file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
2820207922/isaac_ws/standalone_examples/api/omni.isaac.sensor/camera_opencv_fisheye.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": True}) # Option: "renderer": "PathTracing" import numpy as np import omni.isaac.core.utils.numpy.rotations as rot_utils from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.sensor import Camera from PIL import Image, ImageDraw # Given the OpenCV camera matrix and distortion coefficients (Fisheye, Kannala-Brandt model), # creates a camera and a sample scene, renders an image and saves it to # camera_opencv_fisheye.png file. The asset is also saved to camera_opencv_fisheye.usd file. # Currently only supports square images (there is an issue in the rendering pipeline). # To produce non-square images, the region of the image that is not used should be cropped width, height = 1920, 1200 camera_matrix = [[455.8, 0.0, 943.8], [0.0, 454.7, 602.3], [0.0, 0.0, 1.0]] distortion_coefficients = [0.05, 0.01, -0.003, -0.0005] # Camera sensor size and optical path parameters. These parameters are not the part of the # OpenCV camera model, but they are nessesary to simulate the depth of field effect. # # To disable the depth of field effect, set the f_stop to 0.0. This is useful for debugging. pixel_size = 3 # in microns, 3 microns is common f_stop = 1.8 # f-number, the ratio of the lens focal length to the diameter of the entrance pupil focus_distance = 0.6 # in meters, the distance from the camera to the object plane diagonal_fov = 235 # in degrees, the diagonal field of view to be rendered # Create a world, add a 1x1x1 meter cube, a ground plane, and a camera world = World(stage_units_in_meters=1.0) world.scene.add_default_ground_plane() cube_1 = world.scene.add( DynamicCuboid( prim_path="/new_cube_1", name="cube_1", position=np.array([0, 0, 0.5]), scale=np.array([1.0, 1.0, 1.0]), size=1.0, color=np.array([255, 0, 0]), ) ) cube_2 = world.scene.add( DynamicCuboid( prim_path="/new_cube_2", name="cube_2", position=np.array([2, 0, 0.5]), scale=np.array([1.0, 1.0, 1.0]), size=1.0, color=np.array([0, 255, 0]), ) ) cube_3 = world.scene.add( DynamicCuboid( prim_path="/new_cube_3", name="cube_3", position=np.array([0, 4, 1]), scale=np.array([2.0, 2.0, 2.0]), size=1.0, color=np.array([0, 0, 255]), ) ) camera = Camera( prim_path="/World/camera", position=np.array([0.0, 0.0, 2.0]), # 1 meter away from the side of the cube frequency=30, resolution=(width, height), orientation=rot_utils.euler_angles_to_quats(np.array([0, 90, 0]), degrees=True), ) # Setup the scene and render a frame world.reset() camera.initialize() # Calculate the focal length and aperture size from the camera matrix ((fx, _, cx), (_, fy, cy), (_, _, _)) = camera_matrix horizontal_aperture = pixel_size * 1e-3 * width vertical_aperture = pixel_size * 1e-3 * height focal_length_x = fx * pixel_size * 1e-3 focal_length_y = fy * pixel_size * 1e-3 focal_length = (focal_length_x + focal_length_y) / 2 # in mm # Set the camera parameters, note the unit conversion between Isaac Sim sensor and Kit camera.set_focal_length(focal_length / 10.0) camera.set_focus_distance(focus_distance) camera.set_lens_aperture(f_stop * 100.0) camera.set_horizontal_aperture(horizontal_aperture / 10.0) camera.set_vertical_aperture(vertical_aperture / 10.0) camera.set_clipping_range(0.05, 1.0e5) # Set the distortion coefficients camera.set_projection_type("fisheyePolynomial") camera.set_kannala_brandt_properties(width, height, cx, cy, diagonal_fov, distortion_coefficients) # Get the rendered frame and save it to a file for i in range(100): world.step(render=True) camera.get_current_frame() img = Image.fromarray(camera.get_rgba()[:, :, :3]) # Optional step, draw the 3D points to the image plane using the OpenCV fisheye model def draw_points_opencv_fisheye(points3d): import cv2 rvecs, tvecs = np.array([0.0, 0.0, 0.0]), np.array([0.0, 0.0, 0.0]) points, jac = cv2.fisheye.projectPoints( np.expand_dims(points3d, 1), rvecs, tvecs, np.array(camera_matrix), np.array(distortion_coefficients) ) draw = ImageDraw.Draw(img) for pt in points: x, y = pt[0] print("Drawing point at: ", x, y) draw.ellipse((x - 4, y - 4, x + 4, y + 4), fill="yellow", outline="yellow") # Draw a few 3D points at the image plane (camera is pointing down to the ground plane). # OpenCV doen't support projecting points behind the camera, so we avoid that. draw_points_opencv_fisheye( points3d=np.array( [ [0.5, 0.5, 1.0], [-0.5, 0.5, 1.0], [0.5, -0.5, 1.0], [-0.5, -0.5, 1.0], [-3.0, -1.0, 0.0], [-3.0, 1.0, 0.0], [-0.5, -1.5, 1.0], [0.5, -1.5, 1.0], ] ) ) print("Saving the rendered image to: camera_opencv_fisheye.png") img.save("camera_opencv_fisheye.png") print("Saving the asset to camera_opencv_fisheye.usd") world.scene.stage.Export("camera_opencv_fisheye.usd") simulation_app.close()
5,598
Python
34.891025
109
0.670954
2820207922/isaac_ws/standalone_examples/api/omni.isaac.sensor/rotating_lidar_physX.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import sys import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.sensor import RotatingLidarPhysX from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController from omni.isaac.wheeled_robots.robots import WheeledRobot parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() my_world = World(stage_units_in_meters=1.0) my_world.scene.add_default_ground_plane() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() asset_path = assets_root_path + "/Isaac/Robots/Carter/carter_v1.usd" my_carter = my_world.scene.add( WheeledRobot( prim_path="/World/Carter", name="my_carter", wheel_dof_names=["left_wheel", "right_wheel"], create_robot=True, usd_path=asset_path, position=np.array([0, 0.0, 0.5]), ) ) my_lidar = my_world.scene.add( RotatingLidarPhysX( prim_path="/World/Carter/chassis_link/lidar", name="lidar", translation=np.array([-0.06, 0, 0.38]) ) ) cube_1 = my_world.scene.add( DynamicCuboid(prim_path="/World/cube", name="cube_1", position=np.array([2, 2, 2.5]), scale=np.array([20, 0.2, 5])) ) cube_2 = my_world.scene.add( DynamicCuboid( prim_path="/World/cube_2", name="cube_2", position=np.array([2, -2, 2.5]), scale=np.array([20, 0.2, 5]) ) ) my_controller = DifferentialController(name="simple_control", wheel_radius=0.24, wheel_base=0.56) my_world.reset() my_lidar.add_depth_data_to_frame() my_lidar.add_point_cloud_data_to_frame() my_lidar.enable_visualization() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() # print(imu_sensor.get_current_frame()) if i >= 0 and i < 1000: # print(my_lidar.get_current_frame()) # forward my_carter.apply_wheel_actions(my_controller.forward(command=[0.05, 0])) elif i >= 1000 and i < 1265: # rotate my_carter.apply_wheel_actions(my_controller.forward(command=[0.0, np.pi / 12])) elif i >= 1265 and i < 2000: # forward my_carter.apply_wheel_actions(my_controller.forward(command=[0.05, 0])) elif i == 2000: i = 0 i += 1 if args.test is True: break simulation_app.close()
3,291
Python
32.938144
119
0.676998
2820207922/isaac_ws/standalone_examples/api/omni.isaac.sensor/camera_opencv.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": True}) import numpy as np import omni.isaac.core.utils.numpy.rotations as rot_utils from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.sensor import Camera from PIL import Image, ImageDraw # Given the OpenCV camera matrix and distortion coefficients (Rational Polynomial model), # creates a camera and a sample scene, renders an image and saves it to # camera_opencv_fisheye.png file. The asset is also saved to camera_opencv_fisheye.usd file. width, height = 1920, 1200 camera_matrix = [[958.8, 0.0, 957.8], [0.0, 956.7, 589.5], [0.0, 0.0, 1.0]] distortion_coefficients = [0.14, -0.03, -0.0002, -0.00003, 0.009, 0.5, -0.07, 0.017] # Camera sensor size and optical path parameters. These parameters are not the part of the # OpenCV camera model, but they are nessesary to simulate the depth of field effect. # # To disable the depth of field effect, set the f_stop to 0.0. This is useful for debugging. pixel_size = 3 # in microns, 3 microns is common f_stop = 1.8 # f-number, the ratio of the lens focal length to the diameter of the entrance pupil focus_distance = 0.6 # in meters, the distance from the camera to the object plane diagonal_fov = 140 # in degrees, the diagonal field of view to be rendered # Create a world, add a 1x1x1 meter cube, a ground plane, and a camera world = World(stage_units_in_meters=1.0) world.scene.add_default_ground_plane() cube_1 = world.scene.add( DynamicCuboid( prim_path="/new_cube_1", name="cube_1", position=np.array([0, 0, 0.5]), scale=np.array([1.0, 1.0, 1.0]), size=1.0, color=np.array([255, 0, 0]), ) ) camera = Camera( prim_path="/World/camera", position=np.array([0.0, 0.0, 2.0]), # 1 meter away from the side of the cube frequency=30, resolution=(width, height), orientation=rot_utils.euler_angles_to_quats(np.array([0, 90, 0]), degrees=True), ) # Setup the scene and render a frame world.reset() camera.initialize() # Calculate the focal length and aperture size from the camera matrix ((fx, _, cx), (_, fy, cy), (_, _, _)) = camera_matrix horizontal_aperture = pixel_size * 1e-3 * width vertical_aperture = pixel_size * 1e-3 * height focal_length_x = fx * pixel_size * 1e-3 focal_length_y = fy * pixel_size * 1e-3 focal_length = (focal_length_x + focal_length_y) / 2 # in mm # Set the camera parameters, note the unit conversion between Isaac Sim sensor and Kit camera.set_focal_length(focal_length / 10.0) camera.set_focus_distance(focus_distance) camera.set_lens_aperture(f_stop * 100.0) camera.set_horizontal_aperture(horizontal_aperture / 10.0) camera.set_vertical_aperture(vertical_aperture / 10.0) camera.set_clipping_range(0.05, 1.0e5) # Set the distortion coefficients camera.set_projection_type("fisheyePolynomial") camera.set_rational_polynomial_properties(width, height, cx, cy, diagonal_fov, distortion_coefficients) # Get the rendered frame and save it to a file for i in range(100): world.step(render=True) camera.get_current_frame() img = Image.fromarray(camera.get_rgba()[:, :, :3]) # Optional step, draw the 3D points to the image plane using the OpenCV fisheye model def draw_points_opencv(points3d): import cv2 rvecs, tvecs = np.array([0.0, 0.0, 0.0]), np.array([0.0, 0.0, 0.0]) points, jac = cv2.projectPoints( np.expand_dims(points3d, 1), rvecs, tvecs, np.array(camera_matrix), np.array(distortion_coefficients) ) draw = ImageDraw.Draw(img) for pt in points: x, y = pt[0] print("Drawing point at: ", x, y) draw.ellipse((x - 4, y - 4, x + 4, y + 4), fill="orange", outline="orange") # Draw the 3D points to the image plane draw_points_opencv(points3d=np.array([[0.5, 0.5, 1.0], [-0.5, 0.5, 1.0], [0.5, -0.5, 1.0], [-0.5, -0.5, 1.0]])) print("Saving the rendered image to: camera_opencv.png") img.save("camera_opencv.png") print("Saving the asset to camera_opencv.usd") world.scene.stage.Export("camera_opencv.usd") simulation_app.close()
4,537
Python
37.786324
111
0.706634
2820207922/isaac_ws/standalone_examples/api/omni.isaac.sensor/camera_ros.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # Given a printout of ROS topic, containing the intrinsic and extrinsic parameters of the camera, # creates a camera and a sample scene, renders an image and saves it to camera_ros.png file. # The asset is also saved to camera_ros.usd file. The camera model is based on Intel RealSense D435i. from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": True}) import math import numpy as np import omni.isaac.core.utils.numpy.rotations as rot_utils import yaml from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.sensor import Camera from PIL import Image, ImageDraw # To create a model of a given ROS camera, print the camera_info topic with: # rostopicecho /camera/color/camera_info # And copy the output into the yaml_data variable below. Populate additional parameters using the sensor manual. # # Note: only rational_polynomial model is supported in this example. For plump_bob or pinhole # models set the distortion_model to "rational_polynomial" and compliment array D with 0.0 to 8 elements # The camera_info topic in the Isaac Sim ROS bridge will be in the rational_polynomial format. # # Note: when fx is not equal to fy (pixels are not square), the average of fx and fy is used as the focal length. # and the intrinsic matrix is adjusted to have square pixels. This updated matrix is used for rendering and # it is also populated into the camera_info topic in the Isaac Sim ROS bridge. yaml_data = """ # rostopic echo /camera/color/camera_info header: seq: 211 stamp: secs: 1694379352 nsecs: 176209771 frame_id: "camera_color_optical_frame" height: 480 width: 640 distortion_model: "rational_polynomial" D: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] K: [612.4178466796875, 0.0, 309.72296142578125, 0.0, 612.362060546875, 245.35870361328125, 0.0, 0.0, 1.0] R: [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0] P: [612.4178466796875, 0.0, 309.72296142578125, 0.0, 0.0, 612.362060546875, 245.35870361328125, 0.0, 0.0, 0.0, 1.0, 0.0] """ # Camera sensor size and optical path parameters. These parameters are not the part of the # OpenCV camera model, but they are nessesary to simulate the depth of field effect. # # To disable the depth of field effect, set the f_stop to 0.0. This is useful for debugging. pixel_size = 1.4 # Pixel size in microns, 3 microns is common f_stop = 2.0 # F-number, the ratio of the lens focal length to the diameter of the entrance pupil focus_distance = 0.5 # Focus distance in meters, the distance from the camera to the object plane # Parsing the YAML data data = yaml.safe_load(yaml_data) print("Header Frame ID:", data["header"]["frame_id"]) width, height, K, D = data["width"], data["height"], data["K"], data["D"] # Create a world, add a 1x1x1 meter cube, a ground plane, and a camera world = World(stage_units_in_meters=1.0) world.scene.add_default_ground_plane() world.reset() cube_1 = world.scene.add( DynamicCuboid( prim_path="/new_cube_1", name="cube_1", position=np.array([0, 0, 0.5]), scale=np.array([1.0, 1.0, 1.0]), size=1.0, color=np.array([255, 0, 0]), ) ) camera = Camera( prim_path="/World/camera", position=np.array([0.0, 0.0, 3.0]), # 2 meter away from the side of the cube frequency=30, resolution=(width, height), orientation=rot_utils.euler_angles_to_quats(np.array([0, 90, 0]), degrees=True), ) camera.initialize() # Calculate the focal length and aperture size from the camera matrix (fx, _, cx, _, fy, cy, _, _, _) = K horizontal_aperture = pixel_size * 1e-3 * width vertical_aperture = pixel_size * 1e-3 * height focal_length_x = fx * pixel_size * 1e-3 focal_length_y = fy * pixel_size * 1e-3 focal_length = (focal_length_x + focal_length_y) / 2 # in mm # Set the camera parameters, note the unit conversion between Isaac Sim sensor and Kit camera.set_focal_length(focal_length / 10.0) camera.set_focus_distance(focus_distance) camera.set_lens_aperture(f_stop * 100.0) camera.set_horizontal_aperture(horizontal_aperture / 10.0) camera.set_vertical_aperture(vertical_aperture / 10.0) camera.set_clipping_range(0.05, 1.0e5) # Set the distortion coefficients, this is nessesary, when cx, cy are not in the center of the image diagonal = 2 * math.sqrt(max(cx, width - cx) ** 2 + max(cy, height - cy) ** 2) diagonal_fov = 2 * math.atan2(diagonal, fx + fy) * 180 / math.pi camera.set_projection_type("fisheyePolynomial") camera.set_rational_polynomial_properties(width, height, cx, cy, diagonal_fov, D) # Get the rendered frame and save it to a file for i in range(100): world.step(render=True) camera.get_current_frame() img = Image.fromarray(camera.get_rgba()[:, :, :3]) # Optional step, draw the 3D points to the image plane using the OpenCV fisheye model def draw_points_opencv(points3d): try: # To install, run python.sh -m pip install opencv-python import cv2 rvecs, tvecs = np.array([0.0, 0.0, 0.0]), np.array([0.0, 0.0, 0.0]) points, jac = cv2.projectPoints( np.expand_dims(points3d, 1), rvecs, tvecs, np.array(K).reshape(3, 3), np.array(D) ) draw = ImageDraw.Draw(img) for pt in points: x, y = pt[0] print("Drawing point at: ", x, y) draw.ellipse((x - 4, y - 4, x + 4, y + 4), fill="orange", outline="orange") except: print("OpenCV is not installed, skipping OpenCV overlay") print("To install OpenCV, run: python.sh -m pip install opencv-python") # Draw the 3D points to the image plane draw_points_opencv(points3d=np.array([[0.5, 0.5, 4.0], [-0.5, 0.5, 4.0], [0.5, -0.5, 4.0], [-0.5, -0.5, 4.0]])) print("Saving the rendered image to: camera_ros.png") img.save("camera_ros.png") print("Saving the asset to camera_ros.usd") world.scene.stage.Export("camera_ros.usd") simulation_app.close()
6,319
Python
39.774193
120
0.700902
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros2_bridge/carter_multiple_robot_navigation.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import sys import carb from omni.isaac.kit import SimulationApp HOSPITAL_USD_PATH = "/Isaac/Samples/ROS2/Scenario/multiple_robot_carter_hospital_navigation.usd" OFFICE_USD_PATH = "/Isaac/Samples/ROS2/Scenario/multiple_robot_carter_office_navigation.usd" # Default environment: Hospital ENV_USD_PATH = HOSPITAL_USD_PATH if len(sys.argv) > 1: if sys.argv[1] == "office": # Choosing Office environment ENV_USD_PATH = OFFICE_USD_PATH elif sys.argv[1] != "hospital": carb.log_warn("Environment name is invalid. Choosing default Hospital environment.") else: carb.log_warn("Environment name not specified. Choosing default Hospital environment.") CONFIG = {"renderer": "RayTracedLighting", "headless": False} # Example ROS2 bridge sample demonstrating the manual loading of Multiple Robot Navigation scenario simulation_app = SimulationApp(CONFIG) import omni from omni.isaac.core import SimulationContext from omni.isaac.core.utils import extensions, nucleus, prims, rotations, stage, viewports from omni.isaac.core.utils.extensions import enable_extension from pxr import Sdf # enable ROS2 bridge extension enable_extension("omni.isaac.ros2_bridge") # Locate assets root folder to load sample assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() usd_path = assets_root_path + ENV_USD_PATH omni.usd.get_context().open_stage(usd_path, None) # Wait two frames so that stage starts loading simulation_app.update() simulation_app.update() print("Loading stage...") from omni.isaac.core.utils.stage import is_stage_loading while is_stage_loading(): simulation_app.update() print("Loading Complete") simulation_context = SimulationContext(stage_units_in_meters=1.0) simulation_app.update() simulation_context.play() simulation_app.update() while simulation_app.is_running(): # runs with a realtime clock simulation_app.update() simulation_context.stop() simulation_app.close()
2,512
Python
29.646341
99
0.766322
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros2_bridge/rtx_lidar.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import sys import carb from omni.isaac.kit import SimulationApp # Example for creating a RTX lidar sensor and publishing PointCloud2 data simulation_app = SimulationApp({"headless": False}) import omni import omni.kit.viewport.utility import omni.replicator.core as rep from omni.isaac.core import SimulationContext from omni.isaac.core.utils import nucleus, stage from omni.isaac.core.utils.extensions import enable_extension from pxr import Gf # enable ROS2 bridge extension enable_extension("omni.isaac.ros2_bridge") simulation_app.update() # Locate Isaac Sim assets folder to load environment and robot stages assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() simulation_app.update() # Loading the simple_room environment stage.add_reference_to_stage( assets_root_path + "/Isaac/Environments/Simple_Warehouse/full_warehouse.usd", "/background" ) simulation_app.update() # Create the lidar sensor that generates data into "RtxSensorCpu" # Sensor needs to be rotated 90 degrees about X so that its Z up # Possible options are Example_Rotary and Example_Solid_State # drive sim applies 0.5,-0.5,-0.5,w(-0.5), we have to apply the reverse _, sensor = omni.kit.commands.execute( "IsaacSensorCreateRtxLidar", path="/sensor", parent=None, config="Example_Rotary", translation=(0, 0, 1.0), orientation=Gf.Quatd(1.0, 0.0, 0.0, 0.0), # Gf.Quatd is w,i,j,k ) # RTX sensors are cameras and must be assigned to their own render product hydra_texture = rep.create.render_product(sensor.GetPath(), [1, 1], name="Isaac") simulation_context = SimulationContext(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0, stage_units_in_meters=1.0) simulation_app.update() # Create Point cloud publisher pipeline in the post process graph writer = rep.writers.get("RtxLidar" + "ROS2PublishPointCloud") writer.initialize(topicName="point_cloud", frameId="sim_lidar") writer.attach([hydra_texture]) # Create the debug draw pipeline in the post process graph writer = rep.writers.get("RtxLidar" + "DebugDrawPointCloud") writer.attach([hydra_texture]) # Create LaserScan publisher pipeline in the post process graph writer = rep.writers.get("RtxLidar" + "ROS2PublishLaserScan") writer.initialize(topicName="laser_scan", frameId="sim_lidar") writer.attach([hydra_texture]) simulation_app.update() simulation_context.play() while simulation_app.is_running(): simulation_app.update() # cleanup and shutdown simulation_context.stop() simulation_app.close()
3,055
Python
32.582417
113
0.765303
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros2_bridge/clock.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import time import carb from omni.isaac.kit import SimulationApp # Example ROS2 bridge sample showing rclpy and rosclock interaction simulation_app = SimulationApp({"renderer": "RayTracedLighting", "headless": True}) import omni import omni.graph.core as og from omni.isaac.core import SimulationContext from omni.isaac.core.utils.extensions import enable_extension # enable ROS2 bridge extension enable_extension("omni.isaac.ros2_bridge") simulation_app.update() # Note that this is not the system level rclpy, but one compiled for omniverse import rclpy from rosgraph_msgs.msg import Clock rclpy.init() clock_topic = "sim_time" manual_clock_topic = "manual_time" # Creating a action graph with ROS component nodes try: og.Controller.edit( {"graph_path": "/ActionGraph", "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("PublishClock", "omni.isaac.ros2_bridge.ROS2PublishClock"), ("OnImpulseEvent", "omni.graph.action.OnImpulseEvent"), ("PublishManualClock", "omni.isaac.ros2_bridge.ROS2PublishClock"), ], og.Controller.Keys.CONNECT: [ # Connecting execution of OnPlaybackTick node to PublishClock to automatically publish each frame ("OnPlaybackTick.outputs:tick", "PublishClock.inputs:execIn"), # Connecting execution of OnImpulseEvent node to PublishManualClock so it will only publish when an impulse event is triggered ("OnImpulseEvent.outputs:execOut", "PublishManualClock.inputs:execIn"), # Connecting simulationTime data of ReadSimTime to the clock publisher nodes ("ReadSimTime.outputs:simulationTime", "PublishClock.inputs:timeStamp"), ("ReadSimTime.outputs:simulationTime", "PublishManualClock.inputs:timeStamp"), ], og.Controller.Keys.SET_VALUES: [ # Assigning topic names to clock publishers ("PublishClock.inputs:topicName", clock_topic), ("PublishManualClock.inputs:topicName", manual_clock_topic), ], }, ) except Exception as e: print(e) simulation_app.update() simulation_app.update() # Define ROS2 callbacks def sim_clock_callback(data): print("sim time:", data.clock) def manual_clock_callback(data): print("manual stepped sim time:", data.clock) # Create rclpy ndoe node = rclpy.create_node("isaac_sim_clock") # create subscribers sim_clock_sub = node.create_subscription(Clock, clock_topic, sim_clock_callback, 1) manual_clock_sub = node.create_subscription(Clock, manual_clock_topic, manual_clock_callback, 1) time.sleep(1.0) simulation_context = SimulationContext(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0, stage_units_in_meters=1.0) # need to initialize physics getting any articulation..etc simulation_context.initialize_physics() simulation_context.play() # perform a fixed number of steps with fixed step size for frame in range(20): # publish manual clock every 10 frames if frame % 10 == 0: og.Controller.set(og.Controller.attribute("/ActionGraph/OnImpulseEvent.state:enableImpulse"), True) simulation_context.render() # This updates rendering/app loop which calls the sim clock simulation_context.step(render=False) # runs with a non-realtime clock rclpy.spin_once(node, timeout_sec=0.0) # Spin node once # This sleep is to make this sample run a bit more deterministically for the subscriber callback # In general this sleep is not needed time.sleep(0.1) # perform a fixed number of steps with realtime clock for frame in range(20): # publish manual clock every 10 frames if frame % 10 == 0: og.Controller.set(og.Controller.attribute("/ActionGraph/OnImpulseEvent.state:enableImpulse"), True) simulation_app.update() # runs with a realtime clock rclpy.spin_once(node, timeout_sec=0.0) # Spin node once # This sleep is to make this sample run a bit more deterministically for the subscriber callback # In general this sleep is not needed time.sleep(0.1) # shutdown rclpy.shutdown() simulation_context.stop() simulation_app.close()
4,822
Python
37.584
142
0.710908
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros2_bridge/carter_stereo.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import carb from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser(description="Carter Stereo Example") parser.add_argument("--test", action="store_true") args, unknown = parser.parse_known_args() # Example ROS2 bridge sample showing manual control over messages simulation_app = SimulationApp({"renderer": "RayTracedLighting", "headless": False}) import omni import omni.graph.core as og from omni.isaac.core import SimulationContext from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.core.utils.nucleus import get_assets_root_path from pxr import Sdf # enable ROS2 bridge extension enable_extension("omni.isaac.ros2_bridge") # Locate assets root folder to load sample assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() exit() usd_path = assets_root_path + "/Isaac/Samples/ROS2/Scenario/carter_warehouse_navigation.usd" omni.usd.get_context().open_stage(usd_path, None) # Wait two frames so that stage starts loading simulation_app.update() simulation_app.update() print("Loading stage...") from omni.isaac.core.utils.stage import is_stage_loading while is_stage_loading(): simulation_app.update() print("Loading Complete") simulation_context = SimulationContext(stage_units_in_meters=1.0) ros_cameras_graph_path = "/World/Nova_Carter_ROS/front_hawk" # Enabling rgb image publishers for left camera. Cameras will automatically publish images each frame og.Controller.set(og.Controller.attribute(ros_cameras_graph_path + "/left_camera_render_product.inputs:enabled"), True) simulation_context.play() simulation_context.step() # Enabling rgb image publishers for right camera after left cameras are initialized. Cameras will automatically publish images each frame og.Controller.set(og.Controller.attribute(ros_cameras_graph_path + "/right_camera_render_product.inputs:enabled"), True) # Simulate for one second to warm up sim and let everything settle for frame in range(60): simulation_context.step() # Create a ROS publisher to publish message to spin robot in place # If system level rclpy is sourced in bashrc or terminal, it is imported otherwise backup rclpy libraries shipped with Isaac sim is used import rclpy rclpy.init() from geometry_msgs.msg import Twist node = rclpy.create_node("carter_stereo") publisher = node.create_publisher(Twist, "cmd_vel", 10) frame = 0 while simulation_app.is_running(): # Run with a fixed step size simulation_context.step(render=True) # Publish the ROS Twist message every 2 frames if frame % 2 == 0: message = Twist() message.angular.z = 0.5 # spin in place publisher.publish(message) if args.test and frame > 120: break frame = frame + 1 node.destroy_node() rclpy.shutdown() simulation_context.stop() simulation_app.close()
3,363
Python
32.64
137
0.765685
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros2_bridge/camera_manual.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import sys import carb from omni.isaac.kit import SimulationApp CAMERA_STAGE_PATH = "/Camera" ROS_CAMERA_GRAPH_PATH = "/ROS_Camera" BACKGROUND_STAGE_PATH = "/background" BACKGROUND_USD_PATH = "/Isaac/Environments/Simple_Warehouse/warehouse_with_forklifts.usd" CONFIG = {"renderer": "RayTracedLighting", "headless": False} # Example ROS2 bridge sample demonstrating the manual loading of stages and manual publishing of images simulation_app = SimulationApp(CONFIG) import omni import omni.graph.core as og import usdrt.Sdf from omni.isaac.core import SimulationContext from omni.isaac.core.utils import extensions, nucleus, stage from omni.kit.viewport.utility import get_active_viewport from pxr import Gf, Usd, UsdGeom # enable ROS2 bridge extension extensions.enable_extension("omni.isaac.ros2_bridge") simulation_app.update() simulation_context = SimulationContext(stage_units_in_meters=1.0) # Locate Isaac Sim assets folder to load environment and robot stages assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() # Loading the simple_room environment stage.add_reference_to_stage(assets_root_path + BACKGROUND_USD_PATH, BACKGROUND_STAGE_PATH) # Creating a Camera prim camera_prim = UsdGeom.Camera(omni.usd.get_context().get_stage().DefinePrim(CAMERA_STAGE_PATH, "Camera")) xform_api = UsdGeom.XformCommonAPI(camera_prim) xform_api.SetTranslate(Gf.Vec3d(-1, 5, 1)) xform_api.SetRotate((90, 0, 0), UsdGeom.XformCommonAPI.RotationOrderXYZ) camera_prim.GetHorizontalApertureAttr().Set(21) camera_prim.GetVerticalApertureAttr().Set(16) camera_prim.GetProjectionAttr().Set("perspective") camera_prim.GetFocalLengthAttr().Set(24) camera_prim.GetFocusDistanceAttr().Set(400) simulation_app.update() # Creating an on-demand push graph with cameraHelper nodes to generate ROS image publishers keys = og.Controller.Keys (ros_camera_graph, _, _, _) = og.Controller.edit( { "graph_path": ROS_CAMERA_GRAPH_PATH, "evaluator_name": "push", "pipeline_stage": og.GraphPipelineStage.GRAPH_PIPELINE_STAGE_ONDEMAND, }, { keys.CREATE_NODES: [ ("OnTick", "omni.graph.action.OnTick"), ("createViewport", "omni.isaac.core_nodes.IsaacCreateViewport"), ("getRenderProduct", "omni.isaac.core_nodes.IsaacGetViewportRenderProduct"), ("setCamera", "omni.isaac.core_nodes.IsaacSetCameraOnRenderProduct"), ("cameraHelperRgb", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ("cameraHelperInfo", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ("cameraHelperDepth", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ], keys.CONNECT: [ ("OnTick.outputs:tick", "createViewport.inputs:execIn"), ("createViewport.outputs:execOut", "getRenderProduct.inputs:execIn"), ("createViewport.outputs:viewport", "getRenderProduct.inputs:viewport"), ("getRenderProduct.outputs:execOut", "setCamera.inputs:execIn"), ("getRenderProduct.outputs:renderProductPath", "setCamera.inputs:renderProductPath"), ("setCamera.outputs:execOut", "cameraHelperRgb.inputs:execIn"), ("setCamera.outputs:execOut", "cameraHelperInfo.inputs:execIn"), ("setCamera.outputs:execOut", "cameraHelperDepth.inputs:execIn"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperRgb.inputs:renderProductPath"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperInfo.inputs:renderProductPath"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperDepth.inputs:renderProductPath"), ], keys.SET_VALUES: [ ("createViewport.inputs:viewportId", 0), ("cameraHelperRgb.inputs:frameId", "sim_camera"), ("cameraHelperRgb.inputs:topicName", "rgb"), ("cameraHelperRgb.inputs:type", "rgb"), ("cameraHelperInfo.inputs:frameId", "sim_camera"), ("cameraHelperInfo.inputs:topicName", "camera_info"), ("cameraHelperInfo.inputs:type", "camera_info"), ("cameraHelperDepth.inputs:frameId", "sim_camera"), ("cameraHelperDepth.inputs:topicName", "depth"), ("cameraHelperDepth.inputs:type", "depth"), ("setCamera.inputs:cameraPrim", [usdrt.Sdf.Path(CAMERA_STAGE_PATH)]), ], }, ) # Run the ROS Camera graph once to generate ROS image publishers in SDGPipeline og.Controller.evaluate_sync(ros_camera_graph) simulation_app.update() # Use the IsaacSimulationGate step value to block execution on specific frames SD_GRAPH_PATH = "/Render/PostProcess/SDGPipeline" viewport_api = get_active_viewport() if viewport_api is not None: import omni.syntheticdata._syntheticdata as sd curr_stage = omni.usd.get_context().get_stage() # Required for editing the SDGPipeline graph which exists in the Session Layer with Usd.EditContext(curr_stage, curr_stage.GetSessionLayer()): # Get name of rendervar for RGB sensor type rv_rgb = omni.syntheticdata.SyntheticData.convert_sensor_type_to_rendervar(sd.SensorType.Rgb.name) # Get path to IsaacSimulationGate node in RGB pipeline rgb_camera_gate_path = omni.syntheticdata.SyntheticData._get_node_path( rv_rgb + "IsaacSimulationGate", viewport_api.get_render_product_path() ) rv_depth = omni.syntheticdata.SyntheticData.convert_sensor_type_to_rendervar( sd.SensorType.DistanceToImagePlane.name ) # Get path to IsaacSimulationGate node in Depth pipeline depth_camera_gate_path = omni.syntheticdata.SyntheticData._get_node_path( rv_depth + "IsaacSimulationGate", viewport_api.get_render_product_path() ) # Get path to IsaacSimulationGate node in CameraInfo pipeline camera_info_gate_path = omni.syntheticdata.SyntheticData._get_node_path( "PostProcessDispatch" + "IsaacSimulationGate", viewport_api.get_render_product_path() ) # Need to initialize physics getting any articulation..etc simulation_context.initialize_physics() simulation_context.play() frame = 0 while simulation_app.is_running() and simulation_context.is_playing(): # Run with a fixed step size simulation_context.step(render=True) if simulation_context.is_playing(): # Rotate camera by 0.5 degree every frame xform_api.SetRotate((90, 0, frame / 4.0), UsdGeom.XformCommonAPI.RotationOrderXYZ) # Set the step value for the simulation gates to zero to stop execution og.Controller.attribute(rgb_camera_gate_path + ".inputs:step").set(0) og.Controller.attribute(depth_camera_gate_path + ".inputs:step").set(0) og.Controller.attribute(camera_info_gate_path + ".inputs:step").set(0) # Publish the ROS rgb image message every 5 frames if frame % 5 == 0: # Enable rgb Branch node to start publishing rgb image og.Controller.attribute(rgb_camera_gate_path + ".inputs:step").set(1) # Publish the ROS Depth image message every 60 frames if frame % 60 == 0: # Enable depth Branch node to start publishing depth image og.Controller.attribute(depth_camera_gate_path + ".inputs:step").set(1) # Publish the ROS Camera Info message every frame og.Controller.attribute(camera_info_gate_path + ".inputs:step").set(1) frame = frame + 1 simulation_context.stop() simulation_app.close()
8,054
Python
42.074866
106
0.706109
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros2_bridge/camera_periodic.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import sys import carb from omni.isaac.kit import SimulationApp CAMERA_STAGE_PATH = "/Camera" ROS_CAMERA_GRAPH_PATH = "/ROS_Camera" BACKGROUND_STAGE_PATH = "/background" BACKGROUND_USD_PATH = "/Isaac/Environments/Simple_Warehouse/warehouse_with_forklifts.usd" CONFIG = {"renderer": "RayTracedLighting", "headless": False} simulation_app = SimulationApp(CONFIG) import omni import omni.graph.core as og import usdrt.Sdf from omni.isaac.core import SimulationContext from omni.isaac.core.utils import extensions, nucleus, stage from omni.kit.viewport.utility import get_active_viewport from pxr import Gf, Usd, UsdGeom # enable ROS bridge extension extensions.enable_extension("omni.isaac.ros2_bridge") simulation_app.update() simulation_context = SimulationContext(stage_units_in_meters=1.0) # Locate Isaac Sim assets folder to load environment and robot stages assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() # Loading the simple_room environment stage.add_reference_to_stage(assets_root_path + BACKGROUND_USD_PATH, BACKGROUND_STAGE_PATH) # Creating a Camera prim camera_prim = UsdGeom.Camera(omni.usd.get_context().get_stage().DefinePrim(CAMERA_STAGE_PATH, "Camera")) xform_api = UsdGeom.XformCommonAPI(camera_prim) xform_api.SetTranslate(Gf.Vec3d(-1, 5, 1)) xform_api.SetRotate((90, 0, 0), UsdGeom.XformCommonAPI.RotationOrderXYZ) camera_prim.GetHorizontalApertureAttr().Set(21) camera_prim.GetVerticalApertureAttr().Set(16) camera_prim.GetProjectionAttr().Set("perspective") camera_prim.GetFocalLengthAttr().Set(24) camera_prim.GetFocusDistanceAttr().Set(400) simulation_app.update() # Creating an on-demand push graph with cameraHelper nodes to generate ROS image publishers keys = og.Controller.Keys (ros_camera_graph, _, _, _) = og.Controller.edit( { "graph_path": ROS_CAMERA_GRAPH_PATH, "evaluator_name": "push", "pipeline_stage": og.GraphPipelineStage.GRAPH_PIPELINE_STAGE_ONDEMAND, }, { keys.CREATE_NODES: [ ("OnTick", "omni.graph.action.OnTick"), ("createViewport", "omni.isaac.core_nodes.IsaacCreateViewport"), ("getRenderProduct", "omni.isaac.core_nodes.IsaacGetViewportRenderProduct"), ("setCamera", "omni.isaac.core_nodes.IsaacSetCameraOnRenderProduct"), ("cameraHelperRgb", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ("cameraHelperInfo", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ("cameraHelperDepth", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ], keys.CONNECT: [ ("OnTick.outputs:tick", "createViewport.inputs:execIn"), ("createViewport.outputs:execOut", "getRenderProduct.inputs:execIn"), ("createViewport.outputs:viewport", "getRenderProduct.inputs:viewport"), ("getRenderProduct.outputs:execOut", "setCamera.inputs:execIn"), ("getRenderProduct.outputs:renderProductPath", "setCamera.inputs:renderProductPath"), ("setCamera.outputs:execOut", "cameraHelperRgb.inputs:execIn"), ("setCamera.outputs:execOut", "cameraHelperInfo.inputs:execIn"), ("setCamera.outputs:execOut", "cameraHelperDepth.inputs:execIn"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperRgb.inputs:renderProductPath"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperInfo.inputs:renderProductPath"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperDepth.inputs:renderProductPath"), ], keys.SET_VALUES: [ ("createViewport.inputs:viewportId", 0), ("cameraHelperRgb.inputs:frameId", "sim_camera"), ("cameraHelperRgb.inputs:topicName", "rgb"), ("cameraHelperRgb.inputs:type", "rgb"), ("cameraHelperInfo.inputs:frameId", "sim_camera"), ("cameraHelperInfo.inputs:topicName", "camera_info"), ("cameraHelperInfo.inputs:type", "camera_info"), ("cameraHelperDepth.inputs:frameId", "sim_camera"), ("cameraHelperDepth.inputs:topicName", "depth"), ("cameraHelperDepth.inputs:type", "depth"), ("setCamera.inputs:cameraPrim", [usdrt.Sdf.Path(CAMERA_STAGE_PATH)]), ], }, ) # Run the ROS Camera graph once to generate ROS image publishers in SDGPipeline og.Controller.evaluate_sync(ros_camera_graph) simulation_app.update() # Inside the SDGPipeline graph, Isaac Simulation Gate nodes are added to control the execution rate of each of the ROS image and camera info publishers. # By default the step input of each Isaac Simulation Gate node is set to a value of 1 to execute every frame. # We can change this value to N for each Isaac Simulation Gate node individually to publish every N number of frames. viewport_api = get_active_viewport() if viewport_api is not None: import omni.syntheticdata._syntheticdata as sd # Get name of rendervar for RGB sensor type rv_rgb = omni.syntheticdata.SyntheticData.convert_sensor_type_to_rendervar(sd.SensorType.Rgb.name) # Get path to IsaacSimulationGate node in RGB pipeline rgb_camera_gate_path = omni.syntheticdata.SyntheticData._get_node_path( rv_rgb + "IsaacSimulationGate", viewport_api.get_render_product_path() ) # Get name of rendervar for DistanceToImagePlane sensor type rv_depth = omni.syntheticdata.SyntheticData.convert_sensor_type_to_rendervar( sd.SensorType.DistanceToImagePlane.name ) # Get path to IsaacSimulationGate node in Depth pipeline depth_camera_gate_path = omni.syntheticdata.SyntheticData._get_node_path( rv_depth + "IsaacSimulationGate", viewport_api.get_render_product_path() ) # Get path to IsaacSimulationGate node in CameraInfo pipeline camera_info_gate_path = omni.syntheticdata.SyntheticData._get_node_path( "PostProcessDispatch" + "IsaacSimulationGate", viewport_api.get_render_product_path() ) # Set Rgb execution step to 5 frames rgb_step_size = 5 # Set Depth execution step to 60 frames depth_step_size = 60 # Set Camera info execution step to every frame info_step_size = 1 # Set step input of the Isaac Simulation Gate nodes upstream of ROS publishers to control their execution rate og.Controller.attribute(rgb_camera_gate_path + ".inputs:step").set(rgb_step_size) og.Controller.attribute(depth_camera_gate_path + ".inputs:step").set(depth_step_size) og.Controller.attribute(camera_info_gate_path + ".inputs:step").set(info_step_size) # Need to initialize physics getting any articulation..etc simulation_context.initialize_physics() simulation_context.play() frame = 0 while simulation_app.is_running(): # Run with a fixed step size simulation_context.step(render=True) if simulation_context.is_playing(): # Rotate camera by 0.5 degree every frame xform_api.SetRotate((90, 0, frame / 4.0), UsdGeom.XformCommonAPI.RotationOrderXYZ) frame = frame + 1 simulation_context.stop() simulation_app.close()
7,608
Python
41.747191
152
0.720294
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros2_bridge/moveit.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import sys import carb import numpy as np from omni.isaac.kit import SimulationApp FRANKA_STAGE_PATH = "/Franka" FRANKA_USD_PATH = "/Isaac/Robots/Franka/franka_alt_fingers.usd" BACKGROUND_STAGE_PATH = "/background" BACKGROUND_USD_PATH = "/Isaac/Environments/Simple_Room/simple_room.usd" CONFIG = {"renderer": "RayTracedLighting", "headless": False} # Example ROS2 bridge sample demonstrating the manual loading of stages # and creation of ROS components simulation_app = SimulationApp(CONFIG) import omni.graph.core as og import usdrt.Sdf from omni.isaac.core import SimulationContext from omni.isaac.core.utils import extensions, nucleus, prims, rotations, stage, viewports from pxr import Gf # enable ROS2 bridge extension extensions.enable_extension("omni.isaac.ros2_bridge") simulation_context = SimulationContext(stage_units_in_meters=1.0) # Locate Isaac Sim assets folder to load environment and robot stages assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() # Preparing stage viewports.set_camera_view(eye=np.array([1.2, 1.2, 0.8]), target=np.array([0, 0, 0.5])) # Loading the simple_room environment stage.add_reference_to_stage(assets_root_path + BACKGROUND_USD_PATH, BACKGROUND_STAGE_PATH) # Loading the franka robot USD prims.create_prim( FRANKA_STAGE_PATH, "Xform", position=np.array([0, -0.64, 0]), orientation=rotations.gf_rotation_to_np_array(Gf.Rotation(Gf.Vec3d(0, 0, 1), 90)), usd_path=assets_root_path + FRANKA_USD_PATH, ) simulation_app.update() # Creating a action graph with ROS component nodes try: og.Controller.edit( {"graph_path": "/ActionGraph", "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnImpulseEvent", "omni.graph.action.OnImpulseEvent"), ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("Context", "omni.isaac.ros2_bridge.ROS2Context"), ("PublishJointState", "omni.isaac.ros2_bridge.ROS2PublishJointState"), ("SubscribeJointState", "omni.isaac.ros2_bridge.ROS2SubscribeJointState"), ("ArticulationController", "omni.isaac.core_nodes.IsaacArticulationController"), ("PublishClock", "omni.isaac.ros2_bridge.ROS2PublishClock"), ], og.Controller.Keys.CONNECT: [ ("OnImpulseEvent.outputs:execOut", "PublishJointState.inputs:execIn"), ("OnImpulseEvent.outputs:execOut", "SubscribeJointState.inputs:execIn"), ("OnImpulseEvent.outputs:execOut", "PublishClock.inputs:execIn"), ("OnImpulseEvent.outputs:execOut", "ArticulationController.inputs:execIn"), ("Context.outputs:context", "PublishJointState.inputs:context"), ("Context.outputs:context", "SubscribeJointState.inputs:context"), ("Context.outputs:context", "PublishClock.inputs:context"), ("ReadSimTime.outputs:simulationTime", "PublishJointState.inputs:timeStamp"), ("ReadSimTime.outputs:simulationTime", "PublishClock.inputs:timeStamp"), ("SubscribeJointState.outputs:jointNames", "ArticulationController.inputs:jointNames"), ( "SubscribeJointState.outputs:positionCommand", "ArticulationController.inputs:positionCommand", ), ( "SubscribeJointState.outputs:velocityCommand", "ArticulationController.inputs:velocityCommand", ), ("SubscribeJointState.outputs:effortCommand", "ArticulationController.inputs:effortCommand"), ], og.Controller.Keys.SET_VALUES: [ # Setting the /Franka target prim to Articulation Controller node ("ArticulationController.inputs:usePath", True), ("ArticulationController.inputs:robotPath", FRANKA_STAGE_PATH), ("PublishJointState.inputs:topicName", "isaac_joint_states"), ("SubscribeJointState.inputs:topicName", "isaac_joint_commands"), ("PublishJointState.inputs:targetPrim", [usdrt.Sdf.Path(FRANKA_STAGE_PATH)]), ("PublishTF.inputs:targetPrims", [usdrt.Sdf.Path(FRANKA_STAGE_PATH)]), ], }, ) except Exception as e: print(e) simulation_app.update() # need to initialize physics getting any articulation..etc simulation_context.initialize_physics() simulation_context.play() while simulation_app.is_running(): # Run with a fixed step size simulation_context.step(render=True) # Tick the Publish/Subscribe JointState and Publish Clock nodes each frame og.Controller.set(og.Controller.attribute("/ActionGraph/OnImpulseEvent.state:enableImpulse"), True) simulation_context.stop() simulation_app.close()
5,442
Python
41.523437
109
0.684491
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros2_bridge/subscriber.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import carb from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"renderer": "RayTracedLighting", "headless": False}) import omni from omni.isaac.core import World from omni.isaac.core.objects import VisualCuboid from omni.isaac.core.utils.extensions import enable_extension # enable ROS2 bridge extension enable_extension("omni.isaac.ros2_bridge") simulation_app.update() import time # Note that this is not the system level rclpy, but one compiled for omniverse import numpy as np import rclpy from rclpy.node import Node from std_msgs.msg import Empty class Subscriber(Node): def __init__(self): super().__init__("tutorial_subscriber") # setting up the world with a cube self.timeline = omni.timeline.get_timeline_interface() self.ros_world = World(stage_units_in_meters=1.0) self.ros_world.scene.add_default_ground_plane() # add a cube in the world cube_path = "/cube" self.ros_world.scene.add( VisualCuboid(prim_path=cube_path, name="cube_1", position=np.array([0, 0, 10]), size=0.2) ) self._cube_position = np.array([0, 0, 0]) # setup the ROS2 subscriber here self.ros_sub = self.create_subscription(Empty, "move_cube", self.move_cube_callback, 10) self.ros_world.reset() def move_cube_callback(self, data): # callback function to set the cube position to a new one upon receiving a (empty) ROS2 message if self.ros_world.is_playing(): self._cube_position = np.array([np.random.rand() * 0.40, np.random.rand() * 0.40, 0.10]) def run_simulation(self): self.timeline.play() while simulation_app.is_running(): self.ros_world.step(render=True) rclpy.spin_once(self, timeout_sec=0.0) if self.ros_world.is_playing(): if self.ros_world.current_time_step_index == 0: self.ros_world.reset() # the actual setting the cube pose is done here self.ros_world.scene.get_object("cube_1").set_world_pose(self._cube_position) # Cleanup self.timeline.stop() self.destroy_node() simulation_app.close() if __name__ == "__main__": rclpy.init() subscriber = Subscriber() subscriber.run_simulation()
2,787
Python
33
103
0.670255
2820207922/isaac_ws/standalone_examples/api/omni.isaac.universal_robots/pick_place.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.core import World from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController from omni.isaac.universal_robots.tasks import PickPlace my_world = World(stage_units_in_meters=1.0) my_task = PickPlace() my_world.add_task(my_task) my_world.reset() task_params = my_task.get_params() my_ur10 = my_world.scene.get_object(task_params["robot_name"]["value"]) my_controller = PickPlaceController(name="pick_place_controller", gripper=my_ur10.gripper, robot_articulation=my_ur10) articulation_controller = my_ur10.get_articulation_controller() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() actions = my_controller.forward( picking_position=observations[task_params["cube_name"]["value"]]["position"], placing_position=observations[task_params["cube_name"]["value"]]["target_position"], current_joint_positions=observations[task_params["robot_name"]["value"]]["joint_positions"], end_effector_offset=np.array([0, 0, 0.02]), ) if my_controller.is_done(): print("done picking and placing") articulation_controller.apply_action(actions) simulation_app.close()
1,955
Python
42.466666
118
0.724297
2820207922/isaac_ws/standalone_examples/api/omni.isaac.universal_robots/multiple_tasks.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.dofbot.controllers import PickPlaceController from omni.isaac.dofbot.tasks import PickPlace from omni.isaac.franka.controllers.stacking_controller import StackingController as FrankaStackingController from omni.isaac.franka.tasks import Stacking as FrankaStacking from omni.isaac.universal_robots.controllers import StackingController as UR10StackingController from omni.isaac.universal_robots.tasks import Stacking as UR10Stacking from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController from omni.isaac.wheeled_robots.controllers.holonomic_controller import HolonomicController from omni.isaac.wheeled_robots.robots import WheeledRobot from omni.isaac.wheeled_robots.robots.holonomic_robot_usd_setup import HolonomicRobotUsdSetup my_world = World(stage_units_in_meters=1.0) tasks = [] num_of_tasks = 3 tasks.append(FrankaStacking(name="task_0", offset=np.array([0, -2, 0]))) my_world.add_task(tasks[-1]) tasks.append(UR10Stacking(name="task_1", offset=np.array([0.5, 0.5, 0]))) my_world.add_task(tasks[-1]) tasks.append(PickPlace(offset=np.array([0, -1, 0]))) my_world.add_task(tasks[-1]) assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") kaya_asset_path = assets_root_path + "/Isaac/Robots/Kaya/kaya.usd" my_kaya = my_world.scene.add( WheeledRobot( prim_path="/World/Kaya", name="my_kaya", wheel_dof_names=["axle_0_joint", "axle_1_joint", "axle_2_joint"], create_robot=True, usd_path=kaya_asset_path, position=np.array([-1, 0, 0]), ) ) jetbot_asset_path = assets_root_path + "/Isaac/Robots/Jetbot/jetbot.usd" my_jetbot = my_world.scene.add( WheeledRobot( prim_path="/World/Jetbot", name="my_jetbot", wheel_dof_names=["left_wheel_joint", "right_wheel_joint"], create_robot=True, usd_path=jetbot_asset_path, position=np.array([-1.5, -1.5, 0]), ) ) my_world.reset() robots = [] for i in range(num_of_tasks): task_params = tasks[i].get_params() robots.append(my_world.scene.get_object(task_params["robot_name"]["value"])) controllers = [] controllers.append( FrankaStackingController( name="pick_place_controller", gripper=robots[0].gripper, robot_articulation=robots[0], picking_order_cube_names=tasks[0].get_cube_names(), robot_observation_name=robots[0].name, ) ) controllers[-1].reset() controllers.append( UR10StackingController( name="pick_place_controller", gripper=robots[1].gripper, robot_articulation=robots[1], picking_order_cube_names=tasks[1].get_cube_names(), robot_observation_name=robots[1].name, ) ) controllers[-1].reset() controllers.append( PickPlaceController(name="pick_place_controller", gripper=robots[2].gripper, robot_articulation=robots[2]) ) kaya_setup = HolonomicRobotUsdSetup( robot_prim_path=my_kaya.prim_path, com_prim_path="/World/Kaya/base_link/control_offset" ) ( wheel_radius, wheel_positions, wheel_orientations, mecanum_angles, wheel_axis, up_axis, ) = kaya_setup.get_holonomic_controller_params() kaya_controller = HolonomicController( name="holonomic_controller", wheel_radius=wheel_radius, wheel_positions=wheel_positions, wheel_orientations=wheel_orientations, mecanum_angles=mecanum_angles, wheel_axis=wheel_axis, up_axis=up_axis, ) jetbot_controller = DifferentialController(name="simple_control", wheel_radius=0.03, wheel_base=0.1125) pick_place_task_params = tasks[2].get_params() articulation_controllers = [] for i in range(num_of_tasks): articulation_controllers.append(robots[i].get_articulation_controller()) i = 0 my_world.pause() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() controllers[0].reset() controllers[1].reset() controllers[2].reset() kaya_controller.reset() jetbot_controller.reset() observations = my_world.get_observations() actions = controllers[0].forward(observations=observations, end_effector_offset=np.array([0, 0, 0])) articulation_controllers[0].apply_action(actions) actions = controllers[1].forward(observations=observations, end_effector_offset=np.array([0, 0, 0.02])) articulation_controllers[1].apply_action(actions) actions = controllers[2].forward( picking_position=observations[pick_place_task_params["cube_name"]["value"]]["position"], placing_position=observations[pick_place_task_params["cube_name"]["value"]]["target_position"], current_joint_positions=observations[pick_place_task_params["robot_name"]["value"]]["joint_positions"], end_effector_offset=np.array([0, -0.06, 0]), ) articulation_controllers[2].apply_action(actions) if i >= 0 and i < 500: my_kaya.apply_wheel_actions(kaya_controller.forward(command=[0.2, 0.0, 0.0])) my_jetbot.apply_wheel_actions(jetbot_controller.forward(command=[0.1, 0])) elif i >= 500 and i < 1000: # TODO: change with new USD my_kaya.apply_wheel_actions(kaya_controller.forward(command=[0, 0.2, 0.0])) my_jetbot.apply_wheel_actions(jetbot_controller.forward(command=[0.0, np.pi / 10])) elif i >= 1000 and i < 1500: # TODO: change with new USD my_kaya.apply_wheel_actions(kaya_controller.forward(command=[0, 0.0, 0.6])) my_jetbot.apply_wheel_actions(jetbot_controller.forward(command=[0.1, 0])) i += 1 simulation_app.close()
6,457
Python
38.619632
115
0.696144
2820207922/isaac_ws/standalone_examples/api/omni.isaac.universal_robots/stacking.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.core import World from omni.isaac.universal_robots.controllers import StackingController from omni.isaac.universal_robots.tasks import Stacking my_world = World(stage_units_in_meters=1.0) my_task = Stacking() my_world.add_task(my_task) my_world.reset() robot_name = my_task.get_params()["robot_name"]["value"] my_ur10 = my_world.scene.get_object(robot_name) my_controller = StackingController( name="stacking_controller", gripper=my_ur10.gripper, robot_articulation=my_ur10, picking_order_cube_names=my_task.get_cube_names(), robot_observation_name=robot_name, ) articulation_controller = my_ur10.get_articulation_controller() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() actions = my_controller.forward(observations=observations, end_effector_offset=np.array([0.0, 0.0, 0.02])) articulation_controller.apply_action(actions) simulation_app.close()
1,669
Python
36.11111
114
0.745956
2820207922/isaac_ws/standalone_examples/api/omni.isaac.universal_robots/follow_target_with_rmpflow.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.isaac.universal_robots.controllers.rmpflow_controller import RMPFlowController from omni.isaac.universal_robots.tasks import FollowTarget my_world = World(stage_units_in_meters=1.0) my_task = FollowTarget(name="follow_target_task", attach_gripper=True) my_world.add_task(my_task) my_world.reset() task_params = my_world.get_task("follow_target_task").get_params() ur10_name = task_params["robot_name"]["value"] target_name = task_params["target_name"]["value"] my_ur10 = my_world.scene.get_object(ur10_name) my_controller = RMPFlowController(name="target_follower_controller", robot_articulation=my_ur10, attach_gripper=True) articulation_controller = my_ur10.get_articulation_controller() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() actions = my_controller.forward( target_end_effector_position=observations[target_name]["position"], target_end_effector_orientation=observations[target_name]["orientation"], ) articulation_controller.apply_action(actions) simulation_app.close()
1,816
Python
43.317072
117
0.749449
2820207922/isaac_ws/standalone_examples/api/omni.isaac.universal_robots/follow_target_with_ik.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb from omni.isaac.core import World from omni.isaac.universal_robots import KinematicsSolver from omni.isaac.universal_robots.tasks import FollowTarget my_world = World(stage_units_in_meters=1.0) my_task = FollowTarget(name="follow_target_task", attach_gripper=True) my_world.add_task(my_task) my_world.reset() task_params = my_world.get_task("follow_target_task").get_params() ur10_name = task_params["robot_name"]["value"] target_name = task_params["target_name"]["value"] my_ur10 = my_world.scene.get_object(ur10_name) my_controller = KinematicsSolver(my_ur10, attach_gripper=True) articulation_controller = my_ur10.get_articulation_controller() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() observations = my_world.get_observations() actions, succ = my_controller.compute_inverse_kinematics( target_position=observations[target_name]["position"], target_orientation=observations[target_name]["orientation"], ) if succ: articulation_controller.apply_action(actions) else: carb.log_warn("IK did not converge to a solution. No action is being taken.") simulation_app.close()
1,832
Python
40.65909
90
0.734716
2820207922/isaac_ws/standalone_examples/api/omni.isaac.universal_robots/pick_place2.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.core import World from omni.isaac.core.utils.collisions import ray_cast from omni.isaac.core.utils.rotations import euler_angles_to_quat from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController from omni.isaac.universal_robots.tasks import BinFilling my_world = World(stage_units_in_meters=1.0) my_task = BinFilling() my_world.add_task(my_task) my_world.reset() task_params = my_task.get_params() my_ur10 = my_world.scene.get_object(task_params["robot_name"]["value"]) my_controller = PickPlaceController(name="pick_place_controller", gripper=my_ur10.gripper, robot_articulation=my_ur10) articulation_controller = my_ur10.get_articulation_controller() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() actions = my_controller.forward( picking_position=observations[task_params["bin_name"]["value"]]["position"], placing_position=observations[task_params["bin_name"]["value"]]["target_position"], current_joint_positions=observations[task_params["robot_name"]["value"]]["joint_positions"], # end_effector_offset=np.array([0, 0, -0.075]) end_effector_offset=np.array([0, -0.098, 0.03]), end_effector_orientation=euler_angles_to_quat(np.array([np.pi, 0, np.pi / 2.0])), ) if my_controller.get_current_event() > 2 and my_controller.get_current_event() < 6: print( ray_cast( position=observations[task_params["robot_name"]["value"]]["end_effector_position"], orientation=observations[task_params["robot_name"]["value"]]["end_effector_orientation"], offset=np.array([0.162, 0, 0]), ) ) if my_controller.is_done(): print("done picking and placing") articulation_controller.apply_action(actions) simulation_app.close()
2,667
Python
45.807017
118
0.685789
2820207922/isaac_ws/standalone_examples/api/omni.isaac.universal_robots/bin_filling.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.core import World from omni.isaac.core.utils.rotations import euler_angles_to_quat from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController from omni.isaac.universal_robots.tasks import BinFilling my_world = World(stage_units_in_meters=1.0) my_task = BinFilling() my_world.add_task(my_task) my_world.reset() task_params = my_task.get_params() my_ur10 = my_world.scene.get_object(task_params["robot_name"]["value"]) my_controller = PickPlaceController(name="pick_place_controller", gripper=my_ur10.gripper, robot_articulation=my_ur10) articulation_controller = my_ur10.get_articulation_controller() i = 0 added_screws = False while simulation_app.is_running(): if my_world.is_playing(): my_world.step(render=True) if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() added_screws = False observations = my_world.get_observations() actions = my_controller.forward( picking_position=observations[task_params["bin_name"]["value"]]["position"], placing_position=observations[task_params["bin_name"]["value"]]["target_position"], current_joint_positions=observations[task_params["robot_name"]["value"]]["joint_positions"], end_effector_offset=np.array([0, -0.098, 0.03]), end_effector_orientation=euler_angles_to_quat(np.array([np.pi, 0, np.pi / 2.0])), ) if not added_screws and my_controller.get_current_event() == 6 and not my_controller.is_paused(): my_controller.pause() my_task.add_screws(screws_number=20) added_screws = True if my_controller.is_done(): print("done picking and placing") articulation_controller.apply_action(actions) else: my_world.render() simulation_app.close()
2,434
Python
43.272726
118
0.70378
2820207922/isaac_ws/standalone_examples/api/omni.isaac.kaya/kaya_move.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.wheeled_robots.controllers.holonomic_controller import HolonomicController from omni.isaac.wheeled_robots.robots import WheeledRobot from omni.isaac.wheeled_robots.robots.holonomic_robot_usd_setup import HolonomicRobotUsdSetup my_world = World(stage_units_in_meters=1.0) assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") kaya_asset_path = assets_root_path + "/Isaac/Robots/Kaya/kaya.usd" my_kaya = my_world.scene.add( WheeledRobot( prim_path="/World/Kaya", name="my_kaya", wheel_dof_names=["axle_0_joint", "axle_1_joint", "axle_2_joint"], create_robot=True, usd_path=kaya_asset_path, position=np.array([0, 0.0, 0.02]), orientation=np.array([1.0, 0.0, 0.0, 0.0]), ) ) my_world.scene.add_default_ground_plane() kaya_setup = HolonomicRobotUsdSetup( robot_prim_path=my_kaya.prim_path, com_prim_path="/World/Kaya/base_link/control_offset" ) ( wheel_radius, wheel_positions, wheel_orientations, mecanum_angles, wheel_axis, up_axis, ) = kaya_setup.get_holonomic_controller_params() my_controller = HolonomicController( name="holonomic_controller", wheel_radius=wheel_radius, wheel_positions=wheel_positions, wheel_orientations=wheel_orientations, mecanum_angles=mecanum_angles, wheel_axis=wheel_axis, up_axis=up_axis, ) my_world.reset() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() if i >= 0 and i < 500: my_kaya.apply_wheel_actions(my_controller.forward(command=[0.4, 0.0, 0.0])) elif i >= 500 and i < 1000: my_kaya.apply_wheel_actions(my_controller.forward(command=[0.0, 0.4, 0.0])) elif i >= 1000 and i < 1200: my_kaya.apply_wheel_actions(my_controller.forward(command=[0.0, 0.0, 0.05])) elif i == 1200: i = 0 i += 1 simulation_app.close()
2,828
Python
33.084337
93
0.694484
2820207922/isaac_ws/standalone_examples/api/omni.isaac.franka/pick_place.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.core import World from omni.isaac.franka.controllers.pick_place_controller import PickPlaceController from omni.isaac.franka.tasks import PickPlace my_world = World(stage_units_in_meters=1.0) my_task = PickPlace() my_world.add_task(my_task) my_world.reset() task_params = my_task.get_params() my_franka = my_world.scene.get_object(task_params["robot_name"]["value"]) my_controller = PickPlaceController( name="pick_place_controller", gripper=my_franka.gripper, robot_articulation=my_franka ) articulation_controller = my_franka.get_articulation_controller() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() actions = my_controller.forward( picking_position=observations[task_params["cube_name"]["value"]]["position"], placing_position=observations[task_params["cube_name"]["value"]]["target_position"], current_joint_positions=observations[task_params["robot_name"]["value"]]["joint_positions"], end_effector_offset=np.array([0, 0.005, 0]), ) if my_controller.is_done(): print("done picking and placing") articulation_controller.apply_action(actions) simulation_app.close()
1,950
Python
40.510637
104
0.721538
2820207922/isaac_ws/standalone_examples/api/omni.isaac.franka/multiple_tasks.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.core import World from omni.isaac.franka.controllers.pick_place_controller import PickPlaceController from omni.isaac.franka.tasks import PickPlace my_world = World(stage_units_in_meters=1.0) tasks = [] num_of_tasks = 2 for i in range(num_of_tasks): tasks.append(PickPlace(name="task" + str(i), offset=np.array([0, (i * 2) - 3, 0]))) my_world.add_task(tasks[-1]) my_world.reset() frankas = [] cube_names = [] for i in range(num_of_tasks): task_params = tasks[i].get_params() frankas.append(my_world.scene.get_object(task_params["robot_name"]["value"])) cube_names.append(task_params["cube_name"]["value"]) controllers = [] for i in range(num_of_tasks): controllers.append( PickPlaceController(name="pick_place_controller", gripper=frankas[i].gripper, robot_articulation=frankas[i]) ) controllers[-1].reset() articulation_controllers = [] for i in range(num_of_tasks): articulation_controllers.append(frankas[i].get_articulation_controller()) my_world.pause() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() for i in range(num_of_tasks): controllers[i].reset() observations = my_world.get_observations() for i in range(num_of_tasks): articulation_controllers.append(frankas[i].get_articulation_controller()) actions = controllers[i].forward( picking_position=observations[cube_names[i]]["position"], placing_position=observations[cube_names[i]]["target_position"], current_joint_positions=observations[frankas[i].name]["joint_positions"], end_effector_offset=np.array([0, 0, 0]), ) articulation_controllers[i].apply_action(actions) simulation_app.close()
2,447
Python
37.857142
116
0.691868
2820207922/isaac_ws/standalone_examples/api/omni.isaac.franka/stacking.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.isaac.franka.controllers.stacking_controller import StackingController from omni.isaac.franka.tasks import Stacking my_world = World(stage_units_in_meters=1.0) my_task = Stacking() my_world.add_task(my_task) my_world.reset() robot_name = my_task.get_params()["robot_name"]["value"] my_franka = my_world.scene.get_object(robot_name) my_controller = StackingController( name="stacking_controller", gripper=my_franka.gripper, robot_articulation=my_franka, picking_order_cube_names=my_task.get_cube_names(), robot_observation_name=robot_name, ) articulation_controller = my_franka.get_articulation_controller() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() actions = my_controller.forward(observations=observations) articulation_controller.apply_action(actions) simulation_app.close()
1,610
Python
35.613636
80
0.749689
2820207922/isaac_ws/standalone_examples/api/omni.isaac.franka/follow_target_with_rmpflow.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.core import World from omni.isaac.franka.controllers.rmpflow_controller import RMPFlowController from omni.isaac.franka.tasks import FollowTarget my_world = World(stage_units_in_meters=1.0) my_task = FollowTarget(name="follow_target_task") my_world.add_task(my_task) my_world.reset() task_params = my_world.get_task("follow_target_task").get_params() franka_name = task_params["robot_name"]["value"] target_name = task_params["target_name"]["value"] my_franka = my_world.scene.get_object(franka_name) my_controller = RMPFlowController(name="target_follower_controller", robot_articulation=my_franka) articulation_controller = my_franka.get_articulation_controller() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() observations = my_world.get_observations() actions = my_controller.forward( target_end_effector_position=observations[target_name]["position"], target_end_effector_orientation=observations[target_name]["orientation"], ) articulation_controller.apply_action(actions) simulation_app.close()
1,764
Python
42.048779
98
0.747732
2820207922/isaac_ws/standalone_examples/api/omni.isaac.franka/follow_target_with_ik.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb from omni.isaac.core import World from omni.isaac.franka import KinematicsSolver from omni.isaac.franka.controllers.rmpflow_controller import RMPFlowController from omni.isaac.franka.tasks import FollowTarget my_world = World(stage_units_in_meters=1.0) my_task = FollowTarget(name="follow_target_task") my_world.add_task(my_task) my_world.reset() task_params = my_world.get_task("follow_target_task").get_params() franka_name = task_params["robot_name"]["value"] target_name = task_params["target_name"]["value"] my_franka = my_world.scene.get_object(franka_name) my_controller = KinematicsSolver(my_franka) articulation_controller = my_franka.get_articulation_controller() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() observations = my_world.get_observations() actions, succ = my_controller.compute_inverse_kinematics( target_position=observations[target_name]["position"], target_orientation=observations[target_name]["orientation"], ) if succ: articulation_controller.apply_action(actions) else: carb.log_warn("IK did not converge to a solution. No action is being taken.") simulation_app.close()
1,859
Python
40.333332
90
0.739107
2820207922/isaac_ws/standalone_examples/api/omni.isaac.franka/franka_gripper.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse from omni.isaac.core import World from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.franka import Franka parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() my_world = World(stage_units_in_meters=1.0) my_franka = my_world.scene.add(Franka(prim_path="/World/Franka", name="my_franka")) my_world.scene.add_default_ground_plane() my_world.reset() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() i += 1 gripper_positions = my_franka.gripper.get_joint_positions() if i < 500: my_franka.gripper.apply_action( ArticulationAction(joint_positions=[gripper_positions[0] - (0.005), gripper_positions[1] - (0.005)]) ) if i > 500: my_franka.gripper.apply_action( ArticulationAction(joint_positions=[gripper_positions[0] + (0.005), gripper_positions[1] + (0.005)]) ) if i == 1000: i = 0 if args.test is True: break simulation_app.close()
1,791
Python
33.461538
116
0.686209
2820207922/isaac_ws/standalone_examples/api/omni.isaac.debug_draw/rtx_radar.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import sys import carb from omni.isaac.kit import SimulationApp # Example for creating a RTX lidar sensor and publishing PCL data simulation_app = SimulationApp({"headless": False}) import omni import omni.kit.viewport.utility import omni.replicator.core as rep from omni.isaac.core import SimulationContext from omni.isaac.core.utils import nucleus, stage from omni.isaac.core.utils.extensions import enable_extension from pxr import Gf # enable ROS bridge extension enable_extension("omni.isaac.debug_draw") simulation_app.update() # Locate Isaac Sim assets folder to load environment and robot stages assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() simulation_app.update() # Loading the simple_room environment stage.add_reference_to_stage( assets_root_path + "/Isaac/Environments/Simple_Warehouse/full_warehouse.usd", "/background" ) simulation_app.update() radar_config = "Example" if len(sys.argv) == 2: radar_config = sys.argv[1] # Create the lidar sensor that generates data into "RtxSensorCpu" # Sensor needs to be rotated 90 degrees about X so that its Z up # Possible options are Example_Rotary and Example_Solid_State # drive sim applies 0.5,-0.5,-0.5,w(-0.5), we have to apply the reverse _, sensor = omni.kit.commands.execute( "IsaacSensorCreateRtxRadar", path="/sensor", parent=None, config=radar_config, translation=(-0.937, 1.745, 0.8940), orientation=Gf.Quatd(0.70711, 0.70711, 0, 0), # Gf.Quatd is w,i,j,k ) hydra_texture = rep.create.render_product(sensor.GetPath(), [1, 1], name="Isaac") simulation_context = SimulationContext(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0, stage_units_in_meters=1.0) simulation_app.update() # Create the debug draw pipeline in the post process graph writer = rep.writers.get("RtxRadar" + "DebugDrawPointCloud") writer.attach([hydra_texture]) simulation_app.update() simulation_context.play() while simulation_app.is_running(): simulation_app.update() # cleanup and shutdown simulation_context.stop() simulation_app.close()
2,596
Python
31.873417
113
0.758089
2820207922/isaac_ws/standalone_examples/api/omni.isaac.debug_draw/rtx_lidar.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import sys import carb from omni.isaac.kit import SimulationApp # Example for creating a RTX lidar sensor and publishing PCL data simulation_app = SimulationApp({"headless": False}) import omni import omni.kit.viewport.utility import omni.replicator.core as rep from omni.isaac.core import SimulationContext from omni.isaac.core.utils import nucleus, stage from omni.isaac.core.utils.extensions import enable_extension from pxr import Gf # enable ROS bridge extension enable_extension("omni.isaac.debug_draw") simulation_app.update() # Locate Isaac Sim assets folder to load environment and robot stages assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() simulation_app.update() # Loading the simple_room environment stage.add_reference_to_stage( assets_root_path + "/Isaac/Environments/Simple_Warehouse/full_warehouse.usd", "/background" ) simulation_app.update() lidar_config = "Example_Rotary" if len(sys.argv) == 2: lidar_config = sys.argv[1] # Create the lidar sensor that generates data into "RtxSensorCpu" # Sensor needs to be rotated 90 degrees about X so that its Z up # Possible options are Example_Rotary and Example_Solid_State # drive sim applies 0.5,-0.5,-0.5,w(-0.5), we have to apply the reverse _, sensor = omni.kit.commands.execute( "IsaacSensorCreateRtxLidar", path="/sensor", parent=None, config=lidar_config, translation=(0, 0, 1.0), orientation=Gf.Quatd(1.0, 0.0, 0.0, 0.0), # Gf.Quatd is w,i,j,k ) hydra_texture = rep.create.render_product(sensor.GetPath(), [1, 1], name="Isaac") simulation_context = SimulationContext(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0, stage_units_in_meters=1.0) simulation_app.update() # Create the debug draw pipeline in the post process graph writer = rep.writers.get("RtxLidar" + "DebugDrawPointCloud" + "Buffer") writer.attach([hydra_texture]) simulation_app.update() simulation_context.play() while simulation_app.is_running(): simulation_app.update() # cleanup and shutdown simulation_context.stop() simulation_app.close()
2,599
Python
31.5
113
0.75606
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/example_command_api_main.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import time import numpy as np import omni from omni.isaac.core.objects import DynamicCuboid, VisualCuboid from omni.isaac.cortex.cortex_world import CortexWorld from omni.isaac.cortex.df import DfNetwork, DfState, DfStateMachineDecider, DfStateSequence from omni.isaac.cortex.dfb import DfBasicContext from omni.isaac.cortex.robot import add_franka_to_stage class NullspaceShiftState(DfState): def __init__(self): super().__init__() self.config_mean = np.array([0.00, -1.3, 0.00, -2.87, 0.00, 2.00, 0.75]) self.target_p = np.array([0.7, 0.0, 0.5]) self.construction_time = time.time() def enter(self): # Change the posture configuration while maintaining a consistent target. posture_config = self.config_mean + np.random.randn(7) self.context.robot.arm.send_end_effector(target_position=self.target_p, posture_config=posture_config) self.entry_time = time.time() # Close the gripper if open and open the gripper if closed. It closes more quickly than it # opens. gripper = self.context.robot.gripper if gripper.get_width() > 0.05: gripper.close(speed=0.5) else: gripper.open(speed=0.1) print("[%f] <enter> sampling posture config" % (self.entry_time - self.construction_time)) def step(self): if time.time() - self.entry_time < 2.0: return self return None def main(): world = CortexWorld() robot = world.add_robot(add_franka_to_stage(name="franka", prim_path="/World/franka")) world.scene.add_default_ground_plane() decider_network = DfNetwork( DfStateMachineDecider(DfStateSequence([NullspaceShiftState()], loop=True)), context=DfBasicContext(robot) ) world.add_decider_network(decider_network) world.run(simulation_app) simulation_app.close() if __name__ == "__main__": main()
2,443
Python
33.422535
113
0.695456
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/example_cortex_sync_belief_main.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser("example_cortex_sync_belief") parser.add_argument( "--behavior", type=str, default=None, help="Which behavior to run. See behavior/franka for available behavior files. By default, it launches no behavior.", ) parser.add_argument( "--auto_sync_objects", action="store_true", help="Automatically sync the objects with their measured poses." ) args, _ = parser.parse_known_args() simulation_app = SimulationApp({"headless": False}) import numpy as np from behaviors.franka.franka_behaviors import ContextStateMonitor, behaviors from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.cortex.cortex_object import CortexObject from omni.isaac.cortex.cortex_utils import load_behavior_module from omni.isaac.cortex.cortex_world import CortexWorld from omni.isaac.cortex.robot import add_franka_to_stage enable_extension("omni.isaac.cortex_sync") from omni.isaac.cortex_sync.cortex_ros import CortexControlRos, CortexObjectsRos, cortex_init_ros_node class CubeSpec: def __init__(self, name, color): self.name = name self.color = np.array(color) def main(): cortex_init_ros_node("example_cortex_sync_belief") world = CortexWorld() robot = world.add_robot(add_franka_to_stage(name="franka", prim_path="/World/Franka")) obs_specs = [ CubeSpec("RedCube", [0.7, 0.0, 0.0]), CubeSpec("BlueCube", [0.0, 0.0, 0.7]), CubeSpec("YellowCube", [0.7, 0.7, 0.0]), CubeSpec("GreenCube", [0.0, 0.7, 0.0]), ] width = 0.0515 cortex_objects = {} for i, (x, spec) in enumerate(zip(np.linspace(0.3, 0.7, len(obs_specs)), obs_specs)): obj = world.scene.add( DynamicCuboid( prim_path="/World/Obs/{}".format(spec.name), name=spec.name, size=width, color=spec.color, translation=np.array([x, -0.4, width / 2]), ) ) cortex_objects[spec.name] = CortexObject(obj) robot.register_obstacle(cortex_objects[spec.name]) world.scene.add_default_ground_plane() cortex_control = CortexControlRos(robot) cortex_objects_ros = CortexObjectsRos(cortex_objects, auto_sync_objects=args.auto_sync_objects) decider_network = None context_monitor = ContextStateMonitor(print_dt=0.25) if args.behavior in behaviors: decider_network = behaviors[args.behavior].make_decider_network(robot) elif args.behavior is not None: decider_network = load_behavior_module(args.behavior).make_decider_network(robot) if decider_network: decider_network.context.add_monitor(context_monitor.monitor) world.run(simulation_app) simulation_app.close() if __name__ == "__main__": main()
3,330
Python
34.43617
121
0.694895
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/follow_example_main.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.core.objects import VisualSphere from omni.isaac.cortex.cortex_world import CortexWorld from omni.isaac.cortex.df import DfNetwork, DfState, DfStateMachineDecider from omni.isaac.cortex.dfb import DfBasicContext from omni.isaac.cortex.robot import add_franka_to_stage class FollowState(DfState): """The context object is available as self.context. We have access to everything in the context object, which in this case is everything in the robot object (the command API and the follow sphere). """ @property def robot(self): return self.context.robot @property def follow_sphere(self): return self.context.robot.follow_sphere def enter(self): self.robot.gripper.close() self.follow_sphere.set_world_pose(*self.robot.arm.get_fk_pq().as_tuple()) def step(self): target_position, _ = self.follow_sphere.get_world_pose() self.robot.arm.send_end_effector(target_position=target_position) return self # Always transition back to this state. def main(): world = CortexWorld() robot = world.add_robot(add_franka_to_stage(name="franka", prim_path="/World/Franka")) # Add a sphere to the scene to follow, and store it off in a new member as part of the robot. robot.follow_sphere = world.scene.add( VisualSphere( name="follow_sphere", prim_path="/World/FollowSphere", radius=0.02, color=np.array([0.7, 0.0, 0.7]) ) ) world.scene.add_default_ground_plane() # Add a simple state machine decider network with the single state defined above. This state # will be persistently stepped because it always returns itself. world.add_decider_network(DfNetwork(DfStateMachineDecider(FollowState()), context=DfBasicContext(robot))) world.run(simulation_app) simulation_app.close() if __name__ == "__main__": main()
2,441
Python
34.911764
111
0.722655
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/example_cortex_sync_main.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser("example_cortex_sync") parser.add_argument( "--behavior", type=str, default="block_stacking_behavior", help="Which behavior to run. See behavior/franka for available behavior files.", ) parser.add_argument( "--auto_sync_objects", action="store_true", help="Automatically sync the objects with their measured poses." ) args, _ = parser.parse_known_args() simulation_app = SimulationApp({"headless": False}) import numpy as np from behaviors.franka.franka_behaviors import ContextStateMonitor, behaviors from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.cortex.cortex_object import CortexObject from omni.isaac.cortex.cortex_utils import load_behavior_module from omni.isaac.cortex.cortex_world import CortexWorld from omni.isaac.cortex.robot import add_franka_to_stage enable_extension("omni.isaac.cortex_sync") from omni.isaac.cortex_sync.cortex_ros import ( CortexControlRos, CortexObjectsRos, CortexSimObjectsRos, CortexSimRobotRos, cortex_init_ros_node, ) class CubeSpec: def __init__(self, name, color): self.name = name self.color = np.array(color) def main(): cortex_init_ros_node("example_cortex_sync") world = CortexWorld() robot = world.add_robot(add_franka_to_stage(name="franka", prim_path="/World/Franka")) sim_prim = XFormPrim(prim_path="/Sim") sim_prim.set_world_pose(position=np.array([-2.0, 0.0, 0.0])) sim_robot = world.add_robot( add_franka_to_stage(name="franka_sim", prim_path="/Sim/Franka", use_motion_commander=False) ) obs_specs = [ CubeSpec("RedCube", [0.7, 0.0, 0.0]), CubeSpec("BlueCube", [0.0, 0.0, 0.7]), CubeSpec("YellowCube", [0.7, 0.7, 0.0]), CubeSpec("GreenCube", [0.0, 0.7, 0.0]), ] width = 0.0515 cortex_objects = {} sim_objects = {} for i, (x, spec) in enumerate(zip(np.linspace(0.3, 0.7, len(obs_specs)), obs_specs)): obj = world.scene.add( DynamicCuboid( prim_path="/World/Obs/{}".format(spec.name), name=spec.name, size=width, color=spec.color, translation=np.array([x, -0.4, width / 2]), ) ) cortex_objects[spec.name] = CortexObject(obj) robot.register_obstacle(cortex_objects[spec.name]) sim_obj = world.scene.add( DynamicCuboid( prim_path="/Sim/Obs/{}".format(spec.name), name="{}_sim".format(spec.name), size=width, color=spec.color, translation=np.array([x, -0.4, width / 2]), ) ) sim_objects[spec.name] = sim_obj world.scene.add_default_ground_plane() cortex_sim = CortexSimRobotRos(sim_robot) cortex_sim_objects_ros = CortexSimObjectsRos(sim_objects) cortex_control = CortexControlRos(robot) cortex_objects_ros = CortexObjectsRos(cortex_objects, auto_sync_objects=args.auto_sync_objects) decider_network = None context_monitor = ContextStateMonitor(print_dt=0.25) if args.behavior in behaviors: decider_network = behaviors[args.behavior].make_decider_network(robot) elif args.behavior is not None: decider_network = load_behavior_module(args.behavior).make_decider_network(robot) if decider_network: decider_network.context.add_monitor(context_monitor.monitor) world.add_decider_network(decider_network) world.run(simulation_app) simulation_app.close() if __name__ == "__main__": main()
4,202
Python
33.450819
112
0.669205
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/demo_ur10_conveyor_main.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import random import numpy as np import omni.isaac.cortex.math_util as math_util import omni.isaac.cortex.sample_behaviors.ur10.bin_stacking_behavior as behavior from omni.isaac.core.objects import VisualCapsule, VisualSphere from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.tasks import BaseTask from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.cortex.cortex_rigid_prim import CortexRigidPrim from omni.isaac.cortex.cortex_utils import get_assets_root_path_or_die from omni.isaac.cortex.cortex_world import CortexWorld from omni.isaac.cortex.robot import CortexUr10 class Ur10Assets: def __init__(self): self.assets_root_path = get_assets_root_path_or_die() self.ur10_table_usd = ( self.assets_root_path + "/Isaac/Samples/Leonardo/Stage/ur10_bin_stacking_short_suction.usd" ) self.small_klt_usd = self.assets_root_path + "/Isaac/Props/KLT_Bin/small_KLT.usd" self.background_usd = self.assets_root_path + "/Isaac/Environments/Simple_Warehouse/warehouse.usd" self.rubiks_cube_usd = self.assets_root_path + "/Isaac/Props/Rubiks_Cube/rubiks_cube.usd" def print_diagnostics(diagnostic): print("=========== logical state ==========") if diagnostic.bin_name: print("active bin info:") print("- bin_obj.name: {}".format(diagnostic.bin_name)) print("- bin_base: {}".format(diagnostic.bin_base)) print("- grasp_T:\n{}".format(diagnostic.grasp)) print("- is_grasp_reached: {}".format(diagnostic.grasp_reached)) print("- is_attached: {}".format(diagnostic.attached)) print("- needs_flip: {}".format(diagnostic.needs_flip)) else: print("<no active bin>") print("------------------------------------") def random_bin_spawn_transform(): x = random.uniform(-0.15, 0.15) y = 1.5 z = -0.15 position = np.array([x, y, z]) z = random.random() * 0.02 - 0.01 w = random.random() * 0.02 - 0.01 norm = np.sqrt(z**2 + w**2) quat = math_util.Quaternion([w / norm, 0, 0, z / norm]) if random.random() > 0.5: print("<flip>") # flip the bin so it's upside down quat = quat * math_util.Quaternion([0, 0, 1, 0]) else: print("<no flip>") return position, quat.vals class BinStackingTask(BaseTask): def __init__(self, env_path, assets): super().__init__("bin_stacking") self.assets = assets self.env_path = "/World/Ur10Table" self.bins = [] self.stashed_bins = [] self.on_conveyor = None def _spawn_bin(self, rigid_bin): x, q = random_bin_spawn_transform() rigid_bin.set_world_pose(position=x, orientation=q) rigid_bin.set_linear_velocity(np.array([0, -0.30, 0])) rigid_bin.set_visibility(True) def post_reset(self) -> None: if len(self.bins) > 0: for rigid_bin in self.bins: self.scene.remove_object(rigid_bin.name) self.bins.clear() self.on_conveyor = None def pre_step(self, time_step_index, simulation_time) -> None: """Spawn a new randomly oriented bin if the previous bin has been placed.""" spawn_new = False if self.on_conveyor is None: spawn_new = True else: (x, y, z), _ = self.on_conveyor.get_world_pose() is_on_conveyor = y > 0.0 and -0.4 < x and x < 0.4 if not is_on_conveyor: spawn_new = True if spawn_new: name = "bin_{}".format(len(self.bins)) prim_path = self.env_path + "/bins/{}".format(name) add_reference_to_stage(usd_path=self.assets.small_klt_usd, prim_path=prim_path) self.on_conveyor = self.scene.add(CortexRigidPrim(name=name, prim_path=prim_path)) self._spawn_bin(self.on_conveyor) self.bins.append(self.on_conveyor) def main(): world = CortexWorld() env_path = "/World/Ur10Table" ur10_assets = Ur10Assets() add_reference_to_stage(usd_path=ur10_assets.ur10_table_usd, prim_path=env_path) add_reference_to_stage(usd_path=ur10_assets.background_usd, prim_path="/World/Background") background_prim = XFormPrim( "/World/Background", position=[10.00, 2.00, -1.18180], orientation=[0.7071, 0, 0, 0.7071] ) robot = world.add_robot(CortexUr10(name="robot", prim_path="{}/ur10".format(env_path))) obs = world.scene.add( VisualSphere( "/World/Ur10Table/Obstacles/FlipStationSphere", name="flip_station_sphere", position=np.array([0.73, 0.76, -0.13]), radius=0.2, visible=False, ) ) robot.register_obstacle(obs) obs = world.scene.add( VisualSphere( "/World/Ur10Table/Obstacles/NavigationDome", name="navigation_dome_obs", position=[-0.031, -0.018, -1.086], radius=1.1, visible=False, ) ) robot.register_obstacle(obs) az = np.array([1.0, 0.0, -0.3]) ax = np.array([0.0, 1.0, 0.0]) ay = np.cross(az, ax) R = math_util.pack_R(ax, ay, az) quat = math_util.matrix_to_quat(R) obs = world.scene.add( VisualCapsule( "/World/Ur10Table/Obstacles/NavigationBarrier", name="navigation_barrier_obs", position=[0.471, 0.276, -0.463 - 0.1], orientation=quat, radius=0.5, height=0.9, visible=False, ) ) robot.register_obstacle(obs) obs = world.scene.add( VisualCapsule( "/World/Ur10Table/Obstacles/NavigationFlipStation", name="navigation_flip_station_obs", position=np.array([0.766, 0.755, -0.5]), radius=0.5, height=0.5, visible=False, ) ) robot.register_obstacle(obs) world.add_task(BinStackingTask(env_path, ur10_assets)) world.add_decider_network(behavior.make_decider_network(robot, print_diagnostics)) world.run(simulation_app) simulation_app.close() if __name__ == "__main__": main()
6,687
Python
33.474227
106
0.612233
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/franka_examples_main.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser("franka_examples") parser.add_argument( "--behavior", type=str, default="block_stacking_behavior", help="Which behavior to run. See behavior/franka for available behavior files.", ) args, _ = parser.parse_known_args() simulation_app = SimulationApp({"headless": False}) import numpy as np from behaviors.franka.franka_behaviors import ContextStateMonitor, behaviors from omni.isaac.core.objects import DynamicCuboid, VisualCuboid from omni.isaac.cortex.cortex_utils import load_behavior_module from omni.isaac.cortex.cortex_world import Behavior, CortexWorld, LogicalStateMonitor from omni.isaac.cortex.robot import add_franka_to_stage from omni.isaac.cortex.tools import SteadyRate class CubeSpec: def __init__(self, name, color): self.name = name self.color = np.array(color) def main(): world = CortexWorld() context_monitor = ContextStateMonitor(print_dt=0.25) robot = world.add_robot(add_franka_to_stage(name="franka", prim_path="/World/Franka")) obs_specs = [ CubeSpec("RedCube", [0.7, 0.0, 0.0]), CubeSpec("BlueCube", [0.0, 0.0, 0.7]), CubeSpec("YellowCube", [0.7, 0.7, 0.0]), CubeSpec("GreenCube", [0.0, 0.7, 0.0]), ] width = 0.0515 for i, (x, spec) in enumerate(zip(np.linspace(0.3, 0.7, len(obs_specs)), obs_specs)): obj = world.scene.add( DynamicCuboid( prim_path="/World/Obs/{}".format(spec.name), name=spec.name, size=width, color=spec.color, position=np.array([x, -0.4, width / 2]), ) ) robot.register_obstacle(obj) world.scene.add_default_ground_plane() print() print("loading behavior: {}".format(args.behavior)) print() if args.behavior in behaviors: decider_network = behaviors[args.behavior].make_decider_network(robot) else: decider_network = load_behavior_module(args.behavior).make_decider_network(robot) decider_network.context.add_monitor(context_monitor.monitor) world.add_decider_network(decider_network) world.run(simulation_app) simulation_app.close() if __name__ == "__main__": main()
2,733
Python
32.753086
90
0.678741
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/example_cortex_sync_sim_main.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser("example_cortex_sync_sim") args, _ = parser.parse_known_args() simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.cortex.cortex_utils import load_behavior_module from omni.isaac.cortex.cortex_world import CortexWorld from omni.isaac.cortex.robot import add_franka_to_stage enable_extension("omni.isaac.cortex_sync") from omni.isaac.cortex_sync.cortex_ros import CortexSimObjectsRos, CortexSimRobotRos, cortex_init_ros_node class CubeSpec: def __init__(self, name, color): self.name = name self.color = np.array(color) def main(): cortex_init_ros_node("example_cortex_sync_sim") world = CortexWorld() sim_robot = world.add_robot( add_franka_to_stage(name="franka_sim", prim_path="/Sim/Franka", use_motion_commander=False) ) obs_specs = [ CubeSpec("RedCube", [0.7, 0.0, 0.0]), CubeSpec("BlueCube", [0.0, 0.0, 0.7]), CubeSpec("YellowCube", [0.7, 0.7, 0.0]), CubeSpec("GreenCube", [0.0, 0.7, 0.0]), ] width = 0.0515 sim_objects = {} for i, (x, spec) in enumerate(zip(np.linspace(0.3, 0.7, len(obs_specs)), obs_specs)): sim_obj = world.scene.add( DynamicCuboid( prim_path="/Sim/Obs/{}".format(spec.name), name="{}_sim".format(spec.name), size=width, color=spec.color, translation=np.array([x, -0.4, width / 2]), ) ) sim_objects[spec.name] = sim_obj world.scene.add_default_ground_plane() cortex_sim = CortexSimRobotRos(sim_robot) cortex_sim_objects_ros = CortexSimObjectsRos(sim_objects) world.run(simulation_app) simulation_app.close() if __name__ == "__main__": main()
2,400
Python
31.013333
106
0.668333
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/follow_example_modified_main.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import numpy as np from omni.isaac.core.objects import VisualSphere from omni.isaac.cortex.cortex_world import CortexWorld from omni.isaac.cortex.df import DfNetwork, DfState, DfStateMachineDecider from omni.isaac.cortex.dfb import DfRobotApiContext from omni.isaac.cortex.robot import add_franka_to_stage class FollowState(DfState): """The context object is available as self.context. We have access to everything in the context object, which in this case is everything in the robot object (the command API and the follow sphere). """ @property def robot(self): return self.context.robot @property def follow_sphere(self): return self.context.robot.follow_sphere def enter(self): self.follow_sphere.set_world_pose(*self.robot.arm.get_fk_pq().as_tuple()) def step(self): target_position, _ = self.follow_sphere.get_world_pose() self.robot.arm.send_end_effector(target_position=target_position) return self # Always transition back to this state. class FollowContext(DfRobotApiContext): def __init__(self, robot): super().__init__(robot) self.reset() self.add_monitors( [FollowContext.monitor_end_effector, FollowContext.monitor_gripper, FollowContext.monitor_diagnostics] ) def reset(self): self.is_target_reached = False def monitor_end_effector(self): eff_p = self.robot.arm.get_fk_p() target_p, _ = self.robot.follow_sphere.get_world_pose() self.is_target_reached = np.linalg.norm(target_p - eff_p) < 0.01 def monitor_gripper(self): if self.is_target_reached: self.robot.gripper.close() else: self.robot.gripper.open() def monitor_diagnostics(self): print("is_target_reached: {}".format(self.is_target_reached)) def main(): world = CortexWorld() robot = world.add_robot(add_franka_to_stage(name="franka", prim_path="/World/Franka")) # Add a sphere to the scene to follow, and store it off in a new member as part of the robot. robot.follow_sphere = world.scene.add( VisualSphere( name="follow_sphere", prim_path="/World/FollowSphere", radius=0.02, color=np.array([0.7, 0.0, 0.7]) ) ) world.scene.add_default_ground_plane() # Add a simple state machine decider network with the single state defined above. This state # will be persistently stepped because it always returns itself. world.add_decider_network(DfNetwork(DfStateMachineDecider(FollowState()), context=FollowContext(robot))) world.run(simulation_app) simulation_app.close() if __name__ == "__main__": main()
3,228
Python
33.351063
114
0.696406
2820207922/isaac_ws/standalone_examples/api/omni.isaac.cortex/behaviors/franka/franka_behaviors.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.cortex.dfb import DfDiagnosticsMonitor from omni.isaac.cortex.sample_behaviors.franka import ( block_stacking_behavior, peck_decider_network, peck_game, peck_state_machine, ) from omni.isaac.cortex.sample_behaviors.franka.simple import simple_decider_network, simple_state_machine behaviors = { "block_stacking_behavior": block_stacking_behavior, "peck_decider_network": peck_decider_network, "peck_game": peck_game, "peck_state_machine": peck_state_machine, "simple_decider_network": simple_decider_network, "simple_state_machine": simple_state_machine, } class ContextStateMonitor(DfDiagnosticsMonitor): """ State monitor to read the context and pass it to the UI. For these behaviors, the context has a `diagnostic_message` that contains the text to be displayed, and each behavior implements its own monitor to update that. """ def __init__(self, print_dt, diagnostic_fn=None): super().__init__(print_dt=print_dt) def print_diagnostics(self, context): if hasattr(context, "diagnostics_message"): print("====================================") print(context.diagnostics_message)
1,637
Python
37.093022
112
0.719609
2820207922/isaac_ws/standalone_examples/api/omni.isaac.jetbot/jetbot_move.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() simulation_app = SimulationApp({"headless": False}) import carb import numpy as np from omni.isaac.core import World from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController from omni.isaac.wheeled_robots.robots import WheeledRobot my_world = World(stage_units_in_meters=1.0) assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") jetbot_asset_path = assets_root_path + "/Isaac/Robots/Jetbot/jetbot.usd" my_jetbot = my_world.scene.add( WheeledRobot( prim_path="/World/Jetbot", name="my_jetbot", wheel_dof_names=["left_wheel_joint", "right_wheel_joint"], create_robot=True, usd_path=jetbot_asset_path, position=np.array([0, 0.0, 2.0]), ) ) my_world.scene.add_default_ground_plane() my_controller = DifferentialController(name="simple_control", wheel_radius=0.03, wheel_base=0.1125) my_world.reset() i = 0 while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() my_controller.reset() if i >= 0 and i < 1000: # forward my_jetbot.apply_wheel_actions(my_controller.forward(command=[0.05, 0])) print(my_jetbot.get_linear_velocity()) elif i >= 1000 and i < 1300: # rotate my_jetbot.apply_wheel_actions(my_controller.forward(command=[0.0, np.pi / 12])) print(my_jetbot.get_angular_velocity()) elif i >= 1300 and i < 2000: # forward my_jetbot.apply_wheel_actions(my_controller.forward(command=[0.05, 0])) elif i == 2000: i = 0 i += 1 if args.test is True: break simulation_app.close()
2,568
Python
34.680555
99
0.682243
2820207922/isaac_ws/standalone_examples/api/omni.isaac.jetbot/stable_baselines_example/eval.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import carb from env import JetBotEnv try: from stable_baselines3 import PPO except Exception as e: carb.log_error(e) carb.log_error( "please install stable-baselines3 in the current python environment or run the following to install into the builtin python environment ./python.sh -m pip install stable-baselines3 " ) exit() policy_path = "./cnn_policy/jetbot_policy.zip" my_env = JetBotEnv(headless=False) model = PPO.load(policy_path) for _ in range(20): obs, _ = my_env.reset() done = False while not done: actions, _ = model.predict(observation=obs, deterministic=True) obs, reward, done, truncated, info = my_env.step(actions) my_env.render() my_env.close()
1,166
Python
30.54054
190
0.731561
2820207922/isaac_ws/standalone_examples/api/omni.isaac.jetbot/stable_baselines_example/env.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import math import carb import gymnasium import numpy as np from gymnasium import spaces class JetBotEnv(gymnasium.Env): metadata = {"render.modes": ["human"]} def __init__( self, skip_frame=1, physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0, max_episode_length=256, seed=0, headless=True, ) -> None: from omni.isaac.kit import SimulationApp self.headless = headless self._simulation_app = SimulationApp({"headless": self.headless, "anti_aliasing": 0}) self._skip_frame = skip_frame self._dt = physics_dt * self._skip_frame self._max_episode_length = max_episode_length self._steps_after_reset = int(rendering_dt / physics_dt) from omni.isaac.core import World from omni.isaac.core.objects import VisualCuboid from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController from omni.isaac.wheeled_robots.robots import WheeledRobot self._my_world = World(physics_dt=physics_dt, rendering_dt=rendering_dt, stage_units_in_meters=1.0) self._my_world.scene.add_default_ground_plane() assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") return jetbot_asset_path = assets_root_path + "/Isaac/Robots/Jetbot/jetbot.usd" self.jetbot = self._my_world.scene.add( WheeledRobot( prim_path="/jetbot", name="my_jetbot", wheel_dof_names=["left_wheel_joint", "right_wheel_joint"], create_robot=True, usd_path=jetbot_asset_path, position=np.array([0, 0.0, 0.03]), orientation=np.array([1.0, 0.0, 0.0, 0.0]), ) ) self.jetbot_controller = DifferentialController(name="simple_control", wheel_radius=0.0325, wheel_base=0.1125) self.goal = self._my_world.scene.add( VisualCuboid( prim_path="/new_cube_1", name="visual_cube", position=np.array([0.60, 0.30, 0.05]), size=0.1, color=np.array([1.0, 0, 0]), ) ) self.seed(seed) self.reward_range = (-float("inf"), float("inf")) gymnasium.Env.__init__(self) self.action_space = spaces.Box(low=-1, high=1.0, shape=(2,), dtype=np.float32) self.observation_space = spaces.Box(low=float("inf"), high=float("inf"), shape=(16,), dtype=np.float32) self.max_velocity = 1 self.max_angular_velocity = math.pi self.reset_counter = 0 return def get_dt(self): return self._dt def step(self, action): previous_jetbot_position, _ = self.jetbot.get_world_pose() # action forward velocity , angular velocity on [-1, 1] raw_forward = action[0] raw_angular = action[1] # we want to force the jetbot to always drive forward # so we transform to [0,1]. we also scale by our max velocity forward = (raw_forward + 1.0) / 2.0 forward_velocity = forward * self.max_velocity # we scale the angular, but leave it on [-1,1] so the # jetbot can remain an ambiturner. angular_velocity = raw_angular * self.max_angular_velocity # we apply our actions to the jetbot for i in range(self._skip_frame): self.jetbot.apply_wheel_actions( self.jetbot_controller.forward(command=[forward_velocity, angular_velocity]) ) self._my_world.step(render=False) observations = self.get_observations() info = {} done = False truncated = False if self._my_world.current_time_step_index - self._steps_after_reset >= self._max_episode_length: done = True truncated = True goal_world_position, _ = self.goal.get_world_pose() current_jetbot_position, _ = self.jetbot.get_world_pose() previous_dist_to_goal = np.linalg.norm(goal_world_position - previous_jetbot_position) current_dist_to_goal = np.linalg.norm(goal_world_position - current_jetbot_position) reward = previous_dist_to_goal - current_dist_to_goal if current_dist_to_goal < 0.1: done = True return observations, reward, done, truncated, info def reset(self, seed=None): self._my_world.reset() self.reset_counter = 0 # randomize goal location in circle around robot alpha = 2 * math.pi * np.random.rand() r = 1.00 * math.sqrt(np.random.rand()) + 0.20 self.goal.set_world_pose(np.array([math.sin(alpha) * r, math.cos(alpha) * r, 0.05])) observations = self.get_observations() return observations, {} def get_observations(self): self._my_world.render() jetbot_world_position, jetbot_world_orientation = self.jetbot.get_world_pose() jetbot_linear_velocity = self.jetbot.get_linear_velocity() jetbot_angular_velocity = self.jetbot.get_angular_velocity() goal_world_position, _ = self.goal.get_world_pose() obs = np.concatenate( [ jetbot_world_position, jetbot_world_orientation, jetbot_linear_velocity, jetbot_angular_velocity, goal_world_position, ] ) return obs def render(self, mode="human"): return def close(self): self._simulation_app.close() return def seed(self, seed=None): self.np_random, seed = gymnasium.utils.seeding.np_random(seed) np.random.seed(seed) return [seed]
6,310
Python
38.198758
118
0.606339
2820207922/isaac_ws/standalone_examples/api/omni.isaac.jetbot/stable_baselines_example/train.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import carb import torch as th from env import JetBotEnv parser = argparse.ArgumentParser() parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() log_dir = "./cnn_policy" # set headles to false to visualize training my_env = JetBotEnv(headless=True) # in test mode we manually install sb3 if args.test is True: import omni.kit.pipapi omni.kit.pipapi.install("stable-baselines3==2.0.0", module="stable_baselines3") omni.kit.pipapi.install("tensorboard") # import stable baselines try: from stable_baselines3 import PPO from stable_baselines3.common.callbacks import CheckpointCallback from stable_baselines3.ppo import MlpPolicy except Exception as e: carb.log_error(e) carb.log_error( "please install stable-baselines3 in the current python environment or run the following to install into the builtin python environment ./python.sh -m pip install stable-baselines3" ) exit() try: import tensorboard except Exception as e: carb.log_error(e) carb.log_error( "please install tensorboard in the current python environment or run the following to install into the builtin python environment ./python.sh -m pip install tensorboard" ) exit() policy_kwargs = dict(activation_fn=th.nn.ReLU, net_arch=[dict(vf=[128, 128, 128], pi=[128, 128, 128])]) policy = MlpPolicy total_timesteps = 500000 if args.test is True: total_timesteps = 10000 checkpoint_callback = CheckpointCallback(save_freq=10000, save_path=log_dir, name_prefix="jetbot_policy_checkpoint") model = PPO( policy, my_env, policy_kwargs=policy_kwargs, verbose=1, n_steps=2560, batch_size=64, learning_rate=0.000125, gamma=0.9, ent_coef=7.5e-08, clip_range=0.3, n_epochs=5, gae_lambda=1.0, max_grad_norm=0.9, vf_coef=0.95, device="cuda:0", tensorboard_log=log_dir, ) model.learn(total_timesteps=total_timesteps, callback=[checkpoint_callback]) model.save(log_dir + "/jetbot_policy") my_env.close()
2,533
Python
29.53012
189
0.730754
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ocs2/franka_arm_ocs2.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # """Launch Omniverse Toolkit first.""" # kit from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) """Rest everything follows.""" # python import os import numpy as np from omni.isaac.core.objects.sphere import VisualSphere from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.utils.viewports import set_camera_view # isaac-core from omni.isaac.core.world import World # isaac-franka from omni.isaac.franka import Franka # isaac-ocs2 enable_extension("omni.isaac.ocs2") from omni.isaac.ocs2.end_effector_pose_tracking_mpc import EndEffectorPoseTrackingMpc # print settings np.set_printoptions(formatter={"float_kind": "{:.2f}".format}) def main(): """Sets the Franka control mode to "velocity" and tests the MPC.""" # Add MPC config = { "urdf_path": "data/franka/urdf/panda.urdf", "lib_folder": "/tmp/ocs2/auto_generated/franka", "mpc_config_path": "data/franka/mpc/task.info", } mpc_interface = EndEffectorPoseTrackingMpc(config["mpc_config_path"], config["lib_folder"], config["urdf_path"]) # Receive the number of arm dimensions arm_num_dof = mpc_interface.state_dim # print info about MPC print(mpc_interface) # Load kit helper my_world = World(stage_units_in_meters=1.0, physics_dt=0.01) # Set main camera set_camera_view([1.5, 1.5, 1.5], [0.0, 0.0, 0.0]) # Spawn things into stage # -- ground my_world.scene.add_default_ground_plane() # -- robot robot = my_world.scene.add(Franka("/World/Robot")) # -- markers goal_vis_prim = my_world.scene.add( VisualSphere("/World/Vis/ee_goal", name="ee_goal", radius=0.01, color=np.asarray([1.0, 0.0, 0.0])) ) ee_vis_prim = my_world.scene.add( VisualSphere("/World/Vis/ee_curr", name="ee_curr", radius=0.01, color=np.asarray([0.0, 0.0, 1.0])) ) # Play the simulator my_world.reset() # Set control mode robot._articulation_view.switch_control_mode("velocity") robot.disable_gravity() # Now we are ready! print("[INFO]: Setup complete...") # Define simulation stepping dt = 0.01 sim_time = 0.0 # Define goals for the arm ee_goal_index = 0 ee_goals = [ [0.5, 0.5, 0.7, 0.707, 0, 0.707, 0], [0.5, -0.4, 0.6, 0.707, 0.707, 0.0, 0.0], [0.5, 0, 0.5, 0.0, 1.0, 0.0, 0.0], ] # Define a goal for the arm ee_goal_pose = np.array(ee_goals[ee_goal_index]) # Obtain measurements arm_joint_pos = robot.get_joint_positions()[:arm_num_dof] ee_curr_pose = robot.end_effector.get_world_pose() ee_curr_pose = np.concatenate((ee_curr_pose[0], ee_curr_pose[1]), axis=0) # Update visualization goal_vis_prim.set_world_pose(ee_goal_pose[:3], ee_goal_pose[3:]) ee_vis_prim.set_world_pose(ee_curr_pose[:3], ee_curr_pose[3:]) # Define target trajectory mpc_interface.set_target_trajectory( time_traj=[sim_time, sim_time + 2], state_traj=[ee_curr_pose, ee_goal_pose], input_traj=[None, None] ) # Reset the MPC mpc_interface.reset(sim_time, arm_joint_pos) # Simulate physics for count in range(100000): # obtain current measurements arm_joint_pos = robot.get_joint_positions()[:arm_num_dof] # compute arm's optimal control command arm_cmd = mpc_interface.advance(sim_time, arm_joint_pos) # print mpc cost # perform actions action = ArticulationAction(joint_velocities=arm_cmd, joint_indices=[range(arm_num_dof)]) robot.apply_action(action) # perform step my_world.step() # update sim-time sim_time += dt # obtain new measurements ee_curr_pose = robot.end_effector.get_world_pose() ee_curr_pose = np.concatenate((ee_curr_pose[0], ee_curr_pose[1]), axis=0) # compute the waypoint error error = np.linalg.norm(ee_curr_pose[:3] - ee_goal_pose[:3]) # update visualization ee_vis_prim.set_world_pose(ee_curr_pose[:3], ee_curr_pose[3:]) # get next waypoint if error < 0.014: # print goal state print( f"\tMPC cost: { mpc_interface.get_current_cost()}\n", f"\tCurrent EE state:\n" f"\t\tI_r_IE : {ee_curr_pose[:3]} \n" f"\t\tq_IE : {ee_curr_pose[3:]} \n" f"\tGoal EE state:\n" f"\t\tI_r_IE_des: {ee_goals[ee_goal_index][:3]} \n" f"\t\tq_IE_des : {ee_goals[ee_goal_index][3:]} \n" "----------------------------------------------", ) # next goal ee_goal_index += 1 if ee_goal_index >= len(ee_goals): ee_goal_index = 0 # Define a goal for the arm ee_goal_pose = np.array(ee_goals[ee_goal_index]) # Update prims goal_vis_prim.set_world_pose(ee_goal_pose[:3], ee_goal_pose[3:]) # Define target trajectory mpc_interface.set_target_trajectory( time_traj=[sim_time, sim_time + 2], state_traj=[ee_curr_pose, ee_goal_pose], input_traj=[None, None] ) if __name__ == "__main__": # Run OCS2 example with Franka main() # Close the simulator simulation_app.close() # EOF
5,836
Python
34.16265
116
0.61292
2820207922/isaac_ws/standalone_examples/api/omni.isaac.quadruped/go1_ros1_standalone.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # """ Introduction This is a demo for the go1 robot's ros integration. In this example, the robot's foot position and contact forces are being published to "/isaac_a1/output" topic, and these values can be plotted using plotjugler. """ from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb import numpy as np import omni.appwindow # Contains handle to keyboard import omni.graph.core as og from omni.isaac.core import World from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.quadruped.robots import Unitree # enable ROS bridge extension enable_extension("omni.isaac.ros_bridge") simulation_app.update() # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() import rospy from std_msgs.msg import Float32MultiArray class Go1_runner(object): def __init__(self, physics_dt, render_dt) -> None: """ [Summary] creates the simulation world with preset physics_dt and render_dt and creates a unitree go1 robot Argument: physics_dt {float} -- Physics downtime of the scene. render_dt {float} -- Render downtime of the scene. """ self._world = World(stage_units_in_meters=1.0, physics_dt=physics_dt, rendering_dt=render_dt) self._go1 = self._world.scene.add( Unitree( prim_path="/World/Go1", name="Go1", position=np.array([0, 0, 0.40]), physics_dt=physics_dt, model="Go1" ) ) self._world.scene.add_default_ground_plane( z_position=0, name="default_ground_plane", prim_path="/World/defaultGroundPlane", static_friction=0.2, dynamic_friction=0.2, restitution=0.01, ) self._world.reset() self._enter_toggled = 0 self._base_command = [0.0, 0.0, 0.0, 0] self._event_flag = False # bindings for keyboard to command self._input_keyboard_mapping = { # forward command "NUMPAD_8": [1.8, 0.0, 0.0], "UP": [1.8, 0.0, 0.0], # back command "NUMPAD_2": [-1.8, 0.0, 0.0], "DOWN": [-1.8, 0.0, 0.0], # left command "NUMPAD_6": [0.0, -1.8, 0.0], "RIGHT": [0.0, -1.8, 0.0], # right command "NUMPAD_4": [0.0, 1.8, 0.0], "LEFT": [0.0, 1.8, 0.0], # yaw command (positive) "NUMPAD_7": [0.0, 0.0, 1.0], "N": [0.0, 0.0, 1.0], # yaw command (negative) "NUMPAD_9": [0.0, 0.0, -1.0], "M": [0.0, 0.0, -1.0], } # Creating an ondemand push graph with ROS Clock, everything in the ROS environment must synchronize with this clock try: keys = og.Controller.Keys (self._clock_graph, _, _, _) = og.Controller.edit( { "graph_path": "/ROS_Clock", "evaluator_name": "push", "pipeline_stage": og.GraphPipelineStage.GRAPH_PIPELINE_STAGE_ONDEMAND, }, { keys.CREATE_NODES: [ ("OnTick", "omni.graph.action.OnTick"), ("readSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("publishClock", "omni.isaac.ros_bridge.ROS1PublishClock"), ], keys.CONNECT: [ ("OnTick.outputs:tick", "publishClock.inputs:execIn"), ("readSimTime.outputs:simulationTime", "publishClock.inputs:timeStamp"), ], }, ) except Exception as e: print(e) simulation_app.close() exit() self._pub = rospy.Publisher("/isaac_a1/output", Float32MultiArray, queue_size=10) return def setup(self) -> None: """ [Summary] Set unitree robot's default stance, set up keyboard listener and add physics callback """ self._go1.set_state(self._go1._default_a1_state) self._appwindow = omni.appwindow.get_default_app_window() self._input = carb.input.acquire_input_interface() self._keyboard = self._appwindow.get_keyboard() self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._sub_keyboard_event) self._world.add_physics_callback("a1_advance", callback_fn=self.on_physics_step) def on_physics_step(self, step_size) -> None: """ [Summary] Physics call back, switch robot mode and call robot advance function to compute and apply joint torque """ if self._event_flag: self._go1._qp_controller.switch_mode() self._event_flag = False self._go1.advance(step_size, self._base_command) # Tick the ROS Clock og.Controller.evaluate_sync(self._clock_graph) self._pub.publish(Float32MultiArray(data=self.get_footforce_data())) def get_footforce_data(self) -> np.array: """ [Summary] get foot force and position data """ data = np.concatenate((self._go1.foot_force, self._go1._qp_controller._ctrl_states._foot_pos_abs[:, 2])) return data def run(self) -> None: """ [Summary] Step simulation based on rendering downtime """ # change to sim running while simulation_app.is_running(): self._world.step(render=True) return def _sub_keyboard_event(self, event, *args, **kwargs) -> None: """ [Summary] Subscriber callback to when kit is updated. """ # reset event self._event_flag = False # when a key is pressedor released the command is adjusted w.r.t the key-mapping if event.type == carb.input.KeyboardEventType.KEY_PRESS: # on pressing, the command is incremented if event.input.name in self._input_keyboard_mapping: self._base_command[0:3] += np.array(self._input_keyboard_mapping[event.input.name]) self._event_flag = True # enter, toggle the last command if event.input.name == "ENTER" and self._enter_toggled is False: self._enter_toggled = True if self._base_command[3] == 0: self._base_command[3] = 1 else: self._base_command[3] = 0 self._event_flag = True elif event.type == carb.input.KeyboardEventType.KEY_RELEASE: # on release, the command is decremented if event.input.name in self._input_keyboard_mapping: self._base_command[0:3] -= np.array(self._input_keyboard_mapping[event.input.name]) self._event_flag = True # enter, toggle the last command if event.input.name == "ENTER": self._enter_toggled = False # since no error, we are fine :) return True def main() -> None: """ [Summary] Instantiate ros node and start a1 runner """ rospy.init_node("go1_standalone", anonymous=False, disable_signals=True, log_level=rospy.ERROR) rospy.set_param("use_sim_time", True) physics_downtime = 1 / 400.0 runner = Go1_runner(physics_dt=physics_downtime, render_dt=16 * physics_downtime) simulation_app.update() runner.setup() # an extra reset is needed to register runner._world.reset() runner._world.reset() runner.run() rospy.signal_shutdown("go1 complete") simulation_app.close() if __name__ == "__main__": main()
8,427
Python
33.260162
124
0.583007
2820207922/isaac_ws/standalone_examples/api/omni.isaac.quadruped/a1_vision_ros2_standalone.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import json import carb import numpy as np import omni.appwindow # Contains handle to keyboard import omni.graph.core as og from omni.isaac.core import World from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import define_prim, get_prim_at_path from omni.isaac.quadruped.robots import UnitreeVision # enable ROS2 bridge extension ext_manager = omni.kit.app.get_app().get_extension_manager() ext_manager.set_extension_enabled_immediate("omni.isaac.ros2_bridge", True) class A1_runner(object): def __init__(self, physics_dt, render_dt, way_points=None) -> None: """ Summary Creates the simulation world with preset physics_dt and render_dt and creates a unitree a1 robot (with ROS2 cameras) inside the warehouse Also instantiate a ROS2 clock Argument: physics_dt {float} -- Physics downtime of the scene. render_dt {float} -- Render downtime of the scene. way_points {List[List[float]]} -- x coordinate, y coordinate, heading (in rad) """ self._world = World(stage_units_in_meters=1.0, physics_dt=physics_dt, rendering_dt=render_dt) assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") prim = get_prim_at_path("/World/Warehouse") if not prim.IsValid(): prim = define_prim("/World/Warehouse", "Xform") asset_path = assets_root_path + "/Isaac/Environments/Simple_Warehouse/warehouse.usd" prim.GetReferences().AddReference(asset_path) self._a1 = self._world.scene.add( UnitreeVision( prim_path="/World/A1", name="A1", position=np.array([0, 0, 0.40]), physics_dt=physics_dt, model="A1", way_points=way_points, is_ros2=True, ) ) # Publish camera images every 3 frames simulation_app.update() self._a1.setCameraExeutionStep(3) # Creating an ondemand push graph with ROS Clock, everything in the ROS environment must synchronize with this clock try: keys = og.Controller.Keys (self._clock_graph, _, _, _) = og.Controller.edit( { "graph_path": "/ROS_Clock", "evaluator_name": "push", "pipeline_stage": og.GraphPipelineStage.GRAPH_PIPELINE_STAGE_ONDEMAND, }, { keys.CREATE_NODES: [ ("OnTick", "omni.graph.action.OnTick"), ("readSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("publishClock", "omni.isaac.ros2_bridge.ROS2PublishClock"), ], keys.CONNECT: [ ("OnTick.outputs:tick", "publishClock.inputs:execIn"), ("readSimTime.outputs:simulationTime", "publishClock.inputs:timeStamp"), ], }, ) except Exception as e: print(e) simulation_app.close() exit() self._world.reset() self._enter_toggled = 0 self._base_command = [0.0, 0.0, 0.0, 0] self._event_flag = False # bindings for keyboard to command self._input_keyboard_mapping = { # forward command "NUMPAD_8": [1.8, 0.0, 0.0], "UP": [1.8, 0.0, 0.0], # back command "NUMPAD_2": [-1.8, 0.0, 0.0], "DOWN": [-1.8, 0.0, 0.0], # left command "NUMPAD_6": [0.0, -1.8, 0.0], "RIGHT": [0.0, -1.8, 0.0], # right command "NUMPAD_4": [0.0, 1.8, 0.0], "LEFT": [0.0, 1.8, 0.0], # yaw command (positive) "NUMPAD_7": [0.0, 0.0, 1.0], "N": [0.0, 0.0, 1.0], # yaw command (negative) "NUMPAD_9": [0.0, 0.0, -1.0], "M": [0.0, 0.0, -1.0], } def setup(self, way_points=None): """ [Summary] Set unitree robot's default stance, set up keyboard listener and add physics callback """ self._a1.set_state(self._a1._default_a1_state) self._appwindow = omni.appwindow.get_default_app_window() self._input = carb.input.acquire_input_interface() self._keyboard = self._appwindow.get_keyboard() self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._sub_keyboard_event) self._world.add_physics_callback("a1_advance", callback_fn=self.on_physics_step) if way_points is None: self._path_follow = False else: self._path_follow = True def on_physics_step(self, step_size): """ [Summary] Physics call back, switch robot mode and call robot advance function to compute and apply joint torque """ if self._event_flag: self._a1._qp_controller.switch_mode() self._event_flag = False self._a1.advance(step_size, self._base_command, self._path_follow) og.Controller.evaluate_sync(self._clock_graph) def run(self): """ [Summary] Step simulation based on rendering downtime """ # change to sim running while simulation_app.is_running(): self._world.step(render=True) return def _sub_keyboard_event(self, event, *args, **kwargs): """ [Summary] Keyboard subscriber callback to when kit is updated. """ # reset event self._event_flag = False # when a key is pressedor released the command is adjusted w.r.t the key-mapping if event.type == carb.input.KeyboardEventType.KEY_PRESS: # on pressing, the command is incremented if event.input.name in self._input_keyboard_mapping: self._base_command[0:3] += np.array(self._input_keyboard_mapping[event.input.name]) self._event_flag = True # enter, toggle the last command if event.input.name == "ENTER" and self._enter_toggled is False: self._enter_toggled = True if self._base_command[3] == 0: self._base_command[3] = 1 else: self._base_command[3] = 0 self._event_flag = True elif event.type == carb.input.KeyboardEventType.KEY_RELEASE: # on release, the command is decremented if event.input.name in self._input_keyboard_mapping: self._base_command[0:3] -= np.array(self._input_keyboard_mapping[event.input.name]) self._event_flag = True # enter, toggle the last command if event.input.name == "ENTER": self._enter_toggled = False # since no error, we are fine :) return True parser = argparse.ArgumentParser(description="a1 quadruped demo") parser.add_argument("-w", "--waypoint", type=str, metavar="", required=False, help="file path to the waypoints") args, unknown = parser.parse_known_args() def main(): """ [Summary] Instantiate ros node and start a1 runner """ physics_downtime = 1 / 400.0 if args.waypoint: waypoint_pose = [] try: print(str(args.waypoint)) file = open(str(args.waypoint)) waypoint_data = json.load(file) for waypoint in waypoint_data: waypoint_pose.append(np.array([waypoint["x"], waypoint["y"], waypoint["rad"]])) except FileNotFoundError: print("error file not found, ending") simulation_app.close() return runner = A1_runner(physics_dt=physics_downtime, render_dt=8 * physics_downtime, way_points=waypoint_pose) simulation_app.update() runner.setup(way_points=waypoint) else: runner = A1_runner(physics_dt=physics_downtime, render_dt=8 * physics_downtime, way_points=None) simulation_app.update() runner.setup(way_points=None) # an extra reset is needed to register runner._world.reset() runner._world.reset() runner.run() simulation_app.close() if __name__ == "__main__": main()
9,002
Python
34.444882
145
0.575428
2820207922/isaac_ws/standalone_examples/api/omni.isaac.quadruped/a1_direct_ros1_standalone.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # """ Introduction We start a runner which publishes robot sensor data as ROS1 topics and listens to outside ROS1 topic "isaac_a1/joint_torque_cmd". The runner set robot joint torques directly using the external ROS1 topic "isaac_a1/joint_torque_cmd". The runner instantiate robot UnitreeDirect, which directly takes in joint torques and sends torques to lowlevel joint controllers This is a very simple example to demonstrate how to treat Isaac Sim as a simulation component with in the ROS1 ecosystem """ from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb import numpy as np import omni.appwindow # Contains handle to keyboard import omni.graph.core as og from omni.isaac.core import World from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import define_prim, get_prim_at_path from omni.isaac.quadruped.robots import UnitreeDirect from omni.isaac.quadruped.utils.a1_classes import A1Measurement # enable ROS bridge extension enable_extension("omni.isaac.ros_bridge") simulation_app.update() # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() # ros-python and ROS1 messages import geometry_msgs.msg as geometry_msgs import rospy import sensor_msgs.msg as sensor_msgs class A1_direct_runner(object): def __init__(self, physics_dt, render_dt) -> None: """ [Summary] creates the simulation world with preset physics_dt and render_dt and creates a unitree a1 robot inside the warehouse Argument: physics_dt {float} -- Physics downtime of the scene. render_dt {float} -- Render downtime of the scene. """ self._world = World(stage_units_in_meters=1.0, physics_dt=physics_dt, rendering_dt=render_dt) assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") prim = get_prim_at_path("/World/Warehouse") if not prim.IsValid(): prim = define_prim("/World/Warehouse", "Xform") asset_path = assets_root_path + "/Isaac/Environments/Simple_Warehouse/warehouse.usd" prim.GetReferences().AddReference(asset_path) self._a1 = self._world.scene.add( UnitreeDirect( prim_path="/World/A1", name="A1", position=np.array([0, 0, 0.40]), physics_dt=physics_dt, model="A1" ) ) self._world.reset() # Creating an ondemand push graph with ROS Clock, everything in the ROS environment must synchronize with this clock try: keys = og.Controller.Keys (self._clock_graph, _, _, _) = og.Controller.edit( { "graph_path": "/ROS_Clock", "evaluator_name": "push", "pipeline_stage": og.GraphPipelineStage.GRAPH_PIPELINE_STAGE_ONDEMAND, }, { keys.CREATE_NODES: [ ("OnTick", "omni.graph.action.OnTick"), ("readSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("publishClock", "omni.isaac.ros_bridge.ROS1PublishClock"), ], keys.CONNECT: [ ("OnTick.outputs:tick", "publishClock.inputs:execIn"), ("readSimTime.outputs:simulationTime", "publishClock.inputs:timeStamp"), ], }, ) except Exception as e: print(e) simulation_app.close() exit() ## # ROS publishers ## # a) ground truth body pose self._pub_body_pose = rospy.Publisher("isaac_a1/gt_body_pose", geometry_msgs.PoseStamped, queue_size=21) self._msg_body_pose = geometry_msgs.PoseStamped() self._msg_body_pose.header.frame_id = "base_link" # b) joint angle and foot force self._pub_joint_state = rospy.Publisher("isaac_a1/joint_foot", sensor_msgs.JointState, queue_size=21) self._msg_joint_state = sensor_msgs.JointState() self._msg_joint_state.name = [ "FL0", "FL1", "FL2", "FR0", "FR1", "FR2", "RL0", "RL1", "RL2", "RR0", "RR1", "RR2", "FL_foot", "FR_foot", "RL_foot", "RR_foot", ] self._msg_joint_state.position = [0.0] * 16 self._msg_joint_state.velocity = [0.0] * 16 self._msg_joint_state.effort = [0.0] * 16 # c) IMU measurements self._pub_imu_debug = rospy.Publisher("isaac_a1/imu_data", sensor_msgs.Imu, queue_size=21) self._msg_imu_debug = sensor_msgs.Imu() self._msg_imu_debug.header.frame_id = "base_link" # d) ground truth body pose with a fake covariance self._pub_body_pose_with_cov = rospy.Publisher( "isaac_a1/gt_body_pose_with_cov", geometry_msgs.PoseWithCovarianceStamped, queue_size=21 ) self._msg_body_pose_with_cov = geometry_msgs.PoseWithCovarianceStamped() self._msg_body_pose_with_cov.header.frame_id = "base_link" ## # ROS subscribers ## self._sub_joint_cmd = rospy.Subscriber( "isaac_a1/joint_torque_cmd", sensor_msgs.JointState, self.joint_command_callback ) # buffer to store the robot command self._ros_command = np.zeros(12) def setup(self): """ [Summary] add physics callback """ self._app_window = omni.appwindow.get_default_app_window() self._world.add_physics_callback("robot_sim_step", callback_fn=self.robot_simulation_step) # start ROS publisher and subscribers def run(self): """ [Summary] Step simulation based on rendering downtime """ # change to sim running while simulation_app.is_running(): self._world.step(render=True) return def publish_ros_data(self, measurement: A1Measurement): """ [Summary] Publish body pose, joint state, imu data """ # update all header timestamps ros_timestamp = rospy.get_rostime() self._msg_body_pose.header.stamp = ros_timestamp self._msg_joint_state.header.stamp = ros_timestamp self._msg_imu_debug.header.stamp = ros_timestamp self._msg_body_pose_with_cov.header.stamp = ros_timestamp # a) ground truth pose self._update_body_pose_msg(measurement) self._pub_body_pose.publish(self._msg_body_pose) # b) joint state and contact force self._update_msg_joint_state(measurement) self._pub_joint_state.publish(self._msg_joint_state) # c) IMU self._update_imu_msg(measurement) self._pub_imu_debug.publish(self._msg_imu_debug) # d) ground truth pose with covariance self._update_body_pose_with_cov_msg(measurement) self._pub_body_pose_with_cov.publish(self._msg_body_pose_with_cov) return """call backs""" def robot_simulation_step(self, step_size): """ [Summary] Call robot update and advance, and tick ros bridge """ self._a1.update() self._a1.advance() # Tick the ROS Clock og.Controller.evaluate_sync(self._clock_graph) # Publish ROS data self.publish_ros_data(self._a1._measurement) def joint_command_callback(self, data): """ [Summary] Joint command call back, set command torque for the joints """ for i in range(12): self._ros_command[i] = data.effort[i] self._a1.set_command_torque(self._ros_command) """ Utilities functions. """ def _update_body_pose_msg(self, measurement: A1Measurement): """ [Summary] Updates the body pose message. """ # base position self._msg_body_pose.pose.position.x = measurement.state.base_frame.pos[0] self._msg_body_pose.pose.position.y = measurement.state.base_frame.pos[1] self._msg_body_pose.pose.position.z = measurement.state.base_frame.pos[2] # base orientation self._msg_body_pose.pose.orientation.w = measurement.state.base_frame.quat[3] self._msg_body_pose.pose.orientation.x = measurement.state.base_frame.quat[0] self._msg_body_pose.pose.orientation.y = measurement.state.base_frame.quat[1] self._msg_body_pose.pose.orientation.z = measurement.state.base_frame.quat[2] def _update_msg_joint_state(self, measurement: A1Measurement): """ [Summary] Updates the joint state message. """ # joint position and velocity for i in range(12): self._msg_joint_state.position[i] = measurement.state.joint_pos[i] self._msg_joint_state.velocity[i] = measurement.state.joint_vel[i] # foot force for i in range(4): # notice this order is: FL, FR, RL, RR self._msg_joint_state.effort[12 + i] = measurement.foot_forces[i] def _update_imu_msg(self, measurement: A1Measurement): """ [Summary] Updates the IMU message. """ # accelerometer data self._msg_imu_debug.linear_acceleration.x = measurement.base_lin_acc[0] self._msg_imu_debug.linear_acceleration.y = measurement.base_lin_acc[1] self._msg_imu_debug.linear_acceleration.z = measurement.base_lin_acc[2] # gyroscope data self._msg_imu_debug.angular_velocity.x = measurement.base_ang_vel[0] self._msg_imu_debug.angular_velocity.y = measurement.base_ang_vel[1] self._msg_imu_debug.angular_velocity.z = measurement.base_ang_vel[2] def _update_body_pose_with_cov_msg(self, measurement: A1Measurement): """ [Summary] Updates the body pose with fake covariance message. """ # base position self._msg_body_pose_with_cov.pose.pose.position.x = measurement.state.base_frame.pos[0] self._msg_body_pose_with_cov.pose.pose.position.y = measurement.state.base_frame.pos[1] self._msg_body_pose_with_cov.pose.pose.position.z = measurement.state.base_frame.pos[2] # base orientation self._msg_body_pose_with_cov.pose.pose.orientation.w = measurement.state.base_frame.quat[3] self._msg_body_pose_with_cov.pose.pose.orientation.x = measurement.state.base_frame.quat[0] self._msg_body_pose_with_cov.pose.pose.orientation.y = measurement.state.base_frame.quat[1] self._msg_body_pose_with_cov.pose.pose.orientation.z = measurement.state.base_frame.quat[2] # Setting fake covariance for i in range(6): self._msg_body_pose_with_cov.pose.covariance[i * 6 + i] = 0.001 def main(): """ [Summary] The function launches the simulator, creates the robot, and run the simulation steps """ # first enable ros node, make sure using simulation time rospy.init_node("isaac_a1", anonymous=False, disable_signals=True, log_level=rospy.ERROR) rospy.set_param("use_sim_time", True) physics_downtime = 1 / 400.0 runner = A1_direct_runner(physics_dt=physics_downtime, render_dt=physics_downtime) simulation_app.update() runner.setup() # an extra reset is needed to register runner._world.reset() runner._world.reset() runner.run() rospy.signal_shutdown("a1 direct complete") simulation_app.close() if __name__ == "__main__": main()
12,471
Python
34.942363
129
0.622805
2820207922/isaac_ws/standalone_examples/api/omni.isaac.quadruped/anymal_standalone.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb import numpy as np import omni.appwindow # Contains handle to keyboard from omni.isaac.core import World from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import define_prim, get_prim_at_path from omni.isaac.quadruped.robots import Anymal from pxr import Gf, UsdGeom class Anymal_runner(object): def __init__(self, physics_dt, render_dt) -> None: """ Summary creates the simulation world with preset physics_dt and render_dt and creates an anymal robot inside the warehouse Argument: physics_dt {float} -- Physics downtime of the scene. render_dt {float} -- Render downtime of the scene. """ self._world = World(stage_units_in_meters=1.0, physics_dt=physics_dt, rendering_dt=render_dt) assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") # spawn warehouse scene prim = get_prim_at_path("/World/GroundPlane") if not prim.IsValid(): prim = define_prim("/World/GroundPlane", "Xform") asset_path = assets_root_path + "/Isaac/Environments/Simple_Warehouse/warehouse.usd" prim.GetReferences().AddReference(asset_path) self._anymal = self._world.scene.add( Anymal( prim_path="/World/Anymal", name="Anymal", usd_path=assets_root_path + "/Isaac/Robots/ANYbotics/anymal_c.usd", position=np.array([0, 0, 0.70]), ) ) self._world.reset() self._enter_toggled = 0 self._base_command = np.zeros(3) # bindings for keyboard to command self._input_keyboard_mapping = { # forward command "NUMPAD_8": [1.0, 0.0, 0.0], "UP": [1.0, 0.0, 0.0], # back command "NUMPAD_2": [-1.0, 0.0, 0.0], "DOWN": [-1.0, 0.0, 0.0], # left command "NUMPAD_6": [0.0, -1.0, 0.0], "RIGHT": [0.0, -1.0, 0.0], # right command "NUMPAD_4": [0.0, 1.0, 0.0], "LEFT": [0.0, 1.0, 0.0], # yaw command (positive) "NUMPAD_7": [0.0, 0.0, 1.0], "N": [0.0, 0.0, 1.0], # yaw command (negative) "NUMPAD_9": [0.0, 0.0, -1.0], "M": [0.0, 0.0, -1.0], } self.needs_reset = False def setup(self) -> None: """ [Summary] Set up keyboard listener and add physics callback """ self._appwindow = omni.appwindow.get_default_app_window() self._input = carb.input.acquire_input_interface() self._keyboard = self._appwindow.get_keyboard() self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._sub_keyboard_event) self._world.add_physics_callback("anymal_advance", callback_fn=self.on_physics_step) def on_physics_step(self, step_size) -> None: """ [Summary] Physics call back, switch robot mode and call robot advance function to compute and apply joint torque """ if self.needs_reset: self._world.reset(True) self.needs_reset = False self._anymal.advance(step_size, self._base_command) def run(self) -> None: """ [Summary] Step simulation based on rendering downtime """ # change to sim running while simulation_app.is_running(): self._world.step(render=True) if not self._world.is_simulating(): self.needs_reset = True return def _sub_keyboard_event(self, event, *args, **kwargs) -> bool: """ [Summary] Keyboard subscriber callback to when kit is updated. """ # reset event self._event_flag = False # when a key is pressed for released the command is adjusted w.r.t the key-mapping if event.type == carb.input.KeyboardEventType.KEY_PRESS: # on pressing, the command is incremented if event.input.name in self._input_keyboard_mapping: self._base_command[0:3] += np.array(self._input_keyboard_mapping[event.input.name]) elif event.type == carb.input.KeyboardEventType.KEY_RELEASE: # on release, the command is decremented if event.input.name in self._input_keyboard_mapping: self._base_command[0:3] -= np.array(self._input_keyboard_mapping[event.input.name]) return True def main(): """ [Summary] Parse arguments and instantiate the ANYmal runner """ physics_dt = 1 / 200.0 render_dt = 1 / 60.0 runner = Anymal_runner(physics_dt=physics_dt, render_dt=render_dt) simulation_app.update() runner.setup() # an extra reset is needed to register runner._world.reset() runner._world.reset() runner.run() simulation_app.close() if __name__ == "__main__": main()
5,611
Python
32.2071
122
0.594903
2820207922/isaac_ws/standalone_examples/api/omni.isaac.quadruped/a1_vision_ros1_standalone.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # """ Introduction: In this demo, the quadruped is publishing data from a pair of stereovision cameras and imu data for the VINS fusion visual interial odometry algorithm. Users can use the keyboard mapping to control the motion of the quadruped while the quadruped localize itself. """ from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import carb import numpy as np import omni.appwindow # Contains handle to keyboard import omni.graph.core as og from omni.isaac.core import World from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import define_prim, get_prim_at_path from omni.isaac.quadruped.robots import UnitreeVision # enable ROS bridge extension enable_extension("omni.isaac.ros_bridge") simulation_app.update() # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() import rospy import sensor_msgs.msg as sensor_msgs from std_msgs.msg import Float32MultiArray class A1_stereo_vision(object): def __init__(self, physics_dt, render_dt) -> None: """ [Summary] creates the simulation world with preset physics_dt and render_dt and creates a unitree a1 robot (with ros cameras) inside a custom environment, set up ros publishers for the isaac_a1/imu_data and isaac_a1/foot_force topic Argument: physics_dt {float} -- Physics downtime of the scene. render_dt {float} -- Render downtime of the scene. """ self._world = World(stage_units_in_meters=1.0, physics_dt=physics_dt, rendering_dt=render_dt) prim = get_prim_at_path("/World/Warehouse") if not prim.IsValid(): prim = define_prim("/World/Warehouse", "Xform") assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets server") asset_path = assets_root_path + "/Isaac/Samples/ROS/Scenario/visual_odometry_testing.usd" prim.GetReferences().AddReference(asset_path) self._a1 = self._world.scene.add( UnitreeVision( prim_path="/World/A1", name="A1", position=np.array([0, 0, 0.27]), physics_dt=physics_dt, model="A1" ) ) # Publish camera images every 3 frames simulation_app.update() self._a1.setCameraExeutionStep(3) self._world.reset() self._enter_toggled = 0 self._base_command = [0.0, 0.0, 0.0, 0] self._event_flag = False # bindings for keyboard to command self._input_keyboard_mapping = { # forward command "NUMPAD_8": [1.8, 0.0, 0.0], "UP": [1.8, 0.0, 0.0], # back command "NUMPAD_2": [-1.8, 0.0, 0.0], "DOWN": [-1.8, 0.0, 0.0], # left command "NUMPAD_6": [0.0, -1.8, 0.0], "RIGHT": [0.0, -1.8, 0.0], # right command "NUMPAD_4": [0.0, 1.8, 0.0], "LEFT": [0.0, 1.8, 0.0], # yaw command (positive) "NUMPAD_7": [0.0, 0.0, 1.0], "N": [0.0, 0.0, 1.0], # yaw command (negative) "NUMPAD_9": [0.0, 0.0, -1.0], "M": [0.0, 0.0, -1.0], } # Creating an ondemand push graph with ROS Clock, everything in the ROS environment must synchronize with this clock try: keys = og.Controller.Keys (self._clock_graph, _, _, _) = og.Controller.edit( { "graph_path": "/ROS_Clock", "evaluator_name": "push", "pipeline_stage": og.GraphPipelineStage.GRAPH_PIPELINE_STAGE_ONDEMAND, }, { keys.CREATE_NODES: [ ("OnTick", "omni.graph.action.OnTick"), ("readSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("publishClock", "omni.isaac.ros_bridge.ROS1PublishClock"), ], keys.CONNECT: [ ("OnTick.outputs:tick", "publishClock.inputs:execIn"), ("readSimTime.outputs:simulationTime", "publishClock.inputs:timeStamp"), ], }, ) except Exception as e: print(e) simulation_app.close() exit() self._footforce_pub = rospy.Publisher("isaac_a1/foot_force", Float32MultiArray, queue_size=10) self._imu_pub = rospy.Publisher("isaac_a1/imu_data", sensor_msgs.Imu, queue_size=21) self._step_count = 0 self._publish_interval = 2 self._foot_force = Float32MultiArray() self._imu_msg = sensor_msgs.Imu() self._imu_msg.header.frame_id = "base_link" def setup(self) -> None: """ [Summary] Set unitree robot's default stance, set up keyboard listener and add physics callback """ self._a1.set_state(self._a1._default_a1_state) self._appwindow = omni.appwindow.get_default_app_window() self._input = carb.input.acquire_input_interface() self._keyboard = self._appwindow.get_keyboard() self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._sub_keyboard_event) self._world.add_physics_callback("a1_advance", callback_fn=self.on_physics_step) def on_physics_step(self, step_size) -> None: """ [Summary] Physics call back, switch robot mode and call robot advance function to compute and apply joint torque """ if self._event_flag: self._a1._qp_controller.switch_mode() self._event_flag = False self._a1.advance(step_size, self._base_command) og.Controller.evaluate_sync(self._clock_graph) self._step_count += 1 if self._step_count % self._publish_interval == 0: ros_time = rospy.get_rostime() self.update_footforce_data() self._footforce_pub.publish(self._foot_force) self.update_imu_data() self._imu_msg.header.stamp = ros_time self._imu_pub.publish(self._imu_msg) self._step_count = 0 def update_footforce_data(self) -> None: """ [Summary] Update foot position and foot force data for ros publisher """ self._foot_force.data = np.concatenate( (self._a1.foot_force, self._a1._qp_controller._ctrl_states._foot_pos_abs[:, 2]) ) def update_imu_data(self) -> None: """ [Summary] Update imu data for ros publisher """ self._imu_msg.orientation.x = self._a1._state.base_frame.quat[0] self._imu_msg.orientation.y = self._a1._state.base_frame.quat[1] self._imu_msg.orientation.z = self._a1._state.base_frame.quat[2] self._imu_msg.orientation.w = self._a1._state.base_frame.quat[3] self._imu_msg.linear_acceleration.x = self._a1._measurement.base_lin_acc[0] self._imu_msg.linear_acceleration.y = self._a1._measurement.base_lin_acc[1] self._imu_msg.linear_acceleration.z = self._a1._measurement.base_lin_acc[2] self._imu_msg.angular_velocity.x = self._a1._measurement.base_ang_vel[0] self._imu_msg.angular_velocity.y = self._a1._measurement.base_ang_vel[1] self._imu_msg.angular_velocity.z = self._a1._measurement.base_ang_vel[2] def run(self) -> None: """ [Summary] Step simulation based on rendering downtime """ # change to sim running while simulation_app.is_running(): self._world.step(render=True) return def _sub_keyboard_event(self, event, *args, **kwargs) -> bool: """ [Summary] Keyboard subscriber callback to when kit is updated. """ # reset event self._event_flag = False # when a key is pressedor released the command is adjusted w.r.t the key-mapping if event.type == carb.input.KeyboardEventType.KEY_PRESS: # on pressing, the command is incremented if event.input.name in self._input_keyboard_mapping: self._base_command[0:3] += np.array(self._input_keyboard_mapping[event.input.name]) self._event_flag = True # enter, toggle the last command if event.input.name == "ENTER" and self._enter_toggled is False: self._enter_toggled = True if self._base_command[3] == 0: self._base_command[3] = 1 else: self._base_command[3] = 0 self._event_flag = True elif event.type == carb.input.KeyboardEventType.KEY_RELEASE: # on release, the command is decremented if event.input.name in self._input_keyboard_mapping: self._base_command[0:3] -= np.array(self._input_keyboard_mapping[event.input.name]) self._event_flag = True # enter, toggle the last command if event.input.name == "ENTER": self._enter_toggled = False # since no error, we are fine :) return True def main() -> None: """ [Summary] Instantiate ros node and start a1 runner """ rospy.init_node("isaac_a1", anonymous=False, disable_signals=True, log_level=rospy.ERROR) rospy.set_param("use_sim_time", True) physics_downtime = 1 / 400.0 runner = A1_stereo_vision(physics_dt=physics_downtime, render_dt=8 * physics_downtime) simulation_app.update() runner.setup() # an extra reset is needed to register runner._world.reset() runner._world.reset() runner.run() rospy.signal_shutdown("a1 vision complete") simulation_app.close() if __name__ == "__main__": main()
10,664
Python
35.649484
139
0.597618
2820207922/isaac_ws/standalone_examples/api/omni.isaac.quadruped/a1_standalone.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) import argparse import json import carb import numpy as np import omni.appwindow # Contains handle to keyboard from omni.isaac.core import World from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import define_prim, get_prim_at_path from omni.isaac.quadruped.robots import Unitree from pxr import Gf, UsdGeom class A1_runner(object): def __init__(self, physics_dt, render_dt, way_points=None) -> None: """ Summary creates the simulation world with preset physics_dt and render_dt and creates a unitree a1 robot inside the warehouse Argument: physics_dt {float} -- Physics downtime of the scene. render_dt {float} -- Render downtime of the scene. way_points {List[List[float]]} -- x coordinate, y coordinate, heading (in rad) """ self._world = World(stage_units_in_meters=1.0, physics_dt=physics_dt, rendering_dt=render_dt) assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") # spawn warehouse scene prim = get_prim_at_path("/World/Warehouse") if not prim.IsValid(): prim = define_prim("/World/Warehouse", "Xform") asset_path = assets_root_path + "/Isaac/Environments/Simple_Warehouse/warehouse.usd" prim.GetReferences().AddReference(asset_path) self._a1 = self._world.scene.add( Unitree( prim_path="/World/A1", name="A1", position=np.array([0, 0, 0.40]), physics_dt=physics_dt, model="A1", way_points=way_points, ) ) self._world.reset() self._enter_toggled = 0 self._base_command = [0.0, 0.0, 0.0, 0] self._event_flag = False # bindings for keyboard to command self._input_keyboard_mapping = { # forward command "NUMPAD_8": [1.8, 0.0, 0.0], "UP": [1.8, 0.0, 0.0], # back command "NUMPAD_2": [-1.8, 0.0, 0.0], "DOWN": [-1.8, 0.0, 0.0], # left command "NUMPAD_6": [0.0, -1.8, 0.0], "RIGHT": [0.0, -1.8, 0.0], # right command "NUMPAD_4": [0.0, 1.8, 0.0], "LEFT": [0.0, 1.8, 0.0], # yaw command (positive) "NUMPAD_7": [0.0, 0.0, 1.0], "N": [0.0, 0.0, 1.0], # yaw command (negative) "NUMPAD_9": [0.0, 0.0, -1.0], "M": [0.0, 0.0, -1.0], } def setup(self, way_points=None) -> None: """ [Summary] Set unitree robot's default stance, set up keyboard listener and add physics callback """ self._a1.set_state(self._a1._default_a1_state) self._appwindow = omni.appwindow.get_default_app_window() self._input = carb.input.acquire_input_interface() self._keyboard = self._appwindow.get_keyboard() self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._sub_keyboard_event) self._world.add_physics_callback("a1_advance", callback_fn=self.on_physics_step) if way_points is None: self._path_follow = False else: self._path_follow = True def on_physics_step(self, step_size) -> None: """ [Summary] Physics call back, switch robot mode and call robot advance function to compute and apply joint torque """ if self._event_flag: self._a1._qp_controller.switch_mode() self._event_flag = False self._a1.advance(step_size, self._base_command, self._path_follow) def run(self) -> None: """ [Summary] Step simulation based on rendering downtime """ # change to sim running while simulation_app.is_running(): self._world.step(render=True) return def _sub_keyboard_event(self, event, *args, **kwargs) -> bool: """ [Summary] Keyboard subscriber callback to when kit is updated. """ # reset event self._event_flag = False # when a key is pressed for released the command is adjusted w.r.t the key-mapping if event.type == carb.input.KeyboardEventType.KEY_PRESS: # on pressing, the command is incremented if event.input.name in self._input_keyboard_mapping: self._base_command[0:3] += np.array(self._input_keyboard_mapping[event.input.name]) self._event_flag = True # enter, toggle the last command if event.input.name == "ENTER" and self._enter_toggled is False: self._enter_toggled = True if self._base_command[3] == 0: self._base_command[3] = 1 else: self._base_command[3] = 0 self._event_flag = True elif event.type == carb.input.KeyboardEventType.KEY_RELEASE: # on release, the command is decremented if event.input.name in self._input_keyboard_mapping: self._base_command[0:3] -= np.array(self._input_keyboard_mapping[event.input.name]) self._event_flag = True # enter, toggle the last command if event.input.name == "ENTER": self._enter_toggled = False # since no error, we are fine :) return True parser = argparse.ArgumentParser(description="a1 quadruped demo") parser.add_argument("-w", "--waypoint", type=str, metavar="", required=False, help="file path to the waypoints") args, unknown = parser.parse_known_args() def main(): """ [Summary] Parse arguments and instantiate A1 runner """ physics_downtime = 1 / 400.0 if args.waypoint: waypoint_pose = [] try: print(str(args.waypoint)) file = open(str(args.waypoint)) waypoint_data = json.load(file) for waypoint in waypoint_data: waypoint_pose.append(np.array([waypoint["x"], waypoint["y"], waypoint["rad"]])) # print(str(waypoint_pose)) except FileNotFoundError: print("error file not found, ending") simulation_app.close() return runner = A1_runner(physics_dt=physics_downtime, render_dt=16 * physics_downtime, way_points=waypoint_pose) simulation_app.update() runner.setup(way_points=waypoint) else: runner = A1_runner(physics_dt=physics_downtime, render_dt=16 * physics_downtime, way_points=None) simulation_app.update() runner.setup(None) # an extra reset is needed to register runner._world.reset() runner._world.reset() runner.run() simulation_app.close() if __name__ == "__main__": main()
7,495
Python
33.385321
125
0.584523
2820207922/isaac_ws/standalone_examples/api/omni.importer.urdf/urdf_import.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp # URDF import, configuration and simulation sample kit = SimulationApp({"renderer": "RayTracedLighting", "headless": True}) import omni.kit.commands from omni.isaac.core.articulations import Articulation from omni.isaac.core.utils.extensions import get_extension_path_from_name from pxr import Gf, PhysxSchema, Sdf, UsdLux, UsdPhysics # Setting up import configuration: status, import_config = omni.kit.commands.execute("URDFCreateImportConfig") import_config.merge_fixed_joints = False import_config.convex_decomp = False import_config.import_inertia_tensor = True import_config.fix_base = False import_config.distance_scale = 100 # Get path to extension data: extension_path = get_extension_path_from_name("omni.importer.urdf") # Import URDF, stage_path contains the path the path to the usd prim in the stage. status, stage_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=extension_path + "/data/urdf/robots/carter/urdf/carter.urdf", import_config=import_config, get_articulation_root=True, ) # Get stage handle stage = omni.usd.get_context().get_stage() # Enable physics scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/physicsScene")) # Set gravity scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) scene.CreateGravityMagnitudeAttr().Set(9.81) # Set solver settings PhysxSchema.PhysxSceneAPI.Apply(stage.GetPrimAtPath("/physicsScene")) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Get(stage, "/physicsScene") physxSceneAPI.CreateEnableCCDAttr(True) physxSceneAPI.CreateEnableStabilizationAttr(True) physxSceneAPI.CreateEnableGPUDynamicsAttr(False) physxSceneAPI.CreateBroadphaseTypeAttr("MBP") physxSceneAPI.CreateSolverTypeAttr("TGS") # Add ground plane omni.kit.commands.execute( "AddGroundPlaneCommand", stage=stage, planePath="/groundPlane", axis="Z", size=1500.0, position=Gf.Vec3f(0, 0, -50), color=Gf.Vec3f(0.5), ) # Add lighting distantLight = UsdLux.DistantLight.Define(stage, Sdf.Path("/DistantLight")) distantLight.CreateIntensityAttr(500) # Get handle to the Drive API for both wheels left_wheel_drive = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/carter/chassis_link/left_wheel"), "angular") right_wheel_drive = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/carter/chassis_link/right_wheel"), "angular") # Set the velocity drive target in degrees/second left_wheel_drive.GetTargetVelocityAttr().Set(150) right_wheel_drive.GetTargetVelocityAttr().Set(150) # Set the drive damping, which controls the strength of the velocity drive left_wheel_drive.GetDampingAttr().Set(15000) right_wheel_drive.GetDampingAttr().Set(15000) # Set the drive stiffness, which controls the strength of the position drive # In this case because we want to do velocity control this should be set to zero left_wheel_drive.GetStiffnessAttr().Set(0) right_wheel_drive.GetStiffnessAttr().Set(0) # Start simulation omni.timeline.get_timeline_interface().play() # perform one simulation step so physics is loaded and dynamic control works. kit.update() art = Articulation(prim_path=stage_path) art.initialize() if not art.handles_initialized: print(f"{stage_path} is not an articulation") else: print(f"Got articulation {stage_path} with handle {art.articulation_handle}") # perform simulation for frame in range(100): kit.update() # Shutdown and exit omni.timeline.get_timeline_interface().stop() kit.close()
3,877
Python
36.288461
111
0.780242
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros_bridge/carter_multiple_robot_navigation.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import sys import carb from omni.isaac.kit import SimulationApp HOSPITAL_USD_PATH = "/Isaac/Samples/ROS/Scenario/multiple_robot_carter_hospital_navigation.usd" OFFICE_USD_PATH = "/Isaac/Samples/ROS/Scenario/multiple_robot_carter_office_navigation.usd" # Default environment: Hospital ENV_USD_PATH = HOSPITAL_USD_PATH if len(sys.argv) > 1: if sys.argv[1] == "office": # Choosing Office environment ENV_USD_PATH = OFFICE_USD_PATH elif sys.argv[1] != "hospital": carb.log_warn("Environment name is invalid. Choosing default Hospital environment.") else: carb.log_warn("Environment name not specified. Choosing default Hospital environment.") CONFIG = {"renderer": "RayTracedLighting", "headless": False} # Example ROS bridge sample demonstrating the manual loading of Multiple Robot Navigation scenario simulation_app = SimulationApp(CONFIG) import omni from omni.isaac.core import SimulationContext from omni.isaac.core.utils import extensions, nucleus, prims, rotations, stage, viewports from omni.isaac.core.utils.extensions import enable_extension from pxr import Sdf # enable ROS bridge extension enable_extension("omni.isaac.ros_bridge") # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() # Locate assets root folder to load sample assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() usd_path = assets_root_path + ENV_USD_PATH omni.usd.get_context().open_stage(usd_path, None) # Wait two frames so that stage starts loading simulation_app.update() simulation_app.update() print("Loading stage...") from omni.isaac.core.utils.stage import is_stage_loading while is_stage_loading(): simulation_app.update() print("Loading Complete") simulation_context = SimulationContext(stage_units_in_meters=1.0) simulation_app.update() simulation_context.play() simulation_app.update() while simulation_app.is_running(): # runs with a realtime clock simulation_app.update() simulation_context.stop() simulation_app.close()
2,808
Python
29.868132
98
0.763889
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros_bridge/rtx_lidar.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import sys import carb from omni.isaac.kit import SimulationApp # Example for creating a RTX lidar sensor and publishing PCL data simulation_app = SimulationApp({"headless": False}) import omni import omni.kit.viewport.utility import omni.replicator.core as rep from omni.isaac.core import SimulationContext from omni.isaac.core.utils import nucleus, stage from omni.isaac.core.utils.extensions import enable_extension from pxr import Gf # enable ROS bridge extension enable_extension("omni.isaac.ros_bridge") simulation_app.update() # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() # Locate Isaac Sim assets folder to load environment and robot stages assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() simulation_app.update() # Loading the simple_room environment stage.add_reference_to_stage( assets_root_path + "/Isaac/Environments/Simple_Warehouse/full_warehouse.usd", "/background" ) simulation_app.update() # Create the lidar sensor that generates data into "RtxSensorCpu" # Sensor needs to be rotated 90 degrees about X so that its Z up # Possible options are Example_Rotary and Example_Solid_State # drive sim applies 0.5,-0.5,-0.5,w(-0.5), we have to apply the reverse _, sensor = omni.kit.commands.execute( "IsaacSensorCreateRtxLidar", path="/sensor", parent=None, config="Example_Rotary", translation=(0, 0, 1.0), orientation=Gf.Quatd(1.0, 0.0, 0.0, 0.0), # Gf.Quatd is w,i,j,k ) hydra_texture = rep.create.render_product(sensor.GetPath(), [1, 1], name="Isaac") simulation_context = SimulationContext(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0, stage_units_in_meters=1.0) simulation_app.update() # Create Point cloud publisher pipeline in the post process graph writer = rep.writers.get("RtxLidar" + "ROS1PublishPointCloud") writer.initialize(topicName="point_cloud", frameId="sim_lidar") writer.attach([hydra_texture]) # Create the debug draw pipeline in the post process graph writer = rep.writers.get("RtxLidar" + "DebugDrawPointCloud") writer.attach([hydra_texture]) # Create LaserScan publisher pipeline in the post process graph writer = rep.writers.get("RtxLidar" + "ROS1PublishLaserScan") writer.initialize(topicName="laser_scan", frameId="sim_lidar") writer.attach([hydra_texture]) simulation_app.update() simulation_context.play() while simulation_app.is_running(): simulation_app.update() # cleanup and shutdown simulation_context.stop() simulation_app.close()
3,269
Python
32.71134
113
0.762619
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros_bridge/clock.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import time import carb from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser(description="ROS Clock Example") parser.add_argument("--test", action="store_true") args, unknown = parser.parse_known_args() # Example ROS bridge sample showing rospy and rosclock interaction simulation_app = SimulationApp({"renderer": "RayTracedLighting", "headless": True}) import omni import omni.graph.core as og from omni.isaac.core import SimulationContext from omni.isaac.core.utils.extensions import enable_extension if args.test: from omni.isaac.ros_bridge.scripts.roscore import Roscore from omni.isaac.ros_bridge.tests.common import wait_for_rosmaster roscore = Roscore() wait_for_rosmaster() # enable ROS bridge extension enable_extension("omni.isaac.ros_bridge") simulation_app.update() # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() import rospy # Note that this is not the system level rospy, but one compiled for omniverse from rosgraph_msgs.msg import Clock clock_topic = "sim_time" manual_clock_topic = "manual_time" simulation_context = SimulationContext(physics_dt=1.0 / 60.0, rendering_dt=1.0 / 60.0, stage_units_in_meters=1.0) # Creating a action graph with ROS component nodes try: og.Controller.edit( {"graph_path": "/ActionGraph", "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("PublishClock", "omni.isaac.ros_bridge.ROS1PublishClock"), ("OnImpulseEvent", "omni.graph.action.OnImpulseEvent"), ("PublishManualClock", "omni.isaac.ros_bridge.ROS1PublishClock"), ], og.Controller.Keys.CONNECT: [ # Connecting execution of OnPlaybackTick node to PublishClock to automatically publish each frame ("OnPlaybackTick.outputs:tick", "PublishClock.inputs:execIn"), # Connecting execution of OnImpulseEvent node to PublishManualClock so it will only publish when an impulse event is triggered ("OnImpulseEvent.outputs:execOut", "PublishManualClock.inputs:execIn"), # Connecting simulationTime data of ReadSimTime to the clock publisher nodes ("ReadSimTime.outputs:simulationTime", "PublishClock.inputs:timeStamp"), ("ReadSimTime.outputs:simulationTime", "PublishManualClock.inputs:timeStamp"), ], og.Controller.Keys.SET_VALUES: [ # Assigning topic names to clock publishers ("PublishClock.inputs:topicName", clock_topic), ("PublishManualClock.inputs:topicName", manual_clock_topic), ], }, ) except Exception as e: print(e) simulation_app.update() simulation_app.update() # Define ROS callbacks def sim_clock_callback(data): print("sim time:", data.clock.to_sec()) def manual_clock_callback(data): print("manual stepped sim time:", data.clock.to_sec()) # Create rospy ndoe rospy.init_node("isaac_sim_clock", anonymous=True, disable_signals=True, log_level=rospy.ERROR) # create subscribers sim_clock_sub = rospy.Subscriber(clock_topic, Clock, sim_clock_callback) manual_clock_sub = rospy.Subscriber(manual_clock_topic, Clock, manual_clock_callback) time.sleep(1.0) # need to initialize physics getting any articulation..etc simulation_context.initialize_physics() simulation_context.play() # perform a fixed number of steps with fixed step size for frame in range(20): # publish manual clock every 10 frames if frame % 10 == 0: og.Controller.set(og.Controller.attribute("/ActionGraph/OnImpulseEvent.state:enableImpulse"), True) simulation_context.render() # This updates rendering/app loop which calls the sim clock simulation_context.step(render=False) # runs with a non-realtime clock # This sleep is to make this sample run a bit more deterministically for the subscriber callback # In general this sleep is not needed time.sleep(0.1) # perform a fixed number of steps with realtime clock for frame in range(20): # publish manual clock every 10 frames if frame % 10 == 0: og.Controller.set(og.Controller.attribute("/ActionGraph/OnImpulseEvent.state:enableImpulse"), True) simulation_app.update() # runs with a realtime clock # This sleep is to make this sample run a bit more deterministically for the subscriber callback # In general this sleep is not needed time.sleep(0.1) # cleanup and shutdown sim_clock_sub.unregister() manual_clock_sub.unregister() simulation_context.stop() if args.test: roscore = None simulation_app.close()
5,492
Python
35.865772
142
0.716497
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros_bridge/carter_stereo.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import argparse import carb from omni.isaac.kit import SimulationApp parser = argparse.ArgumentParser(description="Carter Stereo Example") parser.add_argument("--test", action="store_true") args, unknown = parser.parse_known_args() # Example ROS bridge sample showing manual control over messages simulation_app = SimulationApp({"renderer": "RayTracedLighting", "headless": False}) import omni import omni.graph.core as og from omni.isaac.core import SimulationContext from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.core.utils.nucleus import get_assets_root_path from pxr import Sdf # enable ROS bridge extension enable_extension("omni.isaac.ros_bridge") # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() # Locate assets root folder to load sample assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() exit() usd_path = assets_root_path + "/Isaac/Samples/ROS/Scenario/carter_warehouse_navigation.usd" omni.usd.get_context().open_stage(usd_path, None) # Wait two frames so that stage starts loading simulation_app.update() simulation_app.update() print("Loading stage...") from omni.isaac.core.utils.stage import is_stage_loading while is_stage_loading(): simulation_app.update() print("Loading Complete") simulation_context = SimulationContext(stage_units_in_meters=1.0) ros_cameras_graph_path = "/World/Carter_ROS/ROS_Cameras" # Enabling rgb and depth image publishers for left camera. Cameras will automatically publish images each frame og.Controller.set( og.Controller.attribute(ros_cameras_graph_path + "/isaac_create_render_product_left.inputs:enabled"), True ) # Enabling rgb and depth image publishers for right camera. Cameras will automatically publish images each frame og.Controller.set( og.Controller.attribute(ros_cameras_graph_path + "/isaac_create_render_product_right.inputs:enabled"), True ) simulation_context.play() simulation_context.step() # Simulate for one second to warm up sim and let everything settle for frame in range(60): simulation_context.step() # Dock the second camera window left_viewport = omni.ui.Workspace.get_window("Viewport") right_viewport = omni.ui.Workspace.get_window("Viewport 2") if right_viewport is not None and left_viewport is not None: right_viewport.dock_in(left_viewport, omni.ui.DockPosition.RIGHT) right_viewport = None left_viewport = None import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() import rospy # Create a rostopic to publish message to spin robot in place # Note that this is not the system level rospy, but one compiled for omniverse from geometry_msgs.msg import Twist rospy.init_node("carter_stereo", anonymous=True, disable_signals=True, log_level=rospy.ERROR) pub = rospy.Publisher("cmd_vel", Twist, queue_size=10) frame = 0 while simulation_app.is_running(): # Run with a fixed step size simulation_context.step(render=True) # Publish the ROS Twist message every 2 frames if frame % 2 == 0: message = Twist() message.angular.z = 0.5 # spin in place pub.publish(message) if args.test and frame > 120: break frame = frame + 1 pub.unregister() rospy.signal_shutdown("carter_stereo complete") simulation_context.stop() simulation_app.close()
4,162
Python
32.039682
112
0.760692
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros_bridge/contact.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import carb from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"renderer": "RayTracedLighting", "headless": True}) import omni import omni.kit.commands from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.sensor import _sensor from pxr import Gf # enable ROS bridge extension enable_extension("omni.isaac.ros_bridge") # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() # Note that this is not the system level rospy, but one compiled for omniverse import numpy as np import rospy try: from isaac_tutorials.msg import ContactSensor except ModuleNotFoundError: carb.log_error("isaac_tutorials message definition was not found, please source the ros workspace") simulation_app.close() exit() rospy.init_node("contact_sample", anonymous=True, disable_signals=True, log_level=rospy.ERROR) timeline = omni.timeline.get_timeline_interface() contact_pub = rospy.Publisher("/contact_report", ContactSensor, queue_size=0) cs = _sensor.acquire_contact_sensor_interface() meters_per_unit = 1.0 ros_world = World(stage_units_in_meters=1.0) # add a cube in the world cube_path = "/cube" cube_1 = ros_world.scene.add( DynamicCuboid(prim_path=cube_path, name="cube_1", position=np.array([0, 0, 1.5]), size=1.0) ) simulation_app.update() # Add a plane for cube to collide with ros_world.scene.add_default_ground_plane() simulation_app.update() # putting contact sensor in the ContactSensor Message format def format_contact(c_out, contact): c_out.time = float(contact["time"]) c_out.value = float(contact["value"] * meters_per_unit) c_out.in_contact = bool(contact["inContact"]) return c_out # Setup contact sensor on cube result, sensor = omni.kit.commands.execute( "IsaacSensorCreateContactSensor", path="/Contact_Sensor", parent=cube_path, min_threshold=0, max_threshold=100000000, color=Gf.Vec4f(1, 1, 1, 1), radius=-1, sensor_period=1.0 / 60.0, translation=Gf.Vec3d(0, 0, 0), ) simulation_app.update() # initiate the message handle c_out = ContactSensor() # start simulation timeline.play() for frame in range(10000): ros_world.step(render=False) # Get processed contact data reading = cs.get_sensor_readings(cube_path + "/Contact_Sensor") if reading.shape[0]: for r in reading: print(r) # pack the raw data into ContactSensor format and publish it c = format_contact(c_out, r) contact_pub.publish(c) # Cleanup timeline.stop() contact_pub.unregister() rospy.signal_shutdown("contact_sample complete") simulation_app.close()
3,408
Python
28.136752
103
0.734742
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros_bridge/camera_manual.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import sys import carb from omni.isaac.kit import SimulationApp CAMERA_STAGE_PATH = "/Camera" ROS_CAMERA_GRAPH_PATH = "/ROS_Camera" BACKGROUND_STAGE_PATH = "/background" BACKGROUND_USD_PATH = "/Isaac/Environments/Simple_Warehouse/warehouse_with_forklifts.usd" CONFIG = {"renderer": "RayTracedLighting", "headless": False} # Example ROS bridge sample demonstrating the manual loading of stages and manual publishing of images simulation_app = SimulationApp(CONFIG) import omni import omni.graph.core as og import omni.replicator.core as rep import usdrt.Sdf from omni.isaac.core import SimulationContext from omni.isaac.core.utils import extensions, nucleus, stage from omni.kit.viewport.utility import get_active_viewport from pxr import Gf, Usd, UsdGeom # enable ROS bridge extension extensions.enable_extension("omni.isaac.ros_bridge") simulation_app.update() # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() simulation_context = SimulationContext(stage_units_in_meters=1.0) # Locate Isaac Sim assets folder to load environment and robot stages assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() # Loading the simple_room environment stage.add_reference_to_stage(assets_root_path + BACKGROUND_USD_PATH, BACKGROUND_STAGE_PATH) # Creating a Camera prim camera_prim = UsdGeom.Camera(omni.usd.get_context().get_stage().DefinePrim(CAMERA_STAGE_PATH, "Camera")) xform_api = UsdGeom.XformCommonAPI(camera_prim) xform_api.SetTranslate(Gf.Vec3d(-1, 5, 1)) xform_api.SetRotate((90, 0, 0), UsdGeom.XformCommonAPI.RotationOrderXYZ) camera_prim.GetHorizontalApertureAttr().Set(21) camera_prim.GetVerticalApertureAttr().Set(16) camera_prim.GetProjectionAttr().Set("perspective") camera_prim.GetFocalLengthAttr().Set(24) camera_prim.GetFocusDistanceAttr().Set(400) simulation_app.update() # Creating an on-demand push graph with cameraHelper nodes to generate ROS image publishers keys = og.Controller.Keys (ros_camera_graph, _, _, _) = og.Controller.edit( { "graph_path": ROS_CAMERA_GRAPH_PATH, "evaluator_name": "push", "pipeline_stage": og.GraphPipelineStage.GRAPH_PIPELINE_STAGE_ONDEMAND, }, { keys.CREATE_NODES: [ ("OnTick", "omni.graph.action.OnTick"), ("createViewport", "omni.isaac.core_nodes.IsaacCreateViewport"), ("getRenderProduct", "omni.isaac.core_nodes.IsaacGetViewportRenderProduct"), ("setCamera", "omni.isaac.core_nodes.IsaacSetCameraOnRenderProduct"), ("cameraHelperRgb", "omni.isaac.ros_bridge.ROS1CameraHelper"), ("cameraHelperInfo", "omni.isaac.ros_bridge.ROS1CameraHelper"), ("cameraHelperDepth", "omni.isaac.ros_bridge.ROS1CameraHelper"), ], keys.CONNECT: [ ("OnTick.outputs:tick", "createViewport.inputs:execIn"), ("createViewport.outputs:execOut", "getRenderProduct.inputs:execIn"), ("createViewport.outputs:viewport", "getRenderProduct.inputs:viewport"), ("getRenderProduct.outputs:execOut", "setCamera.inputs:execIn"), ("getRenderProduct.outputs:renderProductPath", "setCamera.inputs:renderProductPath"), ("setCamera.outputs:execOut", "cameraHelperRgb.inputs:execIn"), ("setCamera.outputs:execOut", "cameraHelperInfo.inputs:execIn"), ("setCamera.outputs:execOut", "cameraHelperDepth.inputs:execIn"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperRgb.inputs:renderProductPath"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperInfo.inputs:renderProductPath"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperDepth.inputs:renderProductPath"), ], keys.SET_VALUES: [ ("createViewport.inputs:viewportId", 0), ("cameraHelperRgb.inputs:frameId", "sim_camera"), ("cameraHelperRgb.inputs:topicName", "rgb"), ("cameraHelperRgb.inputs:type", "rgb"), ("cameraHelperInfo.inputs:frameId", "sim_camera"), ("cameraHelperInfo.inputs:topicName", "camera_info"), ("cameraHelperInfo.inputs:type", "camera_info"), ("cameraHelperDepth.inputs:frameId", "sim_camera"), ("cameraHelperDepth.inputs:topicName", "depth"), ("cameraHelperDepth.inputs:type", "depth"), ("setCamera.inputs:cameraPrim", [usdrt.Sdf.Path(CAMERA_STAGE_PATH)]), ], }, ) # Run the ROS Camera graph once to generate ROS image publishers in SDGPipeline og.Controller.evaluate_sync(ros_camera_graph) simulation_app.update() # Use the IsaacSimulationGate step value to block execution on specific frames SD_GRAPH_PATH = "/Render/PostProcess/SDGPipeline" viewport_api = get_active_viewport() if viewport_api is not None: import omni.syntheticdata._syntheticdata as sd curr_stage = omni.usd.get_context().get_stage() # Required for editing the SDGPipeline graph which exists in the Session Layer with Usd.EditContext(curr_stage, curr_stage.GetSessionLayer()): # Get name of rendervar for RGB sensor type rv_rgb = omni.syntheticdata.SyntheticData.convert_sensor_type_to_rendervar(sd.SensorType.Rgb.name) # Get path to IsaacSimulationGate node in RGB pipeline rgb_camera_gate_path = omni.syntheticdata.SyntheticData._get_node_path( rv_rgb + "IsaacSimulationGate", viewport_api.get_render_product_path() ) rv_depth = omni.syntheticdata.SyntheticData.convert_sensor_type_to_rendervar( sd.SensorType.DistanceToImagePlane.name ) # Get path to IsaacSimulationGate node in Depth pipeline depth_camera_gate_path = omni.syntheticdata.SyntheticData._get_node_path( rv_depth + "IsaacSimulationGate", viewport_api.get_render_product_path() ) # Get path to IsaacSimulationGate node in CameraInfo pipeline camera_info_gate_path = omni.syntheticdata.SyntheticData._get_node_path( "PostProcessDispatch" + "IsaacSimulationGate", viewport_api.get_render_product_path() ) # Need to initialize physics getting any articulation..etc simulation_context.initialize_physics() simulation_context.play() frame = 0 while simulation_app.is_running() and simulation_context.is_playing(): # Run with a fixed step size simulation_context.step(render=True) if simulation_context.is_playing(): # Rotate camera by 0.5 degree every frame xform_api.SetRotate((90, 0, frame / 4.0), UsdGeom.XformCommonAPI.RotationOrderXYZ) # Set the step value for the simulation gates to zero to stop execution og.Controller.attribute(rgb_camera_gate_path + ".inputs:step").set(0) og.Controller.attribute(depth_camera_gate_path + ".inputs:step").set(0) og.Controller.attribute(camera_info_gate_path + ".inputs:step").set(0) # Publish the ROS rgb image message every 5 frames if frame % 5 == 0: # Enable rgb Branch node to start publishing rgb image og.Controller.attribute(rgb_camera_gate_path + ".inputs:step").set(1) # Publish the ROS Depth image message every 60 frames if frame % 60 == 0: # Enable depth Branch node to start publishing depth image og.Controller.attribute(depth_camera_gate_path + ".inputs:step").set(1) # Publish the ROS Camera Info message every frame og.Controller.attribute(camera_info_gate_path + ".inputs:step").set(1) frame = frame + 1 simulation_context.stop() simulation_app.close()
8,384
Python
41.563452
106
0.707896
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros_bridge/camera_periodic.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import sys import carb from omni.isaac.kit import SimulationApp CAMERA_STAGE_PATH = "/Camera" ROS_CAMERA_GRAPH_PATH = "/ROS_Camera" BACKGROUND_STAGE_PATH = "/background" BACKGROUND_USD_PATH = "/Isaac/Environments/Simple_Warehouse/warehouse_with_forklifts.usd" CONFIG = {"renderer": "RayTracedLighting", "headless": False} simulation_app = SimulationApp(CONFIG) import omni import omni.graph.core as og import usdrt.Sdf from omni.isaac.core import SimulationContext from omni.isaac.core.utils import extensions, nucleus, stage from omni.kit.viewport.utility import get_active_viewport from pxr import Gf, Usd, UsdGeom # enable ROS bridge extension extensions.enable_extension("omni.isaac.ros_bridge") simulation_app.update() # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() simulation_context = SimulationContext(stage_units_in_meters=1.0) # Locate Isaac Sim assets folder to load environment and robot stages assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() # Loading the simple_room environment stage.add_reference_to_stage(assets_root_path + BACKGROUND_USD_PATH, BACKGROUND_STAGE_PATH) # Creating a Camera prim camera_prim = UsdGeom.Camera(omni.usd.get_context().get_stage().DefinePrim(CAMERA_STAGE_PATH, "Camera")) xform_api = UsdGeom.XformCommonAPI(camera_prim) xform_api.SetTranslate(Gf.Vec3d(-1, 5, 1)) xform_api.SetRotate((90, 0, 0), UsdGeom.XformCommonAPI.RotationOrderXYZ) camera_prim.GetHorizontalApertureAttr().Set(21) camera_prim.GetVerticalApertureAttr().Set(16) camera_prim.GetProjectionAttr().Set("perspective") camera_prim.GetFocalLengthAttr().Set(24) camera_prim.GetFocusDistanceAttr().Set(400) simulation_app.update() # Creating an on-demand push graph with cameraHelper nodes to generate ROS image publishers keys = og.Controller.Keys (ros_camera_graph, _, _, _) = og.Controller.edit( { "graph_path": ROS_CAMERA_GRAPH_PATH, "evaluator_name": "push", "pipeline_stage": og.GraphPipelineStage.GRAPH_PIPELINE_STAGE_ONDEMAND, }, { keys.CREATE_NODES: [ ("OnTick", "omni.graph.action.OnTick"), ("createViewport", "omni.isaac.core_nodes.IsaacCreateViewport"), ("getRenderProduct", "omni.isaac.core_nodes.IsaacGetViewportRenderProduct"), ("setCamera", "omni.isaac.core_nodes.IsaacSetCameraOnRenderProduct"), ("cameraHelperRgb", "omni.isaac.ros_bridge.ROS1CameraHelper"), ("cameraHelperInfo", "omni.isaac.ros_bridge.ROS1CameraHelper"), ("cameraHelperDepth", "omni.isaac.ros_bridge.ROS1CameraHelper"), ], keys.CONNECT: [ ("OnTick.outputs:tick", "createViewport.inputs:execIn"), ("createViewport.outputs:execOut", "getRenderProduct.inputs:execIn"), ("createViewport.outputs:viewport", "getRenderProduct.inputs:viewport"), ("getRenderProduct.outputs:execOut", "setCamera.inputs:execIn"), ("getRenderProduct.outputs:renderProductPath", "setCamera.inputs:renderProductPath"), ("setCamera.outputs:execOut", "cameraHelperRgb.inputs:execIn"), ("setCamera.outputs:execOut", "cameraHelperInfo.inputs:execIn"), ("setCamera.outputs:execOut", "cameraHelperDepth.inputs:execIn"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperRgb.inputs:renderProductPath"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperInfo.inputs:renderProductPath"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperDepth.inputs:renderProductPath"), ], keys.SET_VALUES: [ ("createViewport.inputs:viewportId", 0), ("cameraHelperRgb.inputs:frameId", "sim_camera"), ("cameraHelperRgb.inputs:topicName", "rgb"), ("cameraHelperRgb.inputs:type", "rgb"), ("cameraHelperInfo.inputs:frameId", "sim_camera"), ("cameraHelperInfo.inputs:topicName", "camera_info"), ("cameraHelperInfo.inputs:type", "camera_info"), ("cameraHelperDepth.inputs:frameId", "sim_camera"), ("cameraHelperDepth.inputs:topicName", "depth"), ("cameraHelperDepth.inputs:type", "depth"), ("setCamera.inputs:cameraPrim", [usdrt.Sdf.Path(CAMERA_STAGE_PATH)]), ], }, ) # Run the ROS Camera graph once to generate ROS image publishers in SDGPipeline og.Controller.evaluate_sync(ros_camera_graph) simulation_app.update() # Inside the SDGPipeline graph, Isaac Simulation Gate nodes are added to control the execution rate of each of the ROS image and camera info publishers. # By default the step input of each Isaac Simulation Gate node is set to a value of 1 to execute every frame. # We can change this value to N for each Isaac Simulation Gate node individually to publish every N number of frames. viewport_api = get_active_viewport() if viewport_api is not None: import omni.syntheticdata._syntheticdata as sd # Get name of rendervar for RGB sensor type rv_rgb = omni.syntheticdata.SyntheticData.convert_sensor_type_to_rendervar(sd.SensorType.Rgb.name) # Get path to IsaacSimulationGate node in RGB pipeline rgb_camera_gate_path = omni.syntheticdata.SyntheticData._get_node_path( rv_rgb + "IsaacSimulationGate", viewport_api.get_render_product_path() ) # Get name of rendervar for DistanceToImagePlane sensor type rv_depth = omni.syntheticdata.SyntheticData.convert_sensor_type_to_rendervar( sd.SensorType.DistanceToImagePlane.name ) # Get path to IsaacSimulationGate node in Depth pipeline depth_camera_gate_path = omni.syntheticdata.SyntheticData._get_node_path( rv_depth + "IsaacSimulationGate", viewport_api.get_render_product_path() ) # Get path to IsaacSimulationGate node in CameraInfo pipeline camera_info_gate_path = omni.syntheticdata.SyntheticData._get_node_path( "PostProcessDispatch" + "IsaacSimulationGate", viewport_api.get_render_product_path() ) # Set Rgb execution step to 5 frames rgb_step_size = 5 # Set Depth execution step to 60 frames depth_step_size = 60 # Set Camera info execution step to every frame info_step_size = 1 # Set step input of the Isaac Simulation Gate nodes upstream of ROS publishers to control their execution rate og.Controller.attribute(rgb_camera_gate_path + ".inputs:step").set(rgb_step_size) og.Controller.attribute(depth_camera_gate_path + ".inputs:step").set(depth_step_size) og.Controller.attribute(camera_info_gate_path + ".inputs:step").set(info_step_size) # Need to initialize physics getting any articulation..etc simulation_context.initialize_physics() simulation_context.play() frame = 0 while simulation_app.is_running(): # Run with a fixed step size simulation_context.step(render=True) if simulation_context.is_playing(): # Rotate camera by 0.5 degree every frame xform_api.SetRotate((90, 0, frame / 4.0), UsdGeom.XformCommonAPI.RotationOrderXYZ) frame = frame + 1 simulation_context.stop() simulation_app.close()
7,905
Python
41.278075
152
0.721189
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros_bridge/camera_noise.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import sys import carb from omni.isaac.kit import SimulationApp CAMERA_STAGE_PATH = "/Camera" ROS_CAMERA_GRAPH_PATH = "/ROS_Camera" BACKGROUND_STAGE_PATH = "/background" BACKGROUND_USD_PATH = "/Isaac/Environments/Simple_Warehouse/warehouse_with_forklifts.usd" CONFIG = {"renderer": "RayTracedLighting", "headless": False} simulation_app = SimulationApp(CONFIG) import numpy as np import omni import omni.graph.core as og import omni.replicator.core as rep import omni.syntheticdata._syntheticdata as sd import warp as wp from omni.isaac.core import SimulationContext from omni.isaac.core.utils import extensions, nucleus, stage from omni.isaac.core.utils.render_product import set_camera_prim_path from omni.kit.viewport.utility import get_active_viewport from pxr import Gf, Usd, UsdGeom # enable ROS bridge extension extensions.enable_extension("omni.isaac.ros_bridge") simulation_app.update() # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() simulation_context = SimulationContext(stage_units_in_meters=1.0) # Locate Isaac Sim assets folder to load environment and robot stages assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() # Loading the simple_room environment stage.add_reference_to_stage(assets_root_path + BACKGROUND_USD_PATH, BACKGROUND_STAGE_PATH) # Creating a Camera prim camera_prim = UsdGeom.Camera(omni.usd.get_context().get_stage().DefinePrim(CAMERA_STAGE_PATH, "Camera")) xform_api = UsdGeom.XformCommonAPI(camera_prim) xform_api.SetTranslate(Gf.Vec3d(-1, 5, 1)) xform_api.SetRotate((90, 0, 0), UsdGeom.XformCommonAPI.RotationOrderXYZ) camera_prim.GetHorizontalApertureAttr().Set(21) camera_prim.GetVerticalApertureAttr().Set(16) camera_prim.GetProjectionAttr().Set("perspective") camera_prim.GetFocalLengthAttr().Set(24) camera_prim.GetFocusDistanceAttr().Set(400) simulation_app.update() # grab our render product and directly set the camera prim render_product_path = get_active_viewport().get_render_product_path() set_camera_prim_path(render_product_path, CAMERA_STAGE_PATH) # GPU Noise Kernel for illustrative purposes, input is rgba, outputs rgb @wp.kernel def image_gaussian_noise_warp( data_in: wp.array3d(dtype=wp.uint8), data_out: wp.array3d(dtype=wp.uint8), seed: int, sigma: float = 0.5 ): i, j = wp.tid() dim_i = data_out.shape[0] dim_j = data_out.shape[1] pixel_id = i * dim_i + j state_r = wp.rand_init(seed, pixel_id + (dim_i * dim_j * 0)) state_g = wp.rand_init(seed, pixel_id + (dim_i * dim_j * 1)) state_b = wp.rand_init(seed, pixel_id + (dim_i * dim_j * 2)) data_out[i, j, 0] = wp.uint8(float(data_in[i, j, 0]) + (255.0 * sigma * wp.randn(state_r))) data_out[i, j, 1] = wp.uint8(float(data_in[i, j, 1]) + (255.0 * sigma * wp.randn(state_g))) data_out[i, j, 2] = wp.uint8(float(data_in[i, j, 2]) + (255.0 * sigma * wp.randn(state_b))) # register new augmented annotator that adds noise to rgba and then outputs to rgb to the ROS publisher can publish rep.annotators.register( name="rgb_gaussian_noise", annotator=rep.annotators.augment_compose( source_annotator=rep.annotators.get("rgb", device="cuda"), augmentations=[ rep.annotators.Augmentation.from_function( image_gaussian_noise_warp, sigma=0.1, seed=1234, data_out_shape=(-1, -1, 3) ), ], ), ) # Create a new writer with the augmented image rep.writers.register_node_writer( name=f"CustomROS1PublishImage", node_type_id="omni.isaac.ros_bridge.ROS1PublishImage", annotators=[ "rgb_gaussian_noise", omni.syntheticdata.SyntheticData.NodeConnectionTemplate( "IsaacReadSimulationTime", attributes_mapping={"outputs:simulationTime": "inputs:timeStamp"} ), ], category="custom", ) # Create the new writer and attach to our render product writer = rep.writers.get(f"CustomROS1PublishImage") writer.initialize(topicName="rgb_augmented", frameId="sim_camera") writer.attach([render_product_path]) simulation_app.update() # Need to initialize physics getting any articulation..etc simulation_context.initialize_physics() simulation_context.play() frame = 0 while simulation_app.is_running(): # Run with a fixed step size simulation_context.step(render=True) if simulation_context.is_playing(): # Rotate camera by 0.5 degree every frame xform_api.SetRotate((90, 0, frame / 4.0), UsdGeom.XformCommonAPI.RotationOrderXYZ) frame = frame + 1 simulation_context.stop() simulation_app.close()
5,338
Python
35.319728
115
0.729299
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros_bridge/moveit.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import sys import carb import numpy as np from omni.isaac.kit import SimulationApp FRANKA_STAGE_PATH = "/Franka" FRANKA_USD_PATH = "/Isaac/Robots/Franka/franka_alt_fingers.usd" BACKGROUND_STAGE_PATH = "/background" BACKGROUND_USD_PATH = "/Isaac/Environments/Simple_Room/simple_room.usd" CONFIG = {"renderer": "RayTracedLighting", "headless": False} # Example ROS bridge sample demonstrating the manual loading of stages # and creation of ROS components simulation_app = SimulationApp(CONFIG) import omni.graph.core as og import usdrt.Sdf from omni.isaac.core import SimulationContext from omni.isaac.core.utils import extensions, nucleus, prims, rotations, stage, viewports from pxr import Gf # enable ROS bridge extension extensions.enable_extension("omni.isaac.ros_bridge") simulation_app.update() # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() simulation_context = SimulationContext(stage_units_in_meters=1.0) # Locate Isaac Sim assets folder to load environment and robot stages assets_root_path = nucleus.get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") simulation_app.close() sys.exit() # Preparing stage viewports.set_camera_view(eye=np.array([1.2, 1.2, 0.8]), target=np.array([0, 0, 0.5])) # Loading the simple_room environment stage.add_reference_to_stage(assets_root_path + BACKGROUND_USD_PATH, BACKGROUND_STAGE_PATH) # Loading the franka robot USD prims.create_prim( FRANKA_STAGE_PATH, "Xform", position=np.array([0, -0.64, 0]), orientation=rotations.gf_rotation_to_np_array(Gf.Rotation(Gf.Vec3d(0, 0, 1), 90)), usd_path=assets_root_path + FRANKA_USD_PATH, ) simulation_app.update() # Creating a action graph with ROS component nodes try: og.Controller.edit( {"graph_path": "/ActionGraph", "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnImpulseEvent", "omni.graph.action.OnImpulseEvent"), ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("PublishJointState", "omni.isaac.ros_bridge.ROS1PublishJointState"), ("SubscribeJointState", "omni.isaac.ros_bridge.ROS1SubscribeJointState"), ("ArticulationController", "omni.isaac.core_nodes.IsaacArticulationController"), ("PublishTF", "omni.isaac.ros_bridge.ROS1PublishTransformTree"), ("PublishClock", "omni.isaac.ros_bridge.ROS1PublishClock"), ], og.Controller.Keys.CONNECT: [ ("OnImpulseEvent.outputs:execOut", "PublishJointState.inputs:execIn"), ("OnImpulseEvent.outputs:execOut", "SubscribeJointState.inputs:execIn"), ("OnImpulseEvent.outputs:execOut", "PublishTF.inputs:execIn"), ("OnImpulseEvent.outputs:execOut", "PublishClock.inputs:execIn"), ("OnImpulseEvent.outputs:execOut", "ArticulationController.inputs:execIn"), ("ReadSimTime.outputs:simulationTime", "PublishJointState.inputs:timeStamp"), ("ReadSimTime.outputs:simulationTime", "PublishClock.inputs:timeStamp"), ("ReadSimTime.outputs:simulationTime", "PublishTF.inputs:timeStamp"), ("SubscribeJointState.outputs:jointNames", "ArticulationController.inputs:jointNames"), ("SubscribeJointState.outputs:positionCommand", "ArticulationController.inputs:positionCommand"), ("SubscribeJointState.outputs:velocityCommand", "ArticulationController.inputs:velocityCommand"), ("SubscribeJointState.outputs:effortCommand", "ArticulationController.inputs:effortCommand"), ], og.Controller.Keys.SET_VALUES: [ # Setting the /Franka target prim to Articulation Controller node ("ArticulationController.inputs:usePath", True), ("ArticulationController.inputs:robotPath", FRANKA_STAGE_PATH), ("PublishJointState.inputs:targetPrim", [usdrt.Sdf.Path(FRANKA_STAGE_PATH)]), ("PublishTF.inputs:targetPrims", [usdrt.Sdf.Path(FRANKA_STAGE_PATH)]), ], }, ) except Exception as e: print(e) simulation_app.update() # need to initialize physics getting any articulation..etc simulation_context.initialize_physics() simulation_context.play() while simulation_app.is_running(): # Run with a fixed step size simulation_context.step(render=True) # Tick the Publish/Subscribe JointState, Publish TF and Publish Clock nodes each frame og.Controller.set(og.Controller.attribute("/ActionGraph/OnImpulseEvent.state:enableImpulse"), True) simulation_context.stop() simulation_app.close()
5,436
Python
40.503816
113
0.706586
2820207922/isaac_ws/standalone_examples/api/omni.isaac.ros_bridge/subscriber.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import carb from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"renderer": "RayTracedLighting", "headless": False}) import omni from omni.isaac.core import World from omni.isaac.core.objects import VisualCuboid from omni.isaac.core.utils.extensions import enable_extension # enable ROS bridge extension enable_extension("omni.isaac.ros_bridge") simulation_app.update() # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage import rosgraph if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") simulation_app.close() exit() import time # Note that this is not the system level rospy, but one compiled for omniverse import numpy as np import rospy from std_msgs.msg import Empty class Subscriber: def __init__(self): # setting up the world with a cube self.timeline = omni.timeline.get_timeline_interface() self.ros_world = World(stage_units_in_meters=1.0) self.ros_world.scene.add_default_ground_plane() # add a cube in the world cube_path = "/cube" self.ros_world.scene.add( VisualCuboid(prim_path=cube_path, name="cube_1", position=np.array([0, 0, 10]), size=0.2) ) self._cube_position = np.array([0, 0, 0]) # setup the ros subscriber here self.ros_sub = rospy.Subscriber("/move_cube", Empty, self.move_cube_callback, queue_size=10) self.ros_world.reset() def move_cube_callback(self, data): # callback function to set the cube position to a new one upon receiving a (empty) ros message if self.ros_world.is_playing(): self._cube_position = np.array([np.random.rand() * 0.40, np.random.rand() * 0.40, 0.10]) def run_simulation(self): self.timeline.play() while simulation_app.is_running(): self.ros_world.step(render=True) if self.ros_world.is_playing(): if self.ros_world.current_time_step_index == 0: self.ros_world.reset() # the actual setting the cube pose is done here self.ros_world.scene.get_object("cube_1").set_world_pose(self._cube_position) # Cleanup self.ros_sub.unregister() rospy.signal_shutdown("subscriber example complete") self.timeline.stop() simulation_app.close() if __name__ == "__main__": rospy.init_node("tutorial_subscriber", anonymous=True, disable_signals=True, log_level=rospy.ERROR) subscriber = Subscriber() subscriber.run_simulation()
3,108
Python
34.329545
103
0.684685
codemaster0407/ICECTCI-Hackathon/README.md
# ICECTCI-Hackathon # PROBLEM STATEMENT Problem Statement 3– Natural language processing Title: AI-Assisted Learning for NVIDIA SDKs and Toolkits Problem Statement: Develop an AI-powered language model (LLM) that assists users in understanding and effectively using various NVIDIA SDKs (Software Development Kits) and toolkits. The objective of this hackathon is to create an interactive and user-friendly platform that provides comprehensive information, examples, and guidance on NVIDIA's SDKs and toolkits. By leveraging the power of language models and NVIDIA toolkits, participants aim to simplify the learning curve for developers and empower them to utilize NVIDIA's technologies more efficiently. ### Chatbot_final.ipynb This notebook can be used for inference on queries as per the user's interest. ### Evaluate_1.ipynb Notebook to evaluate the fine-tuned models. ### FALCON7B_r32_a64_gen_tot This directory contains the finetuned Falcon-7B LLM with PEFT adapters. ### pup_gorilla_model This directory contains the finetuned Gorilla-7B LLM with PEFT adapters. ### DATA_EXTRACTION This directory contains all the code and extracted data files from different sources.
1,197
Markdown
35.303029
97
0.802005
codemaster0407/ICECTCI-Hackathon/FALCON7B_r32_a64_gen_tot/README.md
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
491
Markdown
20.391303
74
0.735234
codemaster0407/ICECTCI-Hackathon/pup_gorilla_model/README.md
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
491
Markdown
20.391303
74
0.735234
KhaledSharif/omniverse-gym/setup.py
from __future__ import absolute_import from __future__ import print_function from __future__ import division from setuptools import setup, find_packages INSTALL_REQUIRES = [ "numpy==1.23.5", "protobuf==3.20.2", "omegaconf==2.3.0", "hydra-core==1.3.2", "urllib3==1.26.16", "rl-games==1.6.1", "moviepy==1.0.3" ] setup( name="omniisaacgymenvs", author="[email protected]", version="1.0.0", description="Omniverse Isaac Gym Envs for Robot Learning in NVIDIA Isaac Sim", keywords=["robotics", "rl"], include_package_data=True, install_requires=INSTALL_REQUIRES, packages=find_packages("."), classifiers=["Natural Language :: English", "Programming Language :: Python :: 3.7, 3.8"], zip_safe=False, )
765
Python
25.413792
94
0.647059
KhaledSharif/omniverse-gym/run.py
import os import gym import hydra import torch from omegaconf import DictConfig from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from omniisaacgymenvs.utils.config_utils.path_utils import ( retrieve_checkpoint_path, get_experience, ) from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv from omniisaacgymenvs.utils.task_util import initialize_task from rl_games.common import env_configurations, vecenv from rl_games.torch_runner import Runner class RLGTrainer: def __init__(self, cfg, cfg_dict): self.cfg = cfg self.cfg_dict = cfg_dict def launch_rlg_hydra(self, env): # `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally. # We use the helper function here to specify the environment config. self.cfg_dict["task"]["test"] = self.cfg.test # register the rl-games adapter to use inside the runner vecenv.register( "RLGPU", lambda config_name, num_actors, **kwargs: RLGPUEnv( config_name, num_actors, **kwargs ), ) env_configurations.register( "rlgpu", {"vecenv_type": "RLGPU", "env_creator": lambda **kwargs: env} ) self.rlg_config_dict = omegaconf_to_dict(self.cfg.train) def run(self, module_path, experiment_dir): self.rlg_config_dict["params"]["config"]["train_dir"] = os.path.join( module_path, "runs" ) # create runner and set the settings runner = Runner(RLGPUAlgoObserver()) runner.load(self.rlg_config_dict) runner.reset() # dump config dict os.makedirs(experiment_dir, exist_ok=True) with open(os.path.join(experiment_dir, "config.yaml"), "w") as f: f.write(OmegaConf.to_yaml(self.cfg)) runner.run( { "train": not self.cfg.test, "play": self.cfg.test, "checkpoint": self.cfg.checkpoint, "sigma": None, } ) @hydra.main(version_base=None, config_name="config", config_path="./cfg") def parse_hydra_configs(cfg: DictConfig): headless = cfg.headless # local rank (GPU id) in a current multi-gpu mode local_rank = int(os.getenv("LOCAL_RANK", "0")) # global rank (GPU id) in multi-gpu multi-node mode global_rank = int(os.getenv("RANK", "0")) if cfg.multi_gpu: cfg.device_id = local_rank cfg.rl_device = f"cuda:{local_rank}" enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras # select kit app file experience = get_experience( headless, cfg.enable_livestream, enable_viewport, cfg.enable_recording, cfg.kit_app, ) env = VecEnvRLGames( headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport or cfg.enable_recording, experience=experience, ) # parse experiment directory module_path = os.path.abspath(os.curdir) experiment_dir = os.path.join(module_path, "runs", cfg.train.params.config.name) # use gym RecordVideo wrapper for viewport recording if cfg.enable_recording: if cfg.recording_dir == "": videos_dir = os.path.join(experiment_dir, "videos") else: videos_dir = cfg.recording_dir video_interval = lambda step: step % cfg.recording_interval == 0 video_length = cfg.recording_length env.is_vector_env = True if env.metadata is None: env.metadata = { "render_modes": ["rgb_array"], "render_fps": cfg.recording_fps, } else: env.metadata["render_modes"] = ["rgb_array"] env.metadata["render_fps"] = cfg.recording_fps env = gym.wrappers.RecordVideo( env, video_folder=videos_dir, step_trigger=video_interval, video_length=video_length, ) # ensure checkpoints can be specified as relative paths if cfg.checkpoint: cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint) if cfg.checkpoint is None: quit() cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = cfg.seed + global_rank if cfg.seed != -1 else cfg.seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed initialize_task(cfg_dict, env) torch.cuda.set_device(local_rank) rlg_trainer = RLGTrainer(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) rlg_trainer.run(module_path, experiment_dir) env.close() if __name__ == "__main__": parse_hydra_configs()
5,048
Python
32.437086
116
0.627377
KhaledSharif/omniverse-gym/README.md
# omniverse-gym Examples of how to use NVIDIA Omniverse Isaac Sim for to solve Reinforcement Learning Games (RL-Games) ## Installation Follow the Isaac Sim [documentation](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_workstation.html) to install the latest Isaac Sim release (2023.1.1) To install `omniisaacgymenvs`, first clone this repository: ```bash git clone https://github.com/KhaledSharif/omniverse-gym.git ``` Once cloned, locate the [python executable in Isaac Sim](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_python.html). By default, this should be `python.sh`. We will refer to this path as `PYTHON_PATH`. To set a `PYTHON_PATH` variable in the terminal that links to the python executable, we can run a command that resembles the following. Make sure to update the paths to your local path. For Linux: ```bash alias PYTHON_PATH=~/.local/share/ov/pkg/isaac_sim-2023.1.1/python.sh ``` Install the repository and its dependencies: ```bash PYTHON_PATH -m pip install -e . ``` To run a simple form of PPO from `rl_games`, use the single-threaded training script: ```bash PYTHON_PATH run.py task=Cartpole ``` The result is saved to the current working directory in a new directory called `runs`. You can now evaluate your model by running the same environment in test (inference) mode using the saved model checkpoint. ```bash PYTHON_PATH run.py task=Cartpole test=True checkpoint=runs/Cartpole/nn/Cartpole.pth ```
1,491
Markdown
35.390243
226
0.768612
KhaledSharif/omniverse-gym/cfg/config.yaml
# Task name - used to pick the class to load task_name: ${task.name} # experiment name. defaults to name of training config experiment: '' # if set to positive integer, overrides the default number of environments num_envs: '' # seed - set to -1 to choose random seed seed: 42 # set to True for deterministic performance torch_deterministic: False # set the maximum number of learning iterations to train for. overrides default per-environment setting max_iterations: '' ## Device config physics_engine: 'physx' # whether to use cpu or gpu pipeline pipeline: 'gpu' # whether to use cpu or gpu physx sim_device: 'gpu' # used for gpu simulation only - device id for running sim and task if pipeline=gpu device_id: 0 # device to run RL rl_device: 'cuda:0' # multi-GPU training multi_gpu: False ## PhysX arguments num_threads: 4 # Number of worker threads used by PhysX - for CPU PhysX only. solver_type: 1 # 0: pgs, 1: tgs # RLGames Arguments # test - if set, run policy in inference mode (requires setting checkpoint to load) test: False # used to set checkpoint path checkpoint: '' # evaluate checkpoint evaluation: False # disables rendering headless: False # enables native livestream enable_livestream: False # timeout for MT script mt_timeout: 300 # enables viewport recording enable_recording: False # interval between video recordings (in steps) recording_interval: 2000 # length of the recorded video (in steps) recording_length: 100 # fps for writing recorded video recording_fps: 30 # directory to save recordings in recording_dir: '' wandb_activate: False wandb_group: '' wandb_name: ${train.params.config.name} wandb_entity: '' wandb_project: 'omniisaacgymenvs' # path to a kit app file kit_app: '' # Warp warp: False # set default task and default training config based on task defaults: - _self_ - task: Cartpole - train: ${task}PPO - override hydra/job_logging: disabled # set the directory where the output files get saved hydra: output_subdir: null run: dir: .
2,007
YAML
22.348837
103
0.744893
KhaledSharif/omniverse-gym/cfg/README.md
## Reinforcement Learning Configuration ### What is Hydra? Hydra is an open-source Python framework that simplifies the development of research and other complex applications. The key feature is the ability to dynamically create a hierarchical configuration by composition and override it through config files and the command line. ### What is ./config.yaml? - Task Configuration: This section specifies the task name, experiment name, the number of environments to use for training, the random seed, and whether to use deterministic PyTorch operations. - Device Configuration: This section configures the physics engine (PhysX), the pipeline (CPU or GPU), the device to be used for simulation (CPU or GPU), the device for running the RL algorithm, and whether to enable multi-GPU training. - PhysX Arguments: This section sets the number of worker threads and the solver type for the PhysX physics engine. - RL Training Arguments: These arguments control various aspects of the RL training process, such as running in test mode, loading a checkpoint, evaluation mode, headless rendering, live streaming, timeout settings, recording settings (e.g., interval, length, FPS, directory), and wandb (Weights & Biases) integration for logging and monitoring. - Default Settings: This section sets the default task and training configuration based on the specified task (in this case, Cartpole). Hydra Configuration: This section configures the output directory for the training logs and results using the Hydra configuration management framework. ### What is ./task/*.yaml? - Environment Settings: This section defines the number of parallel environments, episode length, observation and action clipping, control frequency, noise in initial conditions, number of props, aggregation mode, and reward scales for different objectives (e.g., distance, rotation, finger positions). - Simulation Settings: This section configures the simulation parameters, such as time step, gravity, ground plane, lighting, fabric usage, and whether to use GPU acceleration. It also sets the default physics material properties (friction, restitution). - Physics Engine Settings: These settings are specific to the PhysX physics engine, including worker thread count, solver type, GPU usage, solver iteration counts, contact offsets, bounce thresholds, friction parameters, sleeping and stabilization settings, and GPU buffer capacities. - Object-Specific Settings: These sections override specific parameters for individual objects or actors within the environment, such as the robot arm (e.g., Franka), cabinets, and props. These settings include enabling self-collisions, gyroscopic forces, solver iteration counts, sleep and stabilization thresholds, density, maximum depenetration velocity, and shape-specific parameters like contact and rest offsets. ### What is ./train/*.yaml? Params: This section contains the main parameters for the RL algorithm and neural network architecture. - seed: Random seed value for reproducibility. - algo: The algorithm to be used, in this case, a2c_continuous (Advantage Actor-Critic for continuous actions). - model: The model type, typically continuous_a2c_logstd for continuous action spaces. - network: Configuration for the neural network architecture, including the type (actor-critic), activation functions, initialization methods, and layer sizes. Load Checkpoint: Parameters related to loading a pre-trained model checkpoint. - load_checkpoint: A flag to determine whether to load a checkpoint or not. - load_path: The path to the checkpoint file to be loaded. Config: This section contains various configuration settings for the training process. - name: The name of the experiment or environment. - full_experiment_name: The full name of the experiment. - env_name: The name of the environment to be used (in this case, rlgpu). - device: The device to be used for training (e.g., CPU or GPU). - multi_gpu: A flag to enable multi-GPU training. - ppo: A flag to indicate that PPO is being used. - mixed_precision: A flag to enable mixed-precision training (useful for GPU acceleration). - normalize_input, normalize_value, normalize_advantage: Flags for normalizing input, value, and advantage estimates. - num_actors: The number of parallel environments to run. - reward_shaper: Configuration for reward scaling. - gamma, tau: Discount factors for future rewards. - learning_rate, lr_schedule: Learning rate and its scheduling strategy. - kl_threshold: The KL divergence threshold for adaptive KL penalty in PPO. - score_to_win: The target score to consider the task as solved. - max_epochs, save_best_after, save_frequency: Parameters for training duration and checkpointing. - grad_norm, entropy_coef, truncate_grads, e_clip: Gradient-related parameters and entropy regularization. - horizon_length, minibatch_size, mini_epochs: Parameters for batching and optimization. - critic_coef, clip_value, seq_length, bounds_loss_coef: Additional parameters for the critic and bounding loss.
5,022
Markdown
85.603447
418
0.797093
KhaledSharif/omniverse-gym/cfg/task/CartpoleCamera.yaml
defaults: - Cartpole - _self_ name: CartpoleCamera env: numEnvs: ${resolve_default:32,${...num_envs}} envSpacing: 20.0 cameraWidth: 240 cameraHeight: 160 exportImages: False sim: rendering_dt: 0.0166 # 1/60 # set to True if you use camera sensors in the environment enable_cameras: True add_ground_plane: False add_distant_light: True
363
YAML
16.333333
60
0.69697
KhaledSharif/omniverse-gym/cfg/task/FrankaDeformable.yaml
# used to create the object name: FrankaDeformable physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:1024,${...num_envs}} # 2048#4096 envSpacing: 3.0 episodeLength: 100 # 150 #350 #500 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 # 60 Hz startPositionNoise: 0.0 startRotationNoise: 0.0 numProps: 4 aggregateMode: 3 actionScale: 7.5 dofVelocityScale: 0.1 distRewardScale: 2.0 rotRewardScale: 0.5 aroundHandleRewardScale: 10.0 openRewardScale: 7.5 fingerDistRewardScale: 100.0 actionPenaltyScale: 0.01 fingerCloseRewardScale: 10.0 sim: dt: 0.016 # 1/60s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 8 # 12 solver_velocity_iteration_count: 0 # 1 contact_offset: 0.02 #0.005 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 524288 #20965884 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 4194304 #2097152 #16777216 #8388608 #2097152 #1048576 gpu_max_particle_contacts: 1048576 #2097152 #1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 franka: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 beaker: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 cube: # -1 to use default values override_usd_defaults: False make_kinematic: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 # # per-shape # contact_offset: 0.02 # rest_offset: 0.001
3,418
YAML
25.92126
85
0.691925
KhaledSharif/omniverse-gym/cfg/task/FrankaCabinet.yaml
# used to create the object name: FrankaCabinet physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 3.0 episodeLength: 500 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 # 60 Hz startPositionNoise: 0.0 startRotationNoise: 0.0 numProps: 4 aggregateMode: 3 actionScale: 7.5 dofVelocityScale: 0.1 distRewardScale: 2.0 rotRewardScale: 0.5 aroundHandleRewardScale: 10.0 openRewardScale: 7.5 fingerDistRewardScale: 100.0 actionPenaltyScale: 0.01 fingerCloseRewardScale: 10.0 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 contact_offset: 0.005 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 524288 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 franka: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 cabinet: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.0 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 prop: # -1 to use default values override_usd_defaults: False make_kinematic: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: 100 max_depenetration_velocity: 1000.0 # per-shape contact_offset: 0.005 rest_offset: 0.0
3,287
YAML
25.304
71
0.695467
KhaledSharif/omniverse-gym/cfg/task/Ant.yaml
# used to create the object name: Ant physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: # numEnvs: ${...num_envs} numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5 episodeLength: 1000 enableDebugVis: False clipActions: 1.0 powerScale: 0.5 controlFrequencyInv: 2 # 60 Hz # reward parameters headingWeight: 0.5 upWeight: 0.1 # cost parameters actionsCost: 0.005 energyCost: 0.05 dofVelocityScale: 0.2 angularVelocityScale: 1.0 contactForceScale: 0.1 jointsAtLimitCost: 0.1 deathCost: -2.0 terminationHeight: 0.31 alive_reward_scale: 0.5 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 10.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 8192 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 Ant: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 10.0
2,370
YAML
24.771739
71
0.690717
KhaledSharif/omniverse-gym/cfg/task/AnymalTerrain.yaml
name: AnymalTerrain physics_engine: ${..physics_engine} env: numEnvs: ${resolve_default:2048,${...num_envs}} numObservations: 188 numActions: 12 envSpacing: 3. # [m] terrain: staticFriction: 1.0 # [-] dynamicFriction: 1.0 # [-] restitution: 0. # [-] # rough terrain only: curriculum: true maxInitMapLevel: 0 mapLength: 8. mapWidth: 8. numLevels: 10 numTerrains: 20 # terrain types: [smooth slope, rough slope, stairs up, stairs down, discrete] terrainProportions: [0.1, 0.1, 0.35, 0.25, 0.2] # tri mesh only: slopeTreshold: 0.5 baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [1.0, 0.0, 0.0, 0.0] # w,x,y,z [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] randomCommandVelocityRanges: # train linear_x: [-1., 1.] # min max [m/s] linear_y: [-1., 1.] # min max [m/s] yaw: [-3.14, 3.14] # min max [rad/s] control: # PD Drive parameters: stiffness: 80.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] # action scale: target angle = actionScale * action + defaultAngle actionScale: 0.5 # decimation: Number of control action updates @ sim DT per policy DT decimation: 4 defaultJointAngles: # = target angles when action = 0.0 LF_HAA: 0.03 # [rad] LH_HAA: 0.03 # [rad] RF_HAA: -0.03 # [rad] RH_HAA: -0.03 # [rad] LF_HFE: 0.4 # [rad] LH_HFE: -0.4 # [rad] RF_HFE: 0.4 # [rad] RH_HFE: -0.4 # [rad] LF_KFE: -0.8 # [rad] LH_KFE: 0.8 # [rad] RF_KFE: -0.8 # [rad] RH_KFE: 0.8 # [rad] learn: # rewards terminalReward: 0.0 linearVelocityXYRewardScale: 1.0 linearVelocityZRewardScale: -4.0 angularVelocityXYRewardScale: -0.05 angularVelocityZRewardScale: 0.5 orientationRewardScale: -0. torqueRewardScale: -0.00002 jointAccRewardScale: -0.0005 baseHeightRewardScale: -0.0 actionRateRewardScale: -0.01 fallenOverRewardScale: -1.0 # cosmetics hipRewardScale: -0. #25 # normalization linearVelocityScale: 2.0 angularVelocityScale: 0.25 dofPositionScale: 1.0 dofVelocityScale: 0.05 heightMeasurementScale: 5.0 # noise addNoise: true noiseLevel: 1.0 # scales other values dofPositionNoise: 0.01 dofVelocityNoise: 1.5 linearVelocityNoise: 0.1 angularVelocityNoise: 0.2 gravityNoise: 0.05 heightMeasurementNoise: 0.06 #randomization pushInterval_s: 15 # episode length in seconds episodeLength_s: 20 sim: dt: 0.005 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: False add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: True # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 163840 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 134217728 gpu_temp_buffer_capacity: 33554432 gpu_max_num_partitions: 8 anymal: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: False # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0
4,346
YAML
25.345454
82
0.633916
KhaledSharif/omniverse-gym/cfg/task/BallBalance.yaml
# used to create the object name: BallBalance physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 2.0 maxEpisodeLength: 600 actionSpeedScale: 20 clipObservations: 5.0 clipActions: 1.0 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 262144 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 262144 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 table: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 ball: # -1 to use default values override_usd_defaults: False make_kinematic: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: 200 max_depenetration_velocity: 1000.0
2,458
YAML
25.728261
71
0.690806
KhaledSharif/omniverse-gym/cfg/task/FactoryBase.yaml
# See schema in factory_schema_config_base.py for descriptions of parameters. defaults: - _self_ - /factory_schema_config_base sim: add_damping: True disable_contact_processing: False env: env_spacing: 1.5 franka_depth: 0.5 table_height: 0.4 franka_friction: 1.0 table_friction: 0.3
309
YAML
16.222221
77
0.699029
KhaledSharif/omniverse-gym/cfg/task/Humanoid.yaml
# used to create the object name: Humanoid physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: # numEnvs: ${...num_envs} numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5 episodeLength: 1000 enableDebugVis: False clipActions: 1.0 powerScale: 1.0 controlFrequencyInv: 2 # 60 Hz # reward parameters headingWeight: 0.5 upWeight: 0.1 # cost parameters actionsCost: 0.01 energyCost: 0.05 dofVelocityScale: 0.1 angularVelocityScale: 0.25 contactForceScale: 0.01 jointsAtLimitCost: 0.25 deathCost: -1.0 terminationHeight: 0.8 alive_reward_scale: 2.0 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 10.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 8192 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 Humanoid: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 10.0
2,335
YAML
24.670329
71
0.693362
KhaledSharif/omniverse-gym/cfg/task/AllegroHand.yaml
# used to create the object name: AllegroHand physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:8192,${...num_envs}} envSpacing: 0.75 episodeLength: 600 clipObservations: 5.0 clipActions: 1.0 useRelativeControl: False dofSpeedScale: 20.0 actionsMovingAverage: 1.0 controlFrequencyInv: 4 # 30 Hz startPositionNoise: 0.01 startRotationNoise: 0.0 resetPositionNoise: 0.01 resetRotationNoise: 0.0 resetDofPosRandomInterval: 0.2 resetDofVelRandomInterval: 0.0 # reward -> dictionary distRewardScale: -10.0 rotRewardScale: 1.0 rotEps: 0.1 actionPenaltyScale: -0.0002 reachGoalBonus: 250 fallDistance: 0.24 fallPenalty: 0.0 velObsScale: 0.2 objectType: "block" observationType: "full" # can be "full_no_vel", "full" successTolerance: 0.1 printNumSuccesses: False maxConsecutiveSuccesses: 0 sim: dt: 0.0083 # 1/120 s add_ground_plane: True add_distant_light: False use_gpu_pipeline: ${eq:${...pipeline},"gpu"} use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: # per-scene use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU worker_thread_count: ${....num_threads} solver_type: ${....solver_type} # 0: PGS, 1: TGS bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 819200 gpu_found_lost_aggregate_pairs_capacity: 819200 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 allegro_hand: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: False # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.0005 # per-body density: -1 max_depenetration_velocity: 1000.0 object: # -1 to use default values override_usd_defaults: False make_kinematic: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.0025 # per-body density: 400.0 max_depenetration_velocity: 1000.0 goal_object: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.000 stabilization_threshold: 0.0025 # per-body density: -1 max_depenetration_velocity: 1000.0
3,360
YAML
25.464567
71
0.69881
KhaledSharif/omniverse-gym/cfg/task/HumanoidSAC.yaml
# used to create the object defaults: - Humanoid - _self_ # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:64,${...num_envs}}
168
YAML
20.124997
52
0.678571
KhaledSharif/omniverse-gym/cfg/task/Ingenuity.yaml
# used to create the object name: Ingenuity physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 2.5 maxEpisodeLength: 2000 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -3.721] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False disable_contact_processing: False physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1000.0 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: False # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 ingenuity: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 ball: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0
2,351
YAML
27
71
0.693322
KhaledSharif/omniverse-gym/cfg/task/Quadcopter.yaml
# used to create the object name: Quadcopter physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 1.25 maxEpisodeLength: 500 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 8192 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 copter: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 ball: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0
2,452
YAML
25.663043
71
0.690457
KhaledSharif/omniverse-gym/cfg/task/Crazyflie.yaml
# used to create the object name: Crazyflie physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 2.5 maxEpisodeLength: 700 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False disable_contact_processing: False physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1000.0 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: False # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 crazyflie: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 ball: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0
2,350
YAML
26.658823
71
0.692766
KhaledSharif/omniverse-gym/cfg/task/FactoryEnvNutBolt.yaml
# See schema in factory_schema_config_env.py for descriptions of common parameters. defaults: - _self_ - /factory_schema_config_env sim: disable_franka_collisions: False disable_nut_collisions: False disable_bolt_collisions: False disable_contact_processing: False env: env_name: 'FactoryEnvNutBolt' desired_subassemblies: ['nut_bolt_m16', 'nut_bolt_m16'] nut_lateral_offset: 0.1 # Y-axis offset of nut before initial reset to prevent initial interpenetration with bolt nut_bolt_density: 7850.0 nut_bolt_friction: 0.3 # Subassembly options: # {nut_bolt_m4, nut_bolt_m8, nut_bolt_m12, nut_bolt_m16, nut_bolt_m20}
643
YAML
28.272726
116
0.73717
KhaledSharif/omniverse-gym/cfg/task/AntSAC.yaml
# used to create the object defaults: - Ant - _self_ # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:64,${...num_envs}}
163
YAML
19.499998
52
0.668712
KhaledSharif/omniverse-gym/cfg/task/Cartpole.yaml
# used to create the object name: Cartpole physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:512,${...num_envs}} envSpacing: 4.0 resetDist: 3.0 maxEffort: 400.0 clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 # 60 Hz sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 1024 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1024 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 Cartpole: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0 # per-shape contact_offset: 0.02 rest_offset: 0.001
2,124
YAML
26.243589
71
0.686911
KhaledSharif/omniverse-gym/cfg/task/Anymal.yaml
# used to create the object name: Anymal physics_engine: ${..physics_engine} env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 4. # [m] clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] randomCommandVelocityRanges: linear_x: [-2., 2.] # min max [m/s] linear_y: [-1., 1.] # min max [m/s] yaw: [-1., 1.] # min max [rad/s] control: # PD Drive parameters: stiffness: 85.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] actionScale: 13.5 defaultJointAngles: # = target angles when action = 0.0 LF_HAA: 0.03 # [rad] LH_HAA: 0.03 # [rad] RF_HAA: -0.03 # [rad] RH_HAA: -0.03 # [rad] LF_HFE: 0.4 # [rad] LH_HFE: -0.4 # [rad] RF_HFE: 0.4 # [rad] RH_HFE: -0.4 # [rad] LF_KFE: -0.8 # [rad] LH_KFE: 0.8 # [rad] RF_KFE: -0.8 # [rad] RH_KFE: 0.8 # [rad] learn: # rewards linearVelocityXYRewardScale: 1.0 angularVelocityZRewardScale: 0.5 linearVelocityZRewardScale: -0.03 jointAccRewardScale: -0.0003 actionRateRewardScale: -0.006 cosmeticRewardScale: -0.06 # normalization linearVelocityScale: 2.0 angularVelocityScale: 0.25 dofPositionScale: 1.0 dofVelocityScale: 0.05 # episode length in seconds episodeLength_s: 50 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 1 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 163840 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 134217728 gpu_temp_buffer_capacity: 33554432 gpu_max_num_partitions: 8 Anymal: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0
3,270
YAML
24.960317
71
0.626911
KhaledSharif/omniverse-gym/cfg/task/ShadowHandOpenAI_LSTM.yaml
# specifies what the config is when running `ShadowHandOpenAI` in LSTM mode defaults: - ShadowHandOpenAI_FF - _self_ env: numEnvs: ${resolve_default:8192,${...num_envs}}
178
YAML
18.888887
75
0.707865
KhaledSharif/omniverse-gym/cfg/train/ShadowHandOpenAI_FFPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [400, 400, 200, 100] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:ShadowHandOpenAI_FF,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 4 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 central_value_config: minibatch_size: 32864 mini_epochs: 4 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True mlp: units: [512, 512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None player: deterministic: True games_num: 100000 print_stats: True
2,215
YAML
20.940594
66
0.577427
KhaledSharif/omniverse-gym/cfg/train/AnymalTerrainPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0. # std = 1. fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None # rnn: # name: lstm # units: 128 # layers: 1 # before_mlp: True # concat_input: True # layer_norm: False load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:AnymalTerrain,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False # True normalize_input: True normalize_value: True normalize_advantage: True value_bootstrap: True clip_actions: False num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 gamma: 0.99 tau: 0.95 e_clip: 0.2 entropy_coef: 0.001 learning_rate: 3.e-4 # overwritten by adaptive lr_schedule lr_schedule: adaptive kl_threshold: 0.008 # target kl for adaptive lr truncate_grads: True grad_norm: 1. horizon_length: 48 minibatch_size: 16384 mini_epochs: 5 critic_coef: 2 clip_value: True seq_length: 4 # only for rnn bounds_loss_coef: 0. max_epochs: ${resolve_default:2000,${....max_iterations}} save_best_after: 100 score_to_win: 20000 save_frequency: 50 print_stats: True
1,928
YAML
21.694117
101
0.592842
KhaledSharif/omniverse-gym/cfg/train/HumanoidPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [400, 200, 100] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Humanoid,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 100 save_frequency: 100 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 32 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,639
YAML
21.465753
101
0.594875
KhaledSharif/omniverse-gym/cfg/train/CrazyfliePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 256, 128] activation: tanh d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Crazyflie,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,614
YAML
21.430555
101
0.593556
KhaledSharif/omniverse-gym/cfg/train/ShadowHandPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:ShadowHand,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 player: deterministic: True games_num: 100000 print_stats: True
1,703
YAML
20.56962
62
0.589548
KhaledSharif/omniverse-gym/cfg/train/HumanoidSAC.yaml
params: seed: ${...seed} algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [512, 256] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:HumanoidSAC,${....experiment}} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} normalize_input: True reward_shaper: scale_value: 1.0 max_epochs: ${resolve_default:50000,${....max_iterations}} num_steps_per_episode: 8 save_best_after: 100 save_frequency: 1000 gamma: 0.99 init_alpha: 1.0 alpha_lr: 0.005 actor_lr: 0.0005 critic_lr: 0.0005 critic_tau: 0.005 batch_size: 4096 learnable_temperature: true num_seed_steps: 5 num_warmup_steps: 10 replay_buffer_size: 1000000 num_actors: ${....task.env.numEnvs}
1,165
YAML
21.423077
101
0.603433
KhaledSharif/omniverse-gym/cfg/train/ShadowHandOpenAI_LSTMPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512] activation: relu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 1024 layers: 1 before_mlp: True layer_norm: True load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:ShadowHandOpenAI_LSTM,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 4 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 central_value_config: minibatch_size: 32768 mini_epochs: 4 learning_rate: 1e-4 kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True mlp: units: [512] activation: relu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 1024 layers: 1 before_mlp: True layer_norm: True zero_rnn_on_done: False player: deterministic: True games_num: 100000 print_stats: True
2,402
YAML
20.265487
68
0.562448
KhaledSharif/omniverse-gym/cfg/train/IngenuityPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Ingenuity,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-3 lr_schedule: adaptive kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:400,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,612
YAML
21.402777
101
0.593052
KhaledSharif/omniverse-gym/cfg/train/QuadcopterPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Quadcopter,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-3 lr_schedule: adaptive kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,613
YAML
21.416666
101
0.593304
KhaledSharif/omniverse-gym/cfg/train/FactoryTaskNutBoltScrewPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:FactoryTaskNutBoltScrew,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: fixed schedule_type: standard kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:400,${....max_iterations}} save_best_after: 50 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 512 minibatch_size: 512 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,597
YAML
20.594594
70
0.594865
KhaledSharif/omniverse-gym/cfg/train/BallBalancePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [128, 64, 32] activation: elu initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:BallBalance,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:250,${....max_iterations}} save_best_after: 50 save_frequency: 100 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,593
YAML
21.450704
101
0.593848
KhaledSharif/omniverse-gym/cfg/train/FrankaDeformablePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FrankaDeformable,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 100000000 max_epochs: ${resolve_default:6000,${....max_iterations}} save_best_after: 500 save_frequency: 500 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 #2048 #4096 #8192 #16384 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,665
YAML
22.138889
101
0.600601
KhaledSharif/omniverse-gym/cfg/train/FactoryTaskNutBoltPlacePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:FactoryTaskNutBoltPlace,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: fixed schedule_type: standard kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:400,${....max_iterations}} save_best_after: 50 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 128 minibatch_size: 512 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,597
YAML
20.594594
70
0.594865
KhaledSharif/omniverse-gym/cfg/train/CartpoleCameraPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True cnn: type: conv2d activation: relu initializer: name: default regularizer: name: None convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: elu initializer: name: default # rnn: # name: lstm # units: 128 # layers: 1 # before_mlp: False # concat_input: True # layer_norm: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:CartpoleCamera,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: False normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 #0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:500,${....max_iterations}} save_best_after: 50 save_frequency: 10 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 256 minibatch_size: 512 #1024 mini_epochs: 4 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
2,124
YAML
21.135416
101
0.556026
KhaledSharif/omniverse-gym/cfg/train/AntPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Ant,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:500,${....max_iterations}} save_best_after: 100 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 4 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,657
YAML
21.405405
101
0.594448