file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/quadcopter.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Quadcopter(Robot): def __init__( self, prim_path: str, name: Optional[str] = "Quadcopter", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/Quadcopter/quadcopter.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, position=translation, orientation=orientation, articulation_controller=None, )
2,719
Python
39.597014
89
0.706878
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/ingenuity.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Ingenuity(Robot): def __init__( self, prim_path: str, name: Optional[str] = "ingenuity", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, scale: Optional[np.array] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = ( assets_root_path + "/Isaac/Robots/Ingenuity/ingenuity.usd" ) add_reference_to_stage(self._usd_path, prim_path) scale = torch.tensor([0.01, 0.01, 0.01]) super().__init__(prim_path=prim_path, name=name, translation=translation, orientation=orientation, scale=scale)
2,802
Python
40.83582
119
0.711991
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/go1widow.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from pxr import PhysxSchema class Go1Widow(Robot): def __init__( self, prim_path: str, name: Optional[str] = "Go1Widow", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name # if self._usd_path is None: # assets_root_path = get_assets_root_path() # if assets_root_path is None: # carb.log_error("Could not find nucleus server with /Isaac folder") # self._usd_path = assets_root_path + "/Isaac/Robots/ANYbotics/anymal_instanceable.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=orientation, articulation_controller=None, ) self._dof_names = ["FL_hip_joint", "RL_hip_joint", "FR_hip_joint", "RR_hip_joint", "FL_thigh_joint", "RL_thigh_joint", "FR_thigh_joint", "RR_thigh_joint", "FL_calf_joint", "RL_calf_joint", "FR_calf_joint", "RR_calf_joint", "widow_waist", "widow_shoulder", "widow_elbow", "forearm_roll", "widow_wrist_angle", "widow_wrist_rotate", "widow_forearm_roll", "gripper", "widow_left_finger", "widow_right_finger",] @property def dof_names(self): return self._dof_names def set_go1widow_properties(self, stage, prim): for link_prim in prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.GetDisableGravityAttr().Set(False) rb.GetRetainAccelerationsAttr().Set(False) rb.GetLinearDampingAttr().Set(0.0) rb.GetMaxLinearVelocityAttr().Set(1000.0) rb.GetAngularDampingAttr().Set(0.0) rb.GetMaxAngularVelocityAttr().Set(64 / np.pi * 180) def prepare_contacts(self, stage, prim): for link_prim in prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): if "_hip" not in str(link_prim.GetPrimPath()): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.CreateSleepThresholdAttr().Set(0) cr_api = PhysxSchema.PhysxContactReportAPI.Apply(link_prim) cr_api.CreateThresholdAttr().Set(0)
4,969
Python
42.217391
99
0.598913
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/anymal.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from pxr import PhysxSchema class Anymal(Robot): def __init__( self, prim_path: str, name: Optional[str] = "Anymal", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find nucleus server with /Isaac folder") self._usd_path = assets_root_path + "/Isaac/Robots/ANYbotics/anymal_base.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=orientation, articulation_controller=None, ) self._dof_names = [ "LF_HAA", "LH_HAA", "RF_HAA", "RH_HAA", "LF_HFE", "LH_HFE", "RF_HFE", "RH_HFE", "LF_KFE", "LH_KFE", "RF_KFE", "RH_KFE", ] @property def dof_names(self): return self._dof_names def set_anymal_properties(self, stage, prim): for link_prim in prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.GetDisableGravityAttr().Set(False) rb.GetRetainAccelerationsAttr().Set(False) rb.GetLinearDampingAttr().Set(0.0) rb.GetMaxLinearVelocityAttr().Set(1000.0) rb.GetAngularDampingAttr().Set(0.0) rb.GetMaxAngularVelocityAttr().Set(64 / np.pi * 180) def prepare_contacts(self, stage, prim): for link_prim in prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): print(link_prim.GetPrimPath()) if "_HIP" not in str(link_prim.GetPrimPath()): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.CreateSleepThresholdAttr().Set(0) cr_api = PhysxSchema.PhysxContactReportAPI.Apply(link_prim) cr_api.CreateThresholdAttr().Set(0)
4,312
Python
38.935185
90
0.645872
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/views/cabinet_view.py
from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class CabinetView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "CabinetView", ) -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._drawers = RigidPrimView( prim_paths_expr="/World/envs/.*/cabinet/drawer_top", name="drawers_view", reset_xform_properties=False )
586
Python
28.349999
114
0.653584
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/views/shadow_hand_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class ShadowHandView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "ShadowHandView", ) -> None: super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._fingers = RigidPrimView( prim_paths_expr="/World/envs/.*/shadow_hand/robot0.*distal", name="finger_view", reset_xform_properties=False, ) @property def actuated_dof_indices(self): return self._actuated_dof_indices def initialize(self, physics_sim_view): super().initialize(physics_sim_view) self.actuated_joint_names = [ "robot0_WRJ1", "robot0_WRJ0", "robot0_FFJ3", "robot0_FFJ2", "robot0_FFJ1", "robot0_MFJ3", "robot0_MFJ2", "robot0_MFJ1", "robot0_RFJ3", "robot0_RFJ2", "robot0_RFJ1", "robot0_LFJ4", "robot0_LFJ3", "robot0_LFJ2", "robot0_LFJ1", "robot0_THJ4", "robot0_THJ3", "robot0_THJ2", "robot0_THJ1", "robot0_THJ0", ] self._actuated_dof_indices = list() for joint_name in self.actuated_joint_names: self._actuated_dof_indices.append(self.get_dof_index(joint_name)) self._actuated_dof_indices.sort() limit_stiffness = torch.tensor([30.0] * self.num_fixed_tendons, device=self._device) damping = torch.tensor([0.1] * self.num_fixed_tendons, device=self._device) self.set_fixed_tendon_properties(dampings=damping, limit_stiffnesses=limit_stiffness) fingertips = ["robot0_ffdistal", "robot0_mfdistal", "robot0_rfdistal", "robot0_lfdistal", "robot0_thdistal"] self._sensor_indices = torch.tensor([self._body_indices[j] for j in fingertips], device=self._device, dtype=torch.long)
3,681
Python
38.591397
127
0.669383
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/views/franka_view.py
from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class FrankaView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "FrankaView", ) -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._hands = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_link7", name="hands_view", reset_xform_properties=False ) self._lfingers = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_leftfinger", name="lfingers_view", reset_xform_properties=False ) self._rfingers = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_rightfinger", name="rfingers_view", reset_xform_properties=False, ) def initialize(self, physics_sim_view): super().initialize(physics_sim_view) self._gripper_indices = [self.get_dof_index("panda_finger_joint1"), self.get_dof_index("panda_finger_joint2")] @property def gripper_indices(self): return self._gripper_indices
1,241
Python
32.567567
120
0.637389
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/views/aliengo_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class AliengoView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "AliengoView", track_contact_forces=False, prepare_contact_sensors=False, stage = None ) -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) # knees_prim = stage.DefinePrim(path = "/World/envs/.*/aliengo/.*_THIGH", typeName = "Xform") # base_prim = stage.DefinePrim(path = "/World/envs/aliengo/base", typeName = "Xform") self._knees = RigidPrimView( prim_paths_expr="/World/envs/.*/aliengo/.*_thigh$", name="knees_view", reset_xform_properties=False, track_contact_forces=track_contact_forces, prepare_contact_sensors=prepare_contact_sensors, ) self._base = RigidPrimView( prim_paths_expr="/World/envs/.*/aliengo/trunk", name="base_view", reset_xform_properties=False, track_contact_forces=track_contact_forces, prepare_contact_sensors=prepare_contact_sensors, ) self._feet = RigidPrimView( prim_paths_expr = "/World/envs/.*/aliengo/.*_foot$", name = "feet_view", reset_xform_properties=False, track_contact_forces=track_contact_forces, prepare_contact_sensors=prepare_contact_sensors, ) def get_knee_transforms(self): return self._knees.get_world_poses() def is_knee_below_threshold(self, threshold, ground_heights=None): knee_pos, _ = self._knees.get_world_poses() knee_heights = knee_pos.view((-1, 4, 3))[:, :, 2] if ground_heights is not None: knee_heights -= ground_heights return ( (knee_heights[:, 0] < threshold) | (knee_heights[:, 1] < threshold) | (knee_heights[:, 2] < threshold) | (knee_heights[:, 3] < threshold) ) def is_base_below_threshold(self, threshold, ground_heights): base_pos, _ = self.get_world_poses() base_heights = base_pos[:, 2] base_heights -= ground_heights return base_heights[:] < threshold
3,966
Python
42.119565
101
0.664145
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/views/go1widow_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class Go1WidowView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "Go1WidowView", track_contact_forces=False, prepare_contact_sensors=False, stage = None ) -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._knees = RigidPrimView( prim_paths_expr="/World/envs/.*/go1widow/.*_thigh$", name="knees_view", reset_xform_properties=False, track_contact_forces=track_contact_forces, prepare_contact_sensors=prepare_contact_sensors, ) self._base = RigidPrimView( prim_paths_expr="/World/envs/.*/go1widow/trunk", name="base_view", reset_xform_properties=False, track_contact_forces=track_contact_forces, prepare_contact_sensors=prepare_contact_sensors, ) def get_knee_transforms(self): return self._knees.get_world_poses() def is_knee_below_threshold(self, threshold, ground_heights=None): knee_pos, _ = self._knees.get_world_poses() knee_heights = knee_pos.view((-1, 4, 3))[:, :, 2] if ground_heights is not None: knee_heights -= ground_heights return ( (knee_heights[:, 0] < threshold) | (knee_heights[:, 1] < threshold) | (knee_heights[:, 2] < threshold) | (knee_heights[:, 3] < threshold) ) def is_base_below_threshold(self, threshold, ground_heights): base_pos, _ = self.get_world_poses() base_heights = base_pos[:, 2] base_heights -= ground_heights return base_heights[:] < threshold
3,473
Python
40.855421
98
0.675785
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/views/factory_franka_view.py
from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class FactoryFrankaView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "FactoryFrankaView", ) -> None: """Initialize articulation view.""" super().__init__( prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False ) self._hands = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_hand", name="hands_view", reset_xform_properties=False, ) self._lfingers = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_leftfinger", name="lfingers_view", reset_xform_properties=False, track_contact_forces=True, ) self._rfingers = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_rightfinger", name="rfingers_view", reset_xform_properties=False, track_contact_forces=True, ) self._fingertip_centered = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_fingertip_centered", name="fingertips_view", reset_xform_properties=False, ) def initialize(self, physics_sim_view): """Initialize physics simulation view.""" super().initialize(physics_sim_view)
1,488
Python
31.369565
84
0.598118
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/views/anymal_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class AnymalView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "AnymalView", track_contact_forces=False, prepare_contact_sensors=False, ) -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._knees = RigidPrimView( prim_paths_expr="/World/envs/.*/anymal/.*_THIGH", name="knees_view", reset_xform_properties=False, track_contact_forces=track_contact_forces, prepare_contact_sensors=prepare_contact_sensors, ) self._base = RigidPrimView( prim_paths_expr="/World/envs/.*/anymal/base", name="base_view", reset_xform_properties=False, track_contact_forces=track_contact_forces, prepare_contact_sensors=prepare_contact_sensors, ) def get_knee_transforms(self): return self._knees.get_world_poses() def is_knee_below_threshold(self, threshold, ground_heights=None): knee_pos, _ = self._knees.get_world_poses() knee_heights = knee_pos.view((-1, 4, 3))[:, :, 2] if ground_heights is not None: knee_heights -= ground_heights return ( (knee_heights[:, 0] < threshold) | (knee_heights[:, 1] < threshold) | (knee_heights[:, 2] < threshold) | (knee_heights[:, 3] < threshold) ) def is_base_below_threshold(self, threshold, ground_heights): base_pos, _ = self.get_world_poses() base_heights = base_pos[:, 2] base_heights -= ground_heights return base_heights[:] < threshold
3,433
Python
41.395061
98
0.678415
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/views/quadcopter_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class QuadcopterView(ArticulationView): def __init__(self, prim_paths_expr: str, name: Optional[str] = "QuadcopterView") -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self.rotors = RigidPrimView( prim_paths_expr=f"/World/envs/.*/Quadcopter/rotor[0-3]", name="rotors_view", reset_xform_properties=False )
2,121
Python
47.227272
117
0.759547
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/views/allegro_hand_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class AllegroHandView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "AllegroHandView", ) -> None: super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._actuated_dof_indices = list() @property def actuated_dof_indices(self): return self._actuated_dof_indices def initialize(self, physics_sim_view): super().initialize(physics_sim_view) self._actuated_dof_indices = [i for i in range(self.num_dof)]
2,275
Python
41.148147
98
0.74989
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/views/crazyflie_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class CrazyflieView(ArticulationView): def __init__(self, prim_paths_expr: str, name: Optional[str] = "CrazyflieView") -> None: """[summary]""" super().__init__( prim_paths_expr=prim_paths_expr, name=name, ) self.physics_rotors = [ RigidPrimView(prim_paths_expr=f"/World/envs/.*/Crazyflie/m{i}_prop", name=f"m{i}_prop_view") for i in range(1, 5) ]
2,140
Python
42.693877
104
0.737383
Virlus/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/views/ingenuity_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class IngenuityView(ArticulationView): def __init__(self, prim_paths_expr: str, name: Optional[str] = "IngenuityView") -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self.physics_rotors = [ RigidPrimView( prim_paths_expr=f"/World/envs/.*/Ingenuity/rotor_physics_{i}", name=f"physics_rotor_{i}_view", reset_xform_properties=False, ) for i in range(2) ] self.visual_rotors = [ RigidPrimView( prim_paths_expr=f"/World/envs/.*/Ingenuity/rotor_visual_{i}", name=f"visual_rotor_{i}_view", reset_xform_properties=False, ) for i in range(2) ]
2,524
Python
42.534482
98
0.70206
Virlus/OmniIsaacGymEnvs/docs/domain_randomization.md
Domain Randomization ==================== Overview -------- We sometimes need our reinforcement learning agents to be robust to different physics than they are trained with, such as when attempting a sim2real policy transfer. Using domain randomization (DR), we repeatedly randomize the simulation dynamics during training in order to learn a good policy under a wide range of physical parameters. OmniverseIsaacGymEnvs supports "on the fly" domain randomization, allowing dynamics to be changed without requiring reloading of assets. This allows us to efficiently apply domain randomizations without common overheads like re-parsing asset files. The OmniverseIsaacGymEnvs DR framework utilizes the `omni.replicator.isaac` extension in its backend to perform "on the fly" randomization. Users can add domain randomization by either directly using methods provided in `omni.replicator.isaac` in python, or specifying DR settings in the task configuration `yaml` file. The following sections will focus on setting up DR using the `yaml` file interface. For more detailed documentations regarding methods provided in the `omni.replicator.isaac` extension, please visit [here](https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.replicator.isaac/docs/index.html). Domain Randomization Options ------------------------------- We will first explain what can be randomized in the scene and the sampling distributions. There are five main parameter groups that support randomization. They are: - `observations`: Add noise directly to the agent observations - `actions`: Add noise directly to the agent actions - `simulation`: Add noise to physical parameters defined for the entire scene, such as `gravity` - `rigid_prim_views`: Add noise to properties belonging to rigid prims, such as `material_properties`. - `articulation_views`: Add noise to properties belonging to articulations, such as `stiffness` of joints. For each parameter you wish to randomize, you can specify two ways that determine when the randomization is applied: - `on_reset`: Adds correlated noise to a parameter of an environment when that environment gets reset. This correlated noise will remain with an environment until that environemnt gets reset again, which will then set a new correlated noise. To trigger `on_reset`, the indices for the environemnts that need to be reset must be passed in to `omni.replicator.isaac.physics_view.step_randomization(reset_inds)`. - `on_interval`: Adds uncorrelated noise to a parameter at a frequency specified by `frequency_interval`. If a parameter also has `on_reset` randomization, the `on_interval` noise is combined with the noise applied at `on_reset`. - `on_startup`: Applies randomization once prior to the start of the simulation. Only available to rigid prim scale, mass, density and articulation scale parameters. For `on_reset`, `on_interval`, and `on_startup`, you can specify the following settings: - `distribution`: The distribution to generate a sample `x` from. The available distributions are listed below. Note that parameters `a` and `b` are defined by the `distribution_parameters` setting. - `uniform`: `x ~ unif(a, b)` - `loguniform`: `x ~ exp(unif(log(a), log(b)))` - `gaussian`: `x ~ normal(a, b)` - `distribution_parameters`: The parameters to the distribution. - For observations and actions, this setting is specified as a tuple `[a, b]` of real values. - For simulation and view parameters, this setting is specified as a nested tuple in the form of `[[a_1, a_2, ..., a_n], [[b_1, b_2, ..., b_n]]`, where the `n` is the dimension of the parameter (*i.e.* `n` is 3 for position). It can also be specified as a tuple in the form of `[a, b]`, which will be broadcasted to the correct dimensions. - For `uniform` and `loguniform` distributions, `a` and `b` are the lower and upper bounds. - For `gaussian`, `a` is the distribution mean and `b` is the variance. - `operation`: Defines how the generated sample `x` will be applied to the original simulation parameter. The options are `additive`, `scaling`, `direct`. - `additive`:, add the sample to the original value. - `scaling`: multiply the original value by the sample. - `direct`: directly sets the sample as the parameter value. - `frequency_interval`: Specifies the number of steps to apply randomization. - Only used with `on_interval`. - Steps of each environemnt are incremented with each `omni.replicator.isaac.physics_view.step_randomization(reset_inds)` call and reset if the environment index is in `reset_inds`. - `num_buckets`: Only used for `material_properties` randomization - Physx only allows 64000 unique physics materials in the scene at once. If more than 64000 materials are needed, increase `num_buckets` to allow materials to be shared between prims. YAML Interface -------------- Now that we know what options are available for domain randomization, let's put it all together in the YAML config. In your `omniverseisaacgymenvs/cfg/task` yaml file, you can specify your domain randomization parameters under the `domain_randomization` key. First, we turn on domain randomization by setting `randomize` to `True`: ```yaml domain_randomization: randomize: True randomization_params: ... ``` This can also be set as a command line argument at launch time with `task.domain_randomization.randomize=True`. Next, we will define our parameters under the `randomization_params` keys. Here you can see how we used the previous settings to define some randomization parameters for a ShadowHand cube manipulation task: ```yaml randomization_params: randomization_params: observations: on_reset: operation: "additive" distribution: "gaussian" distribution_parameters: [0, .0001] on_interval: frequency_interval: 1 operation: "additive" distribution: "gaussian" distribution_parameters: [0, .002] actions: on_reset: operation: "additive" distribution: "gaussian" distribution_parameters: [0, 0.015] on_interval: frequency_interval: 1 operation: "additive" distribution: "gaussian" distribution_parameters: [0., 0.05] simulation: gravity: on_reset: operation: "additive" distribution: "gaussian" distribution_parameters: [[0.0, 0.0, 0.0], [0.0, 0.0, 0.4]] rigid_prim_views: object_view: material_properties: on_reset: num_buckets: 250 operation: "scaling" distribution: "uniform" distribution_parameters: [[0.7, 1, 1], [1.3, 1, 1]] articulation_views: shadow_hand_view: stiffness: on_reset: operation: "scaling" distribution: "uniform" distribution_parameters: [0.75, 1.5] ``` Note how we structured `rigid_prim_views` and `articulation_views`. When creating a `RigidPrimView` or `ArticulationView` in the task python file, you have the option to pass in `name` as an argument. **To use domain randomization, the name of the `RigidPrimView` or `ArticulationView` must match the name provided in the randomization `yaml` file.** In the example above, `object_view` is the name of a `RigidPrimView` and `shadow_hand_view` is the name of the `ArticulationView`. The exact parameters that can be randomized are listed below: **simulation**: - gravity (dim=3): The gravity vector of the entire scene. **rigid\_prim\_views**: - position (dim=3): The position of the rigid prim. In meters. - orientation (dim=3): The orientation of the rigid prim, specified with euler angles. In radians. - linear_velocity (dim=3): The linear velocity of the rigid prim. In m/s. **CPU pipeline only** - angular_velocity (dim=3): The angular velocity of the rigid prim. In rad/s. **CPU pipeline only** - velocity (dim=6): The linear + angular velocity of the rigid prim. - force (dim=3): Apply a force to the rigid prim. In N. - mass (dim=1): Mass of the rigid prim. In kg. **CPU pipeline only during runtime**. - inertia (dim=3): The diagonal values of the inertia matrix. **CPU pipeline only** - material_properties (dim=3): Static friction, Dynamic friction, and Restitution. - contact_offset (dim=1): A small distance from the surface of the collision geometry at which contacts start being generated. - rest_offset (dim=1): A small distance from the surface of the collision geometry at which the effective contact with the shape takes place. - scale (dim=1): The scale of the rigid prim. `on_startup` only. - density (dim=1): Density of the rigid prim. `on_startup` only. **articulation\_views**: - position (dim=3): The position of the articulation root. In meters. - orientation (dim=3): The orientation of the articulation root, specified with euler angles. In radians. - linear_velocity (dim=3): The linear velocity of the articulation root. In m/s. **CPU pipeline only** - angular_velocity (dim=3): The angular velocity of the articulation root. In rad/s. **CPU pipeline only** - velocity (dim=6): The linear + angular velocity of the articulation root. - stiffness (dim=num_dof): The stiffness of the joints. - damping (dim=num_dof): The damping of the joints - joint_friction (dim=num_dof): The friction coefficient of the joints. - joint_positions (dim=num_dof): The joint positions. In radians or meters. - joint_velocities (dim=num_dof): The joint velocities. In rad/s or m/s. - lower_dof_limits (dim=num_dof): The lower limit of the joints. In radians or meters. - upper_dof_limits (dim=num_dof): The upper limit of the joints. In radians or meters. - max_efforts (dim=num_dof): The maximum force or torque that the joints can exert. In N or Nm. - joint_armatures (dim=num_dof): A value added to the diagonal of the joint-space inertia matrix. Physically, it corresponds to the rotating part of a motor - joint_max_velocities (dim=num_dof): The maximum velocity allowed on the joints. In rad/s or m/s. - joint_efforts (dim=num_dof): Applies a force or a torque on the joints. In N or Nm. - body_masses (dim=num_bodies): The mass of each body in the articulation. In kg. **CPU pipeline only** - body_inertias (dim=num_bodies×3): The diagonal values of the inertia matrix of each body. **CPU pipeline only** - material_properties (dim=num_bodies×3): The static friction, dynamic friction, and restitution of each body in the articulation, specified in the following order: [body_1_static_friciton, body_1_dynamic_friciton, body_1_restitution, body_1_static_friciton, body_2_dynamic_friciton, body_2_restitution, ... ] - tendon_stiffnesses (dim=num_tendons): The stiffness of the fixed tendons in the articulation. - tendon_dampings (dim=num_tendons): The damping of the fixed tendons in the articulation. - tendon_limit_stiffnesses (dim=num_tendons): The limit stiffness of the fixed tendons in the articulation. - tendon_lower_limits (dim=num_tendons): The lower limits of the fixed tendons in the articulation. - tendon_upper_limits (dim=num_tendons): The upper limits of the fixed tendons in the articulation. - tendon_rest_lengths (dim=num_tendons): The rest lengths of the fixed tendons in the articulation. - tendon_offsets (dim=num_tendons): The offsets of the fixed tendons in the articulation. - scale (dim=1): The scale of the articulation. `on_startup` only. Applying Domain Randomization ------------------------------ To parse the domain randomization configurations in the task `yaml` file and set up the DR pipeline, it is necessary to call `self._randomizer.set_up_domain_randomization(self)`, where `self._randomizer` is the `Randomizer` object created in RLTask's `__init__`. It is worth noting that the names of the views provided under `rigid_prim_views` or `articulation_views` in the task `yaml` file must match the names passed into `RigidPrimView` or `ArticulationView` objects in the python task file. In addition, all `RigidPrimView` and `ArticulationView` that would have domain randomizaiton applied must be added to the scene in the task's `set_up_scene()` via `scene.add()`. To trigger `on_startup` randomizations, call `self._randomizer.apply_on_startup_domain_randomization(self)` in `set_up_scene()` after all views are added to the scene. Note that `on_startup` randomizations are only availble to rigid prim scale, mass, density and articulation scale parameters since these parameters cannot be randomized after the simulation begins on GPU pipeline. Therefore, randomizations must be applied to these parameters in `set_up_scene()` prior to the start of the simulation. To trigger `on_reset` and `on_interval` randomizations, it is required to step the interal counter of the DR pipeline in `pre_physics_step()`: ```python if self._randomizer.randomize: omni.replicator.isaac.physics_view.step_randomization(reset_inds) ``` `reset_inds` is a list of indices of the environments that need to be reset. For those environments, it will trigger the randomizations defined with `on_reset`. All other environments will follow randomizations defined with `on_interval`. Randomization Scheduling ---------------------------- We provide methods to modify distribution parameters defined in the `yaml` file during training, which allows custom DR scheduling. There are three methods from the `Randomizer` class that are relevant to DR scheduling: - `get_initial_dr_distribution_parameters`: returns a numpy array of the initial parameters (as defined in the `yaml` file) of a specified distribution - `get_dr_distribution_parameters`: returns a numpy array of the current parameters of a specified distribution - `set_dr_distribution_parameters`: sets new parameters to a specified distribution Using the DR configuration example defined above, we can get the current parameters and set new parameters to gravity randomization and shadow hand joint stiffness randomization as follows: ```python current_gravity_dr_params = self._randomizer.get_dr_distribution_parameters( "simulation", "gravity", "on_reset", ) self._randomizer.set_dr_distribution_parameters( [[0.0, 0.0, 0.0], [0.0, 0.0, 0.5]], "simulation", "gravity", "on_reset", ) current_joint_stiffness_dr_params = self._randomizer.get_dr_distribution_parameters( "articulation_views", "shadow_hand_view", "stiffness", "on_reset", ) self._randomizer.set_dr_distribution_parameters( [0.7, 1.55], "articulation_views", "shadow_hand_view", "stiffness", "on_reset", ) ``` The following is an example of using these methods to perform linear scheduling of gaussian noise that is added to observations and actions in the above shadow hand example. The following method linearly adds more noise to observations and actions every epoch up until the `schedule_epoch`. This method can be added to the Task python class and be called in `pre_physics_step()`. ```python def apply_observations_actions_noise_linear_scheduling(self, schedule_epoch=100): current_epoch = self._env.sim_frame_count // self._cfg["task"]["env"]["controlFrequencyInv"] // self._cfg["train"]["params"]["config"]["horizon_length"] if current_epoch <= schedule_epoch: if (self._env.sim_frame_count // self._cfg["task"]["env"]["controlFrequencyInv"]) % self._cfg["train"]["params"]["config"]["horizon_length"] == 0: for distribution_path in [("observations", "on_reset"), ("observations", "on_interval"), ("actions", "on_reset"), ("actions", "on_interval")]: scheduled_params = self._randomizer.get_initial_dr_distribution_parameters(*distribution_path) scheduled_params[1] = (1/schedule_epoch) * current_epoch * scheduled_params[1] self._randomizer.set_dr_distribution_parameters(scheduled_params, *distribution_path) ```
16,889
Markdown
51.453416
156
0.68814
Virlus/OmniIsaacGymEnvs/docs/instanceable_assets.md
## A Note on Instanceable USD Assets The following section presents a method that modifies existing USD assets which allows Isaac Sim to load significantly more environments. This is currently an experimental method and has thus not been completely integrated into the framework. As a result, this section is reserved for power users who wish to maxmimize the performance of the Isaac Sim RL framework. ### Motivation One common issue in Isaac Sim that occurs when we try to increase the number of environments `numEnvs` is running out of RAM. This occurs because the Isaac Sim RL framework uses `omni.isaac.cloner` to duplicate environments. As a result, there are `numEnvs` number of identical copies of the visual and collision meshes in the scene, which consumes lots of memory. However, only one copy of the meshes are needed on stage since prims in all other environments could merely reference that one copy, thus reducing the amount of memory used for loading environments. To enable this functionality, USD assets need to be modified to be `instanceable`. ### Creating Instanceable Assets Assets can now be directly imported as Instanceable assets through the URDF and MJCF importers provided in Isaac Sim. By selecting this option, imported assets will be split into two separate USD files that follow the above hierarchy definition. Any mesh data will be written to an USD stage to be referenced by the main USD stage, which contains the main robot definition. To use the Instanceable option in the importers, first check the `Create Instanceable Asset` option. Then, specify a file path to indicate the location for saving the mesh data in the `Instanceable USD Path` textbox. This will default to `./instanceable_meshes.usd`, which will generate a file `instanceable_meshes.usd` that is saved to the current directory. Once the asset is imported with these options enabled, you will see the robot definition in the stage - we will refer to this stage as the master stage. If we expand the robot hierarchy in the Stage, we will notice that the parent prims that have mesh decendants have been marked as Instanceable and they reference a prim in our `Instanceable USD Path` USD file. We are also no longer able to modify attributes of descendant meshes. To add the instanced asset into a new stage, we will simply need to add the master USD file. ### Converting Existing Assets We provide the utility function `convert_asset_instanceable`, which creates an instanceable version of a given USD asset in `/omniisaacgymenvs/utils/usd_utils/create_instanceable_assets.py`. To run this function, launch Isaac Sim and open the script editor via `Window -> Script Editor`. Enter the following script and press `Run (Ctrl + Enter)`: ```bash from omniisaacgymenvs.utils.usd_utils.create_instanceable_assets import convert_asset_instanceable convert_asset_instanceable( asset_usd_path=ASSET_USD_PATH, source_prim_path=SOURCE_PRIM_PATH, save_as_path=SAVE_AS_PATH ) ``` Note that `ASSET_USD_PATH` is the file path to the USD asset (*e.g.* robot_asset.usd). `SOURCE_PRIM_PATH` is the USD path of the root prim of the asset on stage. `SAVE_AS_PATH` is the file path of the generated instanceable version of the asset (*e.g.* robot_asset_instanceable.usd). Assuming that `SAVE_AS_PATH` is `OUTPUT_NAME.usd`, the above script will generate two files: `OUTPUT_NAME.usd` and `OUTPUT_NAME_meshes.usd`. `OUTPUT_NAME.usd` is the instanceable version of the asset that can be imported to stage and used by `omni.isaac.cloner` to create numerous duplicates without consuming much memory. `OUTPUT_NAME_meshes.usd` contains all the visual and collision meshes that `OUTPUT_NAME.usd` references. It is worth noting that any [USD Relationships](https://graphics.pixar.com/usd/dev/api/class_usd_relationship.html) on the referenced meshes are removed in `OUTPUT_NAME.usd`. This is because those USD Relationships originally have targets set to prims in `OUTPUT_NAME_meshes.usd` and hence cannot be accessed from `OUTPUT_NAME.usd`. Common examples of USD Relationships that could exist on the meshes are visual materials, physics materials, and filtered collision pairs. Therefore, it is recommanded to set these USD Relationships on the meshes' parent Xforms instead of the meshes themselves. In a case where we would like to update the main USD file where the instanceable USD file is being referenced from, we also provide a utility method to update all references in the stage that matches a source reference path to a new USD file path. ```bash from omniisaacgymenvs.utils.usd_utils.create_instanceable_assets import update_reference update_reference( source_prim_path=SOURCE_PRIM_PATH, source_reference_path=SOURCE_REFERENCE_PATH, target_reference_path=TARGET_REFERENCE_PATH ) ``` ### Limitations USD requires a specific structure in the asset tree definition in order for the instanceable flag to take action. To mark any mesh or primitive geometry prim in the asset as instanceable, the mesh prim requires a parent Xform prim to be present, which will be used to add a reference to a master USD file containing definition of the mesh prim. For example, the following definition: ``` World |_ Robot |_ Collisions |_ Sphere |_ Box ``` would have to be modified to: ``` World |_ Robot |_ Collisions |_ Sphere_Xform | |_ Sphere |_ Box_Xform |_ Box ``` Any references that exist on the original `Sphere` and `Box` prims would have to be moved to `Sphere_Xform` and `Box_Xform` prims. To help with the process of creating new parent prims, we provide a utility method `create_parent_xforms()` in `omniisaacgymenvs/utils/usd_utils/create_instanceable_assets.py` to automatically insert a new Xform prim as a parent of every mesh prim in the stage. This method can be run on an existing non-instanced USD file for an asset from the script editor: ```bash from omniisaacgymenvs.utils.usd_utils.create_instanceable_assets import create_parent_xforms create_parent_xforms( asset_usd_path=ASSET_USD_PATH, source_prim_path=SOURCE_PRIM_PATH, save_as_path=SAVE_AS_PATH ) ``` This method can also be run as part of `convert_asset_instanceable()` method, by passing in the argument `create_xforms=True`. It is also worth noting that once an instanced asset is added to the stage, we can no longer modify USD attributes on the instanceable prims. For example, to modify attributes of collision meshes that are set as instanceable, we have to first modify the attributes on the corresponding prims in the master prim which our instanced asset references from. Then, we can allow the instanced asset to pick up the updated values from the master prim.
6,846
Markdown
56.058333
444
0.76804
Virlus/OmniIsaacGymEnvs/docs/reproducibility.md
Reproducibility and Determinism =============================== Seeds ----- To achieve deterministic behavior on multiple training runs, a seed value can be set in the training config file for each task. This will potentially allow for individual runs of the same task to be deterministic when executed on the same machine and system setup. Alternatively, a seed can also be set via command line argument `seed=<seed>` to override any settings in config files. If no seed is specified in either config files or command line arguments, we default to generating a random seed. In this case, individual runs of the same task should not be expected to be deterministic. For convenience, we also support setting `seed=-1` to generate a random seed, which will override any seed values set in config files. By default, we have explicitly set all seed values in config files to be 42. PyTorch Deterministic Training ------------------------------ We also include a `torch_deterministic` argument for use when running RL training. Enabling this flag (by passing `torch_deterministic=True`) will apply additional settings to PyTorch that can force the usage of deterministic algorithms in PyTorch, but may also negatively impact runtime performance. For more details regarding PyTorch reproducibility, refer to <https://pytorch.org/docs/stable/notes/randomness.html>. If both `torch_deterministic=True` and `seed=-1` are set, the seed value will be fixed to 42. Runtime Simulation Changes / Domain Randomization ------------------------------------------------- Note that using a fixed seed value will only **potentially** allow for deterministic behavior. Due to GPU work scheduling, it is possible that runtime changes to simulation parameters can alter the order in which operations take place, as environment updates can happen while the GPU is doing other work. Because of the nature of floating point numeric storage, any alteration of execution ordering can cause small changes in the least significant bits of output data, leading to divergent execution over the simulation of thousands of environments and simulation frames. As an example of this, runtime domain randomization of object scales is known to cause both determinancy and simulation issues when running on the GPU due to the way those parameters are passed from CPU to GPU in lower level APIs. Therefore, this is only supported at setup time before starting simulation, which is specified by the `on_startup` condition for Domain Randomization. At this time, we do not believe that other domain randomizations offered by this framework cause issues with deterministic execution when running GPU simulation, but directly manipulating other simulation parameters outside of the omni.isaac.core View APIs may induce similar issues. Also due to floating point precision, states across different environments in the simulation may be non-deterministic when the same set of actions are applied to the same initial states. This occurs as environments are placed further apart from the world origin at (0, 0, 0). As actors get placed at different origins in the world, floating point errors may build up and result in slight variance in results even when starting from the same initial states. One possible workaround for this issue is to place all actors/environments at the world origin at (0, 0, 0) and filter out collisions between the environments. Note that this may induce a performance degradation of around 15-50%, depending on the complexity of actors and environment. Another known cause of non-determinism is from resetting actors into contact states. If actors within a scene is reset to a state where contacts are registered between actors, the simulation may not be able to produce deterministic results. This is because contacts are not recorded and will be re-computed from scratch for each reset scenario where actors come into contact, which cannot guarantee deterministic behavior across different computations.
4,017
Markdown
53.297297
96
0.787155
Virlus/OmniIsaacGymEnvs/docs/training_with_camera.md
## Reinforcement Learning with Vision in the Loop Some reinforcement learning tasks can benefit from having image data in the pipeline by collecting sensor data from cameras to use as observations. However, high fidelity rendering can be expensive when scaled up towards thousands of environments during training. Although Isaac Sim does not currently have the capability to scale towards thousands of environments, we are continually working on improvements to reach the goal. As a starting point, we are providing a simple example showcasing a proof-of-concept for reinforcement learning with vision in the loop. ### CartpoleCamera [cartpole_camera.py](../omniisaacgymenvs/tasks/cartpole_camera.py) As an example showcasing the possiblity of reinforcmenet learning with vision in the loop, we provide a variation of the Cartpole task, which uses RGB image data as observations. This example can be launched with command line argument `task=CartpoleCamera`. Config files used for this task are: - **Task config**: [CartpoleCamera.yaml](../omniisaacgymenvs/cfg/task/CartpoleCamera.yaml) - **rl_games training config**: [CartpoleCameraPPO.yaml](../omniisaacgymenvs/cfg/train/CartpoleCameraPPO.yaml) ### Working with Cameras We have provided an individual app file `apps/omni.isaac.sim.python.gym.camera.kit`, designed specifically towards vision-based RL tasks. This app file provides necessary settings to enable multiple cameras to be rendered each frame. Additional settings are also applied to increase performance when rendering cameras across multiple environments. In addition, the following settings can be added to the app file to increase performance at a cost of accuracy. By setting these flags to `false`, data collected from the cameras may have a 1 to 2 frame delay. ``` app.renderer.waitIdle=false app.hydraEngine.waitIdle=false ``` We can also render in white-mode by adding the following line: ``` rtx.debugMaterialType=0 ``` ### Config Settings In order for rendering to occur during training, tasks using camera rendering must have the `enable_cameras` flag set to `True` in the task config file. By default, the `omni.isaac.sim.python.gym.camera.kit` app file will be used automatically when `enable_cameras` is set to `True`. This flag is located in the task config file, under the `sim` section. In addition, the `rendering_dt` parameter can be used to specify the rendering frequency desired. Similar to `dt` for physics simulation frequency, the `rendering_dt` specifies the amount of time in `s` between each rendering step. The `rendering_dt` should be larger or equal to the physics `dt`, and be a multiple of physics `dt`. Note that specifying the `controlFrequencyInv` flag will reduce the control frequency in terms of the physics simulation frequency. For example, assume control frequency is 30hz, physics simulation frequency is 120 hz, and rendering frequency is 10hz. In the task config file, we can set `dt: 1/120`, `controlFrequencyInv: 4`, such that control is applied every 4 physics steps, and `rendering_dt: 1/10`. In this case, render data will only be updated once every 12 physics steps. Note that both `dt` and `rendering_dt` parameters are under the `sim` section of the config file, while `controlFrequencyInv` is under the `env` section. ### Environment Setup To set up a task for vision-based RL, we will first need to add a camera to each environment in the scene and wrap it in a Replicator `render_product` to use the vectorized rendering API available in Replicator. This can be done with the following code in `set_up_scene`: ```python self.render_products = [] env_pos = self._env_pos.cpu() for i in range(self._num_envs): camera = self.rep.create.camera( position=(-4.2 + env_pos[i][0], env_pos[i][1], 3.0), look_at=(env_pos[i][0], env_pos[i][1], 2.55)) render_product = self.rep.create.render_product(camera, resolution=(self.camera_width, self.camera_height)) self.render_products.append(render_product) ``` Next, we need to initialize Replicator and the PytorchListener, which will be used to collect rendered data. ```python # start replicator to capture image data self.rep.orchestrator._orchestrator._is_started = True # initialize pytorch writer for vectorized collection self.pytorch_listener = self.PytorchListener() self.pytorch_writer = self.rep.WriterRegistry.get("PytorchWriter") self.pytorch_writer.initialize(listener=self.pytorch_listener, device="cuda") self.pytorch_writer.attach(self.render_products) ``` Then, we can simply collect rendered data from each environment using a single API call: ```python # retrieve RGB data from all render products images = self.pytorch_listener.get_rgb_data() ```
4,728
Markdown
58.860759
502
0.777496
Virlus/OmniIsaacGymEnvs/docs/rl_examples.md
## Reinforcement Learning Examples We introduce the following reinforcement learning examples that are implemented using Isaac Sim's RL framework. Pre-trained checkpoints can be found on the Nucleus server. To set up localhost, please refer to the [Isaac Sim installation guide](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_workstation.html). *Note: All commands should be executed from `omniisaacgymenvs/omniisaacgymenvs`.* - [Reinforcement Learning Examples](#reinforcement-learning-examples) - [Cartpole cartpole.py](#cartpole-cartpolepy) - [Ant ant.py](#ant-antpy) - [Humanoid humanoid.py](#humanoid-humanoidpy) - [Shadow Hand Object Manipulation shadow_hand.py](#shadow-hand-object-manipulation-shadow_handpy) - [OpenAI Variant](#openai-variant) - [LSTM Training Variant](#lstm-training-variant) - [Allegro Hand Object Manipulation allegro_hand.py](#allegro-hand-object-manipulation-allegro_handpy) - [ANYmal anymal.py](#anymal-anymalpy) - [Anymal Rough Terrain anymal_terrain.py](#anymal-rough-terrain-anymal_terrainpy) - [NASA Ingenuity Helicopter ingenuity.py](#nasa-ingenuity-helicopter-ingenuitypy) - [Quadcopter quadcopter.py](#quadcopter-quadcopterpy) - [Crazyflie crazyflie.py](#crazyflie-crazyfliepy) - [Ball Balance ball_balance.py](#ball-balance-ball_balancepy) - [Franka Cabinet franka_cabinet.py](#franka-cabinet-franka_cabinetpy) - [Franka Deformable franka_deformable.py](#franka-deformablepy) - [Factory: Fast Contact for Robotic Assembly](#factory-fast-contact-for-robotic-assembly) ### Cartpole [cartpole.py](../omniisaacgymenvs/tasks/cartpole.py) Cartpole is a simple example that demonstrates getting and setting usage of DOF states using `ArticulationView` from `omni.isaac.core`. The goal of this task is to move a cart horizontally such that the pole, which is connected to the cart via a revolute joint, stays upright. Joint positions and joint velocities are retrieved using `get_joint_positions` and `get_joint_velocities` respectively, which are required in computing observations. Actions are applied onto the cartpoles via `set_joint_efforts`. Cartpoles are reset by using `set_joint_positions` and `set_joint_velocities`. Training can be launched with command line argument `task=Cartpole`. Training using the Warp backend can be launched with `task=Cartpole warp=True`. Running inference with pre-trained model can be launched with command line argument `task=Cartpole test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/cartpole.pth` Config files used for this task are: - **Task config**: [Cartpole.yaml](../omniisaacgymenvs/cfg/task/Cartpole.yaml) - **rl_games training config**: [CartpolePPO.yaml](../omniisaacgymenvs/cfg/train/CartpolePPO.yaml) #### CartpoleCamera [cartpole_camera.py](../omniisaacgymenvs/tasks/cartpole_camera.py) A variation of the Cartpole task showcases the usage of RGB image data as observations. This example can be launched with command line argument `task=CartpoleCamera`. Note that to use camera data as observations, `enable_cameras` must be set to `True` in the task config file. In addition, the example must be run with the `omni.isaac.sim.python.gym.camera.kit` app file provided under `apps`, which applies necessary settings to enable camera training. By default, this app file will be used automatically when `enable_cameras` is set to `True`. Config files used for this task are: - **Task config**: [CartpoleCamera.yaml](../omniisaacgymenvs/cfg/task/CartpoleCamera.yaml) - **rl_games training config**: [CartpoleCameraPPO.yaml](../omniisaacgymenvs/cfg/train/CartpoleCameraPPO.yaml) For more details on training with camera data, please visit [here](training_with_camera.md). <img src="https://user-images.githubusercontent.com/34286328/171454189-6afafbff-bb61-4aac-b518-24646007cb9f.gif" width="300" height="150"/> ### Ant [ant.py](../omniisaacgymenvs/tasks/ant.py) Ant is an example of a simple locomotion task. The goal of this task is to train quadruped robots (ants) to run forward as fast as possible. This example inherets from [LocomotionTask](../omniisaacgymenvs/tasks/shared/locomotion.py), which is a shared class between this example and the humanoid example; this simplifies implementations for both environemnts since they compute rewards, observations, and resets in a similar manner. This framework allows us to easily switch between robots used in the task. The Ant task includes more examples of utilizing `ArticulationView` from `omni.isaac.core`, which provides various functions to get and set both DOF states and articulation root states in a tensorized fashion across all of the actors in the environment. `get_world_poses`, `get_linear_velocities`, and `get_angular_velocities`, can be used to determine whether the ants have been moving towards the desired direction and whether they have fallen or flipped over. Actions are applied onto the ants via `set_joint_efforts`, which moves the ants by setting torques to the DOFs. Note that the previously used force sensors and `get_force_sensor_forces` API are now deprecated. Force sensors can now be retrieved directly using `get_measured_joint_forces` from `ArticulationView`. Training with PPO can be launched with command line argument `task=Ant`. Training with SAC with command line arguments `task=AntSAC train=AntSAC`. Training using the Warp backend can be launched with `task=Ant warp=True`. Running inference with pre-trained model can be launched with command line argument `task=Ant test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/ant.pth` Config files used for this task are: - **PPO task config**: [Ant.yaml](../omniisaacgymenvs/cfg/task/Ant.yaml) - **rl_games PPO training config**: [AntPPO.yaml](../omniisaacgymenvs/cfg/train/AntPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/171454182-0be1b830-bceb-4cfd-93fb-e1eb8871ec68.gif" width="300" height="150"/> ### Humanoid [humanoid.py](../omniisaacgymenvs/tasks/humanoid.py) Humanoid is another environment that uses [LocomotionTask](../omniisaacgymenvs/tasks/shared/locomotion.py). It is conceptually very similar to the Ant example, where the goal for the humanoid is to run forward as fast as possible. Training can be launched with command line argument `task=Humanoid`. Training with SAC with command line arguments `task=HumanoidSAC train=HumanoidSAC`. Training using the Warp backend can be launched with `task=Humanoid warp=True`. Running inference with pre-trained model can be launched with command line argument `task=Humanoid test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/humanoid.pth` Config files used for this task are: - **PPO task config**: [Humanoid.yaml](../omniisaacgymenvs/cfg/task/Humanoid.yaml) - **rl_games PPO training config**: [HumanoidPPO.yaml](../omniisaacgymenvs/cfg/train/HumanoidPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/171454193-e027885d-1510-4ef4-b838-06b37f70c1c7.gif" width="300" height="150"/> ### Shadow Hand Object Manipulation [shadow_hand.py](../omniisaacgymenvs/tasks/shadow_hand.py) The Shadow Hand task is an example of a challenging dexterity manipulation task with complex contact dynamics. It resembles OpenAI's [Learning Dexterity](https://openai.com/blog/learning-dexterity/) project and [Robotics Shadow Hand](https://github.com/openai/gym/tree/v0.21.0/gym/envs/robotics) training environments. The goal of this task is to orient the object in the robot hand to match a random target orientation, which is visually displayed by a goal object in the scene. This example inherets from [InHandManipulationTask](../omniisaacgymenvs/tasks/shared/in_hand_manipulation.py), which is a shared class between this example and the Allegro Hand example. The idea of this shared [InHandManipulationTask](../omniisaacgymenvs/tasks/shared/in_hand_manipulation.py) class is similar to that of the [LocomotionTask](../omniisaacgymenvs/tasks/shared/locomotion.py); since the Shadow Hand example and the Allegro Hand example only differ by the robot hand used in the task, using this shared class simplifies implementation across the two. In this example, motion of the hand is controlled using position targets with `set_joint_position_targets`. The object and the goal object are reset using `set_world_poses`; their states are retrieved via `get_world_poses` for computing observations. It is worth noting that the Shadow Hand model in this example also demonstrates the use of tendons, which are imported using the `omni.isaac.mjcf` extension. Training can be launched with command line argument `task=ShadowHand`. Training with Domain Randomization can be launched with command line argument `task.domain_randomization.randomize=True`. For best training results with DR, use `num_envs=16384`. Running inference with pre-trained model can be launched with command line argument `task=ShadowHand test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/shadow_hand.pth` Config files used for this task are: - **Task config**: [ShadowHand.yaml](../omniisaacgymenvs/cfg/task/ShadowHand.yaml) - **rl_games training config**: [ShadowHandPPO.yaml](../omniisaacgymenvs/cfg/train/ShadowHandPPO.yaml) #### OpenAI Variant In addition to the basic version of this task, there is an additional variant matching OpenAI's [Learning Dexterity](https://openai.com/blog/learning-dexterity/) project. This variant uses the **openai** observations in the policy network, but asymmetric observations of the **full_state** in the value network. This can be launched with command line argument `task=ShadowHandOpenAI_FF`. Running inference with pre-trained model can be launched with command line argument `task=ShadowHandOpenAI_FF test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/shadow_hand_openai_ff.pth` Config files used for this are: - **Task config**: [ShadowHandOpenAI_FF.yaml](../omniisaacgymenvs/cfg/task/ShadowHandOpenAI_FF.yaml) - **rl_games training config**: [ShadowHandOpenAI_FFPPO.yaml](../omniisaacgymenvs/cfg/train/ShadowHandOpenAI_FFPPO.yaml). #### LSTM Training Variant This variant uses LSTM policy and value networks instead of feed forward networks, and also asymmetric LSTM critic designed for the OpenAI variant of the task. This can be launched with command line argument `task=ShadowHandOpenAI_LSTM`. Running inference with pre-trained model can be launched with command line argument `task=ShadowHandOpenAI_LSTM test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/shadow_hand_openai_lstm.pth` Config files used for this are: - **Task config**: [ShadowHandOpenAI_LSTM.yaml](../omniisaacgymenvs/cfg/task/ShadowHandOpenAI_LSTM.yaml) - **rl_games training config**: [ShadowHandOpenAI_LSTMPPO.yaml](../omniisaacgymenvs/cfg/train/ShadowHandOpenAI_LSTMPPO.yaml). <img src="https://user-images.githubusercontent.com/34286328/171454160-8cb6739d-162a-4c84-922d-cda04382633f.gif" width="300" height="150"/> ### Allegro Hand Object Manipulation [allegro_hand.py](../omniisaacgymenvs/tasks/allegro_hand.py) This example performs the same object orientation task as the Shadow Hand example, but using the Allegro hand instead of the Shadow hand. Training can be launched with command line argument `task=AllegroHand`. Running inference with pre-trained model can be launched with command line argument `task=AllegroHand test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/allegro_hand.pth` Config files used for this task are: - **Task config**: [AllegroHand.yaml](../omniisaacgymenvs/cfg/task/Allegro.yaml) - **rl_games training config**: [AllegroHandPPO.yaml](../omniisaacgymenvs/cfg/train/AllegroHandPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/171454176-ce08f6d0-3087-4ecc-9273-7d30d8f73f6d.gif" width="300" height="150"/> ### ANYmal [anymal.py](../omniisaacgymenvs/tasks/anymal.py) This example trains a model of the ANYmal quadruped robot from ANYbotics to follow randomly chosen x, y, and yaw target velocities. Training can be launched with command line argument `task=Anymal`. Running inference with pre-trained model can be launched with command line argument `task=Anymal test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/anymal.pth` Config files used for this task are: - **Task config**: [Anymal.yaml](../omniisaacgymenvs/cfg/task/Anymal.yaml) - **rl_games training config**: [AnymalPPO.yaml](../omniisaacgymenvs/cfg/train/AnymalPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/184168200-152567a8-3354-4947-9ae0-9443a56fee4c.gif" width="300" height="150"/> ### Anymal Rough Terrain [anymal_terrain.py](../omniisaacgymenvs/tasks/anymal_terrain.py) A more complex version of the above Anymal environment that supports traversing various forms of rough terrain. Training can be launched with command line argument `task=AnymalTerrain`. Running inference with pre-trained model can be launched with command line argument `task=AnymalTerrain test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/anymal_terrain.pth` - **Task config**: [AnymalTerrain.yaml](../omniisaacgymenvs/cfg/task/AnymalTerrain.yaml) - **rl_games training config**: [AnymalTerrainPPO.yaml](../omniisaacgymenvs/cfg/train/AnymalTerrainPPO.yaml) **Note** during test time use the last weights generated, rather than the usual best weights. Due to curriculum training, the reward goes down as the task gets more challenging, so the best weights do not typically correspond to the best outcome. **Note** if you use the ANYmal rough terrain environment in your work, please ensure you cite the following work: ``` @misc{rudin2021learning, title={Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning}, author={Nikita Rudin and David Hoeller and Philipp Reist and Marco Hutter}, year={2021}, journal = {arXiv preprint arXiv:2109.11978} ``` **Note** The OmniIsaacGymEnvs implementation slightly differs from the implementation used in the paper above, which also uses a different RL library and PPO implementation. The original implementation is made available [here](https://github.com/leggedrobotics/legged_gym). Results reported in the Isaac Gym technical paper are based on that repository, not this one. <img src="https://user-images.githubusercontent.com/34286328/184170040-3f76f761-e748-452e-b8c8-3cc1c7c8cb98.gif" width="300" height="150"/> ### NASA Ingenuity Helicopter [ingenuity.py](../omniisaacgymenvs/tasks/ingenuity.py) This example trains a simplified model of NASA's Ingenuity helicopter to navigate to a moving target. It showcases the use of velocity tensors and applying force vectors to rigid bodies. Note that we are applying force directly to the chassis, rather than simulating aerodynamics. This example also demonstrates using different values for gravitational forces. Ingenuity Helicopter visual 3D Model courtesy of NASA: https://mars.nasa.gov/resources/25043/mars-ingenuity-helicopter-3d-model/. Training can be launched with command line argument `task=Ingenuity`. Running inference with pre-trained model can be launched with command line argument `task=Ingenuity test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/ingenuity.pth` Config files used for this task are: - **Task config**: [Ingenuity.yaml](../omniisaacgymenvs/cfg/task/Ingenuity.yaml) - **rl_games training config**: [IngenuityPPO.yaml](../omniisaacgymenvs/cfg/train/IngenuityPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/184176312-df7d2727-f043-46e3-b537-48a583d321b9.gif" width="300" height="150"/> ### Quadcopter [quadcopter.py](../omniisaacgymenvs/tasks/quadcopter.py) This example trains a very simple quadcopter model to reach and hover near a fixed position. Lift is achieved by applying thrust forces to the "rotor" bodies, which are modeled as flat cylinders. In addition to thrust, the pitch and roll of each rotor is controlled using DOF position targets. Training can be launched with command line argument `task=Quadcopter`. Running inference with pre-trained model can be launched with command line argument `task=Quadcopter test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/quadcopter.pth` Config files used for this task are: - **Task config**: [Quadcopter.yaml](../omniisaacgymenvs/cfg/task/Quadcopter.yaml) - **rl_games training config**: [QuadcopterPPO.yaml](../omniisaacgymenvs/cfg/train/QuadcopterPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/184178817-9c4b6b3c-c8a2-41fb-94be-cfc8ece51d5d.gif" width="300" height="150"/> ### Crazyflie [crazyflie.py](../omniisaacgymenvs/tasks/crazyflie.py) This example trains the Crazyflie drone model to hover near a fixed position. It is achieved by applying thrust forces to the four rotors. Training can be launched with command line argument `task=Crazyflie`. Running inference with pre-trained model can be launched with command line argument `task=Crazyflie test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/crazyflie.pth` Config files used for this task are: - **Task config**: [Crazyflie.yaml](../omniisaacgymenvs/cfg/task/Crazyflie.yaml) - **rl_games training config**: [CrazyfliePPO.yaml](../omniisaacgymenvs/cfg/train/CrazyfliePPO.yaml) <img src="https://user-images.githubusercontent.com/6352136/185715165-b430a0c7-948b-4dce-b3bb-7832be714c37.gif" width="300" height="150"/> ### Ball Balance [ball_balance.py](../omniisaacgymenvs/tasks/ball_balance.py) This example trains balancing tables to balance a ball on the table top. This is a great example to showcase the use of force and torque sensors, as well as DOF states for the table and root states for the ball. In this example, the three-legged table has a force sensor attached to each leg. We use the force sensor APIs to collect force and torque data on the legs, which guide position target outputs produced by the policy. Training can be launched with command line argument `task=BallBalance`. Running inference with pre-trained model can be launched with command line argument `task=BallBalance test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/ball_balance.pth` Config files used for this task are: - **Task config**: [BallBalance.yaml](../omniisaacgymenvs/cfg/task/BallBalance.yaml) - **rl_games training config**: [BallBalancePPO.yaml](../omniisaacgymenvs/cfg/train/BallBalancePPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/184172037-cdad9ee8-f705-466f-bbde-3caa6c7dea37.gif" width="300" height="150"/> ### Franka Cabinet [franka_cabinet.py](../omniisaacgymenvs/tasks/franka_cabinet.py) This Franka example demonstrates interaction between Franka arm and cabinet, as well as setting states of objects inside the drawer. It also showcases control of the Franka arm using position targets. In this example, we use DOF state tensors to retrieve the state of the Franka arm, as well as the state of the drawer on the cabinet. Actions are applied as position targets to the Franka arm DOFs. Training can be launched with command line argument `task=FrankaCabinet`. Running inference with pre-trained model can be launched with command line argument `task=FrankaCabinet test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/franka_cabinet.pth` Config files used for this task are: - **Task config**: [FrankaCabinet.yaml](../omniisaacgymenvs/cfg/task/FrankaCabinet.yaml) - **rl_games training config**: [FrankaCabinetPPO.yaml](../omniisaacgymenvs/cfg/train/FrankaCabinetPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/184174894-03767aa0-936c-4bfe-bbe9-a6865f539bb4.gif" width="300" height="150"/> ### Franka Deformable [franka_deformable.py](../omniisaacgymenvs/tasks/franka_deformable.py) This Franka example demonstrates interaction between Franka arm and a deformable tube. It demonstrates the manipulation of deformable objects, using nodal positions and velocities of the simulation mesh as observations. Training can be launched with command line argument `task=FrankaDeformable`. Running inference with pre-trained model can be launched with command line argument `task=FrankaDeformable test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/franka_deformable.pth` Config files used for this task are: - **Task config**: [FrankaDeformable.yaml](../omniisaacgymenvs/cfg/task/FrankaDeformable.yaml) - **rl_games training config**: [FrankaCabinetFrankaDeformable.yaml](../omniisaacgymenvs/cfg/train/FrankaDeformablePPO.yaml) ### Factory: Fast Contact for Robotic Assembly We provide a set of Factory example tasks, [**FactoryTaskNutBoltPick**](../omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_pick.py), [**FactoryTaskNutBoltPlace**](../omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_place.py), and [**FactoryTaskNutBoltScrew**](../omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_screw.py), `FactoryTaskNutBoltPick` can be executed with `python train.py task=FactoryTaskNutBoltPick`. This task trains policy for the Pick task, a simplified version of the corresponding task in the Factory paper. The policy may take ~1 hour to achieve high success rates on a modern GPU. - The general configuration file for the above task is [FactoryTaskNutBoltPick.yaml](../omniisaacgymenvs/cfg/task/FactoryTaskNutBoltPick.yaml). - The training configuration file for the above task is [FactoryTaskNutBoltPickPPO.yaml](../omniisaacgymenvs/cfg/train/FactoryTaskNutBoltPickPPO.yaml). Running inference with pre-trained model can be launched with command line argument `task=FactoryTaskNutBoltPick test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/factory_task_nut_bolt_pick.pth` `FactoryTaskNutBoltPlace` can be executed with `python train.py task=FactoryTaskNutBoltPlace`. This task trains policy for the Place task. - The general configuration file for the above task is [FactoryTaskNutBoltPlace.yaml](../omniisaacgymenvs/cfg/task/FactoryTaskNutBoltPlace.yaml). - The training configuration file for the above task is [FactoryTaskNutBoltPlacePPO.yaml](../omniisaacgymenvs/cfg/train/FactoryTaskNutBoltPlacePPO.yaml). Running inference with pre-trained model can be launched with command line argument `task=FactoryTaskNutBoltPlace test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/factory_task_nut_bolt_place.pth` `FactoryTaskNutBoltScrew` can be executed with `python train.py task=FactoryTaskNutBoltScrew`. This task trains policy for the Screw task. - The general configuration file for the above task is [FactoryTaskNutBoltScrew.yaml](../omniisaacgymenvs/cfg/task/FactoryTaskNutBoltScrew.yaml). - The training configuration file for the above task is [FactoryTaskNutBoltScrewPPO.yaml](../omniisaacgymenvs/cfg/train/FactoryTaskNutBoltScrewPPO.yaml). Running inference with pre-trained model can be launched with command line argument `task=FactoryTaskNutBoltScrew test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/factory_task_nut_bolt_screw.pth` If you use the Factory simulation methods (e.g., SDF collisions, contact reduction) or Factory learning tools (e.g., assets, environments, or controllers) in your work, please cite the following paper: ``` @inproceedings{ narang2022factory, author = {Yashraj Narang and Kier Storey and Iretiayo Akinola and Miles Macklin and Philipp Reist and Lukasz Wawrzyniak and Yunrong Guo and Adam Moravanszky and Gavriel State and Michelle Lu and Ankur Handa and Dieter Fox}, title = {Factory: Fast contact for robotic assembly}, booktitle = {Robotics: Science and Systems}, year = {2022} } ``` Also note that our original formulations of SDF collisions and contact reduction were developed by [Macklin, et al.](https://dl.acm.org/doi/abs/10.1145/3384538) and [Moravanszky and Terdiman](https://scholar.google.com/scholar?q=Game+Programming+Gems+4%2C+chapter+Fast+Contact+Reduction+for+Dynamics+Simulation), respectively. <img src="https://user-images.githubusercontent.com/6352136/205978286-fa2ae714-a3cb-4acd-9f5f-a467338a8bb3.gif"/>
25,126
Markdown
63.927648
347
0.792725
Virlus/OmniIsaacGymEnvs/docs/release_notes.md
Release Notes ============= 2023.1.0b - November 02, 2023 ----------------------------- Changes ------- - Update docker scripts to Isaac Sim docker image 2023.1.0-hotfix.1 - Use omniisaacgymenvs module root for app file parsing - Update FrankaDeformable physics dt for better training stability Fixes ----- - Fix CartpoleCamera num_observations value - Fix missing import in startup randomization for mass and density 2023.1.0a - October 20, 2023 ---------------------------- Fixes ----- - Fix extension loading error in camera app file 2023.1.0 - October 18, 2023 --------------------------- Additions --------- - Add support for Warp backend task implementation - Add Warp-based RL examples: Cartpole, Ant, Humanoid - Add new Factory environments for place and screw: FactoryTaskNutBoltPlace and FactoryTaskNutBoltScrew - Add new camera-based Cartpole example: CartpoleCamera - Add new deformable environment showing Franka picking up a deformable tube: FrankaDeformable - Add support for running OIGE as an extension in Isaac Sim - Add options to filter collisions between environments and specify global collision filter paths to `RLTask.set_to_scene()` - Add multinode training support - Add dockerfile with OIGE - Add option to select kit app file from command line argument `kit_app` - Add `rendering_dt` parameter to the task config file for setting rendering dt. Defaults to the same value as the physics dt. Changes ------- - `use_flatcache` flag has been renamed to `use_fabric` - Update hydra-core version to 1.3.2, omegaconf version to 2.3.0 - Update rlgames to version 1.6.1. - The `get_force_sensor_forces` API for articulations is now deprecated and replaced with `get_measured_joint_forces` - Remove unnecessary cloning of buffers in VecEnv classes - Only enable omni.replicator.isaac when domain randomization or cameras are enabled - The multi-threaded launch script `rlgames_train_mt.py` has been re-designed to support the extension workflow. This script can no longer be used to launch a training run from python. Please use `rlgames_train.py` instead. - Restructures for environments to support the new extension-based workflow - Add async workflow to factory pick environment to support extension-based workflow - Update docker scripts with cache directories Fixes ----- - Fix errors related to setting velocities to kinematic markers in Ingenuity and Quadcopter environments - Fix contact-related issues with quadruped assets - Fix errors in physics APIs when returning empty tensors - Fix orientation correctness issues when using some assets with omni.isaac.core. Additional orientations applied to accommodate for the error are no longer required (i.e. ShadowHand) - Updated the deprecated config name `seq_len` used with RNN networks to `seq_length` 2022.2.1 - March 16, 2023 ------------------------- Additions --------- - Add FactoryTaskNutBoltPick example - Add Ant and Humanoid SAC training examples - Add multi-GPU support for training - Add utility scripts for launching Isaac Sim docker with OIGE - Add support for livestream through the Omniverse Streaming Client Changes ------- - Change rigid body fixed_base option to make_kinematic, avoiding creation of unnecessary articulations - Update ShadowHand, Ingenuity, Quadcopter and Crazyflie marker objects to use kinematics - Update ShadowHand GPU buffer parameters - Disable PyTorch nvFuser for better performance - Enable viewport and replicator extensions dynamically to maintain order of extension startup - Separate app files for headless environments with rendering (requires Isaac Sim update) - Update rl-games to v1.6.0 Fixes ----- - Fix material property randomization at run-time, including friction and restitution (requires Isaac Sim update) - Fix a bug in contact reporting API where incorrect values were being reported (requires Isaac Sim update) - Enable render flag in Isaac Sim when enable_cameras is set to True - Add root pose and velocity reset to BallBalance environment 2.0.0 - December 15, 2022 ------------------------- Additions --------- - Update to Viewport 2.0 - Allow for runtime mass randomization on GPU pipeline - Add runtime mass randomization to ShadowHand environments - Introduce `disable_contact_processing` simulation parameter for faster contact processing - Use physics replication for cloning by default for faster load time Changes ------- - Update AnymalTerrain environment to use contact forces - Update Quadcopter example to apply local forces - Update training parameters for ShadowHandOpenAI_FF environment - Rename rlgames_play.py to rlgames_demo.py Fixes ----- - Remove fix_base option from articulation configs - Fix in_hand_manipulation random joint position sampling on reset - Fix mass and density randomization in MT training script - Fix actions/observations noise randomization in MT training script - Fix random seed when domain randomization is enabled - Check whether simulation is running before executing pre_physics_step logic 1.1.0 - August 22, 2022 ----------------------- Additions --------- - Additional examples: Anymal, AnymalTerrain, BallBalance, Crazyflie, FrankaCabinet, Ingenuity, Quadcopter - Add OpenAI variantions for Feed-Forward and LSTM networks for ShadowHand - Add domain randomization framework `using omni.replicator.isaac` - Add AnymalTerrain interactable demo - Automatically disable `omni.kit.window.viewport` and `omni.physx.flatcache` extensions in headless mode to improve start-up load time - Introduce `reset_xform_properties` flag for initializing Views of cloned environments to reduce load time - Add WandB support - Update RL-Games version to 1.5.2 Fixes ----- - Correctly sets simulation device for GPU simulation - Fix omni.client import order - Fix episode length reset condition for ShadowHand and AllegroHand 1.0.0 - June 03, 2022 ---------------------- - Initial release for RL examples with Isaac Sim - Examples provided: AllegroHand, Ant, Cartpole, Humanoid, ShadowHand
5,986
Markdown
39.727891
223
0.765119
Virlus/OmniIsaacGymEnvs/docs/CHANGELOG.md
# Changelog ## [0.0.0] - 2023-07-13 ### Added - UI for launching RL trasks
76
Markdown
11.833331
28
0.618421
Virlus/OmniIsaacGymEnvs/docs/transfering_policies_from_isaac_gym.md
## Transfering Policies from Isaac Gym Preview Releases This section delineates some of the differences between the standalone [Isaac Gym Preview Releases](https://developer.nvidia.com/isaac-gym) and Isaac Sim reinforcement learning extensions, in hopes of facilitating the process of transferring policies trained in the standalone preview releases to Isaac Sim. ### Isaac Sim RL Extensions Unlike the monolithic standalone Isaac Gym Preview Releases, Omniverse is a highly modular system, with functionality split between various [Extensions](https://docs.omniverse.nvidia.com/extensions/latest/index.html). The APIs used by typical robotics RL systems are split between a handful of extensions in Isaac Sim. These include `omni.isaac.core`, which provides tensorized access to physics simulation state as well as a task management framework, the `omni.isaac.cloner` extension for creating many copies of your environments, and the `omni.isaac.gym` extension for interfacing with external RL training libraries. For naming clarity, we'll refer collectively to the extensions used for RL within Isaac Sim as the **Isaac Sim RL extensions**, in contrast with the older **Isaac Gym Preview Releases**. ### Quaternion Convention The Isaac Sim RL extensions use various classes and methods in `omni.isaac.core`, which adopts `wxyz` as the quaternion convention. However, the quaternion convention used in Isaac Gym Preview Releases is `xyzw`. Therefore, if a policy trained in one of the Isaac Gym Preview Releases takes in quaternions as part of its observations, remember to switch all quaternions to use the `xyzw` convention in the observation buffer `self.obs_buf`. Similarly, please ensure all quaternions are in `wxyz` before passing them in any of the utility functions in `omni.isaac.core`. ### Assets Isaac Sim provides [URDF](https://docs.omniverse.nvidia.com/isaacsim/latest/advanced_tutorials/tutorial_advanced_import_urdf.html) and [MJCF](https://docs.omniverse.nvidia.com/isaacsim/latest/advanced_tutorials/tutorial_advanced_import_mjcf.html) importers for translating URDF and MJCF assets into USD format. Any robot or object assets must be in .usd, .usda, or .usdc format for Isaac Sim and Omniverse. For more details on working with USD, please see https://docs.omniverse.nvidia.com/isaacsim/latest/reference_glossary.html#usd. Importer tools are also available for other common geometry file formats, such as .obj, .fbx, and more. Please see [Asset Importer](https://docs.omniverse.nvidia.com/extensions/latest/ext_asset-importer.html) for more details. ### Joint Order Isaac Sim's `ArticulationView` in `omni.isaac.core` assumes a breadth-first ordering for the joints in a given kinematic tree. Specifically, for the following kinematic tree, the method `ArticulationView.get_joint_positions` returns a tensor of shape `(number of articulations in the view, number of joints in the articulation)`. Along the second dimension of this tensor, the values represent the articulation's joint positions in the following order: `[Joint 1, Joint 2, Joint 4, Joint 3, Joint 5]`. On the other hand, the Isaac Gym Preview Releases assume a depth-first ordering for the joints in the kinematic tree; In the example below, the joint orders would be the following: `[Joint 1, Joint 2, Joint 3, Joint 4, Joint 5]`. <img src="./media/KinematicTree.png" height="300"/> With this in mind, it is important to change the joint order to depth-first in the observation buffer before feeding it into an existing policy trained in one of the Isaac Gym Preview Releases. Similarly, you would also need to change the joint order in the output (the action buffer) of the Isaac Gym Preview Release trained policy to breadth-first before applying joint actions to articulations via methods in `ArticulationView`. ### Physics Parameters One factor that could dictate the success of policy transfer from Isaac Gym Preview Releases to Isaac Sim is to ensure the physics parameters used in both simulations are identical or very similar. In general, the `sim` parameters specified in the task configuration `yaml` file overwrite the corresponding parameters in the USD asset. However, there are additional parameters in the USD asset that are not included in the task configuration `yaml` file. These additional parameters may sometimes impact the performance of Isaac Gym Preview Release trained policies and hence need modifications in the USD asset itself to match the values set in Isaac Gym Preview Releases. For instance, the following parameters in the `RigidBodyAPI` could be modified in the USD asset to yield better policy transfer performance: | RigidBodyAPI Parameter | Default Value in Isaac Sim | Default Value in Isaac Gym Preview Releases | |:----------------------:|:--------------------------:|:--------------------------:| | Linear Damping | 0.00 | 0.00 | | Angular Damping | 0.05 | 0.00 | | Max Linear Velocity | inf | 1000 | | Max Angular Velocity | 5729.58008 (deg/s) | 64 (rad/s) | | Max Contact Impulse | inf | 1e32 | <img src="./media/RigidBodyAPI.png" width="500"/> Parameters in the `JointAPI` as well as the `DriveAPI` could be altered as well. Note that the Isaac Sim UI assumes the unit of angle to be degrees. It is particularly worth noting that the `Damping` and `Stiffness` paramters in the `DriveAPI` have the unit of `1/deg` in the Isaac Sim UI but `1/rad` in Isaac Gym Preview Releases. | Joint Parameter | Default Value in Isaac Sim | Default Value in Isaac Gym Preview Releases | |:----------------------:|:--------------------------:|:--------------------------:| | Maximum Joint Velocity | 1000000.0 (deg) | 100.0 (rad) | <img src="./media/JointAPI.png" width="500"/> ### Differences in APIs APIs for accessing physics states in Isaac Sim require the creation of an ArticulationView or RigidPrimView object. Multiple view objects can be initialized for different articulations or bodies in the scene by defining a regex expression that matches the paths of the desired objects. This approach eliminates the need of retrieving body handles to slice states for specific bodies in the scene. We have also removed `acquire` and `refresh` APIs in Isaac Sim. Physics states can be directly applied or retrieved by using `set`/`get` APIs defined for the views. New APIs provided in Isaac Sim no longer require explicit wrapping and un-wrapping of underlying buffers. APIs can now work with tensors directly for reading and writing data. Most APIs in Isaac Sim also provide the option to specify an `indices` parameter, which can be used when reading or writing data for a subset of environments. Note that when setting states with the `indices` parameter, the shape of the states buffer should match with the dimension of the `indices` list. Note some naming differences between APIs in Isaac Gym Preview Release and Isaac Sim. Most `dof` related APIs have been named to `joint` in Isaac Sim. `root_states` is now separated into different APIs for `world_poses` and `velocities`. Similary, `dof_states` are retrieved individually in Isaac Sim as `joint_positions` and `joint_velocities`. APIs in Isaac Sim also no longer follow the explicit `_tensors` or `_tensor_indexed` suffixes in naming. Indexed versions of APIs now happen implicitly through the optional `indices` parameter. ### Task Configuration Files There are a few modifications that need to be made to an existing Isaac Gym Preview Release task `yaml` file in order for it to be compatible with the Isaac Sim RL extensions. #### Frequencies of Physics Simulation and RL Policy The way in which physics simulation frequency and RL policy frequency are specified is different between Isaac Gym Preview Releases and Isaac Sim, dictated by the following three parameters: `dt`, `substeps`, and `controlFrequencyInv`. - `dt`: The simulation time difference between each simulation step. - `substeps`: The number of physics steps within one simulation step. *i.e.* if `dt: 1/60` and `substeps: 4`, physics is simulated at 240 hz. - `controlFrequencyInv`: The control decimation of the RL policy, which is the number of simulation steps between RL actions. *i.e.* if `dt: 1/60` and `controlFrequencyInv: 2`, RL policy is running at 30 hz. In Isaac Gym Preview Releases, all three of the above parameters are used to specify the frequencies of physics simulation and RL policy. However, Isaac Sim only uses `controlFrequencyInv` and `dt` as `substeps` is always fixed at `1`. Note that despite only using two parameters, Isaac Sim can still achieve the same substeps definition as Isaac Gym. For example, if in an Isaac Gym Preview Release policy, we set `substeps: 2`, `dt: 1/60` and `controlFrequencyInv: 1`, we can achieve the equivalent in Isaac Sim by setting `controlFrequencyInv: 2` and `dt: 1/120`. In the Isaac Sim RL extensions, `dt` is specified in the task configuration `yaml` file under `sim`, whereas `controlFrequencyInv` is a parameter under `env`. #### Physx Parameters Parameters under `physx` in the task configuration `yaml` file remain mostly unchanged. In Isaac Gym Preview Releases, `use_gpu` is frequently set to `${contains:"cuda",${....sim_device}}`. For Isaac Sim, please ensure this is changed to `${eq:${....sim_device},"gpu"}`. In Isaac Gym Preview Releases, GPU buffer sizes are specified using the following two parameters: `default_buffer_size_multiplier` and `max_gpu_contact_pairs`. With the Isaac Sim RL extensions, these two parameters are no longer used; instead, the various GPU buffer sizes can be set explicitly. For instance, in the [Humanoid task configuration file](../omniisaacgymenvs/cfg/task/Humanoid.yaml), GPU buffer sizes are specified as follows: ```yaml gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 8192 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 ``` Please refer to the [Troubleshooting](./troubleshoot.md#simulation) documentation should you encounter errors related to GPU buffer sizes. #### Articulation Parameters The articulation parameters of each actor can now be individually specified tn the Isaac Sim task configuration `yaml` file. The following is an example template for setting these parameters: ```yaml ARTICULATION_NAME: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: True enable_gyroscopic_forces: True # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 10.0 ``` These articulation parameters can be parsed using the `parse_actor_config` method in the [SimConfig](../omniisaacgymenvs/utils/config_utils/sim_config.py) class, which can then be applied to a prim in simulation via the `apply_articulation_settings` method. A concrete example of this is the following code snippet from the [HumanoidTask](../omniisaacgymenvs/tasks/humanoid.py#L75): ```python self._sim_config.apply_articulation_settings("Humanoid", get_prim_at_path(humanoid.prim_path), self._sim_config.parse_actor_config("Humanoid")) ``` #### Additional Simulation Parameters - `use_fabric`: Setting this paramter to `True` enables [PhysX Fabric](https://docs.omniverse.nvidia.com/prod_extensions/prod_extensions/ext_physics.html#flatcache), which offers a significant increase in simulation speed. However, this parameter must be set to `False` if soft-body simulation is required because `PhysX Fabric` curently only supports rigid-body simulation. - `enable_scene_query_support`: Setting this paramter to `True` allows the user to interact with prims in the scene. Keeping this setting to `False` during training improves simulation speed. Note that this parameter is always set to `True` if in test/inference mode to enable user interaction with trained models. ### Training Configuration Files The Omniverse Isaac Gym RL Environments are trained using a third-party highly-optimized RL library, [rl_games](https://github.com/Denys88/rl_games), which is also used to train the Isaac Gym Preview Release examples in [IsaacGymEnvs](https://github.com/NVIDIA-Omniverse/IsaacGymEnvs). Therefore, the rl_games training configuration `yaml` files in Isaac Sim are compatible with those from IsaacGymEnvs. However, please add the following lines under `config` in the training configuration `yaml` files (*i.e.* line 41-42 in [HumanoidPPO.yaml](../omniisaacgymenvs/cfg/train/HumanoidPPO.yaml#L41)) to ensure RL training runs on the intended device. ```yaml device: ${....rl_device} device_name: ${....rl_device} ```
13,250
Markdown
55.387234
252
0.749585
Virlus/OmniIsaacGymEnvs/docs/framework.md
## RL Framework ### Overview Our RL examples are built on top of Isaac Sim's RL framework provided in `omni.isaac.gym`. Tasks are implemented following `omni.isaac.core`'s Task structure. PPO training is performed using the [rl_games](https://github.com/Denys88/rl_games) library, but we provide the flexibility to use other RL libraries for training. For a list of examples provided, refer to the [RL List of Examples](rl_examples.md) ### Class Definition The RL ecosystem can be viewed as three main pieces: the Task, the RL policy, and the Environment wrapper that provides an interface for communication between the task and the RL policy. #### Task The Task class is where main task logic is implemented, such as computing observations and rewards. This is where we can collect states of actors in the scene and apply controls or actions to our actors. For convenience, we provide a base Task class, `RLTask`, which inherits from the `BaseTask` class in `omni.isaac.core`. This class is responsible for dealing with common configuration parsing, buffer initialization, and environment creation. Note that some config parameters and buffers in this class are specific to the rl_games library, and it is not necessary to inherit new tasks from `RLTask`. A few key methods in `RLTask` include: * `__init__(self, name: str, env: VecEnvBase, offset: np.ndarray = None)` - Parses config values common to all tasks and initializes action/observation spaces if not defined in the child class. Defines a GridCloner by default and creates a base USD scope for holding all environment prims. Can be called from child class. * `set_up_scene(self, scene: Scene, replicate_physics=True, collision_filter_global_paths=[], filter_collisions=True)` - Adds ground plane and creates clones of environment 0 based on values specifid in config. Can be called from child class `set_up_scene()`. * `pre_physics_step(self, actions: torch.Tensor)` - Takes in actions buffer from RL policy. Can be overriden by child class to process actions. * `post_physics_step(self)` - Controls flow of RL data processing by triggering APIs to compute observations, retrieve states, compute rewards, resets, and extras. Will return observation, reward, reset, and extras buffers. #### Environment Wrappers As part of the RL framework in Isaac Sim, we have introduced environment wrapper classes in `omni.isaac.gym` for RL policies to communicate with simulation in Isaac Sim. This class provides a vectorized interface for common RL APIs used by `gym.Env` and can be easily extended towards RL libraries that require additional APIs. We show an example of this extension process in this repository, where we extend `VecEnvBase` as provided in `omni.isaac.gym` to include additional APIs required by the rl_games library. Commonly used APIs provided by the base wrapper class `VecEnvBase` include: * `render(self, mode: str = "human")` - renders the current frame * `close(self)` - closes the simulator * `seed(self, seed: int = -1)` - sets a seed. Use `-1` for a random seed. * `step(self, actions: Union[np.ndarray, torch.Tensor])` - triggers task `pre_physics_step` with actions, steps simulation and renderer, computes observations, rewards, dones, and returns state buffers * `reset(self)` - triggers task `reset()`, steps simulation, and re-computes observations ##### Multi-Threaded Environment Wrapper for Extension Workflows `VecEnvBase` is a simple interface that’s designed to provide commonly used `gym.Env` APIs required by RL libraries. Users can create an instance of this class, attach your task to the interface, and provide your wrapper instance to the RL policy. Since the RL algorithm maintains the main loop of execution, interaction with the UI and environments in the scene can be limited and may interfere with the training loop. We also provide another environment wrapper class called `VecEnvMT`, which is designed to isolate the RL policy in a new thread, separate from the main simulation and rendering thread. This class provides the same set of interface as `VecEnvBase`, but also provides threaded queues for sending and receiving actions and states between the RL policy and the task. In order to use this wrapper interface, users have to implement a `TrainerMT` class, which should implement a `run()` method that initiates the RL loop on a new thread. We show an example of this in OmniIsaacGymEnvs under `omniisaacgymenvs/utils/rlgames/rlgames_train_mt.py`. The setup for using `VecEnvMT` is more involved compared to the single-threaded `VecEnvBase` interface, but will allow users to have more control over starting and stopping the training loop through interaction with the UI. Note that `VecEnvMT` has a timeout variable, which defaults to 90 seconds. If either the RL thread waiting for physics state exceeds the timeout amount or the simulation thread waiting for RL actions exceeds the timeout amount, the threaded queues will throw an exception and terminate training. For larger scenes that require longer simulation or training time, try increasing the timeout variable in `VecEnvMT` to prevent unnecessary timeouts. This can be done by passing in a `timeout` argument when calling `VecEnvMT.initialize()`. This wrapper is currently only supported with the [extension workflow](extension_workflow.md). ### Creating New Examples For simplicity, we will focus on using the single-threaded `VecEnvBase` interface in this tutorial. To run any example, first make sure an instance of `VecEnvBase` or descendant of `VecEnvBase` is initialized. This will be required as an argumet to our new Task. For example: ``` python env = VecEnvBase(headless=False) ``` The headless parameter indicates whether a viewer should be created for visualizing results. Then, create our task class, extending it from `RLTask`: ```python class MyNewTask(RLTask): def __init__( self, name: str, # name of the Task sim_config: SimConfig, # SimConfig instance for parsing cfg env: VecEnvBase, # env instance of VecEnvBase or inherited class offset=None # transform offset in World ) -> None: # parse configurations, set task-specific members ... self._num_observations = 4 self._num_actions = 1 # call parent class’s __init__ RLTask.__init__(self, name, env) ``` The `__init__` method should take 4 arguments: * `name`: a string for the name of the task (required by BaseTask) * `sim_config`: an instance of `SimConfig` used for config parsing, can be `None`. This object is created in `omniisaacgymenvs/utils/task_utils.py`. * `env`: an instance of `VecEnvBase` or an inherited class of `VecEnvBase` * `offset`: any offset required to place the `Task` in `World` (required by `BaseTask`) In the `__init__` method of `MyNewTask`, we can populate any task-specific parameters, such as dimension of observations and actions, and retrieve data from config dictionaries. Make sure to make a call to `RLTask`’s `__init__` at the end of the method to perform additional data initialization. Next, we can implement the methods required by the RL framework. These methods follow APIs defined in `omni.isaac.core` `BaseTask` class. Below is an example of a simple implementation for each method. ```python def set_up_scene(self, scene: Scene) -> None: # implement environment setup here add_prim_to_stage(my_robot) # add a robot actor to the stage super().set_up_scene(scene) # pass scene to parent class - this method in RLTask also uses GridCloner to clone the robot and adds a ground plane if desired self._my_robots = ArticulationView(...) # create a view of robots scene.add(self._my_robots) # add view to scene for initialization def post_reset(self): # implement any logic required for simulation on-start here pass def pre_physics_step(self, actions: torch.Tensor) -> None: # implement logic to be performed before physics steps self.perform_reset() self.apply_action(actions) def get_observations(self) -> dict: # implement logic to retrieve observation states self.obs_buf = self.compute_observations() def calculate_metrics(self) -> None: # implement logic to compute rewards self.rew_buf = self.compute_rewards() def is_done(self) -> None: # implement logic to update dones/reset buffer self.reset_buf = self.compute_resets() ``` To launch the new example from one of our training scripts, add `MyNewTask` to `omniisaacgymenvs/utils/task_util.py`. In `initialize_task()`, add an import to the `MyNewTask` class and add an instance to the `task_map` dictionary to register it into the command line parsing. To use the Hydra config parsing system, also add a task and train config files into `omniisaacgymenvs/cfg`. The config files should be named `cfg/task/MyNewTask.yaml` and `cfg/train/MyNewTaskPPO.yaml`. Finally, we can launch `MyNewTask` with: ```bash PYTHON_PATH random_policy.py task=MyNewTask ``` ### Using a New RL Library In this repository, we provide an example of extending Isaac Sim's environment wrapper classes to work with the rl_games library, which can be found at `omniisaacgymenvs/envs/vec_env_rlgames.py` and `omniisaacgymenvs/envs/vec_env_rlgames_mt.py`. The first script, `omniisaacgymenvs/envs/vec_env_rlgames.py`, extends from `VecEnvBase`. ```python from omni.isaac.gym.vec_env import VecEnvBase class VecEnvRLGames(VecEnvBase): ``` One of the features in rl_games is the support for asymmetrical actor-critic policies, which requires a `states` buffer in addition to the `observations` buffer. Thus, we have overriden a few of the class in `VecEnvBase` to incorporate this requirement. ```python def set_task( self, task, backend="numpy", sim_params=None, init_sim=True ) -> None: super().set_task(task, backend, sim_params, init_sim) # class VecEnvBase's set_task to register task to the environment instance # special variables required by rl_games self.num_states = self._task.num_states self.state_space = self._task.state_space def step(self, actions): # we clamp the actions so that values are within a defined range actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device).clone() # pass actions buffer to task for processing self._task.pre_physics_step(actions) # allow users to specify the control frequency through config for _ in range(self._task.control_frequency_inv): self._world.step(render=self._render) self.sim_frame_count += 1 # compute new buffers self._obs, self._rew, self._resets, self._extras = self._task.post_physics_step() self._states = self._task.get_states() # special buffer required by rl_games # return buffers in format required by rl_games obs_dict = {"obs": self._obs, "states": self._states} return obs_dict, self._rew, self._resets, self._extras ``` Similarly, we also have a multi-threaded version of the rl_games environment wrapper implementation, `omniisaacgymenvs/envs/vec_env_rlgames_mt.py`. This class extends from `VecEnvMT` and `VecEnvRLGames`: ```python from omni.isaac.gym.vec_env import VecEnvMT from .vec_env_rlgames import VecEnvRLGames class VecEnvRLGamesMT(VecEnvRLGames, VecEnvMT): ``` In this class, we also have a special method `_parse_data(self, data)`, which is required to be implemented to parse dictionary values passed through queues. Since multiple buffers of data are required by the RL policy, we concatenate all of the buffers in a single dictionary, and send that to the queue to be received by the RL thread. ```python def _parse_data(self, data): self._obs = torch.clamp(data["obs"], -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._rew = data["rew"].to(self._task.rl_device).clone() self._states = torch.clamp(data["states"], -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._resets = data["reset"].to(self._task.rl_device).clone() self._extras = data["extras"].copy() ``` ### API Limitations #### omni.isaac.core Setter APIs Setter APIs in omni.isaac.core for ArticulationView, RigidPrimView, and RigidContactView should only be called once per simulation step for each view instance per API. This means that for use cases where multiple calls to the same setter API from the same view instance is required, users will need to cache the states to be set for intermmediate calls, and make only one call to the setter API prior to stepping physics with the complete buffer containing all cached states. If multiple calls to the same setter API from the same view object are made within the simulation step, subsequent calls will override the states that have been set by prior calls to the same API, voiding the previous calls to the API. The API can be called again once a simulation step is made. For example, the below code will override states. ```python my_view.set_world_poses(positions=[[0, 0, 1]], orientations=[[1, 0, 0, 0]], indices=[0]) # this call will void the previous call my_view.set_world_poses(positions=[[0, 1, 1]], orientations=[[1, 0, 0, 0]], indices=[1]) my_world.step() ``` Instead, the below code should be used. ```python my_view.set_world_poses(positions=[[0, 0, 1], [0, 1, 1]], orientations=[[1, 0, 0, 0], [1, 0, 0, 0]], indices=[0, 1]) my_world.step() ``` #### omni.isaac.core Getter APIs Getter APIs for cloth simulation may return stale states when used with the GPU pipeline. This is because the physics simulation requires a simulation step to occur in order to refresh the GPU buffers with new states. Therefore, when a getter API is called after a setter API before a simulation step, the states returned from the getter API may not reflect the values that were set using the setter API. For example: ```python my_view.set_world_positions(positions=[[0, 0, 1]], indices=[0]) # Values may be stale when called before step positions = my_view.get_world_positions() # positions may not match [[0, 0, 1]] my_world.step() # Values will be updated when called after step positions = my_view.get_world_positions() # positions will reflect the new states ``` #### Performing Resets When resetting the states of actors, impulses generated by previous target or effort controls will continue to be carried over from the previous states in simulation. Therefore, depending on the time step, the masses of the objects, and the magnitude of the impulses, the difference between the desired reset state and the observed first state after reset can be large. To eliminate this issue, users should also reset any position/velocity targets or effort controllers to the reset state or zero state when resetting actor states. For setting joint positions and velocities using the omni.isaac.core ArticulationView APIs, position targets and velocity targets will automatically be set to the same states as joint positions and velocities. #### Massless Links It may be helpful in some scenarios to introduce dummy bodies into articulations for retrieving transformations at certain locations of the articulation. Although it is possible to introduce rigid bodies with no mass and colliders APIs and attach them to the articulation with fixed joints, this can sometimes cause physics instabilities in simulation. To prevent instabilities from occurring, it is recommended to add a dummy geometry to the rigid body and include both Mass and Collision APIs. The mass of the geometry can be set to a very small value, such as 0.0001, to avoid modifying physical behaviors of the articulation. Similarly, we can also disable collision on the Collision API of the geometry to preserve contact behavior of the articulation.
15,846
Markdown
58.575188
862
0.754007
Virlus/OmniIsaacGymEnvs/docs/README.md
# Usage To enable this extension, go to the Extension Manager menu and enable omniisaacgymenvs extension
105
Markdown
34.333322
96
0.828571
Virlus/OmniIsaacGymEnvs/docs/index.rst
RL Examples [omniisaacgymenvs] ######################################################
86
reStructuredText
27.999991
54
0.302326
2820207922/isaac_ws/main.py
#launch Isaac Sim before any other imports #default first two lines in any standalone application from omni.isaac.kit import SimulationApp # This sample enables a livestream server to connect to when running headless KIT_CONFIG = { "width": 1280, "height": 720, "window_width": 1920, "window_height": 1080, "headless": True, "renderer": "RayTracedLighting", "display_options": 3286, # Set display options to show default grid } kit = SimulationApp(KIT_CONFIG) from omni.isaac.core.articulations import Articulation from omni.isaac.sensor import IMUSensor from omni.importer.urdf import _urdf from omni.isaac.dynamic_control import _dynamic_control from pxr import Gf, PhysxSchema, Sdf, UsdLux, UsdPhysics, Tf import omni.kit.commands import numpy as np import math def quaternion_to_euler(q): """ Convert a quaternion into euler angles (yaw, roll, pitch) Quaternion format: [w, x, y, z] Euler angles order: yaw (Z), roll (X), pitch (Y) """ # Extract the values from quaternion w, x, y, z = q # Pre-calculate common terms t0 = +2.0 * (w * x + y * z) t1 = +1.0 - 2.0 * (x**2 + y**2) roll_x = math.atan2(t0, t1) t2 = +2.0 * (w * y - z * x) t2 = np.clip(t2, a_min=-1.0, a_max=1.0) pitch_y = math.asin(t2) t3 = +2.0 * (w * z + x * y) t4 = +1.0 - 2.0 * (y**2 + z**2) yaw_z = math.atan2(t3, t4) return yaw_z, roll_x, pitch_y # Order: yaw, roll, pitch # Acquire the URDF extension interface urdf_interface = _urdf.acquire_urdf_interface() # Set the settings in the import config import_config = _urdf.ImportConfig() import_config.merge_fixed_joints = False import_config.fix_base = False import_config.import_inertia_tensor = True import_config.distance_scale = 1.0 import_config.density = 0.0 import_config.default_drive_type = _urdf.UrdfJointTargetType.JOINT_DRIVE_VELOCITY import_config.default_drive_strength = 0.0 import_config.default_position_drive_damping = 0.0 import_config.convex_decomp = False import_config.self_collision = False import_config.create_physics_scene = True import_config.make_default_prim = False # Get path to extension data: URDF_PATH = "balance_infantry/model.urdf" DEST_PATH = "balance_infantry/model/model.usd" # Import URDF, stage_path contains the path the path to the usd prim in the stage. status, stage_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=URDF_PATH, import_config=import_config, get_articulation_root=True, ) # Get stage handle stage = omni.usd.get_context().get_stage() # Enable physics scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/physicsScene")) # Set gravity scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) scene.CreateGravityMagnitudeAttr().Set(9.81) # Set solver settings PhysxSchema.PhysxSceneAPI.Apply(stage.GetPrimAtPath("/physicsScene")) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Get(stage, "/physicsScene") physxSceneAPI.CreateEnableCCDAttr(True) physxSceneAPI.CreateEnableStabilizationAttr(True) physxSceneAPI.CreateEnableGPUDynamicsAttr(False) physxSceneAPI.CreateBroadphaseTypeAttr("MBP") physxSceneAPI.CreateSolverTypeAttr("TGS") # Set limit LOWER_LIMIT_ANGLE = 0 UPPER_LIMIT_ANGLE = 70 left_front_joint_prim = UsdPhysics.RevoluteJoint.Get(stage, "/balance_infantry/base_link/joint1") left_front_joint_prim.GetLowerLimitAttr().Set(LOWER_LIMIT_ANGLE) left_front_joint_prim.GetUpperLimitAttr().Set(UPPER_LIMIT_ANGLE) left_back_joint_prim = UsdPhysics.RevoluteJoint.Get(stage, "/balance_infantry/base_link/joint2") left_back_joint_prim.GetLowerLimitAttr().Set(-UPPER_LIMIT_ANGLE) left_back_joint_prim.GetUpperLimitAttr().Set(-LOWER_LIMIT_ANGLE) right_front_joint_prim = UsdPhysics.RevoluteJoint.Get(stage, "/balance_infantry/base_link/joint7") right_front_joint_prim.GetLowerLimitAttr().Set(LOWER_LIMIT_ANGLE) right_front_joint_prim.GetUpperLimitAttr().Set(UPPER_LIMIT_ANGLE) right_back_joint_prim = UsdPhysics.RevoluteJoint.Get(stage, "/balance_infantry/base_link/joint6") right_back_joint_prim.GetLowerLimitAttr().Set(-UPPER_LIMIT_ANGLE) right_back_joint_prim.GetUpperLimitAttr().Set(-LOWER_LIMIT_ANGLE) # Set constraint left_wheel_link = stage.GetPrimAtPath("/balance_infantry/left_wheel_link") left_hole_link = stage.GetPrimAtPath("/balance_infantry/left_hole_link") left_constraint = UsdPhysics.RevoluteJoint.Define(stage, "/balance_infantry/base_link/left_constraint") left_constraint.CreateBody0Rel().SetTargets([left_wheel_link.GetPath()]) left_constraint.CreateBody1Rel().SetTargets([left_hole_link.GetPath()]) left_constraint.CreateAxisAttr().Set("X") left_constraint.CreateLocalPos0Attr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) left_constraint.CreateLocalPos1Attr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) left_constraint.CreateExcludeFromArticulationAttr().Set(True) right_wheel_link = stage.GetPrimAtPath("/balance_infantry/right_wheel_link") right_hole_link = stage.GetPrimAtPath("/balance_infantry/right_hole_link") right_constraint = UsdPhysics.RevoluteJoint.Define(stage, "/balance_infantry/base_link/right_constraint") right_constraint.CreateBody0Rel().SetTargets([right_wheel_link.GetPath()]) right_constraint.CreateBody1Rel().SetTargets([right_hole_link.GetPath()]) right_constraint.CreateAxisAttr().Set("X") right_constraint.CreateLocalPos0Attr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) right_constraint.CreateLocalPos1Attr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) right_constraint.CreateExcludeFromArticulationAttr().Set(True) # Add ground plane omni.kit.commands.execute( "AddGroundPlaneCommand", stage=stage, planePath="/groundPlane", axis="Z", size=150.0, position=Gf.Vec3f(0, 0, -0.3), color=Gf.Vec3f(0.3), ) # Add lighting distantLight = UsdLux.DistantLight.Define(stage, Sdf.Path("/DistantLight")) distantLight.CreateIntensityAttr(500) # Start simulation omni.timeline.get_timeline_interface().play() # perform one simulation step so physics is loaded and dynamic control works. kit.update() art = Articulation(prim_path=stage_path) art.initialize() if not art.handles_initialized: print(f"{stage_path} is not an articulation") else: print(f"Got articulation {stage_path} with handle {art.articulation_handle}") dc = _dynamic_control.acquire_dynamic_control_interface() dc.wake_up_articulation(art.articulation_handle) dof_properties = _dynamic_control.DofProperties() dof_properties.damping = 0.0 dof_properties.stiffness = 0.0 dof_properties.max_effort = 100.0 dof_properties.max_velocity = 10.0 left_constraint = dc.find_articulation_dof(art.articulation_handle, "left_constraint") right_constraint = dc.find_articulation_dof(art.articulation_handle, "right_constraint") dc.set_dof_properties(left_constraint, dof_properties) dc.set_dof_properties(right_constraint, dof_properties) dof_properties.damping = 100.0 dof_properties.stiffness = 0.0 dof_properties.max_effort = 100.0 dof_properties.max_velocity = 10.0 left_wheel_joint = dc.find_articulation_dof(art.articulation_handle, "joint4") right_wheel_joint = dc.find_articulation_dof(art.articulation_handle, "joint9") dc.set_dof_properties(left_wheel_joint, dof_properties) dc.set_dof_properties(right_wheel_joint, dof_properties) left_front_joint = dc.find_articulation_dof(art.articulation_handle, "joint1") left_back_joint = dc.find_articulation_dof(art.articulation_handle, "joint2") right_front_joint = dc.find_articulation_dof(art.articulation_handle, "joint7") right_back_joint = dc.find_articulation_dof(art.articulation_handle, "joint6") dc.set_dof_properties(left_front_joint, dof_properties) dc.set_dof_properties(left_back_joint, dof_properties) dc.set_dof_properties(right_front_joint, dof_properties) dc.set_dof_properties(right_back_joint, dof_properties) # Set IMU sensor # imu_sensor = IMUSensor( # prim_path="/balance_infantry/base_link/imu_sensor", # name="imu", # frequency=100, # translation=np.array([0.0, -0.2, 0.1]), # ) # imu_sensor.initialize() if not stage: print("Stage could not be used.") else: for prim in stage.Traverse(): prim_path = prim.GetPath() prim_type = prim.GetTypeName() print(f"prim_path: {prim_path}, prim_type: {prim_type}") k = 0 torque = 10 # perform simulation while kit._app.is_running() and not kit.is_exiting(): # Run in realtime mode, we don't specify the step size k = k + 1 if k // 500 % 2 == 1: dc.set_dof_effort(left_front_joint, torque) dc.set_dof_effort(left_back_joint, -torque) dc.set_dof_effort(right_front_joint, torque) dc.set_dof_effort(right_back_joint, -torque) else: dc.set_dof_effort(left_front_joint, -torque) dc.set_dof_effort(left_back_joint, torque) dc.set_dof_effort(right_front_joint, -torque) dc.set_dof_effort(right_back_joint, torque) # imu_data = imu_sensor.get_current_frame() # quaternion = imu_data['orientation'] # # quaternion = [1.0, 0.0, 0.0, 0.0] # rotation = quaternion_to_euler(quaternion) # euler_angles_deg = np.degrees(rotation) # print(f"quaternion: {quaternion}, angle: {euler_angles_deg}") kit.update() # Shutdown and exit omni.timeline.get_timeline_interface().stop() kit.close()
9,170
Python
37.860169
105
0.735333
2820207922/isaac_ws/balance_train.py
from omni.isaac.gym.vec_env import VecEnvBase env = VecEnvBase(headless=True, enable_livestream=True) # env = VecEnvBase(headless=True) from balance_task import BalanceTask task = BalanceTask(name="Balance") env.set_task(task, backend="torch") from stable_baselines3 import PPO import torch # create agent from stable baselines # model = PPO( # "MlpPolicy", # env, # n_steps=1000, # batch_size=1000, # n_epochs=10, # learning_rate=0.005, # gamma=0.99, # device="cuda:0", # ent_coef=0.0, # vf_coef=0.5, # max_grad_norm=1.0, # verbose=1, # tensorboard_log="./balance_tensorboard" # ) # torch.save(model.state_dict(),"model.pth") model = PPO.load( "models/ppo/ppo_balance0", env=env, device="cuda:0" ) model.learn(total_timesteps=300000) model.save("models/ppo/ppo_balance1") env.close()
856
Python
20.974358
55
0.661215
2820207922/isaac_ws/balance_play.py
# create isaac environment from omni.isaac.gym.vec_env import VecEnvBase env = VecEnvBase(headless=True, enable_livestream=True) # create task and register task from balance_task import BalanceTask task = BalanceTask(name="Balance") env.set_task(task, backend="torch") # import stable baselines from stable_baselines3 import PPO # Run inference on the trained policy model = PPO.load("models/ppo/ppo_balance0") env._world.reset() obs, _ = env.reset() while env._simulation_app.is_running(): action, _states = model.predict(obs) obs, rewards, terminated, truncated, info = env.step(action[0]) # print(f"obs: {obs}") # print(f"action: {action}") # print(f"obs: {obs}, rewards: {rewards}, terminated: {terminated}, truncated: {truncated}, info: {info}") env.close()
786
Python
31.791665
110
0.717557
2820207922/isaac_ws/balance_task.py
from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.core.tasks.base_task import BaseTask from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import create_prim from omni.isaac.core.utils.viewports import set_camera_view from omni.isaac.core.materials.deformable_material import DeformableMaterial from pxr import Gf, PhysxSchema, Sdf, UsdLux, UsdPhysics, Tf, UsdShade from omni.importer.urdf import _urdf import omni.kit.commands from gymnasium import spaces import numpy as np import torch import math class BalanceTask(BaseTask): def __init__( self, name, offset=None ) -> None: # print("running: __init__") # task-specific parameters self._reward_cnt = 0 self._orders = [0, 1, 2, 3] self._left_wheel_target = 0.0 self._right_wheel_target = 0.0 self._angle_limit = 90.0 * math.pi / 180 self._vel_wheel_limit = 50.0 self._effort_leg_limit = 10.0 self._effort_wheel_limit = 20.0 # values used for defining RL buffers self._num_observations = 15 self._num_actions = 6 self._device = "cpu" self.num_envs = 1 # a few class buffers to store RL-related states self.obs = torch.zeros((self.num_envs, self._num_observations)) self.obs_last = torch.zeros((self.num_envs, self._num_observations)) self.resets = torch.zeros((self.num_envs, 1)) # set the action and observation space for RL self.action_space = spaces.Box( np.ones(self._num_actions, dtype=np.float32) * -1.0, np.ones(self._num_actions, dtype=np.float32) * 1.0 ) self.observation_space = spaces.Box( np.ones(self._num_observations, dtype=np.float32) * -np.Inf, np.ones(self._num_observations, dtype=np.float32) * np.Inf, ) # trigger __init__ of parent class BaseTask.__init__(self, name=name, offset=offset) def set_up_scene(self, scene) -> None: # print("running: set_up_scene") # retrieve file path for the Cartpole USD file # usd_path = "balance_infantry/model/balance_infantry_no_constraint.usd" # add the Cartpole USD to our stage # Set the settings in the import config import_config = _urdf.ImportConfig() import_config.merge_fixed_joints = False import_config.fix_base = False import_config.import_inertia_tensor = True import_config.distance_scale = 1.0 import_config.density = 0.0 import_config.default_drive_type = _urdf.UrdfJointTargetType.JOINT_DRIVE_VELOCITY import_config.default_drive_strength = 0.0 import_config.default_position_drive_damping = 0.0 import_config.convex_decomp = False import_config.self_collision = False import_config.create_physics_scene = True import_config.make_default_prim = False urdf_path = "balance_infantry/model.urdf" status, robot_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config, # get_articulation_root=True, ) add_reference_to_stage(robot_path, "/World") # Get stage handle self.stage = omni.usd.get_context().get_stage() if not self.stage: print("Stage could not be used.") else: for prim in self.stage.Traverse(): prim_path = prim.GetPath() prim_type = prim.GetTypeName() print(f"prim_path: {prim_path}, prim_type: {prim_type}") # Set material self.wheel_material = DeformableMaterial( prim_path="/World/balance_infantry/base_link/wheel_material", name="wheel_material", dynamic_friction=0.5, youngs_modulus=6e6, poissons_ratio=0.47, elasticity_damping=0.00784, damping_scale=0.1, ) # print("wheel_material: ", self.wheel_material) wheel_material_prim = self.stage.GetPrimAtPath("/World/balance_infantry/base_link/wheel_material") # print("wheel_material_prim: ", wheel_material_prim) wheel_material_shade = UsdShade.Material(wheel_material_prim) # print("wheel_material_shade: ", wheel_material_shade) left_wheel_link = self.stage.GetPrimAtPath("/World/balance_infantry/left_wheel_link") right_wheel_link = self.stage.GetPrimAtPath("/World/balance_infantry/right_wheel_link") UsdShade.MaterialBindingAPI(left_wheel_link).Bind(wheel_material_shade, UsdShade.Tokens.strongerThanDescendants) UsdShade.MaterialBindingAPI(right_wheel_link).Bind(wheel_material_shade, UsdShade.Tokens.strongerThanDescendants) # create an ArticulationView wrapper for our cartpole - this can be extended towards accessing multiple cartpoles self._robots = ArticulationView(prim_paths_expr="/World/balance_infantry/base_link*", name="robot_view") scene.add(self._robots) # scene.add_default_ground_plane() # Add ground plane omni.kit.commands.execute( "AddGroundPlaneCommand", stage=self.stage, planePath="/groundPlane", axis="Z", size=150.0, position=Gf.Vec3f(0, 0, -0.2), color=Gf.Vec3f(0.2), ) # set default camera viewport position and target self.set_initial_camera_params() def set_initial_camera_params(self, camera_position=[10, 10, 3], camera_target=[0, 0, 0]): set_camera_view(eye=camera_position, target=camera_target, camera_prim_path="/OmniverseKit_Persp") def post_reset(self): # print("running: post_reset") self.robot_init() # randomize all envs indices = torch.arange(self._robots.count, dtype=torch.int64, device=self._device) self.reset(indices) def robot_init(self): self._height_lower_limit = self.calc_height(torch.tensor([0.0]), torch.tensor([0.0])) self._height_upper_limit = self.calc_height(torch.tensor([1.2217]), torch.tensor([1.2217])) self._height_target = 0.2 # Get joint index self._base_link_idx = self._robots.get_body_index("base_link") self._joint1_idx = self._robots.get_dof_index("joint1") self._joint2_idx = self._robots.get_dof_index("joint2") self._joint6_idx = self._robots.get_dof_index("joint6") self._joint7_idx = self._robots.get_dof_index("joint7") self._joint4_idx = self._robots.get_dof_index("joint4") self._joint9_idx = self._robots.get_dof_index("joint9") # print("base_link_idx: ", self._base_link_idx) # print("joint1_idx: ", self._joint1_idx) # print("joint2_idx: ", self._joint2_idx) # print("joint4_idx: ", self._joint4_idx) # print("joint6_idx: ", self._joint6_idx) # print("joint7_idx: ", self._joint7_idx) # print("joint9_idx: ", self._joint9_idx) # Set limit LOWER_LIMIT_ANGLE = 0 UPPER_LIMIT_ANGLE = 70 left_front_joint_prim = UsdPhysics.RevoluteJoint.Get(self.stage, "/World/balance_infantry/base_link/joint1") left_front_joint_prim.GetLowerLimitAttr().Set(LOWER_LIMIT_ANGLE) left_front_joint_prim.GetUpperLimitAttr().Set(UPPER_LIMIT_ANGLE) left_back_joint_prim = UsdPhysics.RevoluteJoint.Get(self.stage, "/World/balance_infantry/base_link/joint2") left_back_joint_prim.GetLowerLimitAttr().Set(-UPPER_LIMIT_ANGLE) left_back_joint_prim.GetUpperLimitAttr().Set(-LOWER_LIMIT_ANGLE) right_front_joint_prim = UsdPhysics.RevoluteJoint.Get(self.stage, "/World/balance_infantry/base_link/joint7") right_front_joint_prim.GetLowerLimitAttr().Set(LOWER_LIMIT_ANGLE) right_front_joint_prim.GetUpperLimitAttr().Set(UPPER_LIMIT_ANGLE) right_back_joint_prim = UsdPhysics.RevoluteJoint.Get(self.stage, "/World/balance_infantry/base_link/joint6") right_back_joint_prim.GetLowerLimitAttr().Set(-UPPER_LIMIT_ANGLE) right_back_joint_prim.GetUpperLimitAttr().Set(-LOWER_LIMIT_ANGLE) # Set constraint left_wheel_link = self.stage.GetPrimAtPath("/World/balance_infantry/left_wheel_link") left_hole_link = self.stage.GetPrimAtPath("/World/balance_infantry/left_hole_link") left_constraint = UsdPhysics.RevoluteJoint.Define(self.stage, "/World/balance_infantry/base_link/left_constraint") left_constraint.CreateBody0Rel().SetTargets([left_wheel_link.GetPath()]) left_constraint.CreateBody1Rel().SetTargets([left_hole_link.GetPath()]) left_constraint.CreateAxisAttr().Set("X") left_constraint.CreateLocalPos0Attr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) left_constraint.CreateLocalPos1Attr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) left_constraint.CreateExcludeFromArticulationAttr().Set(True) right_wheel_link = self.stage.GetPrimAtPath("/World/balance_infantry/right_wheel_link") right_hole_link = self.stage.GetPrimAtPath("/World/balance_infantry/right_hole_link") right_constraint = UsdPhysics.RevoluteJoint.Define(self.stage, "/World/balance_infantry/base_link/right_constraint") right_constraint.CreateBody0Rel().SetTargets([right_wheel_link.GetPath()]) right_constraint.CreateBody1Rel().SetTargets([right_hole_link.GetPath()]) right_constraint.CreateAxisAttr().Set("X") right_constraint.CreateLocalPos0Attr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) right_constraint.CreateLocalPos1Attr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) right_constraint.CreateExcludeFromArticulationAttr().Set(True) def reset(self, env_ids=None): # print("running: reset") if env_ids is None: env_ids = torch.arange(self.num_envs, device=self._device) num_resets = len(env_ids) if self._orders[0] == 0: self._left_wheel_target = 0.0 self._right_wheel_target = 0.0 self._height_target = 0.2 elif self._orders[0] == 1: uniform_num = 1.0 * (1.0 - 2.0 * torch.rand(2, device=self._device)) self._left_wheel_target = uniform_num[0] self._right_wheel_target = uniform_num[1] self._height_target = 0.2 elif self._orders[0] == 2: uniform_num = 1.0 * (1.0 - 2.0 * torch.rand(1, device=self._device)) self._left_wheel_target = 0.0 self._right_wheel_target = 0.0 self._height_target = uniform_num[0] elif self._orders[0] == 3: uniform_num = 1.0 * (1.0 - 2.0 * torch.rand(2, device=self._device)) self._left_wheel_target = uniform_num[0] self._right_wheel_target = uniform_num[1] uniform_num = 1.0 * (1.0 - 2.0 * torch.rand(1, device=self._device)) self._height_target = uniform_num[0] print(f"left_wheel_target: {self._left_wheel_target}, right_wheel_target: {self._right_wheel_target}, height_target: {self._height_target}") self._robots.post_reset() # bookkeeping self.resets[env_ids] = 0 def pre_physics_step(self, actions) -> None: # print("running: pre_physics_step") reset_env_ids = self.resets.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset(reset_env_ids) # print("actions: ", actions) forces = torch.zeros((self._robots.count, 6), dtype=torch.float32, device=self._device) forces[:, 0] = self._effort_leg_limit * actions[0] forces[:, 1] = self._effort_leg_limit * actions[1] forces[:, 2] = self._effort_leg_limit * actions[2] forces[:, 3] = self._effort_leg_limit * actions[3] forces[:, 4] = self._effort_wheel_limit * actions[4] forces[:, 5] = self._effort_wheel_limit * actions[5] indices = torch.arange(self._robots.count, dtype=torch.int32, device=self._device) self._robots.set_joint_efforts(forces, indices=indices, joint_indices=torch.tensor([self._joint1_idx, self._joint2_idx, self._joint6_idx, self._joint7_idx, self._joint4_idx, self._joint9_idx])) def get_observations(self): # print("running: get_observations") positions, orientations = self._robots.get_world_poses() # positions_check = torch.where(positions[:, 2] > 10.0, 1, 0) # if positions_check.item() == 1: # self.reset() # return # if torch.isnan(positions).any() or torch.isnan(orientations).any(): # self.reset() # return # print("positions: ", positions) # print("orientations: ", orientations) angle = self.quaternion_to_euler_zxy(orientations) # print(f"roll_x: {angle[:, 1] * 180 / math.pi}, picth_y: {angle[:, 2] * 180 / math.pi}") if torch.isnan(angle).any(): return # collect joint positions and velocities for observation dof_pos = self._robots.get_joint_positions() dof_vel = self._robots.get_joint_velocities() if torch.isnan(dof_pos).any() or torch.isnan(dof_vel).any(): return joint1_pos = dof_pos[:, self._joint1_idx] joint1_vel = dof_vel[:, self._joint1_idx] joint2_pos = dof_pos[:, self._joint2_idx] joint2_vel = dof_vel[:, self._joint2_idx] joint6_pos = dof_pos[:, self._joint6_idx] joint6_vel = dof_vel[:, self._joint6_idx] joint7_pos = dof_pos[:, self._joint7_idx] joint7_vel = dof_vel[:, self._joint7_idx] joint4_vel = dof_vel[:, self._joint4_idx] joint9_vel = dof_vel[:, self._joint9_idx] self.obs_last = self.obs.clone() self.obs[:, 0] = self._left_wheel_target self.obs[:, 1] = self._right_wheel_target self.obs[:, 2] = self._height_target self.obs[:, 3] = angle[:, 1] self.obs[:, 4] = angle[:, 2] self.obs[:, 5] = joint1_pos self.obs[:, 6] = joint2_pos self.obs[:, 7] = joint6_pos self.obs[:, 8] = joint7_pos self.obs[:, 9] = joint1_vel self.obs[:, 10] = joint2_vel self.obs[:, 11] = joint6_vel self.obs[:, 12] = joint7_vel self.obs[:, 13] = joint4_vel self.obs[:, 14] = joint9_vel # print("obs: ", self.obs) return self.obs def quaternion_to_euler_zxy(self, q): # q = torch.tensor(q) quat = torch.zeros((self._robots.count, 4), dtype=torch.float32, device=self._device) angle = torch.zeros((self._robots.count, 3), dtype=torch.float32, device=self._device) quat[:, 0] = q[:, 0] quat[:, 1] = q[:, 1] quat[:, 2] = q[:, 2] quat[:, 3] = q[:, 3] angle[:, 1] = torch.atan2(2.0 * (quat[:, 0] * quat[:, 1] + quat[:, 2] * quat[:, 3]), 1.0 - 2.0 * (quat[:, 1] * quat[:, 1] + quat[:, 2] * quat[:, 2])) angle[:, 2] = torch.asin(torch.clamp(2.0 * (quat[:, 0] * quat[:, 2] - quat[:, 3] * quat[:, 1]), min=-1.0, max=1.0)) angle[:, 0] = torch.atan2(2.0 * (quat[:, 0] * quat[:, 3] + quat[:, 1] * quat[:, 2]), 1.0 - 2.0 * (quat[:, 2] * quat[:, 2] + quat[:, 3] * quat[:, 3])) # angle = angle * 180 / math.pi return angle def calculate_metrics(self) -> None: # print("running: calculate_metrics") left_wheel_target = self.obs[:, 0] right_wheel_target = self.obs[:, 1] height_target = self.obs[:, 2] # print(f"left_wheel_target: {left_wheel_target}, right_wheel_target: {right_wheel_target}, height_target: {height_target}") roll_x = self.obs[:, 3] pitch_y = self.obs[:, 4] joint1_pos = self.obs[:, 5] joint2_pos = self.obs[:, 6] joint6_pos = self.obs[:, 7] joint7_pos = self.obs[:, 8] joint1_vel = self.obs[:, 9] joint2_vel = self.obs[:, 10] joint6_vel = self.obs[:, 11] joint7_vel = self.obs[:, 12] joint4_vel = self.obs[:, 13] joint9_vel = self.obs[:, 14] # print(f"joint4_vel: {joint4_vel}, joint9_vel: {joint9_vel}") roll_x_last = self.obs_last[:, 3] pitch_y_last = self.obs_last[:, 4] joint1_pos_last = self.obs_last[:, 5] joint2_pos_last = self.obs_last[:, 6] joint6_pos_last = self.obs_last[:, 7] joint7_pos_last = self.obs_last[:, 8] left_height = self.calc_height(joint1_pos, joint2_pos) right_height = self.calc_height(joint6_pos, joint7_pos) height_current = (left_height + right_height) / 2 left_height_last = self.calc_height(joint1_pos_last, joint2_pos_last) right_height_last = self.calc_height(joint6_pos_last, joint7_pos_last) height_last = (left_height_last + right_height_last) / 2 reward_roll_x = -0.8 * torch.abs(roll_x / self._angle_limit + (roll_x - roll_x_last) / self._angle_limit) reward_pitch_y = -0.5 * torch.abs(pitch_y / self._angle_limit + (pitch_y - pitch_y_last) / self._angle_limit) reward_wheel_vel = -0.3 * (torch.abs(left_wheel_target - joint4_vel / self._vel_wheel_limit) + torch.abs(right_wheel_target - joint9_vel / self._vel_wheel_limit)) reward_height = -0.5 * torch.abs(height_target - height_current / (self._height_upper_limit - self._height_lower_limit)) reward = 1.5 + reward_roll_x + reward_pitch_y + reward_wheel_vel + reward_height # print(f"reward: {reward.item()}") if reward.item() > 0.0: self._reward_cnt = self._reward_cnt + int(reward.item() * 10) # print("reward_cnt: ", self._reward_cnt) return reward.item() def calc_height(self, a, b): l1 = 0.075 l2 = 0.15 l3 = 0.27 d = 15 * math.pi / 180 p1 = torch.zeros((self._robots.count, 2), dtype=torch.float32, device=self._device) p2 = torch.zeros((self._robots.count, 2), dtype=torch.float32, device=self._device) p3 = torch.zeros((self._robots.count, 2), dtype=torch.float32, device=self._device) res = torch.zeros((self._robots.count, 1), dtype=torch.float32, device=self._device) a = torch.abs(a) b = torch.abs(b) p1[:, 0] = -l2 * torch.cos(a - d) - l1 p1[:, 1] = l2 * torch.sin(a - d) p2[:, 0] = l2 * torch.cos(b - d) + l1 p2[:, 1] = l2 * torch.sin(b - d) p3[:, 0] = (p1[:, 0] + p2[:, 0]) / 2 p3[:, 1] = (p1[:, 1] + p2[:, 1]) / 2 res[:, 0] = l3 * l3 - torch.pow(p2[:, 0] - p3[:, 0], 2) - torch.pow(p2[:, 1] - p3[:, 1], 2) res[:, 0] = torch.sqrt(res[:, 0] * torch.pow(p2[:, 0]- p1[:, 0], 2) / (torch.pow(p2[:, 0]- p1[:, 0], 2) + torch.pow(p2[:, 1]- p1[:, 1], 2))) return res def is_done(self) -> None: # print("running: is_done") roll_x = self.obs[:, 3] pitch_y = self.obs[:, 4] joint1_pos = self.obs[:, 5] joint2_pos = self.obs[:, 6] joint6_pos = self.obs[:, 7] joint7_pos = self.obs[:, 8] joint1_vel = self.obs[:, 9] joint2_vel = self.obs[:, 10] joint6_vel = self.obs[:, 11] joint7_vel = self.obs[:, 12] joint4_vel = self.obs[:, 13] joint9_vel = self.obs[:, 14] # reset the robot if cart has reached reset_dist or pole is too far from upright resets = torch.where(torch.abs(roll_x) > self._angle_limit, 1, 0) resets = torch.where(torch.abs(pitch_y) > self._angle_limit, 1, resets) resets = torch.where(torch.tensor([self._reward_cnt]) > 1000, 1, resets) if self._reward_cnt > 1000: order = self._orders.pop(0) self._orders.append(order) self._reward_cnt = 0 # print("order: ", order) self.resets = resets # print("resets: ", resets.item()) return resets.item()
19,987
Python
42.546841
201
0.592835
2820207922/isaac_ws/README.md
# Servicer Deployment Guide
27
Markdown
26.999973
27
0.851852
2820207922/isaac_ws/standalone_examples/replicator/amr_navigation.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Generate synthetic data from an AMR navigating to random locations """ from omni.isaac.kit import SimulationApp simulation_app = SimulationApp(launch_config={"headless": False}) import argparse import builtins import os import random from itertools import cycle import carb.settings import omni.client import omni.kit.app import omni.replicator.core as rep import omni.timeline import omni.usd from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage, create_new_stage from pxr import Gf, PhysxSchema, UsdGeom, UsdLux, UsdPhysics class NavSDGDemo: CARTER_URL = "/Isaac/Samples/Replicator/OmniGraph/nova_carter_nav_only.usd" DOLLY_URL = "/Isaac/Props/Dolly/dolly_physics.usd" PROPS_URL = "/Isaac/Props/YCB/Axis_Aligned_Physics" LEFT_CAMERA_PATH = "/NavWorld/CarterNav/chassis_link/front_hawk/left/camera_left" RIGHT_CAMERA_PATH = "/NavWorld/CarterNav/chassis_link/front_hawk/right/camera_right" def __init__(self): self._carter_chassis = None self._carter_nav_target = None self._dolly = None self._dolly_light = None self._props = [] self._cycled_env_urls = None self._env_interval = 1 self._timeline = None self._timeline_sub = None self._stage_event_sub = None self._stage = None self._trigger_distance = 2.0 self._num_frames = 0 self._frame_counter = 0 self._writer = None self._out_dir = None self._render_products = [] self._use_temp_rp = False self._in_running_state = False def start( self, num_frames=10, out_dir=None, env_urls=[], env_interval=3, use_temp_rp=False, seed=None, ): print(f"[NavSDGDemo] Starting") if seed is not None: random.seed(seed) self._num_frames = num_frames self._out_dir = out_dir if out_dir is not None else os.path.join(os.getcwd(), "_out_nav_sdg_demo") self._cycled_env_urls = cycle(env_urls) self._env_interval = env_interval self._use_temp_rp = use_temp_rp self._frame_counter = 0 self._trigger_distance = 2.0 self._load_env() self._randomize_dolly_pose() self._randomize_dolly_light() self._randomize_prop_poses() self._setup_sdg() self._timeline = omni.timeline.get_timeline_interface() self._timeline.play() self._timeline_sub = self._timeline.get_timeline_event_stream().create_subscription_to_pop_by_type( int(omni.timeline.TimelineEventType.CURRENT_TIME_TICKED), self._on_timeline_event ) self._stage_event_sub = ( omni.usd.get_context() .get_stage_event_stream() .create_subscription_to_pop_by_type(int(omni.usd.StageEventType.CLOSING), self._on_stage_closing_event) ) self._in_running_state = True def clear(self): self._cycled_env_urls = None self._carter_chassis = None self._carter_nav_target = None self._dolly = None self._dolly_light = None self._timeline = None self._frame_counter = 0 if self._stage_event_sub: self._stage_event_sub.unsubscribe() self._stage_event_sub = None if self._timeline_sub: self._timeline_sub.unsubscribe() self._timeline_sub = None self._destroy_render_products() self._stage = None self._in_running_state = False def is_running(self): return self._in_running_state def _is_running_in_script_editor(self): return builtins.ISAAC_LAUNCHED_FROM_TERMINAL is True def _on_stage_closing_event(self, e: carb.events.IEvent): self.clear() def _load_env(self): # Fresh stage with custom physics scene for carter's navigation create_new_stage() self._stage = omni.usd.get_context().get_stage() self._add_physics_scene() # Environment assets_root_path = get_assets_root_path() add_reference_to_stage(usd_path=assets_root_path + next(self._cycled_env_urls), prim_path="/Environment") # Carter add_reference_to_stage(usd_path=assets_root_path + self.CARTER_URL, prim_path="/NavWorld/CarterNav") self._carter_nav_target = self._stage.GetPrimAtPath("/NavWorld/CarterNav/targetXform") self._carter_chassis = self._stage.GetPrimAtPath("/NavWorld/CarterNav/chassis_link") # Dolly add_reference_to_stage(usd_path=assets_root_path + self.DOLLY_URL, prim_path="/NavWorld/Dolly") self._dolly = self._stage.GetPrimAtPath("/NavWorld/Dolly") if not self._dolly.GetAttribute("xformOp:translate"): UsdGeom.Xformable(self._dolly).AddTranslateOp() if not self._dolly.GetAttribute("xformOp:rotateXYZ"): UsdGeom.Xformable(self._dolly).AddRotateXYZOp() # Light light = UsdLux.SphereLight.Define(self._stage, f"/NavWorld/DollyLight") light.CreateRadiusAttr(0.5) light.CreateIntensityAttr(35000) light.CreateColorAttr(Gf.Vec3f(1.0, 1.0, 1.0)) self._dolly_light = light.GetPrim() if not self._dolly_light.GetAttribute("xformOp:translate"): UsdGeom.Xformable(self._dolly_light).AddTranslateOp() # Props props_urls = [] props_folder_path = assets_root_path + self.PROPS_URL result, entries = omni.client.list(props_folder_path) if result != omni.client.Result.OK: carb.log_error(f"Could not list assets in path: {props_folder_path}") return for entry in entries: _, ext = os.path.splitext(entry.relative_path) if ext == ".usd": props_urls.append(f"{props_folder_path}/{entry.relative_path}") cycled_props_url = cycle(props_urls) for i in range(15): prop_url = next(cycled_props_url) prop_name = os.path.splitext(os.path.basename(prop_url))[0] path = f"/NavWorld/Props/Prop_{prop_name}_{i}" prim = self._stage.DefinePrim(path, "Xform") prim.GetReferences().AddReference(prop_url) self._props.append(prim) def _add_physics_scene(self): # Physics setup specific for the navigation graph physics_scene = UsdPhysics.Scene.Define(self._stage, "/physicsScene") physx_scene = PhysxSchema.PhysxSceneAPI.Apply(self._stage.GetPrimAtPath("/physicsScene")) physx_scene.GetEnableCCDAttr().Set(True) physx_scene.GetEnableGPUDynamicsAttr().Set(False) physx_scene.GetBroadphaseTypeAttr().Set("MBP") def _randomize_dolly_pose(self): min_dist_from_carter = 4 carter_loc = self._carter_chassis.GetAttribute("xformOp:translate").Get() for _ in range(100): x, y = random.uniform(-6, 6), random.uniform(-6, 6) dist = (Gf.Vec2f(x, y) - Gf.Vec2f(carter_loc[0], carter_loc[1])).GetLength() if dist > min_dist_from_carter: self._dolly.GetAttribute("xformOp:translate").Set((x, y, 0)) self._carter_nav_target.GetAttribute("xformOp:translate").Set((x, y, 0)) break self._dolly.GetAttribute("xformOp:rotateXYZ").Set((0, 0, random.uniform(-180, 180))) def _randomize_dolly_light(self): dolly_loc = self._dolly.GetAttribute("xformOp:translate").Get() self._dolly_light.GetAttribute("xformOp:translate").Set(dolly_loc + (0, 0, 2.5)) self._dolly_light.GetAttribute("inputs:color").Set( (random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1)) ) def _randomize_prop_poses(self): spawn_loc = self._dolly.GetAttribute("xformOp:translate").Get() spawn_loc[2] = spawn_loc[2] + 0.5 for prop in self._props: prop.GetAttribute("xformOp:translate").Set(spawn_loc + (random.uniform(-1, 1), random.uniform(-1, 1), 0)) spawn_loc[2] = spawn_loc[2] + 0.2 def _setup_sdg(self): # Disable capture on play and async rendering carb.settings.get_settings().set("/omni/replicator/captureOnPlay", False) carb.settings.get_settings().set("/omni/replicator/asyncRendering", False) carb.settings.get_settings().set("/app/asyncRendering", False) # Set camera sensors fStop to 0.0 to get well lit sharp images left_camera_prim = self._stage.GetPrimAtPath(self.LEFT_CAMERA_PATH) left_camera_prim.GetAttribute("fStop").Set(0.0) right_camera_prim = self._stage.GetPrimAtPath(self.RIGHT_CAMERA_PATH) right_camera_prim.GetAttribute("fStop").Set(0.0) self._writer = rep.WriterRegistry.get("BasicWriter") self._writer.initialize(output_dir=self._out_dir, rgb=True) # If no temporary render products are requested, create them once here and destroy them only at the end if not self._use_temp_rp: self._setup_render_products() def _setup_render_products(self): print(f"[NavSDGDemo] Creating render products") rp_left = rep.create.render_product( self.LEFT_CAMERA_PATH, (512, 512), name="left_sensor", force_new=True, ) rp_right = rep.create.render_product( self.RIGHT_CAMERA_PATH, (512, 512), name="right_sensor", force_new=True, ) self._render_products = [rp_left, rp_right] self._writer.attach(self._render_products) rep.orchestrator.preview() def _destroy_render_products(self): print(f"[NavSDGDemo] Destroying render products") if self._writer: self._writer.detach() for rp in self._render_products: rp.destroy() self._render_products.clear() if self._stage.GetPrimAtPath("/Replicator"): omni.kit.commands.execute("DeletePrimsCommand", paths=["/Replicator"]) def _run_sdg(self): if self._use_temp_rp: self._setup_render_products() rep.orchestrator.step(rt_subframes=16, pause_timeline=False) rep.orchestrator.wait_until_complete() if self._use_temp_rp: self._destroy_render_products() async def _run_sdg_async(self): if self._use_temp_rp: self._setup_render_products() await rep.orchestrator.step_async(rt_subframes=16, pause_timeline=False) await rep.orchestrator.wait_until_complete_async() if self._use_temp_rp: self._destroy_render_products() def _load_next_env(self): if self._stage.GetPrimAtPath("/Environment"): omni.kit.commands.execute("DeletePrimsCommand", paths=["/Environment"]) assets_root_path = get_assets_root_path() add_reference_to_stage(usd_path=assets_root_path + next(self._cycled_env_urls), prim_path="/Environment") def _on_sdg_done(self, task): self._setup_next_frame() def _setup_next_frame(self): self._frame_counter += 1 if self._frame_counter >= self._num_frames: print(f"[NavSDGDemo] Finished") self.clear() return self._randomize_dolly_pose() self._randomize_dolly_light() self._randomize_prop_poses() if self._frame_counter % self._env_interval == 0: self._load_next_env() # Set a new random distance from which to take capture the next frame self._trigger_distance = random.uniform(1.75, 2.5) self._timeline.play() self._timeline_sub = self._timeline.get_timeline_event_stream().create_subscription_to_pop_by_type( int(omni.timeline.TimelineEventType.CURRENT_TIME_TICKED), self._on_timeline_event ) def _on_timeline_event(self, e: carb.events.IEvent): carter_loc = self._carter_chassis.GetAttribute("xformOp:translate").Get() dolly_loc = self._dolly.GetAttribute("xformOp:translate").Get() dist = (Gf.Vec2f(dolly_loc[0], dolly_loc[1]) - Gf.Vec2f(carter_loc[0], carter_loc[1])).GetLength() if dist < self._trigger_distance: print(f"[NavSDGDemo] Capturing frame no. {self._frame_counter}") self._timeline.pause() self._timeline_sub.unsubscribe() if self._is_running_in_script_editor(): import asyncio task = asyncio.ensure_future(self._run_sdg_async()) task.add_done_callback(self._on_sdg_done) else: self._run_sdg() self._setup_next_frame() ENV_URLS = [ "/Isaac/Environments/Grid/default_environment.usd", "/Isaac/Environments/Simple_Warehouse/warehouse.usd", "/Isaac/Environments/Grid/gridroom_black.usd", ] parser = argparse.ArgumentParser() parser.add_argument("--use_temp_rp", action="store_true", help="Create and destroy render products for each SDG frame") parser.add_argument("--num_frames", type=int, default=9, help="The number of frames to capture") parser.add_argument("--env_interval", type=int, default=3, help="Interval at which to change the environments") args, unknown = parser.parse_known_args() out_dir = os.path.join(os.getcwd(), "_out_nav_sdg_demo", "") nav_demo = NavSDGDemo() nav_demo.start( num_frames=args.num_frames, out_dir=out_dir, env_urls=ENV_URLS, env_interval=args.env_interval, use_temp_rp=args.use_temp_rp, seed=124, ) while simulation_app.is_running() and nav_demo.is_running(): simulation_app.update() simulation_app.close()
14,064
Python
39.768116
119
0.630475
2820207922/isaac_ws/standalone_examples/replicator/online_generation/generate_shapenet.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # """Dataset with online randomized scene generation for Instance Segmentation training. Use OmniKit to generate a simple scene. At each iteration, the scene is populated by adding assets from the user-specified classes with randomized pose and colour. The camera position is also randomized before capturing groundtruth consisting of an RGB rendered image, Tight 2D Bounding Boxes and Instance Segmentation masks. """ import glob import os import signal import sys import carb import numpy as np import torch from omni.isaac.kit import SimulationApp LABEL_TO_SYNSET = { "table": "04379243", "monitor": "03211117", "phone": "04401088", "watercraft": "04530566", "chair": "03001627", "lamp": "03636649", "speaker": "03691459", "bench": "02828884", "plane": "02691156", "bathtub": "02808440", "bookcase": "02871439", "bag": "02773838", "basket": "02801938", "bowl": "02880940", "bus": "02924116", "cabinet": "02933112", "camera": "02942699", "car": "02958343", "dishwasher": "03207941", "file": "03337140", "knife": "03624134", "laptop": "03642806", "mailbox": "03710193", "microwave": "03761084", "piano": "03928116", "pillow": "03938244", "pistol": "03948459", "printer": "04004475", "rocket": "04099429", "sofa": "04256520", "washer": "04554684", "rifle": "04090263", "can": "02946921", "bottle": "02876657", "bowl": "02880940", "earphone": "03261776", "mug": "03797390", } SYNSET_TO_LABEL = {v: k for k, v in LABEL_TO_SYNSET.items()} # Setup default variables RESOLUTION = (1024, 1024) OBJ_LOC_MIN = (-50, 5, -50) OBJ_LOC_MAX = (50, 5, 50) CAM_LOC_MIN = (100, 0, -100) CAM_LOC_MAX = (100, 100, 100) SCALE_MIN = 15 SCALE_MAX = 40 # Default rendering parameters RENDER_CONFIG = {"headless": False} class RandomObjects(torch.utils.data.IterableDataset): """Dataset of random ShapeNet objects. Objects are randomly chosen from selected categories and are positioned, rotated and coloured randomly in an empty room. RGB, BoundingBox2DTight and Instance Segmentation are captured by moving a camera aimed at the centre of the scene which is positioned at random at a fixed distance from the centre. This dataset is intended for use with ShapeNet but will function with any dataset of USD models structured as `root/category/**/*.usd. One note is that this is designed for assets without materials attached. This is to avoid requiring to compile MDLs and load textures while training. Args: categories (tuple of str): Tuple or list of categories. For ShapeNet, these will be the synset IDs. max_asset_size (int): Maximum asset file size that will be loaded. This prevents out of memory errors due to loading large meshes. num_assets_min (int): Minimum number of assets populated in the scene. num_assets_max (int): Maximum number of assets populated in the scene. split (float): Fraction of the USDs found to use for training. train (bool): If true, use the first training split and generate infinite random scenes. """ def __init__( self, root, categories, max_asset_size=None, num_assets_min=3, num_assets_max=5, split=0.7, train=True ): assert len(categories) > 1 assert (split > 0) and (split <= 1.0) self.kit = SimulationApp(RENDER_CONFIG) import omni.replicator.core as rep import warp as wp self.rep = rep self.wp = wp from omni.isaac.core.utils.nucleus import get_assets_root_path self.assets_root_path = get_assets_root_path() if self.assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") return # If ShapeNet categories are specified with their names, convert to synset ID # Remove this if using with a different dataset than ShapeNet category_ids = [LABEL_TO_SYNSET.get(c, c) for c in categories] self.categories = category_ids self.range_num_assets = (num_assets_min, max(num_assets_min, num_assets_max)) try: self.references = self._find_usd_assets(root, category_ids, max_asset_size, split, train) except ValueError as err: carb.log_error(str(err)) self.kit.close() sys.exit() # Setup the scene, lights, walls, camera, etc. self.setup_scene() # Setup replicator randomizer graph self.setup_replicator() self.cur_idx = 0 self.exiting = False signal.signal(signal.SIGINT, self._handle_exit) def _get_textures(self): return [ self.assets_root_path + "/Isaac/Samples/DR/Materials/Textures/checkered.png", self.assets_root_path + "/Isaac/Samples/DR/Materials/Textures/marble_tile.png", self.assets_root_path + "/Isaac/Samples/DR/Materials/Textures/picture_a.png", self.assets_root_path + "/Isaac/Samples/DR/Materials/Textures/picture_b.png", self.assets_root_path + "/Isaac/Samples/DR/Materials/Textures/textured_wall.png", self.assets_root_path + "/Isaac/Samples/DR/Materials/Textures/checkered_color.png", ] def _handle_exit(self, *args, **kwargs): print("exiting dataset generation...") self.exiting = True def close(self): self.rep.orchestrator.stop() self.kit.close() def setup_scene(self): from omni.isaac.core.utils.prims import create_prim from omni.isaac.core.utils.rotations import euler_angles_to_quat from omni.isaac.core.utils.stage import set_stage_up_axis """Setup lights, walls, floor, ceiling and camera""" # Set stage up axis to Y-up set_stage_up_axis("y") # In a practical setting, the room parameters should attempt to match those of the # target domain. Here, we instead opt for simplicity. create_prim("/World/Room", "Sphere", attributes={"radius": 1e3, "primvars:displayColor": [(1.0, 1.0, 1.0)]}) create_prim( "/World/Ground", "Cylinder", position=np.array([0.0, -0.5, 0.0]), orientation=euler_angles_to_quat(np.array([90.0, 0.0, 0.0]), degrees=True), attributes={"height": 1, "radius": 1e4, "primvars:displayColor": [(1.0, 1.0, 1.0)]}, ) create_prim("/World/Asset", "Xform") self.camera = self.rep.create.camera() self.render_product = self.rep.create.render_product(self.camera, RESOLUTION) # Setup annotators that will report groundtruth self.rgb = self.rep.AnnotatorRegistry.get_annotator("rgb") self.bbox_2d_tight = self.rep.AnnotatorRegistry.get_annotator("bounding_box_2d_tight") self.instance_seg = self.rep.AnnotatorRegistry.get_annotator("instance_segmentation") self.rgb.attach(self.render_product) self.bbox_2d_tight.attach(self.render_product) self.instance_seg.attach(self.render_product) self.kit.update() def _find_usd_assets(self, root, categories, max_asset_size, split, train=True): """Look for USD files under root/category for each category specified. For each category, generate a list of all USD files found and select assets up to split * len(num_assets) if `train=True`, otherwise select the remainder. """ references = {} for category in categories: all_assets = glob.glob(os.path.join(root, category, "*/*.usd"), recursive=True) print(os.path.join(root, category, "*/*.usd")) # Filter out large files (which can prevent OOM errors during training) if max_asset_size is None: assets_filtered = all_assets else: assets_filtered = [] for a in all_assets: if os.stat(a).st_size > max_asset_size * 1e6: print(f"{a} skipped as it exceeded the max size {max_asset_size} MB.") else: assets_filtered.append(a) num_assets = len(assets_filtered) if num_assets == 0: raise ValueError(f"No USDs found for category {category} under max size {max_asset_size} MB.") if train: references[category] = assets_filtered[: int(num_assets * split)] else: references[category] = assets_filtered[int(num_assets * split) :] return references def _instantiate_category(self, category, references): with self.rep.randomizer.instantiate(references, size=1, mode="reference"): self.rep.modify.semantics([("class", category)]) self.rep.modify.pose( position=self.rep.distribution.uniform(OBJ_LOC_MIN, OBJ_LOC_MAX), rotation=self.rep.distribution.uniform((0, -180, 0), (0, 180, 0)), scale=self.rep.distribution.uniform(SCALE_MIN, SCALE_MAX), ) self.rep.randomizer.texture(self._get_textures(), project_uvw=True) def setup_replicator(self): """Setup the replicator graph with various attributes.""" # Create two sphere lights light1 = self.rep.create.light(light_type="sphere", position=(-450, 350, 350), scale=100, intensity=30000.0) light2 = self.rep.create.light(light_type="sphere", position=(450, 350, 350), scale=100, intensity=30000.0) with self.rep.new_layer(): with self.rep.trigger.on_frame(): # Randomize light colors with self.rep.create.group([light1, light2]): self.rep.modify.attribute("color", self.rep.distribution.uniform((0.1, 0.1, 0.1), (1.0, 1.0, 1.0))) # Randomize camera position with self.camera: self.rep.modify.pose( position=self.rep.distribution.uniform(CAM_LOC_MIN, CAM_LOC_MAX), look_at=(0, 0, 0) ) # Randomize asset positions and textures for category, references in self.references.items(): self._instantiate_category(category, references) # Run replicator for a single iteration without triggering any writes self.rep.orchestrator.preview() def __iter__(self): return self def __next__(self): # Step - trigger a randomization and a render self.rep.orchestrator.step(rt_subframes=4) # Collect Groundtruth gt = { "rgb": self.rgb.get_data(device="cuda"), "boundingBox2DTight": self.bbox_2d_tight.get_data(device="cpu"), "instanceSegmentation": self.instance_seg.get_data(device="cuda"), } # RGB # Drop alpha channel image = self.wp.to_torch(gt["rgb"])[..., :3] # Normalize between 0. and 1. and change order to channel-first. image = image.float() / 255.0 image = image.permute(2, 0, 1) # Bounding Box gt_bbox = gt["boundingBox2DTight"]["data"] # Create mapping from categories to index bboxes = torch.tensor(gt_bbox[["x_min", "y_min", "x_max", "y_max"]].tolist(), device="cuda") id_to_labels = gt["boundingBox2DTight"]["info"]["idToLabels"] prim_paths = gt["boundingBox2DTight"]["info"]["primPaths"] # For each bounding box, map semantic label to label index cat_to_id = {cat: i + 1 for i, cat in enumerate(self.categories)} semantic_labels_mapping = {int(k): v.get("class", "") for k, v in id_to_labels.items()} semantic_labels = [cat_to_id[semantic_labels_mapping[i]] for i in gt_bbox["semanticId"]] labels = torch.tensor(semantic_labels, device="cuda") # Calculate bounding box area for each area areas = (bboxes[:, 2] - bboxes[:, 0]) * (bboxes[:, 3] - bboxes[:, 1]) # Identify invalid bounding boxes to filter final output valid_areas = (areas > 0.0) * (areas < (image.shape[1] * image.shape[2])) # Instance Segmentation instance_data = self.wp.to_torch(gt["instanceSegmentation"]["data"].view(self.wp.int32)).squeeze() path_to_instance_id = {v: int(k) for k, v in gt["instanceSegmentation"]["info"]["idToLabels"].items()} instance_list = [im[0] for im in gt_bbox] masks = torch.zeros((len(instance_list), *instance_data.shape), dtype=bool, device="cuda") # Filter for the mask of each object for i, prim_path in enumerate(prim_paths): # Merge child instances of prim_path as one instance for instance in path_to_instance_id: if prim_path in instance: masks[i] += torch.isin(instance_data, path_to_instance_id[instance]) target = { "boxes": bboxes[valid_areas], "labels": labels[valid_areas], "masks": masks[valid_areas], "image_id": torch.LongTensor([self.cur_idx]), "area": areas[valid_areas], "iscrowd": torch.BoolTensor([False] * len(bboxes[valid_areas])), # Assume no crowds } self.cur_idx += 1 return image, target if __name__ == "__main__": "Typical usage" import argparse import struct import matplotlib.pyplot as plt parser = argparse.ArgumentParser("Dataset test") parser.add_argument("--categories", type=str, nargs="+", required=True, help="List of object classes to use") parser.add_argument( "--max_asset_size", type=float, default=10.0, help="Maximum asset size to use in MB. Larger assets will be skipped.", ) parser.add_argument( "--num_test_images", type=int, default=10, help="number of test images to generate when executing main" ) parser.add_argument( "--root", type=str, default=None, help="Root directory containing USDs. If not specified, use {SHAPENET_LOCAL_DIR}_mat as root.", ) args, unknown_args = parser.parse_known_args() # If root is not specified use the environment variable SHAPENET_LOCAL_DIR with the _mat suffix as root if args.root is None: if "SHAPENET_LOCAL_DIR" in os.environ: shapenet_local_dir = f"{os.path.abspath(os.environ['SHAPENET_LOCAL_DIR'])}_mat" if os.path.exists(shapenet_local_dir): args.root = shapenet_local_dir if args.root is None: print( "root argument not specified and SHAPENET_LOCAL_DIR environment variable was not set or the path did not exist" ) exit() dataset = RandomObjects(args.root, args.categories, max_asset_size=args.max_asset_size) from omni.replicator.core import random_colours categories = [LABEL_TO_SYNSET.get(c, c) for c in args.categories] # Iterate through dataset and visualize the output plt.ion() _, axes = plt.subplots(1, 2, figsize=(10, 5)) plt.tight_layout() # Directory to save the example images to out_dir = os.path.join(os.getcwd(), "_out_gen_imgs", "") os.makedirs(out_dir, exist_ok=True) image_num = 0 for image, target in dataset: for ax in axes: ax.clear() ax.axis("off") np_image = image.permute(1, 2, 0).cpu().numpy() axes[0].imshow(np_image) num_instances = len(target["boxes"]) # Create random colors for each instance as rgb float lists colours = random_colours(num_instances, num_channels=3) colours = colours.astype(float) / 255.0 colours = colours.tolist() overlay = np.zeros_like(np_image) for mask, colour in zip(target["masks"].cpu().numpy(), colours): overlay[mask, :3] = colour axes[1].imshow(overlay) mapping = {i + 1: cat for i, cat in enumerate(categories)} labels = [SYNSET_TO_LABEL[mapping[label.item()]] for label in target["labels"]] for bb, label, colour in zip(target["boxes"].tolist(), labels, colours): maxint = 2 ** (struct.Struct("i").size * 8 - 1) - 1 # if a bbox is not visible, do not draw if bb[0] != maxint and bb[1] != maxint: x = bb[0] y = bb[1] w = bb[2] - x h = bb[3] - y box = plt.Rectangle((x, y), w, h, fill=False, edgecolor=colour) ax.add_patch(box) ax.text(bb[0], bb[1], label, fontdict={"family": "sans-serif", "color": colour, "size": 10}) plt.draw() plt.pause(0.01) fig_name = os.path.join(out_dir, f"domain_randomization_test_image_{image_num}.png") plt.savefig(fig_name) image_num += 1 if dataset.exiting or (image_num >= args.num_test_images): break # cleanup dataset.close()
17,377
Python
39.226852
127
0.61449
2820207922/isaac_ws/standalone_examples/replicator/online_generation/train_shapenet.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # """Instance Segmentation Training Demonstration Use a PyTorch dataloader together with OmniKit to generate scenes and groundtruth to train a [Mask-RCNN](https://arxiv.org/abs/1703.06870) model. """ import os import signal import matplotlib.pyplot as plt import numpy as np from generate_shapenet import LABEL_TO_SYNSET, SYNSET_TO_LABEL, RandomObjects def main(args): device = "cuda" train_set = RandomObjects( args.root, args.categories, num_assets_min=3, num_assets_max=5, max_asset_size=args.max_asset_size ) def handle_exit(self, *args, **kwargs): print("exiting dataset generation...") train_set.exiting = True signal.signal(signal.SIGINT, handle_exit) import struct import torch import torchvision from omni.replicator.core import random_colours from torch.utils.data import DataLoader # Setup data train_loader = DataLoader(train_set, batch_size=2, collate_fn=lambda x: tuple(zip(*x))) # Setup Model model = torchvision.models.detection.maskrcnn_resnet50_fpn(weights=None, num_classes=1 + len(args.categories)) model = model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate) if args.visualize: plt.ion() fig, axes = plt.subplots(1, 2, figsize=(14, 7)) # Directory to save the train images to out_dir = os.path.join(os.getcwd(), "_out_train_imgs", "") os.makedirs(out_dir, exist_ok=True) for i, train_batch in enumerate(train_loader): if i > args.max_iters or train_set.exiting: print("Exiting ...") train_set.close() break model.train() images, targets = train_batch images = [i.to(device) for i in images] targets = [{k: v.to(device) for k, v in t.items()} for t in targets] loss_dict = model(images, targets) loss = sum(loss for loss in loss_dict.values()) print(f"ITER {i} | {loss:.6f}") optimizer.zero_grad() loss.backward() optimizer.step() if i % 10 == 0: model.eval() with torch.no_grad(): predictions = model(images[:1]) if args.visualize: idx = 0 score_thresh = 0.5 mask_thresh = 0.5 pred = predictions[idx] np_image = images[idx].permute(1, 2, 0).cpu().numpy() for ax in axes: fig.suptitle(f"Iteration {i:05}", fontsize=14) ax.cla() ax.axis("off") ax.imshow(np_image) axes[0].set_title("Input") axes[1].set_title("Input + Predictions") score_filter = [i for i in range(len(pred["scores"])) if pred["scores"][i] > score_thresh] num_instances = len(score_filter) # Create random colors for each instance as rgb float lists colours = random_colours(num_instances, num_channels=3) colours = colours.astype(float) / 255.0 colours = colours.tolist() overlay = np.zeros_like(np_image) for mask, colour in zip(pred["masks"], colours): overlay[mask.squeeze().cpu().numpy() > mask_thresh, :3] = colour axes[1].imshow(overlay, alpha=0.5) # If ShapeNet categories are specified with their names, convert to synset ID # Remove this if using with a different dataset than ShapeNet args.categories = [LABEL_TO_SYNSET.get(c, c) for c in args.categories] mapping = {i + 1: cat for i, cat in enumerate(args.categories)} labels = [SYNSET_TO_LABEL[mapping[label.item()]] for label in pred["labels"]] for bb, label, colour in zip(pred["boxes"].cpu().numpy(), labels, colours): maxint = 2 ** (struct.Struct("i").size * 8 - 1) - 1 # if a bbox is not visible, do not draw if bb[0] != maxint and bb[1] != maxint: x = bb[0] y = bb[1] w = bb[2] - x h = bb[3] - y box = plt.Rectangle((x, y), w, h, fill=False, edgecolor=colour) ax.add_patch(box) ax.text(bb[0], bb[1], label, fontdict={"family": "sans-serif", "color": colour, "size": 10}) plt.draw() fig_name = os.path.join(out_dir, f"train_image_{i}.png") plt.savefig(fig_name) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser("Dataset test") parser.add_argument( "--root", type=str, default=None, help="Root directory containing ShapeNet USDs. If not specified, use {SHAPENET_LOCAL_DIR}_nomat as root.", ) parser.add_argument( "--categories", type=str, nargs="+", required=True, help="List of ShapeNet categories to use (space seperated)." ) parser.add_argument( "--max_asset_size", type=float, default=10.0, help="Maximum asset size to use in MB. Larger assets will be skipped.", ) parser.add_argument("-lr", "--learning_rate", type=float, default=1e-4, help="Learning rate") parser.add_argument("--max_iters", type=float, default=1000, help="Number of training iterations.") parser.add_argument("--visualize", action="store_true", help="Visualize predicted masks during training.") args, unknown_args = parser.parse_known_args() # If root is not specified use the environment variable SHAPENET_LOCAL_DIR with the _nomat suffix as root if args.root is None: if "SHAPENET_LOCAL_DIR" in os.environ: shapenet_local_dir = f"{os.path.abspath(os.environ['SHAPENET_LOCAL_DIR'])}_nomat" if os.path.exists(shapenet_local_dir): args.root = shapenet_local_dir if args.root is None: print( "root argument not specified and SHAPENET_LOCAL_DIR environment variable was not set or the path did not exist" ) exit() main(args)
6,668
Python
37.549133
127
0.586083
2820207922/isaac_ws/standalone_examples/replicator/offline_generation/offline_generation_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import math import random import numpy as np import omni import omni.replicator.core as rep from omni.isaac.core import World from omni.isaac.core.prims.rigid_prim import RigidPrim from omni.isaac.core.utils import prims from omni.isaac.core.utils.bounds import compute_combined_aabb, compute_obb, create_bbox_cache, get_obb_corners from omni.isaac.core.utils.rotations import euler_angles_to_quat, quat_to_euler_angles from omni.isaac.core.utils.semantics import remove_all_semantics from pxr import Gf # Clear any previous semantic data in the stage def remove_previous_semantics(stage, recursive: bool = False): prims = stage.Traverse() for prim in prims: remove_all_semantics(prim, recursive) # Run a simulation def simulate_falling_objects(forklift_prim, assets_root_path, config, max_sim_steps=250, num_boxes=8): # Create the isaac sim world to run any physics simulations world = World(physics_dt=1.0 / 90.0, stage_units_in_meters=1.0) # Set a random relative offset to the pallet using the forklift transform as a base frame forklift_tf = omni.usd.get_world_transform_matrix(forklift_prim) pallet_offset_tf = Gf.Matrix4d().SetTranslate(Gf.Vec3d(random.uniform(-1, 1), random.uniform(-4, -3.6), 0)) pallet_pos = (pallet_offset_tf * forklift_tf).ExtractTranslation() # Spawn pallet prim at a relative random offset to the forklift pallet_prim_name = "SimulatedPallet" pallet_prim = prims.create_prim( prim_path=f"/World/{pallet_prim_name}", usd_path=assets_root_path + config["pallet"]["url"], semantic_label=config["pallet"]["class"], translation=pallet_pos, orientation=euler_angles_to_quat([0, 0, random.uniform(0, math.pi)]), ) # Wrap the pallet as a simulation ready rigid prim a pallet_rigid_prim = RigidPrim(prim_path=str(pallet_prim.GetPrimPath()), name=pallet_prim_name) # Enable physics and add to isaacsim world scene pallet_rigid_prim.enable_rigid_body_physics() world.scene.add(pallet_rigid_prim) # Use the height of the pallet as a spawn base for the boxes bb_cache = create_bbox_cache() spawn_height = bb_cache.ComputeLocalBound(pallet_prim).GetRange().GetSize()[2] * 1.1 # Spawn boxes falling on the pallet for i in range(num_boxes): # Spawn box prim cardbox_prim_name = f"SimulatedCardbox_{i}" box_prim = prims.create_prim( prim_path=f"/World/{cardbox_prim_name}", usd_path=assets_root_path + config["cardbox"]["url"], semantic_label=config["cardbox"]["class"], ) # Get the next spawn height for the box spawn_height += bb_cache.ComputeLocalBound(box_prim).GetRange().GetSize()[2] * 1.1 # Wrap the cardbox prim into a rigid prim to be able to simulate it box_rigid_prim = RigidPrim( prim_path=str(box_prim.GetPrimPath()), name=cardbox_prim_name, position=pallet_pos + Gf.Vec3d(random.uniform(-0.2, 0.2), random.uniform(-0.2, 0.2), spawn_height), orientation=euler_angles_to_quat([0, 0, random.uniform(0, math.pi)]), ) # Make sure physics are enabled on the rigid prim box_rigid_prim.enable_rigid_body_physics() # Register rigid prim with the scene world.scene.add(box_rigid_prim) # Reset the world to handle the physics of the newly created rigid prims world.reset() # Simulate the world for the given number of steps or until the highest box stops moving last_box = world.scene.get_object(f"SimulatedCardbox_{num_boxes - 1}") for i in range(max_sim_steps): world.step(render=False) if last_box and np.linalg.norm(last_box.get_linear_velocity()) < 0.001: print(f"Falling objects simulation finished at step {i}..") break # Register the boxes and materials randomizer graph def register_scatter_boxes(pallet_prim, assets_root_path, config): # Calculate the bounds of the prim to create a scatter plane of its size bb_cache = create_bbox_cache() bbox3d_gf = bb_cache.ComputeLocalBound(pallet_prim) prim_tf_gf = omni.usd.get_world_transform_matrix(pallet_prim) # Calculate the bounds of the prim bbox3d_gf.Transform(prim_tf_gf) range_size = bbox3d_gf.GetRange().GetSize() # Get the quaterion of the prim in xyzw format from usd prim_quat_gf = prim_tf_gf.ExtractRotation().GetQuaternion() prim_quat_xyzw = (prim_quat_gf.GetReal(), *prim_quat_gf.GetImaginary()) # Create a plane on the pallet to scatter the boxes on plane_scale = (range_size[0] * 0.8, range_size[1] * 0.8, 1) plane_pos_gf = prim_tf_gf.ExtractTranslation() + Gf.Vec3d(0, 0, range_size[2]) plane_rot_euler_deg = quat_to_euler_angles(np.array(prim_quat_xyzw), degrees=True) scatter_plane = rep.create.plane( scale=plane_scale, position=plane_pos_gf, rotation=plane_rot_euler_deg, visible=False ) cardbox_mats = [ f"{assets_root_path}/Isaac/Environments/Simple_Warehouse/Materials/MI_PaperNotes_01.mdl", f"{assets_root_path}/Isaac/Environments/Simple_Warehouse/Materials/MI_CardBoxB_05.mdl", ] def scatter_boxes(): cardboxes = rep.create.from_usd( assets_root_path + config["cardbox"]["url"], semantics=[("class", config["cardbox"]["class"])], count=5 ) with cardboxes: rep.randomizer.scatter_2d(scatter_plane, check_for_collisions=True) rep.randomizer.materials(cardbox_mats) return cardboxes.node rep.randomizer.register(scatter_boxes) # Register the place cones randomizer graph def register_cone_placement(forklift_prim, assets_root_path, config): # Get the bottom corners of the oriented bounding box (OBB) of the forklift bb_cache = create_bbox_cache() centroid, axes, half_extent = compute_obb(bb_cache, forklift_prim.GetPrimPath()) larger_xy_extent = (half_extent[0] * 1.3, half_extent[1] * 1.3, half_extent[2]) obb_corners = get_obb_corners(centroid, axes, larger_xy_extent) bottom_corners = [ obb_corners[0].tolist(), obb_corners[2].tolist(), obb_corners[4].tolist(), obb_corners[6].tolist(), ] # Orient the cone using the OBB (Oriented Bounding Box) obb_quat = Gf.Matrix3d(axes).ExtractRotation().GetQuaternion() obb_quat_xyzw = (obb_quat.GetReal(), *obb_quat.GetImaginary()) obb_euler = quat_to_euler_angles(np.array(obb_quat_xyzw), degrees=True) def place_cones(): cones = rep.create.from_usd( assets_root_path + config["cone"]["url"], semantics=[("class", config["cone"]["class"])] ) with cones: rep.modify.pose(position=rep.distribution.sequence(bottom_corners), rotation_z=obb_euler[2]) return cones.node rep.randomizer.register(place_cones) # Register light randomization graph def register_lights_placement(forklift_prim, pallet_prim): bb_cache = create_bbox_cache() combined_range_arr = compute_combined_aabb(bb_cache, [forklift_prim.GetPrimPath(), pallet_prim.GetPrimPath()]) pos_min = (combined_range_arr[0], combined_range_arr[1], 6) pos_max = (combined_range_arr[3], combined_range_arr[4], 7) def randomize_lights(): lights = rep.create.light( light_type="Sphere", color=rep.distribution.uniform((0.2, 0.1, 0.1), (0.9, 0.8, 0.8)), intensity=rep.distribution.uniform(500, 2000), position=rep.distribution.uniform(pos_min, pos_max), scale=rep.distribution.uniform(5, 10), count=3, ) return lights.node rep.randomizer.register(randomize_lights)
8,124
Python
41.763158
115
0.679468
2820207922/isaac_ws/standalone_examples/replicator/offline_generation/offline_generation.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Generate offline synthetic dataset """ import argparse import json import math import os import random import carb import yaml from omni.isaac.kit import SimulationApp # Default config (will be updated/extended by any other passed config arguments) config = { "launch_config": { "renderer": "RayTracedLighting", "headless": False, }, "resolution": [1024, 1024], "rt_subframes": 2, "num_frames": 20, "env_url": "/Isaac/Environments/Simple_Warehouse/full_warehouse.usd", "scope_name": "/MyScope", "writer": "BasicWriter", "writer_config": { "output_dir": "_out_offline_generation", "rgb": True, "bounding_box_2d_tight": True, "semantic_segmentation": True, "distance_to_image_plane": True, "bounding_box_3d": True, "occlusion": True, }, "clear_previous_semantics": True, "forklift": { "url": "/Isaac/Props/Forklift/forklift.usd", "class": "Forklift", }, "cone": { "url": "/Isaac/Environments/Simple_Warehouse/Props/S_TrafficCone.usd", "class": "TrafficCone", }, "pallet": { "url": "/Isaac/Environments/Simple_Warehouse/Props/SM_PaletteA_01.usd", "class": "Pallet", }, "cardbox": { "url": "/Isaac/Environments/Simple_Warehouse/Props/SM_CardBoxD_04.usd", "class": "Cardbox", }, } # Check if there are any config files (yaml or json) are passed as arguments parser = argparse.ArgumentParser() parser.add_argument("--config", required=False, help="Include specific config parameters (json or yaml))") args, unknown = parser.parse_known_args() args_config = {} if args.config and os.path.isfile(args.config): print("File exist") with open(args.config, "r") as f: if args.config.endswith(".json"): args_config = json.load(f) elif args.config.endswith(".yaml"): args_config = yaml.safe_load(f) else: carb.log_warn(f"File {args.config} is not json or yaml, will use default config") else: print(f"File {args.config} does not exist, will use default config") carb.log_warn(f"File {args.config} does not exist, will use default config") # If there are specific writer parameters in the input config file make sure they are not mixed with the default ones if "writer_config" in args_config: config["writer_config"].clear() # Update the default config dictionay with any new parameters or values from the config file config.update(args_config) # Create the simulation app with the given launch_config simulation_app = SimulationApp(launch_config=config["launch_config"]) import offline_generation_utils # Late import of runtime modules (the SimulationApp needs to be created before loading the modules) import omni.replicator.core as rep import omni.usd from omni.isaac.core.utils import prims from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.rotations import euler_angles_to_quat from omni.isaac.core.utils.stage import get_current_stage, open_stage from pxr import Gf # Get server path assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not get nucleus server path, closing application..") simulation_app.close() # Open the given environment in a new stage print(f"Loading Stage {config['env_url']}") if not open_stage(assets_root_path + config["env_url"]): carb.log_error(f"Could not open stage{config['env_url']}, closing application..") simulation_app.close() # Disable capture on play and async rendering carb.settings.get_settings().set("/omni/replicator/captureOnPlay", False) carb.settings.get_settings().set("/omni/replicator/asyncRendering", False) carb.settings.get_settings().set("/app/asyncRendering", False) if config["clear_previous_semantics"]: stage = get_current_stage() offline_generation_utils.remove_previous_semantics(stage) # Spawn a new forklift at a random pose forklift_prim = prims.create_prim( prim_path="/World/Forklift", position=(random.uniform(-20, -2), random.uniform(-1, 3), 0), orientation=euler_angles_to_quat([0, 0, random.uniform(0, math.pi)]), usd_path=assets_root_path + config["forklift"]["url"], semantic_label=config["forklift"]["class"], ) # Spawn the pallet in front of the forklift with a random offset on the Y (pallet's forward) axis forklift_tf = omni.usd.get_world_transform_matrix(forklift_prim) pallet_offset_tf = Gf.Matrix4d().SetTranslate(Gf.Vec3d(0, random.uniform(-1.2, -1.8), 0)) pallet_pos_gf = (pallet_offset_tf * forklift_tf).ExtractTranslation() forklift_quat_gf = forklift_tf.ExtractRotationQuat() forklift_quat_xyzw = (forklift_quat_gf.GetReal(), *forklift_quat_gf.GetImaginary()) pallet_prim = prims.create_prim( prim_path="/World/Pallet", position=pallet_pos_gf, orientation=forklift_quat_xyzw, usd_path=assets_root_path + config["pallet"]["url"], semantic_label=config["pallet"]["class"], ) # Register randomizers graphs offline_generation_utils.register_scatter_boxes(pallet_prim, assets_root_path, config) offline_generation_utils.register_cone_placement(forklift_prim, assets_root_path, config) offline_generation_utils.register_lights_placement(forklift_prim, pallet_prim) # Spawn a camera in the driver's location looking at the pallet foklift_pos_gf = forklift_tf.ExtractTranslation() driver_cam_pos_gf = foklift_pos_gf + Gf.Vec3d(0.0, 0.0, 1.9) driver_cam = rep.create.camera( focus_distance=400.0, focal_length=24.0, clipping_range=(0.1, 10000000.0), name="DriverCam" ) # Camera looking at the pallet pallet_cam = rep.create.camera(name="PalletCam") # Camera looking at the forklift from a top view with large min clipping to see the scene through the ceiling top_view_cam = rep.create.camera(clipping_range=(6.0, 1000000.0), name="TopCam") # Generate graph nodes to be triggered every frame with rep.trigger.on_frame(): rep.randomizer.scatter_boxes() rep.randomizer.place_cones() rep.randomizer.randomize_lights() pallet_cam_min = (pallet_pos_gf[0] - 2, pallet_pos_gf[1] - 2, 2) pallet_cam_max = (pallet_pos_gf[0] + 2, pallet_pos_gf[1] + 2, 4) with pallet_cam: rep.modify.pose( position=rep.distribution.uniform(pallet_cam_min, pallet_cam_max), look_at=str(pallet_prim.GetPrimPath()), ) driver_cam_min = (driver_cam_pos_gf[0], driver_cam_pos_gf[1], driver_cam_pos_gf[2] - 0.25) driver_cam_max = (driver_cam_pos_gf[0], driver_cam_pos_gf[1], driver_cam_pos_gf[2] + 0.25) with driver_cam: rep.modify.pose( position=rep.distribution.uniform(driver_cam_min, driver_cam_max), look_at=str(pallet_prim.GetPrimPath()), ) # Generate graph nodes to be triggered only at the given interval with rep.trigger.on_frame(interval=4): top_view_cam_min = (foklift_pos_gf[0], foklift_pos_gf[1], 9) top_view_cam_max = (foklift_pos_gf[0], foklift_pos_gf[1], 11) with top_view_cam: rep.modify.pose( position=rep.distribution.uniform(top_view_cam_min, top_view_cam_max), rotation=rep.distribution.uniform((0, -90, -30), (0, -90, 30)), ) # If output directory is relative, set it relative to the current working directory if config["writer_config"]["output_dir"] and not os.path.isabs(config["writer_config"]["output_dir"]): config["writer_config"]["output_dir"] = os.path.join(os.getcwd(), config["writer_config"]["output_dir"]) print(f"Output directory={config['writer_config']['output_dir']}") # Setup the writer writer = rep.WriterRegistry.get(config["writer"]) writer.initialize(**config["writer_config"]) forklift_rp = rep.create.render_product(top_view_cam, config["resolution"], name="TopView") driver_rp = rep.create.render_product(driver_cam, config["resolution"], name="DriverView") pallet_rp = rep.create.render_product(pallet_cam, config["resolution"], name="PalletView") writer.attach([forklift_rp, driver_rp, pallet_rp]) # Run a simulation before generating data offline_generation_utils.simulate_falling_objects(forklift_prim, assets_root_path, config) # Increase subframes if materials are not loaded on time or ghosting rendering artifacts appear on quickly moving objects, # see: https://docs.omniverse.nvidia.com/extensions/latest/ext_replicator/subframes_examples.html if config["rt_subframes"] > 1: rep.settings.carb_settings("/omni/replicator/RTSubframes", config["rt_subframes"]) else: carb.log_warn("RTSubframes is set to 1, consider increasing it if materials are not loaded on time") # Run the SDG rep.orchestrator.run_until_complete(num_frames=config["num_frames"]) simulation_app.close()
9,138
Python
39.799107
122
0.706281
2820207922/isaac_ws/standalone_examples/replicator/offline_generation/config/config_kitti_writer.yaml
launch_config: renderer: RayTracedLighting headless: true resolution: [512, 512] num_frames: 5 clear_previous_semantics: false writer: KittiWriter writer_config: output_dir: _out_kitti colorize_instance_segmentation: true
229
YAML
21.999998
38
0.786026
2820207922/isaac_ws/standalone_examples/replicator/offline_generation/config/config_basic_writer.yaml
launch_config: renderer: RayTracedLighting headless: false resolution: [512, 512] env_url: "/Isaac/Environments/Grid/default_environment.usd" rt_subframes: 32 writer: BasicWriter writer_config: output_dir: _out_basicwriter rgb: true
240
YAML
23.099998
59
0.775
2820207922/isaac_ws/standalone_examples/replicator/augmentation/annotator_augmentation.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Generate augmented synthetic data from annotators """ from omni.isaac.kit import SimulationApp simulation_app = SimulationApp(launch_config={"headless": False}) import argparse import os import time import carb.settings import numpy as np import omni.replicator.core as rep import warp as wp from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import open_stage from PIL import Image parser = argparse.ArgumentParser() parser.add_argument("--num_frames", type=int, default=25, help="The number of frames to capture") parser.add_argument("--use_warp", action="store_true", help="Use warp augmentations instead of numpy") args, unknown = parser.parse_known_args() NUM_FRAMES = args.num_frames USE_WARP = args.use_warp ENV_URL = "/Isaac/Environments/Grid/default_environment.usd" # Enable scripts carb.settings.get_settings().set_bool("/app/omni.graph.scriptnode/opt_in", True) # Illustrative augmentation switching red and blue channels in rgb data using numpy (CPU) and warp (GPU) def rgb_to_bgr_np(data_in): data_in[:, :, [0, 2]] = data_in[:, :, [2, 0]] return data_in @wp.kernel def rgb_to_bgr_wp(data_in: wp.array3d(dtype=wp.uint8), data_out: wp.array3d(dtype=wp.uint8)): i, j = wp.tid() data_out[i, j, 0] = data_in[i, j, 2] data_out[i, j, 1] = data_in[i, j, 1] data_out[i, j, 2] = data_in[i, j, 0] data_out[i, j, 3] = data_in[i, j, 3] # Gaussian noise augmentation on depth data in numpy (CPU) and warp (GPU) def gaussian_noise_depth_np(data_in, sigma: float, seed: int): np.random.seed(seed) return data_in + np.random.randn(*data_in.shape) * sigma rep.AnnotatorRegistry.register_augmentation( "gn_depth_np", rep.annotators.Augmentation.from_function(gaussian_noise_depth_np, sigma=0.1, seed=None) ) @wp.kernel def gaussian_noise_depth_wp( data_in: wp.array2d(dtype=wp.float32), data_out: wp.array2d(dtype=wp.float32), sigma: float, seed: int ): i, j = wp.tid() state = wp.rand_init(seed, wp.tid()) data_out[i, j] = data_in[i, j] + sigma * wp.randn(state) rep.AnnotatorRegistry.register_augmentation( "gn_depth_wp", rep.annotators.Augmentation.from_function(gaussian_noise_depth_wp, sigma=0.1, seed=None) ) # Helper functions for writing images from annotator data def write_rgb(data, path): rgb_img = Image.fromarray(data, mode="RGBA") rgb_img.save(path + ".png") def write_depth(data, path): # Convert to numpy (if warp), normalize, handle any nan values, and convert to from float32 to 8-bit int array if isinstance(data, wp.array): data = data.numpy() # Replace any -inf and inf values with nan, then calculate the mean value and replace nan with the mean data[np.isinf(data)] = np.nan data = np.nan_to_num(data, nan=np.nanmean(data), copy=False) normalized_array = (data - np.min(data)) / (np.max(data) - np.min(data)) integer_array = (normalized_array * 255).astype(np.uint8) depth_img = Image.fromarray(integer_array, mode="L") depth_img.save(path + ".png") # Setup the environment assets_root_path = get_assets_root_path() open_stage(assets_root_path + ENV_URL) # Disable capture on play and async rendering carb.settings.get_settings().set("/omni/replicator/captureOnPlay", False) carb.settings.get_settings().set("/omni/replicator/asyncRendering", False) carb.settings.get_settings().set("/app/asyncRendering", False) # Create a red cube and a render product from a camera looking at the cube from the top red_mat = rep.create.material_omnipbr(diffuse=(1, 0, 0)) red_cube = rep.create.cube(position=(0, 0, 0.71), material=red_mat) cam = rep.create.camera(position=(0, 0, 5), look_at=(0, 0, 0)) rp = rep.create.render_product(cam, (512, 512)) # Update the app a couple of times to fully load texture/materials for _ in range(5): simulation_app.update() # Get the local augmentations, either from function or from the registry rgb_to_bgr_augm = None gn_depth_augm = None if USE_WARP: rgb_to_bgr_augm = rep.annotators.Augmentation.from_function(rgb_to_bgr_wp) gn_depth_augm = rep.AnnotatorRegistry.get_augmentation("gn_depth_wp") else: rgb_to_bgr_augm = rep.annotators.Augmentation.from_function(rgb_to_bgr_np) gn_depth_augm = rep.AnnotatorRegistry.get_augmentation("gn_depth_np") # Output directories out_dir = os.path.join(os.getcwd(), "_out_augm_annot") print(f"Writing data to: {out_dir}") os.makedirs(out_dir, exist_ok=True) # Register the annotator together with its augmentation rep.annotators.register( name="rgb_to_bgr_augm", annotator=rep.annotators.augment( source_annotator=rep.AnnotatorRegistry.get_annotator("rgb"), augmentation=rgb_to_bgr_augm, ), ) rgb_to_bgr_annot = rep.AnnotatorRegistry.get_annotator("rgb_to_bgr_augm") depth_annot_1 = rep.AnnotatorRegistry.get_annotator("distance_to_camera") depth_annot_1.augment(gn_depth_augm) depth_annot_2 = rep.AnnotatorRegistry.get_annotator("distance_to_camera") depth_annot_2.augment(gn_depth_augm, sigma=0.5) rgb_to_bgr_annot.attach(rp) depth_annot_1.attach(rp) depth_annot_2.attach(rp) # Generate a replicator graph to rotate the cube every capture frame with rep.trigger.on_frame(): with red_cube: rep.randomizer.rotation() # Evaluate the graph rep.orchestrator.preview() # Measure the duration of capturing the data start_time = time.time() # The `step()` function will trigger the randomization graph, feed annotators with new data, and trigger the writers for i in range(NUM_FRAMES): rep.orchestrator.step() rgb_data = rgb_to_bgr_annot.get_data() depth_data_1 = depth_annot_1.get_data() depth_data_2 = depth_annot_2.get_data() write_rgb(rgb_data, os.path.join(out_dir, f"annot_rgb_{i}")) write_depth(depth_data_1, os.path.join(out_dir, f"annot_depth_1_{i}")) write_depth(depth_data_2, os.path.join(out_dir, f"annot_depth_2_{i}")) print( f"The duration for capturing {NUM_FRAMES} frames using '{'warp' if USE_WARP else 'numpy'}' was: {time.time() - start_time:.4f} seconds, with an average of {(time.time() - start_time) / NUM_FRAMES:.4f} seconds per frame." ) simulation_app.close()
6,579
Python
35.759776
224
0.716978
2820207922/isaac_ws/standalone_examples/replicator/augmentation/writer_augmentation.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Generate augmented synthetic from a writer """ from omni.isaac.kit import SimulationApp simulation_app = SimulationApp(launch_config={"headless": False}) import argparse import os import time import carb.settings import numpy as np import omni.replicator.core as rep import warp as wp from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import open_stage parser = argparse.ArgumentParser() parser.add_argument("--num_frames", type=int, default=25, help="The number of frames to capture") parser.add_argument("--use_warp", action="store_true", help="Use warp augmentations instead of numpy") args, unknown = parser.parse_known_args() NUM_FRAMES = args.num_frames USE_WARP = args.use_warp ENV_URL = "/Isaac/Environments/Grid/default_environment.usd" # Enable scripts carb.settings.get_settings().set_bool("/app/omni.graph.scriptnode/opt_in", True) # Gaussian noise augmentation on rgba data in numpy (CPU) and warp (GPU) def gaussian_noise_rgb_np(data_in, sigma: float, seed: int): np.random.seed(seed) data_in[:, :, 0] = data_in[:, :, 0] + np.random.randn(*data_in.shape[:-1]) * sigma data_in[:, :, 1] = data_in[:, :, 1] + np.random.randn(*data_in.shape[:-1]) * sigma data_in[:, :, 2] = data_in[:, :, 2] + np.random.randn(*data_in.shape[:-1]) * sigma return data_in @wp.kernel def gaussian_noise_rgb_wp( data_in: wp.array3d(dtype=wp.uint8), data_out: wp.array3d(dtype=wp.uint8), sigma: float, seed: int ): i, j = wp.tid() state = wp.rand_init(seed, wp.tid()) data_out[i, j, 0] = wp.uint8(wp.int32(data_in[i, j, 0]) + wp.int32(sigma * wp.randn(state))) data_out[i, j, 1] = wp.uint8(wp.int32(data_in[i, j, 1]) + wp.int32(sigma * wp.randn(state))) data_out[i, j, 2] = wp.uint8(wp.int32(data_in[i, j, 2]) + wp.int32(sigma * wp.randn(state))) data_out[i, j, 3] = data_in[i, j, 3] # Gaussian noise augmentation on depth data in numpy (CPU) and warp (GPU) def gaussian_noise_depth_np(data_in, sigma: float, seed: int): np.random.seed(seed) return data_in + np.random.randn(*data_in.shape) * sigma rep.AnnotatorRegistry.register_augmentation( "gn_depth_np", rep.annotators.Augmentation.from_function(gaussian_noise_depth_np, sigma=0.1, seed=None) ) @wp.kernel def gaussian_noise_depth_wp( data_in: wp.array2d(dtype=wp.float32), data_out: wp.array2d(dtype=wp.float32), sigma: float, seed: int ): i, j = wp.tid() state = wp.rand_init(seed, wp.tid()) data_out[i, j] = data_in[i, j] + sigma * wp.randn(state) rep.AnnotatorRegistry.register_augmentation( "gn_depth_wp", rep.annotators.Augmentation.from_function(gaussian_noise_depth_wp, sigma=0.1, seed=None) ) # Setup the environment assets_root_path = get_assets_root_path() open_stage(assets_root_path + ENV_URL) # Disable capture on play and async rendering carb.settings.get_settings().set("/omni/replicator/captureOnPlay", False) carb.settings.get_settings().set("/omni/replicator/asyncRendering", False) carb.settings.get_settings().set("/app/asyncRendering", False) # Create a red cube and a render product from a camera looking at the cube from the top red_mat = rep.create.material_omnipbr(diffuse=(1, 0, 0)) red_cube = rep.create.cube(position=(0, 0, 0.71), material=red_mat) cam = rep.create.camera(position=(0, 0, 5), look_at=(0, 0, 0)) rp = rep.create.render_product(cam, (512, 512)) # Update the app a couple of times to fully load texture/materials for _ in range(5): simulation_app.update() # Access default annotators from replicator rgb_to_hsv_augm = rep.annotators.Augmentation.from_function(rep.augmentations_default.aug_rgb_to_hsv) hsv_to_rgb_augm = rep.annotators.Augmentation.from_function(rep.augmentations_default.aug_hsv_to_rgb) # Access the custom annotators as functions or from the registry gn_rgb_augm = None gn_depth_augm = None if USE_WARP: gn_rgb_augm = rep.annotators.Augmentation.from_function(gaussian_noise_rgb_wp, sigma=6.0, seed=None) gn_depth_augm = rep.AnnotatorRegistry.get_augmentation("gn_depth_wp") else: gn_rgb_augm = rep.annotators.Augmentation.from_function(gaussian_noise_rgb_np, sigma=6.0, seed=None) gn_depth_augm = rep.AnnotatorRegistry.get_augmentation("gn_depth_np") # Create a writer and apply the augmentations to its corresponding annotators out_dir = os.path.join(os.getcwd(), "_out_augm_writer") print(f"Writing data to: {out_dir}") writer = rep.WriterRegistry.get("BasicWriter") writer.initialize(output_dir=out_dir, rgb=True, distance_to_camera=True) augmented_rgb_annot = rep.annotators.get("rgb").augment_compose( [rgb_to_hsv_augm, gn_rgb_augm, hsv_to_rgb_augm], name="rgb" ) writer.add_annotator(augmented_rgb_annot) writer.augment_annotator("distance_to_camera", gn_depth_augm) # Attach render product to writer writer.attach([rp]) # Generate a replicator graph randomizing the cube's rotation every frame with rep.trigger.on_frame(): with red_cube: rep.randomizer.rotation() # Evaluate the graph rep.orchestrator.preview() # Measure the duration of capturing the data start_time = time.time() # The `step()` function will trigger the randomization graph, feed annotators with new data, and trigger the writers for i in range(NUM_FRAMES): rep.orchestrator.step() print( f"The duration for capturing {NUM_FRAMES} frames using '{'warp' if USE_WARP else 'numpy'}' was: {time.time() - start_time:.4f} seconds, with an average of {(time.time() - start_time) / NUM_FRAMES:.4f} seconds per frame." ) simulation_app.close()
5,949
Python
38.144737
224
0.722642
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/offline_pose_generation.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # """Generate a [YCBVideo, DOPE] synthetic datasets """ import argparse import os import signal import carb import numpy as np import torch import yaml from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser("Pose Generation data generator") parser.add_argument("--num_mesh", type=int, default=30, help="Number of frames to record similar to MESH dataset") parser.add_argument("--num_dome", type=int, default=30, help="Number of frames to record similar to DOME dataset") parser.add_argument( "--dome_interval", type=int, default=1, help="Number of frames to capture before switching DOME background. When generating large datasets, increasing this interval will reduce time taken. A good value to set is 10.", ) parser.add_argument("--output_folder", "-o", type=str, default="output", help="Output directory.") parser.add_argument("--use_s3", action="store_true", help="Saves output to s3 bucket. Only supported by DOPE writer.") parser.add_argument( "--bucket", type=str, default=None, help="Bucket name to store output in. See naming rules: https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html", ) parser.add_argument("--s3_region", type=str, default="us-east-1", help="s3 region.") parser.add_argument("--endpoint", type=str, default=None, help="s3 endpoint to write to.") parser.add_argument( "--writer", type=str, default="YCBVideo", help="Which writer to use to output data. Choose between: [YCBVideo, DOPE]", ) parser.add_argument( "--test", action="store_true", help="Generates data for testing. Hardcodes the pose of the object to compare output data with expected data to ensure that generation is correct.", ) args, unknown_args = parser.parse_known_args() # Do not write to s3 if in test mode if args.test: args.use_s3 = False if args.use_s3 and (args.endpoint is None or args.bucket is None): raise Exception("To use s3, --endpoint and --bucket must be specified.") CONFIG_FILES = {"dope": "config/dope_config.yaml", "ycbvideo": "config/ycb_config.yaml"} TEST_CONFIG_FILES = {"dope": "tests/dope/test_dope_config.yaml", "ycbvideo": "tests/ycbvideo/test_ycb_config.yaml"} # Path to config file: cf_map = TEST_CONFIG_FILES if args.test else CONFIG_FILES CONFIG_FILE = cf_map[args.writer.lower()] CONFIG_FILE_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), CONFIG_FILE) with open(CONFIG_FILE_PATH) as f: config_data = yaml.full_load(f) OBJECTS_TO_GENERATE = config_data["OBJECTS_TO_GENERATE"] kit = SimulationApp(launch_config=config_data["CONFIG"]) import math import omni.replicator.core as rep from omni.isaac.core import World from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.rotations import euler_angles_to_quat from omni.isaac.core.utils.semantics import add_update_semantics from omni.replicator.isaac.scripts.writers import DOPEWriter, YCBVideoWriter # Since the simulation is mostly collision checking, a larger physics dt can be used to speed up the object movements world = World(physics_dt=1.0 / 30.0) world.reset() from flying_distractors.collision_box import CollisionBox from flying_distractors.dynamic_object import DynamicObject from flying_distractors.dynamic_object_set import DynamicObjectSet from flying_distractors.dynamic_shape_set import DynamicShapeSet from flying_distractors.flying_distractors import FlyingDistractors from omni.isaac.core.utils.random import get_random_world_pose_in_view from omni.isaac.core.utils.transformations import get_world_pose_from_relative from tests.test_utils import clean_output_dir, run_pose_generation_test class RandomScenario(torch.utils.data.IterableDataset): def __init__( self, num_mesh, num_dome, dome_interval, output_folder, use_s3=False, endpoint="", s3_region="us-east-1", writer="ycbvideo", bucket="", test=False, ): self.test = test if writer == "ycbvideo": self.writer_helper = YCBVideoWriter elif writer == "dope": self.writer_helper = DOPEWriter else: raise Exception("Invalid writer specified. Choose between [DOPE, YCBVideo].") self.result = True assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self.result = False return self.dome_texture_path = assets_root_path + "/NVIDIA/Assets/Skies/" self.ycb_asset_path = assets_root_path + "/Isaac/Props/YCB/Axis_Aligned/" self.asset_path = assets_root_path + "/Isaac/Props/YCB/Axis_Aligned/" self.train_parts = [] self.train_part_mesh_path_to_prim_path_map = {} self.mesh_distractors = FlyingDistractors() self.dome_distractors = FlyingDistractors() self.current_distractors = None self.data_writer = None self.num_mesh = max(0, num_mesh) if not self.test else 5 self.num_dome = max(0, num_dome) if not self.test else 0 self.train_size = self.num_mesh + self.num_dome self.dome_interval = dome_interval self._output_folder = output_folder if use_s3 else os.path.join(os.getcwd(), output_folder) self.use_s3 = use_s3 self.endpoint = endpoint self.s3_region = s3_region self.bucket = bucket self.writer_config = { "output_folder": self._output_folder, "use_s3": self.use_s3, "bucket_name": self.bucket, "endpoint_url": self.endpoint, "s3_region": self.s3_region, "train_size": self.train_size, } self._setup_world() self.cur_idx = 0 self.exiting = False self.last_frame_reached = False # Clean up output folder ahead of test if not self.use_s3 and self.test: clean_output_dir(self._output_folder) # Disable capture on play and async rendering self._carb_settings = carb.settings.get_settings() self._carb_settings.set("/omni/replicator/captureOnPlay", False) self._carb_settings.set("/app/asyncRendering", False) self._carb_settings.set("/omni/replicator/asyncRendering", False) signal.signal(signal.SIGINT, self._handle_exit) def _handle_exit(self, *args, **kwargs): print("Exiting dataset generation..") self.exiting = True def _setup_world(self): """Populate scene with assets and prepare for synthetic data generation.""" self._setup_camera() rep.settings.set_render_rtx_realtime() # Allow flying distractors to float world.get_physics_context().set_gravity(0.0) collision_box = self._setup_collision_box() world.scene.add(collision_box) self._setup_distractors(collision_box) self._setup_train_objects() if not self.test: self._setup_randomizers() # Update the app a few times to make sure the materials are fully loaded and world scene objects are registered for _ in range(5): kit.app.update() # Setup writer self.writer_helper.register_pose_annotator(config_data=config_data) self.writer = self.writer_helper.setup_writer(config_data=config_data, writer_config=self.writer_config) self.writer.attach([self.render_product]) self.dome_distractors.set_visible(False) # Generate the replicator graphs without triggering any writing rep.orchestrator.preview() def _setup_camera(self): focal_length = config_data["HORIZONTAL_APERTURE"] * config_data["F_X"] / config_data["WIDTH"] # Setup camera and render product self.camera = rep.create.camera( position=(0, 0, 0), rotation=np.array(config_data["CAMERA_RIG_ROTATION"]), focal_length=focal_length, clipping_range=(0.01, 10000), ) self.render_product = rep.create.render_product(self.camera, (config_data["WIDTH"], config_data["HEIGHT"])) camera_rig_path = str(rep.utils.get_node_targets(self.camera.node, "inputs:primsIn")[0]) self.camera_path = camera_rig_path + "/Camera" with rep.get.prims(prim_types=["Camera"]): rep.modify.pose( rotation=rep.distribution.uniform( np.array(config_data["CAMERA_ROTATION"]), np.array(config_data["CAMERA_ROTATION"]) ) ) self.rig = XFormPrim(prim_path=camera_rig_path) def _setup_collision_box(self): # Create a collision box in view of the camera, allowing distractors placed in the box to be within # [MIN_DISTANCE, MAX_DISTANCE] of the camera. The collision box will be placed in front of the camera, # regardless of CAMERA_ROTATION or CAMERA_RIG_ROTATION. self.fov_x = 2 * math.atan(config_data["WIDTH"] / (2 * config_data["F_X"])) self.fov_y = 2 * math.atan(config_data["HEIGHT"] / (2 * config_data["F_Y"])) theta_x = self.fov_x / 2.0 theta_y = self.fov_y / 2.0 # Collision box dimensions lower than 1.3 do not work properly collision_box_width = max(2 * config_data["MAX_DISTANCE"] * math.tan(theta_x), 1.3) collision_box_height = max(2 * config_data["MAX_DISTANCE"] * math.tan(theta_y), 1.3) collision_box_depth = config_data["MAX_DISTANCE"] - config_data["MIN_DISTANCE"] collision_box_path = "/World/collision_box" collision_box_name = "collision_box" # Collision box is centered between MIN_DISTANCE and MAX_DISTANCE, with translation relative to camera in the z # direction being negative due to cameras in Isaac Sim having coordinates of -z out, +y up, and +x right. collision_box_translation_from_camera = np.array( [0, 0, (config_data["MIN_DISTANCE"] + config_data["MAX_DISTANCE"]) / 2.0] ) # Collision box has no rotation with respect to the camera. collision_box_rotation_from_camera = np.array([0, 0, 0]) collision_box_orientation_from_camera = euler_angles_to_quat(collision_box_rotation_from_camera, degrees=True) # Get the desired pose of the collision box from a pose defined locally with respect to the camera. camera_prim = world.stage.GetPrimAtPath(self.camera_path) collision_box_center, collision_box_orientation = get_world_pose_from_relative( camera_prim, collision_box_translation_from_camera, collision_box_orientation_from_camera ) return CollisionBox( collision_box_path, collision_box_name, position=collision_box_center, orientation=collision_box_orientation, width=collision_box_width, height=collision_box_height, depth=collision_box_depth, ) def _setup_distractors(self, collision_box): # List of distractor objects should not contain objects that are being used for training train_objects = [object["part_name"] for object in OBJECTS_TO_GENERATE] distractor_mesh_filenames = [ file_name for file_name in config_data["MESH_FILENAMES"] if file_name not in train_objects ] usd_path_list = [ f"{self.ycb_asset_path}{usd_filename_prefix}.usd" for usd_filename_prefix in distractor_mesh_filenames ] mesh_list = [f"_{usd_filename_prefix[1:]}" for usd_filename_prefix in distractor_mesh_filenames] if self.num_mesh > 0: # Distractors for the MESH dataset mesh_shape_set = DynamicShapeSet( "/World/mesh_shape_set", "mesh_shape_set", "mesh_shape", "mesh_shape", config_data["NUM_MESH_SHAPES"], collision_box, scale=np.array(config_data["SHAPE_SCALE"]), mass=config_data["SHAPE_MASS"], fraction_glass=config_data["MESH_FRACTION_GLASS"], ) self.mesh_distractors.add(mesh_shape_set) mesh_object_set = DynamicObjectSet( "/World/mesh_object_set", "mesh_object_set", usd_path_list, mesh_list, "mesh_object", "mesh_object", config_data["NUM_MESH_OBJECTS"], collision_box, scale=np.array(config_data["OBJECT_SCALE"]), mass=config_data["OBJECT_MASS"], fraction_glass=config_data["MESH_FRACTION_GLASS"], ) self.mesh_distractors.add(mesh_object_set) # Set the current distractors to the mesh dataset type self.current_distractors = self.mesh_distractors if self.num_dome > 0: # Distractors for the DOME dataset dome_shape_set = DynamicShapeSet( "/World/dome_shape_set", "dome_shape_set", "dome_shape", "dome_shape", config_data["NUM_DOME_SHAPES"], collision_box, scale=np.array(config_data["SHAPE_SCALE"]), mass=config_data["SHAPE_MASS"], fraction_glass=config_data["DOME_FRACTION_GLASS"], ) self.dome_distractors.add(dome_shape_set) dome_object_set = DynamicObjectSet( "/World/dome_object_set", "dome_object_set", usd_path_list, mesh_list, "dome_object", "dome_object", config_data["NUM_DOME_OBJECTS"], collision_box, scale=np.array(config_data["OBJECT_SCALE"]), mass=config_data["OBJECT_MASS"], fraction_glass=config_data["DOME_FRACTION_GLASS"], ) self.dome_distractors.add(dome_object_set) def _setup_train_objects(self): # Add the part to train the network on train_part_idx = 0 for object in OBJECTS_TO_GENERATE: for prim_idx in range(object["num"]): part_name = object["part_name"] ref_path = self.asset_path + part_name + ".usd" prim_type = object["prim_type"] if self.writer_helper == YCBVideoWriter and prim_type not in config_data["CLASS_NAME_TO_INDEX"]: raise Exception(f"Train object {prim_type} is not in CLASS_NAME_TO_INDEX in config.yaml.") path = "/World/" + prim_type + f"_{prim_idx}" mesh_path = path + "/" + prim_type name = f"train_part_{train_part_idx}" self.train_part_mesh_path_to_prim_path_map[mesh_path] = path train_part = DynamicObject( usd_path=ref_path, prim_path=path, mesh_path=mesh_path, name=name, position=np.array([0.0, 0.0, 0.0]), scale=config_data["OBJECT_SCALE"], mass=1.0, ) train_part.prim.GetAttribute("physics:rigidBodyEnabled").Set(True) self.train_parts.append(train_part) # Add semantic information mesh_prim = world.stage.GetPrimAtPath(mesh_path) add_update_semantics(mesh_prim, prim_type) train_part_idx += 1 if prim_idx == 0 and self.writer_helper == YCBVideoWriter: # Save the vertices of the part in '.xyz' format. This will be used in one of PoseCNN's loss functions coord_prim = world.stage.GetPrimAtPath(path) self.writer_helper.save_mesh_vertices(mesh_prim, coord_prim, prim_type, self._output_folder) def _setup_randomizers(self): """Add domain randomization with Replicator Randomizers""" # Create and randomize sphere lights def randomize_sphere_lights(): lights = rep.create.light( light_type="Sphere", color=rep.distribution.uniform((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)), intensity=rep.distribution.uniform(100000, 3000000), position=rep.distribution.uniform((-250, -250, -250), (250, 250, 100)), scale=rep.distribution.uniform(1, 20), count=config_data["NUM_LIGHTS"], ) return lights.node # Randomize prim colors def randomize_colors(prim_path_regex): prims = rep.get.prims(path_pattern=prim_path_regex) mats = rep.create.material_omnipbr( metallic=rep.distribution.uniform(0.0, 1.0), roughness=rep.distribution.uniform(0.0, 1.0), diffuse=rep.distribution.uniform((0, 0, 0), (1, 1, 1)), count=100, ) with prims: rep.randomizer.materials(mats) return prims.node rep.randomizer.register(randomize_sphere_lights, override=True) rep.randomizer.register(randomize_colors, override=True) with rep.trigger.on_frame(): rep.randomizer.randomize_sphere_lights() rep.randomizer.randomize_colors("(?=.*shape)(?=.*nonglass).*") def _setup_dome_randomizers(self): """Add domain randomization with Replicator Randomizers""" # Create and randomize a dome light for the DOME dataset def randomize_domelight(texture_paths): lights = rep.create.light( light_type="Dome", rotation=rep.distribution.uniform((0, 0, 0), (360, 360, 360)), texture=rep.distribution.choice(texture_paths), ) return lights.node rep.randomizer.register(randomize_domelight, override=True) dome_texture_paths = [ self.dome_texture_path + dome_texture + ".hdr" for dome_texture in config_data["DOME_TEXTURES"] ] with rep.trigger.on_frame(interval=self.dome_interval): rep.randomizer.randomize_domelight(dome_texture_paths) def randomize_movement_in_view(self, prim): """Randomly move and rotate prim such that it stays in view of camera. Args: prim (DynamicObject): prim to randomly move and rotate. """ if not self.test: camera_prim = world.stage.GetPrimAtPath(self.camera_path) rig_prim = world.stage.GetPrimAtPath(self.rig.prim_path) translation, orientation = get_random_world_pose_in_view( camera_prim, config_data["MIN_DISTANCE"], config_data["MAX_DISTANCE"], self.fov_x, self.fov_y, config_data["FRACTION_TO_SCREEN_EDGE"], rig_prim, np.array(config_data["MIN_ROTATION_RANGE"]), np.array(config_data["MAX_ROTATION_RANGE"]), ) else: translation, orientation = np.array([0.0, 0.0, 1.0]), np.array([0.0, 0.0, 0.0, 1.0]) prim.set_world_pose(translation, orientation) def __iter__(self): return self def __next__(self): # First frame of DOME dataset if self.cur_idx == self.num_mesh: # MESH datset generation complete, switch to DOME dataset print(f"Starting DOME dataset generation of {self.num_dome} frames..") # Hide the FlyingDistractors used for the MESH dataset self.mesh_distractors.set_visible(False) # Show the FlyingDistractors used for the DOME dataset self.dome_distractors.set_visible(True) # Switch the distractors to DOME self.current_distractors = self.dome_distractors # Randomize the dome backgrounds self._setup_dome_randomizers() # Run another preview to generate the replicator graphs for the DOME dataset without triggering any writing rep.orchestrator.preview() # Randomize the distractors by applying forces to them and changing their materials self.current_distractors.apply_force_to_assets(config_data["FORCE_RANGE"]) self.current_distractors.randomize_asset_glass_color() # Randomize the pose of the object(s) of interest in the camera view for train_part in self.train_parts: self.randomize_movement_in_view(train_part) # Simulate the applied forces for a couple of frames for _ in range(50): world.step(render=False) print(f"ID: {self.cur_idx}/{self.train_size - 1}") rep.orchestrator.step(rt_subframes=4) # Check that there was valid training data in the last frame (target object(s) visible to camera) if self.writer.is_last_frame_valid(): self.cur_idx += 1 # Check if last frame has been reached if self.cur_idx >= self.train_size: print(f"Dataset of size {self.train_size} has been reached, generation loop will be stopped..") print(f"Data outputted to: {self._output_folder}") self.last_frame_reached = True dataset = RandomScenario( num_mesh=args.num_mesh, num_dome=args.num_dome, dome_interval=args.dome_interval, output_folder=args.output_folder, use_s3=args.use_s3, bucket=args.bucket, s3_region=args.s3_region, endpoint=args.endpoint, writer=args.writer.lower(), test=args.test, ) if dataset.result: # Iterate through dataset and visualize the output print("Loading materials. Will generate data soon...") import datetime start_time = datetime.datetime.now() print("Start timestamp:", start_time.strftime("%m/%d/%Y, %H:%M:%S")) if dataset.train_size > 0: print(f"Starting dataset generation of {dataset.train_size} frames..") if dataset.num_mesh > 0: print(f"Starting MESH dataset generation of {dataset.num_mesh} frames..") # Dataset generation loop for _ in dataset: if dataset.last_frame_reached: print(f"Stopping generation loop at index {dataset.cur_idx}..") break if dataset.exiting: break else: print(f"Dataset size is set to 0 (num_mesh={dataset.num_mesh} num_dope={dataset.num_dome}), nothing to write..") print("End timestamp:", datetime.datetime.now().strftime("%m/%d/%Y, %H:%M:%S")) print("Total time taken:", str(datetime.datetime.now() - start_time).split(".")[0]) if args.test: run_pose_generation_test( writer=args.writer, output_folder=dataset._output_folder, test_folder=os.path.join(os.path.dirname(os.path.abspath(__file__)), "tests"), ) # Close the app kit.close()
23,434
Python
39.128425
181
0.618716
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/__init__.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from flying_distractors.collision_box import CollisionBox from flying_distractors.dynamic_asset_set import DynamicAssetSet from flying_distractors.dynamic_object import DynamicObject from flying_distractors.dynamic_object_set import DynamicObjectSet from flying_distractors.dynamic_shape_set import DynamicShapeSet from flying_distractors.flying_distractors import FlyingDistractors from utils import save_points_xyz
848
Python
52.062497
76
0.84434
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/flying_distractors/dynamic_object_set.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import random from typing import List, Optional import numpy as np from omni.isaac.core.materials.omni_glass import OmniGlass from .collision_box import CollisionBox from .dynamic_asset_set import DynamicAssetSet from .dynamic_object import DynamicObject class DynamicObjectSet(DynamicAssetSet): """Container class to hold and manage dynamic objects, providing an API to keep objects in motion within a collision box, and to allow various properties of the assets to be randomized. Please note that this class assumes that each referenced asset in usd_path_list has only a single mesh prim defining its geometry. Args: set_prim_path (str): prim path of the parent Prim to create, which contains all the objects in the object set as its children. set_name (str): name of the parent prim in the scene. usd_path_list (List[str]): list of possible USD reference paths that the prims of each dynamic object in the dynamic object set refer to. mesh_list (List[str]): list of prim path base names for underlying mesh prims. Each base name in mesh_list corresponds to the mesh prim of the referenced asset in usd_path_list. asset_prim_path_base_prefix (str): prefix of what the objects are called in the stage (prim path base name). asset_name_prefix (str): prefix of the objects' names in the scene. num_assets (int): number of objects in the object set. collision_box (CollisionBox): collision box in which to place objects, and allow objects to move within. scale (Optional[np.ndarray], optional): local scale to be applied to each object's dimensions. Shape is (3, ). Defaults to None, which means left unchanged. mass (Optional[float], optional): mass of each object in kg. Defaults to None. fraction_glass (int, optional): fraction of objects for which glass material should be applied. """ def __init__( self, set_prim_path: str, set_name: str, usd_path_list: List[str], mesh_list: List[str], asset_prim_path_base_prefix: str, asset_name_prefix: str, num_assets: int, collision_box: CollisionBox, scale: Optional[np.ndarray] = None, mass: Optional[float] = None, fraction_glass: float = 0.0, ): self.usd_path_list = usd_path_list self.mesh_list = mesh_list self.glass_object_mesh_paths = [] self.nonglass_object_mesh_paths = [] if len(usd_path_list) != len(mesh_list): raise Exception("usd_path_list and mesh_list must contain the same number of elements") self.mesh_map = self._create_mesh_map(usd_path_list, mesh_list) super().__init__( set_prim_path, set_name, asset_prim_path_base_prefix, asset_name_prefix, num_assets, collision_box, scale, mass, fraction_glass, ) self._create_random_dynamic_asset_set() def _create_mesh_map(self, usd_path_list, mesh_list): """Gets a mapping from USD reference paths to the base name of the corresponding mesh prim in the referenced USD file. Args: usd_path_list (List[str]): List of possible USD reference paths that the prims of each dynamic object in the dynamic object set refer to. mesh_list (List[str]): List of prim path base names for underlying mesh prims. Each base name in mesh_list corresponds to the mesh prim of the referenced asset in usd_path_list. Returns: Dict: Mapping from USD reference paths to the base name of the corresponding mesh prim in the referenced USD file. """ mesh_map = {} for usd_path, mesh_name in zip(usd_path_list, mesh_list): mesh_map[usd_path] = mesh_name return mesh_map def _create_random_dynamic_asset(self, glass=False): """Creates a random dynamic object and adds it to the scene. The reference path of the object is randomly chosen from self.usd_path_list. Args: glass (bool, optional): flag to specify whether the created object should have a glass material applied. Defaults to False. """ object_name = f"{self.asset_name_prefix}_{self.asset_count}" if glass: object_path = f"{self.set_prim_path}/{self.asset_prim_path_base_prefix}_{self.asset_count}" else: object_path = f"{self.set_prim_path}/{self.asset_prim_path_base_prefix}_nonglass_{self.asset_count}" usd_path = random.choice(self.usd_path_list) mesh_path = f"{object_path}/{self.mesh_map[usd_path]}" position = self.collision_box.get_random_position() dynamic_prim = DynamicObject( usd_path=usd_path, prim_path=object_path, mesh_path=mesh_path, name=object_name, position=position, scale=self.scale, mass=self.mass, ) self.asset_names.append(object_name) if glass: color = np.random.rand(3) material = OmniGlass( object_path + "_glass", name=object_name + "_glass", ior=1.25, depth=0.001, thin_walled=False, color=color, ) self.glass_mats.append(material) dynamic_prim.apply_visual_material(material) self.glass_asset_paths.append(object_path) self.glass_assets.append(dynamic_prim) self.glass_object_mesh_paths.append(mesh_path) else: self.nonglass_asset_paths.append(object_path) self.nonglass_assets.append(dynamic_prim) self.nonglass_object_mesh_paths.append(mesh_path) self.world.scene.add(dynamic_prim) self.asset_count += 1
6,626
Python
40.679245
120
0.616963
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/flying_distractors/dynamic_shape_set.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import random from typing import Optional import numpy as np from omni.isaac.core.materials.omni_glass import OmniGlass from omni.isaac.core.objects import DynamicCapsule, DynamicCone, DynamicCuboid, DynamicCylinder, DynamicSphere from .collision_box import CollisionBox from .dynamic_asset_set import DynamicAssetSet class DynamicShapeSet(DynamicAssetSet): """Container class to hold and manage dynamic shapes, providing an API to keep shapes in motion within a collision box, and to allow various properties of the shapes to be randomized. Args: set_prim_path (str): prim path of the parent Prim to create, which contains all the shapes in the shape set as its children. set_name (str): name of the parent prim in the scene. asset_prim_path_base_prefix (str): prefix of what the shapes are called in the stage (prim path base name). asset_name_prefix (str): prefix of the shapes' names in the scene. num_assets (int): number of shapes in the shape set. collision_box (CollisionBox): collision box in which to place shapes, and allow shapes to move within. scale (Optional[np.ndarray], optional): local scale to be applied to each shape's dimensions. Shape is (3, ). Defaults to None, which means left unchanged. mass (Optional[float], optional): mass of each shape in kg. Defaults to None. fraction_glass (int, optional): fraction of shapes for which glass material should be applied. """ def __init__( self, set_prim_path: str, set_name: str, asset_prim_path_base_prefix: str, asset_name_prefix: str, num_assets: int, collision_box: CollisionBox, scale: Optional[np.ndarray] = None, mass: Optional[float] = None, fraction_glass: float = 0.0, ): super().__init__( set_prim_path, set_name, asset_prim_path_base_prefix, asset_name_prefix, num_assets, collision_box, scale, mass, fraction_glass, ) self._create_random_dynamic_asset_set() def _create_random_dynamic_asset(self, glass=False): """Creates a random dynamic shape (Cuboid, Sphere, Cylinder, Cone, or Capsule) and adds it to the scene. Args: glass (bool, optional): flag to specify whether the created shape should have a glass material applied. Defaults to False. """ prim_type = [DynamicCapsule, DynamicCone, DynamicCuboid, DynamicCylinder, DynamicSphere] shape_name = f"{self.asset_name_prefix}_{self.asset_count}" if glass: shape_path = f"{self.set_prim_path}/{self.asset_prim_path_base_prefix}_{self.asset_count}" else: shape_path = f"{self.set_prim_path}/{self.asset_prim_path_base_prefix}_nonglass_{self.asset_count}" position = self.collision_box.get_random_position() shape_prim = random.choice(prim_type)( prim_path=shape_path, # The prim path of the cube in the USD stage name=shape_name, # The unique name used to retrieve the object from the scene later on position=position, # Using the current stage units which is meters by default. scale=self.scale, mass=self.mass, ) self.asset_names.append(shape_name) if glass: color = np.random.rand(3) material = OmniGlass( shape_path + "_glass", name=shape_name + "_glass", ior=1.25, depth=0.001, thin_walled=False, color=color ) self.glass_mats.append(material) shape_prim.apply_visual_material(material) self.glass_asset_paths.append(shape_path) self.glass_assets.append(shape_prim) else: self.nonglass_asset_paths.append(shape_path) self.nonglass_assets.append(shape_prim) self.world.scene.add(shape_prim) self.asset_count += 1
4,566
Python
40.899082
120
0.63929
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/flying_distractors/collision_box.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from typing import Optional import numpy as np from omni.isaac.core import World from omni.isaac.core.objects import FixedCuboid from omni.isaac.core.prims.xform_prim import XFormPrim from pxr import Usd, UsdGeom class CollisionBox(XFormPrim): """Creates a fixed box with collisions enabled, and provides an API to determine world coordinates of a random location in the interior of the collision box. Args: prim_path (str): top-level prim path (of the collision box) of the Prim to encapsulate or create. name (str): shortname to be used as a key by Scene class. Note: needs to be unique if the object is added to the Scene. position (Optional[np.ndarray], optional): position in the world frame of the collision box. Shape is (3, ). Defaults to None, which means left unchanged. translation (Optional[np.ndarray], optional): translation in the local frame of the collision box (with respect to its parent prim). Shape is (3, ). Defaults to None, which means left unchanged. orientation (Optional[np.ndarray], optional): quaternion orientation in the world/local frame of the collision box (depends if translation or position is specified). Quaternion is scalar-first (w, x, y, z). Shape is (4, ). Defaults to None, which means left unchanged. scale (Optional[np.ndarray], optional): local scale to be applied to the collision box's dimensions. Shape is (3, ). Defaults to None, which means left unchanged. width (float): width of the collision box interior in world units (if unrotated, corresponds to x direction). Defaults to 1.0. height (float): height of the collision box interior in world units (if unrotated, corresponds to y direction). Defaults to 1.0. depth (float): depth of the collision box interior in world units (if unrotated, corresponds to z direction). Defaults to 1.0. thickness (float, optional): thickness of the collision box walls in world units. Defaults to 0.2. visible (bool, optional): set to false for an invisible prim in the stage while rendering. Defaults to False. """ def __init__( self, prim_path: str, name: str, position: Optional[np.ndarray] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, scale: Optional[np.ndarray] = None, width: float = 1.0, height: float = 1.0, depth: float = 1.0, thickness: float = 0.2, visible: bool = False, ): self.world = World.instance() XFormPrim.__init__( self, prim_path=prim_path, name=name, position=position, translation=translation, orientation=orientation, scale=scale, visible=visible, ) self.width = width self.height = height self.depth = depth self.thickness = thickness self.visible = visible self._create_collision_box() def _create_face(self, suffix, translation, size): """Create a face/wall of the Collision Box, which has collisions enabled. Args: suffix (str): suffix used for the name of the face so it can be retrieved from the scene. The name of the face has the form "{collision_box_name}_{suffix}" translation (np.ndarray): translation of the center of the face (wall) from the center of the Collision Box, in stage units. Shape is (3, ). size (np.ndarray): dimensions of the face (wall) in the X, Y, and Z directions. Dimensions are in stage units. Shape is (3, ). """ face_name = f"{self.name}_{suffix}" face_path = f"{self.prim_path}/{face_name}" face_cuboid = FixedCuboid( prim_path=face_path, # The prim path of the cube in the USD stage name=face_name, # The unique name used to retrieve the object from the scene later on translation=translation, # Using the current stage units which is cms by default. scale=size, # most arguments accept mainly numpy arrays. size=1.0, visible=self.visible, ) self.world.scene.add(face_cuboid) def _create_collision_box(self): """Create a Collision Box. The Collision Box consists of 6 faces/walls forming a static box-like volume. Each wall of the Collision Box has collisions enabled. """ dx = self.width / 2.0 + self.thickness / 2.0 dy = self.height / 2.0 + self.thickness / 2.0 dz = self.depth / 2.0 + self.thickness / 2.0 floor_center = np.array([0, 0, -dz]) floor_dimensions = np.array([self.width, self.height, self.thickness]) self._create_face("floor", floor_center, floor_dimensions) ceiling_center = np.array([0, 0, +dz]) ceiling_dimensions = np.array([self.width, self.height, self.thickness]) self._create_face("ceiling", ceiling_center, ceiling_dimensions) left_wall_center = np.array([dx, 0, 0]) left_wall_dimensions = np.array([self.thickness, self.height, self.depth]) self._create_face("left_wall", left_wall_center, left_wall_dimensions) right_wall_center = np.array([-dx, 0, 0]) right_wall_dimensions = np.array([self.thickness, self.height, self.depth]) self._create_face("right_wall", right_wall_center, right_wall_dimensions) front_wall_center = np.array([0, dy, 0]) front_wall_dimensions = np.array([self.width, self.thickness, self.depth]) self._create_face("front_wall", front_wall_center, front_wall_dimensions) back_wall_center = np.array([0, -dy, 0]) back_wall_dimensions = np.array([self.width, self.thickness, self.depth]) self._create_face("back_wall", back_wall_center, back_wall_dimensions) def get_random_local_translation(self): """Get a random translation within the Collision Box in local coordinates. Translations are within the volumetric region contained by the inner walls of the Collision Box. The local coordinate frame is considered to be the frame of the prim at self.prim_path (center of the Collision Box). Returns: np.ndarray: random translation within the Collision Box in the local frame of the Collision Box. Shape is (3, ). """ dim_fractions = np.random.rand(3) tx = dim_fractions[0] * self.width - self.width / 2.0 ty = dim_fractions[1] * self.height - self.height / 2.0 tz = dim_fractions[2] * self.depth - self.depth / 2.0 translation = np.array([tx, ty, tz]) return translation def get_random_position(self): """Get a random position within the Collision Box in world coordinates. Positions are within the volumetric region contained by the inner walls of the Collision Box. Returns: np.ndarray: random position within the Collision Box in the world frame. Shape is (3, ). """ box_prim = self.world.stage.GetPrimAtPath(self.prim_path) box_transform_matrix = UsdGeom.Xformable(box_prim).ComputeLocalToWorldTransform(Usd.TimeCode.Default()) box_to_world = np.transpose(box_transform_matrix) random_local_translation = self.get_random_local_translation() random_local_translation_homogenous = np.pad(random_local_translation, ((0, 1)), constant_values=1.0) position_homogenous = box_to_world @ random_local_translation_homogenous position = position_homogenous[:-1] return position
8,637
Python
46.988889
120
0.618733
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/flying_distractors/__init__.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .collision_box import CollisionBox from .dynamic_asset_set import DynamicAssetSet from .dynamic_object import DynamicObject from .dynamic_object_set import DynamicObjectSet from .dynamic_shape_set import DynamicShapeSet from .flying_distractors import FlyingDistractors
706
Python
46.13333
76
0.830028
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/flying_distractors/flying_distractors.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import itertools from omni.isaac.core import World from .dynamic_object_set import DynamicObjectSet from .dynamic_shape_set import DynamicShapeSet class FlyingDistractors: """Container class to hold and manage both dynamic shape sets and dynamic object sets simultaneously. This class provides an API to keep assets in each asset set in motion within their respective collision boxes, to show/hide the assets of all the asset sets managed by this class, and to allow various properties of the assets of all the asset sets managed by this class to be randomized. """ def __init__(self): self.world = World.instance() self.shape_sets = [] self.object_sets = [] def add(self, asset_set): """Add an asset set to be managed by this FlyingDistractors object. Args: asset_set (Union[DynamicShapeSet, DynamicObjectSet]): the asset set to add. Raises: Exception: if asset_set is neither a DynamicShapeSet nor a DynamicObjectSet. """ if isinstance(asset_set, DynamicShapeSet): self.shape_sets.append(asset_set) elif isinstance(asset_set, DynamicObjectSet): self.object_sets.append(asset_set) else: raise Exception("The asset set provided is not of type DynamicShapeSet or DynamicObjectSet") def set_visible(self, visible): """Sets the visibility of all assets contained in the managed asset sets. Args: visible (bool): flag to set the visibility of all assets contained in the managed asset sets. """ for asset_set in itertools.chain(self.shape_sets, self.object_sets): for asset_name in asset_set.asset_names: object_xform = self.world.scene.get_object(asset_name) object_xform.set_visibility(visible=visible) def reset_asset_positions(self): """Reset the positions of all assets contained in the managed asset sets to be within its corresponding collision box. """ for asset_set in itertools.chain(self.shape_sets, self.object_sets): asset_set.reset_position() def apply_force_to_assets(self, force_limit): """Apply random forces to all assets contained in the managed asset sets. Args: force_limit (float): maximum force component to apply. """ for asset_set in itertools.chain(self.shape_sets, self.object_sets): asset_set.apply_force_to_assets(force_limit) def randomize_asset_glass_color(self): """Randomize color of assets in the managed asset sets with glass material applied.""" for asset_set in itertools.chain(self.shape_sets, self.object_sets): asset_set.randomize_glass_color()
3,231
Python
38.901234
116
0.686784
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/flying_distractors/dynamic_asset_set.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import itertools import math from abc import ABC, abstractmethod from typing import Optional import numpy as np from omni.isaac.core import World from .collision_box import CollisionBox class DynamicAssetSet(ABC): """Container class to hold and manage dynamic assets, providing an API to keep assets in motion within a collision box, and to allow various properties of the assets to be randomized. Args: set_prim_path (str): prim path of the parent Prim to create, which contains all the assets in the asset set as its children. set_name (str): name of the parent prim in the scene. asset_prim_path_base_prefix (str): prefix of what the assets are called in the stage (prim path base name). asset_name_prefix (str): prefix of the assets' names in the scene. num_assets (int): number of assets in the asset set. collision_box (CollisionBox): collision box in which to place assets, and allow assets to move within. scale (Optional[np.ndarray], optional): local scale to be applied to each asset's dimensions. Shape is (3, ). Defaults to None, which means left unchanged. mass (Optional[float], optional): mass of each asset in kg. Defaults to None. fraction_glass (int, optional): fraction of assets for which glass material should be applied. """ def __init__( self, set_prim_path: str, set_name: str, asset_prim_path_base_prefix: str, asset_name_prefix: str, num_assets: int, collision_box: CollisionBox, scale: Optional[np.ndarray] = None, mass: Optional[float] = None, fraction_glass: float = 0.0, ): self.world = World.instance() self.set_prim_path = set_prim_path self.set_name = set_name self.asset_prim_path_base_prefix = asset_prim_path_base_prefix self.asset_name_prefix = asset_name_prefix self.num_assets = num_assets self.collision_box = collision_box self.scale = scale self.mass = mass self.fraction_glass = fraction_glass self.asset_count = 0 self.asset_names = [] self.glass_asset_paths = [] self.nonglass_asset_paths = [] self.glass_assets = [] self.nonglass_assets = [] self.glass_mats = [] def _create_random_dynamic_asset_set(self): """Create self.num_assets assets and add them to the dynamic asset set.""" self.world.stage.DefinePrim(self.set_prim_path, "Xform") num_glass = math.floor(self.num_assets * self.fraction_glass) for i in range(self.num_assets): if i < num_glass: self._create_random_dynamic_asset(glass=True) else: self._create_random_dynamic_asset() @abstractmethod def _create_random_dynamic_asset(self, glass=False): pass def apply_force_to_assets(self, force_limit): """Apply a force in a random direction to each asset in the dynamic asset set. Args: force_limit (float): maximum force component to apply. """ for path in itertools.chain(self.glass_asset_paths, self.nonglass_asset_paths): # X, Y, and Z components of the force are constrained to be within [-force_limit, force_limit] random_force = np.random.uniform(-force_limit, force_limit, 3).tolist() handle = self.world.dc_interface.get_rigid_body(path) self.world.dc_interface.apply_body_force(handle, random_force, (0, 0, 0), False) def randomize_glass_color(self): """Randomize the color of the assets in the dynamic asset set with a glass material applied.""" for asset in itertools.chain(self.glass_assets): glass_mat = asset.get_applied_visual_material() glass_mat.set_color(np.random.rand(3)) def reset_position(self): """Reset the positions of assets in the dynamic asset set. The positions at which to place assets are randomly chosen such that they are within the collision box. """ for asset in itertools.chain(self.glass_assets, self.nonglass_assets): position = self.collision_box.get_random_position() asset.set_world_pose(position)
4,798
Python
39.669491
118
0.651105
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/flying_distractors/dynamic_object.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from typing import Optional import numpy as np from omni.isaac.core.prims.geometry_prim import GeometryPrim from omni.isaac.core.prims.rigid_prim import RigidPrim from omni.isaac.core.utils.prims import get_prim_at_path, is_prim_path_valid from omni.isaac.core.utils.stage import add_reference_to_stage from pxr import UsdGeom class DynamicObject(RigidPrim, GeometryPrim): """Creates and adds a prim to stage from USD reference path, and wraps the prim with RigidPrim and GeometryPrim to provide access to APIs for rigid body attributes, physics materials and collisions. Please note that this class assumes the object has only a single mesh prim defining its geometry. Args: usd_path (str): USD reference path the Prim refers to. prim_path (str): prim path of the Prim to encapsulate or create. mesh_path (str): prim path of the underlying mesh Prim. name (str, optional): shortname to be used as a key by Scene class. Note: needs to be unique if the object is added to the Scene. Defaults to "dynamic_object". position (Optional[np.ndarray], optional): position in the world frame of the prim. Shape is (3, ). Defaults to None, which means left unchanged. translation (Optional[np.ndarray], optional): translation in the local frame of the prim (with respect to its parent prim). Shape is (3, ). Defaults to None, which means left unchanged. orientation (Optional[np.ndarray], optional): quaternion orientation in the world/local frame of the prim (depends if translation or position is specified). Quaternion is scalar-first (w, x, y, z). Shape is (4, ). Defaults to None, which means left unchanged. scale (Optional[np.ndarray], optional): local scale to be applied to the prim's dimensions. Shape is (3, ). Defaults to None, which means left unchanged. visible (bool, optional): set to false for an invisible prim in the stage while rendering. Defaults to True. mass (Optional[float], optional): mass in kg. Defaults to None. linear_velocity (Optional[np.ndarray], optional): linear velocity in the world frame. Defaults to None. angular_velocity (Optional[np.ndarray], optional): angular velocity in the world frame. Defaults to None. """ def __init__( self, usd_path: str, prim_path: str, mesh_path: str, name: str = "dynamic_object", position: Optional[np.ndarray] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, scale: Optional[np.ndarray] = None, visible: bool = True, mass: Optional[float] = None, linear_velocity: Optional[np.ndarray] = None, angular_velocity: Optional[np.ndarray] = None, ) -> None: if is_prim_path_valid(mesh_path): prim = get_prim_at_path(mesh_path) if not prim.IsA(UsdGeom.Mesh): raise Exception("The prim at path {} cannot be parsed as a Mesh object".format(mesh_path)) self.usd_path = usd_path add_reference_to_stage(usd_path=usd_path, prim_path=prim_path) GeometryPrim.__init__( self, prim_path=mesh_path, name=name, translation=translation, orientation=orientation, visible=visible, collision=True, ) self.set_collision_approximation("convexHull") RigidPrim.__init__( self, prim_path=prim_path, name=name, position=position, translation=translation, orientation=orientation, scale=scale, visible=visible, mass=mass, linear_velocity=linear_velocity, angular_velocity=angular_velocity, )
4,662
Python
47.072164
120
0.614972
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/config/dope_config.yaml
--- # Default rendering parameters CONFIG: renderer: RayTracedLighting headless: false width: 512 height: 512 # Index of part in array of classes in PoseCNN training CLASS_NAME_TO_INDEX: 003_cracker_box: 1 035_power_drill: 2 # prim_type is determined by the usd file. # To determine, open the usd file in Isaac Sim and see the prim path. If you load it in /World, the path will be /World/<prim_type> OBJECTS_TO_GENERATE: - { part_name: 003_cracker_box, num: 1, prim_type: _03_cracker_box } - { part_name: 035_power_drill, num: 1, prim_type: _35_power_drill } # Maximum force component to apply to objects to keep them in motion FORCE_RANGE: 30 # Camera Intrinsics WIDTH: 512 HEIGHT: 512 F_X: 768.1605834960938 F_Y: 768.1605834960938 C_X: 256 C_Y: 256 # Default Camera Horizontal Aperture HORIZONTAL_APERTURE: 20.955 # Number of sphere lights added to the scene NUM_LIGHTS: 6 # Minimum and maximum distances of objects away from the camera (along the optical axis) MIN_DISTANCE: 0.4 MAX_DISTANCE: 1.4 # Rotation of camera rig with respect to world frame, expressed as XYZ euler angles CAMERA_RIG_ROTATION: - 0 - 0 - 0 # Rotation of camera with respect to camera rig, expressed as XYZ euler angles. Please note that in this example, we # define poses with respect to the camera rig instead of the camera prim. By using the rig's frame as a surrogate for # the camera's frame, we effectively change the coordinate system of the camera. When # CAMERA_RIG_ROTATION = np.array([0, 0, 0]) and CAMERA_ROTATION = np.array([0, 0, 0]), this corresponds to the default # Isaac-Sim camera coordinate system of -z out the face of the camera, +x to the right, and +y up. When # CAMERA_RIG_ROTATION = np.array([0, 0, 0]) and CAMERA_ROTATION = np.array([180, 0, 0]), this corresponds to # the YCB Video Dataset camera coordinate system of +z out the face of the camera, +x to the right, and +y down. CAMERA_ROTATION: - 180 - 0 - 0 # Minimum and maximum XYZ euler angles for the part being trained on to be rotated, with respect to the camera rig MIN_ROTATION_RANGE: - -180 - -90 - -180 # Minimum and maximum XYZ euler angles for the part being trained on to be rotated, with respect to the camera rig MAX_ROTATION_RANGE: - 180 - 90 - 180 # How close the center of the part being trained on is allowed to be to the edge of the screen FRACTION_TO_SCREEN_EDGE: 0.9 # MESH and DOME datasets SHAPE_SCALE: - 0.05 - 0.05 - 0.05 SHAPE_MASS: 1 OBJECT_SCALE: - 1 - 1 - 1 OBJECT_MASS: 1 # MESH dataset NUM_MESH_SHAPES: 500 NUM_MESH_OBJECTS: 200 MESH_FRACTION_GLASS: 0.15 MESH_FILENAMES: - 002_master_chef_can - 004_sugar_box - 005_tomato_soup_can - 006_mustard_bottle - 007_tuna_fish_can - 008_pudding_box - 009_gelatin_box - 010_potted_meat_can - 011_banana - 019_pitcher_base - 021_bleach_cleanser - 024_bowl - 025_mug - 035_power_drill - 036_wood_block - 037_scissors - 040_large_marker - 051_large_clamp - 052_extra_large_clamp - 061_foam_brick # DOME dataset NUM_DOME_SHAPES: 30 NUM_DOME_OBJECTS: 20 DOME_FRACTION_GLASS: 0.2 DOME_TEXTURES: - Clear/evening_road_01_4k - Clear/kloppenheim_02_4k - Clear/mealie_road_4k - Clear/noon_grass_4k - Clear/qwantani_4k - Clear/signal_hill_sunrise_4k - Clear/sunflowers_4k - Clear/syferfontein_18d_clear_4k - Clear/venice_sunset_4k - Clear/white_cliff_top_4k - Cloudy/abandoned_parking_4k - Cloudy/champagne_castle_1_4k - Cloudy/evening_road_01_4k - Cloudy/kloofendal_48d_partly_cloudy_4k - Cloudy/lakeside_4k - Cloudy/sunflowers_4k - Cloudy/table_mountain_1_4k - Evening/evening_road_01_4k - Indoor/adams_place_bridge_4k - Indoor/autoshop_01_4k - Indoor/bathroom_4k - Indoor/carpentry_shop_01_4k - Indoor/en_suite_4k - Indoor/entrance_hall_4k - Indoor/hospital_room_4k - Indoor/hotel_room_4k - Indoor/lebombo_4k - Indoor/old_bus_depot_4k - Indoor/small_empty_house_4k - Indoor/studio_small_04_4k - Indoor/surgery_4k - Indoor/vulture_hide_4k - Indoor/wooden_lounge_4k - Night/kloppenheim_02_4k - Night/moonlit_golf_4k - Storm/approaching_storm_4k
3,989
YAML
25.25
131
0.740035
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/config/ycb_config.yaml
--- # Default rendering parameters CONFIG: renderer: RayTracedLighting headless: false width: 1280 height: 720 # Index of part in array of classes in PoseCNN training CLASS_NAME_TO_INDEX: _03_cracker_box: 1 _35_power_drill: 2 # prim_type is determined by the usd file. # To determine, open the usd file in Isaac Sim and see the prim path. If you load it in /World, the path will be /World/<prim_type> OBJECTS_TO_GENERATE: - { part_name: 003_cracker_box, num: 1, prim_type: _03_cracker_box } - { part_name: 035_power_drill, num: 1, prim_type: _35_power_drill } # Maximum force component to apply to objects to keep them in motion FORCE_RANGE: 30 # Camera Intrinsics WIDTH: 1280 HEIGHT: 720 F_X: 665.80768 F_Y: 665.80754 C_X: 637.642 C_Y: 367.56 # Default Camera Horizontal Aperture HORIZONTAL_APERTURE: 20.955 # Number of sphere lights added to the scene NUM_LIGHTS: 6 # Minimum and maximum distances of objects away from the camera (along the optical axis) MIN_DISTANCE: 0.2 MAX_DISTANCE: 1.2 # Rotation of camera rig with respect to world frame, expressed as XYZ euler angles CAMERA_RIG_ROTATION: - 0 - 0 - 0 # Rotation of camera with respect to camera rig, expressed as XYZ euler angles. Please note that in this example, we # define poses with respect to the camera rig instead of the camera prim. By using the rig's frame as a surrogate for # the camera's frame, we effectively change the coordinate system of the camera. When # CAMERA_RIG_ROTATION = np.array([0, 0, 0]) and CAMERA_ROTATION = np.array([0, 0, 0]), this corresponds to the default # Isaac-Sim camera coordinate system of -z out the face of the camera, +x to the right, and +y up. When # CAMERA_RIG_ROTATION = np.array([0, 0, 0]) and CAMERA_ROTATION = np.array([180, 0, 0]), this corresponds to # the YCB Video Dataset camera coordinate system of +z out the face of the camera, +x to the right, and +y down. CAMERA_ROTATION: - 180 - 0 - 0 # Minimum and maximum XYZ euler angles for the part being trained on to be rotated, with respect to the camera rig MIN_ROTATION_RANGE: - -180 - -90 - -180 # Minimum and maximum XYZ euler angles for the part being trained on to be rotated, with respect to the camera rig MAX_ROTATION_RANGE: - 180 - 90 - 180 # How close the center of the part being trained on is allowed to be to the edge of the screen FRACTION_TO_SCREEN_EDGE: 0.9 # MESH and DOME datasets SHAPE_SCALE: - 0.05 - 0.05 - 0.05 SHAPE_MASS: 1 OBJECT_SCALE: - 1 - 1 - 1 OBJECT_MASS: 1 # MESH dataset NUM_MESH_SHAPES: 500 NUM_MESH_OBJECTS: 200 MESH_FRACTION_GLASS: 0.15 MESH_FILENAMES: - 002_master_chef_can - 004_sugar_box - 005_tomato_soup_can - 006_mustard_bottle - 007_tuna_fish_can - 008_pudding_box - 009_gelatin_box - 010_potted_meat_can - 011_banana - 019_pitcher_base - 021_bleach_cleanser - 024_bowl - 025_mug - 035_power_drill - 036_wood_block - 037_scissors - 040_large_marker - 051_large_clamp - 052_extra_large_clamp - 061_foam_brick # DOME dataset NUM_DOME_SHAPES: 30 NUM_DOME_OBJECTS: 20 DOME_FRACTION_GLASS: 0.2 DOME_TEXTURES: - Clear/evening_road_01_4k - Clear/kloppenheim_02_4k - Clear/mealie_road_4k - Clear/noon_grass_4k - Clear/qwantani_4k - Clear/signal_hill_sunrise_4k - Clear/sunflowers_4k - Clear/syferfontein_18d_clear_4k - Clear/venice_sunset_4k - Clear/white_cliff_top_4k - Cloudy/abandoned_parking_4k - Cloudy/champagne_castle_1_4k - Cloudy/evening_road_01_4k - Cloudy/kloofendal_48d_partly_cloudy_4k - Cloudy/lakeside_4k - Cloudy/sunflowers_4k - Cloudy/table_mountain_1_4k - Evening/evening_road_01_4k - Indoor/adams_place_bridge_4k - Indoor/autoshop_01_4k - Indoor/bathroom_4k - Indoor/carpentry_shop_01_4k - Indoor/en_suite_4k - Indoor/entrance_hall_4k - Indoor/hospital_room_4k - Indoor/hotel_room_4k - Indoor/lebombo_4k - Indoor/old_bus_depot_4k - Indoor/small_empty_house_4k - Indoor/studio_small_04_4k - Indoor/surgery_4k - Indoor/vulture_hide_4k - Indoor/wooden_lounge_4k - Night/kloppenheim_02_4k - Night/moonlit_golf_4k - Storm/approaching_storm_4k
3,984
YAML
25.217105
131
0.738203
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/tests/test_utils.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import json import os import shutil import numpy as np import scipy.io as sio def run_pose_generation_test(writer, output_folder, test_folder): if writer.lower() == "dope": run_dope_test(test_folder, output_folder) elif writer.lower() == "ycbvideo": run_ycbvideo_tests(test_folder, output_folder) else: raise Exception(f"No tests exist for the selected writer: {writer}") # Cleans up output directory so tests are not reading output files from previous run def clean_output_dir(output_folder): if os.path.isdir(output_folder): shutil.rmtree(output_folder, ignore_errors=True) # Checks if distance between points is within threshold def within_threshold(p1, p2, threshold=20): return np.linalg.norm(np.array(p1) - np.array(p2)) < threshold def run_dope_test(test_folder, output_folder): groundtruth_path = os.path.join(test_folder, "dope/000000_groundtruth.json") # Look at output for 2nd frame because 1st frame does not get generated properly sometimes output_path = os.path.join(output_folder, "000001.json") with open(groundtruth_path) as gt_f: gt_data = json.load(gt_f) with open(output_path) as op_f: op_data = json.load(op_f) gt_objects, op_objects = gt_data["objects"], op_data["objects"] # Does not work with multiple objects. There should be only one object in testing mode. if not (len(gt_objects) == 1 and len(op_objects) == 1): raise Exception( f"Mismatch in .json files between number of objects. gt_objects: {len(gt_objects)}, op_objects: {len(op_objects)}" ) for gt_obj, op_obj in zip(gt_objects, op_objects): if not within_threshold(gt_obj["location"], op_obj["location"], 10): raise Exception( f"Distance between groundtruth location and output location exceeds threshold. (location) {gt_pt} and {op_pt}" ) for gt_pt, op_pt in zip(gt_obj["projected_cuboid"], op_obj["projected_cuboid"]): if not within_threshold(gt_pt, op_pt, 20.0): raise Exception( f"Distance between groundtruth points and output points exceeds threshold. (projected_cuboid) {gt_pt} and {op_pt}" ) print("Tests pass for DOPE Writer.") def run_ycbvideo_tests(test_folder, output_folder, threshold=10): groundtruth_bbox_path = os.path.join(test_folder, "ycbvideo/000000-box_groundtruth.txt") groundtruth_meta_path = os.path.join(test_folder, "ycbvideo/000000-meta_groundtruth.mat") # Look at output for 2nd frame because 1st frame does not get generated properly sometimes output_bbox_path = os.path.join(output_folder, "data/YCB_Video/data/0000", "000001-box.txt") output_meta_path = os.path.join(output_folder, "data/YCB_Video/data/0000", "000001-meta.mat") # Compare BBox gt_bb = open(groundtruth_bbox_path, "r") op_bb = open(output_bbox_path, "r") for l1, l2 in zip(gt_bb, op_bb): for gt_point, bb_point in zip(l1.strip().split()[1:5], l2.strip().split()[1:5]): if not within_threshold([int(gt_point)], [int(bb_point)], 10): raise Exception(f"Mismatch between files {groundtruth_bbox_path} and {output_bbox_path}") gt_bb.close() op_bb.close() # Compare Meta File gt_meta = sio.loadmat(groundtruth_meta_path) op_meta = sio.loadmat(output_meta_path) keys_to_compare = ["poses", "intrinsic_matrix", "center"] print(f"gt_meta:\n{gt_meta}") print(f"op_meta:\n{op_meta}") for key in keys_to_compare: gt = gt_meta[key].flatten() op = op_meta[key].flatten() if not len(gt) == len(op): raise Exception(f"Mismatch between length of pose in {groundtruth_meta_path} and {output_meta_path}") for i in range(len(gt)): if abs(gt[i] - op[i]) > threshold: raise Exception( f"Mismatch between {key} values in groundtruth and output at index {i}. Groundtruth: {gt[i]} Output: {op[i]}" ) print(f"{key} matches between groundtruth and output.") print("Tests pass for YCBVideo Writer.")
4,599
Python
38.316239
134
0.661666
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/tests/ycbvideo/test_ycb_config.yaml
# DO NOT MODIFY OR TESTS WILL FAIL --- CONFIG: renderer: RayTracedLighting headless: false width: 1280 height: 720 CLASS_NAME_TO_INDEX: _03_cracker_box: 1 OBJECTS_TO_GENERATE: - { part_name: 003_cracker_box, num: 1, prim_type: _03_cracker_box } FORCE_RANGE: 30 WIDTH: 1280 HEIGHT: 720 F_X: 665.80768 F_Y: 665.80754 C_X: 637.642 C_Y: 367.56 HORIZONTAL_APERTURE: 20.955 NUM_LIGHTS: 6 MIN_DISTANCE: 1.0 MAX_DISTANCE: 1.0 CAMERA_RIG_ROTATION: - 0 - 0 - 0 CAMERA_ROTATION: - 180 - 0 - 0 MIN_ROTATION_RANGE: - 100 - 100 - 100 MAX_ROTATION_RANGE: - 100 - 100 - 100 FRACTION_TO_SCREEN_EDGE: 0.0 SHAPE_SCALE: - 0.05 - 0.05 - 0.05 SHAPE_MASS: 1 OBJECT_SCALE: - 1 - 1 - 1 OBJECT_MASS: 1 NUM_MESH_SHAPES: 0 NUM_MESH_OBJECTS: 0 MESH_FRACTION_GLASS: 0.15 NUM_DOME_SHAPES: 0 NUM_DOME_OBJECTS: 0 DOME_FRACTION_GLASS: 0.2 DOME_TEXTURES: [] MESH_FILENAMES: []
853
YAML
13.724138
68
0.691676
2820207922/isaac_ws/standalone_examples/replicator/offline_pose_generation/tests/dope/test_dope_config.yaml
# DO NOT MODIFY OR TESTS WILL FAIL --- CONFIG: renderer: RayTracedLighting headless: false width: 512 height: 512 CLASS_NAME_TO_INDEX: _03_cracker_box: 1 OBJECTS_TO_GENERATE: - { part_name: 003_cracker_box, num: 1, prim_type: _03_cracker_box } FORCE_RANGE: 30 WIDTH: 512 HEIGHT: 512 F_X: 768.1605834960938 F_Y: 768.1605834960938 C_X: 256 C_Y: 256 HORIZONTAL_APERTURE: 20.955 NUM_LIGHTS: 6 MIN_DISTANCE: 1.0 MAX_DISTANCE: 1.0 CAMERA_RIG_ROTATION: - 0 - 0 - 0 CAMERA_ROTATION: - 180 - 0 - 0 MIN_ROTATION_RANGE: - 100 - 100 - 100 MAX_ROTATION_RANGE: - 100 - 100 - 100 FRACTION_TO_SCREEN_EDGE: 0.0 SHAPE_SCALE: - 0.05 - 0.05 - 0.05 SHAPE_MASS: 1 OBJECT_SCALE: - 1 - 1 - 1 OBJECT_MASS: 1 NUM_MESH_SHAPES: 0 NUM_MESH_OBJECTS: 0 MESH_FRACTION_GLASS: 0.15 NUM_DOME_SHAPES: 0 NUM_DOME_OBJECTS: 0 DOME_FRACTION_GLASS: 0.2 DOME_TEXTURES: [] MESH_FILENAMES: []
860
YAML
13.844827
68
0.696512
2820207922/isaac_ws/standalone_examples/api/omni.isaac.gym/cartpole_train.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # import stable baselines import carb try: from stable_baselines3 import PPO except Exception as e: carb.log_error(e) carb.log_error( "please install stable-baselines3 in the current python environment or run the following to install into the builtin python environment ./python.sh -m pip install stable-baselines3 " ) exit() try: import tensorboard except Exception as e: carb.log_error(e) carb.log_error( "please install tensorboard in the current python environment or run the following to install into the builtin python environment ./python.sh -m pip install tensorboard" ) exit() # create isaac environment from omni.isaac.gym.vec_env import VecEnvBase env = VecEnvBase(headless=True) # create task and register task from cartpole_task import CartpoleTask task = CartpoleTask(name="Cartpole") env.set_task(task, backend="torch") # create agent from stable baselines model = PPO( "MlpPolicy", env, n_steps=1000, batch_size=1000, n_epochs=20, learning_rate=0.001, gamma=0.99, device="cuda:0", ent_coef=0.0, vf_coef=0.5, max_grad_norm=1.0, verbose=1, tensorboard_log="./cartpole_tensorboard", ) model.learn(total_timesteps=100000) model.save("ppo_cartpole") env.close()
1,721
Python
26.774193
190
0.732714
2820207922/isaac_ws/standalone_examples/api/omni.isaac.gym/cartpole_play.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # import stable baselines import carb try: from stable_baselines3 import PPO except Exception as e: carb.log_error(e) carb.log_error( "please install stable-baselines3 in the current python environment or run the following to install into the builtin python environment ./python.sh -m pip install stable-baselines3 " ) exit() # create isaac environment from omni.isaac.gym.vec_env import VecEnvBase env = VecEnvBase(headless=False) # create task and register task from cartpole_task import CartpoleTask task = CartpoleTask(name="Cartpole") env.set_task(task, backend="torch") # Run inference on the trained policy model = PPO.load("ppo_cartpole") env._world.reset() obs, _ = env.reset() while env._simulation_app.is_running(): action, _states = model.predict(obs) obs, rewards, terminated, truncated, info = env.step(action) env.close()
1,312
Python
30.261904
190
0.759909
2820207922/isaac_ws/standalone_examples/api/omni.isaac.gym/cartpole_task.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import math import numpy as np import omni.kit import torch from gymnasium import spaces from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.tasks.base_task import BaseTask from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import create_prim from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.core.utils.viewports import set_camera_view class CartpoleTask(BaseTask): def __init__(self, name, offset=None) -> None: # task-specific parameters self._cartpole_position = [0.0, 0.0, 2.0] self._reset_dist = 3.0 self._max_push_effort = 400.0 # values used for defining RL buffers self._num_observations = 4 self._num_actions = 1 self._device = "cpu" self.num_envs = 1 # a few class buffers to store RL-related states self.obs = torch.zeros((self.num_envs, self._num_observations)) self.resets = torch.zeros((self.num_envs, 1)) # set the action and observation space for RL self.action_space = spaces.Box( np.ones(self._num_actions, dtype=np.float32) * -1.0, np.ones(self._num_actions, dtype=np.float32) * 1.0 ) self.observation_space = spaces.Box( np.ones(self._num_observations, dtype=np.float32) * -np.Inf, np.ones(self._num_observations, dtype=np.float32) * np.Inf, ) # trigger __init__ of parent class BaseTask.__init__(self, name=name, offset=offset) def set_up_scene(self, scene) -> None: # retrieve file path for the Cartpole USD file assets_root_path = get_assets_root_path() usd_path = assets_root_path + "/Isaac/Robots/Cartpole/cartpole.usd" # add the Cartpole USD to our stage create_prim(prim_path="/World/Cartpole", prim_type="Xform", position=self._cartpole_position) add_reference_to_stage(usd_path, "/World/Cartpole") # Get stage handle stage = omni.usd.get_context().get_stage() if not stage: print("Stage could not be used.") else: for prim in stage.Traverse(): prim_path = prim.GetPath() prim_type = prim.GetTypeName() print(f"prim_path: {prim_path}, prim_type: {prim_type}") # create an ArticulationView wrapper for our cartpole - this can be extended towards accessing multiple cartpoles self._cartpoles = ArticulationView(prim_paths_expr="/World/Cartpole*", name="cartpole_view") # add Cartpole ArticulationView and ground plane to the Scene scene.add(self._cartpoles) scene.add_default_ground_plane() # set default camera viewport position and target self.set_initial_camera_params() def set_initial_camera_params(self, camera_position=[10, 10, 3], camera_target=[0, 0, 0]): set_camera_view(eye=camera_position, target=camera_target, camera_prim_path="/OmniverseKit_Persp") def post_reset(self): self._cart_dof_idx = self._cartpoles.get_dof_index("cartJoint") self._pole_dof_idx = self._cartpoles.get_dof_index("poleJoint") # randomize all envs indices = torch.arange(self._cartpoles.count, dtype=torch.int64, device=self._device) self.reset(indices) def reset(self, env_ids=None): if env_ids is None: env_ids = torch.arange(self.num_envs, device=self._device) num_resets = len(env_ids) # randomize DOF positions dof_pos = torch.zeros((num_resets, self._cartpoles.num_dof), device=self._device) dof_pos[:, self._cart_dof_idx] = 1.0 * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) dof_pos[:, self._pole_dof_idx] = 0.125 * math.pi * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) # randomize DOF velocities dof_vel = torch.zeros((num_resets, self._cartpoles.num_dof), device=self._device) dof_vel[:, self._cart_dof_idx] = 0.5 * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) dof_vel[:, self._pole_dof_idx] = 0.25 * math.pi * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) # apply resets indices = env_ids.to(dtype=torch.int32) self._cartpoles.set_joint_positions(dof_pos, indices=indices) self._cartpoles.set_joint_velocities(dof_vel, indices=indices) # bookkeeping self.resets[env_ids] = 0 def pre_physics_step(self, actions) -> None: reset_env_ids = self.resets.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset(reset_env_ids) actions = torch.tensor(actions) forces = torch.zeros((self._cartpoles.count, self._cartpoles.num_dof), dtype=torch.float32, device=self._device) forces[:, self._cart_dof_idx] = self._max_push_effort * actions[0] indices = torch.arange(self._cartpoles.count, dtype=torch.int32, device=self._device) self._cartpoles.set_joint_efforts(forces, indices=indices) def get_observations(self): dof_pos = self._cartpoles.get_joint_positions() dof_vel = self._cartpoles.get_joint_velocities() # collect pole and cart joint positions and velocities for observation cart_pos = dof_pos[:, self._cart_dof_idx] cart_vel = dof_vel[:, self._cart_dof_idx] pole_pos = dof_pos[:, self._pole_dof_idx] pole_vel = dof_vel[:, self._pole_dof_idx] self.obs[:, 0] = cart_pos self.obs[:, 1] = cart_vel self.obs[:, 2] = pole_pos self.obs[:, 3] = pole_vel return self.obs def calculate_metrics(self) -> None: cart_pos = self.obs[:, 0] cart_vel = self.obs[:, 1] pole_angle = self.obs[:, 2] pole_vel = self.obs[:, 3] # compute reward based on angle of pole and cart velocity reward = 1.0 - pole_angle * pole_angle - 0.01 * torch.abs(cart_vel) - 0.005 * torch.abs(pole_vel) # apply a penalty if cart is too far from center reward = torch.where(torch.abs(cart_pos) > self._reset_dist, torch.ones_like(reward) * -2.0, reward) # apply a penalty if pole is too far from upright reward = torch.where(torch.abs(pole_angle) > np.pi / 2, torch.ones_like(reward) * -2.0, reward) return reward.item() def is_done(self) -> None: cart_pos = self.obs[:, 0] pole_pos = self.obs[:, 2] # reset the robot if cart has reached reset_dist or pole is too far from upright resets = torch.where(torch.abs(cart_pos) > self._reset_dist, 1, 0) resets = torch.where(torch.abs(pole_pos) > math.pi / 2, 1, resets) self.resets = resets return resets.item()
7,209
Python
41.662722
121
0.636288
2820207922/isaac_ws/standalone_examples/api/omni.isaac.dofbot/pick_place.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.core import World from omni.isaac.dofbot.controllers.pick_place_controller import PickPlaceController from omni.isaac.dofbot.tasks import PickPlace my_world = World(stage_units_in_meters=1.0) my_task = PickPlace() my_world.add_task(my_task) my_world.reset() task_params = my_task.get_params() dofbot_name = task_params["robot_name"]["value"] my_dofbot = my_world.scene.get_object(dofbot_name) my_controller = PickPlaceController( name="pick_place_controller", gripper=my_dofbot.gripper, robot_articulation=my_dofbot ) articulation_controller = my_dofbot.get_articulation_controller() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() actions = my_controller.forward( picking_position=observations[task_params["cube_name"]["value"]]["position"], placing_position=observations[task_params["cube_name"]["value"]]["target_position"], current_joint_positions=observations[dofbot_name]["joint_positions"], end_effector_offset=np.array([0, -0.06, 0]), ) if my_controller.is_done(): print("done picking and placing") articulation_controller.apply_action(actions) simulation_app.close()
1,954
Python
38.897958
96
0.72262
2820207922/isaac_ws/standalone_examples/api/omni.isaac.dofbot/follow_target_with_rmpflow.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.isaac.dofbot.controllers.rmpflow_controller import RMPFlowController from omni.isaac.dofbot.tasks import FollowTarget my_world = World(stage_units_in_meters=1.0) my_task = FollowTarget(name="follow_target_task") my_world.add_task(my_task) my_world.reset() task_params = my_world.get_task("follow_target_task").get_params() dofbot_name = task_params["robot_name"]["value"] target_name = task_params["target_name"]["value"] my_dofbot = my_world.scene.get_object(dofbot_name) my_controller = RMPFlowController(name="target_follower_controller", robot_articulation=my_dofbot) articulation_controller = my_dofbot.get_articulation_controller() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() actions = my_controller.forward( target_end_effector_position=observations[target_name]["position"], target_end_effector_orientation=observations[target_name]["orientation"], ) articulation_controller.apply_action(actions) simulation_app.close()
1,764
Python
42.048779
98
0.747732
2820207922/isaac_ws/standalone_examples/api/omni.isaac.dofbot/follow_target_with_ik.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb import numpy as np from omni.isaac.core import World from omni.isaac.dofbot import KinematicsSolver from omni.isaac.dofbot.controllers.rmpflow_controller import RMPFlowController from omni.isaac.dofbot.tasks import FollowTarget my_world = World(stage_units_in_meters=1.0) my_task = FollowTarget(name="follow_target_task") my_world.add_task(my_task) my_world.reset() task_params = my_world.get_task("follow_target_task").get_params() dofbot_name = task_params["robot_name"]["value"] target_name = task_params["target_name"]["value"] my_dofbot = my_world.scene.get_object(dofbot_name) my_controller = KinematicsSolver(my_dofbot) articulation_controller = my_dofbot.get_articulation_controller() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() observations = my_world.get_observations() # IK does not work well on dofbot with orientation targets actions, succ = my_controller.compute_inverse_kinematics(target_position=observations[target_name]["position"]) # actions,succ = my_controller.compute_inverse_kinematics(target_position=observations[target_name]["position"], # target_orientation=observations[target_name]["orientation"], orientation_tolerance = np.pi/2) if succ: articulation_controller.apply_action(actions) else: carb.log_warn("IK did not converge to a solution. No action is being taken.") simulation_app.close()
2,079
Python
43.255318
120
0.746513
2820207922/isaac_ws/standalone_examples/api/omni.kit.asset_converter/asset_usd_converter.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import asyncio import os import omni from omni.isaac.kit import SimulationApp async def convert(in_file, out_file, load_materials=False): # This import causes conflicts when global import omni.kit.asset_converter def progress_callback(progress, total_steps): pass converter_context = omni.kit.asset_converter.AssetConverterContext() # setup converter and flags converter_context.ignore_materials = not load_materials # converter_context.ignore_animation = False # converter_context.ignore_cameras = True # converter_context.single_mesh = True # converter_context.smooth_normals = True # converter_context.preview_surface = False # converter_context.support_point_instancer = False # converter_context.embed_mdl_in_usd = False # converter_context.use_meter_as_world_unit = True # converter_context.create_world_as_default_root_prim = False instance = omni.kit.asset_converter.get_instance() task = instance.create_converter_task(in_file, out_file, progress_callback, converter_context) success = True while True: success = await task.wait_until_finished() if not success: await asyncio.sleep(0.1) else: break return success def asset_convert(args): supported_file_formats = ["stl", "obj", "fbx"] for folder in args.folders: local_asset_output = folder + "_converted" result = omni.client.create_folder(f"{local_asset_output}") for folder in args.folders: print(f"\nConverting folder {folder}...") (result, models) = omni.client.list(folder) for i, entry in enumerate(models): if i >= args.max_models: print(f"max models ({args.max_models}) reached, exiting conversion") break model = str(entry.relative_path) model_name = os.path.splitext(model)[0] model_format = (os.path.splitext(model)[1])[1:] # Supported input file formats if model_format in supported_file_formats: input_model_path = folder + "/" + model converted_model_path = folder + "_converted/" + model_name + "_" + model_format + ".usd" if not os.path.exists(converted_model_path): status = asyncio.get_event_loop().run_until_complete( convert(input_model_path, converted_model_path, True) ) if not status: print(f"ERROR Status is {status}") print(f"---Added {converted_model_path}") if __name__ == "__main__": kit = SimulationApp() from omni.isaac.core.utils.extensions import enable_extension enable_extension("omni.kit.asset_converter") parser = argparse.ArgumentParser("Convert OBJ/STL assets to USD") parser.add_argument( "--folders", type=str, nargs="+", default=None, help="List of folders to convert (space seperated)." ) parser.add_argument( "--max-models", type=int, default=50, help="If specified, convert up to `max-models` per folder." ) parser.add_argument( "--load-materials", action="store_true", help="If specified, materials will be loaded from meshes" ) args, unknown_args = parser.parse_known_args() if args.folders is not None: # Ensure Omniverse Kit is launched via SimulationApp before asset_convert() is called asset_convert(args) else: print(f"No folders specified via --folders argument, exiting") # cleanup kit.close()
4,049
Python
36.850467
108
0.652013
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cloner/clone_ants.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import sys import carb import numpy as np from omni.isaac.cloner import GridCloner from omni.isaac.core import World from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() my_world = World(stage_units_in_meters=1.0) my_world.scene.add_default_ground_plane() # create initial robot asset_path = assets_root_path + "/Isaac/Robots/Ant/ant.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/Ants/Ant_0") # create GridCloner instance cloner = GridCloner(spacing=2) # generate paths for clones target_paths = cloner.generate_paths("/World/Ants/Ant", 4) # clone position_offsets = np.array([[0, 0, 1]] * 4) cloner.clone( source_prim_path="/World/Ants/Ant_0", prim_paths=target_paths, position_offsets=position_offsets, replicate_physics=True, base_env_path="/World/Ants", ) # create ArticulationView ants = ArticulationView(prim_paths_expr="/World/Ants/.*/torso", name="ants_view") my_world.scene.add(ants) my_world.reset() for i in range(1000): print(ants.get_world_poses()) my_world.step() simulation_app.close()
1,909
Python
29.806451
81
0.756417
2820207922/isaac_ws/standalone_examples/api/omni.isaac.kit/load_stage.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import sys import carb import omni from omni.isaac.kit import SimulationApp # This sample loads a usd stage and starts simulation CONFIG = {"width": 1280, "height": 720, "sync_loads": True, "headless": False, "renderer": "RayTracedLighting"} # Set up command line arguments parser = argparse.ArgumentParser("Usd Load sample") parser.add_argument( "--usd_path", type=str, help="Path to usd file, should be relative to your default assets folder", required=True ) parser.add_argument("--headless", default=False, action="store_true", help="Run stage headless") parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() # Start the omniverse application CONFIG["headless"] = args.headless kit = SimulationApp(launch_config=CONFIG) # Locate Isaac Sim assets folder to load sample from omni.isaac.core.utils.nucleus import get_assets_root_path, is_file assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") kit.close() sys.exit() usd_path = assets_root_path + args.usd_path # make sure the file exists before we try to open it try: result = is_file(usd_path) except: result = False if result: omni.usd.get_context().open_stage(usd_path) else: carb.log_error( f"the usd path {usd_path} could not be opened, please make sure that {args.usd_path} is a valid usd file in {assets_root_path}" ) kit.close() sys.exit() # Wait two frames so that stage starts loading kit.update() kit.update() print("Loading stage...") from omni.isaac.core.utils.stage import is_stage_loading while is_stage_loading(): kit.update() print("Loading Complete") omni.timeline.get_timeline_interface().play() # Run in test mode, exit after a fixed number of steps if args.test is True: for i in range(10): # Run in realtime mode, we don't specify the step size kit.update() else: while kit.is_running(): # Run in realtime mode, we don't specify the step size kit.update() omni.timeline.get_timeline_interface().stop() kit.close()
2,599
Python
31.5
135
0.727972
2820207922/isaac_ws/standalone_examples/api/omni.isaac.kit/hello_world.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni from omni.isaac.kit import SimulationApp # The most basic usage for creating a simulation app kit = SimulationApp() for i in range(100): kit.update() omni.kit.app.get_app().print_and_log("Hello World!") kit.close() # Cleanup application
690
Python
30.40909
76
0.781159
2820207922/isaac_ws/standalone_examples/api/omni.isaac.kit/livestream.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp # This sample enables a livestream server to connect to when running headless CONFIG = { "width": 1280, "height": 720, "window_width": 1920, "window_height": 1080, "headless": True, "renderer": "RayTracedLighting", "display_options": 3286, # Set display options to show default grid } # Start the omniverse application kit = SimulationApp(launch_config=CONFIG) from omni.isaac.core.utils.extensions import enable_extension # Default Livestream settings kit.set_setting("/app/window/drawMouse", True) kit.set_setting("/app/livestream/proto", "ws") kit.set_setting("/app/livestream/websocket/framerate_limit", 120) kit.set_setting("/ngx/enabled", False) # Note: Only one livestream extension can be enabled at a time # Enable Native Livestream extension # Default App: Streaming Client from the Omniverse Launcher enable_extension("omni.kit.livestream.native") # Enable WebSocket Livestream extension(Deprecated) # Default URL: http://localhost:8211/streaming/client/ # enable_extension("omni.services.streamclient.websocket") # Enable WebRTC Livestream extension # Default URL: http://localhost:8211/streaming/webrtc-client/ # enable_extension("omni.services.streamclient.webrtc") # Run until closed while kit._app.is_running() and not kit.is_exiting(): # Run in realtime mode, we don't specify the step size kit.update() kit.close()
1,853
Python
33.333333
77
0.764166
2820207922/isaac_ws/standalone_examples/api/omni.isaac.kit/change_resolution.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import random from omni.isaac.kit import SimulationApp # Simple example showing how to change resolution kit = SimulationApp({"headless": True}) kit.update() for i in range(100): width = random.randint(128, 1980) height = random.randint(128, 1980) kit.set_setting("/app/renderer/resolution/width", width) kit.set_setting("/app/renderer/resolution/height", height) kit.update() print(f"resolution set to: {width}, {height}") # cleanup kit.close()
905
Python
32.555554
76
0.758011
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/add_cubes.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import numpy as np from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid, VisualCuboid my_world = World(stage_units_in_meters=1.0) cube_1 = my_world.scene.add( VisualCuboid( prim_path="/new_cube_1", name="visual_cube", position=np.array([0, 0, 0.5]), size=0.3, color=np.array([255, 255, 255]), ) ) cube_2 = my_world.scene.add( DynamicCuboid( prim_path="/new_cube_2", name="cube_1", position=np.array([0, 0, 1.0]), scale=np.array([0.6, 0.5, 0.2]), size=1.0, color=np.array([255, 0, 0]), ) ) cube_3 = my_world.scene.add( DynamicCuboid( prim_path="/new_cube_3", name="cube_2", position=np.array([0, 0, 3.0]), scale=np.array([0.1, 0.1, 0.1]), size=1.0, color=np.array([0, 0, 255]), linear_velocity=np.array([0, 0, 0.4]), ) ) my_world.scene.add_default_ground_plane() for i in range(5): my_world.reset() for i in range(500): my_world.step(render=True) print(cube_2.get_angular_velocity()) print(cube_2.get_world_pose()) simulation_app.close()
1,702
Python
26.031746
76
0.63631
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/cloth.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import sys import carb import numpy as np import torch from omni.isaac.core import World from omni.isaac.core.materials.particle_material import ParticleMaterial from omni.isaac.core.prims.soft.cloth_prim import ClothPrim from omni.isaac.core.prims.soft.cloth_prim_view import ClothPrimView from omni.isaac.core.prims.soft.particle_system import ParticleSystem from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.physx.scripts import deformableUtils, physicsUtils from pxr import Gf, UsdGeom # The example shows how to create and manipulate environments with particle cloth through the ClothPrimView parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() class ParticleClothExample: def __init__(self): self._array_container = torch.Tensor self.my_world = World(stage_units_in_meters=1.0, backend="torch", device="cuda") self.stage = simulation_app.context.get_stage() self.num_envs = 10 self.dimx = 5 self.dimy = 5 self.my_world.scene.add_default_ground_plane() self.initial_positions = None self.makeEnvs() def makeEnvs(self): for i in range(self.num_envs): env_path = "/World/Env" + str(i) env = UsdGeom.Xform.Define(self.stage, env_path) # set up the geometry cloth_path = env.GetPrim().GetPath().AppendChild("cloth") plane_mesh = UsdGeom.Mesh.Define(self.stage, cloth_path) tri_points, tri_indices = deformableUtils.create_triangle_mesh_square(dimx=5, dimy=5, scale=1.0) if self.initial_positions is None: self.initial_positions = torch.zeros((self.num_envs, len(tri_points), 3)) plane_mesh.GetPointsAttr().Set(tri_points) plane_mesh.GetFaceVertexIndicesAttr().Set(tri_indices) plane_mesh.GetFaceVertexCountsAttr().Set([3] * (len(tri_indices) // 3)) init_loc = Gf.Vec3f(i * 2, 0.0, 2.0) physicsUtils.setup_transform_as_scale_orient_translate(plane_mesh) physicsUtils.set_or_add_translate_op(plane_mesh, init_loc) physicsUtils.set_or_add_orient_op(plane_mesh, Gf.Rotation(Gf.Vec3d([1, 0, 0]), 15 * i).GetQuat()) self.initial_positions[i] = torch.tensor(init_loc) + torch.tensor(plane_mesh.GetPointsAttr().Get()) particle_system_path = env.GetPrim().GetPath().AppendChild("particleSystem") particle_material_path = env.GetPrim().GetPath().AppendChild("particleMaterial") self.particle_material = ParticleMaterial( prim_path=particle_material_path, drag=0.1, lift=0.3, friction=0.6 ) radius = 0.5 * (0.6 / 5.0) restOffset = radius contactOffset = restOffset * 1.5 self.particle_system = ParticleSystem( prim_path=particle_system_path, simulation_owner=self.my_world.get_physics_context().prim_path, rest_offset=restOffset, contact_offset=contactOffset, solid_rest_offset=restOffset, fluid_rest_offset=restOffset, particle_contact_offset=contactOffset, ) # note that no particle material is applied to the particle system at this point. # this can be done manually via self.particle_system.apply_particle_material(self.particle_material) # or to pass the material to the clothPrim which binds it internally to the particle system self.cloth = ClothPrim( name="clothPrim" + str(i), prim_path=str(cloth_path), particle_system=self.particle_system, particle_material=self.particle_material, ) self.my_world.scene.add(self.cloth) # create a view to deal with all the cloths self.clothView = ClothPrimView(prim_paths_expr="/World/Env*/cloth", name="clothView1") self.my_world.scene.add(self.clothView) self.my_world.reset(soft=False) def play(self): while simulation_app.is_running(): if self.my_world.is_playing(): # deal with sim re-initialization after restarting sim if self.my_world.current_time_step_index == 0: # initialize simulation views self.my_world.reset(soft=False) self.my_world.step(render=True) if self.my_world.current_time_step_index % 50 == 1: for i in range(self.num_envs): print( "cloth {} average height = {:.2f}".format( i, self.clothView.get_world_positions()[i, :, 2].mean() ) ) # reset some random environments if self.my_world.current_time_step_index % 200 == 1: indices = torch.tensor( np.random.choice(range(self.num_envs), self.num_envs // 2, replace=False), dtype=torch.long ) new_positions = self.initial_positions[indices] + torch.tensor([0, 0, 5]) self.clothView.set_world_positions(new_positions, indices) updated_positions = self.clothView.get_world_positions() for i in indices: print("reset index {} average height = {:.2f}".format(i, updated_positions[i, :, 2].mean())) simulation_app.close() ParticleClothExample().play()
6,331
Python
45.558823
112
0.632128
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/add_frankas.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import sys import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.robots import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage, get_stage_units from omni.isaac.core.utils.types import ArticulationAction parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() my_world = World(stage_units_in_meters=1.0) my_world.scene.add_default_ground_plane() asset_path = assets_root_path + "/Isaac/Robots/Franka/franka_alt_fingers.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/Franka_1") add_reference_to_stage(usd_path=asset_path, prim_path="/World/Franka_2") articulated_system_1 = my_world.scene.add(Robot(prim_path="/World/Franka_1", name="my_franka_1")) articulated_system_2 = my_world.scene.add(Robot(prim_path="/World/Franka_2", name="my_franka_2")) for i in range(5): print("resetting...") my_world.reset() articulated_system_1.set_world_pose(position=np.array([0.0, 2.0, 0.0]) / get_stage_units()) articulated_system_2.set_world_pose(position=np.array([0.0, -2.0, 0.0]) / get_stage_units()) articulated_system_1.set_joint_positions(np.array([1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5])) for j in range(500): my_world.step(render=True) if j == 100: articulated_system_2.get_articulation_controller().apply_action( ArticulationAction(joint_positions=np.array([1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5])) ) if j == 400: print("Franka 1's joint positions are: ", articulated_system_1.get_joint_positions()) print("Franka 2's joint positions are: ", articulated_system_2.get_joint_positions()) if args.test is True: break simulation_app.close()
2,637
Python
41.548386
107
0.711794
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/simulation_callbacks.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": True}) from omni.isaac.core import SimulationContext from omni.isaac.core.articulations import Articulation from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage assets_root_path = get_assets_root_path() asset_path = assets_root_path + "/Isaac/Robots/Franka/franka_alt_fingers.usd" simulation_context = SimulationContext() add_reference_to_stage(asset_path, "/Franka") # need to initialize physics getting any articulation..etc simulation_context.initialize_physics() art = Articulation("/Franka") art.initialize() dof_ptr = art.get_dof_index("panda_joint2") simulation_context.play() def step_callback_1(step_size): art.set_joint_positions([-1.5], [dof_ptr]) return def step_callback_2(step_size): print( "Current joint 2 position @ step " + str(simulation_context.current_time_step_index) + " : " + str(art.get_joint_positions([dof_ptr])[0]) ) print("TIME: ", simulation_context.current_time) return def render_callback(event): print("Render Frame") simulation_context.add_physics_callback("physics_callback_1", step_callback_1) simulation_context.add_physics_callback("physics_callback_2", step_callback_2) simulation_context.add_render_callback("render_callback", render_callback) # Simulate 60 timesteps for i in range(60): print("step", i) simulation_context.step(render=False) # Render one frame simulation_context.render() simulation_context.stop() simulation_app.close()
2,052
Python
30.10606
78
0.752437
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/data_logging.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import sys from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb from omni.isaac.core import World from omni.isaac.core.robots import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() my_world = World(stage_units_in_meters=1.0) my_world.scene.add_default_ground_plane() asset_path = assets_root_path + "/Isaac/Robots/Franka/franka_alt_fingers.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/Franka_1") articulated_system_1 = my_world.scene.add(Robot(prim_path="/World/Franka_1", name="my_franka_1")) my_world.reset() data_logger = my_world.get_data_logger() def frame_logging_func(tasks, scene): return { "joint_positions": scene.get_object("my_franka_1").get_joint_positions().tolist(), "applied_joint_positions": scene.get_object("my_franka_1").get_applied_action().joint_positions.tolist(), } data_logger.add_data_frame_logging_func(frame_logging_func) data_logger.start() for j in range(100): my_world.step(render=True) data_logger.save(log_path="./isaac_sim_data.json") data_logger.reset() data_logger.load(log_path="./isaac_sim_data.json") print(data_logger.get_data_frame(data_frame_index=2)) simulation_app.close()
1,922
Python
32.736842
113
0.752341
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/deformable.py
from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import sys import carb import numpy as np import omni.isaac.core.utils.deformable_mesh_utils as deformableMeshUtils import torch from omni.isaac.core import World from omni.isaac.core.materials.deformable_material import DeformableMaterial from omni.isaac.core.prims.soft.deformable_prim import DeformablePrim from omni.isaac.core.prims.soft.deformable_prim_view import DeformablePrimView from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.physx.scripts import deformableUtils, physicsUtils from pxr import Gf, UsdGeom, UsdLux # The example shows how to create and manipulate environments with deformable deformable through the DeformablePrimView parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() class DeformableExample: def __init__(self): self._array_container = torch.Tensor self.my_world = World(stage_units_in_meters=1.0, backend="torch", device="cuda") self.stage = simulation_app.context.get_stage() self.num_envs = 10 self.dimx = 5 self.dimy = 5 self.my_world.scene.add_default_ground_plane() self.initial_positions = None self.makeEnvs() def makeEnvs(self): for i in range(self.num_envs): init_loc = Gf.Vec3f(i * 2 - self.num_envs, 0.0, 0.0) env_scope = UsdGeom.Scope.Define(self.stage, "/World/Envs") env_path = "/World/Envs/Env" + str(i) env = UsdGeom.Xform.Define(self.stage, env_path) physicsUtils.set_or_add_translate_op(UsdGeom.Xformable(env), init_loc) mesh_path = env.GetPrim().GetPath().AppendChild("deformable") skin_mesh = UsdGeom.Mesh.Define(self.stage, mesh_path) tri_points, tri_indices = deformableMeshUtils.createTriangleMeshCube(8) skin_mesh.GetPointsAttr().Set(tri_points) skin_mesh.GetFaceVertexIndicesAttr().Set(tri_indices) skin_mesh.GetFaceVertexCountsAttr().Set([3] * (len(tri_indices) // 3)) physicsUtils.setup_transform_as_scale_orient_translate(skin_mesh) physicsUtils.set_or_add_translate_op(skin_mesh, (0.0, 0.0, 2.0)) physicsUtils.set_or_add_orient_op(skin_mesh, Gf.Rotation(Gf.Vec3d([1, 0, 0]), 15 * i).GetQuat()) deformable_material_path = env.GetPrim().GetPath().AppendChild("deformableMaterial") self.deformable_material = DeformableMaterial( prim_path=deformable_material_path, dynamic_friction=0.5, youngs_modulus=5e4, poissons_ratio=0.4, damping_scale=0.1, elasticity_damping=0.1, ) self.deformable = DeformablePrim( name="deformablePrim" + str(i), prim_path=str(mesh_path), deformable_material=self.deformable_material, vertex_velocity_damping=0.0, sleep_damping=1.0, sleep_threshold=0.05, settling_threshold=0.1, self_collision=True, self_collision_filter_distance=0.05, solver_position_iteration_count=20, kinematic_enabled=False, simulation_hexahedral_resolution=2, collision_simplification=True, ) self.my_world.scene.add(self.deformable) # create a view to deal with all the deformables self.deformableView = DeformablePrimView(prim_paths_expr="/World/Envs/Env*/deformable", name="deformableView1") self.my_world.scene.add(self.deformableView) self.my_world.reset(soft=False) # mesh data is available only after cooking # rest_points are represented with respect to the env positions, but simulation_mesh_nodal_positions can be either global or local positions # However, because we don't currently consider subspace root path with World/SimulationContext initialization, the environment xforms are not identified # below and the following call will be positions w.r.t to a global frame. self.initial_positions = self.deformableView.get_simulation_mesh_nodal_positions().cpu() self.initial_velocities = self.deformableView.get_simulation_mesh_nodal_velocities().cpu() # print(self.initial_positions) # self.initial_positions = self.deformableView.get_simulation_mesh_rest_points().cpu() # for i in range(self.num_envs): # self.initial_positions[i] += torch.tensor([i * 2, 0.0, 2.0]) # print(self.initial_positions[i]) def play(self): while simulation_app.is_running(): if self.my_world.is_playing(): # deal with sim re-initialization after restarting sim if self.my_world.current_time_step_index == 1: # initialize simulation views self.my_world.reset(soft=False) self.my_world.step(render=True) if self.my_world.current_time_step_index == 200: for i in range(self.num_envs): print( "deformable {} average height = {:.2f}".format( i, self.deformableView.get_simulation_mesh_nodal_positions()[i, :, 2].mean() ) ) print( "deformable {} average vertical speed = {:.2f}".format( i, self.deformableView.get_simulation_mesh_nodal_velocities()[i, :, 2].mean() ) ) # reset some random environments if self.my_world.current_time_step_index % 500 == 1: indices = torch.tensor( np.random.choice(range(self.num_envs), self.num_envs // 2, replace=False), dtype=torch.long ) new_positions = self.initial_positions[indices] + torch.tensor([0, 0, 5]) new_velocities = self.initial_velocities[indices] + torch.tensor([0, 0, 3]) self.deformableView.set_simulation_mesh_nodal_positions(new_positions, indices) self.deformableView.set_simulation_mesh_nodal_velocities(new_velocities, indices) updated_positions = self.deformableView.get_simulation_mesh_nodal_positions() updated_velocities = self.deformableView.get_simulation_mesh_nodal_velocities() for i in indices: print("reset index {} average height = {:.2f}".format(i, updated_positions[i, :, 2].mean())) print( "reset index {} average vertical speed = {:.2f}".format(i, updated_velocities[i, :, 2].mean()) ) simulation_app.close() DeformableExample().play()
7,196
Python
47.959183
160
0.617982
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/visual_materials.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import numpy as np from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import random import sys import carb from omni.isaac.core import World from omni.isaac.core.materials.omni_glass import OmniGlass from omni.isaac.core.materials.omni_pbr import OmniPBR from omni.isaac.core.objects import VisualCuboid from omni.isaac.core.utils.nucleus import get_assets_root_path parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() asset_path = assets_root_path + "/Isaac/Materials/Textures/Synthetic/bubbles_2.png" my_world = World(stage_units_in_meters=1.0) textured_material = OmniPBR( prim_path="/World/visual_cube_material", name="omni_pbr", color=np.array([1, 0, 0]), texture_path=asset_path, texture_scale=[1.0, 1.0], texture_translate=[0.5, 0], ) glass = OmniGlass( prim_path=f"/World/visual_cube_material_2", ior=1.25, depth=0.001, thin_walled=False, color=np.array([random.random(), random.random(), random.random()]), ) cube_1 = my_world.scene.add( VisualCuboid( prim_path="/new_cube_1", name="visual_cube", position=np.array([0, 0, 0.5]), size=1.0, color=np.array([255, 255, 255]), visual_material=textured_material, ) ) cube_2 = my_world.scene.add( VisualCuboid( prim_path="/new_cube_2", name="visual_cube_2", position=np.array([2, 0.39, 0.5]), size=1.0, color=np.array([255, 255, 255]), visual_material=glass, ) ) visual_material = cube_2.get_applied_visual_material() visual_material.set_color(np.array([1.0, 0.5, 0.0])) my_world.scene.add_default_ground_plane() my_world.reset() for i in range(10000): my_world.step(render=True) if args.test is True: break simulation_app.close()
2,549
Python
27.333333
90
0.695175
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/time_stepping.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": True}) from omni.isaac.core import SimulationContext from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage assets_root_path = get_assets_root_path() asset_path = assets_root_path + "/Isaac/Robots/Franka/franka_alt_fingers.usd" simulation_context = SimulationContext(stage_units_in_meters=1.0) add_reference_to_stage(asset_path, "/Franka") # need to initialize physics getting any articulation..etc simulation_context.initialize_physics() def step_callback(step_size): print("simulate with step: ", step_size) return def render_callback(event): print("update app with step: ", event.payload["dt"]) simulation_context.add_physics_callback("physics_callback", step_callback) simulation_context.add_render_callback("render_callback", render_callback) simulation_context.stop() simulation_context.play() print("step physics once with a step size of 1/60 second, these are the default settings") simulation_context.step(render=False) print("step physics & rendering once with a step size of 1/60 second, these are the default settings") simulation_context.step(render=True) print("step physics & rendering once with a step size of 1/60 second") simulation_context.set_simulation_dt(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0) simulation_context.step(render=True) print("step physics 10 steps at a 1/600s per step and rendering at 1.0/60s") simulation_context.set_simulation_dt(physics_dt=1.0 / 600.0, rendering_dt=1.0 / 60.0) simulation_context.step(render=True) print("step physics once at 600Hz without rendering") simulation_context.set_simulation_dt(physics_dt=1.0 / 600.0, rendering_dt=1.0 / 60.0) simulation_context.step(render=False) print("step physics 10 steps at a 1/600s per step and rendering at 1.0/60s") simulation_context.set_simulation_dt(physics_dt=1.0 / 600.0, rendering_dt=1.0 / 60.0) for step in range(10): simulation_context.step(render=False) simulation_context.render() print("render a frame, moving editor timeline forward by 1.0/60s, physics does not simulate") simulation_context.set_simulation_dt(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0) simulation_context.render() print("render a frame, moving editor timeline forward by 1.0/60s, physics does not simulate") simulation_context.set_simulation_dt(physics_dt=0.0, rendering_dt=1.0 / 60) simulation_context.step(render=True) print("step physics once 1/60s per step and rendering 10 times at 1.0/600s") simulation_context.set_simulation_dt(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 600.0) for step in range(10): simulation_context.step(render=True) print("step physics once 1/60s per step and rendering once at 1.0/600s by explicitly calling step and render") simulation_context.set_simulation_dt(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 600.0) simulation_context.step(render=False) simulation_context.render() print("step physics once 1/60s per step, rendering a frame does not move editor timeline forward") simulation_context.set_simulation_dt(physics_dt=1.0 / 60.0, rendering_dt=0.0) simulation_context.step(render=False) simulation_context.render() print("step physics once 1/60s per step, rendering a frame does not move editor timeline forward") simulation_context.set_simulation_dt(physics_dt=1.0 / 60.0, rendering_dt=0.0) simulation_context.step(render=True) print("render a new frame with simulation stopped, editor timeline does not move forward") simulation_context.stop() simulation_context.render() print("cleanup and exit") simulation_context.stop() simulation_app.close()
4,101
Python
40.434343
110
0.774201
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/control_robot.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import SimulationContext from omni.isaac.core.articulations import Articulation from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage assets_root_path = get_assets_root_path() asset_path = assets_root_path + "/Isaac/Robots/Franka/franka_alt_fingers.usd" simulation_context = SimulationContext() add_reference_to_stage(asset_path, "/Franka") # need to initialize physics getting any articulation..etc simulation_context.initialize_physics() art = Articulation("/Franka") art.initialize() dof_ptr = art.get_dof_index("panda_joint2") simulation_context.play() # NOTE: before interacting with dc directly you need to step physics for one step at least # simulation_context.step(render=True) which happens inside .play() for i in range(1000): art.set_joint_positions([-1.5], [dof_ptr]) simulation_context.step(render=True) simulation_context.stop() simulation_app.close()
1,500
Python
36.524999
90
0.786667
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/rigid_contact_view.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import numpy as np import torch from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.prims.geometry_prim import GeometryPrim from omni.isaac.core.prims.geometry_prim_view import GeometryPrimView from omni.isaac.core.prims.rigid_prim_view import RigidPrimView parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() class RigidViewExample: def __init__(self): self._array_container = torch.Tensor self.my_world = World(stage_units_in_meters=1.0, backend="torch") self.stage = simulation_app.context.get_stage() def makeEnv(self): self.cube_height = 1.0 self.top_cube_height = self.cube_height + 3.0 self.cube_dx = 5.0 self.cube_y = 2.0 self.top_cube_y = self.cube_y + 0.0 self.my_world._physics_context.set_gravity(-10) self.my_world.scene.add_default_ground_plane() for i in range(3): DynamicCuboid( prim_path=f"/World/Box_{i+1}", name=f"box_{i}", size=1.0, color=np.array([0.5, 0, 0]), mass=1.0 ) DynamicCuboid( prim_path=f"/World/TopBox_{i+1}", name=f"top_box_{i}", size=1.0, color=np.array([0.0, 0.0, 0.5]), mass=1.0, ) # add top box as filters to the view to receive contacts between the bottom boxes and top boxes self._box_view = RigidPrimView( prim_paths_expr="/World/Box_*", name="box_view", positions=self._array_container( [ [0, self.cube_y, self.cube_height], [-self.cube_dx, self.cube_y, self.cube_height], [self.cube_dx, self.cube_y, self.cube_height], ] ), contact_filter_prim_paths_expr=["/World/TopBox_*"], ) # a view just to manipulate the top boxes self._top_box_view = RigidPrimView( prim_paths_expr="/World/TopBox_*", name="top_box_view", positions=self._array_container( [ [0.0, self.top_cube_y, self.top_cube_height], [-self.cube_dx, self.top_cube_y, self.top_cube_height], [self.cube_dx, self.top_cube_y, self.top_cube_height], ] ), track_contact_forces=True, ) # can get contact forces with non-rigid body prims such as geometry prims either via the single prim class GeometryPrim, or the view class GeometryPrimView self._geom_prim = GeometryPrim( prim_path="/World/defaultGroundPlane", name="groundPlane", collision=True, track_contact_forces=True, prepare_contact_sensor=True, contact_filter_prim_paths_expr=["/World/Box_1", "/World/Box_2"], ) self._geom_view = GeometryPrimView( prim_paths_expr="/World/defaultGroundPlane*", name="groundPlaneView", collisions=self._array_container([True]), track_contact_forces=True, prepare_contact_sensors=True, contact_filter_prim_paths_expr=["/World/Box_1", "/World/Box_2", "/World/Box_3"], ) self.my_world.scene.add(self._box_view) self.my_world.scene.add(self._top_box_view) self.my_world.scene.add(self._geom_prim) self.my_world.scene.add(self._geom_view) self.my_world.reset(soft=False) def play(self): self.makeEnv() while simulation_app.is_running(): if self.my_world.is_playing(): # deal with sim re-initialization after restarting sim if self.my_world.current_time_step_index == 0: # initialize simulation views self.my_world.reset(soft=False) self.my_world.step(render=True) if self.my_world.current_time_step_index % 100 == 1: states = self._box_view.get_current_dynamic_state() top_states = self._top_box_view.get_current_dynamic_state() net_forces = self._box_view.get_net_contact_forces(None, dt=1 / 60) forces_matrix = self._box_view.get_contact_force_matrix(None, dt=1 / 60) top_net_forces = self._top_box_view.get_net_contact_forces(None, dt=1 / 60) print("==================================================================") print("Bottom box net forces: \n", net_forces) print("Top box net forces: \n", top_net_forces) print("Bottom box forces from top ones: \n", forces_matrix) print("Bottom box positions: \n", states.positions) print("Top box positions: \n", top_states.positions) print("Bottom box velocities: \n", states.linear_velocities) print("Top box velocities: \n", top_states.linear_velocities) print("ground net force from GeometryPrimView : \n", self._geom_view.get_net_contact_forces(dt=1 / 60)) print( "ground force matrix from GeometryPrimView: \n", self._geom_view.get_contact_force_matrix(dt=1 / 60) ) print("ground net force from GeometryPrim : \n", self._geom_prim.get_net_contact_forces(dt=1 / 60)) print("ground force matrix from GeometryPrim: \n", self._geom_prim.get_contact_force_matrix(dt=1 / 60)) simulation_app.close() RigidViewExample().play()
6,241
Python
42.347222
163
0.585002
2820207922/isaac_ws/standalone_examples/api/omni.isaac.core/simulate_robot.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import SimulationContext from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import create_prim from omni.isaac.core.utils.stage import add_reference_to_stage, is_stage_loading assets_root_path = get_assets_root_path() asset_path = assets_root_path + "/Isaac/Robots/Franka/franka_alt_fingers.usd" simulation_context = SimulationContext() add_reference_to_stage(asset_path, "/Franka") create_prim("/DistantLight", "DistantLight") # wait for things to load simulation_app.update() while is_stage_loading(): simulation_app.update() # need to initialize physics getting any articulation..etc simulation_context.initialize_physics() simulation_context.play() for i in range(1000): simulation_context.step(render=True) simulation_context.stop() simulation_app.close()
1,366
Python
34.973683
80
0.791362
2820207922/isaac_ws/standalone_examples/api/omni.replicator.isaac/randomization_demo.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb import numpy as np from omni.isaac.cloner import GridCloner from omni.isaac.core import World from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims.rigid_prim_view import RigidPrimView from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import define_prim, get_prim_at_path from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage # create the world world = World(stage_units_in_meters=1.0, physics_prim_path="/physicsScene", backend="numpy") assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder, closing app..") simulation_app.close() usd_path = assets_root_path + "/Isaac/Environments/Grid/default_environment.usd" add_reference_to_stage(usd_path=usd_path, prim_path="/World/defaultGroundPlane") # set up grid cloner cloner = GridCloner(spacing=1.5) cloner.define_base_env("/World/envs") define_prim("/World/envs/env_0") # set up the first environment DynamicSphere(prim_path="/World/envs/env_0/object", radius=0.1, position=np.array([0.75, 0.0, 0.2])) add_reference_to_stage( usd_path=assets_root_path + "/Isaac/Robots/Franka/franka.usd", prim_path="/World/envs/env_0/franka" ) # clone environments num_envs = 4 prim_paths = cloner.generate_paths("/World/envs/env", num_envs) env_pos = cloner.clone(source_prim_path="/World/envs/env_0", prim_paths=prim_paths) # creates the views and set up world object_view = RigidPrimView(prim_paths_expr="/World/envs/*/object", name="object_view") franka_view = ArticulationView(prim_paths_expr="/World/envs/*/franka", name="franka_view") world.scene.add(object_view) world.scene.add(franka_view) world.reset() num_dof = franka_view.num_dof import omni.replicator.core as rep # set up randomization with omni.replicator.isaac, imported as dr import omni.replicator.isaac as dr dr.physics_view.register_simulation_context(world) dr.physics_view.register_rigid_prim_view(object_view) dr.physics_view.register_articulation_view(franka_view) with dr.trigger.on_rl_frame(num_envs=num_envs): with dr.gate.on_interval(interval=20): dr.physics_view.randomize_simulation_context( operation="scaling", gravity=rep.distribution.uniform((1, 1, 0.0), (1, 1, 2.0)) ) with dr.gate.on_interval(interval=50): dr.physics_view.randomize_rigid_prim_view( view_name=object_view.name, operation="direct", force=rep.distribution.uniform((0, 0, 2.5), (0, 0, 5.0)) ) with dr.gate.on_interval(interval=10): dr.physics_view.randomize_articulation_view( view_name=franka_view.name, operation="direct", joint_velocities=rep.distribution.uniform(tuple([-2] * num_dof), tuple([2] * num_dof)), ) with dr.gate.on_env_reset(): dr.physics_view.randomize_rigid_prim_view( view_name=object_view.name, operation="additive", position=rep.distribution.normal((0.0, 0.0, 0.0), (0.2, 0.2, 0.0)), velocity=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ) dr.physics_view.randomize_articulation_view( view_name=franka_view.name, operation="additive", joint_positions=rep.distribution.uniform(tuple([-0.5] * num_dof), tuple([0.5] * num_dof)), position=rep.distribution.normal((0.0, 0.0, 0.0), (0.2, 0.2, 0.0)), ) frame_idx = 0 while simulation_app.is_running(): if world.is_playing(): reset_inds = list() if frame_idx % 200 == 0: # triggers reset every 200 steps reset_inds = np.arange(num_envs) dr.physics_view.step_randomization(reset_inds) world.step(render=True) frame_idx += 1 simulation_app.close()
4,393
Python
38.945454
116
0.700433
2820207922/isaac_ws/standalone_examples/api/omni.kit.app/app_framework.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import os import omni.kit.app from omni.isaac.kit import AppFramework argv = [ "--empty", "--ext-folder", f'{os.path.abspath(os.environ["ISAAC_PATH"])}/exts', "--no-window", "--/app/asyncRendering=False", "--/app/fastShutdown=True", "--enable", "omni.usd", "--enable", "omni.kit.uiapp", ] # startup app = AppFramework("test_app", argv) import omni.usd stage_task = asyncio.ensure_future(omni.usd.get_context().new_stage_async()) while not stage_task.done(): app.update() print("exiting") app.close()
997
Python
23.949999
76
0.711133
2820207922/isaac_ws/standalone_examples/api/omni.isaac.dynamic_control/franka_articulation.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import sys import carb from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": True}) # This sample loads an articulation and prints its information import omni from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.dynamic_control import _dynamic_control stage = simulation_app.context.get_stage() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() asset_path = assets_root_path + "/Isaac/Robots/Franka/franka_alt_fingers.usd" omni.usd.get_context().open_stage(asset_path) # start simulation omni.timeline.get_timeline_interface().play() # perform timestep simulation_app.update() dc = _dynamic_control.acquire_dynamic_control_interface() # Get handle to articulation art = dc.get_articulation("/panda") if art == _dynamic_control.INVALID_HANDLE: print("*** '%s' is not an articulation" % "/panda") else: # Print information about articulation root = dc.get_articulation_root_body(art) print(str("Got articulation handle %d \n" % art) + str("--- Hierarchy\n")) body_states = dc.get_articulation_body_states(art, _dynamic_control.STATE_ALL) print(str("--- Body states:\n") + str(body_states) + "\n") dof_states = dc.get_articulation_dof_states(art, _dynamic_control.STATE_ALL) print(str("--- DOF states:\n") + str(dof_states) + "\n") dof_props = dc.get_articulation_dof_properties(art) print(str("--- DOF properties:\n") + str(dof_props) + "\n") # Simulate robot coming to a rest configuration for i in range(100): simulation_app.update() # Simulate robot for a fixed number of frames and specify a joint position target for i in range(100): dof_ptr = dc.find_articulation_dof(art, "panda_joint2") # This should be called each frame of simulation if state on the articulation is being changed. dc.wake_up_articulation(art) # Set joint position target dc.set_dof_position_target(dof_ptr, -1.5) simulation_app.update() simulation_app.close()
2,529
Python
35.142857
99
0.732305
2820207922/isaac_ws/standalone_examples/api/omni.isaac.shapenet/usd_convertor.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # """Convert ShapeNetCore V2 to USD without materials. By only converting the ShapeNet geometry, we can more quickly load assets into scenes for the purpose of creating large datasets or for online training of Deep Learning models. """ import argparse import os import carb from omni.isaac.kit import SimulationApp if "SHAPENET_LOCAL_DIR" not in os.environ: carb.log_error("SHAPENET_LOCAL_DIR not defined:") carb.log_error( "Please specify the SHAPENET_LOCAL_DIR environment variable to the location of your local shapenet database, exiting" ) exit() kit = SimulationApp() from omni.isaac.core.utils.extensions import enable_extension enable_extension("omni.isaac.shapenet") from omni.isaac.shapenet import utils parser = argparse.ArgumentParser("Convert ShapeNet assets to USD") parser.add_argument( "--categories", type=str, nargs="+", default=None, help="List of ShapeNet categories to convert (space seperated)." ) parser.add_argument( "--max_models", type=int, default=50, help="If specified, convert up to `max_models` per category, default is 50" ) parser.add_argument( "--load_materials", action="store_true", help="If specified, materials will be loaded from shapenet meshes" ) args, unknown_args = parser.parse_known_args() # Ensure Omniverse Kit is launched via SimulationApp before shapenet_convert() is called utils.shapenet_convert(args.categories, args.max_models, args.load_materials) # cleanup kit.close()
1,900
Python
34.203703
125
0.769474
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/franka_pick_up.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import sys import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.franka.controllers.pick_place_controller import PickPlaceController from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import ParallelGripper parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() my_world = World(stage_units_in_meters=1.0) my_world.scene.add_default_ground_plane() asset_path = assets_root_path + "/Isaac/Robots/Franka/franka_alt_fingers.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/Franka") gripper = ParallelGripper( end_effector_prim_path="/World/Franka/panda_rightfinger", joint_prim_names=["panda_finger_joint1", "panda_finger_joint2"], joint_opened_positions=np.array([0.05, 0.05]), joint_closed_positions=np.array([0.0, 0.0]), action_deltas=np.array([0.05, 0.05]), ) my_franka = my_world.scene.add( SingleManipulator( prim_path="/World/Franka", name="my_franka", end_effector_prim_name="panda_rightfinger", gripper=gripper ) ) cube = my_world.scene.add( DynamicCuboid( name="cube", position=np.array([0.3, 0.3, 0.3]), prim_path="/World/Cube", scale=np.array([0.0515, 0.0515, 0.0515]), size=1.0, color=np.array([0, 0, 1]), ) ) my_world.scene.add_default_ground_plane() my_franka.gripper.set_default_state(my_franka.gripper.joint_opened_positions) my_world.reset() my_controller = PickPlaceController( name="pick_place_controller", gripper=my_franka.gripper, robot_articulation=my_franka ) articulation_controller = my_franka.get_articulation_controller() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() actions = my_controller.forward( picking_position=cube.get_local_pose()[0], placing_position=np.array([-0.3, -0.3, 0.0515 / 2.0]), current_joint_positions=my_franka.get_joint_positions(), end_effector_offset=np.array([0, 0.005, 0]), ) if my_controller.is_done(): print("done picking and placing") articulation_controller.apply_action(actions) if args.test is True: break simulation_app.close()
3,410
Python
34.53125
112
0.708798
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/ur10_pick_up.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import sys import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import SurfaceGripper from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() my_world = World(stage_units_in_meters=1.0) my_world.scene.add_default_ground_plane() asset_path = assets_root_path + "/Isaac/Robots/UR10/ur10.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/UR10") gripper_usd = assets_root_path + "/Isaac/Robots/UR10/Props/short_gripper.usd" add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10/ee_link") gripper = SurfaceGripper(end_effector_prim_path="/World/UR10/ee_link", translate=0.1611, direction="x") ur10 = my_world.scene.add( SingleManipulator(prim_path="/World/UR10", name="my_ur10", end_effector_prim_name="ee_link", gripper=gripper) ) ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0])) cube = my_world.scene.add( DynamicCuboid( name="cube", position=np.array([0.3, 0.3, 0.3]), prim_path="/World/Cube", scale=np.array([0.0515, 0.0515, 0.0515]), size=1.0, color=np.array([0, 0, 1]), ) ) my_world.scene.add_default_ground_plane() ur10.gripper.set_default_state(opened=True) my_world.reset() my_controller = PickPlaceController(name="pick_place_controller", gripper=ur10.gripper, robot_articulation=ur10) articulation_controller = ur10.get_articulation_controller() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() actions = my_controller.forward( picking_position=cube.get_local_pose()[0], placing_position=np.array([0.7, 0.7, 0.0515 / 2.0]), current_joint_positions=ur10.get_joint_positions(), end_effector_offset=np.array([0, 0, 0.02]), ) if my_controller.is_done(): print("done picking and placing") articulation_controller.apply_action(actions) if args.test is True: break simulation_app.close()
3,376
Python
37.375
113
0.712085
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/rmpflow_supported_robots/supported_robot_follow_target_example.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse from pprint import pprint import numpy as np from omni.isaac.core import World from omni.isaac.core.objects import cuboid from omni.isaac.core.robots import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import create_prim from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.motion_generation.articulation_motion_policy import ArticulationMotionPolicy from omni.isaac.motion_generation.interface_config_loader import ( get_supported_robot_policy_pairs, load_supported_motion_policy_config, ) from omni.isaac.motion_generation.lula import RmpFlow parser = argparse.ArgumentParser() parser.add_argument( "-v", "--verbose", action="store_true", default=True, help="Print useful runtime information such as the list of supported robots", ) parser.add_argument( "--robot-name", type=str, default="Cobotta_Pro_900", help="Key to use to access RMPflow config files for a specific robot.", ) parser.add_argument( "--usd-path", type=str, default="/Isaac/Robots/Denso/cobotta_pro_900.usd", help="Path to supported robot on Nucleus Server", ) parser.add_argument("--add-orientation-target", action="store_true", default=False, help="Add orientation target") args, unknown = parser.parse_known_args() robot_name = args.robot_name usd_path = get_assets_root_path() + args.usd_path prim_path = "/my_robot" add_reference_to_stage(usd_path=usd_path, prim_path=prim_path) light_prim = create_prim("/DistantLight", "DistantLight") light_prim.GetAttribute("inputs:intensity").Set(5000) my_world = World(stage_units_in_meters=1.0) robot = my_world.scene.add(Robot(prim_path=prim_path, name=robot_name)) if args.verbose: print("Names of supported robots with provided RMPflow config") print("\t", list(get_supported_robot_policy_pairs().keys())) print() # The load_supported_motion_policy_config() function is currently the simplest way to load supported robots. # In the future, Isaac Sim will provide a centralized registry of robots with Lula robot description files # and RMP configuration files stored alongside the robot USD. rmp_config = load_supported_motion_policy_config(robot_name, "RMPflow") if args.verbose: print( f"Successfully referenced RMPflow config for {robot_name}. Using the following parameters to initialize RmpFlow class:" ) pprint(rmp_config) print() # Initialize an RmpFlow object rmpflow = RmpFlow(**rmp_config) physics_dt = 1 / 60.0 articulation_rmpflow = ArticulationMotionPolicy(robot, rmpflow, physics_dt) articulation_controller = robot.get_articulation_controller() # Make a target to follow target_cube = cuboid.VisualCuboid( "/World/target", position=np.array([0.5, 0, 0.5]), color=np.array([1.0, 0, 0]), size=0.1 ) # Make an obstacle to avoid obstacle = cuboid.VisualCuboid( "/World/obstacle", position=np.array([0.8, 0, 0.5]), color=np.array([0, 1.0, 0]), size=0.1 ) rmpflow.add_obstacle(obstacle) my_world.reset() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() # Set rmpflow target to be the current position of the target cube. if args.add_orientation_target: target_orientation = target_cube.get_world_pose()[1] else: target_orientation = None rmpflow.set_end_effector_target( target_position=target_cube.get_world_pose()[0], target_orientation=target_orientation ) # Query the current obstacle position rmpflow.update_world() actions = articulation_rmpflow.get_next_articulation_action() articulation_controller.apply_action(actions) simulation_app.close()
4,364
Python
33.642857
128
0.730981
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/rmpflow_supported_robots/README.md
This standalone example provides a generic script for running a follow-target example on any supported robot that uses RMPflow to reach a target while avoiding obstacles. The purpose of this script is to show only how to use RMPflow, and for the sake of simplicity, it does not use the task/controller paradigm that is typical in other Isaac Sim examples. The ./supported_robot_follow_target_example.py script takes in runtime with the path to the robot USD asset (which is assumed to be stored on the Nucleus Server) and the name of the robot. By running the script with the default command line arguments, the list of supported robot names will be printed in the terminal. ###### Command Line Arguments The supported command-line arguments are as follows: -v,--verbose: If True, prints out useful runtime information such as the list of supported robot names that map to RMPflow config files. Defaults to 'True' --robot-name: Name of robot that maps to the stored RMPflow config. Defaults to "Cobotta_Pro_900" --usd-path: Path to robot USD asset on the Nucleus Server. Defaults to "/Isaac/Robots/Denso/cobotta_pro_900.usd". The typical location of a specific robot is under "/Isaac/Robots/{manufacturer_name}/{robot_name}/{robot_name}.usd" --add-orientation-target: Add the orientation of the target cube to the RMPflow target. Defaults to False. ###### Choosing Correct Robot Name Argument With the default arguments, the above script will run using the Cobotta Pro 900 robot and will produce the following output: Names of supported robots with provided RMPflow config ['Franka', 'UR3', 'UR3e', 'UR5', 'UR5e', 'UR10', 'UR10e', 'UR16e', 'Rizon4', 'DofBot', 'Cobotta_Pro_900', 'Cobotta_Pro_1300', 'RS007L', 'RS007N', 'RS013N', 'RS025N', 'RS080N', 'FestoCobot'] Successfully referenced RMPflow config for Cobotta_Pro_900. Using the following parameters to initialize RmpFlow class: { 'end_effector_frame_name': 'gripper_center', 'ignore_robot_state_updates': False, 'maximum_substep_size': 0.00334, 'rmpflow_config_path': '/path/to/omni_isaac_sim/_build/linux-x86_64/release/exts/omni.isaac.motion_generation/motion_policy_configs/./Denso/cobotta_pro_900/rmpflow/cobotta_rmpflow_common.yaml', 'robot_description_path': '/path/to/omni_isaac_sim/_build/linux-x86_64/release/exts/omni.isaac.motion_generation/motion_policy_configs/./Denso/cobotta_pro_900/rmpflow/robot_descriptor.yaml', 'urdf_path': '/path/to/omni_isaac_sim/_build/linux-x86_64/release/exts/omni.isaac.motion_generation/motion_policy_configs/./Denso/cobotta_pro_900/rmpflow/../cobotta_pro_900_gripper_frame.urdf' } The names of supported robots are suitable for the `--robot-name` argument, and each must correctly correspond to the robot USD path. In a future release, configuration data for supported robots will be centralized such that only a single argument will be required. The specific method of accessing supported robot RMPflow configs provided here will then be deprecated. The remaining output shows the RMPflow configuration information that is found under the name "Cobotta_Pro_900". This configuration is used to initialize the `RmpFlow` class. ###### Examples of loading other robots Multiple valid combinations of command line arguments are shown for different supported robots: python.sh supported_robot_follow_target_example.py --robot-name RS080N --usd-path "/Isaac/Robots/Kawasaki/RS080N/rs080n_onrobot_rg2.usd" python.sh supported_robot_follow_target_example.py --robot-name UR16e --usd-path "/Isaac/Robots/UniversalRobots/ur16e/ur16e.usd" python.sh supported_robot_follow_target_example.py --robot-name FestoCobot --usd-path "/Isaac/Robots/Festo/FestoCobot/festo_cobot.usd"
3,811
Markdown
72.307691
371
0.755445
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/ik_solver.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from typing import Optional from omni.isaac.core.articulations import Articulation from omni.isaac.core.utils.extensions import get_extension_path_from_name from omni.isaac.motion_generation.articulation_kinematics_solver import ArticulationKinematicsSolver from omni.isaac.motion_generation.lula.kinematics import LulaKinematicsSolver class KinematicsSolver(ArticulationKinematicsSolver): def __init__(self, robot_articulation: Articulation, end_effector_frame_name: Optional[str] = None) -> None: urdf_extension_path = get_extension_path_from_name("omni.isaac.urdf") self._kinematics = LulaKinematicsSolver( robot_description_path=os.path.join(os.path.dirname(__file__), "../rmpflow/robot_descriptor.yaml"), urdf_path=os.path.join(urdf_extension_path, "data/urdf/robots/cobotta_pro_900/cobotta_pro_900.urdf"), ) if end_effector_frame_name is None: end_effector_frame_name = "onrobot_rg6_base_link" ArticulationKinematicsSolver.__init__(self, robot_articulation, self._kinematics, end_effector_frame_name) return
1,547
Python
50.599998
114
0.76212
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/pick_up_example.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import numpy as np from controllers.pick_place import PickPlaceController from omni.isaac.core import World from tasks.pick_place import PickPlace parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() my_world = World(stage_units_in_meters=1.0) target_position = np.array([-0.3, 0.6, 0]) target_position[2] = 0.0515 / 2.0 my_task = PickPlace(name="denso_pick_place", target_position=target_position) my_world.add_task(my_task) my_world.reset() my_denso = my_world.scene.get_object("cobotta_robot") # initialize the controller my_controller = PickPlaceController(name="controller", robot_articulation=my_denso, gripper=my_denso.gripper) task_params = my_world.get_task("denso_pick_place").get_params() articulation_controller = my_denso.get_articulation_controller() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() # forward the observation values to the controller to get the actions actions = my_controller.forward( picking_position=observations[task_params["cube_name"]["value"]]["position"], placing_position=observations[task_params["cube_name"]["value"]]["target_position"], current_joint_positions=observations[task_params["robot_name"]["value"]]["joint_positions"], end_effector_offset=np.array([0, 0, 0.25]), ) if my_controller.is_done(): print("done picking and placing") articulation_controller.apply_action(actions) if args.test is True: break simulation_app.close()
2,371
Python
38.533333
109
0.719106
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/follow_target_example.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import numpy as np from controllers.rmpflow import RMPFlowController from omni.isaac.core import World from tasks.follow_target import FollowTarget parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() my_world = World(stage_units_in_meters=1.0) # Initialize the Follow Target task with a target location for the cube to be followed by the end effector my_task = FollowTarget(name="denso_follow_target", target_position=np.array([0.5, 0, 0.5])) my_world.add_task(my_task) my_world.reset() task_params = my_world.get_task("denso_follow_target").get_params() target_name = task_params["target_name"]["value"] denso_name = task_params["robot_name"]["value"] my_denso = my_world.scene.get_object(denso_name) # initialize the controller my_controller = RMPFlowController(name="target_follower_controller", robot_articulation=my_denso) # make RmpFlow aware of the ground plane ground_plane = my_world.scene.get_object(name="default_ground_plane") my_controller.add_obstacle(ground_plane) articulation_controller = my_denso.get_articulation_controller() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() observations = my_world.get_observations() actions = my_controller.forward( target_end_effector_position=observations[target_name]["position"], target_end_effector_orientation=observations[target_name]["orientation"], ) articulation_controller.apply_action(actions) if args.test is True: break simulation_app.close()
2,270
Python
38.842105
106
0.748899
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/gripper_control.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import numpy as np from omni.isaac.core import World from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import ParallelGripper parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() my_world = World(stage_units_in_meters=1.0) assets_root_path = get_assets_root_path() if assets_root_path is None: raise Exception("Could not find Isaac Sim assets folder") asset_path = assets_root_path + "/Isaac/Robots/Denso/cobotta_pro_900.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/cobotta") # define the gripper gripper = ParallelGripper( # We chose the following values while inspecting the articulation end_effector_prim_path="/World/cobotta/onrobot_rg6_base_link", joint_prim_names=["finger_joint", "right_outer_knuckle_joint"], joint_opened_positions=np.array([0, 0]), joint_closed_positions=np.array([0.628, -0.628]), action_deltas=np.array([-0.628, 0.628]), ) # define the manipulator my_denso = my_world.scene.add( SingleManipulator( prim_path="/World/cobotta", name="cobotta_robot", end_effector_prim_name="onrobot_rg6_base_link", gripper=gripper, ) ) # set the default positions of the other gripper joints to be opened so # that its out of the way of the joints we want to control when gripping an object for instance. joints_default_positions = np.zeros(12) joints_default_positions[7] = 0.628 joints_default_positions[8] = 0.628 my_denso.set_joints_default_state(positions=joints_default_positions) my_world.scene.add_default_ground_plane() my_world.reset() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() i += 1 gripper_positions = my_denso.gripper.get_joint_positions() if i < 500: # close the gripper slowly my_denso.gripper.apply_action( ArticulationAction(joint_positions=[gripper_positions[0] + 0.1, gripper_positions[1] - 0.1]) ) if i > 500: # open the gripper slowly my_denso.gripper.apply_action( ArticulationAction(joint_positions=[gripper_positions[0] - 0.1, gripper_positions[1] + 0.1]) ) if i == 1000: i = 0 if args.test is True: break simulation_app.close()
3,250
Python
37.247058
108
0.707692
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/rmpflow/robot_descriptor.yaml
# The robot description defines the generalized coordinates and how to map those # to the underlying URDF dofs. api_version: 1.0 # Defines the generalized coordinates. Each generalized coordinate is assumed # to have an entry in the URDF. # Lula will only use these joints to control the robot position. cspace: - joint_1 - joint_2 - joint_3 - joint_4 - joint_5 - joint_6 default_q: [ 0.0,0.3,1.2,0.0,0.0,0.0 ] # Most dimensions of the cspace have a direct corresponding element # in the URDF. This list of rules defines how unspecified coordinates # should be extracted or how values in the URDF should be overwritten. cspace_to_urdf_rules: - {name: finger_joint, rule: fixed, value: 0.0} - {name: left_inner_knuckle_joint, rule: fixed, value: 0.0} - {name: right_inner_knuckle_joint, rule: fixed, value: 0.0} - {name: right_outer_knuckle_joint, rule: fixed, value: 0.0} - {name: left_inner_finger_joint, rule: fixed, value: 0.0} - {name: right_inner_finger_joint, rule: fixed, value: 0.0} # Lula uses collision spheres to define the robot geometry in order to avoid # collisions with external obstacles. If no spheres are specified, Lula will # not be able to avoid obstacles. collision_spheres: - J1: - "center": [0.0, 0.0, 0.1] "radius": 0.08 - "center": [0.0, 0.0, 0.15] "radius": 0.08 - "center": [0.0, 0.0, 0.2] "radius": 0.08 - J2: - "center": [0.0, 0.08, 0.0] "radius": 0.08 - "center": [0.0, 0.174, 0.0] "radius": 0.08 - "center": [-0.0, 0.186, 0.05] "radius": 0.065 - "center": [0.0, 0.175, 0.1] "radius": 0.065 - "center": [-0.0, 0.18, 0.15] "radius": 0.065 - "center": [0.0, 0.175, 0.2] "radius": 0.065 - "center": [0.0, 0.175, 0.25] "radius": 0.065 - "center": [0.0, 0.175, 0.3] "radius": 0.065 - "center": [0.0, 0.175, 0.35] "radius": 0.065 - "center": [0.0, 0.175, 0.4] "radius": 0.065 - "center": [0.0, 0.175, 0.45] "radius": 0.065 - "center": [0.0, 0.175, 0.5] "radius": 0.065 - "center": [-0.002, 0.1, 0.507] "radius": 0.07 - J3: - "center": [0.0, 0.025, 0.0] "radius": 0.065 - "center": [0.0, -0.025, 0.0] "radius": 0.065 - "center": [0.0, -0.025, 0.05] "radius": 0.065 - "center": [0.0, -0.025, 0.1] "radius": 0.065 - "center": [0.0, -0.025, 0.15] "radius": 0.06 - "center": [0.0, -0.025, 0.2] "radius": 0.06 - "center": [0.0, -0.025, 0.25] "radius": 0.06 - "center": [0.0, -0.025, 0.3] "radius": 0.06 - "center": [0.0, -0.025, 0.35] "radius": 0.055 - "center": [0.0, -0.025, 0.4] "radius": 0.055 - J5: - "center": [0.0, 0.05, 0.0] "radius": 0.055 - "center": [0.0, 0.1, 0.0] "radius": 0.055 - J6: - "center": [0.0, 0.0, -0.05] "radius": 0.05 - "center": [0.0, 0.0, -0.1] "radius": 0.05 - "center": [0.0, 0.0, -0.15] "radius": 0.05 - "center": [0.0, 0.0, 0.04] "radius": 0.035 - "center": [0.0, 0.0, 0.08] "radius": 0.035 - "center": [0.0, 0.0, 0.12] "radius": 0.035 - right_inner_knuckle: - "center": [0.0, 0.0, 0.0] "radius": 0.02 - "center": [0.0, -0.03, 0.025] "radius": 0.02 - "center": [0.0, -0.05, 0.05] "radius": 0.02 - right_inner_finger: - "center": [0.0, 0.02, 0.0] "radius": 0.015 - "center": [0.0, 0.02, 0.015] "radius": 0.015 - "center": [0.0, 0.02, 0.03] "radius": 0.015 - "center": [0.0, 0.025, 0.04] "radius": 0.01 - left_inner_knuckle: - "center": [0.0, 0.0, 0.0] "radius": 0.02 - "center": [0.0, -0.03, 0.025] "radius": 0.02 - "center": [0.0, -0.05, 0.05] "radius": 0.02 - left_inner_finger: - "center": [0.0, 0.02, 0.0] "radius": 0.015 - "center": [0.0, 0.02, 0.015] "radius": 0.015 - "center": [0.0, 0.02, 0.03] "radius": 0.015 - "center": [0.0, 0.025, 0.04] "radius": 0.01
4,073
YAML
27.690141
80
0.51289
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/rmpflow/denso_rmpflow_common.yaml
# Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # Artificially limit the robot joints. For example: # A joint with range +-pi would be limited to +-(pi-.01) joint_limit_buffers: [.01, .01, .01, .01, .01, .01] # RMPflow has many modifiable parameters, but these serve as a great start. # Most parameters will not need to be modified rmp_params: cspace_target_rmp: metric_scalar: 50. position_gain: 100. damping_gain: 50. robust_position_term_thresh: .5 inertia: 1. cspace_trajectory_rmp: p_gain: 100. d_gain: 10. ff_gain: .25 weight: 50. cspace_affine_rmp: final_handover_time_std_dev: .25 weight: 2000. joint_limit_rmp: metric_scalar: 1000. metric_length_scale: .01 metric_exploder_eps: 1e-3 metric_velocity_gate_length_scale: .01 accel_damper_gain: 200. accel_potential_gain: 1. accel_potential_exploder_length_scale: .1 accel_potential_exploder_eps: 1e-2 joint_velocity_cap_rmp: max_velocity: 1. velocity_damping_region: .3 damping_gain: 1000.0 metric_weight: 100. target_rmp: accel_p_gain: 30. accel_d_gain: 85. accel_norm_eps: .075 metric_alpha_length_scale: .05 min_metric_alpha: .01 max_metric_scalar: 10000 min_metric_scalar: 2500 proximity_metric_boost_scalar: 20. proximity_metric_boost_length_scale: .02 xi_estimator_gate_std_dev: 20000. accept_user_weights: false axis_target_rmp: accel_p_gain: 210. accel_d_gain: 60. metric_scalar: 10 proximity_metric_boost_scalar: 3000. proximity_metric_boost_length_scale: .08 xi_estimator_gate_std_dev: 20000. accept_user_weights: false collision_rmp: damping_gain: 50. damping_std_dev: .04 damping_robustness_eps: 1e-2 damping_velocity_gate_length_scale: .01 repulsion_gain: 800. repulsion_std_dev: .01 metric_modulation_radius: .5 metric_scalar: 10000. metric_exploder_std_dev: .02 metric_exploder_eps: .001 damping_rmp: accel_d_gain: 30. metric_scalar: 50. inertia: 100. canonical_resolve: max_acceleration_norm: 50. projection_tolerance: .01 verbose: false # body_cylinders are used to promote self-collision avoidance between the robot and its base # The example below defines the robot base to be a capsule defined by the absolute coordinates pt1 and pt2. # The semantic name provided for each body_cylinder does not need to be present in the robot URDF. body_cylinders: - name: base pt1: [0,0,.12] pt2: [0,0,0.] radius: .08 - name: second_link pt1: [0,0,.12] pt2: [0,0,.12] radius: .16 # body_collision_controllers defines spheres located at specified frames in the robot URDF # These spheres will not be allowed to collide with the capsules enumerated under body_cylinders # By design, most frames in industrial robots are kinematically unable to collide with the robot base. # It is often only necessary to define body_collision_controllers near the end effector body_collision_controllers: - name: J5 radius: .05 - name: J6 radius: .05 - name: right_inner_finger radius: .02 - name: left_inner_finger radius: .02 - name: right_inner_knuckle radius: .02 - name: left_inner_knuckle radius: .02
3,947
YAML
32.743589
107
0.64682
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/tasks/pick_place.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from typing import Optional import numpy as np import omni.isaac.core.tasks as tasks from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import ParallelGripper class PickPlace(tasks.PickPlace): def __init__( self, name: str = "denso_pick_place", cube_initial_position: Optional[np.ndarray] = None, cube_initial_orientation: Optional[np.ndarray] = None, target_position: Optional[np.ndarray] = None, offset: Optional[np.ndarray] = None, ) -> None: tasks.PickPlace.__init__( self, name=name, cube_initial_position=cube_initial_position, cube_initial_orientation=cube_initial_orientation, target_position=target_position, cube_size=np.array([0.0515, 0.0515, 0.0515]), offset=offset, ) return def set_robot(self) -> SingleManipulator: assets_root_path = get_assets_root_path() if assets_root_path is None: raise Exception("Could not find Isaac Sim assets folder") asset_path = assets_root_path + "/Isaac/Robots/Denso/cobotta_pro_900.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/cobotta") gripper = ParallelGripper( end_effector_prim_path="/World/cobotta/onrobot_rg6_base_link", joint_prim_names=["finger_joint", "right_outer_knuckle_joint"], joint_opened_positions=np.array([0, 0]), joint_closed_positions=np.array([0.628, -0.628]), action_deltas=np.array([-0.2, 0.2]), ) manipulator = SingleManipulator( prim_path="/World/cobotta", name="cobotta_robot", end_effector_prim_name="onrobot_rg6_base_link", gripper=gripper, ) joints_default_positions = np.zeros(12) joints_default_positions[7] = 0.628 joints_default_positions[8] = 0.628 manipulator.set_joints_default_state(positions=joints_default_positions) return manipulator
2,648
Python
39.753846
81
0.66352
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/tasks/follow_target.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from typing import Optional import numpy as np import omni.isaac.core.tasks as tasks from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import ParallelGripper # Inheriting from the base class Follow Target class FollowTarget(tasks.FollowTarget): def __init__( self, name: str = "denso_follow_target", target_prim_path: Optional[str] = None, target_name: Optional[str] = None, target_position: Optional[np.ndarray] = None, target_orientation: Optional[np.ndarray] = None, offset: Optional[np.ndarray] = None, ) -> None: tasks.FollowTarget.__init__( self, name=name, target_prim_path=target_prim_path, target_name=target_name, target_position=target_position, target_orientation=target_orientation, offset=offset, ) return def set_robot(self) -> SingleManipulator: assets_root_path = get_assets_root_path() if assets_root_path is None: raise Exception("Could not find Isaac Sim assets folder") asset_path = assets_root_path + "/Isaac/Robots/Denso/cobotta_pro_900.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/cobotta") gripper = ParallelGripper( end_effector_prim_path="/World/cobotta/onrobot_rg6_base_link", joint_prim_names=["finger_joint", "right_outer_knuckle_joint"], joint_opened_positions=np.array([0, 0]), joint_closed_positions=np.array([0.628, -0.628]), action_deltas=np.array([-0.628, 0.628]), ) manipulator = SingleManipulator( prim_path="/World/cobotta", name="cobotta_robot", end_effector_prim_name="onrobot_rg6_base_link", gripper=gripper, ) joints_default_positions = np.zeros(12) joints_default_positions[7] = 0.628 joints_default_positions[8] = 0.628 manipulator.set_joints_default_state(positions=joints_default_positions) return manipulator
2,693
Python
39.208955
81
0.664686
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/controllers/pick_place.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import omni.isaac.manipulators.controllers as manipulators_controllers from omni.isaac.core.articulations import Articulation from omni.isaac.manipulators.grippers import ParallelGripper from .rmpflow import RMPFlowController class PickPlaceController(manipulators_controllers.PickPlaceController): def __init__(self, name: str, gripper: ParallelGripper, robot_articulation: Articulation, events_dt=None) -> None: if events_dt is None: events_dt = [0.005, 0.002, 1, 0.05, 0.0008, 0.005, 0.0008, 0.1, 0.0008, 0.008] manipulators_controllers.PickPlaceController.__init__( self, name=name, cspace_controller=RMPFlowController( name=name + "_cspace_controller", robot_articulation=robot_articulation ), gripper=gripper, events_dt=events_dt, end_effector_initial_height=0.6, ) return
1,362
Python
41.593749
118
0.713656
2820207922/isaac_ws/standalone_examples/api/omni.isaac.manipulators/cobotta_900/controllers/rmpflow.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os import omni.isaac.motion_generation as mg from omni.isaac.core.articulations import Articulation from omni.isaac.core.utils.extensions import get_extension_path_from_name class RMPFlowController(mg.MotionPolicyController): def __init__(self, name: str, robot_articulation: Articulation, physics_dt: float = 1.0 / 60.0) -> None: self.rmpflow = mg.lula.motion_policies.RmpFlow( robot_description_path=os.path.join(os.path.dirname(__file__), "../rmpflow/robot_descriptor.yaml"), rmpflow_config_path=os.path.join(os.path.dirname(__file__), "../rmpflow/denso_rmpflow_common.yaml"), urdf_path=os.path.join(os.path.dirname(__file__), "../rmpflow/cobotta_pro_900.urdf"), end_effector_frame_name="gripper_center", maximum_substep_size=0.00334, ) self.articulation_rmp = mg.ArticulationMotionPolicy(robot_articulation, self.rmpflow, physics_dt) mg.MotionPolicyController.__init__(self, name=name, articulation_motion_policy=self.articulation_rmp) ( self._default_position, self._default_orientation, ) = self._articulation_motion_policy._robot_articulation.get_world_pose() self._motion_policy.set_robot_base_pose( robot_position=self._default_position, robot_orientation=self._default_orientation ) return def reset(self): mg.MotionPolicyController.reset(self) self._motion_policy.set_robot_base_pose( robot_position=self._default_position, robot_orientation=self._default_orientation )
2,038
Python
45.340908
112
0.705103
2820207922/isaac_ws/standalone_examples/api/omni.isaac.sensor/camera.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import matplotlib.pyplot as plt import numpy as np import omni.isaac.core.utils.numpy.rotations as rot_utils from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.sensor import Camera my_world = World(stage_units_in_meters=1.0) cube_2 = my_world.scene.add( DynamicCuboid( prim_path="/new_cube_2", name="cube_1", position=np.array([5.0, 3, 1.0]), scale=np.array([0.6, 0.5, 0.2]), size=1.0, color=np.array([255, 0, 0]), ) ) cube_3 = my_world.scene.add( DynamicCuboid( prim_path="/new_cube_3", name="cube_2", position=np.array([-5, 1, 3.0]), scale=np.array([0.1, 0.1, 0.1]), size=1.0, color=np.array([0, 0, 255]), linear_velocity=np.array([0, 0, 0.4]), ) ) camera = Camera( prim_path="/World/camera", position=np.array([0.0, 0.0, 25.0]), frequency=20, resolution=(256, 256), orientation=rot_utils.euler_angles_to_quats(np.array([0, 90, 0]), degrees=True), ) my_world.scene.add_default_ground_plane() my_world.reset() camera.initialize() i = 0 camera.add_motion_vectors_to_frame() while simulation_app.is_running(): my_world.step(render=True) print(camera.get_current_frame()) if i == 100: points_2d = camera.get_image_coords_from_world_points( np.array([cube_3.get_world_pose()[0], cube_2.get_world_pose()[0]]) ) points_3d = camera.get_world_points_from_image_coords(points_2d, np.array([24.94, 24.9])) print(points_2d) print(points_3d) imgplot = plt.imshow(camera.get_rgba()[:, :, :3]) plt.show() print(camera.get_current_frame()["motion_vectors"]) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() i += 1 simulation_app.close()
2,399
Python
29
97
0.64777
2820207922/isaac_ws/standalone_examples/api/omni.isaac.sensor/imu_sensor.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import sys import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.articulations import Articulation from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.sensor import IMUSensor from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController my_world = World(stage_units_in_meters=1.0) my_world.scene.add_default_ground_plane() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() asset_path = assets_root_path + "/Isaac/Robots/Carter/nova_carter_sensors.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/Carter") my_carter = my_world.scene.add( Articulation(prim_path="/World/Carter", name="my_carter", position=np.array([0, 0.0, 0.5])) ) wheel_dof_names = ["joint_wheel_left", "joint_wheel_right"] my_controller = DifferentialController(name="simple_control", wheel_radius=0.04295, wheel_base=0.4132) imu_sensor = my_world.scene.add( IMUSensor( prim_path="/World/Carter/caster_wheel_left/imu_sensor", name="imu", frequency=60, translation=np.array([0, 0, 0]), ) ) my_world.reset() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): wheel_dof_indices = [my_carter.get_dof_index(wheel_dof_names[i]) for i in range(len(wheel_dof_names))] if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() print(imu_sensor.get_current_frame()) actions = ArticulationAction() if i >= 0 and i < 1000: # forward actions = my_controller.forward(command=[0.05, 0]) elif i >= 1000 and i < 1265: # rotate actions = my_controller.forward(command=[0.0, np.pi / 12]) elif i >= 1265 and i < 2000: # forward actions = my_controller.forward(command=[0.05, 0]) elif i == 2000: i = 0 i += 1 joint_actions = ArticulationAction() joint_actions.joint_velocities = np.zeros(my_carter.num_dof) if actions.joint_velocities is not None: for j in range(len(wheel_dof_indices)): joint_actions.joint_velocities[wheel_dof_indices[j]] = actions.joint_velocities[j] my_carter.apply_action(joint_actions) simulation_app.close()
3,133
Python
35.022988
110
0.687201
2820207922/isaac_ws/standalone_examples/api/omni.isaac.sensor/effort_sensor.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # In this example, please drag the cube along the arm and see how the effort measurement from the effort sensor changes from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import sys import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.sensor.scripts.effort_sensor import EffortSensor from pxr import UsdPhysics assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() my_world = World(stage_units_in_meters=1.0, physics_dt=1.0 / 60, rendering_dt=1.0 / 60) my_world.scene.add_default_ground_plane(z_position=-1) asset_path = assets_root_path + "/Isaac/Robots/Simple/simple_articulation.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/Articulation") arm_joint = "/Articulation/Arm/RevoluteJoint" prim = get_prim_at_path(arm_joint) joint = UsdPhysics.RevoluteJoint(prim) joint.CreateAxisAttr("Y") DynamicCuboid( prim_path="/World/Cube", name="cube_1", position=np.array([1.5, 0, 0.2]), color=np.array([255, 0, 0]), size=0.1, mass=1, ) my_world.reset() effort_sensor = EffortSensor(prim_path=arm_joint) while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): reading = effort_sensor.get_sensor_reading() print(f"Sensor Time: {reading.time} Value: {reading.value} Validity: {reading.is_valid}") if my_world.current_time_step_index == 0: my_world.reset() simulation_app.close()
2,253
Python
33.151515
119
0.743009
2820207922/isaac_ws/standalone_examples/api/omni.isaac.sensor/contact_sensor.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import sys import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.articulations import Articulation from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.sensor import ContactSensor parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() my_world = World(stage_units_in_meters=1.0) my_world.scene.add_default_ground_plane() asset_path = assets_root_path + "/Isaac/Robots/Ant/ant.usd" add_reference_to_stage(usd_path=asset_path, prim_path="/World/Ant") ant = my_world.scene.add(Articulation(prim_path="/World/Ant/torso", name="ant", translation=np.array([0, 0, 1.5]))) ant_foot_prim_names = ["right_back_foot", "left_back_foot", "front_right_foot", "front_left_foot"] translations = np.array( [[0.38202, -0.40354, -0.0887], [-0.4, -0.40354, -0.0887], [-0.4, 0.4, -0.0887], [0.4, 0.4, -0.0887]] ) ant_sensors = [] for i in range(4): ant_sensors.append( my_world.scene.add( ContactSensor( prim_path="/World/Ant/" + ant_foot_prim_names[i] + "/contact_sensor", name="ant_contact_sensor_{}".format(i), min_threshold=0, max_threshold=10000000, radius=0.1, translation=translations[i], ) ) ) ant_sensors[0].add_raw_contact_data_to_frame() my_world.reset() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): print(ant_sensors[0].get_current_frame()) if my_world.current_time_step_index == 0: my_world.reset() simulation_app.close()
2,504
Python
32.4
115
0.686102
2820207922/isaac_ws/standalone_examples/api/omni.isaac.sensor/rotating_lidar_rtx.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import sys from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.sensor import LidarRtx from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController from omni.isaac.wheeled_robots.robots import WheeledRobot parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() my_world = World(stage_units_in_meters=1.0) my_world.scene.add_default_ground_plane() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() asset_path = assets_root_path + "/Isaac/Robots/Carter/nova_carter_sensors.usd" my_carter = my_world.scene.add( WheeledRobot( prim_path="/World/Carter", name="my_carter", wheel_dof_names=["joint_wheel_left", "joint_wheel_right"], create_robot=True, usd_path=asset_path, position=np.array([0, 0.0, 0.5]), ) ) # config_file_name="Example_Rotary" my_lidar = my_world.scene.add( LidarRtx(prim_path="/World/Carter/chassis_link/front_hawk/right/lidar_rig/lidar", name="lidar") ) cube_1 = my_world.scene.add( DynamicCuboid(prim_path="/World/cube", name="cube_1", position=np.array([2, 2, 2.5]), scale=np.array([20, 0.2, 5])) ) cube_2 = my_world.scene.add( DynamicCuboid( prim_path="/World/cube_2", name="cube_2", position=np.array([2, -2, 2.5]), scale=np.array([20, 0.2, 5]) ) ) my_controller = DifferentialController(name="simple_control", wheel_radius=0.04295, wheel_base=0.4132) my_world.reset() my_lidar.add_range_data_to_frame() my_lidar.add_point_cloud_data_to_frame() my_lidar.enable_visualization() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() if i >= 0 and i < 1000: print(my_lidar.get_current_frame()) # forward my_carter.apply_wheel_actions(my_controller.forward(command=[0.05, 0])) elif i >= 1000 and i < 1265: # rotate my_carter.apply_wheel_actions(my_controller.forward(command=[0.0, np.pi / 12])) elif i >= 1265 and i < 2000: # forward my_carter.apply_wheel_actions(my_controller.forward(command=[0.05, 0])) elif i == 2000: i = 0 i += 1 if args.test is True and i > 100: break my_world.stop() simulation_app.update() simulation_app.close()
3,309
Python
33.123711
119
0.684195