file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
RoboEagles4828/rift2024/src/rift_bringup/launch/debugLayer.launch.py
from launch import LaunchDescription from launch_ros.actions import Node from ament_index_python.packages import get_package_share_directory from launch.substitutions import LaunchConfiguration, PythonExpression from launch.event_handlers import OnProcessExit from launch.actions import DeclareLaunchArgument, ExecuteProcess, RegisterEventHandler from launch.conditions import IfCondition import os def generate_launch_description(): bringup_pkg_path = os.path.join(get_package_share_directory('rift_bringup')) use_sim_time = LaunchConfiguration('use_sim_time') namespace = LaunchConfiguration('namespace') enable_rviz = LaunchConfiguration('enable_rviz') enable_foxglove = LaunchConfiguration('enable_foxglove') enable_debugger_gui = LaunchConfiguration('enable_debugger_gui') enable_joint_state_publisher = LaunchConfiguration('enable_joint_state_publisher') rviz_file = LaunchConfiguration('rviz_file') foxglove = Node( package='foxglove_bridge', executable='foxglove_bridge', namespace=namespace, parameters=[{ 'port': 8765, 'use_sim_time': use_sim_time }], condition=IfCondition(enable_foxglove) ) parse_script = os.path.join(bringup_pkg_path, 'scripts', 'parseRviz.py') parseRvizFile = ExecuteProcess(cmd=["python3", parse_script, rviz_file, namespace]) rviz2 = Node( package='rviz2', name='rviz2', namespace=namespace, executable='rviz2', parameters=[{ 'use_sim_time': use_sim_time }], output='screen', arguments=[["-d"], [rviz_file]], condition=IfCondition(enable_rviz) ) rviz2_delay = RegisterEventHandler( event_handler=OnProcessExit( target_action=parseRvizFile, on_exit=[rviz2], ) ) debugger_gui = Node( package='rift_debugger', namespace=namespace, executable='debugger', name='debugger', output='screen', parameters=[{ 'use_sim_time': use_sim_time, 'publish_default_velocities': 'true', 'source_list': ['joint_states'] }], condition=IfCondition(enable_debugger_gui), ) # Starts Joint State Publisher GUI for rviz (conflicts with rift_debugger) joint_state_publisher_gui = Node ( package='joint_state_publisher_gui', namespace=namespace, executable='joint_state_publisher_gui', output='screen', parameters=[{ 'use_sim_time': use_sim_time, 'publish_default_velocities': True, }], condition=IfCondition(enable_joint_state_publisher), ) return LaunchDescription([ DeclareLaunchArgument( 'use_sim_time', default_value='false', description='Use sim time if true'), DeclareLaunchArgument( 'namespace', default_value='default', description='The namespace of nodes and links'), DeclareLaunchArgument( 'enable_rviz', default_value='true', description='enables rviz'), DeclareLaunchArgument( 'rviz_file', default_value='', description='The config file for rviz'), DeclareLaunchArgument( 'enable_foxglove', default_value='true', description='enables foxglove bridge'), DeclareLaunchArgument( 'enable_debugger_gui', default_value='false', description='enables the debugger gui tool'), DeclareLaunchArgument( 'enable_joint_state_publisher', default_value='false', description='enables the joint state publisher tool'), foxglove, parseRvizFile, rviz2_delay, debugger_gui, joint_state_publisher_gui, ])
3,908
Python
33.901785
87
0.620778
RoboEagles4828/rift2024/src/rift_bringup/launch/real-rviz.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription from launch.launch_description_sources import PythonLaunchDescriptionSource def generate_launch_description(): bringup_path = get_package_share_directory("rift_bringup") rviz_file = os.path.join(bringup_path, 'config', 'real.rviz') common = { 'use_sim_time': 'false', 'namespace': 'real', 'forward_command_controller': 'false', } debug_launch_args = common | { 'enable_rviz': 'true', 'enable_foxglove': 'false', 'enable_debugger_gui': 'true', 'rviz_file': rviz_file } debug_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','debugLayer.launch.py' )]), launch_arguments=debug_launch_args.items()) # Launch! return LaunchDescription([ debug_layer, ])
1,037
Python
31.437499
75
0.644166
RoboEagles4828/rift2024/src/rift_bringup/launch/rtab-real.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, DeclareLaunchArgument from launch.launch_description_sources import PythonLaunchDescriptionSource from launch.substitutions import LaunchConfiguration NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): use_sim_time = LaunchConfiguration('use_sim_time') rtabmap_ros_path = get_package_share_directory("rtabmap_launch") rtabmap_args = { 'rtabmap_args': '--delete_db_on_start', 'use_sim_time': use_sim_time, # Frames 'frame_id': f'real/base_link', # 'odom_frame_id': f'{NAMESPACE}/zed/odom', 'map_frame_id': f'real/map', # Topics 'rgb_topic': f'/real/zed/rgb/image_rect_color', 'camera_info_topic': f'/real/zed/rgb/camera_info', 'depth_topic': f'/real/zed/depth/depth_registered', 'imu_topic': f'/real/zed/imu/data', # 'odom_topic': f'/{NAMESPACE}/zed/odom', 'approx_sync': 'false', # 'wait_imu_to_init': 'true', # 'visual_odometry': 'false', # 'publish_tf_odom': 'false', # 'qos': '1', # 'rviz': 'true', } rtab_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( rtabmap_ros_path,'launch','rtabmap.launch.py' )]), launch_arguments=rtabmap_args.items()) return LaunchDescription([ DeclareLaunchArgument( 'use_sim_time', default_value='true', description='Use sim time if true'), rtab_layer, ])
1,749
Python
34.714285
91
0.621498
RoboEagles4828/rift2024/src/rift_bringup/launch/real-vslam.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, TimerAction from launch.launch_description_sources import PythonLaunchDescriptionSource NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): bringup_path = get_package_share_directory("rift_bringup") joystick_file = os.path.join(bringup_path, 'config', 'xbox-sim.yaml') rviz_file = os.path.join(bringup_path, 'config', 'view.rviz') common = { 'use_sim_time': 'true', 'namespace': NAMESPACE } real_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','real.launch.py' )]), launch_arguments=common.items()) rtab_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','rtab-real.launch.py' )])) delay_rtab = TimerAction(period=5.0, actions=[rtab_layer]) # Launch! return LaunchDescription([ real_layer, rtab_layer ])
1,214
Python
34.735293
91
0.677924
RoboEagles4828/rift2024/src/rift_bringup/launch/real.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, TimerAction from launch.launch_description_sources import PythonLaunchDescriptionSource def generate_launch_description(): bringup_path = get_package_share_directory("rift_bringup") joystick_file = os.path.join(bringup_path, 'config', 'xbox-real.yaml') common = { 'use_sim_time': 'false', 'namespace': 'real' } control_launch_args = common | { 'use_ros2_control': 'true', 'hardware_plugin': 'swerve_hardware/RealDriveHardware', } teleoplaunch_args = common | { 'joystick_file': joystick_file, 'enable_joy': 'false' } control_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','controlLayer.launch.py' )]), launch_arguments=control_launch_args.items()) teleop_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','teleopLayer.launch.py' )]), launch_arguments=teleoplaunch_args.items()) gym_launch = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','gym.launch.py' )]), launch_arguments={'use_sim_time': 'false'}.items() ) # Launch! return LaunchDescription([ control_layer, teleop_layer, gym_launch ])
1,611
Python
34.822221
75
0.634389
RoboEagles4828/rift2024/src/rift_bringup/launch/rio-debug.launch.py
import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, TimerAction from launch.launch_description_sources import PythonLaunchDescriptionSource NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def generate_launch_description(): bringup_path = get_package_share_directory("rift_bringup") rviz_file = os.path.join(bringup_path, 'config', 'riodebug.rviz') common = { 'use_sim_time': 'false', 'namespace': 'real' } control_launch_args = common | { 'use_ros2_control': 'true', 'load_controllers': 'false', 'forward_command_controller': 'true', # Change to false in order to disable publishing 'hardware_plugin': 'swerve_hardware/RealDriveHardware', # Use IsaacDriveHardware for isaac or RealDriveHardware for real. } debug_launch_args = common | { 'enable_rviz': 'true', 'enable_foxglove': 'false', 'enable_debugger_gui': 'true', 'rviz_file': rviz_file } control_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','controlLayer.launch.py' )]), launch_arguments=control_launch_args.items()) debug_layer = IncludeLaunchDescription( PythonLaunchDescriptionSource([os.path.join( bringup_path,'launch','debugLayer.launch.py' )]), launch_arguments=debug_launch_args.items()) delay_debug_layer = TimerAction(period=3.0, actions=[debug_layer]) # Launch! return LaunchDescription([ control_layer, delay_debug_layer ])
1,762
Python
38.177777
129
0.662883
RoboEagles4828/rift2024/src/rift_bringup/scripts/parseRviz.py
import sys import yaml import os # NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' def processRvizFileForNamespace(rviz_file, NAMESPACE): rviz_data = None raw_rviz_data = None with open(rviz_file, 'r') as stream: raw_rviz_data = stream.read() rviz_data = yaml.safe_load(raw_rviz_data) # Get the namespace value from the rviz file current_namespace = None if rviz_data: for display in rviz_data['Visualization Manager']['Displays']: for k, v in display.items(): if 'Topic' in k and 'Value' in v: segs = v['Value'].split('/') if len(segs) > 1: current_namespace = segs[1] break if current_namespace: print('Found namespace: ', current_namespace) print(f"mapping {current_namespace} -> {NAMESPACE}") new_rviz_data = yaml.safe_load(raw_rviz_data.replace(current_namespace, NAMESPACE)) with open(rviz_file, 'w') as stream: yaml.dump(new_rviz_data, stream) else: with open('err', 'w') as stream: stream.write("Couldn't find namespace in rviz file") if __name__ == "__main__": processRvizFileForNamespace(sys.argv[1], sys.argv[2])
1,314
Python
33.605262
93
0.590563
RoboEagles4828/rift2024/src/rift_bringup/config/controllers.yaml
/*: controller_manager: ros__parameters: update_rate: 20 # Hz joint_state_broadcaster: type: joint_state_broadcaster/JointStateBroadcaster swerve_controller: type: swerve_controller/SwerveController forward_position_controller: type: position_controllers/JointGroupPositionController forward_velocity_controller: type: velocity_controllers/JointGroupVelocityController joint_trajectory_controller: type: joint_trajectory_controller/JointTrajectoryController swerve_controller: ros__parameters: #Used to scale velocity chassis_length_meters: 0.6032 chassis_width_meters: 0.6032 wheel_radius_meters: 0.0508 max_wheel_angular_velocity: 100.0 #If no new twist commands are created in 1 second the robot will halt cmd_vel_timeout_seconds: 1.0 use_stamped_vel: false front_left_wheel_joint: front_left_wheel_joint front_right_wheel_joint: front_right_wheel_joint rear_left_wheel_joint: rear_left_wheel_joint rear_right_wheel_joint: rear_right_wheel_joint front_left_axle_joint: front_left_axle_joint front_right_axle_joint: front_right_axle_joint rear_left_axle_joint: rear_left_axle_joint rear_right_axle_joint: rear_right_axle_joint linear.x.has_velocity_limits: false linear.x.has_acceleration_limits: true linear.x.has_jerk_limits: false linear.x.max_velocity: 2.0 linear.x.min_velocity: -2.0 linear.x.max_acceleration: 3.0 linear.x.min_acceleration: -3.0 linear.x.max_jerk: 5.0 linear.x.min_jerk: -5.0 linear.y.has_velocity_limits: false linear.y.has_acceleration_limits: true linear.y.has_jerk_limits: false linear.y.max_velocity: 2.0 linear.y.min_velocity: -2.0 linear.y.max_acceleration: 3.0 linear.y.min_acceleration: -3.0 linear.y.max_jerk: 5.0 linear.y.min_jerk: -5.0 angular.z.has_velocity_limits: false angular.z.has_acceleration_limits: true angular.z.has_jerk_limits: false angular.z.max_velocity: 3.0 angular.z.min_velocity: -3.0 angular.z.max_acceleration: 3.0 angular.z.min_acceleration: -3.0 angular.z.max_jerk: 5.0 angular.z.min_jerk: -5.0 forward_position_controller: ros__parameters: joints: - 'front_left_axle_joint' - 'front_right_axle_joint' - 'rear_left_axle_joint' - 'rear_right_axle_joint' - 'arm_roller_bar_joint' - 'elevator_outer_1_joint' - 'elevator_center_joint' - 'elevator_outer_2_joint' - 'top_slider_joint' - 'top_gripper_left_arm_joint' - 'top_gripper_right_arm_joint' - 'bottom_intake_joint' forward_velocity_controller: ros__parameters: joints: - 'front_left_wheel_joint' - 'front_right_wheel_joint' - 'rear_left_wheel_joint' - 'rear_right_wheel_joint' joint_trajectory_controller: ros__parameters: joints: - 'arm_roller_bar_joint' - 'elevator_center_joint' - 'elevator_outer_1_joint' - 'elevator_outer_2_joint' - 'top_gripper_right_arm_joint' - 'top_gripper_left_arm_joint' - 'top_slider_joint' - 'bottom_intake_joint' command_interfaces: - position state_interfaces: - position - velocity state_publish_rate: 50.0 action_monitor_rate: 20.0 allow_partial_joints_goal: false open_loop_control: true constraints: stopped_velocity_tolerance: 0.01 goal_time: 0.0
3,706
YAML
28.188976
76
0.627361
RoboEagles4828/rift2024/src/rift_bringup/config/xbox-sim.yaml
/*: teleop_twist_joy_node: ros__parameters: require_enable_button: false axis_linear: # Left thumb stick vertical x: 1 y: 0 scale_linear: x: 1.0 y: 1.0 scale_linear_turbo: x: 2.5 y: 2.5 axis_angular: # Right thumb stick horizontal yaw: 3 scale_angular: yaw: -1.0 scale_angular_turbo: yaw: -2.2 enable_turbo_button: 5 enable_field_oriented_button: 7 offset: 0.5
522
YAML
17.678571
51
0.5
RoboEagles4828/rift2024/src/rift_bringup/config/xbox-real.yaml
/*: teleop_twist_joy_node: ros__parameters: require_enable_button: false axis_linear: # Left thumb stick vertical x: 1 y: 0 scale_linear: #1/10000 to offset shifted 0 in /joystick-data x: 0.0001 y: 0.0001 scale_linear_turbo: x: 0.0004 y: 0.0004 axis_angular: # Right thumb stick horizontal yaw: 3 scale_angular: #negative to fix turning direction yaw: -0.0001 scale_angular_turbo: yaw: -0.0002 enable_turbo_button: 5 enable_field_oriented_button: 7 offset: -0.25
610
YAML
24.458332
66
0.565574
RoboEagles4828/rift2024/src/rift_bringup/config/teleop-control.yaml
controller_mapping: A: 0 B: 1 X: 2 Y: 3 LB: 4 RB: 5 squares: 6 menu: 7 xbox: 8 LSin: 9 RSin: 10 leftTriggerAxis: 2 rightTriggerAxis: 5 joint_limits: arm_roller_bar_joint: min: 0.0 max: 0.07 elevator_center_joint: min: 0.0 max: 0.56 elevator_outer_1_joint: min: 0.0 max: 0.2 elevator_outer_2_joint: min: 0.0 max: 0.56 top_gripper_right_arm_joint: min: -0.9 max: 0.0 top_gripper_left_arm_joint: min: -0.9 max: 0.0 top_slider_joint: min: 0.0 max: 0.30 bottom_intake_joint: min: 0.0 max: 1.52 joint_mapping: arm_roller_bar_joint: 0 elevator_center_joint: 1 elevator_outer_1_joint: 2 elevator_outer_2_joint: 3 top_gripper_right_arm_joint: 4 top_gripper_left_arm_joint: 5 top_slider_joint: 6 bottom_intake_joint: 7 function_mapping: elevator_loading_station: button: "RSin" toggle: true skis_up: button: "leftTriggerAxis" toggle: true elevator_mid_level: button: "LB" toggle: true elevator_high_level: button: "X" toggle: true top_gripper_control: button: "A" toggle: true elevator_pivot_control: button: "Y" toggle: true top_slider_control: button: "B" toggle: true
1,278
YAML
17.271428
32
0.606416
RoboEagles4828/rift2024/src/rift_tests/setup.py
from setuptools import setup package_name = 'rift_tests' setup( name=package_name, version='0.0.1', packages=[package_name], data_files=[ ('share/ament_index/resource_index/packages', ['resource/' + package_name]), ('share/' + package_name, ['package.xml']), ], install_requires=['setuptools'], zip_safe=True, maintainer='roboeagles', maintainer_email='[email protected]', description='Test robot functions', license='MIT', tests_require=['pytest'], entry_points={ 'console_scripts': [ 'joint-arm = rift_tests.publish_joint_arm_command:main', 'joint-drive = rift_tests.publish_joint_drive_command:main', 'publish-twist = rift_tests.publish_twist_command:main', 'run-tests = rift_tests.run_tests_command:main', 'arm-tests = rift_tests.arm_tests:main' ], }, )
926
Python
29.899999
72
0.602592
RoboEagles4828/rift2024/src/rift_tests/rift_tests/publish_joint_drive_command.py
import rclpy from rclpy.node import Node import math from sensor_msgs.msg import JointState class PublishJointCmd(Node): def __init__(self): super().__init__('publish_drive_joint_commands') self.publisher_ = self.create_publisher(JointState, '/real/real_joint_commands', 10) timer_period = 0.5 # seconds self.timer = self.create_timer(timer_period, self.timer_callback) self.i = 0 def timer_callback(self): cmds = JointState() cmds.name = [ 'front_left_wheel_joint', 'front_right_wheel_joint', 'rear_left_wheel_joint', 'rear_right_wheel_joint', 'front_left_axle_joint', 'front_right_axle_joint', 'rear_left_axle_joint', 'rear_right_axle_joint' ] rad = math.pi cmds.velocity = [ 0.0, 0.0, 0.0, 0.0, 0.0, #ignore 0.0, #ignore 0.0, #ignore 0.0, #ignore ] cmds.position = [ 0.0, #ignore 0.0, #ignore 0.0, #ignore 0.0, #ignore rad, 0.0, 0.0, 0.0 ] # position_cmds.position = [] self.publisher_.publish(cmds) self.get_logger().info('Publishing: ...') self.i += 1 def main(args=None): rclpy.init(args=args) node = PublishJointCmd() rclpy.spin(node) # Destroy the node explicitly # (optional - otherwise it will be done automatically # when the garbage collector destroys the node object) node.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
1,746
Python
23.263889
92
0.507446
RoboEagles4828/rift2024/src/rift_tests/rift_tests/publish_twist_command.py
import rclpy from rclpy.node import Node from geometry_msgs.msg import Twist, Vector3 class PublishTwistCmd(Node): def __init__(self): super().__init__('publish_twist_commands') self.publisher_ = self.create_publisher(Twist, 'swerve_controller/cmd_vel_unstamped', 10) timer_period = 0.1 # seconds self.timer = self.create_timer(timer_period, self.timer_callback) self.i = 0 def timer_callback(self): twist = Twist() twist.linear.x = 2.0 twist.linear.y = 0.0 twist.angular.z = 0.0 self.publisher_.publish(twist) self.get_logger().info('Publishing: ...') self.i += 1 def main(args=None): rclpy.init(args=args) node = PublishTwistCmd() rclpy.spin(node) node.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
868
Python
22.486486
97
0.599078
RoboEagles4828/rift2024/src/rift_tests/rift_tests/arm_tests.py
import rclpy import time from .joint_test import TesterNode # ROS Topics SUBSCRIBE_TOPIC_NAME = '/real/real_joint_states' PUBLISH_TOPIC_NAME = '/real/real_arm_commands' PUBLISH_INTERVAL = .5 # seconds # Tolerances PASS_TOLERANCE = 0.5 WARN_TOLERANCE = 1 TESTS = [ # Here's where you define your tests, in the same style as this one. # {"positions": [0.0]*6, "time": 3.0}, # Toggle pistons one at a time (to true) {"positions": [0.0]*4 + [0.0] + [0.0], "time": 10.0}, # {"positions": [0.0]*4 + [0.5] + [0.0], "time": 10.0}, # {"positions": [0.0]*4 + [1.0] + [0.0], "time": 10.0}, # {"positions": [0.0]*6, "time": 10.0}, ] JOINT_NAMES = [ # Pneumatics 'arm_roller_bar_joint', 'top_slider_joint', 'top_gripper_left_arm_joint', # Wheels 'elevator_center_joint', 'bottom_intake_joint', ] def main(): rclpy.init() testerNode = TesterNode( tests=TESTS, joint_names=JOINT_NAMES, joint_range=[8, 14], pub_topic_name=PUBLISH_TOPIC_NAME, sub_topic_name=SUBSCRIBE_TOPIC_NAME, pub_interval=PUBLISH_INTERVAL, pass_tolerance=PASS_TOLERANCE, warn_tolerance=WARN_TOLERANCE) rclpy.spin(testerNode) if __name__ == '__main__': main()
1,267
Python
22.481481
72
0.589582
RoboEagles4828/rift2024/src/rift_tests/rift_tests/run_tests_command.py
import rclpy from rclpy.node import Node import math import time from rclpy.action import ActionClient from action_tutorials_interfaces.action import Fibonacci from sensor_msgs.msg import JointState import logging vel_cmds = JointState() rad = math.pi vel_cmds.velocity = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] vel_cmds.position = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] vel_cmds.name = [ 'front_left_wheel_joint', 'front_left_axle_joint', 'front_right_wheel_joint', 'front_right_axle_joint', 'rear_left_wheel_joint', 'rear_left_axle_joint', 'rear_right_wheel_joint', 'rear_right_axle_joint'] test_return = JointState() class RunTests(Node): def __init__(self): super().__init__('run_tests') self.publisher_ = self.create_publisher( JointState, 'real_joint_commands', 10 ) timer_period = 0.1 self.timer = self.create_timer(timer_period, self.timer_callback) self.i = 0 self.subscription = self.create_subscription( JointState, 'real_joint_states', self.listener_callback, 10 ) self.subscription self.get_logger().info('Testing: ...') def timer_callback(self): self.publisher_.publish(vel_cmds) time.sleep(0.1) self.i+=1 def listener_callback(self, msg): test_return = msg def check(msg, test, test_fail): count = 0 working = True for x in msg.velocity: if (abs(msg.velocity[count] / 1000 - vel_cmds.velocity[count]) > 0.001 or abs(msg.position[count] / 1000 - vel_cmds.position[count]) > 0.001): working = False count+=1 if not working: print(test_fail) else: print(test) def test1(node): vel_cmds.velocity=[rad, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] t_end = time.time() + 3 while time.time() < t_end: rclpy.spin_once(node) time.sleep(1) check(test_return, 'Test Passed: Front Left Wheel is Spinning!', 'ERROR: Front Left Wheel is NOT spinning, something is wrong!') def test2(node): vel_cmds.position=[0.0, rad, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] t_end = time.time() + 3 while time.time() < t_end: rclpy.spin_once(node) time.sleep(1) check(test_return, 'Test Passed: Front Left Axle is Spinning!', 'ERROR: Front Left Axle is NOT spinning, something is wrong!') def test3(node): vel_cmds.velocity=[0.0, 0.0, rad, 0.0, 0.0, 0.0, 0.0, 0.0] t_end = time.time() + 3 while time.time() < t_end: rclpy.spin_once(node) time.sleep(1) check(test_return, 'Test Passed: Front Right Wheel is Spinning!', 'ERROR: Front Right Wheel is NOT spinning, something is wrong!') def test4(node): vel_cmds.position=[0.0, 0.0, 0.0, rad, 0.0, 0.0, 0.0, 0.0] t_end = time.time() + 3 while time.time() < t_end: rclpy.spin_once(node) time.sleep(1) check(test_return, 'Test Passed: Front Right Axle is Spinning!', 'ERROR: Front Right Axle is NOT spinning, something is wrong!') def test5(node): vel_cmds.position=[0.0, 0.0, 0.0, 0.0, rad, 0.0, 0.0, 0.0] t_end = time.time() + 3 while time.time() < t_end: rclpy.spin_once(node) time.sleep(1) check(test_return, 'Test Passed: Rear Left Wheel is Spinning!', 'ERROR: Rear Left Wheel is NOT spinning, something is wrong!') def test6(node): vel_cmds.position=[0.0, 0.0, 0.0, 0.0, 0.0, rad, 0.0, 0.0] t_end = time.time() + 3 while time.time() < t_end: rclpy.spin_once(node) time.sleep(1) check(test_return, 'Test Passed: Rear Left Axle is Spinning!', 'ERROR: Rear Left Axle is NOT spinning, something is wrong!') def test7(node): vel_cmds.position=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, rad, 0.0] t_end = time.time() + 3 while time.time() < t_end: rclpy.spin_once(node) time.sleep(1) check(test_return, 'Test Passed: Rear Right Wheel is Spinning!', 'ERROR: Rear Right Wheel is NOT spinning, something is wrong!') def test8(node): vel_cmds.position=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, rad] t_end = time.time() + 3 while time.time() < t_end: rclpy.spin_once(node) time.sleep(1) check(test_return, 'Test Passed: Rear Right Axle is Spinning!', 'ERROR: Rear Right Axle is NOT spinning, something is wrong!') def main(args=None): rclpy.init(args=args) node = RunTests() rclpy.spin_once(node) test1(node) test2(node) test3(node) test4(node) test5(node) test6(node) test7(node) test8(node) node.destroy_node() rclpy.shutdown() if __name__ == "__main__": main()
4,771
Python
32.138889
154
0.590442
RoboEagles4828/rift2024/src/rift_tests/rift_tests/joint_test.py
import time from rclpy.node import Node from sensor_msgs.msg import JointState # COLORS GREEN = "\033[0;32m" YELLOW = "\033[1;33m" RED = "\033[0;31m" RESET = "\033[0m" # Default ROS values SUBSCRIBE_TOPIC_NAME = '/real/real_joint_states' PUBLISH_INTERVAL = .5 # seconds # Default Tolerances PASS_TOLERANCE = 0.5 WARN_TOLERANCE = 1 SCALING_FACTOR_FIX = 10000 class TesterNode(Node): def __init__(self, tests, joint_names, joint_range, pub_topic_name, sub_topic_name=SUBSCRIBE_TOPIC_NAME, pub_interval=PUBLISH_INTERVAL, pass_tolerance=PASS_TOLERANCE, warn_tolerance=WARN_TOLERANCE): super().__init__('arm_tester') # Constructor Arguments self.TESTS = tests self.JOINT_NAMES = joint_names self.JOINT_RANGE = joint_range self.SUBSCRIBE_TOPIC_NAME = sub_topic_name self.PUBLISH_TOPIC_NAME = pub_topic_name self.PUBLISH_INTERVAL = pub_interval self.PASS_TOLERANCE = pass_tolerance self.WARN_TOLERANCE = warn_tolerance self.currentTest = 0 self.testStatus = [] self.lastPositions = [None]*6 self.expectedPositions = self.TESTS[self.currentTest]["positions"] self.recieving = True self.startTime = time.time() self.subscription = self.create_subscription(JointState, self.SUBSCRIBE_TOPIC_NAME, self.recieve, 10) self.publisher = self.create_publisher(JointState, self.PUBLISH_TOPIC_NAME, 10) self.publishTimer = self.create_timer(self.PUBLISH_INTERVAL, self.publish) def publish(self): msg = JointState() msg.name = self.JOINT_NAMES msg.position = self.TESTS[self.currentTest]["positions"] self.publisher.publish(msg) self.doTests() def doTests(self): if not(self.recieving): # Start running the next test self.currentTest += 1 if self.currentTest > len(self.TESTS)-1: print("\nTests Finished") for index, test in enumerate(self.testStatus): print(f"{RED if test['fail'] > 0 else YELLOW if test['warn'] > 0 else GREEN}Test {index} {'FAILED' if test['fail'] > 0 else 'PASSED'} {'with WARNINGS' if test['warn'] > 0 else ''}{RESET}") exit(0) # shutting down rclpy just kills the node and hangs the process, without actually stopping the program else: self.expectedPositions = self.TESTS[self.currentTest]["positions"] self.lastPositions = [None]*6 self.recieving = True self.startTime = time.time() else: # Check if the current test should end... timeleft = time.time() - self.startTime print(f"\rRunning Test {self.currentTest} ({round(self.TESTS[self.currentTest]['time'] - timeleft, 2)}s remaining)", end='') if time.time() - self.startTime > self.TESTS[self.currentTest]["time"]: self.recieving = False self.testStatus.append({"pass": 0, "warn": 0, "fail": 0}) print(f"\rTest {self.currentTest} Completed ") self.printResults() print() def recieve(self, msg : JointState): if self.recieving: self.lastPositions = [i / SCALING_FACTOR_FIX for i in msg.position[self.JOINT_RANGE[0]:self.JOINT_RANGE[1]]] def testFinished(self): if not self.recieving: return self.recieving = False self.destroy_timer(self.publishTimer) self.i += 1 def printResults(self): for index, position in enumerate(self.lastPositions): if position is None: print(f"{RED}FAILED: Did not recieve any positions from the robot!{RESET}") self.testStatus[self.currentTest]["fail"] += 1 continue difference = abs(self.expectedPositions[index] - position) if difference == 0: print(f"{GREEN}Joint {index} PASSED{RESET}") self.testStatus[self.currentTest]["pass"] += 1 elif difference <= self.PASS_TOLERANCE: print(f"{GREEN}Difference of {difference} (expected {self.expectedPositions[index]}, got {position}){RESET}") self.testStatus[self.currentTest]["pass"] += 1 elif difference <= self.WARN_TOLERANCE: print(f"{YELLOW}Difference of {difference} (expected {self.expectedPositions[index]}, got {position}){RESET}") self.testStatus[self.currentTest]["warn"] += 1 else: print(f"{RED}FAILED: Expected position {self.expectedPositions[index]}, got {position}{RESET}") self.testStatus[self.currentTest]["fail"] += 1
4,791
Python
43.785046
208
0.604467
RoboEagles4828/rift2024/src/rift_tests/rift_tests/publish_joint_arm_command.py
import rclpy from rclpy.node import Node import math from sensor_msgs.msg import JointState class PublishJointCmd(Node): def __init__(self): super().__init__('publish_arm_joint_commands') self.publisher_ = self.create_publisher(JointState, '/real/real_arm_commands', 10) timer_period = 0.5 # seconds self.timer = self.create_timer(timer_period, self.timer_callback) self.i = 0 def timer_callback(self): # velocity_cmds = JointState() position_cmds = JointState() position_cmds.name = [ # Pneumatics 'arm_roller_bar_joint', 'top_slider_joint', 'top_gripper_left_arm_joint', # Wheels 'elevator_center_joint', 'bottom_intake_joint', ] # position_cmds.name = [] # rad = math.pi # velocity_cmds.velocity = [ 0.0 ] * 8 position_cmds.position = [ 0.0, # Either a 0 (down) or a 1 (up) 0.0, # Either a 0 (fully back) or a 1 (fully extended) 0.0, # Either a 0 (open) or a 1 (closed) 0.0, # Value between 0.0 (fully back) and 2.0 (fully extended) (will be converted on their end, so just take the motor value and multiply it by two) 0.0 # Value between 0.0 (fully down) and 1.0 (fully up) ] # position_cmds.position = [] self.publisher_.publish(position_cmds) # self.publisher_.publish(position_cmds) self.get_logger().info('Publishing: ...') self.i += 1 def main(args=None): rclpy.init(args=args) node = PublishJointCmd() rclpy.spin(node) # Destroy the node explicitly # (optional - otherwise it will be done automatically # when the garbage collector destroys the node object) node.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
1,931
Python
28.723076
165
0.568099
RoboEagles4828/rift2024/src/isaac_hardware_test/setup.py
from setuptools import setup package_name = 'isaac_hardware_test' setup( name=package_name, version='0.0.0', packages=[package_name], data_files=[ ('share/ament_index/resource_index/packages', ['resource/' + package_name]), ('share/' + package_name, ['package.xml']), ], install_requires=['setuptools'], zip_safe=True, maintainer='admin', maintainer_email='[email protected]', description='TODO: Package description', license='TODO: License declaration', tests_require=['pytest'], entry_points={ 'console_scripts': [ 'isaac_drive = isaac_hardware_test.isaac_drive:main', ], }, )
696
Python
24.814814
65
0.604885
RoboEagles4828/rift2024/src/isaac_hardware_test/test/test_flake8.py
# Copyright 2017 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_flake8.main import main_with_errors import pytest @pytest.mark.flake8 @pytest.mark.linter def test_flake8(): rc, errors = main_with_errors(argv=[]) assert rc == 0, \ 'Found %d code style errors / warnings:\n' % len(errors) + \ '\n'.join(errors)
884
Python
33.03846
74
0.725113
RoboEagles4828/rift2024/src/isaac_hardware_test/test/test_pep257.py
# Copyright 2015 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_pep257.main import main import pytest @pytest.mark.linter @pytest.mark.pep257 def test_pep257(): rc = main(argv=['.', 'test']) assert rc == 0, 'Found code style errors / warnings'
803
Python
32.499999
74
0.743462
RoboEagles4828/rift2024/src/isaac_hardware_test/test/test_copyright.py
# Copyright 2015 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_copyright.main import main import pytest # Remove the `skip` decorator once the source file(s) have a copyright header @pytest.mark.skip(reason='No copyright header has been placed in the generated source file.') @pytest.mark.copyright @pytest.mark.linter def test_copyright(): rc = main(argv=['.', 'test']) assert rc == 0, 'Found errors'
962
Python
36.03846
93
0.751559
RoboEagles4828/rift2024/src/isaac_hardware_test/isaac_hardware_test/isaac_drive.py
import rclpy from rclpy.context import Context from rclpy.node import Node from rclpy.parameter import Parameter from sensor_msgs.msg import JointState, Imu from rclpy.time import Time, Duration from std_msgs.msg import Header, String import math class IsaacDriveHardware(Node): def __init__(self): super().__init__('isaac_drive_hardware') self.realtime_isaac_publisher_drive = self.create_publisher(JointState, 'isaac_drive_commands', 10) self.realtime_isaac_publisher_arm = self.create_publisher(JointState, 'isaac_arm_commands', 10) self.real_imu_publisher = self.create_publisher(String, 'real_imu', 10) # self.joint_state_publisher = self.create_publisher(JointState, 'joint_states', 10) self.isaac_subscriber = self.create_subscription(JointState, 'isaac_joint_states', self.isaac_callback, 10) self.real_subscriber = self.create_subscription(JointState, '/real/real_joint_states', self.real_callback, 10) self.imu_subscriber = self.create_subscription(Imu, 'imu', self.imu_callback, 10) self.OKGREEN = '\033[92m' self.ENDC = '\033[0m' self.joint_names: list[str] = [] self.joint_state: JointState = None self.joint_names2: list[str] = [] self.joint_state2: JointState = None self.arm_joint_names = [] self.drive_joint_names = [] self.command_effort = [] self.command_position = [] self.empty = [] self.realtime_isaac_command: JointState = JointState() self.joint_state_command: JointState = JointState() self.header = Header() self.get_logger().info(self.OKGREEN + "Configured and Activated Isaac Drive Hardware" + self.ENDC) def imu_callback(self, imu: Imu): if imu == None: self.get_logger().warn("Imu message recieved was null") imu_string = String() data = f"{imu.orientation.w}|{imu.orientation.x}|{imu.orientation.y}|{imu.orientation.z}|{imu.angular_velocity.x}|{imu.angular_velocity.y}|{imu.angular_velocity.z}|{imu.linear_acceleration.x}|{imu.linear_acceleration.y}|{imu.linear_acceleration.z}" imu_string.data = data self.real_imu_publisher.publish(imu_string) def real_callback(self, joint_state: JointState): self.joint_names = list(joint_state.name) self.joint_state = joint_state self.get_logger().info(self.OKGREEN + "Recieved Real Joint State" + self.ENDC) self.write() def isaac_callback(self, joint_state: JointState): self.joint_names2 = list(joint_state.name) self.joint_state2 = joint_state if self.joint_state2 == None: self.get_logger().warn("Velocity message recieved was null") else: self.read() def convertToRosPosition(self, isaac_position: float): if isaac_position > math.pi: return isaac_position - 2.0 * math.pi elif isaac_position < -math.pi: return isaac_position + 2.0 * math.pi return isaac_position def read(self): self.joint_state_command.effort = [] names = self.joint_state2.name positions = self.joint_state2.position velocities = self.joint_state2.velocity efforts = self.joint_state2.effort for i in range(len(self.joint_names)-1): for j in range(len(names)-1): if names[j] == self.joint_names[i]: self.joint_state_command.position.append(self.convertToRosPosition(positions[j])) self.joint_state_command.velocity.append(velocities[j]) self.joint_state_command.effort.append(efforts[j]) break # self.joint_state_command.header.stamp = Time(seconds=self._clock.now().seconds_nanoseconds()[0], nanoseconds=self._clock.now().seconds_nanoseconds()[1]) # self.joint_state_publisher.publish(self.joint_state_command) def write(self): self.command_effort = [] self.command_position = [] self.arm_joint_names.clear() self.drive_joint_names.clear() for j, i in enumerate(self.joint_names): if i.__contains__("wheel") or i.__contains__("axle"): vel = self.joint_state.velocity[j] self.command_effort.append(vel/10000.0) self.drive_joint_names.append(i) else: self.arm_joint_names.append(i) position = self.joint_state.position[j]/10000.0 # Elevator if i == "arm_roller_bar_joint": # split position among 2 joints self.command_position.append(position) self.arm_joint_names.append("elevator_outer_1_joint") if position == 0.07: self.command_position.append(0.2) elif position == 0.0: self.command_position.append(0.0) elif i == "top_slider_joint": self.command_position.append(position) elif i == "top_gripper_left_arm_joint": self.command_position.append(position) self.arm_joint_names.append("top_gripper_right_arm_joint") self.command_position.append(position) elif i == "elevator_center_joint": elevator_max = 0.56 elevator_min = 0.0 #scale position to be between 0 and 1 position = (position - elevator_min)/(elevator_max - elevator_min) self.command_position.append(position/2.0) self.arm_joint_names.append("elevator_outer_2_joint") self.command_position.append(position/2.0) self.header.stamp = self._clock.now().to_msg() self.realtime_isaac_command.header = self.header self.realtime_isaac_command.name = self.drive_joint_names self.realtime_isaac_command.velocity = self.command_effort self.realtime_isaac_command.position = self.empty self.realtime_isaac_command.effort = self.empty self.realtime_isaac_publisher_drive.publish(self.realtime_isaac_command) self.header.stamp = self._clock.now().to_msg() self.realtime_isaac_command.header = self.header self.realtime_isaac_command.name = self.arm_joint_names self.realtime_isaac_command.velocity = self.empty self.realtime_isaac_command.position = self.command_position self.realtime_isaac_command.effort = self.empty self.realtime_isaac_publisher_arm.publish(self.realtime_isaac_command) def main(args=None): rclpy.init(args=args) isaac_drive_hardware = IsaacDriveHardware() rclpy.spin(isaac_drive_hardware) isaac_drive_hardware.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
7,251
Python
43.219512
256
0.588884
RoboEagles4828/rift2024/src/rift_debugger/setup.py
from setuptools import setup package_name = 'rift_debugger' setup( name=package_name, version='0.0.0', packages=[package_name], data_files=[ ('share/ament_index/resource_index/packages', ['resource/' + package_name]), ('share/' + package_name, ['package.xml']), ], install_requires=['setuptools'], zip_safe=True, maintainer='admin', maintainer_email='[email protected]', description='GUI Robot Control Debugger', license='Apache License 2.0', tests_require=['pytest'], entry_points={ 'console_scripts': [ 'debugger = rift_debugger.debugger:main' ], }, )
674
Python
23.999999
53
0.60089
RoboEagles4828/rift2024/src/rift_debugger/rift_debugger/flow_layout.py
# Implement a FlowLayout so sliders move around in a grid as the window is # resized. Originally taken from: # https://forum.qt.io/topic/109408/is-there-a-qt-layout-grid-that-can-dynamically-change-row-and-column-counts-to-best-fit-the-space/2 # with the license: # # This file taken from # https://code.qt.io/cgit/qt/qtbase.git/tree/examples/widgets/layouts/flowlayout/flowlayout.cpp?h=5.13 # Modified/adapted by jon, 10/07/2019, to translate into Python/PyQt # # Copyright (C) 2016 The Qt Company Ltd. # Contact: https://www.qt.io/licensing/ # # This file is part of the examples of the Qt Toolkit. # # $QT_BEGIN_LICENSE:BSD$ # Commercial License Usage # Licensees holding valid commercial Qt licenses may use this file in # accordance with the commercial license agreement provided with the # Software or, alternatively, in accordance with the terms contained in # a written agreement between you and The Qt Company. For licensing terms # and conditions see https://www.qt.io/terms-conditions. For further # information use the contact form at https://www.qt.io/contact-us. # # BSD License Usage # Alternatively, you may use this file under the terms of the BSD license # as follows: # # "Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of The Qt Company Ltd nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." # # $QT_END_LICENSE$ # from python_qt_binding.QtCore import Qt from python_qt_binding.QtCore import QPoint from python_qt_binding.QtCore import QRect from python_qt_binding.QtCore import QSize from python_qt_binding.QtWidgets import QLayout from python_qt_binding.QtWidgets import QSizePolicy from python_qt_binding.QtWidgets import QStyle class FlowLayout(QLayout): def __init__(self, parent=None, margin=-1, hSpacing=-1, vSpacing=-1): super().__init__(parent) self.itemList = list() self.m_hSpace = hSpacing self.m_vSpace = vSpacing self.setContentsMargins(margin, margin, margin, margin) def __del__(self): # copied for consistency, not sure this is needed or ever called item = self.takeAt(0) while item: item = self.takeAt(0) def addItem(self, item): self.itemList.append(item) def horizontalSpacing(self): if self.m_hSpace >= 0: return self.m_hSpace else: return self.smartSpacing(QStyle.PM_LayoutHorizontalSpacing) def verticalSpacing(self): if self.m_vSpace >= 0: return self.m_vSpace else: return self.smartSpacing(QStyle.PM_LayoutVerticalSpacing) def count(self): return len(self.itemList) def itemAt(self, index): if 0 <= index < len(self.itemList): return self.itemList[index] return None def takeAt(self, index): if 0 <= index < len(self.itemList): return self.itemList.pop(index) return None def expandingDirections(self): return Qt.Orientations(Qt.Orientation(0)) def hasHeightForWidth(self): return True def heightForWidth(self, width): return self.doLayout(QRect(0, 0, width, 0), True) def setGeometry(self, rect): super().setGeometry(rect) self.doLayout(rect, False) def sizeHint(self): return self.minimumSize() def minimumSize(self): size = QSize() for item in self.itemList: size = size.expandedTo(item.minimumSize()) margins = self.contentsMargins() size += QSize(margins.left() + margins.right(), margins.top() + margins.bottom()) return size def smartSpacing(self, pm): parent = self.parent() if not parent: return -1 elif parent.isWidgetType(): return parent.style().pixelMetric(pm, None, parent) return parent.spacing() def doLayout(self, rect, testOnly): left, top, right, bottom = self.getContentsMargins() effectiveRect = rect.adjusted(+left, +top, -right, -bottom) x = effectiveRect.x() y = effectiveRect.y() lineHeight = 0 for item in self.itemList: wid = item.widget() spaceX = self.horizontalSpacing() if spaceX == -1: spaceX = wid.style().layoutSpacing(QSizePolicy.PushButton, QSizePolicy.PushButton, Qt.Horizontal) spaceY = self.verticalSpacing() if spaceY == -1: spaceY = wid.style().layoutSpacing(QSizePolicy.PushButton, QSizePolicy.PushButton, Qt.Vertical) nextX = x + item.sizeHint().width() + spaceX if nextX - spaceX > effectiveRect.right() and lineHeight > 0: x = effectiveRect.x() y = y + lineHeight + spaceY nextX = x + item.sizeHint().width() + spaceX lineHeight = 0 if not testOnly: item.setGeometry(QRect(QPoint(x, y), item.sizeHint())) x = nextX lineHeight = max(lineHeight, item.sizeHint().height()) return y + lineHeight - rect.y() + bottom
6,445
Python
35.834286
134
0.672149
RoboEagles4828/rift2024/src/rift_debugger/rift_debugger/debugger.py
import argparse import random import signal import sys import threading import rclpy from python_qt_binding.QtCore import pyqtSlot from python_qt_binding.QtCore import Qt from python_qt_binding.QtCore import Signal from python_qt_binding.QtGui import QFont from python_qt_binding.QtWidgets import QApplication from python_qt_binding.QtWidgets import QFormLayout from python_qt_binding.QtWidgets import QGridLayout from python_qt_binding.QtWidgets import QHBoxLayout from python_qt_binding.QtWidgets import QLabel from python_qt_binding.QtWidgets import QLineEdit from python_qt_binding.QtWidgets import QMainWindow from python_qt_binding.QtWidgets import QPushButton from python_qt_binding.QtWidgets import QSlider from python_qt_binding.QtWidgets import QScrollArea from python_qt_binding.QtWidgets import QVBoxLayout from python_qt_binding.QtWidgets import QWidget from rift_debugger.joint_state_publisher import JointStatePublisher from rift_debugger.flow_layout import FlowLayout RANGE = 10000 LINE_EDIT_WIDTH = 45 SLIDER_WIDTH = 200 INIT_NUM_SLIDERS = 7 # Initial number of sliders to show in window # Defined by style - currently using the default style DEFAULT_WINDOW_MARGIN = 11 DEFAULT_CHILD_MARGIN = 9 DEFAULT_BTN_HEIGHT = 25 DEFAULT_SLIDER_HEIGHT = 64 # Is the combination of default heights in Slider # Calculate default minimums for window sizing MIN_WIDTH = SLIDER_WIDTH + DEFAULT_CHILD_MARGIN * 4 + DEFAULT_WINDOW_MARGIN * 2 MIN_HEIGHT = DEFAULT_BTN_HEIGHT * 2 + DEFAULT_WINDOW_MARGIN * 2 + DEFAULT_CHILD_MARGIN * 2 PNEUMATICS_JOINTS = [ 'arm_roller_bar_joint', 'top_slider_joint', 'top_gripper_left_arm_joint', 'bottom_intake_joint' ] class Button(QWidget): def __init__(self, name): super().__init__() self.joint_layout = QVBoxLayout() self.row_layout = QHBoxLayout() font = QFont("Helvetica", 9, QFont.Bold) self.label = QLabel(name) self.label.setFont(font) self.row_layout.addWidget(self.label) self.joint_layout.addLayout(self.row_layout) self.button = QPushButton('toggle', self) self.button.setCheckable(True) self.joint_layout.addWidget(self.button) self.setLayout(self.joint_layout) def remove(self): self.joint_layout.remove_widget(self.button) self.button.setParent(None) self.row_layout.removeWidget(self.display) self.display.setParent(None) self.row_layout.removeWidget(self.label) self.label.setParent(None) self.row_layout.setParent(None) class Slider(QWidget): def __init__(self, name): super().__init__() self.joint_layout = QVBoxLayout() # top row self.row_layout_top = QHBoxLayout() font = QFont("Helvetica", 9, QFont.Bold) self.label = QLabel(name) self.label.setFont(font) self.row_layout_top.addWidget(self.label) self.joint_layout.addLayout(self.row_layout_top) # subscribing row self.row_layout_sub = QHBoxLayout() self.display_sub = QLineEdit("0.00") self.display_sub.setAlignment(Qt.AlignRight) self.display_sub.setFont(font) self.display_sub.setReadOnly(True) self.display_sub.setFixedWidth(LINE_EDIT_WIDTH) self.row_layout_sub.addWidget(self.display_sub) self.slider_sub = QSlider(Qt.Horizontal) self.slider_sub.setFont(font) self.slider_sub.setRange(0, RANGE) self.slider_sub.setValue(int(RANGE / 2)) self.slider_sub.setFixedWidth(SLIDER_WIDTH) self.row_layout_sub.addWidget(self.slider_sub) self.joint_layout.addLayout(self.row_layout_sub) # publishing row self.row_layout_pub = QHBoxLayout() self.display_pub = QLineEdit("0.00") self.display_pub.setAlignment(Qt.AlignRight) self.display_pub.setFont(font) self.display_pub.setReadOnly(False) self.display_pub.setFixedWidth(LINE_EDIT_WIDTH) self.row_layout_pub.addWidget(self.display_pub) self.slider_pub = QSlider(Qt.Horizontal) self.slider_pub.setFont(font) self.slider_pub.setRange(0, RANGE) self.slider_pub.setValue(int(RANGE / 2)) self.slider_pub.setFixedWidth(SLIDER_WIDTH) self.row_layout_pub.addWidget(self.slider_pub) self.joint_layout.addLayout(self.row_layout_pub) self.setLayout(self.joint_layout) def remove(self): self.joint_layout.removeWidget(self.slider) self.slider.setParent(None) self.row_layout.removeWidget(self.display) self.display.setParent(None) self.row_layout.removeWidget(self.label) self.label.setParent(None) self.row_layout.setParent(None) class JointStatePublisherGui(QMainWindow): sliderUpdateTrigger = Signal() initialize = Signal() def __init__(self, title, jsp : JointStatePublisher): super(JointStatePublisherGui, self).__init__() self.joint_map = {} self.setWindowTitle(title) # Button for randomizing the sliders self.rand_button = QPushButton('Randomize', self) self.rand_button.clicked.connect(self.randomizeEvent) # Button for centering the sliders self.ctr_button = QPushButton('Center', self) self.ctr_button.clicked.connect(self.centerEvent) # Button for resetting the joint butttons self.reset_button = QPushButton('Reset Pistons', self) self.reset_button.clicked.connect(self.resetButtons) # Scroll area widget contents - layout self.scroll_layout = FlowLayout() # Scroll area widget contents self.scroll_widget = QWidget() self.scroll_widget.setLayout(self.scroll_layout) # Scroll area for sliders self.scroll_area = QScrollArea() self.scroll_area.setWidgetResizable(True) self.scroll_area.setWidget(self.scroll_widget) # Main layout self.main_layout = QVBoxLayout() # Add buttons and scroll area to main layout self.main_layout.addWidget(self.rand_button) self.main_layout.addWidget(self.ctr_button) self.main_layout.addWidget(self.reset_button) self.main_layout.addWidget(self.scroll_area) # central widget self.central_widget = QWidget() self.central_widget.setLayout(self.main_layout) self.setCentralWidget(self.central_widget) self.jsp = jsp self.jsp.set_source_update_cb(self.sliderUpdateCb) self.jsp.set_robot_description_update_cb(self.initializeCb) self.running = True self.sliders = {} self.buttons = {} # Setup signal for initializing the window self.initialize.connect(self.initializeSliders) # Set up a signal for updating the sliders based on external joint info self.sliderUpdateTrigger.connect(self.updateSliders) # Tell self to draw sliders in case the JointStatePublisher already has a robot_description self.initialize.emit() def initializeSliders(self): self.joint_map = {} for sl, _ in self.sliders.items(): self.scroll_layout.removeWidget(sl) sl.remove() ### Generate sliders ### for name in self.jsp.joint_list: if name not in self.jsp.free_joints_sub: continue joint = self.jsp.free_joints_sub[name] if joint['min'] == joint['max']: continue if (name in PNEUMATICS_JOINTS): button = Button(name) self.joint_map[name] = {'button': button.button, 'joint': joint} self.scroll_layout.addWidget(button) button.button.toggled.connect(lambda event,name=name: self.onInputValueChanged(name)) self.buttons[button] = button else: slider = Slider(name) self.joint_map[name] = {'display_sub': slider.display_sub, 'slider_sub': slider.slider_sub, 'display_pub': slider.display_pub, 'slider_pub': slider.slider_pub, 'joint': joint} self.scroll_layout.addWidget(slider) slider.display_pub.textEdited.connect(lambda event,name=name: self.makeSliderEqualToText(name)) slider.slider_pub.valueChanged.connect(lambda event,name=name: self.makeTextEqualToSlider(name)) self.sliders[slider] = slider # Set zero positions read from parameters self.centerEvent(None) # Set size of min size of window based on number of sliders. if len(self.sliders) >= INIT_NUM_SLIDERS: # Limits min size to show INIT_NUM_SLIDERS num_sliders = INIT_NUM_SLIDERS else: num_sliders = len(self.sliders) scroll_layout_height = num_sliders * DEFAULT_SLIDER_HEIGHT scroll_layout_height += (num_sliders + 1) * DEFAULT_CHILD_MARGIN self.setMinimumSize(MIN_WIDTH, scroll_layout_height + MIN_HEIGHT) self.sliderUpdateTrigger.emit() def sliderUpdateCb(self): self.sliderUpdateTrigger.emit() def initializeCb(self): self.initialize.emit() # def onButtonClicked(self, name): # # self.jsp.get_logger().info("button changed") # joint_info = self.joint_map[name] # buttonValue = 1 if joint_info['button'].isChecked() == True else 0 # joint_info['joint']['position'] = buttonValue # joint_info['display'].setText(str(buttonValue)) # def onSliderTextEdited(self, slider, joint): # self.jsp.get_logger().info(slider.display.text()) # slider.slider1.setSliderPosition(self.valueToSlider(float(slider.display.displayText()), joint)) def makeSliderEqualToText(self, name): joint_info = self.joint_map[name] textvalue = joint_info['display_pub'].text() try: joint_info['slider_pub'].setValue(self.valueToSlider(float(textvalue), joint_info['joint'])) self.onInputValueChanged(name) except: pass def makeTextEqualToSlider(self, name): joint_info = self.joint_map[name] slidervalue = joint_info['slider_pub'].value() joint_info['display_pub'].setText(str(round(self.sliderToValue(slidervalue, joint_info['joint']), 2))) self.onInputValueChanged(name) def onInputValueChanged(self, name): # A slider value was changed, but we need to change the joint_info metadata. joint_info = self.joint_map[name] if ('slider_pub' in joint_info): slidervalue = joint_info['slider_pub'].value() joint = joint_info['joint'] if 'wheel' in name: self.jsp.free_joints_pub[name]['velocity'] = self.sliderToValue(slidervalue, joint) else: self.jsp.free_joints_pub[name]['position'] = self.sliderToValue(slidervalue, joint) elif ('button' in joint_info): buttonValue = joint_info['joint']['max'] if joint_info['button'].isChecked() == True else joint_info['joint']['min'] self.jsp.free_joints_pub[name]['position'] = buttonValue @pyqtSlot() def updateSliders(self): for name, joint_info in self.joint_map.items(): joint = joint_info['joint'] if ('slider_sub' in joint_info): if 'wheel' in name: slidervalue = self.valueToSlider(joint['velocity'], joint) else: slidervalue = self.valueToSlider(joint['position'], joint) joint_info['slider_sub'].setValue(slidervalue) joint_info['display_sub'].setText(str(round(self.sliderToValue(slidervalue, joint), 2))) elif ('button' in joint_info): buttonvalue = True if joint['position'] == joint['max'] else False if (joint_info['button'].isChecked() == buttonvalue): joint_info['button'].setStyleSheet('background-color: green') else: joint_info['button'].setStyleSheet('background-color: yellow') def resetButtons(self, event): self.jsp.get_logger().info("Toggling off") for name, joint_info in self.joint_map.items(): if('button' in joint_info): if(joint_info['button'].isChecked()): joint_info['button'].setChecked(False) def centerEvent(self, event): self.jsp.get_logger().info("Centering") for name, joint_info in self.joint_map.items(): if('slider' in joint_info): joint = joint_info['joint'] joint_info['slider'].setValue(self.valueToSlider(joint['zero'], joint)) def randomizeEvent(self, event): self.jsp.get_logger().info("Randomizing") for name, joint_info in self.joint_map.items(): if('slider' in joint_info): joint = joint_info['joint'] joint_info['slider'].setValue( self.valueToSlider(random.uniform(joint['min'], joint['max']), joint)) def valueToSlider(self, value, joint): # return int(value * 5000) return int((value - joint['min']) * float(RANGE) / (joint['max'] - joint['min'])) def sliderToValue(self, slider, joint): pctvalue = slider / float(RANGE) return joint['min'] + (joint['max']-joint['min']) * pctvalue def closeEvent(self, event): self.running = False def loop(self): while self.running: rclpy.spin_once(self.jsp, timeout_sec=0.1) def main(): # Initialize rclpy with the command-line arguments rclpy.init() # Strip off the ROS 2-specific command-line arguments stripped_args = rclpy.utilities.remove_ros_args(args=sys.argv) parser = argparse.ArgumentParser() parser.add_argument('urdf_file', help='URDF file to use', nargs='?', default=None) # Parse the remaining arguments, noting that the passed-in args must *not* # contain the name of the program. parsed_args = parser.parse_args(args=stripped_args[1:]) app = QApplication(sys.argv) jsp_gui = JointStatePublisherGui('Debugger', JointStatePublisher(parsed_args.urdf_file)) jsp_gui.show() threading.Thread(target=jsp_gui.loop).start() signal.signal(signal.SIGINT, signal.SIG_DFL) sys.exit(app.exec_()) if __name__ == '__main__': main()
14,516
Python
35.2925
191
0.640052
RoboEagles4828/rift2024/src/rift_debugger/rift_debugger/joint_state_publisher.py
# Copyright (c) 2010, Willow Garage, Inc. # All rights reserved. # # Software License Agreement (BSD License 2.0) # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # Standard Python imports import argparse import math import sys import time import xml.dom.minidom # ROS 2 imports import rclpy import rclpy.node from rcl_interfaces.msg import ParameterDescriptor, ParameterType import sensor_msgs.msg import std_msgs.msg POSITION_JOINTS = { 'arm_roller_bar_joint', 'elevator_center_joint', 'elevator_outer_1_joint', 'elevator_outer_2_joint', 'top_gripper_right_arm_joint', 'top_gripper_left_arm_joint', 'top_slider_joint', 'bottom_intake_joint', 'front_left_axle_joint', 'front_right_axle_joint', 'rear_left_axle_joint', 'rear_right_axle_joint', } VELOCITY_JOINTS = [ 'front_left_wheel_joint', 'front_right_wheel_joint', 'rear_left_wheel_joint', 'rear_right_wheel_joint', ] class JointStatePublisher(rclpy.node.Node): def get_param(self, name): return self.get_parameter(name).value def _init_joint(self, minval, maxval, zeroval): joint = {'min': minval, 'max': maxval, 'zero': zeroval} if self.pub_def_positions: joint['position'] = zeroval if self.pub_def_vels: joint['velocity'] = 0.0 if self.pub_def_efforts: joint['effort'] = 0.0 return joint def init_collada(self, robot): robot = robot.getElementsByTagName('kinematics_model')[0].getElementsByTagName('technique_common')[0] for child in robot.childNodes: if child.nodeType is child.TEXT_NODE: continue if child.localName == 'joint': name = child.getAttribute('name') if child.getElementsByTagName('revolute'): joint = child.getElementsByTagName('revolute')[0] else: self.get_logger().warn('Unknown joint type %s', child) continue if joint: limit = joint.getElementsByTagName('limits')[0] minval = float(limit.getElementsByTagName('min')[0].childNodes[0].nodeValue) maxval = float(limit.getElementsByTagName('max')[0].childNodes[0].nodeValue) if minval == maxval: # this is a fixed joint continue self.joint_list.append(name) minval *= math.pi/180.0 maxval *= math.pi/180.0 self.free_joints_sub[name] = self._init_joint(minval, maxval, 0.0) self.free_joints_pub[name] = self.free_joints_sub[name] def init_urdf(self, robot): robot = robot.getElementsByTagName('robot')[0] # Find all non-fixed joints for child in robot.childNodes: if child.nodeType is child.TEXT_NODE: continue if child.localName == 'joint': jtype = child.getAttribute('type') if jtype in ['fixed', 'floating', 'planar']: continue name = child.getAttribute('name') self.joint_list.append(name) if jtype == 'continuous': if name in VELOCITY_JOINTS: minval = -39.4 # this is not a good number i pulled it out of thin air maxval = 39.4 # please someone calculate the actual thing using the circumference of the wheels and that stuff else: minval = -math.pi maxval = math.pi else: try: limit = child.getElementsByTagName('limit')[0] minval = float(limit.getAttribute('lower')) maxval = float(limit.getAttribute('upper')) except: self.get_logger().warn('%s is not fixed, nor continuous, but limits are not specified!' % name) continue safety_tags = child.getElementsByTagName('safety_controller') if self.use_small and len(safety_tags) == 1: tag = safety_tags[0] if tag.hasAttribute('soft_lower_limit'): minval = max(minval, float(tag.getAttribute('soft_lower_limit'))) if tag.hasAttribute('soft_upper_limit'): maxval = min(maxval, float(tag.getAttribute('soft_upper_limit'))) mimic_tags = child.getElementsByTagName('mimic') if self.use_mimic and len(mimic_tags) == 1: tag = mimic_tags[0] entry = {'parent': tag.getAttribute('joint')} if tag.hasAttribute('multiplier'): entry['factor'] = float(tag.getAttribute('multiplier')) if tag.hasAttribute('offset'): entry['offset'] = float(tag.getAttribute('offset')) self.dependent_joints[name] = entry continue if name in self.dependent_joints: continue if self.zeros and name in self.zeros: zeroval = self.zeros[name] elif minval > 0 or maxval < 0: zeroval = (maxval + minval)/2 else: zeroval = 0 joint = self._init_joint(minval, maxval, zeroval) if jtype == 'continuous': joint['continuous'] = True self.free_joints_sub[name] = joint self.free_joints_pub[name] = joint.copy() def configure_robot(self, description): self.get_logger().debug('Got description, configuring robot') try: robot = xml.dom.minidom.parseString(description) except xml.parsers.expat.ExpatError: # If the description fails to parse for some reason, print an error # and get out of here without doing further work. If we were # already running with a description, we'll continue running with # that older one. self.get_logger().warn('Invalid robot_description given, ignoring') return # Make sure to clear out the old joints so we don't get duplicate joints # on a new robot description. self.free_joints_sub = {} self.free_joints_pub = {} self.joint_list = [] # for maintaining the original order of the joints if robot.getElementsByTagName('COLLADA'): self.init_collada(robot) else: self.init_urdf(robot) if self.robot_description_update_cb is not None: self.robot_description_update_cb() def parse_dependent_joints(self): dj = {} dependent_joints = self.get_parameters_by_prefix('dependent_joints') # get_parameters_by_prefix returned a dictionary of keynames like # 'head.parent', 'head.offset', etc. that map to rclpy Parameter values. # The rest of the code assumes that the dependent_joints dictionary is # a map of name -> dict['parent': parent, factor: factor, offset: offset], # where both factor and offset are optional. Thus we parse the values we # got into that structure. for name, param in dependent_joints.items(): # First split on the dots; there should be one and exactly one dot split = name.split('.') if len(split) != 2: raise Exception("Invalid dependent_joint name '%s'" % (name)) newkey = split[0] newvalue = split[1] if newvalue not in ['parent', 'factor', 'offset']: raise Exception("Invalid dependent_joint name '%s' (allowed values are 'parent', 'factor', and 'offset')" % (newvalue)) if newkey in dj: dj[newkey].update({newvalue: param.value}) else: dj[newkey] = {newvalue: param.value} # Now ensure that there is at least a 'parent' in all keys for name,outdict in dj.items(): if outdict.get('parent', None) is None: raise Exception('All dependent_joints must at least have a parent') return dj def declare_ros_parameter(self, name, default, descriptor): # When the automatically_declare_parameters_from_overrides parameter to # rclpy.create_node() is True, then any parameters passed in on the # command-line are automatically declared. In that case, calling # node.declare_parameter() will raise an exception. However, in the case # where a parameter is *not* overridden, we still want to declare it # (so it shows up in "ros2 param list", for instance). Thus we always do # a declaration and just ignore ParameterAlreadyDeclaredException. try: self.declare_parameter(name, default, descriptor) except rclpy.exceptions.ParameterAlreadyDeclaredException: pass def __init__(self, urdf_file): super().__init__('joint_state_publisher', automatically_declare_parameters_from_overrides=True) self.declare_ros_parameter('publish_default_efforts', False, ParameterDescriptor(type=ParameterType.PARAMETER_BOOL)) self.declare_ros_parameter('publish_default_positions', True, ParameterDescriptor(type=ParameterType.PARAMETER_BOOL)) self.declare_ros_parameter('publish_default_velocities', False, ParameterDescriptor(type=ParameterType.PARAMETER_BOOL)) self.declare_ros_parameter('rate', 10, ParameterDescriptor(type=ParameterType.PARAMETER_INTEGER)) self.declare_ros_parameter('source_list', [], ParameterDescriptor(type=ParameterType.PARAMETER_STRING_ARRAY)) self.declare_ros_parameter('use_mimic_tags', True, ParameterDescriptor(type=ParameterType.PARAMETER_BOOL)) self.declare_ros_parameter('use_smallest_joint_limits', True, ParameterDescriptor(type=ParameterType.PARAMETER_BOOL)) self.declare_ros_parameter('delta', 0.0, ParameterDescriptor(type=ParameterType.PARAMETER_DOUBLE)) # In theory we would also declare 'dependent_joints' and 'zeros' here. # Since rclpy doesn't support maps natively, though, we just end up # letting 'automatically_declare_parameters_from_overrides' declare # any parameters for us. self.free_joints_sub = {} self.free_joints_pub = {} self.joint_list = [] # for maintaining the original order of the joints self.dependent_joints = self.parse_dependent_joints() self.use_mimic = self.get_param('use_mimic_tags') self.use_small = self.get_param('use_smallest_joint_limits') zeros = self.get_parameters_by_prefix('zeros') # get_parameters_by_prefix() returns a map of name -> Parameter # structures, but self.zeros is expected to be a list of name -> float; # fix that here. self.zeros = {k:v.value for (k, v) in zeros.items()} self.pub_def_positions = self.get_param('publish_default_positions') self.pub_def_vels = self.get_param('publish_default_velocities') self.pub_def_efforts = self.get_param('publish_default_efforts') self.robot_description_update_cb = None if urdf_file is not None: # If we were given a URDF file on the command-line, use that. with open(urdf_file, 'r') as infp: description = infp.read() self.configure_robot(description) else: # Otherwise, subscribe to the '/robot_description' topic and wait # for a callback there self.get_logger().info('Waiting for robot_description to be published on the robot_description topic...') self.create_subscription(std_msgs.msg.String, 'robot_description', lambda msg: self.configure_robot(msg.data), rclpy.qos.QoSProfile(depth=1, durability=rclpy.qos.QoSDurabilityPolicy.TRANSIENT_LOCAL)) self.delta = self.get_param('delta') source_list = self.get_param('source_list') self.sources = [] # for source in source_list: # self.sources.append(self.create_subscription(sensor_msgs.msg.JointState, source, self.source_cb, 10)) # The source_update_cb will be called at the end of self.source_cb. # The main purpose is to allow external observers (such as the # joint_state_publisher_gui) to be notified when things are updated. self.source_update_cb = None # Override topic name here self.pub_pos = self.create_publisher(std_msgs.msg.Float64MultiArray, 'forward_position_controller/commands', 10) self.pub_vel = self.create_publisher(std_msgs.msg.Float64MultiArray, 'forward_velocity_controller/commands', 10) self.create_subscription(sensor_msgs.msg.JointState, 'joint_states', self.source_cb, 10) self.timer = self.create_timer(1.0 / self.get_param('rate'), self.timer_callback) def source_cb(self, msg): # self.get_logger().info("ran source callback") for i in range(len(msg.name)): name = msg.name[i] if name not in self.free_joints_sub: continue if msg.position: position = msg.position[i] else: position = None if msg.velocity: velocity = msg.velocity[i] else: velocity = None if msg.effort: effort = msg.effort[i] else: effort = None joint = self.free_joints_sub[name] if position is not None: joint['position'] = position if velocity is not None: joint['velocity'] = velocity if effort is not None: joint['effort'] = effort if self.source_update_cb is not None: self.source_update_cb() def set_source_update_cb(self, user_cb): self.source_update_cb = user_cb def set_robot_description_update_cb(self, user_cb): self.robot_description_update_cb = user_cb def timer_callback(self): # Publish Joint States msg = sensor_msgs.msg.JointState() msg.header.stamp = self.get_clock().now().to_msg() if self.delta > 0: self.update(self.delta) # Initialize msg.position, msg.velocity, and msg.effort. has_position = False has_velocity = False has_effort = False for name, joint in self.free_joints_pub.items(): if not has_position and 'position' in joint: has_position = True if not has_velocity and 'velocity' in joint: has_velocity = True if not has_effort and 'effort' in joint: has_effort = True num_joints = (len(self.free_joints_pub.items()) + len(self.dependent_joints.items())) if has_position: msg.position = [] if has_velocity: msg.velocity = [] if has_effort: msg.effort = num_joints * [0.0] for i, name in enumerate(self.joint_list): msg.name.append(str(name)) joint = None # Add Free Joint if name in self.free_joints_pub: joint = self.free_joints_pub[name] factor = 1 offset = 0 # Add Dependent Joint elif name in self.dependent_joints: param = self.dependent_joints[name] parent = param['parent'] factor = param.get('factor', 1.0) offset = param.get('offset', 0.0) # Handle recursive mimic chain recursive_mimic_chain_joints = [name] while parent in self.dependent_joints: if parent in recursive_mimic_chain_joints: error_message = 'Found an infinite recursive mimic chain' self.get_logger().error(f'{error_message}: {recursive_mimic_chain_joints + [parent]}') sys.exit(1) recursive_mimic_chain_joints.append(parent) param = self.dependent_joints[parent] parent = param['parent'] offset += factor * param.get('offset', 0) factor *= param.get('factor', 1) joint = self.free_joints_pub[parent] # the issue here is that its setting [i] either to the joint, or its skipping i in the list when we need it to be the next value. # For some reason, [list].append() ends up putting way too many empty values that come from nowhere into the list. # The best thing to do here would be having two separate iterators which only increment if the variable has a position or a velocity. if has_position and 'position' in joint and name in POSITION_JOINTS: msg.position.append(float(joint['position']) * factor + offset) if has_velocity and 'velocity' in joint and name in VELOCITY_JOINTS: msg.velocity.append(float(joint['velocity']) * factor) if has_effort and 'effort' in joint: msg.effort[i] = float(joint['effort']) # Only publish non-empty messages if not (msg.name or msg.position or msg.velocity or msg.effort): return pos_msg = std_msgs.msg.Float64MultiArray() vel_msg = std_msgs.msg.Float64MultiArray() pos_msg.data = msg.position vel_msg.data = msg.velocity self.pub_pos.publish(pos_msg) self.pub_vel.publish(vel_msg) def update(self, delta): for name, joint in self.free_joints_sub.items(): forward = joint.get('forward', True) if forward: joint['position'] += delta if joint['position'] > joint['max']: if joint.get('continuous', False): joint['position'] = joint['min'] else: joint['position'] = joint['max'] joint['forward'] = not forward else: joint['position'] -= delta if joint['position'] < joint['min']: joint['position'] = joint['min'] joint['forward'] = not forward def main(): # Initialize rclpy with the command-line arguments rclpy.init() # Strip off the ROS 2-specific command-line arguments stripped_args = rclpy.utilities.remove_ros_args(args=sys.argv) parser = argparse.ArgumentParser() parser.add_argument('urdf_file', help='URDF file to use', nargs='?', default=None) # Parse the remaining arguments, noting that the passed-in args must *not* # contain the name of the program. parsed_args = parser.parse_args(args=stripped_args[1:]) jsp = JointStatePublisher(parsed_args.urdf_file) try: rclpy.spin(jsp) except KeyboardInterrupt: pass jsp.destroy_node() rclpy.try_shutdown() if __name__ == '__main__': main()
20,839
Python
42.873684
145
0.595038
RoboEagles4828/rift2024/isaac/README.md
# Isaac Sim Code and Assests
28
Markdown
27.999972
28
0.785714
RoboEagles4828/rift2024/isaac/exts/omni.isaac.rift/config/extension.toml
[core] reloadable = true order = 0 [package] version = "1.0.0" category = "Simulation" title = "rift" description = "Extension for running rift in Isaac Sim" authors = ["Gage Miller, Nitin C"] repository = "" keywords = ["isaac", "samples", "manipulation"] changelog = "docs/CHANGELOG.md" readme = "docs/README.md" preview_image = "data/preview.png" icon = "data/icon.png" writeTarget.kit = true [dependencies] "omni.kit.uiapp" = {} "omni.physx" = {} "omni.physx.vehicle" = {} "omni.isaac.dynamic_control" = {} "omni.isaac.motion_planning" = {} "omni.isaac.synthetic_utils" = {} "omni.isaac.ui" = {} "omni.isaac.core" = {} "omni.isaac.franka" = {} "omni.isaac.dofbot" = {} "omni.isaac.universal_robots" = {} "omni.isaac.motion_generation" = {} "omni.isaac.demos" = {} "omni.graph.action" = {} "omni.graph.nodes" = {} "omni.graph.core" = {} "omni.isaac.quadruped" = {} "omni.isaac.wheeled_robots" = {} "omni.isaac.examples" = {} [[python.module]] name = "omni.isaac.rift.import_bot" [[test]] timeout = 960
1,012
TOML
21.021739
55
0.656126
RoboEagles4828/rift2024/isaac/exts/omni.isaac.rift/omni/isaac/rift/base_sample/base_sample.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.core import World from omni.isaac.core.scenes.scene import Scene from omni.isaac.core.utils.stage import create_new_stage_async, update_stage_async import gc from abc import abstractmethod class BaseSample(object): def __init__(self) -> None: self._world = None self._current_tasks = None self._world_settings = {"physics_dt": 1.0 / 60.0, "stage_units_in_meters": 1.0, "rendering_dt": 1.0 / 60.0} # self._logging_info = "" return def get_world(self): return self._world def set_world_settings(self, physics_dt=None, stage_units_in_meters=None, rendering_dt=None): if physics_dt is not None: self._world_settings["physics_dt"] = physics_dt if stage_units_in_meters is not None: self._world_settings["stage_units_in_meters"] = stage_units_in_meters if rendering_dt is not None: self._world_settings["rendering_dt"] = rendering_dt return async def load_world_async(self): """Function called when clicking load buttton """ if World.instance() is None: await create_new_stage_async() self._world = World(**self._world_settings) await self._world.initialize_simulation_context_async() self.setup_scene() else: self._world = World.instance() self._current_tasks = self._world.get_current_tasks() await self._world.reset_async() await self._world.pause_async() await self.setup_post_load() if len(self._current_tasks) > 0: self._world.add_physics_callback("tasks_step", self._world.step_async) return async def load_game_piece_async(self): """Function called when clicking load buttton """ self.add_game_piece() return async def reset_async(self): """Function called when clicking reset buttton """ if self._world.is_tasks_scene_built() and len(self._current_tasks) > 0: self._world.remove_physics_callback("tasks_step") await self._world.play_async() await update_stage_async() await self.setup_pre_reset() await self._world.reset_async() await self._world.pause_async() await self.setup_post_reset() if self._world.is_tasks_scene_built() and len(self._current_tasks) > 0: self._world.add_physics_callback("tasks_step", self._world.step_async) return @abstractmethod def setup_scene(self, scene: Scene) -> None: """used to setup anything in the world, adding tasks happen here for instance. Args: scene (Scene): [description] """ return @abstractmethod async def setup_post_load(self): """called after first reset of the world when pressing load, intializing provate variables happen here. """ return @abstractmethod async def setup_pre_reset(self): """ called in reset button before resetting the world to remove a physics callback for instance or a controller reset """ return @abstractmethod async def setup_post_reset(self): """ called in reset button after resetting the world which includes one step with rendering """ return @abstractmethod async def setup_post_clear(self): """called after clicking clear button or after creating a new stage and clearing the instance of the world with its callbacks """ return # def log_info(self, info): # self._logging_info += str(info) + "\n" # return def _world_cleanup(self): self._world.stop() self._world.clear_all_callbacks() self._current_tasks = None self.world_cleanup() return def world_cleanup(self): """Function called when extension shutdowns and starts again, (hot reloading feature) """ return async def clear_async(self): """Function called when clicking clear buttton """ await create_new_stage_async() if self._world is not None: self._world_cleanup() self._world.clear_instance() self._world = None gc.collect() await self.setup_post_clear() return
4,816
Python
33.905797
115
0.622093
RoboEagles4828/rift2024/isaac/exts/omni.isaac.rift/omni/isaac/rift/base_sample/base_sample_extension.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from abc import abstractmethod import omni.ext import omni.ui as ui from omni.kit.menu.utils import add_menu_items, remove_menu_items, MenuItemDescription import weakref from omni.isaac.ui.ui_utils import setup_ui_headers, get_style, btn_builder, scrolling_frame_builder import asyncio from omni.isaac.rift.base_sample import BaseSample from omni.isaac.core import World class BaseSampleExtension(omni.ext.IExt): def on_startup(self, ext_id: str): self._menu_items = None self._buttons = None self._ext_id = ext_id self._sample = None self._extra_frames = [] return def start_extension( self, menu_name: str, submenu_name: str, name: str, title: str, doc_link: str, overview: str, file_path: str, sample=None, number_of_extra_frames=1, window_width=350, ): if sample is None: self._sample = BaseSample() else: self._sample = sample menu_items = [MenuItemDescription(name=name, onclick_fn=lambda a=weakref.proxy(self): a._menu_callback())] if menu_name == "" or menu_name is None: self._menu_items = menu_items elif submenu_name == "" or submenu_name is None: self._menu_items = [MenuItemDescription(name=menu_name, sub_menu=menu_items)] else: self._menu_items = [ MenuItemDescription( name=menu_name, sub_menu=[MenuItemDescription(name=submenu_name, sub_menu=menu_items)] ) ] add_menu_items(self._menu_items, "Isaac Examples") self._buttons = dict() self._build_ui( name=name, title=title, doc_link=doc_link, overview=overview, file_path=file_path, number_of_extra_frames=number_of_extra_frames, window_width=window_width, ) if self.get_world() is not None: self._on_load_world() return @property def sample(self): return self._sample def get_frame(self, index): if index >= len(self._extra_frames): raise Exception("there were {} extra frames created only".format(len(self._extra_frames))) return self._extra_frames[index] def get_world(self): return World.instance() def get_buttons(self): return self._buttons def _build_ui(self, name, title, doc_link, overview, file_path, number_of_extra_frames, window_width): self._window = omni.ui.Window( name, width=window_width, height=0, visible=True, dockPreference=ui.DockPreference.RIGHT_BOTTOM ) with self._window.frame: with ui.VStack(spacing=5, height=0): setup_ui_headers(self._ext_id, file_path, title, doc_link, overview) self._controls_frame = ui.CollapsableFrame( title="World Controls", width=ui.Fraction(1), height=0, collapsed=False, style=get_style(), horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with ui.VStack(style=get_style(), spacing=5, height=0): for i in range(number_of_extra_frames): self._extra_frames.append( ui.CollapsableFrame( title="", width=ui.Fraction(0.33), height=0, visible=False, collapsed=False, style=get_style(), horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) ) with self._controls_frame: with ui.VStack(style=get_style(), spacing=5, height=0): dict = { "label": "Load World", "type": "button", "text": "Load", "tooltip": "Load World and Task", "on_clicked_fn": self._on_load_world, } self._buttons["Load World"] = btn_builder(**dict) self._buttons["Load World"].enabled = True dict = { "label": "Reset", "type": "button", "text": "Reset", "tooltip": "Reset robot and environment", "on_clicked_fn": self._on_reset, } self._buttons["Reset"] = btn_builder(**dict) self._buttons["Reset"].enabled = False dict = { "label": "Clear", "type": "button", "text": "Clear", "tooltip": "Clear the full environment", "on_clicked_fn": self._on_clear, } self._buttons["Clear"] = btn_builder(**dict) self._buttons["Clear"].enabled = True dict = { "label": "Load Game Piece", "type": "button", "text": "Game Piece", "tooltip": "Populate the substation with game pieces", "on_clicked_fn": self._on_load_game_piece, } self._buttons["Load Game Piece"] = btn_builder(**dict) self._buttons["Load Game Piece"].enabled = True return def _set_button_tooltip(self, button_name, tool_tip): self._buttons[button_name].set_tooltip(tool_tip) return def _on_load_world(self): async def _on_load_world_async(): await self._sample.load_world_async() await omni.kit.app.get_app().next_update_async() self._sample._world.add_stage_callback("stage_event_1", self.on_stage_event) self._enable_all_buttons(True) self._buttons["Load World"].enabled = False self.post_load_button_event() self._sample._world.add_timeline_callback("stop_reset_event", self._reset_on_stop_event) asyncio.ensure_future(_on_load_world_async()) return def _on_load_game_piece(self): async def _on_load_game_piece_async(): await self._sample.load_game_piece_async() await omni.kit.app.get_app().next_update_async() # self._sample._world.add_stage_callback("stage_event_2", self.on_stage_event) # self.post_load_game_piece_button_event() # self._sample._world.add_timeline_callback("stop_reset_event_2", self._reset_on_stop_event) asyncio.ensure_future(_on_load_game_piece_async()) return def _on_reset(self): async def _on_reset_async(): await self._sample.reset_async() await omni.kit.app.get_app().next_update_async() self.post_reset_button_event() asyncio.ensure_future(_on_reset_async()) return def _on_clear(self): async def _on_clear_async(): await self._sample.clear_async() await omni.kit.app.get_app().next_update_async() self.post_clear_button_event() self._buttons["Load World"].enabled = True asyncio.ensure_future(_on_clear_async()) return @abstractmethod def post_load_game_piece_button_event(self): return @abstractmethod def post_reset_button_event(self): return @abstractmethod def post_load_button_event(self): return @abstractmethod def post_clear_button_event(self): return def _enable_all_buttons(self, flag): for btn_name, btn in self._buttons.items(): if isinstance(btn, omni.ui._ui.Button): btn.enabled = flag return def _menu_callback(self): self._window.visible = not self._window.visible return def _on_window(self, status): # if status: return def on_shutdown(self): self._extra_frames = [] if self._sample._world is not None: self._sample._world_cleanup() if self._menu_items is not None: self._sample_window_cleanup() if self._buttons is not None: self._buttons["Load World"].enabled = True self._enable_all_buttons(False) self.shutdown_cleanup() return def shutdown_cleanup(self): return def _sample_window_cleanup(self): remove_menu_items(self._menu_items, "Isaac Examples") self._window = None self._menu_items = None self._buttons = None return def on_stage_event(self, event): if event.type == int(omni.usd.StageEventType.CLOSED): if World.instance() is not None: self.sample._world_cleanup() self.sample._world.clear_instance() if hasattr(self, "_buttons"): if self._buttons is not None: self._enable_all_buttons(False) self._buttons["Load World"].enabled = True return def _reset_on_stop_event(self, e): if e.type == int(omni.timeline.TimelineEventType.STOP): self._buttons["Load World"].enabled = False self._buttons["Reset"].enabled = True self.post_clear_button_event() return
10,520
Python
36.981949
114
0.527567
RoboEagles4828/rift2024/isaac/exts/omni.isaac.rift/omni/isaac/rift/base_sample/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.rift.base_sample.base_sample import BaseSample from omni.isaac.rift.base_sample.base_sample_extension import BaseSampleExtension
574
Python
46.916663
81
0.818815
RoboEagles4828/rift2024/isaac/exts/omni.isaac.rift/omni/isaac/rift/import_bot/__init__.py
from omni.isaac.rift.import_bot.import_bot import ImportBot from omni.isaac.rift.import_bot.import_bot_extension import ImportBotExtension
140
Python
34.249991
78
0.842857
RoboEagles4828/rift2024/isaac/exts/omni.isaac.rift/omni/isaac/rift/import_bot/import_bot_extension.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.rift.base_sample import BaseSampleExtension from omni.isaac.rift.import_bot.import_bot import ImportBot import omni.ui as ui from omni.isaac.ui.ui_utils import state_btn_builder class ImportBotExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="Rift FRC", submenu_name="", name="Import URDF", title="Load the URDF for Rift FRC 2023 Robot", doc_link="", overview="This loads the Rift robot into Isaac Sim.", file_path=os.path.abspath(__file__), sample=ImportBot(), number_of_extra_frames=1 ) self.task_ui_elements = {} frame = self.get_frame(index=0) self.build_task_controls_ui(frame) return def _on_toggle_camera_button_event(self, val): return def build_task_controls_ui(self, frame): with frame: with ui.VStack(spacing=5): # Update the Frame Title frame.title = "Task Controls" frame.visible = True dict = { "label": "Toggle Cameras", "type": "button", "a_text": "START", "b_text": "STOP", "tooltip": "Start the cameras", "on_clicked_fn": self._on_toggle_camera_button_event, } self.task_ui_elements["Toggle Camera"] = state_btn_builder(**dict) self.task_ui_elements["Toggle Camera"].enabled = False
2,080
Python
36.836363
82
0.597596
RoboEagles4828/rift2024/isaac/exts/omni.isaac.rift/omni/isaac/rift/import_bot/import_bot.py
from omni.isaac.core.utils.stage import add_reference_to_stage import omni.graph.core as og import omni.usd from omni.isaac.rift.base_sample import BaseSample from omni.isaac.urdf import _urdf from omni.isaac.core.robots import Robot from omni.isaac.core.utils import prims from omni.isaac.core.prims import GeometryPrim, RigidPrim from omni.isaac.core_nodes.scripts.utils import set_target_prims # from omni.kit.viewport_legacy import get_default_viewport_window # from omni.isaac.sensor import IMUSensor from pxr import UsdPhysics, UsdShade, Sdf, Gf import omni.kit.commands import os import numpy as np import math import carb from omni.isaac.core.materials import PhysicsMaterial from random import randint, choice NAMESPACE = f"{os.environ.get('ROS_NAMESPACE')}" if 'ROS_NAMESPACE' in os.environ else 'default' def set_drive_params(drive, stiffness, damping, max_force): drive.GetStiffnessAttr().Set(stiffness) drive.GetDampingAttr().Set(damping) if(max_force != 0.0): drive.GetMaxForceAttr().Set(max_force) return def add_physics_material_to_prim(prim, materialPath): bindingAPI = UsdShade.MaterialBindingAPI.Apply(prim) materialPrim = UsdShade.Material(materialPath) bindingAPI.Bind(materialPrim, UsdShade.Tokens.weakerThanDescendants, "physics") class ImportBot(BaseSample): def __init__(self) -> None: super().__init__() self.cone_list = [] self.cube_list = [] return def set_friction(self, robot_prim_path): stage = omni.usd.get_context().get_stage() omni.kit.commands.execute('AddRigidBodyMaterialCommand',stage=stage, path='/World/Physics_Materials/Rubber',staticFriction=1.1,dynamicFriction=1.5,restitution=None) omni.kit.commands.execute('AddRigidBodyMaterialCommand',stage=stage, path='/World/Physics_Materials/RubberProMax',staticFriction=1.5,dynamicFriction=2.0,restitution=None) omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/Rubber',prim_path=[f"{robot_prim_path}/front_left_wheel_link"],strength=['weakerThanDescendants']) omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/Rubber',prim_path=[f"{robot_prim_path}/front_right_wheel_link"],strength=['weakerThanDescendants']) omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/Rubber',prim_path=[f"{robot_prim_path}/rear_left_wheel_link"],strength=['weakerThanDescendants']) omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/Rubber',prim_path=[f"{robot_prim_path}/rear_right_wheel_link"],strength=['weakerThanDescendants']) omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/Rubber',prim_path=[f"/World/defaultGroundPlane"],strength=['weakerThanDescendants']) omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/RubberProMax',prim_path=[f"/World/ChargeStation_2/Charge_Station/station_pivot_base"],strength=['weakerThanDescendants'],material_purpose='physics') omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/RubberProMax',prim_path=[f"/World/ChargeStation_2/Charge_Station/station_incline_panel_01"],strength=['weakerThanDescendants'],material_purpose='physics') omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/RubberProMax',prim_path=[f"/World/ChargeStation_2/Charge_Station/station_incline_panel"],strength=['weakerThanDescendants'],material_purpose='physics') omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/RubberProMax',prim_path=[f"/World/ChargeStation_2/Charge_Station/station_pivot_connector/station_top_panel"],strength=['weakerThanDescendants'],material_purpose='physics') omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/RubberProMax',prim_path=[f"/World/ChargeStation_1/Charge_Station/station_pivot_base"],strength=['weakerThanDescendants'],material_purpose='physics') omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/RubberProMax',prim_path=[f"/World/ChargeStation_1/Charge_Station/station_incline_panel_01"],strength=['weakerThanDescendants'],material_purpose='physics') omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/RubberProMax',prim_path=[f"/World/ChargeStation_1/Charge_Station/station_incline_panel"],strength=['weakerThanDescendants'],material_purpose='physics') omni.kit.commands.execute('BindMaterialExt',material_path='/World/Physics_Materials/RubberProMax',prim_path=[f"/World/ChargeStation_1/Charge_Station/station_pivot_connector/station_top_panel"],strength=['weakerThanDescendants'],material_purpose='physics') # omni.kit.commands.execute('BindMaterial',material_path='/World/Physics_Materials/Rubber',prim_path=[f"/World/FE_2023/FE_2023/FE_2023_01"],strength=['weakerThanDescendants']) # omni.kit.commands.execute('BindMaterial',material_path='/World/Physics_Materials/Rubber',prim_path=[f"/World/FE_2023/FE_2023/FE_2023_01_01"],strength=['weakerThanDescendants']) def setup_scene(self): world = self.get_world() # world.get_physics_context().enable_gpu_dynamics(True) world.set_simulation_dt(1/300.0,1/60.0) world.scene.add_default_ground_plane() self.setup_field() # self.setup_perspective_cam() self.setup_world_action_graph() return def add_game_piece(self): print("asdklj;f;asdjdfdl;asdjfkl;asdjfkl;asdjfkl;asfjkla;sdjkflka;k") self.extension_path = os.path.abspath(__file__) self.project_root_path = os.path.abspath(os.path.join(self.extension_path, "../../../../../../..")) cone = os.path.join(self.project_root_path, "assets/2023_field_cpu/parts/GE-23700_JFH.usd") cube = os.path.join(self.project_root_path, "assets/2023_field_cpu/parts/GE-23701_JFL.usd") add_reference_to_stage(cone, "/World/Cone_1") substation_empty = [True, True, True, True] game_piece_list = self.cone_list+self.cube_list for game_piece in game_piece_list: pose, orienation = game_piece.get_world_pose() print(pose) if(pose[0]<8.17+0.25 and pose[0]>8.17-0.25): if(pose[1]<-2.65+0.25 and pose[1]>-2.65-0.25): substation_empty[0]=False print("substation_empty[0]=False") elif pose[1]<-3.65+0.25 and pose[1]>-3.65-0.25: substation_empty[1]=False print("substation_empty[1]=False") elif (pose[0]<-8.17+0.25 and pose[0]>-8.17-0.25): if(pose[1]<-2.65+0.25 and pose[1]>-2.65-0.25): substation_empty[2]=False print("substation_empty[2]=False") elif pose[1]<-3.65+0.25 and pose[1]>-3.65-0.25: substation_empty[3]=False print("substation_empty[3]=False") for i in range(4): if substation_empty[i]: next_cube = (len(self.cube_list)+1) next_cone = (len(self.cone_list)+1) if(i==0): position = [8.17, -2.65, 1.15] elif(i==1): position = [-8.17, -2.65, 1.15] elif(i==2): position = [8.17, -3.65, 1.15] else: position = [-8.17, -3.65, 1.15] if choice([True, False]): print("yes") name = "/World/Cube_"+str(next_cube) view = "cube_"+str(next_cube)+"_view" add_reference_to_stage(cube, "/World/Cube_"+str(next_cube)) self.cube_list.append(GeometryPrim(name, view, position=position)) else: print("yesss") name = "/World/Cone_"+str(next_cone) view = "cone_"+str(next_cone)+"_view" add_reference_to_stage(cone, name) self.cone_list.append(GeometryPrim(name, view, position=position)) return def setup_field(self): world = self.get_world() self.extension_path = os.path.abspath(__file__) self.project_root_path = os.path.abspath(os.path.join(self.extension_path, "../../../../../../..")) field = os.path.join(self.project_root_path, "assets/flattened_field/field2.usd") cone = os.path.join(self.project_root_path, "assets/game_pieces/GE-23700_JFH.usd") cube = os.path.join(self.project_root_path, "assets/game_pieces/GE-23701_JFL.usd") chargestation = os.path.join(self.project_root_path, "assets/chargestation/chargestation.usd") add_reference_to_stage(chargestation, "/World/ChargeStation_1") add_reference_to_stage(chargestation, "/World/ChargeStation_2") add_reference_to_stage(field, "/World/FE_2023") add_reference_to_stage(cone, "/World/Cone_1") add_reference_to_stage(cone, "/World/Cone_2") add_reference_to_stage(cone, "/World/Cone_3") add_reference_to_stage(cone, "/World/Cone_4") add_reference_to_stage(cone, "/World/Cone_5") add_reference_to_stage(cone, "/World/Cone_6") # add_reference_to_stage(cone, "/World/Cone_7") # add_reference_to_stage(cone, "/World/Cone_8") field_1 = RigidPrim("/World/FE_2023","field_1_view",position=np.array([0.0,0.0,0.0]),scale=np.array([1, 1, 1])) # cone_1 = RigidPrim("/World/Cone_1","cone_1_view",position=np.array([1.20298,-0.56861,-0.4])) # cone_2 = GeometryPrim("/World/Cone_2","cone_2_view",position=np.array([1.20298,3.08899,0.0])) # cone_3 = GeometryPrim("/World/Cone_3","cone_3_view",position=np.array([-1.20298,-0.56861,0.0])) # cone_4 = GeometryPrim("/World/Cone_4","cone_4_view",position=np.array([-1.20298,3.08899,0.0])) chargestation_1 = GeometryPrim("/World/ChargeStation_1","cone_3_view",position=np.array([-4.53419,1.26454,0.025]),scale=np.array([0.0486220472,0.0486220472,0.0486220472]), orientation=np.array([ 1,1,0,0 ])) chargestation_2 = GeometryPrim("/World/ChargeStation_2","cone_4_view",position=np.array([4.53419,1.26454,0.025]),scale=np.array([0.0486220472,0.0486220472,0.0486220472]), orientation=np.array([ 1,1,0,0 ])) self.cone_list.append( RigidPrim("/World/Cone_1","cone_1_view",position=np.array([1.20298,-0.56861,0.0]))) self.cone_list.append( RigidPrim("/World/Cone_2","cone_2_view",position=np.array([1.20298,3.08899,0.0]))) self.cone_list.append( RigidPrim("/World/Cone_3","cone_3_view",position=np.array([-1.20298,-0.56861,0.0]))) self.cone_list.append( RigidPrim("/World/Cone_4","cone_4_view",position=np.array([-1.20298,3.08899,0.0]))) self.cone_list.append( RigidPrim("/World/Cone_5","cone_5_view",position=np.array([-7.23149,-1.97376,0.86292]))) self.cone_list.append( RigidPrim("/World/Cone_6","cone_6_view",position=np.array([7.23149,-1.97376,0.86292]))) add_reference_to_stage(cube, "/World/Cube_1") add_reference_to_stage(cube, "/World/Cube_2") add_reference_to_stage(cube, "/World/Cube_3") add_reference_to_stage(cube, "/World/Cube_4") add_reference_to_stage(cube, "/World/Cube_5") add_reference_to_stage(cube, "/World/Cube_6") # add_reference_to_stage(cube, "/World/Cube_7") # # add_reference_to_stage(cube, "/World/Cube_8") # cube_1 = GeometryPrim("/World/Cube_1","cube_1_view",position=np.array([1.20298,0.65059,0.121])) # cube_2 = GeometryPrim("/World/Cube_2","cube_2_view",position=np.array([1.20298,1.86979,0.121])) # cube_3 = GeometryPrim("/World/Cube_3","cube_3_view",position=np.array([-1.20298,0.65059,0.121])) # cube_4 = GeometryPrim("/World/Cube_4","cube_4_view",position=np.array([-1.20298,1.86979,0.121])) self.cube_list.append( RigidPrim("/World/Cube_1","cube_1_view",position=np.array([1.20298,0.65059,0.121]))) self.cube_list.append( RigidPrim("/World/Cube_2","cube_2_view",position=np.array([1.20298,1.86979,0.121]))) self.cube_list.append( RigidPrim("/World/Cube_3","cube_3_view",position=np.array([-1.20298,0.65059,0.121]))) self.cube_list.append( RigidPrim("/World/Cube_4","cube_4_view",position=np.array([-1.20298,1.86979,0.121]))) self.cube_list.append( RigidPrim("/World/Cube_5","cube_5_view",position=np.array([-7.25682,-2.99115,1.00109]))) self.cube_list.append( RigidPrim("/World/Cube_6","cube_6_view",position=np.array([7.25682,-2.99115,1.00109]))) async def setup_post_load(self): self._world = self.get_world() # self._world.get_physics_context().enable_gpu_dynamics(True) self.robot_name = "rift" self.extension_path = os.path.abspath(__file__) self.project_root_path = os.path.abspath(os.path.join(self.extension_path, "../../../../../../..")) self.path_to_urdf = os.path.join(self.extension_path, "../../../../../../../..", "src/rift_description/urdf/rift.urdf") carb.log_info(self.path_to_urdf) self._robot_prim_path = self.import_robot(self.path_to_urdf) if self._robot_prim_path is None: print("Error: failed to import robot") return self._robot_prim = self._world.scene.add( Robot(prim_path=self._robot_prim_path, name=self.robot_name, position=np.array([0.0, 0.0, 0.5])) ) self.configure_robot(self._robot_prim_path) return def import_robot(self, urdf_path): import_config = _urdf.ImportConfig() import_config.merge_fixed_joints = False import_config.fix_base = False import_config.make_default_prim = True import_config.self_collision = False import_config.create_physics_scene = False import_config.import_inertia_tensor = True import_config.default_drive_strength = 1047.19751 import_config.default_position_drive_damping = 52.35988 import_config.default_drive_type = _urdf.UrdfJointTargetType.JOINT_DRIVE_VELOCITY import_config.distance_scale = 1.0 import_config.density = 0.0 result, prim_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config) if result: return prim_path return None def configure_robot(self, robot_prim_path): w_sides = ['left', 'right'] l_sides = ['front', 'back'] stage = self._world.stage chassis_name = f"swerve_chassis_link" front_left_axle = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/{chassis_name}/front_left_axle_joint"), "angular") front_right_axle = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/{chassis_name}/front_right_axle_joint"), "angular") rear_left_axle = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/{chassis_name}/rear_left_axle_joint"), "angular") rear_right_axle = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/{chassis_name}/rear_right_axle_joint"), "angular") front_left_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/front_left_axle_link/front_left_wheel_joint"), "angular") front_right_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/front_right_axle_link/front_right_wheel_joint"), "angular") rear_left_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/rear_left_axle_link/rear_left_wheel_joint"), "angular") rear_right_wheel = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/rear_right_axle_link/rear_right_wheel_joint"), "angular") arm_roller_bar_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/arm_elevator_leg_link/arm_roller_bar_joint"), "linear") elevator_center_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/elevator_outer_1_link/elevator_center_joint"), "linear") elevator_outer_2_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/elevator_center_link/elevator_outer_2_joint"), "linear") elevator_outer_1_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/arm_back_leg_link/elevator_outer_1_joint"), "angular") top_gripper_left_arm_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/top_gripper_bar_link/top_gripper_left_arm_joint"), "angular") top_gripper_right_arm_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/top_gripper_bar_link/top_gripper_right_arm_joint"), "angular") top_slider_joint = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath(f"{robot_prim_path}/elevator_outer_2_link/top_slider_joint"), "linear") set_drive_params(front_left_axle, 1, 1000, 0) set_drive_params(front_right_axle, 1, 1000, 0) set_drive_params(rear_left_axle, 1, 1000, 0) set_drive_params(rear_right_axle, 1, 1000, 0) set_drive_params(front_left_wheel, 1, 100000000, 0) set_drive_params(front_right_wheel, 1, 100000000, 0) set_drive_params(rear_left_wheel, 1, 100000000, 0) set_drive_params(rear_right_wheel, 1, 100000000, 0) set_drive_params(arm_roller_bar_joint, 10000000, 100000, 98.0) set_drive_params(elevator_center_joint, 10000000, 100000, 98.0) set_drive_params(elevator_outer_1_joint, 10000000, 100000, 2000.0) set_drive_params(elevator_outer_2_joint, 10000000, 100000, 98.0) set_drive_params(top_gripper_left_arm_joint, 10000000, 100000, 98.0) set_drive_params(top_gripper_right_arm_joint, 10000000, 100000, 98.0) set_drive_params(top_slider_joint, 10000000, 100000, 98.0) # self.create_lidar(robot_prim_path) self.create_imu(robot_prim_path) self.create_depth_camera(robot_prim_path) self.setup_camera_action_graph(robot_prim_path) self.setup_imu_action_graph(robot_prim_path) self.setup_robot_action_graph(robot_prim_path) self.set_friction(robot_prim_path) return def create_lidar(self, robot_prim_path): lidar_parent = f"{robot_prim_path}/lidar_link" lidar_path = "/lidar" self.lidar_prim_path = lidar_parent + lidar_path result, prim = omni.kit.commands.execute( "RangeSensorCreateLidar", path=lidar_path, parent=lidar_parent, min_range=0.4, max_range=25.0, draw_points=False, draw_lines=True, horizontal_fov=360.0, vertical_fov=30.0, horizontal_resolution=0.4, vertical_resolution=4.0, rotation_rate=0.0, high_lod=False, yaw_offset=0.0, enable_semantics=False ) return def create_imu(self, robot_prim_path): imu_parent = f"{robot_prim_path}/zed2i_camera_center" imu_path = "/imu" self.imu_prim_path = imu_parent + imu_path result, prim = omni.kit.commands.execute( "IsaacSensorCreateImuSensor", path=imu_path, parent=imu_parent, translation=Gf.Vec3d(0, 0, 0), orientation=Gf.Quatd(1, 0, 0, 0), visualize=False, ) return def create_depth_camera(self, robot_prim_path): self.depth_left_camera_path = f"{robot_prim_path}/zed2i_right_camera_optical_frame/left_cam" self.depth_right_camera_path = f"{robot_prim_path}/zed2i_right_camera_optical_frame/right_cam" self.left_camera = prims.create_prim( prim_path=self.depth_left_camera_path, prim_type="Camera", attributes={ "focusDistance": 1, "focalLength": 24, "horizontalAperture": 20.955, "verticalAperture": 15.2908, "clippingRange": (0.1, 1000000), "clippingPlanes": np.array([1.0, 0.0, 1.0, 1.0]), }, ) self.right_camera = prims.create_prim( prim_path=self.depth_right_camera_path, prim_type="Camera", attributes={ "focusDistance": 1, "focalLength": 24, "horizontalAperture": 20.955, "verticalAperture": 15.2908, "clippingRange": (0.1, 1000000), "clippingPlanes": np.array([1.0, 0.0, 1.0, 1.0]), }, ) # # omni.kit.commands.execute('ChangeProperty', # # prop_path=Sdf.Path('/rift/zed2i_right_camera_isaac_frame/left_cam.xformOp:orient'), # # value=Gf.Quatd(0.0, Gf.Vec3d(1.0, 0.0, 0.0)), # # prev=Gf.Quatd(1.0, Gf.Vec3d(0, 0, 0)) # # ) # # omni.kit.commands.execute('ChangeProperty', # # prop_path=Sdf.Path('/rift/zed2i_right_camera_isaac_frame/right_cam.xformOp:orient'), # # value=Gf.Quatd(0.0, Gf.Vec3d(1.0, 0.0, 0.0)), # # prev=Gf.Quatd(1.0, Gf.Vec3d(0, 0, 0)) # ) return def setup_world_action_graph(self): og.Controller.edit( {"graph_path": "/globalclock", "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("Context", "omni.isaac.ros2_bridge.ROS2Context"), ("PublishClock", "omni.isaac.ros2_bridge.ROS2PublishClock"), ], og.Controller.Keys.CONNECT: [ ("OnPlaybackTick.outputs:tick", "PublishClock.inputs:execIn"), ("Context.outputs:context", "PublishClock.inputs:context"), ("ReadSimTime.outputs:simulationTime", "PublishClock.inputs:timeStamp"), ], } ) return def setup_camera_action_graph(self, robot_prim_path): camera_graph = "{}/camera_sensor_graph".format(robot_prim_path) enable_left_cam = True enable_right_cam = False rgbType = "RgbType" infoType = "InfoType" depthType = "DepthType" depthPclType = "DepthPclType" def createCamType(side, name, typeNode, topic): return { "create": [ (f"{side}CamHelper{name}", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ], "connect": [ (f"{side}CamViewProduct.outputs:renderProductPath", f"{side}CamHelper{name}.inputs:renderProductPath"), (f"{side}CamSet.outputs:execOut", f"{side}CamHelper{name}.inputs:execIn"), (f"{typeNode}.inputs:value", f"{side}CamHelper{name}.inputs:type"), ], "setvalues": [ (f"{side}CamHelper{name}.inputs:topicName", f"{side.lower()}/{topic}"), (f"{side}CamHelper{name}.inputs:frameId", f"{NAMESPACE}/zed2i_{side.lower()}_camera_frame"), (f"{side}CamHelper{name}.inputs:nodeNamespace", f"/{NAMESPACE}"), ] } def getCamNodes(side, enable): camNodes = { "create": [ (f"{side}CamBranch", "omni.graph.action.Branch"), (f"{side}CamCreateViewport", "omni.isaac.core_nodes.IsaacCreateViewport"), (f"{side}CamViewportResolution", "omni.isaac.core_nodes.IsaacSetViewportResolution"), (f"{side}CamViewProduct", "omni.isaac.core_nodes.IsaacGetViewportRenderProduct"), (f"{side}CamSet", "omni.isaac.core_nodes.IsaacSetCameraOnRenderProduct"), ], "connect": [ ("OnPlaybackTick.outputs:tick", f"{side}CamBranch.inputs:execIn"), (f"{side}CamBranch.outputs:execTrue", f"{side}CamCreateViewport.inputs:execIn"), (f"{side}CamCreateViewport.outputs:execOut", f"{side}CamViewportResolution.inputs:execIn"), (f"{side}CamCreateViewport.outputs:viewport", f"{side}CamViewportResolution.inputs:viewport"), (f"{side}CamCreateViewport.outputs:viewport", f"{side}CamViewProduct.inputs:viewport"), (f"{side}CamViewportResolution.outputs:execOut", f"{side}CamViewProduct.inputs:execIn"), (f"{side}CamViewProduct.outputs:execOut", f"{side}CamSet.inputs:execIn"), (f"{side}CamViewProduct.outputs:renderProductPath", f"{side}CamSet.inputs:renderProductPath"), ], "setvalues": [ (f"{side}CamBranch.inputs:condition", enable), (f"{side}CamCreateViewport.inputs:name", f"{side}Cam"), (f"{side}CamViewportResolution.inputs:width", 640), (f"{side}CamViewportResolution.inputs:height", 360), ] } rgbNodes = createCamType(side, "RGB", rgbType, "rgb") infoNodes = createCamType(side, "Info", infoType, "camera_info") depthNodes = createCamType(side, "Depth", depthType, "depth") depthPClNodes = createCamType(side, "DepthPcl", depthPclType, "depth_pcl") camNodes["create"] += rgbNodes["create"] + infoNodes["create"] + depthNodes["create"] + depthPClNodes["create"] camNodes["connect"] += rgbNodes["connect"] + infoNodes["connect"] + depthNodes["connect"] + depthPClNodes["connect"] camNodes["setvalues"] += rgbNodes["setvalues"] + infoNodes["setvalues"] + depthNodes["setvalues"] + depthPClNodes["setvalues"] return camNodes leftCamNodes = getCamNodes("Left", enable_left_cam) rightCamNodes = getCamNodes("Right", enable_right_cam) og.Controller.edit( {"graph_path": camera_graph, "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), (rgbType, "omni.graph.nodes.ConstantToken"), (infoType, "omni.graph.nodes.ConstantToken"), (depthType, "omni.graph.nodes.ConstantToken"), (depthPclType, "omni.graph.nodes.ConstantToken"), ] + leftCamNodes["create"] + rightCamNodes["create"], og.Controller.Keys.CONNECT: leftCamNodes["connect"] + rightCamNodes["connect"], og.Controller.Keys.SET_VALUES: [ (f"{rgbType}.inputs:value", "rgb"), (f"{infoType}.inputs:value", "camera_info"), (f"{depthType}.inputs:value", "depth"), (f"{depthPclType}.inputs:value", "depth_pcl"), ] + leftCamNodes["setvalues"] + rightCamNodes["setvalues"], } ) set_target_prims(primPath=f"{camera_graph}/RightCamSet", targetPrimPaths=[self.depth_right_camera_path], inputName="inputs:cameraPrim") set_target_prims(primPath=f"{camera_graph}/LeftCamSet", targetPrimPaths=[self.depth_left_camera_path], inputName="inputs:cameraPrim") return def setup_imu_action_graph(self, robot_prim_path): sensor_graph = "{}/imu_sensor_graph".format(robot_prim_path) swerve_link = "{}/swerve_chassis_link".format(robot_prim_path) lidar_link = "{}/lidar_link/lidar".format(robot_prim_path) og.Controller.edit( {"graph_path": sensor_graph, "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ # General Nodes ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("SimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("Context", "omni.isaac.ros2_bridge.ROS2Context"), # Odometry Nodes ("ComputeOdometry", "omni.isaac.core_nodes.IsaacComputeOdometry"), ("PublishOdometry", "omni.isaac.ros2_bridge.ROS2PublishOdometry"), ("RawOdomTransform", "omni.isaac.ros2_bridge.ROS2PublishRawTransformTree"), # LiDAR Nodes # ("ReadLidar", "omni.isaac.range_sensor.IsaacReadLidarBeams"), # ("PublishLidar", "omni.isaac.ros2_bridge.ROS2PublishLaserScan"), # IMU Nodes ("IsaacReadImu", "omni.isaac.sensor.IsaacReadIMU"), ("PublishImu", "omni.isaac.ros2_bridge.ROS2PublishImu"), ], og.Controller.Keys.SET_VALUES: [ ("PublishOdometry.inputs:nodeNamespace", f"/{NAMESPACE}"), # ("PublishLidar.inputs:nodeNamespace", f"/{NAMESPACE}"), ("PublishImu.inputs:nodeNamespace", f"/{NAMESPACE}"), # ("PublishLidar.inputs:frameId", f"{NAMESPACE}/lidar_link"), ("RawOdomTransform.inputs:childFrameId", f"{NAMESPACE}/base_link"), ("RawOdomTransform.inputs:parentFrameId", f"{NAMESPACE}/zed/odom"), ("PublishOdometry.inputs:chassisFrameId", f"{NAMESPACE}/base_link"), ("PublishOdometry.inputs:odomFrameId", f"{NAMESPACE}/zed/odom"), # ("PublishImu.inputs:frameId", f"{NAMESPACE}/zed2i_imu_link"), ("PublishImu.inputs:frameId", f"{NAMESPACE}/zed2i_camera_center"), ("PublishOdometry.inputs:topicName", "zed/odom") ], og.Controller.Keys.CONNECT: [ # Odometry Connections ("OnPlaybackTick.outputs:tick", "ComputeOdometry.inputs:execIn"), ("OnPlaybackTick.outputs:tick", "RawOdomTransform.inputs:execIn"), ("ComputeOdometry.outputs:execOut", "PublishOdometry.inputs:execIn"), ("ComputeOdometry.outputs:angularVelocity", "PublishOdometry.inputs:angularVelocity"), ("ComputeOdometry.outputs:linearVelocity", "PublishOdometry.inputs:linearVelocity"), ("ComputeOdometry.outputs:orientation", "PublishOdometry.inputs:orientation"), ("ComputeOdometry.outputs:orientation", "RawOdomTransform.inputs:rotation"), ("ComputeOdometry.outputs:position", "PublishOdometry.inputs:position"), ("ComputeOdometry.outputs:position", "RawOdomTransform.inputs:translation"), ("Context.outputs:context", "PublishOdometry.inputs:context"), ("Context.outputs:context", "RawOdomTransform.inputs:context"), ("SimTime.outputs:simulationTime", "PublishOdometry.inputs:timeStamp"), ("SimTime.outputs:simulationTime", "RawOdomTransform.inputs:timeStamp"), # LiDAR Connections # ("OnPlaybackTick.outputs:tick", "ReadLidar.inputs:execIn"), # ("ReadLidar.outputs:execOut", "PublishLidar.inputs:execIn"), # ("Context.outputs:context", "PublishLidar.inputs:context"), # ("SimTime.outputs:simulationTime", "PublishLidar.inputs:timeStamp"), # ("ReadLidar.outputs:azimuthRange", "PublishLidar.inputs:azimuthRange"), # ("ReadLidar.outputs:depthRange", "PublishLidar.inputs:depthRange"), # ("ReadLidar.outputs:horizontalFov", "PublishLidar.inputs:horizontalFov"), # ("ReadLidar.outputs:horizontalResolution", "PublishLidar.inputs:horizontalResolution"), # ("ReadLidar.outputs:intensitiesData", "PublishLidar.inputs:intensitiesData"), # ("ReadLidar.outputs:linearDepthData", "PublishLidar.inputs:linearDepthData"), # ("ReadLidar.outputs:numCols", "PublishLidar.inputs:numCols"), # ("ReadLidar.outputs:numRows", "PublishLidar.inputs:numRows"), # ("ReadLidar.outputs:rotationRate", "PublishLidar.inputs:rotationRate"), # IMU Connections ("OnPlaybackTick.outputs:tick", "IsaacReadImu.inputs:execIn"), ("IsaacReadImu.outputs:execOut", "PublishImu.inputs:execIn"), ("Context.outputs:context", "PublishImu.inputs:context"), ("SimTime.outputs:simulationTime", "PublishImu.inputs:timeStamp"), ("IsaacReadImu.outputs:angVel", "PublishImu.inputs:angularVelocity"), ("IsaacReadImu.outputs:linAcc", "PublishImu.inputs:linearAcceleration"), ("IsaacReadImu.outputs:orientation", "PublishImu.inputs:orientation"), ], } ) # Setup target prims for the Odometry and the Lidar set_target_prims(primPath=f"{sensor_graph}/ComputeOdometry", targetPrimPaths=[swerve_link], inputName="inputs:chassisPrim") set_target_prims(primPath=f"{sensor_graph}/ComputeOdometry", targetPrimPaths=[swerve_link], inputName="inputs:chassisPrim") set_target_prims(primPath=f"{sensor_graph}/IsaacReadImu", targetPrimPaths=[self.imu_prim_path], inputName="inputs:imuPrim") return def setup_robot_action_graph(self, robot_prim_path): robot_controller_path = f"{robot_prim_path}/ros_interface_controller" og.Controller.edit( {"graph_path": robot_controller_path, "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("Context", "omni.isaac.ros2_bridge.ROS2Context"), ("PublishJointState", "omni.isaac.ros2_bridge.ROS2PublishJointState"), ("SubscribeDriveState", "omni.isaac.ros2_bridge.ROS2SubscribeJointState"), ("SubscribeArmState", "omni.isaac.ros2_bridge.ROS2SubscribeJointState"), ("articulation_controller", "omni.isaac.core_nodes.IsaacArticulationController"), ("arm_articulation_controller", "omni.isaac.core_nodes.IsaacArticulationController"), ], og.Controller.Keys.SET_VALUES: [ ("PublishJointState.inputs:topicName", "isaac_joint_states"), ("SubscribeDriveState.inputs:topicName", "isaac_joint_commands"), ("SubscribeDriveState.inputs:topicName", "isaac_drive_commands"), ("SubscribeArmState.inputs:topicName", "isaac_arm_commands"), ("articulation_controller.inputs:usePath", False), ("arm_articulation_controller.inputs:usePath", False), ("SubscribeDriveState.inputs:nodeNamespace", f"/{NAMESPACE}"), ("SubscribeArmState.inputs:nodeNamespace", f"/{NAMESPACE}"), ("PublishJointState.inputs:nodeNamespace", f"/{NAMESPACE}"), ], og.Controller.Keys.CONNECT: [ ("OnPlaybackTick.outputs:tick", "PublishJointState.inputs:execIn"), ("OnPlaybackTick.outputs:tick", "SubscribeDriveState.inputs:execIn"), ("OnPlaybackTick.outputs:tick", "SubscribeArmState.inputs:execIn"), ("SubscribeDriveState.outputs:execOut", "articulation_controller.inputs:execIn"), ("SubscribeArmState.outputs:execOut", "arm_articulation_controller.inputs:execIn"), ("ReadSimTime.outputs:simulationTime", "PublishJointState.inputs:timeStamp"), ("Context.outputs:context", "PublishJointState.inputs:context"), ("Context.outputs:context", "SubscribeDriveState.inputs:context"), ("Context.outputs:context", "SubscribeArmState.inputs:context"), ("SubscribeDriveState.outputs:jointNames", "articulation_controller.inputs:jointNames"), ("SubscribeDriveState.outputs:velocityCommand", "articulation_controller.inputs:velocityCommand"), ("SubscribeArmState.outputs:jointNames", "arm_articulation_controller.inputs:jointNames"), ("SubscribeArmState.outputs:positionCommand", "arm_articulation_controller.inputs:positionCommand"), ], } ) set_target_prims(primPath=f"{robot_controller_path}/articulation_controller", targetPrimPaths=[robot_prim_path]) set_target_prims(primPath=f"{robot_controller_path}/arm_articulation_controller", targetPrimPaths=[robot_prim_path]) set_target_prims(primPath=f"{robot_controller_path}/PublishJointState", targetPrimPaths=[robot_prim_path]) return async def setup_pre_reset(self): return async def setup_post_reset(self): return async def setup_post_clear(self): return def world_cleanup(self): carb.log_info(f"Removing {self.robot_name}") if self._world is not None: self._world.scene.remove_object(self.robot_name) return
37,823
Python
59.421725
263
0.613886
RoboEagles4828/rift2024/isaac/exts/omni.isaac.rift/docs/CHANGELOG.md
********** CHANGELOG ********** [0.1.0] - 2022-6-26 [0.1.1] - 2022-10-15 ======================== Added ------- - Initial version of Swerve Bot Extension - Enhanced physX
175
Markdown
10.733333
41
0.468571
RoboEagles4828/rift2024/isaac/exts/omni.isaac.rift/docs/README.md
# Usage To enable this extension, go to the Extension Manager menu and enable omni.isaac.swerve_bot extension.
113
Markdown
21.799996
102
0.787611
RoboEagles4828/rift2024/scripts/quickpub.py
#!/usr/bin/python3 import time import rclpy from rclpy.node import Node from sensor_msgs.msg import JointState from threading import Thread JOINT_NAMES = [ # Pneumatics 'arm_roller_bar_joint', 'top_slider_joint', 'top_gripper_left_arm_joint', 'bottom_gripper_left_arm_joint', # Wheels 'elevator_center_joint', 'bottom_intake_joint', ] class ROSNode(Node): def __init__(self): super().__init__('quickpublisher') self.publish_positions = [0.0]*6 self.publisher = self.create_publisher(JointState, "/real/real_arm_commands", 10) self.publishTimer = self.create_timer(0.5, self.publish) def publish(self): msg = JointState() msg.name = JOINT_NAMES msg.position = self.publish_positions self.publisher.publish(msg) def main(): rclpy.init() node = ROSNode() Thread(target=rclpy.spin, args=(node,)).start() while True: try: joint_index = int(input("Joint index: ")) position = float(input("Position: ")) node.publish_positions[joint_index] = position except: print("Invalid input") continue if __name__ == '__main__': main()
1,227
Python
25.127659
89
0.605542
RoboEagles4828/rift2024/scripts/config/omniverse.toml
[bookmarks] IsaacAssets = "omniverse://localhost/NVIDIA/Assets/Isaac/2022.2.1/Isaac" Scenarios = "omniverse://localhost/NVIDIA/Assets/Isaac/2022.2.1/Isaac/Samples/ROS2/Scenario" rift = "/workspaces/rift2024" localhost = "omniverse://localhost" [cache] data_dir = "/root/.cache/ov/Cache" proxy_cache_enabled = false proxy_cache_server = "" [connection_library] proxy_dict = "*#localhost:8891,f"
397
TOML
25.533332
92
0.743073
RoboEagles4828/rift2024/docker/developer/README.md
# Docker for Development This directory has the configuration for building the image used in the rift devcontainer. It uses the osrf ros humble image as a base and installs rift related software on top. When loading the devcontainer the common utils feature is used to update the user GID/UID to match local and setup zsh and other terminal nice to haves. **Common Utils**: `devcontainers/features/common-utils` \ **URL**: https://github.com/devcontainers/features/tree/main/src/common-utils # Build 1. Docker Login to github registry. [Guide](https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry#authenticating-with-a-personal-access-token-classic) \ This will be used to push the image to the registry 2. Run `./build` to build the image. \ The script will prompt you if you would like to do a quick test or push to the registry.
897
Markdown
48.888886
210
0.782609
RoboEagles4828/rift2024/docker/jetson/README.md
# Jetson Docker Image
21
Markdown
20.999979
21
0.809524
RoboEagles4828/rift2024/docker/developer-zed/zed2i.launch.py
import os from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, TimerAction from launch.launch_description_sources import PythonLaunchDescriptionSource from ament_index_python.packages import get_package_share_directory from launch_ros.actions import Node # NAMESPACE = os.environ.get('ROS_NAMESPACE') if 'ROS_NAMESPACE' in os.environ else 'default' NAMESPACE = 'real' def generate_launch_description(): # Camera model (force value) camera_model = 'zed2i' config_common_path = os.path.join( get_package_share_directory('zed_wrapper'), 'config', 'common.yaml' ) config_camera_path = os.path.join( get_package_share_directory('zed_wrapper'), 'config', camera_model + '.yaml' ) # ZED Wrapper node zed_wrapper_node = Node( package='zed_wrapper', namespace=str(NAMESPACE), executable='zed_wrapper', name='zed', output='screen', #prefix=['xterm -e valgrind --tools=callgrind'], #prefix=['xterm -e gdb -ex run --args'], parameters=[ # YAML files config_common_path, # Common parameters config_camera_path, # Camera related parameters # Overriding { 'general.camera_name': f'{NAMESPACE}/{camera_model}', 'general.camera_model': camera_model, 'general.svo_file': 'live', 'publish_urdf': 'false', 'pos_tracking.base_frame': f'{NAMESPACE}/base_link', 'pos_tracking.map_frame': f'{NAMESPACE}/map', 'pos_tracking.odometry_frame': f'{NAMESPACE}/odom', # 'general.zed_id': 0, # 'general.serial_number': 0, 'pos_tracking.publish_tf': True, 'pos_tracking.publish_map_tf': True, 'pos_tracking.publish_imu_tf': True } ] ) # throttle_zed_node = Node( # package='topic_tools', # executable='throttle', # name='throttle_zed', # namespace=str(NAMESPACE), # output='screen', # parameters=[ # { # 'topics': [ # f'{NAMESPACE}/zed/rgb/image_rect_color', # f'{NAMESPACE}/zed/depth/depth_registered' # ], # 'throttle_rate': 2.0 # } # ] # ) delay_zed_wrapper = TimerAction(period=5.0, actions=[zed_wrapper_node]) # Define LaunchDescription variable ld = LaunchDescription() # Add nodes to LaunchDescription ld.add_action(delay_zed_wrapper) # ld.add_action(throttle_zed_node) return ld
2,744
Python
30.193181
93
0.559038
RoboEagles4828/rift2024/docker/developer-isaac-ros/README.md
# Docker for isaac ros This directory has the configuration for building the image used for isaac utilities that require l4t. It uses the isaac ros common container as a base and installs rift related software on top. # Build 1. Docker Login to the nvidia NGC registry. [Guide](https://docs.nvidia.com/ngc/ngc-catalog-user-guide/index.html)\ This will be used to download nvidia images. 2. Docker Login to github registry. [Guide](https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry#authenticating-with-a-personal-access-token-classic) \ This will be used to push the image to the registry 3. Run `./build` to build the image. \ The script will prompt you if you would like to do a quick test or push to the registry.
780
Markdown
59.076919
210
0.783333
RoboEagles4828/rift2024/docker/jetson-isaac-ros/README.md
# Jetson Docker Image with Isaac ROS
36
Markdown
35.999964
36
0.805556
RoboEagles4828/rift2024/rio/old-robot.py
from hardware_interface.drivetrain import DriveTrain import hardware_interface.drivetrain as dt from hardware_interface.joystick import Joystick from hardware_interface.armcontroller import ArmController from commands2 import * import wpilib from wpilib import Field2d from wpilib.shuffleboard import Shuffleboard from wpilib.shuffleboard import SuppliedFloatValueWidget from hardware_interface.commands.drive_commands import * from auton_selector import AutonSelector import time from dds.dds import DDS_Publisher, DDS_Subscriber import os import inspect import logging import traceback import threading from lib.mathlib.conversions import Conversions from pathplannerlib.auto import NamedCommands ENABLE_STAGE_BROADCASTER = True ENABLE_ENCODER = True # Global Variables arm_controller : ArmController = None drive_train : DriveTrain = None navx_sim_data : list = None frc_stage = "DISABLED" fms_attached = False stop_threads = False # Logging format = "%(asctime)s: %(message)s" logging.basicConfig(format=format, level=logging.INFO, datefmt="%H:%M:%S") # XML Path for DDS configuration curr_path = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) xml_path = os.path.join(curr_path, "dds/xml/ROS_RTI.xml") ############################################ ## Hardware def initDriveTrain(): global drive_train if drive_train == None: drive_train = DriveTrain() logging.info("Success: DriveTrain created") return drive_train def initArmController(): global arm_controller if arm_controller == None: arm_controller = ArmController() logging.info("Success: ArmController created") return arm_controller def initDDS(ddsAction, participantName, actionName): dds = None with rti_init_lock: dds = ddsAction(xml_path, participantName, actionName) return dds ############################################ ## Threads def threadLoop(name, dds, action): logging.info(f"Starting {name} thread") global stop_threads global frc_stage try: while stop_threads == False: if (frc_stage == 'AUTON' and name != "joystick") or (name in ["stage-broadcaster", "service", "imu", "zed"]) or (frc_stage == 'TELEOP'): action(dds) time.sleep(20/1000) except Exception as e: logging.error(f"An issue occured with the {name} thread") logging.error(e) logging.error(traceback.format_exc()) logging.info(f"Closing {name} thread") dds.close() # Generic Start Thread Function def startThread(name) -> threading.Thread | None: thread = None # if name == "encoder": # thread = threading.Thread(target=encoderThread, daemon=True) if name == "stage-broadcaster": thread = threading.Thread(target=stageBroadcasterThread, daemon=True) elif name == "service": thread = threading.Thread(target=serviceThread, daemon=True) elif name == "imu": thread = threading.Thread(target=imuThread, daemon=True) elif name == "zed": thread = threading.Thread(target=zedThread, daemon=True) thread.start() return thread # Locks rti_init_lock = threading.Lock() drive_train_lock = threading.Lock() arm_controller_lock = threading.Lock() ############################################ ################## ENCODER ################## ENCODER_PARTICIPANT_NAME = "ROS2_PARTICIPANT_LIB::encoder_info" ENCODER_WRITER_NAME = "encoder_info_publisher::encoder_info_writer" # def encoderThread(): # encoder_publisher = initDDS(DDS_Publisher, ENCODER_PARTICIPANT_NAME, ENCODER_WRITER_NAME) # threadLoop('encoder', encoder_publisher, encoderAction) def encoderAction(publisher): # TODO: Make these some sort of null value to identify lost data data = { 'name': [], 'position': [], 'velocity': [], 'effort': [] } global drive_train with drive_train_lock: drive_data = drive_train.getModuleCommand() data['name'] += drive_data['name'] data['position'] += drive_data['position'] data['velocity'] += drive_data['velocity'] global arm_controller with arm_controller_lock: arm_data = arm_controller.getEncoderData() data['name'] += arm_data['name'] data['position'] += arm_data['position'] data['velocity'] += arm_data['velocity'] publisher.write(data) ############################################ ################## SERVICE ################## SERVICE_PARTICIPANT_NAME = "ROS2_PARTICIPANT_LIB::service" SERVICE_WRITER_NAME = "service_pub::service_writer" def serviceThread(): service_publisher = initDDS(DDS_Publisher, SERVICE_PARTICIPANT_NAME, SERVICE_WRITER_NAME) threadLoop('service', service_publisher, serviceAction) def serviceAction(publisher : DDS_Publisher): temp_service = True publisher.write({ "data": temp_service }) ############################################ ################## STAGE ################## STAGE_PARTICIPANT_NAME = "ROS2_PARTICIPANT_LIB::stage_broadcaster" STAGE_WRITER_NAME = "stage_publisher::stage_writer" def stageBroadcasterThread(): stage_publisher = initDDS(DDS_Publisher, STAGE_PARTICIPANT_NAME, STAGE_WRITER_NAME) threadLoop('stage-broadcaster', stage_publisher, stageBroadcasterAction) def stageBroadcasterAction(publisher : DDS_Publisher): global frc_stage global fms_attached is_disabled = wpilib.DriverStation.isDisabled() publisher.write({ "data": f"{frc_stage}|{fms_attached}|{is_disabled}" }) ############################################ ################## IMU ##################### IMU_PARTICIPANT_NAME = "ROS2_PARTICIPANT_LIB::imu" IMU_READER_NAME = "imu_subscriber::imu_reader" def imuThread(): imu_subscriber = initDDS(DDS_Subscriber, IMU_PARTICIPANT_NAME, IMU_READER_NAME) threadLoop("imu", imu_subscriber, imuAction) def imuAction(subscriber): data: dict = subscriber.read() if data is not None: arr = data["data"].split("|") w = float(arr[0]) x = float(arr[1]) y = float(arr[2]) z = float(arr[3]) angular_velocity_x = float(arr[4]) angular_velocity_y = float(arr[5]) angular_velocity_z = float(arr[6]) linear_acceleration_x = float(arr[7]) linear_acceleration_y = float(arr[8]) linear_acceleration_z = float(arr[9]) global navx_sim_data navx_sim_data = [ w, x, y, z, angular_velocity_x, angular_velocity_y, angular_velocity_z, linear_acceleration_x, linear_acceleration_y, linear_acceleration_z ] ############################################ object_pos = [0.0, 0.0, 0.0] ZED_PARTICIPANT_NAME = "ROS2_PARTICIPANT_LIB::zed_objects" ZED_READER_NAME = "zed_objects_subscriber::zed_objects_reader" def zedThread(): zed_subscriber = initDDS(DDS_Subscriber, ZED_PARTICIPANT_NAME, ZED_READER_NAME) threadLoop("zed", zed_subscriber, zedAction) def zedAction(subscriber): global object_pos data: dict = subscriber.read() if data is not None: arr = data["data"].split("|") object_pos[0] = float(arr[0]) object_pos[1] = float(arr[1]) object_pos[2] = float(arr[2]) class Robot(wpilib.TimedRobot): def robotInit(self): self.use_threading = True wpilib.CameraServer.launch() logging.warning("Running in simulation!") if wpilib.RobotBase.isSimulation() else logging.info("Running in real!") self.threads = [] if self.use_threading: logging.info("Initializing Threads") global stop_threads stop_threads = False # if ENABLE_ENCODER: self.threads.append({"name": "encoder", "thread": startThread("encoder") }) if ENABLE_STAGE_BROADCASTER: self.threads.append({"name": "stage-broadcaster", "thread": startThread("stage-broadcaster") }) self.threads.append({"name": "service", "thread": startThread("service") }) self.threads.append({"name": "imu", "thread": startThread("imu") }) self.threads.append({"name": "zed", "thread": startThread("zed") }) else: # self.encoder_publisher = DDS_Publisher(xml_path, ENCODER_PARTICIPANT_NAME, ENCODER_WRITER_NAME) self.stage_publisher = DDS_Publisher(xml_path, STAGE_PARTICIPANT_NAME, STAGE_WRITER_NAME) self.service_publisher = DDS_Publisher(xml_path, SERVICE_PARTICIPANT_NAME, SERVICE_WRITER_NAME) self.imu_subscriber = DDS_Subscriber(xml_path, IMU_PARTICIPANT_NAME, IMU_READER_NAME) self.zed_subscriber = DDS_Subscriber(xml_path, ZED_PARTICIPANT_NAME, ZED_READER_NAME) self.arm_controller = initArmController() self.drive_train = initDriveTrain() self.drive_train.is_sim = self.isSimulation() self.joystick = Joystick("xbox") self.auton_selector = AutonSelector(self.arm_controller, self.drive_train) self.joystick_selector = wpilib.SendableChooser() self.joystick_selector.setDefaultOption("XBOX", "xbox") self.joystick_selector.addOption("PS4", "ps4") self.auton_run = False self.shuffleboard = Shuffleboard.getTab("Main") self.shuffleboard.add(title="AUTON", defaultValue=self.auton_selector.autonChooser) # self.shuffleboard.add(title="JOYSTICK", defaultValue=self.joystick_selector) # self.shuffleboard.add("WHINE REMOVAL", self.drive_train.whine_remove_selector) self.shuffleboard.addDoubleArray("MOTOR VELOCITY", lambda: (self.drive_train.motor_vels)) self.shuffleboard.addDoubleArray("MOTOR POSITIONS", lambda: (self.drive_train.motor_pos)) # self.shuffleboard.add("ANGLE SOURCE", self.drive_train.angle_source_selector) # self.shuffleboard.add("PROFILE", self.drive_train.profile_selector) self.shuffleboard.add("NAVX", self.drive_train.navx) self.shuffleboard.add("PP Auton", self.auton_selector.ppchooser) self.shuffleboard.addDouble("YAW", lambda: (self.drive_train.navx.getYaw())) self.shuffleboard.addBoolean("FIELD ORIENTED", lambda: (self.drive_train.field_oriented_value)) # self.shuffleboard.addBoolean("SLOW", lambda: (self.drive_train.slow)) self.shuffleboard.addDoubleArray("MOTOR TEMPS", lambda: (self.drive_train.motor_temps)) self.shuffleboard.addDoubleArray("JOYSTICK OUTPUT", lambda: ([self.drive_train.linX, self.drive_train.linY, self.drive_train.angZ])) self.shuffleboard.addDoubleArray("POSE: ", lambda: ([self.auton_selector.drive_subsystem.getPose().X(), self.auton_selector.drive_subsystem.getPose().Y(), self.auton_selector.drive_subsystem.getPose().rotation().degrees()])) self.shuffleboard.add("PP Chooser", self.auton_selector.ppchooser) self.shuffleboard.addDouble("Pose X", lambda: self.auton_selector.drive_subsystem.getPose().X()) self.shuffleboard.addDouble("Pose Y", lambda: self.auton_selector.drive_subsystem.getPose().Y()) self.shuffleboard.addDouble("Pose Rotation", lambda: self.auton_selector.drive_subsystem.getPose().rotation().degrees()) self.shuffleboard.addDouble("Sweeping Rotation", lambda: self.auton_selector.drive_subsystem.drivetrain.navx.getRotation2d().__mul__(-1).degrees()) self.shuffleboard.addDoubleArray("CHASSIS SPEEDS", lambda: [ self.auton_selector.drive_subsystem.getRobotRelativeChassisSpeeds().vx, self.auton_selector.drive_subsystem.getRobotRelativeChassisSpeeds().vy, self.auton_selector.drive_subsystem.getRobotRelativeChassisSpeeds().omega ]) # self.shuffleboard.addString("AUTO TURN STATE", lambda: (self.drive_train.auto_turn_value)) # self.second_order_chooser = wpilib.SendableChooser() # self.second_order_chooser.setDefaultOption("1st Order", False) # self.second_order_chooser.addOption("2nd Order", True) # self.shuffleboard.add("2nd Order", self.second_order_chooser) self.arm_controller.setToggleButtons() self.auton_run = False self.turn_90 = TurnToAngleCommand(self.auton_selector.drive_subsystem, 90.0) self.turn_180 = TurnToAngleCommand(self.auton_selector.drive_subsystem, 180.0) self.turn_270 = TurnToAngleCommand(self.auton_selector.drive_subsystem, 270.0) self.turn_0 = TurnToAngleCommand(self.auton_selector.drive_subsystem, 0.0) NamedCommands.registerCommand("Turn180", self.turn_180) def robotPeriodic(self): self.joystick.type = self.joystick_selector.getSelected() self.auton_selector.drive_subsystem.updateOdometry() if navx_sim_data is not None: self.drive_train.navx_sim.update(*navx_sim_data) # Auton def autonomousInit(self): self.drive_train.navx.reset() self.drive_train.set_navx_offset(0) self.auton_selector.run() global object_pos # self.cone_move = ConeMoveAuton(self.auton_selector.drive_subsystem, object_pos) logging.info("Entering Auton") global frc_stage frc_stage = "AUTON" def autonomousPeriodic(self): CommandScheduler.getInstance().run() global object_pos global fms_attached # dist = math.sqrt(object_pos[0]**2 + object_pos[1]**2) # if dist > 0.5: # self.cone_move.execute() # self.cone_move.object_pos = object_pos # else: # print(f"GIVEN POS: {object_pos} ********************") # self.drive_train.swerveDriveAuton(0, 0, 0) # self.drive_train.stop()( # self.drive_train.swerveDriveAuton(object_pos[0]/5.0, object_pos[1]/5.0, object_pos[2]/5.0) logging.info(f"Robot Pose: {self.auton_selector.drive_subsystem.getPose()}") fms_attached = wpilib.DriverStation.isFMSAttached() if self.use_threading: self.manageThreads() else: self.doActions() def autonomousExit(self): CommandScheduler.getInstance().cancelAll() logging.info("Exiting Auton") global frc_stage frc_stage = "AUTON" # Teleop def teleopInit(self): self.arm_controller.setToggleButtons() CommandScheduler.getInstance().cancelAll() logging.info("Entering Teleop") global frc_stage frc_stage = "TELEOP" def teleopPeriodic(self): self.drive_train.swerveDrive(self.joystick) self.arm_controller.setArm(self.joystick) global fms_attached fms_attached = wpilib.DriverStation.isFMSAttached() if self.use_threading: self.manageThreads() else: self.doActions() def manageThreads(self): # Check all threads and make sure they are alive for thread in self.threads: if thread["thread"].is_alive() == False: logging.warning(f"Thread {thread['name']} is not alive, restarting...") thread["thread"] = startThread(thread["name"]) def doActions(self): # encoderAction(self.encoder_publisher) stageBroadcasterAction(self.stage_publisher) serviceAction(self.service_publisher) imuAction(self.imu_subscriber) zedAction(self.zed_subscriber) def stopThreads(self): global stop_threads stop_threads = True for thread in self.threads: thread.join() logging.info('All Threads Stopped') if __name__ == '__main__': wpilib.run(Robot)
15,702
Python
38.956743
232
0.642975
RoboEagles4828/rift2024/rio/README.md
# RIO Code
10
Markdown
9.99999
10
0.7
RoboEagles4828/rift2024/rio/srcrobot/CTREConfigs.py
from phoenix6.configs import CANcoderConfiguration from phoenix6.configs import TalonFXConfiguration from phoenix6.signals.spn_enums import AbsoluteSensorRangeValue from phoenix6.signals import InvertedValue from constants import Constants from copy import deepcopy from wpimath.units import radiansToRotations class CTREConfigs: swerveAngleFXConfig = TalonFXConfiguration() swerveDriveFXConfig = TalonFXConfiguration() swerveCANcoderConfig = CANcoderConfiguration() # swerveCANcoderConfigList = [CANcoderConfiguration(), CANcoderConfiguration(), CANcoderConfiguration(), CANcoderConfiguration()] def __init__(self): # Swerve CANCoder Configuration # for config in self.swerveCANcoderConfigList: self.swerveCANcoderConfig.magnet_sensor.sensor_direction = Constants.Swerve.cancoderInvert #Swerve Angle Motor Configurations # Motor Inverts and Neutral Mode self.swerveAngleFXConfig.motor_output.inverted = Constants.Swerve.angleMotorInvert self.swerveAngleFXConfig.motor_output.neutral_mode = Constants.Swerve.angleNeutralMode # Gear Ratio and Wrapping Config self.swerveAngleFXConfig.feedback.sensor_to_mechanism_ratio = Constants.Swerve.angleGearRatio self.swerveAngleFXConfig.closed_loop_general.continuous_wrap = True # Current Limiting self.swerveAngleFXConfig.current_limits.supply_current_limit_enable = Constants.Swerve.angleEnableCurrentLimit self.swerveAngleFXConfig.current_limits.supply_current_limit = Constants.Swerve.angleCurrentLimit self.swerveAngleFXConfig.current_limits.supply_current_threshold = Constants.Swerve.angleCurrentThreshold self.swerveAngleFXConfig.current_limits.supply_time_threshold = Constants.Swerve.angleCurrentThresholdTime # PID Config self.swerveAngleFXConfig.slot0.k_p = Constants.Swerve.angleKP self.swerveAngleFXConfig.slot0.k_i = Constants.Swerve.angleKI self.swerveAngleFXConfig.slot0.k_d = Constants.Swerve.angleKD #* Swerve Drive Motor Configuration # Motor Inverts and Neutral Mode self.swerveDriveFXConfig.motor_output.inverted = Constants.Swerve.driveMotorInvert self.swerveDriveFXConfig.motor_output.neutral_mode = Constants.Swerve.driveNeutralMode # Gear Ratio Config self.swerveDriveFXConfig.feedback.sensor_to_mechanism_ratio = Constants.Swerve.driveGearRatio # Current Limiting self.swerveDriveFXConfig.current_limits.supply_current_limit_enable = Constants.Swerve.driveEnableCurrentLimit self.swerveDriveFXConfig.current_limits.supply_current_limit = Constants.Swerve.driveCurrentLimit self.swerveDriveFXConfig.current_limits.supply_current_threshold = Constants.Swerve.driveCurrentThreshold self.swerveDriveFXConfig.current_limits.supply_time_threshold = Constants.Swerve.driveCurrentThresholdTime # PID Config self.swerveDriveFXConfig.slot0.k_p = Constants.Swerve.driveKP self.swerveDriveFXConfig.slot0.k_i = Constants.Swerve.driveKI self.swerveDriveFXConfig.slot0.k_d = Constants.Swerve.driveKD # Open and Closed Loop Ramping self.swerveDriveFXConfig.open_loop_ramps.duty_cycle_open_loop_ramp_period = Constants.Swerve.openLoopRamp self.swerveDriveFXConfig.open_loop_ramps.voltage_open_loop_ramp_period = Constants.Swerve.openLoopRamp self.swerveDriveFXConfig.closed_loop_ramps.duty_cycle_closed_loop_ramp_period = Constants.Swerve.closedLoopRamp self.swerveDriveFXConfig.closed_loop_ramps.voltage_closed_loop_ramp_period = Constants.Swerve.closedLoopRamp self.swerveDriveFXConfigFR = deepcopy(self.swerveDriveFXConfig) # self.swerveDriveFXConfigFR.motor_output.inverted = InvertedValue.CLOCKWISE_POSITIVE
3,847
Python
51.712328
133
0.77359
RoboEagles4828/rift2024/rio/srcrobot/pyproject.toml
# # Use this configuration file to control what RobotPy packages are installed # on your RoboRIO # [tool.robotpy] # Version of robotpy this project depends on robotpy_version = "2024.3.2.1" # Which extra RobotPy components should be installed # -> equivalent to `pip install robotpy[extra1, ...] robotpy_extras = [ # "all", "apriltag", # "commands2", "cscore", "navx", # "pathplannerlib", "phoenix5", # "phoenix6", # "playingwithfusion", "rev", # "romi", # "sim", # "xrp" ] # Other pip packages to install requires = [ "robotpy-commands-v2>=2024.2.2", "robotpy-ctre", "squaternion", "robotpy-pathplannerlib>=2024.1.2", "rticonnextdds-connector", "photonlibpy==2024.2.8", "robotpy-pathplannerlib==2024.2.7", "pytreemap" ]
809
TOML
19.25
76
0.6267
RoboEagles4828/rift2024/rio/srcrobot/constants.py
from phoenix6.signals import InvertedValue from phoenix6.signals import NeutralModeValue from phoenix6.signals import SensorDirectionValue from wpimath.geometry import Rotation2d from wpimath.geometry import Translation2d from wpimath.kinematics import SwerveDrive4Kinematics from wpimath.trajectory import TrapezoidProfile, TrapezoidProfileRadians import lib.mathlib.units as Units from lib.util.COTSTalonFXSwerveConstants import COTSTalonFXSwerveConstants from lib.util.SwerveModuleConstants import SwerveModuleConstants import math from enum import Enum from pytreemap import TreeMap from lib.util.InterpolatingTreeMap import InterpolatingTreeMap from wpimath.units import rotationsToRadians from pathplannerlib.auto import HolonomicPathFollowerConfig from pathplannerlib.controller import PIDConstants from pathplannerlib.config import ReplanningConfig class Constants: stickDeadband = 0.1 class Swerve: navxID = 0 chosenModule = COTSTalonFXSwerveConstants.MK4i.Falcon500(COTSTalonFXSwerveConstants.MK4i.driveRatios.L2) # Drivetrain Constants trackWidth = Units.inchesToMeters(20.75) wheelBase = Units.inchesToMeters(20.75) rotationBase = Units.inchesToMeters(31.125 - 5.25) robotWidth = 26.0 robotLength = 31.125 armLength = 18.5 frontOffset = rotationBase - wheelBase wheelCircumference = chosenModule.wheelCircumference frontLeftLocation = Translation2d(-((wheelBase / 2.0) - frontOffset), -trackWidth / 2.0) frontRightLocation = Translation2d(-((wheelBase / 2.0) - frontOffset), trackWidth / 2.0) backLeftLocation = Translation2d(wheelBase / 2.0, -trackWidth / 2.0) backRightLocation = Translation2d(wheelBase / 2.0, trackWidth / 2.0) # frontLeftLocation = Translation2d(-wheelBase / 2.0, -trackWidth / 2.0) # frontRightLocation = Translation2d(-wheelBase / 2.0, trackWidth / 2.0) # backLeftLocation = Translation2d(wheelBase / 2.0, -trackWidth / 2.0) # backRightLocation = Translation2d(wheelBase / 2.0, trackWidth / 2.0) robotCenterLocation = Translation2d(0.0, 0.0) swerveKinematics = SwerveDrive4Kinematics( frontLeftLocation, frontRightLocation, backLeftLocation, backRightLocation ) # Module Gear Ratios driveGearRatio = chosenModule.driveGearRatio angleGearRatio = chosenModule.angleGearRatio # Motor Inverts angleMotorInvert = chosenModule.angleMotorInvert driveMotorInvert = chosenModule.driveMotorInvert # Angle Encoder Invert cancoderInvert = chosenModule.cancoderInvert # Swerve Current Limiting angleCurrentLimit = 25 angleCurrentThreshold = 40 angleCurrentThresholdTime = 0.1 angleEnableCurrentLimit = True driveCurrentLimit = 35 driveCurrentThreshold = 60 driveCurrentThresholdTime = 0.1 driveEnableCurrentLimit = True openLoopRamp = 0.0 closedLoopRamp = 0.0 # Angle Motor PID Values angleKP = chosenModule.angleKP angleKI = chosenModule.angleKI angleKD = chosenModule.angleKD # Drive Motor PID Values driveKP = 2.5 driveKI = 0.0 driveKD = 0.0 driveKF = 0.0 driveKS = 0.2 driveKV = 0.28 driveKA = 0.0 # Swerve Profiling Values # Meters per Second maxSpeed = 5.0 maxAutoModuleSpeed = 4.5 # Radians per Second maxAngularVelocity = 2.5 * math.pi # Neutral Modes angleNeutralMode = NeutralModeValue.COAST driveNeutralMode = NeutralModeValue.BRAKE holonomicPathConfig = HolonomicPathFollowerConfig( PIDConstants(5.0, 0.0, 0.0), PIDConstants(4.0, 0.0, 0.0), maxAutoModuleSpeed, #distance from center to the furthest module Units.inchesToMeters(16), ReplanningConfig(), ) # Slowdown speed ## The speed is multiplied by this value when the trigger is fully held down slowMoveModifier = 0.8 slowTurnModifier = 0.8 # Module Specific Constants # Front Left Module - Module 0 class Mod0: driveMotorID = 2 angleMotorID = 1 canCoderID = 3 angleOffset = Rotation2d(rotationsToRadians(0.145020)) constants = SwerveModuleConstants(driveMotorID, angleMotorID, canCoderID, angleOffset) # Front Right Module - Module 1 class Mod1: driveMotorID = 19 angleMotorID = 18 canCoderID = 20 angleOffset = Rotation2d(rotationsToRadians(1.267334)) constants = SwerveModuleConstants(driveMotorID, angleMotorID, canCoderID, angleOffset) # Back Left Module - Module 2 class Mod2: driveMotorID = 9 angleMotorID = 8 canCoderID = 7 angleOffset = Rotation2d(rotationsToRadians(0.648926)) constants = SwerveModuleConstants(driveMotorID, angleMotorID, canCoderID, angleOffset) # Back Right Module - Module 3 class Mod3: driveMotorID = 12 angleMotorID = 11 canCoderID = 10 angleOffset = Rotation2d(rotationsToRadians(1.575195)) constants = SwerveModuleConstants(driveMotorID, angleMotorID, canCoderID, angleOffset) class AutoConstants: kMaxSpeedMetersPerSecond = 3 kMaxModuleSpeed = 4.5 kMaxAccelerationMetersPerSecondSquared = 3 kMaxAngularSpeedRadiansPerSecond = math.pi kMaxAngularSpeedRadiansPerSecondSquared = math.pi kPXController = 4.0 kPYController = 4.0 kPThetaController = 1.5 kThetaControllerConstraints = TrapezoidProfileRadians.Constraints( kMaxAngularSpeedRadiansPerSecond, kMaxAngularSpeedRadiansPerSecondSquared ) class ShooterConstants: kSubwooferPivotAngle = 0.0 kPodiumPivotAngle = 45.0 kAmpPivotAngle = 90.0 kSubwooferShootSpeed = 25.0 kPodiumShootSpeed = 20.0 kAmpShootSpeed = 5.0 kMechanicalAngle = 30.0 class IntakeConstants: kIntakeMotorID = 0 kIntakeSpeed = 5.0 class IndexerConstants: kIndexerMotorID = 14 kIndexerMaxSpeedMS = 20.0 kIndexerIntakeSpeedMS = 0.5 kBeamBreakerID = 0 class ClimberConstants: kLeftMotorID = 14 kRightMotorID = 13 kLeftCANID = 4 kRightCANID = 15 maxClimbHeight = 0 kClimberSpeed = 0.85 # percent output class ArmConstants: kKnownArmAngles = InterpolatingTreeMap() # kKnownArmAngles.put(0.0, 5.0) # kKnownArmAngles.put(1.0, 6.5) # kKnownArmAngles.put(2.0, 10.0) # kKnownArmAngles.put(3.0, 12.0) # kKnownArmAngles.put(4.0, 17.0) # kKnownArmAngles.put(5.0, 20.0) # kKnownArmAngles.put(6.0, 23.0) kKnownArmAngles.put(0.0, 5.0) kKnownArmAngles.put(0.833, 11.8) kKnownArmAngles.put(1.667, 18.0) kKnownArmAngles.put(2.5, 22.0) kKnownArmAngles.put(3.333, 26.0) kKnownArmAngles.put(4.1667,28.7) kKnownArmAngles.put(5.0, 30.0) kKnownArmAngles.put(5.833, 32.35) kKnownArmAngles.put(6.667, 33.3) kKnownArmAngles.put(7.5, 34.15) # An enumeration of known shot locations and data critical to executing the # shot. TODO decide on shooter velocity units and tune angles. class NextShot(Enum): AMP = (0, -90.0, 90.0, 85.0, 8.0, 5, 6) SPEAKER_AMP = (1, -60.0, -60.0, 6.5, 25.0, 4, 7) SPEAKER_CENTER = (2, 0.0, 0.0, 6.5, 25.0, 4, 7) SPEAKER_SOURCE = (3, 60.0, 60.0, 6.5, 25.0, 4, 7) PODIUM = (4, -30.0, 30.0, 26.5, 35.0, 4, 7) CENTER_AUTO = (5, -30.0, 30.0, 31.0, 35.0, 4, 7) DYNAMIC = (6, 0.0, 0.0, 0.0, 35.0, 4, 7) def __init__(self, value, blueSideBotHeading, redSideBotHeading, armAngle, shooterVelocity, red_tagID, blue_tagID): self._value_ = value self.m_blueSideBotHeading = blueSideBotHeading self.m_redSideBotHeading = redSideBotHeading self.m_armAngle = armAngle self.m_shooterVelocity = shooterVelocity self.m_redTagID = red_tagID self.m_blueTagID = blue_tagID def calculateArmAngle(self, distance: float) -> float: # a = -0.0694444 # b = 0.755952 # c = 0.968254 # d = 5.0 # armRegressionEquation = lambda x: a * (x**3) + b * (x**2) + c * x + d a = 0.130952 b = 2.35714 c = 4.58333 armRegressionEquation = lambda x: a * (x**2) + b * x + c if distance <= 0.5: armAngle = armRegressionEquation(0) else: armAngle = armRegressionEquation(distance) + 2.0 return armAngle def calculateInterpolatedArmAngle(self, distance: float) -> float: armAngle = Constants.ArmConstants.kKnownArmAngles.get(distance) return armAngle def calculateShooterVelocity(self, distance: float) -> float: if distance <= 0.5: shooterVelocity = 25.0 else: shooterVelocity = 35.0 return shooterVelocity
9,461
Python
32.434629
121
0.63376
RoboEagles4828/rift2024/rio/srcrobot/SwerveModule.py
from phoenix6.controls import DutyCycleOut, PositionVoltage, VelocityVoltage, VoltageOut from phoenix6.hardware import CANcoder, TalonFX from wpimath.controller import SimpleMotorFeedforwardMeters from wpimath.geometry import Rotation2d from wpimath.kinematics import SwerveModuleState, SwerveModulePosition from lib.mathlib.conversions import Conversions from lib.util.SwerveModuleConstants import SwerveModuleConstants from constants import Constants from CTREConfigs import CTREConfigs from phoenix6.configs import CANcoderConfiguration from phoenix6.configs import TalonFXConfiguration from sim.SwerveModuleSim import SwerveModuleSim from wpilib import RobotBase from wpimath.units import radiansToRotations, rotationsToRadians class SwerveModule: ctreConfigs = CTREConfigs() moduleNumber: int angleOffset: Rotation2d mAngleMotor: TalonFX mDriveMotor: TalonFX angleEncoder: CANcoder driveFeedForward = SimpleMotorFeedforwardMeters(Constants.Swerve.driveKS, Constants.Swerve.driveKV, Constants.Swerve.driveKA) driveDutyCycle: DutyCycleOut = DutyCycleOut(0).with_enable_foc(True) driveVelocity: VelocityVoltage = VelocityVoltage(0).with_enable_foc(True) anglePosition: PositionVoltage = PositionVoltage(0).with_enable_foc(True) def __init__(self, moduleNumber: int, moduleConstants: SwerveModuleConstants): self.moduleNumber = moduleNumber self.angleOffset = moduleConstants.angleOffset self.angleEncoder = CANcoder(moduleConstants.cancoderID, "canivore") self.angleEncoder.configurator.apply(self.ctreConfigs.swerveCANcoderConfig) self.mAngleMotor = TalonFX(moduleConstants.angleMotorID, "canivore") self.mAngleMotor.configurator.apply(self.ctreConfigs.swerveAngleFXConfig) self.resetToAbsolute() self.mDriveMotor = TalonFX(moduleConstants.driveMotorID, "canivore") if moduleNumber == 1: self.mDriveMotor.configurator.apply(self.ctreConfigs.swerveDriveFXConfigFR) else: self.mDriveMotor.configurator.apply(self.ctreConfigs.swerveDriveFXConfig) self.mDriveMotor.configurator.set_position(0.0) if RobotBase.isSimulation(): self.simModule = SwerveModuleSim() def setDesiredState(self, desiredState: SwerveModuleState, isOpenLoop: bool): desiredState = SwerveModuleState.optimize(desiredState, self.getState().angle) self.mAngleMotor.set_control(self.anglePosition.with_position(radiansToRotations(desiredState.angle.radians()))) self.setSpeed(desiredState, isOpenLoop) if RobotBase.isSimulation(): self.simModule.updateStateAndPosition(desiredState) def setDesiredStateNoOptimize(self, desiredState: SwerveModuleState, isOpenLoop: bool): # desiredState = SwerveModuleState.optimize(desiredState, self.getState().angle) self.mAngleMotor.set_control(self.anglePosition.with_position(radiansToRotations(desiredState.angle.radians()))) self.setSpeed(desiredState, isOpenLoop) def setSpeed(self, desiredState: SwerveModuleState, isOpenLoop: bool): if isOpenLoop: self.driveDutyCycle.output = desiredState.speed / Constants.Swerve.maxSpeed self.mDriveMotor.set_control(self.driveDutyCycle) else: self.driveVelocity.velocity = Conversions.MPSToRPS(desiredState.speed, Constants.Swerve.wheelCircumference) self.driveVelocity.feed_forward = self.driveFeedForward.calculate(desiredState.speed) self.mDriveMotor.set_control(self.driveVelocity) def driveMotorVoltage(self, volts): self.mDriveMotor.set_control(VoltageOut(volts, enable_foc=False)) def getCANcoder(self): return Rotation2d(rotationsToRadians(self.angleEncoder.get_absolute_position().value_as_double)) def resetToAbsolute(self): absolutePosition = self.getCANcoder().radians() - self.angleOffset.radians() self.mAngleMotor.set_position(radiansToRotations(absolutePosition)) def getState(self): if RobotBase.isSimulation(): return self.simModule.getState() return SwerveModuleState( Conversions.RPSToMPS(self.mDriveMotor.get_velocity().value_as_double, Constants.Swerve.wheelCircumference), Rotation2d(rotationsToRadians(self.mAngleMotor.get_position().value_as_double)) ) def getPosition(self): if RobotBase.isSimulation(): return self.simModule.getPosition() return SwerveModulePosition( Conversions.rotationsToMeters(self.mDriveMotor.get_position().value_as_double, Constants.Swerve.wheelCircumference), Rotation2d(rotationsToRadians(self.mAngleMotor.get_position().value_as_double)) )
4,774
Python
42.807339
129
0.753456
RoboEagles4828/rift2024/rio/srcrobot/gameState.py
from constants import Constants from wpilib import DriverStation class GameState: """ The single game state object holds information on the current state of our game play. It includes that next desired shot and if we do or do not currently hold a note. """ def __new__(cls): if not hasattr(cls, "instance"): cls.instance = super(GameState, cls).__new__(cls) return cls.instance m_hasNote = True m_noteInIntake = True """ Do we have a note onboard? Start auto holding a note. """ m_nextShot = Constants.NextShot.SPEAKER_CENTER """ What is our next planned shot? Default for basic autos. """ # Sets the next shot to take. If null is passed, the shot is reset to its # initial speaker center state. The next shot setting is never allowed to be # None. # # nextShot must be an instance of Constants.NextShot def setNextShot(self, nextShot): """ Sets the next shot to take. If null is passed, the shot is reset to its initial speaker center state. The next shot setting is never allowed to be None. :param nextShot: must be an instance of Constants.NextShot """ if isinstance(nextShot, Constants.NextShot): self.m_nextShot = nextShot else: self.m_nextShot = Constants.NextShot.SPEAKER_CENTER def getNextShot(self) -> Constants.NextShot: """ Return the next desired shot. Never None. """ return self.m_nextShot def getNextShotRobotAngle(self) -> float: """ Return the angle the robot needs to be turned to for the next shot. This value is alliance adjusted. If the FMS is misbehaving, we assume blue. """ alliance = DriverStation.getAlliance() nextShot = self.getNextShot() if alliance == DriverStation.Alliance.kRed: return nextShot.m_redSideBotHeading return nextShot.m_blueSideBotHeading def getNextShotTagID(self) -> int: """ Return the tag ID for the next shot. This value is alliance adjusted. If the FMS is misbehaving, we assume blue. """ alliance = DriverStation.getAlliance() nextShot = self.getNextShot() if alliance == DriverStation.Alliance.kRed: return nextShot.m_redTagID return nextShot.m_blueTagID def setHasNote(self, hasNote): """ Generally called by the indexer with True and the shooter with False. :param hasNote: the new setting for has note. """ self.m_hasNote = hasNote def hasNote(self) -> bool: """ Return true if the robot is currently holding a note. False, otherwise. """ return self.m_hasNote def setNoteInIntake(self, m_noteInIntake): self.m_noteInIntake = m_noteInIntake def getNoteInIntake(self) -> bool: return self.m_noteInIntake
2,974
Python
31.336956
82
0.632482
RoboEagles4828/rift2024/rio/srcrobot/robot.py
from wpilib import TimedRobot from commands2 import Command from commands2 import CommandScheduler from CTREConfigs import CTREConfigs from constants import Constants from gameState import GameState from robot_container import RobotContainer from wpimath.geometry import Rotation2d import wpilib from wpilib.shuffleboard import Shuffleboard, ShuffleboardTab from wpilib import SmartDashboard, DriverStation class Robot(TimedRobot): m_autonomousCommand: Command = None m_robotContainer: RobotContainer auton_tab: ShuffleboardTab teleop_tab: ShuffleboardTab def robotInit(self): # Instantiate our RobotContainer. This will perform all our button bindings, and put our # autonomous chooser on the dashboard. # wpilib.CameraServer.launch() self.m_robotContainer = RobotContainer() self.m_robotContainer.m_robotState.m_gameState.setHasNote(False) CommandScheduler.getInstance().setPeriod(0.02) def robotPeriodic(self): # Runs the Scheduler. This is responsible for polling buttons, adding newly-scheduled # commands, running already-scheduled commands, removing finished or interrupted commands, # and running subsystem periodic() methods. This must be called from the robot's periodic # block in order for anything in the Command-based framework to work. CommandScheduler.getInstance().run() def autonomousInit(self): # self.m_robotContainer.s_Shooter.setDefaultCommand(self.m_robotContainer.s_Shooter.idle()) m_autonomousCommand: Command = self.m_robotContainer.getAutonomousCommand() # schedule the autonomous command (example) if m_autonomousCommand != None: m_autonomousCommand.schedule() def teleopInit(self): # This makes sure that the autonomous stops running when # teleop starts running. If you want the autonomous to # continue until interrupted by another command, remove # this line or comment it out. # flip heading if DriverStation.getAlliance() == DriverStation.Alliance.kRed: self.m_robotContainer.s_Swerve.setHeading(self.m_robotContainer.s_Swerve.getHeading().rotateBy(Rotation2d.fromDegrees(180.0))) GameState().setNextShot(Constants.NextShot.SPEAKER_CENTER) self.m_robotContainer.s_Shooter.setDefaultCommand(self.m_robotContainer.s_Shooter.stop()) if self.m_autonomousCommand is not None: self.m_autonomousCommand.cancel() def testInit(self): CommandScheduler.getInstance().cancelAll()
2,453
Python
38.580645
132
0.773746
RoboEagles4828/rift2024/rio/srcrobot/robot_container.py
from wpilib.interfaces import GenericHID from wpilib import Joystick from wpilib import XboxController from commands2.button import CommandXboxController, Trigger from commands2 import Command, ParallelDeadlineGroup, Subsystem from commands2 import InstantCommand, ConditionalCommand, WaitCommand, PrintCommand, RunCommand, SequentialCommandGroup, ParallelCommandGroup, WaitUntilCommand, StartEndCommand, DeferredCommand from commands2.button import JoystickButton import commands2.cmd as cmd from CTREConfigs import CTREConfigs from commands2 import CommandScheduler import math from wpimath.geometry import * import wpimath.units as Units import lib.mathlib.units as CustomUnits from lib.mathlib.conversions import Conversions from constants import Constants from autos.exampleAuto import exampleAuto from commands.TeleopSwerve import TeleopSwerve from commands.PathFindToTag import PathFindToTag from commands.DynamicShot import DynamicShot from commands.ExecuteCommand import ExecuteCommand from subsystems.Swerve import Swerve from subsystems.intake import Intake from subsystems.indexer import Indexer from subsystems.Arm import Arm from subsystems.Climber import Climber from subsystems.Shooter import Shooter from subsystems.Vision import Vision from subsystems.Led import LED # from subsystems.Climber import Climber from commands.TurnInPlace import TurnInPlace from commands.TurnToTag import TurnToTag from commands.SysId import DriveSysId from wpilib.shuffleboard import Shuffleboard, BuiltInWidgets, BuiltInLayouts from wpilib import SendableChooser, RobotBase, DriverStation from wpimath import applyDeadband from autos.PathPlannerAutoRunner import PathPlannerAutoRunner from pathplannerlib.auto import NamedCommands, PathConstraints, AutoBuilder from pathplannerlib.controller import PPHolonomicDriveController from robotState import RobotState class RobotContainer: ctreConfigs = CTREConfigs() # Drive Controls translationAxis = XboxController.Axis.kLeftY strafeAxis = XboxController.Axis.kLeftX rotationAxis = XboxController.Axis.kRightX slowAxis = XboxController.Axis.kRightTrigger # This causes issues on certain controllers, where kRightTrigger is for some reason mapped to [5] instead of [3] driver = CommandXboxController(0) operator = CommandXboxController(1) sysId = JoystickButton(driver, XboxController.Button.kY) robotCentric_value = False # Subsystems s_Swerve : Swerve = Swerve() s_Arm : Arm = Arm() s_Intake : Intake = Intake() s_Indexer : Indexer = Indexer() s_Shooter : Shooter = Shooter() s_Vision : Vision = Vision.getInstance() # s_Climber : Climber = Climber() #SysId driveSysId = DriveSysId(s_Swerve) s_Climber : Climber = Climber() s_LED : LED = LED() # The container for the robot. Contains subsystems, OI devices, and commands. def __init__(self): self.m_robotState : RobotState = RobotState() self.m_robotState.initialize( lambda: self.s_Swerve.getHeading().degrees(), self.s_Arm.getDegrees, self.s_Shooter.getVelocity ) self.dynamicShot = DynamicShot(self.s_Swerve, self.s_Vision, self.s_Arm) # PPHolonomicDriveController.setRotationTargetOverride(self.dynamicShot.getRotationTarget()) self.currentArmAngle = self.s_Arm.getDegrees() # Driver Controls self.zeroGyro = self.driver.back() self.robotCentric = self.driver.start() self.execute = self.driver.leftBumper() self.shoot = self.driver.rightBumper() self.intake = self.driver.leftTrigger() self.fastTurn = self.driver.povUp() self.climbUp = self.driver.y() self.climbDown = self.driver.a() # Slowmode is defined with the other Axis objects # Operator Controls self.autoHome = self.operator.rightTrigger() # self.flywheel = self.operator.rightBumper() self.systemReverse = self.operator.leftBumper() self.opExec = self.operator.leftTrigger() self.opShoot = self.operator.rightBumper() self.emergencyArmUp = self.operator.povDown() # Que Controls self.queSubFront = self.operator.a() self.quePodium = self.operator.y() self.queSubRight = self.operator.b() self.queSubLeft = self.operator.x() self.queAmp = self.operator.povUp() self.queDynamic = self.operator.povRight() self.configureButtonBindings() NamedCommands.registerCommand("RevShooter", self.s_Shooter.shoot().withTimeout(1.0).withName("AutoRevShooter")) NamedCommands.registerCommand("Shoot", self.s_Indexer.indexerShoot().withTimeout(1.0).withName("AutoShoot")) NamedCommands.registerCommand("ShooterOff", InstantCommand(self.s_Shooter.brake, self.s_Shooter).withName("AutoShooterBrake")) NamedCommands.registerCommand("IndexerIntake", self.s_Indexer.indexerIntakeOnce().withName("AutoIndexerIntake")) NamedCommands.registerCommand("ArmUp", self.s_Arm.servoArmToTarget(5.0).withTimeout(0.5)) NamedCommands.registerCommand("ArmDown", self.s_Arm.seekArmZero().withTimeout(1.0)) NamedCommands.registerCommand("IndexerOff", self.s_Indexer.instantStop().withName("AutoIndexerOff")) NamedCommands.registerCommand("IntakeOn", self.s_Intake.intakeOnce().withName("AutoIntakeOn")) NamedCommands.registerCommand("IntakeOff", self.s_Intake.instantStop().withName("AutoIntakeOff")) NamedCommands.registerCommand("IndexerOut", self.s_Indexer.indexerOuttake().withTimeout(4.0)) NamedCommands.registerCommand("BringArmUp", self.bringArmUp()) NamedCommands.registerCommand("IntakeUntilBeamBreak", SequentialCommandGroup( self.s_Indexer.indexerIntakeOnce(), WaitUntilCommand(self.s_Indexer.getBeamBreakState).withTimeout(4.0).finallyDo(lambda interrupted: self.s_Indexer.stopMotor()), self.s_Indexer.instantStop() ).withTimeout(5.0)) # Compiled Commands NamedCommands.registerCommand("Full Shooter Rev", self.s_Shooter.shoot()) NamedCommands.registerCommand("Full Intake", self.s_Intake.intake().alongWith(self.s_Indexer.indexerIntake()).until(self.s_Indexer.getBeamBreakState).andThen(self.s_Indexer.instantStop()).andThen(self.s_Indexer.indexerOuttake().withTimeout(0.0005)).withName("AutoIntake").withTimeout(5.0)) NamedCommands.registerCommand("Full Shoot", self.s_Arm.servoArmToTarget(4.0).withTimeout(0.5).andThen(WaitCommand(0.7)).andThen(self.s_Indexer.indexerShoot().withTimeout(0.5).alongWith(self.s_Intake.intake().withTimeout(0.5)).withTimeout(1.0)).andThen(self.s_Arm.seekArmZero())) NamedCommands.registerCommand("All Off", self.s_Intake.instantStop().alongWith(self.s_Indexer.instantStop(), self.s_Shooter.brake()).withName("AutoAllOff")) NamedCommands.registerCommand("Combo Shot", self.autoModeShot(Constants.NextShot.SPEAKER_CENTER)) NamedCommands.registerCommand("Combo Podium Shot", self.autoModeShot(Constants.NextShot.CENTER_AUTO)) NamedCommands.registerCommand("Queue Speaker", self.autoExecuteShot(Constants.NextShot.SPEAKER_CENTER)) NamedCommands.registerCommand("Queue Podium", self.autoExecuteShot(Constants.NextShot.CENTER_AUTO)) NamedCommands.registerCommand("Queue Dynamic", self.autoDynamicShot()) #check this change with saranga NamedCommands.registerCommand("Execute Shot", self.autoShootWhenReady()) NamedCommands.registerCommand("Bring Arm Down", self.bringArmDown()) self.auton_selector = AutoBuilder.buildAutoChooser("DO NOTHING") Shuffleboard.getTab("Autonomous").add("Auton Selector", self.auton_selector) Shuffleboard.getTab("Teleoperated").addString("QUEUED SHOT", self.getQueuedShot) Shuffleboard.getTab("Teleoperated").addBoolean("Field Oriented", self.getFieldOriented) Shuffleboard.getTab("Teleoperated").addBoolean("Zero Gyro", self.zeroGyro.getAsBoolean) Shuffleboard.getTab("Teleoperated").addBoolean("Beam Break", self.s_Indexer.getBeamBreakState) Shuffleboard.getTab("Teleoperated").addDouble("Shooter Speed", self.s_Shooter.getVelocity) Shuffleboard.getTab("Teleoperated").addBoolean("Arm + Shooter Ready", lambda: self.m_robotState.isArmAndShooterReady()) Shuffleboard.getTab("Teleoperated").addDouble("Swerve Heading", lambda: self.s_Swerve.getHeading().degrees()) Shuffleboard.getTab("Teleoperated").addDouble("Front Right Module Speed", lambda: self.s_Swerve.mSwerveMods[1].getState().speed) Shuffleboard.getTab("Teleoperated").addDouble("Swerve Pose X", lambda: self.s_Swerve.getPose().X()) Shuffleboard.getTab("Teleoperated").addDouble("Swerve Pose Y", lambda: self.s_Swerve.getPose().Y()) Shuffleboard.getTab("Teleoperated").addDouble("Swerve Pose Theta", lambda: self.s_Swerve.getPose().rotation().degrees()) Shuffleboard.getTab("Teleoperated").addDouble("Target Distance X", lambda: self.s_Vision.getDistanceVectorToSpeaker(self.s_Swerve.getPose()).X()) Shuffleboard.getTab("Teleoperated").addDouble("Target Distance Y", lambda: self.s_Vision.getDistanceVectorToSpeaker(self.s_Swerve.getPose()).Y()) Shuffleboard.getTab("Teleoperated").addDouble("Target Distance Norm", lambda: self.s_Vision.getDistanceVectorToSpeaker(self.s_Swerve.getPose()).norm()) Shuffleboard.getTab("Teleoperated").addDouble("Target Arm Angle", lambda: self.dynamicShot.getInterpolatedArmAngle()) Shuffleboard.getTab("Teleoperated").addDouble("Target Robot Angle", lambda: self.dynamicShot.getRobotAngle().degrees()) Shuffleboard.getTab("Teleoperated").addDouble("Target Arm Angle Trig", lambda: self.dynamicShot.getTrigArmAngle()) Shuffleboard.getTab("Teleoperated").addDouble("Target Distance Feet", lambda: Units.metersToFeet(self.s_Vision.getDistanceVectorToSpeaker(self.s_Swerve.getPose()).norm()) - (36.37 / 12.0) - (Constants.Swerve.robotLength / 2.0 / 12.0)) Shuffleboard.getTab("Teleoperated").addBoolean("PATH FLIP", self.s_Swerve.shouldFlipPath) Shuffleboard.getTab("Teleoperated").addString("FMS ALLIANCE", self.getAllianceName) Shuffleboard.getTab("Teleoperated").addDouble("Shooter Speed RPM", lambda: Conversions.MPSToRPS(self.s_Shooter.getVelocity(), self.s_Shooter.wheelCircumference) * 60.0) def getAllianceName(self): if DriverStation.getAlliance() is None: return "NONE" else: return DriverStation.getAlliance().name def autoModeShot(self, autoShot: Constants.NextShot) -> Command: """ Used during automode commands to shoot any Constants.NextShot. """ shotTimeoutSec = (autoShot.m_armAngle / 45.0) + 1.0 return SequentialCommandGroup( InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot(autoShot)), ParallelDeadlineGroup( WaitUntilCommand(lambda: self.m_robotState.isArmAndShooterReady()) .withTimeout(1.0) .andThen(self.s_Indexer.indexerShoot()), InstantCommand( lambda: self.s_Shooter.setShooterVelocity( autoShot.m_shooterVelocity ), self.s_Shooter, ), self.s_Arm.servoArmToTargetGravity(autoShot.m_armAngle) ), self.s_Indexer.instantStop(), self.s_Arm.seekArmZero().withTimeout(0.5) ) def getDynamicShotCommand(self, translation, strafe, rotation, robotcentric) -> ParallelCommandGroup: return ParallelCommandGroup( self.s_Arm.servoArmToTargetDynamic( lambda: self.dynamicShot.getInterpolatedArmAngle() ).repeatedly(), InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot(Constants.NextShot.DYNAMIC)), self.s_Shooter.shootVelocityWithSupplier( lambda: 35.0 ).repeatedly(), TurnInPlace( self.s_Swerve, lambda: self.dynamicShot.getRobotAngle(), translation, strafe, rotation, robotcentric ).repeatedly() ) def autoDynamicShot(self) -> Command: return DeferredCommand( lambda: ParallelDeadlineGroup( WaitUntilCommand(lambda: self.m_robotState.isReadyDynamic(lambda: self.dynamicShot.getInterpolatedArmAngle())) .withTimeout(1.0) .andThen(self.s_Indexer.indexerShoot()), self.s_Arm.servoArmToTargetDynamic( lambda: self.dynamicShot.getInterpolatedArmAngle() ), InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot(Constants.NextShot.DYNAMIC)), self.s_Shooter.shootVelocityWithSupplier( lambda: 35.0 ), TurnInPlace( self.s_Swerve, lambda: self.dynamicShot.getRobotAngle(), lambda: 0.0, lambda: 0.0, lambda: 0.0, lambda: False ) ).andThen(self.s_Arm.seekArmZero().withTimeout(0.5)) ) def autoShootWhenReady(self) -> Command: return DeferredCommand( lambda: ConditionalCommand( SequentialCommandGroup( self.s_Indexer.indexerShoot(), self.s_Indexer.instantStop(), ), InstantCommand(), lambda: self.s_Indexer.getBeamBreakState() ) ) def bringArmDown(self) -> Command: return DeferredCommand(lambda: self.s_Arm.seekArmZero().withTimeout(0.5)) def bringArmUp(self) -> Command: return DeferredCommand( lambda: ParallelDeadlineGroup( WaitUntilCommand(lambda: abs(self.s_Swerve.getTranslationVelocity().norm() - 0.0) < 0.1), ConditionalCommand( self.s_Arm.servoArmToTargetDynamic(lambda: self.dynamicShot.getInterpolatedArmAngle()), self.s_Arm.seekArmZero(), lambda: self.s_Indexer.getBeamBreakState() ) ) ) def autoExecuteShot(self, autoShot: Constants.NextShot) -> Command: return ParallelCommandGroup( InstantCommand( lambda: self.s_Shooter.setShooterVelocity( autoShot.m_shooterVelocity ), self.s_Shooter, ), self.s_Arm.servoArmToTargetGravity(autoShot.m_armAngle) ) """ * Use this method to define your button->command mappings. Buttons can be created by * instantiating a {@link GenericHID} or one of its subclasses ({@link * edu.wpi.first.wpilibj.Joystick} or {@link XboxController}), and then passing it to a {@link * edu.wpi.first.wpilibj2.command.button.JoystickButton}. """ def configureButtonBindings(self): translation = lambda: -applyDeadband(self.driver.getRawAxis(self.translationAxis), 0.1) strafe = lambda: -applyDeadband(self.driver.getRawAxis(self.strafeAxis), 0.1) rotation = lambda: applyDeadband(self.driver.getRawAxis(self.rotationAxis), 0.1) robotcentric = lambda: applyDeadband(self.robotCentric_value, 0.1) slow = lambda: applyDeadband(self.driver.getRawAxis(self.slowAxis), 0.1) # slow = lambda: 0.0 self.s_Swerve.setDefaultCommand( TeleopSwerve( self.s_Swerve, translation, strafe, rotation, robotcentric, slow ) ) # Arm Buttons self.s_Arm.setDefaultCommand(self.s_Arm.holdPosition()) # Driver Buttons self.zeroGyro.onTrue(InstantCommand(lambda: self.s_Swerve.zeroHeading())) self.robotCentric.onTrue(InstantCommand(lambda: self.toggleFieldOriented())) # Intake Buttons self.s_Indexer.setDefaultCommand(self.s_Indexer.stopIndexer()) self.s_Intake.setDefaultCommand(self.s_Intake.stopIntake()) self.intake.whileTrue(self.s_Intake.intake().alongWith(self.s_Indexer.indexerIntake()).until(self.s_Indexer.getBeamBreakState).andThen(self.s_Indexer.instantStop()).andThen(self.s_Indexer.indexerIntake().withTimeout(0.0005))) self.systemReverse.whileTrue(self.s_Intake.outtake().alongWith(self.s_Indexer.indexerOuttake(), self.s_Shooter.shootReverse())) self.beamBreakTrigger = Trigger(self.s_Indexer.getBeamBreakState) self.intakeBeamBreakTrigger = Trigger(self.s_Intake.getIntakeBeamBreakState) self.beamBreakTrigger.onTrue(InstantCommand(lambda: self.m_robotState.m_gameState.setHasNote(True))).onFalse(InstantCommand(lambda: self.m_robotState.m_gameState.setHasNote(False))) self.intakeBeamBreakTrigger.onTrue(InstantCommand(lambda: self.m_robotState.m_gameState.setNoteInIntake(True)).alongWith(self.rumbleAll())).onFalse(InstantCommand(lambda: self.m_robotState.m_gameState.setNoteInIntake(False))) # Que Buttons self.queSubFront.onTrue(InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot( Constants.NextShot.SPEAKER_CENTER )).andThen(self.s_Arm.seekArmZero())) self.quePodium.onTrue(InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot( Constants.NextShot.PODIUM )).andThen(self.s_Arm.seekArmZero())) self.queSubRight.onTrue(InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot( Constants.NextShot.SPEAKER_AMP )).andThen(self.s_Arm.seekArmZero())) self.queSubLeft.onTrue(InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot( Constants.NextShot.SPEAKER_SOURCE )).andThen(self.s_Arm.seekArmZero())) self.queAmp.onTrue(InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot( Constants.NextShot.AMP )).andThen(self.s_Arm.seekArmZero())) self.queDynamic.onTrue(InstantCommand(lambda: self.m_robotState.m_gameState.setNextShot( Constants.NextShot.DYNAMIC )).andThen(self.s_Arm.seekArmZero())) self.execute.or_(self.opExec.getAsBoolean).onTrue( ConditionalCommand( self.getDynamicShotCommand(translation, strafe, rotation, robotcentric), self.s_Arm.servoArmToTargetWithSupplier( lambda: self.m_robotState.m_gameState.getNextShot() ).alongWith( self.s_Shooter.shootVelocityWithSupplier( lambda: self.m_robotState.m_gameState.getNextShot().m_shooterVelocity ), TurnInPlace( self.s_Swerve, lambda: Rotation2d.fromDegrees( self.m_robotState.m_gameState.getNextShotRobotAngle() ), translation, strafe, rotation, robotcentric ).repeatedly() ), lambda: self.m_robotState.m_gameState.getNextShot() == Constants.NextShot.DYNAMIC ) ) self.fastTurn.whileTrue(InstantCommand(lambda: self.setFastTurn(True))).whileFalse(InstantCommand(lambda: self.setFastTurn(False))) # LED Controls self.s_LED.setDefaultCommand(self.s_LED.getStateCommand()) # Climber Buttons self.s_Climber.setDefaultCommand(self.s_Climber.stopClimbers()) self.climbUp.whileTrue(self.s_Climber.runClimbersUp()) self.climbDown.whileTrue(self.s_Climber.runClimbersDown()) # Shooter Buttons self.s_Shooter.setDefaultCommand(self.s_Shooter.stop()) self.shoot.or_(self.opShoot.getAsBoolean).whileTrue(cmd.parallel(self.s_Indexer.indexerTeleopShot(), self.s_Intake.intake(), self.s_Shooter.shootVelocityWithSupplier(lambda: self.m_robotState.m_gameState.getNextShot().m_shooterVelocity))) self.autoHome.onTrue(self.s_Arm.seekArmZero()) self.emergencyArmUp.onTrue( ConditionalCommand( self.s_Arm.seekArmZero(), self.s_Arm.servoArmToTargetGravity(90.0), lambda: self.s_Arm.getDegrees() > 45.0 ) ) # self.emergencyArmUp.whileTrue( # self.s_Shooter.shootVelocityWithSupplier(lambda: 35.0) # ) def toggleFieldOriented(self): self.robotCentric_value = not self.robotCentric_value def getFieldOriented(self): return not self.robotCentric_value def getQueuedShot(self): return self.m_robotState.m_gameState.getNextShot().name def rumbleAll(self): return ParallelCommandGroup( self.rumbleDriver(), self.rumbleOperator() ) def rumbleDriver(self): return InstantCommand( lambda: self.driver.getHID().setRumble(XboxController.RumbleType.kLeftRumble, 1.0) ).andThen(WaitCommand(0.5)).andThen(InstantCommand(lambda: self.driver.getHID().setRumble(XboxController.RumbleType.kLeftRumble, 0.0))).withName("Rumble") def rumbleOperator(self): return InstantCommand( lambda: self.operator.getHID().setRumble(XboxController.RumbleType.kLeftRumble, 1.0) ).andThen(WaitCommand(0.5)).andThen(InstantCommand(lambda: self.operator.getHID().setRumble(XboxController.RumbleType.kLeftRumble, 0.0))).withName("Rumble") """ * Use this to pass the autonomous command to the main {@link Robot} class. * * @return the command to run in autonomous """ def getAutonomousCommand(self) -> Command: auto = self.auton_selector.getSelected() return auto def setFastTurn(self, value: bool): if value: Constants.Swerve.maxAngularVelocity = 2.5 * math.pi * 2.0 else: Constants.Swerve.maxAngularVelocity = 2.5 * math.pi
22,363
Python
48.919643
297
0.672495
RoboEagles4828/rift2024/rio/srcrobot/robotState.py
import math from gameState import GameState class RobotState: """ The single robot can evaluate if the robot subsystems are ready to execute a game task. """ kRobotHeadingTolerance = 2.0 kArmAngleTolerance = 1.0 kShooterVelocityTolerance = 3.0 m_gameState = GameState() def __new__(cls): """ To initialize the singleton RobotState, call this from RobotContainer soon after creating subsystems and then immediately call initialize() the returned instance. Other clients of the singleton only call this constructor. """ if not hasattr(cls, "instance"): cls.instance = super(RobotState, cls).__new__(cls) return cls.instance def initialize( self, robotHeadingSupplier, armAngleSupplier, shooterVelocitySupplier ): """ Only called from RobotContainer after the constructor to complete initialization of the singleton. :param robotHeadingSupplier: a supplier of the robots current heading. :param armAngleSupplier: a supplier of the current arm angle. :param shooterVelocitySupplier: a supplier of the current shooter velocity. """ self.m_robotHeadingSupplier = robotHeadingSupplier self.m_armAngleSupplier = armAngleSupplier self.m_shooterVelocitySupplier = shooterVelocitySupplier def isclose(self, a, b, tolerance) -> bool: return abs(a - b) < tolerance def isShooterReady(self) -> bool: """ Return true if the current arm angle and shooter velocity are both within tolerance for the needs of the next desired shot. """ shot = self.m_gameState.getNextShot() return self.isclose( shot.m_shooterVelocity, self.m_shooterVelocitySupplier(), self.kShooterVelocityTolerance, ) def isArmReady(self) -> bool: shot = self.m_gameState.getNextShot() return self.isclose( shot.m_armAngle, self.m_armAngleSupplier(), self.kArmAngleTolerance ) def isArmAndShooterReady(self) -> bool: return self.isShooterReady() and self.isArmReady() def isRobotReady(self) -> bool: """ Return true if isShooterReady and the robot is turned correctly for the next shot. """ return self.isArmAndShooterReady() and self.isclose( self.m_gameState.getNextShotRobotAngle(), self.m_robotHeadingSupplier(), self.kRobotHeadingTolerance, ) def isReadyToIntake(self) -> bool: """ On our robot, the intake is physically dependent on the arm position for intaking to work. :return: True if we do not have a note and the arm is in the proper intaking position. """ return (not self.m_gameState.hasNote()) and self.isclose( 0.0, self.m_armAngleSupplier(), self.kArmAngleTolerance ) def isReadyDynamic(self, degreesSup) -> bool: arm = self.isclose( degreesSup(), self.m_armAngleSupplier(), self.kArmAngleTolerance ) shooter = self.isclose( 35.0, self.m_shooterVelocitySupplier(), self.kShooterVelocityTolerance ) return arm and shooter
3,387
Python
30.962264
90
0.625627
RoboEagles4828/rift2024/rio/srcrobot/subsystems/Swerve.py
from SwerveModule import SwerveModule from constants import Constants from subsystems.Vision import Vision from wpimath.kinematics import ChassisSpeeds from wpimath.kinematics import SwerveDrive4Kinematics from wpimath.kinematics import SwerveDrive4Odometry from wpimath.estimator import SwerveDrive4PoseEstimator from wpimath.kinematics import SwerveModulePosition from navx import AHRS from wpimath.geometry import Pose2d from wpimath.geometry import Rotation2d from wpimath.geometry import Translation2d, Transform2d from wpimath.kinematics import SwerveModuleState from wpilib.shuffleboard import Shuffleboard, BuiltInWidgets from commands2.subsystem import Subsystem from wpilib.sysid import SysIdRoutineLog from wpimath.units import volts from pathplannerlib.auto import AutoBuilder, PathConstraints from wpilib import DriverStation, RobotBase, Field2d from wpiutil import Sendable, SendableBuilder from sim.SwerveIMUSim import SwerveIMUSim from sim.SwerveModuleSim import SwerveModuleSim class Swerve(Subsystem): def __init__(self): if RobotBase.isSimulation(): self.gyro = SwerveIMUSim() else: self.gyro = AHRS.create_spi() self.gyro.calibrate() self.gyro.zeroYaw() self.mSwerveMods = [ SwerveModule(0, Constants.Swerve.Mod0.constants), SwerveModule(1, Constants.Swerve.Mod1.constants), SwerveModule(2, Constants.Swerve.Mod2.constants), SwerveModule(3, Constants.Swerve.Mod3.constants) ] # self.swerveOdometry = SwerveDrive4Odometry(Constants.Swerve.swerveKinematics, self.getGyroYaw(), self.getModulePositions()) self.swerveOdometry = SwerveDrive4PoseEstimator(Constants.Swerve.swerveKinematics, self.getGyroYaw(), self.getModulePositions(), Pose2d(0, 0, Rotation2d())) self.vision : Vision = Vision.getInstance() self.field = Field2d() AutoBuilder.configureHolonomic( self.getPose, self.setPose, self.getRobotRelativeSpeeds, self.driveRobotRelative, Constants.Swerve.holonomicPathConfig, self.shouldFlipPath, self ) Shuffleboard.getTab("Field").add(self.field) self.alliance = Shuffleboard.getTab("Teleoperated").add("MANUAL ALLIANCE FLIP", False).getEntry() def drive(self, translation: Translation2d, rotation, fieldRelative, isOpenLoop): discreteSpeeds = ChassisSpeeds.discretize(translation.X(), translation.Y(), rotation, 0.02) swerveModuleStates = Constants.Swerve.swerveKinematics.toSwerveModuleStates( ChassisSpeeds.fromFieldRelativeSpeeds( discreteSpeeds.vx, discreteSpeeds.vy, discreteSpeeds.omega, self.getHeading() ) ) if fieldRelative else Constants.Swerve.swerveKinematics.toSwerveModuleStates( ChassisSpeeds(translation.X(), translation.Y(), rotation) ) SwerveDrive4Kinematics.desaturateWheelSpeeds(swerveModuleStates, Constants.Swerve.maxSpeed) self.mSwerveMods[0].setDesiredState(swerveModuleStates[0], isOpenLoop) self.mSwerveMods[1].setDesiredState(swerveModuleStates[1], isOpenLoop) self.mSwerveMods[2].setDesiredState(swerveModuleStates[2], isOpenLoop) self.mSwerveMods[3].setDesiredState(swerveModuleStates[3], isOpenLoop) def driveRobotRelative(self, speeds: ChassisSpeeds): self.drive(Translation2d(speeds.vx, speeds.vy), -speeds.omega, False, False) def shouldFlipPath(self): return DriverStation.getAlliance() == DriverStation.Alliance.kRed def setModuleStates(self, desiredStates): SwerveDrive4Kinematics.desaturateWheelSpeeds(desiredStates, Constants.Swerve.maxSpeed) self.mSwerveMods[0].setDesiredState(desiredStates[0], False) self.mSwerveMods[1].setDesiredState(desiredStates[1], False) self.mSwerveMods[2].setDesiredState(desiredStates[2], False) self.mSwerveMods[3].setDesiredState(desiredStates[3], False) def getModuleStates(self): states = list() states.append(self.mSwerveMods[0].getState()) states.append(self.mSwerveMods[1].getState()) states.append(self.mSwerveMods[2].getState()) states.append(self.mSwerveMods[3].getState()) return states def getModulePositions(self): positions = list() positions.append(self.mSwerveMods[0].getPosition()) positions.append(self.mSwerveMods[1].getPosition()) positions.append(self.mSwerveMods[2].getPosition()) positions.append(self.mSwerveMods[3].getPosition()) return positions def getTranslationVelocity(self) -> Translation2d: speed = self.getRobotRelativeSpeeds() return Translation2d(speed.vx, speed.vy) def getModules(self): return self.mSwerveMods def getPose(self): return self.swerveOdometry.getEstimatedPosition() def setPose(self, pose): self.swerveOdometry.resetPosition(self.getGyroYaw(), tuple(self.getModulePositions()), pose) def getHeading(self): return self.getPose().rotation() def setHeading(self, heading: Rotation2d): self.swerveOdometry.resetPosition(self.getGyroYaw(), tuple(self.getModulePositions()), Pose2d(self.getPose().translation(), heading)) def zeroHeading(self): self.swerveOdometry.resetPosition(self.getGyroYaw(), tuple(self.getModulePositions()), Pose2d(self.getPose().translation(), Rotation2d())) def zeroYaw(self): self.gyro.zeroYaw() def getGyroYaw(self): return Rotation2d.fromDegrees(self.gyro.getYaw()).__mul__(-1) def resetModulesToAbsolute(self): self.mSwerveMods[0].resetToAbsolute() self.mSwerveMods[1].resetToAbsolute() self.mSwerveMods[2].resetToAbsolute() self.mSwerveMods[3].resetToAbsolute() def resetModuleZero(self): self.mSwerveMods[0].setDesiredStateNoOptimize(SwerveModuleState(0, Rotation2d(0)), False) self.mSwerveMods[1].setDesiredStateNoOptimize(SwerveModuleState(0, Rotation2d(0)), False) self.mSwerveMods[2].setDesiredStateNoOptimize(SwerveModuleState(0, Rotation2d(0)), False) self.mSwerveMods[3].setDesiredStateNoOptimize(SwerveModuleState(0, Rotation2d(0)), False) def getRobotRelativeSpeeds(self): return Constants.Swerve.swerveKinematics.toChassisSpeeds(tuple(self.getModuleStates())) def driveMotorsVoltage(self, volts): self.mSwerveMods[0].driveMotorVoltage(volts) self.mSwerveMods[1].driveMotorVoltage(volts) self.mSwerveMods[2].driveMotorVoltage(volts) self.mSwerveMods[3].driveMotorVoltage(volts) def logDriveMotors(self, routineLog: SysIdRoutineLog): for mod in self.mSwerveMods: moduleName = "Module " + str(mod.moduleNumber) routineLog.motor(moduleName)\ .voltage(mod.mDriveMotor.get_motor_voltage().value_as_double)\ .position(mod.getPosition().distance)\ .velocity(mod.getState().speed) def pathFindToPose(self, pose: Pose2d, constraints: PathConstraints, goalEndVel: float): return AutoBuilder.pathfindToPose(pose, constraints) def getSwerveModulePoses(self, robot_pose: Pose2d): poses = [] locations: list[Translation2d] = [ Constants.Swerve.frontLeftLocation, Constants.Swerve.frontRightLocation, Constants.Swerve.backLeftLocation, Constants.Swerve.backRightLocation ] for idx, module in enumerate(self.mSwerveMods): loc = locations[idx] poses.append( robot_pose + Transform2d(loc, module.getState().angle) ) return poses def stop(self): self.drive(Translation2d(), 0, False, True) def periodic(self): if RobotBase.isSimulation(): modulePoses = self.getSwerveModulePoses(self.getPose()) self.gyro.updateOdometry(Constants.Swerve.swerveKinematics, self.getModuleStates(), modulePoses, self.field) self.field.getRobotObject().setPose(self.getPose()) self.swerveOdometry.update(self.getGyroYaw(), tuple(self.getModulePositions())) optestimatedPose = self.vision.getEstimatedGlobalPose() if optestimatedPose is not None: estimatedPose = optestimatedPose heading = estimatedPose.estimatedPose.toPose2d().rotation() self.swerveOdometry.addVisionMeasurement(Pose2d(estimatedPose.estimatedPose.toPose2d().X(), estimatedPose.estimatedPose.toPose2d().Y(), self.getHeading()), estimatedPose.timestampSeconds)
8,794
Python
40.880952
199
0.699113
RoboEagles4828/rift2024/rio/srcrobot/subsystems/indexer.py
from constants import Constants from commands2.subsystem import Subsystem from commands2.cmd import waitSeconds from phoenix5 import TalonSRX, TalonSRXConfiguration, TalonSRXControlMode, TalonSRXFeedbackDevice, NeutralMode, SupplyCurrentLimitConfiguration from wpilib import DigitalInput from commands2 import InstantCommand from wpimath.filter import Debouncer import math class Indexer(Subsystem): def __init__(self): self.indexerMotor = TalonSRX(Constants.IndexerConstants.kIndexerMotorID) self.indexerMotor.configFactoryDefault() self.beamBreak = DigitalInput(Constants.IndexerConstants.kBeamBreakerID) self.indexerMotor.setInverted(True) self.indexerMotor.config_kP(0, 2.0) self.indexerMotor.setNeutralMode(NeutralMode.Brake) current_limit = 40 current_threshold = 60 current_threshold_time = 3.0 supply_configs = SupplyCurrentLimitConfiguration(True, current_limit, current_threshold, current_threshold_time) self.indexerMotor.configSupplyCurrentLimit(supply_configs) self.indexerDiameter = 0.031 self.indexerEncoderCPR = 2048.0 self.indexerIntakeVelocity = -(Constants.IndexerConstants.kIndexerIntakeSpeedMS/(math.pi*self.indexerDiameter))*self.indexerEncoderCPR self.indexerShootVelocity = -(Constants.IndexerConstants.kIndexerMaxSpeedMS/(math.pi*self.indexerDiameter))*self.indexerEncoderCPR self.debouncer = Debouncer(0.05, Debouncer.DebounceType.kBoth) def getBeamBreakState(self): return not bool(self.beamBreak.get()) def indexerIntake(self): return self.run(lambda: self.indexerMotor.set(TalonSRXControlMode.Velocity, self.indexerIntakeVelocity)).withName("Intake") def indexerIntakeOnce(self): return self.runOnce(lambda: self.indexerMotor.set(TalonSRXControlMode.Velocity, self.indexerIntakeVelocity)) def indexerShoot(self): return self.run(lambda: self.indexerMotor.set(TalonSRXControlMode.Velocity, self.indexerShootVelocity)).until(lambda: not self.getBeamBreakState()).withTimeout(3.0).andThen(waitSeconds(0.3)).finallyDo(lambda interrupted: self.stopMotor()).withName("Shoot") def indexerTeleopShot(self): return self.run(lambda: self.indexerMotor.set(TalonSRXControlMode.Velocity, self.indexerShootVelocity)) def indexerOuttake(self): return self.run(lambda: self.indexerMotor.set(TalonSRXControlMode.Velocity, -self.indexerIntakeVelocity)).withName("Outtake") def setIndexerVelocity(self, velocity): return self.run(lambda: self.indexerMotor.set(TalonSRXControlMode.Velocity, -(velocity/(math.pi*self.indexerDiameter))*self.indexerEncoderCPR)).withName("SetIndexerVelocity") def levelIndexer(self): return self.indexerIntake().withTimeout(0.005)\ .andThen(self.stopIndexer()).withName("LevelIndexer") # .andThen(self.indexerOuttake().withTimeout(0.1))\ # .andThen(self.indexerIntake().until(self.getBeamBreakState))\ # .andThen(self.indexerOuttake().withTimeout(0.1))\ def stopMotor(self): self.indexerMotor.set(TalonSRXControlMode.PercentOutput, 0.0) def instantStop(self): return InstantCommand(lambda: self.indexerMotor.set(TalonSRXControlMode.PercentOutput, 0.0)).withName("InstantStop") def stopIndexer(self): return self.run(lambda: self.indexerMotor.set(TalonSRXControlMode.PercentOutput, 0.0)).withName("StopIndexer")
3,497
Python
48.267605
264
0.750071
RoboEagles4828/rift2024/rio/srcrobot/subsystems/Climber.py
from commands2.subsystem import Subsystem from commands2.cmd import waitSeconds, waitUntil import wpimath.filter import wpimath import wpilib import phoenix6 from wpimath.geometry import Rotation2d, Pose3d, Pose2d, Rotation3d from phoenix6.hardware.talon_fx import TalonFX from phoenix6.controls import VelocityVoltage, VoltageOut, StrictFollower, DutyCycleOut, PositionVoltage from phoenix6.signals import InvertedValue, NeutralModeValue from lib.mathlib.conversions import Conversions import math from constants import Constants from phoenix6.configs.talon_fx_configs import TalonFXConfiguration from copy import deepcopy from commands2 import InstantCommand class Climber(Subsystem): def __init__(self): self.kLeftClimberCANID = 4 self.kRightClimberCANID = 15 self.leftClimber = TalonFX(self.kLeftClimberCANID) self.rightClimber = TalonFX(self.kRightClimberCANID) self.gearRatio = 1.0/14.2 self.wheelCircumference = 0.01905*math.pi self.leftClimberConfig = TalonFXConfiguration() self.rightClimberConfig = TalonFXConfiguration() self.leftClimberConfig.slot0.k_p = 10.0 self.leftClimberConfig.slot0.k_i = 0.0 self.leftClimberConfig.slot0.k_d = 0.0 self.leftClimberConfig.motor_output.neutral_mode = NeutralModeValue.BRAKE self.leftClimberConfig.current_limits.supply_current_limit_enable = True self.leftClimberConfig.current_limits.supply_current_limit = 40 self.leftClimberConfig.current_limits.supply_current_threshold = 40 self.leftClimberConfig.current_limits.stator_current_limit_enable = True self.leftClimberConfig.current_limits.stator_current_limit = 40 self.rightClimberConfig = deepcopy(self.leftClimberConfig) self.rightClimberConfig.motor_output.inverted = InvertedValue.COUNTER_CLOCKWISE_POSITIVE self.leftClimberConfig.motor_output.inverted = InvertedValue.COUNTER_CLOCKWISE_POSITIVE self.rightClimberConfig.software_limit_switch.reverse_soft_limit_enable = True self.rightClimberConfig.software_limit_switch.reverse_soft_limit_threshold = -97 # TODO: Change this value self.rightClimberConfig.software_limit_switch.forward_soft_limit_enable = True self.rightClimberConfig.software_limit_switch.forward_soft_limit_threshold = 0.0 self.leftClimberConfig.software_limit_switch.reverse_soft_limit_enable = True self.leftClimberConfig.software_limit_switch.reverse_soft_limit_threshold = -97 # TODO: leftClimberConfig self.leftClimberConfig.software_limit_switch.forward_soft_limit_enable = True self.leftClimberConfig.software_limit_switch.forward_soft_limit_threshold = 0.0 self.leftClimber.configurator.apply(self.leftClimberConfig) self.rightClimber.configurator.apply(self.rightClimberConfig) self.dutyCycleControl = DutyCycleOut(0).with_enable_foc(True) self.velocityControl = VelocityVoltage(0).with_enable_foc(True) self.VoltageControl = VoltageOut(0).with_enable_foc(True) self.leftClimbervelocitySupplier = self.leftClimber.get_velocity().as_supplier() self.rightClimbervelocitySupplier = self.rightClimber.get_velocity().as_supplier() self.ZeroingVelocityTolerance = 100.0 # Conversions.MPSToRPS(circumference=self.wheelCircumference, wheelMPS=velocity)*self.gearRatio) def setClimbers(self, percentOutput): self.leftClimber.set_control(self.dutyCycleControl.with_output(percentOutput)) self.rightClimber.set_control(self.dutyCycleControl.with_output(percentOutput)) # print(Conversions.MPSToRPS(velocity, self.wheelCircumference)*self.gearRatio) def setClimbersLambda(self, climberAxis): return self.run(lambda: self.setClimbers(climberAxis())).withName("Manual Climbers") def runClimbersUp(self): return self.run(lambda: self.setClimbers(-Constants.ClimberConstants.kClimberSpeed)).withName("Climbers Up") # .andThen( # self.detectStallAtHardStopLeft().alongWith(self.detectStallAtHardStopRight()) # )\ # .finallyDo(self.stopClimbers()).withName("Climbers Up") def stopClimbers(self): return self.run(lambda: self.setClimbers(0.0)).withName("Stop Climbers") def runClimbersDown(self): return self.run(lambda: self.setClimbers(Constants.ClimberConstants.kClimberSpeed)).withName("Climbers Down") def isNear(self, a, b, tolerance): # if abs(a - b) < tolerance: # return True return abs(a - b) < tolerance def detectStallAtHardStopLeft(self): stallDebouncer = wpimath.filter.Debouncer(1.0, wpimath.filter.Debouncer.DebounceType.kRising) return waitUntil(lambda: stallDebouncer .calculate(self.isNear( 0.0, self.leftClimber.get_velocity().value_as_double, self.ZeroingVelocityTolerance) ) ).finallyDo(lambda: self.leftClimber.set_control(self.VoltageControl.with_output(0.0))) def detectStallAtHardStopRight(self): stallDebouncer = wpimath.filter.Debouncer(1.0, wpimath.filter.Debouncer.DebounceType.kRising) return waitUntil(lambda: stallDebouncer .calculate(self.isNear( 0.0, self.rightClimber.get_velocity(), self.ZeroingVelocityTolerance) ) ).finallyDo(lambda: self.rightClimber.set_control(self.VoltageControl.with_output(0.0)))
5,557
Python
46.504273
117
0.725391
RoboEagles4828/rift2024/rio/srcrobot/subsystems/Vision.py
from commands2 import Subsystem from photonlibpy.photonCamera import PhotonCamera, VisionLEDMode, Packet from photonlibpy.photonPoseEstimator import PhotonPoseEstimator, PoseStrategy from photonlibpy.photonPipelineResult import PhotonPipelineResult from lib.util.PhotonUtils import PhotonUtils from robotpy_apriltag import AprilTagFieldLayout, AprilTagField, loadAprilTagLayoutField from wpimath.geometry import Pose2d, Transform2d, Transform3d, Pose3d, Rotation2d, Rotation3d, Translation2d, Translation3d import wpimath.units as Units from constants import Constants from wpilib import SmartDashboard, DriverStation from typing import Callable import math class Vision(Subsystem): instance = None def __init__(self): try: self.camera : PhotonCamera | None = PhotonCamera("camera1") except: self.camera : PhotonCamera | None = None print("========= NO PHOTON CAMERA FOUND =========") self.aprilTagFieldLayout = loadAprilTagLayoutField(AprilTagField.k2024Crescendo) self.speakerPositionBlue = Pose2d(Units.inchesToMeters(-1.50), Units.inchesToMeters(218.42), Rotation2d()) self.speakerPositionRed = Pose2d(Units.inchesToMeters(652.73), Units.inchesToMeters(218.42), Rotation2d.fromDegrees(180.0)) self.distanceSpeakerFieldToCamera = 0.0 # Right = 6.5 in # Up = 11.5 in # Froward = (frame / 2.0) - 1.25 in self.robotToCamera = Transform3d( Translation3d(-Units.inchesToMeters((31.125 / 2.0) - 1.25), -Units.inchesToMeters(6.5), Units.inchesToMeters(11.5)), Rotation3d.fromDegrees(0.0, -45.0, 180.0) ) self.fieldToCamera = Transform3d() if self.camera is not None: try: self.photonPoseEstimator = PhotonPoseEstimator( self.aprilTagFieldLayout, PoseStrategy.MULTI_TAG_PNP_ON_COPROCESSOR, self.camera, self.robotToCamera ) self.photonPoseEstimator.multiTagFallbackStrategy = PoseStrategy.LOWEST_AMBIGUITY except: self.photonPoseEstimator = None print("===== PHOTON PROBLEM (POSE ESTIMATOR) =======") self.CAMERA_HEIGHT_METERS = Units.inchesToMeters(11.5) self.SPEAKER_HEIGHT_METERS = 1.45 # meters self.CAMERA_PITCH_RADIANS = Rotation2d.fromDegrees(-45.0) self.instance : Vision = None @classmethod def getInstance(cls): if cls.instance == None: cls.instance = Vision() return cls.instance def getEstimatedGlobalPose(self): if self.camera is None or self.photonPoseEstimator is None: return None return self.photonPoseEstimator.update() def getDistanceToSpeakerFieldToCameraFeet(self, fieldToCamera: Pose2d): pose = fieldToCamera speakerPos = self.speakerPositionBlue if DriverStation.getAlliance() == DriverStation.Alliance.kRed: speakerPos = self.speakerPositionRed else: speakerPos = self.speakerPositionBlue distanceToSpeakerFieldToCamera = Units.metersToFeet( PhotonUtils.getDistanceToPose(pose, speakerPos) ) return distanceToSpeakerFieldToCamera - (36.37 / 12.0) def getDistanceVectorToSpeaker(self, pose: Pose2d): speakerPos = self.speakerPositionBlue if DriverStation.getAlliance() == DriverStation.Alliance.kRed: speakerPos = self.speakerPositionRed else: speakerPos = self.speakerPositionBlue distanceVector = PhotonUtils.getDistanceVectorToPose(pose, speakerPos) return distanceVector def getAngleToSpeakerFieldToCamera(self, fieldToCamera: Pose2d): pose = fieldToCamera speakerPos = self.speakerPositionBlue if DriverStation.getAlliance() == DriverStation.Alliance.kRed: speakerPos = self.speakerPositionRed else: speakerPos = self.speakerPositionBlue dx = speakerPos.X() - pose.X() dy = speakerPos.Y() - pose.Y() angleToSpeakerFieldToCamera = Rotation2d(math.atan2(dy, dx)) return angleToSpeakerFieldToCamera def getCamera(self): return self.camera def hasTargetBooleanSupplier(self): return lambda: self.camera.getLatestResult().hasTargets() def takeSnapshot(self): self.camera.takeInputSnapshot() def setPipeline(self, pipelineIdx): self.camera.setPipelineIndex(pipelineIdx) def setTagMode(self): self.setPipeline(0) def getBestTarget(self, result : PhotonPipelineResult): targets = result.getTargets() # sort targets by area largest to smallest targets.sort(key=lambda target: target.area, reverse=True) if len(targets) <= 0: return None return targets[0] def isTargetSeen(self, tagID) -> bool: if self.camera is None: return False result = self.camera.getLatestResult() if result.hasTargets() == False: return False best_target = self.getBestTarget(result) return best_target.getFiducialId() == tagID def isTargetSeenLambda(self, tagIDSupplier: Callable[[], int]) -> bool: if self.camera is None: return False result = self.camera.getLatestResult() if result.hasTargets() == False: return False best_target = self.getBestTarget(result) return best_target.getFiducialId() == tagIDSupplier() def getSortedTargetsList(self, result: PhotonPipelineResult): targets = result.getTargets() targets.sort(key=lambda target: target.area, reverse=True) return targets def getAngleToTag(self, tagIDSupplier: Callable[[], int]): if self.camera is None: return 0.0 if self.isTargetSeenLambda(tagIDSupplier): result = self.camera.getLatestResult() best_target = self.getBestTarget(result) if best_target is not None: return best_target.getYaw() else: return 0.0 else: return 0.0 # def periodic(self): # # if self.camera is not None: # result = self.camera.getLatestResult() # if result.multiTagResult.estimatedPose.isPresent: # self.fieldToCamera = result.multiTagResult.estimatedPose.best # hasTargets = result.hasTargets() # if hasTargets: # # get the best tag based on largest areaprint(f"================ {Units.inchesToMeters(self.s_Vision.getDistanceToSpeakerFieldToCameraInches(Transform3d(0.0, 0.0, 0.0, Rotation3d())))}") # bestTarget = self.getBestTarget(result) # if bestTarget is not None: # SmartDashboard.putNumber("tag ID", bestTarget.getFiducialId()) # SmartDashboard.putNumber("pose ambiguity", bestTarget.getPoseAmbiguity()) # SmartDashboard.putNumber("tag transform X", bestTarget.getBestCameraToTarget().X()) # SmartDashboard.putNumber("tag transform Y", bestTarget.getBestCameraToTarget().Y()) # SmartDashboard.putNumber("tag transform Z", bestTarget.getBestCameraToTarget().Z()) # SmartDashboard.putNumber("tag transform angle", bestTarget.getBestCameraToTarget().rotation().angle_degrees) # SmartDashboard.putNumber("tag yaw", bestTarget.getYaw())() # SmartDashboard.putNumber("Vision Pose X", self.getEstimatedGlobalPose().estimatedPose.X()) # SmartDashboard.putNumber("Vision Pose Y", self.getEstimatedGlobalPose().estimatedPose.Y()) # SmartDashboard.putNumber("Vision Pose Angle", self.getEstimatedGlobalPose().estimatedPose.rotation().angle_degrees)
8,021
Python
35.967742
204
0.644184
RoboEagles4828/rift2024/rio/srcrobot/subsystems/intake.py
from constants import Constants from commands2.subsystem import Subsystem from phoenix5 import TalonSRX, TalonSRXConfiguration, TalonSRXControlMode, SupplyCurrentLimitConfiguration from commands2 import InstantCommand from wpilib import DigitalInput from wpimath.filter import Debouncer import math class Intake(Subsystem): def __init__(self): self.intakeMotor = TalonSRX(Constants.IntakeConstants.kIntakeMotorID) self.intakeMotor.configFactoryDefault() current_limit = 40 current_threshold = 60 current_threshold_time = 3.0 supply_configs = SupplyCurrentLimitConfiguration(True, current_limit, current_threshold, current_threshold_time) self.intakeMotor.configSupplyCurrentLimit(supply_configs) self.intakeSpeed = 1.0 self.intakeBeam = DigitalInput(1) # self.intakeMotor.configContinuousCurrentLimit(30) # self.intakeMotor.enableCurrentLimit(True) self.debouncer = Debouncer(0.05, Debouncer.DebounceType.kBoth) def getIntakeBeamBreakState(self): return not bool(self.intakeBeam.get()) def intake(self): return self.run(lambda: self.intakeMotor.set(TalonSRXControlMode.PercentOutput, self.intakeSpeed)).withName("Intake") def intakeOnce(self): return self.runOnce(lambda: self.intakeMotor.set(TalonSRXControlMode.PercentOutput, self.intakeSpeed)).withName("IntakeOnce") def outtake(self): return self.run(lambda: self.intakeMotor.set(TalonSRXControlMode.PercentOutput, -self.intakeSpeed)).withName("Outtake") def instantStop(self): return InstantCommand(lambda: self.intakeMotor.set(TalonSRXControlMode.PercentOutput, 0.0)).withName("InstantStop") def stopIntake(self): return self.run(lambda: self.intakeMotor.set(TalonSRXControlMode.PercentOutput, 0.0)).withName("StopIntake")
1,875
Python
39.782608
133
0.746133
RoboEagles4828/rift2024/rio/srcrobot/subsystems/Shooter.py
from commands2.subsystem import Subsystem import wpimath.filter import wpimath import wpilib import phoenix6 from wpimath.geometry import Rotation2d, Pose3d, Pose2d, Rotation3d from phoenix6.hardware.talon_fx import TalonFX from phoenix6.controls import VelocityVoltage, VoltageOut, StrictFollower, DutyCycleOut from phoenix6.signals import InvertedValue, NeutralModeValue from lib.mathlib.conversions import Conversions import math from constants import Constants from phoenix6.configs.talon_fx_configs import TalonFXConfiguration from copy import deepcopy from commands2 import InstantCommand, Command class Shooter(Subsystem): def __init__(self): self.kBottomShooterCANID = 6 self.kTopShooterCANID = 13 self.bottomShooter = TalonFX(self.kBottomShooterCANID) self.topShooter = TalonFX(self.kTopShooterCANID) self.gearRatio = 1.0 self.wheelCircumference = 0.101*math.pi self.topShooterConfig = TalonFXConfiguration() self.topShooterConfig.slot0.k_v = (1/(Conversions.MPSToRPS(Constants.ShooterConstants.kPodiumShootSpeed, self.wheelCircumference)*self.gearRatio)) self.topShooterConfig.slot0.k_p = 1.5 self.topShooterConfig.slot0.k_i = 0.0 self.topShooterConfig.slot0.k_d = 0.0 self.topShooterConfig.motor_output.neutral_mode = NeutralModeValue.COAST self.topShooterConfig.current_limits.supply_current_limit_enable = True self.topShooterConfig.current_limits.supply_current_limit = 30 self.topShooterConfig.current_limits.supply_current_threshold = 50 self.topShooterConfig.current_limits.supply_time_threshold = Constants.Swerve.driveCurrentThresholdTime self.topShooterConfig.current_limits.stator_current_limit_enable = True self.topShooterConfig.current_limits.stator_current_limit = 50 self.bottomShooterConfig = deepcopy(self.topShooterConfig) self.topShooterConfig.motor_output.inverted = InvertedValue.CLOCKWISE_POSITIVE self.bottomShooterConfig.motor_output.inverted = InvertedValue.CLOCKWISE_POSITIVE self.topShooter.configurator.apply(self.topShooterConfig) self.bottomShooter.configurator.apply(self.bottomShooterConfig) self.VelocityControl = VelocityVoltage(0).with_enable_foc(False) self.VoltageControl = VoltageOut(0).with_enable_foc(False) self.percentOutput = DutyCycleOut(0).with_enable_foc(False) self.currentShotVelocity = 0.0 self.topShooterVelocitySupplier = self.topShooter.get_velocity().as_supplier() self.bottomShooterVelocitySupplier = self.bottomShooter.get_velocity().as_supplier() def setShooterVelocity(self, velocity): self.topShooter.set_control(self.VelocityControl.with_velocity(Conversions.MPSToRPS(velocity, self.wheelCircumference)*self.gearRatio)) self.bottomShooter.set_control(self.VelocityControl.with_velocity(Conversions.MPSToRPS(velocity, self.wheelCircumference)*self.gearRatio)) self.currentShotVelocity = Conversions.MPSToRPS(velocity, self.wheelCircumference)*self.gearRatio def shootVelocity(self, velocity) -> Command: return self.run(lambda: self.setShooterVelocity(velocity)).withName("ShootVelocity") def shootVelocityWithSupplier(self, velSup): return self.run(lambda: self.setShooterVelocity(velSup())).withName("ShootVelocity") def neutralizeShooter(self): # self.topShooterConfig.motor_output.neutral_mode = NeutralModeValue.COAST # self.bottomShooterConfig.motor_output.neutral_mode = NeutralModeValue.COAST # self.topShooter.configurator.apply(self.topShooterConfig) # self.bottomShooter.configurator.apply(self.bottomShooterConfig) self.topShooter.set_control(self.VoltageControl.with_output(0).with_override_brake_dur_neutral(False)) self.bottomShooter.set_control(self.VoltageControl.with_output(0).with_override_brake_dur_neutral(False)) def idle(self): return self.run(lambda: self.setShooterVelocity(Constants.ShooterConstants.kAmpShootSpeed)).withName("IdleShooter") def shoot(self): return self.run(lambda: self.setShooterVelocity(Constants.ShooterConstants.kSubwooferShootSpeed)).withName("Shoot") def amp(self): return self.run(lambda: self.setShooterVelocity(Constants.ShooterConstants.kAmpShootSpeed)).withName("Amp") def shootReverse(self): return self.run(lambda: self.setShooterVelocity(-Constants.ShooterConstants.kPodiumShootSpeed)).withName("ShootReverse") def isShooterReady(self, isAuto=False): if not isAuto: topShooterReady = abs(self.topShooterVelocitySupplier() - self.currentShotVelocity) < 5 bottomShooterReady = abs(self.bottomShooterVelocitySupplier() - self.currentShotVelocity) < 5 else: topShooterReady = abs(self.topShooterVelocitySupplier() - Conversions.MPSToRPS(Constants.ShooterConstants.kSubwooferShootSpeed, self.wheelCircumference)*self.gearRatio) < 5 bottomShooterReady = abs(self.bottomShooterVelocitySupplier() - self.currentShotVelocity) < 5 return topShooterReady and bottomShooterReady def isShooterAtSubwooferSpeed(self): if abs(self.topShooterVelocitySupplier() - Conversions.MPSToRPS(Constants.ShooterConstants.kSubwooferShootSpeed, self.wheelCircumference)*self.gearRatio) < 5: return True return False def brake(self): # self.topShooterConfig.motor_output.neutral_mode = NeutralModeValue.BRAKE # self.topShooter.configurator.apply(self.topShooterConfig) self.topShooter.set_control(self.VoltageControl.with_output(0).with_override_brake_dur_neutral(True)) # self.bottomShooterConfig.motor_output.neutral_mode = NeutralModeValue.BRAKE # self.bottomShooter.configurator.apply(self.bottomShooterConfig) self.bottomShooter.set_control(self.VoltageControl.with_output(0).with_override_brake_dur_neutral(True)) def stop(self): return self.run(lambda: self.neutralizeShooter()).withName("StopShooter") def getTargetVelocity(self): return Conversions.RPSToMPS(self.currentShotVelocity, self.wheelCircumference)/self.gearRatio def getVelocity(self): return Conversions.RPSToMPS(self.topShooterVelocitySupplier(), self.wheelCircumference)/self.gearRatio
6,419
Python
49.952381
185
0.753856
RoboEagles4828/rift2024/rio/srcrobot/subsystems/Arm.py
from commands2.subsystem import Subsystem # from commands2.subsystem import Command from commands2 import WaitCommand from commands2 import WaitUntilCommand from commands2 import cmd import wpimath.filter import wpimath import wpilib from wpilib.shuffleboard import Shuffleboard import phoenix5 from phoenix5 import TalonSRXControlMode, TalonSRXFeedbackDevice, SupplyCurrentLimitConfiguration, StatorCurrentLimitConfiguration import math class Arm(Subsystem): # # The motion magic parameters are configured in slot 0. Slot 1 is configured # for velocity control for zeroing. # def __init__(self): self.kArmMotorCANId = 5 self.kMeasuredTicksWhenHorizontal = 0 self.kEncoderTickPerEncoderRotation = 4096*2 self.kEncoderToArmGearRatio = 1.0 self.kEncoderTicksPerArmRotation = self.kEncoderTickPerEncoderRotation * self.kEncoderToArmGearRatio self.kEncoderTicksPerDegreeOfArmMotion = self.kEncoderTicksPerArmRotation / 360.0 self.kMotionMagicSlot = 0 self.kVelocitySlot = 1 self.MaxGravityFF = 0.26 #0.26 # In percent output [1.0:1.0] self.kF = 0.5 self.kPMotionMagic = 1.5 #4.0 self.kPVelocity = 1.0 #0.8 self.kIMotionMagic = 0.003 self.kIZoneMotionMagic = 3.0*self.kEncoderTicksPerDegreeOfArmMotion self.kDMotionMagic = 0.4 #0.4 self.kCruiseVelocity = 1000.0 # ticks per 100ms self.kMaxAccel = 1000.0 # Accel to cruise in 1 sec self.kServoToleranceDegrees = 0.5 # +/- 1.0 for 2.0 degree window # Velocity for safely zeroing arm encoder in native units (ticks) per 100ms self.kZeroEncoderVelocity = -self.kEncoderTicksPerDegreeOfArmMotion * 6.5 self.kZeroingWaitForMoveSec = 2.0 self.ZeroingVelocityTolerance = 2.0 self.armMotor = phoenix5.TalonSRX(self.kArmMotorCANId) # True when servo control active and false otherwise. self.isServoControl = False # The last requested servo target for target checking. self.lastServoTarget = 0.0 self.kRestingAtZero = False # Configure REV Through Bore Encoder as the arm's remote sensor self.armMotor.configSelectedFeedbackSensor(TalonSRXFeedbackDevice.QuadEncoder) self.armMotor.setSensorPhase(True) self.armMotor.setInverted(False) self.armMotor.config_kP(self.kMotionMagicSlot, self.kPMotionMagic) self.armMotor.config_kI(self.kMotionMagicSlot, self.kIMotionMagic) self.armMotor.config_IntegralZone(self.kMotionMagicSlot, self.kIZoneMotionMagic) self.armMotor.config_kD(self.kMotionMagicSlot, self.kDMotionMagic) self.armMotor.config_kF(self.kMotionMagicSlot, self.kF) self.armMotor.configAllowableClosedloopError(self.kMotionMagicSlot, self.kServoToleranceDegrees*self.kEncoderTicksPerDegreeOfArmMotion) self.armMotor.configMotionCruiseVelocity(self.kCruiseVelocity) self.armMotor.configMotionAcceleration(self.kMaxAccel) self.armMotor.config_kP(self.kVelocitySlot, self.kPVelocity) self.armMotor.config_kI(self.kVelocitySlot, 0.002) self.armMotor.config_kD(self.kVelocitySlot, 0.7) self.armMotor.config_kF(self.kVelocitySlot, self.kF) self.armMotor.config_IntegralZone(self.kVelocitySlot, self.kIZoneMotionMagic) self.armMotor.configAllowableClosedloopError(self.kVelocitySlot, self.kServoToleranceDegrees*self.kEncoderTicksPerDegreeOfArmMotion) current_limit = 20 current_threshold = 40 current_threshold_time = 0.1 supply_configs = SupplyCurrentLimitConfiguration(True, current_limit, current_threshold, current_threshold_time) self.armMotor.configSupplyCurrentLimit(supply_configs) Shuffleboard.getTab("Teleoperated").addDouble("Arm degrees", self.getDegrees) # SmartDashboard.putData("Arm", self) # # Creates a command to seek the arm's zero position. This command is designed # to always be used for returning to and settling at zero. It should be the # subsystem's default command. The encoder will be reset to 0. # # @return a command that will move the arm toward 0, and stop when stalled. # def seekArmZero(self): return self.runOnce(lambda: self.selectPIDSlot(self.kVelocitySlot))\ .andThen(self.servoArmToTarget(0.0).onlyIf(lambda: self.getDegrees() >= 15).withTimeout(2.5))\ .andThen(self.run(lambda: self.armMotor.set( phoenix5.ControlMode.Velocity, self.kZeroEncoderVelocity)))\ .raceWith(cmd.waitSeconds(self.kZeroingWaitForMoveSec) \ .andThen(self.detectStallAtHardStop())) \ .andThen(self.restingAtZero()) \ .withName("seekArmZero") # phoenix5.DemandType.ArbitraryFeedForward, # self.calculateGravityFeedForward()))) \ # .andThen(self.servoArmToTarget(0.5).onlyIf(lambda: self.getDegrees() >= 15))\ def isNear(self, a, b, tolerance): # if abs(a - b) < tolerance: # return True return abs(a - b) < tolerance # # Creates a command to detect stall at the hard stop during # {@link #seekArmZero()}. # # @return the hard stop detection command. # def detectStallAtHardStop(self): stallDebouncer = wpimath.filter.Debouncer(1.0, wpimath.filter.Debouncer.DebounceType.kRising) return cmd.waitUntil(lambda: stallDebouncer .calculate(self.isNear( 0.0, self.armMotor.getSelectedSensorVelocity(self.kVelocitySlot), self.ZeroingVelocityTolerance) ) ) # # Should only be called as the last step of {@link #seekArmZero()}. The encoder # is reset to 0. # # @return a command to rest at the hard stop at 0 and on target. # def restingAtZero(self): return self.runOnce(lambda: self.setRestingAtZero(True)) \ .andThen(self.run(lambda: self.armMotor.set(phoenix5.ControlMode.Velocity,0.0)).withTimeout(1.0)) \ .andThen(lambda: self.hardSetEncoderToZero() ) \ .andThen(self.run(lambda: self.armMotor.set(phoenix5.ControlMode.Velocity,-0.1))) \ .finallyDo(lambda interrupted: self.setRestingAtZero(False)) def setRestingAtZero(self, restAtZero): self.kRestingAtZero = restAtZero def hardSetEncoderToZero(self): self.armMotor.setSelectedSensorPosition(0) def holdPosition(self): # return a command that will hold the arm in place return self.run(lambda: self.armMotor.set( phoenix5.ControlMode.MotionMagic, self.armMotor.getSelectedSensorPosition(), phoenix5.DemandType.ArbitraryFeedForward, self.calculateGravityFeedForward())) \ .withName("holdPosition") # # Creates a command to servo the arm to a desired angle. Note that 0 is # parallel to the ground. The entire operation is run with # {@link m_isServoControl} set to true to enable on target checking. See # {@link #isServoOnTarget(double)}. # # <p> # If the target is 0 or less, the command from {@link #seekArmZero()} is # returned. # # @param degrees the target degrees from 0. Must be positive. # @return a command that will servo the arm and will not end until interrupted # by another command. # def servoArmToTarget(self, degrees): targetSensorUnits = degrees * self.kEncoderTicksPerDegreeOfArmMotion return self.runOnce(lambda: self.initializeServoArmToTarget(degrees)) \ .andThen(self.run(lambda: self.armMotor.set( phoenix5.ControlMode.MotionMagic, targetSensorUnits))) \ .finallyDo(lambda interrupted: self.setServoControl(False)) \ .withName("servoArmToTarget: " + str(degrees)) #phoenix5.DemandType.ArbitraryFeedForward, # self.calculateGravityFeedForward() def servoArmToTargetGravity(self, degrees): targetSensorUnits = degrees * self.kEncoderTicksPerDegreeOfArmMotion return self.runOnce(lambda: self.initializeServoArmToTarget(degrees)) \ .andThen(self.run(lambda: self.armMotor.set( phoenix5.ControlMode.MotionMagic, targetSensorUnits, phoenix5.DemandType.ArbitraryFeedForward, self.calculateGravityFeedForward()))) \ .finallyDo(lambda interrupted: self.setServoControl(False)) \ .withName("servoArmToTarget: " + str(degrees)) #phoenix5.DemandType.ArbitraryFeedForward, # self.calculateGravityFeedForward() def servoArmToTargetWithSupplier(self, degreesSup): # if (degreesSup() <= 0.0): # return self.seekArmZero() return self.runOnce(lambda: self.initializeServoArmToTarget(degreesSup().m_armAngle)) \ .andThen(self.run(lambda: self.armMotor.set( phoenix5.ControlMode.MotionMagic, degreesSup().m_armAngle * self.kEncoderTicksPerDegreeOfArmMotion, phoenix5.DemandType.ArbitraryFeedForward, self.calculateGravityFeedForward()))) \ .finallyDo(lambda interrupted: self.setServoControl(False)) \ .withName("servoArmToTarget: " + str(degreesSup().m_armAngle)) def servoArmToTargetDynamic(self, degreesSup): return self.runOnce(lambda: self.initializeServoArmToTarget(degreesSup())) \ .andThen(self.run(lambda: self.armMotor.set( phoenix5.ControlMode.MotionMagic, degreesSup() * self.kEncoderTicksPerDegreeOfArmMotion, phoenix5.DemandType.ArbitraryFeedForward, self.calculateGravityFeedForward()))) \ .finallyDo(lambda interrupted: self.setServoControl(False)) \ .withName("servoArmToTarget: " + str(degreesSup())) def initializeServoArmToTarget(self, degrees): self.lastServoTarget = degrees self.setServoControl(True) if degrees > 45.0: self.selectPIDSlot(self.kVelocitySlot) else: self.selectPIDSlot(self.kMotionMagicSlot) def setServoControl(self, servoControl): self.isServoControl = servoControl # # This method should rarely be used. It is for pure manual control (no encoder # usage) which should be avoided. # # @param percentOutput the commanded output [-1.0..1.0]. Positive is up. # @return a command that drives the arm via double supplier. # def moveArm(self, percentOutput): return self.run(lambda: self.armMotor.set(TalonSRXControlMode.PercentOutput, -percentOutput() * 0.4)) \ .withName("moveArm") # # Assuming a properly zeroed arm (0 degrees is parallel to the ground), return # the current angle adjusted gravity feed forward. # # @return the current angle adjusted gravity feed forward. # def calculateGravityFeedForward(self): degrees = self.getDegrees() radians = math.radians(degrees) cosineScalar = math.cos(radians) return self.MaxGravityFF * cosineScalar # # Assuming a properly zeroed arm (0 degrees is parallel to the ground), return # the current arm angle. # # @return the current arm angle in degrees from 0. # def getDegrees(self): currentPos = self.armMotor.getSelectedSensorPosition() return (currentPos - self.kMeasuredTicksWhenHorizontal) / self.kEncoderTicksPerDegreeOfArmMotion # # Returns true if the arm is under servo control and we are close to the last # requested target degrees. # # @return true if under servo control and close, false otherwise. # def isServoOnTarget(self): return self.kRestingAtZero \ or (self.isServoControl \ and self.isNear(self.lastServoTarget, self.getDegrees(), self.kServoToleranceDegrees)) # # Selects the specified slot for the next PID controlled arm movement. Always # selected for primary closed loop control. # # @param slot the PID slot # def selectPIDSlot(self, slot): self.armMotor.selectProfileSlot(slot, 0) def stop(self): return self.run(lambda: self.armMotor.set(TalonSRXControlMode.Velocity, 0.0)).withName("ArmStop") # # Updates the dashboard with critical arm data. # # def periodic(self) : # # TODO reduce this to essentials. # # wpilib.SmartDashboard.putNumber("Arm current", self.armMotor.getStatorCurrent()) # # wpilib.SmartDashboard.putBoolean("Arm on target", self.isServoOnTarget()) # # currentCommand = self.getCurrentCommand() # # wpilib.SmartDashboard.putString("Arm command", currentCommand.getName() if currentCommand is not None else "<null>") # # wpilib.SmartDashboard.putNumber("Arm zeroing velocity", self.armMotor.getSelectedSensorVelocity(self.kVelocitySlot)) # # wpilib.SmartDashboard.putBoolean("Arm resting", self.kRestingAtZero) # # wpilib.SmartDashboard.putBoolean("Servo control", self.isServoControl) # # wpilib.SmartDashboard.putBoolean("Arm is near", self.isNear(self.lastServoTarget, self.getDegrees(), self.kServoToleranceDegrees))
13,606
Python
42.472843
143
0.668529
RoboEagles4828/rift2024/rio/srcrobot/subsystems/Led.py
from commands2 import Subsystem, Command, FunctionalCommand import wpilib from wpilib import PneumaticsControlModule, Solenoid from constants import Constants from gameState import GameState from robotState import RobotState from wpilib import PneumaticsControlModule, Solenoid from constants import Constants # This subsystem will continued to be developed as the season progresses class LED(Subsystem): gameState = GameState() robotState = RobotState() def __init__(self): self.kLedPort = 0 self.pcm = PneumaticsControlModule(self.kLedPort) self.pcm.disableCompressor() # only using for leds, so don't even use the compressor self.redChan = self.pcm.makeSolenoid(1) self.greenChan = self.pcm.makeSolenoid(0) self.blueChan = self.pcm.makeSolenoid(2) # self.redChan = Solenoid(wpilib.PneumaticsModuleType.CTREPCM, 1) # self.greenChan = Solenoid(wpilib.PneumaticsModuleType.CTREPCM, 0) # self.blueChan = Solenoid(wpilib.PneumaticsModuleType.CTREPCM, 2) self.BLACK = 0 self.OFF = 0 self.RED = 1 self.YELLOW = 2 self.GREEN = 3 self.TEAL = 4 self.BLUE = 5 self.PURPLE = 6 self.WHITE = 7 def set(self, color): # BLACK - 0, RED - 1, YELLOW - 2, GREEN - 3, TEAL - 4, BLUE - 5, PURPLE - 6, WHITE - 7 if color == 0: # BLACK / OFF self.redChan.set(False) self.greenChan.set(False) self.blueChan.set(False) elif color == 1: # RED self.redChan.set(True) self.greenChan.set(False) self.blueChan.set(False) elif color == 2: # YELLOW self.redChan.set(True) self.greenChan.set(True) self.blueChan.set(False) elif color == 3: # GREEN self.redChan.set(False) self.greenChan.set(True) self.blueChan.set(False) elif color == 4: # TEAL self.redChan.set(False) self.greenChan.set(True) self.blueChan.set(True) elif color == 5: # BLUE self.redChan.set(False) self.greenChan.set(False) self.blueChan.set(True) elif color == 6: # PURPLE self.redChan.set(True) self.greenChan.set(False) self.blueChan.set(True) elif color == 7: # WHITE / ON self.redChan.set(True) self.greenChan.set(True) self.blueChan.set(True) self.last = None # The robot is empty, that is, it has no note. def empty(self): self.last = self.RED self.refreshLast() # The robot may have just gotten two notes!!! def suspectTwoNotes(self): self.last = self.YELLOW self.refreshLast() # A note has been detected in the indexer. def noteDetected(self): self.last = self.PURPLE self.refreshLast() # The shooter and arm are ready for the selected shot. def readytoShoot(self): self.last = self.GREEN self.refreshLast() def noteInIntake(self): self.last = self.BLUE self.refreshLast() def getStateCommand(self) -> Command: """ Return the default command for the LED subsystem. It initializes to empty and executes evaluating the game and robot states to set the LEDs for the rest of the match. """ return FunctionalCommand( self.empty, self.setNextLED, lambda _: None, lambda: False, self ) def setNextLED(self): if not self.gameState.hasNote(): if not self.gameState.getNoteInIntake(): self.empty() else: self.noteInIntake() # elif self.gameState.getNoteInIntake(): # self.suspectTwoNotes() elif self.robotState.isShooterReady(): self.readytoShoot() else: self.noteDetected() def refreshLast(self): self.set(self.last)
4,033
Python
31.015873
112
0.59633
RoboEagles4828/rift2024/rio/srcrobot/sim/SwerveModuleSim.py
from wpimath.geometry import Rotation2d from wpimath.kinematics import SwerveModulePosition, SwerveModuleState from wpilib import Timer class SwerveModuleSim(): def __init__(self) -> None: self.timer = Timer() self.timer.start() self.lastTime = self.timer.get() self.state = SwerveModuleState(0.0, Rotation2d.fromDegrees(0.0)) self.fakeSpeed = 0.0 self.fakePos = 0.0 self.dt = 0.0 def updateStateAndPosition(self, desiredState : SwerveModuleState) -> None: self.dt = self.timer.get() - self.lastTime self.lastTime = self.timer.get() self.state = desiredState self.fakeSpeed = desiredState.speed self.fakePos += self.fakeSpeed * self.dt def getPosition(self) -> SwerveModulePosition: return SwerveModulePosition(self.fakePos, self.state.angle) def getState(self) -> SwerveModuleState: return self.state
939
Python
32.571427
79
0.667732
RoboEagles4828/rift2024/rio/srcrobot/sim/SwerveIMUSim.py
from wpimath.geometry import Rotation2d, Pose2d, Rotation3d, Translation3d from wpimath.kinematics import SwerveDrive4Kinematics, SwerveModuleState from wpilib import Timer from wpilib import Field2d class SwerveIMUSim(): def __init__(self) -> None: self.timer = Timer() self.timer.start() self.lastTime = self.timer.get() self.angle = 0.0 def getYaw(self) -> Rotation2d: return Rotation2d(self.angle).degrees() def getPitch(self) -> Rotation2d: return Rotation2d() def getRoll(self) -> Rotation2d: return Rotation2d() def updateOdometry(self, kinematics: SwerveDrive4Kinematics, states: list[SwerveModuleState], modulePoses: list[Pose2d], field: Field2d) -> None: self.angle += kinematics.toChassisSpeeds(states).omega * (self.timer.get() - self.lastTime) self.lastTime = self.timer.get() field.getObject("XModules").setPoses(modulePoses) def setAngle(self, angle : float): self.angle = angle def zeroYaw(self): self.setAngle(0.0)
1,070
Python
33.548386
149
0.675701
RoboEagles4828/rift2024/rio/srcrobot/autos/PathPlannerAutoRunner.py
from commands2 import SequentialCommandGroup, InstantCommand, WaitCommand from pathplannerlib.auto import PathPlannerAuto from subsystems.Swerve import Swerve from wpimath.kinematics import ChassisSpeeds from wpimath.geometry import Rotation2d from wpimath.trajectory import Trajectory, TrajectoryGenerator, TrajectoryConfig from pathplannerlib.path import * class PathPlannerAutoRunner: def __init__(self, pathplannerauto, swerve): self.pathplannerauto: str = pathplannerauto self.swerve: Swerve = swerve self.auto = PathPlannerAuto(self.pathplannerauto) def getCommand(self): return SequentialCommandGroup( InstantCommand(lambda: self.swerve.setPose(self.auto.getStartingPoseFromAutoFile(self.pathplannerauto)), self.swerve), self.auto, InstantCommand(lambda: self.swerve.stop(), self.swerve) ).withName(self.pathplannerauto)
914
Python
42.571427
130
0.765864
RoboEagles4828/rift2024/rio/srcrobot/autos/exampleAuto.py
from constants import Constants from subsystems.Swerve import Swerve from wpimath.controller import PIDController from wpimath.controller import ProfiledPIDControllerRadians, HolonomicDriveController from wpimath.geometry import Pose2d; from wpimath.geometry import Rotation2d; from wpimath.geometry import Translation2d; from wpimath.trajectory import Trajectory; from wpimath.trajectory import TrajectoryConfig; from wpimath.trajectory import TrajectoryGenerator; from commands2 import InstantCommand from commands2 import SequentialCommandGroup from commands2 import SwerveControllerCommand import math as Math class exampleAuto: def __init__(self, s_Swerve: Swerve): config = \ TrajectoryConfig( Constants.AutoConstants.kMaxSpeedMetersPerSecond, Constants.AutoConstants.kMaxAccelerationMetersPerSecondSquared ) config.setKinematics(Constants.Swerve.swerveKinematics) self.s_Swerve = s_Swerve # An example trajectory to follow. All units in meters. self.exampleTrajectory = \ TrajectoryGenerator.generateTrajectory( # Start at the origin facing the +X direction Pose2d(0, 2, Rotation2d(0)), # Pass through these two interior waypoints, making an 's' curve path [Translation2d(1, 3), Translation2d(2, 1)], # End 3 meters straight ahead of where we started, facing forward Pose2d(3, 2, Rotation2d(0)), config ) thetaController = \ ProfiledPIDControllerRadians( Constants.AutoConstants.kPThetaController, 0, 0, Constants.AutoConstants.kThetaControllerConstraints) thetaController.enableContinuousInput(-Math.pi, Math.pi) self.holonomicController = HolonomicDriveController( PIDController(Constants.AutoConstants.kPXController, 0, 0), PIDController(Constants.AutoConstants.kPYController, 0, 0), thetaController ) self.swerveControllerCommand = \ SwerveControllerCommand( self.exampleTrajectory, s_Swerve.getPose, Constants.Swerve.swerveKinematics, self.holonomicController, s_Swerve.setModuleStates, (s_Swerve,) ) def getCommand(self): return InstantCommand(lambda: self.s_Swerve.setPose(self.exampleTrajectory.initialPose()), (self.s_Swerve,)).andThen(self.swerveControllerCommand)
2,572
Python
39.203124
154
0.677294
RoboEagles4828/rift2024/rio/srcrobot/commands/TurnToTag.py
from commands2 import Command from constants import Constants from wpimath.controller import ProfiledPIDControllerRadians, PIDController from subsystems.Swerve import Swerve from subsystems.Vision import Vision from commands.TeleopSwerve import TeleopSwerve from wpimath.geometry import Translation2d, Rotation2d from wpimath.trajectory import TrapezoidProfile import math from typing import Callable class TurnToTag(TeleopSwerve): def __init__(self, s_Swerve, s_Vision: Vision, translationSup, strafeSup, rotationSup, robotCentricSup): super().__init__(s_Swerve, translationSup, strafeSup, rotationSup, robotCentricSup) self.turnPID = PIDController(16.0, 0.0, 0.0) self.turnPID.enableContinuousInput(-math.pi, math.pi) self.currentRotation = rotationSup self.s_Vision = s_Vision self.s_Swerve = s_Swerve def initialize(self): super().initialize() self.start_angle = self.s_Swerve.getHeading().radians() self.turnPID.reset() self.turnPID.setTolerance(math.radians(1)) self.turnPID.setSetpoint(0.0) def getRotationValue(self): rotationStick = self.currentRotation() if abs(rotationStick) > 0.0: return rotationStick*Constants.Swerve.maxAngularVelocity elif self.turnPID.atSetpoint(): return 0.0 else: self.angularvelMRadiansPerSecond = self.turnPID.calculate(self.s_Vision.getAngleToSpeakerFieldToCamera(self.s_Swerve.getPose()).radians(), 0.0) return self.angularvelMRadiansPerSecond def isFinished(self) -> bool: return self.turnPID.atSetpoint()
1,643
Python
40.099999
155
0.719416
RoboEagles4828/rift2024/rio/srcrobot/commands/DynamicShot.py
from subsystems.Vision import Vision from subsystems.Swerve import Swerve from subsystems.Arm import Arm from constants import Constants import lib.mathlib.units as Units import math from wpimath.geometry import Rotation2d, Translation2d, Transform2d from wpilib import DriverStation, RobotBase from robotState import RobotState class DynamicShot(): def __init__(self, swerve: Swerve, vision: Vision, arm: Arm): self.swerve = swerve self.arm = arm self.vision = vision self.speakerTargetHeightMeters = Units.inchesToMeters(80.5) self.robotState = RobotState() def getArmAngle(self): # distanceFromSpeaker = self.vision.getDistanceVectorToSpeaker(self.swerve.getPose()).norm() # robotVelocity = self.swerve.getTranslationVelocity().rotateBy(self.swerve.getHeading()) # return math.degrees(math.atan( # (self.speakerTargetHeightMeters - Units.inchesToMeters(Constants.Swerve.robotHeight)) / (distanceFromSpeaker + robotVelocity.X()*0.02) # )) - Constants.ShooterConstants.kMechanicalAngle return Constants.NextShot.DYNAMIC.calculateInterpolatedArmAngle(Units.metersToFeet(self.vision.getDistanceVectorToSpeaker(self.swerve.getPose()).norm()) - (36.37 / 12.0) - (Constants.Swerve.robotLength / 2.0 / 12.0)) def getTrigArmAngle(self): distanceFromSpeaker = self.vision.getDistanceVectorToSpeaker(self.swerve.getPose()).norm() - (Units.inchesToMeters(Constants.Swerve.robotLength / 2.0)) + Units.inchesToMeters(math.cos(math.radians(self.arm.getDegrees())) * Constants.Swerve.armLength) robotVelocity = self.swerve.getTranslationVelocity().rotateBy(self.swerve.getHeading()) robotHeight = (math.sin(math.radians(self.arm.getDegrees())) * Constants.Swerve.armLength) + 16.5 denom = distanceFromSpeaker + robotVelocity.X()*0.02 if DriverStation.getAlliance() == DriverStation.Alliance.kRed: denom = distanceFromSpeaker - robotVelocity.X()*0.02 return math.degrees(math.atan( denom / (self.speakerTargetHeightMeters - Units.inchesToMeters(robotHeight)) )) - Constants.ShooterConstants.kMechanicalAngle def getInterpolatedArmAngle(self): robotVelocity = self.swerve.getTranslationVelocity().rotateBy(self.swerve.getHeading()) nextPose = self.swerve.getPose().__add__(Transform2d(robotVelocity.__mul__(-0.02), Rotation2d())) distance = Units.metersToFeet(self.vision.getDistanceVectorToSpeaker(nextPose).norm()) - (36.37 / 12.0) - (Constants.Swerve.robotLength / 2.0 / 12.0) return Constants.NextShot.DYNAMIC.calculateInterpolatedArmAngle(distance) def getRobotAngle(self): distanceVector = self.vision.getDistanceVectorToSpeaker(self.swerve.getPose()) robotVelocity = self.swerve.getTranslationVelocity().rotateBy(self.swerve.getHeading()) angle = 90.0 - math.degrees(math.atan( (distanceVector.X() - robotVelocity.X()*0.02) / (distanceVector.Y() - robotVelocity.Y()*0.02) )) if angle >= 90: angle = angle - 180 if DriverStation.getAlliance() == DriverStation.Alliance.kRed and DriverStation.isAutonomous(): return Rotation2d.fromDegrees(angle).rotateBy(Rotation2d.fromDegrees(180.0)) return Rotation2d.fromDegrees(angle) def getRotationTarget(self): if self.robotState.m_gameState.getNextShot() == Constants.NextShot.DYNAMIC: return self.getRobotAngle() else: return None
3,557
Python
51.323529
258
0.709306
RoboEagles4828/rift2024/rio/srcrobot/commands/TurnInPlace.py
from commands2 import Command from constants import Constants from wpimath.controller import ProfiledPIDControllerRadians, PIDController from subsystems.Swerve import Swerve from commands.TeleopSwerve import TeleopSwerve from wpimath.geometry import Translation2d, Rotation2d from wpimath.trajectory import TrapezoidProfile import math from typing import Callable class TurnInPlace(TeleopSwerve): def __init__(self, s_Swerve, desiredRotationSup: Callable[[], Rotation2d], translationSup, strafeSup, rotationSup, robotCentricSup): super().__init__(s_Swerve, translationSup, strafeSup, rotationSup, robotCentricSup) self.turnPID = PIDController(5.0, 0.001, 0.0) self.turnPID.setIZone(math.radians(2.0)) self.turnPID.enableContinuousInput(-math.pi, math.pi) self.desiredRotationSupplier = desiredRotationSup self.angle = desiredRotationSup().radians() self.currentRotation = rotationSup def initialize(self): super().initialize() self.start_angle = self.s_Swerve.getHeading().radians() self.turnPID.reset() self.turnPID.setTolerance(math.radians(0.5)) self.turnPID.setSetpoint(self.angle) def getRotationValue(self): rotationStick = self.currentRotation() if abs(rotationStick) > 0.0: return rotationStick*Constants.Swerve.maxAngularVelocity elif self.turnPID.atSetpoint(): return 0.0 else: self.angularvelMRadiansPerSecond = -self.turnPID.calculate(self.s_Swerve.getHeading().radians(), self.desiredRotationSupplier().radians()) return self.angularvelMRadiansPerSecond def isFinished(self) -> bool: return self.turnPID.atSetpoint()
1,733
Python
43.461537
150
0.723024
RoboEagles4828/rift2024/rio/srcrobot/commands/SysId.py
from commands2.sysid import SysIdRoutine from commands2 import SequentialCommandGroup, InstantCommand, WaitCommand, Command from subsystems.Swerve import Swerve class DriveSysId(): routine: SysIdRoutine def __init__(self, s_Swerve: Swerve): self.routine = SysIdRoutine( SysIdRoutine.Config(), SysIdRoutine.Mechanism( s_Swerve.driveMotorsVoltage, s_Swerve.logDriveMotors, s_Swerve, name="SwerveDrive" ) ) self.swerve = s_Swerve self.quasiStaticForward = self.routine.quasistatic(SysIdRoutine.Direction.kForward) self.quasiStaticReverse = self.routine.quasistatic(SysIdRoutine.Direction.kReverse) self.dynamicForward = self.routine.dynamic(SysIdRoutine.Direction.kForward) self.dynamicReverse = self.routine.dynamic(SysIdRoutine.Direction.kReverse) self.resetAngleMotors = InstantCommand(lambda: (s_Swerve.resetModulesToAbsolute()), s_Swerve) self.generalCommand = SequentialCommandGroup( self.resetAngleMotors, InstantCommand(lambda: (s_Swerve.stop()), s_Swerve), ) self.quasiForwardCommand = SequentialCommandGroup( self.quasiStaticForward, InstantCommand(lambda: (s_Swerve.stop()), s_Swerve), WaitCommand(2), ) self.quasiReverseCommand = SequentialCommandGroup( self.quasiStaticReverse, InstantCommand(lambda: (s_Swerve.stop()), s_Swerve), WaitCommand(2), ) self.dynamicForwardCommand = SequentialCommandGroup( self.dynamicForward, InstantCommand(lambda: (s_Swerve.stop()), s_Swerve), WaitCommand(2), ) self.dynamicReverseCommand = SequentialCommandGroup( self.dynamicReverse, InstantCommand(lambda: (s_Swerve.stop()), s_Swerve), WaitCommand(2), ) def getQuasiForwardCommand(self): return self.quasiForwardCommand def getQuasiReverseCommand(self): return self.quasiReverseCommand def getDynamicForwardCommand(self): return self.dynamicForwardCommand def getDynamicReverseCommand(self): return self.dynamicReverseCommand
2,313
Python
33.029411
101
0.648508
RoboEagles4828/rift2024/rio/srcrobot/commands/ExecuteCommand.py
from commands2 import ParallelCommandGroup, RunCommand, InstantCommand from commands.TurnInPlace import TurnInPlace from subsystems.Arm import Arm from subsystems.Shooter import Shooter from subsystems.Swerve import Swerve from wpimath.geometry import Rotation2d from robotState import RobotState class ExecuteCommand(ParallelCommandGroup): def __init__(self, arm : Arm, shooter : Shooter, swerve : Swerve, translationSupplier, strafeSupplier, rotationSupplier, robotCentricSupplier): super().__init__() self.robotState = RobotState() self.arm = arm self.shooter = shooter self.swerve = swerve self.arm_angle = self.robotState.m_gameState.getNextShot().m_armAngle self.shooter_velocity = self.robotState.m_gameState.getNextShot().m_shooterVelocity self.robot_angle = self.robotState.m_gameState.getNextShotRobotAngle() self.setName(f"Execute {self.robotState.m_gameState.getNextShot().name}") self.addCommands( self.arm.servoArmToTarget(self.arm_angle).withTimeout(2.0), self.shooter.shootVelocity(self.shooter_velocity), TurnInPlace(self.swerve, lambda: Rotation2d.fromDegrees(self.robot_angle), translationSupplier, strafeSupplier, rotationSupplier, robotCentricSupplier).repeatedly() ) def initialize(self): super().initialize() self.robotState = RobotState() self.arm_angle = self.robotState.m_gameState.getNextShot().m_armAngle self.shooter_velocity = self.robotState.m_gameState.getNextShot().m_shooterVelocity self.robot_angle = self.robotState.m_gameState.getNextShotRobotAngle() self.setName(f"Execute {self.robotState.m_gameState.getNextShot().name}")
1,750
Python
43.897435
176
0.729714
RoboEagles4828/rift2024/rio/srcrobot/commands/TeleopSwerve.py
from constants import Constants from subsystems.Swerve import Swerve from wpimath.geometry import Translation2d from commands2 import Command from typing import Callable import math from wpimath import applyDeadband from wpimath.controller import PIDController class TeleopSwerve(Command): s_Swerve: Swerve translationSup: Callable[[], float] strafeSup: Callable[[], float] rotationSup: Callable[[], float] robotCentricSup: Callable[[], bool] slowSup: Callable[[], list[float]] def __init__(self, s_Swerve, translationSup, strafeSup, rotationSup, robotCentricSup, slowSup=lambda: 0.0): self.s_Swerve: Swerve = s_Swerve self.addRequirements(s_Swerve) self.translationSup = translationSup self.strafeSup = strafeSup self.rotationSup = rotationSup self.robotCentricSup = robotCentricSup self.slowSup = slowSup self.lastHeading = self.s_Swerve.getHeading().radians() self.headingPID = PIDController(4.0, 0.0, 0.0) self.headingPID.enableContinuousInput(-math.pi, math.pi) self.headingPID.reset() self.headingPID.setTolerance(math.radians(1)) def initialize(self): super().initialize() self.lastHeading = self.s_Swerve.getHeading().radians() def execute(self): # Get Values, Deadband # translationVal = math.copysign(self.translationSup()**2, self.translationSup()) # strafeVal = math.copysign(self.strafeSup()**2, self.strafeSup()) translationVal = self.translationSup() strafeVal = self.strafeSup() rotationVal = self.getRotationValue() # Apply slowmode slow = self.slowSup() # TODO: REMOVE THIS IN PRODUCTION. THIS IS TO SAVE THE ROBOT DURING TESTING. if slow < 0: print("SLOWMODE ERROR: SLOW OFFSET IS NEGATIVE\nCheck that your controller axis mapping is correct and goes between [0, 1]!") slow = 0 translationVal -= translationVal*slow*Constants.Swerve.slowMoveModifier strafeVal -= strafeVal*slow*Constants.Swerve.slowMoveModifier rotationVal -= rotationVal*slow*Constants.Swerve.slowTurnModifier # Drive self.s_Swerve.drive( Translation2d(translationVal, strafeVal).__mul__(Constants.Swerve.maxSpeed), rotationVal, not self.robotCentricSup(), True ) def getRotationValue(self): return self.rotationSup() * Constants.Swerve.maxAngularVelocity # rotation = 0.0 #heading correction # if abs(self.rotationSup()) > 0.0: # # heading correction is disabled, record last heading # self.lastHeading = self.s_Swerve.getHeading().radians() # rotation = self.rotationSup() * Constants.Swerve.maxAngularVelocity # elif abs(self.translationSup()) > 0.0 or abs(self.strafeSup()) > 0.0: # # heading correction is enabled, calculate correction # rotation = -self.headingPID.calculate(self.s_Swerve.getHeading().radians(), self.lastHeading) # return rotation
3,142
Python
35.546511
137
0.660089
RoboEagles4828/rift2024/rio/srcrobot/commands/PathFindToTag.py
from commands2 import Command, DeferredCommand, InstantCommand, SequentialCommandGroup from subsystems.Vision import Vision from subsystems.Swerve import Swerve from wpilib import SmartDashboard from photonlibpy.photonTrackedTarget import PhotonTrackedTarget from pathplannerlib.auto import AutoBuilder from pathplannerlib.path import PathConstraints from wpimath.geometry import Pose3d, Rotation3d, Transform3d, Translation3d import wpimath.units as Units class PathFindToTag(SequentialCommandGroup): def __init__(self, swerve : Swerve, vision : Vision, TAG_ID, frontOffsetInches): super().__init__() self.vision = vision self.swerve = swerve self.TAG_ID = TAG_ID self.TAG_TO_GOAL = Transform3d( Translation3d(Units.inchesToMeters(frontOffsetInches), 0.0, 0.0), Rotation3d.fromDegrees(0.0, 0.0, 0.0) ) self.targetToUse = None self.addRequirements(self.swerve, self.vision) self.addCommands( DeferredCommand(lambda: self.getCommand(), swerve, vision), InstantCommand(lambda: self.swerve.stop()) ) def getCommand(self): robotToPose2d = self.swerve.getPose() robotToPose3d = Pose3d( robotToPose2d.X(), robotToPose2d.Y(), 0.0, Rotation3d(0.0, 0.0, robotToPose2d.rotation().radians()) ) result = self.vision.getCamera().getLatestResult() if result.hasTargets() == False: return InstantCommand() else: try: allTargets = result.getTargets() for target in allTargets: if target.getFiducialId() == self.TAG_ID: self.targetToUse = target if self.targetToUse.getPoseAmbiguity() >= 0.2: return InstantCommand() camToTarget = self.targetToUse.getBestCameraToTarget() cameraPose = robotToPose3d.transformBy(self.vision.robotToCamera) targetPose = cameraPose.transformBy(camToTarget) goalPose = targetPose.transformBy(self.TAG_TO_GOAL).toPose2d() return AutoBuilder.pathfindToPose(goalPose, PathConstraints( 1.5, 1, Units.degreesToRadians(540), Units.degreesToRadians(720), 0 )) except Exception as e: print(e) return InstantCommand()
2,520
Python
33.067567
86
0.610714
RoboEagles4828/rift2024/rio/srcrobot/tests/pyfrc_test.py
''' This test module imports tests that come with pyfrc, and can be used to test basic functionality of just about any robot. ''' from pyfrc.tests import *
165
Python
22.714282
72
0.715152
RoboEagles4828/rift2024/rio/srcrobot/lib/util/InterpolatingTreeMap.py
from pytreemap import TreeMap class InterpolatingTreeMap: def __init__(self): self.m_map = TreeMap() def put(self,key, value): self.m_map.put(key, value) def get(self, key) -> float: value = self.m_map.get(key) if value == None: ceilingKey = self.m_map.ceiling_key(key) floorKey = self.m_map.floor_key(key) if ceilingKey == None and floorKey == None: return None if ceilingKey == None: return float(self.m_map.get(floorKey)) if floorKey == None: return float(self.m_map.get(ceilingKey)) floor = self.m_map.get(floorKey) ceiling = self.m_map.get(ceilingKey) return self.interpolate(floor, ceiling, self.inverseInterpolate(ceilingKey, key, floorKey)) else: return float(value) def clear(self): self.m_map.clear() def interpolate(self, val1, val2, d: float) -> float: dydx = float(val2)-float(val1) return dydx*d+float(val1) def inverseInterpolate(self, up, q, down) -> float: uppertoLower = float(up)-float(down) if uppertoLower <= 0: return 0.0 querytoLower = float(q)-float(down) if querytoLower <= 0: return 0.0 return querytoLower/uppertoLower
1,380
Python
29.021738
103
0.560145
RoboEagles4828/rift2024/rio/srcrobot/lib/util/COTSTalonFXSwerveConstants.py
from phoenix6.signals import InvertedValue; from phoenix6.signals import SensorDirectionValue; import math import lib.mathlib.units as Units class COTSTalonFXSwerveConstants: wheelDiameter: float wheelCircumference: float angleGearRatio: float driveGearRatio: float angleKP: float angleKI: float angleKD: float driveMotorInvert: InvertedValue angleMotorInvert: InvertedValue cancoderInvert: SensorDirectionValue def __init__(self, wheelDiameter, angleGearRatio, driveGearRatio, angleKP, angleKI, angleKD, driveMotorInvert, angleMotorInvert, cancoderInvert): self.wheelDiameter = wheelDiameter self.wheelCircumference = wheelDiameter * math.pi self.angleGearRatio = angleGearRatio self.driveGearRatio = driveGearRatio self.angleKP = angleKP self.angleKI = angleKI self.angleKD = angleKD self.driveMotorInvert = driveMotorInvert self.angleMotorInvert = angleMotorInvert self.cancoderInvert = cancoderInvert # Swerve Drive Specialties - MK4i Module class MK4i: # Swerve Drive Specialties - MK4i Module (Falcon 500) def Falcon500(driveGearRatio): wheelDiameter = Units.inchesToMeters(4.0) # (150 / 7) : 1 angleGearRatio = ((150.0 / 7.0) / 1.0) angleKP = 100.0 angleKI = 0.0 angleKD = 0.0 driveMotorInvert = InvertedValue.COUNTER_CLOCKWISE_POSITIVE angleMotorInvert = InvertedValue.CLOCKWISE_POSITIVE cancoderInvert = SensorDirectionValue.COUNTER_CLOCKWISE_POSITIVE return COTSTalonFXSwerveConstants(wheelDiameter, angleGearRatio, driveGearRatio, angleKP, angleKI, angleKD, driveMotorInvert, angleMotorInvert, cancoderInvert) # Swerve Drive Specialties - MK4i Module (Kraken X60) def KrakenX60(driveGearRatio): wheelDiameter = Units.inchesToMeters(4.0) # (150 / 7) : 1 angleGearRatio = ((150.0 / 7.0) / 1.0) angleKP = 1.0 angleKI = 0.0 angleKD = 0.0 driveMotorInvert = InvertedValue.COUNTER_CLOCKWISE_POSITIVE angleMotorInvert = InvertedValue.CLOCKWISE_POSITIVE cancoderInvert = SensorDirectionValue.COUNTER_CLOCKWISE_POSITIVE return COTSTalonFXSwerveConstants(wheelDiameter, angleGearRatio, driveGearRatio, angleKP, angleKI, angleKD, driveMotorInvert, angleMotorInvert, cancoderInvert) class driveRatios: # SDS MK4i - (8.14 : 1) L1 = (8.14 / 1.0) # SDS MK4i - (6.75 : 1) L2 = (6.75 / 1.0) # SDS MK4i - (6.12 : 1) L3 = (6.12 / 1.0)
2,747
Python
36.643835
171
0.650892
RoboEagles4828/rift2024/rio/srcrobot/lib/util/SwerveModuleConstants.py
from wpimath.geometry import Rotation2d class SwerveModuleConstants: driveMotorID: int angleMotorID: int cancoderID: int angleOffset: Rotation2d def __init__(self, driveMotorID: int, angleMotorID: int, canCoderID: int, angleOffset: Rotation2d): self.driveMotorID = driveMotorID self.angleMotorID = angleMotorID self.cancoderID = canCoderID self.angleOffset = angleOffset
424
Python
31.692305
103
0.721698
RoboEagles4828/rift2024/rio/srcrobot/lib/util/PhotonUtils.py
from wpimath.geometry import * import math class PhotonUtils: @staticmethod def calculateDistanceToTargetMeters(cameraHeightMeters, targetHeightMeters, cameraPitchRadians, targetPitchRadians): return (targetHeightMeters - cameraHeightMeters) / math.tan(cameraPitchRadians + targetPitchRadians) @staticmethod def estimateCameraToTargetTranslation(targetDistanceMeters, yaw: Rotation2d): return Translation2d(yaw.cos() * targetDistanceMeters, yaw.sin() * targetDistanceMeters); @staticmethod def estimateFieldToRobot( cameraHeightMeters, targetHeightMeters, cameraPitchRadians, targetPitchRadians, targetYaw: Rotation2d, gyroAngle: Rotation2d, fieldToTarget: Pose2d, cameraToRobot: Transform2d): return PhotonUtils.estimateFieldToRobot( PhotonUtils.estimateCameraToTarget( PhotonUtils.estimateCameraToTargetTranslation( PhotonUtils.calculateDistanceToTargetMeters( cameraHeightMeters, targetHeightMeters, cameraPitchRadians, targetPitchRadians), targetYaw), fieldToTarget, gyroAngle), fieldToTarget, cameraToRobot) @staticmethod def estimateCameraToTarget( cameraToTargetTranslation: Translation2d, fieldToTarget: Pose2d, gyroAngle: Rotation2d): return Transform2d(cameraToTargetTranslation, gyroAngle.__mul__(-1).__sub__(fieldToTarget.rotation())) @staticmethod def estimateFieldToRobot( cameraToTarget: Transform2d, fieldToTarget: Pose2d, cameraToRobot: Transform2d): return PhotonUtils.estimateFieldToCamera(cameraToTarget, fieldToTarget).transformBy(cameraToRobot) @staticmethod def estimateFieldToCamera(cameraToTarget: Transform2d, fieldToTarget: Pose2d): targetToCamera = cameraToTarget.inverse() return fieldToTarget.transformBy(targetToCamera) @staticmethod def estimateFieldToRobotAprilTag( cameraToTarget: Transform3d, fieldRelativeTagPose: Pose3d, cameraToRobot: Transform3d): return fieldRelativeTagPose.__add__(cameraToTarget.inverse()).__add__(cameraToRobot) @staticmethod def getYawToPose(robotPose: Pose2d, targetPose: Pose2d): relativeTrl = targetPose.relativeTo(robotPose).translation() angle = math.atan2(relativeTrl.Y(), relativeTrl.X()) return Rotation2d(angle) @staticmethod def getDistanceToPose(robotPose: Pose2d, targetPose: Pose2d): robotTranslation = robotPose.translation() return robotTranslation.distance(targetPose.translation()) @staticmethod def getDistanceVectorToPose(robotPose: Pose2d, targetPose: Pose2d): robotTranslation = robotPose.translation() return targetPose.translation().__sub__(robotTranslation)
3,013
Python
42.681159
120
0.688682
RoboEagles4828/rift2024/rio/srcrobot/lib/mathlib/conversions.py
class Conversions: """ :param wheelRPS: wheel rotations per second :param circumference: wheel circumference :returns: wheel meters per second """ @staticmethod def RPSToMPS(wheelRPS: float, circumference: float): wheelMPS = wheelRPS * circumference return wheelMPS """ :param wheelMPS: wheel meters per second :param circumference: wheel circumference :returns: wheel rotations per second """ @staticmethod def MPSToRPS(wheelMPS: float, circumference: float): wheelRPS = wheelMPS / circumference return wheelRPS """ :param wheelRotations: Wheel Position (in Rotations) :param circumference: Wheel Circumference (in Meters) :returns: Wheel Distance (in Meters) """ @staticmethod def rotationsToMeters(wheelRotations: float, circumference: float): wheelMeters = wheelRotations * circumference return wheelMeters """ :param wheelMeters: Wheel Distance (in Meters) :param circumference: Wheel Circumference (in Meters) :returns: Wheel Position (in Rotations) """ @staticmethod def metersToRotations(wheelMeters: float, circumference: float): wheelRotations = wheelMeters / circumference return wheelRotations
1,286
Python
29.642856
71
0.686625
RoboEagles4828/rift2024/rio/srcrobot/lib/mathlib/units.py
@staticmethod def inchesToMeters(inches): return inches * 0.0254 @staticmethod def feetToMeters(feet): return feet * 0.3048 @staticmethod def mmToMeters(mm): return mm * 0.001 @staticmethod def metersToInches(meters): return meters / 0.0254 @staticmethod def metersToFeet(meters): return meters / 0.3048 @staticmethod def metersToMm(meters): return meters / 0.001 @staticmethod def inchesToFeet(inches): return inches / 12 @staticmethod def inchesToMm(inches): return inches * 25.4 @staticmethod def feetToInches(feet): return feet * 12 @staticmethod def feetToMm(feet): return feet * 304.8 @staticmethod def mmToInches(mm): return mm / 25.4 @staticmethod def mmToFeet(mm): return mm / 304.8
751
Python
14.666666
27
0.716378
RoboEagles4828/rift2024/rio/dds/dds.py
import rticonnextdds_connector as rti import logging # Subscribe to DDS topics class DDS_Subscriber: def __init__(self, xml_path, participant_name, reader_name): # Connectors are not thread safe, so we need to create a new one for each thread self.connector = rti.Connector(config_name=participant_name, url=xml_path) self.input = self.connector.get_input(reader_name) def read(self) -> dict: # Take the input data off of queue and read it try: self.input.take() except rti.Error as e: logging.warn("RTI Read Error", e.args) # Return the first valid data sample data = None for sample in self.input.samples.valid_data_iter: data = sample.get_dictionary() break return data def close(self): self.connector.close() # Publish to DDS topics class DDS_Publisher: def __init__(self, xml_path, participant_name, writer_name): self.connector = rti.Connector(config_name=participant_name, url=xml_path) self.output = self.connector.get_output(writer_name) def write(self, data) -> None: if data: self.output.instance.set_dictionary(data) try: self.output.write() except rti.Error as e: logging.warn("RTI Write Error", e.args) # else: # logging.warn("No data to write") def close(self): self.connector.close()
1,491
Python
31.434782
88
0.608987
Virlus/OmniIsaacGymEnvs/setup.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Installation script for the 'isaacgymenvs' python package.""" from __future__ import absolute_import from __future__ import print_function from __future__ import division from setuptools import setup, find_packages import os # Minimum dependencies required prior to installation INSTALL_REQUIRES = [ "numpy==1.23.5", "protobuf==3.20.2", "omegaconf==2.3.0", "hydra-core==1.3.2", "urllib3==1.26.16", "rl-games==1.6.1" ] # Installation operation setup( name="omniisaacgymenvs", author="NVIDIA", version="2023.1.0b", description="RL environments for robot learning in NVIDIA Isaac Sim.", keywords=["robotics", "rl"], include_package_data=True, install_requires=INSTALL_REQUIRES, packages=find_packages("."), classifiers=["Natural Language :: English", "Programming Language :: Python :: 3.7, 3.8"], zip_safe=False, ) # EOF
2,452
Python
36.738461
94
0.743475
Virlus/OmniIsaacGymEnvs/README.md
# Omniverse Isaac Gym Reinforcement Learning Environments for Isaac Sim (With Customized Tasks) ## About this repository This repository contains Reinforcement Learning examples that can be run with the latest release of [Isaac Sim](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html). RL examples are trained using PPO from [rl_games](https://github.com/Denys88/rl_games) library and examples are built on top of Isaac Sim's `omni.isaac.core` and `omni.isaac.gym` frameworks. Please see [release notes](docs/release_notes.md) for the latest updates. <img src="https://user-images.githubusercontent.com/34286328/171454189-6afafbff-bb61-4aac-b518-24646007cb9f.gif" width="300" height="150"/>&emsp;<img src="https://user-images.githubusercontent.com/34286328/184172037-cdad9ee8-f705-466f-bbde-3caa6c7dea37.gif" width="300" height="150"/> <img src="https://user-images.githubusercontent.com/34286328/171454182-0be1b830-bceb-4cfd-93fb-e1eb8871ec68.gif" width="300" height="150"/>&emsp;<img src="https://user-images.githubusercontent.com/34286328/171454193-e027885d-1510-4ef4-b838-06b37f70c1c7.gif" width="300" height="150"/> <img src="https://user-images.githubusercontent.com/34286328/184174894-03767aa0-936c-4bfe-bbe9-a6865f539bb4.gif" width="300" height="150"/>&emsp;<img src="https://user-images.githubusercontent.com/34286328/184168200-152567a8-3354-4947-9ae0-9443a56fee4c.gif" width="300" height="150"/> <img src="https://user-images.githubusercontent.com/34286328/184176312-df7d2727-f043-46e3-b537-48a583d321b9.gif" width="300" height="150"/>&emsp;<img src="https://user-images.githubusercontent.com/34286328/184178817-9c4b6b3c-c8a2-41fb-94be-cfc8ece51d5d.gif" width="300" height="150"/> <img src="https://user-images.githubusercontent.com/34286328/171454160-8cb6739d-162a-4c84-922d-cda04382633f.gif" width="300" height="150"/>&emsp;<img src="https://user-images.githubusercontent.com/34286328/171454176-ce08f6d0-3087-4ecc-9273-7d30d8f73f6d.gif" width="300" height="150"/> <img src="https://user-images.githubusercontent.com/34286328/184170040-3f76f761-e748-452e-b8c8-3cc1c7c8cb98.gif" width="614" height="307"/> ## Installation Follow the Isaac Sim [documentation](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_workstation.html) to install the latest Isaac Sim release. *Examples in this repository rely on features from the most recent Isaac Sim release. Please make sure to update any existing Isaac Sim build to the latest release version, 2023.1.0, to ensure examples work as expected.* Note that the 2022.2.1 OmniIsaacGymEnvs release will no longer work with the latest Isaac Sim 2023.1.0 release. Due to a change in USD APIs, line 138 in rl_task.py is no longer valid. To run the previous OIGE release with the latest Isaac Sim release, please comment out lines 137 and 138 in rl_task.py or set `add_distant_light` to `False` in the task config file. No changes are required if running with the latest release of OmniIsaacGymEnvs. Once installed, this repository can be used as a python module, `omniisaacgymenvs`, with the python executable provided in Isaac Sim. To install `omniisaacgymenvs`, first clone this repository: ```bash git clone https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs.git ``` Once cloned, locate the [python executable in Isaac Sim](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_python.html). By default, this should be `python.sh`. We will refer to this path as `PYTHON_PATH`. To set a `PYTHON_PATH` variable in the terminal that links to the python executable, we can run a command that resembles the following. Make sure to update the paths to your local path. ``` For Linux: alias PYTHON_PATH=~/.local/share/ov/pkg/isaac_sim-*/python.sh For Windows: doskey PYTHON_PATH=C:\Users\user\AppData\Local\ov\pkg\isaac_sim-*\python.bat $* For IsaacSim Docker: alias PYTHON_PATH=/isaac-sim/python.sh ``` Install `omniisaacgymenvs` as a python module for `PYTHON_PATH`: ```bash PYTHON_PATH -m pip install -e . ``` The following error may appear during the initial installation. This error is harmless and can be ignored. ``` ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. ``` ### Running the examples *Note: All commands should be executed from `OmniIsaacGymEnvs/omniisaacgymenvs`.* To train your first policy, run: ```bash PYTHON_PATH scripts/rlgames_train.py task=Cartpole ``` An Isaac Sim app window should be launched. Once Isaac Sim initialization completes, the Cartpole scene will be constructed and simulation will start running automatically. The process will terminate once training finishes. Note that by default, we show a Viewport window with rendering, which slows down training. You can choose to close the Viewport window during training for better performance. The Viewport window can be re-enabled by selecting `Window > Viewport` from the top menu bar. To achieve maximum performance, launch training in `headless` mode as follows: ```bash PYTHON_PATH scripts/rlgames_train.py task=Ant headless=True ``` #### A Note on the Startup Time of the Simulation Some of the examples could take a few minutes to load because the startup time scales based on the number of environments. The startup time will continually be optimized in future releases. ### Extension Workflow The extension workflow provides a simple user interface for creating and launching RL tasks. To launch Isaac Sim for the extension workflow, run: ```bash ./<isaac_sim_root>/isaac-sim.gym.sh --ext-folder </parent/directory/to/OIGE> ``` Note: `isaac_sim_root` should be located in the same directory as `python.sh`. The UI window can be activated from `Isaac Examples > RL Examples` by navigating the top menu bar. For more details on the extension workflow, please refer to the [documentation](docs/extension_workflow.md). ### Loading trained models // Checkpoints Checkpoints are saved in the folder `runs/EXPERIMENT_NAME/nn` where `EXPERIMENT_NAME` defaults to the task name, but can also be overridden via the `experiment` argument. To load a trained checkpoint and continue training, use the `checkpoint` argument: ```bash PYTHON_PATH scripts/rlgames_train.py task=Ant checkpoint=runs/Ant/nn/Ant.pth ``` To load a trained checkpoint and only perform inference (no training), pass `test=True` as an argument, along with the checkpoint name. To avoid rendering overhead, you may also want to run with fewer environments using `num_envs=64`: ```bash PYTHON_PATH scripts/rlgames_train.py task=Ant checkpoint=runs/Ant/nn/Ant.pth test=True num_envs=64 ``` Note that if there are special characters such as `[` or `=` in the checkpoint names, you will need to escape them and put quotes around the string. For example, `checkpoint="runs/Ant/nn/last_Antep\=501rew\[5981.31\].pth"` We provide pre-trained checkpoints on the [Nucleus](https://docs.omniverse.nvidia.com/nucleus/latest/index.html) server under `Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints`. Run the following command to launch inference with pre-trained checkpoint: Localhost (To set up localhost, please refer to the [Isaac Sim installation guide](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_workstation.html)): ```bash PYTHON_PATH scripts/rlgames_train.py task=Ant checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/ant.pth test=True num_envs=64 ``` Production server: ```bash PYTHON_PATH scripts/rlgames_train.py task=Ant checkpoint=http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/ant.pth test=True num_envs=64 ``` When running with a pre-trained checkpoint for the first time, we will automatically download the checkpoint file to `omniisaacgymenvs/checkpoints`. For subsequent runs, we will re-use the file that has already been downloaded, and will not overwrite existing checkpoints with the same name in the `checkpoints` folder. ## Runing from Docker Latest Isaac Sim Docker image can be found on [NGC](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/isaac-sim). A utility script is provided at `docker/run_docker.sh` to help initialize this repository and launch the Isaac Sim docker container. The script can be run with: ```bash ./docker/run_docker.sh ``` Then, training can be launched from the container with: ```bash /isaac-sim/python.sh scripts/rlgames_train.py headless=True task=Ant ``` To run the Isaac Sim docker with UI, use the following script: ```bash ./docker/run_docker_viewer.sh ``` Then, training can be launched from the container with: ```bash /isaac-sim/python.sh scripts/rlgames_train.py task=Ant ``` To avoid re-installing OIGE each time a container is launched, we also provide a dockerfile that can be used to build an image with OIGE installed. To build the image, run: ```bash docker build -t isaac-sim-oige -f docker/dockerfile . ``` Then, start a container with the built image: ```bash ./docker/run_dockerfile.sh ``` Then, training can be launched from the container with: ```bash /isaac-sim/python.sh scripts/rlgames_train.py task=Ant headless=True ``` ### Isaac Sim Automator Cloud instances for AWS, Azure, or GCP can be setup using [IsaacSim Automator](https://github.com/NVIDIA-Omniverse/IsaacSim-Automator/tree/main#omniverse-isaac-gym). ## Livestream OmniIsaacGymEnvs supports livestream through the [Omniverse Streaming Client](https://docs.omniverse.nvidia.com/app_streaming-client/app_streaming-client/overview.html). To enable this feature, add the commandline argument `enable_livestream=True`: ```bash PYTHON_PATH scripts/rlgames_train.py task=Ant headless=True enable_livestream=True ``` Connect from the Omniverse Streaming Client once the SimulationApp has been created. Note that enabling livestream is equivalent to training with the viewer enabled, thus the speed of training/inferencing will decrease compared to running in headless mode. ## Training Scripts All scripts provided in `omniisaacgymenvs/scripts` can be launched directly with `PYTHON_PATH`. To test out a task without RL in the loop, run the random policy script with: ```bash PYTHON_PATH scripts/random_policy.py task=Cartpole ``` This script will sample random actions from the action space and apply these actions to your task without running any RL policies. Simulation should start automatically after launching the script, and will run indefinitely until terminated. To run a simple form of PPO from `rl_games`, use the single-threaded training script: ```bash PYTHON_PATH scripts/rlgames_train.py task=Cartpole ``` This script creates an instance of the PPO runner in `rl_games` and automatically launches training and simulation. Once training completes (the total number of iterations have been reached), the script will exit. If running inference with `test=True checkpoint=<path/to/checkpoint>`, the script will run indefinitely until terminated. Note that this script will have limitations on interaction with the UI. ### Configuration and command line arguments We use [Hydra](https://hydra.cc/docs/intro/) to manage the config. Common arguments for the training scripts are: * `task=TASK` - Selects which task to use. Any of `AllegroHand`, `Ant`, `Anymal`, `AnymalTerrain`, `BallBalance`, `Cartpole`, `CartpoleCamera`, `Crazyflie`, `FactoryTaskNutBoltPick`, `FactoryTaskNutBoltPlace`, `FactoryTaskNutBoltScrew`, `FrankaCabinet`, `FrankaDeformable`, `Humanoid`, `Ingenuity`, `Quadcopter`, `ShadowHand`, `ShadowHandOpenAI_FF`, `ShadowHandOpenAI_LSTM` (these correspond to the config for each environment in the folder `omniisaacgymenvs/cfg/task`) * `train=TRAIN` - Selects which training config to use. Will automatically default to the correct config for the environment (ie. `<TASK>PPO`). * `num_envs=NUM_ENVS` - Selects the number of environments to use (overriding the default number of environments set in the task config). * `seed=SEED` - Sets a seed value for randomization, and overrides the default seed in the task config * `pipeline=PIPELINE` - Which API pipeline to use. Defaults to `gpu`, can also set to `cpu`. When using the `gpu` pipeline, all data stays on the GPU. When using the `cpu` pipeline, simulation can run on either CPU or GPU, depending on the `sim_device` setting, but a copy of the data is always made on the CPU at every step. * `sim_device=SIM_DEVICE` - Device used for physics simulation. Set to `gpu` (default) to use GPU and to `cpu` for CPU. * `device_id=DEVICE_ID` - Device ID for GPU to use for simulation and task. Defaults to `0`. This parameter will only be used if simulation runs on GPU. * `rl_device=RL_DEVICE` - Which device / ID to use for the RL algorithm. Defaults to `cuda:0`, and follows PyTorch-like device syntax. * `multi_gpu=MULTI_GPU` - Whether to train using multiple GPUs. Defaults to `False`. Note that this option is only available with `rlgames_train.py`. * `test=TEST`- If set to `True`, only runs inference on the policy and does not do any training. * `checkpoint=CHECKPOINT_PATH` - Path to the checkpoint to load for training or testing. * `headless=HEADLESS` - Whether to run in headless mode. * `enable_livestream=ENABLE_LIVESTREAM` - Whether to enable Omniverse streaming. * `experiment=EXPERIMENT` - Sets the name of the experiment. * `max_iterations=MAX_ITERATIONS` - Sets how many iterations to run for. Reasonable defaults are provided for the provided environments. * `warp=WARP` - If set to True, launch the task implemented with Warp backend (Note: not all tasks have a Warp implementation). * `kit_app=KIT_APP` - Specifies the absolute path to the kit app file to be used. Hydra also allows setting variables inside config files directly as command line arguments. As an example, to set the minibatch size for a rl_games training run, you can use `train.params.config.minibatch_size=64`. Similarly, variables in task configs can also be set. For example, `task.env.episodeLength=100`. #### Hydra Notes Default values for each of these are found in the `omniisaacgymenvs/cfg/config.yaml` file. The way that the `task` and `train` portions of the config works are through the use of config groups. You can learn more about how these work [here](https://hydra.cc/docs/tutorials/structured_config/config_groups/) The actual configs for `task` are in `omniisaacgymenvs/cfg/task/<TASK>.yaml` and for `train` in `omniisaacgymenvs/cfg/train/<TASK>PPO.yaml`. In some places in the config you will find other variables referenced (for example, `num_actors: ${....task.env.numEnvs}`). Each `.` represents going one level up in the config hierarchy. This is documented fully [here](https://omegaconf.readthedocs.io/en/latest/usage.html#variable-interpolation). ### Tensorboard Tensorboard can be launched during training via the following command: ```bash PYTHON_PATH -m tensorboard.main --logdir runs/EXPERIMENT_NAME/summaries ``` ## WandB support You can run (WandB)[https://wandb.ai/] with OmniIsaacGymEnvs by setting `wandb_activate=True` flag from the command line. You can set the group, name, entity, and project for the run by setting the `wandb_group`, `wandb_name`, `wandb_entity` and `wandb_project` arguments. Make sure you have WandB installed in the Isaac Sim Python executable with `PYTHON_PATH -m pip install wandb` before activating. ## Training with Multiple GPUs To train with multiple GPUs, use the following command, where `--proc_per_node` represents the number of available GPUs: ```bash PYTHON_PATH -m torch.distributed.run --nnodes=1 --nproc_per_node=2 scripts/rlgames_train.py headless=True task=Ant multi_gpu=True ``` ## Multi-Node Training To train across multiple nodes/machines, it is required to launch an individual process on each node. For the master node, use the following command, where `--proc_per_node` represents the number of available GPUs, and `--nnodes` represents the number of nodes: ```bash PYTHON_PATH -m torch.distributed.run --nproc_per_node=2 --nnodes=2 --node_rank=0 --rdzv_id=123 --rdzv_backend=c10d --rdzv_endpoint=localhost:5555 scripts/rlgames_train.py headless=True task=Ant multi_gpu=True ``` Note that the port (`5555`) can be replaced with any other available port. For non-master nodes, use the following command, replacing `--node_rank` with the index of each machine: ```bash PYTHON_PATH -m torch.distributed.run --nproc_per_node=2 --nnodes=2 --node_rank=1 --rdzv_id=123 --rdzv_backend=c10d --rdzv_endpoint=ip_of_master_machine:5555 scripts/rlgames_train.py headless=True task=Ant multi_gpu=True ``` For more details on multi-node training with PyTorch, please visit [here](https://pytorch.org/tutorials/intermediate/ddp_series_multinode.html). As mentioned in the PyTorch documentation, "multinode training is bottlenecked by inter-node communication latencies". When this latency is high, it is possible multi-node training will perform worse than running on a single node instance. ## Tasks Source code for tasks can be found in `omniisaacgymenvs/tasks`. Each task follows the frameworks provided in `omni.isaac.core` and `omni.isaac.gym` in Isaac Sim. Refer to [docs/framework.md](docs/framework.md) for how to create your own tasks. Full details on each of the tasks available can be found in the [RL examples documentation](docs/rl_examples.md). ## Demo We provide an interactable demo based on the `AnymalTerrain` RL example. In this demo, you can click on any of the ANYmals in the scene to go into third-person mode and manually control the robot with your keyboard as follows: - `Up Arrow`: Forward linear velocity command - `Down Arrow`: Backward linear velocity command - `Left Arrow`: Leftward linear velocity command - `Right Arrow`: Rightward linear velocity command - `Z`: Counterclockwise yaw angular velocity command - `X`: Clockwise yaw angular velocity command - `C`: Toggles camera view between third-person and scene view while maintaining manual control - `ESC`: Unselect a selected ANYmal and yields manual control Launch this demo with the following command. Note that this demo limits the maximum number of ANYmals in the scene to 128. ``` PYTHON_PATH scripts/rlgames_demo.py task=AnymalTerrain num_envs=64 checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/anymal_terrain.pth ``` <img src="https://user-images.githubusercontent.com/34286328/184688654-6e7899b2-5847-4184-8944-2a96b129b1ff.gif" width="600" height="300"/>
18,657
Markdown
56.409231
469
0.776491
Virlus/OmniIsaacGymEnvs/config/extension.toml
[gym] reloadable = true [package] version = "0.0.0" category = "Simulation" title = "Isaac Gym Envs" description = "RL environments" authors = ["Isaac Sim Team"] repository = "https://gitlab-master.nvidia.com/carbon-gym/omniisaacgymenvs" keywords = ["isaac"] changelog = "docs/CHANGELOG.md" readme = "docs/README.md" icon = "data/icon.png" writeTarget.kit = true [dependencies] "omni.isaac.gym" = {} "omni.isaac.core" = {} "omni.isaac.cloner" = {} "omni.isaac.ml_archive" = {} # torch [[python.module]] name = "omniisaacgymenvs"
532
TOML
20.319999
75
0.693609
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/extension.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import inspect import os import traceback import weakref from abc import abstractmethod import hydra import omni.ext import omni.timeline import omni.ui as ui import omni.usd from hydra import compose, initialize from omegaconf import OmegaConf from omni.isaac.cloner import GridCloner from omni.isaac.core.utils.extensions import disable_extension, enable_extension from omni.isaac.core.utils.torch.maths import set_seed from omni.isaac.core.utils.viewports import set_camera_view from omni.isaac.core.world import World from omniisaacgymenvs.envs.vec_env_rlgames_mt import VecEnvRLGamesMT from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.rlgames.rlgames_train_mt import RLGTrainer, Trainer from omniisaacgymenvs.utils.task_util import import_tasks, initialize_task from omni.isaac.ui.callbacks import on_open_folder_clicked, on_open_IDE_clicked from omni.isaac.ui.menu import make_menu_item_description from omni.isaac.ui.ui_utils import ( btn_builder, dropdown_builder, get_style, int_builder, multi_btn_builder, multi_cb_builder, scrolling_frame_builder, setup_ui_headers, str_builder, ) from omni.kit.menu.utils import MenuItemDescription, add_menu_items, remove_menu_items from omni.kit.viewport.utility import get_active_viewport, get_viewport_from_window_name from omni.kit.viewport.utility.camera_state import ViewportCameraState from pxr import Gf ext_instance = None class RLExtension(omni.ext.IExt): def on_startup(self, ext_id: str): self._render_modes = ["Full render", "UI only", "None"] self._env = None self._task = None self._ext_id = ext_id ext_manager = omni.kit.app.get_app().get_extension_manager() extension_path = ext_manager.get_extension_path(ext_id) self._ext_path = os.path.dirname(extension_path) if os.path.isfile(extension_path) else extension_path self._ext_file_path = os.path.abspath(__file__) self._initialize_task_list() self.start_extension( "", "", "RL Examples", "RL Examples", "", "A set of reinforcement learning examples.", self._ext_file_path, ) self._task_initialized = False self._task_changed = False self._is_training = False self._render = True self._resume = False self._test = False self._evaluate = False self._checkpoint_path = "" self._timeline = omni.timeline.get_timeline_interface() self._viewport = get_active_viewport() self._viewport.updates_enabled = True global ext_instance ext_instance = self def _initialize_task_list(self): self._task_map, _ = import_tasks() self._task_list = list(self._task_map.keys()) self._task_list.sort() self._task_list.remove("CartpoleCamera") # we cannot run camera-based training from extension workflow for now. it requires a specialized app file. self._task_name = self._task_list[0] self._parse_config(self._task_name) self._update_task_file_paths(self._task_name) def _update_task_file_paths(self, task): self._task_file_path = os.path.abspath(inspect.getfile(self._task_map[task])) self._task_cfg_file_path = os.path.join(os.path.dirname(self._ext_file_path), f"cfg/task/{task}.yaml") self._train_cfg_file_path = os.path.join(os.path.dirname(self._ext_file_path), f"cfg/train/{task}PPO.yaml") def _parse_config(self, task, num_envs=None, overrides=None): hydra.core.global_hydra.GlobalHydra.instance().clear() initialize(version_base=None, config_path="cfg") overrides_list = [f"task={task}"] if overrides is not None: overrides_list += overrides if num_envs is None: self._cfg = compose(config_name="config", overrides=overrides_list) else: self._cfg = compose(config_name="config", overrides=overrides_list + [f"num_envs={num_envs}"]) self._cfg_dict = omegaconf_to_dict(self._cfg) self._sim_config = SimConfig(self._cfg_dict) def start_extension( self, menu_name: str, submenu_name: str, name: str, title: str, doc_link: str, overview: str, file_path: str, number_of_extra_frames=1, window_width=550, keep_window_open=False, ): window = ui.Workspace.get_window("Property") if window: window.visible = False window = ui.Workspace.get_window("Render Settings") if window: window.visible = False menu_items = [make_menu_item_description(self._ext_id, name, lambda a=weakref.proxy(self): a._menu_callback())] if menu_name == "" or menu_name is None: self._menu_items = menu_items elif submenu_name == "" or submenu_name is None: self._menu_items = [MenuItemDescription(name=menu_name, sub_menu=menu_items)] else: self._menu_items = [ MenuItemDescription( name=menu_name, sub_menu=[MenuItemDescription(name=submenu_name, sub_menu=menu_items)] ) ] add_menu_items(self._menu_items, "Isaac Examples") self._task_dropdown = None self._cbs = None self._build_ui( name=name, title=title, doc_link=doc_link, overview=overview, file_path=file_path, number_of_extra_frames=number_of_extra_frames, window_width=window_width, keep_window_open=keep_window_open, ) return def _build_ui( self, name, title, doc_link, overview, file_path, number_of_extra_frames, window_width, keep_window_open ): self._window = omni.ui.Window( name, width=window_width, height=0, visible=keep_window_open, dockPreference=ui.DockPreference.LEFT_BOTTOM ) with self._window.frame: self._main_stack = ui.VStack(spacing=5, height=0) with self._main_stack: setup_ui_headers(self._ext_id, file_path, title, doc_link, overview) self._controls_frame = ui.CollapsableFrame( title="World Controls", width=ui.Fraction(1), height=0, collapsed=False, style=get_style(), horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with self._controls_frame: with ui.VStack(style=get_style(), spacing=5, height=0): with ui.HStack(style=get_style()): with ui.VStack(style=get_style(), width=ui.Fraction(20)): dict = { "label": "Select Task", "type": "dropdown", "default_val": 0, "items": self._task_list, "tooltip": "Select a task", "on_clicked_fn": self._on_task_select, } self._task_dropdown = dropdown_builder(**dict) with ui.Frame(tooltip="Open Source Code"): ui.Button( name="IconButton", width=20, height=20, clicked_fn=lambda: on_open_IDE_clicked(self._ext_path, self._task_file_path), style=get_style()["IconButton.Image::OpenConfig"], alignment=ui.Alignment.LEFT_CENTER, tooltip="Open in IDE", ) with ui.Frame(tooltip="Open Task Config"): ui.Button( name="IconButton", width=20, height=20, clicked_fn=lambda: on_open_IDE_clicked(self._ext_path, self._task_cfg_file_path), style=get_style()["IconButton.Image::OpenConfig"], alignment=ui.Alignment.LEFT_CENTER, tooltip="Open in IDE", ) with ui.Frame(tooltip="Open Training Config"): ui.Button( name="IconButton", width=20, height=20, clicked_fn=lambda: on_open_IDE_clicked(self._ext_path, self._train_cfg_file_path), style=get_style()["IconButton.Image::OpenConfig"], alignment=ui.Alignment.LEFT_CENTER, tooltip="Open in IDE", ) dict = { "label": "Number of environments", "tooltip": "Enter the number of environments to construct", "min": 0, "max": 8192, "default_val": self._cfg.task.env.numEnvs, } self._num_envs_int = int_builder(**dict) dict = { "label": "Load Environment", "type": "button", "text": "Load", "tooltip": "Load Environment and Task", "on_clicked_fn": self._on_load_world, } self._load_env_button = btn_builder(**dict) dict = { "label": "Rendering Mode", "type": "dropdown", "default_val": 0, "items": self._render_modes, "tooltip": "Select a rendering mode", "on_clicked_fn": self._on_render_mode_select, } self._render_dropdown = dropdown_builder(**dict) dict = { "label": "Configure Training", "count": 3, "text": ["Resume from Checkpoint", "Test", "Evaluate"], "default_val": [False, False, False], "tooltip": [ "", "Resume training from checkpoint", "Play a trained policy", "Evaluate a policy during training", ], "on_clicked_fn": [ self._on_resume_cb_update, self._on_test_cb_update, self._on_evaluate_cb_update, ], } self._cbs = multi_cb_builder(**dict) dict = { "label": "Load Checkpoint", "tooltip": "Enter path to checkpoint file", "on_clicked_fn": self._on_checkpoint_update, } self._checkpoint_str = str_builder(**dict) dict = { "label": "Train/Test", "count": 2, "text": ["Start", "Stop"], "tooltip": [ "", "Launch new training/inference run", "Terminate current training/inference run", ], "on_clicked_fn": [self._on_train, self._on_train_stop], } self._buttons = multi_btn_builder(**dict) return def create_task(self): headless = self._cfg.headless enable_viewport = "enable_cameras" in self._cfg.task.sim and self._cfg.task.sim.enable_cameras self._env = VecEnvRLGamesMT( headless=headless, sim_device=self._cfg.device_id, enable_livestream=self._cfg.enable_livestream, enable_viewport=enable_viewport, launch_simulation_app=False, ) self._task = initialize_task(self._cfg_dict, self._env, init_sim=False) self._task_initialized = True def _on_task_select(self, value): if self._task_initialized and value != self._task_name: self._task_changed = True self._task_initialized = False self._task_name = value self._parse_config(self._task_name) self._num_envs_int.set_value(self._cfg.task.env.numEnvs) self._update_task_file_paths(self._task_name) def _on_render_mode_select(self, value): if value == self._render_modes[0]: self._viewport.updates_enabled = True window = ui.Workspace.get_window("Viewport") window.visible = True if self._env: self._env._update_viewport = True self._env._render_mode = 0 elif value == self._render_modes[1]: self._viewport.updates_enabled = False window = ui.Workspace.get_window("Viewport") window.visible = False if self._env: self._env._update_viewport = False self._env._render_mode = 1 elif value == self._render_modes[2]: self._viewport.updates_enabled = False window = ui.Workspace.get_window("Viewport") window.visible = False if self._env: self._env._update_viewport = False self._env._render_mode = 2 def _on_render_cb_update(self, value): self._render = value print("updates enabled", value) self._viewport.updates_enabled = value if self._env: self._env._update_viewport = value if value: window = ui.Workspace.get_window("Viewport") window.visible = True else: window = ui.Workspace.get_window("Viewport") window.visible = False def _on_single_env_cb_update(self, value): visibility = "invisible" if value else "inherited" stage = omni.usd.get_context().get_stage() env_root = stage.GetPrimAtPath("/World/envs") if env_root.IsValid(): for i, p in enumerate(env_root.GetChildren()): p.GetAttribute("visibility").Set(visibility) if value: stage.GetPrimAtPath("/World/envs/env_0").GetAttribute("visibility").Set("inherited") env_pos = self._task._env_pos[0].cpu().numpy().tolist() camera_pos = [env_pos[0] + 10, env_pos[1] + 10, 3] camera_target = [env_pos[0], env_pos[1], env_pos[2]] else: camera_pos = [10, 10, 3] camera_target = [0, 0, 0] camera_state = ViewportCameraState("/OmniverseKit_Persp", get_active_viewport()) camera_state.set_position_world(Gf.Vec3d(*camera_pos), True) camera_state.set_target_world(Gf.Vec3d(*camera_target), True) def _on_test_cb_update(self, value): self._test = value if value is True and self._checkpoint_path.strip() == "": self._checkpoint_str.set_value(f"runs/{self._task_name}/nn/{self._task_name}.pth") def _on_resume_cb_update(self, value): self._resume = value if value is True and self._checkpoint_path.strip() == "": self._checkpoint_str.set_value(f"runs/{self._task_name}/nn/{self._task_name}.pth") def _on_evaluate_cb_update(self, value): self._evaluate = value def _on_checkpoint_update(self, value): self._checkpoint_path = value.get_value_as_string() async def _on_load_world_async(self, use_existing_stage): # initialize task if not initialized if not self._task_initialized or not omni.usd.get_context().get_stage().GetPrimAtPath("/World/envs").IsValid(): self._parse_config(task=self._task_name, num_envs=self._num_envs_int.get_value_as_int()) self.create_task() else: # update config self._parse_config(task=self._task_name, num_envs=self._num_envs_int.get_value_as_int()) self._task.update_config(self._sim_config) # clear scene # self._env._world.scene.clear() self._env._world._sim_params = self._sim_config.get_physics_params() await self._env._world.initialize_simulation_context_async() set_camera_view(eye=[10, 10, 3], target=[0, 0, 0], camera_prim_path="/OmniverseKit_Persp") if not use_existing_stage: # clear scene self._env._world.scene.clear() # clear environments added to world omni.usd.get_context().get_stage().RemovePrim("/World/collisions") omni.usd.get_context().get_stage().RemovePrim("/World/envs") # create scene await self._env._world.reset_async_set_up_scene() # update num_envs in envs self._env.update_task_params() else: self._task.initialize_views(self._env._world.scene) def _on_load_world(self): # stop simulation before updating stage self._timeline.stop() asyncio.ensure_future(self._on_load_world_async(use_existing_stage=False)) def _on_train_stop(self): if self._task_initialized: asyncio.ensure_future(self._env._world.stop_async()) async def _on_train_async(self, overrides=None): try: # initialize task if not initialized print("task initialized:", self._task_initialized) if not self._task_initialized: # if this is the first launch of the extension, we do not want to re-create stage if stage already exists use_existing_stage = False if omni.usd.get_context().get_stage().GetPrimAtPath("/World/envs").IsValid(): use_existing_stage = True print(use_existing_stage) await self._on_load_world_async(use_existing_stage) # update config self._parse_config(task=self._task_name, num_envs=self._num_envs_int.get_value_as_int(), overrides=overrides) sim_config = SimConfig(self._cfg_dict) self._task.update_config(sim_config) cfg_dict = omegaconf_to_dict(self._cfg) # sets seed. if seed is -1 will pick a random one self._cfg.seed = set_seed(self._cfg.seed, torch_deterministic=self._cfg.torch_deterministic) cfg_dict["seed"] = self._cfg.seed self._checkpoint_path = self._checkpoint_str.get_value_as_string() if self._resume or self._test: self._cfg.checkpoint = self._checkpoint_path self._cfg.test = self._test self._cfg.evaluation = self._evaluate cfg_dict["checkpoint"] = self._cfg.checkpoint cfg_dict["test"] = self._cfg.test cfg_dict["evaluation"] = self._cfg.evaluation rlg_trainer = RLGTrainer(self._cfg, cfg_dict) if not rlg_trainer._bad_checkpoint: trainer = Trainer(rlg_trainer, self._env) await self._env._world.reset_async_no_set_up_scene() self._env._render_mode = self._render_dropdown.get_item_value_model().as_int await self._env.run(trainer) await omni.kit.app.get_app().next_update_async() except Exception as e: print(traceback.format_exc()) finally: self._is_training = False def _on_train(self): # stop simulation if still running self._timeline.stop() self._on_render_mode_select(self._render_modes[self._render_dropdown.get_item_value_model().as_int]) if not self._is_training: self._is_training = True asyncio.ensure_future(self._on_train_async()) return def _menu_callback(self): self._window.visible = not self._window.visible return def _on_window(self, status): return def on_shutdown(self): self._extra_frames = [] if self._menu_items is not None: self._sample_window_cleanup() self.shutdown_cleanup() global ext_instance ext_instance = None return def shutdown_cleanup(self): return def _sample_window_cleanup(self): remove_menu_items(self._menu_items, "Isaac Examples") self._window = None self._menu_items = None self._buttons = None self._load_env_button = None self._task_dropdown = None self._cbs = None self._checkpoint_str = None return def get_instance(): return ext_instance
22,236
Python
42.262646
155
0.533189
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/__init__.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import traceback try: from .extension import RLExtension, get_instance # import omniisaacgymenvs.tests except Exception as e: pass # print(e) # print(traceback.format_exc())
1,753
Python
46.405404
80
0.775242
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/envs/vec_env_rlgames_mt.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import torch from omni.isaac.gym.vec_env import TaskStopException, VecEnvMT from .vec_env_rlgames import VecEnvRLGames # VecEnv Wrapper for RL training class VecEnvRLGamesMT(VecEnvRLGames, VecEnvMT): def _parse_data(self, data): self._obs = data["obs"] self._rew = data["rew"].to(self._task.rl_device) self._states = torch.clamp(data["states"], -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device) self._resets = data["reset"].to(self._task.rl_device) self._extras = data["extras"] def step(self, actions): if self._stop: raise TaskStopException() if self._task.randomize_actions: actions = self._task._dr_randomizer.apply_actions_randomization( actions=actions, reset_buf=self._task.reset_buf ) actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device) self.send_actions(actions) data = self.get_data() if self._task.randomize_observations: self._obs = self._task._dr_randomizer.apply_observations_randomization( observations=self._obs.to(self._task.rl_device), reset_buf=self._task.reset_buf ) self._obs = torch.clamp(self._obs, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device) obs_dict = {} obs_dict["obs"] = self._obs obs_dict["states"] = self._states return obs_dict, self._rew, self._resets, self._extras
3,109
Python
42.194444
118
0.705693
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/envs/vec_env_rlgames.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from datetime import datetime import numpy as np import torch from omni.isaac.gym.vec_env import VecEnvBase # VecEnv Wrapper for RL training class VecEnvRLGames(VecEnvBase): def _process_data(self): self._obs = torch.clamp(self._obs, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device) self._rew = self._rew.to(self._task.rl_device) self._states = torch.clamp(self._states, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device) self._resets = self._resets.to(self._task.rl_device) self._extras = self._extras def set_task(self, task, backend="numpy", sim_params=None, init_sim=True, rendering_dt=1.0 / 60.0) -> None: super().set_task(task, backend, sim_params, init_sim, rendering_dt) self.num_states = self._task.num_states self.state_space = self._task.state_space def step(self, actions): if self._task.randomize_actions: actions = self._task._dr_randomizer.apply_actions_randomization( actions=actions, reset_buf=self._task.reset_buf ) actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device) self._task.pre_physics_step(actions) if (self.sim_frame_count + self._task.control_frequency_inv) % self._task.rendering_interval == 0: for _ in range(self._task.control_frequency_inv - 1): self._world.step(render=False) self.sim_frame_count += 1 self._world.step(render=self._render) self.sim_frame_count += 1 else: for _ in range(self._task.control_frequency_inv): self._world.step(render=False) self.sim_frame_count += 1 self._obs, self._rew, self._resets, self._extras = self._task.post_physics_step() if self._task.randomize_observations: self._obs = self._task._dr_randomizer.apply_observations_randomization( observations=self._obs.to(device=self._task.rl_device), reset_buf=self._task.reset_buf ) self._states = self._task.get_states() self._process_data() obs_dict = {"obs": self._obs, "states": self._states} return obs_dict, self._rew, self._resets, self._extras def reset(self, seed=None, options=None): """Resets the task and applies default zero actions to recompute observations and states.""" now = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print(f"[{now}] Running RL reset") self._task.reset() actions = torch.zeros((self.num_envs, self._task.num_actions), device=self._task.rl_device) obs_dict, _, _, _ = self.step(actions) return obs_dict
4,328
Python
43.628866
116
0.677218
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/allegro_hand.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.allegro_hand import AllegroHand from omniisaacgymenvs.robots.articulations.views.allegro_hand_view import AllegroHandView from omniisaacgymenvs.tasks.shared.in_hand_manipulation import InHandManipulationTask class AllegroHandTask(InHandManipulationTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) InHandManipulationTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self.object_type = self._task_cfg["env"]["objectType"] assert self.object_type in ["block"] self.obs_type = self._task_cfg["env"]["observationType"] if not (self.obs_type in ["full_no_vel", "full"]): raise Exception("Unknown type of observations!\nobservationType should be one of: [full_no_vel, full]") print("Obs type:", self.obs_type) self.num_obs_dict = { "full_no_vel": 50, "full": 72, } self.object_scale = torch.tensor([1.0, 1.0, 1.0]) self._num_observations = self.num_obs_dict[self.obs_type] self._num_actions = 16 self._num_states = 0 InHandManipulationTask.update_config(self) def get_starting_positions(self): self.hand_start_translation = torch.tensor([0.0, 0.0, 0.5], device=self.device) self.hand_start_orientation = torch.tensor([0.257551, 0.283045, 0.683330, -0.621782], device=self.device) self.pose_dy, self.pose_dz = -0.2, 0.06 def get_hand(self): allegro_hand = AllegroHand( prim_path=self.default_zero_env_path + "/allegro_hand", name="allegro_hand", translation=self.hand_start_translation, orientation=self.hand_start_orientation, ) self._sim_config.apply_articulation_settings( "allegro_hand", get_prim_at_path(allegro_hand.prim_path), self._sim_config.parse_actor_config("allegro_hand"), ) allegro_hand_prim = self._stage.GetPrimAtPath(allegro_hand.prim_path) allegro_hand.set_allegro_hand_properties(stage=self._stage, allegro_hand_prim=allegro_hand_prim) allegro_hand.set_motor_control_mode( stage=self._stage, allegro_hand_path=self.default_zero_env_path + "/allegro_hand" ) def get_hand_view(self, scene): return AllegroHandView(prim_paths_expr="/World/envs/.*/allegro_hand", name="allegro_hand_view") def get_observations(self): self.get_object_goal_observations() self.hand_dof_pos = self._hands.get_joint_positions(clone=False) self.hand_dof_vel = self._hands.get_joint_velocities(clone=False) if self.obs_type == "full_no_vel": self.compute_full_observations(True) elif self.obs_type == "full": self.compute_full_observations() else: print("Unkown observations type!") observations = {self._hands.name: {"obs_buf": self.obs_buf}} return observations def compute_full_observations(self, no_vel=False): if no_vel: self.obs_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.obs_buf[:, 16:19] = self.object_pos self.obs_buf[:, 19:23] = self.object_rot self.obs_buf[:, 23:26] = self.goal_pos self.obs_buf[:, 26:30] = self.goal_rot self.obs_buf[:, 30:34] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 34:50] = self.actions else: self.obs_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.obs_buf[:, self.num_hand_dofs : 2 * self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel self.obs_buf[:, 32:35] = self.object_pos self.obs_buf[:, 35:39] = self.object_rot self.obs_buf[:, 39:42] = self.object_linvel self.obs_buf[:, 42:45] = self.vel_obs_scale * self.object_angvel self.obs_buf[:, 45:48] = self.goal_pos self.obs_buf[:, 48:52] = self.goal_rot self.obs_buf[:, 52:56] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 56:72] = self.actions
6,329
Python
42.655172
115
0.658872
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/ball_balance.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims import RigidPrim, RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.maths import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.balance_bot import BalanceBot from pxr import PhysxSchema class BallBalanceTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._num_observations = 12 + 12 self._num_actions = 3 self.anchored = False RLTask.__init__(self, name, env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._dt = self._task_cfg["sim"]["dt"] self._table_position = torch.tensor([0, 0, 0.56]) self._ball_position = torch.tensor([0.0, 0.0, 1.0]) self._ball_radius = 0.1 self._action_speed_scale = self._task_cfg["env"]["actionSpeedScale"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] def set_up_scene(self, scene) -> None: self.get_balance_table() self.add_ball() super().set_up_scene(scene, replicate_physics=False) self.set_up_table_anchors() self._balance_bots = ArticulationView( prim_paths_expr="/World/envs/.*/BalanceBot/tray", name="balance_bot_view", reset_xform_properties=False ) scene.add(self._balance_bots) self._balls = RigidPrimView( prim_paths_expr="/World/envs/.*/Ball/ball", name="ball_view", reset_xform_properties=False ) scene.add(self._balls) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("balance_bot_view"): scene.remove_object("balance_bot_view", registry_only=True) if scene.object_exists("ball_view"): scene.remove_object("ball_view", registry_only=True) self._balance_bots = ArticulationView( prim_paths_expr="/World/envs/.*/BalanceBot/tray", name="balance_bot_view", reset_xform_properties=False ) scene.add(self._balance_bots) self._balls = RigidPrimView( prim_paths_expr="/World/envs/.*/Ball/ball", name="ball_view", reset_xform_properties=False ) scene.add(self._balls) def get_balance_table(self): balance_table = BalanceBot( prim_path=self.default_zero_env_path + "/BalanceBot", name="BalanceBot", translation=self._table_position ) self._sim_config.apply_articulation_settings( "table", get_prim_at_path(balance_table.prim_path), self._sim_config.parse_actor_config("table") ) def add_ball(self): ball = DynamicSphere( prim_path=self.default_zero_env_path + "/Ball/ball", translation=self._ball_position, name="ball_0", radius=self._ball_radius, color=torch.tensor([0.9, 0.6, 0.2]), ) self._sim_config.apply_articulation_settings( "ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball") ) def set_up_table_anchors(self): from pxr import Gf height = 0.08 stage = get_current_stage() for i in range(self._num_envs): base_path = f"{self.default_base_env_path}/env_{i}/BalanceBot" for j, leg_offset in enumerate([(0.4, 0, height), (-0.2, 0.34641, 0), (-0.2, -0.34641, 0)]): # fix the legs to ground leg_path = f"{base_path}/lower_leg{j}" ground_joint_path = leg_path + "_ground" env_pos = stage.GetPrimAtPath(f"{self.default_base_env_path}/env_{i}").GetAttribute("xformOp:translate").Get() anchor_pos = env_pos + Gf.Vec3d(*leg_offset) self.fix_to_ground(stage, ground_joint_path, leg_path, anchor_pos) def fix_to_ground(self, stage, joint_path, prim_path, anchor_pos): from pxr import UsdPhysics, Gf # D6 fixed joint d6FixedJoint = UsdPhysics.Joint.Define(stage, joint_path) d6FixedJoint.CreateBody0Rel().SetTargets(["/World/defaultGroundPlane"]) d6FixedJoint.CreateBody1Rel().SetTargets([prim_path]) d6FixedJoint.CreateLocalPos0Attr().Set(anchor_pos) d6FixedJoint.CreateLocalRot0Attr().Set(Gf.Quatf(1.0, Gf.Vec3f(0, 0, 0))) d6FixedJoint.CreateLocalPos1Attr().Set(Gf.Vec3f(0, 0, 0.18)) d6FixedJoint.CreateLocalRot1Attr().Set(Gf.Quatf(1.0, Gf.Vec3f(0, 0, 0))) # lock all DOF (lock - low is greater than high) d6Prim = stage.GetPrimAtPath(joint_path) limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transX") limitAPI.CreateLowAttr(1.0) limitAPI.CreateHighAttr(-1.0) limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transY") limitAPI.CreateLowAttr(1.0) limitAPI.CreateHighAttr(-1.0) limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transZ") limitAPI.CreateLowAttr(1.0) limitAPI.CreateHighAttr(-1.0) def get_observations(self) -> dict: ball_positions, ball_orientations = self._balls.get_world_poses(clone=False) ball_positions = ball_positions[:, 0:3] - self._env_pos ball_velocities = self._balls.get_velocities(clone=False) ball_linvels = ball_velocities[:, 0:3] ball_angvels = ball_velocities[:, 3:6] dof_pos = self._balance_bots.get_joint_positions(clone=False) dof_vel = self._balance_bots.get_joint_velocities(clone=False) sensor_force_torques = self._balance_bots.get_measured_joint_forces(joint_indices=self._sensor_indices) # (num_envs, num_sensors, 6) self.obs_buf[..., 0:3] = dof_pos[..., self.actuated_dof_indices] self.obs_buf[..., 3:6] = dof_vel[..., self.actuated_dof_indices] self.obs_buf[..., 6:9] = ball_positions self.obs_buf[..., 9:12] = ball_linvels self.obs_buf[..., 12:15] = sensor_force_torques[..., 0] / 20.0 self.obs_buf[..., 15:18] = sensor_force_torques[..., 3] / 20.0 self.obs_buf[..., 18:21] = sensor_force_torques[..., 4] / 20.0 self.obs_buf[..., 21:24] = sensor_force_torques[..., 5] / 20.0 self.ball_positions = ball_positions self.ball_linvels = ball_linvels observations = {"ball_balance": {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) # update position targets from actions self.dof_position_targets[..., self.actuated_dof_indices] += ( self._dt * self._action_speed_scale * actions.to(self.device) ) self.dof_position_targets[:] = tensor_clamp( self.dof_position_targets, self.bbot_dof_lower_limits, self.bbot_dof_upper_limits ) # reset position targets for reset envs self.dof_position_targets[reset_env_ids] = 0 self._balance_bots.set_joint_position_targets(self.dof_position_targets) # .clone()) def reset_idx(self, env_ids): num_resets = len(env_ids) env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) min_d = 0.001 # min horizontal dist from origin max_d = 0.4 # max horizontal dist from origin min_height = 1.0 max_height = 2.0 min_horizontal_speed = 0 max_horizontal_speed = 2 dists = torch_rand_float(min_d, max_d, (num_resets, 1), self._device) dirs = torch_random_dir_2((num_resets, 1), self._device) hpos = dists * dirs speedscales = (dists - min_d) / (max_d - min_d) hspeeds = torch_rand_float(min_horizontal_speed, max_horizontal_speed, (num_resets, 1), self._device) hvels = -speedscales * hspeeds * dirs vspeeds = -torch_rand_float(5.0, 5.0, (num_resets, 1), self._device).squeeze() ball_pos = self.initial_ball_pos.clone() ball_rot = self.initial_ball_rot.clone() # position ball_pos[env_ids_64, 0:2] += hpos[..., 0:2] ball_pos[env_ids_64, 2] += torch_rand_float(min_height, max_height, (num_resets, 1), self._device).squeeze() # rotation ball_rot[env_ids_64, 0] = 1 ball_rot[env_ids_64, 1:] = 0 ball_velocities = self.initial_ball_velocities.clone() # linear ball_velocities[env_ids_64, 0:2] = hvels[..., 0:2] ball_velocities[env_ids_64, 2] = vspeeds # angular ball_velocities[env_ids_64, 3:6] = 0 # reset root state for bbots and balls in selected envs self._balls.set_world_poses(ball_pos[env_ids_64], ball_rot[env_ids_64], indices=env_ids_32) self._balls.set_velocities(ball_velocities[env_ids_64], indices=env_ids_32) # reset root pose and velocity self._balance_bots.set_world_poses( self.initial_bot_pos[env_ids_64].clone(), self.initial_bot_rot[env_ids_64].clone(), indices=env_ids_32 ) self._balance_bots.set_velocities(self.initial_bot_velocities[env_ids_64].clone(), indices=env_ids_32) # reset DOF states for bbots in selected envs self._balance_bots.set_joint_positions(self.initial_dof_positions[env_ids_64].clone(), indices=env_ids_32) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): dof_limits = self._balance_bots.get_dof_limits() self.bbot_dof_lower_limits, self.bbot_dof_upper_limits = torch.t(dof_limits[0].to(device=self._device)) self.initial_dof_positions = self._balance_bots.get_joint_positions() self.initial_bot_pos, self.initial_bot_rot = self._balance_bots.get_world_poses() # self.initial_bot_pos[..., 2] = 0.559 # tray_height self.initial_bot_velocities = self._balance_bots.get_velocities() self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses() self.initial_ball_velocities = self._balls.get_velocities() self.dof_position_targets = torch.zeros( (self.num_envs, self._balance_bots.num_dof), dtype=torch.float32, device=self._device, requires_grad=False ) actuated_joints = ["lower_leg0", "lower_leg1", "lower_leg2"] self.actuated_dof_indices = torch.tensor( [self._balance_bots._dof_indices[j] for j in actuated_joints], device=self._device, dtype=torch.long ) force_links = ["upper_leg0", "upper_leg1", "upper_leg2"] self._sensor_indices = torch.tensor( [self._balance_bots._body_indices[j] for j in force_links], device=self._device, dtype=torch.long ) def calculate_metrics(self) -> None: ball_dist = torch.sqrt( self.ball_positions[..., 0] * self.ball_positions[..., 0] + (self.ball_positions[..., 2] - 0.7) * (self.ball_positions[..., 2] - 0.7) + (self.ball_positions[..., 1]) * self.ball_positions[..., 1] ) ball_speed = torch.sqrt( self.ball_linvels[..., 0] * self.ball_linvels[..., 0] + self.ball_linvels[..., 1] * self.ball_linvels[..., 1] + self.ball_linvels[..., 2] * self.ball_linvels[..., 2] ) pos_reward = 1.0 / (1.0 + ball_dist) speed_reward = 1.0 / (1.0 + ball_speed) self.rew_buf[:] = pos_reward * speed_reward def is_done(self) -> None: reset = torch.where( self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf ) reset = torch.where( self.ball_positions[..., 2] < self._ball_radius * 1.5, torch.ones_like(self.reset_buf), reset ) self.reset_buf[:] = reset
13,958
Python
44.174757
140
0.630391
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/cartpole_camera.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from gym import spaces import numpy as np import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.tasks.cartpole import CartpoleTask from omniisaacgymenvs.robots.articulations.cartpole import Cartpole class CartpoleCameraTask(CartpoleTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._max_episode_length = 500 self._num_observations = self.camera_width * self.camera_height * 3 self._num_actions = 1 # use multi-dimensional observation for camera RGB self.observation_space = spaces.Box( np.ones((self.camera_width, self.camera_height, 3), dtype=np.float32) * -np.Inf, np.ones((self.camera_width, self.camera_height, 3), dtype=np.float32) * np.Inf) RLTask.__init__(self, name, env) def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._cartpole_positions = torch.tensor([0.0, 0.0, 2.0]) self._reset_dist = self._task_cfg["env"]["resetDist"] self._max_push_effort = self._task_cfg["env"]["maxEffort"] self.camera_type = self._task_cfg["env"].get("cameraType", 'rgb') self.camera_width = self._task_cfg["env"]["cameraWidth"] self.camera_height = self._task_cfg["env"]["cameraHeight"] self.camera_channels = 3 self._export_images = self._task_cfg["env"]["exportImages"] def cleanup(self) -> None: # initialize remaining buffers RLTask.cleanup(self) # override observation buffer for camera data self.obs_buf = torch.zeros( (self.num_envs, self.camera_width, self.camera_height, 3), device=self.device, dtype=torch.float) def set_up_scene(self, scene) -> None: self.get_cartpole() RLTask.set_up_scene(self, scene) # start replicator to capture image data self.rep.orchestrator._orchestrator._is_started = True # set up cameras self.render_products = [] env_pos = self._env_pos.cpu() for i in range(self._num_envs): camera = self.rep.create.camera( position=(-4.2 + env_pos[i][0], env_pos[i][1], 3.0), look_at=(env_pos[i][0], env_pos[i][1], 2.55)) render_product = self.rep.create.render_product(camera, resolution=(self.camera_width, self.camera_height)) self.render_products.append(render_product) # initialize pytorch writer for vectorized collection self.pytorch_listener = self.PytorchListener() self.pytorch_writer = self.rep.WriterRegistry.get("PytorchWriter") self.pytorch_writer.initialize(listener=self.pytorch_listener, device="cuda") self.pytorch_writer.attach(self.render_products) self._cartpoles = ArticulationView( prim_paths_expr="/World/envs/.*/Cartpole", name="cartpole_view", reset_xform_properties=False ) scene.add(self._cartpoles) return def get_observations(self) -> dict: dof_pos = self._cartpoles.get_joint_positions(clone=False) dof_vel = self._cartpoles.get_joint_velocities(clone=False) self.cart_pos = dof_pos[:, self._cart_dof_idx] self.cart_vel = dof_vel[:, self._cart_dof_idx] self.pole_pos = dof_pos[:, self._pole_dof_idx] self.pole_vel = dof_vel[:, self._pole_dof_idx] # retrieve RGB data from all render products images = self.pytorch_listener.get_rgb_data() if images is not None: if self._export_images: from torchvision.utils import save_image, make_grid img = images/255 save_image(make_grid(img, nrows = 2), 'cartpole_export.png') self.obs_buf = torch.swapaxes(images, 1, 3).clone().float()/255.0 else: print("Image tensor is NONE!") return self.obs_buf
5,865
Python
41.817518
119
0.673998
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/anymal_terrain.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.rotations import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.anymal import Anymal from omniisaacgymenvs.robots.articulations.views.anymal_view import AnymalView from omniisaacgymenvs.tasks.utils.anymal_terrain_generator import * from omniisaacgymenvs.utils.terrain_utils.terrain_utils import * from pxr import UsdLux, UsdPhysics class AnymalTerrainTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.height_samples = None self.custom_origins = False self.init_done = False self._env_spacing = 0.0 self._num_observations = 188 self._num_actions = 12 self.update_config(sim_config) RLTask.__init__(self, name, env) self.height_points = self.init_height_points() self.measured_heights = None # joint positions offsets self.default_dof_pos = torch.zeros( (self.num_envs, 12), dtype=torch.float, device=self.device, requires_grad=False ) # reward episode sums torch_zeros = lambda: torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) self.episode_sums = { "lin_vel_xy": torch_zeros(), "lin_vel_z": torch_zeros(), "ang_vel_z": torch_zeros(), "ang_vel_xy": torch_zeros(), "orient": torch_zeros(), "torques": torch_zeros(), "joint_acc": torch_zeros(), "base_height": torch_zeros(), "air_time": torch_zeros(), "collision": torch_zeros(), "stumble": torch_zeros(), "action_rate": torch_zeros(), "hip": torch_zeros(), } return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # normalization self.lin_vel_scale = self._task_cfg["env"]["learn"]["linearVelocityScale"] self.ang_vel_scale = self._task_cfg["env"]["learn"]["angularVelocityScale"] self.dof_pos_scale = self._task_cfg["env"]["learn"]["dofPositionScale"] self.dof_vel_scale = self._task_cfg["env"]["learn"]["dofVelocityScale"] self.height_meas_scale = self._task_cfg["env"]["learn"]["heightMeasurementScale"] self.action_scale = self._task_cfg["env"]["control"]["actionScale"] # reward scales self.rew_scales = {} self.rew_scales["termination"] = self._task_cfg["env"]["learn"]["terminalReward"] self.rew_scales["lin_vel_xy"] = self._task_cfg["env"]["learn"]["linearVelocityXYRewardScale"] self.rew_scales["lin_vel_z"] = self._task_cfg["env"]["learn"]["linearVelocityZRewardScale"] self.rew_scales["ang_vel_z"] = self._task_cfg["env"]["learn"]["angularVelocityZRewardScale"] self.rew_scales["ang_vel_xy"] = self._task_cfg["env"]["learn"]["angularVelocityXYRewardScale"] self.rew_scales["orient"] = self._task_cfg["env"]["learn"]["orientationRewardScale"] self.rew_scales["torque"] = self._task_cfg["env"]["learn"]["torqueRewardScale"] self.rew_scales["joint_acc"] = self._task_cfg["env"]["learn"]["jointAccRewardScale"] self.rew_scales["base_height"] = self._task_cfg["env"]["learn"]["baseHeightRewardScale"] self.rew_scales["action_rate"] = self._task_cfg["env"]["learn"]["actionRateRewardScale"] self.rew_scales["hip"] = self._task_cfg["env"]["learn"]["hipRewardScale"] self.rew_scales["fallen_over"] = self._task_cfg["env"]["learn"]["fallenOverRewardScale"] # command ranges self.command_x_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_x"] self.command_y_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_y"] self.command_yaw_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["yaw"] # base init state pos = self._task_cfg["env"]["baseInitState"]["pos"] rot = self._task_cfg["env"]["baseInitState"]["rot"] v_lin = self._task_cfg["env"]["baseInitState"]["vLinear"] v_ang = self._task_cfg["env"]["baseInitState"]["vAngular"] self.base_init_state = pos + rot + v_lin + v_ang # default joint positions self.named_default_joint_angles = self._task_cfg["env"]["defaultJointAngles"] # other self.decimation = self._task_cfg["env"]["control"]["decimation"] self.dt = self.decimation * self._task_cfg["sim"]["dt"] self.max_episode_length_s = self._task_cfg["env"]["learn"]["episodeLength_s"] self.max_episode_length = int(self.max_episode_length_s / self.dt + 0.5) self.push_interval = int(self._task_cfg["env"]["learn"]["pushInterval_s"] / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] self.curriculum = self._task_cfg["env"]["terrain"]["curriculum"] self.base_threshold = 0.2 self.knee_threshold = 0.1 for key in self.rew_scales.keys(): self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._task_cfg["sim"]["default_physics_material"]["static_friction"] = self._task_cfg["env"]["terrain"][ "staticFriction" ] self._task_cfg["sim"]["default_physics_material"]["dynamic_friction"] = self._task_cfg["env"]["terrain"][ "dynamicFriction" ] self._task_cfg["sim"]["default_physics_material"]["restitution"] = self._task_cfg["env"]["terrain"][ "restitution" ] self._task_cfg["sim"]["add_ground_plane"] = False def _get_noise_scale_vec(self, cfg): noise_vec = torch.zeros_like(self.obs_buf[0]) self.add_noise = self._task_cfg["env"]["learn"]["addNoise"] noise_level = self._task_cfg["env"]["learn"]["noiseLevel"] noise_vec[:3] = self._task_cfg["env"]["learn"]["linearVelocityNoise"] * noise_level * self.lin_vel_scale noise_vec[3:6] = self._task_cfg["env"]["learn"]["angularVelocityNoise"] * noise_level * self.ang_vel_scale noise_vec[6:9] = self._task_cfg["env"]["learn"]["gravityNoise"] * noise_level noise_vec[9:12] = 0.0 # commands noise_vec[12:24] = self._task_cfg["env"]["learn"]["dofPositionNoise"] * noise_level * self.dof_pos_scale noise_vec[24:36] = self._task_cfg["env"]["learn"]["dofVelocityNoise"] * noise_level * self.dof_vel_scale noise_vec[36:176] = ( self._task_cfg["env"]["learn"]["heightMeasurementNoise"] * noise_level * self.height_meas_scale ) noise_vec[176:188] = 0.0 # previous actions return noise_vec def init_height_points(self): # 1mx1.6m rectangle (without center line) y = 0.1 * torch.tensor( [-5, -4, -3, -2, -1, 1, 2, 3, 4, 5], device=self.device, requires_grad=False ) # 10-50cm on each side x = 0.1 * torch.tensor( [-8, -7, -6, -5, -4, -3, -2, 2, 3, 4, 5, 6, 7, 8], device=self.device, requires_grad=False ) # 20-80cm on each side grid_x, grid_y = torch.meshgrid(x, y, indexing='ij') self.num_height_points = grid_x.numel() points = torch.zeros(self.num_envs, self.num_height_points, 3, device=self.device, requires_grad=False) points[:, :, 0] = grid_x.flatten() points[:, :, 1] = grid_y.flatten() return points def _create_trimesh(self, create_mesh=True): self.terrain = Terrain(self._task_cfg["env"]["terrain"], num_robots=self.num_envs) vertices = self.terrain.vertices triangles = self.terrain.triangles position = torch.tensor([-self.terrain.border_size, -self.terrain.border_size, 0.0]) if create_mesh: add_terrain_to_stage(stage=self._stage, vertices=vertices, triangles=triangles, position=position) self.height_samples = ( torch.tensor(self.terrain.heightsamples).view(self.terrain.tot_rows, self.terrain.tot_cols).to(self.device) ) def set_up_scene(self, scene) -> None: self._stage = get_current_stage() self.get_terrain() self.get_anymal() super().set_up_scene(scene, collision_filter_global_paths=["/World/terrain"]) self._anymals = AnymalView( prim_paths_expr="/World/envs/.*/anymal", name="anymal_view", track_contact_forces=True ) scene.add(self._anymals) scene.add(self._anymals._knees) scene.add(self._anymals._base) def initialize_views(self, scene): # initialize terrain variables even if we do not need to re-create the terrain mesh self.get_terrain(create_mesh=False) super().initialize_views(scene) if scene.object_exists("anymal_view"): scene.remove_object("anymal_view", registry_only=True) if scene.object_exists("knees_view"): scene.remove_object("knees_view", registry_only=True) if scene.object_exists("base_view"): scene.remove_object("base_view", registry_only=True) self._anymals = AnymalView( prim_paths_expr="/World/envs/.*/anymal", name="anymal_view", track_contact_forces=True ) scene.add(self._anymals) scene.add(self._anymals._knees) scene.add(self._anymals._base) def get_terrain(self, create_mesh=True): self.env_origins = torch.zeros((self.num_envs, 3), device=self.device, requires_grad=False) if not self.curriculum: self._task_cfg["env"]["terrain"]["maxInitMapLevel"] = self._task_cfg["env"]["terrain"]["numLevels"] - 1 self.terrain_levels = torch.randint( 0, self._task_cfg["env"]["terrain"]["maxInitMapLevel"] + 1, (self.num_envs,), device=self.device ) self.terrain_types = torch.randint( 0, self._task_cfg["env"]["terrain"]["numTerrains"], (self.num_envs,), device=self.device ) self._create_trimesh(create_mesh=create_mesh) self.terrain_origins = torch.from_numpy(self.terrain.env_origins).to(self.device).to(torch.float) def get_anymal(self): anymal_translation = torch.tensor([0.0, 0.0, 0.66]) anymal_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0]) anymal = Anymal( prim_path=self.default_zero_env_path + "/anymal", name="anymal", translation=anymal_translation, orientation=anymal_orientation, ) self._sim_config.apply_articulation_settings( "anymal", get_prim_at_path(anymal.prim_path), self._sim_config.parse_actor_config("anymal") ) anymal.set_anymal_properties(self._stage, anymal.prim) anymal.prepare_contacts(self._stage, anymal.prim) self.dof_names = anymal.dof_names for i in range(self.num_actions): name = self.dof_names[i] angle = self.named_default_joint_angles[name] self.default_dof_pos[:, i] = angle def post_reset(self): self.base_init_state = torch.tensor( self.base_init_state, dtype=torch.float, device=self.device, requires_grad=False ) self.timeout_buf = torch.zeros(self.num_envs, device=self.device, dtype=torch.long) # initialize some data used later on self.up_axis_idx = 2 self.common_step_counter = 0 self.extras = {} self.noise_scale_vec = self._get_noise_scale_vec(self._task_cfg) self.commands = torch.zeros( self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False ) # x vel, y vel, yaw vel, heading self.commands_scale = torch.tensor( [self.lin_vel_scale, self.lin_vel_scale, self.ang_vel_scale], device=self.device, requires_grad=False, ) self.gravity_vec = torch.tensor( get_axis_params(-1.0, self.up_axis_idx), dtype=torch.float, device=self.device ).repeat((self.num_envs, 1)) self.forward_vec = torch.tensor([1.0, 0.0, 0.0], dtype=torch.float, device=self.device).repeat( (self.num_envs, 1) ) self.torques = torch.zeros( self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False ) self.actions = torch.zeros( self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False ) self.last_actions = torch.zeros( self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False ) self.feet_air_time = torch.zeros(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False) self.last_dof_vel = torch.zeros((self.num_envs, 12), dtype=torch.float, device=self.device, requires_grad=False) for i in range(self.num_envs): self.env_origins[i] = self.terrain_origins[self.terrain_levels[i], self.terrain_types[i]] self.num_dof = self._anymals.num_dof self.dof_pos = torch.zeros((self.num_envs, self.num_dof), dtype=torch.float, device=self.device) self.dof_vel = torch.zeros((self.num_envs, self.num_dof), dtype=torch.float, device=self.device) self.base_pos = torch.zeros((self.num_envs, 3), dtype=torch.float, device=self.device) self.base_quat = torch.zeros((self.num_envs, 4), dtype=torch.float, device=self.device) self.base_velocities = torch.zeros((self.num_envs, 6), dtype=torch.float, device=self.device) self.knee_pos = torch.zeros((self.num_envs * 4, 3), dtype=torch.float, device=self.device) self.knee_quat = torch.zeros((self.num_envs * 4, 4), dtype=torch.float, device=self.device) indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) self.init_done = True def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) positions_offset = torch_rand_float(0.5, 1.5, (len(env_ids), self.num_dof), device=self.device) velocities = torch_rand_float(-0.1, 0.1, (len(env_ids), self.num_dof), device=self.device) self.dof_pos[env_ids] = self.default_dof_pos[env_ids] * positions_offset self.dof_vel[env_ids] = velocities self.update_terrain_level(env_ids) self.base_pos[env_ids] = self.base_init_state[0:3] self.base_pos[env_ids, 0:3] += self.env_origins[env_ids] self.base_pos[env_ids, 0:2] += torch_rand_float(-0.5, 0.5, (len(env_ids), 2), device=self.device) self.base_quat[env_ids] = self.base_init_state[3:7] self.base_velocities[env_ids] = self.base_init_state[7:] self._anymals.set_world_poses( positions=self.base_pos[env_ids].clone(), orientations=self.base_quat[env_ids].clone(), indices=indices ) self._anymals.set_velocities(velocities=self.base_velocities[env_ids].clone(), indices=indices) self._anymals.set_joint_positions(positions=self.dof_pos[env_ids].clone(), indices=indices) self._anymals.set_joint_velocities(velocities=self.dof_vel[env_ids].clone(), indices=indices) self.commands[env_ids, 0] = torch_rand_float( self.command_x_range[0], self.command_x_range[1], (len(env_ids), 1), device=self.device ).squeeze() self.commands[env_ids, 1] = torch_rand_float( self.command_y_range[0], self.command_y_range[1], (len(env_ids), 1), device=self.device ).squeeze() self.commands[env_ids, 3] = torch_rand_float( self.command_yaw_range[0], self.command_yaw_range[1], (len(env_ids), 1), device=self.device ).squeeze() self.commands[env_ids] *= (torch.norm(self.commands[env_ids, :2], dim=1) > 0.25).unsqueeze( 1 ) # set small commands to zero self.last_actions[env_ids] = 0.0 self.last_dof_vel[env_ids] = 0.0 self.feet_air_time[env_ids] = 0.0 self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 1 # fill extras self.extras["episode"] = {} for key in self.episode_sums.keys(): self.extras["episode"]["rew_" + key] = ( torch.mean(self.episode_sums[key][env_ids]) / self.max_episode_length_s ) self.episode_sums[key][env_ids] = 0.0 self.extras["episode"]["terrain_level"] = torch.mean(self.terrain_levels.float()) def update_terrain_level(self, env_ids): if not self.init_done or not self.curriculum: # do not change on initial reset return root_pos, _ = self._anymals.get_world_poses(clone=False) distance = torch.norm(root_pos[env_ids, :2] - self.env_origins[env_ids, :2], dim=1) self.terrain_levels[env_ids] -= 1 * ( distance < torch.norm(self.commands[env_ids, :2]) * self.max_episode_length_s * 0.25 ) self.terrain_levels[env_ids] += 1 * (distance > self.terrain.env_length / 2) self.terrain_levels[env_ids] = torch.clip(self.terrain_levels[env_ids], 0) % self.terrain.env_rows self.env_origins[env_ids] = self.terrain_origins[self.terrain_levels[env_ids], self.terrain_types[env_ids]] def refresh_dof_state_tensors(self): self.dof_pos = self._anymals.get_joint_positions(clone=False) self.dof_vel = self._anymals.get_joint_velocities(clone=False) def refresh_body_state_tensors(self): self.base_pos, self.base_quat = self._anymals.get_world_poses(clone=False) self.base_velocities = self._anymals.get_velocities(clone=False) self.knee_pos, self.knee_quat = self._anymals._knees.get_world_poses(clone=False) def pre_physics_step(self, actions): if not self._env._world.is_playing(): return self.actions = actions.clone().to(self.device) for i in range(self.decimation): if self._env._world.is_playing(): torques = torch.clip( self.Kp * (self.action_scale * self.actions + self.default_dof_pos - self.dof_pos) - self.Kd * self.dof_vel, -80.0, 80.0, ) self._anymals.set_joint_efforts(torques) self.torques = torques SimulationContext.step(self._env._world, render=False) self.refresh_dof_state_tensors() def post_physics_step(self): self.progress_buf[:] += 1 if self._env._world.is_playing(): self.refresh_dof_state_tensors() self.refresh_body_state_tensors() self.common_step_counter += 1 if self.common_step_counter % self.push_interval == 0: self.push_robots() # prepare quantities self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 0:3]) self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 3:6]) self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec) forward = quat_apply(self.base_quat, self.forward_vec) heading = torch.atan2(forward[:, 1], forward[:, 0]) self.commands[:, 2] = torch.clip(0.5 * wrap_to_pi(self.commands[:, 3] - heading), -1.0, 1.0) self.check_termination() self.get_states() self.calculate_metrics() env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(env_ids) > 0: self.reset_idx(env_ids) self.get_observations() if self.add_noise: self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec self.last_actions[:] = self.actions[:] self.last_dof_vel[:] = self.dof_vel[:] return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def push_robots(self): self.base_velocities[:, 0:2] = torch_rand_float( -1.0, 1.0, (self.num_envs, 2), device=self.device ) # lin vel x/y self._anymals.set_velocities(self.base_velocities) def check_termination(self): self.timeout_buf = torch.where( self.progress_buf >= self.max_episode_length - 1, torch.ones_like(self.timeout_buf), torch.zeros_like(self.timeout_buf), ) knee_contact = ( torch.norm(self._anymals._knees.get_net_contact_forces(clone=False).view(self._num_envs, 4, 3), dim=-1) > 1.0 ) self.has_fallen = (torch.norm(self._anymals._base.get_net_contact_forces(clone=False), dim=1) > 1.0) | ( torch.sum(knee_contact, dim=-1) > 1.0 ) self.reset_buf = self.has_fallen.clone() self.reset_buf = torch.where(self.timeout_buf.bool(), torch.ones_like(self.reset_buf), self.reset_buf) def calculate_metrics(self): # velocity tracking reward lin_vel_error = torch.sum(torch.square(self.commands[:, :2] - self.base_lin_vel[:, :2]), dim=1) ang_vel_error = torch.square(self.commands[:, 2] - self.base_ang_vel[:, 2]) rew_lin_vel_xy = torch.exp(-lin_vel_error / 0.25) * self.rew_scales["lin_vel_xy"] rew_ang_vel_z = torch.exp(-ang_vel_error / 0.25) * self.rew_scales["ang_vel_z"] # other base velocity penalties rew_lin_vel_z = torch.square(self.base_lin_vel[:, 2]) * self.rew_scales["lin_vel_z"] rew_ang_vel_xy = torch.sum(torch.square(self.base_ang_vel[:, :2]), dim=1) * self.rew_scales["ang_vel_xy"] # orientation penalty rew_orient = torch.sum(torch.square(self.projected_gravity[:, :2]), dim=1) * self.rew_scales["orient"] # base height penalty rew_base_height = torch.square(self.base_pos[:, 2] - 0.52) * self.rew_scales["base_height"] # torque penalty rew_torque = torch.sum(torch.square(self.torques), dim=1) * self.rew_scales["torque"] # joint acc penalty rew_joint_acc = torch.sum(torch.square(self.last_dof_vel - self.dof_vel), dim=1) * self.rew_scales["joint_acc"] # fallen over penalty rew_fallen_over = self.has_fallen * self.rew_scales["fallen_over"] # action rate penalty rew_action_rate = ( torch.sum(torch.square(self.last_actions - self.actions), dim=1) * self.rew_scales["action_rate"] ) # cosmetic penalty for hip motion rew_hip = ( torch.sum(torch.abs(self.dof_pos[:, 0:4] - self.default_dof_pos[:, 0:4]), dim=1) * self.rew_scales["hip"] ) # total reward self.rew_buf = ( rew_lin_vel_xy + rew_ang_vel_z + rew_lin_vel_z + rew_ang_vel_xy + rew_orient + rew_base_height + rew_torque + rew_joint_acc + rew_action_rate + rew_hip + rew_fallen_over ) self.rew_buf = torch.clip(self.rew_buf, min=0.0, max=None) # add termination reward self.rew_buf += self.rew_scales["termination"] * self.reset_buf * ~self.timeout_buf # log episode reward sums self.episode_sums["lin_vel_xy"] += rew_lin_vel_xy self.episode_sums["ang_vel_z"] += rew_ang_vel_z self.episode_sums["lin_vel_z"] += rew_lin_vel_z self.episode_sums["ang_vel_xy"] += rew_ang_vel_xy self.episode_sums["orient"] += rew_orient self.episode_sums["torques"] += rew_torque self.episode_sums["joint_acc"] += rew_joint_acc self.episode_sums["action_rate"] += rew_action_rate self.episode_sums["base_height"] += rew_base_height self.episode_sums["hip"] += rew_hip def get_observations(self): self.measured_heights = self.get_heights() heights = ( torch.clip(self.base_pos[:, 2].unsqueeze(1) - 0.5 - self.measured_heights, -1, 1.0) * self.height_meas_scale ) self.obs_buf = torch.cat( ( self.base_lin_vel * self.lin_vel_scale, self.base_ang_vel * self.ang_vel_scale, self.projected_gravity, self.commands[:, :3] * self.commands_scale, self.dof_pos * self.dof_pos_scale, self.dof_vel * self.dof_vel_scale, heights, self.actions, ), dim=-1, ) def get_ground_heights_below_knees(self): points = self.knee_pos.reshape(self.num_envs, 4, 3) points += self.terrain.border_size points = (points / self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0] - 2) py = torch.clip(py, 0, self.height_samples.shape[1] - 2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px + 1, py + 1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale def get_ground_heights_below_base(self): points = self.base_pos.reshape(self.num_envs, 1, 3) points += self.terrain.border_size points = (points / self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0] - 2) py = torch.clip(py, 0, self.height_samples.shape[1] - 2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px + 1, py + 1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale def get_heights(self, env_ids=None): if env_ids: points = quat_apply_yaw( self.base_quat[env_ids].repeat(1, self.num_height_points), self.height_points[env_ids] ) + (self.base_pos[env_ids, 0:3]).unsqueeze(1) else: points = quat_apply_yaw(self.base_quat.repeat(1, self.num_height_points), self.height_points) + ( self.base_pos[:, 0:3] ).unsqueeze(1) points += self.terrain.border_size points = (points / self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0] - 2) py = torch.clip(py, 0, self.height_samples.shape[1] - 2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px + 1, py + 1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale @torch.jit.script def quat_apply_yaw(quat, vec): quat_yaw = quat.clone().view(-1, 4) quat_yaw[:, 1:3] = 0.0 quat_yaw = normalize(quat_yaw) return quat_apply(quat_yaw, vec) @torch.jit.script def wrap_to_pi(angles): angles %= 2 * np.pi angles -= 2 * np.pi * (angles > np.pi) return angles def get_axis_params(value, axis_idx, x_value=0.0, dtype=float, n_dims=3): """construct arguments to `Vec` according to axis index.""" zs = np.zeros((n_dims,)) assert axis_idx < n_dims, "the axis dim should be within the vector dimensions" zs[axis_idx] = 1.0 params = np.where(zs == 1.0, value, zs) params[0] = x_value return list(params.astype(dtype))
29,337
Python
45.568254
120
0.609128
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/shadow_hand.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.shadow_hand import ShadowHand from omniisaacgymenvs.robots.articulations.views.shadow_hand_view import ShadowHandView from omniisaacgymenvs.tasks.shared.in_hand_manipulation import InHandManipulationTask class ShadowHandTask(InHandManipulationTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) InHandManipulationTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self.object_type = self._task_cfg["env"]["objectType"] assert self.object_type in ["block"] self.obs_type = self._task_cfg["env"]["observationType"] if not (self.obs_type in ["openai", "full_no_vel", "full", "full_state"]): raise Exception( "Unknown type of observations!\nobservationType should be one of: [openai, full_no_vel, full, full_state]" ) print("Obs type:", self.obs_type) self.num_obs_dict = { "openai": 42, "full_no_vel": 77, "full": 157, "full_state": 187, } self.asymmetric_obs = self._task_cfg["env"]["asymmetric_observations"] self.use_vel_obs = False self.fingertip_obs = True self.fingertips = [ "robot0:ffdistal", "robot0:mfdistal", "robot0:rfdistal", "robot0:lfdistal", "robot0:thdistal", ] self.num_fingertips = len(self.fingertips) self.object_scale = torch.tensor([1.0, 1.0, 1.0]) self.force_torque_obs_scale = 10.0 num_states = 0 if self.asymmetric_obs: num_states = 187 self._num_observations = self.num_obs_dict[self.obs_type] self._num_actions = 20 self._num_states = num_states InHandManipulationTask.update_config(self) def get_starting_positions(self): self.hand_start_translation = torch.tensor([0.0, 0.0, 0.5], device=self.device) self.hand_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.pose_dy, self.pose_dz = -0.39, 0.10 def get_hand(self): shadow_hand = ShadowHand( prim_path=self.default_zero_env_path + "/shadow_hand", name="shadow_hand", translation=self.hand_start_translation, orientation=self.hand_start_orientation, ) self._sim_config.apply_articulation_settings( "shadow_hand", get_prim_at_path(shadow_hand.prim_path), self._sim_config.parse_actor_config("shadow_hand"), ) shadow_hand.set_shadow_hand_properties(stage=self._stage, shadow_hand_prim=shadow_hand.prim) shadow_hand.set_motor_control_mode(stage=self._stage, shadow_hand_path=shadow_hand.prim_path) def get_hand_view(self, scene): hand_view = ShadowHandView(prim_paths_expr="/World/envs/.*/shadow_hand", name="shadow_hand_view") scene.add(hand_view._fingers) return hand_view def get_observations(self): self.get_object_goal_observations() self.fingertip_pos, self.fingertip_rot = self._hands._fingers.get_world_poses(clone=False) self.fingertip_pos -= self._env_pos.repeat((1, self.num_fingertips)).reshape( self.num_envs * self.num_fingertips, 3 ) self.fingertip_velocities = self._hands._fingers.get_velocities(clone=False) self.hand_dof_pos = self._hands.get_joint_positions(clone=False) self.hand_dof_vel = self._hands.get_joint_velocities(clone=False) if self.obs_type == "full_state" or self.asymmetric_obs: self.vec_sensor_tensor = self._hands.get_measured_joint_forces( joint_indices=self._hands._sensor_indices ).view(self._num_envs, -1) if self.obs_type == "openai": self.compute_fingertip_observations(True) elif self.obs_type == "full_no_vel": self.compute_full_observations(True) elif self.obs_type == "full": self.compute_full_observations() elif self.obs_type == "full_state": self.compute_full_state(False) else: print("Unkown observations type!") if self.asymmetric_obs: self.compute_full_state(True) observations = {self._hands.name: {"obs_buf": self.obs_buf}} return observations def compute_fingertip_observations(self, no_vel=False): if no_vel: # Per https://arxiv.org/pdf/1808.00177.pdf Table 2 # Fingertip positions # Object Position, but not orientation # Relative target orientation # 3*self.num_fingertips = 15 self.obs_buf[:, 0:15] = self.fingertip_pos.reshape(self.num_envs, 15) self.obs_buf[:, 15:18] = self.object_pos self.obs_buf[:, 18:22] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 22:42] = self.actions else: # 13*self.num_fingertips = 65 self.obs_buf[:, 0:65] = self.fingertip_state.reshape(self.num_envs, 65) self.obs_buf[:, 0:15] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips) self.obs_buf[:, 15:35] = self.fingertip_rot.reshape(self.num_envs, 4 * self.num_fingertips) self.obs_buf[:, 35:65] = self.fingertip_velocities.reshape(self.num_envs, 6 * self.num_fingertips) self.obs_buf[:, 65:68] = self.object_pos self.obs_buf[:, 68:72] = self.object_rot self.obs_buf[:, 72:75] = self.object_linvel self.obs_buf[:, 75:78] = self.vel_obs_scale * self.object_angvel self.obs_buf[:, 78:81] = self.goal_pos self.obs_buf[:, 81:85] = self.goal_rot self.obs_buf[:, 85:89] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 89:109] = self.actions def compute_full_observations(self, no_vel=False): if no_vel: self.obs_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.obs_buf[:, 24:37] = self.object_pos self.obs_buf[:, 27:31] = self.object_rot self.obs_buf[:, 31:34] = self.goal_pos self.obs_buf[:, 34:38] = self.goal_rot self.obs_buf[:, 38:42] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 42:57] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips) self.obs_buf[:, 57:77] = self.actions else: self.obs_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.obs_buf[:, self.num_hand_dofs : 2 * self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel self.obs_buf[:, 48:51] = self.object_pos self.obs_buf[:, 51:55] = self.object_rot self.obs_buf[:, 55:58] = self.object_linvel self.obs_buf[:, 58:61] = self.vel_obs_scale * self.object_angvel self.obs_buf[:, 61:64] = self.goal_pos self.obs_buf[:, 64:68] = self.goal_rot self.obs_buf[:, 68:72] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) # (7+6)*self.num_fingertips = 65 self.obs_buf[:, 72:87] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips) self.obs_buf[:, 87:107] = self.fingertip_rot.reshape(self.num_envs, 4 * self.num_fingertips) self.obs_buf[:, 107:137] = self.fingertip_velocities.reshape(self.num_envs, 6 * self.num_fingertips) self.obs_buf[:, 137:157] = self.actions def compute_full_state(self, asymm_obs=False): if asymm_obs: self.states_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.states_buf[:, self.num_hand_dofs : 2 * self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel # self.states_buf[:, 2*self.num_hand_dofs:3*self.num_hand_dofs] = self.force_torque_obs_scale * self.dof_force_tensor obj_obs_start = 2 * self.num_hand_dofs # 48 self.states_buf[:, obj_obs_start : obj_obs_start + 3] = self.object_pos self.states_buf[:, obj_obs_start + 3 : obj_obs_start + 7] = self.object_rot self.states_buf[:, obj_obs_start + 7 : obj_obs_start + 10] = self.object_linvel self.states_buf[:, obj_obs_start + 10 : obj_obs_start + 13] = self.vel_obs_scale * self.object_angvel goal_obs_start = obj_obs_start + 13 # 61 self.states_buf[:, goal_obs_start : goal_obs_start + 3] = self.goal_pos self.states_buf[:, goal_obs_start + 3 : goal_obs_start + 7] = self.goal_rot self.states_buf[:, goal_obs_start + 7 : goal_obs_start + 11] = quat_mul( self.object_rot, quat_conjugate(self.goal_rot) ) # fingertip observations, state(pose and vel) + force-torque sensors num_ft_states = 13 * self.num_fingertips # 65 num_ft_force_torques = 6 * self.num_fingertips # 30 fingertip_obs_start = goal_obs_start + 11 # 72 self.states_buf[ :, fingertip_obs_start : fingertip_obs_start + 3 * self.num_fingertips ] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips) self.states_buf[ :, fingertip_obs_start + 3 * self.num_fingertips : fingertip_obs_start + 7 * self.num_fingertips ] = self.fingertip_rot.reshape(self.num_envs, 4 * self.num_fingertips) self.states_buf[ :, fingertip_obs_start + 7 * self.num_fingertips : fingertip_obs_start + 13 * self.num_fingertips ] = self.fingertip_velocities.reshape(self.num_envs, 6 * self.num_fingertips) self.states_buf[ :, fingertip_obs_start + num_ft_states : fingertip_obs_start + num_ft_states + num_ft_force_torques ] = (self.force_torque_obs_scale * self.vec_sensor_tensor) # obs_end = 72 + 65 + 30 = 167 # obs_total = obs_end + num_actions = 187 obs_end = fingertip_obs_start + num_ft_states + num_ft_force_torques self.states_buf[:, obs_end : obs_end + self.num_actions] = self.actions else: self.obs_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.obs_buf[:, self.num_hand_dofs : 2 * self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel self.obs_buf[:, 2 * self.num_hand_dofs : 3 * self.num_hand_dofs] = ( self.force_torque_obs_scale * self.dof_force_tensor ) obj_obs_start = 3 * self.num_hand_dofs # 48 self.obs_buf[:, obj_obs_start : obj_obs_start + 3] = self.object_pos self.obs_buf[:, obj_obs_start + 3 : obj_obs_start + 7] = self.object_rot self.obs_buf[:, obj_obs_start + 7 : obj_obs_start + 10] = self.object_linvel self.obs_buf[:, obj_obs_start + 10 : obj_obs_start + 13] = self.vel_obs_scale * self.object_angvel goal_obs_start = obj_obs_start + 13 # 61 self.obs_buf[:, goal_obs_start : goal_obs_start + 3] = self.goal_pos self.obs_buf[:, goal_obs_start + 3 : goal_obs_start + 7] = self.goal_rot self.obs_buf[:, goal_obs_start + 7 : goal_obs_start + 11] = quat_mul( self.object_rot, quat_conjugate(self.goal_rot) ) # fingertip observations, state(pose and vel) + force-torque sensors num_ft_states = 13 * self.num_fingertips # 65 num_ft_force_torques = 6 * self.num_fingertips # 30 fingertip_obs_start = goal_obs_start + 11 # 72 self.obs_buf[ :, fingertip_obs_start : fingertip_obs_start + 3 * self.num_fingertips ] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips) self.obs_buf[ :, fingertip_obs_start + 3 * self.num_fingertips : fingertip_obs_start + 7 * self.num_fingertips ] = self.fingertip_rot.reshape(self.num_envs, 4 * self.num_fingertips) self.obs_buf[ :, fingertip_obs_start + 7 * self.num_fingertips : fingertip_obs_start + 13 * self.num_fingertips ] = self.fingertip_velocities.reshape(self.num_envs, 6 * self.num_fingertips) self.obs_buf[ :, fingertip_obs_start + num_ft_states : fingertip_obs_start + num_ft_states + num_ft_force_torques ] = (self.force_torque_obs_scale * self.vec_sensor_tensor) # obs_end = 96 + 65 + 30 = 167 # obs_total = obs_end + num_actions = 187 obs_end = fingertip_obs_start + num_ft_states + num_ft_force_torques self.obs_buf[:, obs_end : obs_end + self.num_actions] = self.actions
15,107
Python
48.211726
129
0.609188
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/franka_cabinet.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import math import numpy as np import torch from omni.isaac.cloner import Cloner from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.prims import RigidPrim, RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.utils.torch.transformations import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.cabinet import Cabinet from omniisaacgymenvs.robots.articulations.franka import Franka from omniisaacgymenvs.robots.articulations.views.cabinet_view import CabinetView from omniisaacgymenvs.robots.articulations.views.franka_view import FrankaView from pxr import Usd, UsdGeom class FrankaCabinetTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self.distX_offset = 0.04 self.dt = 1 / 60.0 self._num_observations = 23 self._num_actions = 9 RLTask.__init__(self, name, env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.action_scale = self._task_cfg["env"]["actionScale"] self.start_position_noise = self._task_cfg["env"]["startPositionNoise"] self.start_rotation_noise = self._task_cfg["env"]["startRotationNoise"] self.num_props = self._task_cfg["env"]["numProps"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.dist_reward_scale = self._task_cfg["env"]["distRewardScale"] self.rot_reward_scale = self._task_cfg["env"]["rotRewardScale"] self.around_handle_reward_scale = self._task_cfg["env"]["aroundHandleRewardScale"] self.open_reward_scale = self._task_cfg["env"]["openRewardScale"] self.finger_dist_reward_scale = self._task_cfg["env"]["fingerDistRewardScale"] self.action_penalty_scale = self._task_cfg["env"]["actionPenaltyScale"] self.finger_close_reward_scale = self._task_cfg["env"]["fingerCloseRewardScale"] def set_up_scene(self, scene) -> None: self.get_franka() self.get_cabinet() if self.num_props > 0: self.get_props() super().set_up_scene(scene, filter_collisions=False) self._frankas = FrankaView(prim_paths_expr="/World/envs/.*/franka", name="franka_view") self._cabinets = CabinetView(prim_paths_expr="/World/envs/.*/cabinet", name="cabinet_view") scene.add(self._frankas) scene.add(self._frankas._hands) scene.add(self._frankas._lfingers) scene.add(self._frankas._rfingers) scene.add(self._cabinets) scene.add(self._cabinets._drawers) if self.num_props > 0: self._props = RigidPrimView( prim_paths_expr="/World/envs/.*/prop/.*", name="prop_view", reset_xform_properties=False ) scene.add(self._props) self.init_data() return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("franka_view"): scene.remove_object("franka_view", registry_only=True) if scene.object_exists("hands_view"): scene.remove_object("hands_view", registry_only=True) if scene.object_exists("lfingers_view"): scene.remove_object("lfingers_view", registry_only=True) if scene.object_exists("rfingers_view"): scene.remove_object("rfingers_view", registry_only=True) if scene.object_exists("cabinet_view"): scene.remove_object("cabinet_view", registry_only=True) if scene.object_exists("drawers_view"): scene.remove_object("drawers_view", registry_only=True) if scene.object_exists("prop_view"): scene.remove_object("prop_view", registry_only=True) self._frankas = FrankaView(prim_paths_expr="/World/envs/.*/franka", name="franka_view") self._cabinets = CabinetView(prim_paths_expr="/World/envs/.*/cabinet", name="cabinet_view") scene.add(self._frankas) scene.add(self._frankas._hands) scene.add(self._frankas._lfingers) scene.add(self._frankas._rfingers) scene.add(self._cabinets) scene.add(self._cabinets._drawers) if self.num_props > 0: self._props = RigidPrimView( prim_paths_expr="/World/envs/.*/prop/.*", name="prop_view", reset_xform_properties=False ) scene.add(self._props) self.init_data() def get_franka(self): franka = Franka(prim_path=self.default_zero_env_path + "/franka", name="franka") self._sim_config.apply_articulation_settings( "franka", get_prim_at_path(franka.prim_path), self._sim_config.parse_actor_config("franka") ) def get_cabinet(self): cabinet = Cabinet(self.default_zero_env_path + "/cabinet", name="cabinet") self._sim_config.apply_articulation_settings( "cabinet", get_prim_at_path(cabinet.prim_path), self._sim_config.parse_actor_config("cabinet") ) def get_props(self): prop_cloner = Cloner() drawer_pos = torch.tensor([0.0515, 0.0, 0.7172]) prop_color = torch.tensor([0.2, 0.4, 0.6]) props_per_row = int(math.ceil(math.sqrt(self.num_props))) prop_size = 0.08 prop_spacing = 0.09 xmin = -0.5 * prop_spacing * (props_per_row - 1) zmin = -0.5 * prop_spacing * (props_per_row - 1) prop_count = 0 prop_pos = [] for j in range(props_per_row): prop_up = zmin + j * prop_spacing for k in range(props_per_row): if prop_count >= self.num_props: break propx = xmin + k * prop_spacing prop_pos.append([propx, prop_up, 0.0]) prop_count += 1 prop = DynamicCuboid( prim_path=self.default_zero_env_path + "/prop/prop_0", name="prop", color=prop_color, size=prop_size, density=100.0, ) self._sim_config.apply_articulation_settings( "prop", get_prim_at_path(prop.prim_path), self._sim_config.parse_actor_config("prop") ) prop_paths = [f"{self.default_zero_env_path}/prop/prop_{j}" for j in range(self.num_props)] prop_cloner.clone( source_prim_path=self.default_zero_env_path + "/prop/prop_0", prim_paths=prop_paths, positions=np.array(prop_pos) + drawer_pos.numpy(), replicate_physics=False, ) def init_data(self) -> None: def get_env_local_pose(env_pos, xformable, device): """Compute pose in env-local coordinates""" world_transform = xformable.ComputeLocalToWorldTransform(0) world_pos = world_transform.ExtractTranslation() world_quat = world_transform.ExtractRotationQuat() px = world_pos[0] - env_pos[0] py = world_pos[1] - env_pos[1] pz = world_pos[2] - env_pos[2] qx = world_quat.imaginary[0] qy = world_quat.imaginary[1] qz = world_quat.imaginary[2] qw = world_quat.real return torch.tensor([px, py, pz, qw, qx, qy, qz], device=device, dtype=torch.float) stage = get_current_stage() hand_pose = get_env_local_pose( self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/franka/panda_link7")), self._device, ) lfinger_pose = get_env_local_pose( self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/franka/panda_leftfinger")), self._device, ) rfinger_pose = get_env_local_pose( self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/franka/panda_rightfinger")), self._device, ) finger_pose = torch.zeros(7, device=self._device) finger_pose[0:3] = (lfinger_pose[0:3] + rfinger_pose[0:3]) / 2.0 finger_pose[3:7] = lfinger_pose[3:7] hand_pose_inv_rot, hand_pose_inv_pos = tf_inverse(hand_pose[3:7], hand_pose[0:3]) grasp_pose_axis = 1 franka_local_grasp_pose_rot, franka_local_pose_pos = tf_combine( hand_pose_inv_rot, hand_pose_inv_pos, finger_pose[3:7], finger_pose[0:3] ) franka_local_pose_pos += torch.tensor([0, 0.04, 0], device=self._device) self.franka_local_grasp_pos = franka_local_pose_pos.repeat((self._num_envs, 1)) self.franka_local_grasp_rot = franka_local_grasp_pose_rot.repeat((self._num_envs, 1)) drawer_local_grasp_pose = torch.tensor([0.3, 0.01, 0.0, 1.0, 0.0, 0.0, 0.0], device=self._device) self.drawer_local_grasp_pos = drawer_local_grasp_pose[0:3].repeat((self._num_envs, 1)) self.drawer_local_grasp_rot = drawer_local_grasp_pose[3:7].repeat((self._num_envs, 1)) self.gripper_forward_axis = torch.tensor([0, 0, 1], device=self._device, dtype=torch.float).repeat( (self._num_envs, 1) ) self.drawer_inward_axis = torch.tensor([-1, 0, 0], device=self._device, dtype=torch.float).repeat( (self._num_envs, 1) ) self.gripper_up_axis = torch.tensor([0, 1, 0], device=self._device, dtype=torch.float).repeat( (self._num_envs, 1) ) self.drawer_up_axis = torch.tensor([0, 0, 1], device=self._device, dtype=torch.float).repeat( (self._num_envs, 1) ) self.franka_default_dof_pos = torch.tensor( [1.157, -1.066, -0.155, -2.239, -1.841, 1.003, 0.469, 0.035, 0.035], device=self._device ) self.actions = torch.zeros((self._num_envs, self.num_actions), device=self._device) def get_observations(self) -> dict: hand_pos, hand_rot = self._frankas._hands.get_world_poses(clone=False) drawer_pos, drawer_rot = self._cabinets._drawers.get_world_poses(clone=False) franka_dof_pos = self._frankas.get_joint_positions(clone=False) franka_dof_vel = self._frankas.get_joint_velocities(clone=False) self.cabinet_dof_pos = self._cabinets.get_joint_positions(clone=False) self.cabinet_dof_vel = self._cabinets.get_joint_velocities(clone=False) self.franka_dof_pos = franka_dof_pos ( self.franka_grasp_rot, self.franka_grasp_pos, self.drawer_grasp_rot, self.drawer_grasp_pos, ) = self.compute_grasp_transforms( hand_rot, hand_pos, self.franka_local_grasp_rot, self.franka_local_grasp_pos, drawer_rot, drawer_pos, self.drawer_local_grasp_rot, self.drawer_local_grasp_pos, ) self.franka_lfinger_pos, self.franka_lfinger_rot = self._frankas._lfingers.get_world_poses(clone=False) self.franka_rfinger_pos, self.franka_rfinger_rot = self._frankas._lfingers.get_world_poses(clone=False) dof_pos_scaled = ( 2.0 * (franka_dof_pos - self.franka_dof_lower_limits) / (self.franka_dof_upper_limits - self.franka_dof_lower_limits) - 1.0 ) to_target = self.drawer_grasp_pos - self.franka_grasp_pos self.obs_buf = torch.cat( ( dof_pos_scaled, franka_dof_vel * self.dof_vel_scale, to_target, self.cabinet_dof_pos[:, 3].unsqueeze(-1), self.cabinet_dof_vel[:, 3].unsqueeze(-1), ), dim=-1, ) observations = {self._frankas.name: {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) targets = self.franka_dof_targets + self.franka_dof_speed_scales * self.dt * self.actions * self.action_scale self.franka_dof_targets[:] = tensor_clamp(targets, self.franka_dof_lower_limits, self.franka_dof_upper_limits) env_ids_int32 = torch.arange(self._frankas.count, dtype=torch.int32, device=self._device) self._frankas.set_joint_position_targets(self.franka_dof_targets, indices=env_ids_int32) def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) num_indices = len(indices) # reset franka pos = tensor_clamp( self.franka_default_dof_pos.unsqueeze(0) + 0.25 * (torch.rand((len(env_ids), self.num_franka_dofs), device=self._device) - 0.5), self.franka_dof_lower_limits, self.franka_dof_upper_limits, ) dof_pos = torch.zeros((num_indices, self._frankas.num_dof), device=self._device) dof_vel = torch.zeros((num_indices, self._frankas.num_dof), device=self._device) dof_pos[:, :] = pos self.franka_dof_targets[env_ids, :] = pos self.franka_dof_pos[env_ids, :] = pos # reset cabinet self._cabinets.set_joint_positions( torch.zeros_like(self._cabinets.get_joint_positions(clone=False)[env_ids]), indices=indices ) self._cabinets.set_joint_velocities( torch.zeros_like(self._cabinets.get_joint_velocities(clone=False)[env_ids]), indices=indices ) # reset props if self.num_props > 0: self._props.set_world_poses( self.default_prop_pos[self.prop_indices[env_ids].flatten()], self.default_prop_rot[self.prop_indices[env_ids].flatten()], self.prop_indices[env_ids].flatten().to(torch.int32), ) self._frankas.set_joint_position_targets(self.franka_dof_targets[env_ids], indices=indices) self._frankas.set_joint_positions(dof_pos, indices=indices) self._frankas.set_joint_velocities(dof_vel, indices=indices) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): self.num_franka_dofs = self._frankas.num_dof self.franka_dof_pos = torch.zeros((self.num_envs, self.num_franka_dofs), device=self._device) dof_limits = self._frankas.get_dof_limits() self.franka_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device) self.franka_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device) self.franka_dof_speed_scales = torch.ones_like(self.franka_dof_lower_limits) self.franka_dof_speed_scales[self._frankas.gripper_indices] = 0.1 self.franka_dof_targets = torch.zeros( (self._num_envs, self.num_franka_dofs), dtype=torch.float, device=self._device ) if self.num_props > 0: self.default_prop_pos, self.default_prop_rot = self._props.get_world_poses() self.prop_indices = torch.arange(self._num_envs * self.num_props, device=self._device).view( self._num_envs, self.num_props ) # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: self.rew_buf[:] = self.compute_franka_reward( self.reset_buf, self.progress_buf, self.actions, self.cabinet_dof_pos, self.franka_grasp_pos, self.drawer_grasp_pos, self.franka_grasp_rot, self.drawer_grasp_rot, self.franka_lfinger_pos, self.franka_rfinger_pos, self.gripper_forward_axis, self.drawer_inward_axis, self.gripper_up_axis, self.drawer_up_axis, self._num_envs, self.dist_reward_scale, self.rot_reward_scale, self.around_handle_reward_scale, self.open_reward_scale, self.finger_dist_reward_scale, self.action_penalty_scale, self.distX_offset, self._max_episode_length, self.franka_dof_pos, self.finger_close_reward_scale, ) def is_done(self) -> None: # reset if drawer is open or max length reached self.reset_buf = torch.where(self.cabinet_dof_pos[:, 3] > 0.39, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where( self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf ) def compute_grasp_transforms( self, hand_rot, hand_pos, franka_local_grasp_rot, franka_local_grasp_pos, drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos, ): global_franka_rot, global_franka_pos = tf_combine( hand_rot, hand_pos, franka_local_grasp_rot, franka_local_grasp_pos ) global_drawer_rot, global_drawer_pos = tf_combine( drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos ) return global_franka_rot, global_franka_pos, global_drawer_rot, global_drawer_pos def compute_franka_reward( self, reset_buf, progress_buf, actions, cabinet_dof_pos, franka_grasp_pos, drawer_grasp_pos, franka_grasp_rot, drawer_grasp_rot, franka_lfinger_pos, franka_rfinger_pos, gripper_forward_axis, drawer_inward_axis, gripper_up_axis, drawer_up_axis, num_envs, dist_reward_scale, rot_reward_scale, around_handle_reward_scale, open_reward_scale, finger_dist_reward_scale, action_penalty_scale, distX_offset, max_episode_length, joint_positions, finger_close_reward_scale, ): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, int, float, float, float, float, float, float, float, float, Tensor) -> Tuple[Tensor, Tensor] # distance from hand to the drawer d = torch.norm(franka_grasp_pos - drawer_grasp_pos, p=2, dim=-1) dist_reward = 1.0 / (1.0 + d**2) dist_reward *= dist_reward dist_reward = torch.where(d <= 0.02, dist_reward * 2, dist_reward) axis1 = tf_vector(franka_grasp_rot, gripper_forward_axis) axis2 = tf_vector(drawer_grasp_rot, drawer_inward_axis) axis3 = tf_vector(franka_grasp_rot, gripper_up_axis) axis4 = tf_vector(drawer_grasp_rot, drawer_up_axis) dot1 = ( torch.bmm(axis1.view(num_envs, 1, 3), axis2.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) ) # alignment of forward axis for gripper dot2 = ( torch.bmm(axis3.view(num_envs, 1, 3), axis4.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) ) # alignment of up axis for gripper # reward for matching the orientation of the hand to the drawer (fingers wrapped) rot_reward = 0.5 * (torch.sign(dot1) * dot1**2 + torch.sign(dot2) * dot2**2) # bonus if left finger is above the drawer handle and right below around_handle_reward = torch.zeros_like(rot_reward) around_handle_reward = torch.where( franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where( franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], around_handle_reward + 0.5, around_handle_reward ), around_handle_reward, ) # reward for distance of each finger from the drawer finger_dist_reward = torch.zeros_like(rot_reward) lfinger_dist = torch.abs(franka_lfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) rfinger_dist = torch.abs(franka_rfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) finger_dist_reward = torch.where( franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where( franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], (0.04 - lfinger_dist) + (0.04 - rfinger_dist), finger_dist_reward, ), finger_dist_reward, ) finger_close_reward = torch.zeros_like(rot_reward) finger_close_reward = torch.where( d <= 0.03, (0.04 - joint_positions[:, 7]) + (0.04 - joint_positions[:, 8]), finger_close_reward ) # regularization on the actions (summed for each environment) action_penalty = torch.sum(actions**2, dim=-1) # how far the cabinet has been opened out open_reward = cabinet_dof_pos[:, 3] * around_handle_reward + cabinet_dof_pos[:, 3] # drawer_top_joint rewards = ( dist_reward_scale * dist_reward + rot_reward_scale * rot_reward + around_handle_reward_scale * around_handle_reward + open_reward_scale * open_reward + finger_dist_reward_scale * finger_dist_reward - action_penalty_scale * action_penalty + finger_close_reward * finger_close_reward_scale ) # bonus for opening drawer properly rewards = torch.where(cabinet_dof_pos[:, 3] > 0.01, rewards + 0.5, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.2, rewards + around_handle_reward, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.39, rewards + (2.0 * around_handle_reward), rewards) # # prevent bad style in opening drawer # rewards = torch.where(franka_lfinger_pos[:, 0] < drawer_grasp_pos[:, 0] - distX_offset, # torch.ones_like(rewards) * -1, rewards) # rewards = torch.where(franka_rfinger_pos[:, 0] < drawer_grasp_pos[:, 0] - distX_offset, # torch.ones_like(rewards) * -1, rewards) return rewards
22,939
Python
41.324723
222
0.599895
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/crazyflie.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import torch from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.crazyflie import Crazyflie from omniisaacgymenvs.robots.articulations.views.crazyflie_view import CrazyflieView EPS = 1e-6 # small constant to avoid divisions by 0 and log(0) class CrazyflieTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._num_observations = 18 self._num_actions = 4 self._crazyflie_position = torch.tensor([0, 0, 1.0]) self._ball_position = torch.tensor([0, 0, 1.0]) RLTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] self.dt = self._task_cfg["sim"]["dt"] # parameters for the crazyflie self.arm_length = 0.05 # parameters for the controller self.motor_damp_time_up = 0.15 self.motor_damp_time_down = 0.15 # I use the multiplier 4, since 4*T ~ time for a step response to finish, where # T is a time constant of the first-order filter self.motor_tau_up = 4 * self.dt / (self.motor_damp_time_up + EPS) self.motor_tau_down = 4 * self.dt / (self.motor_damp_time_down + EPS) # thrust max self.mass = 0.028 self.thrust_to_weight = 1.9 self.motor_assymetry = np.array([1.0, 1.0, 1.0, 1.0]) # re-normalizing to sum-up to 4 self.motor_assymetry = self.motor_assymetry * 4.0 / np.sum(self.motor_assymetry) self.grav_z = -1.0 * self._task_cfg["sim"]["gravity"][2] def set_up_scene(self, scene) -> None: self.get_crazyflie() self.get_target() RLTask.set_up_scene(self, scene) self._copters = CrazyflieView(prim_paths_expr="/World/envs/.*/Crazyflie", name="crazyflie_view") self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball", name="ball_view") scene.add(self._copters) scene.add(self._balls) for i in range(4): scene.add(self._copters.physics_rotors[i]) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("crazyflie_view"): scene.remove_object("crazyflie_view", registry_only=True) if scene.object_exists("ball_view"): scene.remove_object("ball_view", registry_only=True) for i in range(1, 5): scene.remove_object(f"m{i}_prop_view", registry_only=True) self._copters = CrazyflieView(prim_paths_expr="/World/envs/.*/Crazyflie", name="crazyflie_view") self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball", name="ball_view") scene.add(self._copters) scene.add(self._balls) for i in range(4): scene.add(self._copters.physics_rotors[i]) def get_crazyflie(self): copter = Crazyflie( prim_path=self.default_zero_env_path + "/Crazyflie", name="crazyflie", translation=self._crazyflie_position ) self._sim_config.apply_articulation_settings( "crazyflie", get_prim_at_path(copter.prim_path), self._sim_config.parse_actor_config("crazyflie") ) def get_target(self): radius = 0.2 color = torch.tensor([1, 0, 0]) ball = DynamicSphere( prim_path=self.default_zero_env_path + "/ball", translation=self._ball_position, name="target_0", radius=radius, color=color, ) self._sim_config.apply_articulation_settings( "ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball") ) ball.set_collision_enabled(False) def get_observations(self) -> dict: self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False) self.root_velocities = self._copters.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot rot_x = quat_axis(root_quats, 0) rot_y = quat_axis(root_quats, 1) rot_z = quat_axis(root_quats, 2) root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = self.target_positions - root_positions self.obs_buf[..., 3:6] = rot_x self.obs_buf[..., 6:9] = rot_y self.obs_buf[..., 9:12] = rot_z self.obs_buf[..., 12:15] = root_linvels self.obs_buf[..., 15:18] = root_angvels observations = {self._copters.name: {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero(as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) actions = actions.clone().to(self._device) self.actions = actions # clamp to [-1.0, 1.0] thrust_cmds = torch.clamp(actions, min=-1.0, max=1.0) # scale to [0.0, 1.0] thrust_cmds = (thrust_cmds + 1.0) / 2.0 # filtering the thruster and adding noise motor_tau = self.motor_tau_up * torch.ones((self._num_envs, 4), dtype=torch.float32, device=self._device) motor_tau[thrust_cmds < self.thrust_cmds_damp] = self.motor_tau_down motor_tau[motor_tau > 1.0] = 1.0 # Since NN commands thrusts we need to convert to rot vel and back thrust_rot = thrust_cmds**0.5 self.thrust_rot_damp = motor_tau * (thrust_rot - self.thrust_rot_damp) + self.thrust_rot_damp self.thrust_cmds_damp = self.thrust_rot_damp**2 ## Adding noise thrust_noise = 0.01 * torch.randn(4, dtype=torch.float32, device=self._device) thrust_noise = thrust_cmds * thrust_noise self.thrust_cmds_damp = torch.clamp(self.thrust_cmds_damp + thrust_noise, min=0.0, max=1.0) thrusts = self.thrust_max * self.thrust_cmds_damp # thrusts given rotation root_quats = self.root_rot rot_x = quat_axis(root_quats, 0) rot_y = quat_axis(root_quats, 1) rot_z = quat_axis(root_quats, 2) rot_matrix = torch.cat((rot_x, rot_y, rot_z), 1).reshape(-1, 3, 3) force_x = torch.zeros(self._num_envs, 4, dtype=torch.float32, device=self._device) force_y = torch.zeros(self._num_envs, 4, dtype=torch.float32, device=self._device) force_xy = torch.cat((force_x, force_y), 1).reshape(-1, 4, 2) thrusts = thrusts.reshape(-1, 4, 1) thrusts = torch.cat((force_xy, thrusts), 2) thrusts_0 = thrusts[:, 0] thrusts_0 = thrusts_0[:, :, None] thrusts_1 = thrusts[:, 1] thrusts_1 = thrusts_1[:, :, None] thrusts_2 = thrusts[:, 2] thrusts_2 = thrusts_2[:, :, None] thrusts_3 = thrusts[:, 3] thrusts_3 = thrusts_3[:, :, None] mod_thrusts_0 = torch.matmul(rot_matrix, thrusts_0) mod_thrusts_1 = torch.matmul(rot_matrix, thrusts_1) mod_thrusts_2 = torch.matmul(rot_matrix, thrusts_2) mod_thrusts_3 = torch.matmul(rot_matrix, thrusts_3) self.thrusts[:, 0] = torch.squeeze(mod_thrusts_0) self.thrusts[:, 1] = torch.squeeze(mod_thrusts_1) self.thrusts[:, 2] = torch.squeeze(mod_thrusts_2) self.thrusts[:, 3] = torch.squeeze(mod_thrusts_3) # clear actions for reset envs self.thrusts[reset_env_ids] = 0 # spin spinning rotors prop_rot = self.thrust_cmds_damp * self.prop_max_rot self.dof_vel[:, 0] = prop_rot[:, 0] self.dof_vel[:, 1] = -1.0 * prop_rot[:, 1] self.dof_vel[:, 2] = prop_rot[:, 2] self.dof_vel[:, 3] = -1.0 * prop_rot[:, 3] self._copters.set_joint_velocities(self.dof_vel) # apply actions for i in range(4): self._copters.physics_rotors[i].apply_forces(self.thrusts[:, i], indices=self.all_indices) def post_reset(self): thrust_max = self.grav_z * self.mass * self.thrust_to_weight * self.motor_assymetry / 4.0 self.thrusts = torch.zeros((self._num_envs, 4, 3), dtype=torch.float32, device=self._device) self.thrust_cmds_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device) self.thrust_rot_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device) self.thrust_max = torch.tensor(thrust_max, device=self._device, dtype=torch.float32) self.motor_linearity = 1.0 self.prop_max_rot = 433.3 self.target_positions = torch.zeros((self._num_envs, 3), device=self._device, dtype=torch.float32) self.target_positions[:, 2] = 1 self.actions = torch.zeros((self._num_envs, 4), device=self._device, dtype=torch.float32) self.all_indices = torch.arange(self._num_envs, dtype=torch.int32, device=self._device) # Extra info self.extras = {} torch_zeros = lambda: torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) self.episode_sums = { "rew_pos": torch_zeros(), "rew_orient": torch_zeros(), "rew_effort": torch_zeros(), "rew_spin": torch_zeros(), "raw_dist": torch_zeros(), "raw_orient": torch_zeros(), "raw_effort": torch_zeros(), "raw_spin": torch_zeros(), } self.root_pos, self.root_rot = self._copters.get_world_poses() self.root_velocities = self._copters.get_velocities() self.dof_pos = self._copters.get_joint_positions() self.dof_vel = self._copters.get_joint_velocities() self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses(clone=False) self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # control parameters self.thrusts = torch.zeros((self._num_envs, 4, 3), dtype=torch.float32, device=self._device) self.thrust_cmds_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device) self.thrust_rot_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device) self.set_targets(self.all_indices) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (0, 0) and z in (2) self.target_positions[envs_long, 0:2] = torch.zeros((num_sets, 2), device=self._device) self.target_positions[envs_long, 2] = torch.ones(num_sets, device=self._device) * 2.0 # shift the target up so it visually aligns better ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long] ball_pos[:, 2] += 0.0 self._balls.set_world_poses(ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids) def reset_idx(self, env_ids): num_resets = len(env_ids) self.dof_pos[env_ids, :] = torch_rand_float(-0.0, 0.0, (num_resets, self._copters.num_dof), device=self._device) self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.0, 0.0, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.0, 0.0, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float(-0.0, 0.0, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._copters.set_joint_positions(self.dof_pos[env_ids], indices=env_ids) self._copters.set_joint_velocities(self.dof_vel[env_ids], indices=env_ids) self._copters.set_world_poses(root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._copters.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.thrust_cmds_damp[env_ids] = 0 self.thrust_rot_damp[env_ids] = 0 # fill extras self.extras["episode"] = {} for key in self.episode_sums.keys(): self.extras["episode"][key] = torch.mean(self.episode_sums[key][env_ids]) / self._max_episode_length self.episode_sums[key][env_ids] = 0.0 def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_angvels = self.root_velocities[:, 3:] # pos reward target_dist = torch.sqrt(torch.square(self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + target_dist) self.target_dist = target_dist self.root_positions = root_positions # orient reward ups = quat_axis(root_quats, 2) self.orient_z = ups[..., 2] up_reward = torch.clamp(ups[..., 2], min=0.0, max=1.0) # effort reward effort = torch.square(self.actions).sum(-1) effort_reward = 0.05 * torch.exp(-0.5 * effort) # spin reward spin = torch.square(root_angvels).sum(-1) spin_reward = 0.01 * torch.exp(-1.0 * spin) # combined reward self.rew_buf[:] = pos_reward + pos_reward * (up_reward + spin_reward) - effort_reward # log episode reward sums self.episode_sums["rew_pos"] += pos_reward self.episode_sums["rew_orient"] += up_reward self.episode_sums["rew_effort"] += effort_reward self.episode_sums["rew_spin"] += spin_reward # log raw info self.episode_sums["raw_dist"] += target_dist self.episode_sums["raw_orient"] += ups[..., 2] self.episode_sums["raw_effort"] += effort self.episode_sums["raw_spin"] += spin def is_done(self) -> None: # resets due to misbehavior ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 5.0, ones, die) # z >= 0.5 & z <= 5.0 & up > 0 die = torch.where(self.root_positions[..., 2] < 0.5, ones, die) die = torch.where(self.root_positions[..., 2] > 5.0, ones, die) die = torch.where(self.orient_z < 0.0, ones, die) # resets due to episode length self.reset_buf[:] = torch.where(self.progress_buf >= self._max_episode_length - 1, ones, die)
16,830
Python
41.502525
120
0.61937
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/aliengo_terrain.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.rotations import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.aliengo import Aliengo from omniisaacgymenvs.robots.articulations.views.aliengo_view import AliengoView from omniisaacgymenvs.tasks.utils.anymal_terrain_generator import * from omniisaacgymenvs.utils.terrain_utils.terrain_utils import * from pxr import UsdLux, UsdPhysics import time class AliengoTerrainTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.height_samples = None self.custom_origins = False self.init_done = False self._env_spacing = 0.0 self._num_observations = 188 self._num_actions = 12 self.update_config(sim_config) RLTask.__init__(self, name, env) self.height_points = self.init_height_points() self.measured_heights = None # joint positions offsets self.default_dof_pos = torch.zeros( (self.num_envs, 12), dtype=torch.float, device=self.device, requires_grad=False ) # reward episode sums torch_zeros = lambda: torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) self.episode_sums = { "lin_vel_xy": torch_zeros(), "lin_vel_z": torch_zeros(), "ang_vel_z": torch_zeros(), "ang_vel_xy": torch_zeros(), "orient": torch_zeros(), "torques": torch_zeros(), "joint_acc": torch_zeros(), "base_height": torch_zeros(), "air_time": torch_zeros(), "collision": torch_zeros(), "stumble": torch_zeros(), "action_rate": torch_zeros(), "hip": torch_zeros(), "foot_clearance": torch_zeros(), "joint_power": torch_zeros(), "smoothness": torch_zeros(), "power_distribution": torch_zeros(), } return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # normalization self.lin_vel_scale = self._task_cfg["env"]["learn"]["linearVelocityScale"] self.ang_vel_scale = self._task_cfg["env"]["learn"]["angularVelocityScale"] self.dof_pos_scale = self._task_cfg["env"]["learn"]["dofPositionScale"] self.dof_vel_scale = self._task_cfg["env"]["learn"]["dofVelocityScale"] self.height_meas_scale = self._task_cfg["env"]["learn"]["heightMeasurementScale"] self.action_scale = self._task_cfg["env"]["control"]["actionScale"] # reward scales self.rew_scales = {} self.rew_scales["termination"] = self._task_cfg["env"]["learn"]["terminalReward"] self.rew_scales["lin_vel_xy"] = self._task_cfg["env"]["learn"]["linearVelocityXYRewardScale"] self.rew_scales["lin_vel_z"] = self._task_cfg["env"]["learn"]["linearVelocityZRewardScale"] self.rew_scales["ang_vel_z"] = self._task_cfg["env"]["learn"]["angularVelocityZRewardScale"] self.rew_scales["ang_vel_xy"] = self._task_cfg["env"]["learn"]["angularVelocityXYRewardScale"] self.rew_scales["orient"] = self._task_cfg["env"]["learn"]["orientationRewardScale"] self.rew_scales["torque"] = self._task_cfg["env"]["learn"]["torqueRewardScale"] self.rew_scales["joint_acc"] = self._task_cfg["env"]["learn"]["jointAccRewardScale"] self.rew_scales["base_height"] = self._task_cfg["env"]["learn"]["baseHeightRewardScale"] self.rew_scales["action_rate"] = self._task_cfg["env"]["learn"]["actionRateRewardScale"] self.rew_scales["hip"] = self._task_cfg["env"]["learn"]["hipRewardScale"] self.rew_scales["fallen_over"] = self._task_cfg["env"]["learn"]["fallenOverRewardScale"] self.rew_scales["foot_clearance"] = self._task_cfg["env"]["learn"]["footClearanceRewardScale"] self.rew_scales["joint_power"] = self._task_cfg["env"]["learn"]["jointPowerRewardScale"] self.rew_scales["smoothness"] = self._task_cfg["env"]["learn"]["smoothnessRewardScale"] self.rew_scales["power_distribution"] = self._task_cfg["env"]["learn"]["powerDistributionRewardScale"] # command ranges self.command_x_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_x"] self.command_y_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_y"] self.command_yaw_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["yaw"] # base init state pos = self._task_cfg["env"]["baseInitState"]["pos"] rot = self._task_cfg["env"]["baseInitState"]["rot"] v_lin = self._task_cfg["env"]["baseInitState"]["vLinear"] v_ang = self._task_cfg["env"]["baseInitState"]["vAngular"] self.base_init_state = pos + rot + v_lin + v_ang # default joint positions self.named_default_joint_angles = self._task_cfg["env"]["defaultJointAngles"] # other self.decimation = self._task_cfg["env"]["control"]["decimation"] self.dt = self.decimation * self._task_cfg["sim"]["dt"] self.max_episode_length_s = self._task_cfg["env"]["learn"]["episodeLength_s"] self.max_episode_length = int(self.max_episode_length_s / self.dt + 0.5) self.push_interval = int(self._task_cfg["env"]["learn"]["pushInterval_s"] / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] self.curriculum = self._task_cfg["env"]["terrain"]["curriculum"] self.base_threshold = 0.2 self.knee_threshold = 0.1 for key in self.rew_scales.keys(): self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._task_cfg["sim"]["default_physics_material"]["static_friction"] = self._task_cfg["env"]["terrain"][ "staticFriction" ] self._task_cfg["sim"]["default_physics_material"]["dynamic_friction"] = self._task_cfg["env"]["terrain"][ "dynamicFriction" ] self._task_cfg["sim"]["default_physics_material"]["restitution"] = self._task_cfg["env"]["terrain"][ "restitution" ] self._task_cfg["sim"]["add_ground_plane"] = False def _get_noise_scale_vec(self, cfg): noise_vec = torch.zeros_like(self.obs_buf[0]) self.add_noise = self._task_cfg["env"]["learn"]["addNoise"] noise_level = self._task_cfg["env"]["learn"]["noiseLevel"] noise_vec[:3] = self._task_cfg["env"]["learn"]["linearVelocityNoise"] * noise_level * self.lin_vel_scale noise_vec[3:6] = self._task_cfg["env"]["learn"]["angularVelocityNoise"] * noise_level * self.ang_vel_scale noise_vec[6:9] = self._task_cfg["env"]["learn"]["gravityNoise"] * noise_level noise_vec[9:12] = 0.0 # commands noise_vec[12:24] = self._task_cfg["env"]["learn"]["dofPositionNoise"] * noise_level * self.dof_pos_scale noise_vec[24:36] = self._task_cfg["env"]["learn"]["dofVelocityNoise"] * noise_level * self.dof_vel_scale noise_vec[36:176] = ( self._task_cfg["env"]["learn"]["heightMeasurementNoise"] * noise_level * self.height_meas_scale ) noise_vec[176:188] = 0.0 # previous actions return noise_vec def init_height_points(self): # 1mx1.6m rectangle (without center line) y = 0.1 * torch.tensor( [-5, -4, -3, -2, -1, 1, 2, 3, 4, 5], device=self.device, requires_grad=False ) # 10-50cm on each side x = 0.1 * torch.tensor( [-8, -7, -6, -5, -4, -3, -2, 2, 3, 4, 5, 6, 7, 8], device=self.device, requires_grad=False ) # 20-80cm on each side grid_x, grid_y = torch.meshgrid(x, y, indexing='ij') self.num_height_points = grid_x.numel() points = torch.zeros(self.num_envs, self.num_height_points, 3, device=self.device, requires_grad=False) points[:, :, 0] = grid_x.flatten() points[:, :, 1] = grid_y.flatten() return points def _create_trimesh(self, create_mesh=True): self.terrain = Terrain(self._task_cfg["env"]["terrain"], num_robots=self.num_envs) vertices = self.terrain.vertices triangles = self.terrain.triangles position = torch.tensor([-self.terrain.border_size, -self.terrain.border_size, 0.0]) if create_mesh: add_terrain_to_stage(stage=self._stage, vertices=vertices, triangles=triangles, position=position) self.height_samples = ( torch.tensor(self.terrain.heightsamples).view(self.terrain.tot_rows, self.terrain.tot_cols).to(self.device) ) def set_up_scene(self, scene) -> None: self._stage = get_current_stage() self.get_terrain() # self.env_origins = torch.zeros((self.num_envs, 3), device=self.device, requires_grad=False) # self.height_samples = ( # torch.zeros((1200, 2000)).to(self.device) # ) self.get_aliengo() super().set_up_scene(scene, collision_filter_global_paths=["/World/terrain"]) # super().set_up_scene(scene) self._aliengos = AliengoView( prim_paths_expr="/World/envs/.*/aliengo", name="aliengo_view", track_contact_forces=True, stage = self._stage ) scene.add(self._aliengos) scene.add(self._aliengos._knees) scene.add(self._aliengos._base) # scene.add_default_ground_plane(prim_path = "/World/defaultGroundPlane") def initialize_views(self, scene): # initialize terrain variables even if we do not need to re-create the terrain mesh self.get_terrain(create_mesh=False) super().initialize_views(scene) if scene.object_exists("aliengo_view"): scene.remove_object("aliengo_view", registry_only=True) if scene.object_exists("knees_view"): scene.remove_object("knees_view", registry_only=True) if scene.object_exists("base_view"): scene.remove_object("base_view", registry_only=True) self._aliengos = AliengoView( prim_paths_expr="/World/envs/.*/aliengo", name="aliengo_view", track_contact_forces=True ) scene.add(self._aliengos) scene.add(self._aliengos._knees) scene.add(self._aliengos._base) def get_terrain(self, create_mesh=True): self.env_origins = torch.zeros((self.num_envs, 3), device=self.device, requires_grad=False) if not self.curriculum: self._task_cfg["env"]["terrain"]["maxInitMapLevel"] = self._task_cfg["env"]["terrain"]["numLevels"] - 1 self.terrain_levels = torch.randint( 0, self._task_cfg["env"]["terrain"]["maxInitMapLevel"] + 1, (self.num_envs,), device=self.device ) self.terrain_types = torch.randint( 0, self._task_cfg["env"]["terrain"]["numTerrains"], (self.num_envs,), device=self.device ) self._create_trimesh(create_mesh=create_mesh) self.terrain_origins = torch.from_numpy(self.terrain.env_origins).to(self.device).to(torch.float) def get_aliengo(self): aliengo_translation = torch.tensor([0.0, 0.0, 0.42]) aliengo_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0]) aliengo = Aliengo( prim_path=self.default_zero_env_path + "/aliengo", name="aliengo", usd_path="./robots/models/aliengo/urdf/aliengo/aliengo.usd", translation=aliengo_translation, orientation=aliengo_orientation, ) self._sim_config.apply_articulation_settings( "aliengo", get_prim_at_path(aliengo.prim_path), self._sim_config.parse_actor_config("aliengo") ) aliengo.set_aliengo_properties(self._stage, aliengo.prim) aliengo.prepare_contacts(self._stage, aliengo.prim) self.dof_names = aliengo.dof_names for i in range(self.num_actions): name = self.dof_names[i] angle = self.named_default_joint_angles[name] self.default_dof_pos[:, i] = angle def post_reset(self): self.base_init_state = torch.tensor( self.base_init_state, dtype=torch.float, device=self.device, requires_grad=False ) self.timeout_buf = torch.zeros(self.num_envs, device=self.device, dtype=torch.long) # initialize some data used later on self.up_axis_idx = 2 self.common_step_counter = 0 self.extras = {} self.noise_scale_vec = self._get_noise_scale_vec(self._task_cfg) self.commands = torch.zeros( self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False ) # x vel, y vel, yaw vel, heading self.commands_scale = torch.tensor( [self.lin_vel_scale, self.lin_vel_scale, self.ang_vel_scale], device=self.device, requires_grad=False, ) self.gravity_vec = torch.tensor( get_axis_params(-1.0, self.up_axis_idx), dtype=torch.float, device=self.device ).repeat((self.num_envs, 1)) self.forward_vec = torch.tensor([1.0, 0.0, 0.0], dtype=torch.float, device=self.device).repeat( (self.num_envs, 1) ) self.torques = torch.zeros( self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False ) self.actions = torch.zeros( self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False ) self.last_actions = torch.zeros( self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False ) self.last_last_actions = torch.zeros( self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False ) self.feet_air_time = torch.zeros(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False) self.last_dof_vel = torch.zeros((self.num_envs, 12), dtype=torch.float, device=self.device, requires_grad=False) for i in range(self.num_envs): self.env_origins[i] = self.terrain_origins[self.terrain_levels[i], self.terrain_types[i]] # self.env_origins[i] = torch.tensor([0.0, 0.0, 0.0]).cuda() self.num_dof = self._aliengos.num_dof self.dof_pos = torch.zeros((self.num_envs, self.num_dof), dtype=torch.float, device=self.device) self.dof_vel = torch.zeros((self.num_envs, self.num_dof), dtype=torch.float, device=self.device) self.base_pos = torch.zeros((self.num_envs, 3), dtype=torch.float, device=self.device) self.base_quat = torch.zeros((self.num_envs, 4), dtype=torch.float, device=self.device) self.base_velocities = torch.zeros((self.num_envs, 6), dtype=torch.float, device=self.device) self.knee_pos = torch.zeros((self.num_envs * 4, 3), dtype=torch.float, device=self.device) self.knee_quat = torch.zeros((self.num_envs * 4, 4), dtype=torch.float, device=self.device) indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) self.init_done = True def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) positions_offset = torch_rand_float(0.5, 1.5, (len(env_ids), self.num_dof), device=self.device) velocities = torch_rand_float(-0.1, 0.1, (len(env_ids), self.num_dof), device=self.device) self.dof_pos[env_ids] = self.default_dof_pos[env_ids] * positions_offset self.dof_vel[env_ids] = velocities self.update_terrain_level(env_ids) self.base_pos[env_ids] = self.base_init_state[0:3] self.base_pos[env_ids, 0:3] += self.env_origins[env_ids] self.base_pos[env_ids, 0:2] += torch_rand_float(-0.5, 0.5, (len(env_ids), 2), device=self.device) self.base_quat[env_ids] = self.base_init_state[3:7] self.base_velocities[env_ids] = self.base_init_state[7:] self._aliengos.set_world_poses( positions=self.base_pos[env_ids].clone(), orientations=self.base_quat[env_ids].clone(), indices=indices ) self._aliengos.set_velocities(velocities=self.base_velocities[env_ids].clone(), indices=indices) self._aliengos.set_joint_positions(positions=self.dof_pos[env_ids].clone(), indices=indices) self._aliengos.set_joint_velocities(velocities=self.dof_vel[env_ids].clone(), indices=indices) self.commands[env_ids, 0] = torch_rand_float( self.command_x_range[0], self.command_x_range[1], (len(env_ids), 1), device=self.device ).squeeze() self.commands[env_ids, 1] = torch_rand_float( self.command_y_range[0], self.command_y_range[1], (len(env_ids), 1), device=self.device ).squeeze() self.commands[env_ids, 3] = torch_rand_float( self.command_yaw_range[0], self.command_yaw_range[1], (len(env_ids), 1), device=self.device ).squeeze() self.commands[env_ids] *= (torch.norm(self.commands[env_ids, :2], dim=1) > 0.25).unsqueeze( 1 ) # set small commands to zero self.last_actions[env_ids] = 0.0 self.last_last_actions[env_ids] = 0.0 self.last_dof_vel[env_ids] = 0.0 self.feet_air_time[env_ids] = 0.0 self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 1 # fill extras self.extras["episode"] = {} for key in self.episode_sums.keys(): self.extras["episode"]["rew_" + key] = ( torch.mean(self.episode_sums[key][env_ids]) / self.max_episode_length_s ) self.episode_sums[key][env_ids] = 0.0 self.extras["episode"]["terrain_level"] = torch.mean(self.terrain_levels.float()) def update_terrain_level(self, env_ids): if not self.init_done or not self.curriculum: # do not change on initial reset return root_pos, _ = self._aliengos.get_world_poses(clone=False) distance = torch.norm(root_pos[env_ids, :2] - self.env_origins[env_ids, :2], dim=1) self.terrain_levels[env_ids] -= 1 * ( distance < torch.norm(self.commands[env_ids, :2]) * self.max_episode_length_s * 0.25 ) self.terrain_levels[env_ids] += 1 * (distance > self.terrain.env_length / 2) self.terrain_levels[env_ids] = torch.clip(self.terrain_levels[env_ids], 0) % self.terrain.env_rows self.env_origins[env_ids] = self.terrain_origins[self.terrain_levels[env_ids], self.terrain_types[env_ids]] def refresh_dof_state_tensors(self): self.dof_pos = self._aliengos.get_joint_positions(clone=False) self.dof_vel = self._aliengos.get_joint_velocities(clone=False) def refresh_body_state_tensors(self): self.base_pos, self.base_quat = self._aliengos.get_world_poses(clone=False) self.base_velocities = self._aliengos.get_velocities(clone=False) self.knee_pos, self.knee_quat = self._aliengos._knees.get_world_poses(clone=False) self.feet_pos, self.feet_quat = self._aliengos._feet.get_world_poses(clone = False) self.feet_vel = self._aliengos._feet.get_velocities(clone = False) self.feet_pos = self.feet_pos.reshape(self._num_envs, 4, 3) self.feet_vel = self.feet_vel.reshape(self._num_envs, 4, 6) def pre_physics_step(self, actions): if not self._env._world.is_playing(): return self.actions = actions.clone().to(self.device) for i in range(self.decimation): if self._env._world.is_playing(): torques = torch.clip( self.Kp * (self.action_scale * self.actions + self.default_dof_pos - self.dof_pos) - self.Kd * self.dof_vel, -80.0, 80.0, ) self._aliengos.set_joint_efforts(torques) self.torques = torques SimulationContext.step(self._env._world, render=False) self.refresh_dof_state_tensors() def post_physics_step(self): self.progress_buf[:] += 1 if self._env._world.is_playing(): self.refresh_dof_state_tensors() self.refresh_body_state_tensors() self.common_step_counter += 1 if self.common_step_counter % self.push_interval == 0: self.push_robots() # prepare quantities self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 0:3]) self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 3:6]) # Foot clearance reward needed curr_footpos_translated = self.feet_pos - self.base_pos.unsqueeze(1) curr_footvel_translated = self.feet_vel[:, :, 0:3] - self.base_velocities[:, 0:3].unsqueeze(1) self.foot_pos_body_frame = torch.zeros(self._num_envs, 4, 3, device = self._device) self.foot_vel_body_frame = torch.zeros(self._num_envs, 4, 3, device = self._device) for i in range(4): self.foot_pos_body_frame[:, i, :] = quat_rotate_inverse(self.base_quat, curr_footpos_translated[:, i, :]) self.foot_vel_body_frame[:, i, :] = quat_rotate_inverse(self.base_quat, curr_footvel_translated[:, i, :]) # Resume preparing quantities self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec) forward = quat_apply(self.base_quat, self.forward_vec) heading = torch.atan2(forward[:, 1], forward[:, 0]) self.commands[:, 2] = torch.clip(0.5 * wrap_to_pi(self.commands[:, 3] - heading), -1.0, 1.0) self.check_termination() self.get_states() self.calculate_metrics() env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(env_ids) > 0: self.reset_idx(env_ids) self.get_observations() if self.add_noise: self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec self.last_last_actions[:] = self.last_actions[:] self.last_actions[:] = self.actions[:] self.last_dof_vel[:] = self.dof_vel[:] return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def push_robots(self): self.base_velocities[:, 0:2] = torch_rand_float( -1.0, 1.0, (self.num_envs, 2), device=self.device ) # lin vel x/y self._aliengos.set_velocities(self.base_velocities) def check_termination(self): self.timeout_buf = torch.where( self.progress_buf >= self.max_episode_length - 1, torch.ones_like(self.timeout_buf), torch.zeros_like(self.timeout_buf), ) knee_contact = ( torch.norm(self._aliengos._knees.get_net_contact_forces(clone=False).view(self._num_envs, 4, 3), dim=-1) > 1.0 ) self.has_fallen = (torch.norm(self._aliengos._base.get_net_contact_forces(clone=False), dim=1) > 1.0) | ( torch.sum(knee_contact, dim=-1) > 1.0 ) self.reset_buf = self.has_fallen.clone() self.reset_buf = torch.where(self.timeout_buf.bool(), torch.ones_like(self.reset_buf), self.reset_buf) def calculate_metrics(self): # velocity tracking reward lin_vel_error = torch.sum(torch.square(self.commands[:, :2] - self.base_lin_vel[:, :2]), dim=1) ang_vel_error = torch.square(self.commands[:, 2] - self.base_ang_vel[:, 2]) rew_lin_vel_xy = torch.exp(-lin_vel_error / 0.25) * self.rew_scales["lin_vel_xy"] rew_ang_vel_z = torch.exp(-ang_vel_error / 0.25) * self.rew_scales["ang_vel_z"] # other base velocity penalties rew_lin_vel_z = torch.square(self.base_lin_vel[:, 2]) * self.rew_scales["lin_vel_z"] rew_ang_vel_xy = torch.sum(torch.square(self.base_ang_vel[:, :2]), dim=1) * self.rew_scales["ang_vel_xy"] # orientation penalty rew_orient = torch.sum(torch.square(self.projected_gravity[:, :2]), dim=1) * self.rew_scales["orient"] # base height penalty rew_base_height = torch.square(self.base_pos[:, 2] - 0.40) * self.rew_scales["base_height"] # torque penalty rew_torque = torch.sum(torch.square(self.torques), dim=1) * self.rew_scales["torque"] # joint acc penalty rew_joint_acc = torch.sum(torch.square(self.last_dof_vel - self.dof_vel), dim=1) * self.rew_scales["joint_acc"] # joint power penalty rew_joint_power = torch.sum(torch.abs(self.dof_vel) * torch.abs(self.torques), dim = 1) * self.rew_scales["joint_power"] # fallen over penalty rew_fallen_over = self.has_fallen * self.rew_scales["fallen_over"] # foot clearance penalty height_error = torch.square(self.foot_pos_body_frame[:, :, 2] + 0.22).view(self._num_envs, -1) foot_lateral_vel = torch.sqrt(torch.sum(torch.square(self.foot_vel_body_frame[:, :, :2]), dim = 2)).view(self._num_envs, -1) rew_foot_clearance = torch.sum(height_error * foot_lateral_vel, dim = 1) * self.rew_scales["foot_clearance"] # action rate penalty rew_action_rate = ( torch.sum(torch.square(self.last_actions - self.actions), dim=1) * self.rew_scales["action_rate"] ) # smoothness penalty rew_smoothness = ( torch.sum(torch.square(self.actions - self.last_actions * 2.0 + self.last_last_actions), dim = 1) * self.rew_scales["smoothness"] ) # power distribution penalty rew_power_distribution = ( torch.var(torch.abs(self.dof_vel) * torch.abs(self.torques), dim = 1) * self.rew_scales["power_distribution"] ) # cosmetic penalty for hip motion rew_hip = ( torch.sum(torch.abs(self.dof_pos[:, 0:4] - self.default_dof_pos[:, 0:4]), dim=1) * self.rew_scales["hip"] ) # total reward self.rew_buf = ( rew_lin_vel_xy + rew_ang_vel_z + rew_lin_vel_z + rew_ang_vel_xy + rew_orient + rew_base_height + rew_torque + rew_joint_acc + rew_action_rate + rew_hip + rew_fallen_over + rew_foot_clearance + rew_joint_power + rew_smoothness + rew_power_distribution ) # self.rew_buf = torch.clip(self.rew_buf, min=0.0, max=None) # add termination reward self.rew_buf += self.rew_scales["termination"] * self.reset_buf * ~self.timeout_buf # log episode reward sums self.episode_sums["lin_vel_xy"] += rew_lin_vel_xy self.episode_sums["ang_vel_z"] += rew_ang_vel_z self.episode_sums["lin_vel_z"] += rew_lin_vel_z self.episode_sums["ang_vel_xy"] += rew_ang_vel_xy self.episode_sums["orient"] += rew_orient self.episode_sums["torques"] += rew_torque self.episode_sums["joint_acc"] += rew_joint_acc self.episode_sums["action_rate"] += rew_action_rate self.episode_sums["base_height"] += rew_base_height self.episode_sums["hip"] += rew_hip self.episode_sums["foot_clearance"] += rew_foot_clearance self.episode_sums["joint_power"] += rew_joint_power self.episode_sums["smoothness"] += rew_smoothness self.episode_sums["power_distribution"] += rew_power_distribution def get_observations(self): self.measured_heights = self.get_heights() heights = ( torch.clip(self.base_pos[:, 2].unsqueeze(1) - 0.5 - self.measured_heights, -1, 1.0) * self.height_meas_scale ) self.obs_buf = torch.cat( ( self.base_lin_vel * self.lin_vel_scale, self.base_ang_vel * self.ang_vel_scale, self.projected_gravity, self.commands[:, :3] * self.commands_scale, self.dof_pos * self.dof_pos_scale, self.dof_vel * self.dof_vel_scale, heights, self.actions, ), dim=-1, ) def get_ground_heights_below_knees(self): points = self.knee_pos.reshape(self.num_envs, 4, 3) points += self.terrain.border_size points = (points / self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0] - 2) py = torch.clip(py, 0, self.height_samples.shape[1] - 2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px + 1, py + 1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale def get_ground_heights_below_base(self): points = self.base_pos.reshape(self.num_envs, 1, 3) points += self.terrain.border_size points = (points / self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0] - 2) py = torch.clip(py, 0, self.height_samples.shape[1] - 2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px + 1, py + 1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale def get_heights(self, env_ids=None): if env_ids: points = quat_apply_yaw( self.base_quat[env_ids].repeat(1, self.num_height_points), self.height_points[env_ids] ) + (self.base_pos[env_ids, 0:3]).unsqueeze(1) else: points = quat_apply_yaw(self.base_quat.repeat(1, self.num_height_points), self.height_points) + ( self.base_pos[:, 0:3] ).unsqueeze(1) points += self.terrain.border_size # points += 20 points = (points / self.terrain.horizontal_scale).long() # points = (points / 0.1).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0] - 2) py = torch.clip(py, 0, self.height_samples.shape[1] - 2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px + 1, py + 1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale # return heights.view(self.num_envs, -1) * 0.005 @torch.jit.script def quat_apply_yaw(quat, vec): quat_yaw = quat.clone().view(-1, 4) quat_yaw[:, 1:3] = 0.0 quat_yaw = normalize(quat_yaw) return quat_apply(quat_yaw, vec) @torch.jit.script def wrap_to_pi(angles): angles %= 2 * np.pi angles -= 2 * np.pi * (angles > np.pi) return angles def get_axis_params(value, axis_idx, x_value=0.0, dtype=float, n_dims=3): """construct arguments to `Vec` according to axis index.""" zs = np.zeros((n_dims,)) assert axis_idx < n_dims, "the axis dim should be within the vector dimensions" zs[axis_idx] = 1.0 params = np.where(zs == 1.0, value, zs) params[0] = x_value return list(params.astype(dtype))
33,261
Python
46.858993
141
0.609483
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/humanoid.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.maths import tensor_clamp, torch_rand_float, unscale from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.humanoid import Humanoid from omniisaacgymenvs.tasks.shared.locomotion import LocomotionTask from pxr import PhysxSchema class HumanoidLocomotionTask(LocomotionTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._num_observations = 87 self._num_actions = 21 self._humanoid_positions = torch.tensor([0, 0, 1.34]) LocomotionTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config LocomotionTask.update_config(self) def set_up_scene(self, scene) -> None: self.get_humanoid() RLTask.set_up_scene(self, scene) self._humanoids = ArticulationView( prim_paths_expr="/World/envs/.*/Humanoid/torso", name="humanoid_view", reset_xform_properties=False ) scene.add(self._humanoids) return def initialize_views(self, scene): RLTask.initialize_views(self, scene) if scene.object_exists("humanoid_view"): scene.remove_object("humanoid_view", registry_only=True) self._humanoids = ArticulationView( prim_paths_expr="/World/envs/.*/Humanoid/torso", name="humanoid_view", reset_xform_properties=False ) scene.add(self._humanoids) def get_humanoid(self): humanoid = Humanoid( prim_path=self.default_zero_env_path + "/Humanoid", name="Humanoid", translation=self._humanoid_positions ) self._sim_config.apply_articulation_settings( "Humanoid", get_prim_at_path(humanoid.prim_path), self._sim_config.parse_actor_config("Humanoid") ) def get_robot(self): return self._humanoids def post_reset(self): self.joint_gears = torch.tensor( [ 67.5000, # lower_waist 67.5000, # lower_waist 67.5000, # right_upper_arm 67.5000, # right_upper_arm 67.5000, # left_upper_arm 67.5000, # left_upper_arm 67.5000, # pelvis 45.0000, # right_lower_arm 45.0000, # left_lower_arm 45.0000, # right_thigh: x 135.0000, # right_thigh: y 45.0000, # right_thigh: z 45.0000, # left_thigh: x 135.0000, # left_thigh: y 45.0000, # left_thigh: z 90.0000, # right_knee 90.0000, # left_knee 22.5, # right_foot 22.5, # right_foot 22.5, # left_foot 22.5, # left_foot ], device=self._device, ) self.max_motor_effort = torch.max(self.joint_gears) self.motor_effort_ratio = self.joint_gears / self.max_motor_effort dof_limits = self._humanoids.get_dof_limits() self.dof_limits_lower = dof_limits[0, :, 0].to(self._device) self.dof_limits_upper = dof_limits[0, :, 1].to(self._device) force_links = ["left_foot", "right_foot"] self._sensor_indices = torch.tensor( [self._humanoids._body_indices[j] for j in force_links], device=self._device, dtype=torch.long ) LocomotionTask.post_reset(self) def get_dof_at_limit_cost(self): return get_dof_at_limit_cost(self.obs_buf, self.motor_effort_ratio, self.joints_at_limit_cost_scale) @torch.jit.script def get_dof_at_limit_cost(obs_buf, motor_effort_ratio, joints_at_limit_cost_scale): # type: (Tensor, Tensor, float) -> Tensor scaled_cost = joints_at_limit_cost_scale * (torch.abs(obs_buf[:, 12:33]) - 0.98) / 0.02 dof_at_limit_cost = torch.sum( (torch.abs(obs_buf[:, 12:33]) > 0.98) * scaled_cost * motor_effort_ratio.unsqueeze(0), dim=-1 ) return dof_at_limit_cost
5,980
Python
41.119718
117
0.651003
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/franka_deformable.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.franka import Franka from omniisaacgymenvs.robots.articulations.views.franka_view import FrankaView from omni.isaac.core.prims import RigidPrim, RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage, add_reference_to_stage from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.torch.transformations import * from omni.isaac.core.utils.torch.rotations import * import omni.isaac.core.utils.deformable_mesh_utils as deformableMeshUtils from omni.isaac.core.materials.deformable_material import DeformableMaterial from omni.isaac.core.prims.soft.deformable_prim import DeformablePrim from omni.isaac.core.prims.soft.deformable_prim_view import DeformablePrimView from omni.physx.scripts import deformableUtils, physicsUtils import numpy as np import torch import math from pxr import Usd, UsdGeom, Gf, UsdPhysics, PhysxSchema class FrankaDeformableTask(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self.update_config(sim_config) self.dt = 1/60. self._num_observations = 39 self._num_actions = 9 RLTask.__init__(self, name, env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.action_scale = self._task_cfg["env"]["actionScale"] def set_up_scene(self, scene) -> None: self.stage = get_current_stage() self.assets_root_path = get_assets_root_path() if self.assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self.get_franka() self.get_beaker() self.get_deformable_tube() super().set_up_scene(scene=scene, replicate_physics=False) self._frankas = FrankaView(prim_paths_expr="/World/envs/.*/franka", name="franka_view") self.deformableView = DeformablePrimView( prim_paths_expr="/World/envs/.*/deformableTube/tube/mesh", name="deformabletube_view" ) scene.add(self.deformableView) scene.add(self._frankas) scene.add(self._frankas._hands) scene.add(self._frankas._lfingers) scene.add(self._frankas._rfingers) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("franka_view"): scene.remove_object("franka_view", registry_only=True) if scene.object_exists("hands_view"): scene.remove_object("hands_view", registry_only=True) if scene.object_exists("lfingers_view"): scene.remove_object("lfingers_view", registry_only=True) if scene.object_exists("rfingers_view"): scene.remove_object("rfingers_view", registry_only=True) if scene.object_exists("deformabletube_view"): scene.remove_object("deformabletube_view", registry_only=True) self._frankas = FrankaView( prim_paths_expr="/World/envs/.*/franka", name="franka_view" ) self.deformableView = DeformablePrimView( prim_paths_expr="/World/envs/.*/deformableTube/tube/mesh", name="deformabletube_view" ) scene.add(self._frankas) scene.add(self._frankas._hands) scene.add(self._frankas._lfingers) scene.add(self._frankas._rfingers) scene.add(self.deformableView) def get_franka(self): franka = Franka( prim_path=self.default_zero_env_path + "/franka", name="franka", orientation=torch.tensor([1.0, 0.0, 0.0, 0.0]), translation=torch.tensor([0.0, 0.0, 0.0]), ) self._sim_config.apply_articulation_settings( "franka", get_prim_at_path(franka.prim_path), self._sim_config.parse_actor_config("franka") ) franka.set_franka_properties(stage=self.stage, prim=franka.prim) def get_beaker(self): _usd_path = self.assets_root_path + "/Isaac/Props/Beaker/beaker_500ml.usd" mesh_path = self.default_zero_env_path + "/beaker" add_reference_to_stage(_usd_path, mesh_path) beaker = RigidPrim( prim_path=mesh_path+"/beaker", name="beaker", position=torch.tensor([0.5, 0.2, 0.095]), ) self._sim_config.apply_articulation_settings("beaker", beaker.prim, self._sim_config.parse_actor_config("beaker")) def get_deformable_tube(self): _usd_path = self.assets_root_path + "/Isaac/Props/DeformableTube/tube.usd" mesh_path = self.default_zero_env_path + "/deformableTube/tube" add_reference_to_stage(_usd_path, mesh_path) skin_mesh = get_prim_at_path(mesh_path) physicsUtils.setup_transform_as_scale_orient_translate(skin_mesh) physicsUtils.set_or_add_translate_op(skin_mesh, (0.6, 0.0, 0.005)) physicsUtils.set_or_add_orient_op(skin_mesh, Gf.Rotation(Gf.Vec3d([0, 0, 1]), 90).GetQuat()) def get_observations(self) -> dict: franka_dof_pos = self._frankas.get_joint_positions(clone=False) franka_dof_vel = self._frankas.get_joint_velocities(clone=False) self.franka_dof_pos = franka_dof_pos dof_pos_scaled = ( 2.0 * (franka_dof_pos - self.franka_dof_lower_limits) / (self.franka_dof_upper_limits - self.franka_dof_lower_limits) - 1.0 ) self.lfinger_pos, _ = self._frankas._lfingers.get_world_poses(clone=False) self.rfinger_pos, _ = self._frankas._rfingers.get_world_poses(clone=False) self.gripper_site_pos = (self.lfinger_pos + self.rfinger_pos)/2 - self._env_pos tube_positions = self.deformableView.get_simulation_mesh_nodal_positions(clone=False) tube_velocities = self.deformableView.get_simulation_mesh_nodal_velocities(clone=False) self.tube_front_positions = tube_positions[:, 200, :] - self._env_pos self.tube_front_velocities = tube_velocities[:, 200, :] self.tube_back_positions = tube_positions[:, -1, :] - self._env_pos self.tube_back_velocities = tube_velocities[:, -1, :] front_to_gripper = self.tube_front_positions - self.gripper_site_pos to_front_goal = self.front_goal_pos - self.tube_front_positions to_back_goal = self.back_goal_pos - self.tube_back_positions self.obs_buf = torch.cat( ( dof_pos_scaled, franka_dof_vel * self.dof_vel_scale, front_to_gripper, to_front_goal, to_back_goal, self.tube_front_positions, self.tube_front_velocities, self.tube_back_positions, self.tube_back_velocities, ), dim=-1, ) observations = { self._frankas.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self._env._world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) targets = self.franka_dof_targets + self.franka_dof_speed_scales * self.dt * self.actions * self.action_scale self.franka_dof_targets[:] = tensor_clamp(targets, self.franka_dof_lower_limits, self.franka_dof_upper_limits) self.franka_dof_targets[:, -1] = self.franka_dof_targets[:, -2] env_ids_int32 = torch.arange(self._frankas.count, dtype=torch.int32, device=self._device) self._frankas.set_joint_position_targets(self.franka_dof_targets, indices=env_ids_int32) def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) num_indices = len(indices) pos = self.franka_default_dof_pos dof_pos = torch.zeros((num_indices, self._frankas.num_dof), device=self._device) dof_vel = torch.zeros((num_indices, self._frankas.num_dof), device=self._device) dof_pos[:, :] = pos self.franka_dof_targets[env_ids, :] = pos self.franka_dof_pos[env_ids, :] = pos self._frankas.set_joint_position_targets(self.franka_dof_targets[env_ids], indices=indices) self._frankas.set_joint_positions(dof_pos, indices=indices) self._frankas.set_joint_velocities(dof_vel, indices=indices) self.deformableView.set_simulation_mesh_nodal_positions(self.initial_tube_positions[env_ids], indices) self.deformableView.set_simulation_mesh_nodal_velocities(self.initial_tube_velocities[env_ids], indices) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): self.franka_default_dof_pos = torch.tensor( [0.00, 0.63, 0.00, -2.15, 0.00, 2.76, 0.75, 0.02, 0.02], device=self._device ) self.actions = torch.zeros((self._num_envs, self.num_actions), device=self._device) self.front_goal_pos = torch.tensor([0.36, 0.0, 0.23], device=self._device).repeat((self._num_envs, 1)) self.back_goal_pos = torch.tensor([0.5, 0.2, 0.0], device=self._device).repeat((self._num_envs, 1)) self.goal_hand_rot = torch.tensor([0.0, 1.0, 0.0, 0.0], device=self._device).repeat((self.num_envs, 1)) self.lfinger_pos, _ = self._frankas._lfingers.get_world_poses(clone=False) self.rfinger_pos, _ = self._frankas._rfingers.get_world_poses(clone=False) self.gripper_site_pos = (self.lfinger_pos + self.rfinger_pos)/2 - self._env_pos self.initial_tube_positions = self.deformableView.get_simulation_mesh_nodal_positions() self.initial_tube_velocities = self.deformableView.get_simulation_mesh_nodal_velocities() self.tube_front_positions = self.initial_tube_positions[:, 0, :] - self._env_pos self.tube_front_velocities = self.initial_tube_velocities[:, 0, :] self.tube_back_positions = self.initial_tube_positions[:, -1, :] - self._env_pos self.tube_back_velocities = self.initial_tube_velocities[:, -1, :] self.num_franka_dofs = self._frankas.num_dof self.franka_dof_pos = torch.zeros((self.num_envs, self.num_franka_dofs), device=self._device) dof_limits = self._frankas.get_dof_limits() self.franka_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device) self.franka_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device) self.franka_dof_speed_scales = torch.ones_like(self.franka_dof_lower_limits) self.franka_dof_speed_scales[self._frankas.gripper_indices] = 0.1 self.franka_dof_targets = torch.zeros( (self._num_envs, self.num_franka_dofs), dtype=torch.float, device=self._device ) # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: goal_distance_error = torch.norm(self.tube_back_positions[:, 0:2] - self.back_goal_pos[:, 0:2], p = 2, dim = -1) goal_dist_reward = 1.0 / (5*goal_distance_error + .025) current_z_level = self.tube_back_positions[:, 2:3] z_lift_level = torch.where( goal_distance_error < 0.07, torch.zeros_like(current_z_level), torch.ones_like(current_z_level)*0.18 ) front_lift_error = torch.norm(current_z_level - z_lift_level, p = 2, dim = -1) front_lift_reward = 1.0 / (5*front_lift_error + .025) rewards = goal_dist_reward + 4*front_lift_reward self.rew_buf[:] = rewards def is_done(self) -> None: self.reset_buf = torch.where(self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.tube_front_positions[:, 0] < 0, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.tube_front_positions[:, 0] > 1.0, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.tube_front_positions[:, 1] < -1.0, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.tube_front_positions[:, 1] > 1.0, torch.ones_like(self.reset_buf), self.reset_buf)
13,322
Python
42.825658
136
0.641045
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/go1widow_terrain.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.rotations import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.go1widow import Go1Widow from omniisaacgymenvs.robots.articulations.views.go1widow_view import Go1WidowView from omniisaacgymenvs.tasks.utils.anymal_terrain_generator import * from omniisaacgymenvs.utils.terrain_utils.terrain_utils import * from pxr import UsdLux, UsdPhysics import time class Go1WidowTerrainTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.height_samples = None self.custom_origins = False self.init_done = False self._env_spacing = 0.0 self._num_observations = 204 self._num_actions = 12 self.num_joints = 20 self.update_config(sim_config) RLTask.__init__(self, name, env) self.height_points = self.init_height_points() self.measured_heights = None # joint positions offsets self.default_dof_pos = torch.zeros( (self.num_envs, self.num_joints), dtype=torch.float, device=self.device, requires_grad=False ) # reward episode sums torch_zeros = lambda: torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) self.episode_sums = { "lin_vel_xy": torch_zeros(), "lin_vel_z": torch_zeros(), "ang_vel_z": torch_zeros(), "ang_vel_xy": torch_zeros(), "orient": torch_zeros(), "torques": torch_zeros(), "joint_acc": torch_zeros(), "base_height": torch_zeros(), "air_time": torch_zeros(), "collision": torch_zeros(), "stumble": torch_zeros(), "action_rate": torch_zeros(), "hip": torch_zeros(), } return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # normalization self.lin_vel_scale = self._task_cfg["env"]["learn"]["linearVelocityScale"] self.ang_vel_scale = self._task_cfg["env"]["learn"]["angularVelocityScale"] self.dof_pos_scale = self._task_cfg["env"]["learn"]["dofPositionScale"] self.dof_vel_scale = self._task_cfg["env"]["learn"]["dofVelocityScale"] self.height_meas_scale = self._task_cfg["env"]["learn"]["heightMeasurementScale"] self.action_scale = self._task_cfg["env"]["control"]["actionScale"] # reward scales self.rew_scales = {} self.rew_scales["termination"] = self._task_cfg["env"]["learn"]["terminalReward"] self.rew_scales["lin_vel_xy"] = self._task_cfg["env"]["learn"]["linearVelocityXYRewardScale"] self.rew_scales["lin_vel_z"] = self._task_cfg["env"]["learn"]["linearVelocityZRewardScale"] self.rew_scales["ang_vel_z"] = self._task_cfg["env"]["learn"]["angularVelocityZRewardScale"] self.rew_scales["ang_vel_xy"] = self._task_cfg["env"]["learn"]["angularVelocityXYRewardScale"] self.rew_scales["orient"] = self._task_cfg["env"]["learn"]["orientationRewardScale"] self.rew_scales["torque"] = self._task_cfg["env"]["learn"]["torqueRewardScale"] self.rew_scales["joint_acc"] = self._task_cfg["env"]["learn"]["jointAccRewardScale"] self.rew_scales["base_height"] = self._task_cfg["env"]["learn"]["baseHeightRewardScale"] self.rew_scales["action_rate"] = self._task_cfg["env"]["learn"]["actionRateRewardScale"] self.rew_scales["hip"] = self._task_cfg["env"]["learn"]["hipRewardScale"] self.rew_scales["fallen_over"] = self._task_cfg["env"]["learn"]["fallenOverRewardScale"] # command ranges self.command_x_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_x"] self.command_y_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_y"] self.command_yaw_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["yaw"] # base init state pos = self._task_cfg["env"]["baseInitState"]["pos"] rot = self._task_cfg["env"]["baseInitState"]["rot"] v_lin = self._task_cfg["env"]["baseInitState"]["vLinear"] v_ang = self._task_cfg["env"]["baseInitState"]["vAngular"] self.base_init_state = pos + rot + v_lin + v_ang # default joint positions self.named_default_joint_angles = self._task_cfg["env"]["defaultJointAngles"] # other self.decimation = self._task_cfg["env"]["control"]["decimation"] self.dt = self.decimation * self._task_cfg["sim"]["dt"] self.max_episode_length_s = self._task_cfg["env"]["learn"]["episodeLength_s"] self.max_episode_length = int(self.max_episode_length_s / self.dt + 0.5) self.push_interval = int(self._task_cfg["env"]["learn"]["pushInterval_s"] / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] self.curriculum = self._task_cfg["env"]["terrain"]["curriculum"] self.base_threshold = 0.2 self.knee_threshold = 0.1 for key in self.rew_scales.keys(): self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._task_cfg["sim"]["default_physics_material"]["static_friction"] = self._task_cfg["env"]["terrain"][ "staticFriction" ] self._task_cfg["sim"]["default_physics_material"]["dynamic_friction"] = self._task_cfg["env"]["terrain"][ "dynamicFriction" ] self._task_cfg["sim"]["default_physics_material"]["restitution"] = self._task_cfg["env"]["terrain"][ "restitution" ] self._task_cfg["sim"]["add_ground_plane"] = False def _get_noise_scale_vec(self, cfg): noise_vec = torch.zeros_like(self.obs_buf[0]) self.add_noise = self._task_cfg["env"]["learn"]["addNoise"] noise_level = self._task_cfg["env"]["learn"]["noiseLevel"] noise_vec[:3] = self._task_cfg["env"]["learn"]["linearVelocityNoise"] * noise_level * self.lin_vel_scale noise_vec[3:6] = self._task_cfg["env"]["learn"]["angularVelocityNoise"] * noise_level * self.ang_vel_scale noise_vec[6:9] = self._task_cfg["env"]["learn"]["gravityNoise"] * noise_level noise_vec[9:12] = 0.0 # commands noise_vec[12:24] = self._task_cfg["env"]["learn"]["dofPositionNoise"] * noise_level * self.dof_pos_scale noise_vec[24:36] = self._task_cfg["env"]["learn"]["dofVelocityNoise"] * noise_level * self.dof_vel_scale noise_vec[36:176] = ( self._task_cfg["env"]["learn"]["heightMeasurementNoise"] * noise_level * self.height_meas_scale ) noise_vec[176:188] = 0.0 # previous actions return noise_vec def init_height_points(self): # 1mx1.6m rectangle (without center line) y = 0.1 * torch.tensor( [-5, -4, -3, -2, -1, 1, 2, 3, 4, 5], device=self.device, requires_grad=False ) # 10-50cm on each side x = 0.1 * torch.tensor( [-8, -7, -6, -5, -4, -3, -2, 2, 3, 4, 5, 6, 7, 8], device=self.device, requires_grad=False ) # 20-80cm on each side grid_x, grid_y = torch.meshgrid(x, y, indexing='ij') self.num_height_points = grid_x.numel() points = torch.zeros(self.num_envs, self.num_height_points, 3, device=self.device, requires_grad=False) points[:, :, 0] = grid_x.flatten() points[:, :, 1] = grid_y.flatten() return points def _create_trimesh(self, create_mesh=True): self.terrain = Terrain(self._task_cfg["env"]["terrain"], num_robots=self.num_envs) vertices = self.terrain.vertices triangles = self.terrain.triangles position = torch.tensor([-self.terrain.border_size, -self.terrain.border_size, 0.0]) if create_mesh: add_terrain_to_stage(stage=self._stage, vertices=vertices, triangles=triangles, position=position) self.height_samples = ( torch.tensor(self.terrain.heightsamples).view(self.terrain.tot_rows, self.terrain.tot_cols).to(self.device) ) def set_up_scene(self, scene) -> None: self._stage = get_current_stage() self.get_terrain() # self.env_origins = torch.zeros((self.num_envs, 3), device=self.device, requires_grad=False) # self.height_samples = ( # torch.zeros((1200, 2000)).to(self.device) # ) self.get_go1widow() super().set_up_scene(scene, collision_filter_global_paths=["/World/terrain"]) # super().set_up_scene(scene) self._go1widow = Go1WidowView( prim_paths_expr="/World/envs/.*/go1widow", name="go1widow_view", track_contact_forces=True, stage = self._stage ) scene.add(self._go1widow) scene.add(self._go1widow._knees) scene.add(self._go1widow._base) # scene.add_default_ground_plane(prim_path = "/World/defaultGroundPlane") def initialize_views(self, scene): # initialize terrain variables even if we do not need to re-create the terrain mesh self.get_terrain(create_mesh=False) super().initialize_views(scene) if scene.object_exists("go1widow_view"): scene.remove_object("go1widow_view", registry_only=True) if scene.object_exists("knees_view"): scene.remove_object("knees_view", registry_only=True) if scene.object_exists("base_view"): scene.remove_object("base_view", registry_only=True) self._go1wiow = Go1WidowView( prim_paths_expr="/World/envs/.*/go1widow", name="go1widow_view", track_contact_forces=True ) scene.add(self._go1widow) scene.add(self._go1widow._knees) scene.add(self._go1widow._base) def get_terrain(self, create_mesh=True): self.env_origins = torch.zeros((self.num_envs, 3), device=self.device, requires_grad=False) if not self.curriculum: self._task_cfg["env"]["terrain"]["maxInitMapLevel"] = self._task_cfg["env"]["terrain"]["numLevels"] - 1 self.terrain_levels = torch.randint( 0, self._task_cfg["env"]["terrain"]["maxInitMapLevel"] + 1, (self.num_envs,), device=self.device ) self.terrain_types = torch.randint( 0, self._task_cfg["env"]["terrain"]["numTerrains"], (self.num_envs,), device=self.device ) self._create_trimesh(create_mesh=create_mesh) self.terrain_origins = torch.from_numpy(self.terrain.env_origins).to(self.device).to(torch.float) def get_go1widow(self): go1widow_translation = torch.tensor([0.0, 0.0, 0.45]) go1widow_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0]) go1widow = Go1Widow( prim_path=self.default_zero_env_path + "/go1widow", name="go1widow", usd_path="/home/elgceben/OmniIsaacGymEnvs/resources/widowGo1/urdf/widowGo1/widowGo1.usd", # usd_path="omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Robots/Unitree/go1.usd", translation=go1widow_translation, orientation=go1widow_orientation, ) self._sim_config.apply_articulation_settings( "go1widow", get_prim_at_path(go1widow.prim_path), self._sim_config.parse_actor_config("go1widow") ) go1widow.set_go1widow_properties(self._stage, go1widow.prim) go1widow.prepare_contacts(self._stage, go1widow.prim) self.dof_names = go1widow.dof_names for i in range(self.num_actions): name = self.dof_names[i] angle = self.named_default_joint_angles[name] self.default_dof_pos[:, i] = angle def _keep_arm_fixed(self): self.dof_pos[:, self.num_actions:] = self.default_dof_pos[:, self.num_actions:] self.dof_vel[:, self.num_actions:] = 0.0 self._go1widow.set_joint_positions(positions=self.dof_pos[:].clone(), indices=torch.arange(self.num_envs, device=self.device)) self._go1widow.set_joint_velocities(velocities=self.dof_vel[:].clone(), indices=torch.arange(self.num_envs, device=self.device)) def post_reset(self): self.base_init_state = torch.tensor( self.base_init_state, dtype=torch.float, device=self.device, requires_grad=False ) self.timeout_buf = torch.zeros(self.num_envs, device=self.device, dtype=torch.long) # initialize some data used later on self.up_axis_idx = 2 self.common_step_counter = 0 self.extras = {} self.noise_scale_vec = self._get_noise_scale_vec(self._task_cfg) self.commands = torch.zeros( self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False ) # x vel, y vel, yaw vel, heading self.commands_scale = torch.tensor( [self.lin_vel_scale, self.lin_vel_scale, self.ang_vel_scale], device=self.device, requires_grad=False, ) self.gravity_vec = torch.tensor( get_axis_params(-1.0, self.up_axis_idx), dtype=torch.float, device=self.device ).repeat((self.num_envs, 1)) self.forward_vec = torch.tensor([1.0, 0.0, 0.0], dtype=torch.float, device=self.device).repeat( (self.num_envs, 1) ) self.torques = torch.zeros( self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False ) self.actions = torch.zeros( self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False ) self.last_actions = torch.zeros( self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False ) self.feet_air_time = torch.zeros(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False) self.last_dof_vel = torch.zeros((self.num_envs, self.num_joints), dtype=torch.float, device=self.device, requires_grad=False) for i in range(self.num_envs): self.env_origins[i] = self.terrain_origins[self.terrain_levels[i], self.terrain_types[i]] # self.env_origins[i] = torch.tensor([0.0, 0.0, 0.0]).cuda() self.num_dof = self._go1widow.num_dof self.dof_pos = torch.zeros((self.num_envs, self.num_dof), dtype=torch.float, device=self.device) self.dof_vel = torch.zeros((self.num_envs, self.num_dof), dtype=torch.float, device=self.device) self.base_pos = torch.zeros((self.num_envs, 3), dtype=torch.float, device=self.device) self.base_quat = torch.zeros((self.num_envs, 4), dtype=torch.float, device=self.device) self.base_velocities = torch.zeros((self.num_envs, 6), dtype=torch.float, device=self.device) self.knee_pos = torch.zeros((self.num_envs * 4, 3), dtype=torch.float, device=self.device) self.knee_quat = torch.zeros((self.num_envs * 4, 4), dtype=torch.float, device=self.device) indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) self.init_done = True def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) positions_offset = torch_rand_float(0.5, 1.5, (len(env_ids), self.num_dof), device=self.device) velocities = torch_rand_float(-0.1, 0.1, (len(env_ids), self.num_dof), device=self.device) self.dof_pos[env_ids] = self.default_dof_pos[env_ids] * positions_offset self.dof_vel[env_ids] = velocities self.update_terrain_level(env_ids) self.base_pos[env_ids] = self.base_init_state[0:3] self.base_pos[env_ids, 0:3] += self.env_origins[env_ids] self.base_pos[env_ids, 0:2] += torch_rand_float(-0.5, 0.5, (len(env_ids), 2), device=self.device) self.base_quat[env_ids] = self.base_init_state[3:7] self.base_velocities[env_ids] = self.base_init_state[7:] self._go1widow.set_world_poses( positions=self.base_pos[env_ids].clone(), orientations=self.base_quat[env_ids].clone(), indices=indices ) self._go1widow.set_velocities(velocities=self.base_velocities[env_ids].clone(), indices=indices) self._go1widow.set_joint_positions(positions=self.dof_pos[env_ids].clone(), indices=indices) self._go1widow.set_joint_velocities(velocities=self.dof_vel[env_ids].clone(), indices=indices) self.commands[env_ids, 0] = torch_rand_float( self.command_x_range[0], self.command_x_range[1], (len(env_ids), 1), device=self.device ).squeeze() self.commands[env_ids, 1] = torch_rand_float( self.command_y_range[0], self.command_y_range[1], (len(env_ids), 1), device=self.device ).squeeze() self.commands[env_ids, 3] = torch_rand_float( self.command_yaw_range[0], self.command_yaw_range[1], (len(env_ids), 1), device=self.device ).squeeze() self.commands[env_ids] *= (torch.norm(self.commands[env_ids, :2], dim=1) > 0.25).unsqueeze( 1 ) # set small commands to zero self.last_actions[env_ids] = 0.0 self.last_dof_vel[env_ids] = 0.0 self.feet_air_time[env_ids] = 0.0 self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 1 # fill extras self.extras["episode"] = {} for key in self.episode_sums.keys(): self.extras["episode"]["rew_" + key] = ( torch.mean(self.episode_sums[key][env_ids]) / self.max_episode_length_s ) self.episode_sums[key][env_ids] = 0.0 self.extras["episode"]["terrain_level"] = torch.mean(self.terrain_levels.float()) def update_terrain_level(self, env_ids): if not self.init_done or not self.curriculum: # do not change on initial reset return root_pos, _ = self._go1widow.get_world_poses(clone=False) distance = torch.norm(root_pos[env_ids, :2] - self.env_origins[env_ids, :2], dim=1) self.terrain_levels[env_ids] -= 1 * ( distance < torch.norm(self.commands[env_ids, :2]) * self.max_episode_length_s * 0.25 ) self.terrain_levels[env_ids] += 1 * (distance > self.terrain.env_length / 2) self.terrain_levels[env_ids] = torch.clip(self.terrain_levels[env_ids], 0) % self.terrain.env_rows self.env_origins[env_ids] = self.terrain_origins[self.terrain_levels[env_ids], self.terrain_types[env_ids]] def refresh_dof_state_tensors(self): self.dof_pos = self._go1widow.get_joint_positions(clone=False) self.dof_vel = self._go1widow.get_joint_velocities(clone=False) def refresh_body_state_tensors(self): self.base_pos, self.base_quat = self._go1widow.get_world_poses(clone=False) self.base_velocities = self._go1widow.get_velocities(clone=False) self.knee_pos, self.knee_quat = self._go1widow._knees.get_world_poses(clone=False) def pre_physics_step(self, actions): if not self._env._world.is_playing(): return # self._keep_arm_fixed() self.actions = actions.clone().to(self.device) actions = torch.cat((self.actions, self.default_dof_pos[:, self.num_actions:]), dim=1) for i in range(self.decimation): if self._env._world.is_playing(): torques = torch.clip( self.Kp * (self.action_scale * actions + self.default_dof_pos - self.dof_pos) - self.Kd * self.dof_vel, -80.0, 80.0, ) self._go1widow.set_joint_efforts(torques) self.torques = torques SimulationContext.step(self._env._world, render=False) self.refresh_dof_state_tensors() def post_physics_step(self): self.progress_buf[:] += 1 if self._env._world.is_playing(): self.refresh_dof_state_tensors() self.refresh_body_state_tensors() self.common_step_counter += 1 if self.common_step_counter % self.push_interval == 0: self.push_robots() # prepare quantities self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 0:3]) self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 3:6]) self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec) forward = quat_apply(self.base_quat, self.forward_vec) heading = torch.atan2(forward[:, 1], forward[:, 0]) self.commands[:, 2] = torch.clip(0.5 * wrap_to_pi(self.commands[:, 3] - heading), -1.0, 1.0) self.check_termination() self.get_states() self.calculate_metrics() env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(env_ids) > 0: self.reset_idx(env_ids) self.get_observations() if self.add_noise: self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec self.last_actions[:] = self.actions[:] self.last_dof_vel[:] = self.dof_vel[:] return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def push_robots(self): self.base_velocities[:, 0:2] = torch_rand_float( -1.0, 1.0, (self.num_envs, 2), device=self.device ) # lin vel x/y self._go1widow.set_velocities(self.base_velocities) def check_termination(self): self.timeout_buf = torch.where( self.progress_buf >= self.max_episode_length - 1, torch.ones_like(self.timeout_buf), torch.zeros_like(self.timeout_buf), ) knee_contact = ( torch.norm(self._go1widow._knees.get_net_contact_forces(clone=False).view(self._num_envs, 4, 3), dim=-1) > 1.0 ) self.has_fallen = (torch.norm(self._go1widow._base.get_net_contact_forces(clone=False), dim=1) > 1.0) | ( torch.sum(knee_contact, dim=-1) > 1.0 ) self.reset_buf = self.has_fallen.clone() self.reset_buf = torch.where(self.timeout_buf.bool(), torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = self.timeout_buf def calculate_metrics(self): # velocity tracking reward lin_vel_error = torch.sum(torch.square(self.commands[:, :2] - self.base_lin_vel[:, :2]), dim=1) ang_vel_error = torch.square(self.commands[:, 2] - self.base_ang_vel[:, 2]) rew_lin_vel_xy = torch.exp(-lin_vel_error / 0.25) * self.rew_scales["lin_vel_xy"] rew_ang_vel_z = torch.exp(-ang_vel_error / 0.25) * self.rew_scales["ang_vel_z"] # other base velocity penalties rew_lin_vel_z = torch.square(self.base_lin_vel[:, 2]) * self.rew_scales["lin_vel_z"] rew_ang_vel_xy = torch.sum(torch.square(self.base_ang_vel[:, :2]), dim=1) * self.rew_scales["ang_vel_xy"] # orientation penalty rew_orient = torch.sum(torch.square(self.projected_gravity[:, :2]), dim=1) * self.rew_scales["orient"] # base height penalty rew_base_height = torch.square(self.base_pos[:, 2] - 0.52) * self.rew_scales["base_height"] # torque penalty rew_torque = torch.sum(torch.square(self.torques), dim=1) * self.rew_scales["torque"] # joint acc penalty rew_joint_acc = torch.sum(torch.square(self.last_dof_vel - self.dof_vel), dim=1) * self.rew_scales["joint_acc"] # fallen over penalty rew_fallen_over = self.has_fallen * self.rew_scales["fallen_over"] # action rate penalty rew_action_rate = ( torch.sum(torch.square(self.last_actions - self.actions), dim=1) * self.rew_scales["action_rate"] ) # cosmetic penalty for hip motion rew_hip = ( torch.sum(torch.abs(self.dof_pos[:, 0:4] - self.default_dof_pos[:, 0:4]), dim=1) * self.rew_scales["hip"] ) # total reward self.rew_buf = ( rew_lin_vel_xy + rew_ang_vel_z + rew_lin_vel_z + rew_ang_vel_xy + rew_orient + rew_base_height + rew_torque + rew_joint_acc + rew_action_rate + rew_hip + rew_fallen_over ) self.rew_buf = torch.clip(self.rew_buf, min=0.0, max=None) # add termination reward self.rew_buf += self.rew_scales["termination"] * self.reset_buf * ~self.timeout_buf # log episode reward sums self.episode_sums["lin_vel_xy"] += rew_lin_vel_xy self.episode_sums["ang_vel_z"] += rew_ang_vel_z self.episode_sums["lin_vel_z"] += rew_lin_vel_z self.episode_sums["ang_vel_xy"] += rew_ang_vel_xy self.episode_sums["orient"] += rew_orient self.episode_sums["torques"] += rew_torque self.episode_sums["joint_acc"] += rew_joint_acc self.episode_sums["action_rate"] += rew_action_rate self.episode_sums["base_height"] += rew_base_height self.episode_sums["hip"] += rew_hip def get_observations(self): self.measured_heights = self.get_heights() heights = ( torch.clip(self.base_pos[:, 2].unsqueeze(1) - 0.5 - self.measured_heights, -1, 1.0) * self.height_meas_scale ) self.obs_buf = torch.cat( ( self.base_lin_vel * self.lin_vel_scale, self.base_ang_vel * self.ang_vel_scale, self.projected_gravity, self.commands[:, :3] * self.commands_scale, self.dof_pos * self.dof_pos_scale, self.dof_vel * self.dof_vel_scale, heights, self.actions, ), dim=-1, ) def get_ground_heights_below_knees(self): points = self.knee_pos.reshape(self.num_envs, 4, 3) points += self.terrain.border_size points = (points / self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0] - 2) py = torch.clip(py, 0, self.height_samples.shape[1] - 2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px + 1, py + 1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale def get_ground_heights_below_base(self): points = self.base_pos.reshape(self.num_envs, 1, 3) points += self.terrain.border_size points = (points / self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0] - 2) py = torch.clip(py, 0, self.height_samples.shape[1] - 2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px + 1, py + 1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale def get_heights(self, env_ids=None): if env_ids: points = quat_apply_yaw( self.base_quat[env_ids].repeat(1, self.num_height_points), self.height_points[env_ids] ) + (self.base_pos[env_ids, 0:3]).unsqueeze(1) else: points = quat_apply_yaw(self.base_quat.repeat(1, self.num_height_points), self.height_points) + ( self.base_pos[:, 0:3] ).unsqueeze(1) points += self.terrain.border_size # points += 20 points = (points / self.terrain.horizontal_scale).long() # points = (points / 0.1).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0] - 2) py = torch.clip(py, 0, self.height_samples.shape[1] - 2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px + 1, py + 1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale # return heights.view(self.num_envs, -1) * 0.005 @torch.jit.script def quat_apply_yaw(quat, vec): quat_yaw = quat.clone().view(-1, 4) quat_yaw[:, 1:3] = 0.0 quat_yaw = normalize(quat_yaw) return quat_apply(quat_yaw, vec) @torch.jit.script def wrap_to_pi(angles): angles %= 2 * np.pi angles -= 2 * np.pi * (angles > np.pi) return angles def get_axis_params(value, axis_idx, x_value=0.0, dtype=float, n_dims=3): """construct arguments to `Vec` according to axis index.""" zs = np.zeros((n_dims,)) assert axis_idx < n_dims, "the axis dim should be within the vector dimensions" zs[axis_idx] = 1.0 params = np.where(zs == 1.0, value, zs) params[0] = x_value return list(params.astype(dtype))
30,931
Python
46.224427
133
0.609389
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/ant.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.maths import tensor_clamp, torch_rand_float, unscale from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.ant import Ant from omniisaacgymenvs.tasks.shared.locomotion import LocomotionTask from pxr import PhysxSchema class AntLocomotionTask(LocomotionTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) LocomotionTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_observations = 60 self._num_actions = 8 self._ant_positions = torch.tensor([0, 0, 0.5]) LocomotionTask.update_config(self) def set_up_scene(self, scene) -> None: self.get_ant() RLTask.set_up_scene(self, scene) self._ants = ArticulationView( prim_paths_expr="/World/envs/.*/Ant/torso", name="ant_view", reset_xform_properties=False ) scene.add(self._ants) return def initialize_views(self, scene): RLTask.initialize_views(self, scene) if scene.object_exists("ant_view"): scene.remove_object("ant_view", registry_only=True) self._ants = ArticulationView( prim_paths_expr="/World/envs/.*/Ant/torso", name="ant_view", reset_xform_properties=False ) scene.add(self._ants) def get_ant(self): ant = Ant(prim_path=self.default_zero_env_path + "/Ant", name="Ant", translation=self._ant_positions) self._sim_config.apply_articulation_settings( "Ant", get_prim_at_path(ant.prim_path), self._sim_config.parse_actor_config("Ant") ) def get_robot(self): return self._ants def post_reset(self): self.joint_gears = torch.tensor([15, 15, 15, 15, 15, 15, 15, 15], dtype=torch.float32, device=self._device) dof_limits = self._ants.get_dof_limits() self.dof_limits_lower = dof_limits[0, :, 0].to(self._device) self.dof_limits_upper = dof_limits[0, :, 1].to(self._device) self.motor_effort_ratio = torch.ones_like(self.joint_gears, device=self._device) force_links = ["front_left_foot", "front_right_foot", "left_back_foot", "right_back_foot"] self._sensor_indices = torch.tensor( [self._ants._body_indices[j] for j in force_links], device=self._device, dtype=torch.long ) LocomotionTask.post_reset(self) def get_dof_at_limit_cost(self): return get_dof_at_limit_cost(self.obs_buf, self._ants.num_dof) @torch.jit.script def get_dof_at_limit_cost(obs_buf, num_dof): # type: (Tensor, int) -> Tensor return torch.sum(obs_buf[:, 12 : 12 + num_dof] > 0.99, dim=-1)
4,691
Python
41.654545
115
0.69708