file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
RoboEagles4828/offseason2023/rio/POC/limitswitch_test/robot.py
import wpilib class MyRobot(wpilib.TimedRobot): def robotInit(self): print("Initalizing") self.limitSwitch = wpilib.DigitalInput(0) self.pastState = 0 self.timer = wpilib.Timer self.input = wpilib.Joystick(0) def teleopInit(self): print("Entering teleop") def teleopPeriodic(self): if (self.limitSwitch.get() != self.pastState): print(f"State Changed from {self.pastState} to {self.limitSwitch.get()}") self.pastState = self.limitSwitch.get() def teleopExit(self): print("Exitted teleop") if __name__ == "__main__": wpilib.run(MyRobot)
650
Python
26.124999
85
0.616923
RoboEagles4828/edna2023/docker-compose.yml
version: "3.6" services: main_control: # image: "ghcr.io/roboeagles4828/developer-environment:6" image: "ghcr.io/roboeagles4828/jetson:3" network_mode: "host" environment: - ROS_DOMAIN_ID=0 - FASTRTPS_DEFAULT_PROFILES_FILE=/usr/local/share/middleware_profiles/rtps_udp_profile.xml deploy: restart_policy: condition: unless-stopped delay: 2s max_attempts: 3 window: 120s entrypoint: ["/bin/bash", "-c", "/opt/workspace/docker/jetson/entrypoint.sh"] working_dir: /opt/workspace user: admin volumes: - ${HOME}/edna2023:/opt/workspace zed_cam: image: ghcr.io/roboeagles4828/jetson-zed:1 network_mode: "host" privileged: true runtime: nvidia environment: - ROS_DOMAIN_ID=0 - RMW_IMPLEMENTATION=rmw_fastrtps_cpp - FASTRTPS_DEFAULT_PROFILES_FILE=/usr/local/share/middleware_profiles/rtps_udp_profile.xml - ROS_NAMESPACE=real volumes: - /usr/bin/tegrastats:/usr/bin/tegrastats - /tmp/argus_socket:/tmp/argus_socket - /usr/local/cuda-11.4/targets/aarch64-linux/lib/libcusolver.so.11:/usr/local/cuda-11.4/targets/aarch64-linux/lib/libcusolver.so.11 - /usr/local/cuda-11.4/targets/aarch64-linux/lib/libcusparse.so.11:/usr/local/cuda-11.4/targets/aarch64-linux/lib/libcusparse.so.11 - /usr/local/cuda-11.4/targets/aarch64-linux/lib/libcurand.so.10:/usr/local/cuda-11.4/targets/aarch64-linux/lib/libcurand.so.10 - /usr/local/cuda-11.4/targets/aarch64-linux/lib/libnvToolsExt.so:/usr/local/cuda-11.4/targets/aarch64-linux/lib/libnvToolsExt.so - /usr/local/cuda-11.4/targets/aarch64-linux/lib/libcupti.so.11.4:/usr/local/cuda-11.4/targets/aarch64-linux/lib/libcupti.so.11.4 - /usr/local/cuda-11.4/targets/aarch64-linux/include:/usr/local/cuda-11.4/targets/aarch64-linux/include - /usr/lib/aarch64-linux-gnu/tegra:/usr/lib/aarch64-linux-gnu/tegra - /usr/src/jetson_multimedia_api:/usr/src/jetson_multimedia_api - /opt/nvidia/nsight-systems-cli:/opt/nvidia/nsight-systems-cli - /opt/nvidia/vpi2:/opt/nvidia/vpi2 - /usr/share/vpi2:/usr/share/vpi2 - /run/jtop.sock:/run/jtop.sock:ro - /dev/*:/dev/* - ${HOME}/edna2023/scripts/config/SN39192289.conf:/usr/local/zed/settings/SN39192289.conf - ${HOME}/edna2023/src/edna_bringup/launch/zed2i.launch.py:/root/ros2_ws/src/zed-ros2-wrapper/zed_wrapper/launch/zed2i.launch.py depends_on: - main_control deploy: resources: reservations: devices: - driver: nvidia count: all capabilities: [gpu] command: ["ros2", "launch", "zed_wrapper", "zed2i.launch.py"]
2,714
YAML
45.016948
137
0.673545
RoboEagles4828/edna2023/ZED.md
# Setting up the ZED Camera with ROS2 Galactic ## Chapter One: Downloading and Installing the Packages This assumes that you already have a working install of [ROS2 Galactic](https://docs.ros.org/en/galactic/index.html) and the [ZED SDK](https://www.stereolabs.com/developers/release/). You're going to need to go to the [ZED ROS2 Wrapper](https://github.com/stereolabs/zed-ros2-wrapper) and follow the installation insructions to add it here. However, before running `rosdep install`, you'll need to go into the src/ folder and move all of the packages inside of the zed-ros2-wrapper folder into the root src folder. **WARNING: INCREDIBLY HACKY FIX AHEAD** *If you're having problems with anything, this is probably the cause of it* If you try to `colcon build` at this point, you're going to run into some strange error having to do with install/zed_components/lib/libzed_camera_component.so regarding tf2::doTransform. Now, if you're willing to look into why this is erroring, please feel free to fix the code, but if you want a fast and simple solution, then just do this. Go into src/zed_components/src/zed_camera/src/zed_camera_component.cpp, and scroll down to line 6333. Comment that line out, save the file, and continue on with the rest of this. Once you've done that, you're also going to need the [ZED ROS2 Examples](https://github.com/stereolabs/zed-ros2-examples) for the 3D bounding boxes to display in RViz2. Go ahead and download their repository, making sure to take the packages out of the folder and put it in src/ directly. With all of that done, you can finally run `colcon build`. ## Chapter Two: Running RViz2 Now that everything is set up and you ran into no errors whatsoever, you can run it! Running `ros2 launch zed_wrapper zed2i.launch.py` (make sure to source ros2 and the local install at install/local_setup.bash first) will start a ROS topic publishing out the camera information! You can also run `ros2 launch zed_display_rviz2 display_zed2i.launch.py` to open RViz2 with the default ZED configuration (useful for the next step). ## Chapter Three: Ordinary Object Detection If you just want to enable object detection temporarily, then you can run `ros2 service call /zed2i/zed_node/enable_obj_det std_stvs/srv/SetBool data:\ true`. This command will enable object detection for the currently running ROS node. However, if you want object detection to be on by default, then go into src/zed_wrapper/config/common.yaml, and change line 107 to be true. (You can also mess with the other object detection settings here). Now if you open RViz2 with the default ZED settings, you can see the bounding boxes going around the real world things! (You can also add the point cloud from the topic to see it even better). ## Chapter Four: Custom Object Detection Unfortunately, custom object detection is *not* currently included in the ROS2 wrapper for the ZED SDK. This could be done by modifying the `zed_wrapper` package manually to add in a supported detection algorithm like Yolo or OpenCV. For us, we ran out of time to get this working during the season, but the above steps can give you a starting point. For more information, head over to [the ZED SDK](https://github.com/stereolabs/zed-sdk/tree/master/object%20detection/custom%20detector/cpp/tensorrt_yolov5_v6.0) and look at their code.
3,338
Markdown
91.749997
536
0.781905
RoboEagles4828/edna2023/README.md
![Edna2023, presented by FIRST teeam 4828: RoboEagles](./Logo.png) # Requirements - Ubuntu 22.04 - [Visual Studio Code](https://code.visualstudio.com/) - RTX Enabled NVIDIA GPU - (Optional) An Xbox controller # Installation ### 1. Install Graphics Drivers Simply run `sudo apt-get install nvidia-driver-525` in order to install the NVIDIA graphics driver for Ubuntu! ### 2. Local Setup - **Install Docker and Nvidia Docker** Running `./scripts/local-setup.sh` should install the requirements for this repository to run! At some point during running, it may prompt you for a `ROS_NAMESPACE`, which you can read more about [here](https://docs.ros.org/en/foxy/Tutorials/Intermediate/Launch/Using-ROS2-Launch-For-Large-Projects.html#namespaces). Make sure to restart your machine once the script is done running! - **Install Remote Development VS Code Extension** This repository requires the [Remote Development](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack) extension pack. Make sure to install it in the VSCode extensions window! - **Reopen in Devcontainer** Once installed, you can open the command pallate by pressing <kbd>F1</kbd>, and running the command `Reopen in Container` in order to open the devcontainer. This might take a while, but once it's finished you should see a message appear in a console stating some helpful commands, along with a list of connected controllers and your `ROS_NAMESPACE` which you set up earlier. ### 3. (Optional) ROS Setup For the robot to run correctly, both in the simulation and in the real world, we use ROS2 in order to communicate between all of the parts of our project! - **Building the project** The entire project is built as a colcon task, so you can run it by pressing <kbd>Ctrl</kbd>+<kbd>Shift</kbd>+<kbd>B</kbd> in VSCode, or by running `colcon build --symlink-install` in order to build all of the ROS2 packages. To confirm that this worked, you can simply open a new terminal, and the warning message reminding you to build should be gone! # Running the Robot <details><summary><b style="font-size:1.5em">In the simulation</b></summary> ### 1. (Optional) Installing Omniverse Server Omniverse is a NVIDIA product which allows for programs to cache their information quickly and reliably. It's not needed, but can save a lot on load times! - **Download Omniverse Launcher** https://www.nvidia.com/en-us/omniverse/download/ - **Run Omniverse** `chmod +x omniverse-launcher-linux.AppImage` `./omniverse-launcher-linux.AppImage` - **Install Cache and Nucleus Server** Click on the "Exchange" tab, and search for "Cache", which should return only one result. Nucleus Server should already be installing by default. Wait until both are downloaded and installed before continuing. ### 2. Isaac Container Setup - **Create Shaders** Isaac uses RTX heavily in order to accurately render graphics, which takes some powerful shaders. In order to get Isaac to build the shaders, run `isaac-setup` inside the devcontainer in order to start compilation of shaders. - **Launch Isaac** In order to actually start the simulation, just run the command `isaac` inside the devcontainer in order to start Isaac. It might take a while on first launch, but you should see the simulation window pop up eventually. - **Load the robot** As you should be able to see, there's currently nothing *in* Isaac. It should be showing an empty scene with a popup window to the top left labeled "Import URDF" with a button that says "Load". If you press it, you should see the 2023 playing field appear, along with a brightly colored robot in the center! ### 3. Start the simulation - **Start Isaac** Inside of Isaac, you should see a bar with a play button to the left. Click on it, or press <kbd>Space</kbd> in order to start the simulation. If everything works correctly, you should see the robot fall to the ground and be ready for movement! - **Start the ROS2 Control Node** In order to get the robot to move around, you're going to need to plug in a controller and start the control node, something that you can do easily by running `launch isaac` inside the devcontainer. If all goes well, you'll be able to move the robot around with the joystick! See [Controls]() for more details on how to drive the robot. </details> <details><summary><b style="font-size:1em">Simulating the RoboRIO</b></summary> The National Instruments [RoboRIO](https://www.ni.com/en-us/shop/model/roborio.html) is a required computer for the FRC competitions, and as such, all of our code to physically move robot parts has to be run through it. In order to run this simulator, you'll have to navigate to the `rio/` before running the following commands. - **Installing RobotPy** First, run `pip install -r requirements.txt` in order to install robotpy and the other dependencies that the simulator needs. - **Running the sim** Once you have the dependencies installed, all you'll have to do is run `python3 robot.py sim` to open the RoboRIO simulator. To read more on the simulator, check out their docs [here](https://robotpy.readthedocs.io/en/stable/guide/simulator.html)! </details> <details><summary><b style="font-size:1.5em">In real life</b></summary> ### 1. Setting up the robot If you want to actually set up the robot, check out [Setting up the Robot]() in order to get the onboard coprocessor running. However, for debugging purposes, sometimes its easier to bypass this. - **Running the Robot** To run the robot code, make sure you're connected to your robots' network, and run the command `launch real` inside the devcontianer in order to start the robot code. In order to debug and visualize the robot remotely, we use [rviz](https://github.com/ros2/rviz) in order to view joint poses and other ROS information published from the robot. - **Starting rviz** Luckily, we have another quick launch in order to start a preconfigured rviz, so you can simply open a new terminal (separate from the one running `launch real`), and run `launch rviz`. This should open up a new rviz window with the robot inside. You may need to change some of the namespaces in the window, as when running the real robot, the namespace will switch to be `real` instead of whatever you entered in the setup script. ### 2. Driving the Robot When it comes to driving the robot, you'll need a Driver Station, which we have two separate options to use. - **NI Driver Station** In order to run your robot during the competition, you'll need the official National Instruments Driver Station, with all alternatives being disallowed during competitions. For this, you're going to have to have a separate computer running Windows in order to install the [FRC Game Tools](https://www.ni.com/en-us/support/downloads/drivers/download.frc-game-tools.html), which installs the Driver Station as a part of it. - **Conductor** Despite the National Instruments driver station being the only officially supported Driver, there are some community made alternatives that you can use! We recommend using [Conductor](https://github.com/Redrield/Conductor), as it's one of the most feature complete community alternatives out there, and runs fully on linux, meaning that you don't need a separate computer, and you can run everything on just one computer! Once you have a driver station setup, you should be able to enable teleop mode with an Xbox controller connected, and the robot should move when you move the joystick! See [Controls]() for more details on how to drive the robot. </details> <details><summary><b style="font-size:1.5em">Debugging the robot</b></summary> In order to debug the robot, we built our own debugger in Python and PyQT! ### 1. Launching the debugger Simply run `launch rio-debug` in order to open the debugger! ### 2. Using the debugger - **Reading in published joint states** The joint states that are published from the robot to your computer are represented by the slider bars and buttons. Buttons are a togglable state where the output should be one of two values, whereas the sliders are joints where the output should be one of a range of values, usually used for wheels or other motors. You can tell the current joint state from the robot by looking at the top slider bar, as it will reflect the actual position of the joint on the robot. For the buttons, the color of the button represents the stater of the joint, with green meaning that the state from the robot is the same as the current state from your computer, and yellow meaning that they are not the same. You can also tell the states of the joints based on the boxes to the left of them, which should contain the exact numbers recieved from ROS. - **Publishing out your own joint commands** To publish out your own joint commands, simply use the bottom slider, or click on the buttons in order to edit the joint state being broadcast out to the robot! </details> # Gallery ![vslam2](./docs/isaac-slam2.png) ![vslam3](./docs/isaac-slam3.png) ![vslam1](./docs/isaac-slam.png) # Setting up your own robot > An incredibly difficult task which we've only done once or twice. This documentation is currently untested! Here be dragons! ## Requirements - A National Instruments RoboRIO - An NVIDIA Jetson Xavier - A lot of patience ## Setting up the RoboRIO Because of how our repository is built on the [RobotPy](https://robotpy.readthedocs.io/) framework, you're going to need to install RobotPy. > Important Note: You'll have to follow these steps on your **host machine**, as there's currently a bug where RobotPy's deployment script does not work inside of the devcontainer. ### 1. Installing RobotPy Installing robotpy is as simple as navigating to the `rio/` directory and running `pip install -r requirements.txt` in order to install the dependencies of robotpy. ### 2. Installing RobotPy onto the RoboRIO Unfortunately, this step is somewhat outside of the scope of this tutorial. We recommend you follow RobotPy's [official setup guide](https://robotpy.readthedocs.io/en/stable/install/robot.html) for installing `robotpy-installer` and getting python onto the RIO. However, there is one thing not covered by the tutorial. You will have to run `robotpy-installer download [package]` and `robotpy-installer install [package]` for the `wpilib` and `rosbags` packages respectively. ### 3. Deploying to the RoboRIO To deploy to the RoboRIO, you'll need to connect your computer to the RIO, either over USB or over the network. Once you're connected you can run `python3 robot.py deploy` in order to flash the script onto the RoboRIO.
10,637
Markdown
70.878378
431
0.768638
RoboEagles4828/edna2023/src/edna_tests/setup.py
from setuptools import setup package_name = 'edna_tests' setup( name=package_name, version='0.0.1', packages=[package_name], data_files=[ ('share/ament_index/resource_index/packages', ['resource/' + package_name]), ('share/' + package_name, ['package.xml']), ], install_requires=['setuptools'], zip_safe=True, maintainer='roboeagles', maintainer_email='[email protected]', description='Test robot functions', license='MIT', tests_require=['pytest'], entry_points={ 'console_scripts': [ 'joint-arm = edna_tests.publish_joint_arm_command:main', 'joint-drive = edna_tests.publish_joint_drive_command:main', 'publish-twist = edna_tests.publish_twist_command:main', 'run-tests = edna_tests.run_tests_command:main', 'arm-tests = edna_tests.arm_tests:main' ], }, )
926
Python
29.899999
72
0.602592
RoboEagles4828/edna2023/src/edna_tests/edna_tests/publish_joint_drive_command.py
import rclpy from rclpy.node import Node import math from sensor_msgs.msg import JointState class PublishJointCmd(Node): def __init__(self): super().__init__('publish_drive_joint_commands') self.publisher_ = self.create_publisher(JointState, '/real/real_joint_commands', 10) timer_period = 0.5 # seconds self.timer = self.create_timer(timer_period, self.timer_callback) self.i = 0 def timer_callback(self): cmds = JointState() cmds.name = [ 'front_left_wheel_joint', 'front_right_wheel_joint', 'rear_left_wheel_joint', 'rear_right_wheel_joint', 'front_left_axle_joint', 'front_right_axle_joint', 'rear_left_axle_joint', 'rear_right_axle_joint' ] rad = math.pi cmds.velocity = [ 0.0, 0.0, 0.0, 0.0, 0.0, #ignore 0.0, #ignore 0.0, #ignore 0.0, #ignore ] cmds.position = [ 0.0, #ignore 0.0, #ignore 0.0, #ignore 0.0, #ignore rad, 0.0, 0.0, 0.0 ] # position_cmds.position = [] self.publisher_.publish(cmds) self.get_logger().info('Publishing: ...') self.i += 1 def main(args=None): rclpy.init(args=args) node = PublishJointCmd() rclpy.spin(node) # Destroy the node explicitly # (optional - otherwise it will be done automatically # when the garbage collector destroys the node object) node.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
1,746
Python
23.263889
92
0.507446
RoboEagles4828/edna2023/src/edna_tests/edna_tests/publish_twist_command.py
import rclpy from rclpy.node import Node from geometry_msgs.msg import Twist, Vector3 class PublishTwistCmd(Node): def __init__(self): super().__init__('publish_twist_commands') self.publisher_ = self.create_publisher(Twist, 'swerve_controller/cmd_vel_unstamped', 10) timer_period = 0.1 # seconds self.timer = self.create_timer(timer_period, self.timer_callback) self.i = 0 def timer_callback(self): twist = Twist() twist.linear.x = 2.0 twist.linear.y = 0.0 twist.angular.z = 0.0 self.publisher_.publish(twist) self.get_logger().info('Publishing: ...') self.i += 1 def main(args=None): rclpy.init(args=args) node = PublishTwistCmd() rclpy.spin(node) node.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
868
Python
22.486486
97
0.599078
RoboEagles4828/edna2023/src/edna_tests/edna_tests/arm_tests.py
import rclpy import time from .joint_test import TesterNode # ROS Topics SUBSCRIBE_TOPIC_NAME = '/real/real_joint_states' PUBLISH_TOPIC_NAME = '/real/real_arm_commands' PUBLISH_INTERVAL = .5 # seconds # Tolerances PASS_TOLERANCE = 0.5 WARN_TOLERANCE = 1 TESTS = [ # Here's where you define your tests, in the same style as this one. # {"positions": [0.0]*6, "time": 3.0}, # Toggle pistons one at a time (to true) {"positions": [0.0]*4 + [0.0] + [0.0], "time": 10.0}, # {"positions": [0.0]*4 + [0.5] + [0.0], "time": 10.0}, # {"positions": [0.0]*4 + [1.0] + [0.0], "time": 10.0}, # {"positions": [0.0]*6, "time": 10.0}, ] JOINT_NAMES = [ # Pneumatics 'arm_roller_bar_joint', 'top_slider_joint', 'top_gripper_left_arm_joint', # Wheels 'elevator_center_joint', 'bottom_intake_joint', ] def main(): rclpy.init() testerNode = TesterNode( tests=TESTS, joint_names=JOINT_NAMES, joint_range=[8, 14], pub_topic_name=PUBLISH_TOPIC_NAME, sub_topic_name=SUBSCRIBE_TOPIC_NAME, pub_interval=PUBLISH_INTERVAL, pass_tolerance=PASS_TOLERANCE, warn_tolerance=WARN_TOLERANCE) rclpy.spin(testerNode) if __name__ == '__main__': main()
1,267
Python
22.481481
72
0.589582
RoboEagles4828/edna2023/src/edna_tests/edna_tests/run_tests_command.py
import rclpy from rclpy.node import Node import math import time from rclpy.action import ActionClient from action_tutorials_interfaces.action import Fibonacci from sensor_msgs.msg import JointState import logging vel_cmds = JointState() rad = math.pi vel_cmds.velocity = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] vel_cmds.position = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] vel_cmds.name = [ 'front_left_wheel_joint', 'front_left_axle_joint', 'front_right_wheel_joint', 'front_right_axle_joint', 'rear_left_wheel_joint', 'rear_left_axle_joint', 'rear_right_wheel_joint', 'rear_right_axle_joint'] test_return = JointState() class RunTests(Node): def __init__(self): super().__init__('run_tests') self.publisher_ = self.create_publisher( JointState, 'real_joint_commands', 10 ) timer_period = 0.1 self.timer = self.create_timer(timer_period, self.timer_callback) self.i = 0 self.subscription = self.create_subscription( JointState, 'real_joint_states', self.listener_callback, 10 ) self.subscription self.get_logger().info('Testing: ...') def timer_callback(self): self.publisher_.publish(vel_cmds) time.sleep(0.1) self.i+=1 def listener_callback(self, msg): test_return = msg def check(msg, test, test_fail): count = 0 working = True for x in msg.velocity: if (abs(msg.velocity[count] / 1000 - vel_cmds.velocity[count]) > 0.001 or abs(msg.position[count] / 1000 - vel_cmds.position[count]) > 0.001): working = False count+=1 if not working: print(test_fail) else: print(test) def test1(node): vel_cmds.velocity=[rad, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] t_end = time.time() + 3 while time.time() < t_end: rclpy.spin_once(node) time.sleep(1) check(test_return, 'Test Passed: Front Left Wheel is Spinning!', 'ERROR: Front Left Wheel is NOT spinning, something is wrong!') def test2(node): vel_cmds.position=[0.0, rad, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] t_end = time.time() + 3 while time.time() < t_end: rclpy.spin_once(node) time.sleep(1) check(test_return, 'Test Passed: Front Left Axle is Spinning!', 'ERROR: Front Left Axle is NOT spinning, something is wrong!') def test3(node): vel_cmds.velocity=[0.0, 0.0, rad, 0.0, 0.0, 0.0, 0.0, 0.0] t_end = time.time() + 3 while time.time() < t_end: rclpy.spin_once(node) time.sleep(1) check(test_return, 'Test Passed: Front Right Wheel is Spinning!', 'ERROR: Front Right Wheel is NOT spinning, something is wrong!') def test4(node): vel_cmds.position=[0.0, 0.0, 0.0, rad, 0.0, 0.0, 0.0, 0.0] t_end = time.time() + 3 while time.time() < t_end: rclpy.spin_once(node) time.sleep(1) check(test_return, 'Test Passed: Front Right Axle is Spinning!', 'ERROR: Front Right Axle is NOT spinning, something is wrong!') def test5(node): vel_cmds.position=[0.0, 0.0, 0.0, 0.0, rad, 0.0, 0.0, 0.0] t_end = time.time() + 3 while time.time() < t_end: rclpy.spin_once(node) time.sleep(1) check(test_return, 'Test Passed: Rear Left Wheel is Spinning!', 'ERROR: Rear Left Wheel is NOT spinning, something is wrong!') def test6(node): vel_cmds.position=[0.0, 0.0, 0.0, 0.0, 0.0, rad, 0.0, 0.0] t_end = time.time() + 3 while time.time() < t_end: rclpy.spin_once(node) time.sleep(1) check(test_return, 'Test Passed: Rear Left Axle is Spinning!', 'ERROR: Rear Left Axle is NOT spinning, something is wrong!') def test7(node): vel_cmds.position=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, rad, 0.0] t_end = time.time() + 3 while time.time() < t_end: rclpy.spin_once(node) time.sleep(1) check(test_return, 'Test Passed: Rear Right Wheel is Spinning!', 'ERROR: Rear Right Wheel is NOT spinning, something is wrong!') def test8(node): vel_cmds.position=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, rad] t_end = time.time() + 3 while time.time() < t_end: rclpy.spin_once(node) time.sleep(1) check(test_return, 'Test Passed: Rear Right Axle is Spinning!', 'ERROR: Rear Right Axle is NOT spinning, something is wrong!') def main(args=None): rclpy.init(args=args) node = RunTests() rclpy.spin_once(node) test1(node) test2(node) test3(node) test4(node) test5(node) test6(node) test7(node) test8(node) node.destroy_node() rclpy.shutdown() if __name__ == "__main__": main()
4,771
Python
32.138889
154
0.590442
RoboEagles4828/edna2023/src/edna_tests/edna_tests/joint_test.py
import time from rclpy.node import Node from sensor_msgs.msg import JointState # COLORS GREEN = "\033[0;32m" YELLOW = "\033[1;33m" RED = "\033[0;31m" RESET = "\033[0m" # Default ROS values SUBSCRIBE_TOPIC_NAME = '/real/real_joint_states' PUBLISH_INTERVAL = .5 # seconds # Default Tolerances PASS_TOLERANCE = 0.5 WARN_TOLERANCE = 1 SCALING_FACTOR_FIX = 10000 class TesterNode(Node): def __init__(self, tests, joint_names, joint_range, pub_topic_name, sub_topic_name=SUBSCRIBE_TOPIC_NAME, pub_interval=PUBLISH_INTERVAL, pass_tolerance=PASS_TOLERANCE, warn_tolerance=WARN_TOLERANCE): super().__init__('arm_tester') # Constructor Arguments self.TESTS = tests self.JOINT_NAMES = joint_names self.JOINT_RANGE = joint_range self.SUBSCRIBE_TOPIC_NAME = sub_topic_name self.PUBLISH_TOPIC_NAME = pub_topic_name self.PUBLISH_INTERVAL = pub_interval self.PASS_TOLERANCE = pass_tolerance self.WARN_TOLERANCE = warn_tolerance self.currentTest = 0 self.testStatus = [] self.lastPositions = [None]*6 self.expectedPositions = self.TESTS[self.currentTest]["positions"] self.recieving = True self.startTime = time.time() self.subscription = self.create_subscription(JointState, self.SUBSCRIBE_TOPIC_NAME, self.recieve, 10) self.publisher = self.create_publisher(JointState, self.PUBLISH_TOPIC_NAME, 10) self.publishTimer = self.create_timer(self.PUBLISH_INTERVAL, self.publish) def publish(self): msg = JointState() msg.name = self.JOINT_NAMES msg.position = self.TESTS[self.currentTest]["positions"] self.publisher.publish(msg) self.doTests() def doTests(self): if not(self.recieving): # Start running the next test self.currentTest += 1 if self.currentTest > len(self.TESTS)-1: print("\nTests Finished") for index, test in enumerate(self.testStatus): print(f"{RED if test['fail'] > 0 else YELLOW if test['warn'] > 0 else GREEN}Test {index} {'FAILED' if test['fail'] > 0 else 'PASSED'} {'with WARNINGS' if test['warn'] > 0 else ''}{RESET}") exit(0) # shutting down rclpy just kills the node and hangs the process, without actually stopping the program else: self.expectedPositions = self.TESTS[self.currentTest]["positions"] self.lastPositions = [None]*6 self.recieving = True self.startTime = time.time() else: # Check if the current test should end... timeleft = time.time() - self.startTime print(f"\rRunning Test {self.currentTest} ({round(self.TESTS[self.currentTest]['time'] - timeleft, 2)}s remaining)", end='') if time.time() - self.startTime > self.TESTS[self.currentTest]["time"]: self.recieving = False self.testStatus.append({"pass": 0, "warn": 0, "fail": 0}) print(f"\rTest {self.currentTest} Completed ") self.printResults() print() def recieve(self, msg : JointState): if self.recieving: self.lastPositions = [i / SCALING_FACTOR_FIX for i in msg.position[self.JOINT_RANGE[0]:self.JOINT_RANGE[1]]] def testFinished(self): if not self.recieving: return self.recieving = False self.destroy_timer(self.publishTimer) self.i += 1 def printResults(self): for index, position in enumerate(self.lastPositions): if position is None: print(f"{RED}FAILED: Did not recieve any positions from the robot!{RESET}") self.testStatus[self.currentTest]["fail"] += 1 continue difference = abs(self.expectedPositions[index] - position) if difference == 0: print(f"{GREEN}Joint {index} PASSED{RESET}") self.testStatus[self.currentTest]["pass"] += 1 elif difference <= self.PASS_TOLERANCE: print(f"{GREEN}Difference of {difference} (expected {self.expectedPositions[index]}, got {position}){RESET}") self.testStatus[self.currentTest]["pass"] += 1 elif difference <= self.WARN_TOLERANCE: print(f"{YELLOW}Difference of {difference} (expected {self.expectedPositions[index]}, got {position}){RESET}") self.testStatus[self.currentTest]["warn"] += 1 else: print(f"{RED}FAILED: Expected position {self.expectedPositions[index]}, got {position}{RESET}") self.testStatus[self.currentTest]["fail"] += 1
4,791
Python
43.785046
208
0.604467
RoboEagles4828/edna2023/src/edna_tests/edna_tests/publish_joint_arm_command.py
import rclpy from rclpy.node import Node import math from sensor_msgs.msg import JointState class PublishJointCmd(Node): def __init__(self): super().__init__('publish_arm_joint_commands') self.publisher_ = self.create_publisher(JointState, '/real/real_arm_commands', 10) timer_period = 0.5 # seconds self.timer = self.create_timer(timer_period, self.timer_callback) self.i = 0 def timer_callback(self): # velocity_cmds = JointState() position_cmds = JointState() position_cmds.name = [ # Pneumatics 'arm_roller_bar_joint', 'top_slider_joint', 'top_gripper_left_arm_joint', # Wheels 'elevator_center_joint', 'bottom_intake_joint', ] # position_cmds.name = [] # rad = math.pi # velocity_cmds.velocity = [ 0.0 ] * 8 position_cmds.position = [ 0.0, # Either a 0 (down) or a 1 (up) 0.0, # Either a 0 (fully back) or a 1 (fully extended) 0.0, # Either a 0 (open) or a 1 (closed) 0.0, # Value between 0.0 (fully back) and 2.0 (fully extended) (will be converted on their end, so just take the motor value and multiply it by two) 0.0 # Value between 0.0 (fully down) and 1.0 (fully up) ] # position_cmds.position = [] self.publisher_.publish(position_cmds) # self.publisher_.publish(position_cmds) self.get_logger().info('Publishing: ...') self.i += 1 def main(args=None): rclpy.init(args=args) node = PublishJointCmd() rclpy.spin(node) # Destroy the node explicitly # (optional - otherwise it will be done automatically # when the garbage collector destroys the node object) node.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
1,931
Python
28.723076
165
0.568099
RoboEagles4828/edna2023/src/joint_trajectory_teleop/setup.py
from setuptools import setup package_name = 'joint_trajectory_teleop' setup( name=package_name, version='0.0.0', packages=[package_name], data_files=[ ('share/ament_index/resource_index/packages', ['resource/' + package_name]), ('share/' + package_name, ['package.xml']), ], install_requires=['setuptools'], zip_safe=True, maintainer='admin', maintainer_email='[email protected]', description='TODO: Package description', license='TODO: License declaration', tests_require=['pytest'], entry_points={ 'console_scripts': [ 'joint_trajectory_teleop = joint_trajectory_teleop.joint_trajectory_teleop:main', ], }, )
728
Python
25.999999
93
0.619505
RoboEagles4828/edna2023/src/joint_trajectory_teleop/test/test_flake8.py
# Copyright 2017 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_flake8.main import main_with_errors import pytest @pytest.mark.flake8 @pytest.mark.linter def test_flake8(): rc, errors = main_with_errors(argv=[]) assert rc == 0, \ 'Found %d code style errors / warnings:\n' % len(errors) + \ '\n'.join(errors)
884
Python
33.03846
74
0.725113
RoboEagles4828/edna2023/src/joint_trajectory_teleop/test/test_pep257.py
# Copyright 2015 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_pep257.main import main import pytest @pytest.mark.linter @pytest.mark.pep257 def test_pep257(): rc = main(argv=['.', 'test']) assert rc == 0, 'Found code style errors / warnings'
803
Python
32.499999
74
0.743462
RoboEagles4828/edna2023/src/joint_trajectory_teleop/test/test_copyright.py
# Copyright 2015 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_copyright.main import main import pytest # Remove the `skip` decorator once the source file(s) have a copyright header @pytest.mark.skip(reason='No copyright header has been placed in the generated source file.') @pytest.mark.copyright @pytest.mark.linter def test_copyright(): rc = main(argv=['.', 'test']) assert rc == 0, 'Found errors'
962
Python
36.03846
93
0.751559
RoboEagles4828/edna2023/src/joint_trajectory_teleop/joint_trajectory_teleop/yaml_test.py
import yaml yaml_path = '/workspaces/edna2023/src/edna_bringup/config/xbox-real.yaml' with open(yaml_path, 'r') as f: yaml = yaml.safe_load(f) yaml = yaml['/*']['joint_trajectory_teleop_node']['ros__parameters'] print(str(yaml['function_mapping']['elevator_loading_station']['button']))
291
Python
40.71428
74
0.707904
RoboEagles4828/edna2023/src/joint_trajectory_teleop/joint_trajectory_teleop/joint_trajectory_teleop.py
import rclpy from rclpy.node import Node from rclpy.qos import QoSProfile, QoSHistoryPolicy, QoSDurabilityPolicy, QoSReliabilityPolicy from rclpy import logging import math from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint from sensor_msgs.msg import Joy import os from rclpy.qos import QoSDurabilityPolicy, QoSHistoryPolicy, QoSReliabilityPolicy, QoSProfile import time import yaml ENABLE_THROTTLE = True class toggleButton(): def __init__(self, button, isAxis=False): self.last_button = 0.0 self.flag = False self.button = button self.isAxis = isAxis def toggle(self, buttons_list): currentButton = buttons_list[self.button] if self.isAxis: # currentButton = currentButton / 10000 if currentButton > 1 else currentButton if currentButton == -10000.0 and self.last_button != -10000.0: self.flag = not self.flag self.last_button = currentButton return self.flag else: self.last_button = currentButton return self.flag if currentButton == 1.0 and self.last_button == 0.0: self.flag = not self.flag self.last_button = currentButton return self.flag else: self.last_button = currentButton return self.flag class PublishTrajectoryMsg(Node): def __init__(self): super().__init__('publish_trajectory_msg') # Joint Map self.joints = [ 'arm_roller_bar_joint', 'elevator_center_joint', 'elevator_outer_1_joint', 'elevator_outer_2_joint', 'top_gripper_right_arm_joint', 'top_gripper_left_arm_joint', 'top_slider_joint', 'bottom_intake_joint', ] # Publishers and Subscribers self.publisher_ = self.create_publisher(JointTrajectory, 'joint_trajectory_controller/joint_trajectory', 10) self.subscriber = self.create_subscription(Joy, 'joy', self.controller_callback, 10) self.timer_period = 0.5 # seconds # Load yaml self.curr_file_path = os.path.abspath(__file__) self.project_root_path = os.path.abspath(os.path.join(self.curr_file_path, "../../../..")) self.yaml_path = os.path.join(self.project_root_path, 'src/edna_bringup/config/teleop-control.yaml') with open(self.yaml_path, 'r') as f: self.yaml = yaml.safe_load(f) # Macros self.functions = [self.elevator_loading_station, self.skis_up, self.elevator_mid_level, self.elevator_high_level, self.top_gripper_control, self.elevator_pivot_control, self.top_slider_control] # Variables self.cmds: JointTrajectory = JointTrajectory() self.position_cmds: JointTrajectoryPoint = JointTrajectoryPoint() self.position_cmds.positions = [0.0] * len(self.joints) self.cmds.joint_names = self.joints self.joint_map = self.yaml['joint_mapping'] self.logger = logging.get_logger('JOINT-TRAJCECTORY-TELEOP') self.toggle_buttons = {} self.last_cmd = JointTrajectory() self.joint_limits = self.yaml["joint_limits"] # Create Toggle Buttons for function in self.functions: buttonName = self.yaml['function_mapping'][function.__name__]['button'] button = self.yaml['controller_mapping'][buttonName] toggle = self.yaml['function_mapping'][function.__name__]['toggle'] isAxis = "axis" in buttonName.lower() if toggle: self.toggle_buttons[function.__name__] = toggleButton(button, isAxis) def controller_callback(self, joystick: Joy): for function in self.functions: buttonName = self.yaml['function_mapping'][function.__name__]['button'] button = self.yaml['controller_mapping'][buttonName] toggle = self.yaml['function_mapping'][function.__name__]['toggle'] if toggle: tglBtn = self.toggle_buttons[function.__name__] if tglBtn.isAxis: button = tglBtn.toggle(joystick.axes) else: button = tglBtn.toggle(joystick.buttons) else: button = joystick.buttons[button] function(button) self.publisher_.publish(self.cmds) # Macros def elevator_loading_station(self, button_val: int): #TODO: Tweak the values if button_val == 1.0: self.position_cmds.positions[int(self.joint_map['elevator_center_joint'])] = 0.056 self.position_cmds.positions[int(self.joint_map['elevator_outer_2_joint'])] = 0.056 self.position_cmds.positions[int(self.joint_map['top_slider_joint'])] = self.joint_limits["top_slider_joint"]["max"] elif button_val == 0.0: self.position_cmds.positions[int(self.joint_map['elevator_center_joint'])] = 0.0 self.position_cmds.positions[int(self.joint_map['elevator_outer_2_joint'])] = 0.0 self.position_cmds.positions[int(self.joint_map['top_slider_joint'])] = 0.0 self.cmds.points = [self.position_cmds] def skis_up(self, button_val: int): #TODO: Tweak the values self.position_cmds.positions[int(self.joint_map['bottom_intake_joint'])] = button_val self.cmds.points = [self.position_cmds] def elevator_mid_level(self, button_val: int): #TODO: Tweak the values if button_val == 1.0: self.position_cmds.positions[int(self.joint_map['elevator_center_joint'])] = 0.336 self.position_cmds.positions[int(self.joint_map['elevator_outer_2_joint'])] = 0.336 self.position_cmds.positions[int(self.joint_map['top_slider_joint'])] = self.joint_limits["top_slider_joint"]["max"] self.cmds.points = [self.position_cmds] def elevator_high_level(self, button_val: int): #TODO: Tweak the values if button_val == 1.0: self.position_cmds.positions[int(self.joint_map['elevator_center_joint'])] = self.joint_limits["elevator_center_joint"]["max"] self.position_cmds.positions[int(self.joint_map['elevator_outer_2_joint'])] = self.joint_limits["elevator_outer_2_joint"]["max"] self.position_cmds.positions[int(self.joint_map['top_slider_joint'])] = self.joint_limits["top_slider_joint"]["max"] elif button_val == 0.0: self.position_cmds.positions[int(self.joint_map['elevator_outer_1_joint'])] = 0.0 self.cmds.points = [self.position_cmds] def top_gripper_control(self, button_val: int): #TODO: Tweak the values if button_val == 1.0: self.position_cmds.positions[int(self.joint_map['top_gripper_left_arm_joint'])] = self.joint_limits["top_gripper_left_arm_joint"]["max"] self.position_cmds.positions[int(self.joint_map['top_gripper_right_arm_joint'])] = self.joint_limits["top_gripper_right_arm_joint"]["max"] elif button_val == 0.0: self.position_cmds.positions[int(self.joint_map['top_gripper_left_arm_joint'])] = self.joint_limits["top_gripper_right_arm_joint"]["min"] self.position_cmds.positions[int(self.joint_map['top_gripper_right_arm_joint'])] = self.joint_limits["top_gripper_right_arm_joint"]["min"] self.cmds.points = [self.position_cmds] def elevator_pivot_control(self, button_val: int): #TODO: Tweak the values if button_val == 1.0: self.position_cmds.positions[int(self.joint_map['arm_roller_bar_joint'])] = self.joint_limits["arm_roller_bar_joint"]["max"] self.position_cmds.positions[int(self.joint_map['elevator_outer_1_joint'])] = self.joint_limits["elevator_outer_1_joint"]["max"] else: self.position_cmds.positions[int(self.joint_map['arm_roller_bar_joint'])] = 0.0 self.position_cmds.positions[int(self.joint_map['elevator_outer_1_joint'])] = 0.0 self.cmds.points = [self.position_cmds] def top_slider_control(self, button_val: int): #TODO: Tweak the values if button_val == 1.0: self.position_cmds.positions[int(self.joint_map['top_slider_joint'])] = self.joint_limits["top_slider_joint"]["max"] self.cmds.points = [self.position_cmds] def main(args=None): rclpy.init(args=args) node = PublishTrajectoryMsg() rclpy.spin(node) node.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
8,659
Python
40.238095
201
0.618778
RoboEagles4828/edna2023/src/swerve_hardware/swerve_hardware.xml
<library path="swerve_hardware"> <class name="swerve_hardware/IsaacDriveHardware" type="swerve_hardware::IsaacDriveHardware" base_class_type="hardware_interface::SystemInterface"> <description> The ROS2 Control hardware interface to talk with Isaac Sim robot drive train. </description> </class> <class name="swerve_hardware/TestDriveHardware" type="swerve_hardware::TestDriveHardware" base_class_type="hardware_interface::SystemInterface"> <description> The ROS2 Control hardware interface for testing a connected controller. </description> </class> <class name="swerve_hardware/RealDriveHardware" type="swerve_hardware::RealDriveHardware" base_class_type="hardware_interface::SystemInterface"> <description> The ROS2 Control hardware interface for testing a connected controller. </description> </class> </library>
925
XML
37.583332
83
0.714595
RoboEagles4828/edna2023/src/swerve_hardware/src/isaac_drive.cpp
// Copyright 2021 ros2_control Development Team // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "swerve_hardware/isaac_drive.hpp" #include <chrono> #include <cmath> #include <limits> #include <memory> #include <vector> #include "hardware_interface/types/hardware_interface_type_values.hpp" #include "rclcpp/rclcpp.hpp" #include "swerve_hardware/motion_magic.hpp" #include "sensor_msgs/msg/joint_state.hpp" using std::placeholders::_1; namespace swerve_hardware { hardware_interface::CallbackReturn IsaacDriveHardware::on_init(const hardware_interface::HardwareInfo & info) { node_ = rclcpp::Node::make_shared("isaac_hardware_interface"); // PUBLISHER SETUP isaac_publisher_ = node_->create_publisher<sensor_msgs::msg::JointState>(joint_command_topic_, rclcpp::SystemDefaultsQoS()); realtime_isaac_publisher_ = std::make_shared<realtime_tools::RealtimePublisher<sensor_msgs::msg::JointState>>( isaac_publisher_); // SUBSCRIBER SETUP const sensor_msgs::msg::JointState empty_joint_state; auto qos = rclcpp::QoS(1); qos.best_effort(); received_joint_msg_ptr_.set(std::make_shared<sensor_msgs::msg::JointState>(empty_joint_state)); isaac_subscriber_ = node_->create_subscription<sensor_msgs::msg::JointState>(joint_state_topic_, qos, [this](const std::shared_ptr<sensor_msgs::msg::JointState> msg) -> void { if (!subscriber_is_active_) { RCLCPP_WARN( rclcpp::get_logger("isaac_hardware_interface"), "Can't accept new commands. subscriber is inactive"); return; } received_joint_msg_ptr_.set(std::move(msg)); }); // COMMON INTERFACE SETUP if (hardware_interface::SystemInterface::on_init(info) != hardware_interface::CallbackReturn::SUCCESS) { return hardware_interface::CallbackReturn::ERROR; } // 8 positions states, 4 axle positions 4 wheel positions hw_positions_.resize(info_.joints.size(), std::numeric_limits<double>::quiet_NaN()); // 8 velocity states, 4 axle velocity 4 wheel velocity hw_velocities_.resize(info_.joints.size(), std::numeric_limits<double>::quiet_NaN()); // 4 wheel velocity commands // We will keep this at 8 and make the other 4 zero to keep indexing consistent hw_command_velocity_.resize(info_.joints.size(), std::numeric_limits<double>::quiet_NaN()); // 4 axle position commands // We will keep this at 8 and make the other 4 zero to keep indexing consistent hw_command_position_.resize(info_.joints.size(), std::numeric_limits<double>::quiet_NaN()); joint_types_.resize(info_.joints.size(), ""); motion_magic_.resize(info_.joints.size(), MotionMagic(MAX_ACCELERATION, MAX_VELOCITY)); for (const hardware_interface::ComponentInfo & joint : info_.joints) { joint_names_.push_back(joint.name); if (joint.command_interfaces.size() != 1) { RCLCPP_FATAL( rclcpp::get_logger("IsaacDriveHardware"), "Joint '%s' has %zu command interfaces found. 1 expected.", joint.name.c_str(), joint.command_interfaces.size()); return hardware_interface::CallbackReturn::ERROR; } if (joint.command_interfaces[0].name != hardware_interface::HW_IF_VELOCITY && joint.command_interfaces[0].name != hardware_interface::HW_IF_POSITION) { RCLCPP_FATAL( rclcpp::get_logger("IsaacDriveHardware"), "Joint '%s' have %s command interfaces found. '%s' expected.", joint.name.c_str(), joint.command_interfaces[0].name.c_str(), hardware_interface::HW_IF_VELOCITY); return hardware_interface::CallbackReturn::ERROR; } if (joint.state_interfaces.size() != 2) { RCLCPP_FATAL( rclcpp::get_logger("IsaacDriveHardware"), "Joint '%s' has %zu state interface. 2 expected.", joint.name.c_str(), joint.state_interfaces.size()); return hardware_interface::CallbackReturn::ERROR; } if (joint.state_interfaces[0].name != hardware_interface::HW_IF_POSITION) { RCLCPP_FATAL( rclcpp::get_logger("IsaacDriveHardware"), "Joint '%s' have '%s' as first state interface. '%s' expected.", joint.name.c_str(), joint.state_interfaces[0].name.c_str(), hardware_interface::HW_IF_POSITION); return hardware_interface::CallbackReturn::ERROR; } if (joint.state_interfaces[1].name != hardware_interface::HW_IF_VELOCITY) { RCLCPP_FATAL( rclcpp::get_logger("IsaacDriveHardware"), "Joint '%s' have '%s' as second state interface. '%s' expected.", joint.name.c_str(), joint.state_interfaces[1].name.c_str(), hardware_interface::HW_IF_VELOCITY); return hardware_interface::CallbackReturn::ERROR; } } return hardware_interface::CallbackReturn::SUCCESS; } std::vector<hardware_interface::StateInterface> IsaacDriveHardware::export_state_interfaces() { // Each joint has 2 state interfaces: position and velocity std::vector<hardware_interface::StateInterface> state_interfaces; for (auto i = 0u; i < info_.joints.size(); i++) { state_interfaces.emplace_back(hardware_interface::StateInterface( info_.joints[i].name, hardware_interface::HW_IF_POSITION, &hw_positions_[i])); state_interfaces.emplace_back(hardware_interface::StateInterface( info_.joints[i].name, hardware_interface::HW_IF_VELOCITY, &hw_velocities_[i])); } return state_interfaces; } std::vector<hardware_interface::CommandInterface> IsaacDriveHardware::export_command_interfaces() { std::vector<hardware_interface::CommandInterface> command_interfaces; for (auto i = 0u; i < info_.joints.size(); i++) { auto joint = info_.joints[i]; RCLCPP_INFO(rclcpp::get_logger("IsaacDriveHardware"), "Joint Name %s", joint.name.c_str()); if (joint.command_interfaces[0].name == hardware_interface::HW_IF_VELOCITY) { RCLCPP_INFO(rclcpp::get_logger("IsaacDriveHardware"), "Added Velocity Joint: %s", joint.name.c_str() ); joint_types_[i] = hardware_interface::HW_IF_VELOCITY; // Add the command interface with a pointer to i of vel commands command_interfaces.emplace_back(hardware_interface::CommandInterface( joint.name, hardware_interface::HW_IF_VELOCITY, &hw_command_velocity_[i])); // Make i of the pos command interface 0.0 hw_command_position_[i] = 0.0; } else { RCLCPP_INFO(rclcpp::get_logger("IsaacDriveHardware"), "Added Position Joint: %s", joint.name.c_str() ); joint_types_[i] = hardware_interface::HW_IF_POSITION; // Add the command interface with a pointer to i of pos commands command_interfaces.emplace_back(hardware_interface::CommandInterface( joint.name, hardware_interface::HW_IF_POSITION, &hw_command_position_[i])); // Make i of the pos command interface 0.0 hw_command_velocity_[i] = 0.0; } } return command_interfaces; } hardware_interface::CallbackReturn IsaacDriveHardware::on_activate(const rclcpp_lifecycle::State & /*previous_state*/) { RCLCPP_INFO(rclcpp::get_logger("IsaacDriveHardware"), "Activating ...please wait..."); // Set Default Values for State Interface Arrays for (auto i = 0u; i < hw_positions_.size(); i++) { hw_positions_[i] = 0.0; hw_velocities_[i] = 0.0; hw_command_velocity_[i] = 0.0; hw_command_position_[i] = 0.0; } subscriber_is_active_ = true; RCLCPP_INFO(rclcpp::get_logger("IsaacDriveHardware"), "Successfully activated!"); return hardware_interface::CallbackReturn::SUCCESS; } hardware_interface::CallbackReturn IsaacDriveHardware::on_deactivate( const rclcpp_lifecycle::State & /*previous_state*/) { RCLCPP_INFO(rclcpp::get_logger("IsaacDriveHardware"), "Deactivating ...please wait..."); subscriber_is_active_ = false; RCLCPP_INFO(rclcpp::get_logger("IsaacDriveHardware"), "Successfully deactivated!"); return hardware_interface::CallbackReturn::SUCCESS; } // || || // \/ THE STUFF THAT MATTERS \/ double IsaacDriveHardware::convertToRosPosition(double isaac_position) { // Isaac goes from -2pi to 2pi, we want -pi to pi if (isaac_position > M_PI) { return isaac_position - 2.0 * M_PI; } else if (isaac_position < -M_PI) { return isaac_position + 2.0 * M_PI; } return isaac_position; } hardware_interface::return_type IsaacDriveHardware::read(const rclcpp::Time & time, const rclcpp::Duration & /*period*/) { rclcpp::spin_some(node_); std::shared_ptr<sensor_msgs::msg::JointState> last_command_msg; received_joint_msg_ptr_.get(last_command_msg); if (last_command_msg == nullptr) { RCLCPP_WARN(rclcpp::get_logger("IsaacDriveHardware"), "[%f] Velocity message received was a nullptr.", time.seconds()); return hardware_interface::return_type::ERROR; } auto names = last_command_msg->name; auto positions = last_command_msg->position; auto velocities = last_command_msg->velocity; for (auto i = 0u; i < joint_names_.size(); i++) { for (auto j = 0u; j < names.size(); j++) { if (strcmp(names[j].c_str(), info_.joints[i].name.c_str()) == 0) { hw_positions_[i] = convertToRosPosition(positions[j]); hw_velocities_[i] = (float)velocities[j]; break; } } } return hardware_interface::return_type::OK; } hardware_interface::return_type swerve_hardware::IsaacDriveHardware::write(const rclcpp::Time & /*time*/, const rclcpp::Duration & period) { // Calculate Axle Velocities using motion magic double dt = period.seconds(); for (auto i = 0u; i < joint_names_.size(); i++) { if (joint_names_[i].find("axle") != std::string::npos) { auto vel = motion_magic_[i].getNextVelocity(hw_command_position_[i], hw_positions_[i], hw_velocities_[i], dt); // RCLCPP_INFO(rclcpp::get_logger("TestDriveHardware"), "Current: %f, Target: %f Vel: %f", hw_positions_[i], hw_command_position_[i], vel); hw_command_velocity_[i] = vel; } if (joint_names_[i] == "front_left_wheel_joint") { auto& clk = *node_->get_clock(); RCLCPP_INFO_THROTTLE(rclcpp::get_logger("IsaacDriveHardware"), clk, 2000, "Joint: %s Current Vel: %f Target Vel: %f Pos: %f", joint_names_[i].c_str(), hw_velocities_[i], hw_command_velocity_[i], hw_positions_[i]); } } // Publish to Isaac if (realtime_isaac_publisher_->trylock()) { auto & realtime_isaac_command_ = realtime_isaac_publisher_->msg_; realtime_isaac_command_.header.stamp = node_->get_clock()->now(); realtime_isaac_command_.name = joint_names_; realtime_isaac_command_.velocity = hw_command_velocity_; realtime_isaac_command_.position = empty_; realtime_isaac_publisher_->unlockAndPublish(); } rclcpp::spin_some(node_); if (realtime_isaac_publisher_->trylock()) { auto & realtime_isaac_command_ = realtime_isaac_publisher_->msg_; realtime_isaac_command_.header.stamp = node_->get_clock()->now(); realtime_isaac_command_.name = joint_names_; realtime_isaac_command_.velocity = empty_; realtime_isaac_command_.position = hw_command_position_; realtime_isaac_publisher_->unlockAndPublish(); } rclcpp::spin_some(node_); return hardware_interface::return_type::OK; } } // namespace swerve_hardware #include "pluginlib/class_list_macros.hpp" PLUGINLIB_EXPORT_CLASS( swerve_hardware::IsaacDriveHardware, hardware_interface::SystemInterface)
11,781
C++
37.006451
153
0.683643
RoboEagles4828/edna2023/src/swerve_hardware/src/test_drive.cpp
// Copyright 2021 ros2_control Development Team // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "swerve_hardware/test_drive.hpp" #include <chrono> #include <cmath> #include <limits> #include <memory> #include <vector> #include "hardware_interface/types/hardware_interface_type_values.hpp" #include "swerve_hardware/motion_magic.hpp" #include "rclcpp/rclcpp.hpp" using std::placeholders::_1; namespace swerve_hardware { hardware_interface::CallbackReturn TestDriveHardware::on_init(const hardware_interface::HardwareInfo & info) { // COMMON INTERFACE SETUP if (hardware_interface::SystemInterface::on_init(info) != hardware_interface::CallbackReturn::SUCCESS) { return hardware_interface::CallbackReturn::ERROR; } // 8 positions states, 4 axle positions 4 wheel positions hw_positions_.resize(info_.joints.size(), std::numeric_limits<double>::quiet_NaN()); // 8 velocity states, 4 axle velocity 4 wheel velocity hw_velocities_.resize(info_.joints.size(), std::numeric_limits<double>::quiet_NaN()); // 4 wheel velocity commands // We will keep this at 8 and make the other 4 zero to keep indexing consistent hw_command_velocity_.resize(info_.joints.size(), std::numeric_limits<double>::quiet_NaN()); // 4 axle position commands // We will keep this at 8 and make the other 4 zero to keep indexing consistent hw_command_position_.resize(info_.joints.size(), std::numeric_limits<double>::quiet_NaN()); joint_types_.resize(info_.joints.size(), ""); motion_magic_.resize(info_.joints.size(), MotionMagic(MAX_ACCELERATION, MAX_VELOCITY)); for (const hardware_interface::ComponentInfo & joint : info_.joints) { joint_names_.push_back(joint.name); if (joint.command_interfaces.size() != 1) { RCLCPP_FATAL( rclcpp::get_logger("TestDriveHardware"), "Joint '%s' has %zu command interfaces found. 1 expected.", joint.name.c_str(), joint.command_interfaces.size()); return hardware_interface::CallbackReturn::ERROR; } if (joint.command_interfaces[0].name != hardware_interface::HW_IF_VELOCITY && joint.command_interfaces[0].name != hardware_interface::HW_IF_POSITION) { RCLCPP_FATAL( rclcpp::get_logger("TestDriveHardware"), "Joint '%s' have %s command interfaces found. '%s' expected.", joint.name.c_str(), joint.command_interfaces[0].name.c_str(), hardware_interface::HW_IF_VELOCITY); return hardware_interface::CallbackReturn::ERROR; } if (joint.state_interfaces.size() != 2) { RCLCPP_FATAL( rclcpp::get_logger("TestDriveHardware"), "Joint '%s' has %zu state interface. 2 expected.", joint.name.c_str(), joint.state_interfaces.size()); return hardware_interface::CallbackReturn::ERROR; } if (joint.state_interfaces[0].name != hardware_interface::HW_IF_POSITION) { RCLCPP_FATAL( rclcpp::get_logger("TestDriveHardware"), "Joint '%s' have '%s' as first state interface. '%s' expected.", joint.name.c_str(), joint.state_interfaces[0].name.c_str(), hardware_interface::HW_IF_POSITION); return hardware_interface::CallbackReturn::ERROR; } if (joint.state_interfaces[1].name != hardware_interface::HW_IF_VELOCITY) { RCLCPP_FATAL( rclcpp::get_logger("TestDriveHardware"), "Joint '%s' have '%s' as second state interface. '%s' expected.", joint.name.c_str(), joint.state_interfaces[1].name.c_str(), hardware_interface::HW_IF_VELOCITY); return hardware_interface::CallbackReturn::ERROR; } } return hardware_interface::CallbackReturn::SUCCESS; } std::vector<hardware_interface::StateInterface> TestDriveHardware::export_state_interfaces() { // Each joint has 2 state interfaces: position and velocity std::vector<hardware_interface::StateInterface> state_interfaces; for (auto i = 0u; i < info_.joints.size(); i++) { state_interfaces.emplace_back(hardware_interface::StateInterface( info_.joints[i].name, hardware_interface::HW_IF_POSITION, &hw_positions_[i])); state_interfaces.emplace_back(hardware_interface::StateInterface( info_.joints[i].name, hardware_interface::HW_IF_VELOCITY, &hw_velocities_[i])); } return state_interfaces; } std::vector<hardware_interface::CommandInterface> TestDriveHardware::export_command_interfaces() { std::vector<hardware_interface::CommandInterface> command_interfaces; for (auto i = 0u; i < info_.joints.size(); i++) { auto joint = info_.joints[i]; RCLCPP_INFO(rclcpp::get_logger("TestDriveHardware"), "Joint Name %s", joint.name.c_str()); if (joint.command_interfaces[0].name == hardware_interface::HW_IF_VELOCITY) { RCLCPP_INFO(rclcpp::get_logger("TestDriveHardware"), "Added Velocity Joint: %s", joint.name.c_str() ); joint_types_[i] = hardware_interface::HW_IF_VELOCITY; // Add the command interface with a pointer to i of vel commands command_interfaces.emplace_back(hardware_interface::CommandInterface( joint.name, hardware_interface::HW_IF_VELOCITY, &hw_command_velocity_[i])); // Make i of the pos command interface 0.0 hw_command_position_[i] = 0.0; } else { RCLCPP_INFO(rclcpp::get_logger("TestDriveHardware"), "Added Position Joint: %s", joint.name.c_str() ); joint_types_[i] = hardware_interface::HW_IF_POSITION; // Add the command interface with a pointer to i of pos commands command_interfaces.emplace_back(hardware_interface::CommandInterface( joint.name, hardware_interface::HW_IF_POSITION, &hw_command_position_[i])); // Make i of the pos command interface 0.0 hw_command_velocity_[i] = 0.0; } } return command_interfaces; } hardware_interface::CallbackReturn TestDriveHardware::on_activate(const rclcpp_lifecycle::State & /*previous_state*/) { RCLCPP_INFO(rclcpp::get_logger("TestDriveHardware"), "Activating ...please wait..."); // Set Default Values for State Interface Arrays for (auto i = 0u; i < hw_positions_.size(); i++) { hw_positions_[i] = 0.0; hw_velocities_[i] = 0.0; hw_command_velocity_[i] = 0.0; hw_command_position_[i] = 0.0; } RCLCPP_INFO(rclcpp::get_logger("TestDriveHardware"), "Successfully activated!"); return hardware_interface::CallbackReturn::SUCCESS; } hardware_interface::CallbackReturn TestDriveHardware::on_deactivate(const rclcpp_lifecycle::State & /*previous_state*/) { RCLCPP_INFO(rclcpp::get_logger("TestDriveHardware"), "Deactivating ...please wait..."); RCLCPP_INFO(rclcpp::get_logger("TestDriveHardware"), "Successfully deactivated!"); return hardware_interface::CallbackReturn::SUCCESS; } // || || // \/ THE STUFF THAT MATTERS \/ hardware_interface::return_type TestDriveHardware::read(const rclcpp::Time & /*time*/, const rclcpp::Duration & period) { // Dumb Pass Through // If you give the command for x velocity then the state is x velocity // Loop through each joint name // Check if joint name is in velocity command map // If it is, use the index from the map to get the value in the velocity array // If velocity not in map, set velocity value to 0 // Perform the same for position double dt = period.seconds(); for (auto i = 0u; i < joint_names_.size(); i++) { if (joint_types_[i] == hardware_interface::HW_IF_VELOCITY) { hw_velocities_[i] = hw_command_velocity_[i]; hw_positions_[i] = hw_positions_[i] + dt * hw_velocities_[i]; } else if (joint_types_[i] == hardware_interface::HW_IF_POSITION) { auto vel = motion_magic_[i].getNextVelocity(hw_command_position_[i], hw_positions_[i], hw_velocities_[i], dt); // RCLCPP_INFO(rclcpp::get_logger("TestDriveHardware"), "Current: %f, Target: %f Vel: %f", hw_positions_[i], hw_command_position_[i], vel); hw_velocities_[i] = vel; hw_positions_[i] = hw_positions_[i] + hw_velocities_[i] * dt; // Test without any velocity smoothing // RCLCPP_INFO(rclcpp::get_logger("TestDriveHardware"), "Cmd: %f Name: %s", hw_command_position_[i], joint_names_[i].c_str()); // hw_velocities_[i] = 0.0; // hw_positions_[i] = hw_command_position_[i]; } } return hardware_interface::return_type::OK; } hardware_interface::return_type TestDriveHardware::write(const rclcpp::Time & /*time*/, const rclcpp::Duration & /*period*/) { // Do Nothing // Uncomment below if you want verbose messages for debugging. // for (auto i = 0u; i < hw_command_velocity_.size(); i++) // { // RCLCPP_INFO(rclcpp::get_logger("TestDriveHardware"), "Wheel %u Velocity: %f", i, hw_command_velocity_[i]); // } // RCLCPP_INFO(rclcpp::get_logger("TestDriveHardware"), "[%f] Joint 2 Position: %f", time.seconds(), hw_command_position_[2]); return hardware_interface::return_type::OK; } } // namespace swerve_hardware #include "pluginlib/class_list_macros.hpp" PLUGINLIB_EXPORT_CLASS( swerve_hardware::TestDriveHardware, hardware_interface::SystemInterface)
9,533
C++
37.59919
153
0.683625
RoboEagles4828/edna2023/src/swerve_hardware/src/motion_magic.cpp
#include "swerve_hardware/motion_magic.hpp" #include <chrono> #include <cmath> #include <limits> #include <memory> #include <vector> #include <ostream> #include <iostream> namespace swerve_hardware { MotionMagic::MotionMagic(double maxAcceleration, double maxVelocity) { this->MAX_ACCELERATION = maxAcceleration; this->MAX_VELOCITY = maxVelocity; } double MotionMagic::getPositionDifference(double targetPosition, double sensorPosition) { double copy_targetPosition = targetPosition; double difference = copy_targetPosition - sensorPosition; if (difference > M_PI) { copy_targetPosition -= 2 * M_PI; } else if (difference < -M_PI) { copy_targetPosition += 2 * M_PI; } return std::fmod(copy_targetPosition - sensorPosition, M_PI); } // (maxV - curr)t1 + curr // (curr - maxV)tf + b = 0 // 2 10 // 4(t1) double MotionMagic::getNextVelocity(const double targetPosition, const double sensorPosition, const double sensorVelocity, const double dt) { // method 0 double error = getPositionDifference(targetPosition, sensorPosition); double absError = std::abs(error); if (targetPosition != prevTargetPosition) { totalDistance = absError; prevTargetPosition = targetPosition; } if (absError < tolerance) { return 0.0; } double dir = 1.0; if (error < 0.0) { dir = -1.0; } if (absError <= rampWindow1) { return velocityInRampWindow1 * dir; } else if (absError <= rampWindow2) { return velocityInRampWindow2 * dir; } else { return velocityInCruiseWindow * dir; } //method 1 // double displacement = std::abs(getPositionDifference(targetPosition, sensorPosition)); // double dir = targetPosition - sensorPosition; // double slow_down_dist = (MAX_JERK/6) * pow(2*sensorVelocity/MAX_JERK, 1.5); // if(std::abs(displacement - 0.0) <= tolerance) return 0.0; // if(dir > 0) { // if(displacement <= slow_down_dist) return std::max(sensorVelocity - dt * dt * MAX_JERK, -1*MAX_VELOCITY); // // std::cout<<std::min(sensorVelocity + dt * dt * MAX_JERK, MAX_VELOCITY); // else return std::min(sensorVelocity + dt * dt * MAX_JERK, MAX_VELOCITY); // } else { // if(displacement <= slow_down_dist) return std::min(sensorVelocity + dt * dt * MAX_JERK, MAX_VELOCITY); // else return std::max(sensorVelocity - dt * dt * MAX_JERK, -1*MAX_VELOCITY); // } } } // namespace swerve_hardware
2,741
C++
33.70886
145
0.594673
RoboEagles4828/edna2023/src/swerve_hardware/src/real_drive.cpp
// Copyright 2021 ros2_control Development Team // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "swerve_hardware/real_drive.hpp" #include <chrono> #include <cmath> #include <limits> #include <memory> #include <vector> #include "hardware_interface/types/hardware_interface_type_values.hpp" #include "rclcpp/rclcpp.hpp" #include "swerve_hardware/motion_magic.hpp" #include "sensor_msgs/msg/joint_state.hpp" using std::placeholders::_1; namespace swerve_hardware { double RealDriveHardware::parse_double(const std::string & text) { return std::atof(text.c_str()); } bool RealDriveHardware::parse_bool(const std::string & text) { if(strcmp(text.c_str(), "true") == 0) { return true; } else { return false; } } hardware_interface::CallbackReturn RealDriveHardware::on_init(const hardware_interface::HardwareInfo & info) { node_ = rclcpp::Node::make_shared("isaac_hardware_interface"); // PUBLISHER SETUP real_publisher_ = node_->create_publisher<sensor_msgs::msg::JointState>(joint_command_topic_, rclcpp::SystemDefaultsQoS()); realtime_real_publisher_ = std::make_shared<realtime_tools::RealtimePublisher<sensor_msgs::msg::JointState>>( real_publisher_); real_arm_publisher_ = node_->create_publisher<sensor_msgs::msg::JointState>(joint_arm_command_topic_, rclcpp::SystemDefaultsQoS()); realtime_real_arm_publisher_ = std::make_shared<realtime_tools::RealtimePublisher<sensor_msgs::msg::JointState>>( real_arm_publisher_); // SUBSCRIBER SETUP const sensor_msgs::msg::JointState empty_joint_state; auto qos = rclcpp::QoS(1); qos.best_effort(); received_joint_msg_ptr_.set(std::make_shared<sensor_msgs::msg::JointState>(empty_joint_state)); real_subscriber_ = node_->create_subscription<sensor_msgs::msg::JointState>(joint_state_topic_, qos, [this](const std::shared_ptr<sensor_msgs::msg::JointState> msg) -> void { if (!subscriber_is_active_) { RCLCPP_WARN( rclcpp::get_logger("isaac_hardware_interface"), "Can't accept new commands. subscriber is inactive"); return; } received_joint_msg_ptr_.set(std::move(msg)); }); // COMMON INTERFACE SETUP if (hardware_interface::SystemInterface::on_init(info) != hardware_interface::CallbackReturn::SUCCESS) { return hardware_interface::CallbackReturn::ERROR; } // GLOBAL VECTOR SETUP hw_positions_.resize(info_.joints.size(), std::numeric_limits<double>::quiet_NaN()); hw_velocities_.resize(info_.joints.size(), std::numeric_limits<double>::quiet_NaN()); hw_command_velocity_.resize(info_.joints.size(), std::numeric_limits<double>::quiet_NaN()); hw_command_position_.resize(info_.joints.size(), std::numeric_limits<double>::quiet_NaN()); joint_types_.resize(info_.joints.size(), ""); // JOINT GROUPS for (auto i = 0u; i < info_.joints.size(); ++i) { const auto & joint = info_.joints.at(i); bool use_percent = false; double max = parse_double(joint.command_interfaces[0].max); double min = parse_double(joint.command_interfaces[0].min); auto param_percent_it = joint.parameters.find("percent"); if (param_percent_it != joint.parameters.end()) { use_percent = parse_bool(joint.parameters.at("percent")); } // Mimics if (joint.parameters.find("mimic") != joint.parameters.cend()) { const auto mimicked_joint_it = std::find_if( info_.joints.begin(), info_.joints.end(), [&mimicked_joint = joint.parameters.at("mimic")](const hardware_interface::ComponentInfo & joint_info) { return joint_info.name == mimicked_joint; }); if (mimicked_joint_it == info_.joints.cend()) { throw std::runtime_error( std::string("Mimicked joint '") + joint.parameters.at("mimic") + "' not found"); } MimicJoint mimic_joint; mimic_joint.joint_index = i; mimic_joint.mimicked_joint_index = std::distance(info_.joints.begin(), mimicked_joint_it); // Multiplier and offset auto param_mult_it = joint.parameters.find("multiplier"); if (param_mult_it != joint.parameters.end()) { mimic_joint.multiplier = parse_double(joint.parameters.at("multiplier")); } auto param_off_it = joint.parameters.find("offset"); if (param_off_it != joint.parameters.end()) { mimic_joint.offset = parse_double(joint.parameters.at("offset")); } mimic_joints_.push_back(mimic_joint); } // else if (joint.parameters.find("arm_group") != joint.parameters.cend()) { JointGroupMember member; member.joint_index = i; member.joint_name = joint.name; member.percent = use_percent; member.max = max; member.min = min; arm_names_output_.push_back(joint.name); arm_joints_.push_back(member); } else { JointGroupMember member; member.joint_index = i; member.joint_name = joint.name; member.percent = use_percent; member.max = max; member.min = min; drive_names_output_.push_back(joint.name); drive_joints_.push_back(member); } } hw_command_arm_velocity_output_.resize(arm_joints_.size(), std::numeric_limits<double>::quiet_NaN()); hw_command_arm_position_output_.resize(arm_joints_.size(), std::numeric_limits<double>::quiet_NaN()); hw_command_drive_velocity_output_.resize(drive_joints_.size(), std::numeric_limits<double>::quiet_NaN()); hw_command_drive_position_output_.resize(drive_joints_.size(), std::numeric_limits<double>::quiet_NaN()); // Check that the info we were passed makes sense for (const hardware_interface::ComponentInfo & joint : info_.joints) { joint_names_.push_back(joint.name); if (joint.command_interfaces.size() != 1) { RCLCPP_FATAL( rclcpp::get_logger("RealDriveHardware"), "Joint '%s' has %zu command interfaces found. 1 expected.", joint.name.c_str(), joint.command_interfaces.size()); return hardware_interface::CallbackReturn::ERROR; } if (joint.command_interfaces[0].name != hardware_interface::HW_IF_VELOCITY && joint.command_interfaces[0].name != hardware_interface::HW_IF_POSITION) { RCLCPP_FATAL( rclcpp::get_logger("RealDriveHardware"), "Joint '%s' have %s command interfaces found. '%s' expected.", joint.name.c_str(), joint.command_interfaces[0].name.c_str(), hardware_interface::HW_IF_VELOCITY); return hardware_interface::CallbackReturn::ERROR; } if (joint.state_interfaces.size() != 2) { RCLCPP_FATAL( rclcpp::get_logger("RealDriveHardware"), "Joint '%s' has %zu state interface. 2 expected.", joint.name.c_str(), joint.state_interfaces.size()); return hardware_interface::CallbackReturn::ERROR; } if (joint.state_interfaces[0].name != hardware_interface::HW_IF_POSITION) { RCLCPP_FATAL( rclcpp::get_logger("RealDriveHardware"), "Joint '%s' have '%s' as first state interface. '%s' expected.", joint.name.c_str(), joint.state_interfaces[0].name.c_str(), hardware_interface::HW_IF_POSITION); return hardware_interface::CallbackReturn::ERROR; } if (joint.state_interfaces[1].name != hardware_interface::HW_IF_VELOCITY) { RCLCPP_FATAL( rclcpp::get_logger("RealDriveHardware"), "Joint '%s' have '%s' as second state interface. '%s' expected.", joint.name.c_str(), joint.state_interfaces[1].name.c_str(), hardware_interface::HW_IF_VELOCITY); return hardware_interface::CallbackReturn::ERROR; } } return hardware_interface::CallbackReturn::SUCCESS; } std::vector<hardware_interface::StateInterface> RealDriveHardware::export_state_interfaces() { // Each joint has 2 state interfaces: position and velocity std::vector<hardware_interface::StateInterface> state_interfaces; for (auto i = 0u; i < info_.joints.size(); i++) { state_interfaces.emplace_back(hardware_interface::StateInterface( info_.joints[i].name, hardware_interface::HW_IF_POSITION, &hw_positions_[i])); state_interfaces.emplace_back(hardware_interface::StateInterface( info_.joints[i].name, hardware_interface::HW_IF_VELOCITY, &hw_velocities_[i])); } return state_interfaces; } std::vector<hardware_interface::CommandInterface> RealDriveHardware::export_command_interfaces() { std::vector<hardware_interface::CommandInterface> command_interfaces; for (auto i = 0u; i < info_.joints.size(); i++) { auto joint = info_.joints[i]; RCLCPP_INFO(rclcpp::get_logger("RealDriveHardware"), "Joint Name %s", joint.name.c_str()); if (joint.command_interfaces[0].name == hardware_interface::HW_IF_VELOCITY) { RCLCPP_INFO(rclcpp::get_logger("RealDriveHardware"), "Added Velocity Joint: %s", joint.name.c_str() ); joint_types_[i] = hardware_interface::HW_IF_VELOCITY; // Add the command interface with a pointer to i of vel commands command_interfaces.emplace_back(hardware_interface::CommandInterface( joint.name, hardware_interface::HW_IF_VELOCITY, &hw_command_velocity_[i])); // Make i of the pos command interface 0.0 hw_command_position_[i] = 0.0; } else { RCLCPP_INFO(rclcpp::get_logger("RealDriveHardware"), "Added Position Joint: %s", joint.name.c_str() ); joint_types_[i] = hardware_interface::HW_IF_POSITION; // Add the command interface with a pointer to i of pos commands command_interfaces.emplace_back(hardware_interface::CommandInterface( joint.name, hardware_interface::HW_IF_POSITION, &hw_command_position_[i])); // Make i of the pos command interface 0.0 hw_command_velocity_[i] = 0.0; } } return command_interfaces; } hardware_interface::CallbackReturn RealDriveHardware::on_activate(const rclcpp_lifecycle::State & /*previous_state*/) { RCLCPP_INFO(rclcpp::get_logger("RealDriveHardware"), "Activating ...please wait..."); // Set Default Values for State Interface Arrays for (auto i = 0u; i < hw_positions_.size(); i++) { hw_positions_[i] = 0.0; hw_velocities_[i] = 0.0; hw_command_velocity_[i] = 0.0; hw_command_position_[i] = 0.0; } subscriber_is_active_ = true; RCLCPP_INFO(rclcpp::get_logger("RealDriveHardware"), "Successfully activated!"); return hardware_interface::CallbackReturn::SUCCESS; } hardware_interface::CallbackReturn RealDriveHardware::on_deactivate( const rclcpp_lifecycle::State & /*previous_state*/) { RCLCPP_INFO(rclcpp::get_logger("RealDriveHardware"), "Deactivating ...please wait..."); subscriber_is_active_ = false; RCLCPP_INFO(rclcpp::get_logger("RealDriveHardware"), "Successfully deactivated!"); return hardware_interface::CallbackReturn::SUCCESS; } // || || // \/ THE STUFF THAT MATTERS \/ double RealDriveHardware::convertToRosPosition(double real_position) { // Convert the rio integer that has been scaled real_position /= RIO_CONVERSION_FACTOR; // Just in case we get values we are not expecting real_position = std::fmod(real_position, 2.0 * M_PI); // Real goes from -2pi to 2pi, we want -pi to pi if (real_position > M_PI) { real_position -= 2.0 * M_PI; } return real_position; } double RealDriveHardware::convertToRosVelocity(double real_velocity) { // Convert the rio integer that has been scaled return real_velocity / RIO_CONVERSION_FACTOR; } hardware_interface::return_type RealDriveHardware::read(const rclcpp::Time &time, const rclcpp::Duration & /*period*/) { rclcpp::spin_some(node_); std::shared_ptr<sensor_msgs::msg::JointState> last_command_msg; received_joint_msg_ptr_.get(last_command_msg); if (last_command_msg == nullptr) { RCLCPP_WARN(rclcpp::get_logger("IsaacDriveHardware"), "[%f] Velocity message received was a nullptr.", time.seconds()); return hardware_interface::return_type::ERROR; } auto names = last_command_msg->name; auto positions = last_command_msg->position; auto velocities = last_command_msg->velocity; // Match Arm and Drive Joints for (auto i = 0u; i < names.size(); i++) { for (const auto & arm_joint : arm_joints_) { if (strcmp(names[i].c_str(), arm_joint.joint_name.c_str()) == 0) { if (arm_joint.percent) { double scale = arm_joint.max - arm_joint.min; hw_positions_[arm_joint.joint_index] = convertToRosPosition(positions[i] * scale + arm_joint.min); hw_velocities_[arm_joint.joint_index] = convertToRosVelocity((float)velocities[i] * scale); } else { hw_positions_[arm_joint.joint_index] = convertToRosPosition(positions[i]); hw_velocities_[arm_joint.joint_index] = convertToRosVelocity((float)velocities[i]); } break; } } for (const auto & drive_joint : drive_joints_) { if (strcmp(names[i].c_str(), drive_joint.joint_name.c_str()) == 0) { hw_positions_[drive_joint.joint_index] = convertToRosPosition(positions[i]); hw_velocities_[drive_joint.joint_index] = convertToRosVelocity((float)velocities[i]); break; } } } // Apply Mimic Joints for (const auto & mimic_joint : mimic_joints_) { hw_positions_[mimic_joint.joint_index] = hw_positions_[mimic_joint.mimicked_joint_index] * mimic_joint.multiplier + mimic_joint.offset; hw_velocities_[mimic_joint.joint_index] = hw_velocities_[mimic_joint.mimicked_joint_index] * mimic_joint.multiplier; } return hardware_interface::return_type::OK; } hardware_interface::return_type swerve_hardware::RealDriveHardware::write(const rclcpp::Time & /*time*/, const rclcpp::Duration & /*period*/) { // convertToRealPositions(hw_command_position_); // convertToRealElevatorPosition(); // Publish to Real for (auto i = 0u; i < drive_joints_.size(); ++i) { auto joint = drive_joints_[i]; hw_command_drive_velocity_output_[i] = hw_command_velocity_[joint.joint_index]; hw_command_drive_position_output_[i] = hw_command_position_[joint.joint_index]; } for (auto i = 0u; i < arm_joints_.size(); ++i) { auto joint = arm_joints_[i]; hw_command_arm_velocity_output_[i] = hw_command_velocity_[joint.joint_index]; hw_command_arm_position_output_[i] = hw_command_position_[joint.joint_index]; } if (realtime_real_publisher_->trylock()) { auto &realtime_real_command_ = realtime_real_publisher_->msg_; realtime_real_command_.header.stamp = node_->get_clock()->now(); realtime_real_command_.name = drive_names_output_; realtime_real_command_.velocity = hw_command_drive_velocity_output_; realtime_real_command_.position = hw_command_drive_position_output_; realtime_real_publisher_->unlockAndPublish(); } if (realtime_real_arm_publisher_->trylock()) { auto &realtime_real_arm_command_ = realtime_real_arm_publisher_->msg_; realtime_real_arm_command_.header.stamp = node_->get_clock()->now(); realtime_real_arm_command_.name = arm_names_output_; realtime_real_arm_command_.velocity = hw_command_arm_velocity_output_; realtime_real_arm_command_.position = hw_command_arm_position_output_; realtime_real_arm_publisher_->unlockAndPublish(); } rclcpp::spin_some(node_); return hardware_interface::return_type::OK; } } // namespace swerve_hardware #include "pluginlib/class_list_macros.hpp" PLUGINLIB_EXPORT_CLASS( swerve_hardware::RealDriveHardware, hardware_interface::SystemInterface)
16,614
C++
37.820093
155
0.648429
RoboEagles4828/edna2023/src/swerve_hardware/include/swerve_hardware/visibility_control.h
// Copyright 2017 Open Source Robotics Foundation, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* This header must be included by all rclcpp headers which declare symbols * which are defined in the rclcpp library. When not building the rclcpp * library, i.e. when using the headers in other package's code, the contents * of this header change the visibility of certain symbols which the rclcpp * library cannot have, but the consuming code must have inorder to link. */ #ifndef SWERVE_HARDWARE__VISIBILITY_CONTROL_H_ #define SWERVE_HARDWARE__VISIBILITY_CONTROL_H_ // This logic was borrowed (then namespaced) from the examples on the gcc wiki: // https://gcc.gnu.org/wiki/Visibility #if defined _WIN32 || defined __CYGWIN__ #ifdef __GNUC__ #define SWERVE_HARDWARE_EXPORT __attribute__((dllexport)) #define SWERVE_HARDWARE_IMPORT __attribute__((dllimport)) #else #define SWERVE_HARDWARE_EXPORT __declspec(dllexport) #define SWERVE_HARDWARE_IMPORT __declspec(dllimport) #endif #ifdef SWERVE_HARDWARE_BUILDING_DLL #define SWERVE_HARDWARE_PUBLIC SWERVE_HARDWARE_EXPORT #else #define SWERVE_HARDWARE_PUBLIC SWERVE_HARDWARE_IMPORT #endif #define SWERVE_HARDWARE_PUBLIC_TYPE SWERVE_HARDWARE_PUBLIC #define SWERVE_HARDWARE_LOCAL #else #define SWERVE_HARDWARE_EXPORT __attribute__((visibility("default"))) #define SWERVE_HARDWARE_IMPORT #if __GNUC__ >= 4 #define SWERVE_HARDWARE_PUBLIC __attribute__((visibility("default"))) #define SWERVE_HARDWARE_LOCAL __attribute__((visibility("hidden"))) #else #define SWERVE_HARDWARE_PUBLIC #define SWERVE_HARDWARE_LOCAL #endif #define SWERVE_HARDWARE_PUBLIC_TYPE #endif #endif // SWERVE_HARDWARE__VISIBILITY_CONTROL_H_
2,184
C
38.017856
79
0.763278
RoboEagles4828/edna2023/src/swerve_hardware/include/swerve_hardware/real_drive.hpp
// Copyright 2021 ros2_control Development Team // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef SWERVE_HARDWARE__REAL_DRIVE_HPP_ #define SWERVE_HARDWARE__REAL_DRIVE_HPP_ #include <memory> #include <string> #include <vector> #include <map> #include "hardware_interface/handle.hpp" #include "hardware_interface/hardware_info.hpp" #include "hardware_interface/system_interface.hpp" #include "hardware_interface/types/hardware_interface_return_values.hpp" #include "rclcpp/clock.hpp" #include "rclcpp/duration.hpp" #include "rclcpp/macros.hpp" #include "rclcpp/time.hpp" #include "rclcpp_lifecycle/node_interfaces/lifecycle_node_interface.hpp" #include "rclcpp_lifecycle/state.hpp" #include "rclcpp/rclcpp.hpp" #include "sensor_msgs/msg/joint_state.hpp" #include "realtime_tools/realtime_box.h" #include "realtime_tools/realtime_buffer.h" #include "realtime_tools/realtime_publisher.h" #include "swerve_hardware/visibility_control.h" namespace swerve_hardware { class RealDriveHardware : public hardware_interface::SystemInterface { public: RCLCPP_SHARED_PTR_DEFINITIONS(RealDriveHardware) SWERVE_HARDWARE_PUBLIC hardware_interface::CallbackReturn on_init(const hardware_interface::HardwareInfo & info) override; SWERVE_HARDWARE_PUBLIC std::vector<hardware_interface::StateInterface> export_state_interfaces() override; SWERVE_HARDWARE_PUBLIC std::vector<hardware_interface::CommandInterface> export_command_interfaces() override; SWERVE_HARDWARE_PUBLIC hardware_interface::CallbackReturn on_activate(const rclcpp_lifecycle::State & previous_state) override; SWERVE_HARDWARE_PUBLIC hardware_interface::CallbackReturn on_deactivate(const rclcpp_lifecycle::State & previous_state) override; SWERVE_HARDWARE_PUBLIC hardware_interface::return_type read(const rclcpp::Time & time, const rclcpp::Duration & period) override; SWERVE_HARDWARE_PUBLIC hardware_interface::return_type write(const rclcpp::Time & time, const rclcpp::Duration & period) override; private: double RIO_CONVERSION_FACTOR = 10000.0; // Store the command for the simulated robot std::vector<double> hw_command_velocity_; std::vector<double> hw_command_position_; // Output Topic Vectors std::vector<std::string> arm_names_output_; std::vector<double> hw_command_arm_velocity_output_; std::vector<double> hw_command_arm_position_output_; std::vector<std::string> drive_names_output_; std::vector<double> hw_command_drive_velocity_output_; std::vector<double> hw_command_drive_position_output_; // The state vectors std::vector<double> hw_positions_; std::vector<double> hw_velocities_; std::vector<double> hw_positions_input_; std::vector<double> hw_velocities_input_; // Mimic Joints for joints not controlled by the real robot struct MimicJoint { std::size_t joint_index; std::size_t mimicked_joint_index; double multiplier = 1.0; double offset = 0.0; }; std::vector<MimicJoint> mimic_joints_; double parse_double(const std::string & text); bool parse_bool(const std::string & text); // Keep Track of Arm vs Drive Joints struct JointGroupMember { std::size_t joint_index; std::string joint_name; bool percent = false; double min = -1.0; double max = 1.0; }; std::vector<JointGroupMember> drive_joints_; std::vector<JointGroupMember> arm_joints_; // Joint name array will align with state and command interface array // The command at index 3 of hw_command_ will be the joint name at index 3 of joint_names std::vector<std::string> joint_names_; std::vector<std::string> joint_types_; // Pub Sub to real std::string joint_state_topic_ = "real_joint_states"; std::string joint_command_topic_ = "real_joint_commands"; std::string joint_arm_command_topic_ = "real_arm_commands"; rclcpp::Node::SharedPtr node_; std::shared_ptr<rclcpp::Publisher<sensor_msgs::msg::JointState>> real_publisher_ = nullptr; std::shared_ptr<realtime_tools::RealtimePublisher<sensor_msgs::msg::JointState>> realtime_real_publisher_ = nullptr; std::shared_ptr<rclcpp::Publisher<sensor_msgs::msg::JointState>> real_arm_publisher_ = nullptr; std::shared_ptr<realtime_tools::RealtimePublisher<sensor_msgs::msg::JointState>> realtime_real_arm_publisher_ = nullptr; bool subscriber_is_active_ = false; rclcpp::Subscription<sensor_msgs::msg::JointState>::SharedPtr real_subscriber_ = nullptr; realtime_tools::RealtimeBox<std::shared_ptr<sensor_msgs::msg::JointState>> received_joint_msg_ptr_{nullptr}; // Converts isaac position range -2pi - 2pi into expected ros position range -pi - pi double convertToRosPosition(double real_position); double convertToRosVelocity(double real_velocity); // void convertToRealPositions(std::vector<double> ros_positions); }; } // namespace swerve_hardware #endif // SWERVE_HARDWARE__DIFFBOT_SYSTEM_HPP_
5,378
C++
37.148936
110
0.748605
RoboEagles4828/edna2023/src/swerve_hardware/include/swerve_hardware/test_drive.hpp
// Copyright 2021 ros2_control Development Team // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef SWERVE_HARDWARE__TEST_DRIVE_HPP_ #define SWERVE_HARDWARE__TEST_DRIVE_HPP_ #include <memory> #include <string> #include <vector> #include <map> #include "hardware_interface/handle.hpp" #include "hardware_interface/hardware_info.hpp" #include "hardware_interface/system_interface.hpp" #include "hardware_interface/types/hardware_interface_return_values.hpp" #include "rclcpp/clock.hpp" #include "rclcpp/duration.hpp" #include "rclcpp/macros.hpp" #include "rclcpp/time.hpp" #include "rclcpp_lifecycle/node_interfaces/lifecycle_node_interface.hpp" #include "rclcpp_lifecycle/state.hpp" #include "swerve_hardware/visibility_control.h" #include "swerve_hardware/motion_magic.hpp" namespace swerve_hardware { class TestDriveHardware : public hardware_interface::SystemInterface { public: RCLCPP_SHARED_PTR_DEFINITIONS(TestDriveHardware) SWERVE_HARDWARE_PUBLIC hardware_interface::CallbackReturn on_init(const hardware_interface::HardwareInfo & info) override; SWERVE_HARDWARE_PUBLIC std::vector<hardware_interface::StateInterface> export_state_interfaces() override; SWERVE_HARDWARE_PUBLIC std::vector<hardware_interface::CommandInterface> export_command_interfaces() override; SWERVE_HARDWARE_PUBLIC hardware_interface::CallbackReturn on_activate(const rclcpp_lifecycle::State & previous_state) override; SWERVE_HARDWARE_PUBLIC hardware_interface::CallbackReturn on_deactivate(const rclcpp_lifecycle::State & previous_state) override; SWERVE_HARDWARE_PUBLIC hardware_interface::return_type read(const rclcpp::Time & time, const rclcpp::Duration & period) override; SWERVE_HARDWARE_PUBLIC hardware_interface::return_type write(const rclcpp::Time & time, const rclcpp::Duration & period) override; private: // Store the command for the simulated robot std::vector<double> hw_command_velocity_; std::vector<double> hw_command_position_; // The state vectors std::vector<double> hw_positions_; std::vector<double> hw_velocities_; // Joint name array will align with state and command interface array // The command at index 3 of hw_command_ will be the joint name at index 3 of joint_names std::vector<std::string> joint_names_; std::vector<std::string> joint_types_; double MAX_VELOCITY = 20 * M_PI; double MAX_ACCELERATION = 25 * M_PI; std::vector<MotionMagic> motion_magic_; }; } // namespace swerve_hardware #endif // SWERVE_HARDWARE__TEST_DRIVE_HPP_
3,033
C++
34.694117
109
0.765249
RoboEagles4828/edna2023/src/swerve_hardware/include/swerve_hardware/motion_magic.hpp
#ifndef SWERVE_HARDWARE__MOTION_MAGIC_HPP_ #define SWERVE_HARDWARE__MOTION_MAGIC_HPP_ #include <memory> #include <queue> #include <string> #include <utility> #include <vector> #include <cmath> #include "swerve_hardware/visibility_control.h" namespace swerve_hardware { class MotionMagic { public: SWERVE_HARDWARE_PUBLIC MotionMagic(double maxAcceleration, double maxVelocity); SWERVE_HARDWARE_PUBLIC double getNextVelocity(const double targetPosition, const double sensorPosition, const double sensorVelocity, const double dt); SWERVE_HARDWARE_PUBLIC double getPositionDifference(double targetPosition, double sensorPosition); SWERVE_HARDWARE_PUBLIC double getTotalTime(double targetPosition); private: double MAX_ACCELERATION; double MAX_VELOCITY; double MAX_JERK = 6 * M_PI; double prevVel = 0.0; double prevAcceleration = 0.0; double prevError = 0.0; double prevTargetPosition = 0.0; double totalDistance = 0.0; double zeroTime = 0.0; double tolerance = 0.15; double rampWindow1 = 0.3; double rampWindow2 = 0.8; double velocityInRampWindow1 = 0.1; double velocityInRampWindow2 = 2.0; double velocityInCruiseWindow = 3.0; }; } // namespace swerve_hardware #endif // SWERVE_HARDWARE__MOTION_MAGIC_HPP_
1,307
C++
24.153846
131
0.729151
RoboEagles4828/edna2023/src/swerve_hardware/include/swerve_hardware/isaac_drive.hpp
// Copyright 2021 ros2_control Development Team // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef SWERVE_HARDWARE__ISAAC_DRIVE_HPP_ #define SWERVE_HARDWARE__ISAAC_DRIVE_HPP_ #include <memory> #include <string> #include <vector> #include <map> #include "hardware_interface/handle.hpp" #include "hardware_interface/hardware_info.hpp" #include "hardware_interface/system_interface.hpp" #include "hardware_interface/types/hardware_interface_return_values.hpp" #include "rclcpp/clock.hpp" #include "rclcpp/duration.hpp" #include "rclcpp/macros.hpp" #include "rclcpp/time.hpp" #include "rclcpp_lifecycle/node_interfaces/lifecycle_node_interface.hpp" #include "rclcpp_lifecycle/state.hpp" #include "rclcpp/rclcpp.hpp" #include "sensor_msgs/msg/joint_state.hpp" #include "realtime_tools/realtime_box.h" #include "realtime_tools/realtime_buffer.h" #include "realtime_tools/realtime_publisher.h" #include "swerve_hardware/visibility_control.h" #include "swerve_hardware/motion_magic.hpp" namespace swerve_hardware { class IsaacDriveHardware : public hardware_interface::SystemInterface { public: RCLCPP_SHARED_PTR_DEFINITIONS(IsaacDriveHardware) SWERVE_HARDWARE_PUBLIC hardware_interface::CallbackReturn on_init(const hardware_interface::HardwareInfo & info) override; SWERVE_HARDWARE_PUBLIC std::vector<hardware_interface::StateInterface> export_state_interfaces() override; SWERVE_HARDWARE_PUBLIC std::vector<hardware_interface::CommandInterface> export_command_interfaces() override; SWERVE_HARDWARE_PUBLIC hardware_interface::CallbackReturn on_activate(const rclcpp_lifecycle::State & previous_state) override; SWERVE_HARDWARE_PUBLIC hardware_interface::CallbackReturn on_deactivate(const rclcpp_lifecycle::State & previous_state) override; SWERVE_HARDWARE_PUBLIC hardware_interface::return_type read(const rclcpp::Time & time, const rclcpp::Duration & period) override; SWERVE_HARDWARE_PUBLIC hardware_interface::return_type write(const rclcpp::Time & time, const rclcpp::Duration & period) override; private: // Store the command for the simulated robot std::vector<double> hw_command_velocity_; std::vector<double> hw_command_position_; std::vector<double> hw_command_velocity_converted_; // The state vectors std::vector<double> hw_positions_; std::vector<double> hw_velocities_; // Joint name array will align with state and command interface array // The command at index 3 of hw_command_ will be the joint name at index 3 of joint_names std::vector<std::string> joint_names_; std::vector<std::string> joint_types_; double MAX_VELOCITY = 2 * M_PI; double MAX_ACCELERATION = 4 * M_PI; double previous_velocity = 0.0; std::vector<MotionMagic> motion_magic_; // Pub Sub to isaac std::string joint_state_topic_ = "isaac_joint_states"; std::string joint_command_topic_ = "isaac_joint_commands"; rclcpp::Node::SharedPtr node_; std::shared_ptr<rclcpp::Publisher<sensor_msgs::msg::JointState>> isaac_publisher_ = nullptr; std::shared_ptr<realtime_tools::RealtimePublisher<sensor_msgs::msg::JointState>> realtime_isaac_publisher_ = nullptr; bool subscriber_is_active_ = false; rclcpp::Subscription<sensor_msgs::msg::JointState>::SharedPtr isaac_subscriber_ = nullptr; realtime_tools::RealtimeBox<std::shared_ptr<sensor_msgs::msg::JointState>> received_joint_msg_ptr_{nullptr}; std::vector<double> empty_; // Converts isaac position range -2pi - 2pi into expected ros position range -pi - pi double convertToRosPosition(double isaac_position); double convertToRosVelocity(double isaac_velocity); void convertToIsaacVelocities(std::vector<double> ros_velocities); }; } // namespace swerve_hardware #endif // SWERVE_HARDWARE__DIFFBOT_SYSTEM_HPP_
4,262
C++
38.110091
110
0.762787
RoboEagles4828/edna2023/src/teleop_twist_joy/src/teleop_twist_joy.cpp
/** Software License Agreement (BSD) \authors Mike Purvis <[email protected]> \copyright Copyright (c) 2014, Clearpath Robotics, Inc., All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Clearpath Robotics nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WAR- RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN- DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <cinttypes> #include <functional> #include <map> #include <memory> #include <set> #include <string> #include <geometry_msgs/msg/twist.hpp> #include <rclcpp/rclcpp.hpp> #include <rclcpp_components/register_node_macro.hpp> #include <rcutils/logging_macros.h> #include <sensor_msgs/msg/joy.hpp> #include "sensor_msgs/msg/imu.hpp" #include "teleop_twist_joy/teleop_twist_joy.hpp" #include "edna_interfaces/srv/set_bool.hpp" #include <functional> // for bind() using namespace std; #define ROS_INFO_NAMED RCUTILS_LOG_INFO_NAMED #define ROS_INFO_COND_NAMED RCUTILS_LOG_INFO_EXPRESSION_NAMED namespace teleop_twist_joy { /** * Internal members of class. This is the pimpl idiom, and allows more flexibility in adding * parameters later without breaking ABI compatibility, for robots which link TeleopTwistJoy * directly into base nodes. */ struct TeleopTwistJoy::Impl { void joyCallback(const sensor_msgs::msg::Joy::SharedPtr joy); void sendCmdVelMsg(const sensor_msgs::msg::Joy::SharedPtr &, const std::string &which_map); void imuCallback(const sensor_msgs::msg::Imu::SharedPtr imu_msg); void timerCallback(); void resetOrientationCallback(const std::shared_ptr<edna_interfaces::srv::SetBool::Request> request, std::shared_ptr<edna_interfaces::srv::SetBool::Response> response); rclcpp::Subscription<sensor_msgs::msg::Joy>::SharedPtr joy_sub; rclcpp::Subscription<sensor_msgs::msg::Imu>::SharedPtr imu_sub; rclcpp::Publisher<geometry_msgs::msg::Twist>::SharedPtr cmd_vel_pub; rclcpp::Service<edna_interfaces::srv::SetBool>::SharedPtr reset_orientation_service; rclcpp::TimerBase::SharedPtr timer_callback_; rclcpp::Client<edna_interfaces::srv::SetBool>::SharedPtr start_writer_client_; sensor_msgs::msg::Imu::SharedPtr last_msg; bool require_enable_button; int64_t enable_button; int64_t enable_turbo_button; int64_t enable_field_oriented_button; int64_t start_writer_button; int fieldOrientationButtonLastState = 0; int turboButtonLastState = 0; double last_offset = 0.0; double rotation_offset = 0.0; bool fieldOrientationEnabled = true; bool turboEnabled = false; int serviceButtonLastState = 0; bool serviceEnabled = false; std::map<std::string, int64_t> axis_linear_map; std::map<std::string, std::map<std::string, double>> scale_linear_map; std::map<std::string, int64_t> axis_angular_map; std::map<std::string, std::map<std::string, double>> scale_angular_map; bool sent_disable_msg; }; /** * Constructs TeleopTwistJoy. */ TeleopTwistJoy::TeleopTwistJoy(const rclcpp::NodeOptions &options) : Node("teleop_twist_joy_node", options) { pimpl_ = new Impl; // rclcpp::Node node = Node("teleop_twist_joy_node", options); sensor_msgs/msg/Imu pimpl_->cmd_vel_pub = this->create_publisher<geometry_msgs::msg::Twist>("cmd_vel", 10); pimpl_->imu_sub = this->create_subscription<sensor_msgs::msg::Imu>("zed/imu/data", rclcpp::QoS(10).best_effort(), std::bind(&TeleopTwistJoy::Impl::imuCallback, this->pimpl_, std::placeholders::_1)); pimpl_->joy_sub = this->create_subscription<sensor_msgs::msg::Joy>("joy", rclcpp::QoS(10).best_effort(), std::bind(&TeleopTwistJoy::Impl::joyCallback, this->pimpl_, std::placeholders::_1)); // pimpl_->client = this->create_client<writer_srv::srv::StartWriter>("start_writer"); // pimpl_->timer_callback_ = this->create_wall_timer(std::chrono::duration<double>(0.1), std::bind(&TeleopTwistJoy::Impl::timerCallback,this->pimpl_)); // pimpl_->client = create_client<writer_srv::srv::StartWriter>("start_writer", // [this](std::shared_ptr<writer_srv::srv::StartWriter::Request> /*request*/, // NOLINT // std::shared_ptr<writer_srv::srv::StartWriter::Response> response) { // NOLINT // return startServiceCallback(std::move(response)); // NOLINT pimpl_->reset_orientation_service = create_service<edna_interfaces::srv::SetBool>("reset_field_oriented", std::bind(&TeleopTwistJoy::Impl::resetOrientationCallback, this->pimpl_, std::placeholders::_1, std::placeholders::_2)); // }); pimpl_->start_writer_client_ = create_client<edna_interfaces::srv::SetBool>("set_bool"); pimpl_->require_enable_button = this->declare_parameter("require_enable_button", true); pimpl_->enable_button = this->declare_parameter("enable_button", 5); pimpl_->enable_turbo_button = this->declare_parameter("enable_turbo_button", -1); pimpl_->enable_field_oriented_button = this->declare_parameter("enable_field_oriented_button", 8); pimpl_->start_writer_button = this->declare_parameter("start_writer_button", 6); this->declare_parameter("offset", 0.0); pimpl_->last_offset = this->get_parameter("offset").as_double(); std::map<std::string, int64_t> default_linear_map{ {"x", 5L}, {"y", -1L}, {"z", -1L}, }; this->declare_parameters("axis_linear", default_linear_map); this->get_parameters("axis_linear", pimpl_->axis_linear_map); std::map<std::string, int64_t> default_angular_map{ {"yaw", 2L}, {"pitch", -1L}, {"roll", -1L}, }; this->declare_parameters("axis_angular", default_angular_map); this->get_parameters("axis_angular", pimpl_->axis_angular_map); std::map<std::string, double> default_scale_linear_normal_map{ {"x", 0.5}, {"y", 0.0}, {"z", 0.0}, }; this->declare_parameters("scale_linear", default_scale_linear_normal_map); this->get_parameters("scale_linear", pimpl_->scale_linear_map["normal"]); std::map<std::string, double> default_scale_linear_turbo_map{ {"x", 1.0}, {"y", 0.0}, {"z", 0.0}, }; this->declare_parameters("scale_linear_turbo", default_scale_linear_turbo_map); this->get_parameters("scale_linear_turbo", pimpl_->scale_linear_map["turbo"]); std::map<std::string, double> default_scale_angular_normal_map{ {"yaw", 0.5}, {"pitch", 0.0}, {"roll", 0.0}, }; this->declare_parameters("scale_angular", default_scale_angular_normal_map); this->get_parameters("scale_angular", pimpl_->scale_angular_map["normal"]); std::map<std::string, double> default_scale_angular_turbo_map{ {"yaw", 1.0}, {"pitch", 0.0}, {"roll", 0.0}, }; this->declare_parameters("scale_angular_turbo", default_scale_angular_turbo_map); this->get_parameters("scale_angular_turbo", pimpl_->scale_angular_map["turbo"]); ROS_INFO_COND_NAMED(pimpl_->require_enable_button, "TeleopTwistJoy", "Teleop enable button %" PRId64 ".", pimpl_->enable_button); ROS_INFO_COND_NAMED(pimpl_->enable_turbo_button >= 0, "TeleopTwistJoy", "Turbo on button %" PRId64 ".", pimpl_->enable_turbo_button); for (std::map<std::string, int64_t>::iterator it = pimpl_->axis_linear_map.begin(); it != pimpl_->axis_linear_map.end(); ++it) { ROS_INFO_COND_NAMED(it->second != -1L, "TeleopTwistJoy", "Linear axis %s on %" PRId64 " at scale %f.", it->first.c_str(), it->second, pimpl_->scale_linear_map["normal"][it->first]); ROS_INFO_COND_NAMED(pimpl_->enable_turbo_button >= 0 && it->second != -1, "TeleopTwistJoy", "Turbo for linear axis %s is scale %f.", it->first.c_str(), pimpl_->scale_linear_map["turbo"][it->first]); } for (std::map<std::string, int64_t>::iterator it = pimpl_->axis_angular_map.begin(); it != pimpl_->axis_angular_map.end(); ++it) { ROS_INFO_COND_NAMED(it->second != -1L, "TeleopTwistJoy", "Angular axis %s on %" PRId64 " at scale %f.", it->first.c_str(), it->second, pimpl_->scale_angular_map["normal"][it->first]); ROS_INFO_COND_NAMED(pimpl_->enable_turbo_button >= 0 && it->second != -1, "TeleopTwistJoy", "Turbo for angular axis %s is scale %f.", it->first.c_str(), pimpl_->scale_angular_map["turbo"][it->first]); } pimpl_->sent_disable_msg = false; auto param_callback = [this](std::vector<rclcpp::Parameter> parameters) { static std::set<std::string> intparams = {"axis_linear.x", "axis_linear.y", "axis_linear.z", "axis_angular.yaw", "axis_angular.pitch", "axis_angular.roll", "enable_button", "enable_turbo_button", "enable_field_oriented_button", "start_writer_button", "offset"}; static std::set<std::string> doubleparams = {"scale_linear.x", "scale_linear.y", "scale_linear.z", "scale_linear_turbo.x", "scale_linear_turbo.y", "scale_linear_turbo.z", "scale_angular.yaw", "scale_angular.pitch", "scale_angular.roll", "scale_angular_turbo.yaw", "scale_angular_turbo.pitch", "scale_angular_turbo.roll"}; static std::set<std::string> boolparams = {"require_enable_button"}; auto result = rcl_interfaces::msg::SetParametersResult(); result.successful = true; // Loop to check if changed parameters are of expected data type for (const auto &parameter : parameters) { if (intparams.count(parameter.get_name()) == 1) { if (parameter.get_type() != rclcpp::ParameterType::PARAMETER_INTEGER) { result.reason = "Only integer values can be set for '" + parameter.get_name() + "'."; RCLCPP_WARN(this->get_logger(), result.reason.c_str()); result.successful = false; return result; } } else if (doubleparams.count(parameter.get_name()) == 1) { if (parameter.get_type() != rclcpp::ParameterType::PARAMETER_DOUBLE) { result.reason = "Only double values can be set for '" + parameter.get_name() + "'."; RCLCPP_WARN(this->get_logger(), result.reason.c_str()); result.successful = false; return result; } } else if (boolparams.count(parameter.get_name()) == 1) { if (parameter.get_type() != rclcpp::ParameterType::PARAMETER_BOOL) { result.reason = "Only boolean values can be set for '" + parameter.get_name() + "'."; RCLCPP_WARN(this->get_logger(), result.reason.c_str()); result.successful = false; return result; } } } // Loop to assign changed parameters to the member variables for (const auto &parameter : parameters) { if (parameter.get_name() == "require_enable_button") { this->pimpl_->require_enable_button = parameter.get_value<rclcpp::PARAMETER_BOOL>(); } if (parameter.get_name() == "enable_button") { this->pimpl_->enable_button = parameter.get_value<rclcpp::PARAMETER_INTEGER>(); } else if (parameter.get_name() == "enable_turbo_button") { this->pimpl_->enable_turbo_button = parameter.get_value<rclcpp::PARAMETER_INTEGER>(); } else if (parameter.get_name() == "enable_field_oriented_button") { this->pimpl_->enable_field_oriented_button = parameter.get_value<rclcpp::PARAMETER_INTEGER>(); } else if (parameter.get_name() == "start_writer_button") { this->pimpl_->start_writer_button = parameter.get_value<rclcpp::PARAMETER_INTEGER>(); } else if (parameter.get_name() == "axis_linear.x") { this->pimpl_->axis_linear_map["x"] = parameter.get_value<rclcpp::PARAMETER_INTEGER>(); } else if (parameter.get_name() == "axis_linear.y") { this->pimpl_->axis_linear_map["y"] = parameter.get_value<rclcpp::PARAMETER_INTEGER>(); } else if (parameter.get_name() == "axis_linear.z") { this->pimpl_->axis_linear_map["z"] = parameter.get_value<rclcpp::PARAMETER_INTEGER>(); } else if (parameter.get_name() == "axis_angular.yaw") { this->pimpl_->axis_angular_map["yaw"] = parameter.get_value<rclcpp::PARAMETER_INTEGER>(); } else if (parameter.get_name() == "axis_angular.pitch") { this->pimpl_->axis_angular_map["pitch"] = parameter.get_value<rclcpp::PARAMETER_INTEGER>(); } else if (parameter.get_name() == "axis_angular.roll") { this->pimpl_->axis_angular_map["roll"] = parameter.get_value<rclcpp::PARAMETER_INTEGER>(); } else if (parameter.get_name() == "scale_linear_turbo.x") { this->pimpl_->scale_linear_map["turbo"]["x"] = parameter.get_value<rclcpp::PARAMETER_DOUBLE>(); } else if (parameter.get_name() == "scale_linear_turbo.y") { this->pimpl_->scale_linear_map["turbo"]["y"] = parameter.get_value<rclcpp::PARAMETER_DOUBLE>(); } else if (parameter.get_name() == "scale_linear_turbo.z") { this->pimpl_->scale_linear_map["turbo"]["z"] = parameter.get_value<rclcpp::PARAMETER_DOUBLE>(); } else if (parameter.get_name() == "scale_linear.x") { this->pimpl_->scale_linear_map["normal"]["x"] = parameter.get_value<rclcpp::PARAMETER_DOUBLE>(); } else if (parameter.get_name() == "scale_linear.y") { this->pimpl_->scale_linear_map["normal"]["y"] = parameter.get_value<rclcpp::PARAMETER_DOUBLE>(); } else if (parameter.get_name() == "scale_linear.z") { this->pimpl_->scale_linear_map["normal"]["z"] = parameter.get_value<rclcpp::PARAMETER_DOUBLE>(); } else if (parameter.get_name() == "scale_angular_turbo.yaw") { this->pimpl_->scale_angular_map["turbo"]["yaw"] = parameter.get_value<rclcpp::PARAMETER_DOUBLE>(); } else if (parameter.get_name() == "scale_angular_turbo.pitch") { this->pimpl_->scale_angular_map["turbo"]["pitch"] = parameter.get_value<rclcpp::PARAMETER_DOUBLE>(); } else if (parameter.get_name() == "scale_angular_turbo.roll") { this->pimpl_->scale_angular_map["turbo"]["roll"] = parameter.get_value<rclcpp::PARAMETER_DOUBLE>(); } else if (parameter.get_name() == "scale_angular.yaw") { this->pimpl_->scale_angular_map["normal"]["yaw"] = parameter.get_value<rclcpp::PARAMETER_DOUBLE>(); } else if (parameter.get_name() == "scale_angular.pitch") { this->pimpl_->scale_angular_map["normal"]["pitch"] = parameter.get_value<rclcpp::PARAMETER_DOUBLE>(); } else if (parameter.get_name() == "scale_angular.roll") { this->pimpl_->scale_angular_map["normal"]["roll"] = parameter.get_value<rclcpp::PARAMETER_DOUBLE>(); } } return result; }; callback_handle = this->add_on_set_parameters_callback(param_callback); } TeleopTwistJoy::~TeleopTwistJoy() { delete pimpl_; } double getVal(sensor_msgs::msg::Joy::SharedPtr joy_msg, const std::map<std::string, int64_t> &axis_map, const std::map<std::string, double> &scale_map, const std::string &fieldname) { if (axis_map.find(fieldname) == axis_map.end() || axis_map.at(fieldname) == -1L || scale_map.find(fieldname) == scale_map.end() || static_cast<int>(joy_msg->axes.size()) <= axis_map.at(fieldname)) { return 0.0; } return joy_msg->axes[axis_map.at(fieldname)] * scale_map.at(fieldname); } double get_scale_val(const std::map<std::string, int64_t> &axis_map, const std::map<std::string, double> &scale_map, const std::string &fieldname) { if (axis_map.find(fieldname) == axis_map.end() || axis_map.at(fieldname) == -1L || scale_map.find(fieldname) == scale_map.end()) { return 0.0; } return scale_map.at(fieldname); } double get_orientation_val(sensor_msgs::msg::Imu::SharedPtr imu_msg) { if (!imu_msg) { return 0.0; } double x = imu_msg->orientation.x; double y = imu_msg->orientation.y; double z = imu_msg->orientation.z; double w = imu_msg->orientation.w; double siny_cosp = 2 * (w * z + x * y); double cosy_cosp = 1 - 2 * (y * y + z * z); double angle = std::atan2(siny_cosp, cosy_cosp); return angle; } double correct_joystick_pos(const std::map<std::string, double> &scale_map, const std::string &fieldname, double lin_x_vel, double lin_y_vel) { if (sqrt(pow(lin_x_vel, 2) + pow(lin_y_vel, 2)) > 1) { double scale = scale_map.at(fieldname); if (scale < 0.001) { scale *= 10000; } if (fieldname == "x") { double vel_to_correct = sin(atan2(lin_x_vel, lin_y_vel)) * scale; return vel_to_correct; } else if (fieldname == "y") { double vel_to_correct = cos(atan2(lin_x_vel, lin_y_vel)) * scale; return vel_to_correct; } } else { if (fieldname == "x") { double vel_to_correct = sin(atan2(lin_x_vel, lin_y_vel)) * sqrt(pow(lin_x_vel, 2) + pow(lin_y_vel, 2)); return vel_to_correct; } else if (fieldname == "y") { double vel_to_correct = cos(atan2(lin_x_vel, lin_y_vel)) * sqrt(pow(lin_x_vel, 2) + pow(lin_y_vel, 2)); return vel_to_correct; } } return 0.0; } // void TeleopTwistJoy::startServiceCallBack(const std::shared_ptr<edna_interfaces::srv::SetBool::Response> response) // { // if(joy){ // } // } void TeleopTwistJoy::Impl::timerCallback() { // it's good to firstly check if the service server is even ready to be called if (start_writer_client_->service_is_ready() && serviceEnabled && serviceButtonLastState == 1) { auto request = std::make_shared<edna_interfaces::srv::SetBool::Request>(); request->data = true; while (!start_writer_client_->wait_for_service(1s)) { if (!rclcpp::ok()) { RCLCPP_ERROR(rclcpp::get_logger("teleop_twist_joy"), "Interrupted while waiting for the service. Exiting."); break; } RCLCPP_INFO(rclcpp::get_logger("teleop_twist_joy"), "service not available, waiting again..."); } auto result = start_writer_client_->async_send_request(request); } else if (start_writer_client_->service_is_ready() && !serviceEnabled && serviceButtonLastState == 1) { auto request = std::make_shared<edna_interfaces::srv::SetBool::Request>(); request->data = false; while (!start_writer_client_->wait_for_service(1s)) { if (!rclcpp::ok()) { RCLCPP_ERROR(rclcpp::get_logger("teleop_twist_joy"), "Interrupted while waiting for the service. Exiting."); break; } RCLCPP_INFO(rclcpp::get_logger("teleop_twist_joy"), "service not available, waiting again..."); } auto result = start_writer_client_->async_send_request(request); // RCLCPP_INFO(rclcpp::get_logger("teleop_twist_joy"), "Bag recording stopped: %d", !result.get()->recording); // RCLCPP_INFO(rclcpp::get_logger("teleop_twist_joy"), "Path of Bag: %s", result.get()->path.c_str()); } else if (!start_writer_client_->service_is_ready()) RCLCPP_WARN(rclcpp::get_logger("teleop_twist_joy"), "[ServiceClientExample]: not calling service using callback, service not ready!"); } void TeleopTwistJoy::Impl::resetOrientationCallback(const std::shared_ptr<edna_interfaces::srv::SetBool::Request> request, std::shared_ptr<edna_interfaces::srv::SetBool::Response> response) { RCLCPP_INFO(rclcpp::get_logger("TeleopTwistJoy"), "received service call: %d", request->data); if (request->data) { rotation_offset=3.1415; } response->message = "succeeded"; response->success = true; } void TeleopTwistJoy::Impl::sendCmdVelMsg(const sensor_msgs::msg::Joy::SharedPtr &joy_msg, const std::string &which_map) { // Initializes with zeros by default. auto cmd_vel_msg = std::make_unique<geometry_msgs::msg::Twist>(); double lin_x_vel = getVal(joy_msg, axis_linear_map, scale_linear_map[which_map], "x"); double lin_y_vel = getVal(joy_msg, axis_linear_map, scale_linear_map[which_map], "y"); double ang_z_vel = getVal(joy_msg, axis_angular_map, scale_angular_map[which_map], "yaw"); double temp = correct_joystick_pos(scale_linear_map[which_map], "x", lin_x_vel, lin_y_vel); lin_y_vel = correct_joystick_pos(scale_linear_map[which_map], "y", lin_x_vel, lin_y_vel); lin_x_vel = temp; // RCLCPP_INFO(rclcpp::get_logger("IsaacDriveHardware"), "%f",lin_x_vel); // for( uint i =0u; i<joy_msg->buttons.size(); i++){ // RCLCPP_INFO(rclcpp::get_logger("IsaacDriveHardware"), "%d:%d:%ld",joy_msg->buttons[i],i,enable_field_oriented_button); // } if (enable_field_oriented_button >= 0 && static_cast<int>(joy_msg->buttons.size()) > enable_field_oriented_button) { auto state = joy_msg->buttons[enable_field_oriented_button]; if (state == 1 && fieldOrientationButtonLastState == 0) { fieldOrientationEnabled = !fieldOrientationEnabled; RCLCPP_INFO(rclcpp::get_logger("TeleopTwistJoy"), "Field Oriented: %d", fieldOrientationEnabled); } fieldOrientationButtonLastState = state; } if (start_writer_button >= 0 && static_cast<int>(joy_msg->buttons.size()) > start_writer_button) { auto state = joy_msg->buttons[start_writer_button]; if (state == 1 && serviceButtonLastState == 0) { serviceEnabled = !serviceEnabled; RCLCPP_INFO(rclcpp::get_logger("TeleopTwistJoy"), "Writer State: %d", serviceEnabled); } serviceButtonLastState = state; } // RCLCPP_INFO(rclcpp::get_logger("TeleopTwistJoy"), "robot_orientation: %f",last_offset); // Math for field oriented drive if (fieldOrientationEnabled) { double robot_imu_orientation = (get_orientation_val(last_msg)); robot_imu_orientation += (ang_z_vel * last_offset) + rotation_offset; // RCLCPP_INFO(rclcpp::get_logger("TeleopTwistJoy"), "robot_orientation: %f", robot_imu_orientation); double temp = lin_x_vel * cos(robot_imu_orientation) + lin_y_vel * sin(robot_imu_orientation); lin_y_vel = -1 * lin_x_vel * sin(robot_imu_orientation) + lin_y_vel * cos(robot_imu_orientation); lin_x_vel = temp; } // Set Velocities in twist msg and publish cmd_vel_msg->linear.x = lin_x_vel; cmd_vel_msg->linear.y = lin_y_vel; cmd_vel_msg->linear.z = getVal(joy_msg, axis_linear_map, scale_linear_map[which_map], "z"); cmd_vel_msg->angular.z = getVal(joy_msg, axis_angular_map, scale_angular_map[which_map], "yaw"); cmd_vel_msg->angular.y = getVal(joy_msg, axis_angular_map, scale_angular_map[which_map], "pitch"); cmd_vel_msg->angular.x = getVal(joy_msg, axis_angular_map, scale_angular_map[which_map], "roll"); cmd_vel_pub->publish(std::move(cmd_vel_msg)); sent_disable_msg = false; } void TeleopTwistJoy::Impl::joyCallback(const sensor_msgs::msg::Joy::SharedPtr joy_msg) { if (enable_turbo_button >= 0 && static_cast<int>(joy_msg->buttons.size()) > enable_turbo_button) { auto state = joy_msg->buttons[enable_turbo_button]; if (state == 1 && turboButtonLastState == 0) { turboEnabled = !turboEnabled; RCLCPP_INFO(rclcpp::get_logger("TeleopTwistJoy"), "Turbo: %d", turboEnabled); } turboButtonLastState = state; } if (turboEnabled) { sendCmdVelMsg(joy_msg, "turbo"); } else if (!require_enable_button || (static_cast<int>(joy_msg->buttons.size()) > enable_button && joy_msg->buttons[enable_button])) { sendCmdVelMsg(joy_msg, "normal"); } else { // When enable button is released, immediately send a single no-motion command // in order to stop the robot. if (!sent_disable_msg) { // Initializes with zeros by default. auto cmd_vel_msg = std::make_unique<geometry_msgs::msg::Twist>(); cmd_vel_pub->publish(std::move(cmd_vel_msg)); sent_disable_msg = true; } } } void TeleopTwistJoy::Impl::imuCallback(const sensor_msgs::msg::Imu::SharedPtr imu_msg) { // Saves current message as global pointer last_msg = imu_msg; } } // namespace teleop_twist_joy RCLCPP_COMPONENTS_REGISTER_NODE(teleop_twist_joy::TeleopTwistJoy)
26,597
C++
43.404007
230
0.615859
RoboEagles4828/edna2023/src/teleop_twist_joy/src/teleop_node.cpp
/** Software License Agreement (BSD) \file teleop_node.cpp \authors Mike Purvis <[email protected]> \copyright Copyright (c) 2014, Clearpath Robotics, Inc., All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Clearpath Robotics nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WAR- RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN- DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <memory> #include <rclcpp/rclcpp.hpp> #include "teleop_twist_joy/teleop_twist_joy.hpp" int main(int argc, char *argv[]) { rclcpp::init(argc, argv); rclcpp::spin(std::make_unique<teleop_twist_joy::TeleopTwistJoy>(rclcpp::NodeOptions())); rclcpp::shutdown(); return 0; }
1,931
C++
44.999999
110
0.785085
RoboEagles4828/edna2023/src/teleop_twist_joy/include/teleop_twist_joy/teleop_twist_joy.hpp
/** Software License Agreement (BSD) \authors Mike Purvis <[email protected]> \copyright Copyright (c) 2014, Clearpath Robotics, Inc., All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Clearpath Robotics nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WAR- RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN- DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef TELEOP_TWIST_JOY_TELEOP_TWIST_JOY_H #define TELEOP_TWIST_JOY_TELEOP_TWIST_JOY_H #include <rclcpp/rclcpp.hpp> #include "teleop_twist_joy/teleop_twist_joy_export.h" namespace teleop_twist_joy { /** * Class implementing a basic Joy -> Twist translation. */ class TELEOP_TWIST_JOY_EXPORT TeleopTwistJoy : public rclcpp::Node { public: explicit TeleopTwistJoy(const rclcpp::NodeOptions& options); virtual ~TeleopTwistJoy(); private: struct Impl; Impl* pimpl_; OnSetParametersCallbackHandle::SharedPtr callback_handle; }; } // namespace teleop_twist_joy #endif // TELEOP_TWIST_JOY_TELEOP_TWIST_JOY_H
2,237
C++
41.226414
110
0.788556
RoboEagles4828/edna2023/src/frc_auton/setup.py
from setuptools import setup package_name = 'frc_auton' setup( name=package_name, version='0.0.0', packages=[package_name], data_files=[ ('share/ament_index/resource_index/packages', ['resource/' + package_name]), ('share/' + package_name, ['package.xml']), ], install_requires=['setuptools','rosbags'], zip_safe=True, maintainer='admin', maintainer_email='[email protected]', description='TODO: Package description', license='TODO: License declaration', tests_require=['pytest'], entry_points={ 'console_scripts': [ 'reader = frc_auton.reader:main', 'writer = frc_auton.writer:main', ], }, )
721
Python
24.785713
53
0.590846
RoboEagles4828/edna2023/src/frc_auton/test/test_flake8.py
# Copyright 2017 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_flake8.main import main_with_errors import pytest @pytest.mark.flake8 @pytest.mark.linter def test_flake8(): rc, errors = main_with_errors(argv=[]) assert rc == 0, \ 'Found %d code style errors / warnings:\n' % len(errors) + \ '\n'.join(errors)
884
Python
33.03846
74
0.725113
RoboEagles4828/edna2023/src/frc_auton/test/test_pep257.py
# Copyright 2015 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_pep257.main import main import pytest @pytest.mark.linter @pytest.mark.pep257 def test_pep257(): rc = main(argv=['.', 'test']) assert rc == 0, 'Found code style errors / warnings'
803
Python
32.499999
74
0.743462
RoboEagles4828/edna2023/src/frc_auton/test/test_copyright.py
# Copyright 2015 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_copyright.main import main import pytest # Remove the `skip` decorator once the source file(s) have a copyright header @pytest.mark.skip(reason='No copyright header has been placed in the generated source file.') @pytest.mark.copyright @pytest.mark.linter def test_copyright(): rc = main(argv=['.', 'test']) assert rc == 0, 'Found errors'
962
Python
36.03846
93
0.751559
RoboEagles4828/edna2023/src/frc_auton/frc_auton/test_frc_stage.py
import rclpy from rclpy.node import Node from std_msgs.msg import Bool, String class StagePublisher(Node): def __init__(self): super().__init__('stage_publisher') self.publisher_ = self.create_publisher(String, '/real/frc_stage', 10) timer_period = 0.5 # seconds self.timer = self.create_timer(timer_period, self.timer_callback) self.i = 0 def timer_callback(self): msg = String() msg.data = "AUTON|False|False" self.publisher_.publish(msg) self.get_logger().info('Publishing: %s' % msg.data) self.i += 1 def main(args=None): rclpy.init(args=args) minimal_publisher = StagePublisher() rclpy.spin(minimal_publisher) # Destroy the node explicitly # (optional - otherwise it will be done automatically # when the garbage collector destroys the node object) minimal_publisher.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
974
Python
23.999999
78
0.63347
RoboEagles4828/edna2023/src/frc_auton/frc_auton/writer.py
from std_msgs.msg import String from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint from geometry_msgs.msg import Twist import rclpy from rclpy.node import Node import os import rclpy from rclpy.node import Node from rclpy.serialization import serialize_message from std_msgs.msg import String from edna_interfaces.srv import SetBool import rosbag2_py # create writer instance and open for writing class StartWriting(Node): def __init__(self): super().__init__('start_writer') self.subscription_stage =self.create_subscription(String, 'frc_stage', self.stage_callback, 10) self.srv = self.create_service(SetBool, 'set_bool', self.service_callback) self.stage = "" self.fms = "False" self.is_disabled = "True" self.service_enabled = False def service_callback(self, request, response): self.bag_writer = BagWriter() self.service_enabled = request.data if(self.service_enabled): self.start_bag_writer() self.get_logger().info(f'Service Enabled: {self.service_enabled}') response.sucess = True response.message = self.bag_writer.path return response def start_bag_writer(self): if (self.stage.lower() == "teleop" or self.stage.lower() == "auton") and (self.fms=='True' or self.service_enabled) and self.is_disabled=='False': rclpy.spin(self.bag_writer) self.bag_writer.destroy_node() rclpy.shutdown() def stage_callback(self, msg): data = str(msg.data).split('|') self.stage = (data[0]) self.fms = str(data[1]) self.is_disabled = str(data[2]) class BagWriter(Node): def __init__(self): super().__init__('bag_writer') self.curr_file_path = os.path.abspath(__file__) self.project_root_path = os.path.abspath(os.path.join(self.curr_file_path, "../../../..")) self.package_root = os.path.join(self.project_root_path, 'src/frc_auton') self.subscription_arm = self.create_subscription(JointTrajectory,'joint_trajectory_controller/joint_trajectory',self.arm_callback,10) self.subscription_swerve = self.create_subscription(Twist,'swerve_controller/cmd_vel_unstamped',self.swerve_callback,10) file_counter= int(len(os.listdir(f'{self.package_root}/frc_auton/Auto_ros_bag'))) self.path = f'{self.package_root}/frc_auton/Auto_ros_bag/bag_'+str(file_counter) self.writer = rosbag2_py.SequentialWriter() storage_options = rosbag2_py._storage.StorageOptions(uri=self.path,storage_id='sqlite3') converter_options = rosbag2_py._storage.ConverterOptions('', '') self.writer.open(storage_options, converter_options) topic_info_arm = rosbag2_py._storage.TopicMetadata(name=self.subscription_arm.topic_name,type='trajectory_msgs/msg/JointTrajectory',serialization_format='cdr') self.writer.create_topic(topic_info_arm) topic_info_swerve = rosbag2_py._storage.TopicMetadata(name=self.subscription_swerve.topic_name,type='geometry_msgs/msg/Twist',serialization_format='cdr') self.writer.create_topic(topic_info_swerve) def swerve_callback(self, msg): self.writer.write( self.subscription_swerve.topic_name, serialize_message(msg), self.get_clock().now().nanoseconds) def arm_callback(self, msg): self.writer.write( self.subscription_arm.topic_name, serialize_message(msg), self.get_clock().now().nanoseconds) def main(args=None): rclpy.init(args=args) service_writer = StartWriting() rclpy.spin(service_writer) service_writer.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
3,865
Python
39.694736
167
0.649677
RoboEagles4828/edna2023/src/frc_auton/frc_auton/policy_runner.py
import rclpy from rclpy.node import Node from std_msgs.msg import Float32 from nav_msgs.msg import Odometry from sensor_msgs.msg import JointState from geometry_msgs.msg import Twist import numpy as np import torch from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint class Reader(Node): def __init__(self): super().__init__("reinforcement_learning_runner") # self.robot_ip = robot_ip self.policy = torch.load("/workspaces/edna2023/isaac/Swervesim/swervesim/runs/SwerveCS/nn/SwerveCS.pth") self.joint_action_pub = self.create_publisher(Twist, "cmd_vel", 10) self.joint_trajectory_action_pub = self.create_publisher(Twist, "joint_trajectory_message", 10) self.odom_sub = self.create_subscription(Float32, "odom", self.odom_callback, 10) self.joint_state_sub = self.create_subscription(Float32, "joint_state", self.joint_state_callback, 10) self.odom_msg = Odometry() self.joint_state_msg = JointState() self.twist_msg = Twist() self.cmds = JointTrajectory() self.position_cmds = JointTrajectoryPoint() self.episode_reward = 0 self.step = 0 self.joints = [ 'arm_roller_bar_joint', 'elevator_center_joint', 'elevator_outer_1_joint', 'elevator_outer_2_joint', 'top_gripper_right_arm_joint', 'top_gripper_left_arm_joint', 'top_slider_joint', 'bottom_intake_joint', ] def get_action(self, msg): obs = np.array([msg.data], dtype=np.float32) action = self.policy(torch.tensor(obs).float()) self.twist_msg.linear.x = action[0].detach().numpy() self.twist_msg.linear.y = action[1].detach().numpy() self.twist_msg.angular.z = action[2].detach().numpy() self.position_cmds.positions = [ action[3].detach().numpy(), action[4].detach().numpy(), action[5].detach().numpy(), action[4].detach().numpy(), action[6].detach().numpy(), action[6].detach().numpy(), action[7].detach().numpy(), action[6].detach().numpy(), action[8].detach().numpy(), action[8].detach().numpy(), ] self.cmds.joint_names = self.joints self.cmds.points = [self.position_cmds] self.publisher_.publish(self.cmds) self.action_pub.publish(self.twist_msg) self.step += 1 def joint_state_callback(self, msg): if(msg != None): self.joint_state_msg = msg return def odom_callback(self, msg): if(msg != None): self.odom_msg = msg return def get_reward(): return def main(args=None): # env = gym.create_env("RealRobot", ip=self.robot_ip) rclpy.init(args=args) reader = Reader() rclpy.spin(reader) # env.disconnect() if __name__ == '__main__': main()
2,977
Python
35.765432
112
0.593215
RoboEagles4828/edna2023/src/frc_auton/frc_auton/reader.py
import rclpy from rclpy.node import Node from geometry_msgs.msg import Twist from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint from std_msgs.msg import String import rosbag2_py from pathlib import Path from rclpy.serialization import deserialize_message import rosbag2_py from std_msgs.msg import String import os from time import time import yaml import math from edna_interfaces.srv import SetBool class MinimalClientAsync(Node): def __init__(self): super().__init__('minimal_client_async') self.client = self.create_client(SetBool, 'reset_field_oriented') while not self.client.wait_for_service(timeout_sec=1.0): self.get_logger().info('service not available, waiting again...') self.request = SetBool.Request() def send_request(self, request): self.request.data = request self.future = self.client.call_async(self.request) rclpy.spin_until_future_complete(self, self.future) return self.future.result() class StageSubscriber(Node): def __init__(self): super().__init__('stage_subscriber') self.curr_file_path = os.path.abspath(__file__) self.project_root_path = os.path.abspath(os.path.join(self.curr_file_path, "../../../..")) self.package_root = os.path.join(self.project_root_path, 'src/frc_auton') # minimal_client = MinimalClientAsync() # response = minimal_client.send_request(True) # minimal_client.get_logger().info( # 'Result of add_two_ints: for %d + %d = %s' % # (True, response.success, response.message)) # rclpy.spin_once(minimal_client) # minimal_client.destroy_node() file_counter= int(len(os.listdir(f'{self.package_root}/frc_auton/Auto_ros_bag')))-1 # self.reader = rosbag2_py.SequentialReader() # self.converter_options = rosbag2_py.ConverterOptions(input_serialization_format='cdr',output_serialization_format='cdr') # self.reader.open(self.storage_options,self.converter_options) if file_counter != -1: self.subscription = self.create_subscription(String,'frc_stage',self.listener_callback,10) self.publish_twist = self.create_publisher(Twist,'swerve_controller/cmd_vel_unstamped',10) self.publish_trajectory = self.create_publisher(JointTrajectory,'joint_trajectory_controller/joint_trajectory',10) self.changed_stage = False self.stage= "" self.fms = "False" self.isdisabled = "True" self.doAuton = False self.cmd = Twist() self.cmd.linear.x = 0.0 self.cmd.linear.y = 0.0 self.cmd.angular.z = 0.0 self.timeInSeconds = 2.0 self.taxiTimeDuration = 2.0 # joint trajectory msg stuff self.joints = [ 'arm_roller_bar_joint', 'elevator_center_joint', 'elevator_outer_1_joint', 'elevator_outer_2_joint', 'top_gripper_right_arm_joint', 'top_gripper_left_arm_joint', 'top_slider_joint', 'bottom_intake_joint', ] self.cmds: JointTrajectory = JointTrajectory() self.cmds.joint_names = self.joints self.position_cmds = JointTrajectoryPoint() self.cmds.points = [self.position_cmds] self.cmds.points[0].positions = [0.0] * len(self.joints) # yaml self.curr_file_path = os.path.abspath(__file__) self.project_root_path = os.path.abspath(os.path.join(self.curr_file_path, "../../../..")) self.yaml_path = os.path.join(self.project_root_path, 'src/edna_bringup/config/teleop-control.yaml') with open(self.yaml_path, 'r') as f: self.yaml = yaml.safe_load(f) self.joint_map = self.yaml['joint_mapping'] self.joint_limits = self.yaml["joint_limits"] # task times self.tasks = [ { 'dur': 0.25, 'task': self.gripperManager, 'arg': 0 }, { 'dur': 0.5, 'task': self.armHeightManager, 'arg': 1 }, { 'dur': 3.5, 'task': self.armExtensionManager, 'arg': 1 }, { 'dur': 0.5, 'task': self.gripperManager, 'arg': 1 }, { 'dur': 2.5, 'task': self.armExtensionManager, 'arg': 0 }, { 'dur': 0.5, 'task': self.armHeightManager, 'arg': 0 }, { 'dur': 3.0, 'task': self.goBackwards, 'arg': -1.5 }, { 'dur': 0.1, 'task': self.stop, 'arg': 0 }, { 'dur': 2.1, 'task': self.turnAround, 'arg': math.pi / 2 }, { 'dur': 0.1, 'task': self.stop, 'arg': 0 }, ] self.conePlacementDuration = 0 for task in self.tasks: self.conePlacementDuration += task['dur'] # TURN AROUND STUFF self.turnCmd = Twist() self.turnCmd.linear.x = 0.0 self.turnCmd.linear.y = 0.0 self.turnCmd.angular.z = 0.0 self.turnTimeDuration = 2.0 def flip_camera(self): minimal_client = MinimalClientAsync() response = minimal_client.send_request(True) minimal_client.destroy_node() def initAuton(self): self.startTime = time() self.turnStartTime = self.startTime + self.conePlacementDuration + 2 self.changed_stage = False self.doAuton = True self.flip_camera() self.get_logger().info(f"STARTED AUTON AT {self.startTime}") def loopAuton(self): # self.taxiAuton() self.coneAuton() #self.turnAuton() # CONE AUTOMATION STUFF def publishCurrent(self): self.cmds.points = [self.position_cmds] self.publish_trajectory.publish(self.cmds) def armExtensionManager(self, pos): value = '' if(pos == 0): # RETRACT THE ARM value = 'min' self.get_logger().warn("ARM RETRACTED") elif(pos == 1): # EXTEND THE ARM value = 'max' self.get_logger().warn("ARM EXTENDED") self.position_cmds.positions[int(self.joint_map['elevator_center_joint'])] = self.joint_limits["elevator_center_joint"][value] self.position_cmds.positions[int(self.joint_map['elevator_outer_2_joint'])] = self.joint_limits["elevator_outer_2_joint"][value] self.position_cmds.positions[int(self.joint_map['top_slider_joint'])] = self.joint_limits["top_slider_joint"][value] self.publishCurrent() def armHeightManager(self, pos): value = '' if(pos == 0): # LOWER THE ARM value = "min" self.get_logger().warn("ARM LOWERED") elif(pos == 1): # RAISE THE ARM value = "max" self.get_logger().warn("ARM RAISED") self.position_cmds.positions[int(self.joint_map['arm_roller_bar_joint'])] = self.joint_limits["arm_roller_bar_joint"][value] self.position_cmds.positions[int(self.joint_map['elevator_outer_1_joint'])] = self.joint_limits["elevator_outer_1_joint"][value] self.publishCurrent() def gripperManager(self, pos): value = '' if(pos == 1): # OPEN THE GRIPPER value = 'min' self.get_logger().warn("GRIPPER OPENED") elif(pos == 0): # CLOSE THE GRIPPER value = 'max' self.get_logger().warn("GRIPPER CLOSED") self.position_cmds.positions[int(self.joint_map['top_gripper_left_arm_joint'])] = self.joint_limits["top_gripper_right_arm_joint"][value] self.position_cmds.positions[int(self.joint_map['top_gripper_right_arm_joint'])] = self.joint_limits["top_gripper_right_arm_joint"][value] self.publishCurrent() def coneAuton(self): elapsedTime = time() - self.startTime totalDur = 0.0 for task in self.tasks: totalDur += task['dur'] if elapsedTime < totalDur: task['task'](task['arg']) return def taxiAuton(self): elapsedTime = time() - self.startTime if elapsedTime < self.taxiTimeDuration: self.cmd.linear.x = 0.5 self.publish_twist.publish(self.cmd) else: return def stop(self, x): self.cmd.linear.x = 0.0 self.cmd.linear.y = 0.0 self.cmd.angular.z = 0.0 self.publish_twist.publish(self.cmd) def goBackwards(self, speed): self.cmd.linear.x = speed self.publish_twist.publish(self.cmd) self.get_logger().warn("GOING BACKWARDS") def turnAround(self, angVel): self.turnCmd.angular.z = angVel self.publish_twist.publish(self.turnCmd) self.get_logger().warn("TURNING") def stopAuton(self): self.cmd.linear.x = 0.0 # Publish twice to just to be safe self.publish_twist.publish(self.cmd) self.publish_twist.publish(self.cmd) self.get_logger().info(f"STOPPED AUTON AT {time()}"), self.doAuton = False def listener_callback(self, msg): # Check when any state has changed, enabled, disabled, auton, teleop, etc. stage = str(msg.data).split("|")[0] isdisabled = str(msg.data).split("|")[2] if stage != self.stage or isdisabled != self.isdisabled: self.changed_stage = True self.stage = stage self.isdisabled = isdisabled # fms = str(msg.data).split("|")[1] # Execute auton actions if(stage.lower() == 'auton' and self.isdisabled == "False"):# and fms == 'True' ): if self.changed_stage: self.initAuton() if self.doAuton: self.loopAuton() # We have moved out of auton enabled mode so stop if we are still running else: if self.doAuton: self.stopAuton() def main(args=None): rclpy.init(args=args) # minimal_client = MinimalClientAsync() # response = minimal_client.send_request(True) # # minimal_client.get_logger().info( # # 'Result of add_two_ints: for %d + %d = %s' % # # (True, response.success, response.message)) # # minimal_client.destroy_node() # minimal_client.destroy_node() stage_subscriber = StageSubscriber() # stage_subscriber.send_request() rclpy.spin(stage_subscriber) # Destroy the node explicitly # (optional - otherwise it will be done automatically # when the garbage collector destroys the node object) stage_subscriber.destroy_node() rclpy.shutdown() if __name__ == '__main__': main() # create reader instance and open for reading
10,919
Python
34.454545
146
0.577617
RoboEagles4828/edna2023/src/frc_auton/frc_auton/Auto_ros_bag/bag_0/metadata.yaml
rosbag2_bagfile_information: version: 5 storage_identifier: sqlite3 duration: nanoseconds: 33616431360 starting_time: nanoseconds_since_epoch: 1679698398612800019 message_count: 72 topics_with_message_count: - topic_metadata: name: /real/swerve_controller/cmd_vel_unstamped type: geometry_msgs/msg/Twist serialization_format: cdr offered_qos_profiles: "" message_count: 9 - topic_metadata: name: /real/joint_trajectory_controller/joint_trajectory type: trajectory_msgs/msg/JointTrajectory serialization_format: cdr offered_qos_profiles: "" message_count: 63 compression_format: "" compression_mode: "" relative_file_paths: - bag_0_0.db3 files: - path: bag_0_0.db3 starting_time: nanoseconds_since_epoch: 1679698398612800019 duration: nanoseconds: 33616431360 message_count: 72
930
YAML
28.093749
64
0.672043
RoboEagles4828/edna2023/src/swerve_controller/swerve_plugin.xml
<library path="swerve_controller"> <class name="swerve_controller/SwerveController" type="swerve_controller::SwerveController" base_class_type="controller_interface::ControllerInterface"> <description> The swerve controller transforms linear and angular velocity messages into signals for each wheel(s) and swerve modules. </description> </class> </library>
370
XML
45.374994
154
0.783784
RoboEagles4828/edna2023/src/swerve_controller/src/speed_limiter.cpp
// Copyright 2020 PAL Robotics S.L. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* * Author: Enrique Fernández */ #include <algorithm> #include <stdexcept> #include "swerve_controller/speed_limiter.hpp" #include "rcppmath/clamp.hpp" namespace swerve_controller { SpeedLimiter::SpeedLimiter( bool has_velocity_limits, bool has_acceleration_limits, bool has_jerk_limits, double min_velocity, double max_velocity, double min_acceleration, double max_acceleration, double min_jerk, double max_jerk) : has_velocity_limits_(has_velocity_limits), has_acceleration_limits_(has_acceleration_limits), has_jerk_limits_(has_jerk_limits), min_velocity_(min_velocity), max_velocity_(max_velocity), min_acceleration_(min_acceleration), max_acceleration_(max_acceleration), min_jerk_(min_jerk), max_jerk_(max_jerk) { // Check if limits are valid, max must be specified, min defaults to -max if unspecified if (has_velocity_limits_) { if (std::isnan(max_velocity_)) { throw std::runtime_error("Cannot apply velocity limits if max_velocity is not specified"); } if (std::isnan(min_velocity_)) { min_velocity_ = -max_velocity_; } } if (has_acceleration_limits_) { if (std::isnan(max_acceleration_)) { throw std::runtime_error( "Cannot apply acceleration limits if max_acceleration is not specified"); } if (std::isnan(min_acceleration_)) { min_acceleration_ = -max_acceleration_; } } if (has_jerk_limits_) { if (std::isnan(max_jerk_)) { throw std::runtime_error("Cannot apply jerk limits if max_jerk is not specified"); } if (std::isnan(min_jerk_)) { min_jerk_ = -max_jerk_; } } } double SpeedLimiter::limit(double & v, double v0, double v1, double dt) { const double tmp = v; limit_jerk(v, v0, v1, dt); limit_acceleration(v, v0, dt); limit_velocity(v); return tmp != 0.0 ? v / tmp : 1.0; } double SpeedLimiter::limit_velocity(double & v) { const double tmp = v; if (has_velocity_limits_) { v = rcppmath::clamp(v, min_velocity_, max_velocity_); } return tmp != 0.0 ? v / tmp : 1.0; } double SpeedLimiter::limit_acceleration(double & v, double v0, double dt) { const double tmp = v; if (has_acceleration_limits_) { const double dv_min = min_acceleration_ * dt; const double dv_max = max_acceleration_ * dt; const double dv = rcppmath::clamp(v - v0, dv_min, dv_max); v = v0 + dv; } return tmp != 0.0 ? v / tmp : 1.0; } double SpeedLimiter::limit_jerk(double & v, double v0, double v1, double dt) { const double tmp = v; if (has_jerk_limits_) { const double dv = v - v0; const double dv0 = v0 - v1; const double dt2 = 2. * dt * dt; const double da_min = min_jerk_ * dt2; const double da_max = max_jerk_ * dt2; const double da = rcppmath::clamp(dv - dv0, da_min, da_max); v = v0 + dv0 + da; } return tmp != 0.0 ? v / tmp : 1.0; } } // namespace swerve_controller
3,526
C++
24.014184
100
0.65485
RoboEagles4828/edna2023/src/swerve_controller/src/swerve_controller.cpp
// Copyright 2020 PAL Robotics S.L. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* * Author: Bence Magyar, Enrique Fernández, Manuel Meraz */ #include <memory> #include <queue> #include <string> #include <utility> #include <vector> #include <cmath> #include "swerve_controller/swerve_controller.hpp" #include "hardware_interface/types/hardware_interface_type_values.hpp" #include "lifecycle_msgs/msg/state.hpp" #include "rclcpp/logging.hpp" namespace { constexpr auto DEFAULT_COMMAND_TOPIC = "~/cmd_vel"; constexpr auto DEFAULT_COMMAND_UNSTAMPED_TOPIC = "~/cmd_vel_unstamped"; constexpr auto DEFAULT_COMMAND_OUT_TOPIC = "~/cmd_vel_out"; } // namespace namespace swerve_controller { using namespace std::chrono_literals; using controller_interface::interface_configuration_type; using controller_interface::InterfaceConfiguration; using hardware_interface::HW_IF_POSITION; using hardware_interface::HW_IF_VELOCITY; using lifecycle_msgs::msg::State; Wheel::Wheel(std::reference_wrapper<hardware_interface::LoanedCommandInterface> velocity, std::string name) : velocity_(velocity), name(std::move(name)) {} void Wheel::set_velocity(double velocity) { velocity_.get().set_value(velocity); } Axle::Axle(std::reference_wrapper<hardware_interface::LoanedCommandInterface> command_position, std::reference_wrapper<const hardware_interface::LoanedStateInterface> state_position, std::string name) : command_position_(command_position), state_position_(state_position), name(std::move(name)) {} void Axle::set_position(double position) { command_position_.get().set_value(position); } double Axle::get_position(void) { // temporary return state_position_.get().get_value(); } void optimize(double& target, const double& current, double& wheel_velocity) { double target_copy = target; double diff = target_copy - current; // Check one way if (diff > M_PI) { target_copy -= 2.0 * M_PI; } else if (diff < -M_PI) { target_copy += 2.0 * M_PI; } // Check other way diff = target_copy - current; if(std::abs(diff) > M_PI / 2.0) { // Get better position 180 degrees away if (target < 0.0) { target += M_PI; } else { target -= M_PI; } // Reverse direction wheel_velocity *= -1.0; } } SwerveController::SwerveController() : controller_interface::ControllerInterface() {} controller_interface::CallbackReturn SwerveController::on_init() { try { // with the lifecycle node being initialized, we can declare parameters auto_declare<std::string>("front_left_wheel_joint", front_left_wheel_joint_name_); auto_declare<std::string>("front_right_wheel_joint", front_right_wheel_joint_name_); auto_declare<std::string>("rear_left_wheel_joint", rear_left_wheel_joint_name_); auto_declare<std::string>("rear_right_wheel_joint", rear_right_wheel_joint_name_); auto_declare<std::string>("front_left_axle_joint", front_left_axle_joint_name_); auto_declare<std::string>("front_right_axle_joint", front_right_axle_joint_name_); auto_declare<std::string>("rear_left_axle_joint", rear_left_axle_joint_name_); auto_declare<std::string>("rear_right_axle_joint", rear_right_axle_joint_name_); auto_declare<double>("chassis_length_meters", wheel_params_.x_offset); auto_declare<double>("chassis_width_meters", wheel_params_.y_offset); auto_declare<double>("wheel_radius_meters", wheel_params_.radius); auto_declare<double>("max_wheel_angular_velocity", max_wheel_angular_velocity_); auto_declare<double>("cmd_vel_timeout_seconds", cmd_vel_timeout_milliseconds_.count() / 1000.0); auto_declare<bool>("use_stamped_vel", use_stamped_vel_); // Limits auto_declare<bool>("linear.x.has_velocity_limits", false); auto_declare<bool>("linear.x.has_acceleration_limits", false); auto_declare<bool>("linear.x.has_jerk_limits", false); auto_declare<double>("linear.x.max_velocity", 0.0); auto_declare<double>("linear.x.min_velocity", 0.0); auto_declare<double>("linear.x.max_acceleration", 0.0); auto_declare<double>("linear.x.min_acceleration", 0.0); auto_declare<double>("linear.x.max_jerk", 0.0); auto_declare<double>("linear.x.min_jerk", 0.0); auto_declare<bool>("linear.y.has_velocity_limits", false); auto_declare<bool>("linear.y.has_acceleration_limits", false); auto_declare<bool>("linear.y.has_jerk_limits", false); auto_declare<double>("linear.y.max_velocity", 0.0); auto_declare<double>("linear.y.min_velocity", 0.0); auto_declare<double>("linear.y.max_acceleration", 0.0); auto_declare<double>("linear.y.min_acceleration", 0.0); auto_declare<double>("linear.y.max_jerk", 0.0); auto_declare<double>("linear.y.min_jerk", 0.0); auto_declare<bool>("angular.z.has_velocity_limits", false); auto_declare<bool>("angular.z.has_acceleration_limits", false); auto_declare<bool>("angular.z.has_jerk_limits", false); auto_declare<double>("angular.z.max_velocity", 0.0); auto_declare<double>("angular.z.min_velocity", 0.0); auto_declare<double>("angular.z.max_acceleration", 0.0); auto_declare<double>("angular.z.min_acceleration", 0.0); auto_declare<double>("angular.z.max_jerk", 0.0); auto_declare<double>("angular.z.min_jerk", 0.0); } catch (const std::exception &e) { fprintf(stderr, "Exception thrown during init stage with message: %s \n", e.what()); return controller_interface::CallbackReturn::ERROR; } return controller_interface::CallbackReturn::SUCCESS; } InterfaceConfiguration SwerveController::command_interface_configuration() const { std::vector<std::string> conf_names; conf_names.push_back(front_left_wheel_joint_name_ + "/" + HW_IF_VELOCITY); conf_names.push_back(front_right_wheel_joint_name_ + "/" + HW_IF_VELOCITY); conf_names.push_back(rear_left_wheel_joint_name_ + "/" + HW_IF_VELOCITY); conf_names.push_back(rear_right_wheel_joint_name_ + "/" + HW_IF_VELOCITY); conf_names.push_back(front_left_axle_joint_name_ + "/" + HW_IF_POSITION); conf_names.push_back(front_right_axle_joint_name_ + "/" + HW_IF_POSITION); conf_names.push_back(rear_left_axle_joint_name_ + "/" + HW_IF_POSITION); conf_names.push_back(rear_right_axle_joint_name_ + "/" + HW_IF_POSITION); return {interface_configuration_type::INDIVIDUAL, conf_names}; } InterfaceConfiguration SwerveController::state_interface_configuration() const { std::vector<std::string> conf_names; conf_names.push_back(front_left_axle_joint_name_ + "/" + HW_IF_POSITION); conf_names.push_back(front_right_axle_joint_name_ + "/" + HW_IF_POSITION); conf_names.push_back(rear_left_axle_joint_name_ + "/" + HW_IF_POSITION); conf_names.push_back(rear_right_axle_joint_name_ + "/" + HW_IF_POSITION); return {interface_configuration_type::INDIVIDUAL, conf_names}; } controller_interface::return_type SwerveController::update( const rclcpp::Time &time, const rclcpp::Duration & period) { auto logger = get_node()->get_logger(); auto clk = * get_node()->get_clock(); if (get_state().id() == State::PRIMARY_STATE_INACTIVE) { if (!is_halted) { halt(); is_halted = true; } return controller_interface::return_type::OK; } const auto current_time = time; std::shared_ptr<Twist> last_command_msg; received_velocity_msg_ptr_.get(last_command_msg); if (last_command_msg == nullptr) { RCLCPP_WARN(logger, "Velocity message received was a nullptr."); return controller_interface::return_type::ERROR; } // const auto age_of_last_command = current_time - last_command_msg->header.stamp; // // Brake if cmd_vel has timeout, override the stored command // if (age_of_last_command > cmd_vel_timeout_milliseconds_) // { // halt(); // } // INPUTS Twist command = *last_command_msg; auto & last_command = previous_commands_.back().twist; auto & second_to_last_command = previous_commands_.front().twist; double &linear_x_velocity_comand = command.twist.linear.x; double &linear_y_velocity_comand = command.twist.linear.y; double &angular_velocity_comand = command.twist.angular.z; double original_linear_x_velocity_comand = linear_x_velocity_comand; double original_linear_y_velocity_comand = linear_y_velocity_comand; double original_angular_velocity_comand = angular_velocity_comand; // Limits limiter_linear_X_.limit(linear_x_velocity_comand, last_command.linear.x, second_to_last_command.linear.x, period.seconds()); limiter_linear_Y_.limit(linear_y_velocity_comand, last_command.linear.y, second_to_last_command.linear.y, period.seconds()); limiter_angular_Z_.limit(angular_velocity_comand, last_command.angular.z, second_to_last_command.angular.z, period.seconds()); previous_commands_.pop(); previous_commands_.emplace(command); if (linear_x_velocity_comand != original_linear_x_velocity_comand) { RCLCPP_WARN_THROTTLE(logger, clk, 1000, "Limiting Linear X %f -> %f", original_linear_x_velocity_comand, linear_x_velocity_comand); } if (linear_y_velocity_comand != original_linear_y_velocity_comand) { RCLCPP_WARN_THROTTLE(logger, clk, 1000, "Limiting Linear Y %f -> %f", original_linear_y_velocity_comand, linear_y_velocity_comand); } if (angular_velocity_comand != original_angular_velocity_comand) { RCLCPP_WARN_THROTTLE(logger, clk, 1000, "Limiting Angular Z %f -> %f", original_angular_velocity_comand, angular_velocity_comand); } double x_offset = wheel_params_.x_offset; double radius = wheel_params_.radius; // get current wheel positions const double front_left_current_pos = front_left_axle_command_handle_->get_position(); const double front_right_current_pos = front_right_axle_command_handle_->get_position(); const double rear_left_current_pos = rear_left_axle_command_handle_->get_position(); const double rear_right_current_pos = rear_right_axle_command_handle_->get_position(); // Compute Wheel Velocities and Positions const double a = (linear_y_velocity_comand * -1.0) - angular_velocity_comand * x_offset / 2.0; const double b = (linear_y_velocity_comand * -1.0) + angular_velocity_comand * x_offset / 2.0; const double c = linear_x_velocity_comand - angular_velocity_comand * x_offset / 2.0; const double d = linear_x_velocity_comand + angular_velocity_comand * x_offset / 2.0; double front_left_velocity = sqrt(pow(b, 2) + pow(d, 2)) / radius; double front_right_velocity = sqrt(pow(b, 2) + pow(c, 2)) / radius; double rear_left_velocity = sqrt(pow(a, 2) + pow(d, 2)) / radius; double rear_right_velocity = sqrt(pow(a, 2) + pow(c, 2)) / radius; // Normalize wheel velocities if any are greater than max double velMax = std::max({front_left_velocity, front_right_velocity, rear_left_velocity, rear_right_velocity}); if (velMax > max_wheel_angular_velocity_) { front_left_velocity = front_left_velocity/velMax * max_wheel_angular_velocity_; front_right_velocity = front_right_velocity/velMax * max_wheel_angular_velocity_; rear_left_velocity = rear_left_velocity/velMax * max_wheel_angular_velocity_; rear_right_velocity = rear_right_velocity/velMax * max_wheel_angular_velocity_; } double front_left_position; double front_right_position ; double rear_left_position; double rear_right_position; // Make position current if no movement is given if (std::abs(linear_x_velocity_comand) <= 0.1 && std::abs(linear_y_velocity_comand) <= 0.1 && std::abs(angular_velocity_comand) <= 0.1) { front_left_position = front_left_current_pos; front_right_position = front_right_current_pos; rear_left_position = rear_left_current_pos; rear_right_position = rear_right_current_pos; } else { front_left_position = atan2(b, d); front_right_position = atan2(b, c); rear_left_position = atan2(a, d); rear_right_position = atan2(a, c); // Optimization optimize(front_left_position, front_left_current_pos, front_left_velocity); optimize(front_right_position, front_right_current_pos, front_right_velocity); optimize(rear_left_position, rear_left_current_pos, rear_left_velocity); optimize(rear_right_position, rear_right_current_pos, rear_right_velocity); } // Old Limit Wheel Velocity // front_left_velocity=limiter_wheel_.limit(front_left_velocity,last_wheel_commands[0], second_last_wheel_commands[0],0.1); // front_right_velocity=limiter_wheel_.limit(front_right_velocity,last_wheel_commands[1], second_last_wheel_commands[1],0.1); // rear_left_velocity=limiter_wheel_.limit(rear_left_velocity,last_wheel_commands[2], second_last_wheel_commands[2],0.1); // rear_right_velocity=limiter_wheel_.limit(rear_right_velocity,last_wheel_commands[3], second_last_wheel_commands[3],0.1); // second_last_wheel_commands= last_wheel_commands; front_left_wheel_command_handle_->set_velocity(front_left_velocity); front_right_wheel_command_handle_->set_velocity(front_right_velocity); rear_left_wheel_command_handle_->set_velocity(rear_left_velocity); rear_right_wheel_command_handle_->set_velocity(rear_right_velocity); front_left_axle_command_handle_->set_position(front_left_position); front_right_axle_command_handle_->set_position(front_right_position); rear_left_axle_command_handle_->set_position(rear_left_position); rear_right_axle_command_handle_->set_position(rear_right_position); // Time update const auto update_dt = current_time - previous_update_timestamp_; previous_update_timestamp_ = current_time; return controller_interface::return_type::OK; } controller_interface::CallbackReturn SwerveController::on_configure(const rclcpp_lifecycle::State &) { auto logger = get_node()->get_logger(); limiter_linear_X_ = SpeedLimiter( get_node()->get_parameter("linear.x.has_velocity_limits").as_bool(), get_node()->get_parameter("linear.x.has_acceleration_limits").as_bool(), get_node()->get_parameter("linear.x.has_jerk_limits").as_bool(), get_node()->get_parameter("linear.x.min_velocity").as_double(), get_node()->get_parameter("linear.x.max_velocity").as_double(), get_node()->get_parameter("linear.x.min_acceleration").as_double(), get_node()->get_parameter("linear.x.max_acceleration").as_double(), get_node()->get_parameter("linear.x.min_jerk").as_double(), get_node()->get_parameter("linear.x.max_jerk").as_double()); RCLCPP_WARN(logger, "Linear X Limiter Velocity Limits: %f, %f", limiter_linear_X_.min_velocity_, limiter_linear_X_.max_velocity_); RCLCPP_WARN(logger, "Linear X Limiter Acceleration Limits: %f, %f", limiter_linear_X_.min_acceleration_, limiter_linear_X_.max_acceleration_); RCLCPP_WARN(logger, "Linear X Limiter Jert Limits: %f, %f", limiter_linear_X_.min_jerk_, limiter_linear_X_.max_jerk_); limiter_linear_Y_ = SpeedLimiter( get_node()->get_parameter("linear.y.has_velocity_limits").as_bool(), get_node()->get_parameter("linear.y.has_acceleration_limits").as_bool(), get_node()->get_parameter("linear.y.has_jerk_limits").as_bool(), get_node()->get_parameter("linear.y.min_velocity").as_double(), get_node()->get_parameter("linear.y.max_velocity").as_double(), get_node()->get_parameter("linear.y.min_acceleration").as_double(), get_node()->get_parameter("linear.y.max_acceleration").as_double(), get_node()->get_parameter("linear.y.min_jerk").as_double(), get_node()->get_parameter("linear.y.max_jerk").as_double()); RCLCPP_WARN(logger, "Linear Y Limiter Velocity Limits: %f, %f", limiter_linear_Y_.min_velocity_, limiter_linear_Y_.max_velocity_); RCLCPP_WARN(logger, "Linear Y Limiter Acceleration Limits: %f, %f", limiter_linear_Y_.min_acceleration_, limiter_linear_Y_.max_acceleration_); RCLCPP_WARN(logger, "Linear Y Limiter Jert Limits: %f, %f", limiter_linear_Y_.min_jerk_, limiter_linear_Y_.max_jerk_); limiter_angular_Z_ = SpeedLimiter( get_node()->get_parameter("angular.z.has_velocity_limits").as_bool(), get_node()->get_parameter("angular.z.has_acceleration_limits").as_bool(), get_node()->get_parameter("angular.z.has_jerk_limits").as_bool(), get_node()->get_parameter("angular.z.min_velocity").as_double(), get_node()->get_parameter("angular.z.max_velocity").as_double(), get_node()->get_parameter("angular.z.min_acceleration").as_double(), get_node()->get_parameter("angular.z.max_acceleration").as_double(), get_node()->get_parameter("angular.z.min_jerk").as_double(), get_node()->get_parameter("angular.z.max_jerk").as_double()); RCLCPP_WARN(logger, "Angular Z Limiter Velocity Limits: %f, %f", limiter_angular_Z_.min_velocity_, limiter_angular_Z_.max_velocity_); RCLCPP_WARN(logger, "Angular Z Limiter Acceleration Limits: %f, %f", limiter_angular_Z_.min_acceleration_, limiter_angular_Z_.max_acceleration_); RCLCPP_WARN(logger, "Angular Z Limiter Jert Limits: %f, %f", limiter_angular_Z_.min_jerk_, limiter_angular_Z_.max_jerk_); // Get Parameters front_left_wheel_joint_name_ = get_node()->get_parameter("front_left_wheel_joint").as_string(); front_right_wheel_joint_name_ = get_node()->get_parameter("front_right_wheel_joint").as_string(); rear_left_wheel_joint_name_ = get_node()->get_parameter("rear_left_wheel_joint").as_string(); rear_right_wheel_joint_name_ = get_node()->get_parameter("rear_right_wheel_joint").as_string(); front_left_axle_joint_name_ = get_node()->get_parameter("front_left_axle_joint").as_string(); front_right_axle_joint_name_ = get_node()->get_parameter("front_right_axle_joint").as_string(); rear_left_axle_joint_name_ = get_node()->get_parameter("rear_left_axle_joint").as_string(); rear_right_axle_joint_name_ = get_node()->get_parameter("rear_right_axle_joint").as_string(); if (front_left_wheel_joint_name_.empty()) { RCLCPP_ERROR(logger, "front_left_wheel_joint_name is not set"); return controller_interface::CallbackReturn::ERROR; } if (front_right_wheel_joint_name_.empty()) { RCLCPP_ERROR(logger, "front_right_wheel_joint_name is not set"); return controller_interface::CallbackReturn::ERROR; } if (rear_left_wheel_joint_name_.empty()) { RCLCPP_ERROR(logger, "rear_left_wheel_joint_name is not set"); return controller_interface::CallbackReturn::ERROR; } if (rear_right_wheel_joint_name_.empty()) { RCLCPP_ERROR(logger, "rear_right_wheel_joint_name is not set"); return controller_interface::CallbackReturn::ERROR; } if (front_left_axle_joint_name_.empty()) { RCLCPP_ERROR(logger, "front_left_axle_joint_name is not set"); return controller_interface::CallbackReturn::ERROR; } if (front_right_axle_joint_name_.empty()) { RCLCPP_ERROR(logger, "front_right_axle_joint_name is not set"); return controller_interface::CallbackReturn::ERROR; } if (rear_left_axle_joint_name_.empty()) { RCLCPP_ERROR(logger, "rear_left_axle_joint_name is not set"); return controller_interface::CallbackReturn::ERROR; } if (rear_right_axle_joint_name_.empty()) { RCLCPP_ERROR(logger, "rear_right_axle_joint_name is not set"); return controller_interface::CallbackReturn::ERROR; } wheel_params_.x_offset = get_node()->get_parameter("chassis_length_meters").as_double(); wheel_params_.y_offset = get_node()->get_parameter("chassis_width_meters").as_double(); wheel_params_.radius = get_node()->get_parameter("wheel_radius_meters").as_double(); max_wheel_angular_velocity_ = get_node()->get_parameter("max_wheel_angular_velocity").as_double(); cmd_vel_timeout_milliseconds_ = std::chrono::milliseconds{ static_cast<int>(get_node()->get_parameter("cmd_vel_timeout_seconds").as_double() * 1000.0)}; use_stamped_vel_ = get_node()->get_parameter("use_stamped_vel").as_bool(); // Run reset to make sure everything is initialized correctly if (!reset()) { return controller_interface::CallbackReturn::ERROR; } const Twist empty_twist; received_velocity_msg_ptr_.set(std::make_shared<Twist>(empty_twist)); previous_commands_.emplace(empty_twist); previous_commands_.emplace(empty_twist); // initialize command subscriber if (use_stamped_vel_) { velocity_command_subscriber_ = get_node()->create_subscription<Twist>( DEFAULT_COMMAND_TOPIC, rclcpp::SystemDefaultsQoS(), [this](const std::shared_ptr<Twist> msg) -> void { if (!subscriber_is_active_) { RCLCPP_WARN(get_node()->get_logger(), "Can't accept new commands. subscriber is inactive"); return; } if ((msg->header.stamp.sec == 0) && (msg->header.stamp.nanosec == 0)) { RCLCPP_WARN_ONCE( get_node()->get_logger(), "Received TwistStamped with zero timestamp, setting it to current " "time, this message will only be shown once"); msg->header.stamp = get_node()->get_clock()->now(); } received_velocity_msg_ptr_.set(std::move(msg)); }); } else { velocity_command_unstamped_subscriber_ = get_node()->create_subscription<geometry_msgs::msg::Twist>( DEFAULT_COMMAND_UNSTAMPED_TOPIC, rclcpp::SystemDefaultsQoS(), [this](const std::shared_ptr<geometry_msgs::msg::Twist> msg) -> void { if (!subscriber_is_active_) { RCLCPP_WARN(get_node()->get_logger(), "Can't accept new commands. subscriber is inactive"); return; } // Write fake header in the stored stamped command std::shared_ptr<Twist> twist_stamped; received_velocity_msg_ptr_.get(twist_stamped); twist_stamped->twist = *msg; twist_stamped->header.stamp = get_node()->get_clock()->now(); }); } previous_update_timestamp_ = get_node()->get_clock()->now(); return controller_interface::CallbackReturn::SUCCESS; } controller_interface::CallbackReturn SwerveController::on_activate(const rclcpp_lifecycle::State &) { front_left_wheel_command_handle_ = get_wheel(front_left_wheel_joint_name_); front_right_wheel_command_handle_ = get_wheel(front_right_wheel_joint_name_); rear_left_wheel_command_handle_ = get_wheel(rear_left_wheel_joint_name_); rear_right_wheel_command_handle_ = get_wheel(rear_right_wheel_joint_name_); front_left_axle_command_handle_ = get_axle(front_left_axle_joint_name_); front_right_axle_command_handle_ = get_axle(front_right_axle_joint_name_); rear_left_axle_command_handle_ = get_axle(rear_left_axle_joint_name_); rear_right_axle_command_handle_ = get_axle(rear_right_axle_joint_name_); if (!front_left_wheel_command_handle_ || !front_right_wheel_command_handle_ || !rear_left_wheel_command_handle_ || !rear_right_wheel_command_handle_ || !front_left_axle_command_handle_ || !front_right_axle_command_handle_ || !rear_left_axle_command_handle_ || !rear_right_axle_command_handle_) { return controller_interface::CallbackReturn::ERROR; } is_halted = false; subscriber_is_active_ = true; RCLCPP_DEBUG(get_node()->get_logger(), "Subscriber and publisher are now active."); return controller_interface::CallbackReturn::SUCCESS; } controller_interface::CallbackReturn SwerveController::on_deactivate(const rclcpp_lifecycle::State &) { subscriber_is_active_ = false; return controller_interface::CallbackReturn::SUCCESS; } controller_interface::CallbackReturn SwerveController::on_cleanup(const rclcpp_lifecycle::State &) { if (!reset()) { return controller_interface::CallbackReturn::ERROR; } received_velocity_msg_ptr_.set(std::make_shared<Twist>()); return controller_interface::CallbackReturn::SUCCESS; } controller_interface::CallbackReturn SwerveController::on_error(const rclcpp_lifecycle::State &) { if (!reset()) { return controller_interface::CallbackReturn::ERROR; } return controller_interface::CallbackReturn::SUCCESS; } bool SwerveController::reset() { subscriber_is_active_ = false; velocity_command_subscriber_.reset(); velocity_command_unstamped_subscriber_.reset(); std::queue<Twist> empty; std::swap(previous_commands_, empty); received_velocity_msg_ptr_.set(nullptr); is_halted = false; return true; } controller_interface::CallbackReturn SwerveController::on_shutdown(const rclcpp_lifecycle::State &) { return controller_interface::CallbackReturn::SUCCESS; } void SwerveController::halt() { front_left_wheel_command_handle_->set_velocity(0.0); front_right_wheel_command_handle_->set_velocity(0.0); rear_left_wheel_command_handle_->set_velocity(0.0); rear_right_wheel_command_handle_->set_velocity(0.0); auto logger = get_node()->get_logger(); RCLCPP_WARN(logger, "-----HALT CALLED : STOPPING ALL MOTORS-----"); } std::shared_ptr<Wheel> SwerveController::get_wheel(const std::string &wheel_name) { auto logger = get_node()->get_logger(); if (wheel_name.empty()) { RCLCPP_ERROR(logger, "Wheel joint name not given. Make sure all joints are specified."); return nullptr; } // Get Command Handle for joint const auto command_handle = std::find_if( command_interfaces_.begin(), command_interfaces_.end(), [&wheel_name](const auto &interface) { return interface.get_name() == wheel_name + "/velocity" && interface.get_interface_name() == HW_IF_VELOCITY; }); if (command_handle == command_interfaces_.end()) { RCLCPP_ERROR(logger, "Unable to obtain joint command handle for %s", wheel_name.c_str()); return nullptr; } auto cmd_interface_name = command_handle->get_name(); RCLCPP_INFO(logger, "FOUND! wheel cmd interface %s", cmd_interface_name.c_str()); return std::make_shared<Wheel>(std::ref(*command_handle), wheel_name); } std::shared_ptr<Axle> SwerveController::get_axle(const std::string &axle_name) { auto logger = get_node()->get_logger(); if (axle_name.empty()) { RCLCPP_ERROR(logger, "Axle joint name not given. Make sure all joints are specified."); return nullptr; } // Get Command Handle for joint const auto command_handle_position = std::find_if( command_interfaces_.begin(), command_interfaces_.end(), [&axle_name](const auto &interface) { return interface.get_name() == axle_name + "/position" && interface.get_interface_name() == HW_IF_POSITION; }); const auto state_handle = std::find_if( state_interfaces_.cbegin(), state_interfaces_.cend(), [&axle_name](const auto &interface) { return interface.get_name() == axle_name + "/position" && interface.get_interface_name() == HW_IF_POSITION; }); if (command_handle_position == command_interfaces_.end()) { RCLCPP_ERROR(logger, "Unable to obtain joint command handle for %s", axle_name.c_str()); return nullptr; } if (state_handle == state_interfaces_.cend()) { RCLCPP_ERROR(logger, "Unable to obtain joint state handle for %s", axle_name.c_str()); return nullptr; } auto cmd_interface_name = command_handle_position->get_name(); RCLCPP_INFO(logger, "FOUND! axle cmd interface %s", cmd_interface_name.c_str()); return std::make_shared<Axle>(std::ref(*command_handle_position), std::ref(*state_handle), axle_name); } } // namespace swerve_controller #include "class_loader/register_macro.hpp" CLASS_LOADER_REGISTER_CLASS( swerve_controller::SwerveController, controller_interface::ControllerInterface)
28,957
C++
43.896124
299
0.668267
RoboEagles4828/edna2023/src/swerve_controller/include/swerve_controller/swerve_controller.hpp
// Copyright 2020 PAL Robotics S.L. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* * Author: Bence Magyar, Enrique Fernández, Manuel Meraz */ #ifndef SWERVE_CONTROLLER__SWERVE_CONTROLLER_HPP_ #define SWERVE_CONTROLLER__SWERVE_CONTROLLER_HPP_ #include <chrono> #include <cmath> #include <memory> #include <queue> #include <string> #include <vector> #include "controller_interface/controller_interface.hpp" #include "swerve_controller/visibility_control.h" #include "swerve_controller/speed_limiter.hpp" #include "geometry_msgs/msg/twist.hpp" #include "geometry_msgs/msg/twist_stamped.hpp" #include "hardware_interface/handle.hpp" #include "rclcpp/rclcpp.hpp" #include "rclcpp_lifecycle/state.hpp" #include "realtime_tools/realtime_box.h" #include "realtime_tools/realtime_buffer.h" #include "realtime_tools/realtime_publisher.h" #include "hardware_interface/loaned_command_interface.hpp" namespace swerve_controller { class Wheel { public: Wheel(std::reference_wrapper<hardware_interface::LoanedCommandInterface> velocity, std::string name); void set_velocity(double velocity); private: std::reference_wrapper<hardware_interface::LoanedCommandInterface> velocity_; std::string name; }; class Axle { public: Axle(std::reference_wrapper<hardware_interface::LoanedCommandInterface> command_position_,std::reference_wrapper< const hardware_interface::LoanedStateInterface> state_position_, std::string name); void set_position(double command_position_); double get_position (void); private: std::reference_wrapper<hardware_interface::LoanedCommandInterface> command_position_; std::reference_wrapper<const hardware_interface::LoanedStateInterface> state_position_; std::string name; }; class SwerveController : public controller_interface::ControllerInterface { using Twist = geometry_msgs::msg::TwistStamped; public: SWERVE_CONTROLLER_PUBLIC SwerveController(); SWERVE_CONTROLLER_PUBLIC controller_interface::InterfaceConfiguration command_interface_configuration() const override; SWERVE_CONTROLLER_PUBLIC controller_interface::InterfaceConfiguration state_interface_configuration() const override; SWERVE_CONTROLLER_PUBLIC controller_interface::return_type update( const rclcpp::Time & time, const rclcpp::Duration & period) override; SWERVE_CONTROLLER_PUBLIC controller_interface::CallbackReturn on_init() override; SWERVE_CONTROLLER_PUBLIC controller_interface::CallbackReturn on_configure(const rclcpp_lifecycle::State & previous_state) override; SWERVE_CONTROLLER_PUBLIC controller_interface::CallbackReturn on_activate(const rclcpp_lifecycle::State & previous_state) override; SWERVE_CONTROLLER_PUBLIC controller_interface::CallbackReturn on_deactivate(const rclcpp_lifecycle::State & previous_state) override; SWERVE_CONTROLLER_PUBLIC controller_interface::CallbackReturn on_cleanup(const rclcpp_lifecycle::State & previous_state) override; SWERVE_CONTROLLER_PUBLIC controller_interface::CallbackReturn on_error(const rclcpp_lifecycle::State & previous_state) override; SWERVE_CONTROLLER_PUBLIC controller_interface::CallbackReturn on_shutdown(const rclcpp_lifecycle::State & previous_state) override; protected: std::shared_ptr<Wheel> get_wheel(const std::string & wheel_name); std::shared_ptr<Axle> get_axle(const std::string & axle_name); std::shared_ptr<Wheel> front_left_wheel_command_handle_; std::shared_ptr<Wheel> front_right_wheel_command_handle_; std::shared_ptr<Wheel> rear_left_wheel_command_handle_; std::shared_ptr<Wheel> rear_right_wheel_command_handle_; std::shared_ptr<Axle> front_left_axle_command_handle_; std::shared_ptr<Axle> front_right_axle_command_handle_; std::shared_ptr<Axle> rear_left_axle_command_handle_; std::shared_ptr<Axle> rear_right_axle_command_handle_; std::string front_left_wheel_joint_name_; std::string front_right_wheel_joint_name_; std::string rear_left_wheel_joint_name_; std::string rear_right_wheel_joint_name_; std::string front_left_axle_joint_name_; std::string front_right_axle_joint_name_; std::string rear_left_axle_joint_name_; std::string rear_right_axle_joint_name_; // std::vector<double> last_wheel_commands{0.0,0.0,0.0,0.0}; // std::vector<double> second_last_wheel_commands{0.0,0.0,0.0,0.0}; SpeedLimiter limiter_linear_X_; SpeedLimiter limiter_linear_Y_; SpeedLimiter limiter_angular_Z_; std::queue<Twist> previous_commands_; struct WheelParams { double x_offset = 0.0; // Chassis Center to Axle Center double y_offset = 0.0; // Axle Center to Wheel Center double radius = 0.0; // Assumed to be the same for all wheels } wheel_params_; // Timeout to consider cmd_vel commands old std::chrono::milliseconds cmd_vel_timeout_milliseconds_{500}; rclcpp::Time previous_update_timestamp_{0}; // Topic Subscription bool subscriber_is_active_ = false; rclcpp::Subscription<Twist>::SharedPtr velocity_command_subscriber_ = nullptr; rclcpp::Subscription<geometry_msgs::msg::Twist>::SharedPtr velocity_command_unstamped_subscriber_ = nullptr; realtime_tools::RealtimeBox<std::shared_ptr<Twist>> received_velocity_msg_ptr_{nullptr}; double max_wheel_angular_velocity_ = 0.0; bool is_halted = false; bool use_stamped_vel_ = true; bool reset(); void halt(); }; } // namespace swerve_controllerS #endif // Swerve_CONTROLLER__SWERVE_CONTROLLER_HPP_
5,964
C++
36.049689
182
0.753521
RoboEagles4828/edna2023/src/swerve_controller/include/swerve_controller/visibility_control.h
// Copyright 2017 Open Source Robotics Foundation, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* This header must be included by all rclcpp headers which declare symbols * which are defined in the rclcpp library. When not building the rclcpp * library, i.e. when using the headers in other package's code, the contents * of this header change the visibility of certain symbols which the rclcpp * library cannot have, but the consuming code must have inorder to link. */ #ifndef SWERVE_CONTROLLER__VISIBILITY_CONTROL_H_ #define SWERVE_CONTROLLER__VISIBILITY_CONTROL_H_ // This logic was borrowed (then namespaced) from the examples on the gcc wiki: // https://gcc.gnu.org/wiki/Visibility #if defined _WIN32 || defined __CYGWIN__ #ifdef __GNUC__ #define SWERVE_CONTROLLER_EXPORT __attribute__((dllexport)) #define SWERVE_CONTROLLER_IMPORT __attribute__((dllimport)) #else #define SWERVE_CONTROLLER_EXPORT __declspec(dllexport) #define SWERVE_CONTROLLER_IMPORT __declspec(dllimport) #endif #ifdef SWERVE_CONTROLLER_BUILDING_DLL #define SWERVE_CONTROLLER_PUBLIC SWERVE_CONTROLLER_EXPORT #else #define SWERVE_CONTROLLER_PUBLIC SWERVE_CONTROLLER_IMPORT #endif #define SWERVE_CONTROLLER_PUBLIC_TYPE SWERVE_CONTROLLER_PUBLIC #define SWERVE_CONTROLLER_LOCAL #else #define SWERVE_CONTROLLER_EXPORT __attribute__((visibility("default"))) #define SWERVE_CONTROLLER_IMPORT #if __GNUC__ >= 4 #define SWERVE_CONTROLLER_PUBLIC __attribute__((visibility("default"))) #define SWERVE_CONTROLLER_LOCAL __attribute__((visibility("hidden"))) #else #define SWERVE_CONTROLLER_PUBLIC #define SWERVE_CONTROLLER_LOCAL #endif #define SWERVE_CONTROLLER_PUBLIC_TYPE #endif #endif // SWERVE_CONTROLLER__VISIBILITY_CONTROL_H_
2,229
C
38.122806
79
0.767609
RoboEagles4828/edna2023/src/swerve_controller/include/swerve_controller/speed_limiter.hpp
// Copyright 2020 PAL Robotics S.L. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* * Author: Enrique Fernández */ #ifndef SWERVE_CONTROLLER__SPEED_LIMITER_HPP_ #define SWERVE_CONTROLLER__SPEED_LIMITER_HPP_ #include <cmath> namespace swerve_controller { class SpeedLimiter { public: /** * \brief Constructor * \param [in] has_velocity_limits if true, applies velocity limits * \param [in] has_acceleration_limits if true, applies acceleration limits * \param [in] has_jerk_limits if true, applies jerk limits * \param [in] min_velocity Minimum velocity [m/s], usually <= 0 * \param [in] max_velocity Maximum velocity [m/s], usually >= 0 * \param [in] min_acceleration Minimum acceleration [m/s^2], usually <= 0 * \param [in] max_acceleration Maximum acceleration [m/s^2], usually >= 0 * \param [in] min_jerk Minimum jerk [m/s^3], usually <= 0 * \param [in] max_jerk Maximum jerk [m/s^3], usually >= 0 */ SpeedLimiter( bool has_velocity_limits = false, bool has_acceleration_limits = false, bool has_jerk_limits = false, double min_velocity = NAN, double max_velocity = NAN, double min_acceleration = NAN, double max_acceleration = NAN, double min_jerk = NAN, double max_jerk = NAN); /** * \brief Limit the velocity and acceleration * \param [in, out] v Velocity [m/s] * \param [in] v0 Previous velocity to v [m/s] * \param [in] v1 Previous velocity to v0 [m/s] * \param [in] dt Time step [s] * \return Limiting factor (1.0 if none) */ double limit(double & v, double v0, double v1, double dt); /** * \brief Limit the velocity * \param [in, out] v Velocity [m/s] * \return Limiting factor (1.0 if none) */ double limit_velocity(double & v); /** * \brief Limit the acceleration * \param [in, out] v Velocity [m/s] * \param [in] v0 Previous velocity [m/s] * \param [in] dt Time step [s] * \return Limiting factor (1.0 if none) */ double limit_acceleration(double & v, double v0, double dt); /** * \brief Limit the jerk * \param [in, out] v Velocity [m/s] * \param [in] v0 Previous velocity to v [m/s] * \param [in] v1 Previous velocity to v0 [m/s] * \param [in] dt Time step [s] * \return Limiting factor (1.0 if none) * \see http://en.wikipedia.org/wiki/Jerk_%28physics%29#Motion_control */ double limit_jerk(double & v, double v0, double v1, double dt); // Enable/Disable velocity/acceleration/jerk limits: bool has_velocity_limits_; bool has_acceleration_limits_; bool has_jerk_limits_; // Velocity limits: double min_velocity_; double max_velocity_; // Acceleration limits: double min_acceleration_; double max_acceleration_; // Jerk limits: double min_jerk_; double max_jerk_; }; } // namespace swerve_controller #endif // SWERVE_CONTROLLER__SPEED_LIMITER_HPP_
3,423
C++
31.609524
88
0.660532
RoboEagles4828/edna2023/src/edna_bringup/launch/teleopLayer.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import RegisterEventHandler, DeclareLaunchArgument from launch.substitutions import LaunchConfiguration, Command, PythonExpression from launch_ros.actions import Node from launch.conditions import IfCondition # Easy use of namespace since args are not strings # NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): use_sim_time = LaunchConfiguration('use_sim_time') namespace = LaunchConfiguration('namespace') joystick_file = LaunchConfiguration('joystick_file') enable_joy = LaunchConfiguration('enable_joy') frc_auton_reader = Node( package = "frc_auton", namespace=namespace, executable= "reader", name = "frc_auton_node", parameters=[{ "auton_name": "24", }] ) frc_teleop_writer = Node( package = "frc_auton", namespace=namespace, executable= "writer", name = "frc_auton_node", parameters=[{ "record_auton": False, "record_without_fms": False, }] ) joy = Node( package='joy', namespace=namespace, executable='joy_node', name='joy_node', condition=IfCondition(enable_joy), parameters=[{ 'use_sim_time': use_sim_time, 'deadzone': 0.15, }]) controller_prefix = 'swerve_controller' joy_teleop_twist = Node( package='teleop_twist_joy', namespace=namespace, executable='teleop_node', name='teleop_twist_joy_node', parameters=[joystick_file, {'use_sim_time': use_sim_time}], remappings={ ("cmd_vel", f"{controller_prefix}/cmd_vel_unstamped"), ("odom", "zed/odom") }, ) joint_trajectory_teleop = Node( package='joint_trajectory_teleop', namespace=namespace, executable='joint_trajectory_teleop', name='joint_trajectory_teleop', parameters=[{'use_sim_time': use_sim_time}] ) # Launch! return LaunchDescription([ DeclareLaunchArgument( 'use_sim_time', default_value='false', description='Use sim time if true'), DeclareLaunchArgument( 'namespace', default_value='default', description='The namespace of nodes and links'), DeclareLaunchArgument( 'joystick_file', default_value='', description='The file with joystick parameters'), DeclareLaunchArgument( 'enable_joy', default_value='true', description='Enables joystick teleop'), joy, joy_teleop_twist, joint_trajectory_teleop, frc_auton_reader, # frc_teleop_writer ])
3,004
Python
32.021978
93
0.58988
RoboEagles4828/edna2023/src/edna_bringup/launch/rviz.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription from launch.launch_description_sources import PythonLaunchDescriptionSource NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): bringup_path = get_package_share_directory("edna_bringup") rviz_file = os.path.join(bringup_path, 'config', 'description.rviz') common = { 'use_sim_time': 'false', 'namespace': NAMESPACE } control_launch_args = common | { 'use_ros2_control': 'false', 'load_controllers': 'false' } debug_launch_args = common | { 'enable_rviz': 'true', 'enable_foxglove': 'false', 'enable_joint_state_publisher': 'true', 'rviz_file': rviz_file } control_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','controlLayer.launch.py' )]), launch_arguments=control_launch_args.items()) debug_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','debugLayer.launch.py' )]), launch_arguments=debug_launch_args.items()) # Launch! return LaunchDescription([ control_layer, debug_layer, ])
1,469
Python
34.853658
91
0.647379
RoboEagles4828/edna2023/src/edna_bringup/launch/test_hw.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, TimerAction from launch.launch_description_sources import PythonLaunchDescriptionSource NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): bringup_path = get_package_share_directory("edna_bringup") joystick_file = os.path.join(bringup_path, 'config', 'xbox-sim.yaml') rviz_file = os.path.join(bringup_path, 'config', 'view.rviz') common = { 'use_sim_time': 'false', 'namespace': NAMESPACE } control_launch_args = common | { 'use_ros2_control': 'true', 'hardware_plugin': 'swerve_hardware/TestDriveHardware', } teleoplaunch_args = common | { 'joystick_file': joystick_file, } debug_launch_args = common | { 'enable_rviz': 'true', 'enable_foxglove': 'true', 'rviz_file': rviz_file } control_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','controlLayer.launch.py' )]), launch_arguments=control_launch_args.items()) teleop_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','teleopLayer.launch.py' )]), launch_arguments=teleoplaunch_args.items()) debug_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','debugLayer.launch.py' )]), launch_arguments=debug_launch_args.items()) delay_debug_layer = TimerAction(period=3.0, actions=[debug_layer]) # Launch! return LaunchDescription([ control_layer, teleop_layer, delay_debug_layer, ])
1,956
Python
35.924528
91
0.643149
RoboEagles4828/edna2023/src/edna_bringup/launch/zed2i.launch.py
import os from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, TimerAction from launch.launch_description_sources import PythonLaunchDescriptionSource from ament_index_python.packages import get_package_share_directory from launch_ros.actions import Node NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): # Camera model (force value) camera_model = 'zed2i' config_common_path = os.path.join( get_package_share_directory('zed_wrapper'), 'config', 'common.yaml' ) config_camera_path = os.path.join( get_package_share_directory('zed_wrapper'), 'config', camera_model + '.yaml' ) # ZED Wrapper node zed_wrapper_node = Node( package='zed_wrapper', namespace=str(NAMESPACE), executable='zed_wrapper', name='zed', output='screen', #prefix=['xterm -e valgrind --tools=callgrind'], #prefix=['xterm -e gdb -ex run --args'], parameters=[ # YAML files config_common_path, # Common parameters config_camera_path, # Camera related parameters # Overriding { 'general.camera_name': f'{NAMESPACE}/{camera_model}', 'general.camera_model': camera_model, 'general.svo_file': 'live', 'pos_tracking.base_frame': f'{NAMESPACE}/base_link', 'pos_tracking.map_frame': f'{NAMESPACE}/map', 'pos_tracking.odometry_frame': f'{NAMESPACE}/odom', 'general.zed_id': 0, 'general.serial_number': 0, 'pos_tracking.publish_tf': True, 'pos_tracking.publish_map_tf': True, 'pos_tracking.publish_imu_tf': True } ] ) delay_zed_wrapper = TimerAction(period=5.0, actions=[zed_wrapper_node]) # Define LaunchDescription variable ld = LaunchDescription() # Add nodes to LaunchDescription ld.add_action(delay_zed_wrapper) return ld
2,150
Python
30.632352
91
0.597209
RoboEagles4828/edna2023/src/edna_bringup/launch/controlLayer.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import RegisterEventHandler, DeclareLaunchArgument, SetEnvironmentVariable, LogInfo, EmitEvent from launch.substitutions import LaunchConfiguration, Command, PythonExpression, TextSubstitution from launch.event_handlers import OnProcessExit from launch_ros.actions import Node from launch.conditions import IfCondition from launch.events import Shutdown # Easy use of namespace since args are not strings # NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): use_sim_time = LaunchConfiguration('use_sim_time') use_ros2_control = LaunchConfiguration('use_ros2_control') load_controllers = LaunchConfiguration('load_controllers') forward_command_controllers = LaunchConfiguration('forward_command_controller') namespace = LaunchConfiguration('namespace') hardware_plugin = LaunchConfiguration('hardware_plugin') # Process the URDF file description_pkg_path = os.path.join(get_package_share_directory('edna_description')) xacro_file = os.path.join(description_pkg_path,'urdf', 'robots','edna.urdf.xacro') edna_description_xml = Command(['xacro ', xacro_file, ' hw_interface_plugin:=', hardware_plugin]) # Get paths to other config files bringup_pkg_path = os.path.join(get_package_share_directory('edna_bringup')) controllers_file = os.path.join(bringup_pkg_path, 'config', 'controllers.yaml') # Create a robot_state_publisher node node_robot_state_publisher = Node( package='robot_state_publisher', namespace=namespace, executable='robot_state_publisher', output='screen', parameters=[{ 'robot_description': edna_description_xml, 'use_sim_time': use_sim_time, 'publish_frequency': 50.0, 'frame_prefix': [namespace, '/'] }], ) # Starts ROS2 Control control_node = Node( package="controller_manager", namespace=namespace, executable="ros2_control_node", condition=IfCondition(use_ros2_control), parameters=[{ "robot_description": edna_description_xml, "use_sim_time": use_sim_time, }, controllers_file], output="both", ) control_node_require = RegisterEventHandler( event_handler=OnProcessExit( target_action=control_node, on_exit=[ LogInfo(msg="Listener exited; tearing down entire system."), EmitEvent(event=Shutdown()) ], ) ) # Starts ROS2 Control Joint State Broadcaster joint_state_broadcaster_spawner = Node( package="controller_manager", namespace=namespace, executable="spawner", arguments=["joint_state_broadcaster", "-c", ['/', namespace, "/controller_manager"]], condition=IfCondition(use_ros2_control), ) joint_trajectory_controller_spawner = Node( package="controller_manager", namespace=namespace, executable="spawner", arguments=["joint_trajectory_controller", "-c", ['/', namespace, "/controller_manager"]], parameters=[{ "robot_description": edna_description_xml, "use_sim_time": use_sim_time, }, controllers_file], condition=IfCondition(use_ros2_control and load_controllers), ) #Starts ROS2 Control Swerve Drive Controller swerve_drive_controller_spawner = Node( package="controller_manager", namespace=namespace, executable="spawner", arguments=["swerve_controller", "-c", ['/', namespace, "/controller_manager"]], condition=IfCondition(use_ros2_control and load_controllers), ) swerve_drive_controller_delay = RegisterEventHandler( event_handler=OnProcessExit( target_action=joint_state_broadcaster_spawner, on_exit=[swerve_drive_controller_spawner], ) ) # Starts ROS2 Control Forward Controller forward_position_controller_spawner = Node( package="controller_manager", namespace=namespace, executable="spawner", arguments=["forward_position_controller", "-c", ['/', namespace, "/controller_manager"]], condition=IfCondition(use_ros2_control and forward_command_controllers), ) forward_position_controller_delay = RegisterEventHandler( event_handler=OnProcessExit( target_action=joint_state_broadcaster_spawner, on_exit=[forward_position_controller_spawner], ) ) forward_velocity_controller_spawner = Node( package="controller_manager", namespace=namespace, executable="spawner", arguments=["forward_velocity_controller", "-c", ['/', namespace, "/controller_manager"]], condition=IfCondition(use_ros2_control and forward_command_controllers), ) forward_velocity_controller_delay = RegisterEventHandler( event_handler=OnProcessExit( target_action=joint_state_broadcaster_spawner, on_exit=[forward_velocity_controller_spawner], ) ) # Launch! return LaunchDescription([ SetEnvironmentVariable('RCUTILS_COLORIZED_OUTPUT', '1'), DeclareLaunchArgument( 'use_sim_time', default_value='false', description='Use sim time if true'), DeclareLaunchArgument( 'use_ros2_control', default_value='true', description='Use ros2_control if true'), DeclareLaunchArgument( 'namespace', default_value='default', description='The namespace of nodes and links'), DeclareLaunchArgument( 'hardware_plugin', default_value='swerve_hardware/IsaacDriveHardware', description='Which ros2 control hardware plugin to use'), DeclareLaunchArgument( 'load_controllers', default_value='true', description='Enable or disable ros2 controllers but leave hardware interfaces'), DeclareLaunchArgument( 'forward_command_controller', default_value='false', description='Forward commands for ros2 control'), node_robot_state_publisher, control_node, joint_state_broadcaster_spawner, joint_trajectory_controller_spawner, swerve_drive_controller_delay, forward_position_controller_delay, forward_velocity_controller_delay, control_node_require ])
6,682
Python
39.017964
114
0.652799
RoboEagles4828/edna2023/src/edna_bringup/launch/rtab.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, DeclareLaunchArgument from launch.launch_description_sources import PythonLaunchDescriptionSource from launch.substitutions import LaunchConfiguration NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): use_sim_time = LaunchConfiguration('use_sim_time') rtabmap_ros_path = get_package_share_directory("rtabmap_ros") rtabmap_args = { 'rtabmap_args': '--delete_db_on_start', 'use_sim_time': use_sim_time, 'namespace': f'{NAMESPACE}_rtab', # Frames 'frame_id': f'{NAMESPACE}/base_link', 'odom_frame_id': f'{NAMESPACE}/odom', 'map_frame_id': f'{NAMESPACE}/map', # Topics 'rgb_topic': f'/{NAMESPACE}/left/rgb', 'camera_info_topic': f'/{NAMESPACE}/left/camera_info', 'depth_topic': f'/{NAMESPACE}/left/depth', 'imu_topic': f'/{NAMESPACE}/imu', 'odom_topic': f'/{NAMESPACE}/zed/odom', 'approx_sync': 'false', 'wait_imu_to_init': 'true', 'visual_odometry': 'false', 'publish_tf_odom': 'false', 'qos': '1', 'rviz': 'true', } rtab_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( rtabmap_ros_path,'launch','rtabmap.launch.py' )]), launch_arguments=rtabmap_args.items()) return LaunchDescription([ DeclareLaunchArgument( 'use_sim_time', default_value='true', description='Use sim time if true'), rtab_layer, ])
1,768
Python
34.379999
91
0.621041
RoboEagles4828/edna2023/src/edna_bringup/launch/isaac.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, TimerAction from launch.launch_description_sources import PythonLaunchDescriptionSource NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): bringup_path = get_package_share_directory("edna_bringup") joystick_file = os.path.join(bringup_path, 'config', 'xbox-sim.yaml') rviz_file = os.path.join(bringup_path, 'config', 'view.rviz') common = { 'use_sim_time': 'true', 'namespace': NAMESPACE } control_launch_args = common | { 'use_ros2_control': 'true', 'hardware_plugin': 'swerve_hardware/IsaacDriveHardware', } teleoplaunch_args = common | { 'joystick_file': joystick_file, } debug_launch_args = common | { 'enable_rviz': 'false', 'enable_foxglove': 'false', 'rviz_file': rviz_file } control_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','controlLayer.launch.py' )]), launch_arguments=control_launch_args.items()) teleop_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','teleopLayer.launch.py' )]), launch_arguments=teleoplaunch_args.items()) debug_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','debugLayer.launch.py' )]), launch_arguments=debug_launch_args.items()) delay_debug_layer = TimerAction(period=3.0, actions=[debug_layer]) # Launch! return LaunchDescription([ control_layer, teleop_layer, delay_debug_layer, ])
1,958
Python
35.962263
91
0.643514
RoboEagles4828/edna2023/src/edna_bringup/launch/debugLayer.launch.py
from launch import LaunchDescription from launch_ros.actions import Node from ament_index_python.packages import get_package_share_directory from launch.substitutions import LaunchConfiguration, PythonExpression from launch.event_handlers import OnProcessExit from launch.actions import DeclareLaunchArgument, ExecuteProcess, RegisterEventHandler from launch.conditions import IfCondition import os def generate_launch_description(): bringup_pkg_path = os.path.join(get_package_share_directory('edna_bringup')) use_sim_time = LaunchConfiguration('use_sim_time') namespace = LaunchConfiguration('namespace') enable_rviz = LaunchConfiguration('enable_rviz') enable_foxglove = LaunchConfiguration('enable_foxglove') enable_debugger_gui = LaunchConfiguration('enable_debugger_gui') enable_joint_state_publisher = LaunchConfiguration('enable_joint_state_publisher') rviz_file = LaunchConfiguration('rviz_file') foxglove = Node( package='foxglove_bridge', executable='foxglove_bridge', namespace=namespace, parameters=[{ 'port': 8765, 'use_sim_time': use_sim_time }], condition=IfCondition(enable_foxglove) ) parse_script = os.path.join(bringup_pkg_path, 'scripts', 'parseRviz.py') parseRvizFile = ExecuteProcess(cmd=["python3", parse_script, rviz_file, namespace]) rviz2 = Node( package='rviz2', name='rviz2', namespace=namespace, executable='rviz2', parameters=[{ 'use_sim_time': use_sim_time }], output='screen', arguments=[["-d"], [rviz_file]], condition=IfCondition(enable_rviz) ) rviz2_delay = RegisterEventHandler( event_handler=OnProcessExit( target_action=parseRvizFile, on_exit=[rviz2], ) ) debugger_gui = Node( package='edna_debugger', namespace=namespace, executable='debugger', name='debugger', output='screen', parameters=[{ 'use_sim_time': use_sim_time, 'publish_default_velocities': 'true', 'source_list': ['joint_states'] }], condition=IfCondition(enable_debugger_gui), ) # Starts Joint State Publisher GUI for rviz (conflicts with edna_debugger) joint_state_publisher_gui = Node ( package='joint_state_publisher_gui', namespace=namespace, executable='joint_state_publisher_gui', output='screen', parameters=[{ 'use_sim_time': use_sim_time, 'publish_default_velocities': True, }], condition=IfCondition(enable_joint_state_publisher), ) return LaunchDescription([ DeclareLaunchArgument( 'use_sim_time', default_value='false', description='Use sim time if true'), DeclareLaunchArgument( 'namespace', default_value='default', description='The namespace of nodes and links'), DeclareLaunchArgument( 'enable_rviz', default_value='true', description='enables rviz'), DeclareLaunchArgument( 'rviz_file', default_value='', description='The config file for rviz'), DeclareLaunchArgument( 'enable_foxglove', default_value='true', description='enables foxglove bridge'), DeclareLaunchArgument( 'enable_debugger_gui', default_value='false', description='enables the debugger gui tool'), DeclareLaunchArgument( 'enable_joint_state_publisher', default_value='false', description='enables the joint state publisher tool'), foxglove, parseRvizFile, rviz2_delay, debugger_gui, joint_state_publisher_gui, ])
3,908
Python
33.901785
87
0.620778
RoboEagles4828/edna2023/src/edna_bringup/launch/real-rviz.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription from launch.launch_description_sources import PythonLaunchDescriptionSource def generate_launch_description(): bringup_path = get_package_share_directory("edna_bringup") rviz_file = os.path.join(bringup_path, 'config', 'real.rviz') common = { 'use_sim_time': 'false', 'namespace': 'real', 'forward_command_controller': 'false', } debug_launch_args = common | { 'enable_rviz': 'true', 'enable_foxglove': 'false', 'enable_debugger_gui': 'true', 'rviz_file': rviz_file } debug_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','debugLayer.launch.py' )]), launch_arguments=debug_launch_args.items()) # Launch! return LaunchDescription([ debug_layer, ])
1,037
Python
31.437499
75
0.644166
RoboEagles4828/edna2023/src/edna_bringup/launch/real.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, TimerAction from launch.launch_description_sources import PythonLaunchDescriptionSource def generate_launch_description(): bringup_path = get_package_share_directory("edna_bringup") joystick_file = os.path.join(bringup_path, 'config', 'xbox-real.yaml') common = { 'use_sim_time': 'false', 'namespace': 'real' } control_launch_args = common | { 'use_ros2_control': 'true', 'hardware_plugin': 'swerve_hardware/RealDriveHardware', } teleoplaunch_args = common | { 'joystick_file': joystick_file, 'enable_joy': 'false' } control_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','controlLayer.launch.py' )]), launch_arguments=control_launch_args.items()) teleop_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','teleopLayer.launch.py' )]), launch_arguments=teleoplaunch_args.items()) # Launch! return LaunchDescription([ control_layer, teleop_layer, ])
1,347
Python
34.473683
75
0.651819
RoboEagles4828/edna2023/src/edna_bringup/launch/rio-debug.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, TimerAction from launch.launch_description_sources import PythonLaunchDescriptionSource NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): bringup_path = get_package_share_directory("edna_bringup") rviz_file = os.path.join(bringup_path, 'config', 'riodebug.rviz') common = { 'use_sim_time': 'false', 'namespace': 'real' } control_launch_args = common | { 'use_ros2_control': 'true', 'load_controllers': 'false', 'forward_command_controller': 'true', # Change to false in order to disable publishing 'hardware_plugin': 'swerve_hardware/RealDriveHardware', # Use IsaacDriveHardware for isaac or RealDriveHardware for real. } debug_launch_args = common | { 'enable_rviz': 'true', 'enable_foxglove': 'false', 'enable_debugger_gui': 'true', 'rviz_file': rviz_file } control_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','controlLayer.launch.py' )]), launch_arguments=control_launch_args.items()) debug_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','debugLayer.launch.py' )]), launch_arguments=debug_launch_args.items()) delay_debug_layer = TimerAction(period=3.0, actions=[debug_layer]) # Launch! return LaunchDescription([ control_layer, delay_debug_layer ])
1,762
Python
38.177777
129
0.662883
RoboEagles4828/edna2023/src/edna_bringup/scripts/parseRviz.py
import sys import yaml import os # NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def processRvizFileForNamespace(rviz_file, NAMESPACE): rviz_data = None raw_rviz_data = None with open(rviz_file, 'r') as stream: raw_rviz_data = stream.read() rviz_data = yaml.safe_load(raw_rviz_data) # Get the namespace value from the rviz file current_namespace = None if rviz_data: for display in rviz_data['Visualization Manager']['Displays']: for k, v in display.items(): if 'Topic' in k and 'Value' in v: segs = v['Value'].split('/') if len(segs) > 1: current_namespace = segs[1] break if current_namespace: print('Found namespace: ', current_namespace) print(f"mapping {current_namespace} -> {NAMESPACE}") new_rviz_data = yaml.safe_load(raw_rviz_data.replace(current_namespace, NAMESPACE)) with open(rviz_file, 'w') as stream: yaml.dump(new_rviz_data, stream) else: with open('err', 'w') as stream: stream.write("Couldn't find namespace in rviz file") if __name__ == "__main__": processRvizFileForNamespace(sys.argv[1], sys.argv[2])
1,314
Python
33.605262
93
0.590563
RoboEagles4828/edna2023/src/edna_bringup/config/controllers.yaml
/*: controller_manager: ros__parameters: update_rate: 20 # Hz joint_state_broadcaster: type: joint_state_broadcaster/JointStateBroadcaster swerve_controller: type: swerve_controller/SwerveController forward_position_controller: type: position_controllers/JointGroupPositionController forward_velocity_controller: type: velocity_controllers/JointGroupVelocityController joint_trajectory_controller: type: joint_trajectory_controller/JointTrajectoryController swerve_controller: ros__parameters: #Used to scale velocity chassis_length_meters: 0.6032 chassis_width_meters: 0.6032 wheel_radius_meters: 0.0508 max_wheel_angular_velocity: 100.0 #If no new twist commands are created in 1 second the robot will halt cmd_vel_timeout_seconds: 1.0 use_stamped_vel: false front_left_wheel_joint: front_left_wheel_joint front_right_wheel_joint: front_right_wheel_joint rear_left_wheel_joint: rear_left_wheel_joint rear_right_wheel_joint: rear_right_wheel_joint front_left_axle_joint: front_left_axle_joint front_right_axle_joint: front_right_axle_joint rear_left_axle_joint: rear_left_axle_joint rear_right_axle_joint: rear_right_axle_joint linear.x.has_velocity_limits: false linear.x.has_acceleration_limits: true linear.x.has_jerk_limits: false linear.x.max_velocity: 2.0 linear.x.min_velocity: -2.0 linear.x.max_acceleration: 3.0 linear.x.min_acceleration: -3.0 linear.x.max_jerk: 5.0 linear.x.min_jerk: -5.0 linear.y.has_velocity_limits: false linear.y.has_acceleration_limits: true linear.y.has_jerk_limits: false linear.y.max_velocity: 2.0 linear.y.min_velocity: -2.0 linear.y.max_acceleration: 3.0 linear.y.min_acceleration: -3.0 linear.y.max_jerk: 5.0 linear.y.min_jerk: -5.0 angular.z.has_velocity_limits: false angular.z.has_acceleration_limits: true angular.z.has_jerk_limits: false angular.z.max_velocity: 3.0 angular.z.min_velocity: -3.0 angular.z.max_acceleration: 3.0 angular.z.min_acceleration: -3.0 angular.z.max_jerk: 5.0 angular.z.min_jerk: -5.0 forward_position_controller: ros__parameters: joints: - 'front_left_axle_joint' - 'front_right_axle_joint' - 'rear_left_axle_joint' - 'rear_right_axle_joint' - 'arm_roller_bar_joint' - 'elevator_outer_1_joint' - 'elevator_center_joint' - 'elevator_outer_2_joint' - 'top_slider_joint' - 'top_gripper_left_arm_joint' - 'top_gripper_right_arm_joint' - 'bottom_intake_joint' forward_velocity_controller: ros__parameters: joints: - 'front_left_wheel_joint' - 'front_right_wheel_joint' - 'rear_left_wheel_joint' - 'rear_right_wheel_joint' joint_trajectory_controller: ros__parameters: joints: - 'arm_roller_bar_joint' - 'elevator_center_joint' - 'elevator_outer_1_joint' - 'elevator_outer_2_joint' - 'top_gripper_right_arm_joint' - 'top_gripper_left_arm_joint' - 'top_slider_joint' - 'bottom_intake_joint' command_interfaces: - position state_interfaces: - position - velocity state_publish_rate: 50.0 action_monitor_rate: 20.0 allow_partial_joints_goal: false open_loop_control: true constraints: stopped_velocity_tolerance: 0.01 goal_time: 0.0
3,706
YAML
28.188976
76
0.627361
RoboEagles4828/edna2023/src/edna_bringup/config/xbox-sim.yaml
/*: teleop_twist_joy_node: ros__parameters: require_enable_button: false axis_linear: # Left thumb stick vertical x: 1 y: 0 scale_linear: x: 1.0 y: 1.0 scale_linear_turbo: x: 2.5 y: 2.5 axis_angular: # Right thumb stick horizontal yaw: 3 scale_angular: yaw: -1.0 scale_angular_turbo: yaw: -2.2 enable_turbo_button: 5 enable_field_oriented_button: 7 offset: 0.5
522
YAML
17.678571
51
0.5
RoboEagles4828/edna2023/src/edna_bringup/config/xbox-real.yaml
/*: teleop_twist_joy_node: ros__parameters: require_enable_button: false axis_linear: # Left thumb stick vertical x: 1 y: 0 scale_linear: #1/10000 to offset shifted 0 in /joystick-data x: 0.0001 y: 0.0001 scale_linear_turbo: x: 0.0004 y: 0.0004 axis_angular: # Right thumb stick horizontal yaw: 3 scale_angular: #negative to fix turning direction yaw: -0.0001 scale_angular_turbo: yaw: -0.0002 enable_turbo_button: 5 enable_field_oriented_button: 7 offset: -0.25
610
YAML
24.458332
66
0.565574
RoboEagles4828/edna2023/src/edna_bringup/config/teleop-control.yaml
controller_mapping: A: 0 B: 1 X: 2 Y: 3 LB: 4 RB: 5 squares: 6 menu: 7 xbox: 8 LSin: 9 RSin: 10 leftTriggerAxis: 2 rightTriggerAxis: 5 joint_limits: arm_roller_bar_joint: min: 0.0 max: 0.07 elevator_center_joint: min: 0.0 max: 0.56 elevator_outer_1_joint: min: 0.0 max: 0.2 elevator_outer_2_joint: min: 0.0 max: 0.56 top_gripper_right_arm_joint: min: -0.9 max: 0.0 top_gripper_left_arm_joint: min: -0.9 max: 0.0 top_slider_joint: min: 0.0 max: 0.30 bottom_intake_joint: min: 0.0 max: 1.52 joint_mapping: arm_roller_bar_joint: 0 elevator_center_joint: 1 elevator_outer_1_joint: 2 elevator_outer_2_joint: 3 top_gripper_right_arm_joint: 4 top_gripper_left_arm_joint: 5 top_slider_joint: 6 bottom_intake_joint: 7 function_mapping: elevator_loading_station: button: "RSin" toggle: true skis_up: button: "leftTriggerAxis" toggle: true elevator_mid_level: button: "LB" toggle: true elevator_high_level: button: "X" toggle: true top_gripper_control: button: "A" toggle: true elevator_pivot_control: button: "Y" toggle: true top_slider_control: button: "B" toggle: true
1,278
YAML
17.271428
32
0.606416
RoboEagles4828/edna2023/src/edna_debugger/setup.py
from setuptools import setup package_name = 'edna_debugger' setup( name=package_name, version='0.0.0', packages=[package_name], data_files=[ ('share/ament_index/resource_index/packages', ['resource/' + package_name]), ('share/' + package_name, ['package.xml']), ], install_requires=['setuptools'], zip_safe=True, maintainer='admin', maintainer_email='[email protected]', description='GUI Robot Control Debugger', license='Apache License 2.0', tests_require=['pytest'], entry_points={ 'console_scripts': [ 'debugger = edna_debugger.debugger:main' ], }, )
674
Python
23.999999
53
0.60089
RoboEagles4828/edna2023/src/edna_debugger/edna_debugger/flow_layout.py
# Implement a FlowLayout so sliders move around in a grid as the window is # resized. Originally taken from: # https://forum.qt.io/topic/109408/is-there-a-qt-layout-grid-that-can-dynamically-change-row-and-column-counts-to-best-fit-the-space/2 # with the license: # # This file taken from # https://code.qt.io/cgit/qt/qtbase.git/tree/examples/widgets/layouts/flowlayout/flowlayout.cpp?h=5.13 # Modified/adapted by jon, 10/07/2019, to translate into Python/PyQt # # Copyright (C) 2016 The Qt Company Ltd. # Contact: https://www.qt.io/licensing/ # # This file is part of the examples of the Qt Toolkit. # # $QT_BEGIN_LICENSE:BSD$ # Commercial License Usage # Licensees holding valid commercial Qt licenses may use this file in # accordance with the commercial license agreement provided with the # Software or, alternatively, in accordance with the terms contained in # a written agreement between you and The Qt Company. For licensing terms # and conditions see https://www.qt.io/terms-conditions. For further # information use the contact form at https://www.qt.io/contact-us. # # BSD License Usage # Alternatively, you may use this file under the terms of the BSD license # as follows: # # "Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of The Qt Company Ltd nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." # # $QT_END_LICENSE$ # from python_qt_binding.QtCore import Qt from python_qt_binding.QtCore import QPoint from python_qt_binding.QtCore import QRect from python_qt_binding.QtCore import QSize from python_qt_binding.QtWidgets import QLayout from python_qt_binding.QtWidgets import QSizePolicy from python_qt_binding.QtWidgets import QStyle class FlowLayout(QLayout): def __init__(self, parent=None, margin=-1, hSpacing=-1, vSpacing=-1): super().__init__(parent) self.itemList = list() self.m_hSpace = hSpacing self.m_vSpace = vSpacing self.setContentsMargins(margin, margin, margin, margin) def __del__(self): # copied for consistency, not sure this is needed or ever called item = self.takeAt(0) while item: item = self.takeAt(0) def addItem(self, item): self.itemList.append(item) def horizontalSpacing(self): if self.m_hSpace >= 0: return self.m_hSpace else: return self.smartSpacing(QStyle.PM_LayoutHorizontalSpacing) def verticalSpacing(self): if self.m_vSpace >= 0: return self.m_vSpace else: return self.smartSpacing(QStyle.PM_LayoutVerticalSpacing) def count(self): return len(self.itemList) def itemAt(self, index): if 0 <= index < len(self.itemList): return self.itemList[index] return None def takeAt(self, index): if 0 <= index < len(self.itemList): return self.itemList.pop(index) return None def expandingDirections(self): return Qt.Orientations(Qt.Orientation(0)) def hasHeightForWidth(self): return True def heightForWidth(self, width): return self.doLayout(QRect(0, 0, width, 0), True) def setGeometry(self, rect): super().setGeometry(rect) self.doLayout(rect, False) def sizeHint(self): return self.minimumSize() def minimumSize(self): size = QSize() for item in self.itemList: size = size.expandedTo(item.minimumSize()) margins = self.contentsMargins() size += QSize(margins.left() + margins.right(), margins.top() + margins.bottom()) return size def smartSpacing(self, pm): parent = self.parent() if not parent: return -1 elif parent.isWidgetType(): return parent.style().pixelMetric(pm, None, parent) return parent.spacing() def doLayout(self, rect, testOnly): left, top, right, bottom = self.getContentsMargins() effectiveRect = rect.adjusted(+left, +top, -right, -bottom) x = effectiveRect.x() y = effectiveRect.y() lineHeight = 0 for item in self.itemList: wid = item.widget() spaceX = self.horizontalSpacing() if spaceX == -1: spaceX = wid.style().layoutSpacing(QSizePolicy.PushButton, QSizePolicy.PushButton, Qt.Horizontal) spaceY = self.verticalSpacing() if spaceY == -1: spaceY = wid.style().layoutSpacing(QSizePolicy.PushButton, QSizePolicy.PushButton, Qt.Vertical) nextX = x + item.sizeHint().width() + spaceX if nextX - spaceX > effectiveRect.right() and lineHeight > 0: x = effectiveRect.x() y = y + lineHeight + spaceY nextX = x + item.sizeHint().width() + spaceX lineHeight = 0 if not testOnly: item.setGeometry(QRect(QPoint(x, y), item.sizeHint())) x = nextX lineHeight = max(lineHeight, item.sizeHint().height()) return y + lineHeight - rect.y() + bottom
6,445
Python
35.834286
134
0.672149
RoboEagles4828/edna2023/src/edna_debugger/edna_debugger/debugger.py
import argparse import random import signal import sys import threading import rclpy from python_qt_binding.QtCore import pyqtSlot from python_qt_binding.QtCore import Qt from python_qt_binding.QtCore import Signal from python_qt_binding.QtGui import QFont from python_qt_binding.QtWidgets import QApplication from python_qt_binding.QtWidgets import QFormLayout from python_qt_binding.QtWidgets import QGridLayout from python_qt_binding.QtWidgets import QHBoxLayout from python_qt_binding.QtWidgets import QLabel from python_qt_binding.QtWidgets import QLineEdit from python_qt_binding.QtWidgets import QMainWindow from python_qt_binding.QtWidgets import QPushButton from python_qt_binding.QtWidgets import QSlider from python_qt_binding.QtWidgets import QScrollArea from python_qt_binding.QtWidgets import QVBoxLayout from python_qt_binding.QtWidgets import QWidget from edna_debugger.joint_state_publisher import JointStatePublisher from edna_debugger.flow_layout import FlowLayout RANGE = 10000 LINE_EDIT_WIDTH = 45 SLIDER_WIDTH = 200 INIT_NUM_SLIDERS = 7 # Initial number of sliders to show in window # Defined by style - currently using the default style DEFAULT_WINDOW_MARGIN = 11 DEFAULT_CHILD_MARGIN = 9 DEFAULT_BTN_HEIGHT = 25 DEFAULT_SLIDER_HEIGHT = 64 # Is the combination of default heights in Slider # Calculate default minimums for window sizing MIN_WIDTH = SLIDER_WIDTH + DEFAULT_CHILD_MARGIN * 4 + DEFAULT_WINDOW_MARGIN * 2 MIN_HEIGHT = DEFAULT_BTN_HEIGHT * 2 + DEFAULT_WINDOW_MARGIN * 2 + DEFAULT_CHILD_MARGIN * 2 PNEUMATICS_JOINTS = [ 'arm_roller_bar_joint', 'top_slider_joint', 'top_gripper_left_arm_joint', 'bottom_intake_joint' ] class Button(QWidget): def __init__(self, name): super().__init__() self.joint_layout = QVBoxLayout() self.row_layout = QHBoxLayout() font = QFont("Helvetica", 9, QFont.Bold) self.label = QLabel(name) self.label.setFont(font) self.row_layout.addWidget(self.label) self.joint_layout.addLayout(self.row_layout) self.button = QPushButton('toggle', self) self.button.setCheckable(True) self.joint_layout.addWidget(self.button) self.setLayout(self.joint_layout) def remove(self): self.joint_layout.remove_widget(self.button) self.button.setParent(None) self.row_layout.removeWidget(self.display) self.display.setParent(None) self.row_layout.removeWidget(self.label) self.label.setParent(None) self.row_layout.setParent(None) class Slider(QWidget): def __init__(self, name): super().__init__() self.joint_layout = QVBoxLayout() # top row self.row_layout_top = QHBoxLayout() font = QFont("Helvetica", 9, QFont.Bold) self.label = QLabel(name) self.label.setFont(font) self.row_layout_top.addWidget(self.label) self.joint_layout.addLayout(self.row_layout_top) # subscribing row self.row_layout_sub = QHBoxLayout() self.display_sub = QLineEdit("0.00") self.display_sub.setAlignment(Qt.AlignRight) self.display_sub.setFont(font) self.display_sub.setReadOnly(True) self.display_sub.setFixedWidth(LINE_EDIT_WIDTH) self.row_layout_sub.addWidget(self.display_sub) self.slider_sub = QSlider(Qt.Horizontal) self.slider_sub.setFont(font) self.slider_sub.setRange(0, RANGE) self.slider_sub.setValue(int(RANGE / 2)) self.slider_sub.setFixedWidth(SLIDER_WIDTH) self.row_layout_sub.addWidget(self.slider_sub) self.joint_layout.addLayout(self.row_layout_sub) # publishing row self.row_layout_pub = QHBoxLayout() self.display_pub = QLineEdit("0.00") self.display_pub.setAlignment(Qt.AlignRight) self.display_pub.setFont(font) self.display_pub.setReadOnly(False) self.display_pub.setFixedWidth(LINE_EDIT_WIDTH) self.row_layout_pub.addWidget(self.display_pub) self.slider_pub = QSlider(Qt.Horizontal) self.slider_pub.setFont(font) self.slider_pub.setRange(0, RANGE) self.slider_pub.setValue(int(RANGE / 2)) self.slider_pub.setFixedWidth(SLIDER_WIDTH) self.row_layout_pub.addWidget(self.slider_pub) self.joint_layout.addLayout(self.row_layout_pub) self.setLayout(self.joint_layout) def remove(self): self.joint_layout.removeWidget(self.slider) self.slider.setParent(None) self.row_layout.removeWidget(self.display) self.display.setParent(None) self.row_layout.removeWidget(self.label) self.label.setParent(None) self.row_layout.setParent(None) class JointStatePublisherGui(QMainWindow): sliderUpdateTrigger = Signal() initialize = Signal() def __init__(self, title, jsp : JointStatePublisher): super(JointStatePublisherGui, self).__init__() self.joint_map = {} self.setWindowTitle(title) # Button for randomizing the sliders self.rand_button = QPushButton('Randomize', self) self.rand_button.clicked.connect(self.randomizeEvent) # Button for centering the sliders self.ctr_button = QPushButton('Center', self) self.ctr_button.clicked.connect(self.centerEvent) # Button for resetting the joint butttons self.reset_button = QPushButton('Reset Pistons', self) self.reset_button.clicked.connect(self.resetButtons) # Scroll area widget contents - layout self.scroll_layout = FlowLayout() # Scroll area widget contents self.scroll_widget = QWidget() self.scroll_widget.setLayout(self.scroll_layout) # Scroll area for sliders self.scroll_area = QScrollArea() self.scroll_area.setWidgetResizable(True) self.scroll_area.setWidget(self.scroll_widget) # Main layout self.main_layout = QVBoxLayout() # Add buttons and scroll area to main layout self.main_layout.addWidget(self.rand_button) self.main_layout.addWidget(self.ctr_button) self.main_layout.addWidget(self.reset_button) self.main_layout.addWidget(self.scroll_area) # central widget self.central_widget = QWidget() self.central_widget.setLayout(self.main_layout) self.setCentralWidget(self.central_widget) self.jsp = jsp self.jsp.set_source_update_cb(self.sliderUpdateCb) self.jsp.set_robot_description_update_cb(self.initializeCb) self.running = True self.sliders = {} self.buttons = {} # Setup signal for initializing the window self.initialize.connect(self.initializeSliders) # Set up a signal for updating the sliders based on external joint info self.sliderUpdateTrigger.connect(self.updateSliders) # Tell self to draw sliders in case the JointStatePublisher already has a robot_description self.initialize.emit() def initializeSliders(self): self.joint_map = {} for sl, _ in self.sliders.items(): self.scroll_layout.removeWidget(sl) sl.remove() ### Generate sliders ### for name in self.jsp.joint_list: if name not in self.jsp.free_joints_sub: continue joint = self.jsp.free_joints_sub[name] if joint['min'] == joint['max']: continue if (name in PNEUMATICS_JOINTS): button = Button(name) self.joint_map[name] = {'button': button.button, 'joint': joint} self.scroll_layout.addWidget(button) button.button.toggled.connect(lambda event,name=name: self.onInputValueChanged(name)) self.buttons[button] = button else: slider = Slider(name) self.joint_map[name] = {'display_sub': slider.display_sub, 'slider_sub': slider.slider_sub, 'display_pub': slider.display_pub, 'slider_pub': slider.slider_pub, 'joint': joint} self.scroll_layout.addWidget(slider) slider.display_pub.textEdited.connect(lambda event,name=name: self.makeSliderEqualToText(name)) slider.slider_pub.valueChanged.connect(lambda event,name=name: self.makeTextEqualToSlider(name)) self.sliders[slider] = slider # Set zero positions read from parameters self.centerEvent(None) # Set size of min size of window based on number of sliders. if len(self.sliders) >= INIT_NUM_SLIDERS: # Limits min size to show INIT_NUM_SLIDERS num_sliders = INIT_NUM_SLIDERS else: num_sliders = len(self.sliders) scroll_layout_height = num_sliders * DEFAULT_SLIDER_HEIGHT scroll_layout_height += (num_sliders + 1) * DEFAULT_CHILD_MARGIN self.setMinimumSize(MIN_WIDTH, scroll_layout_height + MIN_HEIGHT) self.sliderUpdateTrigger.emit() def sliderUpdateCb(self): self.sliderUpdateTrigger.emit() def initializeCb(self): self.initialize.emit() # def onButtonClicked(self, name): # # self.jsp.get_logger().info("button changed") # joint_info = self.joint_map[name] # buttonValue = 1 if joint_info['button'].isChecked() == True else 0 # joint_info['joint']['position'] = buttonValue # joint_info['display'].setText(str(buttonValue)) # def onSliderTextEdited(self, slider, joint): # self.jsp.get_logger().info(slider.display.text()) # slider.slider1.setSliderPosition(self.valueToSlider(float(slider.display.displayText()), joint)) def makeSliderEqualToText(self, name): joint_info = self.joint_map[name] textvalue = joint_info['display_pub'].text() try: joint_info['slider_pub'].setValue(self.valueToSlider(float(textvalue), joint_info['joint'])) self.onInputValueChanged(name) except: pass def makeTextEqualToSlider(self, name): joint_info = self.joint_map[name] slidervalue = joint_info['slider_pub'].value() joint_info['display_pub'].setText(str(round(self.sliderToValue(slidervalue, joint_info['joint']), 2))) self.onInputValueChanged(name) def onInputValueChanged(self, name): # A slider value was changed, but we need to change the joint_info metadata. joint_info = self.joint_map[name] if ('slider_pub' in joint_info): slidervalue = joint_info['slider_pub'].value() joint = joint_info['joint'] if 'wheel' in name: self.jsp.free_joints_pub[name]['velocity'] = self.sliderToValue(slidervalue, joint) else: self.jsp.free_joints_pub[name]['position'] = self.sliderToValue(slidervalue, joint) elif ('button' in joint_info): buttonValue = joint_info['joint']['max'] if joint_info['button'].isChecked() == True else joint_info['joint']['min'] self.jsp.free_joints_pub[name]['position'] = buttonValue @pyqtSlot() def updateSliders(self): for name, joint_info in self.joint_map.items(): joint = joint_info['joint'] if ('slider_sub' in joint_info): if 'wheel' in name: slidervalue = self.valueToSlider(joint['velocity'], joint) else: slidervalue = self.valueToSlider(joint['position'], joint) joint_info['slider_sub'].setValue(slidervalue) joint_info['display_sub'].setText(str(round(self.sliderToValue(slidervalue, joint), 2))) elif ('button' in joint_info): buttonvalue = True if joint['position'] == joint['max'] else False if (joint_info['button'].isChecked() == buttonvalue): joint_info['button'].setStyleSheet('background-color: green') else: joint_info['button'].setStyleSheet('background-color: yellow') def resetButtons(self, event): self.jsp.get_logger().info("Toggling off") for name, joint_info in self.joint_map.items(): if('button' in joint_info): if(joint_info['button'].isChecked()): joint_info['button'].setChecked(False) def centerEvent(self, event): self.jsp.get_logger().info("Centering") for name, joint_info in self.joint_map.items(): if('slider' in joint_info): joint = joint_info['joint'] joint_info['slider'].setValue(self.valueToSlider(joint['zero'], joint)) def randomizeEvent(self, event): self.jsp.get_logger().info("Randomizing") for name, joint_info in self.joint_map.items(): if('slider' in joint_info): joint = joint_info['joint'] joint_info['slider'].setValue( self.valueToSlider(random.uniform(joint['min'], joint['max']), joint)) def valueToSlider(self, value, joint): # return int(value * 5000) return int((value - joint['min']) * float(RANGE) / (joint['max'] - joint['min'])) def sliderToValue(self, slider, joint): pctvalue = slider / float(RANGE) return joint['min'] + (joint['max']-joint['min']) * pctvalue def closeEvent(self, event): self.running = False def loop(self): while self.running: rclpy.spin_once(self.jsp, timeout_sec=0.1) def main(): # Initialize rclpy with the command-line arguments rclpy.init() # Strip off the ROS 2-specific command-line arguments stripped_args = rclpy.utilities.remove_ros_args(args=sys.argv) parser = argparse.ArgumentParser() parser.add_argument('urdf_file', help='URDF file to use', nargs='?', default=None) # Parse the remaining arguments, noting that the passed-in args must *not* # contain the name of the program. parsed_args = parser.parse_args(args=stripped_args[1:]) app = QApplication(sys.argv) jsp_gui = JointStatePublisherGui('Debugger', JointStatePublisher(parsed_args.urdf_file)) jsp_gui.show() threading.Thread(target=jsp_gui.loop).start() signal.signal(signal.SIGINT, signal.SIG_DFL) sys.exit(app.exec_()) if __name__ == '__main__': main()
14,516
Python
35.2925
191
0.640052
RoboEagles4828/edna2023/src/edna_debugger/edna_debugger/joint_state_publisher.py
# Copyright (c) 2010, Willow Garage, Inc. # All rights reserved. # # Software License Agreement (BSD License 2.0) # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # Standard Python imports import argparse import math import sys import time import xml.dom.minidom # ROS 2 imports import rclpy import rclpy.node from rcl_interfaces.msg import ParameterDescriptor, ParameterType import sensor_msgs.msg import std_msgs.msg POSITION_JOINTS = { 'arm_roller_bar_joint', 'elevator_center_joint', 'elevator_outer_1_joint', 'elevator_outer_2_joint', 'top_gripper_right_arm_joint', 'top_gripper_left_arm_joint', 'top_slider_joint', 'bottom_intake_joint', 'front_left_axle_joint', 'front_right_axle_joint', 'rear_left_axle_joint', 'rear_right_axle_joint', } VELOCITY_JOINTS = [ 'front_left_wheel_joint', 'front_right_wheel_joint', 'rear_left_wheel_joint', 'rear_right_wheel_joint', ] class JointStatePublisher(rclpy.node.Node): def get_param(self, name): return self.get_parameter(name).value def _init_joint(self, minval, maxval, zeroval): joint = {'min': minval, 'max': maxval, 'zero': zeroval} if self.pub_def_positions: joint['position'] = zeroval if self.pub_def_vels: joint['velocity'] = 0.0 if self.pub_def_efforts: joint['effort'] = 0.0 return joint def init_collada(self, robot): robot = robot.getElementsByTagName('kinematics_model')[0].getElementsByTagName('technique_common')[0] for child in robot.childNodes: if child.nodeType is child.TEXT_NODE: continue if child.localName == 'joint': name = child.getAttribute('name') if child.getElementsByTagName('revolute'): joint = child.getElementsByTagName('revolute')[0] else: self.get_logger().warn('Unknown joint type %s', child) continue if joint: limit = joint.getElementsByTagName('limits')[0] minval = float(limit.getElementsByTagName('min')[0].childNodes[0].nodeValue) maxval = float(limit.getElementsByTagName('max')[0].childNodes[0].nodeValue) if minval == maxval: # this is a fixed joint continue self.joint_list.append(name) minval *= math.pi/180.0 maxval *= math.pi/180.0 self.free_joints_sub[name] = self._init_joint(minval, maxval, 0.0) self.free_joints_pub[name] = self.free_joints_sub[name] def init_urdf(self, robot): robot = robot.getElementsByTagName('robot')[0] # Find all non-fixed joints for child in robot.childNodes: if child.nodeType is child.TEXT_NODE: continue if child.localName == 'joint': jtype = child.getAttribute('type') if jtype in ['fixed', 'floating', 'planar']: continue name = child.getAttribute('name') self.joint_list.append(name) if jtype == 'continuous': if name in VELOCITY_JOINTS: minval = -39.4 # this is not a good number i pulled it out of thin air maxval = 39.4 # please someone calculate the actual thing using the circumference of the wheels and that stuff else: minval = -math.pi maxval = math.pi else: try: limit = child.getElementsByTagName('limit')[0] minval = float(limit.getAttribute('lower')) maxval = float(limit.getAttribute('upper')) except: self.get_logger().warn('%s is not fixed, nor continuous, but limits are not specified!' % name) continue safety_tags = child.getElementsByTagName('safety_controller') if self.use_small and len(safety_tags) == 1: tag = safety_tags[0] if tag.hasAttribute('soft_lower_limit'): minval = max(minval, float(tag.getAttribute('soft_lower_limit'))) if tag.hasAttribute('soft_upper_limit'): maxval = min(maxval, float(tag.getAttribute('soft_upper_limit'))) mimic_tags = child.getElementsByTagName('mimic') if self.use_mimic and len(mimic_tags) == 1: tag = mimic_tags[0] entry = {'parent': tag.getAttribute('joint')} if tag.hasAttribute('multiplier'): entry['factor'] = float(tag.getAttribute('multiplier')) if tag.hasAttribute('offset'): entry['offset'] = float(tag.getAttribute('offset')) self.dependent_joints[name] = entry continue if name in self.dependent_joints: continue if self.zeros and name in self.zeros: zeroval = self.zeros[name] elif minval > 0 or maxval < 0: zeroval = (maxval + minval)/2 else: zeroval = 0 joint = self._init_joint(minval, maxval, zeroval) if jtype == 'continuous': joint['continuous'] = True self.free_joints_sub[name] = joint self.free_joints_pub[name] = joint.copy() def configure_robot(self, description): self.get_logger().debug('Got description, configuring robot') try: robot = xml.dom.minidom.parseString(description) except xml.parsers.expat.ExpatError: # If the description fails to parse for some reason, print an error # and get out of here without doing further work. If we were # already running with a description, we'll continue running with # that older one. self.get_logger().warn('Invalid robot_description given, ignoring') return # Make sure to clear out the old joints so we don't get duplicate joints # on a new robot description. self.free_joints_sub = {} self.free_joints_pub = {} self.joint_list = [] # for maintaining the original order of the joints if robot.getElementsByTagName('COLLADA'): self.init_collada(robot) else: self.init_urdf(robot) if self.robot_description_update_cb is not None: self.robot_description_update_cb() def parse_dependent_joints(self): dj = {} dependent_joints = self.get_parameters_by_prefix('dependent_joints') # get_parameters_by_prefix returned a dictionary of keynames like # 'head.parent', 'head.offset', etc. that map to rclpy Parameter values. # The rest of the code assumes that the dependent_joints dictionary is # a map of name -> dict['parent': parent, factor: factor, offset: offset], # where both factor and offset are optional. Thus we parse the values we # got into that structure. for name, param in dependent_joints.items(): # First split on the dots; there should be one and exactly one dot split = name.split('.') if len(split) != 2: raise Exception("Invalid dependent_joint name '%s'" % (name)) newkey = split[0] newvalue = split[1] if newvalue not in ['parent', 'factor', 'offset']: raise Exception("Invalid dependent_joint name '%s' (allowed values are 'parent', 'factor', and 'offset')" % (newvalue)) if newkey in dj: dj[newkey].update({newvalue: param.value}) else: dj[newkey] = {newvalue: param.value} # Now ensure that there is at least a 'parent' in all keys for name,outdict in dj.items(): if outdict.get('parent', None) is None: raise Exception('All dependent_joints must at least have a parent') return dj def declare_ros_parameter(self, name, default, descriptor): # When the automatically_declare_parameters_from_overrides parameter to # rclpy.create_node() is True, then any parameters passed in on the # command-line are automatically declared. In that case, calling # node.declare_parameter() will raise an exception. However, in the case # where a parameter is *not* overridden, we still want to declare it # (so it shows up in "ros2 param list", for instance). Thus we always do # a declaration and just ignore ParameterAlreadyDeclaredException. try: self.declare_parameter(name, default, descriptor) except rclpy.exceptions.ParameterAlreadyDeclaredException: pass def __init__(self, urdf_file): super().__init__('joint_state_publisher', automatically_declare_parameters_from_overrides=True) self.declare_ros_parameter('publish_default_efforts', False, ParameterDescriptor(type=ParameterType.PARAMETER_BOOL)) self.declare_ros_parameter('publish_default_positions', True, ParameterDescriptor(type=ParameterType.PARAMETER_BOOL)) self.declare_ros_parameter('publish_default_velocities', False, ParameterDescriptor(type=ParameterType.PARAMETER_BOOL)) self.declare_ros_parameter('rate', 10, ParameterDescriptor(type=ParameterType.PARAMETER_INTEGER)) self.declare_ros_parameter('source_list', [], ParameterDescriptor(type=ParameterType.PARAMETER_STRING_ARRAY)) self.declare_ros_parameter('use_mimic_tags', True, ParameterDescriptor(type=ParameterType.PARAMETER_BOOL)) self.declare_ros_parameter('use_smallest_joint_limits', True, ParameterDescriptor(type=ParameterType.PARAMETER_BOOL)) self.declare_ros_parameter('delta', 0.0, ParameterDescriptor(type=ParameterType.PARAMETER_DOUBLE)) # In theory we would also declare 'dependent_joints' and 'zeros' here. # Since rclpy doesn't support maps natively, though, we just end up # letting 'automatically_declare_parameters_from_overrides' declare # any parameters for us. self.free_joints_sub = {} self.free_joints_pub = {} self.joint_list = [] # for maintaining the original order of the joints self.dependent_joints = self.parse_dependent_joints() self.use_mimic = self.get_param('use_mimic_tags') self.use_small = self.get_param('use_smallest_joint_limits') zeros = self.get_parameters_by_prefix('zeros') # get_parameters_by_prefix() returns a map of name -> Parameter # structures, but self.zeros is expected to be a list of name -> float; # fix that here. self.zeros = {k:v.value for (k, v) in zeros.items()} self.pub_def_positions = self.get_param('publish_default_positions') self.pub_def_vels = self.get_param('publish_default_velocities') self.pub_def_efforts = self.get_param('publish_default_efforts') self.robot_description_update_cb = None if urdf_file is not None: # If we were given a URDF file on the command-line, use that. with open(urdf_file, 'r') as infp: description = infp.read() self.configure_robot(description) else: # Otherwise, subscribe to the '/robot_description' topic and wait # for a callback there self.get_logger().info('Waiting for robot_description to be published on the robot_description topic...') self.create_subscription(std_msgs.msg.String, 'robot_description', lambda msg: self.configure_robot(msg.data), rclpy.qos.QoSProfile(depth=1, durability=rclpy.qos.QoSDurabilityPolicy.TRANSIENT_LOCAL)) self.delta = self.get_param('delta') source_list = self.get_param('source_list') self.sources = [] # for source in source_list: # self.sources.append(self.create_subscription(sensor_msgs.msg.JointState, source, self.source_cb, 10)) # The source_update_cb will be called at the end of self.source_cb. # The main purpose is to allow external observers (such as the # joint_state_publisher_gui) to be notified when things are updated. self.source_update_cb = None # Override topic name here self.pub_pos = self.create_publisher(std_msgs.msg.Float64MultiArray, 'forward_position_controller/commands', 10) self.pub_vel = self.create_publisher(std_msgs.msg.Float64MultiArray, 'forward_velocity_controller/commands', 10) self.create_subscription(sensor_msgs.msg.JointState, 'joint_states', self.source_cb, 10) self.timer = self.create_timer(1.0 / self.get_param('rate'), self.timer_callback) def source_cb(self, msg): # self.get_logger().info("ran source callback") for i in range(len(msg.name)): name = msg.name[i] if name not in self.free_joints_sub: continue if msg.position: position = msg.position[i] else: position = None if msg.velocity: velocity = msg.velocity[i] else: velocity = None if msg.effort: effort = msg.effort[i] else: effort = None joint = self.free_joints_sub[name] if position is not None: joint['position'] = position if velocity is not None: joint['velocity'] = velocity if effort is not None: joint['effort'] = effort if self.source_update_cb is not None: self.source_update_cb() def set_source_update_cb(self, user_cb): self.source_update_cb = user_cb def set_robot_description_update_cb(self, user_cb): self.robot_description_update_cb = user_cb def timer_callback(self): # Publish Joint States msg = sensor_msgs.msg.JointState() msg.header.stamp = self.get_clock().now().to_msg() if self.delta > 0: self.update(self.delta) # Initialize msg.position, msg.velocity, and msg.effort. has_position = False has_velocity = False has_effort = False for name, joint in self.free_joints_pub.items(): if not has_position and 'position' in joint: has_position = True if not has_velocity and 'velocity' in joint: has_velocity = True if not has_effort and 'effort' in joint: has_effort = True num_joints = (len(self.free_joints_pub.items()) + len(self.dependent_joints.items())) if has_position: msg.position = [] if has_velocity: msg.velocity = [] if has_effort: msg.effort = num_joints * [0.0] for i, name in enumerate(self.joint_list): msg.name.append(str(name)) joint = None # Add Free Joint if name in self.free_joints_pub: joint = self.free_joints_pub[name] factor = 1 offset = 0 # Add Dependent Joint elif name in self.dependent_joints: param = self.dependent_joints[name] parent = param['parent'] factor = param.get('factor', 1.0) offset = param.get('offset', 0.0) # Handle recursive mimic chain recursive_mimic_chain_joints = [name] while parent in self.dependent_joints: if parent in recursive_mimic_chain_joints: error_message = 'Found an infinite recursive mimic chain' self.get_logger().error(f'{error_message}: {recursive_mimic_chain_joints + [parent]}') sys.exit(1) recursive_mimic_chain_joints.append(parent) param = self.dependent_joints[parent] parent = param['parent'] offset += factor * param.get('offset', 0) factor *= param.get('factor', 1) joint = self.free_joints_pub[parent] # the issue here is that its setting [i] either to the joint, or its skipping i in the list when we need it to be the next value. # For some reason, [list].append() ends up putting way too many empty values that come from nowhere into the list. # The best thing to do here would be having two separate iterators which only increment if the variable has a position or a velocity. if has_position and 'position' in joint and name in POSITION_JOINTS: msg.position.append(float(joint['position']) * factor + offset) if has_velocity and 'velocity' in joint and name in VELOCITY_JOINTS: msg.velocity.append(float(joint['velocity']) * factor) if has_effort and 'effort' in joint: msg.effort[i] = float(joint['effort']) # Only publish non-empty messages if not (msg.name or msg.position or msg.velocity or msg.effort): return pos_msg = std_msgs.msg.Float64MultiArray() vel_msg = std_msgs.msg.Float64MultiArray() pos_msg.data = msg.position vel_msg.data = msg.velocity self.pub_pos.publish(pos_msg) self.pub_vel.publish(vel_msg) def update(self, delta): for name, joint in self.free_joints_sub.items(): forward = joint.get('forward', True) if forward: joint['position'] += delta if joint['position'] > joint['max']: if joint.get('continuous', False): joint['position'] = joint['min'] else: joint['position'] = joint['max'] joint['forward'] = not forward else: joint['position'] -= delta if joint['position'] < joint['min']: joint['position'] = joint['min'] joint['forward'] = not forward def main(): # Initialize rclpy with the command-line arguments rclpy.init() # Strip off the ROS 2-specific command-line arguments stripped_args = rclpy.utilities.remove_ros_args(args=sys.argv) parser = argparse.ArgumentParser() parser.add_argument('urdf_file', help='URDF file to use', nargs='?', default=None) # Parse the remaining arguments, noting that the passed-in args must *not* # contain the name of the program. parsed_args = parser.parse_args(args=stripped_args[1:]) jsp = JointStatePublisher(parsed_args.urdf_file) try: rclpy.spin(jsp) except KeyboardInterrupt: pass jsp.destroy_node() rclpy.try_shutdown() if __name__ == '__main__': main()
20,839
Python
42.873684
145
0.595038
RoboEagles4828/edna2023/isaac/README.md
# Isaac Sim Code and Assests
28
Markdown
27.999972
28
0.785714
RoboEagles4828/edna2023/isaac/exts/omni.isaac.edna/config/extension.toml
[core] reloadable = true order = 0 [package] version = "1.0.0" category = "Simulation" title = "edna" description = "Extension for running edna in Isaac Sim" authors = ["Gage Miller, Nitin C"] repository = "" keywords = ["isaac", "samples", "manipulation"] changelog = "docs/CHANGELOG.md" readme = "docs/README.md" preview_image = "data/preview.png" icon = "data/icon.png" writeTarget.kit = true [dependencies] "omni.kit.uiapp" = {} "omni.physx" = {} "omni.physx.vehicle" = {} "omni.isaac.dynamic_control" = {} "omni.isaac.motion_planning" = {} "omni.isaac.synthetic_utils" = {} "omni.isaac.ui" = {} "omni.isaac.core" = {} "omni.isaac.franka" = {} "omni.isaac.dofbot" = {} "omni.isaac.universal_robots" = {} "omni.isaac.motion_generation" = {} "omni.isaac.demos" = {} "omni.graph.action" = {} "omni.graph.nodes" = {} "omni.graph.core" = {} "omni.isaac.quadruped" = {} "omni.isaac.wheeled_robots" = {} "omni.isaac.examples" = {} [[python.module]] name = "omni.isaac.edna.import_bot" [[test]] timeout = 960
1,012
TOML
21.021739
55
0.656126
RoboEagles4828/edna2023/isaac/exts/omni.isaac.edna/omni/isaac/edna/base_sample/base_sample.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.core import World from omni.isaac.core.scenes.scene import Scene from omni.isaac.core.utils.stage import create_new_stage_async, update_stage_async import gc from abc import abstractmethod class BaseSample(object): def __init__(self) -> None: self._world = None self._current_tasks = None self._world_settings = {"physics_dt": 1.0 / 60.0, "stage_units_in_meters": 1.0, "rendering_dt": 1.0 / 60.0} # self._logging_info = "" return def get_world(self): return self._world def set_world_settings(self, physics_dt=None, stage_units_in_meters=None, rendering_dt=None): if physics_dt is not None: self._world_settings["physics_dt"] = physics_dt if stage_units_in_meters is not None: self._world_settings["stage_units_in_meters"] = stage_units_in_meters if rendering_dt is not None: self._world_settings["rendering_dt"] = rendering_dt return async def load_world_async(self): """Function called when clicking load buttton """ if World.instance() is None: await create_new_stage_async() self._world = World(**self._world_settings) await self._world.initialize_simulation_context_async() self.setup_scene() else: self._world = World.instance() self._current_tasks = self._world.get_current_tasks() await self._world.reset_async() await self._world.pause_async() await self.setup_post_load() if len(self._current_tasks) > 0: self._world.add_physics_callback("tasks_step", self._world.step_async) return async def reset_async(self): """Function called when clicking reset buttton """ if self._world.is_tasks_scene_built() and len(self._current_tasks) > 0: self._world.remove_physics_callback("tasks_step") await self._world.play_async() await update_stage_async() await self.setup_pre_reset() await self._world.reset_async() await self._world.pause_async() await self.setup_post_reset() if self._world.is_tasks_scene_built() and len(self._current_tasks) > 0: self._world.add_physics_callback("tasks_step", self._world.step_async) return @abstractmethod def setup_scene(self, scene: Scene) -> None: """used to setup anything in the world, adding tasks happen here for instance. Args: scene (Scene): [description] """ return @abstractmethod async def setup_post_load(self): """called after first reset of the world when pressing load, intializing provate variables happen here. """ return @abstractmethod async def setup_pre_reset(self): """ called in reset button before resetting the world to remove a physics callback for instance or a controller reset """ return @abstractmethod async def setup_post_reset(self): """ called in reset button after resetting the world which includes one step with rendering """ return @abstractmethod async def setup_post_clear(self): """called after clicking clear button or after creating a new stage and clearing the instance of the world with its callbacks """ return # def log_info(self, info): # self._logging_info += str(info) + "\n" # return def _world_cleanup(self): self._world.stop() self._world.clear_all_callbacks() self._current_tasks = None self.world_cleanup() return def world_cleanup(self): """Function called when extension shutdowns and starts again, (hot reloading feature) """ return async def clear_async(self): """Function called when clicking clear buttton """ await create_new_stage_async() if self._world is not None: self._world_cleanup() self._world.clear_instance() self._world = None gc.collect() await self.setup_post_clear() return
4,657
Python
34.287879
115
0.624222
RoboEagles4828/edna2023/isaac/exts/omni.isaac.edna/omni/isaac/edna/base_sample/base_sample_extension.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from abc import abstractmethod import omni.ext import omni.ui as ui from omni.kit.menu.utils import add_menu_items, remove_menu_items, MenuItemDescription import weakref from omni.isaac.ui.ui_utils import setup_ui_headers, get_style, btn_builder, scrolling_frame_builder import asyncio from omni.isaac.edna.base_sample import BaseSample from omni.isaac.core import World class BaseSampleExtension(omni.ext.IExt): def on_startup(self, ext_id: str): self._menu_items = None self._buttons = None self._ext_id = ext_id self._sample = None self._extra_frames = [] return def start_extension( self, menu_name: str, submenu_name: str, name: str, title: str, doc_link: str, overview: str, file_path: str, sample=None, number_of_extra_frames=1, window_width=350, ): if sample is None: self._sample = BaseSample() else: self._sample = sample menu_items = [MenuItemDescription(name=name, onclick_fn=lambda a=weakref.proxy(self): a._menu_callback())] if menu_name == "" or menu_name is None: self._menu_items = menu_items elif submenu_name == "" or submenu_name is None: self._menu_items = [MenuItemDescription(name=menu_name, sub_menu=menu_items)] else: self._menu_items = [ MenuItemDescription( name=menu_name, sub_menu=[MenuItemDescription(name=submenu_name, sub_menu=menu_items)] ) ] add_menu_items(self._menu_items, "Isaac Examples") self._buttons = dict() self._build_ui( name=name, title=title, doc_link=doc_link, overview=overview, file_path=file_path, number_of_extra_frames=number_of_extra_frames, window_width=window_width, ) if self.get_world() is not None: self._on_load_world() return @property def sample(self): return self._sample def get_frame(self, index): if index >= len(self._extra_frames): raise Exception("there were {} extra frames created only".format(len(self._extra_frames))) return self._extra_frames[index] def get_world(self): return World.instance() def get_buttons(self): return self._buttons def _build_ui(self, name, title, doc_link, overview, file_path, number_of_extra_frames, window_width): self._window = omni.ui.Window( name, width=window_width, height=0, visible=True, dockPreference=ui.DockPreference.RIGHT_BOTTOM ) with self._window.frame: with ui.VStack(spacing=5, height=0): setup_ui_headers(self._ext_id, file_path, title, doc_link, overview) self._controls_frame = ui.CollapsableFrame( title="World Controls", width=ui.Fraction(1), height=0, collapsed=False, style=get_style(), horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with ui.VStack(style=get_style(), spacing=5, height=0): for i in range(number_of_extra_frames): self._extra_frames.append( ui.CollapsableFrame( title="", width=ui.Fraction(0.33), height=0, visible=False, collapsed=False, style=get_style(), horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) ) with self._controls_frame: with ui.VStack(style=get_style(), spacing=5, height=0): dict = { "label": "Load World", "type": "button", "text": "Load", "tooltip": "Load World and Task", "on_clicked_fn": self._on_load_world, } self._buttons["Load World"] = btn_builder(**dict) self._buttons["Load World"].enabled = True dict = { "label": "Reset", "type": "button", "text": "Reset", "tooltip": "Reset robot and environment", "on_clicked_fn": self._on_reset, } self._buttons["Reset"] = btn_builder(**dict) self._buttons["Reset"].enabled = False dict = { "label": "Clear", "type": "button", "text": "Clear", "tooltip": "Clear the full environment", "on_clicked_fn": self._on_clear, } self._buttons["Clear"] = btn_builder(**dict) self._buttons["Clear"].enabled = True return def _set_button_tooltip(self, button_name, tool_tip): self._buttons[button_name].set_tooltip(tool_tip) return def _on_load_world(self): async def _on_load_world_async(): await self._sample.load_world_async() await omni.kit.app.get_app().next_update_async() self._sample._world.add_stage_callback("stage_event_1", self.on_stage_event) self._enable_all_buttons(True) self._buttons["Load World"].enabled = False self.post_load_button_event() self._sample._world.add_timeline_callback("stop_reset_event", self._reset_on_stop_event) asyncio.ensure_future(_on_load_world_async()) return def _on_reset(self): async def _on_reset_async(): await self._sample.reset_async() await omni.kit.app.get_app().next_update_async() self.post_reset_button_event() asyncio.ensure_future(_on_reset_async()) return def _on_clear(self): async def _on_clear_async(): await self._sample.clear_async() await omni.kit.app.get_app().next_update_async() self.post_clear_button_event() self._buttons["Load World"].enabled = True asyncio.ensure_future(_on_clear_async()) return @abstractmethod def post_reset_button_event(self): return @abstractmethod def post_load_button_event(self): return @abstractmethod def post_clear_button_event(self): return def _enable_all_buttons(self, flag): for btn_name, btn in self._buttons.items(): if isinstance(btn, omni.ui._ui.Button): btn.enabled = flag return def _menu_callback(self): self._window.visible = not self._window.visible return def _on_window(self, status): # if status: return def on_shutdown(self): self._extra_frames = [] if self._sample._world is not None: self._sample._world_cleanup() if self._menu_items is not None: self._sample_window_cleanup() if self._buttons is not None: self._buttons["Load World"].enabled = True self._enable_all_buttons(False) self.shutdown_cleanup() return def shutdown_cleanup(self): return def _sample_window_cleanup(self): remove_menu_items(self._menu_items, "Isaac Examples") self._window = None self._menu_items = None self._buttons = None return def on_stage_event(self, event): if event.type == int(omni.usd.StageEventType.CLOSED): if World.instance() is not None: self.sample._world_cleanup() self.sample._world.clear_instance() if hasattr(self, "_buttons"): if self._buttons is not None: self._enable_all_buttons(False) self._buttons["Load World"].enabled = True return def _reset_on_stop_event(self, e): if e.type == int(omni.timeline.TimelineEventType.STOP): self._buttons["Load World"].enabled = False self._buttons["Reset"].enabled = True self.post_clear_button_event() return
9,389
Python
36.261905
114
0.530621
RoboEagles4828/edna2023/isaac/exts/omni.isaac.edna/omni/isaac/edna/base_sample/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.edna.base_sample.base_sample import BaseSample from omni.isaac.edna.base_sample.base_sample_extension import BaseSampleExtension
574
Python
46.916663
81
0.818815
RoboEagles4828/edna2023/isaac/exts/omni.isaac.edna/omni/isaac/edna/import_bot/__init__.py
from omni.isaac.edna.import_bot.import_bot import ImportBot from omni.isaac.edna.import_bot.import_bot_extension import ImportBotExtension
140
Python
34.249991
78
0.842857
RoboEagles4828/edna2023/isaac/exts/omni.isaac.edna/omni/isaac/edna/import_bot/import_bot_extension.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.edna.base_sample import BaseSampleExtension from omni.isaac.edna.import_bot.import_bot import ImportBot import omni.ui as ui from omni.isaac.ui.ui_utils import state_btn_builder class ImportBotExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="Edna FRC", submenu_name="", name="Import URDF", title="Load the URDF for Edna FRC 2023 Robot", doc_link="", overview="This loads the Edna robot into Isaac Sim.", file_path=os.path.abspath(__file__), sample=ImportBot(), number_of_extra_frames=1 ) self.task_ui_elements = {} frame = self.get_frame(index=0) self.build_task_controls_ui(frame) return def _on_toggle_camera_button_event(self, val): return def build_task_controls_ui(self, frame): with frame: with ui.VStack(spacing=5): # Update the Frame Title frame.title = "Task Controls" frame.visible = True dict = { "label": "Toggle Cameras", "type": "button", "a_text": "START", "b_text": "STOP", "tooltip": "Start the cameras", "on_clicked_fn": self._on_toggle_camera_button_event, } self.task_ui_elements["Toggle Camera"] = state_btn_builder(**dict) self.task_ui_elements["Toggle Camera"].enabled = False
2,080
Python
36.836363
82
0.597596
RoboEagles4828/edna2023/isaac/exts/omni.isaac.edna/omni/isaac/edna/import_bot/import_bot.py
from omni.isaac.core.utils.stage import add_reference_to_stage import omni.graph.core as og import omni.usd from omni.isaac.edna.base_sample import BaseSample from omni.isaac.urdf import _urdf from omni.isaac.core.robots import Robot from omni.isaac.core.utils import prims from omni.isaac.core.prims import GeometryPrim from omni.isaac.core_nodes.scripts.utils import set_target_prims # from omni.kit.viewport_legacy import get_default_viewport_window # from omni.isaac.sensor import IMUSensor from pxr import UsdPhysics, UsdShade, Sdf, Gf import omni.kit.commands import os import numpy as np import math import carb NAMESPACE = f"{os.environ.get('ROS_NAMESPACE')}" if 'ROS_NAMESPACE' in os.environ else 'default' def set_drive_params(drive, stiffness, damping, max_force): drive.GetStiffnessAttr().Set(stiffness) drive.GetDampingAttr().Set(damping) if(max_force != 0.0): drive.GetMaxForceAttr().Set(max_force) return def add_physics_material_to_prim(prim, materialPath): bindingAPI = UsdShade.MaterialBindingAPI.Apply(prim) materialPrim = UsdShade.Material(materialPath) bindingAPI.Bind(materialPrim, UsdShade.Tokens.weakerThanDescendants, "physics") class ImportBot(BaseSample): def __init__(self) -> None: super().__init__() return def set_friction(self, robot_prim_path): mtl_created_list = [] # Create a new material using OmniGlass.mdl omni.kit.commands.execute( "CreateAndBindMdlMaterialFromLibrary", mdl_name="OmniPBR.mdl", mtl_name="Rubber", mtl_created_list=mtl_created_list, ) # Get reference to created material stage = omni.usd.get_context().get_stage() mtl_prim = stage.GetPrimAtPath(mtl_created_list[0]) friction_material = UsdPhysics.MaterialAPI.Apply(mtl_prim) friction_material.CreateDynamicFrictionAttr(1.0) friction_material.CreateStaticFrictionAttr(1.0) front_left_wheel_prim = stage.GetPrimAtPath(f"{robot_prim_path}/front_left_wheel_link/collisions") front_right_wheel_prim = stage.GetPrimAtPath(f"{robot_prim_path}/front_right_wheel_link/collisions") rear_left_wheel_prim = stage.GetPrimAtPath(f"{robot_prim_path}/rear_left_wheel_link/collisions") rear_right_wheel_prim = stage.GetPrimAtPath(f"{robot_prim_path}/rear_right_wheel_link/collisions") add_physics_material_to_prim(front_left_wheel_prim, mtl_prim) add_physics_material_to_prim(front_right_wheel_prim, mtl_prim) add_physics_material_to_prim(rear_left_wheel_prim, mtl_prim) add_physics_material_to_prim(rear_right_wheel_prim, mtl_prim) def setup_scene(self): world = self.get_world() world.get_physics_context().enable_gpu_dynamics(False) world.scene.add_default_ground_plane() self.setup_field() # self.setup_perspective_cam() self.setup_world_action_graph() return def setup_field(self): world = self.get_world() self.extension_path = os.path.abspath(__file__) self.project_root_path = os.path.abspath(os.path.join(self.extension_path, "../../../../../../..")) field = os.path.join(self.project_root_path, "assets/2023_field_cpu/FE-2023.usd") add_reference_to_stage(usd_path=field,prim_path="/World/Field") cone = os.path.join(self.project_root_path, "assets/2023_field_cpu/parts/GE-23700_JFH.usd") cube = os.path.join(self.project_root_path, "assets/2023_field_cpu/parts/GE-23701_JFL.usd") chargestation = os.path.join(self.project_root_path, "assets/ChargeStation-Copy/Assembly-1.usd") add_reference_to_stage(chargestation, "/World/ChargeStation_1") add_reference_to_stage(chargestation, "/World/ChargeStation_2") add_reference_to_stage(cone, "/World/Cone_1") add_reference_to_stage(cone, "/World/Cone_2") add_reference_to_stage(cone, "/World/Cone_3") add_reference_to_stage(cone, "/World/Cone_4") # add_reference_to_stage(cone, "/World/Cone_5") # add_reference_to_stage(cone, "/World/Cone_6") # add_reference_to_stage(cone, "/World/Cone_7") # add_reference_to_stage(cone, "/World/Cone_8") cone_1 = GeometryPrim("/World/Cone_1","cone_1_view",position=np.array([1.20298,-0.56861,0.0])) cone_2 = GeometryPrim("/World/Cone_2","cone_2_view",position=np.array([1.20298,3.08899,0.0])) cone_3 = GeometryPrim("/World/Cone_3","cone_3_view",position=np.array([-1.20298,-0.56861,0.0])) cone_4 = GeometryPrim("/World/Cone_4","cone_4_view",position=np.array([-1.20298,3.08899,0.0])) chargestation_1 = GeometryPrim("/World/ChargeStation_1","cone_3_view",position=np.array([-4.20298,-0.56861,0.0])) chargestation_2 = GeometryPrim("/World/ChargeStation_2","cone_4_view",position=np.array([4.20298,0.56861,0.0])) add_reference_to_stage(cube, "/World/Cube_1") add_reference_to_stage(cube, "/World/Cube_2") add_reference_to_stage(cube, "/World/Cube_3") add_reference_to_stage(cube, "/World/Cube_4") # add_reference_to_stage(cube, "/World/Cube_5") # add_reference_to_stage(cube, "/World/Cube_6") # add_reference_to_stage(cube, "/World/Cube_7") # add_reference_to_stage(cube, "/World/Cube_8") cube_1 = GeometryPrim("/World/Cube_1","cube_1_view",position=np.array([1.20298,0.65059,0.121])) cube_2 = GeometryPrim("/World/Cube_2","cube_2_view",position=np.array([1.20298,1.86979,0.121])) cube_3 = GeometryPrim("/World/Cube_3","cube_3_view",position=np.array([-1.20298,0.65059,0.121])) cube_4 = GeometryPrim("/World/Cube_4","cube_4_view",position=np.array([-1.20298,1.86979,0.121])) async def setup_post_load(self): self._world = self.get_world() # self._world.get_physics_context().enable_gpu_dynamics(True) self.robot_name = "edna" self.extension_path = os.path.abspath(__file__) self.project_root_path = os.path.abspath(os.path.join(self.extension_path, "../../../../../../..")) self.path_to_urdf = os.path.join(self.extension_path, "../../../../../../../..", "src/edna_description/urdf/edna.urdf") carb.log_info(self.path_to_urdf) self._robot_prim_path = self.import_robot(self.path_to_urdf) if self._robot_prim_path is None: print("Error: failed to import robot") return self._robot_prim = self._world.scene.add( Robot(prim_path=self._robot_prim_path, name=self.robot_name, position=np.array([0.0, 0.0, 0.3]), orientation=np.array([0.0, 0.0, 0.0, 1.0])) ) self.configure_robot(self._robot_prim_path) return def import_robot(self, urdf_path): import_config = _urdf.ImportConfig() import_config.merge_fixed_joints = False import_config.fix_base = False import_config.make_default_prim = True import_config.self_collision = False import_config.create_physics_scene = False import_config.import_inertia_tensor = True import_config.default_drive_strength = 1047.19751 import_config.default_position_drive_damping = 52.35988 import_config.default_drive_type = _urdf.UrdfJointTargetType.JOINT_DRIVE_VELOCITY import_config.distance_scale = 1.0 import_config.density = 0.0 result, prim_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config) if result: return prim_path return None def configure_robot(self, robot_prim_path): w_sides = ['left', 'right'] l_sides = ['front', 'back'] stage = self._world.stage chassis_name = f"swerve_chassis_link" front_left_axle = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/{chassis_name}/front_left_axle_joint"), "angular") front_right_axle = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/{chassis_name}/front_right_axle_joint"), "angular") rear_left_axle = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/{chassis_name}/rear_left_axle_joint"), "angular") rear_right_axle = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/{chassis_name}/rear_right_axle_joint"), "angular") front_left_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/front_left_axle_link/front_left_wheel_joint"), "angular") front_right_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/front_right_axle_link/front_right_wheel_joint"), "angular") rear_left_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/rear_left_axle_link/rear_left_wheel_joint"), "angular") rear_right_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/rear_right_axle_link/rear_right_wheel_joint"), "angular") arm_roller_bar_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/arm_elevator_leg_link/arm_roller_bar_joint"), "linear") elevator_center_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/elevator_outer_1_link/elevator_center_joint"), "linear") elevator_outer_2_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/elevator_center_link/elevator_outer_2_joint"), "linear") elevator_outer_1_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/arm_back_leg_link/elevator_outer_1_joint"), "angular") top_gripper_left_arm_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/top_gripper_bar_link/top_gripper_left_arm_joint"), "angular") top_gripper_right_arm_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/top_gripper_bar_link/top_gripper_right_arm_joint"), "angular") top_slider_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/elevator_outer_2_link/top_slider_joint"), "linear") bottom_intake_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/arm_elevator_leg_link/bottom_intake_joint"), "angular") set_drive_params(front_left_axle, 1, 1000, 98.0) set_drive_params(front_right_axle, 1, 1000, 98.0) set_drive_params(rear_left_axle, 1, 1000, 98.0) set_drive_params(rear_right_axle, 1, 1000, 98.0) set_drive_params(front_left_wheel, 1, 1000, 98.0) set_drive_params(front_right_wheel, 1, 1000, 98.0) set_drive_params(rear_left_wheel, 1, 1000, 98.0) set_drive_params(rear_right_wheel, 1, 1000, 98.0) set_drive_params(arm_roller_bar_joint, 10000000, 100000, 98.0) set_drive_params(elevator_center_joint, 10000000, 100000, 98.0) set_drive_params(elevator_outer_1_joint, 10000000, 100000, 2000.0) set_drive_params(elevator_outer_2_joint, 10000000, 100000, 98.0) set_drive_params(top_gripper_left_arm_joint, 10000000, 100000, 98.0) set_drive_params(top_gripper_right_arm_joint, 10000000, 100000, 98.0) set_drive_params(top_slider_joint, 10000000, 100000, 98.0) set_drive_params(bottom_intake_joint, 10000000, 100000, 98.0) # self.create_lidar(robot_prim_path) self.create_imu(robot_prim_path) self.create_depth_camera(robot_prim_path) self.setup_camera_action_graph(robot_prim_path) self.setup_imu_action_graph(robot_prim_path) self.setup_robot_action_graph(robot_prim_path) self.set_friction(robot_prim_path) return def create_lidar(self, robot_prim_path): lidar_parent = f"{robot_prim_path}/lidar_link" lidar_path = "/lidar" self.lidar_prim_path = lidar_parent + lidar_path result, prim = omni.kit.commands.execute( "RangeSensorCreateLidar", path=lidar_path, parent=lidar_parent, min_range=0.4, max_range=25.0, draw_points=False, draw_lines=True, horizontal_fov=360.0, vertical_fov=30.0, horizontal_resolution=0.4, vertical_resolution=4.0, rotation_rate=0.0, high_lod=False, yaw_offset=0.0, enable_semantics=False ) return def create_imu(self, robot_prim_path): imu_parent = f"{robot_prim_path}/zed2i_imu_link" imu_path = "/imu" self.imu_prim_path = imu_parent + imu_path result, prim = omni.kit.commands.execute( "IsaacSensorCreateImuSensor", path=imu_path, parent=imu_parent, translation=Gf.Vec3d(0, 0, 0), orientation=Gf.Quatd(1, 0, 0, 0), visualize=False, ) return def create_depth_camera(self, robot_prim_path): self.depth_left_camera_path = f"{robot_prim_path}/zed2i_right_camera_isaac_frame/left_cam" self.depth_right_camera_path = f"{robot_prim_path}/zed2i_right_camera_isaac_frame/right_cam" self.left_camera = prims.create_prim( prim_path=self.depth_left_camera_path, prim_type="Camera", attributes={ "focusDistance": 1, "focalLength": 24, "horizontalAperture": 20.955, "verticalAperture": 15.2908, "clippingRange": (0.1, 1000000), "clippingPlanes": np.array([1.0, 0.0, 1.0, 1.0]), }, ) self.right_camera = prims.create_prim( prim_path=self.depth_right_camera_path, prim_type="Camera", attributes={ "focusDistance": 1, "focalLength": 24, "horizontalAperture": 20.955, "verticalAperture": 15.2908, "clippingRange": (0.1, 1000000), "clippingPlanes": np.array([1.0, 0.0, 1.0, 1.0]), }, ) return def setup_world_action_graph(self): og.Controller.edit( {"graph_path": "/globalclock", "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("Context", "omni.isaac.ros2_bridge.ROS2Context"), ("PublishClock", "omni.isaac.ros2_bridge.ROS2PublishClock"), ], og.Controller.Keys.CONNECT: [ ("OnPlaybackTick.outputs:tick", "PublishClock.inputs:execIn"), ("Context.outputs:context", "PublishClock.inputs:context"), ("ReadSimTime.outputs:simulationTime", "PublishClock.inputs:timeStamp"), ], } ) return def setup_camera_action_graph(self, robot_prim_path): camera_graph = "{}/camera_sensor_graph".format(robot_prim_path) enable_left_cam = False enable_right_cam = False rgbType = "RgbType" infoType = "InfoType" depthType = "DepthType" depthPclType = "DepthPclType" def createCamType(side, name, typeNode, topic): return { "create": [ (f"{side}CamHelper{name}", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ], "connect": [ (f"{side}CamViewProduct.outputs:renderProductPath", f"{side}CamHelper{name}.inputs:renderProductPath"), (f"{side}CamSet.outputs:execOut", f"{side}CamHelper{name}.inputs:execIn"), (f"{typeNode}.inputs:value", f"{side}CamHelper{name}.inputs:type"), ], "setvalues": [ (f"{side}CamHelper{name}.inputs:topicName", f"{side.lower()}/{topic}"), (f"{side}CamHelper{name}.inputs:frameId", f"{NAMESPACE}/zed2i_{side.lower()}_camera_frame"), (f"{side}CamHelper{name}.inputs:nodeNamespace", f"/{NAMESPACE}"), ] } def getCamNodes(side, enable): camNodes = { "create": [ (f"{side}CamBranch", "omni.graph.action.Branch"), (f"{side}CamCreateViewport", "omni.isaac.core_nodes.IsaacCreateViewport"), (f"{side}CamViewportResolution", "omni.isaac.core_nodes.IsaacSetViewportResolution"), (f"{side}CamViewProduct", "omni.isaac.core_nodes.IsaacGetViewportRenderProduct"), (f"{side}CamSet", "omni.isaac.core_nodes.IsaacSetCameraOnRenderProduct"), ], "connect": [ ("OnPlaybackTick.outputs:tick", f"{side}CamBranch.inputs:execIn"), (f"{side}CamBranch.outputs:execTrue", f"{side}CamCreateViewport.inputs:execIn"), (f"{side}CamCreateViewport.outputs:execOut", f"{side}CamViewportResolution.inputs:execIn"), (f"{side}CamCreateViewport.outputs:viewport", f"{side}CamViewportResolution.inputs:viewport"), (f"{side}CamCreateViewport.outputs:viewport", f"{side}CamViewProduct.inputs:viewport"), (f"{side}CamViewportResolution.outputs:execOut", f"{side}CamViewProduct.inputs:execIn"), (f"{side}CamViewProduct.outputs:execOut", f"{side}CamSet.inputs:execIn"), (f"{side}CamViewProduct.outputs:renderProductPath", f"{side}CamSet.inputs:renderProductPath"), ], "setvalues": [ (f"{side}CamBranch.inputs:condition", enable), (f"{side}CamCreateViewport.inputs:name", f"{side}Cam"), (f"{side}CamViewportResolution.inputs:width", 640), (f"{side}CamViewportResolution.inputs:height", 360), ] } rgbNodes = createCamType(side, "RGB", rgbType, "rgb") infoNodes = createCamType(side, "Info", infoType, "camera_info") depthNodes = createCamType(side, "Depth", depthType, "depth") depthPClNodes = createCamType(side, "DepthPcl", depthPclType, "depth_pcl") camNodes["create"] += rgbNodes["create"] + infoNodes["create"] + depthNodes["create"] + depthPClNodes["create"] camNodes["connect"] += rgbNodes["connect"] + infoNodes["connect"] + depthNodes["connect"] + depthPClNodes["connect"] camNodes["setvalues"] += rgbNodes["setvalues"] + infoNodes["setvalues"] + depthNodes["setvalues"] + depthPClNodes["setvalues"] return camNodes leftCamNodes = getCamNodes("Left", enable_left_cam) rightCamNodes = getCamNodes("Right", enable_right_cam) og.Controller.edit( {"graph_path": camera_graph, "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), (rgbType, "omni.graph.nodes.ConstantToken"), (infoType, "omni.graph.nodes.ConstantToken"), (depthType, "omni.graph.nodes.ConstantToken"), (depthPclType, "omni.graph.nodes.ConstantToken"), ] + leftCamNodes["create"] + rightCamNodes["create"], og.Controller.Keys.CONNECT: leftCamNodes["connect"] + rightCamNodes["connect"], og.Controller.Keys.SET_VALUES: [ (f"{rgbType}.inputs:value", "rgb"), (f"{infoType}.inputs:value", "camera_info"), (f"{depthType}.inputs:value", "depth"), (f"{depthPclType}.inputs:value", "depth_pcl"), ] + leftCamNodes["setvalues"] + rightCamNodes["setvalues"], } ) set_target_prims(primPath=f"{camera_graph}/RightCamSet", targetPrimPaths=[self.depth_right_camera_path], inputName="inputs:cameraPrim") set_target_prims(primPath=f"{camera_graph}/LeftCamSet", targetPrimPaths=[self.depth_left_camera_path], inputName="inputs:cameraPrim") return def setup_imu_action_graph(self, robot_prim_path): sensor_graph = "{}/imu_sensor_graph".format(robot_prim_path) swerve_link = "{}/swerve_chassis_link".format(robot_prim_path) lidar_link = "{}/lidar_link/lidar".format(robot_prim_path) og.Controller.edit( {"graph_path": sensor_graph, "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ # General Nodes ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("SimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("Context", "omni.isaac.ros2_bridge.ROS2Context"), # Odometry Nodes ("ComputeOdometry", "omni.isaac.core_nodes.IsaacComputeOdometry"), ("PublishOdometry", "omni.isaac.ros2_bridge.ROS2PublishOdometry"), ("RawOdomTransform", "omni.isaac.ros2_bridge.ROS2PublishRawTransformTree"), # LiDAR Nodes # ("ReadLidar", "omni.isaac.range_sensor.IsaacReadLidarBeams"), # ("PublishLidar", "omni.isaac.ros2_bridge.ROS2PublishLaserScan"), # IMU Nodes ("IsaacReadImu", "omni.isaac.sensor.IsaacReadIMU"), ("PublishImu", "omni.isaac.ros2_bridge.ROS2PublishImu"), ], og.Controller.Keys.SET_VALUES: [ ("PublishOdometry.inputs:nodeNamespace", f"/{NAMESPACE}"), # ("PublishLidar.inputs:nodeNamespace", f"/{NAMESPACE}"), ("PublishImu.inputs:nodeNamespace", f"/{NAMESPACE}"), # ("PublishLidar.inputs:frameId", f"{NAMESPACE}/lidar_link"), ("RawOdomTransform.inputs:childFrameId", f"{NAMESPACE}/base_link"), ("RawOdomTransform.inputs:parentFrameId", f"{NAMESPACE}/zed/odom"), ("PublishOdometry.inputs:chassisFrameId", f"{NAMESPACE}/base_link"), ("PublishOdometry.inputs:odomFrameId", f"{NAMESPACE}/odom"), ("PublishImu.inputs:frameId", f"{NAMESPACE}/zed2i_imu_link"), ("PublishOdometry.inputs:topicName", "zed/odom") ], og.Controller.Keys.CONNECT: [ # Odometry Connections ("OnPlaybackTick.outputs:tick", "ComputeOdometry.inputs:execIn"), ("OnPlaybackTick.outputs:tick", "RawOdomTransform.inputs:execIn"), ("ComputeOdometry.outputs:execOut", "PublishOdometry.inputs:execIn"), ("ComputeOdometry.outputs:angularVelocity", "PublishOdometry.inputs:angularVelocity"), ("ComputeOdometry.outputs:linearVelocity", "PublishOdometry.inputs:linearVelocity"), ("ComputeOdometry.outputs:orientation", "PublishOdometry.inputs:orientation"), ("ComputeOdometry.outputs:orientation", "RawOdomTransform.inputs:rotation"), ("ComputeOdometry.outputs:position", "PublishOdometry.inputs:position"), ("ComputeOdometry.outputs:position", "RawOdomTransform.inputs:translation"), ("Context.outputs:context", "PublishOdometry.inputs:context"), ("Context.outputs:context", "RawOdomTransform.inputs:context"), ("SimTime.outputs:simulationTime", "PublishOdometry.inputs:timeStamp"), ("SimTime.outputs:simulationTime", "RawOdomTransform.inputs:timeStamp"), # LiDAR Connections # ("OnPlaybackTick.outputs:tick", "ReadLidar.inputs:execIn"), # ("ReadLidar.outputs:execOut", "PublishLidar.inputs:execIn"), # ("Context.outputs:context", "PublishLidar.inputs:context"), # ("SimTime.outputs:simulationTime", "PublishLidar.inputs:timeStamp"), # ("ReadLidar.outputs:azimuthRange", "PublishLidar.inputs:azimuthRange"), # ("ReadLidar.outputs:depthRange", "PublishLidar.inputs:depthRange"), # ("ReadLidar.outputs:horizontalFov", "PublishLidar.inputs:horizontalFov"), # ("ReadLidar.outputs:horizontalResolution", "PublishLidar.inputs:horizontalResolution"), # ("ReadLidar.outputs:intensitiesData", "PublishLidar.inputs:intensitiesData"), # ("ReadLidar.outputs:linearDepthData", "PublishLidar.inputs:linearDepthData"), # ("ReadLidar.outputs:numCols", "PublishLidar.inputs:numCols"), # ("ReadLidar.outputs:numRows", "PublishLidar.inputs:numRows"), # ("ReadLidar.outputs:rotationRate", "PublishLidar.inputs:rotationRate"), # IMU Connections ("OnPlaybackTick.outputs:tick", "IsaacReadImu.inputs:execIn"), ("IsaacReadImu.outputs:execOut", "PublishImu.inputs:execIn"), ("Context.outputs:context", "PublishImu.inputs:context"), ("SimTime.outputs:simulationTime", "PublishImu.inputs:timeStamp"), ("IsaacReadImu.outputs:angVel", "PublishImu.inputs:angularVelocity"), ("IsaacReadImu.outputs:linAcc", "PublishImu.inputs:linearAcceleration"), ("IsaacReadImu.outputs:orientation", "PublishImu.inputs:orientation"), ], } ) # Setup target prims for the Odometry and the Lidar set_target_prims(primPath=f"{sensor_graph}/ComputeOdometry", targetPrimPaths=[swerve_link], inputName="inputs:chassisPrim") set_target_prims(primPath=f"{sensor_graph}/ComputeOdometry", targetPrimPaths=[swerve_link], inputName="inputs:chassisPrim") set_target_prims(primPath=f"{sensor_graph}/IsaacReadImu", targetPrimPaths=[self.imu_prim_path], inputName="inputs:imuPrim") return def setup_robot_action_graph(self, robot_prim_path): robot_controller_path = f"{robot_prim_path}/ros_interface_controller" og.Controller.edit( {"graph_path": robot_controller_path, "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("Context", "omni.isaac.ros2_bridge.ROS2Context"), ("PublishJointState", "omni.isaac.ros2_bridge.ROS2PublishJointState"), ("SubscribeJointState", "omni.isaac.ros2_bridge.ROS2SubscribeJointState"), ("articulation_controller", "omni.isaac.core_nodes.IsaacArticulationController"), ], og.Controller.Keys.SET_VALUES: [ ("PublishJointState.inputs:topicName", "isaac_joint_states"), ("SubscribeJointState.inputs:topicName", "isaac_joint_commands"), ("articulation_controller.inputs:usePath", False), ("SubscribeJointState.inputs:nodeNamespace", f"/{NAMESPACE}"), ("PublishJointState.inputs:nodeNamespace", f"/{NAMESPACE}"), ], og.Controller.Keys.CONNECT: [ ("OnPlaybackTick.outputs:tick", "PublishJointState.inputs:execIn"), ("OnPlaybackTick.outputs:tick", "SubscribeJointState.inputs:execIn"), ("OnPlaybackTick.outputs:tick", "articulation_controller.inputs:execIn"), ("ReadSimTime.outputs:simulationTime", "PublishJointState.inputs:timeStamp"), ("Context.outputs:context", "PublishJointState.inputs:context"), ("Context.outputs:context", "SubscribeJointState.inputs:context"), ("SubscribeJointState.outputs:jointNames", "articulation_controller.inputs:jointNames"), ("SubscribeJointState.outputs:velocityCommand", "articulation_controller.inputs:velocityCommand"), ("SubscribeJointState.outputs:positionCommand", "articulation_controller.inputs:positionCommand"), ], } ) set_target_prims(primPath=f"{robot_controller_path}/articulation_controller", targetPrimPaths=[robot_prim_path]) set_target_prims(primPath=f"{robot_controller_path}/PublishJointState", targetPrimPaths=[robot_prim_path]) return async def setup_pre_reset(self): return async def setup_post_reset(self): return async def setup_post_clear(self): return def world_cleanup(self): carb.log_info(f"Removing {self.robot_name}") if self._world is not None: self._world.scene.remove_object(self.robot_name) return
29,278
Python
54.663498
164
0.609092
RoboEagles4828/edna2023/isaac/exts/omni.isaac.edna/docs/CHANGELOG.md
********** CHANGELOG ********** [0.1.0] - 2022-6-26 [0.1.1] - 2022-10-15 ======================== Added ------- - Initial version of Swerve Bot Extension - Enhanced physX
175
Markdown
10.733333
41
0.468571
RoboEagles4828/edna2023/isaac/exts/omni.isaac.edna/docs/README.md
# Usage To enable this extension, go to the Extension Manager menu and enable omni.isaac.swerve_bot extension.
113
Markdown
21.799996
102
0.787611
RoboEagles4828/edna2023/isaac/Swervesim/rlgpu_conda_env.yml
name: rlgpu channels: - pytorch - conda-forge - defaults dependencies: - python=3.8 - pytorch=1.8.1 - torchvision=0.9.1 - cudatoolkit=11.1 - pyyaml>=5.3.1 - scipy>=1.5.0 - tensorboard==2.9.0 - tensorboard-plugin-wit==1.8.1 - protobuf==3.9.2
268
YAML
14.823529
34
0.615672
RoboEagles4828/edna2023/isaac/Swervesim/setup.py
"""Installation script for the 'isaacgymenvs' python package.""" from __future__ import absolute_import from __future__ import print_function from __future__ import division from setuptools import setup, find_packages import os import compileall compileall.compile_dir('swervesim') # Minimum dependencies required prior to installation INSTALL_REQUIRES = [ "protobuf==3.20.1", "omegaconf==2.1.1", "hydra-core==1.1.1", "redis==3.5.3", # needed by Ray on Windows "rl-games==1.5.2", "shapely" ] # Installation operation setup( name="swervesim", author="NVIDIA", version="1.1.0", description="RL environments for robot learning in NVIDIA Isaac Sim.", keywords=["robotics", "rl"], include_package_data=True, install_requires=INSTALL_REQUIRES, packages=find_packages("."), classifiers=["Natural Language :: English", "Programming Language :: Python :: 3.7, 3.8"], zip_safe=False, ) # EOF
952
Python
24.078947
94
0.681723
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/envs/vec_env_rlgames_mt.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omni.isaac.gym.vec_env import VecEnvMT from omni.isaac.gym.vec_env import TaskStopException from .vec_env_rlgames import VecEnvRLGames import torch import numpy as np # VecEnv Wrapper for RL training class VecEnvRLGamesMT(VecEnvRLGames, VecEnvMT): def _parse_data(self, data): self._obs = data["obs"].clone() self._rew = data["rew"].to(self._task.rl_device).clone() self._states = torch.clamp(data["states"], -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._resets = data["reset"].to(self._task.rl_device).clone() self._extras = data["extras"].copy() def step(self, actions): if self._stop: raise TaskStopException() if self._task.randomize_actions: actions = self._task._dr_randomizer.apply_actions_randomization(actions=actions, reset_buf=self._task.reset_buf) actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device).clone() self.send_actions(actions) data = self.get_data() if self._task.randomize_observations: self._obs = self._task._dr_randomizer.apply_observations_randomization(observations=self._obs.to(self._task.rl_device), reset_buf=self._task.reset_buf) self._obs = torch.clamp(self._obs, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device) obs_dict = {} obs_dict["obs"] = self._obs obs_dict["states"] = self._states return obs_dict, self._rew, self._resets, self._extras
3,148
Python
43.352112
163
0.715057
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/envs/vec_env_rlgames.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omni.isaac.gym.vec_env import VecEnvBase import torch import numpy as np from datetime import datetime # VecEnv Wrapper for RL training class VecEnvRLGames(VecEnvBase): def _process_data(self): self._obs = torch.clamp(self._obs, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._rew = self._rew.to(self._task.rl_device).clone() self._states = torch.clamp(self._states, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._resets = self._resets.to(self._task.rl_device).clone() self._extras = self._extras.copy() def set_task( self, task, backend="numpy", sim_params=None, init_sim=True ) -> None: super().set_task(task, backend, sim_params, init_sim) self.num_states = self._task.num_states self.state_space = self._task.state_space def step(self, actions): if self._task.randomize_actions: actions = self._task._dr_randomizer.apply_actions_randomization(actions=actions, reset_buf=self._task.reset_buf) actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device).clone() self._task.pre_physics_step(actions) for _ in range(self._task.control_frequency_inv): self._world.step(render=self._render) self.sim_frame_count += 1 self._obs, self._rew, self._resets, self._extras = self._task.post_physics_step() if self._task.randomize_observations: self._obs = self._task._dr_randomizer.apply_observations_randomization( observations=self._obs.to(device=self._task.rl_device), reset_buf=self._task.reset_buf) self._states = self._task.get_states() self._process_data() obs_dict = {"obs": self._obs, "states": self._states} return obs_dict, self._rew, self._resets, self._extras def reset(self): """ Resets the task and applies default zero actions to recompute observations and states. """ now = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print(f"[{now}] Running RL reset") self._task.reset() actions = torch.zeros((self.num_envs, self._task.num_actions), device=self._task.rl_device) obs_dict, _, _, _ = self.step(actions) return obs_dict
3,933
Python
42.230769
124
0.690567
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/tasks/swerve_field.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from swervesim.tasks.base.rl_task import RLTask from swervesim.robots.articulations.swerve import Swerve from swervesim.robots.articulations.views.swerve_view import SwerveView from swervesim.tasks.utils.usd_utils import set_drive from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.prims import RigidPrimView, GeometryPrim from omni.isaac.core.utils.stage import add_reference_to_stage import numpy as np import torch import math class Swerve_Field_Task(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: # sets up the sim self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # limits max velocity of wheels and axles self.velocity_limit = 10 self.dt = 1 / 60 self.max_episode_length_s = self._task_cfg["env"]["episodeLength_s"] self._max_episode_length = int( self.max_episode_length_s / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] # for key in self.rew_scales.keys(): # self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._swerve_translation = torch.tensor([0.0, 0.0, 0.0]) self._env_spacing = self._task_cfg["env"]["envSpacing"] # Number of data points the policy is recieving self._num_observations = 29 # Number of data points the policy is producing self._num_actions = 8 # starting position of the swerve module self.swerve_position = torch.tensor([0, 0, 0]) # starting position of the target self._ball_position = torch.tensor([1, 1, 0]) self.swerve_initia_pos = [] RLTask.__init__(self, name, env) self.target_positions = torch.zeros( (self._num_envs, 3), device=self._device, dtype=torch.float32) # xyx of target position self.target_positions[:, 1] = 1 return # Adds all of the items to the stage def set_up_scene(self, scene) -> None: # Adds USD of swerve to stage self.get_swerve() # Adds ball to stage self.get_target() super().set_up_scene(scene) # Sets up articluation controller for swerve self._swerve = SwerveView( prim_paths_expr="/World/envs/.*/swerve", name="swerveview") # Allows for position tracking of targets # self._balls = RigidPrimView( # prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False) # Adds everything to the scene scene.add(self._swerve) for axle in self._swerve._axle: scene.add(axle) for wheel in self._swerve._wheel: scene.add(wheel) scene.add(self._swerve._base) # scene.add(self._balls) # print("scene set up") return def get_swerve(self): # Adds swerve to env_0 and adds articulation controller swerve = Swerve(self.default_zero_env_path + "/swerve", "swerve", self._swerve_translation) self._sim_config.apply_articulation_settings("swerve", get_prim_at_path( swerve.prim_path), self._sim_config.parse_actor_config("swerve")) # def get_target(self): # # Adds a red ball as target # radius = 0.1 # meters # color = torch.tensor([0, 0, 1]) # ball = DynamicSphere( # prim_path=self.default_zero_env_path + "/ball", # translation=self._ball_position, # name="target_0", # radius=radius, # color=color, # ) # self._sim_config.apply_articulation_settings("ball", get_prim_at_path( # ball.prim_path), self._sim_config.parse_actor_config("ball")) # ball.set_collision_enabled(False) def get_target(self): # world = self.get_world() self.task_path = os.path.abspath(__file__) self.project_root_path = os.path.abspath(os.path.join(self.task_path, "../../../../../../../..")) field = os.path.join(self.project_root_path, "isaac/assets/2023_field/FE-2023.usd") add_reference_to_stage(usd_path=field,prim_path=self.default_zero_env_path+"/Field") cone = os.path.join(self.project_root_path, "isaac/assets/2023_field/parts/cone_without_deformable_body.usd") cube = os.path.join(self.project_root_path, "isaac/assets/2023_field/parts/cube_without_deformable_body.usd") chargestation = os.path.join(self.project_root_path, "isaac/assets/Charge Station/Assembly-1.usd") add_reference_to_stage(chargestation, self.default_zero_env_path+"/ChargeStation_1") add_reference_to_stage(chargestation, self.default_zero_env_path+"/ChargeStation_2") add_reference_to_stage(cone, self.default_zero_env_path+"/Cone_1") add_reference_to_stage(cone, self.default_zero_env_path+"/Cone_2") add_reference_to_stage(cone, self.default_zero_env_path+"/Cone_3") add_reference_to_stage(cone, self.default_zero_env_path+"/Cone_4") # add_reference_to_stage(cone, self.default_zero_env_path+"/Cone_5") # add_reference_to_stage(cone, self.default_zero_env_path+"/Cone_6") # add_reference_to_stage(cone, self.default_zero_env_path+"/Cone_7") # add_reference_to_stage(cone, self.default_zero_env_path+"/Cone_8") self.cone_1 = GeometryPrim(self.default_zero_env_path+"/Cone_1","cone_1_view",position=np.array([1.20298,-0.56861,0.0])) self.cone_2 = GeometryPrim(self.default_zero_env_path+"/Cone_2","cone_2_view",position=np.array([1.20298,3.08899,0.0])) self.cone_3 = GeometryPrim(self.default_zero_env_path+"/Cone_3","cone_3_view",position=np.array([-1.20298,-0.56861,0.0])) self.cone_4 = GeometryPrim(self.default_zero_env_path+"/Cone_4","cone_4_view",position=np.array([-1.20298,3.08899,0.0])) chargestation_1 = GeometryPrim(self.default_zero_env_path+"/ChargeStation_1","cone_3_view",position=np.array([-4.20298,-0.56861,0.0])) chargestation_2 = GeometryPrim(self.default_zero_env_path+"/ChargeStation_2","cone_4_view",position=np.array([4.20298,0.56861,0.0])) add_reference_to_stage(cube, self.default_zero_env_path+"/Cube_1") add_reference_to_stage(cube, self.default_zero_env_path+"/Cube_2") add_reference_to_stage(cube, self.default_zero_env_path+"/Cube_3") add_reference_to_stage(cube, self.default_zero_env_path+"/Cube_4") # add_reference_to_stage(cube, self.default_zero_env_path+"/Cube_5") # add_reference_to_stage(cube, self.default_zero_env_path+"/Cube_6") # add_reference_to_stage(cube, self.default_zero_env_path+"/Cube_7") # add_reference_to_stage(cube, self.default_zero_env_path+"/Cube_8") self.cube_1 = GeometryPrim(self.default_zero_env_path+"/Cube_1","cube_1_view",position=np.array([1.20298,0.65059,0.121])) self.cube_2 = GeometryPrim(self.default_zero_env_path+"/Cube_2","cube_2_view",position=np.array([1.20298,1.86979,0.121])) self.cube_3 = GeometryPrim(self.default_zero_env_path+"/Cube_3","cube_3_view",position=np.array([-1.20298,0.65059,0.121])) self.cube_4 = GeometryPrim(self.default_zero_env_path+"/Cube_4","cube_4_view",position=np.array([-1.20298,1.86979,0.121])) return def get_observations(self) -> dict: # Gets various positions and velocties to observations self.root_pos, self.root_rot = self._swerve.get_world_poses( clone=False) self.joint_velocities = self._swerve.get_joint_velocities() self.joint_positions = self._swerve.get_joint_positions() self.root_velocities = self._swerve.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot # root_linvels = self.root_velocities[:, :3] # root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 3:6] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 6:9] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 9:13] = root_quats self.obs_buf[..., 13:21] = self.joint_velocities self.obs_buf[..., 21:29] = self.joint_positions # Should not exceed observation ssize declared earlier # An observation is created for each swerve in each environment observations = { self._swerve.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: # This is what sets the action for swerve reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero( as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) self.actions[:] = actions.clone().to(self._device) # Sets velocity for each wheel and axle within the velocity limits linear_x_cmd = torch.clamp( actions[:, 0:1] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) linear_y_cmd = torch.clamp( actions[:, 1:2] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) angular_cmd = torch.clamp( actions[:, 2:3] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) x_offset = 0.7366 radius = 0.1016 actionlist = [] for i in range(self.num_envs): action = [] # Compute Wheel Velocities and Positions a = linear_x_cmd[i] - angular_cmd[i] * x_offset / 2 b = linear_x_cmd[i] + angular_cmd[i] * x_offset / 2 c = linear_y_cmd[i] - angular_cmd[i] * x_offset / 2 d = linear_y_cmd[i] + angular_cmd[i] * x_offset / 2 # get current wheel positions front_left_current_pos = ( (self._swerve.get_joint_positions()[i][0])) front_right_current_pos = ( (self._swerve.get_joint_positions()[i][1])) rear_left_current_pos = ( (self._swerve.get_joint_positions()[i][2])) rear_right_current_pos = ( (self._swerve.get_joint_positions()[i][3])) front_left_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) front_right_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) rear_left_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) rear_right_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) front_left_position = math.atan2(b, d) front_right_position = math.atan2(b, c) rear_left_position = math.atan2(a, d) rear_right_position = math.atan2(a, c) # optimization front_left_position, front_left_velocity = simplifiy_angle( front_left_current_pos, front_left_position, front_left_velocity) front_right_position, front_right_velocity = simplifiy_angle( front_right_current_pos, front_right_position, front_right_velocity) rear_left_position, rear_left_velocity = simplifiy_angle( rear_left_current_pos, rear_left_position, rear_left_velocity) rear_right_position, rear_right_velocity = simplifiy_angle( rear_right_current_pos, rear_right_position, rear_right_velocity) # Set Wheel Positions # Has a 1 degree tolerance. Turns clockwise if less than, counter clockwise if greater than if (i == 1): print(f"front_left_position:{front_left_position}") print(f"rear_left_position:{rear_left_position}") action.append(calculate_turn_velocity(front_left_current_pos, front_left_position)) action.append(calculate_turn_velocity(front_right_current_pos, front_right_position)) action.append(calculate_turn_velocity(rear_left_current_pos, rear_left_position)) action.append(calculate_turn_velocity(rear_right_current_pos, rear_right_position)) sortlist=[front_left_velocity, front_right_velocity, rear_left_velocity, rear_right_velocity] maxs = abs(max(sortlist, key=abs)) if (maxs < 0.5): for num in sortlist: action.append(0.0) else: for num in sortlist: if (maxs != 0 and abs(maxs) > 10): # scales down velocty to max of 10 radians num = (num/abs(maxs))*10 # print(num) action.append(num) # print(len(action)) actionlist.append(action) # Sets robots velocities self._swerve.set_joint_velocities(torch.FloatTensor(actionlist)) def reset_idx(self, env_ids): # print("line 211") # For when the environment resets. This is great for randomization and increases the chances of a successful policy in the real world num_resets = len(env_ids) # Turns the wheels and axles -pi to pi radians self.dof_pos[env_ids, 1] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_pos[env_ids, 3] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float( 0, 0, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._swerve.set_joint_positions( self.dof_pos[env_ids], indices=env_ids) self._swerve.set_joint_velocities( self.dof_vel[env_ids], indices=env_ids) self._swerve.set_world_poses( root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._swerve.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 # print("line 249") def post_reset(self): # print("line 252") self.root_pos, self.root_rot = self._swerve.get_world_poses() self.root_velocities = self._swerve.get_velocities() self.dof_pos = self._swerve.get_joint_positions() self.dof_vel = self._swerve.get_joint_velocities() # self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses() # self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # initialize some data used later on self.extras = {} self.actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False ) self.last_dof_vel = torch.zeros( (self._num_envs, 12), dtype=torch.float, device=self._device, requires_grad=False) self.last_actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False) self.time_out_buf = torch.zeros_like(self.reset_buf) # randomize all envs indices = torch.arange( self._swerve.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (-20, 20) self.target_positions[envs_long, 0:2] = torch.rand( (num_sets, 2), device=self._device) * 20 - 1 self.target_positions[envs_long, 2] = 0.1 # print(self.target_positions) # shift the target up so it visually aligns better ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long] self._balls.set_world_poses( ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids) def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos # distance to target target_dist = torch.sqrt(torch.square( self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + 2.5 * target_dist * target_dist) self.target_dist = target_dist self.root_positions = root_positions self.root_position_reward = self.rew_buf # rewards for moving away form starting point for i in range(len(self.root_position_reward)): self.root_position_reward[i] = sum(root_positions[i][0:3]) self.rew_buf[:] = self.root_position_reward*pos_reward def is_done(self) -> None: # print("line 312") # These are the dying constaints. It dies if it is going in the wrong direction or starts flying ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 20.0, ones, die) die = torch.where(self.root_positions[..., 2] > 0.5, ones, die) # resets due to episode length self.reset_buf[:] = torch.where( self.progress_buf >= self._max_episode_length - 1, ones, die) # print("line 316") def simplifiy_angle(current_pos, turn_pos, velocity): while (abs(current_pos - turn_pos) > math.pi / 2): if(turn_pos>current_pos): turn_pos -= math.pi else: turn_pos += math.pi velocity *= -1 return turn_pos, velocity def calculate_turn_velocity(current_pos, turn_position): turningspeed = 5.0 setspeed = 0.0 if (current_pos > turn_position+(math.pi/90) or current_pos < turn_position-(math.pi/90)): setspeed = abs(turn_position-current_pos)/(math.pi/9) if (setspeed > turningspeed): setspeed = turningspeed if (turn_position < current_pos): setspeed *= -1 return setspeed
20,572
Python
46.18578
142
0.615545
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/tasks/swerve_multi_action_auton.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from swervesim.tasks.base.rl_task import RLTask from swervesim.robots.articulations.swerve import Swerve from swervesim.robots.articulations.views.swerve_view import SwerveView from swervesim.tasks.utils.usd_utils import set_drive from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.prims import RigidPrimView import numpy as np import torch import math class Swerve_Multi_Action_Task(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: # sets up the sim self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # limits max velocity of wheels and axles self.velocity_limit = 10 self.dt = 1 / 60 self.max_episode_length_s = self._task_cfg["env"]["episodeLength_s"] self._max_episode_length = int( self.max_episode_length_s / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] # for key in self.rew_scales.keys(): # self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._swerve_translation = torch.tensor([0.0, 0.0, 0.0]) self._env_spacing = self._task_cfg["env"]["envSpacing"] # Number of data points the policy is recieving self._num_observations = 29 # Number of data points the policy is producing self._num_actions = 8 # starting position of the swerve module self.swerve_position = torch.tensor([0, 0, 0]) # starting position of the target self._ball_position = torch.tensor([1, 1, 0]) self.swerve_initia_pos = [] RLTask.__init__(self, name, env) self.target_positions = torch.zeros( (self._num_envs, 3), device=self._device, dtype=torch.float32) # xyx of target position self.target_positions[:, 1] = 1 return # Adds all of the items to the stage def set_up_scene(self, scene) -> None: # Adds USD of swerve to stage self.get_swerve() # Adds ball to stage self.get_target() super().set_up_scene(scene) # Sets up articluation controller for swerve self._swerve = SwerveView( prim_paths_expr="/World/envs/.*/swerve", name="swerveview") # Allows for position tracking of targets self._balls = RigidPrimView( prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False) # Adds everything to the scene scene.add(self._swerve) for axle in self._swerve._axle: scene.add(axle) for wheel in self._swerve._wheel: scene.add(wheel) scene.add(self._swerve._base) scene.add(self._balls) # print("scene set up") return def get_swerve(self): # Adds swerve to env_0 and adds articulation controller swerve = Swerve(self.default_zero_env_path + "/swerve", "swerve", self._swerve_translation) self._sim_config.apply_articulation_settings("swerve", get_prim_at_path( swerve.prim_path), self._sim_config.parse_actor_config("swerve")) swerve = Swerve(self.default_zero_env_path + "/swerve", "swerve", self._swerve_translation) self._sim_config.apply_articulation_settings("swerve", get_prim_at_path( swerve.prim_path), self._sim_config.parse_actor_config("swerve")) def get_target(self): # Adds a red ball as target radius = 0.1 # meters color = torch.tensor([0, 0, 1]) ball = DynamicSphere( prim_path=self.default_zero_env_path + "/ball", translation=self._ball_position, name="target_0", radius=radius, color=color, ) self._sim_config.apply_articulation_settings("ball", get_prim_at_path( ball.prim_path), self._sim_config.parse_actor_config("ball")) ball.set_collision_enabled(False) def get_observations(self) -> dict: # Gets various positions and velocties to observations self.root_pos, self.root_rot = self._swerve.get_world_poses( clone=False) self.joint_velocities = self._swerve.get_joint_velocities() self.joint_positions = self._swerve.get_joint_positions() self.root_velocities = self._swerve.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 3:7] = root_quats self.obs_buf[..., 7:10] = root_linvels / 2 self.obs_buf[..., 10:13] = root_angvels / math.pi self.obs_buf[..., 13:21] = self.joint_velocities self.obs_buf[..., 21:29] = self.joint_positions # Should not exceed observation ssize declared earlier # An observation is created for each swerve in each environment observations = { self._swerve.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: # This is what sets the action for swerve reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero( as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) self.actions[:] = actions.clone().to(self._device) # Sets velocity for each wheel and axle within the velocity limits linear_x_cmd = torch.clamp( actions[:, 0:1] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) linear_y_cmd = torch.clamp( actions[:, 1:2] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) angular_cmd = torch.clamp( actions[:, 2:3] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) x_offset = 0.7366 radius = 0.1016 actionlist = [] for i in range(self.num_envs): action = [] # Compute Wheel Velocities and Positions a = linear_x_cmd[i] - angular_cmd[i] * x_offset / 2 b = linear_x_cmd[i] + angular_cmd[i] * x_offset / 2 c = linear_y_cmd[i] - angular_cmd[i] * x_offset / 2 d = linear_y_cmd[i] + angular_cmd[i] * x_offset / 2 # get current wheel positions front_left_current_pos = ( (self._swerve.get_joint_positions()[i][0])) front_right_current_pos = ( (self._swerve.get_joint_positions()[i][1])) rear_left_current_pos = ( (self._swerve.get_joint_positions()[i][2])) rear_right_current_pos = ( (self._swerve.get_joint_positions()[i][3])) front_left_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) front_right_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) rear_left_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) rear_right_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) front_left_position = math.atan2(b, d) front_right_position = math.atan2(b, c) rear_left_position = math.atan2(a, d) rear_right_position = math.atan2(a, c) # optimization front_left_position, front_left_velocity = simplifiy_angle( front_left_current_pos, front_left_position, front_left_velocity) front_right_position, front_right_velocity = simplifiy_angle( front_right_current_pos, front_right_position, front_right_velocity) rear_left_position, rear_left_velocity = simplifiy_angle( rear_left_current_pos, rear_left_position, rear_left_velocity) rear_right_position, rear_right_velocity = simplifiy_angle( rear_right_current_pos, rear_right_position, rear_right_velocity) # Set Wheel Positions # Has a 1 degree tolerance. Turns clockwise if less than, counter clockwise if greater than if (i == 1): print(f"front_left_position:{front_left_position}") print(f"rear_left_position:{rear_left_position}") action.append(calculate_turn_velocity(front_left_current_pos, front_left_position)) action.append(calculate_turn_velocity(front_right_current_pos, front_right_position)) action.append(calculate_turn_velocity(rear_left_current_pos, rear_left_position)) action.append(calculate_turn_velocity(rear_right_current_pos, rear_right_position)) sortlist=[front_left_velocity, front_right_velocity, rear_left_velocity, rear_right_velocity] maxs = abs(max(sortlist, key=abs)) if (maxs < 0.5): for num in sortlist: action.append(0.0) else: for num in sortlist: if (maxs != 0 and abs(maxs) > 10): # scales down velocty to max of 10 radians num = (num/abs(maxs))*10 # print(num) action.append(num) # print(len(action)) actionlist.append(action) # Sets robots velocities self._swerve.set_joint_velocities(torch.FloatTensor(actionlist)) def reset_idx(self, env_ids): # print("line 211") # For when the environment resets. This is great for randomization and increases the chances of a successful policy in the real world num_resets = len(env_ids) # Turns the wheels and axles -pi to pi radians self.dof_pos[env_ids, 1] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_pos[env_ids, 3] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float( 0, 0, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._swerve.set_joint_positions( self.dof_pos[env_ids], indices=env_ids) self._swerve.set_joint_velocities( self.dof_vel[env_ids], indices=env_ids) self._swerve.set_world_poses( root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._swerve.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 # print("line 249") def post_reset(self): # print("line 252") self.root_pos, self.root_rot = self._swerve.get_world_poses() self.root_velocities = self._swerve.get_velocities() self.dof_pos = self._swerve.get_joint_positions() self.dof_vel = self._swerve.get_joint_velocities() self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses() self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # initialize some data used later on self.extras = {} self.actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False ) self.last_dof_vel = torch.zeros( (self._num_envs, 12), dtype=torch.float, device=self._device, requires_grad=False) self.last_actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False) self.time_out_buf = torch.zeros_like(self.reset_buf) # randomize all envs indices = torch.arange( self._swerve.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (-20, 20) self.target_positions[envs_long, 0:2] = torch.rand( (num_sets, 2), device=self._device) * 20 - 1 self.target_positions[envs_long, 2] = 0.1 # print(self.target_positions) # shift the target up so it visually aligns better ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long] self._balls.set_world_poses( ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids) def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos # distance to target target_dist = torch.sqrt(torch.square( self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + 2.5 * target_dist * target_dist) self.target_dist = target_dist self.root_positions = root_positions self.root_position_reward = self.rew_buf # rewards for moving away form starting point for i in range(len(self.root_position_reward)): self.root_position_reward[i] = sum(root_positions[i][0:3]) self.rew_buf[:] = self.root_position_reward*pos_reward def is_done(self) -> None: # print("line 312") # These are the dying constaints. It dies if it is going in the wrong direction or starts flying ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 20.0, ones, die) die = torch.where(self.root_positions[..., 2] > 0.5, ones, die) # resets due to episode length self.reset_buf[:] = torch.where( self.progress_buf >= self._max_episode_length - 1, ones, die) # print("line 316") def simplifiy_angle(current_pos, turn_pos, velocity): while (abs(current_pos - turn_pos) > math.pi / 2): if(turn_pos>current_pos): turn_pos -= math.pi else: turn_pos += math.pi velocity *= -1 return turn_pos, velocity def calculate_turn_velocity(current_pos, turn_position): turningspeed = 5.0 setspeed = 0.0 if (current_pos > turn_position+(math.pi/90) or current_pos < turn_position-(math.pi/90)): setspeed = abs(turn_position-current_pos)/(math.pi/9) if (setspeed > turningspeed): setspeed = turningspeed if (turn_position < current_pos): setspeed *= -1 return setspeed
17,197
Python
42.319899
141
0.605338
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/tasks/swerve_with_kinematics.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from swervesim.tasks.base.rl_task import RLTask from swervesim.robots.articulations.swerve import Swerve from swervesim.robots.articulations.views.swerve_view import SwerveView from swervesim.tasks.utils.usd_utils import set_drive from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.prims import RigidPrimView import numpy as np import torch import math class Swerve_Kinematics_Task(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: # sets up the sim self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # limits max velocity of wheels and axles self.velocity_limit = 10 self.dt = 1 / 60 self.max_episode_length_s = self._task_cfg["env"]["episodeLength_s"] self._max_episode_length = int( self.max_episode_length_s / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] # for key in self.rew_scales.keys(): # self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._swerve_translation = torch.tensor([0.0, 0.0, 0.0]) self._env_spacing = self._task_cfg["env"]["envSpacing"] # Number of data points the policy is recieving self._num_observations = 29 # Number of data points the policy is producing self._num_actions = 8 # starting position of the swerve module self.swerve_position = torch.tensor([0, 0, 0]) # starting position of the target self._ball_position = torch.tensor([1, 1, 0]) self.swerve_initia_pos = [] RLTask.__init__(self, name, env) self.target_positions = torch.zeros( (self._num_envs, 3), device=self._device, dtype=torch.float32) # xyx of target position self.target_positions[:, 1] = 1 return # Adds all of the items to the stage def set_up_scene(self, scene) -> None: # Adds USD of swerve to stage self.get_swerve() # Adds ball to stage self.get_target() super().set_up_scene(scene) # Sets up articluation controller for swerve self._swerve = SwerveView( prim_paths_expr="/World/envs/.*/swerve", name="swerveview") # Allows for position tracking of targets self._balls = RigidPrimView( prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False) # Adds everything to the scene scene.add(self._swerve) for axle in self._swerve._axle: scene.add(axle) for wheel in self._swerve._wheel: scene.add(wheel) scene.add(self._swerve._base) scene.add(self._balls) # print("scene set up") return def get_swerve(self): # Adds swerve to env_0 and adds articulation controller swerve = Swerve(self.default_zero_env_path + "/swerve", "swerve", self._swerve_translation) self._sim_config.apply_articulation_settings("swerve", get_prim_at_path( swerve.prim_path), self._sim_config.parse_actor_config("swerve")) def get_target(self): # Adds a red ball as target radius = 0.1 # meters color = torch.tensor([0, 0, 1]) ball = DynamicSphere( prim_path=self.default_zero_env_path + "/ball", translation=self._ball_position, name="target_0", radius=radius, color=color, ) self._sim_config.apply_articulation_settings("ball", get_prim_at_path( ball.prim_path), self._sim_config.parse_actor_config("ball")) ball.set_collision_enabled(False) def get_observations(self) -> dict: # Gets various positions and velocties to observations self.root_pos, self.root_rot = self._swerve.get_world_poses( clone=False) self.joint_velocities = self._swerve.get_joint_velocities() self.joint_positions = self._swerve.get_joint_positions() self.root_velocities = self._swerve.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 3:7] = root_quats self.obs_buf[..., 7:10] = root_linvels / 2 self.obs_buf[..., 10:13] = root_angvels / math.pi self.obs_buf[..., 13:21] = self.joint_velocities self.obs_buf[..., 21:29] = self.joint_positions # Should not exceed observation ssize declared earlier # An observation is created for each swerve in each environment observations = { self._swerve.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: # This is what sets the action for swerve reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero( as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) self.actions[:] = actions.clone().to(self._device) # Sets velocity for each wheel and axle within the velocity limits linear_x_cmd = torch.clamp( actions[:, 0:1] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) linear_y_cmd = torch.clamp( actions[:, 1:2] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) angular_cmd = torch.clamp( actions[:, 2:3] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) x_offset = 0.7366 radius = 0.1016 actionlist = [] for i in range(self.num_envs): action = [] # Compute Wheel Velocities and Positions a = linear_x_cmd[i] - angular_cmd[i] * x_offset / 2 b = linear_x_cmd[i] + angular_cmd[i] * x_offset / 2 c = linear_y_cmd[i] - angular_cmd[i] * x_offset / 2 d = linear_y_cmd[i] + angular_cmd[i] * x_offset / 2 # get current wheel positions front_left_current_pos = ( (self._swerve.get_joint_positions()[i][0])) front_right_current_pos = ( (self._swerve.get_joint_positions()[i][1])) rear_left_current_pos = ( (self._swerve.get_joint_positions()[i][2])) rear_right_current_pos = ( (self._swerve.get_joint_positions()[i][3])) front_left_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) front_right_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) rear_left_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) rear_right_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) front_left_position = math.atan2(b, d) front_right_position = math.atan2(b, c) rear_left_position = math.atan2(a, d) rear_right_position = math.atan2(a, c) # optimization front_left_position, front_left_velocity = simplifiy_angle( front_left_current_pos, front_left_position, front_left_velocity) front_right_position, front_right_velocity = simplifiy_angle( front_right_current_pos, front_right_position, front_right_velocity) rear_left_position, rear_left_velocity = simplifiy_angle( rear_left_current_pos, rear_left_position, rear_left_velocity) rear_right_position, rear_right_velocity = simplifiy_angle( rear_right_current_pos, rear_right_position, rear_right_velocity) # Set Wheel Positions # Has a 1 degree tolerance. Turns clockwise if less than, counter clockwise if greater than if (i == 1): print(f"front_left_position:{front_left_position}") print(f"rear_left_position:{rear_left_position}") action.append(calculate_turn_velocity(front_left_current_pos, front_left_position)) action.append(calculate_turn_velocity(front_right_current_pos, front_right_position)) action.append(calculate_turn_velocity(rear_left_current_pos, rear_left_position)) action.append(calculate_turn_velocity(rear_right_current_pos, rear_right_position)) sortlist=[front_left_velocity, front_right_velocity, rear_left_velocity, rear_right_velocity] maxs = abs(max(sortlist, key=abs)) if (maxs < 0.5): for num in sortlist: action.append(0.0) else: for num in sortlist: if (maxs != 0 and abs(maxs) > 10): # scales down velocty to max of 10 radians num = (num/abs(maxs))*10 # print(num) action.append(num) # print(len(action)) actionlist.append(action) # Sets robots velocities self._swerve.set_joint_velocities(torch.FloatTensor(actionlist)) def reset_idx(self, env_ids): # print("line 211") # For when the environment resets. This is great for randomization and increases the chances of a successful policy in the real world num_resets = len(env_ids) # Turns the wheels and axles -pi to pi radians self.dof_pos[env_ids, 1] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_pos[env_ids, 3] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float( 0, 0, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._swerve.set_joint_positions( self.dof_pos[env_ids], indices=env_ids) self._swerve.set_joint_velocities( self.dof_vel[env_ids], indices=env_ids) self._swerve.set_world_poses( root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._swerve.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 # print("line 249") def post_reset(self): # print("line 252") self.root_pos, self.root_rot = self._swerve.get_world_poses() self.root_velocities = self._swerve.get_velocities() self.dof_pos = self._swerve.get_joint_positions() self.dof_vel = self._swerve.get_joint_velocities() self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses() self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # initialize some data used later on self.extras = {} self.actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False ) self.last_dof_vel = torch.zeros( (self._num_envs, 12), dtype=torch.float, device=self._device, requires_grad=False) self.last_actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False) self.time_out_buf = torch.zeros_like(self.reset_buf) # randomize all envs indices = torch.arange( self._swerve.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (-20, 20) self.target_positions[envs_long, 0:2] = torch.rand( (num_sets, 2), device=self._device) * 20 - 1 self.target_positions[envs_long, 2] = 0.1 # print(self.target_positions) # shift the target up so it visually aligns better ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long] self._balls.set_world_poses( ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids) def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos # distance to target target_dist = torch.sqrt(torch.square( self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + 2.5 * target_dist * target_dist) self.target_dist = target_dist self.root_positions = root_positions self.root_position_reward = self.rew_buf # rewards for moving away form starting point for i in range(len(self.root_position_reward)): self.root_position_reward[i] = sum(root_positions[i][0:3]) self.rew_buf[:] = self.root_position_reward*pos_reward def is_done(self) -> None: # print("line 312") # These are the dying constaints. It dies if it is going in the wrong direction or starts flying ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 20.0, ones, die) die = torch.where(self.root_positions[..., 2] > 0.5, ones, die) # resets due to episode length self.reset_buf[:] = torch.where( self.progress_buf >= self._max_episode_length - 1, ones, die) # print("line 316") def simplifiy_angle(current_pos, turn_pos, velocity): while (abs(current_pos - turn_pos) > math.pi / 2): if(turn_pos>current_pos): turn_pos -= math.pi else: turn_pos += math.pi velocity *= -1 return turn_pos, velocity def calculate_turn_velocity(current_pos, turn_position): turningspeed = 5.0 setspeed = 0.0 if (current_pos > turn_position+(math.pi/90) or current_pos < turn_position-(math.pi/90)): setspeed = abs(turn_position-current_pos)/(math.pi/9) if (setspeed > turningspeed): setspeed = turningspeed if (turn_position < current_pos): setspeed *= -1 return setspeed
16,912
Python
42.035623
141
0.605251
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/tasks/swerve.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from swervesim.tasks.base.rl_task import RLTask from swervesim.robots.articulations.swerve import Swerve from swervesim.robots.articulations.views.swerve_view import SwerveView from swervesim.tasks.utils.usd_utils import set_drive from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.prims import RigidPrimView import numpy as np import torch import math class Swerve_Task(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: # sets up the sim self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # limits max velocity of wheels and axles self.velocity_limit = 10 self.dt = 1 / 60 self.max_episode_length_s = self._task_cfg["env"]["episodeLength_s"] self._max_episode_length = int( self.max_episode_length_s / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] # for key in self.rew_scales.keys(): # self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._swerve_translation = torch.tensor([0.0, 0.0, 0.0]) self._env_spacing = self._task_cfg["env"]["envSpacing"] # Number of data points the policy is recieving self._num_observations = 29 # Number of data points the policy is producing self._num_actions = 8 # starting position of the swerve module self.swerve_position = torch.tensor([0, 0, 0]) # starting position of the target self._ball_position = torch.tensor([1, 1, 0]) self.swerve_initia_pos = [] RLTask.__init__(self, name, env) self.target_positions = torch.zeros( (self._num_envs, 3), device=self._device, dtype=torch.float32) # xyx of target position self.target_positions[:, 1] = 1 return # Adds all of the items to the stage def set_up_scene(self, scene) -> None: # Adds USD of swerve to stage self.get_swerve() # Adds ball to stage self.get_target() super().set_up_scene(scene) # Sets up articluation controller for swerve self._swerve = SwerveView( prim_paths_expr="/World/envs/.*/swerve", name="swerveview") # Allows for position tracking of targets self._balls = RigidPrimView( prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False) # Adds everything to the scene scene.add(self._swerve) for axle in self._swerve._axle: scene.add(axle) for wheel in self._swerve._wheel: scene.add(wheel) scene.add(self._swerve._base) scene.add(self._balls) # print("scene set up") return def get_swerve(self): # Adds swerve to env_0 and adds articulation controller swerve = Swerve(self.default_zero_env_path + "/swerve", "swerve", self._swerve_translation) self._sim_config.apply_articulation_settings("swerve", get_prim_at_path( swerve.prim_path), self._sim_config.parse_actor_config("swerve")) def get_target(self): # Adds a red ball as target radius = 0.1 # meters color = torch.tensor([0, 0, 1]) ball = DynamicSphere( prim_path=self.default_zero_env_path + "/ball", translation=self._ball_position, name="target_0", radius=radius, color=color, ) self._sim_config.apply_articulation_settings("ball", get_prim_at_path( ball.prim_path), self._sim_config.parse_actor_config("ball")) ball.set_collision_enabled(False) def get_observations(self) -> dict: # Gets various positions and velocties to observations self.root_pos, self.root_rot = self._swerve.get_world_poses( clone=False) self.joint_velocities = self._swerve.get_joint_velocities() self.joint_positions = self._swerve.get_joint_positions() self.root_velocities = self._swerve.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 3:7] = root_quats self.obs_buf[..., 7:10] = root_linvels / 2 self.obs_buf[..., 10:13] = root_angvels / math.pi self.obs_buf[..., 13:21] = self.joint_velocities self.obs_buf[..., 21:29] = self.joint_positions # Should not exceed observation ssize declared earlier # An observation is created for each swerve in each environment observations = { self._swerve.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: # This is what sets the action for swerve reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero( as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) self.actions[:] = actions.clone().to(self._device) # Sets velocity for each wheel and axle within the velocity limits linear_x_cmd = torch.clamp( actions[:, 0:1] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) linear_y_cmd = torch.clamp( actions[:, 1:2] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) angular_cmd = torch.clamp( actions[:, 2:3] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) x_offset = 0.7366 radius = 0.1016 actionlist = [] for i in range(self.num_envs): action = [] # Compute Wheel Velocities and Positions a = linear_x_cmd[i] - angular_cmd[i] * x_offset / 2 b = linear_x_cmd[i] + angular_cmd[i] * x_offset / 2 c = linear_y_cmd[i] - angular_cmd[i] * x_offset / 2 d = linear_y_cmd[i] + angular_cmd[i] * x_offset / 2 # get current wheel positions front_left_current_pos = ( (self._swerve.get_joint_positions()[i][0])) front_right_current_pos = ( (self._swerve.get_joint_positions()[i][1])) rear_left_current_pos = ( (self._swerve.get_joint_positions()[i][2])) rear_right_current_pos = ( (self._swerve.get_joint_positions()[i][3])) front_left_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) front_right_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) rear_left_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) rear_right_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) front_left_position = math.atan2(b, d) front_right_position = math.atan2(b, c) rear_left_position = math.atan2(a, d) rear_right_position = math.atan2(a, c) # optimization front_left_position, front_left_velocity = simplifiy_angle( front_left_current_pos, front_left_position, front_left_velocity) front_right_position, front_right_velocity = simplifiy_angle( front_right_current_pos, front_right_position, front_right_velocity) rear_left_position, rear_left_velocity = simplifiy_angle( rear_left_current_pos, rear_left_position, rear_left_velocity) rear_right_position, rear_right_velocity = simplifiy_angle( rear_right_current_pos, rear_right_position, rear_right_velocity) # Set Wheel Positions # Has a 1 degree tolerance. Turns clockwise if less than, counter clockwise if greater than if (i == 1): print(f"front_left_position:{front_left_position}") print(f"rear_left_position:{rear_left_position}") action.append(calculate_turn_velocity(front_left_current_pos, front_left_position)) action.append(calculate_turn_velocity(front_right_current_pos, front_right_position)) action.append(calculate_turn_velocity(rear_left_current_pos, rear_left_position)) action.append(calculate_turn_velocity(rear_right_current_pos, rear_right_position)) sortlist=[front_left_velocity, front_right_velocity, rear_left_velocity, rear_right_velocity] maxs = abs(max(sortlist, key=abs)) if (maxs < 0.5): for num in sortlist: action.append(0.0) else: for num in sortlist: if (maxs != 0 and abs(maxs) > 10): # scales down velocty to max of 10 radians num = (num/abs(maxs))*10 # print(num) action.append(num) # print(len(action)) actionlist.append(action) # Sets robots velocities self._swerve.set_joint_velocities(torch.FloatTensor(actionlist)) def reset_idx(self, env_ids): # print("line 211") # For when the environment resets. This is great for randomization and increases the chances of a successful policy in the real world num_resets = len(env_ids) # Turns the wheels and axles -pi to pi radians self.dof_pos[env_ids, 1] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_pos[env_ids, 3] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float( 0, 0, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._swerve.set_joint_positions( self.dof_pos[env_ids], indices=env_ids) self._swerve.set_joint_velocities( self.dof_vel[env_ids], indices=env_ids) self._swerve.set_world_poses( root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._swerve.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 # print("line 249") def post_reset(self): # print("line 252") self.root_pos, self.root_rot = self._swerve.get_world_poses() self.root_velocities = self._swerve.get_velocities() self.dof_pos = self._swerve.get_joint_positions() self.dof_vel = self._swerve.get_joint_velocities() self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses() self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # initialize some data used later on self.extras = {} self.actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False ) self.last_dof_vel = torch.zeros( (self._num_envs, 12), dtype=torch.float, device=self._device, requires_grad=False) self.last_actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False) self.time_out_buf = torch.zeros_like(self.reset_buf) # randomize all envs indices = torch.arange( self._swerve.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (-20, 20) self.target_positions[envs_long, 0:2] = torch.rand( (num_sets, 2), device=self._device) * 20 - 1 self.target_positions[envs_long, 2] = 0.1 # print(self.target_positions) # shift the target up so it visually aligns better ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long] self._balls.set_world_poses( ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids) def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos # distance to target target_dist = torch.sqrt(torch.square( self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + 2.5 * target_dist * target_dist) self.target_dist = target_dist self.root_positions = root_positions self.root_position_reward = self.rew_buf # rewards for moving away form starting point for i in range(len(self.root_position_reward)): self.root_position_reward[i] = sum(root_positions[i][0:3]) self.rew_buf[:] = self.root_position_reward*pos_reward def is_done(self) -> None: # print("line 312") # These are the dying constaints. It dies if it is going in the wrong direction or starts flying ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 20.0, ones, die) die = torch.where(self.root_positions[..., 2] > 0.5, ones, die) # resets due to episode length self.reset_buf[:] = torch.where( self.progress_buf >= self._max_episode_length - 1, ones, die) # print("line 316") def simplifiy_angle(current_pos, turn_pos, velocity): while (abs(current_pos - turn_pos) > math.pi / 2): if(turn_pos>current_pos): turn_pos -= math.pi else: turn_pos += math.pi velocity *= -1 return turn_pos, velocity def calculate_turn_velocity(current_pos, turn_position): turningspeed = 5.0 setspeed = 0.0 if (current_pos > turn_position+(math.pi/90) or current_pos < turn_position-(math.pi/90)): setspeed = abs(turn_position-current_pos)/(math.pi/9) if (setspeed > turningspeed): setspeed = turningspeed if (turn_position < current_pos): setspeed *= -1 return setspeed
16,901
Python
42.007633
141
0.605053
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/tasks/swerve_charge_station.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from swervesim.tasks.base.rl_task import RLTask from swervesim.robots.articulations.swerve import Swerve from swervesim.robots.articulations.views.swerve_view import SwerveView from swervesim.robots.articulations.views.charge_station_view import ChargeStationView from swervesim.tasks.utils.usd_utils import set_drive from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.articulations import Articulation from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.utils.stage import add_reference_to_stage import numpy as np import torch import math from shapely.geometry import Polygon class Swerve_Charge_Station_Task(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: # sets up the sim self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # limits max velocity of wheels and axles self.velocity_limit = 10*math.pi self.dt = 1 / 10 self.dt_total = 0.0 self.max_episode_length_s = self._task_cfg["env"]["episodeLength_s"] self._max_episode_length = int( self.max_episode_length_s / self.dt) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] # for key in self.rew_scales.keys(): # self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._swerve_translation = torch.tensor([0.0, 0.0, 0.0]) self._env_spacing = self._task_cfg["env"]["envSpacing"] # Number of data points the policy is recieving self._num_observations = 37 # Number of data points the policy is producing self._num_actions = 8 # starting position of the swerve module self.swerve_position = torch.tensor([0, 0, 0]) # starting position of the target self._chargestation_part_1_position = torch.tensor([1, 1, 0]) self.swerve_initia_pos = [] RLTask.__init__(self, name, env) self.target_positions = torch.zeros( (self._num_envs, 3), device=self._device, dtype=torch.float32) # xyx of target position self.target_rotation = torch.zeros( (self._num_envs, 4), device=self._device, dtype=torch.float32) #ypr self.target_positions[:, 1] = 1 return # Adds all of the items to the stage def set_up_scene(self, scene) -> None: # Adds USD of swerve to stage self.get_swerve() # Adds ball to stage self.get_charge_station() super().set_up_scene(scene) # Sets up articluation controller for swerve self._swerve = SwerveView( prim_paths_expr="/World/envs/.*/swerve", name="swerveview") self._charge_station= ChargeStationView(prim_paths_expr="/World/envs/.*/ChargeStation", name="ChargeStation_1_view") # Allows for position tracking of targets # Adds everything to the scene scene.add(self._swerve) for axle in self._swerve._axle: scene.add(axle) for wheel in self._swerve._wheel: scene.add(wheel) scene.add(self._swerve._base) scene.add(self._charge_station) # print("scene set up") return def get_swerve(self): # Adds swerve to env_0 and adds articulation controller swerve = Swerve(self.default_zero_env_path + "/swerve", "swerve", self._swerve_translation) self._sim_config.apply_articulation_settings("swerve", get_prim_at_path( swerve.prim_path), self._sim_config.parse_actor_config("swerve")) def get_charge_station(self): chargestation = "/root/edna/isaac/assets/ChargeStation-Copy/Assembly-1.usd" add_reference_to_stage(chargestation, self.default_zero_env_path+"/ChargeStation") charge_station_1 = Articulation(prim_path=self.default_zero_env_path+"/ChargeStation",name="ChargeStation") self._sim_config.apply_articulation_settings("ChargeStation", get_prim_at_path( charge_station_1.prim_path), self._sim_config.parse_actor_config("ChargeStation")) def get_observations(self) -> dict: # Gets various positions and velocties to observations self.root_pos, self.root_rot = self._swerve.get_world_poses(clone=False) self.joint_velocities = self._swerve.get_joint_velocities() self.joint_positions = self._swerve.get_joint_positions() self.charge_station_pos, self.charge_station_rot = self._charge_station.get_world_poses(clone=False) self.chargestation_vertices = torch.zeros( (self._num_envs, 8), device=self._device, dtype=torch.float32) #ypr charge_station_pos = self.charge_station_pos - self._env_pos for i in range(len(self.charge_station_pos)): w=self.charge_station_rot[i][0] x=self.charge_station_rot[i][1] y=self.charge_station_rot[i][2] z=self.charge_station_rot[i][3] # print(f"x:{x} y:{y} z:{z} w:{w}") siny_cosp = 2 * (w * z + x * y) cosy_cosp = 1 - 2 * (y * y + z * z) angle = math.atan2(siny_cosp, cosy_cosp) self.chargestation_vertices[i][0] , self.chargestation_vertices[i][1] = findB(charge_station_pos[i][0],charge_station_pos[i][1],math.pi-angle) self.chargestation_vertices[i][2] , self.chargestation_vertices[i][3] = findB(charge_station_pos[i][0],charge_station_pos[i][1],angle) self.chargestation_vertices[i][4] , self.chargestation_vertices[i][5] = findB(charge_station_pos[i][0],charge_station_pos[i][1],(2*math.pi)-angle) self.chargestation_vertices[i][6] , self.chargestation_vertices[i][7] = findB(charge_station_pos[i][0],charge_station_pos[i][1],angle+math.pi) self.root_velocities = self._swerve.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = (root_positions) / 3 self.obs_buf[..., 3:7] = root_quats self.obs_buf[..., 7:10] = root_linvels / 2 self.obs_buf[..., 10:13] = root_angvels / math.pi self.obs_buf[..., 13:21] = self.joint_velocities self.obs_buf[..., 21:29] = self.joint_positions self.obs_buf[..., 29:37] = self.chargestation_vertices # Should not exceed observation ssize declared earlier # An observation is created for each swerve in each environment observations = { self._swerve.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: # This is what sets the action for swerve reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero( as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) self.actions[:] = actions.clone().to(self._device) # Sets velocity for each wheel and axle within the velocity limits linear_x_cmd = torch.clamp( actions[:, 0:1] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) linear_y_cmd = torch.clamp( actions[:, 1:2] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) angular_cmd = torch.clamp( actions[:, 2:3] * self.velocity_limit, -self.velocity_limit, self.velocity_limit) x_offset = 0.7366 radius = 0.1016 actionlist = [] for i in range(self.num_envs): action = [] # Compute Wheel Velocities and Positions a = linear_x_cmd[i] - angular_cmd[i] * x_offset / 2 b = linear_x_cmd[i] + angular_cmd[i] * x_offset / 2 c = linear_y_cmd[i] - angular_cmd[i] * x_offset / 2 d = linear_y_cmd[i] + angular_cmd[i] * x_offset / 2 # get current wheel positions front_left_current_pos = ( (self._swerve.get_joint_positions()[i][0])) front_right_current_pos = ( (self._swerve.get_joint_positions()[i][1])) rear_left_current_pos = ( (self._swerve.get_joint_positions()[i][2])) rear_right_current_pos = ( (self._swerve.get_joint_positions()[i][3])) front_left_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) front_right_velocity = ( math.sqrt(math.pow(b, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) rear_left_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(d, 2)))*(1/(radius*math.pi)) rear_right_velocity = ( math.sqrt(math.pow(a, 2) + math.pow(c, 2)))*(1/(radius*math.pi)) front_left_position = math.atan2(b, d) front_right_position = math.atan2(b, c) rear_left_position = math.atan2(a, d) rear_right_position = math.atan2(a, c) # optimization front_left_position, front_left_velocity = simplifiy_angle( front_left_current_pos, front_left_position, front_left_velocity) front_right_position, front_right_velocity = simplifiy_angle( front_right_current_pos, front_right_position, front_right_velocity) rear_left_position, rear_left_velocity = simplifiy_angle( rear_left_current_pos, rear_left_position, rear_left_velocity) rear_right_position, rear_right_velocity = simplifiy_angle( rear_right_current_pos, rear_right_position, rear_right_velocity) # Set Wheel Positions # Has a 1 degree tolerance. Turns clockwise if less than, counter clockwise if greater than # if (i == 1): # print(f"front_left_position:{front_left_position}") # print(f"rear_left_position:{rear_left_position}") action.append(calculate_turn_velocity(front_left_current_pos, front_left_position)) action.append(calculate_turn_velocity(front_right_current_pos, front_right_position)) action.append(calculate_turn_velocity(rear_left_current_pos, rear_left_position)) action.append(calculate_turn_velocity(rear_right_current_pos, rear_right_position)) sortlist=[front_left_velocity, front_right_velocity, rear_left_velocity, rear_right_velocity] maxs = abs(max(sortlist, key=abs)) if (maxs < 0.5): for num in sortlist: action.append(0.0) else: for num in sortlist: if (maxs != 0 and abs(maxs) > 10): # scales down velocty to max of 10 radians num = (num/abs(maxs))*10 # print(num) action.append(num) # print(len(action)) actionlist.append(action) # Sets robots velocities self._swerve.set_joint_velocities(torch.FloatTensor(actionlist)) def reset_idx(self, env_ids): # print("line 211") # For when the environment resets. This is great for randomization and increases the chances of a successful policy in the real world num_resets = len(env_ids) # Turns the wheels and axles -pi to pi radians self.dof_pos[env_ids, 1] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_pos[env_ids, 3] = torch_rand_float( -math.pi, math.pi, (num_resets, 1), device=self._device).squeeze() self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float( 0, 0, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._swerve.set_joint_positions( self.dof_pos[env_ids], indices=env_ids) self._swerve.set_joint_velocities( self.dof_vel[env_ids], indices=env_ids) self._swerve.set_world_poses( root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._swerve.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.dt_total = 0 # print("line 249") def post_reset(self): # print("line 252") self.root_pos, self.root_rot = self._swerve.get_world_poses() self.root_velocities = self._swerve.get_velocities() self.dof_pos = self._swerve.get_joint_positions() self.dof_vel = self._swerve.get_joint_velocities() self.initial_charge_station_pos, self.initial_charge_station_rot = self._charge_station.get_world_poses() self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # initialize some data used later on self.extras = {} self.actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False ) self.last_dof_vel = torch.zeros( (self._num_envs, 12), dtype=torch.float, device=self._device, requires_grad=False) self.last_actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False) self.time_out_buf = torch.zeros_like(self.reset_buf) # randomize all envs indices = torch.arange( self._swerve.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (-8, 8) self.target_positions[envs_long, 0:2] = torch.rand( (num_sets, 2), device=self._device) * 8 - 1 self.target_rotation[envs_long, 0]= 0 self.target_rotation[envs_long, 1]= torch.rand((num_sets), device=self._device) # self.target_rotation = self.target_rotation[envs_long]+self.initial_charge_station_rot[envs_long] self.target_rotation[envs_long, 2]= 1 self.target_rotation[envs_long, 3] = 0# self.target_positions[envs_long,2] = 0 # print(self.target_positions) # shift the target up so it visually aligns better charge_station_pos = self.target_positions[envs_long] + self._env_pos[envs_long] # print(self.initial_charge_station_rot) # print(self.target_rotation) self._charge_station.set_world_poses( charge_station_pos[:, 0:3], self.target_rotation[envs_long].clone(), indices=env_ids) def calculate_metrics(self) -> None: self.dt_total += self.dt root_positions = self.root_pos - self._env_pos # distance to target target_dist = torch.sqrt(torch.square( self.target_positions - root_positions).sum(-1)) charge_station_score = in_charge_station(self.chargestation_vertices,self._swerve.get_axle_positions(), self._device) balance_reward = torch.mul(self._charge_station.if_balanced(self._device)[0],charge_station_score[:])*100 # print(f"shape_balance:{balance_reward.shape}") # print(charge_station_score.tolist()) pos_reward = 1.0 / (1.0 + 2.5 * target_dist * target_dist) self.target_dist = target_dist self.root_positions = root_positions self.root_position_reward = torch.zeros_like(self.rew_buf) # rewards for moving away form starting point # for i in range(len(self.root_position_reward)): # self.root_position_reward[i] = sum(root_positions[i][0:3]) self.root_position_reward = torch.tensor([sum(i[0:3]) for i in root_positions], device=self._device) # print(f"shape_numerator:{numerator.shape}") numerator = self.root_position_reward*pos_reward+balance_reward self.rew_buf[:] = torch.div(numerator,1+self.dt_total) print('REWARDS: ', torch.div(numerator,1+self.dt_total)) def is_done(self) -> None: # print("line 312") # These are the dying constaints. It dies if it is going in the wrong direction or starts flying ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 20.0, ones, die) die = torch.where(self.root_positions[..., 2] > 0.5, ones, die) # die = torch.where(abs(math.atan2(2*self.root_rot[..., 2]*self.root_rot[..., 0] - 2*self.root_rot[1]*self.root_rot[..., 3], 1 - 2*self.root_rot[..., 2]*self.root_rot[..., 2] - 2*self.root_rot[..., 3]*self.root_rot[..., 3])) > math.pi/2, ones, die) # resets due to episode length self.reset_buf[:] = torch.where( self.progress_buf >= self._max_episode_length - 1, ones, die) # print("line 316") def simplifiy_angle(current_pos, turn_pos, velocity): while (abs(current_pos - turn_pos) > math.pi / 2): if(turn_pos>current_pos): turn_pos -= math.pi else: turn_pos += math.pi velocity *= -1 return turn_pos, velocity def calculate_turn_velocity(current_pos, turn_position): turningspeed = 5.0 setspeed = 0.0 if (current_pos > turn_position+(math.pi/90) or current_pos < turn_position-(math.pi/90)): setspeed = abs(turn_position-current_pos)/(math.pi/9) if (setspeed > turningspeed): setspeed = turningspeed if (turn_position < current_pos): setspeed *= -1 return setspeed def findB(Cx,Cy, angle_change,angle_init=0.463647609,r=1.363107039084): L= angle_init*r if(angle_change < 0): angle_init -= angle_change else: angle_init += angle_change Bx = Cx + r*math.cos(angle_init) By = Cy + r*math.sin(angle_init) return Bx, By def in_charge_station(charge_station_verticies,axle_position, device): if_in_chargestation = torch.tensor([check_point_2(i, j) for i, j in zip(charge_station_verticies, axle_position)], device=device) return if_in_chargestation def check_point(r,m): def dot(a, b): return a[0]*b[0] + a[1]*b[1] # print(len(m)) for i in range(4): AB = [r[3]-r[1],r[2]-r[0]] AM = [m[3*i]-r[1],m[3*i + 1]-r[0]] BC = [r[5]-r[3],r[4]-r[2]] BM = [m[3*i]-r[3],m[3*i + 1]-r[2]] dotABAM = dot(AB, AM) dotABAB = dot(AB, AB) dotBCBC = dot(BC, BC) dotBCBM = dot(BC, BM) out = 0 <= dotABAM and dotABAM <= dotABAB and 0 <= dotBCBM and dotBCBM <= dotBCBC if out == False: return 0.0 return 1.0 def check_point_2(r, m): charge_station = Polygon([(r[0], r[1]), (r[2], r[3]), (r[4], r[5]), (r[6], r[7])]) swerve = Polygon([(m[0], m[1]), (m[4], m[5]), (m[7], m[8]), (m[10], m[11])]) if charge_station.contains(swerve): return 1.0 return 0.0
21,513
Python
44.484144
256
0.611119
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/tasks/base/rl_task.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import abstractmethod import numpy as np import torch from gym import spaces from omni.isaac.core.tasks import BaseTask from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.utils.prims import define_prim from omni.isaac.cloner import GridCloner from swervesim.tasks.utils.usd_utils import create_distant_light from swervesim.utils.domain_randomization.randomize import Randomizer import omni.kit from omni.kit.viewport.utility.camera_state import ViewportCameraState from omni.kit.viewport.utility import get_viewport_from_window_name from pxr import Gf class RLTask(BaseTask): """ This class provides a PyTorch RL-specific interface for setting up RL tasks. It includes utilities for setting up RL task related parameters, cloning environments, and data collection for RL algorithms. """ def __init__(self, name, env, offset=None) -> None: """ Initializes RL parameters, cloner object, and buffers. Args: name (str): name of the task. env (VecEnvBase): an instance of the environment wrapper class to register task. offset (Optional[np.ndarray], optional): offset applied to all assets of the task. Defaults to None. """ super().__init__(name=name, offset=offset) self.test = self._cfg["test"] self._device = self._cfg["sim_device"] self._dr_randomizer = Randomizer(self._sim_config) print("Task Device:", self._device) self.randomize_actions = False self.randomize_observations = False self.clip_obs = self._cfg["task"]["env"].get("clipObservations", np.Inf) self.clip_actions = self._cfg["task"]["env"].get("clipActions", np.Inf) self.rl_device = self._cfg.get("rl_device", "cuda:0") self.control_frequency_inv = self._cfg["task"]["env"].get("controlFrequencyInv", 1) print("RL device: ", self.rl_device) self._env = env if not hasattr(self, "_num_agents"): self._num_agents = 1 # used for multi-agent environments if not hasattr(self, "_num_states"): self._num_states = 0 # initialize data spaces (defaults to gym.Box) if not hasattr(self, "action_space"): self.action_space = spaces.Box(np.ones(self.num_actions) * -1.0, np.ones(self.num_actions) * 1.0) if not hasattr(self, "observation_space"): self.observation_space = spaces.Box(np.ones(self.num_observations) * -np.Inf, np.ones(self.num_observations) * np.Inf) if not hasattr(self, "state_space"): self.state_space = spaces.Box(np.ones(self.num_states) * -np.Inf, np.ones(self.num_states) * np.Inf) self._cloner = GridCloner(spacing=self._env_spacing) self._cloner.define_base_env(self.default_base_env_path) define_prim(self.default_zero_env_path) self.cleanup() def cleanup(self) -> None: """ Prepares torch buffers for RL data collection.""" # prepare tensors self.obs_buf = torch.zeros((self._num_envs, self.num_observations), device=self._device, dtype=torch.float) self.states_buf = torch.zeros((self._num_envs, self.num_states), device=self._device, dtype=torch.float) self.rew_buf = torch.zeros(self._num_envs, device=self._device, dtype=torch.float) self.reset_buf = torch.ones(self._num_envs, device=self._device, dtype=torch.long) self.progress_buf = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.extras = {} def set_up_scene(self, scene, replicate_physics=True) -> None: """ Clones environments based on value provided in task config and applies collision filters to mask collisions across environments. Args: scene (Scene): Scene to add objects to. replicate_physics (bool): Clone physics using PhysX API for better performance """ super().set_up_scene(scene) collision_filter_global_paths = list() if self._sim_config.task_config["sim"].get("add_ground_plane", True): self._ground_plane_path = "/World/defaultGroundPlane" collision_filter_global_paths.append(self._ground_plane_path) scene.add_default_ground_plane(prim_path=self._ground_plane_path) prim_paths = self._cloner.generate_paths("/World/envs/env", self._num_envs) self._env_pos = self._cloner.clone(source_prim_path="/World/envs/env_0", prim_paths=prim_paths, replicate_physics=replicate_physics) self._env_pos = torch.tensor(np.array(self._env_pos), device=self._device, dtype=torch.float) self._cloner.filter_collisions( self._env._world.get_physics_context().prim_path, "/World/collisions", prim_paths, collision_filter_global_paths) self.set_initial_camera_params(camera_position=[10, 10, 3], camera_target=[0, 0, 0]) if self._sim_config.task_config["sim"].get("add_distant_light", True): create_distant_light() def set_initial_camera_params(self, camera_position=[10, 10, 3], camera_target=[0, 0, 0]): if self._env._render: viewport_api_2 = get_viewport_from_window_name("Viewport") viewport_api_2.set_active_camera("/OmniverseKit_Persp") camera_state = ViewportCameraState("/OmniverseKit_Persp", viewport_api_2) camera_state.set_position_world(Gf.Vec3d(camera_position[0], camera_position[1], camera_position[2]), True) camera_state.set_target_world(Gf.Vec3d(camera_target[0], camera_target[1], camera_target[2]), True) @property def default_base_env_path(self): """ Retrieves default path to the parent of all env prims. Returns: default_base_env_path(str): Defaults to "/World/envs". """ return "/World/envs" @property def default_zero_env_path(self): """ Retrieves default path to the first env prim (index 0). Returns: default_zero_env_path(str): Defaults to "/World/envs/env_0". """ return f"{self.default_base_env_path}/env_0" @property def num_envs(self): """ Retrieves number of environments for task. Returns: num_envs(int): Number of environments. """ return self._num_envs @property def num_actions(self): """ Retrieves dimension of actions. Returns: num_actions(int): Dimension of actions. """ return self._num_actions @property def num_observations(self): """ Retrieves dimension of observations. Returns: num_observations(int): Dimension of observations. """ return self._num_observations @property def num_states(self): """ Retrieves dimesion of states. Returns: num_states(int): Dimension of states. """ return self._num_states @property def num_agents(self): """ Retrieves number of agents for multi-agent environments. Returns: num_agents(int): Dimension of states. """ return self._num_agents def get_states(self): """ API for retrieving states buffer, used for asymmetric AC training. Returns: states_buf(torch.Tensor): States buffer. """ return self.states_buf def get_extras(self): """ API for retrieving extras data for RL. Returns: extras(dict): Dictionary containing extras data. """ return self.extras def reset(self): """ Flags all environments for reset. """ self.reset_buf = torch.ones_like(self.reset_buf) def pre_physics_step(self, actions): """ Optionally implemented by individual task classes to process actions. Args: actions (torch.Tensor): Actions generated by RL policy. """ pass def post_physics_step(self): """ Processes RL required computations for observations, states, rewards, resets, and extras. Also maintains progress buffer for tracking step count per environment. Returns: obs_buf(torch.Tensor): Tensor of observation data. rew_buf(torch.Tensor): Tensor of rewards data. reset_buf(torch.Tensor): Tensor of resets/dones data. extras(dict): Dictionary of extras data. """ self.progress_buf[:] += 1 if self._env._world.is_playing(): self.get_observations() self.get_states() self.calculate_metrics() self.is_done() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
10,338
Python
39.073643
140
0.653705
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/tasks/utils/anymal_terrain_generator.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import torch import math from swervesim.utils.terrain_utils.terrain_utils import * # terrain generator class Terrain: def __init__(self, cfg, num_robots) -> None: self.horizontal_scale = 0.1 self.vertical_scale = 0.005 self.border_size = 20 self.num_per_env = 2 self.env_length = cfg["mapLength"] self.env_width = cfg["mapWidth"] self.proportions = [np.sum(cfg["terrainProportions"][:i+1]) for i in range(len(cfg["terrainProportions"]))] self.env_rows = cfg["numLevels"] self.env_cols = cfg["numTerrains"] self.num_maps = self.env_rows * self.env_cols self.num_per_env = int(num_robots / self.num_maps) self.env_origins = np.zeros((self.env_rows, self.env_cols, 3)) self.width_per_env_pixels = int(self.env_width / self.horizontal_scale) self.length_per_env_pixels = int(self.env_length / self.horizontal_scale) self.border = int(self.border_size/self.horizontal_scale) self.tot_cols = int(self.env_cols * self.width_per_env_pixels) + 2 * self.border self.tot_rows = int(self.env_rows * self.length_per_env_pixels) + 2 * self.border self.height_field_raw = np.zeros((self.tot_rows , self.tot_cols), dtype=np.int16) if cfg["curriculum"]: self.curiculum(num_robots, num_terrains=self.env_cols, num_levels=self.env_rows) else: self.randomized_terrain() self.heightsamples = self.height_field_raw self.vertices, self.triangles = convert_heightfield_to_trimesh(self.height_field_raw, self.horizontal_scale, self.vertical_scale, cfg["slopeTreshold"]) def randomized_terrain(self): for k in range(self.num_maps): # Env coordinates in the world (i, j) = np.unravel_index(k, (self.env_rows, self.env_cols)) # Heightfield coordinate system from now on start_x = self.border + i * self.length_per_env_pixels end_x = self.border + (i + 1) * self.length_per_env_pixels start_y = self.border + j * self.width_per_env_pixels end_y = self.border + (j + 1) * self.width_per_env_pixels terrain = SubTerrain("terrain", width=self.width_per_env_pixels, length=self.width_per_env_pixels, vertical_scale=self.vertical_scale, horizontal_scale=self.horizontal_scale) choice = np.random.uniform(0, 1) if choice < 0.1: if np.random.choice([0, 1]): pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3])) random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.05, downsampled_scale=0.2) else: pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3])) elif choice < 0.6: # step_height = np.random.choice([-0.18, -0.15, -0.1, -0.05, 0.05, 0.1, 0.15, 0.18]) step_height = np.random.choice([-0.15, 0.15]) pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.) elif choice < 1.: discrete_obstacles_terrain(terrain, 0.15, 1., 2., 40, platform_size=3.) self.height_field_raw[start_x: end_x, start_y:end_y] = terrain.height_field_raw env_origin_x = (i + 0.5) * self.env_length env_origin_y = (j + 0.5) * self.env_width x1 = int((self.env_length/2. - 1) / self.horizontal_scale) x2 = int((self.env_length/2. + 1) / self.horizontal_scale) y1 = int((self.env_width/2. - 1) / self.horizontal_scale) y2 = int((self.env_width/2. + 1) / self.horizontal_scale) env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2])*self.vertical_scale self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z] def curiculum(self, num_robots, num_terrains, num_levels): num_robots_per_map = int(num_robots / num_terrains) left_over = num_robots % num_terrains idx = 0 for j in range(num_terrains): for i in range(num_levels): terrain = SubTerrain("terrain", width=self.width_per_env_pixels, length=self.width_per_env_pixels, vertical_scale=self.vertical_scale, horizontal_scale=self.horizontal_scale) difficulty = i / num_levels choice = j / num_terrains slope = difficulty * 0.4 step_height = 0.05 + 0.175 * difficulty discrete_obstacles_height = 0.025 + difficulty * 0.15 stepping_stones_size = 2 - 1.8 * difficulty if choice < self.proportions[0]: if choice < 0.05: slope *= -1 pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.) elif choice < self.proportions[1]: if choice < 0.15: slope *= -1 pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.) random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.025, downsampled_scale=0.2) elif choice < self.proportions[3]: if choice<self.proportions[2]: step_height *= -1 pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.) elif choice < self.proportions[4]: discrete_obstacles_terrain(terrain, discrete_obstacles_height, 1., 2., 40, platform_size=3.) else: stepping_stones_terrain(terrain, stone_size=stepping_stones_size, stone_distance=0.1, max_height=0., platform_size=3.) # Heightfield coordinate system start_x = self.border + i * self.length_per_env_pixels end_x = self.border + (i + 1) * self.length_per_env_pixels start_y = self.border + j * self.width_per_env_pixels end_y = self.border + (j + 1) * self.width_per_env_pixels self.height_field_raw[start_x: end_x, start_y:end_y] = terrain.height_field_raw robots_in_map = num_robots_per_map if j < left_over: robots_in_map +=1 env_origin_x = (i + 0.5) * self.env_length env_origin_y = (j + 0.5) * self.env_width x1 = int((self.env_length/2. - 1) / self.horizontal_scale) x2 = int((self.env_length/2. + 1) / self.horizontal_scale) y1 = int((self.env_width/2. - 1) / self.horizontal_scale) y2 = int((self.env_width/2. + 1) / self.horizontal_scale) env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2])*self.vertical_scale self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z]
8,788
Python
52.591463
159
0.59274
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/tasks/utils/usd_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from pxr import UsdPhysics, UsdLux def set_drive_type(prim_path, drive_type): joint_prim = get_prim_at_path(prim_path) # set drive type ("angular" or "linear") drive = UsdPhysics.DriveAPI.Apply(joint_prim, drive_type) return drive def set_drive_target_position(drive, target_value): if not drive.GetTargetPositionAttr(): drive.CreateTargetPositionAttr(target_value) else: drive.GetTargetPositionAttr().Set(target_value) def set_drive_target_velocity(drive, target_value): if not drive.GetTargetVelocityAttr(): drive.CreateTargetVelocityAttr(target_value) else: drive.GetTargetVelocityAttr().Set(target_value) def set_drive_stiffness(drive, stiffness): if not drive.GetStiffnessAttr(): drive.CreateStiffnessAttr(stiffness) else: drive.GetStiffnessAttr().Set(stiffness) def set_drive_damping(drive, damping): if not drive.GetDampingAttr(): drive.CreateDampingAttr(damping) else: drive.GetDampingAttr().Set(damping) def set_drive_max_force(drive, max_force): if not drive.GetMaxForceAttr(): drive.CreateMaxForceAttr(max_force) else: drive.GetMaxForceAttr().Set(max_force) def set_drive(prim_path, drive_type, target_type, target_value, stiffness, damping, max_force) -> None: drive = set_drive_type(prim_path, drive_type) # set target type ("position" or "velocity") if target_type == "position": set_drive_target_position(drive, target_value) elif target_type == "velocity": set_drive_target_velocity(drive, target_value) set_drive_stiffness(drive, stiffness) set_drive_damping(drive, damping) set_drive_max_force(drive, max_force) def create_distant_light(prim_path="/World/defaultDistantLight", intensity=5000): stage = get_current_stage() light = UsdLux.DistantLight.Define(stage, prim_path) light.GetPrim().GetAttribute("intensity").Set(intensity)
3,628
Python
40.238636
103
0.742007
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/tasks/shared/in_hand_manipulation.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import abstractmethod from swervesim.tasks.base.rl_task import RLTask from omni.isaac.core.prims import RigidPrimView, XFormPrim from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage, add_reference_to_stage from omni.isaac.core.utils.torch import * import numpy as np import torch import math import omni.replicator.isaac as dr class InHandManipulationTask(RLTask): def __init__( self, name, env, offset=None ) -> None: """[summary] """ self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self.dist_reward_scale = self._task_cfg["env"]["distRewardScale"] self.rot_reward_scale = self._task_cfg["env"]["rotRewardScale"] self.action_penalty_scale = self._task_cfg["env"]["actionPenaltyScale"] self.success_tolerance = self._task_cfg["env"]["successTolerance"] self.reach_goal_bonus = self._task_cfg["env"]["reachGoalBonus"] self.fall_dist = self._task_cfg["env"]["fallDistance"] self.fall_penalty = self._task_cfg["env"]["fallPenalty"] self.rot_eps = self._task_cfg["env"]["rotEps"] self.vel_obs_scale = self._task_cfg["env"]["velObsScale"] self.reset_position_noise = self._task_cfg["env"]["resetPositionNoise"] self.reset_rotation_noise = self._task_cfg["env"]["resetRotationNoise"] self.reset_dof_pos_noise = self._task_cfg["env"]["resetDofPosRandomInterval"] self.reset_dof_vel_noise = self._task_cfg["env"]["resetDofVelRandomInterval"] self.hand_dof_speed_scale = self._task_cfg["env"]["dofSpeedScale"] self.use_relative_control = self._task_cfg["env"]["useRelativeControl"] self.act_moving_average = self._task_cfg["env"]["actionsMovingAverage"] self.max_episode_length = self._task_cfg["env"]["episodeLength"] self.reset_time = self._task_cfg["env"].get("resetTime", -1.0) self.print_success_stat = self._task_cfg["env"]["printNumSuccesses"] self.max_consecutive_successes = self._task_cfg["env"]["maxConsecutiveSuccesses"] self.av_factor = self._task_cfg["env"].get("averFactor", 0.1) self.dt = 1.0 / 60 control_freq_inv = self._task_cfg["env"].get("controlFrequencyInv", 1) if self.reset_time > 0.0: self.max_episode_length = int(round(self.reset_time/(control_freq_inv * self.dt))) print("Reset time: ", self.reset_time) print("New episode length: ", self.max_episode_length) RLTask.__init__(self, name, env) self.x_unit_tensor = torch.tensor([1, 0, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.y_unit_tensor = torch.tensor([0, 1, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.z_unit_tensor = torch.tensor([0, 0, 1], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.reset_goal_buf = self.reset_buf.clone() self.successes = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) self.consecutive_successes = torch.zeros(1, dtype=torch.float, device=self.device) self.randomization_buf = torch.zeros(self.num_envs, dtype=torch.long, device=self.device) self.av_factor = torch.tensor(self.av_factor, dtype=torch.float, device=self.device) self.total_successes = 0 self.total_resets = 0 return def set_up_scene(self, scene) -> None: self._stage = get_current_stage() self._assets_root_path = get_assets_root_path() hand_start_translation, pose_dy, pose_dz = self.get_hand() self.get_object(hand_start_translation, pose_dy, pose_dz) self.get_goal() replicate_physics = False if self._dr_randomizer.randomize else True super().set_up_scene(scene, replicate_physics) self._hands = self.get_hand_view(scene) scene.add(self._hands) self._objects = RigidPrimView( prim_paths_expr="/World/envs/env_.*/object/object", name="object_view", reset_xform_properties=False, masses=torch.tensor([0.07087]*self._num_envs, device=self.device), ) scene.add(self._objects) self._goals = RigidPrimView( prim_paths_expr="/World/envs/env_.*/goal/object", name="goal_view", reset_xform_properties=False ) scene.add(self._goals) if self._dr_randomizer.randomize: self._dr_randomizer.apply_on_startup_domain_randomization(self) @abstractmethod def get_hand(self): pass @abstractmethod def get_hand_view(self): pass @abstractmethod def get_observations(self): pass def get_object(self, hand_start_translation, pose_dy, pose_dz): self.object_start_translation = hand_start_translation.clone() self.object_start_translation[1] += pose_dy self.object_start_translation[2] += pose_dz self.object_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.object_usd_path = f"{self._assets_root_path}/Isaac/Props/Blocks/block_instanceable.usd" add_reference_to_stage(self.object_usd_path, self.default_zero_env_path + "/object") obj = XFormPrim( prim_path=self.default_zero_env_path + "/object/object", name="object", translation=self.object_start_translation, orientation=self.object_start_orientation, scale=self.object_scale, ) self._sim_config.apply_articulation_settings("object", get_prim_at_path(obj.prim_path), self._sim_config.parse_actor_config("object")) def get_goal(self): self.goal_displacement_tensor = torch.tensor([-0.2, -0.06, 0.12], device=self.device) self.goal_start_translation = self.object_start_translation + self.goal_displacement_tensor self.goal_start_translation[2] -= 0.04 self.goal_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) add_reference_to_stage(self.object_usd_path, self.default_zero_env_path + "/goal") goal = XFormPrim( prim_path=self.default_zero_env_path + "/goal", name="goal", translation=self.goal_start_translation, orientation=self.goal_start_orientation, scale=self.object_scale ) self._sim_config.apply_articulation_settings("goal", get_prim_at_path(goal.prim_path), self._sim_config.parse_actor_config("goal_object")) def post_reset(self): self.num_hand_dofs = self._hands.num_dof self.actuated_dof_indices = self._hands.actuated_dof_indices self.hand_dof_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.prev_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.cur_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) dof_limits = self._hands.get_dof_limits() self.hand_dof_lower_limits, self.hand_dof_upper_limits = torch.t(dof_limits[0].to(self.device)) self.hand_dof_default_pos = torch.zeros(self.num_hand_dofs, dtype=torch.float, device=self.device) self.hand_dof_default_vel = torch.zeros(self.num_hand_dofs, dtype=torch.float, device=self.device) self.object_init_pos, self.object_init_rot = self._objects.get_world_poses() self.object_init_pos -= self._env_pos self.object_init_velocities = torch.zeros_like(self._objects.get_velocities(), dtype=torch.float, device=self.device) self.goal_pos = self.object_init_pos.clone() self.goal_pos[:, 2] -= 0.04 self.goal_rot = self.object_init_rot.clone() self.goal_init_pos = self.goal_pos.clone() self.goal_init_rot = self.goal_rot.clone() # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) if self._dr_randomizer.randomize: self._dr_randomizer.set_up_domain_randomization(self) def get_object_goal_observations(self): self.object_pos, self.object_rot = self._objects.get_world_poses(clone=False) self.object_pos -= self._env_pos self.object_velocities = self._objects.get_velocities(clone=False) self.object_linvel = self.object_velocities[:, 0:3] self.object_angvel = self.object_velocities[:, 3:6] def calculate_metrics(self): self.rew_buf[:], self.reset_buf[:], self.reset_goal_buf[:], self.progress_buf[:], self.successes[:], self.consecutive_successes[:] = compute_hand_reward( self.rew_buf, self.reset_buf, self.reset_goal_buf, self.progress_buf, self.successes, self.consecutive_successes, self.max_episode_length, self.object_pos, self.object_rot, self.goal_pos, self.goal_rot, self.dist_reward_scale, self.rot_reward_scale, self.rot_eps, self.actions, self.action_penalty_scale, self.success_tolerance, self.reach_goal_bonus, self.fall_dist, self.fall_penalty, self.max_consecutive_successes, self.av_factor, ) self.extras['consecutive_successes'] = self.consecutive_successes.mean() self.randomization_buf += 1 if self.print_success_stat: self.total_resets = self.total_resets + self.reset_buf.sum() direct_average_successes = self.total_successes + self.successes.sum() self.total_successes = self.total_successes + (self.successes * self.reset_buf).sum() # The direct average shows the overall result more quickly, but slightly undershoots long term policy performance. print("Direct average consecutive successes = {:.1f}".format(direct_average_successes/(self.total_resets + self.num_envs))) if self.total_resets > 0: print("Post-Reset average consecutive successes = {:.1f}".format(self.total_successes/self.total_resets)) def pre_physics_step(self, actions): if not self._env._world.is_playing(): return env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) goal_env_ids = self.reset_goal_buf.nonzero(as_tuple=False).squeeze(-1) reset_buf = self.reset_buf.clone() # if only goals need reset, then call set API if len(goal_env_ids) > 0 and len(env_ids) == 0: self.reset_target_pose(goal_env_ids) elif len(goal_env_ids) > 0: self.reset_target_pose(goal_env_ids) if len(env_ids) > 0: self.reset_idx(env_ids) self.actions = actions.clone().to(self.device) if self.use_relative_control: targets = self.prev_targets[:, self.actuated_dof_indices] + self.hand_dof_speed_scale * self.dt * self.actions self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp(targets, self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices]) else: self.cur_targets[:, self.actuated_dof_indices] = scale(self.actions, self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices]) self.cur_targets[:, self.actuated_dof_indices] = self.act_moving_average * self.cur_targets[:, self.actuated_dof_indices] + \ (1.0 - self.act_moving_average) * self.prev_targets[:, self.actuated_dof_indices] self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp(self.cur_targets[:, self.actuated_dof_indices], self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices]) self.prev_targets[:, self.actuated_dof_indices] = self.cur_targets[:, self.actuated_dof_indices] self._hands.set_joint_position_targets( self.cur_targets[:, self.actuated_dof_indices], indices=None, joint_indices=self.actuated_dof_indices ) if self._dr_randomizer.randomize: rand_envs = torch.where(self.randomization_buf >= self._dr_randomizer.min_frequency, torch.ones_like(self.randomization_buf), torch.zeros_like(self.randomization_buf)) rand_env_ids = torch.nonzero(torch.logical_and(rand_envs, reset_buf)) dr.physics_view.step_randomization(rand_env_ids) self.randomization_buf[rand_env_ids] = 0 def is_done(self): pass def reset_target_pose(self, env_ids): # reset goal indices = env_ids.to(dtype=torch.int32) rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), 4), device=self.device) new_rot = randomize_rotation(rand_floats[:, 0], rand_floats[:, 1], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids]) self.goal_pos[env_ids] = self.goal_init_pos[env_ids, 0:3] self.goal_rot[env_ids] = new_rot goal_pos, goal_rot = self.goal_pos.clone(), self.goal_rot.clone() goal_pos[env_ids] = self.goal_pos[env_ids] + self.goal_displacement_tensor + self._env_pos[env_ids] # add world env pos self._goals.set_world_poses(goal_pos[env_ids], goal_rot[env_ids], indices) self.reset_goal_buf[env_ids] = 0 def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), self.num_hand_dofs * 2 + 5), device=self.device) self.reset_target_pose(env_ids) # reset object new_object_pos = self.object_init_pos[env_ids] + \ self.reset_position_noise * rand_floats[:, 0:3] + self._env_pos[env_ids] # add world env pos new_object_rot = randomize_rotation(rand_floats[:, 3], rand_floats[:, 4], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids]) object_velocities = torch.zeros_like(self.object_init_velocities, dtype=torch.float, device=self.device) self._objects.set_velocities(object_velocities[env_ids], indices) self._objects.set_world_poses(new_object_pos, new_object_rot, indices) # reset hand delta_max = self.hand_dof_upper_limits - self.hand_dof_default_pos delta_min = self.hand_dof_lower_limits - self.hand_dof_default_pos rand_delta = delta_min + (delta_max - delta_min) * 0.5 * (rand_floats[:, 5:5+self.num_hand_dofs] + 1.0) pos = self.hand_dof_default_pos + self.reset_dof_pos_noise * rand_delta dof_pos = torch.zeros((self.num_envs, self.num_hand_dofs), device=self.device) dof_pos[env_ids, :] = pos dof_vel = torch.zeros((self.num_envs, self.num_hand_dofs), device=self.device) dof_vel[env_ids, :] = self.hand_dof_default_vel + \ self.reset_dof_vel_noise * rand_floats[:, 5+self.num_hand_dofs:5+self.num_hand_dofs*2] self.prev_targets[env_ids, :self.num_hand_dofs] = pos self.cur_targets[env_ids, :self.num_hand_dofs] = pos self.hand_dof_targets[env_ids, :] = pos self._hands.set_joint_position_targets(self.hand_dof_targets[env_ids], indices) self._hands.set_joint_positions(dof_pos[env_ids], indices) self._hands.set_joint_velocities(dof_vel[env_ids], indices) self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 0 self.successes[env_ids] = 0 ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def randomize_rotation(rand0, rand1, x_unit_tensor, y_unit_tensor): return quat_mul(quat_from_angle_axis(rand0 * np.pi, x_unit_tensor), quat_from_angle_axis(rand1 * np.pi, y_unit_tensor)) @torch.jit.script def compute_hand_reward( rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes, max_episode_length: float, object_pos, object_rot, target_pos, target_rot, dist_reward_scale: float, rot_reward_scale: float, rot_eps: float, actions, action_penalty_scale: float, success_tolerance: float, reach_goal_bonus: float, fall_dist: float, fall_penalty: float, max_consecutive_successes: int, av_factor: float ): goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1) # Orientation alignment for the cube in hand and goal cube quat_diff = quat_mul(object_rot, quat_conjugate(target_rot)) rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 1:4], p=2, dim=-1), max=1.0)) # changed quat convention dist_rew = goal_dist * dist_reward_scale rot_rew = 1.0/(torch.abs(rot_dist) + rot_eps) * rot_reward_scale action_penalty = torch.sum(actions ** 2, dim=-1) # Total reward is: position distance + orientation alignment + action regularization + success bonus + fall penalty reward = dist_rew + rot_rew + action_penalty * action_penalty_scale # Find out which envs hit the goal and update successes count goal_resets = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.ones_like(reset_goal_buf), reset_goal_buf) successes = successes + goal_resets # Success bonus: orientation is within `success_tolerance` of goal orientation reward = torch.where(goal_resets == 1, reward + reach_goal_bonus, reward) # Fall penalty: distance to the goal is larger than a threashold reward = torch.where(goal_dist >= fall_dist, reward + fall_penalty, reward) # Check env termination conditions, including maximum success number resets = torch.where(goal_dist >= fall_dist, torch.ones_like(reset_buf), reset_buf) if max_consecutive_successes > 0: # Reset progress buffer on goal envs if max_consecutive_successes > 0 progress_buf = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.zeros_like(progress_buf), progress_buf) resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets) resets = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(resets), resets) # Apply penalty for not reaching the goal if max_consecutive_successes > 0: reward = torch.where(progress_buf >= max_episode_length - 1, reward + 0.5 * fall_penalty, reward) num_resets = torch.sum(resets) finished_cons_successes = torch.sum(successes * resets.float()) cons_successes = torch.where(num_resets > 0, av_factor*finished_cons_successes/num_resets + (1.0 - av_factor)*consecutive_successes, consecutive_successes) return reward, resets, goal_resets, progress_buf, successes, cons_successes
20,471
Python
48.931707
179
0.656734
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/tasks/shared/locomotion.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import abstractmethod from swervesim.tasks.base.rl_task import RLTask from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omni.isaac.core.utils.torch.maths import torch_rand_float, tensor_clamp, unscale from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path import numpy as np import torch import math class LocomotionTask(RLTask): def __init__( self, name, env, offset=None ) -> None: self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.angular_velocity_scale = self._task_cfg["env"]["angularVelocityScale"] self.contact_force_scale = self._task_cfg["env"]["contactForceScale"] self.power_scale = self._task_cfg["env"]["powerScale"] self.heading_weight = self._task_cfg["env"]["headingWeight"] self.up_weight = self._task_cfg["env"]["upWeight"] self.actions_cost_scale = self._task_cfg["env"]["actionsCost"] self.energy_cost_scale = self._task_cfg["env"]["energyCost"] self.joints_at_limit_cost_scale = self._task_cfg["env"]["jointsAtLimitCost"] self.death_cost = self._task_cfg["env"]["deathCost"] self.termination_height = self._task_cfg["env"]["terminationHeight"] self.alive_reward_scale = self._task_cfg["env"]["alive_reward_scale"] RLTask.__init__(self, name, env) return @abstractmethod def set_up_scene(self, scene) -> None: pass @abstractmethod def get_robot(self): pass def get_observations(self) -> dict: torso_position, torso_rotation = self._robots.get_world_poses(clone=False) velocities = self._robots.get_velocities(clone=False) velocity = velocities[:, 0:3] ang_velocity = velocities[:, 3:6] dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) # force sensors attached to the feet sensor_force_torques = self._robots._physics_view.get_force_sensor_forces() # (num_envs, num_sensors, 6) self.obs_buf[:], self.potentials[:], self.prev_potentials[:], self.up_vec[:], self.heading_vec[:] = get_observations( torso_position, torso_rotation, velocity, ang_velocity, dof_pos, dof_vel, self.targets, self.potentials, self.dt, self.inv_start_rot, self.basis_vec0, self.basis_vec1, self.dof_limits_lower, self.dof_limits_upper, self.dof_vel_scale, sensor_force_torques, self._num_envs, self.contact_force_scale, self.actions, self.angular_velocity_scale ) observations = { self._robots.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) forces = self.actions * self.joint_gears * self.power_scale indices = torch.arange(self._robots.count, dtype=torch.int32, device=self._device) # applies joint torques self._robots.set_joint_efforts(forces, indices=indices) def reset_idx(self, env_ids): num_resets = len(env_ids) # randomize DOF positions and velocities dof_pos = torch_rand_float(-0.2, 0.2, (num_resets, self._robots.num_dof), device=self._device) dof_pos[:] = tensor_clamp( self.initial_dof_pos[env_ids] + dof_pos, self.dof_limits_lower, self.dof_limits_upper ) dof_vel = torch_rand_float(-0.1, 0.1, (num_resets, self._robots.num_dof), device=self._device) root_pos, root_rot = self.initial_root_pos[env_ids], self.initial_root_rot[env_ids] root_vel = torch.zeros((num_resets, 6), device=self._device) # apply resets self._robots.set_joint_positions(dof_pos, indices=env_ids) self._robots.set_joint_velocities(dof_vel, indices=env_ids) self._robots.set_world_poses(root_pos, root_rot, indices=env_ids) self._robots.set_velocities(root_vel, indices=env_ids) to_target = self.targets[env_ids] - self.initial_root_pos[env_ids] to_target[:, 2] = 0.0 self.prev_potentials[env_ids] = -torch.norm(to_target, p=2, dim=-1) / self.dt self.potentials[env_ids] = self.prev_potentials[env_ids].clone() # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 num_resets = len(env_ids) def post_reset(self): self._robots = self.get_robot() self.initial_root_pos, self.initial_root_rot = self._robots.get_world_poses() self.initial_dof_pos = self._robots.get_joint_positions() # initialize some data used later on self.start_rotation = torch.tensor([1, 0, 0, 0], device=self._device, dtype=torch.float32) self.up_vec = torch.tensor([0, 0, 1], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.heading_vec = torch.tensor([1, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.inv_start_rot = quat_conjugate(self.start_rotation).repeat((self.num_envs, 1)) self.basis_vec0 = self.heading_vec.clone() self.basis_vec1 = self.up_vec.clone() self.targets = torch.tensor([1000, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.target_dirs = torch.tensor([1, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.dt = 1.0 / 60.0 self.potentials = torch.tensor([-1000.0 / self.dt], dtype=torch.float32, device=self._device).repeat(self.num_envs) self.prev_potentials = self.potentials.clone() self.actions = torch.zeros((self.num_envs, self.num_actions), device=self._device) # randomize all envs indices = torch.arange(self._robots.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: self.rew_buf[:] = calculate_metrics( self.obs_buf, self.actions, self.up_weight, self.heading_weight, self.potentials, self.prev_potentials, self.actions_cost_scale, self.energy_cost_scale, self.termination_height, self.death_cost, self._robots.num_dof, self.get_dof_at_limit_cost(), self.alive_reward_scale, self.motor_effort_ratio ) def is_done(self) -> None: self.reset_buf[:] = is_done( self.obs_buf, self.termination_height, self.reset_buf, self.progress_buf, self._max_episode_length ) ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def normalize_angle(x): return torch.atan2(torch.sin(x), torch.cos(x)) @torch.jit.script def get_observations( torso_position, torso_rotation, velocity, ang_velocity, dof_pos, dof_vel, targets, potentials, dt, inv_start_rot, basis_vec0, basis_vec1, dof_limits_lower, dof_limits_upper, dof_vel_scale, sensor_force_torques, num_envs, contact_force_scale, actions, angular_velocity_scale ): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, float, Tensor, Tensor, Tensor, Tensor, Tensor, float, Tensor, int, float, Tensor, float) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor] to_target = targets - torso_position to_target[:, 2] = 0.0 prev_potentials = potentials.clone() potentials = -torch.norm(to_target, p=2, dim=-1) / dt torso_quat, up_proj, heading_proj, up_vec, heading_vec = compute_heading_and_up( torso_rotation, inv_start_rot, to_target, basis_vec0, basis_vec1, 2 ) vel_loc, angvel_loc, roll, pitch, yaw, angle_to_target = compute_rot( torso_quat, velocity, ang_velocity, targets, torso_position ) dof_pos_scaled = unscale(dof_pos, dof_limits_lower, dof_limits_upper) # obs_buf shapes: 1, 3, 3, 1, 1, 1, 1, 1, num_dofs, num_dofs, num_sensors * 6, num_dofs obs = torch.cat( ( torso_position[:, 2].view(-1, 1), vel_loc, angvel_loc * angular_velocity_scale, normalize_angle(yaw).unsqueeze(-1), normalize_angle(roll).unsqueeze(-1), normalize_angle(angle_to_target).unsqueeze(-1), up_proj.unsqueeze(-1), heading_proj.unsqueeze(-1), dof_pos_scaled, dof_vel * dof_vel_scale, sensor_force_torques.reshape(num_envs, -1) * contact_force_scale, actions, ), dim=-1, ) return obs, potentials, prev_potentials, up_vec, heading_vec @torch.jit.script def is_done( obs_buf, termination_height, reset_buf, progress_buf, max_episode_length ): # type: (Tensor, float, Tensor, Tensor, float) -> Tensor reset = torch.where(obs_buf[:, 0] < termination_height, torch.ones_like(reset_buf), reset_buf) reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf), reset) return reset @torch.jit.script def calculate_metrics( obs_buf, actions, up_weight, heading_weight, potentials, prev_potentials, actions_cost_scale, energy_cost_scale, termination_height, death_cost, num_dof, dof_at_limit_cost, alive_reward_scale, motor_effort_ratio ): # type: (Tensor, Tensor, float, float, Tensor, Tensor, float, float, float, float, int, Tensor, float, Tensor) -> Tensor heading_weight_tensor = torch.ones_like(obs_buf[:, 11]) * heading_weight heading_reward = torch.where( obs_buf[:, 11] > 0.8, heading_weight_tensor, heading_weight * obs_buf[:, 11] / 0.8 ) # aligning up axis of robot and environment up_reward = torch.zeros_like(heading_reward) up_reward = torch.where(obs_buf[:, 10] > 0.93, up_reward + up_weight, up_reward) # energy penalty for movement actions_cost = torch.sum(actions ** 2, dim=-1) electricity_cost = torch.sum(torch.abs(actions * obs_buf[:, 12+num_dof:12+num_dof*2])* motor_effort_ratio.unsqueeze(0), dim=-1) # reward for duration of staying alive alive_reward = torch.ones_like(potentials) * alive_reward_scale progress_reward = potentials - prev_potentials total_reward = ( progress_reward + alive_reward + up_reward + heading_reward - actions_cost_scale * actions_cost - energy_cost_scale * electricity_cost - dof_at_limit_cost ) # adjust reward for fallen agents total_reward = torch.where( obs_buf[:, 0] < termination_height, torch.ones_like(total_reward) * death_cost, total_reward ) return total_reward
12,868
Python
38.719136
214
0.642913
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/cfg/config.yaml
# Task name - used to pick the class to load task_name: ${task.name} # experiment name. defaults to name of training config experiment: '' # if set to positive integer, overrides the default number of environments num_envs: '' # seed - set to -1 to choose random seed seed: 42 # set to True for deterministic performance torch_deterministic: False # set the maximum number of learning iterations to train for. overrides default per-environment setting max_iterations: '' ## Device config physics_engine: 'physx' # whether to use cpu or gpu pipeline pipeline: 'gpu' # whether to use cpu or gpu physx sim_device: 'gpu' # used for gpu simulation only - device id for running sim and task if pipeline=gpu device_id: 0 # device to run RL rl_device: 'cuda:0' ## PhysX arguments num_threads: 4 # Number of worker threads per scene used by PhysX - for CPU PhysX only. solver_type: 1 # 0: pgs, 1: tgs # RLGames Arguments # test - if set, run policy in inference mode (requires setting checkpoint to load) test: False # used to set checkpoint path checkpoint: '' # disables rendering headless: False wandb_activate: False wandb_group: '' wandb_name: ${train.params.config.name} wandb_entity: '' wandb_project: 'swervesim' # set default task and default training config based on task defaults: - task: Swerve - train: ${task}PPO - hydra/job_logging: disabled # set the directory where the output files get saved hydra: output_subdir: null run: dir: .
1,466
YAML
23.45
103
0.736698
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/cfg/task/SwerveK.yaml
# used to create the object name: SwerveK physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: 36 envSpacing: 20.0 resetDist: 3.0 clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 12 # 10 Hz? baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] control: # PD Drive parameters: stiffness: 85.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] actionScale: 13.5 # episode length in seconds episodeLength_s: 50 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 4 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 1024 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1024 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 SwerveK: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_velocity_iteration_count: 8 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0 # per-shape contact_offset: 0.02 rest_offset: 0.001
2,367
YAML
26.858823
71
0.657795
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/cfg/task/SwerveF.yaml
# used to create the object name: SwerveF physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: 36 envSpacing: 20.0 resetDist: 3.0 clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 12 # 10 Hz? baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] control: # PD Drive parameters: stiffness: 85.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] actionScale: 13.5 # episode length in seconds episodeLength_s: 50 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 4 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 1024 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1024 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 SwerveF: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_velocity_iteration_count: 8 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0 # per-shape contact_offset: 0.02 rest_offset: 0.001
2,367
YAML
26.858823
71
0.657795
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/cfg/task/SwerveMAA.yaml
# used to create the object name: SwerveMAA physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: 36 envSpacing: 20.0 resetDist: 3.0 clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 12 # 10 Hz? baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] control: # PD Drive parameters: stiffness: 85.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] actionScale: 13.5 # episode length in seconds episodeLength_s: 50 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 4 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 1024 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1024 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 SwerveMAA: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_velocity_iteration_count: 8 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0 # per-shape contact_offset: 0.02 rest_offset: 0.001
2,371
YAML
26.905882
71
0.658372
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/cfg/task/Swerve.yaml
# used to create the object name: Swerve physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: 324 envSpacing: 20.0 resetDist: 3.0 clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 12 # 10 Hz? baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] control: # PD Drive parameters: stiffness: 85.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] actionScale: 13.5 # episode length in seconds episodeLength_s: 50 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 4 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 1024 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1024 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 Swerve: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_velocity_iteration_count: 8 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0 # per-shape contact_offset: 0.02 rest_offset: 0.001
2,366
YAML
26.847059
71
0.65765
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/cfg/task/SwerveCS.yaml
# used to create the object name: SwerveCS physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: 36 envSpacing: 20 resetDist: 3.0 clipObservations: 1.0 clipActions: 1.0 controlFrequencyInv: 12 # 10 Hz? # baseInitState: # pos: [0.0, 0.0, 0.62] # x,y,z [m] # rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat] # vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] # vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] control: # PD Drive parameters: stiffness: 85.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] actionScale: 13.5 # episode length in seconds episodeLength_s: 15 sim: dt: 0.01 # 1/10 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 4 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 163840 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 134217728 gpu_temp_buffer_capacity: 33554432 gpu_max_num_partitions: 8 SwerveCS: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_velocity_iteration_count: 8 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0 # per-shape contact_offset: 0.02 rest_offset: 0.001
2,383
YAML
27.380952
71
0.656735
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/cfg/train/SwerveKPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:SwerveK,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 10000 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 10 minibatch_size: 360 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,527
YAML
20.828571
101
0.59332
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/cfg/train/SwerveCSPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:SwerveCS,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 10000 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 10 minibatch_size: 360 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,528
YAML
20.842857
101
0.593586
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/cfg/train/SwervePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Swerve,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 10000 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 10 minibatch_size: 360 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,526
YAML
20.814285
101
0.593054
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/cfg/train/SwerveMAAPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:SwerveK,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 10000 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 10 minibatch_size: 360 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,527
YAML
20.828571
101
0.59332
RoboEagles4828/edna2023/isaac/Swervesim/swervesim/cfg/train/SwerveFPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:SwerveF,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: 10000 save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 10 minibatch_size: 360 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,527
YAML
20.828571
101
0.59332