table_fqluyq_0") self.controller._tracking_object = coffee_table print(f"navigating to object {coffee_table.name}") self.execute_controller( self.controller.apply_ref( SymbolicSemanticActionPrimitiveSet.NAVIGATE_TO, coffee_table, attempts=10, ) ) print("Finished executing navigate_to_coffee_table") elif action == "viz": print("Visualizing scene graph") graph = self.env.get_scene_graph() print(graph) visualize_ascii_scene_graph(self.scene, graph) # visualize_scene_graph(self.scene, graph) print("Finished visualizing scene graph") def check_for_action(self): """ Check if there is an action to be executed """ if not self.actions.empty(): action = self.actions.get() self.execute_action(action) return True action = np.zeros(self.env.robots[0].action_dim) if self._last_camera_action is not None: action[self.env.robots[0].controller_action_idx["camera"]] = ( self._last_camera_action ) # print(f"ACTION - {action}") state, reward, done, info = self.env.step(action) # print(f"info: {info}") return False class SimWrapper: def __init__(self, task_queue, image_queue, obj_in_hand_queue, ready_queue): self.task_queue = task_queue self.image_queue = image_queue self.obj_in_hand_queue = obj_in_hand_queue self.ready_queue = ready_queue asyncio.run(self.run()) async def run(self): """ Demonstrates how to use the action primitives to pick and place an object in an empty scene. It loads Rs_int with a Fetch robot, and the robot picks and places a bottle of cologne. """ # Load the config # config_filename = os.path.join(og.example_config_path, "fetch_primitives.yaml") config_filename = os.path.join( "/omnigibson-src/roboai", "tiago_primitives.yaml" ) config = yaml.load(open(config_filename, "r"), Loader=yaml.FullLoader) config["scene"]["load_object_categories"] = [ "floors", "ceilings", "walls", "coffee_table", "bottom_cabinet", "top_cabinet", "floor_lamp", "shelf", "trash_can", "counter_top", "fridge", "sink", ] # # SHOW TRAVERSABLE AREA # import matplotlib.pyplot as plt # import cv2 # scene_model = "Rs_int" # trav_map_size = 200 # trav_map_erosion = 2 # trav_map = Image.open(os.path.join(get_og_scene_path(scene_model), "layout", "floor_trav_0.png")) # trav_map = np.array(trav_map.resize((trav_map_size, trav_map_size))) # trav_map = cv2.erode(trav_map, np.ones((trav_map_erosion, trav_map_erosion))) # plt.figure(figsize=(12, 12)) # plt.imshow(trav_map) # plt.title(f"Traversable area of {scene_model} scene") # plt.show() config["scene"]["not_load_object_categories"] = ["ceilings"] config["objects"] = [ { "type": "DatasetObject", "name": "black_cologne_bottle", "category": "bottle_of_cologne", "model": "lyipur", "position": [-0.3, -0.8, 0.5], "orientation": [0, 0, 0, 1], }, { "type": "DatasetObject", "name": "apple", "category": "apple", "model": "agveuv", "position": [-0.3, -1.1, 0.5], "orientation": [0, 0, 0, 1], }, { "type": "DatasetObject", "name": "cleaner_bottle", "category": "bottle_of_cleaner", "model": "svzbeq", "position": [-0.5, -0.8, 0.6], "orientation": [0, 1, 0, 0], }, { "type": "DatasetObject", "name": "tomato_can", "category": "can_of_tomatoes", "model": "ckdouu", "position": [-0.6, -1.1, 0.5], "orientation": [0, 0, 0, 1], }, { "type": "DatasetObject", "name": "table", "category": "breakfast_table", "model": "rjgmmy", "scale": [0.3, 0.3, 0.3], "position": [-0.7, 0.5, 0.2], "orientation": [0, 0, 0, 1], }, ] # Load the environment env = og.Environment(configs=config) scene = env.scene robot = env.robots[0] print(type(robot)) print(robot.default_arm) delattr(Tiago, "simplified_mesh_usd_path") # del robot.simplified_mesh_usd_path # print(robot.simplified_mesh_usd_path) # Allow user to move camera more easily og.sim.enable_viewer_camera_teleoperation() cam = og.sim.viewer_camera # Living Room View # camera pose: array([0.92048866, -5.66129052, 5.39363818]), array([0.44288347, 0.04140454, 0.08336682, 0.89173419]) # cam.set_position_orientation( # position=np.array([0.92048866, -5.66129052, 5.39363818]), # orientation=np.array([0.44288347, 0.04140454, 0.08336682, 0.89173419]), # ) # Living Room + Kitchen View # cam pose: (array([2.78592041, 0.56388298, 7.03105183]), array([0.15355086, 0.15665731, 0.69675768, 0.68294169])) cam.set_position_orientation( position=np.array([2.78592041, 0.56388298, 7.03105183]), orientation=np.array([0.15355086, 0.15665731, 0.69675768, 0.68294169]), ) # controller = StarterSemanticActionPrimitives(env, enable_head_tracking=False) SymbolicSemanticActionPrimitives._place_with_predicate = ( _simplified_place_with_predicate ) SymbolicSemanticActionPrimitives._settle_robot = _quick_settle_robot controller = SymbolicSemanticActionPrimitives(env) controller.controller_functions["navigate_to_pose"] = ( controller._navigate_to_pose ) # Task queue action_handler = ActionHandler( env, controller, scene, task_queue=self.task_queue ) if False: print("\n\n####### TASK DATA #######\n") task_str, _, _ = env.task.show_instruction() print(task_str) task_obs, _ = env.task._get_obs(env) agent_pos = task_obs["agent.n.01_1_pos"] print(task_obs) print(env.task.object_scope) for k, v in env.task.object_scope.items(): dist = np.linalg.norm( np.array(task_obs[f"{k}_pos"]) - np.array(agent_pos) ) print(f"{k}: {v.name} {v.category} {v.exists} {dist:.3f}") print("\n#########################\n\n") while True: await asyncio.sleep(0.1) obs, info = robot.get_obs() # print(info["robot0:eyes:Camera:0"]["seg_semantic"]) # img = obs["robot0:eyes:Camera:0"]["rgb"] # print(obs["robot0:eyes:Camera:0"].keys()) # print(f"seg_semantic: {obs['robot0:eyes:Camera:0']['seg_semantic'].shape}") # print(f"seg_instance: {obs['robot0:eyes:Camera:0']['seg_instance'].shape}") # print(scene.seg_map) if self.image_queue.full(): self.image_queue.get() self.image_queue.put( (obs["robot0:eyes:Camera:0"], info["robot0:eyes:Camera:0"]) ) if self.obj_in_hand_queue.full(): self.obj_in_hand_queue.get() obj_in_hand = controller._get_obj_in_hand() if obj_in_hand is not None: self.obj_in_hand_queue.put(obj_in_hand.name) else: self.obj_in_hand_queue.put(None) if self.ready_queue.full(): self.ready_queue.get() self.ready_queue.put(time.time()) action_handler.check_for_action() # task_str, _, _ = env.task.show_instruction() # print(task_str) # if self.scene_graph_queue.full(): # self.scene_graph_queue.get() # graph = env.get_scene_graph() # self.scene_graph_queue.put(graph) # current = robot.get_joint_positions(normalized=False) # print(f"current: {current}") # arm_left = robot._controllers["arm_left"] # print(f"arm_left: {arm_left.control}") app = FastAPI() # List of allowed origins (you can use '*' to allow all origins) origins = [ "http://localhost:3000", # Allow your Next.js app # Add any other origins as needed ] # Add CORSMiddleware to the application app.add_middleware( CORSMiddleware, allow_origins=origins, # List of allowed origins allow_credentials=True, allow_methods=["*"], # Allow all methods allow_headers=["*"], # Allow all headers ) task_queue = multiprocessing.Queue() image_queue = multiprocessing.Queue(maxsize=1) obj_in_hand_queue = multiprocessing.Queue(maxsize=1) ready_queue = multiprocessing.Queue(maxsize=1) sim = multiprocessing.Process( target=SimWrapper, args=(task_queue, image_queue, obj_in_hand_queue, ready_queue) ) @app.post("/add_action") async def add_action(action: str): action = action.split(",") action = (action[0], *action[1:]) print(f"Adding action: {action}") task_queue.put(action) return {"action": action} @app.get("/get_image") async def get_image(): image, _ = image_queue.get() await asyncio.sleep(2) # wait for the image to be updated image, _ = image_queue.get() image = image["rgb"] img_array = image img = Image.fromarray(img_array) buf = io.BytesIO() img.save(buf, format="PNG") buf.seek(0) return StreamingResponse(buf, media_type="image/png") @app.get("/get_visible_objects") async def get_visible_objects(): image, info = image_queue.get() await asyncio.sleep(2) # wait for the image to be updated image, info = image_queue.get() image = image["seg_instance"] info = info["seg_instance"] visible_objects = list(info.values()) # filter out background object keywords background_obj_keywords = ["floor", "wall", "robot", "table"] visible_objects = [ obj for obj in visible_objects if not any(keyword in obj.lower() for keyword in background_obj_keywords) ] return {"objects": visible_objects} @app.get("/get_obj_in_hand") async def get_obj_in_hand(): obj_in_hand = obj_in_hand_queue.get() return {"obj_in_hand": obj_in_hand} @app.get("/get_is_ready") async def get_is_ready(): READY_THRESHOLD = 1.0 ready = ready_queue.get() ready = ready if time.time() - ready > READY_THRESHOLD: ready = False return {"is_ready": ready} @app.get("/wait_until_ready") async def wait_until_ready(): READY_THRESHOLD = 1.0 ready = ready_queue.get() is_ready = False while not is_ready: ready = ready_queue.get() if time.time() - ready < READY_THRESHOLD: is_ready = True await asyncio.sleep(0.1) return {"is_ready": is_ready} @app.get("/get_semantic_segmentation") async def get_semantic_segmentation(): image, info = image_queue.get() await asyncio.sleep(2) # wait for the image to be updated image, info = image_queue.get() image = image["seg_semantic"] info = info["seg_semantic"] print(info) img_array = image img = Image.fromarray(img_array) buf = io.BytesIO() img.save(buf, format="PNG") buf.seek(0) return StreamingResponse(buf, media_type="image/png") @app.get("/get_instance_segmentation") async def get_instance_segmentation(): image, info = image_queue.get() await asyncio.sleep(2) # wait for the image to be updated image, info = image_queue.get() image = image["seg_instance"] info = info["seg_instance"] print(info) img_array = image img = Image.fromarray(img_array) buf = io.BytesIO() img.save(buf, format="PNG") buf.seek(0) return StreamingResponse(buf, media_type="image/png") @app.get("/get_id_instance_segmentation") async def get_id_instance_segmentation(): image, info = image_queue.get() await asyncio.sleep(2) # wait for the image to be updated image, info = image_queue.get() image = image["seg_instance_id"] info = info["seg_instance_id"] print(info) img_array = image img = Image.fromarray(img_array) buf = io.BytesIO() img.save(buf, format="PNG") buf.seek(0) return StreamingResponse(buf, media_type="image/png") if __name__ == "__main__": sim.start() import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)
19,970
Python
34.472469
132
0.565448
AshisGhosh/roboai/omnigibson/roboai/visualize_scene_graph.py
import networkx as nx import numpy as np from PIL import Image from matplotlib import pyplot as plt from omnigibson.sensors import VisionSensor def visualize_ascii_scene_graph(scene, G): # def print_graph_ascii(G): # for line in nx.generate_adjlist(G): # print(line) # # Example usage: # print_graph_ascii(G) nx.write_network_text(G) def visualize_scene_graph(scene, G, show_window=True, realistic_positioning=False): """ Converts the graph into an image and shows it in a cv2 window if preferred. Args: show_window (bool): Whether a cv2 GUI window containing the visualization should be shown. realistic_positioning (bool): Whether nodes should be positioned based on their position in the scene (if True) or placed using a graphviz layout (neato) that makes it easier to read edges & find clusters. """ def _draw_graph(): nodes = list(G.nodes) node_labels = {obj: obj.category for obj in nodes} # colors = [ # "yellow" if obj.category == "agent" # else ( # "green" if obj.states.get(object_states.ObjectsInFOVOfRobot, False) # else "red" if object_states.ObjectsInFOVOfRobot in obj.states # else "blue" # ) # for obj in nodes # ] positions = ( {obj: (-pose[0][1], pose[0][0]) for obj, pose in G.nodes.data("pose")} if realistic_positioning else nx.nx_pydot.pydot_layout(G, prog="neato") ) nx.drawing.draw_networkx( G, pos=positions, labels=node_labels, nodelist=nodes, # node_color=colors, font_size=4, arrowsize=5, node_size=150, ) edge_labels = { edge: ", ".join( f"{state}={value}" for state, value in G.edges[edge]["states"] ) for edge in G.edges } nx.drawing.draw_networkx_edge_labels( G, pos=positions, edge_labels=edge_labels, font_size=4 ) # Prepare pyplot figure sized to match the robot video. robot = scene.robots[0] robot_camera_sensor = next( s for s in robot.sensors.values() if isinstance(s, VisionSensor) and "rgb" in s.modalities ) robot_view = (robot_camera_sensor.get_obs()[0]["rgb"][..., :3]).astype(np.uint8) imgheight, imgwidth, _ = robot_view.shape figheight = 4.8 figdpi = imgheight / figheight figwidth = imgwidth / figdpi # Draw the graph onto the figure. fig = plt.figure(figsize=(figwidth, figheight), dpi=figdpi) _draw_graph() fig.canvas.draw() # Convert the canvas to image graph_view = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") graph_view = graph_view.reshape(fig.canvas.get_width_height()[::-1] + (3,)) assert graph_view.shape == robot_view.shape plt.close(fig) # Combine the two images side-by-side img = np.hstack((robot_view, graph_view)) # Convert to BGR for cv2-based viewing. if show_window: import cv2 cv_img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) cv2.imshow("SceneGraph", cv_img) cv2.waitKey(1) return Image.fromarray(img).save(r"test.png")
3,343
Python
31.153846
119
0.591684
AshisGhosh/roboai/omnigibson/roboai/primitive_patches.py
import numpy as np from omnigibson.action_primitives.action_primitive_set_base import ActionPrimitiveError def _simplified_place_with_predicate( self, obj, predicate, near_poses=None, near_poses_threshold=None ): """ Yields action for the robot to navigate to the object if needed, then to place it Args: obj (StatefulObject): Object for robot to place the object in its hand on predicate (object_states.OnTop or object_states.Inside): Determines whether to place on top or inside Returns: np.array or None: Action array for one step for the robot to place or None if place completed """ obj_in_hand = self._get_obj_in_hand() if obj_in_hand is None: raise ActionPrimitiveError( ActionPrimitiveError.Reason.PRE_CONDITION_ERROR, "You need to be grasping an object first to place it somewhere.", ) # Find a spot to put it # obj_pose = self._sample_pose_with_object_and_predicate( # predicate, # obj_in_hand, # obj, # near_poses=near_poses, # near_poses_threshold=near_poses_threshold, # ) place_locations = { "table": { "position": np.array([-0.7, 0.5, 0.5]), "orientation": np.array([0.0, 0.0, 0.0, 1.0]), }, "coffee_table_fqluyq_0": { "position": np.array([-0.5, -1.1, 0.5]), "orientation": np.array([0.0, 0.0, 0.0, 1.0]), }, "bottom_cabinet_bamfsz_0": { "position": np.array([-1.8, -0.5, 0.7]), "orientation": np.array([0.0, 0.0, 0.0, 1.0]), }, "fridge_xyejdx_0": { "position": np.array([0.2, 3.2, 1.0]), "orientation": np.array([0.0, 0.0, 0.0, 1.0]), }, "trash_can_zotrbg_0": { "position": np.array([-1.8, 2.65, 0.5]), "orientation": np.array([0.0, 0.0, 0.0, 1.0]), }, } obj_pose = place_locations[obj.name] obj_pose = (obj_pose["position"], obj_pose["orientation"]) # Get close, release the object. # yield from self._navigate_if_needed(obj, pose_on_obj=obj_pose) yield from self._release() # Actually move the object to the spot and step a bit to settle it. obj_in_hand.set_position_orientation(*obj_pose) # yield from self._settle_robot() def _quick_settle_robot(self): """ Yields a no op action for a few steps to allow the robot and physics to settle Returns: np.array or None: Action array for one step for the robot to do nothing """ print("Settling robot") for _ in range(10): empty_action = self._empty_action() yield self._postprocess_action(empty_action) print("Settled robot")
2,741
Python
33.275
109
0.588107
AshisGhosh/roboai/shared/pyproject.toml
[tool.poetry] name = "utils" version = "0.1.0" description = "" authors = ["AshisGhosh <[email protected]>"] readme = "README.md" [tool.poetry.dependencies] python = "<3.13,>=3.10.0" httpx = "^0.27.0" python-dotenv = "^1.0.1" litellm = "^1.34.22" pillow = "^10.3.0" opencv-python = "^4.9.0.80" ollama = "^0.1.8" gradio-client = "^0.16.1" replicate = "^0.25.1" gradio = "^4.29.0" fastembed = "^0.2.7" [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api"
489
TOML
18.599999
46
0.627812
AshisGhosh/roboai/shared/utils/isaacsim_client.py
import asyncio from shared.utils.http_client import post_request, get_image_request import io from PIL import Image from functools import wraps SERVER_NAME = "http://localhost:8080" async def _get_image() -> Image: img_data = await get_image_request(f"{SERVER_NAME}/get_image") return Image.open(io.BytesIO(img_data)) def get_image(): return asyncio.run(_get_image()) async def _add_task(task: str): return await post_request( f"{SERVER_NAME}/add_task", params=task, ) def add_task(task: str): return asyncio.run(_add_task(task)) def add_test_mode(func): @wraps(func) def wrapper(*args, **kwargs): if globals().get("test_mode", False): print("TEST MODE ENABLED") return True else: return func(*args, **kwargs) return wrapper def pick(object_name: str): print(f"picking {object_name}") task = {"task": "pick"} add_task(task) def place(object_name: str): print(f"placing {object_name}") print("placing object") task = {"task": "place"} print(f"Dummy task: {task}")
1,112
Python
19.611111
68
0.625
AshisGhosh/roboai/shared/utils/image_utils.py
import io import base64 from PIL import Image def pil_to_b64(image: Image) -> str: """Converts a PIL image to a base64 string.""" # Save the image to a bytes buffer buffer = io.BytesIO() image.save( buffer, format=image.format ) # You can change the format to PNG or other supported formats # Encode the buffer to base64 img_str = base64.b64encode(buffer.getvalue()).decode("utf-8") # Optionally, prepend the URI scheme to make it ready for HTML or data transfer img_base64 = f"data:image/jpeg;base64,{img_str}" return img_base64 def b64_to_pil(image_b64: str) -> Image: """Converts a base64 string to a PIL image.""" # Remove the URI scheme img_str = image_b64.split(",")[1] # Decode the base64 string img_bytes = base64.b64decode(img_str) # Convert bytes to PIL image image = Image.open(io.BytesIO(img_bytes)) return image
914
Python
26.727272
83
0.665208
AshisGhosh/roboai/shared/utils/robotic_grasping_client.py
import io import asyncio from shared.utils.http_client import get_request, post_request from typing import Any, Dict from PIL import Image import logging log = logging.getLogger("robotic_grasping_client") log.setLevel(logging.DEBUG) SERVER_NAME = "http://localhost:8003" async def _get_grasps_from_rgb_and_depth( rgb_image: Image, depth_image: Image ) -> Dict[str, Any]: log.debug("Getting grasp from GR-ConvNet") timeout = 30.0 image_byte_array = io.BytesIO() rgb_image.save(image_byte_array, format="JPEG") image_byte_array = image_byte_array.getvalue() log.debug("RGB image byte array saved") depth_image_byte_array = io.BytesIO() depth_image.save(depth_image_byte_array, format="JPEG") depth_image_byte_array = depth_image_byte_array.getvalue() log.debug("Depth image byte array saved") files = { "rgb_image": ("rgb_image.jpg", image_byte_array, "image/jpeg"), "depth_image": ("depth_image.jpg", depth_image_byte_array, "image/jpeg"), } response = await post_request( f"{SERVER_NAME}/get_grasps", files=files, timeout=timeout ) return response def get_grasps_from_rgb_and_depth( rgb_image: Image, depth_image: Image ) -> Dict[str, Any]: return asyncio.run(_get_grasps_from_rgb_and_depth(rgb_image, depth_image)) async def _check_server() -> str: response = await get_request(f"{SERVER_NAME}/") return response
1,432
Python
26.557692
81
0.682263
AshisGhosh/roboai/shared/utils/robosim_client.py
import asyncio from shared.utils.http_client import get_request, post_request, get_image_request import io from PIL import Image SERVER_NAME = "http://localhost:8000" async def _get_objects_on_table() -> list[str]: return await get_request(f"{SERVER_NAME}/get_objects") def get_objects_on_table(): return asyncio.run(_get_objects_on_table()) async def _get_image() -> Image: img_data = await get_image_request(f"{SERVER_NAME}/get_image") return Image.open(io.BytesIO(img_data)) def get_image(): return asyncio.run(_get_image()) async def _get_grasp_image() -> Image: img_data = await get_image_request(f"{SERVER_NAME}/get_grasp_image") return Image.open(io.BytesIO(img_data)) def get_grasp_image(): return asyncio.run(_get_grasp_image()) async def _open_gripper(): return await post_request( f"{SERVER_NAME}/add_task", data={"name": "open gripper", "type": "open_gripper", "args": ""}, ) def open_gripper(): return asyncio.run(_open_gripper()) async def _close_gripper(): return await post_request( f"{SERVER_NAME}/add_task", data={"name": "close gripper", "type": "close_gripper", "args": ""}, ) def close_gripper(): return asyncio.run(_close_gripper()) async def _go_to_pick_center(): return await post_request( f"{SERVER_NAME}/add_task", data={"name": "go to pick center", "type": "go_to_pick_center", "args": ""}, ) async def _get_grasp(object_name: str): return await post_request( f"{SERVER_NAME}/add_task", data={ "name": f"get grasp {object_name}", "type": "get_grasp", "args": object_name, }, ) def get_grasp(object_name: str): asyncio.run(_go_to_pick_center()) return asyncio.run(_get_grasp(object_name)) async def _go_to_pre_grasp(): return await post_request( f"{SERVER_NAME}/add_task", data={"name": "go to pre grasp", "type": "go_to_pre_grasp", "args": ""}, ) def go_to_pre_grasp(): return asyncio.run(_go_to_pre_grasp()) async def _go_to_grasp_position(): return await post_request( f"{SERVER_NAME}/add_task", data={"name": "go to grasp pos", "type": "go_to_grasp_position", "args": ""}, ) def go_to_grasp_position(): return asyncio.run(_go_to_grasp_position()) async def _go_to_drop(): return await post_request( f"{SERVER_NAME}/add_task", data={"name": "go to drop", "type": "go_to_drop", "args": ""}, ) def go_to_drop(): return asyncio.run(_go_to_drop()) def pick(object_name: str): get_grasp(object_name) go_to_pre_grasp() open_gripper() go_to_grasp_position() close_gripper() go_to_pre_grasp() def place(object_name: str): go_to_drop() open_gripper()
2,818
Python
21.552
85
0.606104
AshisGhosh/roboai/shared/utils/gradio_client.py
from PIL import Image from typing import Dict, Any import gradio_client from gradio_client import Client import time def moondream_answer_question_from_image(image: Image, question: str) -> Dict[str, Any]: client = Client("vikhyatk/moondream2") # client = Client("Kartik2503/ImageToText") image.save("/app/shared/data/tmp.png") start_time = time.time() result = client.predict( gradio_client.file("/app/shared/data/tmp.png"), question, api_name="/answer_question", ) print(f"[Gradio] Time taken: {time.time() - start_time}") return {"result": result} def qwen_vl_max_answer_question_from_image( image: Image, question: str ) -> Dict[str, Any]: client = Client("https://qwen-qwen-vl-max.hf.space/--replicas/fi9fr/") image.save("/app/shared/data/tmp.png") start_time = time.time() # result = client.predict( # fn_index=3 # ) # json_str = "/tmp/gradio/tmp0af5pyui.json" # result = client.predict( # json_str, # img_path, # str (filepath on your computer (or URL) of file) in '📁 Upload (上传文件)' Uploadbutton component # fn_index=5 # ) result = client.predict( # json_str, # "Hi", fn_index=2 ) print(f"[Gradio] Time taken: {time.time() - start_time}") return {"result": result}
1,334
Python
25.699999
111
0.622939
AshisGhosh/roboai/shared/utils/model_server_client.py
import io import asyncio from PIL import Image from typing import Any, Dict from shared.utils.http_client import post_request import logging log = logging.getLogger("model_server_client") log.setLevel(logging.INFO) SERVER_NAME = "http://localhost:8002" async def _answer_question_from_image(image: Image, question: str) -> Dict[str, Any]: timeout = 120.0 image_byte_array = io.BytesIO() image.save(image_byte_array, format="JPEG") image_byte_array = image_byte_array.getvalue() files = {"file": ("image.jpg", image_byte_array, "image/jpeg")} response = await post_request( f"{SERVER_NAME}/answer_question", files=files, params={"question": question}, timeout=timeout, ) return response def answer_question_from_image(image: Image, question: str) -> Dict[str, Any]: return asyncio.run(_answer_question_from_image(image, question)) async def _embed(text: str) -> Dict[str, Any]: log.debug(f"async _embed call: Embedding text: {text}") return await post_request(f"{SERVER_NAME}/embed", params={"text": text}) def embed(text: str) -> Dict[str, Any]: log.debug(f"Embedding text: {text}") loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) result = loop.run_until_complete(_embed(text)) loop.close() return result
1,331
Python
26.749999
85
0.676183
AshisGhosh/roboai/shared/utils/http_client.py
import httpx import logging from typing import Any, Dict, Optional from httpx import Timeout from dotenv import load_dotenv load_dotenv() log = logging.getLogger("http_client") log.setLevel(logging.DEBUG) TIMEOUT_DEFAULT = 5.0 async def post_request( url: str, params: Optional[Dict[str, Any]] = None, data: Optional[Dict[str, Any]] = None, files: Optional[Dict[str, Any]] = None, headers: Optional[Dict[str, Any]] = None, timeout: float = TIMEOUT_DEFAULT, ) -> Dict[str, Any]: timeout = Timeout(timeout) log.debug(f"Sending POST request to {url}:") log.debug(f" headers: {headers}") log.debug(f" params: {params}") log.debug(f" data: {data}") if files: log.debug(f" files len: {len(files)}") log.debug(f" timeout: {timeout}") try: async with httpx.AsyncClient(timeout=timeout) as client: response = await client.post( url, params=params, json=data, files=files, headers=headers, timeout=timeout, ) if response.status_code == 200: response = response.json() log.debug(f"Response: {response}") return response raise Exception(f"Error:{response.status_code}: {response.text}") except httpx.ReadTimeout as e: log.debug( f"Timeout sending POST request to {url} with params: {params} and timeout: {timeout}: {e}" ) return { "success": False, "text": f"httpx.ReadTimeout: Timeout sending POST request to {url} with params: {params} and timeout: {timeout}: {e}", } except Exception as e: log.debug( f"Error sending POST request to {url} with params: {params} and timeout: {timeout}: {e}" ) return { "success": False, "text": f"Error sending POST request to {url} with params: {params} and timeout: {timeout}: {e}", } async def get_request(url: str, timeout: float = TIMEOUT_DEFAULT) -> Dict[str, Any]: log.debug(f"Sending GET request to {url}") async with httpx.AsyncClient(timeout=timeout) as client: response = await client.get(url, timeout=timeout) log.debug(response) if response.status_code == 200: log.debug(f"Response: {response.json()}") return response.json() else: log.debug(f"Error: {response.text}") return {"success": False, "text": f"{response.status}{response.text}"} async def get_image_request(url: str, timeout: float = TIMEOUT_DEFAULT) -> bytes: log.debug(f"Sending GET request to {url}") async with httpx.AsyncClient(timeout=timeout) as client: response = await client.get(url, timeout=timeout) log.debug(response) if response.status_code == 200: image_data = bytearray() for chunk in response.iter_bytes(): image_data += chunk log.debug(f"Response: ({type(image_data)}) {image_data[:10]}") return image_data else: log.debug(f"Error: {response.text}") return b""
3,228
Python
32.989473
130
0.579926
AshisGhosh/roboai/shared/utils/grasp_client.py
import io import asyncio from shared.utils.http_client import get_request, post_request from typing import Any, Dict from PIL import Image SERVER_NAME = "http://localhost:8005" async def _get_grasp_from_image(image: Image) -> Dict[str, Any]: timeout = 30.0 image_byte_array = io.BytesIO() image.save(image_byte_array, format="JPEG") image_byte_array = image_byte_array.getvalue() files = {"file": ("image.jpg", image_byte_array, "image/jpeg")} response = await post_request(f"{SERVER_NAME}/detect", files=files, timeout=timeout) return response def get_grasp_from_image(image: Image) -> Dict[str, Any]: return asyncio.run(_get_grasp_from_image(image)) async def _check_server() -> str: response = await get_request(f"{SERVER_NAME}/") return response
801
Python
24.870967
88
0.692884
AshisGhosh/roboai/shared/utils/omnigibson_client.py
import asyncio from shared.utils.http_client import post_request, get_image_request, get_request import io from PIL import Image from shared.utils.llm_utils import get_closest_text_sync as get_closest_text SERVER_NAME = "http://localhost:8000" OMNIGIBSON_TIMEOUT = 30 async def _get_image() -> Image: img_data = await get_image_request( f"{SERVER_NAME}/get_image", timeout=OMNIGIBSON_TIMEOUT ) return Image.open(io.BytesIO(img_data)) def get_image(): response = asyncio.run(_get_image()) if isinstance(response, dict): return response.get("success", True) return response async def _get_visible_objects() -> dict: return await get_request( f"{SERVER_NAME}/get_visible_objects", timeout=OMNIGIBSON_TIMEOUT ) def get_visible_objects(): response = asyncio.run(_get_visible_objects()) if "success" in response.keys(): return response.get("success", True) return response["objects"] async def _get_obj_in_hand() -> dict: return await get_request( f"{SERVER_NAME}/get_obj_in_hand", timeout=OMNIGIBSON_TIMEOUT ) def get_obj_in_hand(): try: response = asyncio.run(_get_obj_in_hand()) return response["obj_in_hand"] except Exception as e: print(f"Error getting object in hand: {e}") return False async def _wait_until_ready() -> dict: await asyncio.sleep(1) return await get_request( f"{SERVER_NAME}/wait_until_ready", timeout=OMNIGIBSON_TIMEOUT ) def wait_until_ready(): try: response = asyncio.run(_wait_until_ready()) return response["is_ready"] except Exception as e: print(f"Error waiting until ready: {e}") return False async def _add_action(action: str): return await post_request( f"{SERVER_NAME}/add_action", params=action, timeout=OMNIGIBSON_TIMEOUT ) def add_action(action: str): response = asyncio.run(_add_action(action)) if isinstance(response, dict): return response.get("success", True) return response def pick(object_name: str): print(f"Attempting to pick {object_name}. Referencing against visible objects.") objects = get_visible_objects() object_name = get_closest_text(object_name, objects, threshold=0.2) print(f"picking object {object_name}") action = {"action": f"pick,{object_name}"} return add_action(action) def place(location: str): print(f"placing object in {location}") print("placing object") action = {"action": f"place,{location}"} return add_action(action) def navigate_to(object_name: str, location: str = None): print(f"navigating to {object_name}, {location}") if location: action = {"action": f"navigate_to,{object_name},{location}"} else: action = {"action": f"navigate_to_object,{object_name}"} return add_action(action)
2,883
Python
25.703703
84
0.660076
AshisGhosh/roboai/shared/utils/huggingface_client.py
import asyncio from shared.utils.http_client import post_request API_URL = "https://api-inference.huggingface.co/models/Efficient-Large-Model/VILA-2.7b" headers = {"Authorization": "Bearer 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"} async def _vila_query(text, image=None): json = {"inputs": text} response = await post_request(API_URL, headers=headers, data=json) print(response) return response def vila_query(text, image=None): return asyncio.run(_vila_query(text, image))
497
Python
28.294116
87
0.738431
AshisGhosh/roboai/shared/utils/replicate_client.py
from PIL import Image from typing import Dict, Any import replicate import time def moondream_answer_question_from_image(image: Image, question: str) -> Dict[str, Any]: image.save("/app/shared/data/tmp.png") image_handler = open("/app/shared/data/tmp.png", "rb") input = {"image": image_handler, "prompt": question} start_time = time.time() output = replicate.run( "lucataco/moondream2:392a53ac3f36d630d2d07ce0e78142acaccc338d6caeeb8ca552fe5baca2781e", input=input, ) output = "".join(output) print(f"[Replicate] Time taken: {time.time() - start_time}") return {"result": output}
636
Python
29.333332
95
0.683962
AshisGhosh/roboai/shared/utils/llm_utils.py
import litellm import ollama import logging import numpy as np from fastembed import TextEmbedding import asyncio from shared.utils.model_server_client import _embed from dotenv import load_dotenv load_dotenv("shared/.env") # take environment variables from .env. log = logging.getLogger("llm_utils") log.setLevel(logging.INFO) def log_debug(msg): log.debug(msg) # print(msg) def log_info(msg): log.info(msg) # print(msg) async def get_embedding_sentence_transformers(text): log_debug(f"Getting sentence_transformer/HF embedding for text: {text}") response = await _embed(text) return response["embedding"] def get_embedding_ollama(text): log_debug(f"Getting ollama embedding for text: {text}") response = ollama.embeddings(model="mxbai-embed-large", prompt=text) return response["embedding"] def get_embedding_litellm(text): log_debug(f"Getting litellm/HF embedding for text: {text}") response = litellm.embedding( model="huggingface/mixedbread-ai/mxbai-embed-large-v1", input=[text] ) log_debug(f"Embedding received: {response}") return response["data"][0]["embedding"] global fast_embed_model fast_embed_model = None def get_embedding_fastembed(text): global fast_embed_model if not fast_embed_model: fast_embed_model = TextEmbedding("mixedbread-ai/mxbai-embed-large-v1") embed = list(fast_embed_model.embed(text))[0] return embed async def get_embedding(text): log_debug(f"Getting embedding for text: {text}") return get_embedding_fastembed(text) def cosine_similarity(v1: np.ndarray, v2: np.ndarray) -> float: dot_product = np.dot(v1, v2) norm_v1 = np.linalg.norm(v1) norm_v2 = np.linalg.norm(v2) return dot_product / (norm_v1 * norm_v2) async def get_closest_text( text: str, text_list: list[str], k: int = 1, threshold: float = 0.5 ) -> str: log_info(f"Getting closest text for: '{text}' in list: {text_list}") query_vector = await get_embedding(text) log_debug(f"Query vector: {query_vector}") vectors = [await get_embedding(text) for text in text_list] similarities = [cosine_similarity(query_vector, vector) for vector in vectors] log_debug(f"Similarities: {similarities}") if k > 1: closest_indices = np.argsort(similarities)[-k:] log_info(f"Closest texts: {[text_list[i] for i in closest_indices]}") return [text_list[i] for i in closest_indices] closest_index = np.argmax(similarities) if similarities[closest_index] < threshold: log_info(f"Similarity below threshold: {similarities[closest_index]}") return None log_info(f"Closest text: {text_list[closest_index]}") return text_list[closest_index] def get_closest_text_sync( text: str, text_list: list[str], k: int = 1, threshold: float = 0.5 ): return asyncio.run(get_closest_text(text, text_list, k, threshold)) async def get_most_important(texts: list[str] | str, k: int = 1): log_info(f"Getting most important text from: {texts}") if isinstance(texts, list): texts = " ".join(texts) texts_embedding = await get_embedding(texts) texts = texts.split() vectors = [await get_embedding(text) for text in texts] similarities = [cosine_similarity(texts_embedding, vector) for vector in vectors] log_debug(f"Similarities: {similarities}") closest_indices = np.argsort(similarities)[-k:] log_info(f"Closest texts: {[texts[i] for i in closest_indices]}") return [texts[i] for i in closest_indices] def get_most_important_sync(texts: list[str], k: int = 1): return asyncio.run(get_most_important(texts, k))
3,662
Python
29.781512
85
0.688422
AshisGhosh/roboai/grasping/scale_balanced_grasp/pyproject.toml
[tool.poetry] name = "scale-balanced-grasp" version = "0.1.0" description = "" authors = ["Ashis Ghosh <[email protected]>"] readme = "README.md" [tool.poetry.dependencies] python = "^3.10" [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api"
279
TOML
17.666665
47
0.691756
AshisGhosh/roboai/grasping/grasp_server/pyproject.toml
[tool.poetry] name = "grasp-server" version = "0.1.0" description = "" authors = ["AshisGhosh <[email protected]>"] readme = "README.md" [tool.poetry.dependencies] python = "^3.7" fastapi = "0.103.2" uvicorn = "0.22.0" python-multipart = "0.0.8" [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api"
335
TOML
17.666666
46
0.674627
AshisGhosh/roboai/grasping/grasp_server/README.md
Download weights linked here: https://github.com/stefan-ainetter/grasp_det_seg_cnn/tree/1cfeb2f239e0745e127055ad597461f1585a7e94 Model Weights: https://files.icg.tugraz.at/d/10296a970cc242aa90ff/ ResNet101 Weights: https://files.icg.tugraz.at/d/1e84f72c1109485ba9f9/
269
Markdown
43.999993
128
0.828996
AshisGhosh/roboai/grasping/grasp_server/app/main.py
#!/usr/bin/python -u import io import base64 import numpy as np import cv2 from fastapi import FastAPI, File, UploadFile from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse from grasp_server.grasp_det_seg import GraspServer import logging logging.basicConfig(level=logging.INFO) # Create GraspServer instance grasp = GraspServer() # Create FastAPI instance app = FastAPI() # List of allowed origins (you can use '*' to allow all origins) origins = [ "http://localhost:3000", # Allow your Next.js app # Add any other origins as needed ] # Add CORSMiddleware to the application app.add_middleware( CORSMiddleware, allow_origins=origins, # List of allowed origins allow_credentials=True, allow_methods=["*"], # Allow all methods allow_headers=["*"], # Allow all headers ) # Example route @app.get("/") async def read_root(): return {"message": "Hello, FastAPI! This is the grasp server."} @app.post("/detect") async def detect(file: UploadFile = File(...)): # Read the image file image_bytes = await file.read() nparr = np.frombuffer(image_bytes, np.uint8) # Decode the image image = cv2.imdecode(nparr, cv2.IMREAD_COLOR) # Perform object detection result, img = grasp.detect(image) # Return the result return JSONResponse(content={"result": result, "image": get_image_response(img)}) @app.post("/test") async def test(): result, img = grasp.test_detect() return JSONResponse(content={"result": result, "image": get_image_response(img)}) def get_image_response(image): buf = io.BytesIO() image.save(buf, format="JPEG") buf.seek(0) base64_image = base64.b64encode(buf.getvalue()).decode("utf-8") return base64_image # return StreamingResponse(buf, media_type="image/jpeg")
1,834
Python
23.797297
85
0.698473
AshisGhosh/roboai/grasping/grasp_server/grasp_server/test_grasp_det_seg.py
import argparse import time import os import numpy as np import scipy import cv2 from functools import partial import torch import torch.optim as optim import torch.utils.data as data from torch import distributed import grasp_det_seg.models as models from grasp_det_seg.algos.detection import ( PredictionGenerator, ProposalMatcher, DetectionLoss, ) from grasp_det_seg.algos.fpn import DetectionAlgoFPN, RPNAlgoFPN from grasp_det_seg.algos.rpn import AnchorMatcher, ProposalGenerator, RPNLoss from grasp_det_seg.algos.semantic_seg import SemanticSegAlgo, SemanticSegLoss from grasp_det_seg.config import load_config from grasp_det_seg.data_OCID import iss_collate_fn, OCIDTestDataset, OCIDTestTransform from grasp_det_seg.data_OCID.OCID_class_dict import colors_list from grasp_det_seg.data_OCID.sampler import DistributedARBatchSampler from grasp_det_seg.models.det_seg import DetSegNet from grasp_det_seg.modules.fpn import FPN, FPNBody from grasp_det_seg.modules.heads import RPNHead, FPNROIHead, FPNSemanticHeadDeeplab from grasp_det_seg.utils import logging from grasp_det_seg.utils.meters import AverageMeter from grasp_det_seg.utils.misc import ( config_to_string, scheduler_from_config, norm_act_from_config, freeze_params, NORM_LAYERS, OTHER_LAYERS, ) from grasp_det_seg.utils.parallel import DistributedDataParallel from grasp_det_seg.utils.snapshot import resume_from_snapshot parser = argparse.ArgumentParser( description="OCID detection and segmentation test script" ) parser.add_argument("--local_rank", type=int) parser.add_argument( "--log_dir", type=str, default=".", help="Write logs to the given directory" ) parser.add_argument( "config", metavar="FILE", type=str, help="Path to configuration file" ) parser.add_argument("model", metavar="FILE", type=str, help="Path to model file") parser.add_argument("data", metavar="DIR", type=str, help="Path to dataset") parser.add_argument("out_dir", metavar="DIR", type=str, help="Path to output directory") def save_param_file(writer, param_file): data_sum = "" with open(param_file) as fp: Lines = fp.readlines() for line in Lines: data_sum += line + " \n" writer.add_text("dataset_parameters", data_sum) return def ensure_dir(dir_path): try: os.mkdir(dir_path) except FileExistsError: pass def Rotate2D(pts, cnt, ang): ang = np.deg2rad(ang) return ( scipy.dot( pts - cnt, scipy.array( [[scipy.cos(ang), scipy.sin(ang)], [-scipy.sin(ang), scipy.cos(ang)]] ), ) + cnt ) def save_prediction_image(raw_pred, img_abs_path, img_root_path, im_size, out_dir): num_classes_theta = 18 # grasp candidate confidence threshold threshold = 0.06 iou_seg_threshold = 100 # in px for i, (sem_pred, bbx_pred, cls_pred, obj_pred) in enumerate( zip( raw_pred["sem_pred"], raw_pred["bbx_pred"], raw_pred["cls_pred"], raw_pred["obj_pred"], ) ): item = os.path.join(img_root_path[i], img_abs_path[i]) im_size_ = im_size[i] ensure_dir(out_dir) seq_path, im_name = item.split(",") sem_pred = np.asarray(sem_pred.detach().cpu().numpy(), dtype=np.uint8) seg_mask_vis = np.zeros((im_size_[0], im_size_[1], 3)) cls_labels = np.unique(sem_pred) img_path = os.path.join(img_root_path[i], seq_path, "rgb", im_name) mask_path = os.path.join( img_root_path[i], seq_path, "seg_mask_labeled_combi", im_name ) img = cv2.imread(img_path) img_best_boxes = np.copy(img) mask_gt = cv2.imread(mask_path, cv2.IMREAD_UNCHANGED) for cnt, label in enumerate(cls_labels): if label == 0: continue seg_mask_vis[sem_pred == label] = colors_list[label] mask_per_label = np.zeros_like(sem_pred) mask_per_label_gt = np.zeros_like(sem_pred) mask_per_label[sem_pred == label] = 1 mask_per_label_gt[mask_gt == label] = 1 if sum(map(sum, mask_per_label)) < iou_seg_threshold: continue ensure_dir(out_dir) out_path = os.path.join(out_dir, im_name[:-4] + ".png") img_mask = img * 0.25 + seg_mask_vis * 0.75 if bbx_pred is None: continue anno_per_class_dir = os.path.join( os.path.join( img_root_path[i], seq_path, "Annotations_per_class", im_name[:-4] ) ) for class_dir in os.listdir(anno_per_class_dir): if not os.path.isdir(os.path.join(anno_per_class_dir, class_dir)): continue best_confidence = 0.0 r_bbox_best = None for bbx_pred_i, cls_pred_i, obj_pred_i in zip(bbx_pred, cls_pred, obj_pred): if obj_pred_i.item() > threshold: pt1 = (int(bbx_pred_i[0]), int(bbx_pred_i[1])) pt2 = (int(bbx_pred_i[2]), int(bbx_pred_i[3])) cls = cls_pred_i.item() if cls > 17: assert False theta = ((180 / num_classes_theta) * cls) + 5 pts = scipy.array( [ [pt1[0], pt1[1]], [pt2[0], pt1[1]], [pt2[0], pt2[1]], [pt1[0], pt2[1]], ] ) cnt = scipy.array( [ (int(bbx_pred_i[0]) + int(bbx_pred_i[2])) / 2, (int(bbx_pred_i[1]) + int(bbx_pred_i[3])) / 2, ] ) r_bbox_ = Rotate2D(pts, cnt, 90 - theta) r_bbox_ = r_bbox_.astype("int16") if (int(cnt[1]) >= im_size_[0]) or (int(cnt[0]) >= im_size_[1]): continue if sem_pred[int(cnt[1]), int(cnt[0])] == int(class_dir): if obj_pred_i.item() >= best_confidence: best_confidence = obj_pred_i.item() r_bbox_best = r_bbox_ if r_bbox_best is not None: cv2.line( img_best_boxes, tuple(r_bbox_best[0]), tuple(r_bbox_best[1]), (255, 0, 0), 2, ) cv2.line( img_best_boxes, tuple(r_bbox_best[1]), tuple(r_bbox_best[2]), (0, 0, 255), 2, ) cv2.line( img_best_boxes, tuple(r_bbox_best[2]), tuple(r_bbox_best[3]), (255, 0, 0), 2, ) cv2.line( img_best_boxes, tuple(r_bbox_best[3]), tuple(r_bbox_best[0]), (0, 0, 255), 2, ) res = np.hstack((img, img_best_boxes, img_mask)) scale_percent = 75 # percent of original size width = int(res.shape[1] * scale_percent / 100) height = int(res.shape[0] * scale_percent / 100) dim = (width, height) # resize image resized = cv2.resize(res, dim, interpolation=cv2.INTER_AREA) cv2.imwrite(out_path, resized) return def log_debug(msg, *args, **kwargs): if distributed.get_rank() == 0: logging.get_logger().debug(msg, *args, **kwargs) def log_info(msg, *args, **kwargs): if distributed.get_rank() == 0: logging.get_logger().info(msg, *args, **kwargs) def make_config(args): log_debug("Loading configuration from %s", args.config) conf = load_config(args.config, args.config) log_debug("\n%s", config_to_string(conf)) return conf def make_dataloader(args, config, rank, world_size): config = config["dataloader"] log_debug("Creating dataloaders for dataset in %s", args.data) # Validation dataloader val_tf = OCIDTestTransform( config.getint("shortest_size"), config.getint("longest_max_size"), config.getstruct("rgb_mean"), config.getstruct("rgb_std"), ) config["root_path"] = "/app/data/OCID_grasp" val_db = OCIDTestDataset(args.data, config["root_path"], config["test_set"], val_tf) val_sampler = DistributedARBatchSampler( val_db, config.getint("val_batch_size"), world_size, rank, False ) val_dl = data.DataLoader( val_db, batch_sampler=val_sampler, collate_fn=iss_collate_fn, pin_memory=True, num_workers=config.getint("num_workers"), ) return val_dl def make_model(config): body_config = config["body"] fpn_config = config["fpn"] rpn_config = config["rpn"] roi_config = config["roi"] sem_config = config["sem"] general_config = config["general"] classes = { "total": int(general_config["num_things"]) + int(general_config["num_stuff"]), "stuff": int(general_config["num_stuff"]), "thing": int(general_config["num_things"]), "semantic": int(general_config["num_semantic"]), } # BN + activation norm_act_static, norm_act_dynamic = norm_act_from_config(body_config) # Create backbone log_debug("Creating backbone model %s", body_config["body"]) body_fn = models.__dict__["net_" + body_config["body"]] body_params = ( body_config.getstruct("body_params") if body_config.get("body_params") else {} ) body = body_fn(norm_act=norm_act_static, **body_params) if body_config.get("weights"): body_config["weights"] = "/app/data/weights/resnet101" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") body.load_state_dict(torch.load(body_config["weights"], map_location=device)) # Freeze parameters for n, m in body.named_modules(): for mod_id in range(1, body_config.getint("num_frozen") + 1): if ("mod%d" % mod_id) in n: freeze_params(m) body_channels = body_config.getstruct("out_channels") # Create FPN fpn_inputs = fpn_config.getstruct("inputs") fpn = FPN( [body_channels[inp] for inp in fpn_inputs], fpn_config.getint("out_channels"), fpn_config.getint("extra_scales"), norm_act_static, fpn_config["interpolation"], ) body = FPNBody(body, fpn, fpn_inputs) # Create RPN proposal_generator = ProposalGenerator( rpn_config.getfloat("nms_threshold"), rpn_config.getint("num_pre_nms_train"), rpn_config.getint("num_post_nms_train"), rpn_config.getint("num_pre_nms_val"), rpn_config.getint("num_post_nms_val"), rpn_config.getint("min_size"), ) anchor_matcher = AnchorMatcher( rpn_config.getint("num_samples"), rpn_config.getfloat("pos_ratio"), rpn_config.getfloat("pos_threshold"), rpn_config.getfloat("neg_threshold"), rpn_config.getfloat("void_threshold"), ) rpn_loss = RPNLoss(rpn_config.getfloat("sigma")) rpn_algo = RPNAlgoFPN( proposal_generator, anchor_matcher, rpn_loss, rpn_config.getint("anchor_scale"), rpn_config.getstruct("anchor_ratios"), fpn_config.getstruct("out_strides"), rpn_config.getint("fpn_min_level"), rpn_config.getint("fpn_levels"), ) rpn_head = RPNHead( fpn_config.getint("out_channels"), len(rpn_config.getstruct("anchor_ratios")), 1, rpn_config.getint("hidden_channels"), norm_act_dynamic, ) # Create detection network prediction_generator = PredictionGenerator( roi_config.getfloat("nms_threshold"), roi_config.getfloat("score_threshold"), roi_config.getint("max_predictions"), ) proposal_matcher = ProposalMatcher( classes, roi_config.getint("num_samples"), roi_config.getfloat("pos_ratio"), roi_config.getfloat("pos_threshold"), roi_config.getfloat("neg_threshold_hi"), roi_config.getfloat("neg_threshold_lo"), roi_config.getfloat("void_threshold"), ) roi_loss = DetectionLoss(roi_config.getfloat("sigma")) roi_size = roi_config.getstruct("roi_size") roi_algo = DetectionAlgoFPN( prediction_generator, proposal_matcher, roi_loss, classes, roi_config.getstruct("bbx_reg_weights"), roi_config.getint("fpn_canonical_scale"), roi_config.getint("fpn_canonical_level"), roi_size, roi_config.getint("fpn_min_level"), roi_config.getint("fpn_levels"), ) roi_head = FPNROIHead( fpn_config.getint("out_channels"), classes, roi_size, norm_act=norm_act_dynamic ) # Create semantic segmentation network sem_loss = SemanticSegLoss(ohem=sem_config.getfloat("ohem")) sem_algo = SemanticSegAlgo(sem_loss, classes["semantic"]) sem_head = FPNSemanticHeadDeeplab( fpn_config.getint("out_channels"), sem_config.getint("fpn_min_level"), sem_config.getint("fpn_levels"), classes["semantic"], pooling_size=sem_config.getstruct("pooling_size"), norm_act=norm_act_static, ) # Create final network return DetSegNet( body, rpn_head, roi_head, sem_head, rpn_algo, roi_algo, sem_algo, classes ) def make_optimizer(config, model, epoch_length): body_config = config["body"] opt_config = config["optimizer"] sch_config = config["scheduler"] # Gather parameters from the network norm_parameters = [] other_parameters = [] for m in model.modules(): if any(isinstance(m, layer) for layer in NORM_LAYERS): norm_parameters += [p for p in m.parameters() if p.requires_grad] elif any(isinstance(m, layer) for layer in OTHER_LAYERS): other_parameters += [p for p in m.parameters() if p.requires_grad] assert len(norm_parameters) + len(other_parameters) == len( [p for p in model.parameters() if p.requires_grad] ), "Not all parameters that require grad are accounted for in the optimizer" # Set-up optimizer hyper-parameters parameters = [ { "params": norm_parameters, "lr": opt_config.getfloat("lr") if not body_config.getboolean("bn_frozen") else 0.0, "weight_decay": opt_config.getfloat("weight_decay") if opt_config.getboolean("weight_decay_norm") else 0.0, }, { "params": other_parameters, "lr": opt_config.getfloat("lr"), "weight_decay": opt_config.getfloat("weight_decay"), }, ] optimizer = optim.SGD( parameters, momentum=opt_config.getfloat("momentum"), nesterov=opt_config.getboolean("nesterov"), ) scheduler = scheduler_from_config(sch_config, optimizer, epoch_length) assert sch_config["update_mode"] in ("batch", "epoch") batch_update = sch_config["update_mode"] == "batch" total_epochs = sch_config.getint("epochs") return optimizer, scheduler, batch_update, total_epochs def test(model, dataloader, **varargs): model.eval() dataloader.batch_sampler.set_epoch(0) data_time_meter = AverageMeter(()) batch_time_meter = AverageMeter(()) data_time = time.time() for it, batch in enumerate(dataloader): print("Batch no. : " + str(it)) with torch.no_grad(): # Extract data img = batch["img"].cuda(device=varargs["device"], non_blocking=True) # img = batch["img"] abs_paths = batch["abs_path"] root_paths = batch["root_path"] im_size = batch["im_size"] data_time_meter.update(torch.tensor(time.time() - data_time)) batch_time = time.time() # Run network _, pred, conf = model(img=img, do_loss=False, do_prediction=True) # Update meters batch_time_meter.update(torch.tensor(time.time() - batch_time)) varargs["save_function"](pred, abs_paths, root_paths, im_size) data_time = time.time() def test_model(model, img): # img may be limited to 640x480 model.eval() with torch.no_grad(): # Run network _, pred, conf = model(img=img, do_loss=False, do_prediction=True) def main(args): # Adjust backend based on CUDA availability backend = "nccl" if torch.cuda.is_available() else "gloo" distributed.init_process_group(backend=backend, init_method="env://") if torch.cuda.is_available(): device_id, device = args.local_rank, torch.device(f"cuda:{args.local_rank}") torch.cuda.set_device(device_id) else: device_id, device = None, torch.device("cpu") rank, world_size = distributed.get_rank(), distributed.get_world_size() # Load configuration config = make_config(args) # Create dataloaders test_dataloader = make_dataloader(args, config, rank, world_size) # Create model model = make_model(config) log_debug("Loading snapshot from %s", args.model) resume_from_snapshot( model, args.model, ["body", "rpn_head", "roi_head", "sem_head"] ) # Initialize GPU specific settings if a GPU is available if torch.cuda.is_available(): torch.backends.cudnn.benchmark = config["general"].getboolean("cudnn_benchmark") if torch.cuda.is_available() and "cuda" in device.type: model = model.cuda(device) model = DistributedDataParallel( model, device_ids=[device_id], output_device=device_id, find_unused_parameters=True, ) else: # Adjust the model for CPU-based distributed computing if necessary # Note: You might need to adjust this part based on your specific needs and setup model = DistributedDataParallel( model, device_ids=None, output_device=None, find_unused_parameters=True ) save_function = partial(save_prediction_image, out_dir=args.out_dir) test( model, test_dataloader, device=device, summary=None, log_interval=config["general"].getint("log_interval"), save_function=save_function, ) if __name__ == "__main__": main(parser.parse_args())
18,729
Python
32.808664
89
0.576966
AshisGhosh/roboai/grasping/grasp_server/grasp_server/grasp_det_seg.py
import numpy as np import torch from PIL import Image import cv2 import scipy import copy import grasp_det_seg.models as models from grasp_det_seg.modules.fpn import FPN, FPNBody from grasp_det_seg.algos.rpn import ProposalGenerator, AnchorMatcher, RPNLoss from grasp_det_seg.algos.fpn import RPNAlgoFPN, DetectionAlgoFPN from grasp_det_seg.modules.heads import RPNHead, FPNROIHead, FPNSemanticHeadDeeplab from grasp_det_seg.algos.detection import ( PredictionGenerator, ProposalMatcher, DetectionLoss, ) from grasp_det_seg.algos.semantic_seg import SemanticSegLoss, SemanticSegAlgo from grasp_det_seg.models.det_seg import DetSegNet from grasp_det_seg.config import load_config from grasp_det_seg.utils.misc import ( config_to_string, norm_act_from_config, freeze_params, ) from grasp_det_seg.data_OCID import OCIDTestTransform from grasp_det_seg.utils.parallel import PackedSequence from grasp_det_seg.data_OCID.OCID_class_dict import cls_list, colors_list from grasp_det_seg.utils.snapshot import resume_from_snapshot import logging def log_debug(msg, *args): logging.getLogger().debug(msg, *args) def log_info(msg, *args): logging.getLogger().info(msg, *args) def Rotate2D(pts, cnt, ang): ang = np.deg2rad(ang) return ( scipy.dot( pts - cnt, scipy.array( [[scipy.cos(ang), scipy.sin(ang)], [-scipy.sin(ang), scipy.cos(ang)]] ), ) + cnt ) def make_config(config_path): log_debug("Loading configuration from %s", config_path) conf = load_config(config_path, config_path) log_debug("\n%s", config_to_string(conf)) return conf def make_model(config): body_config = config["body"] fpn_config = config["fpn"] rpn_config = config["rpn"] roi_config = config["roi"] sem_config = config["sem"] general_config = config["general"] classes = { "total": int(general_config["num_things"]) + int(general_config["num_stuff"]), "stuff": int(general_config["num_stuff"]), "thing": int(general_config["num_things"]), "semantic": int(general_config["num_semantic"]), } # BN + activation norm_act_static, norm_act_dynamic = norm_act_from_config(body_config) # Create backbone log_debug("Creating backbone model %s", body_config["body"]) # body_fn = models.__dict__["net_" + body_config["body"]] body_fn = models.__dict__["net_resnet101"] body_params = ( body_config.getstruct("body_params") if body_config.get("body_params") else {} ) body = body_fn(norm_act=norm_act_static, **body_params) # if body_config.get("weights"): # body_config["weights"] = "/app/data/weights/resnet101" # body.load_state_dict(torch.load(body_config["weights"], map_location="cpu")) weights_path = "/app/data/weights/resnet101" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") body.load_state_dict(torch.load(weights_path, map_location=device)) # Freeze parameters for n, m in body.named_modules(): for mod_id in range(1, body_config.getint("num_frozen") + 1): if ("mod%d" % mod_id) in n: freeze_params(m) body_channels = body_config.getstruct("out_channels") # Create FPN fpn_inputs = fpn_config.getstruct("inputs") fpn = FPN( [body_channels[inp] for inp in fpn_inputs], fpn_config.getint("out_channels"), fpn_config.getint("extra_scales"), norm_act_static, fpn_config["interpolation"], ) body = FPNBody(body, fpn, fpn_inputs) # Create RPN proposal_generator = ProposalGenerator( rpn_config.getfloat("nms_threshold"), rpn_config.getint("num_pre_nms_train"), rpn_config.getint("num_post_nms_train"), rpn_config.getint("num_pre_nms_val"), rpn_config.getint("num_post_nms_val"), rpn_config.getint("min_size"), ) anchor_matcher = AnchorMatcher( rpn_config.getint("num_samples"), rpn_config.getfloat("pos_ratio"), rpn_config.getfloat("pos_threshold"), rpn_config.getfloat("neg_threshold"), rpn_config.getfloat("void_threshold"), ) rpn_loss = RPNLoss(rpn_config.getfloat("sigma")) rpn_algo = RPNAlgoFPN( proposal_generator, anchor_matcher, rpn_loss, rpn_config.getint("anchor_scale"), rpn_config.getstruct("anchor_ratios"), fpn_config.getstruct("out_strides"), rpn_config.getint("fpn_min_level"), rpn_config.getint("fpn_levels"), ) rpn_head = RPNHead( fpn_config.getint("out_channels"), len(rpn_config.getstruct("anchor_ratios")), 1, rpn_config.getint("hidden_channels"), norm_act_dynamic, ) # Create detection network prediction_generator = PredictionGenerator( roi_config.getfloat("nms_threshold"), roi_config.getfloat("score_threshold"), roi_config.getint("max_predictions"), ) proposal_matcher = ProposalMatcher( classes, roi_config.getint("num_samples"), roi_config.getfloat("pos_ratio"), roi_config.getfloat("pos_threshold"), roi_config.getfloat("neg_threshold_hi"), roi_config.getfloat("neg_threshold_lo"), roi_config.getfloat("void_threshold"), ) roi_loss = DetectionLoss(roi_config.getfloat("sigma")) roi_size = roi_config.getstruct("roi_size") roi_algo = DetectionAlgoFPN( prediction_generator, proposal_matcher, roi_loss, classes, roi_config.getstruct("bbx_reg_weights"), roi_config.getint("fpn_canonical_scale"), roi_config.getint("fpn_canonical_level"), roi_size, roi_config.getint("fpn_min_level"), roi_config.getint("fpn_levels"), ) roi_head = FPNROIHead( fpn_config.getint("out_channels"), classes, roi_size, norm_act=norm_act_dynamic ) # Create semantic segmentation network sem_loss = SemanticSegLoss(ohem=sem_config.getfloat("ohem")) sem_algo = SemanticSegAlgo(sem_loss, classes["semantic"]) sem_head = FPNSemanticHeadDeeplab( fpn_config.getint("out_channels"), sem_config.getint("fpn_min_level"), sem_config.getint("fpn_levels"), classes["semantic"], pooling_size=sem_config.getstruct("pooling_size"), norm_act=norm_act_static, ) # Create final network return DetSegNet( body, rpn_head, roi_head, sem_head, rpn_algo, roi_algo, sem_algo, classes ) def test(model, img, visualize=True, **varargs): model.eval() shortest_size = 480 longest_max_size = 640 rgb_mean = (0.485, 0.456, 0.406) rgb_std = (0.229, 0.224, 0.225) preprocess = OCIDTestTransform( shortest_size=shortest_size, longest_max_size=longest_max_size, rgb_mean=rgb_mean, rgb_std=rgb_std, ) img_tensor, im_size = preprocess(img) with torch.no_grad(): # Extract data packed_img = PackedSequence(img_tensor) print(packed_img[0].shape) # exit() # Run network _, pred, conf = model(img=packed_img, do_loss=False, do_prediction=True) # Update meters res = output_pred(pred, img, im_size, visualize) return res def output_pred(raw_pred, img, im_size_, visualize): # https://github.com/stefan-ainetter/grasp_det_seg_cnn/blob/main/grasp_det_seg/data_OCID/OCID_class_dict.py # ^ class_list and color_list output = [] for i, (sem_pred, bbx_pred, cls_pred, obj_pred) in enumerate( zip( raw_pred["sem_pred"], raw_pred["bbx_pred"], raw_pred["cls_pred"], raw_pred["obj_pred"], ) ): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") sem_pred = sem_pred.to(device) sem_pred = np.asarray(sem_pred.detach().cpu().numpy(), dtype=np.uint8) # print(f"sem_pred: {sem_pred.shape}") # print(f"bbx_pred: {bbx_pred.shape}") # print(f"cls_pred: {cls_pred.shape}") # print(f"obj_pred: {obj_pred.shape}") seg_mask_vis = np.zeros((im_size_[0], im_size_[1], 3)) cls_labels = np.unique(sem_pred) for cls in cls_labels: seg_mask_vis[sem_pred == cls] = colors_list[cls] mask_per_label = np.zeros_like(sem_pred) mask_per_label[sem_pred == cls] = 1 iou_seg = np.sum(mask_per_label) if iou_seg < 100: continue # cv2.imshow(f"Mask {cls_list[cls]}", mask_per_label.astype(np.uint8)*255) # cv2.waitKey(0) print(f"{cls_list[cls]} {sum(map(sum,mask_per_label))}") # mask_per_label = mask_per_label.astype(np.uint8) * 255 try: img_mask = img * 0.25 + seg_mask_vis * 0.75 except ValueError as e: log_debug(f"Error: {e}") img_mask = seg_mask_vis img_mask = img_mask.astype(np.uint8) * 255 for cls in cls_labels: if cls == 0: continue best_confidence = 0 bbox_best = None r_bbox_best = None print(f"Getting best for cls: {cls} {cls_list[cls]}") for bbx_pred_i, cls_pred_i, obj_pred_i in zip(bbx_pred, cls_pred, obj_pred): threshold = 0.06 cnt = np.array( [ (int(bbx_pred_i[0]) + int(bbx_pred_i[2])) / 2, (int(bbx_pred_i[1]) + int(bbx_pred_i[3])) / 2, ] ) if (int(cnt[1]) >= im_size_[0]) or (int(cnt[0]) >= im_size_[1]): continue actual_class = sem_pred[int(cnt[1]), int(cnt[0])] if actual_class != cls: continue if obj_pred_i.item() > threshold: # print(f"obj_pred_i: {obj_pred_i.item()}") # print(f"cls_pred_i: {cls_pred_i} {cls_list[cls_pred_i.item()]}") # print(f"bbx_pred_i: {bbx_pred_i}") pt1 = (int(bbx_pred_i[0]), int(bbx_pred_i[1])) pt2 = (int(bbx_pred_i[2]), int(bbx_pred_i[3])) newcls = cls_pred_i.item() if newcls > 17: assert False num_classes_theta = 18 # theta = ((180 / num_classes_theta) * newcls) + 5 # 5 degrees offset? theta = (180 / num_classes_theta) * newcls pts = np.array( [ [pt1[0], pt1[1]], [pt2[0], pt1[1]], [pt2[0], pt2[1]], [pt1[0], pt2[1]], ] ) cnt = np.array( [ (int(bbx_pred_i[0]) + int(bbx_pred_i[2])) / 2, (int(bbx_pred_i[1]) + int(bbx_pred_i[3])) / 2, ] ) r_bbox_ = Rotate2D(pts, cnt, 90 - theta) r_bbox_ = r_bbox_.astype("int16") # print(f"r_bbox_: {r_bbox_}") # if (int(cnt[1]) >= im_size_[0]) or (int(cnt[0]) >= im_size_[1]): # continue # filter out gripper - any result with the center in the bottom 100 pixels # TODO: find a better solution if cnt[1] > im_size_[0] - 100: continue # if sem_pred[int(cnt[1]), int(cnt[0])] == cls: # print(f"Seg class: {cls_list[sem_pred[int(cnt[1]), int(cnt[0])]]}") if obj_pred_i.item() >= best_confidence: best_confidence = obj_pred_i.item() bbox_best = bbx_pred_i r_bbox_best = copy.deepcopy(r_bbox_) if bbox_best is not None: res = { "cls": cls, "obj": best_confidence, "bbox": bbox_best, "r_bbox": r_bbox_best, } cnt = np.array( [ (int(bbox_best[0]) + int(bbox_best[2])) / 2, (int(bbox_best[1]) + int(bbox_best[3])) / 2, ] ) print( f"res {cls_list[cls]} | {cls_list[sem_pred[int(cnt[1]), int(cnt[0])]]}: {res}" ) output.append(res) pt1 = (int(bbox_best[0]), int(bbox_best[1])) pt2 = (int(bbox_best[2]), int(bbox_best[3])) # cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2) cv2.putText( img_mask, cls_list[cls], (int(bbox_best[0]), int(bbox_best[1])), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA, ) if r_bbox_best is not None: cv2.line( img_mask, tuple(r_bbox_best[0]), tuple(r_bbox_best[1]), (255, 0, 0), 2, ) cv2.line( img_mask, tuple(r_bbox_best[1]), tuple(r_bbox_best[2]), (0, 0, 255), 2, ) cv2.line( img_mask, tuple(r_bbox_best[2]), tuple(r_bbox_best[3]), (255, 0, 0), 2, ) cv2.line( img_mask, tuple(r_bbox_best[3]), tuple(r_bbox_best[0]), (0, 0, 255), 2, ) # print(f"output: {output}") # img_mask = (img * 0.25 + seg_mask_vis * 0.75) # img_mask = img_mask.astype(np.uint8)*255 if visualize: cv2.imshow("Image Mask", img_mask) cv2.waitKey(0) return output, img_mask class GraspServer: def __init__(self): config_path = "/app/data/config/test.ini" print(f"Loading configuration from {config_path}") config = make_config(config_path) print("Creating model...") self.model = make_model(config) weights_path = "/app/data/weights/model_last.pth.tar" log_debug("Loading snapshot from %s", weights_path) resume_from_snapshot( self.model, weights_path, ["body", "rpn_head", "roi_head", "sem_head"] ) self.visualize = False def detect(self, img): res, img = test(self.model, img, visualize=self.visualize) # Convert to JSON serializable format res_dict = [] for r in res: res_dict.append( { "cls": int(r["cls"]), "cls_name": cls_list[int(r["cls"])], "obj": r["obj"], "bbox": r["bbox"].tolist(), "r_bbox": r["r_bbox"].tolist(), } ) return res_dict, Image.fromarray(img) def detect_from_path(self, img_path): img_bgr = cv2.imread(img_path) img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) return self.detect(img_rgb) def test_detect(self): return self.detect_from_path( "/app/data/OCID_grasp/ARID20/table/top/seq08/rgb/result_2018-08-21-14-44-31.png" ) if __name__ == "__main__": print("Testing Grasp_Det_Seg") config_path = "/app/data/config/test.ini" print(f"Loading configuration from {config_path}") config = make_config(config_path) print("Creating model...") model = make_model(config) weights_path = "/app/data/weights/model_last.pth.tar" log_debug("Loading snapshot from %s", weights_path) snapshot = resume_from_snapshot( model, weights_path, ["body", "rpn_head", "roi_head", "sem_head"] ) # rank, world_size = distributed.get_rank(), distributed.get_world_size() # model = DistributedDataParallel(model, device_ids=None, output_device=None, find_unused_parameters=True) print("Loading image...") # img_path = "/app/data/OCID_grasp/ARID20/table/top/seq12/rgb/result_2018-08-21-16-53-16.png" # img_path = "/app/data/OCID_grasp/ARID20/table/top/seq04/rgb/result_2018-08-21-12-13-01.png" # img_path="/app/data/OCID_grasp/ARID20/table/top/seq08/rgb/result_2018-08-21-14-44-31.png" img_path = "/app/data/test.png" img_bgr = cv2.imread(img_path) img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) # cv2.imshow("Image", img_rgb) # cv2.waitKey(0) print("Testing model...") test(model, img_rgb)
17,224
Python
34.010163
111
0.521598
AshisGhosh/roboai/grasping/robotic_grasping_server/pyproject.toml
[tool.poetry] name = "robotic-grasping-server" version = "0.1.0" description = "" authors = ["AshisGhosh <[email protected]>"] readme = "README.md" [tool.poetry.dependencies] python = "^3.10" fastapi = "^0.110.1" uvicorn = "^0.29.0" python-multipart = "^0.0.9" [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api"
350
TOML
18.499999
46
0.677143
AshisGhosh/roboai/grasping/robotic_grasping_server/app/main.py
from PIL import Image from fastapi import FastAPI, File, UploadFile from fastapi.middleware.cors import CORSMiddleware from robotic_grasping_server.robotic_grasping import GraspGenerator import logging log = logging.getLogger("robotic_grasping_server app") log.setLevel(logging.INFO) app = FastAPI() grasp = GraspGenerator(visualize=True) # List of allowed origins (you can use '*' to allow all origins) origins = [ "http://localhost:3000", # Allow your Next.js app # Add any other origins as needed ] # Add CORSMiddleware to the application app.add_middleware( CORSMiddleware, allow_origins=origins, # List of allowed origins allow_credentials=True, allow_methods=["*"], # Allow all methods allow_headers=["*"], # Allow all headers ) @app.get("/") async def read_root(): return {"message": "Hello, FastAPI! This is the robotic grasping server."} @app.on_event("startup") async def startup_event(): log.info("Starting up the grasp server...") grasp.load_model() @app.post("/get_grasps") async def get_grasps( rgb_image: UploadFile = File(...), depth_image: UploadFile = File(...) ): log.debug("Received get_grasp request.") rgb_image = Image.open(rgb_image.file) depth_image = Image.open(depth_image.file) return grasp.run(rgb_image, depth_image)
1,325
Python
24.5
78
0.704906
AshisGhosh/roboai/grasping/robotic_grasping_server/robotic_grasping_server/robotic_grasping.py
import matplotlib.pyplot as plt import numpy as np import torch from hardware.device import get_device from inference.post_process import post_process_output from utils.data.camera_data import CameraData from utils.dataset_processing.grasp import detect_grasps from utils.visualisation.plot import plot_grasp from PIL import Image class GraspGenerator: def __init__( self, saved_model_path="/robotic-grasping/trained-models/cornell-randsplit-rgbd-grconvnet3-drop1-ch32/epoch_19_iou_0.98", visualize=False, force_cpu=False, ): self.saved_model_path = saved_model_path self.saved_model_path = saved_model_path self.model = None self.device = get_device(force_cpu=force_cpu) self.cam_data = CameraData( include_depth=True, include_rgb=True, output_size=360 ) if visualize: self.fig = plt.figure(figsize=(10, 10)) else: self.fig = None def load_model(self): # monkey patching np.float = float print("Loading model... ") self.model = torch.load(self.saved_model_path, map_location=self.device) self.model.to(self.device) # Ensure model parameters are on the correct device def generate(self, rgb, depth): x, depth_img, rgb_img = self.cam_data.get_data(rgb=rgb, depth=depth) # Predict the grasp pose using the saved model with torch.no_grad(): xc = x.to(self.device) pred = self.model.predict(xc) q_img, ang_img, width_img = post_process_output( pred["pos"], pred["cos"], pred["sin"], pred["width"] ) grasps = detect_grasps(q_img, ang_img, width_img) for grasp in grasps: print(grasp.as_gr) if self.fig: plot_grasp( fig=self.fig, rgb_img=self.cam_data.get_rgb(rgb, False), grasps=grasps, save=True, ) return grasps def run_test(self): rgb = Image.open("shared/data/test_pair1_rgb.png") rgb = np.array(rgb) print(rgb.shape) depth = Image.open("shared/data/test_pair1_depth.png") depth = np.array(depth) depth = np.expand_dims(depth, axis=2) print(depth.shape) self.generate(rgb, depth) def run(self, rgb, depth): rgb = np.array(rgb) depth = np.array(depth) depth = np.expand_dims(depth, axis=2) grasps = self.generate(rgb, depth) grasp_dict = [] print(grasps[0].as_gr) for grasp in grasps: r_bbox = [[pt[0], pt[1]] for pt in grasp.as_gr.points] grasp_dict.append({"r_bbox": r_bbox}) return grasp_dict if __name__ == "__main__": np.float = float generator = GraspGenerator( saved_model_path="/robotic-grasping/trained-models/cornell-randsplit-rgbd-grconvnet3-drop1-ch32/epoch_19_iou_0.98", visualize=True, force_cpu=False, ) generator.load_model() generator.run_test()
3,082
Python
28.932039
123
0.594744
AshisGhosh/roboai/isaac_sim/pyproject.toml
[tool.poetry] name = "isaac-sim" version = "0.1.0" description = "" authors = ["Ashis Ghosh <[email protected]>"] readme = "README.md" [tool.poetry.dependencies] python = "^3.10" fastapi = "^0.110.2" uvicorn = "^0.29.0" python-multipart = "^0.0.9" [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api"
337
TOML
17.777777
47
0.664688
AshisGhosh/roboai/isaac_sim/README.md
# README ## Launch Docker `docker compose up isaac-sim` Enter docker: `docker exec -it roboai-isaac-sim-1 bash` ## Run pthon standalone (will launch sim as well) `./python.sh roboai/robosim.py` ## Run jupyter ** requires local Nucleus server ** https://docs.omniverse.nvidia.com/nucleus/latest/workstation.html `./jupyter_notebook.sh --allow-root roboai/test_nb.` ## Isaac Slow Loading Issue (v2023.1.0) https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs/issues/92#issuecomment-1797057491 ``` def check_server(server: str, path: str) -> bool: """Check a specific server for a path Args: server (str): Name of Nucleus server path (str): Path to search Returns: bool: True if folder is found """ carb.log_info("Checking path: {}{}".format(server, path)) # Increase hang detection timeout if "localhost" not in server: omni.client.set_hang_detection_time_ms(10000) result, _ = omni.client.stat("{}{}".format(server, path)) if result == Result.OK: carb.log_info("Success: {}{}".format(server, path)) return True carb.log_info("Failure: {}{} not accessible".format(server, path)) return False ``` to: ``` def check_server(server: str, path: str, timeout: float = 10.0) -> bool: """Check a specific server for a path Args: server (str): Name of Nucleus server path (str): Path to search timeout (float): Default value: 10 seconds Returns: bool: True if folder is found """ carb.log_info("Checking path: {}{}".format(server, path)) # Increase hang detection timeout if "localhost" not in server: omni.client.set_hang_detection_time_ms(20000) result, _ = omni.client.stat("{}{}".format(server, path)) if result == Result.OK: carb.log_info("Success: {}{}".format(server, path)) return True carb.log_info("Failure: {}{} not accessible".format(server, path)) return False ```
2,007
Markdown
27.685714
86
0.633284
AshisGhosh/roboai/isaac_sim/app/main.py
import nest_asyncio import logging from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from roboai.robosim import SimManager from roboai.standalone_stream_server import StreamServer nest_asyncio.apply() logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # Create FastAPI instance app = FastAPI() robosim = SimManager() ss = StreamServer() # List of allowed origins (you can use '*' to allow all origins) origins = [ "http://localhost:3000", # Allow your Next.js app # Add any other origins as needed ] # Add CORSMiddleware to the application app.add_middleware( CORSMiddleware, allow_origins=origins, # List of allowed origins allow_credentials=True, allow_methods=["*"], # Allow all methods allow_headers=["*"], # Allow all headers ) # Example route @app.get("/") async def read_root(): return {"message": "Hello, FastAPI! This is the robosim server."} @app.on_event("startup") def startup_event(): pass @app.post("/test") async def test(): ss.start() return True @app.post("/start_sim") async def start_sim(): # threading.Thread(target=robosim.start_sim).start() robosim.start_sim(headless=True) return True @app.post("/run_sim") async def run_sim(): return robosim.run_sim() @app.post("/close_sim") async def close_sim(): return await robosim.close_sim()
1,389
Python
19.144927
69
0.698344
AshisGhosh/roboai/isaac_sim/omniverse_patch/nucleus.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import json import os # python import typing from collections import namedtuple from urllib.parse import urlparse import carb # omniverse import omni.client from omni.client._omniclient import CopyBehavior, Result from omni.isaac.version import get_version class Version(namedtuple("Version", "major minor patch")): def __new__(cls, s): return super().__new__(cls, *map(int, s.split("."))) def __repr__(self): return ".".join(map(str, self)) def get_url_root(url: str) -> str: """Get root from URL or path Args: url (str): full http or omniverse path Returns: str: Root path or URL or Nucleus server """ supported_list = ["omniverse", "http", "https"] protocol = urlparse(url).scheme if protocol not in supported_list: carb.log_warn("Unable to find root for {}".format(url)) return "" server = f"{protocol}://{urlparse(url).netloc}" return server def create_folder(server: str, path: str) -> bool: """Create a folder on server Args: server (str): Name of Nucleus server path (str): Path to folder Returns: bool: True if folder is created successfully """ carb.log_info("Create {} folder on {} Server".format(path, server)) # Increase hang detection timeout omni.client.set_hang_detection_time_ms(10000) result = omni.client.create_folder("{}{}".format(server, path)) if result == Result.OK: carb.log_info("Success: {} Server has {} folder created".format(server, path)) return True else: carb.log_warn( "Failure: Server {} not able to create {} folder".format(server, path) ) return False def delete_folder(server: str, path: str) -> bool: """Remove folder and all of its contents Args: server (str): Name of Nucleus server path (str): Path to folder Returns: bool: True if folder is deleted successfully """ carb.log_info("Cleanup {} folder on {} Server".format(path, server)) # Increase hang detection timeout omni.client.set_hang_detection_time_ms(10000) result = omni.client.delete("{}{}".format(server, path)) if result == Result.OK: carb.log_info("Success: {} Server has {} folder deleted".format(server, path)) return True else: carb.log_warn( "Failure: Server {} not able to delete {} folder".format(server, path) ) return False async def _list_files(url: str) -> typing.Tuple[str, typing.List]: """List files under a URL Args: url (str): URL of Nucleus server with path to folder Returns: root (str): Root of URL of Nucleus server paths (typing.List): List of path to each file """ root, paths = await _collect_files(url) return root, paths async def download_assets_async( src: str, dst: str, progress_callback, concurrency: int = 10, copy_behaviour: omni.client._omniclient.CopyBehavior = CopyBehavior.OVERWRITE, copy_after_delete: bool = True, timeout: float = 300.0, ) -> omni.client._omniclient.Result: """Download assets from S3 bucket Args: src (str): URL of S3 bucket as source dst (str): URL of Nucleus server to copy assets to progress_callback: Callback function to keep track of progress of copy concurrency (int): Number of concurrent copy operations. Default value: 3 copy_behaviour (omni.client._omniclient.CopyBehavior): Behavior if the destination exists. Default value: OVERWRITE copy_after_delete (bool): True if destination needs to be deleted before a copy. Default value: True timeout (float): Default value: 300 seconds Returns: Result (omni.client._omniclient.Result): Result of copy """ # omni.client is a singleton, import locally to allow to run with multiprocessing import omni.client count = 0 result = Result.ERROR if copy_after_delete and check_server(dst, ""): carb.log_info("Deleting existing folder {}".format(dst)) delete_folder(dst, "") sem = asyncio.Semaphore(concurrency) carb.log_info("Listing {} ...".format(src)) root_source, paths = await _list_files("{}".format(src)) total = len(paths) carb.log_info("Found {} files from {}".format(total, root_source)) for entry in reversed(paths): count += 1 path = os.path.relpath(entry, root_source).replace("\\", "/") carb.log_info( "Downloading asset {} of {} from {}/{} to {}/{}".format( count, total, root_source, path, dst, path ) ) try: async with sem: result = await asyncio.wait_for( omni.client.copy_async( "{}/{}".format(root_source, path), "{}/{}".format(dst, path), copy_behaviour, ), timeout=timeout, ) if result != Result.OK: carb.log_warn(f"Failed to copy {path} to {dst}.") return Result.ERROR_ACCESS_LOST except asyncio.CancelledError: carb.log_warn("Assets download cancelled.") return Result.ERROR except Exception as ex: carb.log_warn(f"Exception: {type(ex).__name__}") return Result.ERROR progress_callback(count, total) return result def check_server(server: str, path: str, timeout: float = 10.0) -> bool: """Check a specific server for a path Args: server (str): Name of Nucleus server path (str): Path to search timeout (float): Default value: 10 seconds Returns: bool: True if folder is found """ carb.log_info("Checking path: {}{}".format(server, path)) # Increase hang detection timeout if "localhost" not in server: omni.client.set_hang_detection_time_ms(20000) result, _ = omni.client.stat("{}{}".format(server, path)) if result == Result.OK: carb.log_info("Success: {}{}".format(server, path)) return True carb.log_info("Failure: {}{} not accessible".format(server, path)) return False async def check_server_async(server: str, path: str, timeout: float = 10.0) -> bool: """Check a specific server for a path (asynchronous version). Args: server (str): Name of Nucleus server path (str): Path to search timeout (float): Default value: 10 seconds Returns: bool: True if folder is found """ carb.log_info("Checking path: {}{}".format(server, path)) try: result, _ = await asyncio.wait_for( omni.client.stat_async("{}{}".format(server, path)), timeout ) if result == Result.OK: carb.log_info("Success: {}{}".format(server, path)) return True else: carb.log_info("Failure: {}{} not accessible".format(server, path)) return False except asyncio.TimeoutError: carb.log_warn(f"check_server_async() timeout {timeout}") return False except Exception as ex: carb.log_warn(f"Exception: {type(ex).__name__}") return False def build_server_list() -> typing.List: """Return list with all known servers to check Returns: all_servers (typing.List): List of servers found """ mounted_drives = carb.settings.get_settings().get_settings_dictionary( "/persistent/app/omniverse/mountedDrives" ) all_servers = [] if mounted_drives is not None: mounted_dict = json.loads(mounted_drives.get_dict()) for drive in mounted_dict.items(): all_servers.append(drive[1]) else: carb.log_info("/persistent/app/omniverse/mountedDrives setting not found") return all_servers def find_nucleus_server(suffix: str) -> typing.Tuple[bool, str]: """Attempts to determine best Nucleus server to use based on existing mountedDrives setting and the default server specified in json config at "/persistent/isaac/asset_root/". Call is blocking Args: suffix (str): Path to folder to search for. Default value: /Isaac Returns: bool: True if Nucleus server with suffix is found url (str): URL of found Nucleus """ carb.log_warn("find_nucleus_server() is deprecated. Use get_assets_root_path().") return False, "" def get_server_path(suffix: str = "") -> typing.Union[str, None]: """Tries to find a Nucleus server with specific path Args: suffix (str): Path to folder to search for. Returns: url (str): URL of Nucleus server with path to folder. Returns None if Nucleus server not found. """ carb.log_info("Check /persistent/isaac/asset_root/default setting") default_asset_root = carb.settings.get_settings().get( "/persistent/isaac/asset_root/default" ) server_root = get_url_root(default_asset_root) if server_root: result = check_server(server_root, suffix) if result: return server_root carb.log_warn("Could not find Nucleus server with {} folder".format(suffix)) return None async def get_server_path_async(suffix: str = "") -> typing.Union[str, None]: """Tries to find a Nucleus server with specific path (asynchronous version). Args: suffix (str): Path to folder to search for. Returns: url (str): URL of Nucleus server with path to folder. Returns None if Nucleus server not found. """ carb.log_info("Check /persistent/isaac/asset_root/default setting") default_asset_root = carb.settings.get_settings().get( "/persistent/isaac/asset_root/default" ) server_root = get_url_root(default_asset_root) if server_root: result = await check_server_async(server_root, suffix) if result: return server_root carb.log_warn("Could not find Nucleus server with {} folder".format(suffix)) return None def verify_asset_root_path(path: str) -> typing.Tuple[omni.client.Result, str]: """Attempts to determine Isaac assets version and check if there are updates. (asynchronous version) Args: path (str): URL or path of asset root to verify Returns: omni.client.Result: OK if Assets verified ver (str): Version of Isaac Sim assets """ # omni.client is a singleton, import locally to allow to run with multiprocessing import omni.client ver_asset = Version("0.0.0") version_core, _, _, _, _, _, _, _ = get_version() ver_app = Version(version_core) # Get asset version carb.log_info(f"Verifying {path}") try: # Increase hang detection timeout omni.client.set_hang_detection_time_ms(10000) omni.client.push_base_url(f"{path}/") file_path = omni.client.combine_with_base_url("version.txt") # carb.log_warn(f"Looking for version file at: {file_path}") result, _, file_content = omni.client.read_file(file_path) if result != omni.client.Result.OK: carb.log_info(f"Unable to find version file: {file_path}.") else: ver_asset = Version(memoryview(file_content).tobytes().decode()) except ValueError: carb.log_info(f"Unable to parse version file: {file_path}.") except UnicodeDecodeError: carb.log_info(f"Unable to read version file: {file_path}.") except Exception as ex: carb.log_warn(f"Exception: {type(ex).__name__}") # Compare versions # carb.log_warn(f"ver_asset = {ver_asset.major}.{ver_asset.minor}.{ver_asset.patch}") # carb.log_warn(f"ver_app = {ver_app.major}.{ver_app.minor}.{ver_app.patch}") if ver_asset == Version("0.0.0"): carb.log_info(f"Error verifying Isaac Sim assets at {path}") return Result.ERROR_NOT_FOUND, "" elif ver_asset.major != ver_app.major: carb.log_info( f"Unsupported version of Isaac Sim assets found at {path}: {ver_asset}" ) return Result.ERROR_BAD_VERSION, ver_asset elif ver_asset.minor != ver_app.minor: carb.log_info( f"Unsupported version of Isaac Sim assets found at {path}: {ver_asset}" ) return Result.ERROR_BAD_VERSION, ver_asset else: return Result.OK, ver_asset def get_full_asset_path(path: str) -> typing.Union[str, None]: """Tries to find the full asset path on connected servers Args: path (str): Path of asset from root to verify Returns: url (str): URL or full path to assets. Returns None if assets not found. """ # 1 - Check /persistent/isaac/asset_root/default setting default_asset_root = carb.settings.get_settings().get( "/persistent/isaac/asset_root/default" ) if default_asset_root: result = check_server(default_asset_root, path) if result: carb.log_info("Asset path found at {}{}".format(default_asset_root, path)) return default_asset_root + path # 2 - Check mountedDrives setting connected_servers = build_server_list() if len(connected_servers): for server_name in connected_servers: result = check_server(server_name, path) if result: carb.log_info("Asset path found at {}{}".format(server_name, path)) return server_name + path carb.log_warn("Could not find assets path: {}".format(path)) return None async def get_full_asset_path_async(path: str) -> typing.Union[str, None]: """Tries to find the full asset path on connected servers (asynchronous version). Args: path (str): Path of asset from root to verify Returns: url (str): URL or full path to assets. Returns None if assets not found. """ # 1 - Check /persistent/isaac/asset_root/default setting default_asset_root = carb.settings.get_settings().get( "/persistent/isaac/asset_root/default" ) if default_asset_root: result = await check_server_async(default_asset_root, path) if result: carb.log_info("Asset path found at {}{}".format(default_asset_root, path)) return default_asset_root + path # 2 - Check mountedDrives setting connected_servers = build_server_list() if len(connected_servers): for server_name in connected_servers: result = await check_server_async(server_name, path) if result: carb.log_info("Asset path found at {}{}".format(server_name, path)) return server_name + path carb.log_warn("Could not find assets path: {}".format(path)) return None def get_nvidia_asset_root_path() -> typing.Union[str, None]: """Tries to find the root path to the NVIDIA assets Returns: url (str): URL or root path to NVIDIA assets folder. Returns None if NVIDIA assets not found. """ # 1 - Check /persistent/isaac/asset_root/nvidia setting carb.log_info("Check /persistent/isaac/asset_root/nvidia setting") nvidia_asset_root = carb.settings.get_settings().get( "/persistent/isaac/asset_root/nvidia" ) if nvidia_asset_root: result = check_server(nvidia_asset_root, "") if result: carb.log_info("NVIDIA assets found at {}".format(nvidia_asset_root)) return nvidia_asset_root # 2 - Check root on /persistent/isaac/asset_root/nvidia and mountedDrives setting for /NVIDIA folder nvidia_asset_path = "/NVIDIA" server_root = get_url_root(nvidia_asset_path) if server_root: result = check_server(server_root, nvidia_asset_path) if result: carb.log_info("NVIDIA assets found at {}".format(nvidia_asset_root)) return server_root + nvidia_asset_path connected_servers = build_server_list() if len(connected_servers): for server_name in connected_servers: result = check_server(server_name, nvidia_asset_path) if result: carb.log_info("NVIDIA assets found at {}".format(server_name)) return server_name + nvidia_asset_path # 3 - Check cloud for http://omniverse-content-production.s3-us-west-2.amazonaws.com folder nvidia_assets_url = "http://omniverse-content-production.s3-us-west-2.amazonaws.com" carb.log_info("Check {}".format(nvidia_assets_url)) if nvidia_assets_url: result = check_server(nvidia_assets_url, "/Assets") if result: carb.log_info("NVIDIA assets found at {}".format(nvidia_assets_url)) return nvidia_assets_url carb.log_warn("Could not find NVIDIA assets folder") return None def get_isaac_asset_root_path() -> typing.Union[str, None]: """Tries to find the root path to the Isaac Sim assets Returns: url (str): URL or root path to Isaac Sim assets folder. Returns None if Isaac Sim assets not found. """ _, _, version_major, version_minor, _, _, _, _ = get_version() # 1 - Check /persistent/isaac/asset_root/isaac setting carb.log_info("Check /persistent/isaac/asset_root/isaac setting") isaac_asset_root = carb.settings.get_settings().get( "/persistent/isaac/asset_root/isaac" ) if isaac_asset_root: result = check_server(isaac_asset_root, "") if result: result, ver_asset = verify_asset_root_path(isaac_asset_root) if result is Result.OK: carb.log_info( "Isaac Sim assets version {} found at {}".format( ver_asset, isaac_asset_root ) ) return isaac_asset_root # 2 - Check root on /persistent/isaac/asset_root/default and mountedDrives setting for /Isaac folder carb.log_info("Check /persistent/isaac/asset_root/default setting") default_asset_root = carb.settings.get_settings().get( "/persistent/isaac/asset_root/default" ) isaac_path = "/Isaac" server_root = get_url_root(isaac_asset_root) if default_asset_root: result = check_server(default_asset_root, isaac_path) if result: result, ver_asset = verify_asset_root_path(default_asset_root + isaac_path) if result is Result.OK: carb.log_info( "Isaac Sim assets version {} found at {}".format( ver_asset, default_asset_root + isaac_path ) ) return default_asset_root + isaac_path connected_servers = build_server_list() if len(connected_servers): for server_name in connected_servers: result = check_server(server_name, isaac_path) if result: result, ver_asset = verify_asset_root_path(server_name + isaac_path) if result is Result.OK: carb.log_info( "Isaac Sim assets version {} found at {}".format( ver_asset, server_name + isaac_path ) ) return server_name + isaac_path # 3 - Check root on /persistent/isaac/asset_root/default and mountedDrives setting for /NVIDIA/Assets/Isaac/{version_major}.{version_minor} folder isaac_path = f"/NVIDIA/Assets/Isaac/{version_major}.{version_minor}" server_root = get_url_root(isaac_asset_root) if server_root: result = check_server(server_root, isaac_path) if result: result, ver_asset = verify_asset_root_path(server_root + isaac_path) if result is Result.OK: carb.log_info( "Isaac Sim assets version {} found at {}".format( ver_asset, server_root + isaac_path ) ) return server_root + isaac_path connected_servers = build_server_list() if len(connected_servers): for server_name in connected_servers: result = check_server(server_name, isaac_path) if result: result, ver_asset = verify_asset_root_path(server_name + isaac_path) if result is Result.OK: carb.log_info( "Isaac Sim assets version {} found at {}".format( ver_asset, server_name + isaac_path ) ) return server_name + isaac_path # 4 - Check cloud for /Assets/Isaac/{version_major}.{version_minor} folder cloud_assetsURL = carb.settings.get_settings().get_as_string( "/persistent/isaac/asset_root/cloud" ) carb.log_info("Check {}".format(cloud_assetsURL)) if cloud_assetsURL: result = check_server(cloud_assetsURL, "") if result: result, ver_asset = verify_asset_root_path(cloud_assetsURL) if result is Result.OK: carb.log_info( "Isaac Sim assets version {} found at {}".format( ver_asset, cloud_assetsURL ) ) return cloud_assetsURL carb.log_warn("Could not find Isaac Sim assets folder") return None def get_assets_root_path() -> typing.Union[str, None]: """Tries to find the root path to the Isaac Sim assets on a Nucleus server Returns: url (str): URL of Nucleus server with root path to assets folder. Returns None if Nucleus server not found. """ # get timeout timeout = carb.settings.get_settings().get("/persistent/isaac/asset_root/timeout") if not isinstance(timeout, (int, float)): timeout = 10.0 # 1 - Check /persistent/isaac/asset_root/default setting carb.log_info("Check /persistent/isaac/asset_root/default setting") default_asset_root = carb.settings.get_settings().get( "/persistent/isaac/asset_root/default" ) if default_asset_root: result = check_server(default_asset_root, "/Isaac", timeout) if result: result = check_server(default_asset_root, "/NVIDIA", timeout) if result: carb.log_info("Assets root found at {}".format(default_asset_root)) return default_asset_root # 2 - Check root on mountedDrives setting connected_servers = build_server_list() if len(connected_servers): for server_name in connected_servers: # carb.log_info("Found {}".format(server_name)) result = check_server(server_name, "/Isaac", timeout) if result: result = check_server(server_name, "/NVIDIA", timeout) if result: carb.log_info("Assets root found at {}".format(server_name)) return server_name # 3 - Check cloud for /Assets/Isaac/{version_major}.{version_minor} folder cloud_assets_url = carb.settings.get_settings().get( "/persistent/isaac/asset_root/cloud" ) carb.log_info("Checking {}...".format(cloud_assets_url)) if cloud_assets_url: result = check_server(cloud_assets_url, "/Isaac", timeout) if result: result = check_server(cloud_assets_url, "/NVIDIA", timeout) if result: carb.log_info("Assets root found at {}".format(cloud_assets_url)) return cloud_assets_url carb.log_warn("Could not find assets root folder") return None async def get_assets_root_path_async() -> typing.Union[str, None]: """Tries to find the root path to the Isaac Sim assets on a Nucleus server (asynchronous version). Returns: url (str): URL of Nucleus server with root path to assets folder. Returns None if Nucleus server not found. """ # get timeout timeout = carb.settings.get_settings().get("/persistent/isaac/asset_root/timeout") if not isinstance(timeout, (int, float)): timeout = 10.0 # 1 - Check /persistent/isaac/asset_root/default setting carb.log_info("Check /persistent/isaac/asset_root/default setting") default_asset_root = carb.settings.get_settings().get( "/persistent/isaac/asset_root/default" ) if default_asset_root: result = await check_server_async(default_asset_root, "/Isaac", timeout) if result: result = await check_server_async(default_asset_root, "/NVIDIA", timeout) if result: carb.log_info("Assets root found at {}".format(default_asset_root)) return default_asset_root # 2 - Check root on mountedDrives setting connected_servers = build_server_list() if len(connected_servers): for server_name in connected_servers: # carb.log_info("Found {}".format(server_name)) result = await check_server_async(server_name, "/Isaac", timeout) if result: result = await check_server_async(server_name, "/NVIDIA", timeout) if result: carb.log_info("Assets root found at {}".format(server_name)) return server_name # 3 - Check cloud for /Assets/Isaac/{version_major}.{version_minor} folder cloud_assets_url = carb.settings.get_settings().get( "/persistent/isaac/asset_root/cloud" ) carb.log_info("Checking {}...".format(cloud_assets_url)) if cloud_assets_url: result = await check_server_async(cloud_assets_url, "/Isaac", timeout) if result: result = await check_server_async(cloud_assets_url, "/NVIDIA", timeout) if result: carb.log_info("Assets root found at {}".format(cloud_assets_url)) return cloud_assets_url carb.log_warn("Could not find assets root folder") return None def get_assets_server() -> typing.Union[str, None]: """Tries to find a server with the Isaac Sim assets Returns: url (str): URL of Nucleus server with the Isaac Sim assets Returns None if Nucleus server not found. """ carb.log_warn("get_assets_server() is deprecated. Use get_server_path().") return None async def _collect_files(url: str) -> typing.Tuple[str, typing.List]: """Collect files under a URL. Args: url (str): URL of Nucleus server with path to folder Returns: root (str): Root of URL of Nucleus server paths (typing.List): List of path to each file """ paths = [] if await is_dir_async(url): root = url + "/" paths.extend(await recursive_list_folder(root)) return url, paths else: if await is_file_async(url): root = os.path.dirname(url) return root, [url] async def is_dir_async(path: str) -> bool: """Check if path is a folder Args: path (str): Path to folder Returns: bool: True if path is a folder """ result, folder = await asyncio.wait_for(omni.client.list_async(path), timeout=10) if result != omni.client.Result.OK: raise Exception(f"Failed to determine if {path} is a folder: {result}") return True if len(folder) > 0 else False async def is_file_async(path: str) -> bool: """Check if path is a file Args: path (str): Path to file Returns: bool: True if path is a file """ result, file = await asyncio.wait_for(omni.client.stat_async(path), timeout=10) if result != omni.client.Result.OK: raise Exception(f"Failed to determine if {path} is a file: {result}") return False if file.flags & omni.client.ItemFlags.CAN_HAVE_CHILDREN > 0 else True def is_file(path: str) -> bool: """Check if path is a file Args: path (str): Path to file Returns: bool: True if path is a file """ # Increase hang detection timeout omni.client.set_hang_detection_time_ms(10000) result, file = omni.client.stat(path) if result != omni.client.Result.OK: raise Exception(f"Failed to determine if {path} is a file: {result}") return False if file.flags & omni.client.ItemFlags.CAN_HAVE_CHILDREN > 0 else True async def recursive_list_folder(path: str) -> typing.List: """Recursively list all files Args: path (str): Path to folder Returns: paths (typing.List): List of path to each file """ paths = [] files, dirs = await list_folder(path) paths.extend(files) tasks = [] for dir in dirs: tasks.append(asyncio.create_task(recursive_list_folder(dir))) results = await asyncio.gather(*tasks) for result in results: paths.extend(result) return paths async def list_folder(path: str) -> typing.Tuple[typing.List, typing.List]: """List files and sub-folders from root path Args: path (str): Path to root folder Raises: Exception: When unable to find files under the path. Returns: files (typing.List): List of path to each file dirs (typing.List): List of path to each sub-folder """ # omni.client is a singleton, import locally to allow to run with multiprocessing import omni.client files = [] dirs = [] carb.log_info(f"Collecting files for {path}") result, entries = await asyncio.wait_for(omni.client.list_async(path), timeout=10) if result != omni.client.Result.OK: raise Exception(f"Failed to list entries for {path}: {result}") for entry in entries: # Increase hang detection timeout omni.client.set_hang_detection_time_ms(10000) full_path = omni.client.combine_urls(path, entry.relative_path) if entry.flags & omni.client.ItemFlags.CAN_HAVE_CHILDREN > 0: dirs.append(full_path + "/") else: carb.log_info(f"Enqueuing {full_path} for processing") files.append(full_path) return files, dirs
30,457
Python
34.457509
150
0.61513
AshisGhosh/roboai/isaac_sim/humble_ws/src/robot_api/setup.py
from setuptools import find_packages, setup package_name = "robot_api" setup( name=package_name, version="0.0.0", packages=find_packages(exclude=["test"]), data_files=[ ("share/ament_index/resource_index/packages", ["resource/" + package_name]), ("share/" + package_name, ["package.xml"]), ("share/" + package_name + "/config", ["config/moveit_franka_python.yaml"]), ], install_requires=["setuptools"], zip_safe=True, maintainer="root", maintainer_email="[email protected]", description="TODO: Package description", license="TODO: License declaration", tests_require=["pytest"], entry_points={ "console_scripts": [ "manipulation_example = robot_api.manipulation_example:main", "manipulation = robot_api.manipulation:main", "task_manager = robot_api.task_manager:main", ], }, )
908
Python
30.344827
84
0.615639
AshisGhosh/roboai/isaac_sim/humble_ws/src/robot_api/test/test_flake8.py
# Copyright 2017 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_flake8.main import main_with_errors import pytest @pytest.mark.flake8 @pytest.mark.linter def test_flake8(): rc, errors = main_with_errors(argv=[]) assert rc == 0, "Found %d code style errors / warnings:\n" % len( errors ) + "\n".join(errors)
878
Python
32.807691
74
0.730068
AshisGhosh/roboai/isaac_sim/humble_ws/src/robot_api/test/test_pep257.py
# Copyright 2015 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_pep257.main import main import pytest @pytest.mark.linter @pytest.mark.pep257 def test_pep257(): rc = main(argv=[".", "test"]) assert rc == 0, "Found code style errors / warnings"
803
Python
32.499999
74
0.743462
AshisGhosh/roboai/isaac_sim/humble_ws/src/robot_api/test/test_copyright.py
# Copyright 2015 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_copyright.main import main import pytest # Remove the `skip` decorator once the source file(s) have a copyright header @pytest.mark.skip( reason="No copyright header has been placed in the generated source file." ) @pytest.mark.copyright @pytest.mark.linter def test_copyright(): rc = main(argv=[".", "test"]) assert rc == 0, "Found errors"
968
Python
33.607142
78
0.746901
AshisGhosh/roboai/isaac_sim/humble_ws/src/robot_api/robot_api/task_manager.py
from enum import Enum from collections import deque from uuid import uuid4 import threading import asyncio from pathlib import Path from nicegui import Client, app, ui, ui_run from abc import ABC, abstractmethod import copy # generic ros libraries import rclpy from rclpy.node import Node from rclpy.action import ActionClient from rclpy.executors import MultiThreadedExecutor from geometry_msgs.msg import PoseStamped from sensor_msgs.msg import Image as ROSImage from roboai_interfaces.action import MoveArm, ControlGripper, GetGrasp # RoboAI Interface imports from starlette.responses import StreamingResponse from PIL import Image import io import numpy as np def pose_to_list(pose): return [ pose.position.x, pose.position.y, pose.position.z, pose.orientation.x, pose.orientation.y, pose.orientation.z, pose.orientation.w, ] class TaskStatus(Enum): PENDING = "PENDING" RUNNING = "RUNNING" SUCCESS = "SUCCESS" FAILURE = "FAILURE" ABORTED = "ABORTED" PAUSED = "PAUSED" class Task(ABC): def __init__(self, name, logger=None) -> None: self.name = name self.status = TaskStatus.PENDING self.uuid = uuid4() self.logger = logger self.result = None self.log(f"TASK ({self.uuid}): {self.name} created; Status: {self.status}") @abstractmethod def run(self) -> None: pass def abort(self) -> None: self.status = TaskStatus.ABORTED def update_status(self, status) -> None: self.status = status self.log(f"TASK ({self.uuid}): {self.name} updated to: {status}") def log(self, message) -> None: if self.logger: self.logger.info(message) else: print(message) def __str__(self) -> str: return f"{self.name}; Status: {self.status}" def __repr__(self) -> str: return super().__repr__() + f" {self.name}; Status: {self.status}" class ActionClientTask(Task): def __init__(self, name, action_client, action_type, logger=None) -> None: super().__init__(name, logger) self._action_client = action_client self.action_type = action_type self.goal_handle = None def run(self) -> None: self.log(f"Sending goal to action server: {self.action_type}") self.update_status(TaskStatus.RUNNING) try: self.send_goal() except Exception as e: self.log(f"Error while sending goal: {e}") self.update_status(TaskStatus.FAILURE) @abstractmethod def create_goal_msg(self) -> None: pass def send_goal(self) -> None: goal_msg = self.create_goal_msg() self._action_client.wait_for_server(timeout_sec=1) future = self._action_client.send_goal_async(goal_msg) future.add_done_callback(self.goal_response_callback) def goal_response_callback(self, future) -> None: self.goal_handle = future.result() if not self.goal_handle.accepted: self.log("Goal rejected :(") self.update_status(TaskStatus.FAILURE) return self.log("Goal accepted :)") # Wait for the result result_future = self.goal_handle.get_result_async() result_future.add_done_callback(self.get_result_callback) def get_result_callback(self, future) -> None: self.result = future.result().result self.log(f"Result received: {self.result}, {type(self.result.status)}") if self.result.status == "SUCCEEDED": self.log(f"Result received: {self.result.message}") self.update_status(TaskStatus.SUCCESS) else: self.log(f"Action did not succeed with status: {self.result.status}") self.update_status(TaskStatus.FAILURE) def abort(self) -> None: if self.goal_handle: self.goal_handle.cancel_goal() self._action_client._cancel_goal(self.goal_handle) super().abort() class MoveArmTask(ActionClientTask): def __init__( self, name, goal: str | list[float], action_client, logger=None ) -> None: super().__init__(name, action_client, MoveArm, logger=None) self.goal = goal def create_goal_msg(self) -> None: goal_msg = MoveArm.Goal() if isinstance(self.goal, str): goal_msg.configuration_goal = self.goal elif isinstance(self.goal, list): if len(self.goal) == 6: goal_msg.joint_goal = self.goal elif len(self.goal) == 7: goal_msg.cartesian_goal = self.goal else: raise ValueError( f"Invalid goal length: {self.goal}, length: {len(self.goal)}" ) elif isinstance(self.goal, PoseStamped): goal_msg.cartesian_pose_goal = self.goal else: raise ValueError(f"Invalid goal: {self.goal}, type: {type(self.goal)}") return goal_msg class ControlGripperTask(ActionClientTask): def __init__(self, name, goal: str, action_client, logger=None) -> None: super().__init__(name, action_client, ControlGripper, logger=None) self.goal = goal def create_goal_msg(self) -> None: goal_msg = ControlGripper.Goal() if isinstance(self.goal, str): goal_msg.goal_state = self.goal else: raise ValueError(f"Invalid goal: {self.goal}") return goal_msg class GetGraspTask(ActionClientTask): def __init__( self, name, goal_object: str, action_client, task_vars, logger=None ) -> None: super().__init__(name, action_client, GetGrasp, logger=None) self.goal_object = goal_object self.task_vars = task_vars def create_goal_msg(self) -> None: goal_msg = GetGrasp.Goal() if isinstance(self.goal_object, str): goal_msg.object_name = self.goal_object else: raise ValueError(f"Invalid goal: {self.goal_object}") return goal_msg def get_result_callback(self, future) -> None: self.result = future.result().result self.log(f"Result received: {self.result}") if self.result.success: self.log("Grasp received") self.update_status(TaskStatus.SUCCESS) self.task_vars["grasp_pose"] = self.result.grasp else: self.log("Grasp not received") self.update_status(TaskStatus.FAILURE) class PlannerTask(Task): def __init__(self, name, task_manager, task_vars, logger=None) -> None: super().__init__(name, logger) self.task_manager = task_manager self.states = [] self.current_state = None self.task_vars = task_vars def run(self) -> None: self.log(f"Running planner: {self.name}") self.update_status(TaskStatus.RUNNING) try: self.plan() except Exception as e: self.log(f"Error while planning: {e}") self.update_status(TaskStatus.FAILURE) def get_next_state(self) -> str: if self.current_state is None: self.current_state = self.states.pop(0) else: self.current_state = self.states[self.states.index(self.current_state) + 1] return self.current_state @abstractmethod def plan(self) -> None: pass class PickTask(PlannerTask): def __init__( self, name, task_manager, task_vars, object_name, current_state=None, logger=None, ) -> None: super().__init__(name, task_manager, task_vars, logger) self.object_name = object_name self.states = [ "get_grasp", "execute_grasp", "move_to_ready", ] self.current_state = current_state or self.states[0] def plan(self) -> None: self.log(f"Running pick task: {self.name}") self.update_status(TaskStatus.RUNNING) if self.current_state == "get_grasp": task = self.task_manager.add_task( GetGraspTask( name=f"Get grasp for {self.object_name}", goal_object=self.object_name, action_client=self.task_manager.get_grasp_action_client, task_vars=self.task_vars, ), after=self, ) self.add_next_plan(after=task) self.update_status(TaskStatus.SUCCESS) return if self.current_state == "execute_grasp": grasp = copy.deepcopy(self.task_vars["grasp_pose"]) gripper_grasp = copy.deepcopy(grasp) gripper_grasp.pose.position.z += 0.09 pre_grasp = copy.deepcopy(gripper_grasp) pre_grasp.pose.position.z += 0.2 task = self.task_manager.add_task_to_move_to_position( pre_grasp, name="Move to pregrasp", after=self ) task = self.task_manager.add_task_to_control_gripper( "open", name="Open gripper", after=task ) task = self.task_manager.add_task_to_move_to_position( gripper_grasp, name="Move to grasp", after=task ) task = self.task_manager.add_task_to_control_gripper( "close", name="Close gripper", after=task ) task = self.task_manager.add_task_to_move_to_position( pre_grasp, name="Move to pregrasp", after=task ) self.add_next_plan(after=task) self.update_status(TaskStatus.SUCCESS) return if self.current_state == "move_to_ready": self.task_manager.add_task( MoveArmTask( name="Move to ready", goal="ready", action_client=self.task_manager.move_arm_action_client, ), after=self, ) self.update_status(TaskStatus.SUCCESS) return def add_next_plan(self, after: Task = None) -> None: next_state = self.get_next_state() self.task_manager.add_task( PickTask( name=f"Pick {self.object_name} - {next_state}", task_manager=self.task_manager, task_vars=self.task_vars, object_name=self.object_name, current_state=next_state, ), after=after, ) class TaskManager(Node): def __init__(self) -> None: super().__init__("task_manager") self.tasks = deque() self.current_task = None self.task_history = [] self.task_vars = {} self.move_arm_action_client = ActionClient(self, MoveArm, "/move_arm") self.control_gripper_action_client = ActionClient( self, ControlGripper, "/control_gripper" ) self.get_grasp_action_client = ActionClient(self, GetGrasp, "/get_grasp") self.setup_gui() self.get_logger().info("Task Manager initialized") self.add_task( MoveArmTask( name="Move to extended", goal="extended", action_client=self.move_arm_action_client, ) ) self.add_task( ControlGripperTask( name="Open gripper", goal="open", action_client=self.control_gripper_action_client, ) ) self.add_task( MoveArmTask( name="Move to ready", goal="ready", action_client=self.move_arm_action_client, ) ) self.add_task( ControlGripperTask( name="Close gripper", goal="close", action_client=self.control_gripper_action_client, ) ) def setup_gui(self) -> None: with Client.auto_index_client: ui.label("Task Manager").style("font-size: 24px") self.grid = ui.aggrid( { "defaultColDef": {"flex": 1}, "columnDefs": [ {"headerName": "Name", "field": "name", "sortable": True}, {"headerName": "Status", "field": "status", "sortable": True}, ], "rowData": [], }, ).classes("h-96") self.update_grid() arm_positions = ["extended", "ready", "pick_center", "drop"] self.position_input = ui.input( label="Enter Move Arm position:", placeholder=f"{', '.join(arm_positions)}", autocomplete=arm_positions, ) ui.button( "Add Move Arm Task (Configuration)", on_click=self.add_move_arm_task_click, ) gripper_positions = ["open", "close"] self.gripper_position_input = ui.input( label="Enter Control Gripper position:", placeholder=f"{', '.join(gripper_positions)}", autocomplete=gripper_positions, ) ui.button( "Add Control Gripper Task", on_click=self.add_control_gripper_task_click ) self.numerical_list_input = ui.input( label="Enter cartesian position as list of 7 numbers separated by commas:", placeholder="x, y, z, qx, qy, qz, qw", ) ui.button( "Add Move Arm Task (Cartesian)", on_click=self.add_move_arm_task_cartesian_click, ) ui.button("Add Pick Tasks", on_click=self.add_pick_tasks_click) ui.button( "Run Tasks", on_click=lambda: asyncio.create_task(self.run_tasks()) ) ui.button( "Abort Current Task", on_click=lambda: asyncio.create_task(self.abort_current_task()), ) ui.button("Clear Tasks", on_click=self.clear_tasks) ui.button("Retry Last Task", on_click=self.retry_last_task) def update_grid(self) -> None: task_dict = [ {"name": task.name, "status": task.status} for task in self.task_history ] + [{"name": task.name, "status": task.status} for task in self.tasks] self.grid.options["rowData"] = task_dict self.get_logger().debug(f"{task_dict}") self.grid.update() def add_move_arm_task_click(self, event): position = ( self.position_input.value ) # Get the current value from the input field self.add_task_to_move_to_position(position) def add_task_to_move_to_position( self, position: str | list[float] | PoseStamped, name: str = None, after: Task = None, ) -> None: if name is None: name = f"Move to {position}" return self.add_task( MoveArmTask( name=name, goal=position, action_client=self.move_arm_action_client, ), after=after, ) def add_control_gripper_task_click(self, event): position = self.gripper_position_input.value self.add_task_to_control_gripper(position) def add_task_to_control_gripper( self, position: str, name=None, after: Task = None ) -> None: if name is None: name = f"Control gripper to {position}" return self.add_task( ControlGripperTask( name=f"Control gripper to {position}", goal=position, action_client=self.control_gripper_action_client, ), after=after, ) def add_move_arm_task_cartesian_click(self, event): position = [float(x) for x in self.numerical_list_input.value.split(",")] self.add_task_to_move_to_position( position, name=f"Move to cartesian {position}" ) def add_pick_tasks_click(self, event): # position = [0.5, 0.1, 0.3, 0.924, -0.383, 0.0, 0.0] # self.add_pick_tasks(position) self.add_task( PickTask( name="Pick task", task_manager=self, task_vars=self.task_vars, object_name="cereal", ) ) def add_pick_tasks(self, grasp_pose: list[float]) -> None: pre_grasp = grasp_pose.copy() pre_grasp[2] += 0.1 self.add_task_to_move_to_position(pre_grasp) self.add_task_to_control_gripper("open") self.add_task_to_move_to_position(grasp_pose) self.add_task_to_control_gripper("close") self.add_task_to_move_to_position(pre_grasp) self.add_task_to_move_to_position("ready") def add_task(self, task: Task, after: Task = None) -> None: task.logger = self.get_logger() if after: if after in self.tasks: self.tasks.insert(self.tasks.index(after) + 1, task) elif after in self.task_history: self.tasks.insert(0, task) else: self.get_logger().error(f"Task not found: {after}, cannot add task.") else: self.tasks.append(task) self.update_grid() self.get_logger().info(f"Task added: {task}") return task def remove_task(self, task: Task) -> None: self.tasks.remove(task) self.update_grid() self.get_logger().info(f"Task removed: {task}") def clear_tasks(self) -> None: self.tasks.clear() self.task_history.clear() self.update_grid() self.get_logger().info("Tasks cleared") def retry_last_task(self) -> None: if self.task_history: self.retry_task(self.task_history[-1]) else: self.get_logger().info("No tasks in history to retry") def retry_task(self, task: Task) -> None: self.task_history.remove(task) task.status = TaskStatus.PENDING self.tasks.appendleft(task) self.update_grid() self.get_logger().info(f"Task retried: {task}") async def run_tasks(self) -> None: while self.tasks: self.set_current_task(self.tasks.popleft()) self.current_task.run() self.update_grid() while self.current_task.status == TaskStatus.RUNNING: await asyncio.sleep(0.1) if self.current_task.status in [TaskStatus.ABORTED, TaskStatus.FAILURE]: self.get_logger().error(f"Task failed: {self.current_task}") self.update_grid() return self.set_current_task(None) self.get_logger().info("All tasks completed") def set_current_task(self, task: Task | None) -> None: self.current_task = task if task: self.task_history.append(task) self.get_logger().info(f"Current task: {task}") self.update_grid() async def abort_current_task(self) -> None: if self.current_task: self.current_task.abort() self.get_logger().info(f"Current task aborted: {self.current_task}") else: self.get_logger().info("No current task to abort") def get_tasks(self) -> deque[Task]: return self.tasks def destroy_node(self) -> None: self.move_arm_action_client.destroy() self.abort_current_task() super().destroy_node() global agentview_image global task_manager class RoboAIInterface(Node): def __init__(self, task_manager: TaskManager): super().__init__("roboai_interface") self.task_manager = task_manager self.agentview_image = None self.create_subscription( ROSImage, "/agentview/rgb", self.image_callback, 10, ) self.get_logger().info("RoboAI Interface initialized") def image_callback(self, msg: ROSImage) -> None: self.agentview_image = msg global agentview_image agentview_image = msg @classmethod @app.get("/get_image") async def get_image() -> str: if agentview_image: # return base64.b64encode(agentview_image.data).decode("utf-8") # Image.frombytes("RGB", (agentview_image.width, agentview_image.height), agentview_image.data) print(f"Image type: {type(agentview_image.data)}") img_array = np.frombuffer(agentview_image.data, np.uint8).reshape( agentview_image.height, agentview_image.width, 3 ) img = Image.fromarray(img_array) buf = io.BytesIO() img.save(buf, format="PNG") buf.seek(0) return StreamingResponse(buf, media_type="image/png") return None @classmethod @app.post("/add_task") async def add_task(task: str) -> None: if task == "pick": task_manager.add_task( PickTask( name="Pick task", task_manager=task_manager, task_vars=task_manager.task_vars, object_name="cereal", ) ) return True return False @app.post("/run_tasks") async def run_tasks() -> None: asyncio.create_task(task_manager.run_tasks()) def destroy_node(self): self.task_manager.destroy_node() super().destroy_node() def main() -> None: # NOTE: This function is defined as the ROS entry point in setup.py, but it's empty to enable NiceGUI auto-reloading # https://github.com/zauberzeug/nicegui/blob/main/examples/ros2/ros2_ws/src/gui/gui/node.py pass def ros_main() -> None: rclpy.init() global task_manager task_manager = TaskManager() executor = MultiThreadedExecutor() executor.add_node(task_manager) task_manager.get_logger().info("Task Manager started") roboai_interface = RoboAIInterface(task_manager) executor.add_node(roboai_interface) task_manager.get_logger().info("RoboAI Interface started") try: executor.spin() finally: task_manager.destroy_node() roboai_interface.destroy_node() rclpy.shutdown() app.on_startup(lambda: threading.Thread(target=ros_main).start()) ui_run.APP_IMPORT_STRING = f"{__name__}:app" # ROS2 uses a non-standard module name, so we need to specify it here ui.run(uvicorn_reload_dirs=str(Path(__file__).parent.resolve()), favicon="🤖")
22,691
Python
32.224012
120
0.561236
AshisGhosh/roboai/isaac_sim/humble_ws/src/robot_api/robot_api/manipulation.py
import time from typing import List from dataclasses import dataclass # generic ros libraries import rclpy from tf2_ros import Buffer, TransformListener from tf2_ros import LookupException, ConnectivityException, ExtrapolationException from tf2_geometry_msgs import do_transform_pose_stamped # moveit python library from moveit.core.robot_state import RobotState from moveit.planning import ( MoveItPy, PlanRequestParameters, ) from rclpy.node import Node from geometry_msgs.msg import PoseStamped, Pose from moveit_msgs.msg import Constraints from rclpy.action import ActionServer, CancelResponse, GoalResponse, ActionClient from control_msgs.action import GripperCommand from visualization_msgs.msg import Marker from roboai_interfaces.action import MoveArm, ControlGripper @dataclass class ArmState: JOINT_VALUES = "joint_values" POSE = "pose" name: str type: str joint_values: List[float | int] | None = None pose: List[float | int] | None = None def __post_init__(self): if self.joint_values is not None and self.pose is not None: raise ValueError("Only one of joint_values or pose can be set") if self.joint_values is None and self.pose is None: raise ValueError("Either joint_values or pose must be set") @classmethod def get_pose_array_as_pose(self, pose_array: List[float | int]) -> Pose: pose = Pose() pose.position.x = pose_array[0] pose.position.y = pose_array[1] pose.position.z = pose_array[2] pose.orientation.x = pose_array[3] pose.orientation.y = pose_array[4] pose.orientation.z = pose_array[5] pose.orientation.w = pose_array[6] return pose @classmethod def get_pose_array_as_pose_stamped( self, pose_array: List[float | int] ) -> PoseStamped: pose_stamped = PoseStamped() pose_stamped.pose = self.get_pose_array_as_pose(pose_array) return pose_stamped # Arm states # LOOK_DOWN_QUAT = [0.924, -0.383, 0.0, 0.0] LOOK_DOWN_QUAT = [1.0, 0.0, 0.0, 0.0] PICK_CENTER = ArmState( name="pick_center", type=ArmState.POSE, pose=[0.5, 0.0, 0.5, *LOOK_DOWN_QUAT] ) DROP = ArmState(name="drop", type=ArmState.POSE, pose=[0.5, -0.5, 0.5, *LOOK_DOWN_QUAT]) ARM_STATE_LIST = [PICK_CENTER, DROP] ARM_STATES = {state.name: state for state in ARM_STATE_LIST} class ManipulationAPI(Node): def __init__( self, robot_arm_planning_component="panda_arm", robot_arm_eef_link="panda_hand", ): super().__init__("manipulation_api") moveit_config = self._get_moveit_config() self.tf_buffer = Buffer() self.tf_listener = TransformListener(self.tf_buffer, self) self.robot_arm_planning_component_name = robot_arm_planning_component self.robot_arm_eef_link = robot_arm_eef_link self.robot = MoveItPy(node_name="moveit_py", config_dict=moveit_config) self.robot_arm_planning_component = self.robot.get_planning_component( self.robot_arm_planning_component_name ) self._action_server = ActionServer( self, MoveArm, "move_arm", execute_callback=self.execute_callback, goal_callback=self.goal_callback, cancel_callback=self.cancel_callback, ) self._last_gripper_result = None self._gripper_action_client = ActionClient( self, GripperCommand, "/panda_hand_controller/gripper_cmd" ) self._gripper_action_server = ActionServer( self, ControlGripper, "control_gripper", execute_callback=self.gripper_execute_callback, goal_callback=self.gripper_goal_callback, cancel_callback=self.cancel_callback, ) self.cartesian_goal_marker_publisher = self.create_publisher( Marker, "cartesian_goal_marker", 10 ) self.get_logger().info("Manipulation API initialized") def _get_moveit_config(self): from moveit_configs_utils import MoveItConfigsBuilder from ament_index_python.packages import get_package_share_directory moveit_config = ( MoveItConfigsBuilder( robot_name="panda", package_name="moveit_resources_panda_moveit_config" ) .robot_description(file_path="config/panda.urdf.xacro") .trajectory_execution(file_path="config/gripper_moveit_controllers.yaml") .moveit_cpp( file_path=get_package_share_directory("robot_api") + "/config/moveit_franka_python.yaml" ) .to_moveit_configs() ) moveit_config = moveit_config.to_dict() return moveit_config def destroy(self): self._action_server.destroy() super().destroy_node() def goal_callback(self, goal_request): """Accept or reject a client request to begin an action.""" # This server allows multiple goals in parallel self.get_logger().info("Received goal request") return GoalResponse.ACCEPT def cancel_callback(self, goal_handle): """Accept or reject a client request to cancel an action.""" # TODO: Implement cancel self.get_logger().info("Received cancel request") self.get_logger().error("Cancel not implemented") return CancelResponse.REJECT def execute_callback(self, goal_handle): goal = goal_handle.request self.get_logger().info(f"Received goal: {goal}") result = MoveArm.Result() status = self.move_arm( goal.configuration_goal, goal.cartesian_goal, goal.joint_goal, goal.constraints_goal, goal.cartesian_pose_goal, goal.start_state, ) self.get_logger().info(f"Move arm status: {status.status}") result.status = status.status if result.status == "SUCCEEDED": goal_handle.succeed() else: goal_handle.abort() return result def gripper_goal_callback(self, goal_request): """Accept or reject a client request to begin an action.""" self.get_logger().info("Received gripper goal request") return GoalResponse.ACCEPT def gripper_execute_callback(self, goal_handle): goal = goal_handle.request self.get_logger().info(f"Received gripper goal: {goal}") result = ControlGripper.Result() status = self.control_gripper(goal.goal_state) self.get_logger().info(f"Gripper status: {status}") result.status = status if result.status == "SUCCEEDED": goal_handle.succeed() else: goal_handle.abort() return result def publish_cartesian_goal_marker(self, pose_stamped: PoseStamped): marker = Marker() marker.header = pose_stamped.header marker.type = Marker.ARROW marker.action = Marker.ADD marker.pose = pose_stamped.pose marker.scale.x = 0.1 marker.scale.y = 0.01 marker.scale.z = 0.01 marker.color.a = 1.0 marker.color.r = 1.0 marker.color.g = 0.0 marker.color.b = 0.0 self.cartesian_goal_marker_publisher.publish(marker) def plan( self, goal_state, start_state=None, ): self.get_logger().info("Planning trajectory") self.get_logger().info( f"Goal state: {goal_state} type {type(goal_state)}: {isinstance(goal_state, str)}" ) plan_request_parameters = None if start_state is None: self.robot_arm_planning_component.set_start_state_to_current_state() else: self.robot_arm_planning_component.set_start_state(robot_state=start_state) if isinstance(goal_state, str): self.get_logger().info(f"Setting goal state to {goal_state}") self.robot_arm_planning_component.set_goal_state( configuration_name=goal_state ) elif isinstance(goal_state, RobotState): self.robot_arm_planning_component.set_goal_state(robot_state=goal_state) elif isinstance(goal_state, PoseStamped): self.robot_arm_planning_component.set_goal_state( pose_stamped_msg=goal_state, pose_link=self.robot_arm_eef_link ) plan_request_parameters = PlanRequestParameters( self.robot, "pilz_industrial_motion_planner" ) plan_request_parameters.planning_time = 1.0 plan_request_parameters.planning_attempts = 1 plan_request_parameters.max_velocity_scaling_factor = 0.1 plan_request_parameters.max_acceleration_scaling_factor = 0.1 plan_request_parameters.planning_pipeline = "pilz_industrial_motion_planner" plan_request_parameters.planner_id = "PTP" elif isinstance(goal_state, Constraints): self.robot_arm_planning_component.set_goal_state( motion_plan_constraints=[goal_state] ) elif isinstance(goal_state, list): self.robot_arm_planning_component.set_goal_state( motion_plan_constraints=goal_state ) else: raise ValueError("Invalid goal state type") self.get_logger().info( f"Planning trajectory for goal of type {type(goal_state)}" ) start_time = time.time() if plan_request_parameters is not None: plan_result = self.robot_arm_planning_component.plan( single_plan_parameters=plan_request_parameters ) else: plan_result = self.robot_arm_planning_component.plan() end_time = time.time() self.get_logger().info("Planning completed") self.get_logger().info(f"Planning time: {end_time - start_time}") return plan_result def execute(self, trajectory): self.get_logger().info("Executing trajectory") return self.robot.execute(trajectory, controllers=[]) # execution_manager = self.robot.get_trajactory_execution_manager() # current_status = execution_manager.get_execution_status() # # https://moveit.picknik.ai/main/api/html/structmoveit__controller__manager_1_1ExecutionStatus.html def move_arm( self, configuration_goal=None, cartesian_goal=None, joint_goal=None, constraints_goal=None, cartesian_pose_goal=None, start_state=None, ): self.get_logger().info("Moving arm") if start_state: raise NotImplementedError("Custom start state not implemented") if configuration_goal: if configuration_goal in ["extended", "ready"]: goal_state = configuration_goal elif configuration_goal in ARM_STATES: goal_state = ARM_STATES[configuration_goal] if goal_state.type == ArmState.JOINT_VALUES: return self.move_arm(joint_goal=goal_state.joint_values) elif goal_state.type == ArmState.POSE: return self.move_arm(cartesian_goal=goal_state.pose) else: raise ValueError("Invalid configuration goal") elif cartesian_goal: pose_stamped = PoseStamped() pose_stamped.header.frame_id = "panda_link0" pose_stamped.pose = ArmState.get_pose_array_as_pose(cartesian_goal) goal_state = pose_stamped self.publish_cartesian_goal_marker(goal_state) elif joint_goal: robot_model = self.robot.get_robot_model() robot_state = RobotState(robot_model) robot_state.set_joint_group_positions( self.robot_arm_planning_component_name, joint_goal ) goal_state = robot_state elif constraints_goal: raise NotImplementedError("Constraints goal not implemented") goal_state = constraints_goal elif cartesian_pose_goal: goal_state = cartesian_pose_goal if goal_state.header.frame_id == "": goal_state.header.frame_id = "panda_link0" if goal_state.header.frame_id != "panda_link0": self.get_logger().warn( f"Transforming goal state from {goal_state.header.frame_id} to panda_link0" ) self.get_logger().info(f"Goal state: {type(goal_state)}") try: transform = self.tf_buffer.lookup_transform( "panda_link0", goal_state.header.frame_id, goal_state.header.stamp, timeout=rclpy.duration.Duration(seconds=1), ) goal_state = do_transform_pose_stamped(goal_state, transform) except ( LookupException, ConnectivityException, ExtrapolationException, ) as e: self.get_logger().error(f"Failed to transform point: {str(e)}") self.publish_cartesian_goal_marker(goal_state) else: raise ValueError("No goal state provided") plan_result = self.plan(goal_state) return self.execute(plan_result.trajectory) def gripper_send_goal(self, goal: str): goal_msg = GripperCommand.Goal() goal_msg.command.position = 0.04 if goal == "open" else 0.0 self._gripper_action_client.wait_for_server(timeout_sec=1) future = self._gripper_action_client.send_goal_async(goal_msg) future.add_done_callback(self.goal_response_callback) def goal_response_callback(self, future) -> None: self.goal_handle = future.result() if not self.goal_handle.accepted: self.get_logger().error("Goal rejected :(") return self.get_logger().info("Goal accepted :)") # Wait for the result result_future = self.goal_handle.get_result_async() result_future.add_done_callback(self.gripper_get_result_callback) def gripper_get_result_callback(self, future) -> None: result = future.result().result self.get_logger().info( f"Result received: {result}, reached goal: {result.reached_goal}, stalled: {result.stalled}" ) if result.reached_goal or result.stalled: self.get_logger().info("Gripper command success.") else: self.get_logger().error("Gripper command failed.") self._last_gripper_result = result def control_gripper(self, goal: str): self._last_gripper_result = None if goal not in ["open", "close"]: raise ValueError("Invalid gripper goal") self.get_logger().info(f"Control gripper to {goal}") self.gripper_send_goal(goal) while self._last_gripper_result is None: rclpy.spin_once(self, timeout_sec=0.1) self.get_logger().info(f"Result: {self._last_gripper_result}") return "SUCCEEDED" def main(): rclpy.init() node = ManipulationAPI() try: while True: rclpy.spin_once(node) except KeyboardInterrupt: node.get_logger().info("Shutting down") node.destroy() rclpy.shutdown() if __name__ == "__main__": main()
15,500
Python
36.172662
109
0.608968
AshisGhosh/roboai/isaac_sim/humble_ws/src/robot_api/robot_api/manipulation_example.py
#!/usr/bin/env python3 """ A script to outline the fundamentals of the moveit_py motion planning API. """ import time # generic ros libraries import rclpy from rclpy.logging import get_logger # moveit python library from moveit.core.robot_state import RobotState from moveit.planning import ( MoveItPy, MultiPipelinePlanRequestParameters, ) def plan_and_execute( robot, planning_component, logger, single_plan_parameters=None, multi_plan_parameters=None, sleep_time=0.0, ): """Helper function to plan and execute a motion.""" # plan to goal logger.info("Planning trajectory") if multi_plan_parameters is not None: plan_result = planning_component.plan( multi_plan_parameters=multi_plan_parameters ) elif single_plan_parameters is not None: plan_result = planning_component.plan( single_plan_parameters=single_plan_parameters ) else: plan_result = planning_component.plan() # execute the plan if plan_result: logger.info("Executing plan") robot_trajectory = plan_result.trajectory robot.execute(robot_trajectory, controllers=[]) else: logger.error("Planning failed") time.sleep(sleep_time) def main(): ################################################################### # MoveItPy Setup ################################################################### rclpy.init() logger = get_logger("moveit_py.pose_goal") from moveit_configs_utils import MoveItConfigsBuilder from ament_index_python.packages import get_package_share_directory moveit_config = ( MoveItConfigsBuilder( robot_name="panda", package_name="moveit_resources_panda_moveit_config" ) .robot_description(file_path="config/panda.urdf.xacro") .trajectory_execution(file_path="config/gripper_moveit_controllers.yaml") .moveit_cpp( file_path=get_package_share_directory("robot_api") + "/config/moveit_franka_python.yaml" ) .to_moveit_configs() ) moveit_config = moveit_config.to_dict() # instantiate MoveItPy instance and get planning component panda = MoveItPy(node_name="moveit_py", config_dict=moveit_config) panda_arm = panda.get_planning_component("panda_arm") logger.info("MoveItPy instance created") ########################################################################### # Plan 1 - set states with predefined string ########################################################################### # set plan start state using predefined state panda_arm.set_start_state(configuration_name="ready") # set pose goal using predefined state panda_arm.set_goal_state(configuration_name="extended") # plan to goal plan_and_execute(panda, panda_arm, logger, sleep_time=3.0) ########################################################################### # Plan 2 - set goal state with RobotState object ########################################################################### # instantiate a RobotState instance using the current robot model robot_model = panda.get_robot_model() robot_state = RobotState(robot_model) # randomize the robot state robot_state.set_to_random_positions() # set plan start state to current state panda_arm.set_start_state_to_current_state() # set goal state to the initialized robot state logger.info("Set goal state to the initialized robot state") panda_arm.set_goal_state(robot_state=robot_state) # plan to goal plan_and_execute(panda, panda_arm, logger, sleep_time=3.0) ########################################################################### # Plan 3 - set goal state with PoseStamped message ########################################################################### # set plan start state to current state panda_arm.set_start_state_to_current_state() # set pose goal with PoseStamped message from geometry_msgs.msg import PoseStamped pose_goal = PoseStamped() pose_goal.header.frame_id = "panda_link0" pose_goal.pose.orientation.w = 1.0 pose_goal.pose.position.x = 0.28 pose_goal.pose.position.y = -0.2 pose_goal.pose.position.z = 0.5 panda_arm.set_goal_state(pose_stamped_msg=pose_goal, pose_link="panda_link8") # plan to goal plan_and_execute(panda, panda_arm, logger, sleep_time=3.0) ########################################################################### # Plan 4 - set goal state with constraints ########################################################################### # set plan start state to current state panda_arm.set_start_state_to_current_state() # set constraints message from moveit.core.kinematic_constraints import construct_joint_constraint joint_values = { "panda_joint1": -1.0, "panda_joint2": 0.7, "panda_joint3": 0.7, "panda_joint4": -1.5, "panda_joint5": -0.7, "panda_joint6": 2.0, "panda_joint7": 0.0, } robot_state.joint_positions = joint_values joint_constraint = construct_joint_constraint( robot_state=robot_state, joint_model_group=panda.get_robot_model().get_joint_model_group("panda_arm"), ) panda_arm.set_goal_state(motion_plan_constraints=[joint_constraint]) # plan to goal plan_and_execute(panda, panda_arm, logger, sleep_time=3.0) ########################################################################### # Plan 5 - Planning with Multiple Pipelines simultaneously ########################################################################### # set plan start state to current state panda_arm.set_start_state_to_current_state() # set pose goal with PoseStamped message panda_arm.set_goal_state(configuration_name="ready") # initialise multi-pipeline plan request parameters multi_pipeline_plan_request_params = MultiPipelinePlanRequestParameters( panda, ["ompl_rrtc", "pilz_lin", "chomp_planner"] ) # plan to goal plan_and_execute( panda, panda_arm, logger, multi_plan_parameters=multi_pipeline_plan_request_params, sleep_time=3.0, ) if __name__ == "__main__": main()
6,354
Python
31.927461
85
0.572081
AshisGhosh/roboai/isaac_sim/humble_ws/src/robot_api/config/moveit_franka_python.yaml
planning_scene_monitor_options: name: "planning_scene_monitor" robot_description: "robot_description" joint_state_topic: "/joint_states" attached_collision_object_topic: "/moveit_cpp/planning_scene_monitor" publish_planning_scene_topic: "/moveit_cpp/publish_planning_scene" monitored_planning_scene_topic: "/moveit_cpp/monitored_planning_scene" wait_for_initial_state_timeout: 10.0 planning_pipelines: pipeline_names: ["ompl", "pilz_industrial_motion_planner", "chomp"] plan_request_params: planning_attempts: 1 planning_pipeline: ompl max_velocity_scaling_factor: 1.0 max_acceleration_scaling_factor: 1.0 ompl_rrtc: # Namespace for individual plan request plan_request_params: # PlanRequestParameters similar to the ones that are used by the single pipeline planning of moveit_cpp planning_attempts: 1 # Number of attempts the planning pipeline tries to solve a given motion planning problem planning_pipeline: ompl # Name of the pipeline that is being used planner_id: "RRTConnectkConfigDefault" # Name of the specific planner to be used by the pipeline max_velocity_scaling_factor: 1.0 # Velocity scaling parameter for the trajectory generation algorithm that is called (if configured) after the path planning max_acceleration_scaling_factor: 1.0 # Acceleration scaling parameter for the trajectory generation algorithm that is called (if configured) after the path planning planning_time: 1.0 # Time budget for the motion plan request. If the planning problem cannot be solved within this time, an empty solution with error code is returned pilz_lin: plan_request_params: planning_attempts: 1 planning_pipeline: pilz_industrial_motion_planner planner_id: "PTP" max_velocity_scaling_factor: 1.0 max_acceleration_scaling_factor: 1.0 planning_time: 0.8 chomp_planner: plan_request_params: planning_attempts: 1 planning_pipeline: chomp max_velocity_scaling_factor: 1.0 max_acceleration_scaling_factor: 1.0 planning_time: 1.5
2,036
YAML
45.295454
171
0.761297
AshisGhosh/roboai/isaac_sim/humble_ws/src/isaac_tutorials/scripts/ros2_publisher.py
#!/usr/bin/env python3 # Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import rclpy from rclpy.node import Node from sensor_msgs.msg import JointState import numpy as np import time class TestROS2Bridge(Node): def __init__(self): super().__init__("test_ros2bridge") # Create the publisher. This publisher will publish a JointState message to the /joint_command topic. self.publisher_ = self.create_publisher(JointState, "joint_command", 10) # Create a JointState message self.joint_state = JointState() self.joint_state.name = [ "panda_joint1", "panda_joint2", "panda_joint3", "panda_joint4", "panda_joint5", "panda_joint6", "panda_joint7", "panda_finger_joint1", "panda_finger_joint2", ] num_joints = len(self.joint_state.name) # make sure kit's editor is playing for receiving messages self.joint_state.position = np.array( [0.0] * num_joints, dtype=np.float64 ).tolist() self.default_joints = [0.0, -1.16, -0.0, -2.3, -0.0, 1.6, 1.1, 0.4, 0.4] # limiting the movements to a smaller range (this is not the range of the robot, just the range of the movement self.max_joints = np.array(self.default_joints) + 0.5 self.min_joints = np.array(self.default_joints) - 0.5 # position control the robot to wiggle around each joint self.time_start = time.time() timer_period = 0.05 # seconds self.timer = self.create_timer(timer_period, self.timer_callback) def timer_callback(self): self.joint_state.header.stamp = self.get_clock().now().to_msg() joint_position = ( np.sin(time.time() - self.time_start) * (self.max_joints - self.min_joints) * 0.5 + self.default_joints ) self.joint_state.position = joint_position.tolist() # Publish the message to the topic self.publisher_.publish(self.joint_state) def main(args=None): rclpy.init(args=args) ros2_publisher = TestROS2Bridge() rclpy.spin(ros2_publisher) # Destroy the node explicitly ros2_publisher.destroy_node() rclpy.shutdown() if __name__ == "__main__": main()
2,719
Python
30.264367
119
0.630747
AshisGhosh/roboai/isaac_sim/humble_ws/src/data_gen/setup.py
import os from setuptools import find_packages, setup package_name = "data_gen" setup( name=package_name, version="0.0.0", packages=find_packages(exclude=["test"]), data_files=[ ("share/ament_index/resource_index/packages", ["resource/" + package_name]), ("share/" + package_name, ["package.xml"]), ( os.path.join("share", package_name, "launch"), [os.path.join("launch", "object_sorter.launch.py")], ), ], install_requires=["setuptools"], zip_safe=True, maintainer="root", maintainer_email="[email protected]", description="TODO: Package description", license="TODO: License declaration", tests_require=["pytest"], entry_points={ "console_scripts": ["object_sorter = data_gen.object_sorter:main"], }, )
823
Python
27.413792
84
0.606318
AshisGhosh/roboai/isaac_sim/humble_ws/src/data_gen/test/test_flake8.py
# Copyright 2017 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_flake8.main import main_with_errors import pytest @pytest.mark.flake8 @pytest.mark.linter def test_flake8(): rc, errors = main_with_errors(argv=[]) assert rc == 0, "Found %d code style errors / warnings:\n" % len( errors ) + "\n".join(errors)
878
Python
32.807691
74
0.730068
AshisGhosh/roboai/isaac_sim/humble_ws/src/data_gen/test/test_pep257.py
# Copyright 2015 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_pep257.main import main import pytest @pytest.mark.linter @pytest.mark.pep257 def test_pep257(): rc = main(argv=[".", "test"]) assert rc == 0, "Found code style errors / warnings"
803
Python
32.499999
74
0.743462
AshisGhosh/roboai/isaac_sim/humble_ws/src/data_gen/test/test_copyright.py
# Copyright 2015 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_copyright.main import main import pytest # Remove the `skip` decorator once the source file(s) have a copyright header @pytest.mark.skip( reason="No copyright header has been placed in the generated source file." ) @pytest.mark.copyright @pytest.mark.linter def test_copyright(): rc = main(argv=[".", "test"]) assert rc == 0, "Found errors"
968
Python
33.607142
78
0.746901
AshisGhosh/roboai/isaac_sim/humble_ws/src/data_gen/launch/object_sorter.launch.py
from launch import LaunchDescription from launch_ros.actions import Node def generate_launch_description(): return LaunchDescription( [ Node( package="data_gen", executable="object_sorter", name="object_sorter", parameters=[ {"rgb_topic": "/agentview/rgb"}, {"segmentation_topic": "/agentview/instance_segmentation_repub"}, {"labels_topic": "/agentview/semantic_labels"}, ], ) ] )
571
Python
27.599999
85
0.499124
AshisGhosh/roboai/isaac_sim/humble_ws/src/data_gen/data_gen/object_sorter.py
import json import rclpy from rclpy.node import Node from sensor_msgs.msg import Image from std_msgs.msg import String from roboai_interfaces.msg import ObjectOrder from roboai_interfaces.srv import SaveObjects import numpy as np import cv2 from cv_bridge import CvBridge class ObjectSorter(Node): def __init__(self): super().__init__("object_sorter") # Parameters self.declare_parameter("rgb_topic", "/rgb") self.declare_parameter("segmentation_topic", "/instance_segmentation") self.declare_parameter("labels_topic", "/segmentation_labels") # Subscribers self.rgb_subscriber = self.create_subscription( Image, self.get_parameter("rgb_topic").get_parameter_value().string_value, self.rgb_callback, 10, ) self.segmentation_subscriber = self.create_subscription( Image, self.get_parameter("segmentation_topic").get_parameter_value().string_value, self.segmentation_callback, 10, ) self.labels_subscriber = self.create_subscription( String, self.get_parameter("labels_topic").get_parameter_value().string_value, self.labels_callback, 10, ) # Publisher self.order_publisher = self.create_publisher(ObjectOrder, "sorted_objects", 10) # Service self.save_service = self.create_service( SaveObjects, "save_objects", self.save_objects_handler ) # Variables self.bridge = CvBridge() self.current_rgb_image = None self.current_segmentation_image = None self.labels = {} def rgb_callback(self, msg): self.current_rgb_image = self.bridge.imgmsg_to_cv2(msg, "bgr8") def segmentation_callback(self, msg): segmentation_image = self.bridge.imgmsg_to_cv2(msg, "mono8") self.current_segmentation_image = segmentation_image self.process_and_publish_order(segmentation_image) def labels_callback(self, msg): # self.labels = json.loads(msg.data) # labels indexes are 0, 1, 2, 3, etc but pixel values scale to 255 labels = json.loads(msg.data) labels.pop("time_stamp", None) # pop where value is BACKGROUND or UNLABBELED labels = { k: v for k, v in labels.items() if v not in ["BACKGROUND", "UNLABELLED"] } self.labels = { int((i + 1) * 255 / len(labels)): v for i, (k, v) in enumerate(labels.items()) } def process_and_publish_order(self, segmentation_image): object_order = self.sort_objects(segmentation_image) if object_order: order_msg = ObjectOrder(object_names=object_order) self.order_publisher.publish(order_msg) def sort_objects(self, segmentation_image): unique_objects = np.unique(segmentation_image) object_positions = {} self.get_logger().info(f"Unique objects: {unique_objects}") self.get_logger().info(f"Labels: {self.labels}") for obj_id in unique_objects: if ( obj_id == 0 or obj_id not in self.labels ): # Skip background or unknown labels self.get_logger().info(f"Skipping object {obj_id}") continue y, x = np.where(segmentation_image == obj_id) min_x = np.min(x) # Leftmost point self.get_logger().info(f"Object {obj_id} at {min_x}") object_positions[self.labels[obj_id]] = min_x # Sort objects by their leftmost points sorted_objects = sorted(object_positions.items(), key=lambda x: x[1]) return [obj[0] for obj in sorted_objects] def save_objects_handler(self, request, response): if self.current_rgb_image is None or self.current_segmentation_image is None: response.success = False response.message = "No data available to save" return response # Save the RGB image and the object order cv2.imwrite("latest_rgb_image.png", self.current_rgb_image) order = self.sort_objects(self.current_segmentation_image) data = {"objects": {"count": len(order), "names": order}} with open("latest_object_order.json", "w") as f: json.dump(data, f) response.success = True response.message = "Saved successfully" return response def main(args=None): rclpy.init(args=args) node = ObjectSorter() rclpy.spin(node) node.destroy_node() rclpy.shutdown() if __name__ == "__main__": main()
4,659
Python
34.30303
88
0.6085
AshisGhosh/roboai/isaac_sim/humble_ws/src/grasps_ros/setup.py
import os from setuptools import find_packages, setup package_name = "grasps_ros" setup( name=package_name, version="0.0.0", packages=find_packages(exclude=["test"]), data_files=[ ("share/ament_index/resource_index/packages", ["resource/" + package_name]), ("share/" + package_name, ["package.xml"]), ( os.path.join("share", package_name, "launch"), [os.path.join("launch", "image_processor.launch.py")], ), ], install_requires=["setuptools"], zip_safe=True, maintainer="root", maintainer_email="[email protected]", description="TODO: Package description", license="TODO: License declaration", tests_require=["pytest"], entry_points={ "console_scripts": ["image_processor = grasps_ros.image_processor:main"], }, )
833
Python
27.75862
84
0.611044
AshisGhosh/roboai/isaac_sim/humble_ws/src/grasps_ros/test/test_flake8.py
# Copyright 2017 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_flake8.main import main_with_errors import pytest @pytest.mark.flake8 @pytest.mark.linter def test_flake8(): rc, errors = main_with_errors(argv=[]) assert rc == 0, "Found %d code style errors / warnings:\n" % len( errors ) + "\n".join(errors)
878
Python
32.807691
74
0.730068
AshisGhosh/roboai/isaac_sim/humble_ws/src/grasps_ros/test/test_pep257.py
# Copyright 2015 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_pep257.main import main import pytest @pytest.mark.linter @pytest.mark.pep257 def test_pep257(): rc = main(argv=[".", "test"]) assert rc == 0, "Found code style errors / warnings"
803
Python
32.499999
74
0.743462
AshisGhosh/roboai/isaac_sim/humble_ws/src/grasps_ros/test/test_copyright.py
# Copyright 2015 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_copyright.main import main import pytest # Remove the `skip` decorator once the source file(s) have a copyright header @pytest.mark.skip( reason="No copyright header has been placed in the generated source file." ) @pytest.mark.copyright @pytest.mark.linter def test_copyright(): rc = main(argv=[".", "test"]) assert rc == 0, "Found errors"
968
Python
33.607142
78
0.746901
AshisGhosh/roboai/isaac_sim/humble_ws/src/grasps_ros/launch/image_processor.launch.py
from launch import LaunchDescription from launch_ros.actions import Node def generate_launch_description(): node_action = Node( package="grasps_ros", executable="image_processor", name="image_processor", output="screen", remappings=[ ("/rgb_image", "/rgb"), ("/depth_image", "/depth"), ("/camera_info", "/camera_info"), ("/grasp_image", "/grasp_image"), ("/grasp_markers", "/grasp_markers"), ], ) return LaunchDescription([node_action])
560
Python
25.714284
49
0.55
AshisGhosh/roboai/isaac_sim/humble_ws/src/grasps_ros/grasps_ros/image_processor.py
import time import cv2 from PIL import Image import numpy as np import rclpy from rclpy.node import Node from rclpy.action import ActionServer, CancelResponse, GoalResponse from tf2_ros import Buffer, TransformListener from tf2_ros import LookupException, ConnectivityException, ExtrapolationException from tf2_geometry_msgs import do_transform_pose_stamped import message_filters from sensor_msgs.msg import Image as ROSImage from sensor_msgs.msg import CameraInfo from cv_bridge import CvBridge from visualization_msgs.msg import Marker from geometry_msgs.msg import Point, PoseStamped from roboai_interfaces.action import GetGrasp from roboai.shared.utils.grasp_client import get_grasp_from_image def interpolate(p1, p2, num_points=5): """Interpolates num_points between p1 and p2, inclusive of p1 and p2.""" return [ ((1 - t) * np.array(p1) + t * np.array(p2)) for t in np.linspace(0, 1, num_points) ] def get_grid_from_box(box): sides = [] for i in range(len(box)): p1 = box[i] p2 = box[(i + 1) % len(box)] if i < len(box) - 1: sides.append(interpolate(p1, p2)[:-1]) else: sides.append(interpolate(p1, p2)) grid = [] for i in range(len(sides[0])): for j in range(len(sides[1])): grid.extend(interpolate(sides[0][i], sides[1][j])) return grid def get_angle_from_box(box): p1 = box[2] p2 = box[3] angle = np.arctan2(p2[1] - p1[1], p2[0] - p1[0]) return angle class ImageProcessor(Node): def __init__(self): super().__init__("image_processor") self.get_logger().info("Image Processor node has been initialized") self.tf_buffer = Buffer() self.tf_listener = TransformListener(self.tf_buffer, self) self.last_image_ts = None rgb_sub = message_filters.Subscriber(self, ROSImage, "/rgb_image") depth_sub = message_filters.Subscriber(self, ROSImage, "/depth_image") ts = message_filters.TimeSynchronizer([rgb_sub, depth_sub], 10) ts.registerCallback(self.image_callback) self.camera_info = None self.camera_info_sub = self.create_subscription( CameraInfo, "/camera_info", self.camera_info_callback, 10 ) self.publisher = self.create_publisher(ROSImage, "/grasp_image", 10) self.bridge = CvBridge() self.marker_pub = self.create_publisher(Marker, "/grasp_markers", 10) self.grasp_axis_pub = self.create_publisher(Marker, "/grasp_axis_markers", 10) self.grasps = None self._action_server = ActionServer( self, GetGrasp, "get_grasp", self.execute_callback, goal_callback=self.goal_callback, cancel_callback=self.cancel_callback, ) def camera_info_callback(self, msg): self.camera_info = msg def image_callback(self, rgb_msg, depth_msg): # Convert ROS Image message to OpenCV format if not self.camera_info: self.get_logger().warn("Camera info not available") return self.last_image_ts = rclpy.time.Time() cv_rgb_image = self.bridge.imgmsg_to_cv2( rgb_msg, desired_encoding="passthrough" ) cv_depth_image = self.bridge.imgmsg_to_cv2(depth_msg, "32FC1") image = Image.fromarray(cv_rgb_image) start_time = time.time() response = get_grasp_from_image(image) self.get_logger().info(f"Time taken to get grasps: {time.time() - start_time}") self.handle_response(response, cv_rgb_image, cv_depth_image) def handle_response(self, response, cv_rgb_image, cv_depth_image): try: grasps = response["result"] if grasps: self.get_logger().info( f"Received grasp poses: {[(grasp['cls_name'], round(grasp['obj'],2)) for grasp in response['result']]}" ) self.publish_grasp_image(grasps, cv_rgb_image) self.publish_grasp_markers(grasps, cv_depth_image) grasp_dict = self.get_grasp_poses(grasps, cv_depth_image) grasp_timestamp = self.get_clock().now().to_msg() self.grasps = { "timestamp": grasp_timestamp, "grasps": grasp_dict, } self.publish_grasp_axis_markers() except KeyError as e: self.get_logger().warn( f"KeyError: Failed to receive valid response or grasp poses: {e}" ) def publish_grasp_image(self, grasps, original_image): for grasp in grasps: points = np.array(grasp["r_bbox"], np.int32) points = points.reshape((-1, 1, 2)) cv2.polylines( original_image, [points], isClosed=True, color=(0, 255, 0), thickness=2 ) # Get the label for the class class_label = grasp["cls_name"] score = grasp["obj"] label_with_score = ( f"{class_label} ({score:.2f})" # Formatting score to 2 decimal places ) label_position = (points[0][0][0], points[0][0][1] - 10) cv2.putText( original_image, label_with_score, label_position, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, ) ros_image = self.bridge.cv2_to_imgmsg(original_image, "rgb8") self.publisher.publish(ros_image) def project_to_3d(self, x, y, depth): depth = float(depth) fx = self.camera_info.k[0] fy = self.camera_info.k[4] cx = self.camera_info.k[2] cy = self.camera_info.k[5] x = (x - cx) * depth / fx y = (y - cy) * depth / fy return x, y, depth def get_grasp_poses(self, grasps, cv_depth_image): grasp_poses = {} timestamp = self.last_image_ts.to_msg() for grasp in grasps: grasp_points = grasp["r_bbox"] center = np.mean(grasp_points, axis=0) average_depth = np.mean( [ cv_depth_image[int(pt[1]), int(pt[0])] for pt in get_grid_from_box(grasp_points) ] ) point_3d = self.project_to_3d(center[0], center[1], average_depth) if point_3d: pose_msg = PoseStamped() pose_msg.header.frame_id = self.camera_info.header.frame_id pose_msg.header.stamp = timestamp pose_msg.pose.position.x = point_3d[0] pose_msg.pose.position.y = point_3d[1] pose_msg.pose.position.z = point_3d[2] angle = get_angle_from_box(grasp_points) pose_msg.pose.orientation.z = np.sin(angle / 2) pose_msg.pose.orientation.w = np.cos(angle / 2) try: transform = self.tf_buffer.lookup_transform( "world", pose_msg.header.frame_id, timestamp, timeout=rclpy.duration.Duration(seconds=10), ) pose_msg = do_transform_pose_stamped(pose_msg, transform) grasp_poses[grasp["cls_name"]] = pose_msg except ( LookupException, ConnectivityException, ExtrapolationException, ) as e: self.get_logger().error(f"Failed to transform point: {str(e)}") self.get_logger().info(f"Grasp poses: {len(grasp_poses)}") return grasp_poses def publish_grasp_markers(self, grasps, cv_depth_image, publish_grid=False): if not self.camera_info: return scale = 0.02 if publish_grid: scale = 0.002 marker = Marker() marker.header.frame_id = self.camera_info.header.frame_id marker.header.stamp = self.last_image_ts.to_msg() marker.ns = "grasps" marker.id = 0 marker.type = Marker.POINTS marker.action = Marker.ADD marker.pose.orientation.w = 1.0 marker.scale.x = scale marker.scale.y = scale marker.scale.z = scale marker.color.r = 1.0 marker.color.a = 1.0 marker.points = [] for grasp in grasps: grasp_points = grasp["r_bbox"] if publish_grid: grasp_points = get_grid_from_box(grasp_points) for pt in grasp_points: point_3d = self.project_to_3d( pt[0], pt[1], cv_depth_image[int(pt[1]), int(pt[0])] ) if point_3d: marker.points.append( Point(x=point_3d[0], y=point_3d[1], z=point_3d[2]) ) self.marker_pub.publish(marker) def publish_grasp_axis_markers(self): if not self.grasps: return marker = Marker() marker.header.frame_id = list(self.grasps["grasps"].values())[0].header.frame_id marker.header.stamp = self.last_image_ts.to_msg() marker.ns = "grasp_axis" marker.id = 0 marker.type = Marker.ARROW marker.action = Marker.ADD marker.pose.orientation.w = 1.0 marker.scale.x = 0.1 marker.scale.y = 0.015 marker.scale.z = 0.015 marker.color.b = 1.0 marker.color.a = 0.5 # for grasp in self.grasps["grasps"].values(): grasp = list(self.grasps["grasps"].values())[0] # Draw the axis marker.pose.position = grasp.pose.position marker.pose.orientation = grasp.pose.orientation self.grasp_axis_pub.publish(marker) def goal_callback(self, goal_request): self.get_logger().info("Received goal request") return GoalResponse.ACCEPT def cancel_callback(self, goal_handle): self.get_logger().info("Received cancel request") self.get_logger().error("Cancel not implemented") return CancelResponse.REJECT def execute_callback(self, goal_handle): self.get_logger().info("Received execute request") object_name = goal_handle.request.object_name self.get_logger().info(f"Looking for object name: {object_name}") time_tolerance = rclpy.time.Duration(seconds=3) timeout = 10.0 while True and timeout > 0: self.get_logger().info( f"Grasps: {len(self.grasps['grasps'])}, TS: {self.grasps['timestamp']}, now: {self.get_clock().now()}" ) self.get_logger().info( f"Time diff: {(self.get_clock().now() - rclpy.time.Time.from_msg(self.grasps['timestamp'])).nanoseconds/1e9}" ) if ( self.grasps and self.get_clock().now() - rclpy.time.Time.from_msg(self.grasps["timestamp"]) < time_tolerance ): self.get_logger().info(f"Found grasps for object: {object_name}") result = GetGrasp.Result(success=True) grasp = list(self.grasps["grasps"].values())[0] result.grasp = grasp goal_handle.succeed() return result timeout -= 0.1 rclpy.spin_once(self, timeout_sec=0.1) self.get_logger().warn(f"Couldn't find grasps for object: {object_name}") goal_handle.succeed() return GetGrasp.Result(success=False) def main(args=None): rclpy.init(args=args) image_processor = ImageProcessor() try: while True: rclpy.spin_once(image_processor) except KeyboardInterrupt: image_processor.get_logger().info("Shutting down") image_processor.destroy_node() rclpy.shutdown() if __name__ == "__main__": main()
12,018
Python
33.736994
125
0.555999
AshisGhosh/roboai/isaac_sim/humble_ws/src/navigation/carter_navigation/launch/carter_navigation.launch.py
## Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. ## NVIDIA CORPORATION and its licensors retain all intellectual property ## and proprietary rights in and to this software, related documentation ## and any modifications thereto. Any use, reproduction, disclosure or ## distribution of this software and related documentation without an express ## license agreement from NVIDIA CORPORATION is strictly prohibited. import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import DeclareLaunchArgument from launch.actions import IncludeLaunchDescription from launch.launch_description_sources import PythonLaunchDescriptionSource from launch.substitutions import LaunchConfiguration from launch_ros.actions import Node def generate_launch_description(): use_sim_time = LaunchConfiguration("use_sim_time", default="True") map_dir = LaunchConfiguration( "map", default=os.path.join( get_package_share_directory("carter_navigation"), "maps", "carter_warehouse_navigation.yaml", ), ) param_dir = LaunchConfiguration( "params_file", default=os.path.join( get_package_share_directory("carter_navigation"), "params", "carter_navigation_params.yaml", ), ) nav2_bringup_launch_dir = os.path.join( get_package_share_directory("nav2_bringup"), "launch" ) rviz_config_dir = os.path.join( get_package_share_directory("carter_navigation"), "rviz2", "carter_navigation.rviz", ) return LaunchDescription( [ DeclareLaunchArgument( "map", default_value=map_dir, description="Full path to map file to load", ), DeclareLaunchArgument( "params_file", default_value=param_dir, description="Full path to param file to load", ), DeclareLaunchArgument( "use_sim_time", default_value="true", description="Use simulation (Omniverse Isaac Sim) clock if true", ), IncludeLaunchDescription( PythonLaunchDescriptionSource( os.path.join(nav2_bringup_launch_dir, "rviz_launch.py") ), launch_arguments={ "namespace": "", "use_namespace": "False", "rviz_config": rviz_config_dir, }.items(), ), IncludeLaunchDescription( PythonLaunchDescriptionSource( [nav2_bringup_launch_dir, "/bringup_launch.py"] ), launch_arguments={ "map": map_dir, "use_sim_time": use_sim_time, "params_file": param_dir, }.items(), ), Node( package="pointcloud_to_laserscan", executable="pointcloud_to_laserscan_node", remappings=[ ("cloud_in", ["/front_3d_lidar/point_cloud"]), ("scan", ["/scan"]), ], parameters=[ { "target_frame": "front_3d_lidar", "transform_tolerance": 0.01, "min_height": -0.4, "max_height": 1.5, "angle_min": -1.5708, # -M_PI/2 "angle_max": 1.5708, # M_PI/2 "angle_increment": 0.0087, # M_PI/360.0 "scan_time": 0.3333, "range_min": 0.05, "range_max": 100.0, "use_inf": True, "inf_epsilon": 1.0, # 'concurrency_level': 1, } ], name="pointcloud_to_laserscan", ), ] )
4,120
Python
35.149122
81
0.514078
AshisGhosh/roboai/isaac_sim/humble_ws/src/navigation/carter_navigation/launch/carter_navigation_individual.launch.py
## Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. ## NVIDIA CORPORATION and its licensors retain all intellectual property ## and proprietary rights in and to this software, related documentation ## and any modifications thereto. Any use, reproduction, disclosure or ## distribution of this software and related documentation without an express ## license agreement from NVIDIA CORPORATION is strictly prohibited. import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import DeclareLaunchArgument, IncludeLaunchDescription from launch.launch_description_sources import PythonLaunchDescriptionSource from launch.substitutions import LaunchConfiguration def generate_launch_description(): # Get the launch directory nav2_launch_dir = os.path.join( get_package_share_directory("nav2_bringup"), "launch" ) # Create the launch configuration variables slam = LaunchConfiguration("slam") namespace = LaunchConfiguration("namespace") use_namespace = LaunchConfiguration("use_namespace") map_yaml_file = LaunchConfiguration("map") use_sim_time = LaunchConfiguration("use_sim_time") params_file = LaunchConfiguration("params_file") default_bt_xml_filename = LaunchConfiguration("default_bt_xml_filename") autostart = LaunchConfiguration("autostart") # Declare the launch arguments declare_namespace_cmd = DeclareLaunchArgument( "namespace", default_value="", description="Top-level namespace" ) declare_use_namespace_cmd = DeclareLaunchArgument( "use_namespace", default_value="false", description="Whether to apply a namespace to the navigation stack", ) declare_slam_cmd = DeclareLaunchArgument( "slam", default_value="False", description="Whether run a SLAM" ) declare_map_yaml_cmd = DeclareLaunchArgument( "map", default_value=os.path.join( nav2_launch_dir, "maps", "carter_warehouse_navigation.yaml" ), description="Full path to map file to load", ) declare_use_sim_time_cmd = DeclareLaunchArgument( "use_sim_time", default_value="True", description="Use simulation (Isaac Sim) clock if true", ) declare_params_file_cmd = DeclareLaunchArgument( "params_file", default_value=os.path.join(nav2_launch_dir, "params", "nav2_params.yaml"), description="Full path to the ROS2 parameters file to use for all launched nodes", ) declare_bt_xml_cmd = DeclareLaunchArgument( "default_bt_xml_filename", default_value=os.path.join( get_package_share_directory("nav2_bt_navigator"), "behavior_trees", "navigate_w_replanning_and_recovery.xml", ), description="Full path to the behavior tree xml file to use", ) declare_autostart_cmd = DeclareLaunchArgument( "autostart", default_value="true", description="Automatically startup the nav2 stack", ) bringup_cmd = IncludeLaunchDescription( PythonLaunchDescriptionSource( os.path.join(nav2_launch_dir, "bringup_launch.py") ), launch_arguments={ "namespace": namespace, "use_namespace": use_namespace, "slam": slam, "map": map_yaml_file, "use_sim_time": use_sim_time, "params_file": params_file, "default_bt_xml_filename": default_bt_xml_filename, "autostart": autostart, }.items(), ) # Create the launch description and populate ld = LaunchDescription() # Declare the launch options ld.add_action(declare_namespace_cmd) ld.add_action(declare_use_namespace_cmd) ld.add_action(declare_slam_cmd) ld.add_action(declare_map_yaml_cmd) ld.add_action(declare_use_sim_time_cmd) ld.add_action(declare_params_file_cmd) ld.add_action(declare_bt_xml_cmd) ld.add_action(declare_autostart_cmd) ld.add_action(bringup_cmd) return ld
4,104
Python
34.387931
90
0.67885
AshisGhosh/roboai/isaac_sim/humble_ws/src/navigation/carter_navigation/launch/multiple_robot_carter_navigation_hospital.launch.py
## Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. ## NVIDIA CORPORATION and its licensors retain all intellectual property ## and proprietary rights in and to this software, related documentation ## and any modifications thereto. Any use, reproduction, disclosure or ## distribution of this software and related documentation without an express ## license agreement from NVIDIA CORPORATION is strictly prohibited. """ Example for spawing multiple robots in Gazebo. This is an example on how to create a launch file for spawning multiple robots into Gazebo and launch multiple instances of the navigation stack, each controlling one robot. The robots co-exist on a shared environment and are controlled by independent nav stacks """ import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import ( DeclareLaunchArgument, GroupAction, IncludeLaunchDescription, LogInfo, ) from launch.conditions import IfCondition from launch.launch_description_sources import PythonLaunchDescriptionSource from launch.substitutions import LaunchConfiguration, TextSubstitution from launch_ros.actions import Node def generate_launch_description(): # Get the launch and rviz directories carter_nav2_bringup_dir = get_package_share_directory("carter_navigation") nav2_bringup_dir = get_package_share_directory("nav2_bringup") nav2_bringup_launch_dir = os.path.join(nav2_bringup_dir, "launch") rviz_config_dir = os.path.join( carter_nav2_bringup_dir, "rviz2", "carter_navigation_namespaced.rviz" ) # Names and poses of the robots robots = [{"name": "carter1"}, {"name": "carter2"}, {"name": "carter3"}] # Common settings ENV_MAP_FILE = "carter_hospital_navigation.yaml" use_sim_time = LaunchConfiguration("use_sim_time", default="True") map_yaml_file = LaunchConfiguration("map") default_bt_xml_filename = LaunchConfiguration("default_bt_xml_filename") autostart = LaunchConfiguration("autostart") rviz_config_file = LaunchConfiguration("rviz_config") use_rviz = LaunchConfiguration("use_rviz") log_settings = LaunchConfiguration("log_settings", default="true") # Declare the launch arguments declare_map_yaml_cmd = DeclareLaunchArgument( "map", default_value=os.path.join(carter_nav2_bringup_dir, "maps", ENV_MAP_FILE), description="Full path to map file to load", ) declare_robot1_params_file_cmd = DeclareLaunchArgument( "carter1_params_file", default_value=os.path.join( carter_nav2_bringup_dir, "params", "hospital", "multi_robot_carter_navigation_params_1.yaml", ), description="Full path to the ROS2 parameters file to use for robot1 launched nodes", ) declare_robot2_params_file_cmd = DeclareLaunchArgument( "carter2_params_file", default_value=os.path.join( carter_nav2_bringup_dir, "params", "hospital", "multi_robot_carter_navigation_params_2.yaml", ), description="Full path to the ROS2 parameters file to use for robot2 launched nodes", ) declare_robot3_params_file_cmd = DeclareLaunchArgument( "carter3_params_file", default_value=os.path.join( carter_nav2_bringup_dir, "params", "hospital", "multi_robot_carter_navigation_params_3.yaml", ), description="Full path to the ROS2 parameters file to use for robot3 launched nodes", ) declare_bt_xml_cmd = DeclareLaunchArgument( "default_bt_xml_filename", default_value=os.path.join( get_package_share_directory("nav2_bt_navigator"), "behavior_trees", "navigate_w_replanning_and_recovery.xml", ), description="Full path to the behavior tree xml file to use", ) declare_autostart_cmd = DeclareLaunchArgument( "autostart", default_value="True", description="Automatically startup the stacks", ) declare_rviz_config_file_cmd = DeclareLaunchArgument( "rviz_config", default_value=rviz_config_dir, description="Full path to the RVIZ config file to use.", ) declare_use_rviz_cmd = DeclareLaunchArgument( "use_rviz", default_value="True", description="Whether to start RVIZ" ) # Define commands for launching the navigation instances nav_instances_cmds = [] for robot in robots: params_file = LaunchConfiguration(robot["name"] + "_params_file") group = GroupAction( [ IncludeLaunchDescription( PythonLaunchDescriptionSource( os.path.join(nav2_bringup_launch_dir, "rviz_launch.py") ), condition=IfCondition(use_rviz), launch_arguments={ "namespace": TextSubstitution(text=robot["name"]), "use_namespace": "True", "rviz_config": rviz_config_file, }.items(), ), IncludeLaunchDescription( PythonLaunchDescriptionSource( os.path.join( carter_nav2_bringup_dir, "launch", "carter_navigation_individual.launch.py", ) ), launch_arguments={ "namespace": robot["name"], "use_namespace": "True", "map": map_yaml_file, "use_sim_time": use_sim_time, "params_file": params_file, "default_bt_xml_filename": default_bt_xml_filename, "autostart": autostart, "use_rviz": "False", "use_simulator": "False", "headless": "False", }.items(), ), Node( package="pointcloud_to_laserscan", executable="pointcloud_to_laserscan_node", remappings=[ ("cloud_in", ["front_3d_lidar/point_cloud"]), ("scan", ["scan"]), ], parameters=[ { "target_frame": "front_3d_lidar", "transform_tolerance": 0.01, "min_height": -0.4, "max_height": 1.5, "angle_min": -1.5708, # -M_PI/2 "angle_max": 1.5708, # M_PI/2 "angle_increment": 0.0087, # M_PI/360.0 "scan_time": 0.3333, "range_min": 0.05, "range_max": 100.0, "use_inf": True, "inf_epsilon": 1.0, # 'concurrency_level': 1, } ], name="pointcloud_to_laserscan", namespace=robot["name"], ), LogInfo( condition=IfCondition(log_settings), msg=["Launching ", robot["name"]], ), LogInfo( condition=IfCondition(log_settings), msg=[robot["name"], " map yaml: ", map_yaml_file], ), LogInfo( condition=IfCondition(log_settings), msg=[robot["name"], " params yaml: ", params_file], ), LogInfo( condition=IfCondition(log_settings), msg=[ robot["name"], " behavior tree xml: ", default_bt_xml_filename, ], ), LogInfo( condition=IfCondition(log_settings), msg=[robot["name"], " rviz config file: ", rviz_config_file], ), LogInfo( condition=IfCondition(log_settings), msg=[robot["name"], " autostart: ", autostart], ), ] ) nav_instances_cmds.append(group) # Create the launch description and populate ld = LaunchDescription() # Declare the launch options ld.add_action(declare_map_yaml_cmd) ld.add_action(declare_robot1_params_file_cmd) ld.add_action(declare_robot2_params_file_cmd) ld.add_action(declare_robot3_params_file_cmd) ld.add_action(declare_bt_xml_cmd) ld.add_action(declare_use_rviz_cmd) ld.add_action(declare_autostart_cmd) ld.add_action(declare_rviz_config_file_cmd) for simulation_instance_cmd in nav_instances_cmds: ld.add_action(simulation_instance_cmd) return ld
9,192
Python
36.987603
93
0.544386
AshisGhosh/roboai/isaac_sim/humble_ws/src/navigation/carter_navigation/launch/multiple_robot_carter_navigation_office.launch.py
## Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. ## NVIDIA CORPORATION and its licensors retain all intellectual property ## and proprietary rights in and to this software, related documentation ## and any modifications thereto. Any use, reproduction, disclosure or ## distribution of this software and related documentation without an express ## license agreement from NVIDIA CORPORATION is strictly prohibited. """ Example for spawing multiple robots in Gazebo. This is an example on how to create a launch file for spawning multiple robots into Gazebo and launch multiple instances of the navigation stack, each controlling one robot. The robots co-exist on a shared environment and are controlled by independent nav stacks """ import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import ( DeclareLaunchArgument, GroupAction, IncludeLaunchDescription, LogInfo, ) from launch.conditions import IfCondition from launch.launch_description_sources import PythonLaunchDescriptionSource from launch.substitutions import LaunchConfiguration, TextSubstitution from launch_ros.actions import Node def generate_launch_description(): # Get the launch and rviz directories carter_nav2_bringup_dir = get_package_share_directory("carter_navigation") nav2_bringup_dir = get_package_share_directory("nav2_bringup") nav2_bringup_launch_dir = os.path.join(nav2_bringup_dir, "launch") rviz_config_dir = os.path.join( carter_nav2_bringup_dir, "rviz2", "carter_navigation_namespaced.rviz" ) # Names and poses of the robots robots = [{"name": "carter1"}, {"name": "carter2"}, {"name": "carter3"}] # Common settings ENV_MAP_FILE = "carter_office_navigation.yaml" use_sim_time = LaunchConfiguration("use_sim_time", default="True") map_yaml_file = LaunchConfiguration("map") default_bt_xml_filename = LaunchConfiguration("default_bt_xml_filename") autostart = LaunchConfiguration("autostart") rviz_config_file = LaunchConfiguration("rviz_config") use_rviz = LaunchConfiguration("use_rviz") log_settings = LaunchConfiguration("log_settings", default="true") # Declare the launch arguments declare_map_yaml_cmd = DeclareLaunchArgument( "map", default_value=os.path.join(carter_nav2_bringup_dir, "maps", ENV_MAP_FILE), description="Full path to map file to load", ) declare_robot1_params_file_cmd = DeclareLaunchArgument( "carter1_params_file", default_value=os.path.join( carter_nav2_bringup_dir, "params", "office", "multi_robot_carter_navigation_params_1.yaml", ), description="Full path to the ROS2 parameters file to use for robot1 launched nodes", ) declare_robot2_params_file_cmd = DeclareLaunchArgument( "carter2_params_file", default_value=os.path.join( carter_nav2_bringup_dir, "params", "office", "multi_robot_carter_navigation_params_2.yaml", ), description="Full path to the ROS2 parameters file to use for robot2 launched nodes", ) declare_robot3_params_file_cmd = DeclareLaunchArgument( "carter3_params_file", default_value=os.path.join( carter_nav2_bringup_dir, "params", "office", "multi_robot_carter_navigation_params_3.yaml", ), description="Full path to the ROS2 parameters file to use for robot3 launched nodes", ) declare_bt_xml_cmd = DeclareLaunchArgument( "default_bt_xml_filename", default_value=os.path.join( get_package_share_directory("nav2_bt_navigator"), "behavior_trees", "navigate_w_replanning_and_recovery.xml", ), description="Full path to the behavior tree xml file to use", ) declare_autostart_cmd = DeclareLaunchArgument( "autostart", default_value="True", description="Automatically startup the stacks", ) declare_rviz_config_file_cmd = DeclareLaunchArgument( "rviz_config", default_value=rviz_config_dir, description="Full path to the RVIZ config file to use.", ) declare_use_rviz_cmd = DeclareLaunchArgument( "use_rviz", default_value="True", description="Whether to start RVIZ" ) # Define commands for launching the navigation instances nav_instances_cmds = [] for robot in robots: params_file = LaunchConfiguration(robot["name"] + "_params_file") group = GroupAction( [ IncludeLaunchDescription( PythonLaunchDescriptionSource( os.path.join(nav2_bringup_launch_dir, "rviz_launch.py") ), condition=IfCondition(use_rviz), launch_arguments={ "namespace": TextSubstitution(text=robot["name"]), "use_namespace": "True", "rviz_config": rviz_config_file, }.items(), ), IncludeLaunchDescription( PythonLaunchDescriptionSource( os.path.join( carter_nav2_bringup_dir, "launch", "carter_navigation_individual.launch.py", ) ), launch_arguments={ "namespace": robot["name"], "use_namespace": "True", "map": map_yaml_file, "use_sim_time": use_sim_time, "params_file": params_file, "default_bt_xml_filename": default_bt_xml_filename, "autostart": autostart, "use_rviz": "False", "use_simulator": "False", "headless": "False", }.items(), ), Node( package="pointcloud_to_laserscan", executable="pointcloud_to_laserscan_node", remappings=[ ("cloud_in", ["front_3d_lidar/point_cloud"]), ("scan", ["scan"]), ], parameters=[ { "target_frame": "front_3d_lidar", "transform_tolerance": 0.01, "min_height": -0.4, "max_height": 1.5, "angle_min": -1.5708, # -M_PI/2 "angle_max": 1.5708, # M_PI/2 "angle_increment": 0.0087, # M_PI/360.0 "scan_time": 0.3333, "range_min": 0.05, "range_max": 100.0, "use_inf": True, "inf_epsilon": 1.0, # 'concurrency_level': 1, } ], name="pointcloud_to_laserscan", namespace=robot["name"], ), LogInfo( condition=IfCondition(log_settings), msg=["Launching ", robot["name"]], ), LogInfo( condition=IfCondition(log_settings), msg=[robot["name"], " map yaml: ", map_yaml_file], ), LogInfo( condition=IfCondition(log_settings), msg=[robot["name"], " params yaml: ", params_file], ), LogInfo( condition=IfCondition(log_settings), msg=[ robot["name"], " behavior tree xml: ", default_bt_xml_filename, ], ), LogInfo( condition=IfCondition(log_settings), msg=[robot["name"], " rviz config file: ", rviz_config_file], ), LogInfo( condition=IfCondition(log_settings), msg=[robot["name"], " autostart: ", autostart], ), ] ) nav_instances_cmds.append(group) # Create the launch description and populate ld = LaunchDescription() # Declare the launch options ld.add_action(declare_map_yaml_cmd) ld.add_action(declare_robot1_params_file_cmd) ld.add_action(declare_robot2_params_file_cmd) ld.add_action(declare_robot3_params_file_cmd) ld.add_action(declare_bt_xml_cmd) ld.add_action(declare_use_rviz_cmd) ld.add_action(declare_autostart_cmd) ld.add_action(declare_rviz_config_file_cmd) for simulation_instance_cmd in nav_instances_cmds: ld.add_action(simulation_instance_cmd) return ld
9,184
Python
36.954545
93
0.54399
AshisGhosh/roboai/isaac_sim/humble_ws/src/navigation/carter_navigation/maps/carter_office_navigation.yaml
image: carter_office_navigation.png mode: trinary resolution: 0.05 origin: [-29.975, -39.975, 0.0000] negate: 0 occupied_thresh: 0.65 free_thresh: 0.196
153
YAML
18.249998
35
0.738562
AshisGhosh/roboai/isaac_sim/humble_ws/src/navigation/carter_navigation/maps/carter_hospital_navigation.yaml
image: carter_hospital_navigation.png mode: trinary resolution: 0.05 origin: [-49.625, -4.675, 0.0000] negate: 0 occupied_thresh: 0.65 free_thresh: 0.196
154
YAML
18.374998
37
0.74026
AshisGhosh/roboai/isaac_sim/humble_ws/src/navigation/carter_navigation/maps/carter_warehouse_navigation.yaml
image: carter_warehouse_navigation.png mode: trinary resolution: 0.05 origin: [-11.975, -17.975, 0.0000] negate: 0 occupied_thresh: 0.65 free_thresh: 0.196
156
YAML
18.624998
38
0.74359
AshisGhosh/roboai/isaac_sim/humble_ws/src/navigation/isaac_ros_navigation_goal/setup.py
from setuptools import setup from glob import glob import os package_name = "isaac_ros_navigation_goal" setup( name=package_name, version="0.0.1", packages=[package_name, package_name + "/goal_generators"], data_files=[ ("share/ament_index/resource_index/packages", ["resource/" + package_name]), ("share/" + package_name, ["package.xml"]), (os.path.join("share", package_name, "launch"), glob("launch/*.launch.py")), ("share/" + package_name + "/assets", glob("assets/*")), ], install_requires=["setuptools"], zip_safe=True, maintainer="isaac sim", maintainer_email="[email protected]", description="Package to set goals for navigation stack.", license="NVIDIA Isaac ROS Software License", tests_require=["pytest"], entry_points={ "console_scripts": [ "SetNavigationGoal = isaac_ros_navigation_goal.set_goal:main" ] }, )
942
Python
30.433332
84
0.626327
AshisGhosh/roboai/isaac_sim/humble_ws/src/navigation/isaac_ros_navigation_goal/test/test_flake8.py
# Copyright 2017 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_flake8.main import main_with_errors import pytest @pytest.mark.flake8 @pytest.mark.linter def test_flake8(): rc, errors = main_with_errors(argv=[]) assert rc == 0, "Found %d code style errors / warnings:\n" % len( errors ) + "\n".join(errors)
878
Python
32.807691
74
0.730068
AshisGhosh/roboai/isaac_sim/humble_ws/src/navigation/isaac_ros_navigation_goal/test/test_pep257.py
# Copyright 2015 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_pep257.main import main import pytest @pytest.mark.linter @pytest.mark.pep257 def test_pep257(): rc = main(argv=[".", "test"]) assert rc == 0, "Found code style errors / warnings"
803
Python
32.499999
74
0.743462
AshisGhosh/roboai/isaac_sim/humble_ws/src/navigation/isaac_ros_navigation_goal/launch/isaac_ros_navigation_goal.launch.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.substitutions import LaunchConfiguration from launch_ros.actions import Node def generate_launch_description(): map_yaml_file = LaunchConfiguration( "map_yaml_path", default=os.path.join( get_package_share_directory("isaac_ros_navigation_goal"), "assets", "carter_warehouse_navigation.yaml", ), ) goal_text_file = LaunchConfiguration( "goal_text_file_path", default=os.path.join( get_package_share_directory("isaac_ros_navigation_goal"), "assets", "goals.txt", ), ) navigation_goal_node = Node( name="set_navigation_goal", package="isaac_ros_navigation_goal", executable="SetNavigationGoal", parameters=[ { "map_yaml_path": map_yaml_file, "iteration_count": 3, "goal_generator_type": "RandomGoalGenerator", "action_server_name": "navigate_to_pose", "obstacle_search_distance_in_meters": 0.2, "goal_text_file_path": goal_text_file, "initial_pose": [-6.4, -1.04, 0.0, 0.0, 0.0, 0.99, 0.02], } ], output="screen", ) return LaunchDescription([navigation_goal_node])
1,853
Python
33.333333
76
0.62979
AshisGhosh/roboai/isaac_sim/humble_ws/src/navigation/isaac_ros_navigation_goal/isaac_ros_navigation_goal/obstacle_map.py
import numpy as np import yaml import os import math from PIL import Image class GridMap: def __init__(self, yaml_file_path): self.__get_meta_from_yaml(yaml_file_path) self.__get_raw_map() self.__add_max_range_to_meta() # print(self.__map_meta) def __get_meta_from_yaml(self, yaml_file_path): """ Reads map meta from the yaml file. Parameters ---------- yaml_file_path: path of the yaml file. """ with open(yaml_file_path, "r") as f: file_content = f.read() self.__map_meta = yaml.safe_load(file_content) self.__map_meta["image"] = os.path.join( os.path.dirname(yaml_file_path), self.__map_meta["image"] ) def __get_raw_map(self): """ Reads the map image and generates the grid map.\n Grid map is a 2D boolean matrix where True=>occupied space & False=>Free space. """ img = Image.open(self.__map_meta.get("image")) img = np.array(img) # Anything greater than free_thresh is considered as occupied if self.__map_meta["negate"]: res = np.where((img / 255)[:, :, 0] > self.__map_meta["free_thresh"]) else: res = np.where( ((255 - img) / 255)[:, :, 0] > self.__map_meta["free_thresh"] ) self.__grid_map = np.zeros(shape=(img.shape[:2]), dtype=bool) for i in range(res[0].shape[0]): self.__grid_map[res[0][i], res[1][i]] = 1 def __add_max_range_to_meta(self): """ Calculates and adds the max value of pose in x & y direction to the meta. """ max_x = ( self.__grid_map.shape[1] * self.__map_meta["resolution"] + self.__map_meta["origin"][0] ) max_y = ( self.__grid_map.shape[0] * self.__map_meta["resolution"] + self.__map_meta["origin"][1] ) self.__map_meta["max_x"] = round(max_x, 2) self.__map_meta["max_y"] = round(max_y, 2) def __pad_obstacles(self, distance): pass def get_range(self): """ Returns the bounds of pose values in x & y direction.\n Returns ------- [List]:\n Where list[0][0]: min value in x direction list[0][1]: max value in x direction list[1][0]: min value in y direction list[1][1]: max value in y direction """ return [ [self.__map_meta["origin"][0], self.__map_meta["max_x"]], [self.__map_meta["origin"][1], self.__map_meta["max_y"]], ] def __transform_to_image_coordinates(self, point): """ Transforms a pose in meters to image pixel coordinates. Parameters ---------- Point: A point as list. where list[0]=>pose.x and list[1]=pose.y Returns ------- [Tuple]: tuple[0]=>pixel value in x direction. i.e column index. tuple[1]=> pixel vlaue in y direction. i.e row index. """ p_x, p_y = point i_x = math.floor( (p_x - self.__map_meta["origin"][0]) / self.__map_meta["resolution"] ) i_y = math.floor( (p_y - self.__map_meta["origin"][1]) / self.__map_meta["resolution"] ) # because origin in yaml is at bottom left of image i_y = self.__grid_map.shape[0] - i_y return i_x, i_y def __transform_distance_to_pixels(self, distance): """ Converts the distance in meters to number of pixels based on the resolution. Parameters ---------- distance: value in meters Returns ------- [Integer]: number of pixel which represent the same distance. """ return math.ceil(distance / self.__map_meta["resolution"]) def __is_obstacle_in_distance(self, img_point, distance): """ Checks if any obstacle is in vicinity of the given image point. Parameters ---------- img_point: pixel values of the point distance: distnace in pixels in which there shouldn't be any obstacle. Returns ------- [Bool]: True if any obstacle found else False. """ # need to make sure that patch xmin & ymin are >=0, # because of python's negative indexing capability row_start_idx = 0 if img_point[1] - distance < 0 else img_point[1] - distance col_start_idx = 0 if img_point[0] - distance < 0 else img_point[0] - distance # image point acts as the center of the square, where each side of square is of size # 2xdistance patch = self.__grid_map[ row_start_idx : img_point[1] + distance, col_start_idx : img_point[0] + distance, ] obstacles = np.where(patch is True) return len(obstacles[0]) > 0 def is_valid_pose(self, point, distance=0.2): """ Checks if a given pose is "distance" away from a obstacle. Parameters ---------- point: pose in 2D space. where point[0]=pose.x and point[1]=pose.y distance: distance in meters. Returns ------- [Bool]: True if pose is valid else False """ assert len(point) == 2 img_point = self.__transform_to_image_coordinates(point) img_pixel_distance = self.__transform_distance_to_pixels(distance) # Pose is not valid if there is obstacle in the vicinity return not self.__is_obstacle_in_distance(img_point, img_pixel_distance)
5,630
Python
31.177143
92
0.535169
AshisGhosh/roboai/isaac_sim/humble_ws/src/navigation/isaac_ros_navigation_goal/isaac_ros_navigation_goal/set_goal.py
import rclpy from rclpy.action import ActionClient from rclpy.node import Node from nav2_msgs.action import NavigateToPose from .obstacle_map import GridMap from .goal_generators import RandomGoalGenerator, GoalReader import sys from geometry_msgs.msg import PoseWithCovarianceStamped import time class SetNavigationGoal(Node): def __init__(self): super().__init__("set_navigation_goal") self.declare_parameters( namespace="", parameters=[ ("iteration_count", 1), ("goal_generator_type", "RandomGoalGenerator"), ("action_server_name", "navigate_to_pose"), ("obstacle_search_distance_in_meters", 0.2), ("frame_id", "map"), ("map_yaml_path", rclpy.Parameter.Type.STRING), ("goal_text_file_path", rclpy.Parameter.Type.STRING), ("initial_pose", rclpy.Parameter.Type.DOUBLE_ARRAY), ], ) self.__goal_generator = self.__create_goal_generator() action_server_name = self.get_parameter("action_server_name").value self._action_client = ActionClient(self, NavigateToPose, action_server_name) self.MAX_ITERATION_COUNT = self.get_parameter("iteration_count").value assert self.MAX_ITERATION_COUNT > 0 self.curr_iteration_count = 1 self.__initial_goal_publisher = self.create_publisher( PoseWithCovarianceStamped, "/initialpose", 1 ) self.__initial_pose = self.get_parameter("initial_pose").value self.__is_initial_pose_sent = True if self.__initial_pose is None else False def __send_initial_pose(self): """ Publishes the initial pose. This function is only called once that too before sending any goal pose to the mission server. """ goal = PoseWithCovarianceStamped() goal.header.frame_id = self.get_parameter("frame_id").value goal.header.stamp = self.get_clock().now().to_msg() goal.pose.pose.position.x = self.__initial_pose[0] goal.pose.pose.position.y = self.__initial_pose[1] goal.pose.pose.position.z = self.__initial_pose[2] goal.pose.pose.orientation.x = self.__initial_pose[3] goal.pose.pose.orientation.y = self.__initial_pose[4] goal.pose.pose.orientation.z = self.__initial_pose[5] goal.pose.pose.orientation.w = self.__initial_pose[6] self.__initial_goal_publisher.publish(goal) def send_goal(self): """ Sends the goal to the action server. """ if not self.__is_initial_pose_sent: self.get_logger().info("Sending initial pose") self.__send_initial_pose() self.__is_initial_pose_sent = True # Assumption is that initial pose is set after publishing first time in this duration. # Can be changed to more sophisticated way. e.g. /particlecloud topic has no msg until # the initial pose is set. time.sleep(10) self.get_logger().info("Sending first goal") self._action_client.wait_for_server() goal_msg = self.__get_goal() if goal_msg is None: rclpy.shutdown() sys.exit(1) self._send_goal_future = self._action_client.send_goal_async( goal_msg, feedback_callback=self.__feedback_callback ) self._send_goal_future.add_done_callback(self.__goal_response_callback) def __goal_response_callback(self, future): """ Callback function to check the response(goal accpted/rejected) from the server.\n If the Goal is rejected it stops the execution for now.(We can change to resample the pose if rejected.) """ goal_handle = future.result() if not goal_handle.accepted: self.get_logger().info("Goal rejected :(") rclpy.shutdown() return self.get_logger().info("Goal accepted :)") self._get_result_future = goal_handle.get_result_async() self._get_result_future.add_done_callback(self.__get_result_callback) def __get_goal(self): """ Get the next goal from the goal generator. Returns ------- [NavigateToPose][goal] or None if the next goal couldn't be generated. """ goal_msg = NavigateToPose.Goal() goal_msg.pose.header.frame_id = self.get_parameter("frame_id").value goal_msg.pose.header.stamp = self.get_clock().now().to_msg() pose = self.__goal_generator.generate_goal() # couldn't sample a pose which is not close to obstacles. Rare but might happen in dense maps. if pose is None: self.get_logger().error( "Could not generate next goal. Returning. Possible reasons for this error could be:" ) self.get_logger().error( "1. If you are using GoalReader then please make sure iteration count <= number of goals avaiable in file." ) self.get_logger().error( "2. If RandomGoalGenerator is being used then it was not able to sample a pose which is given distance away from the obstacles." ) return self.get_logger().info("Generated goal pose: {0}".format(pose)) goal_msg.pose.pose.position.x = pose[0] goal_msg.pose.pose.position.y = pose[1] goal_msg.pose.pose.orientation.x = pose[2] goal_msg.pose.pose.orientation.y = pose[3] goal_msg.pose.pose.orientation.z = pose[4] goal_msg.pose.pose.orientation.w = pose[5] return goal_msg def __get_result_callback(self, future): """ Callback to check result.\n It calls the send_goal() function in case current goal sent count < required goals count. """ # Nav2 is sending empty message for success as well as for failure. result = future.result().result self.get_logger().info("Result: {0}".format(result.result)) if self.curr_iteration_count < self.MAX_ITERATION_COUNT: self.curr_iteration_count += 1 self.send_goal() else: rclpy.shutdown() def __feedback_callback(self, feedback_msg): """ This is feeback callback. We can compare/compute/log while the robot is on its way to goal. """ # self.get_logger().info('FEEDBACK: {}\n'.format(feedback_msg)) pass def __create_goal_generator(self): """ Creates the GoalGenerator object based on the specified ros param value. """ goal_generator_type = self.get_parameter("goal_generator_type").value goal_generator = None if goal_generator_type == "RandomGoalGenerator": if self.get_parameter("map_yaml_path").value is None: self.get_logger().info("Yaml file path is not given. Returning..") sys.exit(1) yaml_file_path = self.get_parameter("map_yaml_path").value grid_map = GridMap(yaml_file_path) obstacle_search_distance_in_meters = self.get_parameter( "obstacle_search_distance_in_meters" ).value assert obstacle_search_distance_in_meters > 0 goal_generator = RandomGoalGenerator( grid_map, obstacle_search_distance_in_meters ) elif goal_generator_type == "GoalReader": if self.get_parameter("goal_text_file_path").value is None: self.get_logger().info("Goal text file path is not given. Returning..") sys.exit(1) file_path = self.get_parameter("goal_text_file_path").value goal_generator = GoalReader(file_path) else: self.get_logger().info("Invalid goal generator specified. Returning...") sys.exit(1) return goal_generator def main(): rclpy.init() set_goal = SetNavigationGoal() set_goal.send_goal() rclpy.spin(set_goal) if __name__ == "__main__": main()
8,114
Python
37.459715
144
0.602292
AshisGhosh/roboai/isaac_sim/humble_ws/src/navigation/isaac_ros_navigation_goal/isaac_ros_navigation_goal/goal_generators/goal_reader.py
from .goal_generator import GoalGenerator class GoalReader(GoalGenerator): def __init__(self, file_path): self.__file_path = file_path self.__generator = self.__get_goal() def generate_goal(self, max_num_of_trials=1000): try: return next(self.__generator) except StopIteration: return def __get_goal(self): for row in open(self.__file_path, "r"): yield list(map(float, row.strip().split(" ")))
486
Python
26.055554
58
0.584362