file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
RoboEagles4828/offseason2023/src/swerve_controller/src/swerve_controller.cpp
// Copyright 2020 PAL Robotics S.L. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* * Author: Bence Magyar, Enrique Fernández, Manuel Meraz */ #include <memory> #include <queue> #include <string> #include <utility> #include <vector> #include <cmath> #include "swerve_controller/swerve_controller.hpp" #include "hardware_interface/types/hardware_interface_type_values.hpp" #include "lifecycle_msgs/msg/state.hpp" #include "rclcpp/logging.hpp" namespace { constexpr auto DEFAULT_COMMAND_TOPIC = "~/cmd_vel"; constexpr auto DEFAULT_COMMAND_UNSTAMPED_TOPIC = "~/cmd_vel_unstamped"; constexpr auto DEFAULT_COMMAND_OUT_TOPIC = "~/cmd_vel_out"; } // namespace namespace swerve_controller { using namespace std::chrono_literals; using controller_interface::interface_configuration_type; using controller_interface::InterfaceConfiguration; using hardware_interface::HW_IF_POSITION; using hardware_interface::HW_IF_VELOCITY; using lifecycle_msgs::msg::State; Wheel::Wheel(std::reference_wrapper<hardware_interface::LoanedCommandInterface> velocity, std::string name) : velocity_(velocity), name(std::move(name)) {} void Wheel::set_velocity(double velocity) { velocity_.get().set_value(velocity); } Axle::Axle(std::reference_wrapper<hardware_interface::LoanedCommandInterface> command_position, std::reference_wrapper<const hardware_interface::LoanedStateInterface> state_position, std::string name) : command_position_(command_position), state_position_(state_position), name(std::move(name)) {} void Axle::set_position(double position) { command_position_.get().set_value(position); } double Axle::get_position(void) { // temporary return state_position_.get().get_value(); } void optimize(double& target, const double& current, double& wheel_velocity) { double target_copy = target; double diff = target_copy - current; // Check one way if (diff > M_PI) { target_copy -= 2.0 * M_PI; } else if (diff < -M_PI) { target_copy += 2.0 * M_PI; } // Check other way diff = target_copy - current; if(std::abs(diff) > M_PI / 2.0) { // Get better position 180 degrees away if (target < 0.0) { target += M_PI; } else { target -= M_PI; } // Reverse direction wheel_velocity *= -1.0; } } SwerveController::SwerveController() : controller_interface::ControllerInterface() {} controller_interface::CallbackReturn SwerveController::on_init() { try { // with the lifecycle node being initialized, we can declare parameters auto_declare<std::string>("front_left_wheel_joint", front_left_wheel_joint_name_); auto_declare<std::string>("front_right_wheel_joint", front_right_wheel_joint_name_); auto_declare<std::string>("rear_left_wheel_joint", rear_left_wheel_joint_name_); auto_declare<std::string>("rear_right_wheel_joint", rear_right_wheel_joint_name_); auto_declare<std::string>("front_left_axle_joint", front_left_axle_joint_name_); auto_declare<std::string>("front_right_axle_joint", front_right_axle_joint_name_); auto_declare<std::string>("rear_left_axle_joint", rear_left_axle_joint_name_); auto_declare<std::string>("rear_right_axle_joint", rear_right_axle_joint_name_); auto_declare<double>("chassis_length_meters", wheel_params_.x_offset); auto_declare<double>("chassis_width_meters", wheel_params_.y_offset); auto_declare<double>("wheel_radius_meters", wheel_params_.radius); auto_declare<double>("max_wheel_angular_velocity", max_wheel_angular_velocity_); auto_declare<double>("cmd_vel_timeout_seconds", cmd_vel_timeout_milliseconds_.count() / 1000.0); auto_declare<bool>("use_stamped_vel", use_stamped_vel_); // Limits auto_declare<bool>("linear.x.has_velocity_limits", false); auto_declare<bool>("linear.x.has_acceleration_limits", false); auto_declare<bool>("linear.x.has_jerk_limits", false); auto_declare<double>("linear.x.max_velocity", 0.0); auto_declare<double>("linear.x.min_velocity", 0.0); auto_declare<double>("linear.x.max_acceleration", 0.0); auto_declare<double>("linear.x.min_acceleration", 0.0); auto_declare<double>("linear.x.max_jerk", 0.0); auto_declare<double>("linear.x.min_jerk", 0.0); auto_declare<bool>("linear.y.has_velocity_limits", false); auto_declare<bool>("linear.y.has_acceleration_limits", false); auto_declare<bool>("linear.y.has_jerk_limits", false); auto_declare<double>("linear.y.max_velocity", 0.0); auto_declare<double>("linear.y.min_velocity", 0.0); auto_declare<double>("linear.y.max_acceleration", 0.0); auto_declare<double>("linear.y.min_acceleration", 0.0); auto_declare<double>("linear.y.max_jerk", 0.0); auto_declare<double>("linear.y.min_jerk", 0.0); auto_declare<bool>("angular.z.has_velocity_limits", false); auto_declare<bool>("angular.z.has_acceleration_limits", false); auto_declare<bool>("angular.z.has_jerk_limits", false); auto_declare<double>("angular.z.max_velocity", 0.0); auto_declare<double>("angular.z.min_velocity", 0.0); auto_declare<double>("angular.z.max_acceleration", 0.0); auto_declare<double>("angular.z.min_acceleration", 0.0); auto_declare<double>("angular.z.max_jerk", 0.0); auto_declare<double>("angular.z.min_jerk", 0.0); } catch (const std::exception &e) { fprintf(stderr, "Exception thrown during init stage with message: %s \n", e.what()); return controller_interface::CallbackReturn::ERROR; } return controller_interface::CallbackReturn::SUCCESS; } InterfaceConfiguration SwerveController::command_interface_configuration() const { std::vector<std::string> conf_names; conf_names.push_back(front_left_wheel_joint_name_ + "/" + HW_IF_VELOCITY); conf_names.push_back(front_right_wheel_joint_name_ + "/" + HW_IF_VELOCITY); conf_names.push_back(rear_left_wheel_joint_name_ + "/" + HW_IF_VELOCITY); conf_names.push_back(rear_right_wheel_joint_name_ + "/" + HW_IF_VELOCITY); conf_names.push_back(front_left_axle_joint_name_ + "/" + HW_IF_POSITION); conf_names.push_back(front_right_axle_joint_name_ + "/" + HW_IF_POSITION); conf_names.push_back(rear_left_axle_joint_name_ + "/" + HW_IF_POSITION); conf_names.push_back(rear_right_axle_joint_name_ + "/" + HW_IF_POSITION); return {interface_configuration_type::INDIVIDUAL, conf_names}; } InterfaceConfiguration SwerveController::state_interface_configuration() const { std::vector<std::string> conf_names; conf_names.push_back(front_left_axle_joint_name_ + "/" + HW_IF_POSITION); conf_names.push_back(front_right_axle_joint_name_ + "/" + HW_IF_POSITION); conf_names.push_back(rear_left_axle_joint_name_ + "/" + HW_IF_POSITION); conf_names.push_back(rear_right_axle_joint_name_ + "/" + HW_IF_POSITION); return {interface_configuration_type::INDIVIDUAL, conf_names}; } controller_interface::return_type SwerveController::update( const rclcpp::Time &time, const rclcpp::Duration & period) { auto logger = get_node()->get_logger(); auto clk = * get_node()->get_clock(); if (get_state().id() == State::PRIMARY_STATE_INACTIVE) { if (!is_halted) { halt(); is_halted = true; } return controller_interface::return_type::OK; } const auto current_time = time; std::shared_ptr<Twist> last_command_msg; received_velocity_msg_ptr_.get(last_command_msg); if (last_command_msg == nullptr) { RCLCPP_WARN(logger, "Velocity message received was a nullptr."); return controller_interface::return_type::ERROR; } // const auto age_of_last_command = current_time - last_command_msg->header.stamp; // // Brake if cmd_vel has timeout, override the stored command // if (age_of_last_command > cmd_vel_timeout_milliseconds_) // { // halt(); // } // INPUTS Twist command = *last_command_msg; auto & last_command = previous_commands_.back().twist; auto & second_to_last_command = previous_commands_.front().twist; double &linear_x_velocity_comand = command.twist.linear.x; double &linear_y_velocity_comand = command.twist.linear.y; double &angular_velocity_comand = command.twist.angular.z; double original_linear_x_velocity_comand = linear_x_velocity_comand; double original_linear_y_velocity_comand = linear_y_velocity_comand; double original_angular_velocity_comand = angular_velocity_comand; // Limits limiter_linear_X_.limit(linear_x_velocity_comand, last_command.linear.x, second_to_last_command.linear.x, period.seconds()); limiter_linear_Y_.limit(linear_y_velocity_comand, last_command.linear.y, second_to_last_command.linear.y, period.seconds()); limiter_angular_Z_.limit(angular_velocity_comand, last_command.angular.z, second_to_last_command.angular.z, period.seconds()); previous_commands_.pop(); previous_commands_.emplace(command); if (linear_x_velocity_comand != original_linear_x_velocity_comand) { RCLCPP_WARN_THROTTLE(logger, clk, 1000, "Limiting Linear X %f -> %f", original_linear_x_velocity_comand, linear_x_velocity_comand); } if (linear_y_velocity_comand != original_linear_y_velocity_comand) { RCLCPP_WARN_THROTTLE(logger, clk, 1000, "Limiting Linear Y %f -> %f", original_linear_y_velocity_comand, linear_y_velocity_comand); } if (angular_velocity_comand != original_angular_velocity_comand) { RCLCPP_WARN_THROTTLE(logger, clk, 1000, "Limiting Angular Z %f -> %f", original_angular_velocity_comand, angular_velocity_comand); } double x_offset = wheel_params_.x_offset; double radius = wheel_params_.radius; // get current wheel positions const double front_left_current_pos = front_left_axle_command_handle_->get_position(); const double front_right_current_pos = front_right_axle_command_handle_->get_position(); const double rear_left_current_pos = rear_left_axle_command_handle_->get_position(); const double rear_right_current_pos = rear_right_axle_command_handle_->get_position(); // Compute Wheel Velocities and Positions const double a = (linear_y_velocity_comand * -1.0) - angular_velocity_comand * x_offset / 2.0; const double b = (linear_y_velocity_comand * -1.0) + angular_velocity_comand * x_offset / 2.0; const double c = linear_x_velocity_comand - angular_velocity_comand * x_offset / 2.0; const double d = linear_x_velocity_comand + angular_velocity_comand * x_offset / 2.0; double front_left_velocity = sqrt(pow(b, 2) + pow(d, 2)) / radius; double front_right_velocity = sqrt(pow(b, 2) + pow(c, 2)) / radius; double rear_left_velocity = sqrt(pow(a, 2) + pow(d, 2)) / radius; double rear_right_velocity = sqrt(pow(a, 2) + pow(c, 2)) / radius; // Normalize wheel velocities if any are greater than max double velMax = std::max({front_left_velocity, front_right_velocity, rear_left_velocity, rear_right_velocity}); if (velMax > max_wheel_angular_velocity_) { front_left_velocity = front_left_velocity/velMax * max_wheel_angular_velocity_; front_right_velocity = front_right_velocity/velMax * max_wheel_angular_velocity_; rear_left_velocity = rear_left_velocity/velMax * max_wheel_angular_velocity_; rear_right_velocity = rear_right_velocity/velMax * max_wheel_angular_velocity_; } double front_left_position; double front_right_position ; double rear_left_position; double rear_right_position; // Make position current if no movement is given if (std::abs(linear_x_velocity_comand) <= 0.1 && std::abs(linear_y_velocity_comand) <= 0.1 && std::abs(angular_velocity_comand) <= 0.1) { front_left_position = front_left_current_pos; front_right_position = front_right_current_pos; rear_left_position = rear_left_current_pos; rear_right_position = rear_right_current_pos; } else { front_left_position = atan2(b, d); front_right_position = atan2(b, c); rear_left_position = atan2(a, d); rear_right_position = atan2(a, c); // Optimization optimize(front_left_position, front_left_current_pos, front_left_velocity); optimize(front_right_position, front_right_current_pos, front_right_velocity); optimize(rear_left_position, rear_left_current_pos, rear_left_velocity); optimize(rear_right_position, rear_right_current_pos, rear_right_velocity); } // Old Limit Wheel Velocity // front_left_velocity=limiter_wheel_.limit(front_left_velocity,last_wheel_commands[0], second_last_wheel_commands[0],0.1); // front_right_velocity=limiter_wheel_.limit(front_right_velocity,last_wheel_commands[1], second_last_wheel_commands[1],0.1); // rear_left_velocity=limiter_wheel_.limit(rear_left_velocity,last_wheel_commands[2], second_last_wheel_commands[2],0.1); // rear_right_velocity=limiter_wheel_.limit(rear_right_velocity,last_wheel_commands[3], second_last_wheel_commands[3],0.1); // second_last_wheel_commands= last_wheel_commands; front_left_wheel_command_handle_->set_velocity(front_left_velocity); front_right_wheel_command_handle_->set_velocity(front_right_velocity); rear_left_wheel_command_handle_->set_velocity(rear_left_velocity); rear_right_wheel_command_handle_->set_velocity(rear_right_velocity); front_left_axle_command_handle_->set_position(front_left_position); front_right_axle_command_handle_->set_position(front_right_position); rear_left_axle_command_handle_->set_position(rear_left_position); rear_right_axle_command_handle_->set_position(rear_right_position); // Time update const auto update_dt = current_time - previous_update_timestamp_; previous_update_timestamp_ = current_time; return controller_interface::return_type::OK; } controller_interface::CallbackReturn SwerveController::on_configure(const rclcpp_lifecycle::State &) { auto logger = get_node()->get_logger(); limiter_linear_X_ = SpeedLimiter( get_node()->get_parameter("linear.x.has_velocity_limits").as_bool(), get_node()->get_parameter("linear.x.has_acceleration_limits").as_bool(), get_node()->get_parameter("linear.x.has_jerk_limits").as_bool(), get_node()->get_parameter("linear.x.min_velocity").as_double(), get_node()->get_parameter("linear.x.max_velocity").as_double(), get_node()->get_parameter("linear.x.min_acceleration").as_double(), get_node()->get_parameter("linear.x.max_acceleration").as_double(), get_node()->get_parameter("linear.x.min_jerk").as_double(), get_node()->get_parameter("linear.x.max_jerk").as_double()); RCLCPP_WARN(logger, "Linear X Limiter Velocity Limits: %f, %f", limiter_linear_X_.min_velocity_, limiter_linear_X_.max_velocity_); RCLCPP_WARN(logger, "Linear X Limiter Acceleration Limits: %f, %f", limiter_linear_X_.min_acceleration_, limiter_linear_X_.max_acceleration_); RCLCPP_WARN(logger, "Linear X Limiter Jert Limits: %f, %f", limiter_linear_X_.min_jerk_, limiter_linear_X_.max_jerk_); limiter_linear_Y_ = SpeedLimiter( get_node()->get_parameter("linear.y.has_velocity_limits").as_bool(), get_node()->get_parameter("linear.y.has_acceleration_limits").as_bool(), get_node()->get_parameter("linear.y.has_jerk_limits").as_bool(), get_node()->get_parameter("linear.y.min_velocity").as_double(), get_node()->get_parameter("linear.y.max_velocity").as_double(), get_node()->get_parameter("linear.y.min_acceleration").as_double(), get_node()->get_parameter("linear.y.max_acceleration").as_double(), get_node()->get_parameter("linear.y.min_jerk").as_double(), get_node()->get_parameter("linear.y.max_jerk").as_double()); RCLCPP_WARN(logger, "Linear Y Limiter Velocity Limits: %f, %f", limiter_linear_Y_.min_velocity_, limiter_linear_Y_.max_velocity_); RCLCPP_WARN(logger, "Linear Y Limiter Acceleration Limits: %f, %f", limiter_linear_Y_.min_acceleration_, limiter_linear_Y_.max_acceleration_); RCLCPP_WARN(logger, "Linear Y Limiter Jert Limits: %f, %f", limiter_linear_Y_.min_jerk_, limiter_linear_Y_.max_jerk_); limiter_angular_Z_ = SpeedLimiter( get_node()->get_parameter("angular.z.has_velocity_limits").as_bool(), get_node()->get_parameter("angular.z.has_acceleration_limits").as_bool(), get_node()->get_parameter("angular.z.has_jerk_limits").as_bool(), get_node()->get_parameter("angular.z.min_velocity").as_double(), get_node()->get_parameter("angular.z.max_velocity").as_double(), get_node()->get_parameter("angular.z.min_acceleration").as_double(), get_node()->get_parameter("angular.z.max_acceleration").as_double(), get_node()->get_parameter("angular.z.min_jerk").as_double(), get_node()->get_parameter("angular.z.max_jerk").as_double()); RCLCPP_WARN(logger, "Angular Z Limiter Velocity Limits: %f, %f", limiter_angular_Z_.min_velocity_, limiter_angular_Z_.max_velocity_); RCLCPP_WARN(logger, "Angular Z Limiter Acceleration Limits: %f, %f", limiter_angular_Z_.min_acceleration_, limiter_angular_Z_.max_acceleration_); RCLCPP_WARN(logger, "Angular Z Limiter Jert Limits: %f, %f", limiter_angular_Z_.min_jerk_, limiter_angular_Z_.max_jerk_); // Get Parameters front_left_wheel_joint_name_ = get_node()->get_parameter("front_left_wheel_joint").as_string(); front_right_wheel_joint_name_ = get_node()->get_parameter("front_right_wheel_joint").as_string(); rear_left_wheel_joint_name_ = get_node()->get_parameter("rear_left_wheel_joint").as_string(); rear_right_wheel_joint_name_ = get_node()->get_parameter("rear_right_wheel_joint").as_string(); front_left_axle_joint_name_ = get_node()->get_parameter("front_left_axle_joint").as_string(); front_right_axle_joint_name_ = get_node()->get_parameter("front_right_axle_joint").as_string(); rear_left_axle_joint_name_ = get_node()->get_parameter("rear_left_axle_joint").as_string(); rear_right_axle_joint_name_ = get_node()->get_parameter("rear_right_axle_joint").as_string(); if (front_left_wheel_joint_name_.empty()) { RCLCPP_ERROR(logger, "front_left_wheel_joint_name is not set"); return controller_interface::CallbackReturn::ERROR; } if (front_right_wheel_joint_name_.empty()) { RCLCPP_ERROR(logger, "front_right_wheel_joint_name is not set"); return controller_interface::CallbackReturn::ERROR; } if (rear_left_wheel_joint_name_.empty()) { RCLCPP_ERROR(logger, "rear_left_wheel_joint_name is not set"); return controller_interface::CallbackReturn::ERROR; } if (rear_right_wheel_joint_name_.empty()) { RCLCPP_ERROR(logger, "rear_right_wheel_joint_name is not set"); return controller_interface::CallbackReturn::ERROR; } if (front_left_axle_joint_name_.empty()) { RCLCPP_ERROR(logger, "front_left_axle_joint_name is not set"); return controller_interface::CallbackReturn::ERROR; } if (front_right_axle_joint_name_.empty()) { RCLCPP_ERROR(logger, "front_right_axle_joint_name is not set"); return controller_interface::CallbackReturn::ERROR; } if (rear_left_axle_joint_name_.empty()) { RCLCPP_ERROR(logger, "rear_left_axle_joint_name is not set"); return controller_interface::CallbackReturn::ERROR; } if (rear_right_axle_joint_name_.empty()) { RCLCPP_ERROR(logger, "rear_right_axle_joint_name is not set"); return controller_interface::CallbackReturn::ERROR; } wheel_params_.x_offset = get_node()->get_parameter("chassis_length_meters").as_double(); wheel_params_.y_offset = get_node()->get_parameter("chassis_width_meters").as_double(); wheel_params_.radius = get_node()->get_parameter("wheel_radius_meters").as_double(); max_wheel_angular_velocity_ = get_node()->get_parameter("max_wheel_angular_velocity").as_double(); cmd_vel_timeout_milliseconds_ = std::chrono::milliseconds{ static_cast<int>(get_node()->get_parameter("cmd_vel_timeout_seconds").as_double() * 1000.0)}; use_stamped_vel_ = get_node()->get_parameter("use_stamped_vel").as_bool(); // Run reset to make sure everything is initialized correctly if (!reset()) { return controller_interface::CallbackReturn::ERROR; } const Twist empty_twist; received_velocity_msg_ptr_.set(std::make_shared<Twist>(empty_twist)); previous_commands_.emplace(empty_twist); previous_commands_.emplace(empty_twist); // initialize command subscriber if (use_stamped_vel_) { velocity_command_subscriber_ = get_node()->create_subscription<Twist>( DEFAULT_COMMAND_TOPIC, rclcpp::SystemDefaultsQoS(), [this](const std::shared_ptr<Twist> msg) -> void { if (!subscriber_is_active_) { RCLCPP_WARN(get_node()->get_logger(), "Can't accept new commands. subscriber is inactive"); return; } if ((msg->header.stamp.sec == 0) && (msg->header.stamp.nanosec == 0)) { RCLCPP_WARN_ONCE( get_node()->get_logger(), "Received TwistStamped with zero timestamp, setting it to current " "time, this message will only be shown once"); msg->header.stamp = get_node()->get_clock()->now(); } received_velocity_msg_ptr_.set(std::move(msg)); }); } else { velocity_command_unstamped_subscriber_ = get_node()->create_subscription<geometry_msgs::msg::Twist>( DEFAULT_COMMAND_UNSTAMPED_TOPIC, rclcpp::SystemDefaultsQoS(), [this](const std::shared_ptr<geometry_msgs::msg::Twist> msg) -> void { if (!subscriber_is_active_) { RCLCPP_WARN(get_node()->get_logger(), "Can't accept new commands. subscriber is inactive"); return; } // Write fake header in the stored stamped command std::shared_ptr<Twist> twist_stamped; received_velocity_msg_ptr_.get(twist_stamped); twist_stamped->twist = *msg; twist_stamped->header.stamp = get_node()->get_clock()->now(); }); } previous_update_timestamp_ = get_node()->get_clock()->now(); return controller_interface::CallbackReturn::SUCCESS; } controller_interface::CallbackReturn SwerveController::on_activate(const rclcpp_lifecycle::State &) { front_left_wheel_command_handle_ = get_wheel(front_left_wheel_joint_name_); front_right_wheel_command_handle_ = get_wheel(front_right_wheel_joint_name_); rear_left_wheel_command_handle_ = get_wheel(rear_left_wheel_joint_name_); rear_right_wheel_command_handle_ = get_wheel(rear_right_wheel_joint_name_); front_left_axle_command_handle_ = get_axle(front_left_axle_joint_name_); front_right_axle_command_handle_ = get_axle(front_right_axle_joint_name_); rear_left_axle_command_handle_ = get_axle(rear_left_axle_joint_name_); rear_right_axle_command_handle_ = get_axle(rear_right_axle_joint_name_); if (!front_left_wheel_command_handle_ || !front_right_wheel_command_handle_ || !rear_left_wheel_command_handle_ || !rear_right_wheel_command_handle_ || !front_left_axle_command_handle_ || !front_right_axle_command_handle_ || !rear_left_axle_command_handle_ || !rear_right_axle_command_handle_) { return controller_interface::CallbackReturn::ERROR; } is_halted = false; subscriber_is_active_ = true; RCLCPP_DEBUG(get_node()->get_logger(), "Subscriber and publisher are now active."); return controller_interface::CallbackReturn::SUCCESS; } controller_interface::CallbackReturn SwerveController::on_deactivate(const rclcpp_lifecycle::State &) { subscriber_is_active_ = false; return controller_interface::CallbackReturn::SUCCESS; } controller_interface::CallbackReturn SwerveController::on_cleanup(const rclcpp_lifecycle::State &) { if (!reset()) { return controller_interface::CallbackReturn::ERROR; } received_velocity_msg_ptr_.set(std::make_shared<Twist>()); return controller_interface::CallbackReturn::SUCCESS; } controller_interface::CallbackReturn SwerveController::on_error(const rclcpp_lifecycle::State &) { if (!reset()) { return controller_interface::CallbackReturn::ERROR; } return controller_interface::CallbackReturn::SUCCESS; } bool SwerveController::reset() { subscriber_is_active_ = false; velocity_command_subscriber_.reset(); velocity_command_unstamped_subscriber_.reset(); std::queue<Twist> empty; std::swap(previous_commands_, empty); received_velocity_msg_ptr_.set(nullptr); is_halted = false; return true; } controller_interface::CallbackReturn SwerveController::on_shutdown(const rclcpp_lifecycle::State &) { return controller_interface::CallbackReturn::SUCCESS; } void SwerveController::halt() { front_left_wheel_command_handle_->set_velocity(0.0); front_right_wheel_command_handle_->set_velocity(0.0); rear_left_wheel_command_handle_->set_velocity(0.0); rear_right_wheel_command_handle_->set_velocity(0.0); auto logger = get_node()->get_logger(); RCLCPP_WARN(logger, "-----HALT CALLED : STOPPING ALL MOTORS-----"); } std::shared_ptr<Wheel> SwerveController::get_wheel(const std::string &wheel_name) { auto logger = get_node()->get_logger(); if (wheel_name.empty()) { RCLCPP_ERROR(logger, "Wheel joint name not given. Make sure all joints are specified."); return nullptr; } // Get Command Handle for joint const auto command_handle = std::find_if( command_interfaces_.begin(), command_interfaces_.end(), [&wheel_name](const auto &interface) { return interface.get_name() == wheel_name + "/velocity" && interface.get_interface_name() == HW_IF_VELOCITY; }); if (command_handle == command_interfaces_.end()) { RCLCPP_ERROR(logger, "Unable to obtain joint command handle for %s", wheel_name.c_str()); return nullptr; } auto cmd_interface_name = command_handle->get_name(); RCLCPP_INFO(logger, "FOUND! wheel cmd interface %s", cmd_interface_name.c_str()); return std::make_shared<Wheel>(std::ref(*command_handle), wheel_name); } std::shared_ptr<Axle> SwerveController::get_axle(const std::string &axle_name) { auto logger = get_node()->get_logger(); if (axle_name.empty()) { RCLCPP_ERROR(logger, "Axle joint name not given. Make sure all joints are specified."); return nullptr; } // Get Command Handle for joint const auto command_handle_position = std::find_if( command_interfaces_.begin(), command_interfaces_.end(), [&axle_name](const auto &interface) { return interface.get_name() == axle_name + "/position" && interface.get_interface_name() == HW_IF_POSITION; }); const auto state_handle = std::find_if( state_interfaces_.cbegin(), state_interfaces_.cend(), [&axle_name](const auto &interface) { return interface.get_name() == axle_name + "/position" && interface.get_interface_name() == HW_IF_POSITION; }); if (command_handle_position == command_interfaces_.end()) { RCLCPP_ERROR(logger, "Unable to obtain joint command handle for %s", axle_name.c_str()); return nullptr; } if (state_handle == state_interfaces_.cend()) { RCLCPP_ERROR(logger, "Unable to obtain joint state handle for %s", axle_name.c_str()); return nullptr; } auto cmd_interface_name = command_handle_position->get_name(); RCLCPP_INFO(logger, "FOUND! axle cmd interface %s", cmd_interface_name.c_str()); return std::make_shared<Axle>(std::ref(*command_handle_position), std::ref(*state_handle), axle_name); } } // namespace swerve_controller #include "class_loader/register_macro.hpp" CLASS_LOADER_REGISTER_CLASS( swerve_controller::SwerveController, controller_interface::ControllerInterface)
28,957
C++
43.896124
299
0.668267
RoboEagles4828/offseason2023/src/swerve_controller/include/swerve_controller/swerve_controller.hpp
// Copyright 2020 PAL Robotics S.L. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* * Author: Bence Magyar, Enrique Fernández, Manuel Meraz */ #ifndef SWERVE_CONTROLLER__SWERVE_CONTROLLER_HPP_ #define SWERVE_CONTROLLER__SWERVE_CONTROLLER_HPP_ #include <chrono> #include <cmath> #include <memory> #include <queue> #include <string> #include <vector> #include "controller_interface/controller_interface.hpp" #include "swerve_controller/visibility_control.h" #include "swerve_controller/speed_limiter.hpp" #include "geometry_msgs/msg/twist.hpp" #include "geometry_msgs/msg/twist_stamped.hpp" #include "hardware_interface/handle.hpp" #include "rclcpp/rclcpp.hpp" #include "rclcpp_lifecycle/state.hpp" #include "realtime_tools/realtime_box.h" #include "realtime_tools/realtime_buffer.h" #include "realtime_tools/realtime_publisher.h" #include "hardware_interface/loaned_command_interface.hpp" namespace swerve_controller { class Wheel { public: Wheel(std::reference_wrapper<hardware_interface::LoanedCommandInterface> velocity, std::string name); void set_velocity(double velocity); private: std::reference_wrapper<hardware_interface::LoanedCommandInterface> velocity_; std::string name; }; class Axle { public: Axle(std::reference_wrapper<hardware_interface::LoanedCommandInterface> command_position_,std::reference_wrapper< const hardware_interface::LoanedStateInterface> state_position_, std::string name); void set_position(double command_position_); double get_position (void); private: std::reference_wrapper<hardware_interface::LoanedCommandInterface> command_position_; std::reference_wrapper<const hardware_interface::LoanedStateInterface> state_position_; std::string name; }; class SwerveController : public controller_interface::ControllerInterface { using Twist = geometry_msgs::msg::TwistStamped; public: SWERVE_CONTROLLER_PUBLIC SwerveController(); SWERVE_CONTROLLER_PUBLIC controller_interface::InterfaceConfiguration command_interface_configuration() const override; SWERVE_CONTROLLER_PUBLIC controller_interface::InterfaceConfiguration state_interface_configuration() const override; SWERVE_CONTROLLER_PUBLIC controller_interface::return_type update( const rclcpp::Time & time, const rclcpp::Duration & period) override; SWERVE_CONTROLLER_PUBLIC controller_interface::CallbackReturn on_init() override; SWERVE_CONTROLLER_PUBLIC controller_interface::CallbackReturn on_configure(const rclcpp_lifecycle::State & previous_state) override; SWERVE_CONTROLLER_PUBLIC controller_interface::CallbackReturn on_activate(const rclcpp_lifecycle::State & previous_state) override; SWERVE_CONTROLLER_PUBLIC controller_interface::CallbackReturn on_deactivate(const rclcpp_lifecycle::State & previous_state) override; SWERVE_CONTROLLER_PUBLIC controller_interface::CallbackReturn on_cleanup(const rclcpp_lifecycle::State & previous_state) override; SWERVE_CONTROLLER_PUBLIC controller_interface::CallbackReturn on_error(const rclcpp_lifecycle::State & previous_state) override; SWERVE_CONTROLLER_PUBLIC controller_interface::CallbackReturn on_shutdown(const rclcpp_lifecycle::State & previous_state) override; protected: std::shared_ptr<Wheel> get_wheel(const std::string & wheel_name); std::shared_ptr<Axle> get_axle(const std::string & axle_name); std::shared_ptr<Wheel> front_left_wheel_command_handle_; std::shared_ptr<Wheel> front_right_wheel_command_handle_; std::shared_ptr<Wheel> rear_left_wheel_command_handle_; std::shared_ptr<Wheel> rear_right_wheel_command_handle_; std::shared_ptr<Axle> front_left_axle_command_handle_; std::shared_ptr<Axle> front_right_axle_command_handle_; std::shared_ptr<Axle> rear_left_axle_command_handle_; std::shared_ptr<Axle> rear_right_axle_command_handle_; std::string front_left_wheel_joint_name_; std::string front_right_wheel_joint_name_; std::string rear_left_wheel_joint_name_; std::string rear_right_wheel_joint_name_; std::string front_left_axle_joint_name_; std::string front_right_axle_joint_name_; std::string rear_left_axle_joint_name_; std::string rear_right_axle_joint_name_; // std::vector<double> last_wheel_commands{0.0,0.0,0.0,0.0}; // std::vector<double> second_last_wheel_commands{0.0,0.0,0.0,0.0}; SpeedLimiter limiter_linear_X_; SpeedLimiter limiter_linear_Y_; SpeedLimiter limiter_angular_Z_; std::queue<Twist> previous_commands_; struct WheelParams { double x_offset = 0.0; // Chassis Center to Axle Center double y_offset = 0.0; // Axle Center to Wheel Center double radius = 0.0; // Assumed to be the same for all wheels } wheel_params_; // Timeout to consider cmd_vel commands old std::chrono::milliseconds cmd_vel_timeout_milliseconds_{500}; rclcpp::Time previous_update_timestamp_{0}; // Topic Subscription bool subscriber_is_active_ = false; rclcpp::Subscription<Twist>::SharedPtr velocity_command_subscriber_ = nullptr; rclcpp::Subscription<geometry_msgs::msg::Twist>::SharedPtr velocity_command_unstamped_subscriber_ = nullptr; realtime_tools::RealtimeBox<std::shared_ptr<Twist>> received_velocity_msg_ptr_{nullptr}; double max_wheel_angular_velocity_ = 0.0; bool is_halted = false; bool use_stamped_vel_ = true; bool reset(); void halt(); }; } // namespace swerve_controllerS #endif // Swerve_CONTROLLER__SWERVE_CONTROLLER_HPP_
5,964
C++
36.049689
182
0.753521
RoboEagles4828/offseason2023/src/swerve_controller/include/swerve_controller/visibility_control.h
// Copyright 2017 Open Source Robotics Foundation, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* This header must be included by all rclcpp headers which declare symbols * which are defined in the rclcpp library. When not building the rclcpp * library, i.e. when using the headers in other package's code, the contents * of this header change the visibility of certain symbols which the rclcpp * library cannot have, but the consuming code must have inorder to link. */ #ifndef SWERVE_CONTROLLER__VISIBILITY_CONTROL_H_ #define SWERVE_CONTROLLER__VISIBILITY_CONTROL_H_ // This logic was borrowed (then namespaced) from the examples on the gcc wiki: // https://gcc.gnu.org/wiki/Visibility #if defined _WIN32 || defined __CYGWIN__ #ifdef __GNUC__ #define SWERVE_CONTROLLER_EXPORT __attribute__((dllexport)) #define SWERVE_CONTROLLER_IMPORT __attribute__((dllimport)) #else #define SWERVE_CONTROLLER_EXPORT __declspec(dllexport) #define SWERVE_CONTROLLER_IMPORT __declspec(dllimport) #endif #ifdef SWERVE_CONTROLLER_BUILDING_DLL #define SWERVE_CONTROLLER_PUBLIC SWERVE_CONTROLLER_EXPORT #else #define SWERVE_CONTROLLER_PUBLIC SWERVE_CONTROLLER_IMPORT #endif #define SWERVE_CONTROLLER_PUBLIC_TYPE SWERVE_CONTROLLER_PUBLIC #define SWERVE_CONTROLLER_LOCAL #else #define SWERVE_CONTROLLER_EXPORT __attribute__((visibility("default"))) #define SWERVE_CONTROLLER_IMPORT #if __GNUC__ >= 4 #define SWERVE_CONTROLLER_PUBLIC __attribute__((visibility("default"))) #define SWERVE_CONTROLLER_LOCAL __attribute__((visibility("hidden"))) #else #define SWERVE_CONTROLLER_PUBLIC #define SWERVE_CONTROLLER_LOCAL #endif #define SWERVE_CONTROLLER_PUBLIC_TYPE #endif #endif // SWERVE_CONTROLLER__VISIBILITY_CONTROL_H_
2,229
C
38.122806
79
0.767609
RoboEagles4828/offseason2023/src/swerve_controller/include/swerve_controller/speed_limiter.hpp
// Copyright 2020 PAL Robotics S.L. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* * Author: Enrique Fernández */ #ifndef SWERVE_CONTROLLER__SPEED_LIMITER_HPP_ #define SWERVE_CONTROLLER__SPEED_LIMITER_HPP_ #include <cmath> namespace swerve_controller { class SpeedLimiter { public: /** * \brief Constructor * \param [in] has_velocity_limits if true, applies velocity limits * \param [in] has_acceleration_limits if true, applies acceleration limits * \param [in] has_jerk_limits if true, applies jerk limits * \param [in] min_velocity Minimum velocity [m/s], usually <= 0 * \param [in] max_velocity Maximum velocity [m/s], usually >= 0 * \param [in] min_acceleration Minimum acceleration [m/s^2], usually <= 0 * \param [in] max_acceleration Maximum acceleration [m/s^2], usually >= 0 * \param [in] min_jerk Minimum jerk [m/s^3], usually <= 0 * \param [in] max_jerk Maximum jerk [m/s^3], usually >= 0 */ SpeedLimiter( bool has_velocity_limits = false, bool has_acceleration_limits = false, bool has_jerk_limits = false, double min_velocity = NAN, double max_velocity = NAN, double min_acceleration = NAN, double max_acceleration = NAN, double min_jerk = NAN, double max_jerk = NAN); /** * \brief Limit the velocity and acceleration * \param [in, out] v Velocity [m/s] * \param [in] v0 Previous velocity to v [m/s] * \param [in] v1 Previous velocity to v0 [m/s] * \param [in] dt Time step [s] * \return Limiting factor (1.0 if none) */ double limit(double & v, double v0, double v1, double dt); /** * \brief Limit the velocity * \param [in, out] v Velocity [m/s] * \return Limiting factor (1.0 if none) */ double limit_velocity(double & v); /** * \brief Limit the acceleration * \param [in, out] v Velocity [m/s] * \param [in] v0 Previous velocity [m/s] * \param [in] dt Time step [s] * \return Limiting factor (1.0 if none) */ double limit_acceleration(double & v, double v0, double dt); /** * \brief Limit the jerk * \param [in, out] v Velocity [m/s] * \param [in] v0 Previous velocity to v [m/s] * \param [in] v1 Previous velocity to v0 [m/s] * \param [in] dt Time step [s] * \return Limiting factor (1.0 if none) * \see http://en.wikipedia.org/wiki/Jerk_%28physics%29#Motion_control */ double limit_jerk(double & v, double v0, double v1, double dt); // Enable/Disable velocity/acceleration/jerk limits: bool has_velocity_limits_; bool has_acceleration_limits_; bool has_jerk_limits_; // Velocity limits: double min_velocity_; double max_velocity_; // Acceleration limits: double min_acceleration_; double max_acceleration_; // Jerk limits: double min_jerk_; double max_jerk_; }; } // namespace swerve_controller #endif // SWERVE_CONTROLLER__SPEED_LIMITER_HPP_
3,423
C++
31.609524
88
0.660532
RoboEagles4828/offseason2023/src/edna_bringup/launch/teleopLayer.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import RegisterEventHandler, DeclareLaunchArgument from launch.substitutions import LaunchConfiguration, Command, PythonExpression from launch_ros.actions import Node from launch.conditions import IfCondition # Easy use of namespace since args are not strings # NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): use_sim_time = LaunchConfiguration('use_sim_time') namespace = LaunchConfiguration('namespace') joystick_file = LaunchConfiguration('joystick_file') enable_joy = LaunchConfiguration('enable_joy') frc_auton_reader = Node( package = "frc_auton", namespace=namespace, executable= "reader", name = "frc_auton_node", parameters=[{ "auton_name": "24", }] ) frc_teleop_writer = Node( package = "frc_auton", namespace=namespace, executable= "writer", name = "frc_auton_node", parameters=[{ "record_auton": False, "record_without_fms": False, }] ) joy = Node( package='joy', namespace=namespace, executable='joy_node', name='joy_node', condition=IfCondition(enable_joy), parameters=[{ 'use_sim_time': use_sim_time, 'deadzone': 0.15, }]) controller_prefix = 'swerve_controller' joy_teleop_twist = Node( package='teleop_twist_joy', namespace=namespace, executable='teleop_node', name='teleop_twist_joy_node', parameters=[joystick_file, {'use_sim_time': use_sim_time}], remappings={ ("cmd_vel", f"{controller_prefix}/cmd_vel_unstamped"), ("odom", "zed/odom") }, ) joint_trajectory_teleop = Node( package='joint_trajectory_teleop', namespace=namespace, executable='joint_trajectory_teleop', name='joint_trajectory_teleop', parameters=[{'use_sim_time': use_sim_time}] ) # Launch! return LaunchDescription([ DeclareLaunchArgument( 'use_sim_time', default_value='false', description='Use sim time if true'), DeclareLaunchArgument( 'namespace', default_value='default', description='The namespace of nodes and links'), DeclareLaunchArgument( 'joystick_file', default_value='', description='The file with joystick parameters'), DeclareLaunchArgument( 'enable_joy', default_value='true', description='Enables joystick teleop'), joy, joy_teleop_twist, joint_trajectory_teleop, frc_auton_reader, # frc_teleop_writer ])
3,004
Python
32.021978
93
0.58988
RoboEagles4828/offseason2023/src/edna_bringup/launch/rviz.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription from launch.launch_description_sources import PythonLaunchDescriptionSource NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): bringup_path = get_package_share_directory("edna_bringup") rviz_file = os.path.join(bringup_path, 'config', 'description.rviz') common = { 'use_sim_time': 'false', 'namespace': NAMESPACE } control_launch_args = common | { 'use_ros2_control': 'false', 'load_controllers': 'false' } debug_launch_args = common | { 'enable_rviz': 'true', 'enable_foxglove': 'false', 'enable_joint_state_publisher': 'true', 'rviz_file': rviz_file } control_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','controlLayer.launch.py' )]), launch_arguments=control_launch_args.items()) debug_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','debugLayer.launch.py' )]), launch_arguments=debug_launch_args.items()) # Launch! return LaunchDescription([ control_layer, debug_layer, ])
1,469
Python
34.853658
91
0.647379
RoboEagles4828/offseason2023/src/edna_bringup/launch/test_hw.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, TimerAction from launch.launch_description_sources import PythonLaunchDescriptionSource NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): bringup_path = get_package_share_directory("edna_bringup") joystick_file = os.path.join(bringup_path, 'config', 'xbox-sim.yaml') rviz_file = os.path.join(bringup_path, 'config', 'view.rviz') common = { 'use_sim_time': 'false', 'namespace': NAMESPACE } control_launch_args = common | { 'use_ros2_control': 'true', 'hardware_plugin': 'swerve_hardware/TestDriveHardware', } teleoplaunch_args = common | { 'joystick_file': joystick_file, } debug_launch_args = common | { 'enable_rviz': 'true', 'enable_foxglove': 'true', 'rviz_file': rviz_file } control_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','controlLayer.launch.py' )]), launch_arguments=control_launch_args.items()) teleop_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','teleopLayer.launch.py' )]), launch_arguments=teleoplaunch_args.items()) debug_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','debugLayer.launch.py' )]), launch_arguments=debug_launch_args.items()) delay_debug_layer = TimerAction(period=3.0, actions=[debug_layer]) # Launch! return LaunchDescription([ control_layer, teleop_layer, delay_debug_layer, ])
1,956
Python
35.924528
91
0.643149
RoboEagles4828/offseason2023/src/edna_bringup/launch/zed2i.launch.py
import os from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, TimerAction from launch.launch_description_sources import PythonLaunchDescriptionSource from ament_index_python.packages import get_package_share_directory from launch_ros.actions import Node NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): # Camera model (force value) camera_model = 'zed2i' config_common_path = os.path.join( get_package_share_directory('zed_wrapper'), 'config', 'common.yaml' ) config_camera_path = os.path.join( get_package_share_directory('zed_wrapper'), 'config', camera_model + '.yaml' ) # ZED Wrapper node zed_wrapper_node = Node( package='zed_wrapper', namespace=str(NAMESPACE), executable='zed_wrapper', name='zed', output='screen', #prefix=['xterm -e valgrind --tools=callgrind'], #prefix=['xterm -e gdb -ex run --args'], parameters=[ # YAML files config_common_path, # Common parameters config_camera_path, # Camera related parameters # Overriding { 'general.camera_name': f'{NAMESPACE}/{camera_model}', 'general.camera_model': camera_model, 'general.svo_file': 'live', 'pos_tracking.base_frame': f'{NAMESPACE}/base_link', 'pos_tracking.map_frame': f'{NAMESPACE}/map', 'pos_tracking.odometry_frame': f'{NAMESPACE}/odom', 'general.zed_id': 0, 'general.serial_number': 0, 'pos_tracking.publish_tf': True, 'pos_tracking.publish_map_tf': True, 'pos_tracking.publish_imu_tf': True } ] ) delay_zed_wrapper = TimerAction(period=5.0, actions=[zed_wrapper_node]) # Define LaunchDescription variable ld = LaunchDescription() # Add nodes to LaunchDescription ld.add_action(delay_zed_wrapper) return ld
2,150
Python
30.632352
91
0.597209
RoboEagles4828/offseason2023/src/edna_bringup/launch/controlLayer.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import RegisterEventHandler, DeclareLaunchArgument, SetEnvironmentVariable, LogInfo, EmitEvent from launch.substitutions import LaunchConfiguration, Command, PythonExpression, TextSubstitution from launch.event_handlers import OnProcessExit from launch_ros.actions import Node from launch.conditions import IfCondition from launch.events import Shutdown # Easy use of namespace since args are not strings # NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): use_sim_time = LaunchConfiguration('use_sim_time') use_ros2_control = LaunchConfiguration('use_ros2_control') load_controllers = LaunchConfiguration('load_controllers') forward_command_controllers = LaunchConfiguration('forward_command_controller') namespace = LaunchConfiguration('namespace') hardware_plugin = LaunchConfiguration('hardware_plugin') # Process the URDF file description_pkg_path = os.path.join(get_package_share_directory('edna_description')) xacro_file = os.path.join(description_pkg_path,'urdf', 'robots','edna.urdf.xacro') edna_description_xml = Command(['xacro ', xacro_file, ' hw_interface_plugin:=', hardware_plugin]) # Get paths to other config files bringup_pkg_path = os.path.join(get_package_share_directory('edna_bringup')) controllers_file = os.path.join(bringup_pkg_path, 'config', 'controllers.yaml') # Create a robot_state_publisher node node_robot_state_publisher = Node( package='robot_state_publisher', namespace=namespace, executable='robot_state_publisher', output='screen', parameters=[{ 'robot_description': edna_description_xml, 'use_sim_time': use_sim_time, 'publish_frequency': 50.0, 'frame_prefix': [namespace, '/'] }], ) # Starts ROS2 Control control_node = Node( package="controller_manager", namespace=namespace, executable="ros2_control_node", condition=IfCondition(use_ros2_control), parameters=[{ "robot_description": edna_description_xml, "use_sim_time": use_sim_time, }, controllers_file], output="both", ) control_node_require = RegisterEventHandler( event_handler=OnProcessExit( target_action=control_node, on_exit=[ LogInfo(msg="Listener exited; tearing down entire system."), EmitEvent(event=Shutdown()) ], ) ) # Starts ROS2 Control Joint State Broadcaster joint_state_broadcaster_spawner = Node( package="controller_manager", namespace=namespace, executable="spawner", arguments=["joint_state_broadcaster", "-c", ['/', namespace, "/controller_manager"]], condition=IfCondition(use_ros2_control), ) joint_trajectory_controller_spawner = Node( package="controller_manager", namespace=namespace, executable="spawner", arguments=["joint_trajectory_controller", "-c", ['/', namespace, "/controller_manager"]], parameters=[{ "robot_description": edna_description_xml, "use_sim_time": use_sim_time, }, controllers_file], condition=IfCondition(use_ros2_control and load_controllers), ) #Starts ROS2 Control Swerve Drive Controller swerve_drive_controller_spawner = Node( package="controller_manager", namespace=namespace, executable="spawner", arguments=["swerve_controller", "-c", ['/', namespace, "/controller_manager"]], condition=IfCondition(use_ros2_control and load_controllers), ) swerve_drive_controller_delay = RegisterEventHandler( event_handler=OnProcessExit( target_action=joint_state_broadcaster_spawner, on_exit=[swerve_drive_controller_spawner], ) ) # Starts ROS2 Control Forward Controller forward_position_controller_spawner = Node( package="controller_manager", namespace=namespace, executable="spawner", arguments=["forward_position_controller", "-c", ['/', namespace, "/controller_manager"]], condition=IfCondition(use_ros2_control and forward_command_controllers), ) forward_position_controller_delay = RegisterEventHandler( event_handler=OnProcessExit( target_action=joint_state_broadcaster_spawner, on_exit=[forward_position_controller_spawner], ) ) forward_velocity_controller_spawner = Node( package="controller_manager", namespace=namespace, executable="spawner", arguments=["forward_velocity_controller", "-c", ['/', namespace, "/controller_manager"]], condition=IfCondition(use_ros2_control and forward_command_controllers), ) forward_velocity_controller_delay = RegisterEventHandler( event_handler=OnProcessExit( target_action=joint_state_broadcaster_spawner, on_exit=[forward_velocity_controller_spawner], ) ) # Launch! return LaunchDescription([ SetEnvironmentVariable('RCUTILS_COLORIZED_OUTPUT', '1'), DeclareLaunchArgument( 'use_sim_time', default_value='false', description='Use sim time if true'), DeclareLaunchArgument( 'use_ros2_control', default_value='true', description='Use ros2_control if true'), DeclareLaunchArgument( 'namespace', default_value='default', description='The namespace of nodes and links'), DeclareLaunchArgument( 'hardware_plugin', default_value='swerve_hardware/IsaacDriveHardware', description='Which ros2 control hardware plugin to use'), DeclareLaunchArgument( 'load_controllers', default_value='true', description='Enable or disable ros2 controllers but leave hardware interfaces'), DeclareLaunchArgument( 'forward_command_controller', default_value='false', description='Forward commands for ros2 control'), node_robot_state_publisher, control_node, joint_state_broadcaster_spawner, joint_trajectory_controller_spawner, swerve_drive_controller_delay, forward_position_controller_delay, forward_velocity_controller_delay, control_node_require ])
6,682
Python
39.017964
114
0.652799
RoboEagles4828/offseason2023/src/edna_bringup/launch/rtab.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, DeclareLaunchArgument from launch.launch_description_sources import PythonLaunchDescriptionSource from launch.substitutions import LaunchConfiguration NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): use_sim_time = LaunchConfiguration('use_sim_time') rtabmap_ros_path = get_package_share_directory("rtabmap_ros") rtabmap_args = { 'rtabmap_args': '--delete_db_on_start', 'use_sim_time': use_sim_time, 'namespace': f'{NAMESPACE}_rtab', # Frames 'frame_id': f'{NAMESPACE}/base_link', 'odom_frame_id': f'{NAMESPACE}/odom', 'map_frame_id': f'{NAMESPACE}/map', # Topics 'rgb_topic': f'/{NAMESPACE}/left/rgb', 'camera_info_topic': f'/{NAMESPACE}/left/camera_info', 'depth_topic': f'/{NAMESPACE}/left/depth', 'imu_topic': f'/{NAMESPACE}/imu', 'odom_topic': f'/{NAMESPACE}/zed/odom', 'approx_sync': 'false', 'wait_imu_to_init': 'true', 'visual_odometry': 'false', 'publish_tf_odom': 'false', 'qos': '1', 'rviz': 'true', } rtab_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( rtabmap_ros_path,'launch','rtabmap.launch.py' )]), launch_arguments=rtabmap_args.items()) return LaunchDescription([ DeclareLaunchArgument( 'use_sim_time', default_value='true', description='Use sim time if true'), rtab_layer, ])
1,768
Python
34.379999
91
0.621041
RoboEagles4828/offseason2023/src/edna_bringup/launch/isaac.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, TimerAction from launch.launch_description_sources import PythonLaunchDescriptionSource NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): bringup_path = get_package_share_directory("edna_bringup") joystick_file = os.path.join(bringup_path, 'config', 'xbox-sim.yaml') rviz_file = os.path.join(bringup_path, 'config', 'view.rviz') common = { 'use_sim_time': 'true', 'namespace': NAMESPACE } control_launch_args = common | { 'use_ros2_control': 'true', 'hardware_plugin': 'swerve_hardware/IsaacDriveHardware', } teleoplaunch_args = common | { 'joystick_file': joystick_file, } debug_launch_args = common | { 'enable_rviz': 'false', 'enable_foxglove': 'false', 'rviz_file': rviz_file } control_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','controlLayer.launch.py' )]), launch_arguments=control_launch_args.items()) teleop_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','teleopLayer.launch.py' )]), launch_arguments=teleoplaunch_args.items()) debug_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','debugLayer.launch.py' )]), launch_arguments=debug_launch_args.items()) delay_debug_layer = TimerAction(period=3.0, actions=[debug_layer]) # Launch! return LaunchDescription([ control_layer, teleop_layer, delay_debug_layer, ])
1,958
Python
35.962263
91
0.643514
RoboEagles4828/offseason2023/src/edna_bringup/launch/debugLayer.launch.py
from launch import LaunchDescription from launch_ros.actions import Node from ament_index_python.packages import get_package_share_directory from launch.substitutions import LaunchConfiguration, PythonExpression from launch.event_handlers import OnProcessExit from launch.actions import DeclareLaunchArgument, ExecuteProcess, RegisterEventHandler from launch.conditions import IfCondition import os def generate_launch_description(): bringup_pkg_path = os.path.join(get_package_share_directory('edna_bringup')) use_sim_time = LaunchConfiguration('use_sim_time') namespace = LaunchConfiguration('namespace') enable_rviz = LaunchConfiguration('enable_rviz') enable_foxglove = LaunchConfiguration('enable_foxglove') enable_debugger_gui = LaunchConfiguration('enable_debugger_gui') enable_joint_state_publisher = LaunchConfiguration('enable_joint_state_publisher') rviz_file = LaunchConfiguration('rviz_file') foxglove = Node( package='foxglove_bridge', executable='foxglove_bridge', namespace=namespace, parameters=[{ 'port': 8765, 'use_sim_time': use_sim_time }], condition=IfCondition(enable_foxglove) ) parse_script = os.path.join(bringup_pkg_path, 'scripts', 'parseRviz.py') parseRvizFile = ExecuteProcess(cmd=["python3", parse_script, rviz_file, namespace]) rviz2 = Node( package='rviz2', name='rviz2', namespace=namespace, executable='rviz2', parameters=[{ 'use_sim_time': use_sim_time }], output='screen', arguments=[["-d"], [rviz_file]], condition=IfCondition(enable_rviz) ) rviz2_delay = RegisterEventHandler( event_handler=OnProcessExit( target_action=parseRvizFile, on_exit=[rviz2], ) ) debugger_gui = Node( package='edna_debugger', namespace=namespace, executable='debugger', name='debugger', output='screen', parameters=[{ 'use_sim_time': use_sim_time, 'publish_default_velocities': 'true', 'source_list': ['joint_states'] }], condition=IfCondition(enable_debugger_gui), ) # Starts Joint State Publisher GUI for rviz (conflicts with edna_debugger) joint_state_publisher_gui = Node ( package='joint_state_publisher_gui', namespace=namespace, executable='joint_state_publisher_gui', output='screen', parameters=[{ 'use_sim_time': use_sim_time, 'publish_default_velocities': True, }], condition=IfCondition(enable_joint_state_publisher), ) return LaunchDescription([ DeclareLaunchArgument( 'use_sim_time', default_value='false', description='Use sim time if true'), DeclareLaunchArgument( 'namespace', default_value='default', description='The namespace of nodes and links'), DeclareLaunchArgument( 'enable_rviz', default_value='true', description='enables rviz'), DeclareLaunchArgument( 'rviz_file', default_value='', description='The config file for rviz'), DeclareLaunchArgument( 'enable_foxglove', default_value='true', description='enables foxglove bridge'), DeclareLaunchArgument( 'enable_debugger_gui', default_value='false', description='enables the debugger gui tool'), DeclareLaunchArgument( 'enable_joint_state_publisher', default_value='false', description='enables the joint state publisher tool'), foxglove, parseRvizFile, rviz2_delay, debugger_gui, joint_state_publisher_gui, ])
3,908
Python
33.901785
87
0.620778
RoboEagles4828/offseason2023/src/edna_bringup/launch/real-rviz.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription from launch.launch_description_sources import PythonLaunchDescriptionSource def generate_launch_description(): bringup_path = get_package_share_directory("edna_bringup") rviz_file = os.path.join(bringup_path, 'config', 'real.rviz') common = { 'use_sim_time': 'false', 'namespace': 'real', 'forward_command_controller': 'false', } debug_launch_args = common | { 'enable_rviz': 'true', 'enable_foxglove': 'false', 'enable_debugger_gui': 'true', 'rviz_file': rviz_file } debug_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','debugLayer.launch.py' )]), launch_arguments=debug_launch_args.items()) # Launch! return LaunchDescription([ debug_layer, ])
1,037
Python
31.437499
75
0.644166
RoboEagles4828/offseason2023/src/edna_bringup/launch/real.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, TimerAction from launch.launch_description_sources import PythonLaunchDescriptionSource def generate_launch_description(): bringup_path = get_package_share_directory("edna_bringup") joystick_file = os.path.join(bringup_path, 'config', 'xbox-real.yaml') common = { 'use_sim_time': 'false', 'namespace': 'real' } control_launch_args = common | { 'use_ros2_control': 'true', 'hardware_plugin': 'swerve_hardware/RealDriveHardware', } teleoplaunch_args = common | { 'joystick_file': joystick_file, 'enable_joy': 'false' } control_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','controlLayer.launch.py' )]), launch_arguments=control_launch_args.items()) teleop_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','teleopLayer.launch.py' )]), launch_arguments=teleoplaunch_args.items()) # Launch! return LaunchDescription([ control_layer, teleop_layer, ])
1,347
Python
34.473683
75
0.651819
RoboEagles4828/offseason2023/src/edna_bringup/launch/rio-debug.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, TimerAction from launch.launch_description_sources import PythonLaunchDescriptionSource NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): bringup_path = get_package_share_directory("edna_bringup") rviz_file = os.path.join(bringup_path, 'config', 'riodebug.rviz') common = { 'use_sim_time': 'false', 'namespace': 'real' } control_launch_args = common | { 'use_ros2_control': 'true', 'load_controllers': 'false', 'forward_command_controller': 'true', # Change to false in order to disable publishing 'hardware_plugin': 'swerve_hardware/RealDriveHardware', # Use IsaacDriveHardware for isaac or RealDriveHardware for real. } debug_launch_args = common | { 'enable_rviz': 'true', 'enable_foxglove': 'false', 'enable_debugger_gui': 'true', 'rviz_file': rviz_file } control_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','controlLayer.launch.py' )]), launch_arguments=control_launch_args.items()) debug_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','debugLayer.launch.py' )]), launch_arguments=debug_launch_args.items()) delay_debug_layer = TimerAction(period=3.0, actions=[debug_layer]) # Launch! return LaunchDescription([ control_layer, delay_debug_layer ])
1,762
Python
38.177777
129
0.662883
RoboEagles4828/offseason2023/src/edna_bringup/scripts/parseRviz.py
import sys import yaml import os # NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def processRvizFileForNamespace(rviz_file, NAMESPACE): rviz_data = None raw_rviz_data = None with open(rviz_file, 'r') as stream: raw_rviz_data = stream.read() rviz_data = yaml.safe_load(raw_rviz_data) # Get the namespace value from the rviz file current_namespace = None if rviz_data: for display in rviz_data['Visualization Manager']['Displays']: for k, v in display.items(): if 'Topic' in k and 'Value' in v: segs = v['Value'].split('/') if len(segs) > 1: current_namespace = segs[1] break if current_namespace: print('Found namespace: ', current_namespace) print(f"mapping {current_namespace} -> {NAMESPACE}") new_rviz_data = yaml.safe_load(raw_rviz_data.replace(current_namespace, NAMESPACE)) with open(rviz_file, 'w') as stream: yaml.dump(new_rviz_data, stream) else: with open('err', 'w') as stream: stream.write("Couldn't find namespace in rviz file") if __name__ == "__main__": processRvizFileForNamespace(sys.argv[1], sys.argv[2])
1,314
Python
33.605262
93
0.590563
RoboEagles4828/offseason2023/src/edna_bringup/config/controllers.yaml
/*: controller_manager: ros__parameters: update_rate: 20 # Hz joint_state_broadcaster: type: joint_state_broadcaster/JointStateBroadcaster swerve_controller: type: swerve_controller/SwerveController forward_position_controller: type: position_controllers/JointGroupPositionController forward_velocity_controller: type: velocity_controllers/JointGroupVelocityController joint_trajectory_controller: type: joint_trajectory_controller/JointTrajectoryController swerve_controller: ros__parameters: #Used to scale velocity chassis_length_meters: 0.6032 chassis_width_meters: 0.6032 wheel_radius_meters: 0.0508 max_wheel_angular_velocity: 100.0 #If no new twist commands are created in 1 second the robot will halt cmd_vel_timeout_seconds: 1.0 use_stamped_vel: false front_left_wheel_joint: front_left_wheel_joint front_right_wheel_joint: front_right_wheel_joint rear_left_wheel_joint: rear_left_wheel_joint rear_right_wheel_joint: rear_right_wheel_joint front_left_axle_joint: front_left_axle_joint front_right_axle_joint: front_right_axle_joint rear_left_axle_joint: rear_left_axle_joint rear_right_axle_joint: rear_right_axle_joint linear.x.has_velocity_limits: false linear.x.has_acceleration_limits: true linear.x.has_jerk_limits: false linear.x.max_velocity: 2.0 linear.x.min_velocity: -2.0 linear.x.max_acceleration: 3.0 linear.x.min_acceleration: -3.0 linear.x.max_jerk: 5.0 linear.x.min_jerk: -5.0 linear.y.has_velocity_limits: false linear.y.has_acceleration_limits: true linear.y.has_jerk_limits: false linear.y.max_velocity: 2.0 linear.y.min_velocity: -2.0 linear.y.max_acceleration: 3.0 linear.y.min_acceleration: -3.0 linear.y.max_jerk: 5.0 linear.y.min_jerk: -5.0 angular.z.has_velocity_limits: false angular.z.has_acceleration_limits: true angular.z.has_jerk_limits: false angular.z.max_velocity: 3.0 angular.z.min_velocity: -3.0 angular.z.max_acceleration: 3.0 angular.z.min_acceleration: -3.0 angular.z.max_jerk: 5.0 angular.z.min_jerk: -5.0 forward_position_controller: ros__parameters: joints: - 'front_left_axle_joint' - 'front_right_axle_joint' - 'rear_left_axle_joint' - 'rear_right_axle_joint' - 'arm_roller_bar_joint' - 'elevator_outer_1_joint' - 'elevator_center_joint' - 'elevator_outer_2_joint' - 'top_slider_joint' - 'top_gripper_left_arm_joint' - 'top_gripper_right_arm_joint' - 'bottom_intake_joint' forward_velocity_controller: ros__parameters: joints: - 'front_left_wheel_joint' - 'front_right_wheel_joint' - 'rear_left_wheel_joint' - 'rear_right_wheel_joint' joint_trajectory_controller: ros__parameters: joints: - 'arm_roller_bar_joint' - 'elevator_center_joint' - 'elevator_outer_1_joint' - 'elevator_outer_2_joint' - 'top_gripper_right_arm_joint' - 'top_gripper_left_arm_joint' - 'top_slider_joint' - 'bottom_intake_joint' command_interfaces: - position state_interfaces: - position - velocity state_publish_rate: 50.0 action_monitor_rate: 20.0 allow_partial_joints_goal: false open_loop_control: true constraints: stopped_velocity_tolerance: 0.01 goal_time: 0.0
3,706
YAML
28.188976
76
0.627361
RoboEagles4828/offseason2023/src/edna_bringup/config/xbox-sim.yaml
/*: teleop_twist_joy_node: ros__parameters: require_enable_button: false axis_linear: # Left thumb stick vertical x: 1 y: 0 scale_linear: x: 1.0 y: 1.0 scale_linear_turbo: x: 2.5 y: 2.5 axis_angular: # Right thumb stick horizontal yaw: 3 scale_angular: yaw: -1.0 scale_angular_turbo: yaw: -2.2 enable_turbo_button: 5 enable_field_oriented_button: 7 offset: 0.5
522
YAML
17.678571
51
0.5
RoboEagles4828/offseason2023/src/edna_bringup/config/xbox-real.yaml
/*: teleop_twist_joy_node: ros__parameters: require_enable_button: false axis_linear: # Left thumb stick vertical x: 1 y: 0 scale_linear: #1/10000 to offset shifted 0 in /joystick-data x: 0.0001 y: 0.0001 scale_linear_turbo: x: 0.0004 y: 0.0004 axis_angular: # Right thumb stick horizontal yaw: 3 scale_angular: #negative to fix turning direction yaw: -0.0001 scale_angular_turbo: yaw: -0.0002 enable_turbo_button: 5 enable_field_oriented_button: 7 offset: -0.25
610
YAML
24.458332
66
0.565574
RoboEagles4828/offseason2023/src/edna_bringup/config/teleop-control.yaml
controller_mapping: A: 0 B: 1 X: 2 Y: 3 LB: 4 RB: 5 squares: 6 menu: 7 xbox: 8 LSin: 9 RSin: 10 leftTriggerAxis: 2 rightTriggerAxis: 5 joint_limits: arm_roller_bar_joint: min: 0.0 max: 0.07 elevator_center_joint: min: 0.0 max: 0.56 elevator_outer_1_joint: min: 0.0 max: 0.2 elevator_outer_2_joint: min: 0.0 max: 0.56 top_gripper_right_arm_joint: min: -0.9 max: 0.0 top_gripper_left_arm_joint: min: -0.9 max: 0.0 top_slider_joint: min: 0.0 max: 0.30 bottom_intake_joint: min: 0.0 max: 1.52 joint_mapping: arm_roller_bar_joint: 0 elevator_center_joint: 1 elevator_outer_1_joint: 2 elevator_outer_2_joint: 3 top_gripper_right_arm_joint: 4 top_gripper_left_arm_joint: 5 top_slider_joint: 6 bottom_intake_joint: 7 function_mapping: elevator_loading_station: button: "RSin" toggle: true skis_up: button: "leftTriggerAxis" toggle: true elevator_mid_level: button: "LB" toggle: true elevator_high_level: button: "X" toggle: true top_gripper_control: button: "A" toggle: true elevator_pivot_control: button: "Y" toggle: true top_slider_control: button: "B" toggle: true
1,278
YAML
17.271428
32
0.606416
RoboEagles4828/offseason2023/src/edna_debugger/setup.py
from setuptools import setup package_name = 'edna_debugger' setup( name=package_name, version='0.0.0', packages=[package_name], data_files=[ ('share/ament_index/resource_index/packages', ['resource/' + package_name]), ('share/' + package_name, ['package.xml']), ], install_requires=['setuptools'], zip_safe=True, maintainer='admin', maintainer_email='[email protected]', description='GUI Robot Control Debugger', license='Apache License 2.0', tests_require=['pytest'], entry_points={ 'console_scripts': [ 'debugger = edna_debugger.debugger:main' ], }, )
674
Python
23.999999
53
0.60089
RoboEagles4828/offseason2023/src/edna_debugger/edna_debugger/flow_layout.py
# Implement a FlowLayout so sliders move around in a grid as the window is # resized. Originally taken from: # https://forum.qt.io/topic/109408/is-there-a-qt-layout-grid-that-can-dynamically-change-row-and-column-counts-to-best-fit-the-space/2 # with the license: # # This file taken from # https://code.qt.io/cgit/qt/qtbase.git/tree/examples/widgets/layouts/flowlayout/flowlayout.cpp?h=5.13 # Modified/adapted by jon, 10/07/2019, to translate into Python/PyQt # # Copyright (C) 2016 The Qt Company Ltd. # Contact: https://www.qt.io/licensing/ # # This file is part of the examples of the Qt Toolkit. # # $QT_BEGIN_LICENSE:BSD$ # Commercial License Usage # Licensees holding valid commercial Qt licenses may use this file in # accordance with the commercial license agreement provided with the # Software or, alternatively, in accordance with the terms contained in # a written agreement between you and The Qt Company. For licensing terms # and conditions see https://www.qt.io/terms-conditions. For further # information use the contact form at https://www.qt.io/contact-us. # # BSD License Usage # Alternatively, you may use this file under the terms of the BSD license # as follows: # # "Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of The Qt Company Ltd nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." # # $QT_END_LICENSE$ # from python_qt_binding.QtCore import Qt from python_qt_binding.QtCore import QPoint from python_qt_binding.QtCore import QRect from python_qt_binding.QtCore import QSize from python_qt_binding.QtWidgets import QLayout from python_qt_binding.QtWidgets import QSizePolicy from python_qt_binding.QtWidgets import QStyle class FlowLayout(QLayout): def __init__(self, parent=None, margin=-1, hSpacing=-1, vSpacing=-1): super().__init__(parent) self.itemList = list() self.m_hSpace = hSpacing self.m_vSpace = vSpacing self.setContentsMargins(margin, margin, margin, margin) def __del__(self): # copied for consistency, not sure this is needed or ever called item = self.takeAt(0) while item: item = self.takeAt(0) def addItem(self, item): self.itemList.append(item) def horizontalSpacing(self): if self.m_hSpace >= 0: return self.m_hSpace else: return self.smartSpacing(QStyle.PM_LayoutHorizontalSpacing) def verticalSpacing(self): if self.m_vSpace >= 0: return self.m_vSpace else: return self.smartSpacing(QStyle.PM_LayoutVerticalSpacing) def count(self): return len(self.itemList) def itemAt(self, index): if 0 <= index < len(self.itemList): return self.itemList[index] return None def takeAt(self, index): if 0 <= index < len(self.itemList): return self.itemList.pop(index) return None def expandingDirections(self): return Qt.Orientations(Qt.Orientation(0)) def hasHeightForWidth(self): return True def heightForWidth(self, width): return self.doLayout(QRect(0, 0, width, 0), True) def setGeometry(self, rect): super().setGeometry(rect) self.doLayout(rect, False) def sizeHint(self): return self.minimumSize() def minimumSize(self): size = QSize() for item in self.itemList: size = size.expandedTo(item.minimumSize()) margins = self.contentsMargins() size += QSize(margins.left() + margins.right(), margins.top() + margins.bottom()) return size def smartSpacing(self, pm): parent = self.parent() if not parent: return -1 elif parent.isWidgetType(): return parent.style().pixelMetric(pm, None, parent) return parent.spacing() def doLayout(self, rect, testOnly): left, top, right, bottom = self.getContentsMargins() effectiveRect = rect.adjusted(+left, +top, -right, -bottom) x = effectiveRect.x() y = effectiveRect.y() lineHeight = 0 for item in self.itemList: wid = item.widget() spaceX = self.horizontalSpacing() if spaceX == -1: spaceX = wid.style().layoutSpacing(QSizePolicy.PushButton, QSizePolicy.PushButton, Qt.Horizontal) spaceY = self.verticalSpacing() if spaceY == -1: spaceY = wid.style().layoutSpacing(QSizePolicy.PushButton, QSizePolicy.PushButton, Qt.Vertical) nextX = x + item.sizeHint().width() + spaceX if nextX - spaceX > effectiveRect.right() and lineHeight > 0: x = effectiveRect.x() y = y + lineHeight + spaceY nextX = x + item.sizeHint().width() + spaceX lineHeight = 0 if not testOnly: item.setGeometry(QRect(QPoint(x, y), item.sizeHint())) x = nextX lineHeight = max(lineHeight, item.sizeHint().height()) return y + lineHeight - rect.y() + bottom
6,445
Python
35.834286
134
0.672149
RoboEagles4828/offseason2023/src/edna_debugger/edna_debugger/debugger.py
import argparse import random import signal import sys import threading import rclpy from python_qt_binding.QtCore import pyqtSlot from python_qt_binding.QtCore import Qt from python_qt_binding.QtCore import Signal from python_qt_binding.QtGui import QFont from python_qt_binding.QtWidgets import QApplication from python_qt_binding.QtWidgets import QFormLayout from python_qt_binding.QtWidgets import QGridLayout from python_qt_binding.QtWidgets import QHBoxLayout from python_qt_binding.QtWidgets import QLabel from python_qt_binding.QtWidgets import QLineEdit from python_qt_binding.QtWidgets import QMainWindow from python_qt_binding.QtWidgets import QPushButton from python_qt_binding.QtWidgets import QSlider from python_qt_binding.QtWidgets import QScrollArea from python_qt_binding.QtWidgets import QVBoxLayout from python_qt_binding.QtWidgets import QWidget from edna_debugger.joint_state_publisher import JointStatePublisher from edna_debugger.flow_layout import FlowLayout RANGE = 10000 LINE_EDIT_WIDTH = 45 SLIDER_WIDTH = 200 INIT_NUM_SLIDERS = 7 # Initial number of sliders to show in window # Defined by style - currently using the default style DEFAULT_WINDOW_MARGIN = 11 DEFAULT_CHILD_MARGIN = 9 DEFAULT_BTN_HEIGHT = 25 DEFAULT_SLIDER_HEIGHT = 64 # Is the combination of default heights in Slider # Calculate default minimums for window sizing MIN_WIDTH = SLIDER_WIDTH + DEFAULT_CHILD_MARGIN * 4 + DEFAULT_WINDOW_MARGIN * 2 MIN_HEIGHT = DEFAULT_BTN_HEIGHT * 2 + DEFAULT_WINDOW_MARGIN * 2 + DEFAULT_CHILD_MARGIN * 2 PNEUMATICS_JOINTS = [ 'arm_roller_bar_joint', 'top_slider_joint', 'top_gripper_left_arm_joint', 'bottom_intake_joint' ] class Button(QWidget): def __init__(self, name): super().__init__() self.joint_layout = QVBoxLayout() self.row_layout = QHBoxLayout() font = QFont("Helvetica", 9, QFont.Bold) self.label = QLabel(name) self.label.setFont(font) self.row_layout.addWidget(self.label) self.joint_layout.addLayout(self.row_layout) self.button = QPushButton('toggle', self) self.button.setCheckable(True) self.joint_layout.addWidget(self.button) self.setLayout(self.joint_layout) def remove(self): self.joint_layout.remove_widget(self.button) self.button.setParent(None) self.row_layout.removeWidget(self.display) self.display.setParent(None) self.row_layout.removeWidget(self.label) self.label.setParent(None) self.row_layout.setParent(None) class Slider(QWidget): def __init__(self, name): super().__init__() self.joint_layout = QVBoxLayout() # top row self.row_layout_top = QHBoxLayout() font = QFont("Helvetica", 9, QFont.Bold) self.label = QLabel(name) self.label.setFont(font) self.row_layout_top.addWidget(self.label) self.joint_layout.addLayout(self.row_layout_top) # subscribing row self.row_layout_sub = QHBoxLayout() self.display_sub = QLineEdit("0.00") self.display_sub.setAlignment(Qt.AlignRight) self.display_sub.setFont(font) self.display_sub.setReadOnly(True) self.display_sub.setFixedWidth(LINE_EDIT_WIDTH) self.row_layout_sub.addWidget(self.display_sub) self.slider_sub = QSlider(Qt.Horizontal) self.slider_sub.setFont(font) self.slider_sub.setRange(0, RANGE) self.slider_sub.setValue(int(RANGE / 2)) self.slider_sub.setFixedWidth(SLIDER_WIDTH) self.row_layout_sub.addWidget(self.slider_sub) self.joint_layout.addLayout(self.row_layout_sub) # publishing row self.row_layout_pub = QHBoxLayout() self.display_pub = QLineEdit("0.00") self.display_pub.setAlignment(Qt.AlignRight) self.display_pub.setFont(font) self.display_pub.setReadOnly(False) self.display_pub.setFixedWidth(LINE_EDIT_WIDTH) self.row_layout_pub.addWidget(self.display_pub) self.slider_pub = QSlider(Qt.Horizontal) self.slider_pub.setFont(font) self.slider_pub.setRange(0, RANGE) self.slider_pub.setValue(int(RANGE / 2)) self.slider_pub.setFixedWidth(SLIDER_WIDTH) self.row_layout_pub.addWidget(self.slider_pub) self.joint_layout.addLayout(self.row_layout_pub) self.setLayout(self.joint_layout) def remove(self): self.joint_layout.removeWidget(self.slider) self.slider.setParent(None) self.row_layout.removeWidget(self.display) self.display.setParent(None) self.row_layout.removeWidget(self.label) self.label.setParent(None) self.row_layout.setParent(None) class JointStatePublisherGui(QMainWindow): sliderUpdateTrigger = Signal() initialize = Signal() def __init__(self, title, jsp : JointStatePublisher): super(JointStatePublisherGui, self).__init__() self.joint_map = {} self.setWindowTitle(title) # Button for randomizing the sliders self.rand_button = QPushButton('Randomize', self) self.rand_button.clicked.connect(self.randomizeEvent) # Button for centering the sliders self.ctr_button = QPushButton('Center', self) self.ctr_button.clicked.connect(self.centerEvent) # Button for resetting the joint butttons self.reset_button = QPushButton('Reset Pistons', self) self.reset_button.clicked.connect(self.resetButtons) # Scroll area widget contents - layout self.scroll_layout = FlowLayout() # Scroll area widget contents self.scroll_widget = QWidget() self.scroll_widget.setLayout(self.scroll_layout) # Scroll area for sliders self.scroll_area = QScrollArea() self.scroll_area.setWidgetResizable(True) self.scroll_area.setWidget(self.scroll_widget) # Main layout self.main_layout = QVBoxLayout() # Add buttons and scroll area to main layout self.main_layout.addWidget(self.rand_button) self.main_layout.addWidget(self.ctr_button) self.main_layout.addWidget(self.reset_button) self.main_layout.addWidget(self.scroll_area) # central widget self.central_widget = QWidget() self.central_widget.setLayout(self.main_layout) self.setCentralWidget(self.central_widget) self.jsp = jsp self.jsp.set_source_update_cb(self.sliderUpdateCb) self.jsp.set_robot_description_update_cb(self.initializeCb) self.running = True self.sliders = {} self.buttons = {} # Setup signal for initializing the window self.initialize.connect(self.initializeSliders) # Set up a signal for updating the sliders based on external joint info self.sliderUpdateTrigger.connect(self.updateSliders) # Tell self to draw sliders in case the JointStatePublisher already has a robot_description self.initialize.emit() def initializeSliders(self): self.joint_map = {} for sl, _ in self.sliders.items(): self.scroll_layout.removeWidget(sl) sl.remove() ### Generate sliders ### for name in self.jsp.joint_list: if name not in self.jsp.free_joints_sub: continue joint = self.jsp.free_joints_sub[name] if joint['min'] == joint['max']: continue if (name in PNEUMATICS_JOINTS): button = Button(name) self.joint_map[name] = {'button': button.button, 'joint': joint} self.scroll_layout.addWidget(button) button.button.toggled.connect(lambda event,name=name: self.onInputValueChanged(name)) self.buttons[button] = button else: slider = Slider(name) self.joint_map[name] = {'display_sub': slider.display_sub, 'slider_sub': slider.slider_sub, 'display_pub': slider.display_pub, 'slider_pub': slider.slider_pub, 'joint': joint} self.scroll_layout.addWidget(slider) slider.display_pub.textEdited.connect(lambda event,name=name: self.makeSliderEqualToText(name)) slider.slider_pub.valueChanged.connect(lambda event,name=name: self.makeTextEqualToSlider(name)) self.sliders[slider] = slider # Set zero positions read from parameters self.centerEvent(None) # Set size of min size of window based on number of sliders. if len(self.sliders) >= INIT_NUM_SLIDERS: # Limits min size to show INIT_NUM_SLIDERS num_sliders = INIT_NUM_SLIDERS else: num_sliders = len(self.sliders) scroll_layout_height = num_sliders * DEFAULT_SLIDER_HEIGHT scroll_layout_height += (num_sliders + 1) * DEFAULT_CHILD_MARGIN self.setMinimumSize(MIN_WIDTH, scroll_layout_height + MIN_HEIGHT) self.sliderUpdateTrigger.emit() def sliderUpdateCb(self): self.sliderUpdateTrigger.emit() def initializeCb(self): self.initialize.emit() # def onButtonClicked(self, name): # # self.jsp.get_logger().info("button changed") # joint_info = self.joint_map[name] # buttonValue = 1 if joint_info['button'].isChecked() == True else 0 # joint_info['joint']['position'] = buttonValue # joint_info['display'].setText(str(buttonValue)) # def onSliderTextEdited(self, slider, joint): # self.jsp.get_logger().info(slider.display.text()) # slider.slider1.setSliderPosition(self.valueToSlider(float(slider.display.displayText()), joint)) def makeSliderEqualToText(self, name): joint_info = self.joint_map[name] textvalue = joint_info['display_pub'].text() try: joint_info['slider_pub'].setValue(self.valueToSlider(float(textvalue), joint_info['joint'])) self.onInputValueChanged(name) except: pass def makeTextEqualToSlider(self, name): joint_info = self.joint_map[name] slidervalue = joint_info['slider_pub'].value() joint_info['display_pub'].setText(str(round(self.sliderToValue(slidervalue, joint_info['joint']), 2))) self.onInputValueChanged(name) def onInputValueChanged(self, name): # A slider value was changed, but we need to change the joint_info metadata. joint_info = self.joint_map[name] if ('slider_pub' in joint_info): slidervalue = joint_info['slider_pub'].value() joint = joint_info['joint'] if 'wheel' in name: self.jsp.free_joints_pub[name]['velocity'] = self.sliderToValue(slidervalue, joint) else: self.jsp.free_joints_pub[name]['position'] = self.sliderToValue(slidervalue, joint) elif ('button' in joint_info): buttonValue = joint_info['joint']['max'] if joint_info['button'].isChecked() == True else joint_info['joint']['min'] self.jsp.free_joints_pub[name]['position'] = buttonValue @pyqtSlot() def updateSliders(self): for name, joint_info in self.joint_map.items(): joint = joint_info['joint'] if ('slider_sub' in joint_info): if 'wheel' in name: slidervalue = self.valueToSlider(joint['velocity'], joint) else: slidervalue = self.valueToSlider(joint['position'], joint) joint_info['slider_sub'].setValue(slidervalue) joint_info['display_sub'].setText(str(round(self.sliderToValue(slidervalue, joint), 2))) elif ('button' in joint_info): buttonvalue = True if joint['position'] == joint['max'] else False if (joint_info['button'].isChecked() == buttonvalue): joint_info['button'].setStyleSheet('background-color: green') else: joint_info['button'].setStyleSheet('background-color: yellow') def resetButtons(self, event): self.jsp.get_logger().info("Toggling off") for name, joint_info in self.joint_map.items(): if('button' in joint_info): if(joint_info['button'].isChecked()): joint_info['button'].setChecked(False) def centerEvent(self, event): self.jsp.get_logger().info("Centering") for name, joint_info in self.joint_map.items(): if('slider' in joint_info): joint = joint_info['joint'] joint_info['slider'].setValue(self.valueToSlider(joint['zero'], joint)) def randomizeEvent(self, event): self.jsp.get_logger().info("Randomizing") for name, joint_info in self.joint_map.items(): if('slider' in joint_info): joint = joint_info['joint'] joint_info['slider'].setValue( self.valueToSlider(random.uniform(joint['min'], joint['max']), joint)) def valueToSlider(self, value, joint): # return int(value * 5000) return int((value - joint['min']) * float(RANGE) / (joint['max'] - joint['min'])) def sliderToValue(self, slider, joint): pctvalue = slider / float(RANGE) return joint['min'] + (joint['max']-joint['min']) * pctvalue def closeEvent(self, event): self.running = False def loop(self): while self.running: rclpy.spin_once(self.jsp, timeout_sec=0.1) def main(): # Initialize rclpy with the command-line arguments rclpy.init() # Strip off the ROS 2-specific command-line arguments stripped_args = rclpy.utilities.remove_ros_args(args=sys.argv) parser = argparse.ArgumentParser() parser.add_argument('urdf_file', help='URDF file to use', nargs='?', default=None) # Parse the remaining arguments, noting that the passed-in args must *not* # contain the name of the program. parsed_args = parser.parse_args(args=stripped_args[1:]) app = QApplication(sys.argv) jsp_gui = JointStatePublisherGui('Debugger', JointStatePublisher(parsed_args.urdf_file)) jsp_gui.show() threading.Thread(target=jsp_gui.loop).start() signal.signal(signal.SIGINT, signal.SIG_DFL) sys.exit(app.exec_()) if __name__ == '__main__': main()
14,516
Python
35.2925
191
0.640052
RoboEagles4828/offseason2023/src/edna_debugger/edna_debugger/joint_state_publisher.py
# Copyright (c) 2010, Willow Garage, Inc. # All rights reserved. # # Software License Agreement (BSD License 2.0) # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # Standard Python imports import argparse import math import sys import time import xml.dom.minidom # ROS 2 imports import rclpy import rclpy.node from rcl_interfaces.msg import ParameterDescriptor, ParameterType import sensor_msgs.msg import std_msgs.msg POSITION_JOINTS = { 'arm_roller_bar_joint', 'elevator_center_joint', 'elevator_outer_1_joint', 'elevator_outer_2_joint', 'top_gripper_right_arm_joint', 'top_gripper_left_arm_joint', 'top_slider_joint', 'bottom_intake_joint', 'front_left_axle_joint', 'front_right_axle_joint', 'rear_left_axle_joint', 'rear_right_axle_joint', } VELOCITY_JOINTS = [ 'front_left_wheel_joint', 'front_right_wheel_joint', 'rear_left_wheel_joint', 'rear_right_wheel_joint', ] class JointStatePublisher(rclpy.node.Node): def get_param(self, name): return self.get_parameter(name).value def _init_joint(self, minval, maxval, zeroval): joint = {'min': minval, 'max': maxval, 'zero': zeroval} if self.pub_def_positions: joint['position'] = zeroval if self.pub_def_vels: joint['velocity'] = 0.0 if self.pub_def_efforts: joint['effort'] = 0.0 return joint def init_collada(self, robot): robot = robot.getElementsByTagName('kinematics_model')[0].getElementsByTagName('technique_common')[0] for child in robot.childNodes: if child.nodeType is child.TEXT_NODE: continue if child.localName == 'joint': name = child.getAttribute('name') if child.getElementsByTagName('revolute'): joint = child.getElementsByTagName('revolute')[0] else: self.get_logger().warn('Unknown joint type %s', child) continue if joint: limit = joint.getElementsByTagName('limits')[0] minval = float(limit.getElementsByTagName('min')[0].childNodes[0].nodeValue) maxval = float(limit.getElementsByTagName('max')[0].childNodes[0].nodeValue) if minval == maxval: # this is a fixed joint continue self.joint_list.append(name) minval *= math.pi/180.0 maxval *= math.pi/180.0 self.free_joints_sub[name] = self._init_joint(minval, maxval, 0.0) self.free_joints_pub[name] = self.free_joints_sub[name] def init_urdf(self, robot): robot = robot.getElementsByTagName('robot')[0] # Find all non-fixed joints for child in robot.childNodes: if child.nodeType is child.TEXT_NODE: continue if child.localName == 'joint': jtype = child.getAttribute('type') if jtype in ['fixed', 'floating', 'planar']: continue name = child.getAttribute('name') self.joint_list.append(name) if jtype == 'continuous': if name in VELOCITY_JOINTS: minval = -39.4 # this is not a good number i pulled it out of thin air maxval = 39.4 # please someone calculate the actual thing using the circumference of the wheels and that stuff else: minval = -math.pi maxval = math.pi else: try: limit = child.getElementsByTagName('limit')[0] minval = float(limit.getAttribute('lower')) maxval = float(limit.getAttribute('upper')) except: self.get_logger().warn('%s is not fixed, nor continuous, but limits are not specified!' % name) continue safety_tags = child.getElementsByTagName('safety_controller') if self.use_small and len(safety_tags) == 1: tag = safety_tags[0] if tag.hasAttribute('soft_lower_limit'): minval = max(minval, float(tag.getAttribute('soft_lower_limit'))) if tag.hasAttribute('soft_upper_limit'): maxval = min(maxval, float(tag.getAttribute('soft_upper_limit'))) mimic_tags = child.getElementsByTagName('mimic') if self.use_mimic and len(mimic_tags) == 1: tag = mimic_tags[0] entry = {'parent': tag.getAttribute('joint')} if tag.hasAttribute('multiplier'): entry['factor'] = float(tag.getAttribute('multiplier')) if tag.hasAttribute('offset'): entry['offset'] = float(tag.getAttribute('offset')) self.dependent_joints[name] = entry continue if name in self.dependent_joints: continue if self.zeros and name in self.zeros: zeroval = self.zeros[name] elif minval > 0 or maxval < 0: zeroval = (maxval + minval)/2 else: zeroval = 0 joint = self._init_joint(minval, maxval, zeroval) if jtype == 'continuous': joint['continuous'] = True self.free_joints_sub[name] = joint self.free_joints_pub[name] = joint.copy() def configure_robot(self, description): self.get_logger().debug('Got description, configuring robot') try: robot = xml.dom.minidom.parseString(description) except xml.parsers.expat.ExpatError: # If the description fails to parse for some reason, print an error # and get out of here without doing further work. If we were # already running with a description, we'll continue running with # that older one. self.get_logger().warn('Invalid robot_description given, ignoring') return # Make sure to clear out the old joints so we don't get duplicate joints # on a new robot description. self.free_joints_sub = {} self.free_joints_pub = {} self.joint_list = [] # for maintaining the original order of the joints if robot.getElementsByTagName('COLLADA'): self.init_collada(robot) else: self.init_urdf(robot) if self.robot_description_update_cb is not None: self.robot_description_update_cb() def parse_dependent_joints(self): dj = {} dependent_joints = self.get_parameters_by_prefix('dependent_joints') # get_parameters_by_prefix returned a dictionary of keynames like # 'head.parent', 'head.offset', etc. that map to rclpy Parameter values. # The rest of the code assumes that the dependent_joints dictionary is # a map of name -> dict['parent': parent, factor: factor, offset: offset], # where both factor and offset are optional. Thus we parse the values we # got into that structure. for name, param in dependent_joints.items(): # First split on the dots; there should be one and exactly one dot split = name.split('.') if len(split) != 2: raise Exception("Invalid dependent_joint name '%s'" % (name)) newkey = split[0] newvalue = split[1] if newvalue not in ['parent', 'factor', 'offset']: raise Exception("Invalid dependent_joint name '%s' (allowed values are 'parent', 'factor', and 'offset')" % (newvalue)) if newkey in dj: dj[newkey].update({newvalue: param.value}) else: dj[newkey] = {newvalue: param.value} # Now ensure that there is at least a 'parent' in all keys for name,outdict in dj.items(): if outdict.get('parent', None) is None: raise Exception('All dependent_joints must at least have a parent') return dj def declare_ros_parameter(self, name, default, descriptor): # When the automatically_declare_parameters_from_overrides parameter to # rclpy.create_node() is True, then any parameters passed in on the # command-line are automatically declared. In that case, calling # node.declare_parameter() will raise an exception. However, in the case # where a parameter is *not* overridden, we still want to declare it # (so it shows up in "ros2 param list", for instance). Thus we always do # a declaration and just ignore ParameterAlreadyDeclaredException. try: self.declare_parameter(name, default, descriptor) except rclpy.exceptions.ParameterAlreadyDeclaredException: pass def __init__(self, urdf_file): super().__init__('joint_state_publisher', automatically_declare_parameters_from_overrides=True) self.declare_ros_parameter('publish_default_efforts', False, ParameterDescriptor(type=ParameterType.PARAMETER_BOOL)) self.declare_ros_parameter('publish_default_positions', True, ParameterDescriptor(type=ParameterType.PARAMETER_BOOL)) self.declare_ros_parameter('publish_default_velocities', False, ParameterDescriptor(type=ParameterType.PARAMETER_BOOL)) self.declare_ros_parameter('rate', 10, ParameterDescriptor(type=ParameterType.PARAMETER_INTEGER)) self.declare_ros_parameter('source_list', [], ParameterDescriptor(type=ParameterType.PARAMETER_STRING_ARRAY)) self.declare_ros_parameter('use_mimic_tags', True, ParameterDescriptor(type=ParameterType.PARAMETER_BOOL)) self.declare_ros_parameter('use_smallest_joint_limits', True, ParameterDescriptor(type=ParameterType.PARAMETER_BOOL)) self.declare_ros_parameter('delta', 0.0, ParameterDescriptor(type=ParameterType.PARAMETER_DOUBLE)) # In theory we would also declare 'dependent_joints' and 'zeros' here. # Since rclpy doesn't support maps natively, though, we just end up # letting 'automatically_declare_parameters_from_overrides' declare # any parameters for us. self.free_joints_sub = {} self.free_joints_pub = {} self.joint_list = [] # for maintaining the original order of the joints self.dependent_joints = self.parse_dependent_joints() self.use_mimic = self.get_param('use_mimic_tags') self.use_small = self.get_param('use_smallest_joint_limits') zeros = self.get_parameters_by_prefix('zeros') # get_parameters_by_prefix() returns a map of name -> Parameter # structures, but self.zeros is expected to be a list of name -> float; # fix that here. self.zeros = {k:v.value for (k, v) in zeros.items()} self.pub_def_positions = self.get_param('publish_default_positions') self.pub_def_vels = self.get_param('publish_default_velocities') self.pub_def_efforts = self.get_param('publish_default_efforts') self.robot_description_update_cb = None if urdf_file is not None: # If we were given a URDF file on the command-line, use that. with open(urdf_file, 'r') as infp: description = infp.read() self.configure_robot(description) else: # Otherwise, subscribe to the '/robot_description' topic and wait # for a callback there self.get_logger().info('Waiting for robot_description to be published on the robot_description topic...') self.create_subscription(std_msgs.msg.String, 'robot_description', lambda msg: self.configure_robot(msg.data), rclpy.qos.QoSProfile(depth=1, durability=rclpy.qos.QoSDurabilityPolicy.TRANSIENT_LOCAL)) self.delta = self.get_param('delta') source_list = self.get_param('source_list') self.sources = [] # for source in source_list: # self.sources.append(self.create_subscription(sensor_msgs.msg.JointState, source, self.source_cb, 10)) # The source_update_cb will be called at the end of self.source_cb. # The main purpose is to allow external observers (such as the # joint_state_publisher_gui) to be notified when things are updated. self.source_update_cb = None # Override topic name here self.pub_pos = self.create_publisher(std_msgs.msg.Float64MultiArray, 'forward_position_controller/commands', 10) self.pub_vel = self.create_publisher(std_msgs.msg.Float64MultiArray, 'forward_velocity_controller/commands', 10) self.create_subscription(sensor_msgs.msg.JointState, 'joint_states', self.source_cb, 10) self.timer = self.create_timer(1.0 / self.get_param('rate'), self.timer_callback) def source_cb(self, msg): # self.get_logger().info("ran source callback") for i in range(len(msg.name)): name = msg.name[i] if name not in self.free_joints_sub: continue if msg.position: position = msg.position[i] else: position = None if msg.velocity: velocity = msg.velocity[i] else: velocity = None if msg.effort: effort = msg.effort[i] else: effort = None joint = self.free_joints_sub[name] if position is not None: joint['position'] = position if velocity is not None: joint['velocity'] = velocity if effort is not None: joint['effort'] = effort if self.source_update_cb is not None: self.source_update_cb() def set_source_update_cb(self, user_cb): self.source_update_cb = user_cb def set_robot_description_update_cb(self, user_cb): self.robot_description_update_cb = user_cb def timer_callback(self): # Publish Joint States msg = sensor_msgs.msg.JointState() msg.header.stamp = self.get_clock().now().to_msg() if self.delta > 0: self.update(self.delta) # Initialize msg.position, msg.velocity, and msg.effort. has_position = False has_velocity = False has_effort = False for name, joint in self.free_joints_pub.items(): if not has_position and 'position' in joint: has_position = True if not has_velocity and 'velocity' in joint: has_velocity = True if not has_effort and 'effort' in joint: has_effort = True num_joints = (len(self.free_joints_pub.items()) + len(self.dependent_joints.items())) if has_position: msg.position = [] if has_velocity: msg.velocity = [] if has_effort: msg.effort = num_joints * [0.0] for i, name in enumerate(self.joint_list): msg.name.append(str(name)) joint = None # Add Free Joint if name in self.free_joints_pub: joint = self.free_joints_pub[name] factor = 1 offset = 0 # Add Dependent Joint elif name in self.dependent_joints: param = self.dependent_joints[name] parent = param['parent'] factor = param.get('factor', 1.0) offset = param.get('offset', 0.0) # Handle recursive mimic chain recursive_mimic_chain_joints = [name] while parent in self.dependent_joints: if parent in recursive_mimic_chain_joints: error_message = 'Found an infinite recursive mimic chain' self.get_logger().error(f'{error_message}: {recursive_mimic_chain_joints + [parent]}') sys.exit(1) recursive_mimic_chain_joints.append(parent) param = self.dependent_joints[parent] parent = param['parent'] offset += factor * param.get('offset', 0) factor *= param.get('factor', 1) joint = self.free_joints_pub[parent] # the issue here is that its setting [i] either to the joint, or its skipping i in the list when we need it to be the next value. # For some reason, [list].append() ends up putting way too many empty values that come from nowhere into the list. # The best thing to do here would be having two separate iterators which only increment if the variable has a position or a velocity. if has_position and 'position' in joint and name in POSITION_JOINTS: msg.position.append(float(joint['position']) * factor + offset) if has_velocity and 'velocity' in joint and name in VELOCITY_JOINTS: msg.velocity.append(float(joint['velocity']) * factor) if has_effort and 'effort' in joint: msg.effort[i] = float(joint['effort']) # Only publish non-empty messages if not (msg.name or msg.position or msg.velocity or msg.effort): return pos_msg = std_msgs.msg.Float64MultiArray() vel_msg = std_msgs.msg.Float64MultiArray() pos_msg.data = msg.position vel_msg.data = msg.velocity self.pub_pos.publish(pos_msg) self.pub_vel.publish(vel_msg) def update(self, delta): for name, joint in self.free_joints_sub.items(): forward = joint.get('forward', True) if forward: joint['position'] += delta if joint['position'] > joint['max']: if joint.get('continuous', False): joint['position'] = joint['min'] else: joint['position'] = joint['max'] joint['forward'] = not forward else: joint['position'] -= delta if joint['position'] < joint['min']: joint['position'] = joint['min'] joint['forward'] = not forward def main(): # Initialize rclpy with the command-line arguments rclpy.init() # Strip off the ROS 2-specific command-line arguments stripped_args = rclpy.utilities.remove_ros_args(args=sys.argv) parser = argparse.ArgumentParser() parser.add_argument('urdf_file', help='URDF file to use', nargs='?', default=None) # Parse the remaining arguments, noting that the passed-in args must *not* # contain the name of the program. parsed_args = parser.parse_args(args=stripped_args[1:]) jsp = JointStatePublisher(parsed_args.urdf_file) try: rclpy.spin(jsp) except KeyboardInterrupt: pass jsp.destroy_node() rclpy.try_shutdown() if __name__ == '__main__': main()
20,839
Python
42.873684
145
0.595038
RoboEagles4828/offseason2023/isaac/README.md
# Isaac Sim Code and Assests
28
Markdown
27.999972
28
0.785714
RoboEagles4828/offseason2023/isaac/exts/omni.isaac.edna/config/extension.toml
[core] reloadable = true order = 0 [package] version = "1.0.0" category = "Simulation" title = "edna" description = "Extension for running edna in Isaac Sim" authors = ["Gage Miller, Nitin C"] repository = "" keywords = ["isaac", "samples", "manipulation"] changelog = "docs/CHANGELOG.md" readme = "docs/README.md" preview_image = "data/preview.png" icon = "data/icon.png" writeTarget.kit = true [dependencies] "omni.kit.uiapp" = {} "omni.physx" = {} "omni.physx.vehicle" = {} "omni.isaac.dynamic_control" = {} "omni.isaac.motion_planning" = {} "omni.isaac.synthetic_utils" = {} "omni.isaac.ui" = {} "omni.isaac.core" = {} "omni.isaac.franka" = {} "omni.isaac.dofbot" = {} "omni.isaac.universal_robots" = {} "omni.isaac.motion_generation" = {} "omni.isaac.demos" = {} "omni.graph.action" = {} "omni.graph.nodes" = {} "omni.graph.core" = {} "omni.isaac.quadruped" = {} "omni.isaac.wheeled_robots" = {} "omni.isaac.examples" = {} [[python.module]] name = "omni.isaac.edna.import_bot" [[test]] timeout = 960
1,012
TOML
21.021739
55
0.656126
RoboEagles4828/offseason2023/isaac/exts/omni.isaac.edna/omni/isaac/edna/base_sample/base_sample.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.core import World from omni.isaac.core.scenes.scene import Scene from omni.isaac.core.utils.stage import create_new_stage_async, update_stage_async import gc from abc import abstractmethod class BaseSample(object): def __init__(self) -> None: self._world = None self._current_tasks = None self._world_settings = {"physics_dt": 1.0 / 60.0, "stage_units_in_meters": 1.0, "rendering_dt": 1.0 / 60.0} # self._logging_info = "" return def get_world(self): return self._world def set_world_settings(self, physics_dt=None, stage_units_in_meters=None, rendering_dt=None): if physics_dt is not None: self._world_settings["physics_dt"] = physics_dt if stage_units_in_meters is not None: self._world_settings["stage_units_in_meters"] = stage_units_in_meters if rendering_dt is not None: self._world_settings["rendering_dt"] = rendering_dt return async def load_world_async(self): """Function called when clicking load buttton """ if World.instance() is None: await create_new_stage_async() self._world = World(**self._world_settings) await self._world.initialize_simulation_context_async() self.setup_scene() else: self._world = World.instance() self._current_tasks = self._world.get_current_tasks() await self._world.reset_async() await self._world.pause_async() await self.setup_post_load() if len(self._current_tasks) > 0: self._world.add_physics_callback("tasks_step", self._world.step_async) return async def reset_async(self): """Function called when clicking reset buttton """ if self._world.is_tasks_scene_built() and len(self._current_tasks) > 0: self._world.remove_physics_callback("tasks_step") await self._world.play_async() await update_stage_async() await self.setup_pre_reset() await self._world.reset_async() await self._world.pause_async() await self.setup_post_reset() if self._world.is_tasks_scene_built() and len(self._current_tasks) > 0: self._world.add_physics_callback("tasks_step", self._world.step_async) return @abstractmethod def setup_scene(self, scene: Scene) -> None: """used to setup anything in the world, adding tasks happen here for instance. Args: scene (Scene): [description] """ return @abstractmethod async def setup_post_load(self): """called after first reset of the world when pressing load, intializing provate variables happen here. """ return @abstractmethod async def setup_pre_reset(self): """ called in reset button before resetting the world to remove a physics callback for instance or a controller reset """ return @abstractmethod async def setup_post_reset(self): """ called in reset button after resetting the world which includes one step with rendering """ return @abstractmethod async def setup_post_clear(self): """called after clicking clear button or after creating a new stage and clearing the instance of the world with its callbacks """ return # def log_info(self, info): # self._logging_info += str(info) + "\n" # return def _world_cleanup(self): self._world.stop() self._world.clear_all_callbacks() self._current_tasks = None self.world_cleanup() return def world_cleanup(self): """Function called when extension shutdowns and starts again, (hot reloading feature) """ return async def clear_async(self): """Function called when clicking clear buttton """ await create_new_stage_async() if self._world is not None: self._world_cleanup() self._world.clear_instance() self._world = None gc.collect() await self.setup_post_clear() return
4,657
Python
34.287879
115
0.624222
RoboEagles4828/offseason2023/isaac/exts/omni.isaac.edna/omni/isaac/edna/base_sample/base_sample_extension.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from abc import abstractmethod import omni.ext import omni.ui as ui from omni.kit.menu.utils import add_menu_items, remove_menu_items, MenuItemDescription import weakref from omni.isaac.ui.ui_utils import setup_ui_headers, get_style, btn_builder, scrolling_frame_builder import asyncio from omni.isaac.edna.base_sample import BaseSample from omni.isaac.core import World class BaseSampleExtension(omni.ext.IExt): def on_startup(self, ext_id: str): self._menu_items = None self._buttons = None self._ext_id = ext_id self._sample = None self._extra_frames = [] return def start_extension( self, menu_name: str, submenu_name: str, name: str, title: str, doc_link: str, overview: str, file_path: str, sample=None, number_of_extra_frames=1, window_width=350, ): if sample is None: self._sample = BaseSample() else: self._sample = sample menu_items = [MenuItemDescription(name=name, onclick_fn=lambda a=weakref.proxy(self): a._menu_callback())] if menu_name == "" or menu_name is None: self._menu_items = menu_items elif submenu_name == "" or submenu_name is None: self._menu_items = [MenuItemDescription(name=menu_name, sub_menu=menu_items)] else: self._menu_items = [ MenuItemDescription( name=menu_name, sub_menu=[MenuItemDescription(name=submenu_name, sub_menu=menu_items)] ) ] add_menu_items(self._menu_items, "Isaac Examples") self._buttons = dict() self._build_ui( name=name, title=title, doc_link=doc_link, overview=overview, file_path=file_path, number_of_extra_frames=number_of_extra_frames, window_width=window_width, ) if self.get_world() is not None: self._on_load_world() return @property def sample(self): return self._sample def get_frame(self, index): if index >= len(self._extra_frames): raise Exception("there were {} extra frames created only".format(len(self._extra_frames))) return self._extra_frames[index] def get_world(self): return World.instance() def get_buttons(self): return self._buttons def _build_ui(self, name, title, doc_link, overview, file_path, number_of_extra_frames, window_width): self._window = omni.ui.Window( name, width=window_width, height=0, visible=True, dockPreference=ui.DockPreference.RIGHT_BOTTOM ) with self._window.frame: with ui.VStack(spacing=5, height=0): setup_ui_headers(self._ext_id, file_path, title, doc_link, overview) self._controls_frame = ui.CollapsableFrame( title="World Controls", width=ui.Fraction(1), height=0, collapsed=False, style=get_style(), horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with ui.VStack(style=get_style(), spacing=5, height=0): for i in range(number_of_extra_frames): self._extra_frames.append( ui.CollapsableFrame( title="", width=ui.Fraction(0.33), height=0, visible=False, collapsed=False, style=get_style(), horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) ) with self._controls_frame: with ui.VStack(style=get_style(), spacing=5, height=0): dict = { "label": "Load World", "type": "button", "text": "Load", "tooltip": "Load World and Task", "on_clicked_fn": self._on_load_world, } self._buttons["Load World"] = btn_builder(**dict) self._buttons["Load World"].enabled = True dict = { "label": "Reset", "type": "button", "text": "Reset", "tooltip": "Reset robot and environment", "on_clicked_fn": self._on_reset, } self._buttons["Reset"] = btn_builder(**dict) self._buttons["Reset"].enabled = False dict = { "label": "Clear", "type": "button", "text": "Clear", "tooltip": "Clear the full environment", "on_clicked_fn": self._on_clear, } self._buttons["Clear"] = btn_builder(**dict) self._buttons["Clear"].enabled = True return def _set_button_tooltip(self, button_name, tool_tip): self._buttons[button_name].set_tooltip(tool_tip) return def _on_load_world(self): async def _on_load_world_async(): await self._sample.load_world_async() await omni.kit.app.get_app().next_update_async() self._sample._world.add_stage_callback("stage_event_1", self.on_stage_event) self._enable_all_buttons(True) self._buttons["Load World"].enabled = False self.post_load_button_event() self._sample._world.add_timeline_callback("stop_reset_event", self._reset_on_stop_event) asyncio.ensure_future(_on_load_world_async()) return def _on_reset(self): async def _on_reset_async(): await self._sample.reset_async() await omni.kit.app.get_app().next_update_async() self.post_reset_button_event() asyncio.ensure_future(_on_reset_async()) return def _on_clear(self): async def _on_clear_async(): await self._sample.clear_async() await omni.kit.app.get_app().next_update_async() self.post_clear_button_event() self._buttons["Load World"].enabled = True asyncio.ensure_future(_on_clear_async()) return @abstractmethod def post_reset_button_event(self): return @abstractmethod def post_load_button_event(self): return @abstractmethod def post_clear_button_event(self): return def _enable_all_buttons(self, flag): for btn_name, btn in self._buttons.items(): if isinstance(btn, omni.ui._ui.Button): btn.enabled = flag return def _menu_callback(self): self._window.visible = not self._window.visible return def _on_window(self, status): # if status: return def on_shutdown(self): self._extra_frames = [] if self._sample._world is not None: self._sample._world_cleanup() if self._menu_items is not None: self._sample_window_cleanup() if self._buttons is not None: self._buttons["Load World"].enabled = True self._enable_all_buttons(False) self.shutdown_cleanup() return def shutdown_cleanup(self): return def _sample_window_cleanup(self): remove_menu_items(self._menu_items, "Isaac Examples") self._window = None self._menu_items = None self._buttons = None return def on_stage_event(self, event): if event.type == int(omni.usd.StageEventType.CLOSED): if World.instance() is not None: self.sample._world_cleanup() self.sample._world.clear_instance() if hasattr(self, "_buttons"): if self._buttons is not None: self._enable_all_buttons(False) self._buttons["Load World"].enabled = True return def _reset_on_stop_event(self, e): if e.type == int(omni.timeline.TimelineEventType.STOP): self._buttons["Load World"].enabled = False self._buttons["Reset"].enabled = True self.post_clear_button_event() return
9,389
Python
36.261905
114
0.530621
RoboEagles4828/offseason2023/isaac/exts/omni.isaac.edna/omni/isaac/edna/base_sample/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.edna.base_sample.base_sample import BaseSample from omni.isaac.edna.base_sample.base_sample_extension import BaseSampleExtension
574
Python
46.916663
81
0.818815
RoboEagles4828/offseason2023/isaac/exts/omni.isaac.edna/omni/isaac/edna/import_bot/__init__.py
from omni.isaac.edna.import_bot.import_bot import ImportBot from omni.isaac.edna.import_bot.import_bot_extension import ImportBotExtension
140
Python
34.249991
78
0.842857
RoboEagles4828/offseason2023/isaac/exts/omni.isaac.edna/omni/isaac/edna/import_bot/import_bot_extension.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.edna.base_sample import BaseSampleExtension from omni.isaac.edna.import_bot.import_bot import ImportBot import omni.ui as ui from omni.isaac.ui.ui_utils import state_btn_builder class ImportBotExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="Edna FRC", submenu_name="", name="Import URDF", title="Load the URDF for Edna FRC 2023 Robot", doc_link="", overview="This loads the Edna robot into Isaac Sim.", file_path=os.path.abspath(__file__), sample=ImportBot(), number_of_extra_frames=1 ) self.task_ui_elements = {} frame = self.get_frame(index=0) self.build_task_controls_ui(frame) return def _on_toggle_camera_button_event(self, val): return def build_task_controls_ui(self, frame): with frame: with ui.VStack(spacing=5): # Update the Frame Title frame.title = "Task Controls" frame.visible = True dict = { "label": "Toggle Cameras", "type": "button", "a_text": "START", "b_text": "STOP", "tooltip": "Start the cameras", "on_clicked_fn": self._on_toggle_camera_button_event, } self.task_ui_elements["Toggle Camera"] = state_btn_builder(**dict) self.task_ui_elements["Toggle Camera"].enabled = False
2,080
Python
36.836363
82
0.597596
RoboEagles4828/offseason2023/isaac/exts/omni.isaac.edna/omni/isaac/edna/import_bot/import_bot.py
from omni.isaac.core.utils.stage import add_reference_to_stage import omni.graph.core as og import omni.usd from omni.isaac.edna.base_sample import BaseSample from omni.isaac.urdf import _urdf from omni.isaac.core.robots import Robot from omni.isaac.core.utils import prims from omni.isaac.core.prims import GeometryPrim from omni.isaac.core_nodes.scripts.utils import set_target_prims # from omni.kit.viewport_legacy import get_default_viewport_window # from omni.isaac.sensor import IMUSensor from pxr import UsdPhysics, UsdShade, Sdf, Gf import omni.kit.commands import os import numpy as np import math import carb NAMESPACE = f"{os.environ.get('ROS_NAMESPACE')}" if 'ROS_NAMESPACE' in os.environ else 'default' def set_drive_params(drive, stiffness, damping, max_force): drive.GetStiffnessAttr().Set(stiffness) drive.GetDampingAttr().Set(damping) if(max_force != 0.0): drive.GetMaxForceAttr().Set(max_force) return def add_physics_material_to_prim(prim, materialPath): bindingAPI = UsdShade.MaterialBindingAPI.Apply(prim) materialPrim = UsdShade.Material(materialPath) bindingAPI.Bind(materialPrim, UsdShade.Tokens.weakerThanDescendants, "physics") class ImportBot(BaseSample): def __init__(self) -> None: super().__init__() return def set_friction(self, robot_prim_path): mtl_created_list = [] # Create a new material using OmniGlass.mdl omni.kit.commands.execute( "CreateAndBindMdlMaterialFromLibrary", mdl_name="OmniPBR.mdl", mtl_name="Rubber", mtl_created_list=mtl_created_list, ) # Get reference to created material stage = omni.usd.get_context().get_stage() mtl_prim = stage.GetPrimAtPath(mtl_created_list[0]) friction_material = UsdPhysics.MaterialAPI.Apply(mtl_prim) friction_material.CreateDynamicFrictionAttr(1.0) friction_material.CreateStaticFrictionAttr(1.0) front_left_wheel_prim = stage.GetPrimAtPath(f"{robot_prim_path}/front_left_wheel_link/collisions") front_right_wheel_prim = stage.GetPrimAtPath(f"{robot_prim_path}/front_right_wheel_link/collisions") rear_left_wheel_prim = stage.GetPrimAtPath(f"{robot_prim_path}/rear_left_wheel_link/collisions") rear_right_wheel_prim = stage.GetPrimAtPath(f"{robot_prim_path}/rear_right_wheel_link/collisions") add_physics_material_to_prim(front_left_wheel_prim, mtl_prim) add_physics_material_to_prim(front_right_wheel_prim, mtl_prim) add_physics_material_to_prim(rear_left_wheel_prim, mtl_prim) add_physics_material_to_prim(rear_right_wheel_prim, mtl_prim) def setup_scene(self): world = self.get_world() world.get_physics_context().enable_gpu_dynamics(False) world.scene.add_default_ground_plane() self.setup_field() # self.setup_perspective_cam() self.setup_world_action_graph() return def setup_field(self): world = self.get_world() self.extension_path = os.path.abspath(__file__) self.project_root_path = os.path.abspath(os.path.join(self.extension_path, "../../../../../../..")) field = os.path.join(self.project_root_path, "assets/2023_field_cpu/FE-2023.usd") add_reference_to_stage(usd_path=field,prim_path="/World/Field") cone = os.path.join(self.project_root_path, "assets/2023_field_cpu/parts/GE-23700_JFH.usd") cube = os.path.join(self.project_root_path, "assets/2023_field_cpu/parts/GE-23701_JFL.usd") chargestation = os.path.join(self.project_root_path, "assets/ChargeStation-Copy/Assembly-1.usd") add_reference_to_stage(chargestation, "/World/ChargeStation_1") add_reference_to_stage(chargestation, "/World/ChargeStation_2") add_reference_to_stage(cone, "/World/Cone_1") add_reference_to_stage(cone, "/World/Cone_2") add_reference_to_stage(cone, "/World/Cone_3") add_reference_to_stage(cone, "/World/Cone_4") # add_reference_to_stage(cone, "/World/Cone_5") # add_reference_to_stage(cone, "/World/Cone_6") # add_reference_to_stage(cone, "/World/Cone_7") # add_reference_to_stage(cone, "/World/Cone_8") cone_1 = GeometryPrim("/World/Cone_1","cone_1_view",position=np.array([1.20298,-0.56861,0.0])) cone_2 = GeometryPrim("/World/Cone_2","cone_2_view",position=np.array([1.20298,3.08899,0.0])) cone_3 = GeometryPrim("/World/Cone_3","cone_3_view",position=np.array([-1.20298,-0.56861,0.0])) cone_4 = GeometryPrim("/World/Cone_4","cone_4_view",position=np.array([-1.20298,3.08899,0.0])) chargestation_1 = GeometryPrim("/World/ChargeStation_1","cone_3_view",position=np.array([-4.20298,-0.56861,0.0])) chargestation_2 = GeometryPrim("/World/ChargeStation_2","cone_4_view",position=np.array([4.20298,0.56861,0.0])) add_reference_to_stage(cube, "/World/Cube_1") add_reference_to_stage(cube, "/World/Cube_2") add_reference_to_stage(cube, "/World/Cube_3") add_reference_to_stage(cube, "/World/Cube_4") # add_reference_to_stage(cube, "/World/Cube_5") # add_reference_to_stage(cube, "/World/Cube_6") # add_reference_to_stage(cube, "/World/Cube_7") # add_reference_to_stage(cube, "/World/Cube_8") cube_1 = GeometryPrim("/World/Cube_1","cube_1_view",position=np.array([1.20298,0.65059,0.121])) cube_2 = GeometryPrim("/World/Cube_2","cube_2_view",position=np.array([1.20298,1.86979,0.121])) cube_3 = GeometryPrim("/World/Cube_3","cube_3_view",position=np.array([-1.20298,0.65059,0.121])) cube_4 = GeometryPrim("/World/Cube_4","cube_4_view",position=np.array([-1.20298,1.86979,0.121])) async def setup_post_load(self): self._world = self.get_world() # self._world.get_physics_context().enable_gpu_dynamics(True) self.robot_name = "edna" self.extension_path = os.path.abspath(__file__) self.project_root_path = os.path.abspath(os.path.join(self.extension_path, "../../../../../../..")) self.path_to_urdf = os.path.join(self.extension_path, "../../../../../../../..", "src/edna_description/urdf/edna.urdf") carb.log_info(self.path_to_urdf) self._robot_prim_path = self.import_robot(self.path_to_urdf) if self._robot_prim_path is None: print("Error: failed to import robot") return self._robot_prim = self._world.scene.add( Robot(prim_path=self._robot_prim_path, name=self.robot_name, position=np.array([0.0, 0.0, 0.3]), orientation=np.array([0.0, 0.0, 0.0, 1.0])) ) self.configure_robot(self._robot_prim_path) return def import_robot(self, urdf_path): import_config = _urdf.ImportConfig() import_config.merge_fixed_joints = False import_config.fix_base = False import_config.make_default_prim = True import_config.self_collision = False import_config.create_physics_scene = False import_config.import_inertia_tensor = True import_config.default_drive_strength = 1047.19751 import_config.default_position_drive_damping = 52.35988 import_config.default_drive_type = _urdf.UrdfJointTargetType.JOINT_DRIVE_VELOCITY import_config.distance_scale = 1.0 import_config.density = 0.0 result, prim_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config) if result: return prim_path return None def configure_robot(self, robot_prim_path): w_sides = ['left', 'right'] l_sides = ['front', 'back'] stage = self._world.stage chassis_name = f"swerve_chassis_link" front_left_axle = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/{chassis_name}/front_left_axle_joint"), "angular") front_right_axle = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/{chassis_name}/front_right_axle_joint"), "angular") rear_left_axle = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/{chassis_name}/rear_left_axle_joint"), "angular") rear_right_axle = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/{chassis_name}/rear_right_axle_joint"), "angular") front_left_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/front_left_axle_link/front_left_wheel_joint"), "angular") front_right_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/front_right_axle_link/front_right_wheel_joint"), "angular") rear_left_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/rear_left_axle_link/rear_left_wheel_joint"), "angular") rear_right_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/rear_right_axle_link/rear_right_wheel_joint"), "angular") arm_roller_bar_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/arm_elevator_leg_link/arm_roller_bar_joint"), "linear") elevator_center_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/elevator_outer_1_link/elevator_center_joint"), "linear") elevator_outer_2_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/elevator_center_link/elevator_outer_2_joint"), "linear") elevator_outer_1_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/arm_back_leg_link/elevator_outer_1_joint"), "angular") top_gripper_left_arm_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/top_gripper_bar_link/top_gripper_left_arm_joint"), "angular") top_gripper_right_arm_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/top_gripper_bar_link/top_gripper_right_arm_joint"), "angular") top_slider_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/elevator_outer_2_link/top_slider_joint"), "linear") bottom_intake_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/arm_elevator_leg_link/bottom_intake_joint"), "angular") set_drive_params(front_left_axle, 1, 1000, 98.0) set_drive_params(front_right_axle, 1, 1000, 98.0) set_drive_params(rear_left_axle, 1, 1000, 98.0) set_drive_params(rear_right_axle, 1, 1000, 98.0) set_drive_params(front_left_wheel, 1, 1000, 98.0) set_drive_params(front_right_wheel, 1, 1000, 98.0) set_drive_params(rear_left_wheel, 1, 1000, 98.0) set_drive_params(rear_right_wheel, 1, 1000, 98.0) set_drive_params(arm_roller_bar_joint, 10000000, 100000, 98.0) set_drive_params(elevator_center_joint, 10000000, 100000, 98.0) set_drive_params(elevator_outer_1_joint, 10000000, 100000, 2000.0) set_drive_params(elevator_outer_2_joint, 10000000, 100000, 98.0) set_drive_params(top_gripper_left_arm_joint, 10000000, 100000, 98.0) set_drive_params(top_gripper_right_arm_joint, 10000000, 100000, 98.0) set_drive_params(top_slider_joint, 10000000, 100000, 98.0) set_drive_params(bottom_intake_joint, 10000000, 100000, 98.0) # self.create_lidar(robot_prim_path) self.create_imu(robot_prim_path) self.create_depth_camera(robot_prim_path) self.setup_camera_action_graph(robot_prim_path) self.setup_imu_action_graph(robot_prim_path) self.setup_robot_action_graph(robot_prim_path) self.set_friction(robot_prim_path) return def create_lidar(self, robot_prim_path): lidar_parent = f"{robot_prim_path}/lidar_link" lidar_path = "/lidar" self.lidar_prim_path = lidar_parent + lidar_path result, prim = omni.kit.commands.execute( "RangeSensorCreateLidar", path=lidar_path, parent=lidar_parent, min_range=0.4, max_range=25.0, draw_points=False, draw_lines=True, horizontal_fov=360.0, vertical_fov=30.0, horizontal_resolution=0.4, vertical_resolution=4.0, rotation_rate=0.0, high_lod=False, yaw_offset=0.0, enable_semantics=False ) return def create_imu(self, robot_prim_path): imu_parent = f"{robot_prim_path}/zed2i_imu_link" imu_path = "/imu" self.imu_prim_path = imu_parent + imu_path result, prim = omni.kit.commands.execute( "IsaacSensorCreateImuSensor", path=imu_path, parent=imu_parent, translation=Gf.Vec3d(0, 0, 0), orientation=Gf.Quatd(1, 0, 0, 0), visualize=False, ) return def create_depth_camera(self, robot_prim_path): self.depth_left_camera_path = f"{robot_prim_path}/zed2i_right_camera_isaac_frame/left_cam" self.depth_right_camera_path = f"{robot_prim_path}/zed2i_right_camera_isaac_frame/right_cam" self.left_camera = prims.create_prim( prim_path=self.depth_left_camera_path, prim_type="Camera", attributes={ "focusDistance": 1, "focalLength": 24, "horizontalAperture": 20.955, "verticalAperture": 15.2908, "clippingRange": (0.1, 1000000), "clippingPlanes": np.array([1.0, 0.0, 1.0, 1.0]), }, ) self.right_camera = prims.create_prim( prim_path=self.depth_right_camera_path, prim_type="Camera", attributes={ "focusDistance": 1, "focalLength": 24, "horizontalAperture": 20.955, "verticalAperture": 15.2908, "clippingRange": (0.1, 1000000), "clippingPlanes": np.array([1.0, 0.0, 1.0, 1.0]), }, ) return def setup_world_action_graph(self): og.Controller.edit( {"graph_path": "/globalclock", "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("Context", "omni.isaac.ros2_bridge.ROS2Context"), ("PublishClock", "omni.isaac.ros2_bridge.ROS2PublishClock"), ], og.Controller.Keys.CONNECT: [ ("OnPlaybackTick.outputs:tick", "PublishClock.inputs:execIn"), ("Context.outputs:context", "PublishClock.inputs:context"), ("ReadSimTime.outputs:simulationTime", "PublishClock.inputs:timeStamp"), ], } ) return def setup_camera_action_graph(self, robot_prim_path): camera_graph = "{}/camera_sensor_graph".format(robot_prim_path) enable_left_cam = False enable_right_cam = False rgbType = "RgbType" infoType = "InfoType" depthType = "DepthType" depthPclType = "DepthPclType" def createCamType(side, name, typeNode, topic): return { "create": [ (f"{side}CamHelper{name}", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ], "connect": [ (f"{side}CamViewProduct.outputs:renderProductPath", f"{side}CamHelper{name}.inputs:renderProductPath"), (f"{side}CamSet.outputs:execOut", f"{side}CamHelper{name}.inputs:execIn"), (f"{typeNode}.inputs:value", f"{side}CamHelper{name}.inputs:type"), ], "setvalues": [ (f"{side}CamHelper{name}.inputs:topicName", f"{side.lower()}/{topic}"), (f"{side}CamHelper{name}.inputs:frameId", f"{NAMESPACE}/zed2i_{side.lower()}_camera_frame"), (f"{side}CamHelper{name}.inputs:nodeNamespace", f"/{NAMESPACE}"), ] } def getCamNodes(side, enable): camNodes = { "create": [ (f"{side}CamBranch", "omni.graph.action.Branch"), (f"{side}CamCreateViewport", "omni.isaac.core_nodes.IsaacCreateViewport"), (f"{side}CamViewportResolution", "omni.isaac.core_nodes.IsaacSetViewportResolution"), (f"{side}CamViewProduct", "omni.isaac.core_nodes.IsaacGetViewportRenderProduct"), (f"{side}CamSet", "omni.isaac.core_nodes.IsaacSetCameraOnRenderProduct"), ], "connect": [ ("OnPlaybackTick.outputs:tick", f"{side}CamBranch.inputs:execIn"), (f"{side}CamBranch.outputs:execTrue", f"{side}CamCreateViewport.inputs:execIn"), (f"{side}CamCreateViewport.outputs:execOut", f"{side}CamViewportResolution.inputs:execIn"), (f"{side}CamCreateViewport.outputs:viewport", f"{side}CamViewportResolution.inputs:viewport"), (f"{side}CamCreateViewport.outputs:viewport", f"{side}CamViewProduct.inputs:viewport"), (f"{side}CamViewportResolution.outputs:execOut", f"{side}CamViewProduct.inputs:execIn"), (f"{side}CamViewProduct.outputs:execOut", f"{side}CamSet.inputs:execIn"), (f"{side}CamViewProduct.outputs:renderProductPath", f"{side}CamSet.inputs:renderProductPath"), ], "setvalues": [ (f"{side}CamBranch.inputs:condition", enable), (f"{side}CamCreateViewport.inputs:name", f"{side}Cam"), (f"{side}CamViewportResolution.inputs:width", 640), (f"{side}CamViewportResolution.inputs:height", 360), ] } rgbNodes = createCamType(side, "RGB", rgbType, "rgb") infoNodes = createCamType(side, "Info", infoType, "camera_info") depthNodes = createCamType(side, "Depth", depthType, "depth") depthPClNodes = createCamType(side, "DepthPcl", depthPclType, "depth_pcl") camNodes["create"] += rgbNodes["create"] + infoNodes["create"] + depthNodes["create"] + depthPClNodes["create"] camNodes["connect"] += rgbNodes["connect"] + infoNodes["connect"] + depthNodes["connect"] + depthPClNodes["connect"] camNodes["setvalues"] += rgbNodes["setvalues"] + infoNodes["setvalues"] + depthNodes["setvalues"] + depthPClNodes["setvalues"] return camNodes leftCamNodes = getCamNodes("Left", enable_left_cam) rightCamNodes = getCamNodes("Right", enable_right_cam) og.Controller.edit( {"graph_path": camera_graph, "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), (rgbType, "omni.graph.nodes.ConstantToken"), (infoType, "omni.graph.nodes.ConstantToken"), (depthType, "omni.graph.nodes.ConstantToken"), (depthPclType, "omni.graph.nodes.ConstantToken"), ] + leftCamNodes["create"] + rightCamNodes["create"], og.Controller.Keys.CONNECT: leftCamNodes["connect"] + rightCamNodes["connect"], og.Controller.Keys.SET_VALUES: [ (f"{rgbType}.inputs:value", "rgb"), (f"{infoType}.inputs:value", "camera_info"), (f"{depthType}.inputs:value", "depth"), (f"{depthPclType}.inputs:value", "depth_pcl"), ] + leftCamNodes["setvalues"] + rightCamNodes["setvalues"], } ) set_target_prims(primPath=f"{camera_graph}/RightCamSet", targetPrimPaths=[self.depth_right_camera_path], inputName="inputs:cameraPrim") set_target_prims(primPath=f"{camera_graph}/LeftCamSet", targetPrimPaths=[self.depth_left_camera_path], inputName="inputs:cameraPrim") return def setup_imu_action_graph(self, robot_prim_path): sensor_graph = "{}/imu_sensor_graph".format(robot_prim_path) swerve_link = "{}/swerve_chassis_link".format(robot_prim_path) lidar_link = "{}/lidar_link/lidar".format(robot_prim_path) og.Controller.edit( {"graph_path": sensor_graph, "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ # General Nodes ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("SimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("Context", "omni.isaac.ros2_bridge.ROS2Context"), # Odometry Nodes ("ComputeOdometry", "omni.isaac.core_nodes.IsaacComputeOdometry"), ("PublishOdometry", "omni.isaac.ros2_bridge.ROS2PublishOdometry"), ("RawOdomTransform", "omni.isaac.ros2_bridge.ROS2PublishRawTransformTree"), # LiDAR Nodes # ("ReadLidar", "omni.isaac.range_sensor.IsaacReadLidarBeams"), # ("PublishLidar", "omni.isaac.ros2_bridge.ROS2PublishLaserScan"), # IMU Nodes ("IsaacReadImu", "omni.isaac.sensor.IsaacReadIMU"), ("PublishImu", "omni.isaac.ros2_bridge.ROS2PublishImu"), ], og.Controller.Keys.SET_VALUES: [ ("PublishOdometry.inputs:nodeNamespace", f"/{NAMESPACE}"), # ("PublishLidar.inputs:nodeNamespace", f"/{NAMESPACE}"), ("PublishImu.inputs:nodeNamespace", f"/{NAMESPACE}"), # ("PublishLidar.inputs:frameId", f"{NAMESPACE}/lidar_link"), ("RawOdomTransform.inputs:childFrameId", f"{NAMESPACE}/base_link"), ("RawOdomTransform.inputs:parentFrameId", f"{NAMESPACE}/zed/odom"), ("PublishOdometry.inputs:chassisFrameId", f"{NAMESPACE}/base_link"), ("PublishOdometry.inputs:odomFrameId", f"{NAMESPACE}/odom"), ("PublishImu.inputs:frameId", f"{NAMESPACE}/zed2i_imu_link"), ("PublishOdometry.inputs:topicName", "zed/odom") ], og.Controller.Keys.CONNECT: [ # Odometry Connections ("OnPlaybackTick.outputs:tick", "ComputeOdometry.inputs:execIn"), ("OnPlaybackTick.outputs:tick", "RawOdomTransform.inputs:execIn"), ("ComputeOdometry.outputs:execOut", "PublishOdometry.inputs:execIn"), ("ComputeOdometry.outputs:angularVelocity", "PublishOdometry.inputs:angularVelocity"), ("ComputeOdometry.outputs:linearVelocity", "PublishOdometry.inputs:linearVelocity"), ("ComputeOdometry.outputs:orientation", "PublishOdometry.inputs:orientation"), ("ComputeOdometry.outputs:orientation", "RawOdomTransform.inputs:rotation"), ("ComputeOdometry.outputs:position", "PublishOdometry.inputs:position"), ("ComputeOdometry.outputs:position", "RawOdomTransform.inputs:translation"), ("Context.outputs:context", "PublishOdometry.inputs:context"), ("Context.outputs:context", "RawOdomTransform.inputs:context"), ("SimTime.outputs:simulationTime", "PublishOdometry.inputs:timeStamp"), ("SimTime.outputs:simulationTime", "RawOdomTransform.inputs:timeStamp"), # LiDAR Connections # ("OnPlaybackTick.outputs:tick", "ReadLidar.inputs:execIn"), # ("ReadLidar.outputs:execOut", "PublishLidar.inputs:execIn"), # ("Context.outputs:context", "PublishLidar.inputs:context"), # ("SimTime.outputs:simulationTime", "PublishLidar.inputs:timeStamp"), # ("ReadLidar.outputs:azimuthRange", "PublishLidar.inputs:azimuthRange"), # ("ReadLidar.outputs:depthRange", "PublishLidar.inputs:depthRange"), # ("ReadLidar.outputs:horizontalFov", "PublishLidar.inputs:horizontalFov"), # ("ReadLidar.outputs:horizontalResolution", "PublishLidar.inputs:horizontalResolution"), # ("ReadLidar.outputs:intensitiesData", "PublishLidar.inputs:intensitiesData"), # ("ReadLidar.outputs:linearDepthData", "PublishLidar.inputs:linearDepthData"), # ("ReadLidar.outputs:numCols", "PublishLidar.inputs:numCols"), # ("ReadLidar.outputs:numRows", "PublishLidar.inputs:numRows"), # ("ReadLidar.outputs:rotationRate", "PublishLidar.inputs:rotationRate"), # IMU Connections ("OnPlaybackTick.outputs:tick", "IsaacReadImu.inputs:execIn"), ("IsaacReadImu.outputs:execOut", "PublishImu.inputs:execIn"), ("Context.outputs:context", "PublishImu.inputs:context"), ("SimTime.outputs:simulationTime", "PublishImu.inputs:timeStamp"), ("IsaacReadImu.outputs:angVel", "PublishImu.inputs:angularVelocity"), ("IsaacReadImu.outputs:linAcc", "PublishImu.inputs:linearAcceleration"), ("IsaacReadImu.outputs:orientation", "PublishImu.inputs:orientation"), ], } ) # Setup target prims for the Odometry and the Lidar set_target_prims(primPath=f"{sensor_graph}/ComputeOdometry", targetPrimPaths=[swerve_link], inputName="inputs:chassisPrim") set_target_prims(primPath=f"{sensor_graph}/ComputeOdometry", targetPrimPaths=[swerve_link], inputName="inputs:chassisPrim") set_target_prims(primPath=f"{sensor_graph}/IsaacReadImu", targetPrimPaths=[self.imu_prim_path], inputName="inputs:imuPrim") return def setup_robot_action_graph(self, robot_prim_path): robot_controller_path = f"{robot_prim_path}/ros_interface_controller" og.Controller.edit( {"graph_path": robot_controller_path, "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("Context", "omni.isaac.ros2_bridge.ROS2Context"), ("PublishJointState", "omni.isaac.ros2_bridge.ROS2PublishJointState"), ("SubscribeJointState", "omni.isaac.ros2_bridge.ROS2SubscribeJointState"), ("articulation_controller", "omni.isaac.core_nodes.IsaacArticulationController"), ], og.Controller.Keys.SET_VALUES: [ ("PublishJointState.inputs:topicName", "isaac_joint_states"), ("SubscribeJointState.inputs:topicName", "isaac_joint_commands"), ("articulation_controller.inputs:usePath", False), ("SubscribeJointState.inputs:nodeNamespace", f"/{NAMESPACE}"), ("PublishJointState.inputs:nodeNamespace", f"/{NAMESPACE}"), ], og.Controller.Keys.CONNECT: [ ("OnPlaybackTick.outputs:tick", "PublishJointState.inputs:execIn"), ("OnPlaybackTick.outputs:tick", "SubscribeJointState.inputs:execIn"), ("OnPlaybackTick.outputs:tick", "articulation_controller.inputs:execIn"), ("ReadSimTime.outputs:simulationTime", "PublishJointState.inputs:timeStamp"), ("Context.outputs:context", "PublishJointState.inputs:context"), ("Context.outputs:context", "SubscribeJointState.inputs:context"), ("SubscribeJointState.outputs:jointNames", "articulation_controller.inputs:jointNames"), ("SubscribeJointState.outputs:velocityCommand", "articulation_controller.inputs:velocityCommand"), ("SubscribeJointState.outputs:positionCommand", "articulation_controller.inputs:positionCommand"), ], } ) set_target_prims(primPath=f"{robot_controller_path}/articulation_controller", targetPrimPaths=[robot_prim_path]) set_target_prims(primPath=f"{robot_controller_path}/PublishJointState", targetPrimPaths=[robot_prim_path]) return async def setup_pre_reset(self): return async def setup_post_reset(self): return async def setup_post_clear(self): return def world_cleanup(self): carb.log_info(f"Removing {self.robot_name}") if self._world is not None: self._world.scene.remove_object(self.robot_name) return
29,278
Python
54.663498
164
0.609092
RoboEagles4828/offseason2023/isaac/exts/omni.isaac.edna/docs/CHANGELOG.md
********** CHANGELOG ********** [0.1.0] - 2022-6-26 [0.1.1] - 2022-10-15 ======================== Added ------- - Initial version of Swerve Bot Extension - Enhanced physX
175
Markdown
10.733333
41
0.468571
RoboEagles4828/offseason2023/isaac/exts/omni.isaac.edna/docs/README.md
# Usage To enable this extension, go to the Extension Manager menu and enable omni.isaac.swerve_bot extension.
113
Markdown
21.799996
102
0.787611
RoboEagles4828/offseason2023/isaac/Swervesim/rlgpu_conda_env.yml
name: rlgpu channels: - pytorch - conda-forge - defaults dependencies: - python=3.8 - pytorch=1.8.1 - torchvision=0.9.1 - cudatoolkit=11.1 - pyyaml>=5.3.1 - scipy>=1.5.0 - tensorboard==2.9.0 - tensorboard-plugin-wit==1.8.1 - protobuf==3.9.2
268
YAML
14.823529
34
0.615672
RoboEagles4828/offseason2023/isaac/Swervesim/setup.py
"""Installation script for the 'isaacgymenvs' python package.""" from __future__ import absolute_import from __future__ import print_function from __future__ import division from setuptools import setup, find_packages import os import compileall compileall.compile_dir('swervesim') # Minimum dependencies required prior to installation INSTALL_REQUIRES = [ "protobuf==3.20.1", "omegaconf==2.1.1", "hydra-core==1.1.1", "redis==3.5.3", # needed by Ray on Windows "rl-games==1.5.2", "shapely" ] # Installation operation setup( name="swervesim", author="NVIDIA", version="1.1.0", description="RL environments for robot learning in NVIDIA Isaac Sim.", keywords=["robotics", "rl"], include_package_data=True, install_requires=INSTALL_REQUIRES, packages=find_packages("."), classifiers=["Natural Language :: English", "Programming Language :: Python :: 3.7, 3.8"], zip_safe=False, ) # EOF
952
Python
24.078947
94
0.681723
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/envs/vec_env_rlgames_mt.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omni.isaac.gym.vec_env import VecEnvMT from omni.isaac.gym.vec_env import TaskStopException from .vec_env_rlgames import VecEnvRLGames import torch import numpy as np # VecEnv Wrapper for RL training class VecEnvRLGamesMT(VecEnvRLGames, VecEnvMT): def _parse_data(self, data): self._obs = data["obs"].clone() self._rew = data["rew"].to(self._task.rl_device).clone() self._states = torch.clamp(data["states"], -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._resets = data["reset"].to(self._task.rl_device).clone() self._extras = data["extras"].copy() def step(self, actions): if self._stop: raise TaskStopException() if self._task.randomize_actions: actions = self._task._dr_randomizer.apply_actions_randomization(actions=actions, reset_buf=self._task.reset_buf) actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device).clone() self.send_actions(actions) data = self.get_data() if self._task.randomize_observations: self._obs = self._task._dr_randomizer.apply_observations_randomization(observations=self._obs.to(self._task.rl_device), reset_buf=self._task.reset_buf) self._obs = torch.clamp(self._obs, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device) obs_dict = {} obs_dict["obs"] = self._obs obs_dict["states"] = self._states return obs_dict, self._rew, self._resets, self._extras
3,148
Python
43.352112
163
0.715057
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/envs/vec_env_rlgames.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omni.isaac.gym.vec_env import VecEnvBase import torch import numpy as np from datetime import datetime # VecEnv Wrapper for RL training class VecEnvRLGames(VecEnvBase): def _process_data(self): self._obs = torch.clamp(self._obs, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._rew = self._rew.to(self._task.rl_device).clone() self._states = torch.clamp(self._states, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._resets = self._resets.to(self._task.rl_device).clone() self._extras = self._extras.copy() def set_task( self, task, backend="numpy", sim_params=None, init_sim=True ) -> None: super().set_task(task, backend, sim_params, init_sim) self.num_states = self._task.num_states self.state_space = self._task.state_space def step(self, actions): if self._task.randomize_actions: actions = self._task._dr_randomizer.apply_actions_randomization(actions=actions, reset_buf=self._task.reset_buf) actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device).clone() self._task.pre_physics_step(actions) for _ in range(self._task.control_frequency_inv): self._world.step(render=self._render) self.sim_frame_count += 1 self._obs, self._rew, self._resets, self._extras = self._task.post_physics_step() if self._task.randomize_observations: self._obs = self._task._dr_randomizer.apply_observations_randomization( observations=self._obs.to(device=self._task.rl_device), reset_buf=self._task.reset_buf) self._states = self._task.get_states() self._process_data() obs_dict = {"obs": self._obs, "states": self._states} return obs_dict, self._rew, self._resets, self._extras def reset(self): """ Resets the task and applies default zero actions to recompute observations and states. """ now = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print(f"[{now}] Running RL reset") self._task.reset() actions = torch.zeros((self.num_envs, self._task.num_actions), device=self._task.rl_device) obs_dict, _, _, _ = self.step(actions) return obs_dict
3,933
Python
42.230769
124
0.690567
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/tasks/swerve_field.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from swervesim.tasks.base.rl_task import RLTask from swervesim.robots.articulations.swerve import Swerve from swervesim.robots.articulations.views.swerve_view import SwerveView from swervesim.tasks.utils.usd_utils import set_drive from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.prims import RigidPrimView, GeometryPrim from omni.isaac.core.utils.stage import add_reference_to_stage import numpy as np import torch import math class Swerve_Field_Task(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: # sets up the sim self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # limits max velocity of wheels and axles self.velocity_limit = 10 self.dt = 1 / 60 self.max_episode_length_s = self._task_cfg["env"]["episodeLength_s"] self._max_episode_length = int( self.max_episode_length_s / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] # for key in self.rew_scales.keys(): # self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._swerve_translation = torch.tensor([0.0, 0.0, 0.0]) self._env_spacing = self._task_cfg["env"]["envSpacing"] # Number of data points the policy is recieving self._num_observations = 29 # Number of data points the policy is producing self._num_actions = 8 # starting position of the swerve module self.swerve_position = torch.tensor([0, 0, 0]) # starting position of the target self._ball_position = torch.tensor([1, 1, 0]) self.swerve_initia_pos = [] RLTask.__init__(self, name, env) self.target_positions = torch.zeros( (self._num_envs, 3), device=self._device, dtype=torch.float32) # xyx of target position self.target_positions[:, 1] = 1 return # Adds all of the items to the stage def set_up_scene(self, scene) -> None: # Adds USD of swerve to stage self.get_swerve() # Adds ball to stage self.get_target() super().set_up_scene(scene) # Sets up articluation controller for swerve self._swerve = SwerveView( prim_paths_expr="/World/envs/.*/swerve", name="swerveview") # Allows for position tracking of targets # self._balls = RigidPrimView( # prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False) # Adds everything to the scene scene.add(self._swerve) for axle in self._swerve._axle: scene.add(axle) for wheel in self._swerve._wheel: scene.add(wheel) scene.add(self._swerve._base) # scene.add(self._balls) # print("scene set up") return def get_swerve(self): # Adds swerve to env_0 and adds articulation controller swerve = Swerve(self.default_zero_env_path + "/swerve", "swerve", self._swerve_translation) self._sim_config.apply_articulation_settings("swerve", get_prim_at_path( swerve.prim_path), self._sim_config.parse_actor_config("swerve")) # def get_target(self): # # Adds a red ball as target # radius = 0.1 # meters # color = torch.tensor([0, 0, 1]) # ball = DynamicSphere( # prim_path=self.default_zero_env_path + "/ball", # translation=self._ball_position, # name="target_0", # radius=radius, # color=color, # ) # self._sim_config.apply_articulation_settings("ball", get_prim_at_path( # ball.prim_path), self._sim_config.parse_actor_config("ball")) # ball.set_collision_enabled(False) def get_target(self): # world = self.get_world() self.task_path = os.path.abspath(__file__) self.project_root_path = os.path.abspath(os.path.join(self.task_path, "../../../../../../../..")) field = os.path.join(self.project_root_path, "isaac/assets/2023_field/FE-2023.usd") add_reference_to_stage(usd_path=field,prim_path=self.default_zero_env_path+"/Field") cone = os.path.join(self.project_root_path, "isaac/assets/2023_field/parts/cone_without_deformable_body.usd") cube = os.path.join(self.project_root_path, "isaac/assets/2023_field/parts/cube_without_deformable_body.usd") chargestation = os.path.join(self.project_root_path, "isaac/assets/Charge Station/Assembly-1.usd") add_reference_to_stage(chargestation, self.default_zero_env_path+"/ChargeStation_1") add_reference_to_stage(chargestation, self.default_zero_env_path+"/ChargeStation_2") add_reference_to_stage(cone, self.default_zero_env_path+"/Cone_1") add_reference_to_stage(cone, self.default_zero_env_path+"/Cone_2") add_reference_to_stage(cone, self.default_zero_env_path+"/Cone_3") add_reference_to_stage(cone, self.default_zero_env_path+"/Cone_4") # add_reference_to_stage(cone, self.default_zero_env_path+"/Cone_5") # add_reference_to_stage(cone, self.default_zero_env_path+"/Cone_6") # add_reference_to_stage(cone, self.default_zero_env_path+"/Cone_7") # add_reference_to_stage(cone, self.default_zero_env_path+"/Cone_8") self.cone_1 = GeometryPrim(self.default_zero_env_path+"/Cone_1","cone_1_view",position=np.array([1.20298,-0.56861,0.0])) self.cone_2 = GeometryPrim(self.default_zero_env_path+"/Cone_2","cone_2_view",position=np.array([1.20298,3.08899,0.0])) self.cone_3 = GeometryPrim(self.default_zero_env_path+"/Cone_3","cone_3_view",position=np.array([-1.20298,-0.56861,0.0])) self.cone_4 = GeometryPrim(self.default_zero_env_path+"/Cone_4","cone_4_view",position=np.array([-1.20298,3.08899,0.0])) chargestation_1 = GeometryPrim(self.default_zero_env_path+"/ChargeStation_1","cone_3_view",position=np.array([-4.20298,-0.56861,0.0])) chargestation_2 = GeometryPrim(self.default_zero_env_path+"/ChargeStation_2","cone_4_view",position=np.array([4.20298,0.56861,0.0])) add_reference_to_stage(cube, self.default_zero_env_path+"/Cube_1") add_reference_to_stage(cube, self.default_zero_env_path+"/Cube_2") add_reference_to_stage(cube, self.default_zero_env_path+"/Cube_3") add_reference_to_stage(cube, self.default_zero_env_path+"/Cube_4") # add_reference_to_stage(cube, self.default_zero_env_path+"/Cube_5") # add_reference_to_stage(cube, self.default_zero_env_path+"/Cube_6") # add_reference_to_stage(cube, self.default_zero_env_path+"/Cube_7") # add_reference_to_stage(cube, self.default_zero_env_path+"/Cube_8") self.cube_1 = GeometryPrim(self.default_zero_env_path+"/Cube_1","cube_1_view",position=np.array([1.20298,0.65059,0.121])) self.cube_2 = GeometryPrim(self.default_zero_env_path+"/Cube_2","cube_2_view",position=np.array([1.20298,1.86979,0.121])) self.cube_3 = GeometryPrim(self.default_zero_env_path+"/Cube_3","cube_3_view",position=np.array([-1.20298,0.65059,0.121])) self.cube_4 = GeometryPrim(self.default_zero_env_path+"/Cube_4","cube_4_view",position=np.array([-1.20298,1.86979,0.121])) return def get_observations(self) -> dict: # Gets various positions and velocties to observations self.root_pos, self.root_rot = self._swerve.get_world_poses( clone=False) self.joint_velocities = self._swerve.get_joint_velocities() self.joint_positions = self._swerve.get_joint_positions() self.root_velocities = self._swerve.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot # root_linvels = self.root_velocities[:, :3] # root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 3:6] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 6:9] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 9:13] = root_quats self.obs_buf[..., 13:21] = self.joint_velocities self.obs_buf[..., 21:29] = self.joint_positions # Should not exceed observation ssize declared earlier # An observation is created for each swerve in each environment observations = { self._swerve.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: # This is what sets the action for swerve reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero( as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) self.actions[:] = actions.clone().to(self._device) # Sets velocity for each wheel and axle within the velocity limits linear_x_cmd = torch.clamp( actions[:, 0:1] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) linear_y_cmd = torch.clamp( actions[:, 1:2] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) angular_cmd = torch.clamp( actions[:, 2:3] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) x_offset = 0.7366 radius = 0.1016 actionlist = [] for i in range(self.num_envs): action = [] # Compute Wheel Velocities and Positions a = linear_x_cmd[i] - angular_cmd[i] * x_offset / 2 b = linear_x_cmd[i] + angular_cmd[i] * x_offset / 2 c = linear_y_cmd[i] - angular_cmd[i] * x_offset / 2 d = linear_y_cmd[i] + angular_cmd[i] * x_offset / 2 # get current wheel positions front_left_current_pos = ( (self._swerve.get_joint_positions()[i][0])) front_right_current_pos = ( (self._swerve.get_joint_positions()[i][1])) rear_left_current_pos = ( (self._swerve.get_joint_positions()[i][2])) rear_right_current_pos = ( (self._swerve.get_joint_positions()[i][3])) front_left_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) front_right_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) rear_left_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) rear_right_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) front_left_position = math.atan2(b, d) front_right_position = math.atan2(b, c) rear_left_position = math.atan2(a, d) rear_right_position = math.atan2(a, c) # optimization front_left_position, front_left_velocity = simplifiy_angle( front_left_current_pos, front_left_position, front_left_velocity) front_right_position, front_right_velocity = simplifiy_angle( front_right_current_pos, front_right_position, front_right_velocity) rear_left_position, rear_left_velocity = simplifiy_angle( rear_left_current_pos, rear_left_position, rear_left_velocity) rear_right_position, rear_right_velocity = simplifiy_angle( rear_right_current_pos, rear_right_position, rear_right_velocity) # Set Wheel Positions # Has a 1 degree tolerance. Turns clockwise if less than, counter clockwise if greater than if (i == 1): print(f"front_left_position:{front_left_position}") print(f"rear_left_position:{rear_left_position}") action.append(calculate_turn_velocity(front_left_current_pos, front_left_position)) action.append(calculate_turn_velocity(front_right_current_pos, front_right_position)) action.append(calculate_turn_velocity(rear_left_current_pos, rear_left_position)) action.append(calculate_turn_velocity(rear_right_current_pos, rear_right_position)) sortlist=[front_left_velocity, front_right_velocity, rear_left_velocity, rear_right_velocity] maxs = abs(max(sortlist, key=abs)) if (maxs < 0.5): for num in sortlist: action.append(0.0) else: for num in sortlist: if (maxs != 0 and abs(maxs) > 10): # scales down velocty to max of 10 radians num = (num/abs(maxs))*10 # print(num) action.append(num) # print(len(action)) actionlist.append(action) # Sets robots velocities self._swerve.set_joint_velocities(torch.FloatTensor(actionlist)) def reset_idx(self, env_ids): # print("line 211") # For when the environment resets. This is great for randomization and increases the chances of a successful policy in the real world num_resets = len(env_ids) # Turns the wheels and axles -pi to pi radians self.dof_pos[env_ids, 1] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_pos[env_ids, 3] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float( 0, 0, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._swerve.set_joint_positions( self.dof_pos[env_ids], indices=env_ids) self._swerve.set_joint_velocities( self.dof_vel[env_ids], indices=env_ids) self._swerve.set_world_poses( root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._swerve.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 # print("line 249") def post_reset(self): # print("line 252") self.root_pos, self.root_rot = self._swerve.get_world_poses() self.root_velocities = self._swerve.get_velocities() self.dof_pos = self._swerve.get_joint_positions() self.dof_vel = self._swerve.get_joint_velocities() # self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses() # self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # initialize some data used later on self.extras = {} self.actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False ) self.last_dof_vel = torch.zeros( (self._num_envs, 12), dtype=torch.float, device=self._device, requires_grad=False) self.last_actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False) self.time_out_buf = torch.zeros_like(self.reset_buf) # randomize all envs indices = torch.arange( self._swerve.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (-20, 20) self.target_positions[envs_long, 0:2] = torch.rand( (num_sets, 2), device=self._device) * 20 - 1 self.target_positions[envs_long, 2] = 0.1 # print(self.target_positions) # shift the target up so it visually aligns better ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long] self._balls.set_world_poses( ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids) def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos # distance to target target_dist = torch.sqrt(torch.square( self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + 2.5 * target_dist * target_dist) self.target_dist = target_dist self.root_positions = root_positions self.root_position_reward = self.rew_buf # rewards for moving away form starting point for i in range(len(self.root_position_reward)): self.root_position_reward[i] = sum(root_positions[i][0:3]) self.rew_buf[:] = self.root_position_reward*pos_reward def is_done(self) -> None: # print("line 312") # These are the dying constaints. It dies if it is going in the wrong direction or starts flying ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 20.0, ones, die) die = torch.where(self.root_positions[..., 2] > 0.5, ones, die) # resets due to episode length self.reset_buf[:] = torch.where( self.progress_buf >= self._max_episode_length - 1, ones, die) # print("line 316") def simplifiy_angle(current_pos, turn_pos, velocity): while (abs(current_pos - turn_pos) > math.pi / 2): if(turn_pos>current_pos): turn_pos -= math.pi else: turn_pos += math.pi velocity *= -1 return turn_pos, velocity def calculate_turn_velocity(current_pos, turn_position): turningspeed = 5.0 setspeed = 0.0 if (current_pos > turn_position+(math.pi/90) or current_pos < turn_position-(math.pi/90)): setspeed = abs(turn_position-current_pos)/(math.pi/9) if (setspeed > turningspeed): setspeed = turningspeed if (turn_position < current_pos): setspeed *= -1 return setspeed
20,572
Python
46.18578
142
0.615545
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/tasks/swerve_multi_action_auton.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from swervesim.tasks.base.rl_task import RLTask from swervesim.robots.articulations.swerve import Swerve from swervesim.robots.articulations.views.swerve_view import SwerveView from swervesim.tasks.utils.usd_utils import set_drive from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.prims import RigidPrimView import numpy as np import torch import math class Swerve_Multi_Action_Task(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: # sets up the sim self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # limits max velocity of wheels and axles self.velocity_limit = 10 self.dt = 1 / 60 self.max_episode_length_s = self._task_cfg["env"]["episodeLength_s"] self._max_episode_length = int( self.max_episode_length_s / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] # for key in self.rew_scales.keys(): # self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._swerve_translation = torch.tensor([0.0, 0.0, 0.0]) self._env_spacing = self._task_cfg["env"]["envSpacing"] # Number of data points the policy is recieving self._num_observations = 29 # Number of data points the policy is producing self._num_actions = 8 # starting position of the swerve module self.swerve_position = torch.tensor([0, 0, 0]) # starting position of the target self._ball_position = torch.tensor([1, 1, 0]) self.swerve_initia_pos = [] RLTask.__init__(self, name, env) self.target_positions = torch.zeros( (self._num_envs, 3), device=self._device, dtype=torch.float32) # xyx of target position self.target_positions[:, 1] = 1 return # Adds all of the items to the stage def set_up_scene(self, scene) -> None: # Adds USD of swerve to stage self.get_swerve() # Adds ball to stage self.get_target() super().set_up_scene(scene) # Sets up articluation controller for swerve self._swerve = SwerveView( prim_paths_expr="/World/envs/.*/swerve", name="swerveview") # Allows for position tracking of targets self._balls = RigidPrimView( prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False) # Adds everything to the scene scene.add(self._swerve) for axle in self._swerve._axle: scene.add(axle) for wheel in self._swerve._wheel: scene.add(wheel) scene.add(self._swerve._base) scene.add(self._balls) # print("scene set up") return def get_swerve(self): # Adds swerve to env_0 and adds articulation controller swerve = Swerve(self.default_zero_env_path + "/swerve", "swerve", self._swerve_translation) self._sim_config.apply_articulation_settings("swerve", get_prim_at_path( swerve.prim_path), self._sim_config.parse_actor_config("swerve")) swerve = Swerve(self.default_zero_env_path + "/swerve", "swerve", self._swerve_translation) self._sim_config.apply_articulation_settings("swerve", get_prim_at_path( swerve.prim_path), self._sim_config.parse_actor_config("swerve")) def get_target(self): # Adds a red ball as target radius = 0.1 # meters color = torch.tensor([0, 0, 1]) ball = DynamicSphere( prim_path=self.default_zero_env_path + "/ball", translation=self._ball_position, name="target_0", radius=radius, color=color, ) self._sim_config.apply_articulation_settings("ball", get_prim_at_path( ball.prim_path), self._sim_config.parse_actor_config("ball")) ball.set_collision_enabled(False) def get_observations(self) -> dict: # Gets various positions and velocties to observations self.root_pos, self.root_rot = self._swerve.get_world_poses( clone=False) self.joint_velocities = self._swerve.get_joint_velocities() self.joint_positions = self._swerve.get_joint_positions() self.root_velocities = self._swerve.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 3:7] = root_quats self.obs_buf[..., 7:10] = root_linvels / 2 self.obs_buf[..., 10:13] = root_angvels / math.pi self.obs_buf[..., 13:21] = self.joint_velocities self.obs_buf[..., 21:29] = self.joint_positions # Should not exceed observation ssize declared earlier # An observation is created for each swerve in each environment observations = { self._swerve.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: # This is what sets the action for swerve reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero( as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) self.actions[:] = actions.clone().to(self._device) # Sets velocity for each wheel and axle within the velocity limits linear_x_cmd = torch.clamp( actions[:, 0:1] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) linear_y_cmd = torch.clamp( actions[:, 1:2] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) angular_cmd = torch.clamp( actions[:, 2:3] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) x_offset = 0.7366 radius = 0.1016 actionlist = [] for i in range(self.num_envs): action = [] # Compute Wheel Velocities and Positions a = linear_x_cmd[i] - angular_cmd[i] * x_offset / 2 b = linear_x_cmd[i] + angular_cmd[i] * x_offset / 2 c = linear_y_cmd[i] - angular_cmd[i] * x_offset / 2 d = linear_y_cmd[i] + angular_cmd[i] * x_offset / 2 # get current wheel positions front_left_current_pos = ( (self._swerve.get_joint_positions()[i][0])) front_right_current_pos = ( (self._swerve.get_joint_positions()[i][1])) rear_left_current_pos = ( (self._swerve.get_joint_positions()[i][2])) rear_right_current_pos = ( (self._swerve.get_joint_positions()[i][3])) front_left_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) front_right_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) rear_left_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) rear_right_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) front_left_position = math.atan2(b, d) front_right_position = math.atan2(b, c) rear_left_position = math.atan2(a, d) rear_right_position = math.atan2(a, c) # optimization front_left_position, front_left_velocity = simplifiy_angle( front_left_current_pos, front_left_position, front_left_velocity) front_right_position, front_right_velocity = simplifiy_angle( front_right_current_pos, front_right_position, front_right_velocity) rear_left_position, rear_left_velocity = simplifiy_angle( rear_left_current_pos, rear_left_position, rear_left_velocity) rear_right_position, rear_right_velocity = simplifiy_angle( rear_right_current_pos, rear_right_position, rear_right_velocity) # Set Wheel Positions # Has a 1 degree tolerance. Turns clockwise if less than, counter clockwise if greater than if (i == 1): print(f"front_left_position:{front_left_position}") print(f"rear_left_position:{rear_left_position}") action.append(calculate_turn_velocity(front_left_current_pos, front_left_position)) action.append(calculate_turn_velocity(front_right_current_pos, front_right_position)) action.append(calculate_turn_velocity(rear_left_current_pos, rear_left_position)) action.append(calculate_turn_velocity(rear_right_current_pos, rear_right_position)) sortlist=[front_left_velocity, front_right_velocity, rear_left_velocity, rear_right_velocity] maxs = abs(max(sortlist, key=abs)) if (maxs < 0.5): for num in sortlist: action.append(0.0) else: for num in sortlist: if (maxs != 0 and abs(maxs) > 10): # scales down velocty to max of 10 radians num = (num/abs(maxs))*10 # print(num) action.append(num) # print(len(action)) actionlist.append(action) # Sets robots velocities self._swerve.set_joint_velocities(torch.FloatTensor(actionlist)) def reset_idx(self, env_ids): # print("line 211") # For when the environment resets. This is great for randomization and increases the chances of a successful policy in the real world num_resets = len(env_ids) # Turns the wheels and axles -pi to pi radians self.dof_pos[env_ids, 1] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_pos[env_ids, 3] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float( 0, 0, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._swerve.set_joint_positions( self.dof_pos[env_ids], indices=env_ids) self._swerve.set_joint_velocities( self.dof_vel[env_ids], indices=env_ids) self._swerve.set_world_poses( root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._swerve.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 # print("line 249") def post_reset(self): # print("line 252") self.root_pos, self.root_rot = self._swerve.get_world_poses() self.root_velocities = self._swerve.get_velocities() self.dof_pos = self._swerve.get_joint_positions() self.dof_vel = self._swerve.get_joint_velocities() self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses() self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # initialize some data used later on self.extras = {} self.actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False ) self.last_dof_vel = torch.zeros( (self._num_envs, 12), dtype=torch.float, device=self._device, requires_grad=False) self.last_actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False) self.time_out_buf = torch.zeros_like(self.reset_buf) # randomize all envs indices = torch.arange( self._swerve.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (-20, 20) self.target_positions[envs_long, 0:2] = torch.rand( (num_sets, 2), device=self._device) * 20 - 1 self.target_positions[envs_long, 2] = 0.1 # print(self.target_positions) # shift the target up so it visually aligns better ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long] self._balls.set_world_poses( ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids) def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos # distance to target target_dist = torch.sqrt(torch.square( self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + 2.5 * target_dist * target_dist) self.target_dist = target_dist self.root_positions = root_positions self.root_position_reward = self.rew_buf # rewards for moving away form starting point for i in range(len(self.root_position_reward)): self.root_position_reward[i] = sum(root_positions[i][0:3]) self.rew_buf[:] = self.root_position_reward*pos_reward def is_done(self) -> None: # print("line 312") # These are the dying constaints. It dies if it is going in the wrong direction or starts flying ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 20.0, ones, die) die = torch.where(self.root_positions[..., 2] > 0.5, ones, die) # resets due to episode length self.reset_buf[:] = torch.where( self.progress_buf >= self._max_episode_length - 1, ones, die) # print("line 316") def simplifiy_angle(current_pos, turn_pos, velocity): while (abs(current_pos - turn_pos) > math.pi / 2): if(turn_pos>current_pos): turn_pos -= math.pi else: turn_pos += math.pi velocity *= -1 return turn_pos, velocity def calculate_turn_velocity(current_pos, turn_position): turningspeed = 5.0 setspeed = 0.0 if (current_pos > turn_position+(math.pi/90) or current_pos < turn_position-(math.pi/90)): setspeed = abs(turn_position-current_pos)/(math.pi/9) if (setspeed > turningspeed): setspeed = turningspeed if (turn_position < current_pos): setspeed *= -1 return setspeed
17,197
Python
42.319899
141
0.605338
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/tasks/swerve_with_kinematics.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from swervesim.tasks.base.rl_task import RLTask from swervesim.robots.articulations.swerve import Swerve from swervesim.robots.articulations.views.swerve_view import SwerveView from swervesim.tasks.utils.usd_utils import set_drive from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.prims import RigidPrimView import numpy as np import torch import math class Swerve_Kinematics_Task(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: # sets up the sim self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # limits max velocity of wheels and axles self.velocity_limit = 10 self.dt = 1 / 60 self.max_episode_length_s = self._task_cfg["env"]["episodeLength_s"] self._max_episode_length = int( self.max_episode_length_s / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] # for key in self.rew_scales.keys(): # self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._swerve_translation = torch.tensor([0.0, 0.0, 0.0]) self._env_spacing = self._task_cfg["env"]["envSpacing"] # Number of data points the policy is recieving self._num_observations = 29 # Number of data points the policy is producing self._num_actions = 8 # starting position of the swerve module self.swerve_position = torch.tensor([0, 0, 0]) # starting position of the target self._ball_position = torch.tensor([1, 1, 0]) self.swerve_initia_pos = [] RLTask.__init__(self, name, env) self.target_positions = torch.zeros( (self._num_envs, 3), device=self._device, dtype=torch.float32) # xyx of target position self.target_positions[:, 1] = 1 return # Adds all of the items to the stage def set_up_scene(self, scene) -> None: # Adds USD of swerve to stage self.get_swerve() # Adds ball to stage self.get_target() super().set_up_scene(scene) # Sets up articluation controller for swerve self._swerve = SwerveView( prim_paths_expr="/World/envs/.*/swerve", name="swerveview") # Allows for position tracking of targets self._balls = RigidPrimView( prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False) # Adds everything to the scene scene.add(self._swerve) for axle in self._swerve._axle: scene.add(axle) for wheel in self._swerve._wheel: scene.add(wheel) scene.add(self._swerve._base) scene.add(self._balls) # print("scene set up") return def get_swerve(self): # Adds swerve to env_0 and adds articulation controller swerve = Swerve(self.default_zero_env_path + "/swerve", "swerve", self._swerve_translation) self._sim_config.apply_articulation_settings("swerve", get_prim_at_path( swerve.prim_path), self._sim_config.parse_actor_config("swerve")) def get_target(self): # Adds a red ball as target radius = 0.1 # meters color = torch.tensor([0, 0, 1]) ball = DynamicSphere( prim_path=self.default_zero_env_path + "/ball", translation=self._ball_position, name="target_0", radius=radius, color=color, ) self._sim_config.apply_articulation_settings("ball", get_prim_at_path( ball.prim_path), self._sim_config.parse_actor_config("ball")) ball.set_collision_enabled(False) def get_observations(self) -> dict: # Gets various positions and velocties to observations self.root_pos, self.root_rot = self._swerve.get_world_poses( clone=False) self.joint_velocities = self._swerve.get_joint_velocities() self.joint_positions = self._swerve.get_joint_positions() self.root_velocities = self._swerve.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 3:7] = root_quats self.obs_buf[..., 7:10] = root_linvels / 2 self.obs_buf[..., 10:13] = root_angvels / math.pi self.obs_buf[..., 13:21] = self.joint_velocities self.obs_buf[..., 21:29] = self.joint_positions # Should not exceed observation ssize declared earlier # An observation is created for each swerve in each environment observations = { self._swerve.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: # This is what sets the action for swerve reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero( as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) self.actions[:] = actions.clone().to(self._device) # Sets velocity for each wheel and axle within the velocity limits linear_x_cmd = torch.clamp( actions[:, 0:1] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) linear_y_cmd = torch.clamp( actions[:, 1:2] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) angular_cmd = torch.clamp( actions[:, 2:3] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) x_offset = 0.7366 radius = 0.1016 actionlist = [] for i in range(self.num_envs): action = [] # Compute Wheel Velocities and Positions a = linear_x_cmd[i] - angular_cmd[i] * x_offset / 2 b = linear_x_cmd[i] + angular_cmd[i] * x_offset / 2 c = linear_y_cmd[i] - angular_cmd[i] * x_offset / 2 d = linear_y_cmd[i] + angular_cmd[i] * x_offset / 2 # get current wheel positions front_left_current_pos = ( (self._swerve.get_joint_positions()[i][0])) front_right_current_pos = ( (self._swerve.get_joint_positions()[i][1])) rear_left_current_pos = ( (self._swerve.get_joint_positions()[i][2])) rear_right_current_pos = ( (self._swerve.get_joint_positions()[i][3])) front_left_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) front_right_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) rear_left_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) rear_right_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) front_left_position = math.atan2(b, d) front_right_position = math.atan2(b, c) rear_left_position = math.atan2(a, d) rear_right_position = math.atan2(a, c) # optimization front_left_position, front_left_velocity = simplifiy_angle( front_left_current_pos, front_left_position, front_left_velocity) front_right_position, front_right_velocity = simplifiy_angle( front_right_current_pos, front_right_position, front_right_velocity) rear_left_position, rear_left_velocity = simplifiy_angle( rear_left_current_pos, rear_left_position, rear_left_velocity) rear_right_position, rear_right_velocity = simplifiy_angle( rear_right_current_pos, rear_right_position, rear_right_velocity) # Set Wheel Positions # Has a 1 degree tolerance. Turns clockwise if less than, counter clockwise if greater than if (i == 1): print(f"front_left_position:{front_left_position}") print(f"rear_left_position:{rear_left_position}") action.append(calculate_turn_velocity(front_left_current_pos, front_left_position)) action.append(calculate_turn_velocity(front_right_current_pos, front_right_position)) action.append(calculate_turn_velocity(rear_left_current_pos, rear_left_position)) action.append(calculate_turn_velocity(rear_right_current_pos, rear_right_position)) sortlist=[front_left_velocity, front_right_velocity, rear_left_velocity, rear_right_velocity] maxs = abs(max(sortlist, key=abs)) if (maxs < 0.5): for num in sortlist: action.append(0.0) else: for num in sortlist: if (maxs != 0 and abs(maxs) > 10): # scales down velocty to max of 10 radians num = (num/abs(maxs))*10 # print(num) action.append(num) # print(len(action)) actionlist.append(action) # Sets robots velocities self._swerve.set_joint_velocities(torch.FloatTensor(actionlist)) def reset_idx(self, env_ids): # print("line 211") # For when the environment resets. This is great for randomization and increases the chances of a successful policy in the real world num_resets = len(env_ids) # Turns the wheels and axles -pi to pi radians self.dof_pos[env_ids, 1] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_pos[env_ids, 3] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float( 0, 0, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._swerve.set_joint_positions( self.dof_pos[env_ids], indices=env_ids) self._swerve.set_joint_velocities( self.dof_vel[env_ids], indices=env_ids) self._swerve.set_world_poses( root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._swerve.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 # print("line 249") def post_reset(self): # print("line 252") self.root_pos, self.root_rot = self._swerve.get_world_poses() self.root_velocities = self._swerve.get_velocities() self.dof_pos = self._swerve.get_joint_positions() self.dof_vel = self._swerve.get_joint_velocities() self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses() self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # initialize some data used later on self.extras = {} self.actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False ) self.last_dof_vel = torch.zeros( (self._num_envs, 12), dtype=torch.float, device=self._device, requires_grad=False) self.last_actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False) self.time_out_buf = torch.zeros_like(self.reset_buf) # randomize all envs indices = torch.arange( self._swerve.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (-20, 20) self.target_positions[envs_long, 0:2] = torch.rand( (num_sets, 2), device=self._device) * 20 - 1 self.target_positions[envs_long, 2] = 0.1 # print(self.target_positions) # shift the target up so it visually aligns better ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long] self._balls.set_world_poses( ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids) def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos # distance to target target_dist = torch.sqrt(torch.square( self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + 2.5 * target_dist * target_dist) self.target_dist = target_dist self.root_positions = root_positions self.root_position_reward = self.rew_buf # rewards for moving away form starting point for i in range(len(self.root_position_reward)): self.root_position_reward[i] = sum(root_positions[i][0:3]) self.rew_buf[:] = self.root_position_reward*pos_reward def is_done(self) -> None: # print("line 312") # These are the dying constaints. It dies if it is going in the wrong direction or starts flying ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 20.0, ones, die) die = torch.where(self.root_positions[..., 2] > 0.5, ones, die) # resets due to episode length self.reset_buf[:] = torch.where( self.progress_buf >= self._max_episode_length - 1, ones, die) # print("line 316") def simplifiy_angle(current_pos, turn_pos, velocity): while (abs(current_pos - turn_pos) > math.pi / 2): if(turn_pos>current_pos): turn_pos -= math.pi else: turn_pos += math.pi velocity *= -1 return turn_pos, velocity def calculate_turn_velocity(current_pos, turn_position): turningspeed = 5.0 setspeed = 0.0 if (current_pos > turn_position+(math.pi/90) or current_pos < turn_position-(math.pi/90)): setspeed = abs(turn_position-current_pos)/(math.pi/9) if (setspeed > turningspeed): setspeed = turningspeed if (turn_position < current_pos): setspeed *= -1 return setspeed
16,912
Python
42.035623
141
0.605251
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/tasks/swerve.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from swervesim.tasks.base.rl_task import RLTask from swervesim.robots.articulations.swerve import Swerve from swervesim.robots.articulations.views.swerve_view import SwerveView from swervesim.tasks.utils.usd_utils import set_drive from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.prims import RigidPrimView import numpy as np import torch import math class Swerve_Task(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: # sets up the sim self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # limits max velocity of wheels and axles self.velocity_limit = 10 self.dt = 1 / 60 self.max_episode_length_s = self._task_cfg["env"]["episodeLength_s"] self._max_episode_length = int( self.max_episode_length_s / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] # for key in self.rew_scales.keys(): # self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._swerve_translation = torch.tensor([0.0, 0.0, 0.0]) self._env_spacing = self._task_cfg["env"]["envSpacing"] # Number of data points the policy is recieving self._num_observations = 29 # Number of data points the policy is producing self._num_actions = 8 # starting position of the swerve module self.swerve_position = torch.tensor([0, 0, 0]) # starting position of the target self._ball_position = torch.tensor([1, 1, 0]) self.swerve_initia_pos = [] RLTask.__init__(self, name, env) self.target_positions = torch.zeros( (self._num_envs, 3), device=self._device, dtype=torch.float32) # xyx of target position self.target_positions[:, 1] = 1 return # Adds all of the items to the stage def set_up_scene(self, scene) -> None: # Adds USD of swerve to stage self.get_swerve() # Adds ball to stage self.get_target() super().set_up_scene(scene) # Sets up articluation controller for swerve self._swerve = SwerveView( prim_paths_expr="/World/envs/.*/swerve", name="swerveview") # Allows for position tracking of targets self._balls = RigidPrimView( prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False) # Adds everything to the scene scene.add(self._swerve) for axle in self._swerve._axle: scene.add(axle) for wheel in self._swerve._wheel: scene.add(wheel) scene.add(self._swerve._base) scene.add(self._balls) # print("scene set up") return def get_swerve(self): # Adds swerve to env_0 and adds articulation controller swerve = Swerve(self.default_zero_env_path + "/swerve", "swerve", self._swerve_translation) self._sim_config.apply_articulation_settings("swerve", get_prim_at_path( swerve.prim_path), self._sim_config.parse_actor_config("swerve")) def get_target(self): # Adds a red ball as target radius = 0.1 # meters color = torch.tensor([0, 0, 1]) ball = DynamicSphere( prim_path=self.default_zero_env_path + "/ball", translation=self._ball_position, name="target_0", radius=radius, color=color, ) self._sim_config.apply_articulation_settings("ball", get_prim_at_path( ball.prim_path), self._sim_config.parse_actor_config("ball")) ball.set_collision_enabled(False) def get_observations(self) -> dict: # Gets various positions and velocties to observations self.root_pos, self.root_rot = self._swerve.get_world_poses( clone=False) self.joint_velocities = self._swerve.get_joint_velocities() self.joint_positions = self._swerve.get_joint_positions() self.root_velocities = self._swerve.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 3:7] = root_quats self.obs_buf[..., 7:10] = root_linvels / 2 self.obs_buf[..., 10:13] = root_angvels / math.pi self.obs_buf[..., 13:21] = self.joint_velocities self.obs_buf[..., 21:29] = self.joint_positions # Should not exceed observation ssize declared earlier # An observation is created for each swerve in each environment observations = { self._swerve.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: # This is what sets the action for swerve reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero( as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) self.actions[:] = actions.clone().to(self._device) # Sets velocity for each wheel and axle within the velocity limits linear_x_cmd = torch.clamp( actions[:, 0:1] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) linear_y_cmd = torch.clamp( actions[:, 1:2] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) angular_cmd = torch.clamp( actions[:, 2:3] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) x_offset = 0.7366 radius = 0.1016 actionlist = [] for i in range(self.num_envs): action = [] # Compute Wheel Velocities and Positions a = linear_x_cmd[i] - angular_cmd[i] * x_offset / 2 b = linear_x_cmd[i] + angular_cmd[i] * x_offset / 2 c = linear_y_cmd[i] - angular_cmd[i] * x_offset / 2 d = linear_y_cmd[i] + angular_cmd[i] * x_offset / 2 # get current wheel positions front_left_current_pos = ( (self._swerve.get_joint_positions()[i][0])) front_right_current_pos = ( (self._swerve.get_joint_positions()[i][1])) rear_left_current_pos = ( (self._swerve.get_joint_positions()[i][2])) rear_right_current_pos = ( (self._swerve.get_joint_positions()[i][3])) front_left_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) front_right_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) rear_left_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) rear_right_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) front_left_position = math.atan2(b, d) front_right_position = math.atan2(b, c) rear_left_position = math.atan2(a, d) rear_right_position = math.atan2(a, c) # optimization front_left_position, front_left_velocity = simplifiy_angle( front_left_current_pos, front_left_position, front_left_velocity) front_right_position, front_right_velocity = simplifiy_angle( front_right_current_pos, front_right_position, front_right_velocity) rear_left_position, rear_left_velocity = simplifiy_angle( rear_left_current_pos, rear_left_position, rear_left_velocity) rear_right_position, rear_right_velocity = simplifiy_angle( rear_right_current_pos, rear_right_position, rear_right_velocity) # Set Wheel Positions # Has a 1 degree tolerance. Turns clockwise if less than, counter clockwise if greater than if (i == 1): print(f"front_left_position:{front_left_position}") print(f"rear_left_position:{rear_left_position}") action.append(calculate_turn_velocity(front_left_current_pos, front_left_position)) action.append(calculate_turn_velocity(front_right_current_pos, front_right_position)) action.append(calculate_turn_velocity(rear_left_current_pos, rear_left_position)) action.append(calculate_turn_velocity(rear_right_current_pos, rear_right_position)) sortlist=[front_left_velocity, front_right_velocity, rear_left_velocity, rear_right_velocity] maxs = abs(max(sortlist, key=abs)) if (maxs < 0.5): for num in sortlist: action.append(0.0) else: for num in sortlist: if (maxs != 0 and abs(maxs) > 10): # scales down velocty to max of 10 radians num = (num/abs(maxs))*10 # print(num) action.append(num) # print(len(action)) actionlist.append(action) # Sets robots velocities self._swerve.set_joint_velocities(torch.FloatTensor(actionlist)) def reset_idx(self, env_ids): # print("line 211") # For when the environment resets. This is great for randomization and increases the chances of a successful policy in the real world num_resets = len(env_ids) # Turns the wheels and axles -pi to pi radians self.dof_pos[env_ids, 1] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_pos[env_ids, 3] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float( 0, 0, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._swerve.set_joint_positions( self.dof_pos[env_ids], indices=env_ids) self._swerve.set_joint_velocities( self.dof_vel[env_ids], indices=env_ids) self._swerve.set_world_poses( root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._swerve.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 # print("line 249") def post_reset(self): # print("line 252") self.root_pos, self.root_rot = self._swerve.get_world_poses() self.root_velocities = self._swerve.get_velocities() self.dof_pos = self._swerve.get_joint_positions() self.dof_vel = self._swerve.get_joint_velocities() self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses() self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # initialize some data used later on self.extras = {} self.actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False ) self.last_dof_vel = torch.zeros( (self._num_envs, 12), dtype=torch.float, device=self._device, requires_grad=False) self.last_actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False) self.time_out_buf = torch.zeros_like(self.reset_buf) # randomize all envs indices = torch.arange( self._swerve.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (-20, 20) self.target_positions[envs_long, 0:2] = torch.rand( (num_sets, 2), device=self._device) * 20 - 1 self.target_positions[envs_long, 2] = 0.1 # print(self.target_positions) # shift the target up so it visually aligns better ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long] self._balls.set_world_poses( ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids) def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos # distance to target target_dist = torch.sqrt(torch.square( self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + 2.5 * target_dist * target_dist) self.target_dist = target_dist self.root_positions = root_positions self.root_position_reward = self.rew_buf # rewards for moving away form starting point for i in range(len(self.root_position_reward)): self.root_position_reward[i] = sum(root_positions[i][0:3]) self.rew_buf[:] = self.root_position_reward*pos_reward def is_done(self) -> None: # print("line 312") # These are the dying constaints. It dies if it is going in the wrong direction or starts flying ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 20.0, ones, die) die = torch.where(self.root_positions[..., 2] > 0.5, ones, die) # resets due to episode length self.reset_buf[:] = torch.where( self.progress_buf >= self._max_episode_length - 1, ones, die) # print("line 316") def simplifiy_angle(current_pos, turn_pos, velocity): while (abs(current_pos - turn_pos) > math.pi / 2): if(turn_pos>current_pos): turn_pos -= math.pi else: turn_pos += math.pi velocity *= -1 return turn_pos, velocity def calculate_turn_velocity(current_pos, turn_position): turningspeed = 5.0 setspeed = 0.0 if (current_pos > turn_position+(math.pi/90) or current_pos < turn_position-(math.pi/90)): setspeed = abs(turn_position-current_pos)/(math.pi/9) if (setspeed > turningspeed): setspeed = turningspeed if (turn_position < current_pos): setspeed *= -1 return setspeed
16,901
Python
42.007633
141
0.605053
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/tasks/swerve_charge_station.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from swervesim.tasks.base.rl_task import RLTask from swervesim.robots.articulations.swerve import Swerve from swervesim.robots.articulations.views.swerve_view import SwerveView from swervesim.robots.articulations.views.charge_station_view import ChargeStationView from swervesim.tasks.utils.usd_utils import set_drive from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.articulations import Articulation from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.utils.stage import add_reference_to_stage import numpy as np import torch import math from shapely.geometry import Polygon class Swerve_Charge_Station_Task(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: # sets up the sim self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # limits max velocity of wheels and axles self.velocity_limit = 10*math.pi self.dt = 1 / 10 self.dt_total = 0.0 self.max_episode_length_s = self._task_cfg["env"]["episodeLength_s"] self._max_episode_length = int( self.max_episode_length_s / self.dt) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] # for key in self.rew_scales.keys(): # self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._swerve_translation = torch.tensor([0.0, 0.0, 0.0]) self._env_spacing = self._task_cfg["env"]["envSpacing"] # Number of data points the policy is recieving self._num_observations = 37 # Number of data points the policy is producing self._num_actions = 8 # starting position of the swerve module self.swerve_position = torch.tensor([0, 0, 0]) # starting position of the target self._chargestation_part_1_position = torch.tensor([1, 1, 0]) self.swerve_initia_pos = [] RLTask.__init__(self, name, env) self.target_positions = torch.zeros( (self._num_envs, 3), device=self._device, dtype=torch.float32) # xyx of target position self.target_rotation = torch.zeros( (self._num_envs, 4), device=self._device, dtype=torch.float32) #ypr self.target_positions[:, 1] = 1 return # Adds all of the items to the stage def set_up_scene(self, scene) -> None: # Adds USD of swerve to stage self.get_swerve() # Adds ball to stage self.get_charge_station() super().set_up_scene(scene) # Sets up articluation controller for swerve self._swerve = SwerveView( prim_paths_expr="/World/envs/.*/swerve", name="swerveview") self._charge_station= ChargeStationView(prim_paths_expr="/World/envs/.*/ChargeStation", name="ChargeStation_1_view") # Allows for position tracking of targets # Adds everything to the scene scene.add(self._swerve) for axle in self._swerve._axle: scene.add(axle) for wheel in self._swerve._wheel: scene.add(wheel) scene.add(self._swerve._base) scene.add(self._charge_station) # print("scene set up") return def get_swerve(self): # Adds swerve to env_0 and adds articulation controller swerve = Swerve(self.default_zero_env_path + "/swerve", "swerve", self._swerve_translation) self._sim_config.apply_articulation_settings("swerve", get_prim_at_path( swerve.prim_path), self._sim_config.parse_actor_config("swerve")) def get_charge_station(self): chargestation = "/root/edna/isaac/assets/ChargeStation-Copy/Assembly-1.usd" add_reference_to_stage(chargestation, self.default_zero_env_path+"/ChargeStation") charge_station_1 = Articulation(prim_path=self.default_zero_env_path+"/ChargeStation",name="ChargeStation") self._sim_config.apply_articulation_settings("ChargeStation", get_prim_at_path( charge_station_1.prim_path), self._sim_config.parse_actor_config("ChargeStation")) def get_observations(self) -> dict: # Gets various positions and velocties to observations self.root_pos, self.root_rot = self._swerve.get_world_poses(clone=False) self.joint_velocities = self._swerve.get_joint_velocities() self.joint_positions = self._swerve.get_joint_positions() self.charge_station_pos, self.charge_station_rot = self._charge_station.get_world_poses(clone=False) self.chargestation_vertices = torch.zeros( (self._num_envs, 8), device=self._device, dtype=torch.float32) #ypr charge_station_pos = self.charge_station_pos - self._env_pos for i in range(len(self.charge_station_pos)): w=self.charge_station_rot[i][0] x=self.charge_station_rot[i][1] y=self.charge_station_rot[i][2] z=self.charge_station_rot[i][3] # print(f"x:{x} y:{y} z:{z} w:{w}") siny_cosp = 2 * (w * z + x * y) cosy_cosp = 1 - 2 * (y * y + z * z) angle = math.atan2(siny_cosp, cosy_cosp) self.chargestation_vertices[i][0] , self.chargestation_vertices[i][1] = findB(charge_station_pos[i][0],charge_station_pos[i][1],math.pi-angle) self.chargestation_vertices[i][2] , self.chargestation_vertices[i][3] = findB(charge_station_pos[i][0],charge_station_pos[i][1],angle) self.chargestation_vertices[i][4] , self.chargestation_vertices[i][5] = findB(charge_station_pos[i][0],charge_station_pos[i][1],(2*math.pi)-angle) self.chargestation_vertices[i][6] , self.chargestation_vertices[i][7] = findB(charge_station_pos[i][0],charge_station_pos[i][1],angle+math.pi) self.root_velocities = self._swerve.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = (root_positions) / 3 self.obs_buf[..., 3:7] = root_quats self.obs_buf[..., 7:10] = root_linvels / 2 self.obs_buf[..., 10:13] = root_angvels / math.pi self.obs_buf[..., 13:21] = self.joint_velocities self.obs_buf[..., 21:29] = self.joint_positions self.obs_buf[..., 29:37] = self.chargestation_vertices # Should not exceed observation ssize declared earlier # An observation is created for each swerve in each environment observations = { self._swerve.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: # This is what sets the action for swerve reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero( as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) self.actions[:] = actions.clone().to(self._device) # Sets velocity for each wheel and axle within the velocity limits linear_x_cmd = torch.clamp( actions[:, 0:1] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) linear_y_cmd = torch.clamp( actions[:, 1:2] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) angular_cmd = torch.clamp( actions[:, 2:3] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) x_offset = 0.7366 radius = 0.1016 actionlist = [] for i in range(self.num_envs): action = [] # Compute Wheel Velocities and Positions a = linear_x_cmd[i] - angular_cmd[i] * x_offset / 2 b = linear_x_cmd[i] + angular_cmd[i] * x_offset / 2 c = linear_y_cmd[i] - angular_cmd[i] * x_offset / 2 d = linear_y_cmd[i] + angular_cmd[i] * x_offset / 2 # get current wheel positions front_left_current_pos = ( (self._swerve.get_joint_positions()[i][0])) front_right_current_pos = ( (self._swerve.get_joint_positions()[i][1])) rear_left_current_pos = ( (self._swerve.get_joint_positions()[i][2])) rear_right_current_pos = ( (self._swerve.get_joint_positions()[i][3])) front_left_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) front_right_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) rear_left_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) rear_right_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) front_left_position = math.atan2(b, d) front_right_position = math.atan2(b, c) rear_left_position = math.atan2(a, d) rear_right_position = math.atan2(a, c) # optimization front_left_position, front_left_velocity = simplifiy_angle( front_left_current_pos, front_left_position, front_left_velocity) front_right_position, front_right_velocity = simplifiy_angle( front_right_current_pos, front_right_position, front_right_velocity) rear_left_position, rear_left_velocity = simplifiy_angle( rear_left_current_pos, rear_left_position, rear_left_velocity) rear_right_position, rear_right_velocity = simplifiy_angle( rear_right_current_pos, rear_right_position, rear_right_velocity) # Set Wheel Positions # Has a 1 degree tolerance. Turns clockwise if less than, counter clockwise if greater than # if (i == 1): # print(f"front_left_position:{front_left_position}") # print(f"rear_left_position:{rear_left_position}") action.append(calculate_turn_velocity(front_left_current_pos, front_left_position)) action.append(calculate_turn_velocity(front_right_current_pos, front_right_position)) action.append(calculate_turn_velocity(rear_left_current_pos, rear_left_position)) action.append(calculate_turn_velocity(rear_right_current_pos, rear_right_position)) sortlist=[front_left_velocity, front_right_velocity, rear_left_velocity, rear_right_velocity] maxs = abs(max(sortlist, key=abs)) if (maxs < 0.5): for num in sortlist: action.append(0.0) else: for num in sortlist: if (maxs != 0 and abs(maxs) > 10): # scales down velocty to max of 10 radians num = (num/abs(maxs))*10 # print(num) action.append(num) # print(len(action)) actionlist.append(action) # Sets robots velocities self._swerve.set_joint_velocities(torch.FloatTensor(actionlist)) def reset_idx(self, env_ids): # print("line 211") # For when the environment resets. This is great for randomization and increases the chances of a successful policy in the real world num_resets = len(env_ids) # Turns the wheels and axles -pi to pi radians self.dof_pos[env_ids, 1] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_pos[env_ids, 3] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float( 0, 0, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._swerve.set_joint_positions( self.dof_pos[env_ids], indices=env_ids) self._swerve.set_joint_velocities( self.dof_vel[env_ids], indices=env_ids) self._swerve.set_world_poses( root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._swerve.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.dt_total = 0 # print("line 249") def post_reset(self): # print("line 252") self.root_pos, self.root_rot = self._swerve.get_world_poses() self.root_velocities = self._swerve.get_velocities() self.dof_pos = self._swerve.get_joint_positions() self.dof_vel = self._swerve.get_joint_velocities() self.initial_charge_station_pos, self.initial_charge_station_rot = self._charge_station.get_world_poses() self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # initialize some data used later on self.extras = {} self.actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False ) self.last_dof_vel = torch.zeros( (self._num_envs, 12), dtype=torch.float, device=self._device, requires_grad=False) self.last_actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False) self.time_out_buf = torch.zeros_like(self.reset_buf) # randomize all envs indices = torch.arange( self._swerve.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (-8, 8) self.target_positions[envs_long, 0:2] = torch.rand( (num_sets, 2), device=self._device) * 8 - 1 self.target_rotation[envs_long, 0]= 0 self.target_rotation[envs_long, 1]= torch.rand((num_sets), device=self._device) # self.target_rotation = self.target_rotation[envs_long]+self.initial_charge_station_rot[envs_long] self.target_rotation[envs_long, 2]= 1 self.target_rotation[envs_long, 3] = 0# self.target_positions[envs_long,2] = 0 # print(self.target_positions) # shift the target up so it visually aligns better charge_station_pos = self.target_positions[envs_long] + self._env_pos[envs_long] # print(self.initial_charge_station_rot) # print(self.target_rotation) self._charge_station.set_world_poses( charge_station_pos[:, 0:3], self.target_rotation[envs_long].clone(), indices=env_ids) def calculate_metrics(self) -> None: self.dt_total += self.dt root_positions = self.root_pos - self._env_pos # distance to target target_dist = torch.sqrt(torch.square( self.target_positions - root_positions).sum(-1)) charge_station_score = in_charge_station(self.chargestation_vertices,self._swerve.get_axle_positions(), self._device) balance_reward = torch.mul(self._charge_station.if_balanced(self._device)[0],charge_station_score[:])*100 # print(f"shape_balance:{balance_reward.shape}") # print(charge_station_score.tolist()) pos_reward = 1.0 / (1.0 + 2.5 * target_dist * target_dist) self.target_dist = target_dist self.root_positions = root_positions self.root_position_reward = torch.zeros_like(self.rew_buf) # rewards for moving away form starting point # for i in range(len(self.root_position_reward)): # self.root_position_reward[i] = sum(root_positions[i][0:3]) self.root_position_reward = torch.tensor([sum(i[0:3]) for i in root_positions], device=self._device) # print(f"shape_numerator:{numerator.shape}") numerator = self.root_position_reward*pos_reward+balance_reward self.rew_buf[:] = torch.div(numerator,1+self.dt_total) print('REWARDS: ', torch.div(numerator,1+self.dt_total)) def is_done(self) -> None: # print("line 312") # These are the dying constaints. It dies if it is going in the wrong direction or starts flying ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 20.0, ones, die) die = torch.where(self.root_positions[..., 2] > 0.5, ones, die) # die = torch.where(abs(math.atan2(2*self.root_rot[..., 2]*self.root_rot[..., 0] - 2*self.root_rot[1]*self.root_rot[..., 3], 1 - 2*self.root_rot[..., 2]*self.root_rot[..., 2] - 2*self.root_rot[..., 3]*self.root_rot[..., 3])) > math.pi/2, ones, die) # resets due to episode length self.reset_buf[:] = torch.where( self.progress_buf >= self._max_episode_length - 1, ones, die) # print("line 316") def simplifiy_angle(current_pos, turn_pos, velocity): while (abs(current_pos - turn_pos) > math.pi / 2): if(turn_pos>current_pos): turn_pos -= math.pi else: turn_pos += math.pi velocity *= -1 return turn_pos, velocity def calculate_turn_velocity(current_pos, turn_position): turningspeed = 5.0 setspeed = 0.0 if (current_pos > turn_position+(math.pi/90) or current_pos < turn_position-(math.pi/90)): setspeed = abs(turn_position-current_pos)/(math.pi/9) if (setspeed > turningspeed): setspeed = turningspeed if (turn_position < current_pos): setspeed *= -1 return setspeed def findB(Cx,Cy, angle_change,angle_init=0.463647609,r=1.363107039084): L= angle_init*r if(angle_change < 0): angle_init -= angle_change else: angle_init += angle_change Bx = Cx + r*math.cos(angle_init) By = Cy + r*math.sin(angle_init) return Bx, By def in_charge_station(charge_station_verticies,axle_position, device): if_in_chargestation = torch.tensor([check_point_2(i, j) for i, j in zip(charge_station_verticies, axle_position)], device=device) return if_in_chargestation def check_point(r,m): def dot(a, b): return a[0]*b[0] + a[1]*b[1] # print(len(m)) for i in range(4): AB = [r[3]-r[1],r[2]-r[0]] AM = [m[3*i]-r[1],m[3*i + 1]-r[0]] BC = [r[5]-r[3],r[4]-r[2]] BM = [m[3*i]-r[3],m[3*i + 1]-r[2]] dotABAM = dot(AB, AM) dotABAB = dot(AB, AB) dotBCBC = dot(BC, BC) dotBCBM = dot(BC, BM) out = 0 <= dotABAM and dotABAM <= dotABAB and 0 <= dotBCBM and dotBCBM <= dotBCBC if out == False: return 0.0 return 1.0 def check_point_2(r, m): charge_station = Polygon([(r[0], r[1]), (r[2], r[3]), (r[4], r[5]), (r[6], r[7])]) swerve = Polygon([(m[0], m[1]), (m[4], m[5]), (m[7], m[8]), (m[10], m[11])]) if charge_station.contains(swerve): return 1.0 return 0.0
21,513
Python
44.484144
256
0.611119
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/tasks/base/rl_task.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import abstractmethod import numpy as np import torch from gym import spaces from omni.isaac.core.tasks import BaseTask from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.utils.prims import define_prim from omni.isaac.cloner import GridCloner from swervesim.tasks.utils.usd_utils import create_distant_light from swervesim.utils.domain_randomization.randomize import Randomizer import omni.kit from omni.kit.viewport.utility.camera_state import ViewportCameraState from omni.kit.viewport.utility import get_viewport_from_window_name from pxr import Gf class RLTask(BaseTask): """ This class provides a PyTorch RL-specific interface for setting up RL tasks. It includes utilities for setting up RL task related parameters, cloning environments, and data collection for RL algorithms. """ def __init__(self, name, env, offset=None) -> None: """ Initializes RL parameters, cloner object, and buffers. Args: name (str): name of the task. env (VecEnvBase): an instance of the environment wrapper class to register task. offset (Optional[np.ndarray], optional): offset applied to all assets of the task. Defaults to None. """ super().__init__(name=name, offset=offset) self.test = self._cfg["test"] self._device = self._cfg["sim_device"] self._dr_randomizer = Randomizer(self._sim_config) print("Task Device:", self._device) self.randomize_actions = False self.randomize_observations = False self.clip_obs = self._cfg["task"]["env"].get("clipObservations", np.Inf) self.clip_actions = self._cfg["task"]["env"].get("clipActions", np.Inf) self.rl_device = self._cfg.get("rl_device", "cuda:0") self.control_frequency_inv = self._cfg["task"]["env"].get("controlFrequencyInv", 1) print("RL device: ", self.rl_device) self._env = env if not hasattr(self, "_num_agents"): self._num_agents = 1 # used for multi-agent environments if not hasattr(self, "_num_states"): self._num_states = 0 # initialize data spaces (defaults to gym.Box) if not hasattr(self, "action_space"): self.action_space = spaces.Box(np.ones(self.num_actions) * -1.0, np.ones(self.num_actions) * 1.0) if not hasattr(self, "observation_space"): self.observation_space = spaces.Box(np.ones(self.num_observations) * -np.Inf, np.ones(self.num_observations) * np.Inf) if not hasattr(self, "state_space"): self.state_space = spaces.Box(np.ones(self.num_states) * -np.Inf, np.ones(self.num_states) * np.Inf) self._cloner = GridCloner(spacing=self._env_spacing) self._cloner.define_base_env(self.default_base_env_path) define_prim(self.default_zero_env_path) self.cleanup() def cleanup(self) -> None: """ Prepares torch buffers for RL data collection.""" # prepare tensors self.obs_buf = torch.zeros((self._num_envs, self.num_observations), device=self._device, dtype=torch.float) self.states_buf = torch.zeros((self._num_envs, self.num_states), device=self._device, dtype=torch.float) self.rew_buf = torch.zeros(self._num_envs, device=self._device, dtype=torch.float) self.reset_buf = torch.ones(self._num_envs, device=self._device, dtype=torch.long) self.progress_buf = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.extras = {} def set_up_scene(self, scene, replicate_physics=True) -> None: """ Clones environments based on value provided in task config and applies collision filters to mask collisions across environments. Args: scene (Scene): Scene to add objects to. replicate_physics (bool): Clone physics using PhysX API for better performance """ super().set_up_scene(scene) collision_filter_global_paths = list() if self._sim_config.task_config["sim"].get("add_ground_plane", True): self._ground_plane_path = "/World/defaultGroundPlane" collision_filter_global_paths.append(self._ground_plane_path) scene.add_default_ground_plane(prim_path=self._ground_plane_path) prim_paths = self._cloner.generate_paths("/World/envs/env", self._num_envs) self._env_pos = self._cloner.clone(source_prim_path="/World/envs/env_0", prim_paths=prim_paths, replicate_physics=replicate_physics) self._env_pos = torch.tensor(np.array(self._env_pos), device=self._device, dtype=torch.float) self._cloner.filter_collisions( self._env._world.get_physics_context().prim_path, "/World/collisions", prim_paths, collision_filter_global_paths) self.set_initial_camera_params(camera_position=[10, 10, 3], camera_target=[0, 0, 0]) if self._sim_config.task_config["sim"].get("add_distant_light", True): create_distant_light() def set_initial_camera_params(self, camera_position=[10, 10, 3], camera_target=[0, 0, 0]): if self._env._render: viewport_api_2 = get_viewport_from_window_name("Viewport") viewport_api_2.set_active_camera("/OmniverseKit_Persp") camera_state = ViewportCameraState("/OmniverseKit_Persp", viewport_api_2) camera_state.set_position_world(Gf.Vec3d(camera_position[0], camera_position[1], camera_position[2]), True) camera_state.set_target_world(Gf.Vec3d(camera_target[0], camera_target[1], camera_target[2]), True) @property def default_base_env_path(self): """ Retrieves default path to the parent of all env prims. Returns: default_base_env_path(str): Defaults to "/World/envs". """ return "/World/envs" @property def default_zero_env_path(self): """ Retrieves default path to the first env prim (index 0). Returns: default_zero_env_path(str): Defaults to "/World/envs/env_0". """ return f"{self.default_base_env_path}/env_0" @property def num_envs(self): """ Retrieves number of environments for task. Returns: num_envs(int): Number of environments. """ return self._num_envs @property def num_actions(self): """ Retrieves dimension of actions. Returns: num_actions(int): Dimension of actions. """ return self._num_actions @property def num_observations(self): """ Retrieves dimension of observations. Returns: num_observations(int): Dimension of observations. """ return self._num_observations @property def num_states(self): """ Retrieves dimesion of states. Returns: num_states(int): Dimension of states. """ return self._num_states @property def num_agents(self): """ Retrieves number of agents for multi-agent environments. Returns: num_agents(int): Dimension of states. """ return self._num_agents def get_states(self): """ API for retrieving states buffer, used for asymmetric AC training. Returns: states_buf(torch.Tensor): States buffer. """ return self.states_buf def get_extras(self): """ API for retrieving extras data for RL. Returns: extras(dict): Dictionary containing extras data. """ return self.extras def reset(self): """ Flags all environments for reset. """ self.reset_buf = torch.ones_like(self.reset_buf) def pre_physics_step(self, actions): """ Optionally implemented by individual task classes to process actions. Args: actions (torch.Tensor): Actions generated by RL policy. """ pass def post_physics_step(self): """ Processes RL required computations for observations, states, rewards, resets, and extras. Also maintains progress buffer for tracking step count per environment. Returns: obs_buf(torch.Tensor): Tensor of observation data. rew_buf(torch.Tensor): Tensor of rewards data. reset_buf(torch.Tensor): Tensor of resets/dones data. extras(dict): Dictionary of extras data. """ self.progress_buf[:] += 1 if self._env._world.is_playing(): self.get_observations() self.get_states() self.calculate_metrics() self.is_done() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
10,338
Python
39.073643
140
0.653705
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/tasks/utils/anymal_terrain_generator.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import torch import math from swervesim.utils.terrain_utils.terrain_utils import * # terrain generator class Terrain: def __init__(self, cfg, num_robots) -> None: self.horizontal_scale = 0.1 self.vertical_scale = 0.005 self.border_size = 20 self.num_per_env = 2 self.env_length = cfg["mapLength"] self.env_width = cfg["mapWidth"] self.proportions = [np.sum(cfg["terrainProportions"][:i+1]) for i in range(len(cfg["terrainProportions"]))] self.env_rows = cfg["numLevels"] self.env_cols = cfg["numTerrains"] self.num_maps = self.env_rows * self.env_cols self.num_per_env = int(num_robots / self.num_maps) self.env_origins = np.zeros((self.env_rows, self.env_cols, 3)) self.width_per_env_pixels = int(self.env_width / self.horizontal_scale) self.length_per_env_pixels = int(self.env_length / self.horizontal_scale) self.border = int(self.border_size/self.horizontal_scale) self.tot_cols = int(self.env_cols * self.width_per_env_pixels) + 2 * self.border self.tot_rows = int(self.env_rows * self.length_per_env_pixels) + 2 * self.border self.height_field_raw = np.zeros((self.tot_rows , self.tot_cols), dtype=np.int16) if cfg["curriculum"]: self.curiculum(num_robots, num_terrains=self.env_cols, num_levels=self.env_rows) else: self.randomized_terrain() self.heightsamples = self.height_field_raw self.vertices, self.triangles = convert_heightfield_to_trimesh(self.height_field_raw, self.horizontal_scale, self.vertical_scale, cfg["slopeTreshold"]) def randomized_terrain(self): for k in range(self.num_maps): # Env coordinates in the world (i, j) = np.unravel_index(k, (self.env_rows, self.env_cols)) # Heightfield coordinate system from now on start_x = self.border + i * self.length_per_env_pixels end_x = self.border + (i + 1) * self.length_per_env_pixels start_y = self.border + j * self.width_per_env_pixels end_y = self.border + (j + 1) * self.width_per_env_pixels terrain = SubTerrain("terrain", width=self.width_per_env_pixels, length=self.width_per_env_pixels, vertical_scale=self.vertical_scale, horizontal_scale=self.horizontal_scale) choice = np.random.uniform(0, 1) if choice < 0.1: if np.random.choice([0, 1]): pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3])) random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.05, downsampled_scale=0.2) else: pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3])) elif choice < 0.6: # step_height = np.random.choice([-0.18, -0.15, -0.1, -0.05, 0.05, 0.1, 0.15, 0.18]) step_height = np.random.choice([-0.15, 0.15]) pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.) elif choice < 1.: discrete_obstacles_terrain(terrain, 0.15, 1., 2., 40, platform_size=3.) self.height_field_raw[start_x: end_x, start_y:end_y] = terrain.height_field_raw env_origin_x = (i + 0.5) * self.env_length env_origin_y = (j + 0.5) * self.env_width x1 = int((self.env_length/2. - 1) / self.horizontal_scale) x2 = int((self.env_length/2. + 1) / self.horizontal_scale) y1 = int((self.env_width/2. - 1) / self.horizontal_scale) y2 = int((self.env_width/2. + 1) / self.horizontal_scale) env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2])*self.vertical_scale self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z] def curiculum(self, num_robots, num_terrains, num_levels): num_robots_per_map = int(num_robots / num_terrains) left_over = num_robots % num_terrains idx = 0 for j in range(num_terrains): for i in range(num_levels): terrain = SubTerrain("terrain", width=self.width_per_env_pixels, length=self.width_per_env_pixels, vertical_scale=self.vertical_scale, horizontal_scale=self.horizontal_scale) difficulty = i / num_levels choice = j / num_terrains slope = difficulty * 0.4 step_height = 0.05 + 0.175 * difficulty discrete_obstacles_height = 0.025 + difficulty * 0.15 stepping_stones_size = 2 - 1.8 * difficulty if choice < self.proportions[0]: if choice < 0.05: slope *= -1 pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.) elif choice < self.proportions[1]: if choice < 0.15: slope *= -1 pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.) random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.025, downsampled_scale=0.2) elif choice < self.proportions[3]: if choice<self.proportions[2]: step_height *= -1 pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.) elif choice < self.proportions[4]: discrete_obstacles_terrain(terrain, discrete_obstacles_height, 1., 2., 40, platform_size=3.) else: stepping_stones_terrain(terrain, stone_size=stepping_stones_size, stone_distance=0.1, max_height=0., platform_size=3.) # Heightfield coordinate system start_x = self.border + i * self.length_per_env_pixels end_x = self.border + (i + 1) * self.length_per_env_pixels start_y = self.border + j * self.width_per_env_pixels end_y = self.border + (j + 1) * self.width_per_env_pixels self.height_field_raw[start_x: end_x, start_y:end_y] = terrain.height_field_raw robots_in_map = num_robots_per_map if j < left_over: robots_in_map +=1 env_origin_x = (i + 0.5) * self.env_length env_origin_y = (j + 0.5) * self.env_width x1 = int((self.env_length/2. - 1) / self.horizontal_scale) x2 = int((self.env_length/2. + 1) / self.horizontal_scale) y1 = int((self.env_width/2. - 1) / self.horizontal_scale) y2 = int((self.env_width/2. + 1) / self.horizontal_scale) env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2])*self.vertical_scale self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z]
8,788
Python
52.591463
159
0.59274
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/tasks/utils/usd_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from pxr import UsdPhysics, UsdLux def set_drive_type(prim_path, drive_type): joint_prim = get_prim_at_path(prim_path) # set drive type ("angular" or "linear") drive = UsdPhysics.DriveAPI.Apply(joint_prim, drive_type) return drive def set_drive_target_position(drive, target_value): if not drive.GetTargetPositionAttr(): drive.CreateTargetPositionAttr(target_value) else: drive.GetTargetPositionAttr().Set(target_value) def set_drive_target_velocity(drive, target_value): if not drive.GetTargetVelocityAttr(): drive.CreateTargetVelocityAttr(target_value) else: drive.GetTargetVelocityAttr().Set(target_value) def set_drive_stiffness(drive, stiffness): if not drive.GetStiffnessAttr(): drive.CreateStiffnessAttr(stiffness) else: drive.GetStiffnessAttr().Set(stiffness) def set_drive_damping(drive, damping): if not drive.GetDampingAttr(): drive.CreateDampingAttr(damping) else: drive.GetDampingAttr().Set(damping) def set_drive_max_force(drive, max_force): if not drive.GetMaxForceAttr(): drive.CreateMaxForceAttr(max_force) else: drive.GetMaxForceAttr().Set(max_force) def set_drive(prim_path, drive_type, target_type, target_value, stiffness, damping, max_force) -> None: drive = set_drive_type(prim_path, drive_type) # set target type ("position" or "velocity") if target_type == "position": set_drive_target_position(drive, target_value) elif target_type == "velocity": set_drive_target_velocity(drive, target_value) set_drive_stiffness(drive, stiffness) set_drive_damping(drive, damping) set_drive_max_force(drive, max_force) def create_distant_light(prim_path="/World/defaultDistantLight", intensity=5000): stage = get_current_stage() light = UsdLux.DistantLight.Define(stage, prim_path) light.GetPrim().GetAttribute("intensity").Set(intensity)
3,628
Python
40.238636
103
0.742007
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/tasks/shared/in_hand_manipulation.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import abstractmethod from swervesim.tasks.base.rl_task import RLTask from omni.isaac.core.prims import RigidPrimView, XFormPrim from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage, add_reference_to_stage from omni.isaac.core.utils.torch import * import numpy as np import torch import math import omni.replicator.isaac as dr class InHandManipulationTask(RLTask): def __init__( self, name, env, offset=None ) -> None: """[summary] """ self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self.dist_reward_scale = self._task_cfg["env"]["distRewardScale"] self.rot_reward_scale = self._task_cfg["env"]["rotRewardScale"] self.action_penalty_scale = self._task_cfg["env"]["actionPenaltyScale"] self.success_tolerance = self._task_cfg["env"]["successTolerance"] self.reach_goal_bonus = self._task_cfg["env"]["reachGoalBonus"] self.fall_dist = self._task_cfg["env"]["fallDistance"] self.fall_penalty = self._task_cfg["env"]["fallPenalty"] self.rot_eps = self._task_cfg["env"]["rotEps"] self.vel_obs_scale = self._task_cfg["env"]["velObsScale"] self.reset_position_noise = self._task_cfg["env"]["resetPositionNoise"] self.reset_rotation_noise = self._task_cfg["env"]["resetRotationNoise"] self.reset_dof_pos_noise = self._task_cfg["env"]["resetDofPosRandomInterval"] self.reset_dof_vel_noise = self._task_cfg["env"]["resetDofVelRandomInterval"] self.hand_dof_speed_scale = self._task_cfg["env"]["dofSpeedScale"] self.use_relative_control = self._task_cfg["env"]["useRelativeControl"] self.act_moving_average = self._task_cfg["env"]["actionsMovingAverage"] self.max_episode_length = self._task_cfg["env"]["episodeLength"] self.reset_time = self._task_cfg["env"].get("resetTime", -1.0) self.print_success_stat = self._task_cfg["env"]["printNumSuccesses"] self.max_consecutive_successes = self._task_cfg["env"]["maxConsecutiveSuccesses"] self.av_factor = self._task_cfg["env"].get("averFactor", 0.1) self.dt = 1.0 / 60 control_freq_inv = self._task_cfg["env"].get("controlFrequencyInv", 1) if self.reset_time > 0.0: self.max_episode_length = int(round(self.reset_time/(control_freq_inv * self.dt))) print("Reset time: ", self.reset_time) print("New episode length: ", self.max_episode_length) RLTask.__init__(self, name, env) self.x_unit_tensor = torch.tensor([1, 0, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.y_unit_tensor = torch.tensor([0, 1, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.z_unit_tensor = torch.tensor([0, 0, 1], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.reset_goal_buf = self.reset_buf.clone() self.successes = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) self.consecutive_successes = torch.zeros(1, dtype=torch.float, device=self.device) self.randomization_buf = torch.zeros(self.num_envs, dtype=torch.long, device=self.device) self.av_factor = torch.tensor(self.av_factor, dtype=torch.float, device=self.device) self.total_successes = 0 self.total_resets = 0 return def set_up_scene(self, scene) -> None: self._stage = get_current_stage() self._assets_root_path = get_assets_root_path() hand_start_translation, pose_dy, pose_dz = self.get_hand() self.get_object(hand_start_translation, pose_dy, pose_dz) self.get_goal() replicate_physics = False if self._dr_randomizer.randomize else True super().set_up_scene(scene, replicate_physics) self._hands = self.get_hand_view(scene) scene.add(self._hands) self._objects = RigidPrimView( prim_paths_expr="/World/envs/env_.*/object/object", name="object_view", reset_xform_properties=False, masses=torch.tensor([0.07087]*self._num_envs, device=self.device), ) scene.add(self._objects) self._goals = RigidPrimView( prim_paths_expr="/World/envs/env_.*/goal/object", name="goal_view", reset_xform_properties=False ) scene.add(self._goals) if self._dr_randomizer.randomize: self._dr_randomizer.apply_on_startup_domain_randomization(self) @abstractmethod def get_hand(self): pass @abstractmethod def get_hand_view(self): pass @abstractmethod def get_observations(self): pass def get_object(self, hand_start_translation, pose_dy, pose_dz): self.object_start_translation = hand_start_translation.clone() self.object_start_translation[1] += pose_dy self.object_start_translation[2] += pose_dz self.object_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.object_usd_path = f"{self._assets_root_path}/Isaac/Props/Blocks/block_instanceable.usd" add_reference_to_stage(self.object_usd_path, self.default_zero_env_path + "/object") obj = XFormPrim( prim_path=self.default_zero_env_path + "/object/object", name="object", translation=self.object_start_translation, orientation=self.object_start_orientation, scale=self.object_scale, ) self._sim_config.apply_articulation_settings("object", get_prim_at_path(obj.prim_path), self._sim_config.parse_actor_config("object")) def get_goal(self): self.goal_displacement_tensor = torch.tensor([-0.2, -0.06, 0.12], device=self.device) self.goal_start_translation = self.object_start_translation + self.goal_displacement_tensor self.goal_start_translation[2] -= 0.04 self.goal_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) add_reference_to_stage(self.object_usd_path, self.default_zero_env_path + "/goal") goal = XFormPrim( prim_path=self.default_zero_env_path + "/goal", name="goal", translation=self.goal_start_translation, orientation=self.goal_start_orientation, scale=self.object_scale ) self._sim_config.apply_articulation_settings("goal", get_prim_at_path(goal.prim_path), self._sim_config.parse_actor_config("goal_object")) def post_reset(self): self.num_hand_dofs = self._hands.num_dof self.actuated_dof_indices = self._hands.actuated_dof_indices self.hand_dof_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.prev_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.cur_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) dof_limits = self._hands.get_dof_limits() self.hand_dof_lower_limits, self.hand_dof_upper_limits = torch.t(dof_limits[0].to(self.device)) self.hand_dof_default_pos = torch.zeros(self.num_hand_dofs, dtype=torch.float, device=self.device) self.hand_dof_default_vel = torch.zeros(self.num_hand_dofs, dtype=torch.float, device=self.device) self.object_init_pos, self.object_init_rot = self._objects.get_world_poses() self.object_init_pos -= self._env_pos self.object_init_velocities = torch.zeros_like(self._objects.get_velocities(), dtype=torch.float, device=self.device) self.goal_pos = self.object_init_pos.clone() self.goal_pos[:, 2] -= 0.04 self.goal_rot = self.object_init_rot.clone() self.goal_init_pos = self.goal_pos.clone() self.goal_init_rot = self.goal_rot.clone() # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) if self._dr_randomizer.randomize: self._dr_randomizer.set_up_domain_randomization(self) def get_object_goal_observations(self): self.object_pos, self.object_rot = self._objects.get_world_poses(clone=False) self.object_pos -= self._env_pos self.object_velocities = self._objects.get_velocities(clone=False) self.object_linvel = self.object_velocities[:, 0:3] self.object_angvel = self.object_velocities[:, 3:6] def calculate_metrics(self): self.rew_buf[:], self.reset_buf[:], self.reset_goal_buf[:], self.progress_buf[:], self.successes[:], self.consecutive_successes[:] = compute_hand_reward( self.rew_buf, self.reset_buf, self.reset_goal_buf, self.progress_buf, self.successes, self.consecutive_successes, self.max_episode_length, self.object_pos, self.object_rot, self.goal_pos, self.goal_rot, self.dist_reward_scale, self.rot_reward_scale, self.rot_eps, self.actions, self.action_penalty_scale, self.success_tolerance, self.reach_goal_bonus, self.fall_dist, self.fall_penalty, self.max_consecutive_successes, self.av_factor, ) self.extras['consecutive_successes'] = self.consecutive_successes.mean() self.randomization_buf += 1 if self.print_success_stat: self.total_resets = self.total_resets + self.reset_buf.sum() direct_average_successes = self.total_successes + self.successes.sum() self.total_successes = self.total_successes + (self.successes * self.reset_buf).sum() # The direct average shows the overall result more quickly, but slightly undershoots long term policy performance. print("Direct average consecutive successes = {:.1f}".format(direct_average_successes/(self.total_resets + self.num_envs))) if self.total_resets > 0: print("Post-Reset average consecutive successes = {:.1f}".format(self.total_successes/self.total_resets)) def pre_physics_step(self, actions): if not self._env._world.is_playing(): return env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) goal_env_ids = self.reset_goal_buf.nonzero(as_tuple=False).squeeze(-1) reset_buf = self.reset_buf.clone() # if only goals need reset, then call set API if len(goal_env_ids) > 0 and len(env_ids) == 0: self.reset_target_pose(goal_env_ids) elif len(goal_env_ids) > 0: self.reset_target_pose(goal_env_ids) if len(env_ids) > 0: self.reset_idx(env_ids) self.actions = actions.clone().to(self.device) if self.use_relative_control: targets = self.prev_targets[:, self.actuated_dof_indices] + self.hand_dof_speed_scale * self.dt * self.actions self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp(targets, self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices]) else: self.cur_targets[:, self.actuated_dof_indices] = scale(self.actions, self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices]) self.cur_targets[:, self.actuated_dof_indices] = self.act_moving_average * self.cur_targets[:, self.actuated_dof_indices] + \ (1.0 - self.act_moving_average) * self.prev_targets[:, self.actuated_dof_indices] self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp(self.cur_targets[:, self.actuated_dof_indices], self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices]) self.prev_targets[:, self.actuated_dof_indices] = self.cur_targets[:, self.actuated_dof_indices] self._hands.set_joint_position_targets( self.cur_targets[:, self.actuated_dof_indices], indices=None, joint_indices=self.actuated_dof_indices ) if self._dr_randomizer.randomize: rand_envs = torch.where(self.randomization_buf >= self._dr_randomizer.min_frequency, torch.ones_like(self.randomization_buf), torch.zeros_like(self.randomization_buf)) rand_env_ids = torch.nonzero(torch.logical_and(rand_envs, reset_buf)) dr.physics_view.step_randomization(rand_env_ids) self.randomization_buf[rand_env_ids] = 0 def is_done(self): pass def reset_target_pose(self, env_ids): # reset goal indices = env_ids.to(dtype=torch.int32) rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), 4), device=self.device) new_rot = randomize_rotation(rand_floats[:, 0], rand_floats[:, 1], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids]) self.goal_pos[env_ids] = self.goal_init_pos[env_ids, 0:3] self.goal_rot[env_ids] = new_rot goal_pos, goal_rot = self.goal_pos.clone(), self.goal_rot.clone() goal_pos[env_ids] = self.goal_pos[env_ids] + self.goal_displacement_tensor + self._env_pos[env_ids] # add world env pos self._goals.set_world_poses(goal_pos[env_ids], goal_rot[env_ids], indices) self.reset_goal_buf[env_ids] = 0 def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), self.num_hand_dofs * 2 + 5), device=self.device) self.reset_target_pose(env_ids) # reset object new_object_pos = self.object_init_pos[env_ids] + \ self.reset_position_noise * rand_floats[:, 0:3] + self._env_pos[env_ids] # add world env pos new_object_rot = randomize_rotation(rand_floats[:, 3], rand_floats[:, 4], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids]) object_velocities = torch.zeros_like(self.object_init_velocities, dtype=torch.float, device=self.device) self._objects.set_velocities(object_velocities[env_ids], indices) self._objects.set_world_poses(new_object_pos, new_object_rot, indices) # reset hand delta_max = self.hand_dof_upper_limits - self.hand_dof_default_pos delta_min = self.hand_dof_lower_limits - self.hand_dof_default_pos rand_delta = delta_min + (delta_max - delta_min) * 0.5 * (rand_floats[:, 5:5+self.num_hand_dofs] + 1.0) pos = self.hand_dof_default_pos + self.reset_dof_pos_noise * rand_delta dof_pos = torch.zeros((self.num_envs, self.num_hand_dofs), device=self.device) dof_pos[env_ids, :] = pos dof_vel = torch.zeros((self.num_envs, self.num_hand_dofs), device=self.device) dof_vel[env_ids, :] = self.hand_dof_default_vel + \ self.reset_dof_vel_noise * rand_floats[:, 5+self.num_hand_dofs:5+self.num_hand_dofs*2] self.prev_targets[env_ids, :self.num_hand_dofs] = pos self.cur_targets[env_ids, :self.num_hand_dofs] = pos self.hand_dof_targets[env_ids, :] = pos self._hands.set_joint_position_targets(self.hand_dof_targets[env_ids], indices) self._hands.set_joint_positions(dof_pos[env_ids], indices) self._hands.set_joint_velocities(dof_vel[env_ids], indices) self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 0 self.successes[env_ids] = 0 ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def randomize_rotation(rand0, rand1, x_unit_tensor, y_unit_tensor): return quat_mul(quat_from_angle_axis(rand0 * np.pi, x_unit_tensor), quat_from_angle_axis(rand1 * np.pi, y_unit_tensor)) @torch.jit.script def compute_hand_reward( rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes, max_episode_length: float, object_pos, object_rot, target_pos, target_rot, dist_reward_scale: float, rot_reward_scale: float, rot_eps: float, actions, action_penalty_scale: float, success_tolerance: float, reach_goal_bonus: float, fall_dist: float, fall_penalty: float, max_consecutive_successes: int, av_factor: float ): goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1) # Orientation alignment for the cube in hand and goal cube quat_diff = quat_mul(object_rot, quat_conjugate(target_rot)) rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 1:4], p=2, dim=-1), max=1.0)) # changed quat convention dist_rew = goal_dist * dist_reward_scale rot_rew = 1.0/(torch.abs(rot_dist) + rot_eps) * rot_reward_scale action_penalty = torch.sum(actions ** 2, dim=-1) # Total reward is: position distance + orientation alignment + action regularization + success bonus + fall penalty reward = dist_rew + rot_rew + action_penalty * action_penalty_scale # Find out which envs hit the goal and update successes count goal_resets = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.ones_like(reset_goal_buf), reset_goal_buf) successes = successes + goal_resets # Success bonus: orientation is within `success_tolerance` of goal orientation reward = torch.where(goal_resets == 1, reward + reach_goal_bonus, reward) # Fall penalty: distance to the goal is larger than a threashold reward = torch.where(goal_dist >= fall_dist, reward + fall_penalty, reward) # Check env termination conditions, including maximum success number resets = torch.where(goal_dist >= fall_dist, torch.ones_like(reset_buf), reset_buf) if max_consecutive_successes > 0: # Reset progress buffer on goal envs if max_consecutive_successes > 0 progress_buf = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.zeros_like(progress_buf), progress_buf) resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets) resets = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(resets), resets) # Apply penalty for not reaching the goal if max_consecutive_successes > 0: reward = torch.where(progress_buf >= max_episode_length - 1, reward + 0.5 * fall_penalty, reward) num_resets = torch.sum(resets) finished_cons_successes = torch.sum(successes * resets.float()) cons_successes = torch.where(num_resets > 0, av_factor*finished_cons_successes/num_resets + (1.0 - av_factor)*consecutive_successes, consecutive_successes) return reward, resets, goal_resets, progress_buf, successes, cons_successes
20,471
Python
48.931707
179
0.656734
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/tasks/shared/locomotion.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import abstractmethod from swervesim.tasks.base.rl_task import RLTask from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omni.isaac.core.utils.torch.maths import torch_rand_float, tensor_clamp, unscale from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path import numpy as np import torch import math class LocomotionTask(RLTask): def __init__( self, name, env, offset=None ) -> None: self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.angular_velocity_scale = self._task_cfg["env"]["angularVelocityScale"] self.contact_force_scale = self._task_cfg["env"]["contactForceScale"] self.power_scale = self._task_cfg["env"]["powerScale"] self.heading_weight = self._task_cfg["env"]["headingWeight"] self.up_weight = self._task_cfg["env"]["upWeight"] self.actions_cost_scale = self._task_cfg["env"]["actionsCost"] self.energy_cost_scale = self._task_cfg["env"]["energyCost"] self.joints_at_limit_cost_scale = self._task_cfg["env"]["jointsAtLimitCost"] self.death_cost = self._task_cfg["env"]["deathCost"] self.termination_height = self._task_cfg["env"]["terminationHeight"] self.alive_reward_scale = self._task_cfg["env"]["alive_reward_scale"] RLTask.__init__(self, name, env) return @abstractmethod def set_up_scene(self, scene) -> None: pass @abstractmethod def get_robot(self): pass def get_observations(self) -> dict: torso_position, torso_rotation = self._robots.get_world_poses(clone=False) velocities = self._robots.get_velocities(clone=False) velocity = velocities[:, 0:3] ang_velocity = velocities[:, 3:6] dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) # force sensors attached to the feet sensor_force_torques = self._robots._physics_view.get_force_sensor_forces() # (num_envs, num_sensors, 6) self.obs_buf[:], self.potentials[:], self.prev_potentials[:], self.up_vec[:], self.heading_vec[:] = get_observations( torso_position, torso_rotation, velocity, ang_velocity, dof_pos, dof_vel, self.targets, self.potentials, self.dt, self.inv_start_rot, self.basis_vec0, self.basis_vec1, self.dof_limits_lower, self.dof_limits_upper, self.dof_vel_scale, sensor_force_torques, self._num_envs, self.contact_force_scale, self.actions, self.angular_velocity_scale ) observations = { self._robots.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) forces = self.actions * self.joint_gears * self.power_scale indices = torch.arange(self._robots.count, dtype=torch.int32, device=self._device) # applies joint torques self._robots.set_joint_efforts(forces, indices=indices) def reset_idx(self, env_ids): num_resets = len(env_ids) # randomize DOF positions and velocities dof_pos = torch_rand_float(-0.2, 0.2, (num_resets, self._robots.num_dof), device=self._device) dof_pos[:] = tensor_clamp( self.initial_dof_pos[env_ids] + dof_pos, self.dof_limits_lower, self.dof_limits_upper ) dof_vel = torch_rand_float(-0.1, 0.1, (num_resets, self._robots.num_dof), device=self._device) root_pos, root_rot = self.initial_root_pos[env_ids], self.initial_root_rot[env_ids] root_vel = torch.zeros((num_resets, 6), device=self._device) # apply resets self._robots.set_joint_positions(dof_pos, indices=env_ids) self._robots.set_joint_velocities(dof_vel, indices=env_ids) self._robots.set_world_poses(root_pos, root_rot, indices=env_ids) self._robots.set_velocities(root_vel, indices=env_ids) to_target = self.targets[env_ids] - self.initial_root_pos[env_ids] to_target[:, 2] = 0.0 self.prev_potentials[env_ids] = -torch.norm(to_target, p=2, dim=-1) / self.dt self.potentials[env_ids] = self.prev_potentials[env_ids].clone() # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 num_resets = len(env_ids) def post_reset(self): self._robots = self.get_robot() self.initial_root_pos, self.initial_root_rot = self._robots.get_world_poses() self.initial_dof_pos = self._robots.get_joint_positions() # initialize some data used later on self.start_rotation = torch.tensor([1, 0, 0, 0], device=self._device, dtype=torch.float32) self.up_vec = torch.tensor([0, 0, 1], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.heading_vec = torch.tensor([1, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.inv_start_rot = quat_conjugate(self.start_rotation).repeat((self.num_envs, 1)) self.basis_vec0 = self.heading_vec.clone() self.basis_vec1 = self.up_vec.clone() self.targets = torch.tensor([1000, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.target_dirs = torch.tensor([1, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.dt = 1.0 / 60.0 self.potentials = torch.tensor([-1000.0 / self.dt], dtype=torch.float32, device=self._device).repeat(self.num_envs) self.prev_potentials = self.potentials.clone() self.actions = torch.zeros((self.num_envs, self.num_actions), device=self._device) # randomize all envs indices = torch.arange(self._robots.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: self.rew_buf[:] = calculate_metrics( self.obs_buf, self.actions, self.up_weight, self.heading_weight, self.potentials, self.prev_potentials, self.actions_cost_scale, self.energy_cost_scale, self.termination_height, self.death_cost, self._robots.num_dof, self.get_dof_at_limit_cost(), self.alive_reward_scale, self.motor_effort_ratio ) def is_done(self) -> None: self.reset_buf[:] = is_done( self.obs_buf, self.termination_height, self.reset_buf, self.progress_buf, self._max_episode_length ) ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def normalize_angle(x): return torch.atan2(torch.sin(x), torch.cos(x)) @torch.jit.script def get_observations( torso_position, torso_rotation, velocity, ang_velocity, dof_pos, dof_vel, targets, potentials, dt, inv_start_rot, basis_vec0, basis_vec1, dof_limits_lower, dof_limits_upper, dof_vel_scale, sensor_force_torques, num_envs, contact_force_scale, actions, angular_velocity_scale ): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, float, Tensor, Tensor, Tensor, Tensor, Tensor, float, Tensor, int, float, Tensor, float) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor] to_target = targets - torso_position to_target[:, 2] = 0.0 prev_potentials = potentials.clone() potentials = -torch.norm(to_target, p=2, dim=-1) / dt torso_quat, up_proj, heading_proj, up_vec, heading_vec = compute_heading_and_up( torso_rotation, inv_start_rot, to_target, basis_vec0, basis_vec1, 2 ) vel_loc, angvel_loc, roll, pitch, yaw, angle_to_target = compute_rot( torso_quat, velocity, ang_velocity, targets, torso_position ) dof_pos_scaled = unscale(dof_pos, dof_limits_lower, dof_limits_upper) # obs_buf shapes: 1, 3, 3, 1, 1, 1, 1, 1, num_dofs, num_dofs, num_sensors * 6, num_dofs obs = torch.cat( ( torso_position[:, 2].view(-1, 1), vel_loc, angvel_loc * angular_velocity_scale, normalize_angle(yaw).unsqueeze(-1), normalize_angle(roll).unsqueeze(-1), normalize_angle(angle_to_target).unsqueeze(-1), up_proj.unsqueeze(-1), heading_proj.unsqueeze(-1), dof_pos_scaled, dof_vel * dof_vel_scale, sensor_force_torques.reshape(num_envs, -1) * contact_force_scale, actions, ), dim=-1, ) return obs, potentials, prev_potentials, up_vec, heading_vec @torch.jit.script def is_done( obs_buf, termination_height, reset_buf, progress_buf, max_episode_length ): # type: (Tensor, float, Tensor, Tensor, float) -> Tensor reset = torch.where(obs_buf[:, 0] < termination_height, torch.ones_like(reset_buf), reset_buf) reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf), reset) return reset @torch.jit.script def calculate_metrics( obs_buf, actions, up_weight, heading_weight, potentials, prev_potentials, actions_cost_scale, energy_cost_scale, termination_height, death_cost, num_dof, dof_at_limit_cost, alive_reward_scale, motor_effort_ratio ): # type: (Tensor, Tensor, float, float, Tensor, Tensor, float, float, float, float, int, Tensor, float, Tensor) -> Tensor heading_weight_tensor = torch.ones_like(obs_buf[:, 11]) * heading_weight heading_reward = torch.where( obs_buf[:, 11] > 0.8, heading_weight_tensor, heading_weight * obs_buf[:, 11] / 0.8 ) # aligning up axis of robot and environment up_reward = torch.zeros_like(heading_reward) up_reward = torch.where(obs_buf[:, 10] > 0.93, up_reward + up_weight, up_reward) # energy penalty for movement actions_cost = torch.sum(actions ** 2, dim=-1) electricity_cost = torch.sum(torch.abs(actions * obs_buf[:, 12+num_dof:12+num_dof*2])* motor_effort_ratio.unsqueeze(0), dim=-1) # reward for duration of staying alive alive_reward = torch.ones_like(potentials) * alive_reward_scale progress_reward = potentials - prev_potentials total_reward = ( progress_reward + alive_reward + up_reward + heading_reward - actions_cost_scale * actions_cost - energy_cost_scale * electricity_cost - dof_at_limit_cost ) # adjust reward for fallen agents total_reward = torch.where( obs_buf[:, 0] < termination_height, torch.ones_like(total_reward) * death_cost, total_reward ) return total_reward
12,868
Python
38.719136
214
0.642913
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/cfg/config.yaml
# Task name - used to pick the class to load task_name: ${task.name} # experiment name. defaults to name of training config experiment: '' # if set to positive integer, overrides the default number of environments num_envs: '' # seed - set to -1 to choose random seed seed: 42 # set to True for deterministic performance torch_deterministic: False # set the maximum number of learning iterations to train for. overrides default per-environment setting max_iterations: '' ## Device config physics_engine: 'physx' # whether to use cpu or gpu pipeline pipeline: 'gpu' # whether to use cpu or gpu physx sim_device: 'gpu' # used for gpu simulation only - device id for running sim and task if pipeline=gpu device_id: 0 # device to run RL rl_device: 'cuda:0' ## PhysX arguments num_threads: 4 # Number of worker threads per scene used by PhysX - for CPU PhysX only. solver_type: 1 # 0: pgs, 1: tgs # RLGames Arguments # test - if set, run policy in inference mode (requires setting checkpoint to load) test: False # used to set checkpoint path checkpoint: '' # disables rendering headless: False wandb_activate: False wandb_group: '' wandb_name: ${train.params.config.name} wandb_entity: '' wandb_project: 'swervesim' # set default task and default training config based on task defaults: - task: Swerve - train: ${task}PPO - hydra/job_logging: disabled # set the directory where the output files get saved hydra: output_subdir: null run: dir: .
1,466
YAML
23.45
103
0.736698
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/cfg/task/SwerveK.yaml
# used to create the object name: SwerveK physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: 36 envSpacing: 20.0 resetDist: 3.0 clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 12 # 10 Hz? baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] control: # PD Drive parameters: stiffness: 85.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] actionScale: 13.5 # episode length in seconds episodeLength_s: 50 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 4 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 1024 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1024 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 SwerveK: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_velocity_iteration_count: 8 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0 # per-shape contact_offset: 0.02 rest_offset: 0.001
2,367
YAML
26.858823
71
0.657795
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/cfg/task/SwerveF.yaml
# used to create the object name: SwerveF physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: 36 envSpacing: 20.0 resetDist: 3.0 clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 12 # 10 Hz? baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] control: # PD Drive parameters: stiffness: 85.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] actionScale: 13.5 # episode length in seconds episodeLength_s: 50 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 4 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 1024 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1024 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 SwerveF: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_velocity_iteration_count: 8 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0 # per-shape contact_offset: 0.02 rest_offset: 0.001
2,367
YAML
26.858823
71
0.657795
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/cfg/task/SwerveMAA.yaml
# used to create the object name: SwerveMAA physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: 36 envSpacing: 20.0 resetDist: 3.0 clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 12 # 10 Hz? baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] control: # PD Drive parameters: stiffness: 85.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] actionScale: 13.5 # episode length in seconds episodeLength_s: 50 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 4 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 1024 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1024 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 SwerveMAA: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_velocity_iteration_count: 8 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0 # per-shape contact_offset: 0.02 rest_offset: 0.001
2,371
YAML
26.905882
71
0.658372
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/cfg/task/Swerve.yaml
# used to create the object name: Swerve physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: 324 envSpacing: 20.0 resetDist: 3.0 clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 12 # 10 Hz? baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] control: # PD Drive parameters: stiffness: 85.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] actionScale: 13.5 # episode length in seconds episodeLength_s: 50 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 4 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 1024 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1024 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 Swerve: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_velocity_iteration_count: 8 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0 # per-shape contact_offset: 0.02 rest_offset: 0.001
2,366
YAML
26.847059
71
0.65765
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/cfg/task/SwerveCS.yaml
# used to create the object name: SwerveCS physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: 36 envSpacing: 20 resetDist: 3.0 clipObservations: 1.0 clipActions: 1.0 controlFrequencyInv: 12 # 10 Hz? # baseInitState: # pos: [0.0, 0.0, 0.62] # x,y,z [m] # rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat] # vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] # vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] control: # PD Drive parameters: stiffness: 85.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] actionScale: 13.5 # episode length in seconds episodeLength_s: 15 sim: dt: 0.01 # 1/10 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 4 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 163840 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 134217728 gpu_temp_buffer_capacity: 33554432 gpu_max_num_partitions: 8 SwerveCS: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_velocity_iteration_count: 8 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0 # per-shape contact_offset: 0.02 rest_offset: 0.001
2,383
YAML
27.380952
71
0.656735
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/cfg/train/SwerveKPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:SwerveK,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 10000 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 10 minibatch_size: 360 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,527
YAML
20.828571
101
0.59332
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/cfg/train/SwerveCSPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:SwerveCS,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 10000 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 10 minibatch_size: 360 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,528
YAML
20.842857
101
0.593586
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/cfg/train/SwervePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Swerve,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 10000 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 10 minibatch_size: 360 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,526
YAML
20.814285
101
0.593054
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/cfg/train/SwerveMAAPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:SwerveK,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 10000 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 10 minibatch_size: 360 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,527
YAML
20.828571
101
0.59332
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/cfg/train/SwerveFPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:SwerveF,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 10000 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 10 minibatch_size: 360 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,527
YAML
20.828571
101
0.59332
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/scripts/rlgames_demo.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from swervesim.utils.hydra_cfg.hydra_utils import * from swervesim.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from swervesim.utils.demo_util import initialize_demo from swervesim.utils.config_utils.path_utils import retrieve_checkpoint_path from swervesim.envs.vec_env_rlgames import VecEnvRLGames from swervesim.scripts.rlgames_train import RLGTrainer import hydra from omegaconf import DictConfig import datetime import os import torch class RLGDemo(RLGTrainer): def __init__(self, cfg, cfg_dict): RLGTrainer.__init__(self, cfg, cfg_dict) self.cfg.test = True @hydra.main(config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") headless = cfg.headless env = VecEnvRLGames(headless=headless, sim_device=cfg.device_id) # ensure checkpoints can be specified as relative paths if cfg.checkpoint: cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint) if cfg.checkpoint is None: quit() cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict['seed'] = cfg.seed task = initialize_demo(cfg_dict, env) if cfg.wandb_activate: # Make sure to install WandB if you actually use this. import wandb run_name = f"{cfg.wandb_name}_{time_str}" wandb.init( project=cfg.wandb_project, group=cfg.wandb_group, entity=cfg.wandb_entity, config=cfg_dict, sync_tensorboard=True, id=run_name, resume="allow", monitor_gym=True, ) rlg_trainer = RLGDemo(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) rlg_trainer.run() env.close() if cfg.wandb_activate: wandb.finish() if __name__ == '__main__': parse_hydra_configs()
3,647
Python
35.118812
80
0.713737
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/scripts/rlgames_train.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from swervesim.utils.hydra_cfg.hydra_utils import * from swervesim.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from swervesim.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv from swervesim.utils.task_util import initialize_task from swervesim.utils.config_utils.path_utils import retrieve_checkpoint_path from swervesim.envs.vec_env_rlgames import VecEnvRLGames import hydra from omegaconf import DictConfig from rl_games.common import env_configurations, vecenv from rl_games.torch_runner import Runner import datetime import os import torch class RLGTrainer(): def __init__(self, cfg, cfg_dict): self.cfg = cfg self.cfg_dict = cfg_dict def launch_rlg_hydra(self, env): # `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally. # We use the helper function here to specify the environment config. self.cfg_dict["task"]["test"] = self.cfg.test # register the rl-games adapter to use inside the runner vecenv.register('RLGPU', lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs)) env_configurations.register('rlgpu', { 'vecenv_type': 'RLGPU', 'env_creator': lambda **kwargs: env }) self.rlg_config_dict = omegaconf_to_dict(self.cfg.train) def run(self): # create runner and set the settings runner = Runner(RLGPUAlgoObserver()) runner.load(self.rlg_config_dict) runner.reset() # dump config dict experiment_dir = os.path.join('runs', self.cfg.train.params.config.name) os.makedirs(experiment_dir, exist_ok=True) with open(os.path.join(experiment_dir, 'config.yaml'), 'w') as f: f.write(OmegaConf.to_yaml(self.cfg)) runner.run({ 'train': not self.cfg.test, 'play': self.cfg.test, 'checkpoint': self.cfg.checkpoint, 'sigma': None }) @hydra.main(config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") headless = cfg.headless env = VecEnvRLGames(headless=headless, sim_device=cfg.device_id) # ensure checkpoints can be specified as relative paths if cfg.checkpoint: cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint) if cfg.checkpoint is None: quit() cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict['seed'] = cfg.seed task = initialize_task(cfg_dict, env) if cfg.wandb_activate: # Make sure to install WandB if you actually use this. import wandb run_name = f"{cfg.wandb_name}_{time_str}" wandb.init( project=cfg.wandb_project, group=cfg.wandb_group, entity=cfg.wandb_entity, config=cfg_dict, sync_tensorboard=True, id=run_name, resume="allow", monitor_gym=True, ) rlg_trainer = RLGTrainer(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) rlg_trainer.run() env.close() if cfg.wandb_activate: wandb.finish() if __name__ == '__main__': parse_hydra_configs()
5,082
Python
35.307143
116
0.685557
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/scripts/random_policy.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import torch import hydra from omegaconf import DictConfig from swervesim.utils.hydra_cfg.hydra_utils import * from swervesim.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from swervesim.utils.task_util import initialize_task from swervesim.envs.vec_env_rlgames import VecEnvRLGames @hydra.main(config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) headless = cfg.headless render = not headless env = VecEnvRLGames(headless=headless, sim_device=cfg.device_id) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict['seed'] = cfg.seed task = initialize_task(cfg_dict, env) while env._simulation_app.is_running(): if env._world.is_playing(): if env._world.current_time_step_index == 0: env._world.reset(soft=True) actions = torch.tensor(np.array([env.action_space.sample() for _ in range(env.num_envs)]), device=task.rl_device) env._task.pre_physics_step(actions) env._world.step(render=render) env.sim_frame_count += 1 env._task.post_physics_step() else: env._world.step(render=render) env._simulation_app.close() if __name__ == '__main__': parse_hydra_configs()
3,055
Python
40.863013
125
0.728642
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/scripts/rlgames_train_mt.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from swervesim.utils.hydra_cfg.hydra_utils import * from swervesim.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from swervesim.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv from swervesim.utils.task_util import initialize_task from swervesim.utils.config_utils.path_utils import retrieve_checkpoint_path from swervesim.envs.vec_env_rlgames_mt import VecEnvRLGamesMT import hydra from omegaconf import DictConfig from rl_games.common import env_configurations, vecenv from rl_games.torch_runner import Runner import copy import datetime import os import threading import queue from omni.isaac.gym.vec_env.vec_env_mt import TrainerMT class RLGTrainer(): def __init__(self, cfg, cfg_dict): self.cfg = cfg self.cfg_dict = cfg_dict def launch_rlg_hydra(self, env): # `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally. # We use the helper function here to specify the environment config. self.cfg_dict["task"]["test"] = self.cfg.test # register the rl-games adapter to use inside the runner vecenv.register('RLGPU', lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs)) env_configurations.register('rlgpu', { 'vecenv_type': 'RLGPU', 'env_creator': lambda **kwargs: env }) self.rlg_config_dict = omegaconf_to_dict(self.cfg.train) def run(self): # create runner and set the settings runner = Runner(RLGPUAlgoObserver()) runner.load(copy.deepcopy(self.rlg_config_dict)) runner.reset() # dump config dict experiment_dir = os.path.join('runs', self.cfg.train.params.config.name) os.makedirs(experiment_dir, exist_ok=True) with open(os.path.join(experiment_dir, 'config.yaml'), 'w') as f: f.write(OmegaConf.to_yaml(self.cfg)) time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") if self.cfg.wandb_activate: # Make sure to install WandB if you actually use this. import wandb run_name = f"{self.cfg.wandb_name}_{time_str}" wandb.init( project=self.cfg.wandb_project, group=self.cfg.wandb_group, entity=self.cfg.wandb_entity, config=self.cfg_dict, sync_tensorboard=True, id=run_name, resume="allow", monitor_gym=True, ) runner.run({ 'train': not self.cfg.test, 'play': self.cfg.test, 'checkpoint': self.cfg.checkpoint, 'sigma': None }) if self.cfg.wandb_activate: wandb.finish() class Trainer(TrainerMT): def __init__(self, trainer, env): self.ppo_thread = None self.action_queue = None self.data_queue = None self.trainer = trainer self.is_running = False self.env = env self.create_task() self.run() def create_task(self): self.trainer.launch_rlg_hydra(self.env) task = initialize_task(self.trainer.cfg_dict, self.env, init_sim=False) self.task = task def run(self): self.is_running = True self.action_queue = queue.Queue(1) self.data_queue = queue.Queue(1) if "mt_timeout" in self.trainer.cfg_dict: self.env.initialize(self.action_queue, self.data_queue, self.trainer.cfg_dict["mt_timeout"]) else: self.env.initialize(self.action_queue, self.data_queue) self.ppo_thread = PPOTrainer(self.env, self.task, self.trainer) self.ppo_thread.daemon = True self.ppo_thread.start() def stop(self): self.env.stop = True self.env.clear_queues() if self.action_queue: self.action_queue.join() if self.data_queue: self.data_queue.join() if self.ppo_thread: self.ppo_thread.join() self.action_queue = None self.data_queue = None self.ppo_thread = None self.is_running = False class PPOTrainer(threading.Thread): def __init__(self, env, task, trainer): super().__init__() self.env = env self.task = task self.trainer = trainer def run(self): from omni.isaac.gym.vec_env import TaskStopException print("starting ppo...") try: self.trainer.run() # trainer finished - send stop signal to main thread self.env.send_actions(None) self.env.stop = True except TaskStopException: print("Task Stopped!") @hydra.main(config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): headless = cfg.headless env = VecEnvRLGamesMT(headless=headless, sim_device=cfg.device_id) # ensure checkpoints can be specified as relative paths if cfg.checkpoint: cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint) if cfg.checkpoint is None: quit() cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict['seed'] = cfg.seed rlg_trainer = RLGTrainer(cfg, cfg_dict) trainer = Trainer(rlg_trainer, env) trainer.env.run(trainer) if __name__ == '__main__': parse_hydra_configs()
7,192
Python
33.416268
116
0.652392
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/utils/demo_util.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. def initialize_demo(config, env, init_sim=True): from swervesim.demos.anymal_terrain import AnymalTerrainDemo # Mappings from strings to environments task_map = { "AnymalTerrain": AnymalTerrainDemo, } from swervesim.utils.config_utils.sim_config import SimConfig sim_config = SimConfig(config) cfg = sim_config.config task = task_map[cfg["task_name"]]( name=cfg["task_name"], sim_config=sim_config, env=env ) env.set_task(task=task, sim_params=sim_config.get_physics_params(), backend="torch", init_sim=init_sim) return task
2,153
Python
43.874999
107
0.75569
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/utils/task_util.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. def initialize_task(config, env, init_sim=True): from swervesim.tasks.swerve import Swerve_Task from swervesim.tasks.swerve_with_kinematics import Swerve_Kinematics_Task from swervesim.tasks.swerve_field import Swerve_Field_Task from swervesim.tasks.swerve_multi_action_auton import Swerve_Multi_Action_Task from swervesim.tasks.swerve_charge_station import Swerve_Charge_Station_Task # Mappings from strings to environments task_map = { "Swerve": Swerve_Task, "SwerveK": Swerve_Kinematics_Task, "SwerveF": Swerve_Field_Task, "SwerveMAA": Swerve_Multi_Action_Task, "SwerveCS": Swerve_Charge_Station_Task, } from .config_utils.sim_config import SimConfig sim_config = SimConfig(config) cfg = sim_config.config task = task_map[cfg["task_name"]]( name=cfg["task_name"], sim_config=sim_config, env=env ) env.set_task(task=task, sim_params=sim_config.get_physics_params(), backend="torch", init_sim=init_sim) return task
2,593
Python
44.508771
107
0.748939
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/utils/domain_randomization/randomize.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy import omni import omni.replicator.core as rep import omni.replicator.isaac as dr import numpy as np import torch from omni.isaac.core.prims import RigidPrimView class Randomizer(): def __init__(self, sim_config): self._cfg = sim_config.task_config self._config = sim_config.config self.randomize = False dr_config = self._cfg.get("domain_randomization", None) self.distributions = dict() self.active_domain_randomizations = dict() self._observations_dr_params = None self._actions_dr_params = None if dr_config is not None: randomize = dr_config.get("randomize", False) randomization_params = dr_config.get("randomization_params", None) if randomize and randomization_params is not None: self.randomize = True self.min_frequency = dr_config.get("min_frequency", 1) def apply_on_startup_domain_randomization(self, task): if self.randomize: torch.manual_seed(self._config["seed"]) randomization_params = self._cfg["domain_randomization"]["randomization_params"] for opt in randomization_params.keys(): if opt == "rigid_prim_views": if randomization_params["rigid_prim_views"] is not None: for view_name in randomization_params["rigid_prim_views"].keys(): if randomization_params["rigid_prim_views"][view_name] is not None: for attribute, params in randomization_params["rigid_prim_views"][view_name].items(): params = randomization_params["rigid_prim_views"][view_name][attribute] if attribute in ["scale", "mass", "density"] and params is not None: if "on_startup" in params.keys(): if not set(('operation','distribution', 'distribution_parameters')).issubset(params["on_startup"]): raise ValueError(f"Please ensure the following randomization parameters for {view_name} {attribute} " + \ "on_startup are provided: operation, distribution, distribution_parameters.") view = task._env._world.scene._scene_registry.rigid_prim_views[view_name] if attribute == "scale": self.randomize_scale_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"]["distribution_parameters"], operation=params["on_startup"]["operation"], sync_dim_noise=True, ) elif attribute == "mass": self.randomize_mass_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"]["distribution_parameters"], operation=params["on_startup"]["operation"], ) elif attribute == "density": self.randomize_density_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"]["distribution_parameters"], operation=params["on_startup"]["operation"], ) if opt == "articulation_views": if randomization_params["articulation_views"] is not None: for view_name in randomization_params["articulation_views"].keys(): if randomization_params["articulation_views"][view_name] is not None: for attribute, params in randomization_params["articulation_views"][view_name].items(): params = randomization_params["articulation_views"][view_name][attribute] if attribute in ["scale"] and params is not None: if "on_startup" in params.keys(): if not set(('operation','distribution', 'distribution_parameters')).issubset(params["on_startup"]): raise ValueError(f"Please ensure the following randomization parameters for {view_name} {attribute} " + \ "on_startup are provided: operation, distribution, distribution_parameters.") view = task._env._world.scene._scene_registry.articulated_views[view_name] if attribute == "scale": self.randomize_scale_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"]["distribution_parameters"], operation=params["on_startup"]["operation"], sync_dim_noise=True ) else: dr_config = self._cfg.get("domain_randomization", None) if dr_config is None: raise ValueError("No domain randomization parameters are specified in the task yaml config file") randomize = dr_config.get("randomize", False) randomization_params = dr_config.get("randomization_params", None) if randomize == False or randomization_params is None: print("On Startup Domain randomization will not be applied.") def set_up_domain_randomization(self, task): if self.randomize: randomization_params = self._cfg["domain_randomization"]["randomization_params"] rep.set_global_seed(self._config["seed"]) with dr.trigger.on_rl_frame(num_envs=self._cfg["env"]["numEnvs"]): for opt in randomization_params.keys(): if opt == "observations": self._set_up_observations_randomization(task) elif opt == "actions": self._set_up_actions_randomization(task) elif opt == "simulation": if randomization_params["simulation"] is not None: self.distributions["simulation"] = dict() dr.physics_view.register_simulation_context(task._env._world) for attribute, params in randomization_params["simulation"].items(): self._set_up_simulation_randomization(attribute, params) elif opt == "rigid_prim_views": if randomization_params["rigid_prim_views"] is not None: self.distributions["rigid_prim_views"] = dict() for view_name in randomization_params["rigid_prim_views"].keys(): if randomization_params["rigid_prim_views"][view_name] is not None: self.distributions["rigid_prim_views"][view_name] = dict() dr.physics_view.register_rigid_prim_view( rigid_prim_view=task._env._world.scene._scene_registry.rigid_prim_views[view_name], ) for attribute, params in randomization_params["rigid_prim_views"][view_name].items(): if attribute not in ["scale", "density"]: self._set_up_rigid_prim_view_randomization(view_name, attribute, params) elif opt == "articulation_views": if randomization_params["articulation_views"] is not None: self.distributions["articulation_views"] = dict() for view_name in randomization_params["articulation_views"].keys(): if randomization_params["articulation_views"][view_name] is not None: self.distributions["articulation_views"][view_name] = dict() dr.physics_view.register_articulation_view( articulation_view=task._env._world.scene._scene_registry.articulated_views[view_name], ) for attribute, params in randomization_params["articulation_views"][view_name].items(): if attribute not in ["scale"]: self._set_up_articulation_view_randomization(view_name, attribute, params) rep.orchestrator.run() else: dr_config = self._cfg.get("domain_randomization", None) if dr_config is None: raise ValueError("No domain randomization parameters are specified in the task yaml config file") randomize = dr_config.get("randomize", False) randomization_params = dr_config.get("randomization_params", None) if randomize == False or randomization_params is None: print("Domain randomization will not be applied.") def _set_up_observations_randomization(self, task): task.randomize_observations = True self._observations_dr_params = self._cfg["domain_randomization"]["randomization_params"]["observations"] if self._observations_dr_params is None: raise ValueError(f"Observations randomization parameters are not provided.") if "on_reset" in self._observations_dr_params.keys(): if not set(('operation','distribution', 'distribution_parameters')).issubset(self._observations_dr_params["on_reset"].keys()): raise ValueError(f"Please ensure the following observations on_reset randomization parameters are provided: " + \ "operation, distribution, distribution_parameters.") self.active_domain_randomizations[("observations", "on_reset")] = np.array(self._observations_dr_params["on_reset"]["distribution_parameters"]) if "on_interval" in self._observations_dr_params.keys(): if not set(('frequency_interval', 'operation','distribution', 'distribution_parameters')).issubset(self._observations_dr_params["on_interval"].keys()): raise ValueError(f"Please ensure the following observations on_interval randomization parameters are provided: " + \ "frequency_interval, operation, distribution, distribution_parameters.") self.active_domain_randomizations[("observations", "on_interval")] = np.array(self._observations_dr_params["on_interval"]["distribution_parameters"]) self._observations_counter_buffer = torch.zeros((self._cfg["env"]["numEnvs"]), dtype=torch.int, device=self._config["rl_device"]) self._observations_correlated_noise = torch.zeros((self._cfg["env"]["numEnvs"], task.num_observations), device=self._config["rl_device"]) def _set_up_actions_randomization(self, task): task.randomize_actions = True self._actions_dr_params = self._cfg["domain_randomization"]["randomization_params"]["actions"] if self._actions_dr_params is None: raise ValueError(f"Actions randomization parameters are not provided.") if "on_reset" in self._actions_dr_params.keys(): if not set(('operation','distribution', 'distribution_parameters')).issubset(self._actions_dr_params["on_reset"].keys()): raise ValueError(f"Please ensure the following actions on_reset randomization parameters are provided: " + \ "operation, distribution, distribution_parameters.") self.active_domain_randomizations[("actions", "on_reset")] = np.array(self._actions_dr_params["on_reset"]["distribution_parameters"]) if "on_interval" in self._actions_dr_params.keys(): if not set(('frequency_interval', 'operation','distribution', 'distribution_parameters')).issubset(self._actions_dr_params["on_interval"].keys()): raise ValueError(f"Please ensure the following actions on_interval randomization parameters are provided: " + \ "frequency_interval, operation, distribution, distribution_parameters.") self.active_domain_randomizations[("actions", "on_interval")] = np.array(self._actions_dr_params["on_interval"]["distribution_parameters"]) self._actions_counter_buffer = torch.zeros((self._cfg["env"]["numEnvs"]), dtype=torch.int, device=self._config["rl_device"]) self._actions_correlated_noise = torch.zeros((self._cfg["env"]["numEnvs"], task.num_actions), device=self._config["rl_device"]) def apply_observations_randomization(self, observations, reset_buf): env_ids = reset_buf.nonzero(as_tuple=False).squeeze(-1) self._observations_counter_buffer[env_ids] = 0 self._observations_counter_buffer += 1 if "on_reset" in self._observations_dr_params.keys(): observations[:] = self._apply_correlated_noise( buffer_type="observations", buffer=observations, reset_ids=env_ids, operation=self._observations_dr_params["on_reset"]["operation"], distribution=self._observations_dr_params["on_reset"]["distribution"], distribution_parameters=self._observations_dr_params["on_reset"]["distribution_parameters"], ) if "on_interval" in self._observations_dr_params.keys(): randomize_ids = (self._observations_counter_buffer >= self._observations_dr_params["on_interval"]["frequency_interval"]).nonzero(as_tuple=False).squeeze(-1) self._observations_counter_buffer[randomize_ids] = 0 observations[:] = self._apply_uncorrelated_noise( buffer=observations, randomize_ids=randomize_ids, operation=self._observations_dr_params["on_interval"]["operation"], distribution=self._observations_dr_params["on_interval"]["distribution"], distribution_parameters=self._observations_dr_params["on_interval"]["distribution_parameters"], ) return observations def apply_actions_randomization(self, actions, reset_buf): env_ids = reset_buf.nonzero(as_tuple=False).squeeze(-1) self._actions_counter_buffer[env_ids] = 0 self._actions_counter_buffer += 1 if "on_reset" in self._actions_dr_params.keys(): actions[:] = self._apply_correlated_noise( buffer_type="actions", buffer=actions, reset_ids=env_ids, operation=self._actions_dr_params["on_reset"]["operation"], distribution=self._actions_dr_params["on_reset"]["distribution"], distribution_parameters=self._actions_dr_params["on_reset"]["distribution_parameters"], ) if "on_interval" in self._actions_dr_params.keys(): randomize_ids = (self._actions_counter_buffer >= self._actions_dr_params["on_interval"]["frequency_interval"]).nonzero(as_tuple=False).squeeze(-1) self._actions_counter_buffer[randomize_ids] = 0 actions[:] = self._apply_uncorrelated_noise( buffer=actions, randomize_ids=randomize_ids, operation=self._actions_dr_params["on_interval"]["operation"], distribution=self._actions_dr_params["on_interval"]["distribution"], distribution_parameters=self._actions_dr_params["on_interval"]["distribution_parameters"], ) return actions def _apply_uncorrelated_noise(self, buffer, randomize_ids, operation, distribution, distribution_parameters): if distribution == "gaussian" or distribution == "normal": noise = torch.normal(mean=distribution_parameters[0], std=distribution_parameters[1], size=(len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"]) elif distribution == "uniform": noise = (distribution_parameters[1] - distribution_parameters[0]) * torch.rand((len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"]) + distribution_parameters[0] elif distribution == "loguniform" or distribution == "log_uniform": noise = torch.exp((np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand((len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"]) + np.log(distribution_parameters[0])) else: print(f"The specified {distribution} distribution is not supported.") if operation == "additive": buffer[randomize_ids] += noise elif operation == "scaling": buffer[randomize_ids] *= noise else: print(f"The specified {operation} operation type is not supported.") return buffer def _apply_correlated_noise(self, buffer_type, buffer, reset_ids, operation, distribution, distribution_parameters): if buffer_type == "observations": correlated_noise_buffer = self._observations_correlated_noise elif buffer_type == "actions": correlated_noise_buffer = self._actions_correlated_noise if len(reset_ids) > 0: if distribution == "gaussian" or distribution == "normal": correlated_noise_buffer[reset_ids] = torch.normal(mean=distribution_parameters[0], std=distribution_parameters[1], size=(len(reset_ids), buffer.shape[1]), device=self._config["rl_device"]) elif distribution == "uniform": correlated_noise_buffer[reset_ids] = (distribution_parameters[1] - distribution_parameters[0]) * torch.rand((len(reset_ids), buffer.shape[1]), device=self._config["rl_device"]) + distribution_parameters[0] elif distribution == "loguniform" or distribution == "log_uniform": correlated_noise_buffer[reset_ids] = torch.exp((np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand((len(reset_ids), buffer.shape[1]), device=self._config["rl_device"]) + np.log(distribution_parameters[0])) else: print(f"The specified {distribution} distribution is not supported.") if operation == "additive": buffer += correlated_noise_buffer elif operation == "scaling": buffer *= correlated_noise_buffer else: print(f"The specified {operation} operation type is not supported.") return buffer def _set_up_simulation_randomization(self, attribute, params): if params is None: raise ValueError(f"Randomization parameters for simulation {attribute} is not provided.") if attribute in dr.SIMULATION_CONTEXT_ATTRIBUTES: self.distributions["simulation"][attribute] = dict() if "on_reset" in params.keys(): if not set(('operation','distribution', 'distribution_parameters')).issubset(params["on_reset"]): raise ValueError(f"Please ensure the following randomization parameters for simulation {attribute} on_reset are provided: " + \ "operation, distribution, distribution_parameters.") self.active_domain_randomizations[("simulation", attribute, "on_reset")] = np.array(params["on_reset"]["distribution_parameters"]) kwargs = {"operation": params["on_reset"]["operation"]} self.distributions["simulation"][attribute]["on_reset"] = self._generate_distribution( dimension=dr.physics_view._simulation_context_initial_values[attribute].shape[0], view_name="simulation", attribute=attribute, params=params["on_reset"], ) kwargs[attribute] = self.distributions["simulation"][attribute]["on_reset"] with dr.gate.on_env_reset(): dr.physics_view.randomize_simulation_context(**kwargs) if "on_interval" in params.keys(): if not set(('frequency_interval', 'operation','distribution', 'distribution_parameters')).issubset(params["on_interval"]): raise ValueError(f"Please ensure the following randomization parameters for simulation {attribute} on_interval are provided: " + \ "frequency_interval, operation, distribution, distribution_parameters.") self.active_domain_randomizations[("simulation", attribute, "on_interval")] = np.array(params["on_interval"]["distribution_parameters"]) kwargs = {"operation": params["on_interval"]["operation"]} self.distributions["simulation"][attribute]["on_interval"] = self._generate_distribution( dimension=dr.physics_view._simulation_context_initial_values[attribute].shape[0], view_name="simulation", attribute=attribute, params=params["on_interval"], ) kwargs[attribute] = self.distributions["simulation"][attribute]["on_interval"] with dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]): dr.physics_view.randomize_simulation_context(**kwargs) def _set_up_rigid_prim_view_randomization(self, view_name, attribute, params): if params is None: raise ValueError(f"Randomization parameters for rigid prim view {view_name} {attribute} is not provided.") if attribute in dr.RIGID_PRIM_ATTRIBUTES: self.distributions["rigid_prim_views"][view_name][attribute] = dict() if "on_reset" in params.keys(): if not set(('operation','distribution', 'distribution_parameters')).issubset(params["on_reset"]): raise ValueError(f"Please ensure the following randomization parameters for {view_name} {attribute} on_reset are provided: " + \ "operation, distribution, distribution_parameters.") self.active_domain_randomizations[("rigid_prim_views", view_name, attribute, "on_reset")] = np.array(params["on_reset"]["distribution_parameters"]) kwargs = {"view_name": view_name, "operation": params["on_reset"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_reset"].keys(): kwargs["num_buckets"] = params["on_reset"]["num_buckets"] self.distributions["rigid_prim_views"][view_name][attribute]["on_reset"] = self._generate_distribution( dimension=dr.physics_view._rigid_prim_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_reset"], ) kwargs[attribute] = self.distributions["rigid_prim_views"][view_name][attribute]["on_reset"] with dr.gate.on_env_reset(): dr.physics_view.randomize_rigid_prim_view(**kwargs) if "on_interval" in params.keys(): if not set(('frequency_interval', 'operation','distribution', 'distribution_parameters')).issubset(params["on_interval"]): raise ValueError(f"Please ensure the following randomization parameters for {view_name} {attribute} on_interval are provided: " + \ "frequency_interval, operation, distribution, distribution_parameters.") self.active_domain_randomizations[("rigid_prim_views", view_name, attribute, "on_interval")] = np.array(params["on_interval"]["distribution_parameters"]) kwargs = {"view_name": view_name, "operation": params["on_interval"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_interval"].keys(): kwargs["num_buckets"] = params["on_interval"]["num_buckets"] self.distributions["rigid_prim_views"][view_name][attribute]["on_interval"] = self._generate_distribution( dimension=dr.physics_view._rigid_prim_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_interval"], ) kwargs[attribute] = self.distributions["rigid_prim_views"][view_name][attribute]["on_interval"] with dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]): dr.physics_view.randomize_rigid_prim_view(**kwargs) else: raise ValueError(f"The attribute {attribute} for {view_name} is invalid for domain randomization.") def _set_up_articulation_view_randomization(self, view_name, attribute, params): if params is None: raise ValueError(f"Randomization parameters for articulation view {view_name} {attribute} is not provided.") if attribute in dr.ARTICULATION_ATTRIBUTES: self.distributions["articulation_views"][view_name][attribute] = dict() if "on_reset" in params.keys(): if not set(('operation','distribution', 'distribution_parameters')).issubset(params["on_reset"]): raise ValueError(f"Please ensure the following randomization parameters for {view_name} {attribute} on_reset are provided: " + \ "operation, distribution, distribution_parameters.") self.active_domain_randomizations[("articulation_views", view_name, attribute, "on_reset")] = np.array(params["on_reset"]["distribution_parameters"]) kwargs = {"view_name": view_name, "operation": params["on_reset"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_reset"].keys(): kwargs["num_buckets"] = params["on_reset"]["num_buckets"] self.distributions["articulation_views"][view_name][attribute]["on_reset"] = self._generate_distribution( dimension=dr.physics_view._articulation_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_reset"], ) kwargs[attribute] = self.distributions["articulation_views"][view_name][attribute]["on_reset"] with dr.gate.on_env_reset(): dr.physics_view.randomize_articulation_view(**kwargs) if "on_interval" in params.keys(): if not set(('frequency_interval', 'operation','distribution', 'distribution_parameters')).issubset(params["on_interval"]): raise ValueError(f"Please ensure the following randomization parameters for {view_name} {attribute} on_interval are provided: " + \ "frequency_interval, operation, distribution, distribution_parameters.") self.active_domain_randomizations[("articulation_views", view_name, attribute, "on_interval")] = np.array(params["on_interval"]["distribution_parameters"]) kwargs = {"view_name": view_name, "operation": params["on_interval"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_interval"].keys(): kwargs["num_buckets"] = params["on_interval"]["num_buckets"] self.distributions["articulation_views"][view_name][attribute]["on_interval"] = self._generate_distribution( dimension=dr.physics_view._articulation_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_interval"], ) kwargs[attribute] = self.distributions["articulation_views"][view_name][attribute]["on_interval"] with dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]): dr.physics_view.randomize_articulation_view(**kwargs) else: raise ValueError(f"The attribute {attribute} for {view_name} is invalid for domain randomization.") def _generate_distribution(self, view_name, attribute, dimension, params): dist_params = self._sanitize_distribution_parameters(attribute, dimension, params["distribution_parameters"]) if params["distribution"] == "uniform": return rep.distribution.uniform(tuple(dist_params[0]), tuple(dist_params[1])) elif params["distribution"] == "gaussian" or params["distribution"] == "normal": return rep.distribution.normal(tuple(dist_params[0]), tuple(dist_params[1])) elif params["distribution"] == "loguniform" or params["distribution"] == "log_uniform": return rep.distribution.log_uniform(tuple(dist_params[0]), tuple(dist_params[1])) else: raise ValueError(f"The provided distribution for {view_name} {attribute} is not supported. " + "Options: uniform, gaussian/normal, loguniform/log_uniform" ) def _sanitize_distribution_parameters(self, attribute, dimension, params): distribution_parameters = np.array(params) if distribution_parameters.shape == (2,): # if the user does not provide a set of parameters for each dimension dist_params = [[distribution_parameters[0]]*dimension, [distribution_parameters[1]]*dimension] elif distribution_parameters.shape == (2, dimension): # if the user provides a set of parameters for each dimension in the format [[...], [...]] dist_params = distribution_parameters.tolist() elif attribute in ["material_properties", "body_inertias"] and distribution_parameters.shape == (2, 3): # if the user only provides the parameters for one body in the articulation, assume the same parameters for all other links dist_params = [[distribution_parameters[0]] * (dimension // 3), [distribution_parameters[1]] * (dimension // 3)] else: raise ValueError(f"The provided distribution_parameters for {view_name} {attribute} is invalid due to incorrect dimensions.") return dist_params def set_dr_distribution_parameters(self, distribution_parameters, *distribution_path): if distribution_path not in self.active_domain_randomizations.keys(): raise ValueError(f"Cannot find a valid domain randomization distribution using the path {distribution_path}.") if distribution_path[0] == "observations": if len(distribution_parameters) == 2: self._observations_dr_params[distribution_path[1]]["distribution_parameters"] = distribution_parameters else: raise ValueError(f"Please provide distribution_parameters for observations {distribution_path[1]} " + "in the form of [dist_param_1, dist_param_2]") elif distribution_path[0] == "actions": if len(distribution_parameters) == 2: self._actions_dr_params[distribution_path[1]]["distribution_parameters"] = distribution_parameters else: raise ValueError(f"Please provide distribution_parameters for actions {distribution_path[1]} " + "in the form of [dist_param_1, dist_param_2]") else: replicator_distribution = self.distributions[distribution_path[0]][distribution_path[1]][distribution_path[2]] if distribution_path[0] == "rigid_prim_views" or distribution_path[0] == "articulation_views": replicator_distribution = replicator_distribution[distribution_path[3]] if replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleUniform" \ or replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleLogUniform": dimension = len(dr.utils.get_distribution_params(replicator_distribution, ["lower"])[0]) dist_params = self._sanitize_distribution_parameters(distribution_path[-2], dimension, distribution_parameters) dr.utils.set_distribution_params(replicator_distribution, {"lower": dist_params[0], "upper": dist_params[1]}) elif replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleNormal": dimension = len(dr.utils.get_distribution_params(replicator_distribution, ["mean"])[0]) dist_params = self._sanitize_distribution_parameters(distribution_path[-2], dimension, distribution_parameters) dr.utils.set_distribution_params(replicator_distribution, {"mean": dist_params[0], "std": dist_params[1]}) def get_dr_distribution_parameters(self, *distribution_path): if distribution_path not in self.active_domain_randomizations.keys(): raise ValueError(f"Cannot find a valid domain randomization distribution using the path {distribution_path}.") if distribution_path[0] == "observations": return self._observations_dr_params[distribution_path[1]]["distribution_parameters"] elif distribution_path[0] == "actions": return self._actions_dr_params[distribution_path[1]]["distribution_parameters"] else: replicator_distribution = self.distributions[distribution_path[0]][distribution_path[1]][distribution_path[2]] if distribution_path[0] == "rigid_prim_views" or distribution_path[0] == "articulation_views": replicator_distribution = replicator_distribution[distribution_path[3]] if replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleUniform" \ or replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleLogUniform": return dr.utils.get_distribution_params(replicator_distribution, ["lower", "upper"]) elif replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleNormal": return dr.utils.get_distribution_params(replicator_distribution, ["mean", "std"]) def get_initial_dr_distribution_parameters(self, *distribution_path): if distribution_path not in self.active_domain_randomizations.keys(): raise ValueError(f"Cannot find a valid domain randomization distribution using the path {distribution_path}.") return self.active_domain_randomizations[distribution_path].copy() def _generate_noise(self, distribution, distribution_parameters, size, device): if distribution == "gaussian" or distribution == "normal": noise = torch.normal(mean=distribution_parameters[0], std=distribution_parameters[1], size=size, device=device) elif distribution == "uniform": noise = (distribution_parameters[1] - distribution_parameters[0]) * torch.rand(size, device=device) + distribution_parameters[0] elif distribution == "loguniform" or distribution == "log_uniform": noise = torch.exp((np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand(size, device=device) + np.log(distribution_parameters[0])) else: print(f"The specified {distribution} distribution is not supported.") return noise def randomize_scale_on_startup(self, view, distribution, distribution_parameters, operation, sync_dim_noise=True): scales = view.get_local_scales() if sync_dim_noise: dist_params = np.asarray(self._sanitize_distribution_parameters(attribute="scale", dimension=1, params=distribution_parameters)) noise = self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device).repeat(3,1).T else: dist_params = np.asarray(self._sanitize_distribution_parameters(attribute="scale", dimension=3, params=distribution_parameters)) noise = torch.zeros((view.count, 3), device=view._device) for i in range(3): noise[:, i] = self._generate_noise(distribution, dist_params[:, i], (view.count,), view._device) if operation == "additive": scales += noise elif operation == "scaling": scales *= noise elif operation == "direct": scales = noise else: print(f"The specified {operation} operation type is not supported.") view.set_local_scales(scales=scales) def randomize_mass_on_startup(self, view, distribution, distribution_parameters, operation): if isinstance(view, omni.isaac.core.prims.RigidPrimView) or isinstance(view, RigidPrimView): masses = view.get_masses() dist_params = np.asarray(self._sanitize_distribution_parameters(attribute=f"{view.name} mass", dimension=1, params=distribution_parameters)) noise = self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device) set_masses = view.set_masses if operation == "additive": masses += noise elif operation == "scaling": masses *= noise elif operation == "direct": masses = noise else: print(f"The specified {operation} operation type is not supported.") set_masses(masses) def randomize_density_on_startup(self, view, distribution, distribution_parameters, operation): if isinstance(view, omni.isaac.core.prims.RigidPrimView) or isinstance(view, RigidPrimView): densities = view.get_densities() dist_params = np.asarray(self._sanitize_distribution_parameters(attribute=f"{view.name} density", dimension=1, params=distribution_parameters)) noise = self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device) set_densities = view.set_densities if operation == "additive": densities += noise elif operation == "scaling": densities *= noise elif operation == "direct": densities = noise else: print(f"The specified {operation} operation type is not supported.") set_densities(densities)
41,564
Python
70.787565
256
0.602877
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/utils/rlgames/rlgames_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from rl_games.common import env_configurations, vecenv from rl_games.common.algo_observer import AlgoObserver from rl_games.algos_torch import torch_ext import torch import numpy as np from typing import Callable class RLGPUAlgoObserver(AlgoObserver): """Allows us to log stats from the env along with the algorithm running stats. """ def __init__(self): pass def after_init(self, algo): self.algo = algo self.mean_scores = torch_ext.AverageMeter(1, self.algo.games_to_track).to(self.algo.ppo_device) self.ep_infos = [] self.direct_info = {} self.writer = self.algo.writer def process_infos(self, infos, done_indices): assert isinstance(infos, dict), "RLGPUAlgoObserver expects dict info" if isinstance(infos, dict): if 'episode' in infos: self.ep_infos.append(infos['episode']) if len(infos) > 0 and isinstance(infos, dict): # allow direct logging from env self.direct_info = {} for k, v in infos.items(): # only log scalars if isinstance(v, float) or isinstance(v, int) or (isinstance(v, torch.Tensor) and len(v.shape) == 0): self.direct_info[k] = v def after_clear_stats(self): self.mean_scores.clear() def after_print_stats(self, frame, epoch_num, total_time): if self.ep_infos: for key in self.ep_infos[0]: infotensor = torch.tensor([], device=self.algo.device) for ep_info in self.ep_infos: # handle scalar and zero dimensional tensor infos if not isinstance(ep_info[key], torch.Tensor): ep_info[key] = torch.Tensor([ep_info[key]]) if len(ep_info[key].shape) == 0: ep_info[key] = ep_info[key].unsqueeze(0) infotensor = torch.cat((infotensor, ep_info[key].to(self.algo.device))) value = torch.mean(infotensor) self.writer.add_scalar('Episode/' + key, value, epoch_num) self.ep_infos.clear() for k, v in self.direct_info.items(): self.writer.add_scalar(f'{k}/frame', v, frame) self.writer.add_scalar(f'{k}/iter', v, epoch_num) self.writer.add_scalar(f'{k}/time', v, total_time) if self.mean_scores.current_size > 0: mean_scores = self.mean_scores.get_mean() self.writer.add_scalar('scores/mean', mean_scores, frame) self.writer.add_scalar('scores/iter', mean_scores, epoch_num) self.writer.add_scalar('scores/time', mean_scores, total_time) class RLGPUEnv(vecenv.IVecEnv): def __init__(self, config_name, num_actors, **kwargs): self.env = env_configurations.configurations[config_name]['env_creator'](**kwargs) def step(self, action): return self.env.step(action) def reset(self): return self.env.reset() def get_number_of_agents(self): return self.env.get_number_of_agents() def get_env_info(self): info = {} info['action_space'] = self.env.action_space info['observation_space'] = self.env.observation_space if self.env.num_states > 0: info['state_space'] = self.env.state_space print(info['action_space'], info['observation_space'], info['state_space']) else: print(info['action_space'], info['observation_space']) return info
5,154
Python
42.319327
121
0.642608
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/utils/config_utils/sim_config.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from swervesim.utils.config_utils.default_scene_params import * import copy import omni.usd import numpy as np import torch import carb class SimConfig(): def __init__(self, config: dict = None): if config is None: config = dict() self._config = config self._cfg = config.get("task", dict()) self._parse_config() if self._config["test"] == True: self._sim_params["enable_scene_query_support"] = True if self._config["headless"] == True and not self._sim_params["enable_cameras"]: self._sim_params["use_flatcache"] = False self._sim_params["enable_viewport"] = False if self._sim_params["disable_contact_processing"]: carb.settings.get_settings().set_bool("/physics/disableContactProcessing", True) def _parse_config(self): # general sim parameter self._sim_params = copy.deepcopy(default_sim_params) self._default_physics_material = copy.deepcopy(default_physics_material) sim_cfg = self._cfg.get("sim", None) if sim_cfg is not None: for opt in sim_cfg.keys(): if opt in self._sim_params: if opt == "default_physics_material": for material_opt in sim_cfg[opt]: self._default_physics_material[material_opt] = sim_cfg[opt][material_opt] else: self._sim_params[opt] = sim_cfg[opt] else: print("Sim params does not have attribute: ", opt) self._sim_params["default_physics_material"] = self._default_physics_material # physx parameters self._physx_params = copy.deepcopy(default_physx_params) if sim_cfg is not None and "physx" in sim_cfg: for opt in sim_cfg["physx"].keys(): if opt in self._physx_params: self._physx_params[opt] = sim_cfg["physx"][opt] else: print("Physx sim params does not have attribute: ", opt) self._sanitize_device() def _sanitize_device(self): if self._sim_params["use_gpu_pipeline"]: self._physx_params["use_gpu"] = True # device should be in sync with pipeline if self._sim_params["use_gpu_pipeline"]: self._config["sim_device"] = f"cuda:{self._config['device_id']}" else: self._config["sim_device"] = "cpu" # also write to physics params for setting sim device self._physx_params["sim_device"] = self._config["sim_device"] print("Pipeline: ", "GPU" if self._sim_params["use_gpu_pipeline"] else "CPU") print("Pipeline Device: ", self._config["sim_device"]) print("Sim Device: ", "GPU" if self._physx_params["use_gpu"] else "CPU") def parse_actor_config(self, actor_name): actor_params = copy.deepcopy(default_actor_options) if "sim" in self._cfg and actor_name in self._cfg["sim"]: actor_cfg = self._cfg["sim"][actor_name] for opt in actor_cfg.keys(): if actor_cfg[opt] != -1 and opt in actor_params: actor_params[opt] = actor_cfg[opt] elif opt not in actor_params: print("Actor params does not have attribute: ", opt) return actor_params def _get_actor_config_value(self, actor_name, attribute_name, attribute=None): actor_params = self.parse_actor_config(actor_name) if attribute is not None: if attribute_name not in actor_params: return attribute.Get() if actor_params[attribute_name] != -1: return actor_params[attribute_name] elif actor_params["override_usd_defaults"] and not attribute.IsAuthored(): return self._physx_params[attribute_name] else: if actor_params[attribute_name] != -1: return actor_params[attribute_name] @property def sim_params(self): return self._sim_params @property def config(self): return self._config @property def task_config(self): return self._cfg @property def physx_params(self): return self._physx_params def get_physics_params(self): return {**self.sim_params, **self.physx_params} def _get_physx_collision_api(self, prim): from pxr import UsdPhysics, PhysxSchema physx_collision_api = PhysxSchema.PhysxCollisionAPI(prim) if not physx_collision_api: physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(prim) return physx_collision_api def _get_physx_rigid_body_api(self, prim): from pxr import UsdPhysics, PhysxSchema physx_rb_api = PhysxSchema.PhysxRigidBodyAPI(prim) if not physx_rb_api: physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Apply(prim) return physx_rb_api def _get_physx_articulation_api(self, prim): from pxr import UsdPhysics, PhysxSchema arti_api = PhysxSchema.PhysxArticulationAPI(prim) if not arti_api: arti_api = PhysxSchema.PhysxArticulationAPI.Apply(prim) return arti_api def set_contact_offset(self, name, prim, value=None): physx_collision_api = self._get_physx_collision_api(prim) contact_offset = physx_collision_api.GetContactOffsetAttr() # if not contact_offset: # contact_offset = physx_collision_api.CreateContactOffsetAttr() if value is None: value = self._get_actor_config_value(name, "contact_offset", contact_offset) if value != -1: contact_offset.Set(value) def set_rest_offset(self, name, prim, value=None): physx_collision_api = self._get_physx_collision_api(prim) rest_offset = physx_collision_api.GetRestOffsetAttr() # if not rest_offset: # rest_offset = physx_collision_api.CreateRestOffsetAttr() if value is None: value = self._get_actor_config_value(name, "rest_offset", rest_offset) if value != -1: rest_offset.Set(value) def set_position_iteration(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) solver_position_iteration_count = physx_rb_api.GetSolverPositionIterationCountAttr() if value is None: value = self._get_actor_config_value(name, "solver_position_iteration_count", solver_position_iteration_count) if value != -1: solver_position_iteration_count.Set(value) def set_velocity_iteration(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) solver_velocity_iteration_count = physx_rb_api.GetSolverVelocityIterationCountAttr() if value is None: value = self._get_actor_config_value(name, "solver_velocity_iteration_count", solver_position_iteration_count) if value != -1: solver_velocity_iteration_count.Set(value) def set_max_depenetration_velocity(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) max_depenetration_velocity = physx_rb_api.GetMaxDepenetrationVelocityAttr() if value is None: value = self._get_actor_config_value(name, "max_depenetration_velocity", max_depenetration_velocity) if value != -1: max_depenetration_velocity.Set(value) def set_sleep_threshold(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) sleep_threshold = physx_rb_api.GetSleepThresholdAttr() if value is None: value = self._get_actor_config_value(name, "sleep_threshold", sleep_threshold) if value != -1: sleep_threshold.Set(value) def set_stabilization_threshold(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) stabilization_threshold = physx_rb_api.GetStabilizationThresholdAttr() if value is None: value = self._get_actor_config_value(name, "stabilization_threshold", stabilization_threshold) if value != -1: stabilization_threshold.Set(value) def set_gyroscopic_forces(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) enable_gyroscopic_forces = physx_rb_api.GetEnableGyroscopicForcesAttr() if value is None: value = self._get_actor_config_value(name, "enable_gyroscopic_forces", enable_gyroscopic_forces) if value != -1: enable_gyroscopic_forces.Set(value) def set_density(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) density = physx_rb_api.GetDensityAttr() if value is None: value = self._get_actor_config_value(name, "density", density) if value != -1: density.Set(value) # auto-compute mass self.set_mass(prim, 0.0) def set_mass(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) mass = physx_rb_api.GetMassAttr() if value is None: value = self._get_actor_config_value(name, "mass", mass) if value != -1: mass.Set(value) def retain_acceleration(self, prim): # retain accelerations if running with more than one substep physx_rb_api = self._get_physx_rigid_body_api(prim) if self._sim_params["substeps"] > 1: physx_rb_api.GetRetainAccelerationsAttr().Set(True) def add_fixed_base(self, name, prim, cfg, value=None): # add fixed root joint for rigid body from pxr import UsdPhysics, PhysxSchema stage = omni.usd.get_context().get_stage() if value is None: value = self._get_actor_config_value(name, "fixed_base") if value: root_joint_path = f"{prim.GetPath()}_fixedBaseRootJoint" joint = UsdPhysics.Joint.Define(stage, root_joint_path) joint.CreateBody1Rel().SetTargets([prim.GetPath()]) self.apply_articulation_settings(name, joint.GetPrim(), cfg, force_articulation=True) def set_articulation_position_iteration(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) solver_position_iteration_count = arti_api.GetSolverPositionIterationCountAttr() if value is None: value = self._get_actor_config_value(name, "solver_position_iteration_count", solver_position_iteration_count) if value != -1: solver_position_iteration_count.Set(value) def set_articulation_velocity_iteration(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) solver_velocity_iteration_count = arti_api.GetSolverVelocityIterationCountAttr() if value is None: value = self._get_actor_config_value(name, "solver_velocity_iteration_count", solver_position_iteration_count) if value != -1: solver_velocity_iteration_count.Set(value) def set_articulation_sleep_threshold(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) sleep_threshold = arti_api.GetSleepThresholdAttr() if value is None: value = self._get_actor_config_value(name, "sleep_threshold", sleep_threshold) if value != -1: sleep_threshold.Set(value) def set_articulation_stabilization_threshold(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) stabilization_threshold = arti_api.GetStabilizationThresholdAttr() if value is None: value = self._get_actor_config_value(name, "stabilization_threshold", stabilization_threshold) if value != -1: stabilization_threshold.Set(value) def apply_rigid_body_settings(self, name, prim, cfg, is_articulation): from pxr import UsdPhysics, PhysxSchema stage = omni.usd.get_context().get_stage() rb_api = UsdPhysics.RigidBodyAPI.Get(stage, prim.GetPath()) physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Get(stage, prim.GetPath()) if not physx_rb_api: physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Apply(prim) # if it's a body in an articulation, it's handled at articulation root if not is_articulation: self.add_fixed_base(name, prim, cfg, cfg["fixed_base"]) self.set_position_iteration(name, prim, cfg["solver_position_iteration_count"]) self.set_velocity_iteration(name, prim, cfg["solver_velocity_iteration_count"]) self.set_max_depenetration_velocity(name, prim, cfg["max_depenetration_velocity"]) self.set_sleep_threshold(name, prim, cfg["sleep_threshold"]) self.set_stabilization_threshold(name, prim, cfg["stabilization_threshold"]) self.set_gyroscopic_forces(name, prim, cfg["enable_gyroscopic_forces"]) # density and mass mass_api = UsdPhysics.MassAPI.Get(stage, prim.GetPath()) if mass_api is None: mass_api = UsdPhysics.MassAPI.Apply(prim) mass_attr = mass_api.GetMassAttr() density_attr = mass_api.GetDensityAttr() if not mass_attr: mass_attr = mass_api.CreateMassAttr() if not density_attr: density_attr = mass_api.CreateDensityAttr() if cfg["density"] != -1: density_attr.Set(cfg["density"]) mass_attr.Set(0.0) # mass is to be computed elif cfg["override_usd_defaults"] and not density_attr.IsAuthored() and not mass_attr.IsAuthored(): density_attr.Set(self._physx_params["density"]) self.retain_acceleration(prim) def apply_rigid_shape_settings(self, name, prim, cfg): from pxr import UsdPhysics, PhysxSchema stage = omni.usd.get_context().get_stage() # collision APIs collision_api = UsdPhysics.CollisionAPI(prim) if not collision_api: collision_api = UsdPhysics.CollisionAPI.Apply(prim) physx_collision_api = PhysxSchema.PhysxCollisionAPI(prim) if not physx_collision_api: physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(prim) self.set_contact_offset(name, prim, cfg["contact_offset"]) self.set_rest_offset(name, prim, cfg["rest_offset"]) def apply_articulation_settings(self, name, prim, cfg, force_articulation=False): from pxr import UsdPhysics, PhysxSchema stage = omni.usd.get_context().get_stage() is_articulation = False # check if is articulation prims = [prim] while len(prims) > 0: prim_tmp = prims.pop(0) articulation_api = UsdPhysics.ArticulationRootAPI.Get(stage, prim_tmp.GetPath()) physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Get(stage, prim_tmp.GetPath()) if articulation_api or physx_articulation_api: is_articulation = True children_prims = prim_tmp.GetPrim().GetChildren() prims = prims + children_prims if not is_articulation and force_articulation: articulation_api = UsdPhysics.ArticulationRootAPI.Apply(prim) physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Apply(prim) # parse through all children prims prims = [prim] while len(prims) > 0: cur_prim = prims.pop(0) rb = UsdPhysics.RigidBodyAPI.Get(stage, cur_prim.GetPath()) collision_body = UsdPhysics.CollisionAPI.Get(stage, cur_prim.GetPath()) articulation = UsdPhysics.ArticulationRootAPI.Get(stage, cur_prim.GetPath()) if rb: self.apply_rigid_body_settings(name, cur_prim, cfg, is_articulation) if collision_body: self.apply_rigid_shape_settings(name, cur_prim, cfg) if articulation: articulation_api = UsdPhysics.ArticulationRootAPI.Get(stage, cur_prim.GetPath()) physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Get(stage, cur_prim.GetPath()) # enable self collisions enable_self_collisions = physx_articulation_api.GetEnabledSelfCollisionsAttr() if cfg["enable_self_collisions"] != -1: enable_self_collisions.Set(cfg["enable_self_collisions"]) self.set_articulation_position_iteration(name, cur_prim, cfg["solver_position_iteration_count"]) self.set_articulation_velocity_iteration(name, cur_prim, cfg["solver_velocity_iteration_count"]) self.set_articulation_sleep_threshold(name, cur_prim, cfg["sleep_threshold"]) self.set_articulation_stabilization_threshold(name, cur_prim, cfg["stabilization_threshold"]) children_prims = cur_prim.GetPrim().GetChildren() prims = prims + children_prims
18,615
Python
44.627451
122
0.641257
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/utils/config_utils/default_scene_params.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. default_physx_params = { ### Per-scene settings "use_gpu": False, "worker_thread_count": 4, "solver_type": 1, # 0: PGS, 1:TGS "bounce_threshold_velocity": 0.2, "friction_offset_threshold": 0.04, # A threshold of contact separation distance used to decide if a contact # point will experience friction forces. "friction_correlation_distance": 0.025, # Contact points can be merged into a single friction anchor if the # distance between the contacts is smaller than correlation distance. # disabling these can be useful for debugging "enable_sleeping": True, "enable_stabilization": True, # GPU buffers "gpu_max_rigid_contact_count": 512 * 1024, "gpu_max_rigid_patch_count": 80 * 1024, "gpu_found_lost_pairs_capacity": 1024, "gpu_found_lost_aggregate_pairs_capacity": 1024, "gpu_total_aggregate_pairs_capacity": 1024, "gpu_max_soft_body_contacts": 1024 * 1024, "gpu_max_particle_contacts": 1024 * 1024, "gpu_heap_capacity": 64 * 1024 * 1024, "gpu_temp_buffer_capacity": 16 * 1024 * 1024, "gpu_max_num_partitions": 8, ### Per-actor settings ( can override in actor_options ) "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "sleep_threshold": 0.0, # Mass-normalized kinetic energy threshold below which an actor may go to sleep. # Allowed range [0, max_float). "stabilization_threshold": 0.0, # Mass-normalized kinetic energy threshold below which an actor may # participate in stabilization. Allowed range [0, max_float). ### Per-body settings ( can override in actor_options ) "enable_gyroscopic_forces": False, "density": 1000.0, # density to be used for bodies that do not specify mass or density "max_depenetration_velocity": 100.0, ### Per-shape settings ( can override in actor_options ) "contact_offset": 0.02, "rest_offset": 0.001 } default_physics_material = { "static_friction": 1.0, "dynamic_friction": 1.0, "restitution": 0.0 } default_sim_params = { "gravity": [0.0, 0.0, -9.81], "dt": 1.0 / 60.0, "substeps": 1, "use_gpu_pipeline": True, "add_ground_plane": True, "add_distant_light": True, "use_flatcache": True, "enable_scene_query_support": False, "enable_cameras": False, "disable_contact_processing": False, "default_physics_material": default_physics_material } default_actor_options = { # -1 means use authored value from USD or default values from default_sim_params if not explicitly authored in USD. # If an attribute value is not explicitly authored in USD, add one with the value given here, # which overrides the USD default. "override_usd_defaults": False, "fixed_base": -1, "enable_self_collisions": -1, "enable_gyroscopic_forces": -1, "solver_position_iteration_count": -1, "solver_velocity_iteration_count": -1, "sleep_threshold": -1, "stabilization_threshold": -1, "max_depenetration_velocity": -1, "density": -1, "mass": -1, "contact_offset": -1, "rest_offset": -1 }
4,799
Python
41.105263
119
0.684101
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/utils/config_utils/path_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import carb from hydra.utils import to_absolute_path import os def is_valid_local_file(path): return os.path.isfile(path) def is_valid_ov_file(path): import omni.client result, entry = omni.client.stat(path) return result == omni.client.Result.OK def download_ov_file(source_path, target_path): import omni.client result = omni.client.copy(source_path, target_path) if result == omni.client.Result.OK: return True return False def break_ov_path(path): import omni.client return omni.client.break_url(path) def retrieve_checkpoint_path(path): print(to_absolute_path(path)) # check if it's a local path if is_valid_local_file(path): return to_absolute_path(path) # check if it's an OV path elif is_valid_ov_file(path): ov_path = break_ov_path(path) file_name = os.path.basename(ov_path.path) target_path = f"checkpoints/{file_name}" copy_to_local = download_ov_file(path, target_path) return to_absolute_path(target_path) else: carb.log_error(f"Invalid checkpoint path: {path}") return None
2,690
Python
38.573529
80
0.734944
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/utils/hydra_cfg/hydra_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import hydra from omegaconf import DictConfig, OmegaConf ## OmegaConf & Hydra Config # Resolvers used in hydra configs (see https://omegaconf.readthedocs.io/en/2.1_branch/usage.html#resolvers) OmegaConf.register_new_resolver('eq', lambda x, y: x.lower()==y.lower()) OmegaConf.register_new_resolver('contains', lambda x, y: x.lower() in y.lower()) OmegaConf.register_new_resolver('if', lambda pred, a, b: a if pred else b) # allows us to resolve default arguments which are copied in multiple places in the config. used primarily for # num_ensv OmegaConf.register_new_resolver('resolve_default', lambda default, arg: default if arg=='' else arg)
2,207
Python
51.571427
110
0.775714
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/utils/hydra_cfg/reformat.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omegaconf import DictConfig, OmegaConf from typing import Dict def omegaconf_to_dict(d: DictConfig)->Dict: """Converts an omegaconf DictConfig to a python Dict, respecting variable interpolation.""" ret = {} for k, v in d.items(): if isinstance(v, DictConfig): ret[k] = omegaconf_to_dict(v) else: ret[k] = v return ret def print_dict(val, nesting: int = -4, start: bool = True): """Outputs a nested dictionory.""" if type(val) == dict: if not start: print('') nesting += 4 for k in val: print(nesting * ' ', end='') print(k, end=': ') print_dict(val[k], nesting, start=False) else: print(val)
2,307
Python
41.74074
95
0.70958
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/utils/terrain_utils/terrain_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np from numpy.random import choice from scipy import interpolate from math import sqrt from omni.isaac.core.prims import XFormPrim from pxr import UsdPhysics, Sdf, Gf, PhysxSchema def random_uniform_terrain(terrain, min_height, max_height, step=1, downsampled_scale=None,): """ Generate a uniform noise terrain Parameters terrain (SubTerrain): the terrain min_height (float): the minimum height of the terrain [meters] max_height (float): the maximum height of the terrain [meters] step (float): minimum height change between two points [meters] downsampled_scale (float): distance between two randomly sampled points ( musty be larger or equal to terrain.horizontal_scale) """ if downsampled_scale is None: downsampled_scale = terrain.horizontal_scale # switch parameters to discrete units min_height = int(min_height / terrain.vertical_scale) max_height = int(max_height / terrain.vertical_scale) step = int(step / terrain.vertical_scale) heights_range = np.arange(min_height, max_height + step, step) height_field_downsampled = np.random.choice(heights_range, (int(terrain.width * terrain.horizontal_scale / downsampled_scale), int( terrain.length * terrain.horizontal_scale / downsampled_scale))) x = np.linspace(0, terrain.width * terrain.horizontal_scale, height_field_downsampled.shape[0]) y = np.linspace(0, terrain.length * terrain.horizontal_scale, height_field_downsampled.shape[1]) f = interpolate.interp2d(y, x, height_field_downsampled, kind='linear') x_upsampled = np.linspace(0, terrain.width * terrain.horizontal_scale, terrain.width) y_upsampled = np.linspace(0, terrain.length * terrain.horizontal_scale, terrain.length) z_upsampled = np.rint(f(y_upsampled, x_upsampled)) terrain.height_field_raw += z_upsampled.astype(np.int16) return terrain def sloped_terrain(terrain, slope=1): """ Generate a sloped terrain Parameters: terrain (SubTerrain): the terrain slope (int): positive or negative slope Returns: terrain (SubTerrain): update terrain """ x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) xx, yy = np.meshgrid(x, y, sparse=True) xx = xx.reshape(terrain.width, 1) max_height = int(slope * (terrain.horizontal_scale / terrain.vertical_scale) * terrain.width) terrain.height_field_raw[:, np.arange(terrain.length)] += (max_height * xx / terrain.width).astype(terrain.height_field_raw.dtype) return terrain def pyramid_sloped_terrain(terrain, slope=1, platform_size=1.): """ Generate a sloped terrain Parameters: terrain (terrain): the terrain slope (int): positive or negative slope platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) center_x = int(terrain.width / 2) center_y = int(terrain.length / 2) xx, yy = np.meshgrid(x, y, sparse=True) xx = (center_x - np.abs(center_x-xx)) / center_x yy = (center_y - np.abs(center_y-yy)) / center_y xx = xx.reshape(terrain.width, 1) yy = yy.reshape(1, terrain.length) max_height = int(slope * (terrain.horizontal_scale / terrain.vertical_scale) * (terrain.width / 2)) terrain.height_field_raw += (max_height * xx * yy).astype(terrain.height_field_raw.dtype) platform_size = int(platform_size / terrain.horizontal_scale / 2) x1 = terrain.width // 2 - platform_size x2 = terrain.width // 2 + platform_size y1 = terrain.length // 2 - platform_size y2 = terrain.length // 2 + platform_size min_h = min(terrain.height_field_raw[x1, y1], 0) max_h = max(terrain.height_field_raw[x1, y1], 0) terrain.height_field_raw = np.clip(terrain.height_field_raw, min_h, max_h) return terrain def discrete_obstacles_terrain(terrain, max_height, min_size, max_size, num_rects, platform_size=1.): """ Generate a terrain with gaps Parameters: terrain (terrain): the terrain max_height (float): maximum height of the obstacles (range=[-max, -max/2, max/2, max]) [meters] min_size (float): minimum size of a rectangle obstacle [meters] max_size (float): maximum size of a rectangle obstacle [meters] num_rects (int): number of randomly generated obstacles platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units max_height = int(max_height / terrain.vertical_scale) min_size = int(min_size / terrain.horizontal_scale) max_size = int(max_size / terrain.horizontal_scale) platform_size = int(platform_size / terrain.horizontal_scale) (i, j) = terrain.height_field_raw.shape height_range = [-max_height, -max_height // 2, max_height // 2, max_height] width_range = range(min_size, max_size, 4) length_range = range(min_size, max_size, 4) for _ in range(num_rects): width = np.random.choice(width_range) length = np.random.choice(length_range) start_i = np.random.choice(range(0, i-width, 4)) start_j = np.random.choice(range(0, j-length, 4)) terrain.height_field_raw[start_i:start_i+width, start_j:start_j+length] = np.random.choice(height_range) x1 = (terrain.width - platform_size) // 2 x2 = (terrain.width + platform_size) // 2 y1 = (terrain.length - platform_size) // 2 y2 = (terrain.length + platform_size) // 2 terrain.height_field_raw[x1:x2, y1:y2] = 0 return terrain def wave_terrain(terrain, num_waves=1, amplitude=1.): """ Generate a wavy terrain Parameters: terrain (terrain): the terrain num_waves (int): number of sine waves across the terrain length Returns: terrain (SubTerrain): update terrain """ amplitude = int(0.5*amplitude / terrain.vertical_scale) if num_waves > 0: div = terrain.length / (num_waves * np.pi * 2) x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) xx, yy = np.meshgrid(x, y, sparse=True) xx = xx.reshape(terrain.width, 1) yy = yy.reshape(1, terrain.length) terrain.height_field_raw += (amplitude*np.cos(yy / div) + amplitude*np.sin(xx / div)).astype( terrain.height_field_raw.dtype) return terrain def stairs_terrain(terrain, step_width, step_height): """ Generate a stairs Parameters: terrain (terrain): the terrain step_width (float): the width of the step [meters] step_height (float): the height of the step [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units step_width = int(step_width / terrain.horizontal_scale) step_height = int(step_height / terrain.vertical_scale) num_steps = terrain.width // step_width height = step_height for i in range(num_steps): terrain.height_field_raw[i * step_width: (i + 1) * step_width, :] += height height += step_height return terrain def pyramid_stairs_terrain(terrain, step_width, step_height, platform_size=1.): """ Generate stairs Parameters: terrain (terrain): the terrain step_width (float): the width of the step [meters] step_height (float): the step_height [meters] platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units step_width = int(step_width / terrain.horizontal_scale) step_height = int(step_height / terrain.vertical_scale) platform_size = int(platform_size / terrain.horizontal_scale) height = 0 start_x = 0 stop_x = terrain.width start_y = 0 stop_y = terrain.length while (stop_x - start_x) > platform_size and (stop_y - start_y) > platform_size: start_x += step_width stop_x -= step_width start_y += step_width stop_y -= step_width height += step_height terrain.height_field_raw[start_x: stop_x, start_y: stop_y] = height return terrain def stepping_stones_terrain(terrain, stone_size, stone_distance, max_height, platform_size=1., depth=-10): """ Generate a stepping stones terrain Parameters: terrain (terrain): the terrain stone_size (float): horizontal size of the stepping stones [meters] stone_distance (float): distance between stones (i.e size of the holes) [meters] max_height (float): maximum height of the stones (positive and negative) [meters] platform_size (float): size of the flat platform at the center of the terrain [meters] depth (float): depth of the holes (default=-10.) [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units stone_size = int(stone_size / terrain.horizontal_scale) stone_distance = int(stone_distance / terrain.horizontal_scale) max_height = int(max_height / terrain.vertical_scale) platform_size = int(platform_size / terrain.horizontal_scale) height_range = np.arange(-max_height-1, max_height, step=1) start_x = 0 start_y = 0 terrain.height_field_raw[:, :] = int(depth / terrain.vertical_scale) if terrain.length >= terrain.width: while start_y < terrain.length: stop_y = min(terrain.length, start_y + stone_size) start_x = np.random.randint(0, stone_size) # fill first hole stop_x = max(0, start_x - stone_distance) terrain.height_field_raw[0: stop_x, start_y: stop_y] = np.random.choice(height_range) # fill row while start_x < terrain.width: stop_x = min(terrain.width, start_x + stone_size) terrain.height_field_raw[start_x: stop_x, start_y: stop_y] = np.random.choice(height_range) start_x += stone_size + stone_distance start_y += stone_size + stone_distance elif terrain.width > terrain.length: while start_x < terrain.width: stop_x = min(terrain.width, start_x + stone_size) start_y = np.random.randint(0, stone_size) # fill first hole stop_y = max(0, start_y - stone_distance) terrain.height_field_raw[start_x: stop_x, 0: stop_y] = np.random.choice(height_range) # fill column while start_y < terrain.length: stop_y = min(terrain.length, start_y + stone_size) terrain.height_field_raw[start_x: stop_x, start_y: stop_y] = np.random.choice(height_range) start_y += stone_size + stone_distance start_x += stone_size + stone_distance x1 = (terrain.width - platform_size) // 2 x2 = (terrain.width + platform_size) // 2 y1 = (terrain.length - platform_size) // 2 y2 = (terrain.length + platform_size) // 2 terrain.height_field_raw[x1:x2, y1:y2] = 0 return terrain def convert_heightfield_to_trimesh(height_field_raw, horizontal_scale, vertical_scale, slope_threshold=None): """ Convert a heightfield array to a triangle mesh represented by vertices and triangles. Optionally, corrects vertical surfaces above the provide slope threshold: If (y2-y1)/(x2-x1) > slope_threshold -> Move A to A' (set x1 = x2). Do this for all directions. B(x2,y2) /| / | / | (x1,y1)A---A'(x2',y1) Parameters: height_field_raw (np.array): input heightfield horizontal_scale (float): horizontal scale of the heightfield [meters] vertical_scale (float): vertical scale of the heightfield [meters] slope_threshold (float): the slope threshold above which surfaces are made vertical. If None no correction is applied (default: None) Returns: vertices (np.array(float)): array of shape (num_vertices, 3). Each row represents the location of each vertex [meters] triangles (np.array(int)): array of shape (num_triangles, 3). Each row represents the indices of the 3 vertices connected by this triangle. """ hf = height_field_raw num_rows = hf.shape[0] num_cols = hf.shape[1] y = np.linspace(0, (num_cols-1)*horizontal_scale, num_cols) x = np.linspace(0, (num_rows-1)*horizontal_scale, num_rows) yy, xx = np.meshgrid(y, x) if slope_threshold is not None: slope_threshold *= horizontal_scale / vertical_scale move_x = np.zeros((num_rows, num_cols)) move_y = np.zeros((num_rows, num_cols)) move_corners = np.zeros((num_rows, num_cols)) move_x[:num_rows-1, :] += (hf[1:num_rows, :] - hf[:num_rows-1, :] > slope_threshold) move_x[1:num_rows, :] -= (hf[:num_rows-1, :] - hf[1:num_rows, :] > slope_threshold) move_y[:, :num_cols-1] += (hf[:, 1:num_cols] - hf[:, :num_cols-1] > slope_threshold) move_y[:, 1:num_cols] -= (hf[:, :num_cols-1] - hf[:, 1:num_cols] > slope_threshold) move_corners[:num_rows-1, :num_cols-1] += (hf[1:num_rows, 1:num_cols] - hf[:num_rows-1, :num_cols-1] > slope_threshold) move_corners[1:num_rows, 1:num_cols] -= (hf[:num_rows-1, :num_cols-1] - hf[1:num_rows, 1:num_cols] > slope_threshold) xx += (move_x + move_corners*(move_x == 0)) * horizontal_scale yy += (move_y + move_corners*(move_y == 0)) * horizontal_scale # create triangle mesh vertices and triangles from the heightfield grid vertices = np.zeros((num_rows*num_cols, 3), dtype=np.float32) vertices[:, 0] = xx.flatten() vertices[:, 1] = yy.flatten() vertices[:, 2] = hf.flatten() * vertical_scale triangles = -np.ones((2*(num_rows-1)*(num_cols-1), 3), dtype=np.uint32) for i in range(num_rows - 1): ind0 = np.arange(0, num_cols-1) + i*num_cols ind1 = ind0 + 1 ind2 = ind0 + num_cols ind3 = ind2 + 1 start = 2*i*(num_cols-1) stop = start + 2*(num_cols-1) triangles[start:stop:2, 0] = ind0 triangles[start:stop:2, 1] = ind3 triangles[start:stop:2, 2] = ind1 triangles[start+1:stop:2, 0] = ind0 triangles[start+1:stop:2, 1] = ind2 triangles[start+1:stop:2, 2] = ind3 return vertices, triangles def add_terrain_to_stage(stage, vertices, triangles, position=None, orientation=None): num_faces = triangles.shape[0] terrain_mesh = stage.DefinePrim("/World/terrain", "Mesh") terrain_mesh.GetAttribute("points").Set(vertices) terrain_mesh.GetAttribute("faceVertexIndices").Set(triangles.flatten()) terrain_mesh.GetAttribute("faceVertexCounts").Set(np.asarray([3]*num_faces)) terrain = XFormPrim(prim_path="/World/terrain", name="terrain", position=position, orientation=orientation) UsdPhysics.CollisionAPI.Apply(terrain.prim) # collision_api = UsdPhysics.MeshCollisionAPI.Apply(terrain.prim) # collision_api.CreateApproximationAttr().Set("meshSimplification") physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(terrain.prim) physx_collision_api.GetContactOffsetAttr().Set(0.02) physx_collision_api.GetRestOffsetAttr().Set(0.00) class SubTerrain: def __init__(self, terrain_name="terrain", width=256, length=256, vertical_scale=1.0, horizontal_scale=1.0): self.terrain_name = terrain_name self.vertical_scale = vertical_scale self.horizontal_scale = horizontal_scale self.width = width self.length = length self.height_field_raw = np.zeros((self.width, self.length), dtype=np.int16)
17,478
Python
42.917085
147
0.655166
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/utils/terrain_utils/create_terrain_demo.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os, sys SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(SCRIPT_DIR) import omni from omni.isaac.kit import SimulationApp import numpy as np import torch simulation_app = SimulationApp({"headless": False}) from abc import abstractmethod from omni.isaac.core.tasks import BaseTask from omni.isaac.core.prims import RigidPrimView, RigidPrim, XFormPrim from omni.isaac.core import World from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import define_prim, get_prim_at_path from omni.isaac.core.utils.nucleus import find_nucleus_server from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage from omni.isaac.core.materials import PreviewSurface from omni.isaac.cloner import GridCloner from pxr import UsdPhysics, UsdLux, UsdShade, Sdf, Gf, UsdGeom, PhysxSchema from terrain_utils import * class TerrainCreation(BaseTask): def __init__(self, name, num_envs, num_per_row, env_spacing, config=None, offset=None,) -> None: BaseTask.__init__(self, name=name, offset=offset) self._num_envs = num_envs self._num_per_row = num_per_row self._env_spacing = env_spacing self._device = "cpu" self._cloner = GridCloner(self._env_spacing, self._num_per_row) self._cloner.define_base_env(self.default_base_env_path) define_prim(self.default_zero_env_path) @property def default_base_env_path(self): return "/World/envs" @property def default_zero_env_path(self): return f"{self.default_base_env_path}/env_0" def set_up_scene(self, scene) -> None: self._stage = get_current_stage() distantLight = UsdLux.DistantLight.Define(self._stage, Sdf.Path("/World/DistantLight")) distantLight.CreateIntensityAttr(2000) self.get_terrain() self.get_ball() super().set_up_scene(scene) prim_paths = self._cloner.generate_paths("/World/envs/env", self._num_envs) print(f"cloning {self._num_envs} environments...") self._env_pos = self._cloner.clone( source_prim_path="/World/envs/env_0", prim_paths=prim_paths ) return def get_terrain(self): # create all available terrain types num_terains = 8 terrain_width = 12. terrain_length = 12. horizontal_scale = 0.25 # [m] vertical_scale = 0.005 # [m] num_rows = int(terrain_width/horizontal_scale) num_cols = int(terrain_length/horizontal_scale) heightfield = np.zeros((num_terains*num_rows, num_cols), dtype=np.int16) def new_sub_terrain(): return SubTerrain(width=num_rows, length=num_cols, vertical_scale=vertical_scale, horizontal_scale=horizontal_scale) heightfield[0:num_rows, :] = random_uniform_terrain(new_sub_terrain(), min_height=-0.2, max_height=0.2, step=0.2, downsampled_scale=0.5).height_field_raw heightfield[num_rows:2*num_rows, :] = sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw heightfield[2*num_rows:3*num_rows, :] = pyramid_sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw heightfield[3*num_rows:4*num_rows, :] = discrete_obstacles_terrain(new_sub_terrain(), max_height=0.5, min_size=1., max_size=5., num_rects=20).height_field_raw heightfield[4*num_rows:5*num_rows, :] = wave_terrain(new_sub_terrain(), num_waves=2., amplitude=1.).height_field_raw heightfield[5*num_rows:6*num_rows, :] = stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw heightfield[6*num_rows:7*num_rows, :] = pyramid_stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw heightfield[7*num_rows:8*num_rows, :] = stepping_stones_terrain(new_sub_terrain(), stone_size=1., stone_distance=1., max_height=0.5, platform_size=0.).height_field_raw vertices, triangles = convert_heightfield_to_trimesh(heightfield, horizontal_scale=horizontal_scale, vertical_scale=vertical_scale, slope_threshold=1.5) position = np.array([-6.0, 48.0, 0]) orientation = np.array([0.70711, 0.0, 0.0, -0.70711]) add_terrain_to_stage(stage=self._stage, vertices=vertices, triangles=triangles, position=position, orientation=orientation) def get_ball(self): ball = DynamicSphere(prim_path=self.default_zero_env_path + "/ball", name="ball", translation=np.array([0.0, 0.0, 1.0]), mass=0.5, radius=0.2,) def post_reset(self): for i in range(self._num_envs): ball_prim = self._stage.GetPrimAtPath(f"{self.default_base_env_path}/env_{i}/ball") color = 0.5 + 0.5 * np.random.random(3) visual_material = PreviewSurface(prim_path=f"{self.default_base_env_path}/env_{i}/ball/Looks/visual_material", color=color) binding_api = UsdShade.MaterialBindingAPI(ball_prim) binding_api.Bind(visual_material.material, bindingStrength=UsdShade.Tokens.strongerThanDescendants) def get_observations(self): pass def calculate_metrics(self) -> None: pass def is_done(self) -> None: pass if __name__ == "__main__": world = World( stage_units_in_meters=1.0, rendering_dt=1.0/60.0, backend="torch", device="cpu", ) num_envs = 800 num_per_row = 80 env_spacing = 0.56*2 terrain_creation_task = TerrainCreation(name="TerrainCreation", num_envs=num_envs, num_per_row=num_per_row, env_spacing=env_spacing, ) world.add_task(terrain_creation_task) world.reset() while simulation_app.is_running(): if world.is_playing(): if world.current_time_step_index == 0: world.reset(soft=True) world.step(render=True) else: world.step(render=True) simulation_app.close()
7,869
Python
43.213483
166
0.650654
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/utils/usd_utils/create_instanceable_assets.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import omni.usd import omni.client from pxr import UsdGeom, Sdf def update_reference(source_prim_path, source_reference_path, target_reference_path): stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(source_prim_path)] while len(prims) > 0: prim = prims.pop(0) prim_spec = stage.GetRootLayer().GetPrimAtPath(prim.GetPath()) reference_list = prim_spec.referenceList refs = reference_list.GetAddedOrExplicitItems() if len(refs) > 0: for ref in refs: if ref.assetPath == source_reference_path: prim.GetReferences().RemoveReference(ref) prim.GetReferences().AddReference(assetPath=target_reference_path, primPath=prim.GetPath()) prims = prims + prim.GetChildren() def create_parent_xforms(asset_usd_path, source_prim_path, save_as_path=None): """ Adds a new UsdGeom.Xform prim for each Mesh/Geometry prim under source_prim_path. Moves material assignment to new parent prim if any exists on the Mesh/Geometry prim. Args: asset_usd_path (str): USD file path for asset source_prim_path (str): USD path of root prim save_as_path (str): USD file path for modified USD stage. Defaults to None, will save in same file. """ omni.usd.get_context().open_stage(asset_usd_path) stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(source_prim_path)] edits = Sdf.BatchNamespaceEdit() while len(prims) > 0: prim = prims.pop(0) print(prim) if prim.GetTypeName() in ["Mesh", "Capsule", "Sphere", "Box"]: new_xform = UsdGeom.Xform.Define(stage, str(prim.GetPath()) + "_xform") print(prim, new_xform) edits.Add(Sdf.NamespaceEdit.Reparent(prim.GetPath(), new_xform.GetPath(), 0)) continue children_prims = prim.GetChildren() prims = prims + children_prims stage.GetRootLayer().Apply(edits) if save_as_path is None: omni.usd.get_context().save_stage() else: omni.usd.get_context().save_as_stage(save_as_path) def convert_asset_instanceable(asset_usd_path, source_prim_path, save_as_path=None, create_xforms=True): """ Makes all mesh/geometry prims instanceable. Can optionally add UsdGeom.Xform prim as parent for all mesh/geometry prims. Makes a copy of the asset USD file, which will be used for referencing. Updates asset file to convert all parent prims of mesh/geometry prims to reference cloned USD file. Args: asset_usd_path (str): USD file path for asset source_prim_path (str): USD path of root prim save_as_path (str): USD file path for modified USD stage. Defaults to None, will save in same file. create_xforms (bool): Whether to add new UsdGeom.Xform prims to mesh/geometry prims. """ if create_xforms: create_parent_xforms(asset_usd_path, source_prim_path, save_as_path) asset_usd_path = save_as_path instance_usd_path = ".".join(asset_usd_path.split(".")[:-1]) + "_meshes.usd" omni.client.copy(asset_usd_path, instance_usd_path) omni.usd.get_context().open_stage(asset_usd_path) stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(source_prim_path)] while len(prims) > 0: prim = prims.pop(0) if prim: if prim.GetTypeName() in ["Mesh", "Capsule", "Sphere", "Box"]: parent_prim = prim.GetParent() if parent_prim and not parent_prim.IsInstance(): parent_prim.GetReferences().AddReference(assetPath=instance_usd_path, primPath=str(parent_prim.GetPath())) parent_prim.SetInstanceable(True) continue children_prims = prim.GetChildren() prims = prims + children_prims if save_as_path is None: omni.usd.get_context().save_stage() else: omni.usd.get_context().save_as_stage(save_as_path)
5,639
Python
43.761904
126
0.675829
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/runs/SwerveCS/config.yaml
task: name: SwerveCS physics_engine: ${..physics_engine} env: numEnvs: 36 envSpacing: 20 resetDist: 3.0 clipObservations: 1.0 clipActions: 1.0 controlFrequencyInv: 12 control: stiffness: 85.0 damping: 2.0 actionScale: 13.5 episodeLength_s: 15 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: - 0.0 - 0.0 - -9.81 add_ground_plane: true add_distant_light: true use_flatcache: true enable_scene_query_support: false default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} solver_position_iteration_count: 4 solver_velocity_iteration_count: 4 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: true enable_stabilization: true max_depenetration_velocity: 100.0 gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 163840 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 134217728 gpu_temp_buffer_capacity: 33554432 gpu_max_num_partitions: 8 SwerveCS: override_usd_defaults: false fixed_base: false enable_self_collisions: false enable_gyroscopic_forces: true solver_velocity_iteration_count: 8 sleep_threshold: 0.005 stabilization_threshold: 0.001 density: -1 max_depenetration_velocity: 100.0 contact_offset: 0.02 rest_offset: 0.001 train: params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: false space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: true mlp: units: - 256 - 128 - 64 activation: elu d2rl: false initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:SwerveCS,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu ppo: true mixed_precision: false normalize_input: true normalize_value: true num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: true gamma: 0.99 tau: 0.95 learning_rate: 0.0003 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 10000 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: true e_clip: 0.2 horizon_length: 10 minibatch_size: 360 mini_epochs: 8 critic_coef: 4 clip_value: true seq_len: 4 bounds_loss_coef: 0.0001 task_name: ${task.name} experiment: '' num_envs: '' seed: 42 torch_deterministic: false max_iterations: '' physics_engine: physx pipeline: gpu sim_device: gpu device_id: 0 rl_device: cuda:0 num_threads: 4 solver_type: 1 test: true checkpoint: /root/edna/isaac/Swervesim/swervesim/runs/SwerveCS/nn/last_SwerveCS_ep_750_rew_166.53838.pth headless: false wandb_activate: false wandb_group: '' wandb_name: ${train.params.config.name} wandb_entity: '' wandb_project: swervesim
3,989
YAML
24.741935
104
0.61093
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/runs/Swerve/config.yaml
task: name: Swerve physics_engine: ${..physics_engine} env: numEnvs: 324 envSpacing: 20.0 resetDist: 3.0 clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 12 baseInitState: pos: - 0.0 - 0.0 - 0.62 rot: - 0.0 - 0.0 - 0.0 - 1.0 vLinear: - 0.0 - 0.0 - 0.0 vAngular: - 0.0 - 0.0 - 0.0 control: stiffness: 85.0 damping: 2.0 actionScale: 13.5 episodeLength_s: 50 sim: dt: 0.0083 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: - 0.0 - 0.0 - -9.81 add_ground_plane: true add_distant_light: true use_flatcache: true enable_scene_query_support: false default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} solver_position_iteration_count: 4 solver_velocity_iteration_count: 4 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: true enable_stabilization: true max_depenetration_velocity: 100.0 gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 1024 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1024 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 Swerve: override_usd_defaults: false fixed_base: false enable_self_collisions: false enable_gyroscopic_forces: true solver_velocity_iteration_count: 8 sleep_threshold: 0.005 stabilization_threshold: 0.001 density: -1 max_depenetration_velocity: 100.0 contact_offset: 0.02 rest_offset: 0.001 train: params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: false space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: true mlp: units: - 256 - 128 - 64 activation: elu d2rl: false initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:Swerve,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu ppo: true mixed_precision: false normalize_input: true normalize_value: true num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: true gamma: 0.99 tau: 0.95 learning_rate: 0.0003 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 10000 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: true e_clip: 0.2 horizon_length: 10 minibatch_size: 360 mini_epochs: 8 critic_coef: 4 clip_value: true seq_len: 4 bounds_loss_coef: 0.0001 task_name: ${task.name} experiment: '' num_envs: '' seed: 42 torch_deterministic: false max_iterations: '' physics_engine: physx pipeline: gpu sim_device: gpu device_id: 0 rl_device: cuda:0 num_threads: 4 solver_type: 1 test: false checkpoint: '' headless: false wandb_activate: false wandb_group: '' wandb_name: ${train.params.config.name} wandb_entity: '' wandb_project: omniisaacgymenv
4,124
YAML
22.843931
55
0.586081
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/runs/SwerveK/config.yaml
task: name: SwerveK physics_engine: ${..physics_engine} env: numEnvs: 36 envSpacing: 20.0 resetDist: 3.0 clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 12 baseInitState: pos: - 0.0 - 0.0 - 0.62 rot: - 0.0 - 0.0 - 0.0 - 1.0 vLinear: - 0.0 - 0.0 - 0.0 vAngular: - 0.0 - 0.0 - 0.0 control: stiffness: 85.0 damping: 2.0 actionScale: 13.5 episodeLength_s: 50 sim: dt: 0.0083 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: - 0.0 - 0.0 - -9.81 add_ground_plane: true add_distant_light: true use_flatcache: true enable_scene_query_support: false default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} solver_position_iteration_count: 4 solver_velocity_iteration_count: 4 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: true enable_stabilization: true max_depenetration_velocity: 100.0 gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 1024 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1024 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 SwerveK: override_usd_defaults: false fixed_base: false enable_self_collisions: false enable_gyroscopic_forces: true solver_velocity_iteration_count: 8 sleep_threshold: 0.005 stabilization_threshold: 0.001 density: -1 max_depenetration_velocity: 100.0 contact_offset: 0.02 rest_offset: 0.001 train: params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: false space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: true mlp: units: - 256 - 128 - 64 activation: elu d2rl: false initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:SwerveK,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu ppo: true mixed_precision: false normalize_input: true normalize_value: true num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: true gamma: 0.99 tau: 0.95 learning_rate: 0.0003 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 10000 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: true e_clip: 0.2 horizon_length: 10 minibatch_size: 360 mini_epochs: 8 critic_coef: 4 clip_value: true seq_len: 4 bounds_loss_coef: 0.0001 task_name: ${task.name} experiment: '' num_envs: '' seed: 42 torch_deterministic: false max_iterations: '' physics_engine: physx pipeline: gpu sim_device: gpu device_id: 0 rl_device: cuda:0 num_threads: 4 solver_type: 1 test: true checkpoint: /home/nitin/Documents/2023RobotROS/Swervesim/swervesim/runs/SwerveK/nn/Best_SwerveK.pth headless: false wandb_activate: false wandb_group: '' wandb_name: ${train.params.config.name} wandb_entity: '' wandb_project: omniisaacgymenv
4,210
YAML
23.34104
99
0.592162
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/robots/articulations/swerve.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch import omni.kit.commands from omni.isaac.urdf import _urdf from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.core.utils.stage import get_current_stage import numpy as np import torch import os from pxr import PhysxSchema class Swerve(Robot): def __init__(self,prim_path,name,translation): self._name = name #self.prim_path = prim_path file_path = os.path.abspath(__file__) project_root_path = os.path.abspath(os.path.join(file_path, "../../../../../../")) root_path= os.path.join(project_root_path, "isaac/assets/swerve/swerve.usd") print(str(root_path)) print(prim_path) self._usd_path = root_path add_reference_to_stage(self._usd_path, prim_path) print(str(get_current_stage() )) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=None, articulation_controller=None, ) self._dof_names = ["front_left_axle_joint", "front_right_axle_joint", "rear_left_axle_joint", "rear_right_axle_joint", "front_left_wheel_joint", "front_right_wheel_joint", "rear_left_wheel_joint", "rear_right_wheel_joint", ] @property def dof_names(self): return self._dof_names def set_swerve_properties(self, stage, prim): for link_prim in prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.GetDisableGravityAttr().Set(False) rb.GetRetainAccelerationsAttr().Set(False) rb.GetLinearDampingAttr().Set(0.0) rb.GetMaxLinearVelocityAttr().Set(1000.0) rb.GetAngularDampingAttr().Set(0.0) rb.GetMaxAngularVelocityAttr().Set(64/np.pi*180)
3,885
Python
41.703296
90
0.665894
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/robots/articulations/views/charge_station_view.py
from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView import math import torch class ChargeStationView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "ChargeStationView", ) -> None: """[summary] """ super().__init__( prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False ) self.chargestation_base = RigidPrimView(prim_paths_expr="/World/envs/.*/ChargeStation", name="base_view", reset_xform_properties=False) # self.top = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field", name="field_view", reset_xform_properties=False) # self.red_ball_1 = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/Tennis_Ball___Red_08", name="redball[1]", reset_xform_properties=False) # self.red_ball_2 = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/Tennis_Ball___Red_09", name="redball[2]", reset_xform_properties=False) # self.red_ball_3 = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/Tennis_Ball___Red_10", name="redball[3]", reset_xform_properties=False) # self.red_ball_4 = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/Tennis_Ball___Red_11", name="redball[4]", reset_xform_properties=False) # self.red_ball_5 = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/Tennis_Ball___Red_12", name="redball[5]", reset_xform_properties=False) # self.red_ball_6 = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/Tennis_Ball___Red_13", name="redball[6]", reset_xform_properties=False) # self.red_ball_7 = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/Tennis_Ball___Red_14", name="redball[7]", reset_xform_properties=False) # self.red_ball_8 = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/Tennis_Ball___Red_15", name="redball[8]", reset_xform_properties=False) # self.blue_ball_1 = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/Tennis_Ball___Blue_08", name="blueball[1]", reset_xform_properties=False) # self.blue_ball_2 = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/Tennis_Ball___Blue_09", name="blueball[2]", reset_xform_properties=False) # self.blue_ball_3 = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/Tennis_Ball___Blue_10", name="blueball[3]", reset_xform_properties=False) # self.blue_ball_4 = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/Tennis_Ball___Blue_11", name="blueball[4]", reset_xform_properties=False) # self.blue_ball_5 = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/Tennis_Ball___Blue_12", name="blueball[5]", reset_xform_properties=False) # self.blue_ball_6 = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/Tennis_Ball___Blue_13", name="blueball[6]", reset_xform_properties=False) # self.blue_ball_7 = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/Tennis_Ball___Blue_14", name="blueball[7]", reset_xform_properties=False) # self.blue_ball_8 = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/Tennis_Ball___Blue_15", name="blueball[8]", reset_xform_properties=False) # self.goal = RigidPrimView(prim_paths_expr="/World/envs/.*/Root/Rapid_React_Field/Group_1/THE_HUB_GE_22300_01/GE_22434", name="goal[1]", reset_xform_properties=False) def if_balanced(self, device): self.base_pose, self.base_orientation = self.chargestation_base.get_world_poses() tolerance = 0.03 output_roll = torch.tensor([1.0 if math.atan2(2*i[2]*i[0] - 2*i[1]*i[3], 1 - 2*i[2]*i[2] - 2*i[3]*i[3]) <= tolerance else 0.0 for i in self.base_orientation], device=device) return output_roll
4,200
Python
84.734692
181
0.684286
RoboEagles4828/offseason2023/isaac/Swervesim/swervesim/robots/articulations/views/swerve_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView import torch class SwerveView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "SwerveView", ) -> None: """[summary] """ super().__init__( prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False ) self._base = RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/swerve_chassis_link", name="base_view", reset_xform_properties=False) # self._axle = RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/.*_axle_link", name="axle_view", reset_xform_properties=False) # self._wheel = RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/.*_wheel_link", name="wheel_view", reset_xform_properties=False) self._axle = [ RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/front_left_axle_link", name="axle_view[0]", reset_xform_properties=False), RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/front_right_axle_link", name="axle_view[1]", reset_xform_properties=False), RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/rear_left_axle_link", name="axle_view[2]", reset_xform_properties=False), RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/rear_right_axle_link", name="axle_view[3]", reset_xform_properties=False) ] self._wheel = [ RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/front_left_wheel_link", name="wheel_view[0]", reset_xform_properties=False), RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/front_right_wheel_link", name="wheel_view[1]", reset_xform_properties=False), RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/rear_left_wheel_link", name="wheel_view[2]", reset_xform_properties=False), RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/rear_right_wheel_link", name="wheel_view[3]", reset_xform_properties=False) ] # self._axle = [ # RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/swerve_chassis_link/front_left_axle_joint", name="axle_view[0]", reset_xform_properties=False), # RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/swerve_chassis_link/front_right_axle_joint", name="axle_view[1]", reset_xform_properties=False), # RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/swerve_chassis_link/rear_left_axle_joint", name="axle_view[2]", reset_xform_properties=False), # RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/swerve_chassis_link/rear_right_axle_joint", name="axle_view[3]", reset_xform_properties=False) # ] # self._wheel = [ # RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/front_left_axle_link/front_left_wheel_joint", name="wheel_view[0]", reset_xform_properties=False), # RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/front_right_axle_link/front_right_wheel_joint", name="wheel_view[1]", reset_xform_properties=False), # RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/rear_left_axle_link/rear_left_wheel_joint", name="wheel_view[2]", reset_xform_properties=False), # RigidPrimView(prim_paths_expr="/World/envs/.*/swerve/rear_right_axle_link/rear_right_wheel_joint", name="wheel_view[3]", reset_xform_properties=False) # ] def get_axle_positions(self): axle_pose1, __ = self._axle[0].get_local_poses() axle_pose2, __ = self._axle[1].get_local_poses() axle_pose3, __ = self._axle[2].get_local_poses() axle_pose4, __ = self._axle[3].get_local_poses() tuple = (torch.transpose(axle_pose1, 0, 1), torch.transpose(axle_pose2, 0, 1), torch.transpose(axle_pose3, 0, 1), torch.transpose(axle_pose4, 0, 1) ) tuple_tensor = torch.cat(tuple) return torch.transpose(tuple_tensor, 0, 1) # def get_knee_transforms(self): # return self._knees.get_world_poses() # def is_knee_below_threshold(self, threshold, ground_heights=None): # knee_pos, _ = self._knees.get_world_poses() # knee_heights = knee_pos.view((-1, 4, 3))[:, :, 2] # if ground_heights is not None: # knee_heights -= ground_heights # return (knee_heights[:, 0] < threshold) | (knee_heights[:, 1] < threshold) | (knee_heights[:, 2] < threshold) | (knee_heights[:, 3] < threshold) # def is_base_below_threshold(self, threshold, ground_heights): # base_pos, _ = self.get_world_poses() # base_heights = base_pos[:, 2] # base_heights -= ground_heights # return (base_heights[:] < threshold)
6,450
Python
59.289719
167
0.664341
RoboEagles4828/offseason2023/scripts/quickpub.py
#!/usr/bin/python3 import time import rclpy from rclpy.node import Node from sensor_msgs.msg import JointState from threading import Thread JOINT_NAMES = [ # Pneumatics 'arm_roller_bar_joint', 'top_slider_joint', 'top_gripper_left_arm_joint', 'bottom_gripper_left_arm_joint', # Wheels 'elevator_center_joint', 'bottom_intake_joint', ] class ROSNode(Node): def __init__(self): super().__init__('quickpublisher') self.publish_positions = [0.0]*6 self.publisher = self.create_publisher(JointState, "/real/real_arm_commands", 10) self.publishTimer = self.create_timer(0.5, self.publish) def publish(self): msg = JointState() msg.name = JOINT_NAMES msg.position = self.publish_positions self.publisher.publish(msg) def main(): rclpy.init() node = ROSNode() Thread(target=rclpy.spin, args=(node,)).start() while True: try: joint_index = int(input("Joint index: ")) position = float(input("Position: ")) node.publish_positions[joint_index] = position except: print("Invalid input") continue if __name__ == '__main__': main()
1,227
Python
25.127659
89
0.605542
RoboEagles4828/offseason2023/scripts/config/omniverse.toml
[bookmarks] IsaacAssets = "omniverse://localhost/NVIDIA/Assets/Isaac/2022.2.1/Isaac" Scenarios = "omniverse://localhost/NVIDIA/Assets/Isaac/2022.2.1/Isaac/Samples/ROS2/Scenario" edna = "/workspaces/edna2023" localhost = "omniverse://localhost" [cache] data_dir = "/root/.cache/ov/Cache" proxy_cache_enabled = false proxy_cache_server = "" [connection_library] proxy_dict = "*#localhost:8891,f"
397
TOML
25.533332
92
0.743073
RoboEagles4828/offseason2023/docker/developer/README.md
# Docker for Development This directory has the configuration for building the image used in the edna devcontainer. It uses the osrf ros humble image as a base and installs edna related software on top. When loading the devcontainer the common utils feature is used to update the user GID/UID to match local and setup zsh and other terminal nice to haves. **Common Utils**: `devcontainers/features/common-utils` \ **URL**: https://github.com/devcontainers/features/tree/main/src/common-utils # Build 1. Docker Login to github registry. [Guide](https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry#authenticating-with-a-personal-access-token-classic) \ This will be used to push the image to the registry 2. Run `./build` to build the image. \ The script will prompt you if you would like to do a quick test or push to the registry.
897
Markdown
48.888886
210
0.782609
RoboEagles4828/offseason2023/docker/jetson/README.md
# Jetson Docker Image
21
Markdown
20.999979
21
0.809524
RoboEagles4828/offseason2023/docker/developer-isaac-ros/README.md
# Docker for isaac ros This directory has the configuration for building the image used for isaac utilities that require l4t. It uses the isaac ros common container as a base and installs edna related software on top. # Build 1. Docker Login to the nvidia NGC registry. [Guide](https://docs.nvidia.com/ngc/ngc-catalog-user-guide/index.html)\ This will be used to download nvidia images. 2. Docker Login to github registry. [Guide](https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry#authenticating-with-a-personal-access-token-classic) \ This will be used to push the image to the registry 3. Run `./build` to build the image. \ The script will prompt you if you would like to do a quick test or push to the registry.
780
Markdown
59.076919
210
0.783333
RoboEagles4828/offseason2023/docker/jetson-isaac-ros/README.md
# Jetson Docker Image with Isaac ROS
36
Markdown
35.999964
36
0.805556
RoboEagles4828/offseason2023/rio/robot.py
import logging import wpilib import threading import traceback import time import os, inspect from hardware_interface.drivetrain import DriveTrain from hardware_interface.joystick import Joystick from hardware_interface.armcontroller import ArmController from dds.dds import DDS_Publisher, DDS_Subscriber EMABLE_ENCODER = True ENABLE_JOY = True ENABLE_DRIVE = True ENABLE_ARM = True ENABLE_STAGE_BROADCASTER = True # Global Variables frc_stage = "DISABLED" fms_attached = False stop_threads = False drive_train : DriveTrain = None joystick : Joystick = None arm_controller : ArmController = None # Logging format = "%(asctime)s: %(message)s" logging.basicConfig(format=format, level=logging.INFO, datefmt="%H:%M:%S") # XML Path for DDS configuration curr_path = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) xml_path = os.path.join(curr_path, "dds/xml/ROS_RTI.xml") ############################################ ## Hardware def initDriveTrain(): global drive_train if drive_train == None: drive_train = DriveTrain() logging.info("Success: DriveTrain created") return drive_train def initJoystick(): global joystick if joystick == None: joystick = Joystick() logging.info("Success: Joystick created") return joystick def initArmController(): global arm_controller if arm_controller == None: arm_controller = ArmController() logging.info("Success: ArmController created") return arm_controller def initDDS(ddsAction, participantName, actionName): dds = None with rti_init_lock: dds = ddsAction(xml_path, participantName, actionName) return dds ############################################ ############################################ ## Threads def threadLoop(name, dds, action): logging.info(f"Starting {name} thread") global stop_threads global frc_stage try: while stop_threads == False: if (frc_stage == 'AUTON' and name != "joystick") or (name in ["encoder", "stage-broadcaster"]) or (frc_stage == 'TELEOP'): action(dds) time.sleep(20/1000) except Exception as e: logging.error(f"An issue occured with the {name} thread") logging.error(e) logging.error(traceback.format_exc()) logging.info(f"Closing {name} thread") dds.close() # Generic Start Thread Function def startThread(name) -> threading.Thread | None: thread = None if name == "encoder": thread = threading.Thread(target=encoderThread, daemon=True) elif name == "command": thread = threading.Thread(target=commandThread, daemon=True) elif name == "arm-command": thread = threading.Thread(target=armThread, daemon=True) elif name == "joystick": thread = threading.Thread(target=joystickThread, daemon=True) elif name == "stage-broadcaster": thread = threading.Thread(target=stageBroadcasterThread, daemon=True) thread.start() return thread # Locks rti_init_lock = threading.Lock() drive_train_lock = threading.Lock() arm_controller_lock = threading.Lock() ############################################ ################## ENCODER ################## ENCODER_PARTICIPANT_NAME = "ROS2_PARTICIPANT_LIB::encoder_info" ENCODER_WRITER_NAME = "encoder_info_publisher::encoder_info_writer" def encoderThread(): encoder_publisher = initDDS(DDS_Publisher, ENCODER_PARTICIPANT_NAME, ENCODER_WRITER_NAME) threadLoop('encoder', encoder_publisher, encoderAction) def encoderAction(publisher): # TODO: Make these some sort of null value to identify lost data data = { 'name': [], 'position': [], 'velocity': [] } global drive_train with drive_train_lock: if ENABLE_DRIVE: drive_data = drive_train.getEncoderData() data['name'] += drive_data['name'] data['position'] += drive_data['position'] data['velocity'] += drive_data['velocity'] global arm_controller with arm_controller_lock: if ENABLE_ARM: arm_data = arm_controller.getEncoderData() data['name'] += arm_data['name'] data['position'] += arm_data['position'] data['velocity'] += arm_data['velocity'] publisher.write(data) ############################################ ################## COMMAND ################## COMMAND_PARTICIPANT_NAME = "ROS2_PARTICIPANT_LIB::joint_commands" COMMAND_WRITER_NAME = "isaac_joint_commands_subscriber::joint_commands_reader" def commandThread(): command_subscriber = initDDS(DDS_Subscriber, COMMAND_PARTICIPANT_NAME, COMMAND_WRITER_NAME) threadLoop('command', command_subscriber, commandAction) def commandAction(subscriber : DDS_Subscriber): data = subscriber.read() global drive_train with drive_train_lock: drive_train.sendCommands(data) ############################################ ################## ARM ################## ARM_COMMAND_PARTICIPANT_NAME = "ROS2_PARTICIPANT_LIB::arm_commands" ARM_COMMAND_WRITER_NAME = "isaac_arm_commands_subscriber::arm_commands_reader" def armThread(): arm_command_subscriber = initDDS(DDS_Subscriber, ARM_COMMAND_PARTICIPANT_NAME, ARM_COMMAND_WRITER_NAME) threadLoop('arm', arm_command_subscriber, armAction) def armAction(subscriber : DDS_Subscriber): data = subscriber.read() global arm_controller with arm_controller_lock: arm_controller.sendCommands(data) ############################################ ################## JOYSTICK ################## JOYSTICK_PARTICIPANT_NAME = "ROS2_PARTICIPANT_LIB::joystick" JOYSTICK_WRITER_NAME = "joystick_data_publisher::joystick_data_writer" def joystickThread(): joystick_publisher = initDDS(DDS_Publisher, JOYSTICK_PARTICIPANT_NAME, JOYSTICK_WRITER_NAME) threadLoop('joystick', joystick_publisher, joystickAction) def joystickAction(publisher : DDS_Publisher): if frc_stage == "TELEOP": global joystick data = None try: data = joystick.getData() except: logging.warn("No joystick data could be fetched!") initJoystick() publisher.write(data) ############################################ ################## STAGE ################## STAGE_PARTICIPANT_NAME = "ROS2_PARTICIPANT_LIB::stage_broadcaster" STAGE_WRITER_NAME = "stage_publisher::stage_writer" def stageBroadcasterThread(): stage_publisher = initDDS(DDS_Publisher, STAGE_PARTICIPANT_NAME, STAGE_WRITER_NAME) threadLoop('stage-broadcaster', stage_publisher, stageBroadcasterAction) def stageBroadcasterAction(publisher : DDS_Publisher): global frc_stage global fms_attached is_disabled = wpilib.DriverStation.isDisabled() publisher.write({ "data": f"{frc_stage}|{fms_attached}|{is_disabled}" }) ############################################ ######### Robot Class ######### class EdnaRobot(wpilib.TimedRobot): def robotInit(self): self.use_threading = True wpilib.CameraServer.launch() logging.warning("Running in simulation!") if wpilib.RobotBase.isSimulation() else logging.info("Running in real!") self.drive_train = initDriveTrain() self.joystick = initJoystick() self.arm_controller = initArmController() self.threads = [] if self.use_threading: logging.info("Initializing Threads") global stop_threads stop_threads = False if ENABLE_DRIVE: self.threads.append({"name": "command", "thread": startThread("command") }) if ENABLE_ARM: self.threads.append({"name": "arm-command", "thread": startThread("arm-command")}) if ENABLE_JOY: self.threads.append({"name": "joystick", "thread": startThread("joystick") }) if EMABLE_ENCODER: self.threads.append({"name": "encoder", "thread": startThread("encoder") }) if ENABLE_STAGE_BROADCASTER: self.threads.append({"name": "stage-broadcaster", "thread": startThread("stage-broadcaster") }) else: self.encoder_publisher = DDS_Publisher(xml_path, ENCODER_PARTICIPANT_NAME, ENCODER_WRITER_NAME) self.joystick_publisher = DDS_Publisher(xml_path, JOYSTICK_PARTICIPANT_NAME, JOYSTICK_WRITER_NAME) self.command_subscriber = DDS_Subscriber(xml_path, COMMAND_PARTICIPANT_NAME, COMMAND_WRITER_NAME) self.arm_command_subscriber = DDS_Subscriber(xml_path, ARM_COMMAND_PARTICIPANT_NAME, ARM_COMMAND_WRITER_NAME) self.stage_publisher = DDS_Publisher(xml_path, STAGE_PARTICIPANT_NAME, STAGE_WRITER_NAME) # Auton def autonomousInit(self): logging.info("Entering Auton") global frc_stage frc_stage = "AUTON" def autonomousPeriodic(self): global fms_attached fms_attached = wpilib.DriverStation.isFMSAttached() if self.use_threading: self.manageThreads() else: self.doActions() def autonomousExit(self): logging.info("Exiting Auton") global frc_stage frc_stage = "AUTON" # Teleop def teleopInit(self): logging.info("Entering Teleop") global frc_stage frc_stage = "TELEOP" def teleopPeriodic(self): global fms_attached fms_attached = wpilib.DriverStation.isFMSAttached() if self.use_threading: self.manageThreads() else: self.doActions() def teleopExit(self): logging.info("Exiting Teleop") global frc_stage frc_stage = "DISABLED" with drive_train_lock: drive_train.stop() with arm_controller_lock: arm_controller.stop() def manageThreads(self): # Check all threads and make sure they are alive for thread in self.threads: if thread["thread"].is_alive() == False: # If this is the command thread, we need to stop the robot if thread["name"] == "command": logging.warning(f"Stopping robot due to command thread failure") with drive_train_lock: drive_train.stop() with arm_controller_lock: arm_controller.stop() logging.warning(f"Thread {thread['name']} is not alive, restarting...") thread["thread"] = startThread(thread["name"]) def doActions(self): encoderAction(self.encoder_publisher) commandAction(self.command_subscriber) armAction(self.arm_command_subscriber) joystickAction(self.joystick_publisher) stageBroadcasterAction(self.stage_publisher) # Is this needed? def stopThreads(self): global stop_threads stop_threads = True for thread in self.threads: thread.join() logging.info('All Threads Stopped') if __name__ == '__main__': wpilib.run(EdnaRobot)
11,010
Python
31.967066
136
0.622797
RoboEagles4828/offseason2023/rio/physics.py
import wpilib import wpilib.simulation import ctre from pyfrc.physics import drivetrains from pyfrc.physics.core import PhysicsInterface from sim.talonFxSim import TalonFxSim from sim.cancoderSim import CancoderSim from hardware_interface.drivetrain import getAxleRadians, getWheelRadians, SwerveModule, AXLE_JOINT_GEAR_RATIO from hardware_interface.armcontroller import PORTS, TOTAL_INTAKE_REVOLUTIONS from hardware_interface.joystick import CONTROLLER_PORT import math import typing if typing.TYPE_CHECKING: from robot import EdnaRobot # Calculations axle_radius = 0.05 axle_mass = 0.23739 wheel_radius = 0.0508 wheel_length = 0.0381 wheel_mass = 0.2313 center_axle_moi = 0.5 * pow(axle_radius, 2) * axle_mass center_side_wheel_moi = (0.25 * pow(wheel_radius, 2) * wheel_mass) + ((1/12) * pow(wheel_length, 2) * wheel_mass) center_wheel_moi = 0.5 * pow(wheel_radius, 2) * wheel_mass class PhysicsEngine: def __init__(self, physics_controller: PhysicsInterface, robot: "EdnaRobot"): self.physics_controller = physics_controller self.xbox = wpilib.simulation.XboxControllerSim(CONTROLLER_PORT) self.roborio = wpilib.simulation.RoboRioSim() self.battery = wpilib.simulation.BatterySim() self.roborio.setVInVoltage(self.battery.calculate([0.0])) self.frontLeftModuleSim = SwerveModuleSim(robot.drive_train.front_left) self.frontRightModuleSim = SwerveModuleSim(robot.drive_train.front_right) self.rearLeftModuleSim = SwerveModuleSim(robot.drive_train.rear_left) self.rearRightModuleSim = SwerveModuleSim(robot.drive_train.rear_right) self.elevator = TalonFxSim(robot.arm_controller.elevator.motor, 0.0003, 1, False) # self.intake = TalonFxSim(robot.arm_controller.bottom_gripper_lift.motor, 0.0004, 1, False) # self.intake.addLimitSwitch("fwd", 0) # self.intake.addLimitSwitch("rev", TOTAL_INTAKE_REVOLUTIONS * -2 * math.pi) self.pneumaticHub = wpilib.simulation.REVPHSim(PORTS['HUB']) self.armRollerBar = wpilib.simulation.DoubleSolenoidSim(self.pneumaticHub, *PORTS['ARM_ROLLER_BAR']) self.topGripperSlider = wpilib.simulation.DoubleSolenoidSim(self.pneumaticHub, *PORTS['TOP_GRIPPER_SLIDER']) self.topGripper = wpilib.simulation.DoubleSolenoidSim(self.pneumaticHub, *PORTS['TOP_GRIPPER']) def update_sim(self, now: float, tm_diff: float) -> None: # Simulate Swerve Modules self.frontLeftModuleSim.update(tm_diff) self.frontRightModuleSim.update(tm_diff) self.rearLeftModuleSim.update(tm_diff) self.rearRightModuleSim.update(tm_diff) # Simulate Arm self.elevator.update(tm_diff) # self.intake.update(tm_diff) # Add Currents into Battery Simulation self.roborio.setVInVoltage(self.battery.calculate([0.0])) class SwerveModuleSim(): wheel : TalonFxSim = None axle : TalonFxSim = None encoder : CancoderSim = None def __init__(self, module: "SwerveModule"): wheelMOI = center_wheel_moi axleMOI = center_axle_moi + center_side_wheel_moi self.wheel = TalonFxSim(module.wheel_motor, wheelMOI, 1, False) self.axle = TalonFxSim(module.axle_motor, axleMOI, AXLE_JOINT_GEAR_RATIO, False) self.encoder = CancoderSim(module.encoder, module.encoder_offset, True) # There is a bad feedback loop between controller and the rio code # It will create oscillations in the simulation when the robot is not being commanded to move # The issue is from the controller commanding the axle position to stay at the same position when idle # but if the axle is moving during that time it will constantly overshoot the idle position def update(self, tm_diff): self.wheel.update(tm_diff) self.axle.update(tm_diff) self.encoder.update(tm_diff, self.axle.getVelocityRadians()) # Useful for debugging the simulation or code def __str__(self) -> str: wheelPos = getWheelRadians(self.wheel.talon.getSelectedSensorPosition(), "position") wheelVel = getWheelRadians(self.wheel.talon.getSelectedSensorVelocity(), "velocity") stateStr = f"Wheel POS: {wheelPos:5.2f} VEL: {wheelVel:5.2f} " axlePos = getAxleRadians(self.axle.talon.getSelectedSensorPosition(), "position") axleVel = getAxleRadians(self.axle.talon.getSelectedSensorVelocity(), "velocity") stateStr += f"Axle POS: {axlePos:5.2f} VEL: {axleVel:5.2f} " encoderPos = math.radians(self.encoder.cancoder.getAbsolutePosition()) encoderVel = math.radians(self.encoder.cancoder.getVelocity()) stateStr += f"Encoder POS: {encoderPos:5.2f} VEL: {encoderVel:5.2f}" return stateStr
4,791
Python
43.785046
116
0.707577
RoboEagles4828/offseason2023/rio/README.md
# RIO Code
10
Markdown
9.99999
10
0.7
RoboEagles4828/offseason2023/rio/dds/dds.py
import rticonnextdds_connector as rti import logging # Subscribe to DDS topics class DDS_Subscriber: def __init__(self, xml_path, participant_name, reader_name): # Connectors are not thread safe, so we need to create a new one for each thread self.connector = rti.Connector(config_name=participant_name, url=xml_path) self.input = self.connector.get_input(reader_name) def read(self) -> dict: # Take the input data off of queue and read it try: self.input.take() except rti.Error as e: logging.warn("RTI Read Error", e.args) # Return the first valid data sample data = None for sample in self.input.samples.valid_data_iter: data = sample.get_dictionary() break return data def close(self): self.connector.close() # Publish to DDS topics class DDS_Publisher: def __init__(self, xml_path, participant_name, writer_name): self.connector = rti.Connector(config_name=participant_name, url=xml_path) self.output = self.connector.get_output(writer_name) def write(self, data) -> None: if data: self.output.instance.set_dictionary(data) try: self.output.write() except rti.Error as e: logging.warn("RTI Write Error", e.args) # else: # logging.warn("No data to write") def close(self): self.connector.close()
1,491
Python
31.434782
88
0.608987
RoboEagles4828/offseason2023/rio/sim/cancoderSim.py
from ctre.sensors import CANCoder, CANCoderSimCollection import math CANCODER_TICKS_PER_REV = 4096 class CancoderSim(): def __init__(self, cancoder : CANCoder, offsetDegress : float = 0.0, sensorPhase: bool = False): self.cancoder : CANCoder = cancoder self.cancoderSim : CANCoderSimCollection = self.cancoder.getSimCollection() self.cancoderSim.setRawPosition(self.radiansToEncoderTicks(0, "position")) self.offset = math.radians(offsetDegress) self.sensorPhase = -1 if sensorPhase else 1 self.velocity = 0.0 self.position = 0.0 def update(self, period : float, velocityRadians : float): self.position = velocityRadians * period * self.sensorPhase self.velocity = velocityRadians * self.sensorPhase # Update the encoder sensors on the motor self.cancoderSim = self.cancoder.getSimCollection() self.cancoderSim.addPosition(self.radiansToEncoderTicks(self.position, "position")) self.cancoderSim.setVelocity(self.radiansToEncoderTicks(self.velocity, "velocity")) def radiansToEncoderTicks(self, radians : float, displacementType : str) -> int: ticks = radians * CANCODER_TICKS_PER_REV / (2 * math.pi) if displacementType == "position": return int(ticks) else: return int(ticks / 10)
1,367
Python
43.129031
100
0.67959
RoboEagles4828/offseason2023/rio/sim/talonFxSim.py
from ctre import TalonFX, TalonFXSimCollection from wpilib import RobotController import random import math from pyfrc.physics.motor_cfgs import MOTOR_CFG_FALCON_500 import wpilib.simulation import wpimath.system.plant FALCON_SENSOR_TICKS_PER_REV = 2048 class TalonFxSim: def __init__(self, talonFx : TalonFX, moi : float, gearRatio : float, sensorPhase : bool ) -> None: self.talon : TalonFX = talonFx self.talonSim : TalonFXSimCollection = None self.moi = moi self.gearRatio = gearRatio self.sensorPhase = -1 if sensorPhase else 1 self.gearbox = wpimath.system.plant.DCMotor.falcon500(1) self.motor = wpilib.simulation.DCMotorSim(self.gearbox, self.gearRatio, self.moi, [0.0, 0.0]) self.velocity = 0.0 self.position = 0.0 self.fwdLimitEnabled = False self.fwdLimit = 0.0 self.revLimitEnabled = False self.revLimit = 0.0 # Simulates the movement of falcon 500 motors by getting the voltages from the # the motor model that is being controlled by the robot code. def update(self, period : float): self.talonSim = self.talon.getSimCollection() # Update the motor model voltage = self.talonSim.getMotorOutputLeadVoltage() * self.sensorPhase self.motor.setInputVoltage(voltage) self.motor.update(period) newPosition = self.motor.getAngularPosition() self.deltaPosition = newPosition - self.position self.position = newPosition self.velocity = self.motor.getAngularVelocity() if self.fwdLimitEnabled and self.position >= self.fwdLimit: self.talonSim.setLimitFwd(True) self.position = self.fwdLimit else: self.talonSim.setLimitFwd(False) if self.revLimitEnabled and self.position <= self.revLimit: self.talonSim.setLimitRev(True) self.position = self.revLimit else: self.talonSim.setLimitRev(False) # Update the encoder sensors on the motor positionShaftTicks = int(self.radiansToSensorTicks(self.position * self.gearRatio, "position")) velocityShaftTicks = int(self.radiansToSensorTicks(self.velocity * self.gearRatio, "velocity")) self.talonSim.setIntegratedSensorRawPosition(positionShaftTicks) self.talonSim.setIntegratedSensorVelocity(velocityShaftTicks) # Update the current and voltage self.talonSim.setSupplyCurrent(self.motor.getCurrentDraw()) self.talonSim.setBusVoltage(RobotController.getBatteryVoltage()) def radiansToSensorTicks(self, radians : float, displacementType : str) -> int: ticks = radians * FALCON_SENSOR_TICKS_PER_REV / (2 * math.pi) if displacementType == "position": return ticks else: return ticks / 10 def getPositionRadians(self) -> float: return self.position def getVelocityRadians(self) -> float: return self.velocity def getSupplyCurrent(self) -> float: return self.motor.getCurrentDraw() def addLimitSwitch(self, limitType: str, positionRadians: float): if limitType == "fwd": self.fwdLimitEnabled = True self.fwdLimit = positionRadians elif limitType == "rev": self.revLimitEnabled = True self.revLimit = positionRadians else: print("Invalid limit type")
3,473
Python
38.033707
103
0.663403
RoboEagles4828/offseason2023/rio/hardware_interface/armcontroller.py
import wpilib import wpilib.simulation import ctre import ctre.sensors import time import logging import math NAMESPACE = 'real' CMD_TIMEOUT_SECONDS = 1 MOTOR_TIMEOUT = 30 # 0 means do not use the timeout TICKS_PER_REVOLUTION = 2048.0 TOTAL_ELEVATOR_REVOLUTIONS = 164 TOTAL_INTAKE_REVOLUTIONS = 6 SCALING_FACTOR_FIX = 10000 # Port Numbers for all of the Solenoids and other connected things # The numbers below will **need** to be changed to fit the robot wiring PORTS = { # Modules 'HUB': 18, # Pistons 'ARM_ROLLER_BAR': [14, 15], 'TOP_GRIPPER_SLIDER': [10, 11], 'TOP_GRIPPER': [12, 13], # Wheels 'ELEVATOR': 13, # 'BOTTOM_GRIPPER_LIFT': 14 } MOTOR_PID_CONFIG = { 'SLOT': 2, 'MAX_SPEED': 18000, # Ticks/100ms 'TARGET_ACCELERATION': 14000, # Ticks/100ms "kP": 0.2, "kI": 0.0, "kD": 0.1, "kF": 0.2, } JOINT_LIST = [ 'arm_roller_bar_joint', 'top_slider_joint', 'top_gripper_left_arm_joint', 'elevator_center_joint', ] def getJointList(): return JOINT_LIST class ArmController(): def __init__(self): self.last_cmds_time = time.time() self.warn_timeout = True self.hub = wpilib.PneumaticHub(PORTS['HUB']) self.compressor = self.hub.makeCompressor() self.arm_roller_bar = Piston(self.hub, PORTS['ARM_ROLLER_BAR'], max=0.07, name="Arm Roller Bar") self.top_gripper_slider = Piston(self.hub, PORTS['TOP_GRIPPER_SLIDER'], max=0.30, name="Top Gripper Slider") self.top_gripper = Piston(self.hub, PORTS['TOP_GRIPPER'], min=0.0, max=-0.9, name="Top Gripper", reverse=True) self.elevator = Elevator(PORTS['ELEVATOR'], max=0.56) self.JOINT_MAP = { # Pneumatics 'arm_roller_bar_joint': self.arm_roller_bar, 'top_slider_joint': self.top_gripper_slider, 'top_gripper_left_arm_joint': self.top_gripper, # Wheels 'elevator_center_joint': self.elevator, } def getEncoderData(self): names = [""]*4 positions = [0]*4 velocities = [0]*4 # Iterate over the JOINT_MAP and run the get() function for each of them for index, joint_name in enumerate(self.JOINT_MAP): names[index] = joint_name # Allow for joints to be removed quickly positions[index] = int(self.JOINT_MAP[joint_name].getPosition() * SCALING_FACTOR_FIX) velocities[index] = int(self.JOINT_MAP[joint_name].getVelocity() * SCALING_FACTOR_FIX) return { "name" : names, "position": positions, "velocity": velocities} def stop(self): for joint in self.JOINT_MAP.values(): joint.stop() def sendCommands(self, commands): if commands: self.last_cmds_time = time.time() self.warn_timeout = True for i in range(len(commands["name"])): joint_name = commands["name"][i] if joint_name in self.JOINT_MAP: self.JOINT_MAP[joint_name].setPosition(commands['position'][i]) elif (time.time() - self.last_cmds_time > CMD_TIMEOUT_SECONDS): self.stop() if self.warn_timeout: logging.warning(f"Didn't recieve any commands for {CMD_TIMEOUT_SECONDS} second(s). Halting...") self.warn_timeout = False class Piston(): def __init__(self, hub : wpilib.PneumaticHub, ports : list[int], min : float = 0.0, max : float = 1.0, reverse : bool = False, name : str = "Piston"): self.solenoid = hub.makeDoubleSolenoid(ports[0], ports[1]) self.state = self.solenoid.get() != wpilib.DoubleSolenoid.Value.kForward self.min = min self.max = max self.reverse = reverse self.name = name self.lastCommand = None def getPosition(self): return float(self.state) * (self.max - self.min) + self.min # The Solenoids don't have a velocity value, so we set it to zero here def getVelocity(self): return 0.0 def stop(self): self.solenoid.set(wpilib.DoubleSolenoid.Value.kOff) def setPosition(self, position : float): if position != self.lastCommand: logging.info(f"{self.name} Position: {position}") self.lastCommand = position center = abs((self.max - self.min) / 2 + self.min) forward = wpilib.DoubleSolenoid.Value.kForward reverse = wpilib.DoubleSolenoid.Value.kReverse if abs(position) >= center and self.state == 0: logging.info(f"{self.name} first block") self.solenoid.set(reverse if self.reverse else forward) self.state = 1 elif abs(position) < center and self.state == 1: logging.info(f"{self.name} first block") self.solenoid.set(forward if self.reverse else reverse) self.state = 0 def commonTalonSetup(talon : ctre.WPI_TalonFX): talon.configFactoryDefault(MOTOR_TIMEOUT) talon.configNeutralDeadband(0.01, MOTOR_TIMEOUT) # Voltage talon.configVoltageCompSaturation(12, MOTOR_TIMEOUT) talon.enableVoltageCompensation(True) # Sensor talon.configSelectedFeedbackSensor(ctre.FeedbackDevice.IntegratedSensor, 0, MOTOR_TIMEOUT) talon.configIntegratedSensorInitializationStrategy(ctre.sensors.SensorInitializationStrategy.BootToZero) # PID talon.selectProfileSlot(MOTOR_PID_CONFIG['SLOT'], 0) talon.config_kP(MOTOR_PID_CONFIG['SLOT'], MOTOR_PID_CONFIG['kP'], MOTOR_TIMEOUT) talon.config_kI(MOTOR_PID_CONFIG['SLOT'], MOTOR_PID_CONFIG['kI'], MOTOR_TIMEOUT) talon.config_kD(MOTOR_PID_CONFIG['SLOT'], MOTOR_PID_CONFIG['kD'], MOTOR_TIMEOUT) talon.config_kD(MOTOR_PID_CONFIG['SLOT'], MOTOR_PID_CONFIG['kF'], MOTOR_TIMEOUT) # Nominal and Peak talon.configNominalOutputForward(0, MOTOR_TIMEOUT) talon.configNominalOutputReverse(0, MOTOR_TIMEOUT) talon.configPeakOutputForward(1, MOTOR_TIMEOUT) talon.configPeakOutputReverse(-1, MOTOR_TIMEOUT) return class Intake(): def __init__(self, port : int, min : float = 0.0, max : float = 1.0): self.motor = ctre.WPI_TalonFX(port, "rio") commonTalonSetup(self.motor) self.state = 0 self.min = min self.max = max self.totalTicks = TICKS_PER_REVOLUTION * TOTAL_INTAKE_REVOLUTIONS self.lastCommand = None # Phase self.motor.setSensorPhase(False) self.motor.setInverted(False) # Frames self.motor.setStatusFramePeriod(ctre.StatusFrameEnhanced.Status_13_Base_PIDF0, 10, MOTOR_TIMEOUT) # Brake self.motor.setNeutralMode(ctre.NeutralMode.Brake) def getPosition(self): percent = self.motor.getSelectedSensorPosition() / self.totalTicks return percent * (self.max - self.min) + self.min def getVelocity(self): percent = self.motor.getSelectedSensorVelocity() * 10 / self.totalTicks return percent * (self.max - self.min) + self.min def stop(self): self.motor.set(ctre.TalonFXControlMode.PercentOutput, 0) def setPosition(self, position : float): if position != self.lastCommand: logging.info(f"Intake Position: {position}") self.lastCommand = position # Moves the intake center = (self.max - self.min) / 2 + self.min if position >= center and self.state == 0: self.motor.set(ctre.TalonFXControlMode.Velocity, -TICKS_PER_REVOLUTION/2) self.state = 1 elif position < center and self.state == 1: self.motor.set(ctre.TalonFXControlMode.Velocity, TICKS_PER_REVOLUTION/2) self.state = 0 if self.state == 0 and not self.motor.isFwdLimitSwitchClosed(): self.motor.set(ctre.TalonFXControlMode.Velocity, TICKS_PER_REVOLUTION/2) elif self.state == 1 and not self.motor.isRevLimitSwitchClosed(): self.motor.set(ctre.TalonFXControlMode.Velocity, -TICKS_PER_REVOLUTION/2) class Elevator(): def __init__(self, port : int, min : float = 0.0, max : float = 1.0): self.motor = ctre.WPI_TalonFX(port, "rio") commonTalonSetup(self.motor) self.min = min self.max = max self.totalTicks = TICKS_PER_REVOLUTION * TOTAL_ELEVATOR_REVOLUTIONS self.lastCommand = None # Phase self.motor.setSensorPhase(False) self.motor.setInverted(False) # Frames self.motor.setStatusFramePeriod(ctre.StatusFrameEnhanced.Status_10_MotionMagic, 10, MOTOR_TIMEOUT) # Motion Magic self.motor.configMotionCruiseVelocity(MOTOR_PID_CONFIG['MAX_SPEED'], MOTOR_TIMEOUT) # Sets the maximum speed of motion magic (ticks/100ms) self.motor.configMotionAcceleration(MOTOR_PID_CONFIG['TARGET_ACCELERATION'], MOTOR_TIMEOUT) # Sets the maximum acceleration of motion magic (ticks/100ms) # self.motor.configClearPositionOnLimitR(True) def getPosition(self) -> float: percent = self.motor.getSelectedSensorPosition() / self.totalTicks return percent * (self.max - self.min) + self.min def getVelocity(self) -> float: percent = (self.motor.getSelectedSensorVelocity() * 10) / self.totalTicks return percent * (self.max - self.min) + self.min def stop(self): self.motor.set(ctre.TalonFXControlMode.PercentOutput, 0) def setPosition(self, position : float): if position != self.lastCommand: logging.info(f"Elevator Position: {position}") self.lastCommand = position percent = (position - self.min) / (self.max - self.min) self.motor.set(ctre.TalonFXControlMode.MotionMagic, percent * self.totalTicks)
9,753
Python
38.016
161
0.63724
RoboEagles4828/offseason2023/rio/hardware_interface/joystick.py
import wpilib import logging CONTROLLER_PORT = 0 SCALING_FACTOR_FIX = 10000 ENABLE_THROTTLE = True pov_x_map = { -1: 0.0, 0: 0.0, 45: -1.0, 90: -1.0, 135: -1.0, 180: 0.0, 225: 1.0, 270: 1.0, 315: 1.0, } pov_y_map = { -1: 0.0, 0: 1.0, 45: 1.0, 90: 0.0, 135: -1.0, 180: -1.0, 225: -1.0, 270: 0.0, 315: 1.0, } class Joystick: def __init__(self): self.joystick = wpilib.XboxController(CONTROLLER_PORT) self.deadzone = 0.15 self.last_joystick_data = self.getEmptyData() self.count = 0 def scaleAxis(self, axis): return int(axis * SCALING_FACTOR_FIX * -1) def scaleTrigger(self, trigger): return int(trigger * SCALING_FACTOR_FIX * -1) def getEmptyData(self): return { "axes": [0.0] * 8, "buttons": [0] * 11, } def getData(self): pov = self.joystick.getPOV(0) leftX = self.joystick.getLeftX() leftY = self.joystick.getLeftY() rightX = self.joystick.getRightX() rightY = self.joystick.getRightY() leftTrigger = self.joystick.getLeftTriggerAxis() rightTrigger = self.joystick.getRightTriggerAxis() axes = [ self.scaleAxis(leftX) if abs(leftX) > self.deadzone else 0.0, self.scaleAxis(leftY) if abs(leftY) > self.deadzone else 0.0, self.scaleTrigger(leftTrigger), self.scaleAxis(rightX) if abs(rightX) > self.deadzone else 0.0, self.scaleAxis(rightY) if abs(rightY) > self.deadzone else 0.0, self.scaleTrigger(rightTrigger), pov_x_map[pov], # left 1.0 right -1.0 pov_y_map[pov], # up 1.0 down -1.0 ] buttons = [ int(self.joystick.getAButton()), int(self.joystick.getBButton()), int(self.joystick.getXButton()), int(self.joystick.getYButton()), int(self.joystick.getLeftBumper()), int(self.joystick.getRightBumper()), int(self.joystick.getBackButton()), int(self.joystick.getStartButton()), 0, int(self.joystick.getLeftStickButton()), int(self.joystick.getRightStickButton()) ] data = {"axes": axes, "buttons": buttons} if ENABLE_THROTTLE: if self.is_equal(data, self.last_joystick_data): self.count += 1 if self.count >= 10: return None else: self.count = 0 self.last_joystick_data = data return data else: return data def is_equal(self, d, d1): res = all((d1.get(k) == v for k, v in d.items())) return res
2,835
Python
25.504673
75
0.522751
RoboEagles4828/offseason2023/rio/hardware_interface/drivetrain.py
import wpilib import ctre import ctre.sensors import math import time import logging from wpimath.filter import SlewRateLimiter NAMESPACE = 'real' # Small Gear Should Face the back of the robot # All wheel drive motors should not be inverted # All axle turn motors should be inverted + sensor phase # All Cancoders should be direction false MODULE_CONFIG = { "front_left": { "wheel_joint_name": "front_left_wheel_joint", "wheel_motor_port": 3, #9 "axle_joint_name": "front_left_axle_joint", "axle_motor_port": 1, #7 "axle_encoder_port": 2, #8 "encoder_offset": 18.984 # 248.203, }, "front_right": { "wheel_joint_name": "front_right_wheel_joint", "wheel_motor_port": 6, #12 "axle_joint_name": "front_right_axle_joint", "axle_motor_port": 4, #10 "axle_encoder_port": 5, #11 "encoder_offset": 145.723 #15.908, }, "rear_left": { "wheel_joint_name": "rear_left_wheel_joint", "wheel_motor_port": 12, #6 "axle_joint_name": "rear_left_axle_joint", "axle_motor_port": 10, #4 "axle_encoder_port": 11, #5 "encoder_offset": 194.678 #327.393, }, "rear_right": { "wheel_joint_name": "rear_right_wheel_joint", "wheel_motor_port": 9, #3 "axle_joint_name": "rear_right_axle_joint", "axle_motor_port": 7, #1 "axle_encoder_port": 8, #2 "encoder_offset": 69.785 #201.094, } } def getJointList(): joint_list = [] for module in MODULE_CONFIG.values(): joint_list.append(module['wheel_joint_name']) joint_list.append(module['axle_joint_name']) return joint_list AXLE_DIRECTION = False WHEEL_DIRECTION = False ENCODER_DIRECTION = True WHEEL_JOINT_GEAR_RATIO = 6.75 #8.14 AXLE_JOINT_GEAR_RATIO = 150.0/7.0 TICKS_PER_REV = 2048.0 CMD_TIMEOUT_SECONDS = 1 nominal_voltage = 9.0 steer_current_limit = 20.0 # This is needed to fix bad float values being published by RTI from the RIO. # To fix this, we scale the float and convert to integers. # Then we scale it back down inside the ROS2 hardware interface. SCALING_FACTOR_FIX = 10000 # Encoder Constants encoder_ticks_per_rev = 4096.0 encoder_reset_velocity = math.radians(0.5) encoder_reset_iterations = 500 axle_pid_constants = { "kP": 0.2, "kI": 0.0, "kD": 0.1, "kF": 0.2, "kIzone": 0, "kPeakOutput": 1.0 } wheel_pid_constants = { "kF": 1023.0/20660.0, "kP": 0.1, "kI": 0.001, "kD": 5 } slot_idx = 0 pid_loop_idx = 0 timeout_ms = 30 velocityConstant = 0.5 accelerationConstant = 0.25 # Conversion Functions positionCoefficient = 2.0 * math.pi / TICKS_PER_REV / AXLE_JOINT_GEAR_RATIO velocityCoefficient = positionCoefficient * 10.0 # axle (radians) -> shaft (ticks) def getShaftTicks(radians, displacementType) -> int: if displacementType == "position": return int(radians / positionCoefficient) elif displacementType == "velocity": return int(radians / velocityCoefficient) else: return 0 # shaft (ticks) -> axle (radians) def getAxleRadians(ticks, displacementType): if displacementType == "position": return ticks * positionCoefficient elif displacementType == "velocity": return ticks * velocityCoefficient else: return 0 wheelPositionCoefficient = 2.0 * math.pi / TICKS_PER_REV / WHEEL_JOINT_GEAR_RATIO wheelVelocityCoefficient = wheelPositionCoefficient * 10.0 # wheel (radians) -> shaft (ticks) def getWheelShaftTicks(radians, displacementType) -> int: if displacementType == "position": return int(radians / wheelPositionCoefficient) elif displacementType == "velocity": return int(radians / wheelVelocityCoefficient) else: return 0 # shaft (ticks) -> wheel (radians) def getWheelRadians(ticks, displacementType): if displacementType == "position": return ticks * wheelPositionCoefficient elif displacementType == "velocity": return ticks * wheelVelocityCoefficient else: return 0 class SwerveModule(): def __init__(self, module_config) -> None: #IMPORTANT: # The wheel joint is the motor that drives the wheel. # The axle joint is the motor that steers the wheel. self.wheel_joint_name = module_config["wheel_joint_name"] self.axle_joint_name = module_config["axle_joint_name"] self.wheel_joint_port = module_config["wheel_motor_port"] self.axle_joint_port = module_config["axle_motor_port"] self.axle_encoder_port = module_config["axle_encoder_port"] self.encoder_offset = module_config["encoder_offset"] self.wheel_motor = ctre.WPI_TalonFX(self.wheel_joint_port, "rio") self.axle_motor = ctre.WPI_TalonFX(self.axle_joint_port, "rio") self.encoder = ctre.sensors.WPI_CANCoder(self.axle_encoder_port, "rio") self.last_wheel_vel_cmd = None self.last_axle_vel_cmd = None self.reset_iterations = 0 self.setupEncoder() self.setupWheelMotor() self.setupAxleMotor() def setupEncoder(self): self.encoderconfig = ctre.sensors.CANCoderConfiguration() self.encoderconfig.absoluteSensorRange = ctre.sensors.AbsoluteSensorRange.Unsigned_0_to_360 self.encoderconfig.initializationStrategy = ctre.sensors.SensorInitializationStrategy.BootToAbsolutePosition self.encoderconfig.sensorDirection = ENCODER_DIRECTION self.encoder.configAllSettings(self.encoderconfig) self.encoder.setPositionToAbsolute(timeout_ms) self.encoder.setStatusFramePeriod(ctre.sensors.CANCoderStatusFrame.SensorData, 10, timeout_ms) def getEncoderPosition(self): return math.radians(self.encoder.getAbsolutePosition() - self.encoder_offset) def getEncoderVelocity(self): return math.radians(self.encoder.getVelocity()) def setupWheelMotor(self): self.wheel_motor.configFactoryDefault() self.wheel_motor.configNeutralDeadband(0.01, timeout_ms) # Direction and Sensors self.wheel_motor.setSensorPhase(WHEEL_DIRECTION) self.wheel_motor.setInverted(WHEEL_DIRECTION) self.wheel_motor.configSelectedFeedbackSensor(ctre.FeedbackDevice.IntegratedSensor, slot_idx, timeout_ms) self.wheel_motor.setStatusFramePeriod(ctre.StatusFrameEnhanced.Status_21_FeedbackIntegrated, 10, timeout_ms) # Peak and Nominal Outputs self.wheel_motor.configNominalOutputForward(0, timeout_ms) self.wheel_motor.configNominalOutputReverse(0, timeout_ms) self.wheel_motor.configPeakOutputForward(1, timeout_ms) self.wheel_motor.configPeakOutputReverse(-1, timeout_ms) # Voltage Comp self.wheel_motor.configVoltageCompSaturation(nominal_voltage, timeout_ms) self.axle_motor.enableVoltageCompensation(True) # Tuning self.wheel_motor.config_kF(0, wheel_pid_constants["kF"], timeout_ms) self.wheel_motor.config_kP(0, wheel_pid_constants["kP"], timeout_ms) self.wheel_motor.config_kI(0, wheel_pid_constants["kI"], timeout_ms) self.wheel_motor.config_kD(0, wheel_pid_constants["kD"], timeout_ms) # Brake self.wheel_motor.setNeutralMode(ctre.NeutralMode.Brake) # Velocity Ramp # TODO: Tweak this value self.wheel_motor.configClosedloopRamp(0.1) # Current Limit current_limit = 20 current_threshold = 40 current_threshold_time = 0.1 supply_current_limit_configs = ctre.SupplyCurrentLimitConfiguration(True, current_limit, current_threshold, current_threshold_time) self.wheel_motor.configSupplyCurrentLimit(supply_current_limit_configs, timeout_ms) def setupAxleMotor(self): self.axle_motor.configFactoryDefault() self.axle_motor.configNeutralDeadband(0.01, timeout_ms) # Direction and Sensors self.axle_motor.setSensorPhase(AXLE_DIRECTION) self.axle_motor.setInverted(AXLE_DIRECTION) self.axle_motor.configSelectedFeedbackSensor(ctre.FeedbackDevice.IntegratedSensor, slot_idx, timeout_ms) # self.axle_motor.setStatusFramePeriod(ctre.StatusFrameEnhanced.Status_13_Base_PIDF0, 10, timeout_ms) self.axle_motor.setStatusFramePeriod(ctre.StatusFrameEnhanced.Status_10_MotionMagic, 10, timeout_ms) self.axle_motor.setSelectedSensorPosition(getShaftTicks(self.getEncoderPosition(), "position"), pid_loop_idx, timeout_ms) # Peak and Nominal Outputs self.axle_motor.configNominalOutputForward(0, timeout_ms) self.axle_motor.configNominalOutputReverse(0, timeout_ms) self.axle_motor.configPeakOutputForward(1, timeout_ms) self.axle_motor.configPeakOutputReverse(-1, timeout_ms) # Tuning self.axle_motor.selectProfileSlot(slot_idx, pid_loop_idx) self.axle_motor.config_kP(slot_idx, axle_pid_constants["kP"], timeout_ms) self.axle_motor.config_kI(slot_idx, axle_pid_constants["kI"], timeout_ms) self.axle_motor.config_kD(slot_idx, axle_pid_constants["kD"], timeout_ms) self.axle_motor.config_kF(slot_idx, (1023.0 * velocityCoefficient / nominal_voltage) * velocityConstant, timeout_ms) self.axle_motor.configMotionCruiseVelocity(2.0 / velocityConstant / velocityCoefficient, timeout_ms) self.axle_motor.configMotionAcceleration((8.0 - 2.0) / accelerationConstant / velocityCoefficient, timeout_ms) self.axle_motor.configMotionSCurveStrength(2) # Voltage Comp self.axle_motor.configVoltageCompSaturation(nominal_voltage, timeout_ms) self.axle_motor.enableVoltageCompensation(True) # Braking self.axle_motor.setNeutralMode(ctre.NeutralMode.Brake) def neutralize_module(self): self.wheel_motor.set(ctre.TalonFXControlMode.PercentOutput, 0) self.axle_motor.set(ctre.TalonFXControlMode.PercentOutput, 0) def set(self, wheel_motor_vel, axle_position): wheel_vel = getWheelShaftTicks(wheel_motor_vel, "velocity") if abs(wheel_motor_vel) < 0.2: self.neutralize_module() return else: self.wheel_motor.set(ctre.TalonFXControlMode.Velocity, wheel_vel) self.last_wheel_vel_cmd = wheel_vel # MOTION MAGIC CONTROL FOR AXLE POSITION axle_motorPosition = getAxleRadians(self.axle_motor.getSelectedSensorPosition(), "position") axle_motorVelocity = getAxleRadians(self.axle_motor.getSelectedSensorVelocity(), "velocity") axle_absolutePosition = self.getEncoderPosition() # Reset if axle_motorVelocity < encoder_reset_velocity: self.reset_iterations += 1 if self.reset_iterations >= encoder_reset_iterations: self.reset_iterations = 0 self.axle_motor.setSelectedSensorPosition(getShaftTicks(axle_absolutePosition, "position")) axle_motorPosition = axle_absolutePosition else: self.reset_iterations = 0 # First let's assume that we will move directly to the target position. newAxlePosition = axle_position # The motor could get to the target position by moving clockwise or counterclockwise. # The shortest path should be the direction that is less than pi radians away from the current motor position. # The shortest path could loop around the circle and be less than 0 or greater than 2pi. # We need to get the absolute current position to determine if we need to loop around the 0 - 2pi range. # The current motor position does not stay inside the 0 - 2pi range. # We need the absolute position to compare with the target position. axle_absoluteMotorPosition = math.fmod(axle_motorPosition, 2.0 * math.pi) if axle_absoluteMotorPosition < 0.0: axle_absoluteMotorPosition += 2.0 * math.pi # If the target position was in the first quadrant area # and absolute motor position was in the last quadrant area # then we need to move into the next loop around the circle. if newAxlePosition - axle_absoluteMotorPosition < -math.pi: newAxlePosition += 2.0 * math.pi # If the target position was in the last quadrant area # and absolute motor position was in the first quadrant area # then we need to move into the previous loop around the circle. elif newAxlePosition - axle_absoluteMotorPosition > math.pi: newAxlePosition -= 2.0 * math.pi # Last, add the current existing loops that the motor has gone through. newAxlePosition += axle_motorPosition - axle_absoluteMotorPosition self.axle_motor.set(ctre.TalonFXControlMode.MotionMagic, getShaftTicks(newAxlePosition, "position")) # logging.info('AXLE MOTOR POS: ', newAxlePosition) # logging.info('WHEEL MOTOR VEL: ', wheel_vel) def stop(self): self.wheel_motor.set(ctre.TalonFXControlMode.PercentOutput, 0) self.axle_motor.set(ctre.TalonFXControlMode.PercentOutput, 0) def getEncoderData(self): output = [ { "name": self.wheel_joint_name, "position": int(getWheelRadians(self.wheel_motor.getSelectedSensorPosition(), "position") * SCALING_FACTOR_FIX), "velocity": int(getWheelRadians(self.wheel_motor.getSelectedSensorVelocity(), "velocity") * SCALING_FACTOR_FIX) }, { "name": self.axle_joint_name, "position": int(self.getEncoderPosition() * SCALING_FACTOR_FIX), "velocity": int(self.getEncoderVelocity() * SCALING_FACTOR_FIX) } ] return output class DriveTrain(): def __init__(self): self.last_cmds = { "name" : getJointList(), "position": [0.0]*len(getJointList()), "velocity": [0.0]*len(getJointList()) } self.last_cmds_time = time.time() self.warn_timeout = True self.front_left = SwerveModule(MODULE_CONFIG["front_left"]) self.front_right = SwerveModule(MODULE_CONFIG["front_right"]) self.rear_left = SwerveModule(MODULE_CONFIG["rear_left"]) self.rear_right = SwerveModule(MODULE_CONFIG["rear_right"]) self.module_lookup = \ { 'front_left_axle_joint': self.front_left, 'front_right_axle_joint': self.front_right, 'rear_left_axle_joint': self.rear_left, 'rear_right_axle_joint': self.rear_right, } def getEncoderData(self): names = [""]*8 positions = [0]*8 velocities = [0]*8 encoderInfo = [] encoderInfo += self.front_left.getEncoderData() encoderInfo += self.front_right.getEncoderData() encoderInfo += self.rear_left.getEncoderData() encoderInfo += self.rear_right.getEncoderData() assert len(encoderInfo) == 8 for index, encoder in enumerate(encoderInfo): names[index] = encoder['name'] positions[index] = encoder['position'] velocities[index] = encoder['velocity'] return { "name": names, "position": positions, "velocity": velocities } def stop(self): self.front_left.stop() self.front_right.stop() self.rear_left.stop() self.rear_right.stop() def sendCommands(self, commands): if commands: self.last_cmds = commands self.last_cmds_time = time.time() self.warn_timeout = True for i in range(len(commands['name'])): if 'axle' in commands['name'][i]: axle_name = commands['name'][i] axle_position = commands['position'][i] if len(commands['position']) > i else 0.0 wheel_name = axle_name.replace('axle', 'wheel') wheel_index = commands['name'].index(wheel_name) wheel_velocity = commands['velocity'][wheel_index] if len(commands['velocity']) > wheel_index else 0.0 module = self.module_lookup[axle_name] module.set(wheel_velocity, axle_position) if axle_name == "front_left_axle_joint": # logging.info(f"{wheel_name}: {wheel_velocity}\n{axle_name}: {axle_position}") pass else: current_time = time.time() if current_time - self.last_cmds_time > CMD_TIMEOUT_SECONDS: self.stop() # Display Warning Once if self.warn_timeout: logging.warning("CMD TIMEOUT: HALTING") self.warn_timeout = False
16,813
Python
40.413793
139
0.650984
RoboEagles4828/offseason2023/rio/POC/pneumatics_test/robot.py
import wpilib # does not work yet class MyRobot(wpilib.TimedRobot): def robotInit(self): print("Initalizing") # make rev hub object self.hub = wpilib.PneumaticHub(1) # make single solenoid objects (pass in channel as parameter) self.solenoids = [self.hub.makeSolenoid(0), self.hub.makeSolenoid(1)] # make double solenoid objects (pass in forward channel and reverse channel as parameters) self.double_solenoids = [self.hub.makeDoubleSolenoid(2, 3), self.hub.makeDoubleSolenoid(4, 5)] # make compressor self.compressor = self.hub.makeCompressor(1) self.timer = wpilib.Timer self.input = wpilib.Joystick(0) def teleopInit(self): print("Starting Compressor") self.compressor.enableDigital() for solenoid in self.double_solenoids: solenoid.set(wpilib.DoubleSolenoid.Value.kOff) def teleopPeriodic(self): if self.input.getRawButtonPressed(5): # LB (Xbox) print("Toggling First...") for solenoid in self.double_solenoids: solenoid.toggle() if self.input.getRawButtonPressed(6): # RB (Xbox) print("Toggling Second...") for solenoid in self.double_solenoids: solenoid.toggle() def teleopExit(self): print("Turning off compressor...") self.compressor.disable() if __name__ == "__main__": wpilib.run(MyRobot)
1,469
Python
29.624999
102
0.628319
RoboEagles4828/offseason2023/rio/POC/motion_magic_poc/MotionProfile.py
import argparse import logging import math from collections import deque import copy import matplotlib.pyplot as plt logger = logging.getLogger(f"{__name__}") #Constants VPROG = 4.00 T1 = 400 T2 = 200 ITP = 10 if __name__ == '__main__': # Instantiate the parser parser = argparse.ArgumentParser(description='Talon SRX motion profiler') # Required Positional Arguments parser.add_argument('-d', '--distance', type=str, required=True, help="Distance to move") parser.add_argument('-l', "--loglevel", type=str, default='INFO', help="logging level") parser.add_argument('-v', '--max_vel', type=str, help="max velocity", default="4.0") parser.add_argument('-a', '--max_accel', type=str, help="max_acclereation", default="10.0") args = parser.parse_args() # Setup logger numeric_level = getattr(logging, args.loglevel.upper(), None) if not isinstance(numeric_level, int): raise ValueError(f"Invalid log level: {args.loglevel}") logging.basicConfig(format='%(asctime)s-%(levelname)s-%(message)s', datefmt='%H:%M:%S', level=numeric_level) VPROG = float(args.max_vel) max_accel = float(args.max_accel) if max_accel != 0.0: T1 = VPROG/max_accel * 1000 # Calculation constants dist = float(args.distance) t4 = (dist/VPROG) * 1000 fl1 = float(math.trunc(T1 / ITP)) fl2 = math.trunc(T2 / ITP) N = float(t4 / ITP) step = 1 time = 0.0 velocity = 0.0 input = False runningSum = deque(fl2*[0.0], fl2) trajectory = list() trajectory.append({"step": step, "time": time, "velocity": velocity}) runningSum.append(0.0) zeropt = list() # Now we print out the trajectory fs1 = 0.0 exit = False while not exit: step += 1 time = ((step - 1) * ITP)/1000 input = 1 if step < (N+2) else 0 addition = (1/fl1) if input==1 else (-1/fl1) fs1 = max(0, min(1, fs1 + addition)) # logging.log(numeric_level, f"fs1 = {fs1}") fs2 = sum(runningSum) # logging.log(numeric_level, f"fs2 = {fs2}") runningSum.append(fs1) if fs1 == 0: if fs2 == 0: zeropt.append(1) else: zeropt.append(0) else: zeropt.append(0) output_included = 1 if sum(zeropt[0:step]) <= 2 else 0 if output_included == 1: velocity = ((fs1+fs2)/(1.0/fl2))*VPROG if fs2 != 0 else 0 trajectory.append({"step": step, "time": time, "velocity": velocity}) else: exit = True logging.log(numeric_level, "EXITTING") print(trajectory) x = list() y = list() for i in trajectory: x.append(i["time"]) y.append(i["velocity"]) plt.plot(x, y) plt.xlabel("TIME") plt.ylabel("VELOCITY") plt.show()
2,915
Python
29.061855
95
0.568782
RoboEagles4828/offseason2023/rio/POC/motion_magic_poc/test.py
import math # 90 degrees testVal = math.pi / 4 # go down 180 degrees modifyVal = math.pi # Get remainder result = math.fmod(testVal - modifyVal, 2 * math.pi) print(result) # theory moveDown = modifyVal - testVal result2 = (2 * math.pi) - moveDown print(result2) # Correction for negative values result += (2 * math.pi) print(result) assert result == result2
364
Python
14.869565
52
0.708791
RoboEagles4828/offseason2023/rio/POC/motion_magic_poc/robot.py
import logging import wpilib import ctre import math # Ports motorPort = 7 controllerPort = 0 encoderPort = 8 # PID Constants pid_constants = { "kP": 0.2, "kI": 0.0, "kD": 0.1, "kF": 0.2, "kIzone": 0, "kPeakOutput": 1.0 } slot_idx = 0 pid_loop_idx = 0 timeout_ms = 30 # Motor Constants DRIVE_RATIO = 6.75 STEER_RATIO = 150.0/7.0 motor_ticks_per_rev = 2048.0 nominal_voltage = 12.0 steer_current_limit = 20.0 # Encoder Constants encoder_ticks_per_rev = 4096.0 encoder_offset = 0 encoder_direction = False encoder_reset_velocity = math.radians(0.5) encoder_reset_iterations = 500 # Demo Behavior # Range: 0 - 2pi velocityConstant = 1.0 accelerationConstant = 0.5 increment = math.pi / 8 # Conversion Functions # This is thought of as radians per shaft tick times the ratio to the axle (steer) positionCoefficient = 2.0 * math.pi / motor_ticks_per_rev / STEER_RATIO # This is the same conversion with time in mind. velocityCoefficient = positionCoefficient * 10.0 # axle (radians) -> shaft (ticks) def getShaftTicks(radians, type): if type == "position": return radians / positionCoefficient elif type == "velocity": return radians / velocityCoefficient else: return 0 # shaft (ticks) -> axle (radians) def getAxleRadians(ticks, type): if type == "position": return ticks * positionCoefficient elif type == "velocity": return ticks * velocityCoefficient else: return 0 ######### Robot Class ######### class motor_poc(wpilib.TimedRobot): def robotInit(self) -> None: logging.info("Entering Robot Init") # Configure Joystick self.joystick = wpilib.XboxController(controllerPort) # Configure CANCoder canCoderConfig = ctre.CANCoderConfiguration() canCoderConfig.absoluteSensorRange = ctre.AbsoluteSensorRange.Unsigned_0_to_360 canCoderConfig.initializationStrategy = ctre.SensorInitializationStrategy.BootToAbsolutePosition canCoderConfig.magnetOffsetDegrees = encoder_offset canCoderConfig.sensorDirection = encoder_direction # Setup encoder to be in radians canCoderConfig.sensorCoefficient = 2 * math.pi / encoder_ticks_per_rev canCoderConfig.unitString = "rad" canCoderConfig.sensorTimeBase = ctre.SensorTimeBase.PerSecond self.encoder = ctre.CANCoder(encoderPort) self.encoder.configAllSettings(canCoderConfig, timeout_ms) self.encoder.setPositionToAbsolute(timeout_ms) self.encoder.setStatusFramePeriod(ctre.CANCoderStatusFrame.SensorData, 10, timeout_ms) # Configure Talon self.talon = ctre.TalonFX(motorPort) self.talon.configFactoryDefault() self.talon.configSelectedFeedbackSensor(ctre.TalonFXFeedbackDevice.IntegratedSensor, pid_loop_idx, timeout_ms) self.talon.configNeutralDeadband(0.01, timeout_ms) self.talon.setSensorPhase(True) self.talon.setInverted(True) self.talon.setStatusFramePeriod(ctre.StatusFrameEnhanced.Status_13_Base_PIDF0, 10, timeout_ms) self.talon.setStatusFramePeriod(ctre.StatusFrameEnhanced.Status_10_MotionMagic, 10, timeout_ms) self.talon.configNominalOutputForward(0, timeout_ms) self.talon.configNominalOutputReverse(0, timeout_ms) self.talon.configPeakOutputForward(1, timeout_ms) self.talon.configPeakOutputReverse(-1, timeout_ms) self.talon.selectProfileSlot(slot_idx, pid_loop_idx) self.talon.config_kP(slot_idx, pid_constants["kP"], timeout_ms) self.talon.config_kI(slot_idx, pid_constants["kI"], timeout_ms) self.talon.config_kD(slot_idx, pid_constants["kD"], timeout_ms) # TODO: Figure out Magic Numbers and Calculations Below self.talon.config_kF(slot_idx, (1023.0 * velocityCoefficient / nominal_voltage) * velocityConstant, timeout_ms) self.talon.configMotionCruiseVelocity(2.0 / velocityConstant / velocityCoefficient, timeout_ms) self.talon.configMotionAcceleration((8.0 - 2.0) / accelerationConstant / velocityCoefficient, timeout_ms) self.talon.configMotionSCurveStrength(1) # Set Sensor Position to match Absolute Position of CANCoder self.talon.setSelectedSensorPosition(getShaftTicks(self.encoder.getAbsolutePosition(), "position"), pid_loop_idx, timeout_ms) self.talon.configVoltageCompSaturation(nominal_voltage, timeout_ms) currentLimit = ctre.SupplyCurrentLimitConfiguration() currentLimit.enable = True currentLimit.currentLimit = steer_current_limit self.talon.configSupplyCurrentLimit(currentLimit, timeout_ms) self.talon.enableVoltageCompensation(True) self.talon.setNeutralMode(ctre.NeutralMode.Brake) # Keep track of position self.targetPosition = 0 self.reset_iterations = 0 def teleopInit(self) -> None: logging.info("Entering Teleop") def teleopPeriodic(self) -> None: # Get position and velocities of the motor motorPosition = getAxleRadians(self.talon.getSelectedSensorPosition(), "position") motorVelocity = getAxleRadians(self.talon.getSelectedSensorVelocity(), "velocity") absolutePosition = self.encoder.getAbsolutePosition() # Reset if motorVelocity < encoder_reset_velocity: self.reset_iterations += 1 if self.reset_iterations >= encoder_reset_iterations: self.reset_iterations = 0 self.talon.setSelectedSensorPosition(getShaftTicks(absolutePosition, "position")) motorPosition = absolutePosition else: self.reset_iterations = 0 # Increment Target Position if self.joystick.getAButtonPressed(): self.targetPosition += increment elif self.joystick.getBButtonPressed(): self.targetPosition -= increment # Move back in 0 - 2pi range in case increment kicked us out self.targetPosition = math.fmod(self.targetPosition, 2.0 * math.pi) # This correction is needed in case we got a negative remainder # A negative radian can be thought of as starting at 2pi and moving down abs(remainder) if self.targetPosition < 0.0: self.targetPosition += 2.0 * math.pi # Now that we have a new target position, we need to figure out how to move the motor. # First let's assume that we will move directly to the target position. newMotorPosition = self.targetPosition # The motor could get to the target position by moving clockwise or counterclockwise. # The shortest path should be the direction that is less than pi radians away from the current motor position. # The shortest path could loop around the circle and be less than 0 or greater than 2pi. # We need to get the absolute current position to determine if we need to loop around the 0 - 2pi range. # The current motor position does not stay inside the 0 - 2pi range. # We need the absolute position to compare with the target position. absoluteMotorPosition = math.fmod(motorPosition, 2.0 * math.pi) if absoluteMotorPosition < 0.0: absoluteMotorPosition += 2.0 * math.pi # If the target position was in the first quadrant area # and absolute motor position was in the last quadrant area # then we need to move into the next loop around the circle. if self.targetPosition - absoluteMotorPosition < -math.pi: newMotorPosition += 2.0 * math.pi # If the target position was in the last quadrant area # and absolute motor position was in the first quadrant area # then we need to move into the previous loop around the circle. elif self.targetPosition - absoluteMotorPosition > math.pi: newMotorPosition -= 2.0 * math.pi # Last, add the current existing loops that the motor has gone through. newMotorPosition += motorPosition - absoluteMotorPosition print(f"ABS Target: {self.targetPosition} Motor Target: {newMotorPosition} Motor Current: {motorPosition} ABS Current: {absolutePosition}") self.talon.set(ctre.TalonFXControlMode.MotionMagic, getShaftTicks(newMotorPosition, "position")) def teleopExit(self) -> None: logging.info("Exiting Teleop") if __name__ == '__main__': wpilib.run(motor_poc)
8,490
Python
41.243781
156
0.690813