file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
xibeisiber/orbit.dual_arm/orbit/ext_template/tasks/locomotion/velocity/config/anymal_d/flat_env_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from .rough_env_cfg import AnymalDRoughEnvCfg @configclass class AnymalDFlatEnvCfg(AnymalDRoughEnvCfg): def __post_init__(self): # post init of parent super().__post_init__() # override rewards self.rewards.flat_orientation_l2.weight = -5.0 self.rewards.dof_torques_l2.weight = -2.5e-5 self.rewards.feet_air_time.weight = 0.5 # change terrain to flat self.scene.terrain.terrain_type = "plane" self.scene.terrain.terrain_generator = None # no height scan self.scene.height_scanner = None self.observations.policy.height_scan = None # no terrain curriculum self.curriculum.terrain_levels = None class AnymalDFlatEnvCfg_PLAY(AnymalDFlatEnvCfg): def __post_init__(self) -> None: # post init of parent super().__post_init__() # make a smaller scene for play self.scene.num_envs = 50 self.scene.env_spacing = 2.5 # disable randomization for play self.observations.policy.enable_corruption = False # remove random pushing self.randomization.base_external_force_torque = None self.randomization.push_robot = None
1,382
Python
30.431817
60
0.656295
xibeisiber/orbit.dual_arm/orbit/ext_template/tasks/locomotion/velocity/config/anymal_d/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import gymnasium as gym from . import agents, flat_env_cfg, rough_env_cfg ## # Register Gym environments. ## gym.register( id="Template-Velocity-Flat-Anymal-D-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.AnymalDFlatEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDFlatPPORunnerCfg, }, ) gym.register( id="Template-Velocity-Flat-Anymal-D-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": flat_env_cfg.AnymalDFlatEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDFlatPPORunnerCfg, }, ) gym.register( id="Template-Velocity-Rough-Anymal-D-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.AnymalDRoughEnvCfg, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDRoughPPORunnerCfg, }, ) gym.register( id="Template-Velocity-Rough-Anymal-D-Play-v0", entry_point="omni.isaac.orbit.envs:RLTaskEnv", disable_env_checker=True, kwargs={ "env_cfg_entry_point": rough_env_cfg.AnymalDRoughEnvCfg_PLAY, "rsl_rl_cfg_entry_point": agents.rsl_rl_cfg.AnymalDRoughPPORunnerCfg, }, )
1,474
Python
26.830188
77
0.685889
xibeisiber/orbit.dual_arm/orbit/ext_template/tasks/locomotion/velocity/config/anymal_d/agents/rsl_rl_cfg.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.utils import configclass from omni.isaac.orbit_tasks.utils.wrappers.rsl_rl import ( RslRlOnPolicyRunnerCfg, RslRlPpoActorCriticCfg, RslRlPpoAlgorithmCfg, ) @configclass class AnymalDRoughPPORunnerCfg(RslRlOnPolicyRunnerCfg): num_steps_per_env = 24 max_iterations = 1500 save_interval = 50 experiment_name = "anymal_d_rough" empirical_normalization = False policy = RslRlPpoActorCriticCfg( init_noise_std=1.0, actor_hidden_dims=[512, 256, 128], critic_hidden_dims=[512, 256, 128], activation="elu", ) algorithm = RslRlPpoAlgorithmCfg( value_loss_coef=1.0, use_clipped_value_loss=True, clip_param=0.2, entropy_coef=0.005, num_learning_epochs=5, num_mini_batches=4, learning_rate=1.0e-3, schedule="adaptive", gamma=0.99, lam=0.95, desired_kl=0.01, max_grad_norm=1.0, ) @configclass class AnymalDFlatPPORunnerCfg(AnymalDRoughPPORunnerCfg): def __post_init__(self): super().__post_init__() self.max_iterations = 300 self.experiment_name = "anymal_d_flat" self.policy.actor_hidden_dims = [128, 128, 128] self.policy.critic_hidden_dims = [128, 128, 128]
1,417
Python
26.26923
58
0.645025
xibeisiber/orbit.dual_arm/orbit/ext_template/tasks/locomotion/velocity/config/anymal_d/agents/__init__.py
# Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from . import rsl_rl_cfg # noqa: F401, F403
168
Python
23.142854
56
0.720238
xibeisiber/orbit.dual_arm/docs/CHANGELOG.rst
Changelog --------- 0.1.0 (2024-01-29) ~~~~~~~~~~~~~~~~~~ Added ^^^^^ * Created an initial template for building an extension or project based on Orbit
155
reStructuredText
13.181817
81
0.593548
KazWong/omniverse_sample/README.md
ov_sample: original sample from omniverse script_window: sample for omniverse script editor omnihelper: sample for python in command line isaac is the bash script to run isaac python replace your path to isaac_sim-2021.1.1 ``` source /path/to /isaac_sim-2021.1.1/setup_python_env.sh /path/to /isaac_sim-2021.1.1/python.sh $@ ```
333
Markdown
26.833331
55
0.756757
KazWong/omniverse_sample/ov_sample/ros2_samples/navigation/carter_navigation/launch/carter_navigation.launch.py
## Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. ## NVIDIA CORPORATION and its licensors retain all intellectual property ## and proprietary rights in and to this software, related documentation ## and any modifications thereto. Any use, reproduction, disclosure or ## distribution of this software and related documentation without an express ## license agreement from NVIDIA CORPORATION is strictly prohibited. import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import DeclareLaunchArgument from launch.actions import IncludeLaunchDescription from launch.launch_description_sources import PythonLaunchDescriptionSource from launch.substitutions import LaunchConfiguration from launch_ros.actions import Node def generate_launch_description(): use_sim_time = LaunchConfiguration("use_sim_time", default="True") map_dir = LaunchConfiguration( "map", default=os.path.join( get_package_share_directory("carter_navigation"), "maps", "carter_warehouse_navigation.yaml" ), ) param_dir = LaunchConfiguration( "params_file", default=os.path.join( get_package_share_directory("carter_navigation"), "params", "carter_navigation_params.yaml" ), ) nav2_launch_file_dir = os.path.join(get_package_share_directory("nav2_bringup"), "launch") rviz_config_dir = os.path.join(get_package_share_directory("carter_navigation"), "rviz2", "carter_navigation.rviz") return LaunchDescription( [ DeclareLaunchArgument("map", default_value=map_dir, description="Full path to map file to load"), DeclareLaunchArgument( "params_file", default_value=param_dir, description="Full path to param file to load" ), DeclareLaunchArgument( "use_sim_time", default_value="true", description="Use simulation (Omniverse Isaac Sim) clock if true" ), Node( package="rviz2", executable="rviz2", name="rviz2", output="screen", parameters=[{"use_sim_time": use_sim_time}], arguments=["-d", rviz_config_dir], ), IncludeLaunchDescription( PythonLaunchDescriptionSource([nav2_launch_file_dir, "/bringup_launch.py"]), launch_arguments={"map": map_dir, "use_sim_time": use_sim_time, "params_file": param_dir}.items(), ), ] )
2,578
Python
39.936507
119
0.66059
KazWong/omniverse_sample/ov_sample/ros2_samples/navigation/carter_navigation/launch/carter_visualization.launch.py
## Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. ## NVIDIA CORPORATION and its licensors retain all intellectual property ## and proprietary rights in and to this software, related documentation ## and any modifications thereto. Any use, reproduction, disclosure or ## distribution of this software and related documentation without an express ## license agreement from NVIDIA CORPORATION is strictly prohibited. import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import DeclareLaunchArgument from launch.substitutions import LaunchConfiguration from launch_ros.actions import Node ## This launch file is only used for seperately running Rviz2 with the carter_navigation configuration. def generate_launch_description(): use_sim_time = LaunchConfiguration("use_sim_time", default="true") rviz_config_dir = os.path.join(get_package_share_directory("carter_navigation"), "rviz2", "carter_navigation.rviz") return LaunchDescription( [ DeclareLaunchArgument("use_sim_time", default_value="True", description="Flag to enable use_sim_time"), Node( package="rviz2", executable="rviz2", name="rviz2", output="screen", parameters=[{"use_sim_time": use_sim_time}], arguments=["-d", rviz_config_dir], ), ] )
1,468
Python
38.702702
119
0.69891
KazWong/omniverse_sample/ov_sample/ros2_samples/navigation/carter_navigation/maps/carter_warehouse_navigation.yaml
image: carter_warehouse_navigation.png resolution: 0.05 origin: [-10.325, -12.225, 0.0000] negate: 0 occupied_thresh: 0.65 free_thresh: 0.196
142
YAML
19.428569
38
0.739437
KazWong/omniverse_sample/ov_sample/python_samples/environment.yml
name: isaac-sim channels: - pytorch - defaults dependencies: - cudatoolkit=11.0 - matplotlib=3.1.3 - pip=20.3.3 - python=3.7 - pytorch - requests=2.23.0 - torchaudio=0.7.2 - torchvision=0.8.2 - six=1.12.0 - pip: - gym==0.17.3 - opencv-python==4.4.0.44 - pillow==8.2.0 - scipy==1.5.4 - stable-baselines3==0.10.0 - tensorboard==2.4.0 - tensorboard-plugin-wit==1.7.0 - tensorflow-estimator==2.3.0 - tensorflow-gpu==2.3.1
499
YAML
19.833333
36
0.563126
KazWong/omniverse_sample/ov_sample/python_samples/README.md
# Python samples This folder contains samples that use the omniverse python loop to execute. ## Built in python 3.7 environment Navigate to the parent directory and execute ``` ./python.sh path/to/script.py ``` ## Anaconda - Anaconda ### Setup Create and activate the conda environment ``` conda env create -f environment.yml conda activate isaac-sim ``` Use `setenv` script to add the omniverse kit python environment to your active PYTHONPATH `source setenv.sh` ## How To Run See the Isaac Sim documentation for how to run the samples in this folder
567
Markdown
16.212121
89
0.749559
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot_train.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import numpy as np import os import carb import signal import json import argparse from argparse import Namespace from omni.isaac.python_app import OmniKitHelper from jetbot_model import CustomCNN from stable_baselines3 import PPO from stable_baselines3.common.callbacks import BaseCallback, CheckpointCallback def train(args): CUSTOM_CONFIG = { "width": 224, "height": 224, "renderer": "RayTracedLighting", "headless": args.headless, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', } omniverse_kit = OmniKitHelper(CUSTOM_CONFIG) # need to construct OmniKitHelp before importing physics, etc from jetbot_env import JetbotEnv import omni.physx # we disable all anti aliasing in the render because we want to train on the raw camera image. omniverse_kit.set_setting("/rtx/post/aa/op", 0) env = JetbotEnv(omniverse_kit, max_resets=args.rand_freq, updates_per_step=3, mirror_mode=args.mirror_mode) checkpoint_callback = CheckpointCallback( save_freq=args.save_freq, save_path="./params/", name_prefix=args.checkpoint_name ) net_arch = [256, 256, dict(pi=[128, 64, 32], vf=[128, 64, 32])] policy_kwargs = {"net_arch": net_arch, "activation_fn": torch.nn.ReLU} if args.loaded_checkpoint == "": model = PPO( "CnnPolicy", env, verbose=1, tensorboard_log=args.tensorboard_dir, policy_kwargs=policy_kwargs, device="cuda", n_steps=args.step_freq, batch_size=2048, n_epochs=50, learning_rate=0.0001, ) else: model = PPO.load(args.loaded_checkpoint, env) model.learn( total_timesteps=args.total_steps, callback=checkpoint_callback, eval_env=env, eval_freq=args.eval_freq, eval_log_path=args.evaluation_dir, reset_num_timesteps=args.reset_num_timesteps, ) model.save(args.checkpoint_name) def runEval(args): CUSTOM_CONFIG = { "width": 224, "height": 224, "renderer": "RayTracedLighting", "headless": args.headless, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', } # load a zip file to evaluate here agent = PPO.load(args.evaluation_dir + "/best_model.zip", device="cuda") omniverse_kit = OmniKitHelper(CUSTOM_CONFIG) # need to construct OmniKitHelper before importing physics, etc from jetbot_env import JetbotEnv import omni.physx # we disable all anti aliasing in the render because we want to train on the raw camera image. omniverse_kit.set_setting("/rtx/post/aa/op", 0) env = JetbotEnv(omniverse_kit, mirror_mode=args.mirror_mode) obs = env.reset() while True: action = agent.predict(obs) print(action) obs, rew, done, infos = env.step(action[0]) if done: obs = env.reset() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--loaded_checkpoint", help="path to checkpoint to be loaded", default="", nargs="?", type=str) parser.add_argument("-E", "--eval", help="evaluate checkpoint", action="store_true") parser.add_argument( "-R", "--reset_num_timesteps", help="reset the current timestep number (used in logging)", action="store_true" ) parser.add_argument( "-M", "--mirror_mode", help="reflect images and actions horizontally during training", action="store_true" ) parser.add_argument("-H", "--headless", help="run in headless mode (no GUI)", action="store_true") parser.add_argument( "--checkpoint_name", help="name of checkpoint file (no suffix)", default="checkpoint_25k", type=str ) parser.add_argument("--tensorboard_dir", help="path to tensorboard log directory", default="tensorboard", type=str) parser.add_argument("--evaluation_dir", help="path to evaluation log directory", default="eval_log", type=str) parser.add_argument("--save_freq", help="number of steps before saving a checkpoint", default=4096 * 8, type=int) parser.add_argument("--eval_freq", help="number of steps before running an evaluation", default=4096 * 8, type=int) parser.add_argument("--step_freq", help="number of steps before executing a PPO update", default=10240, type=int) parser.add_argument( "--rand_freq", help="number of environment resets before domain randomization", default=1, type=int ) parser.add_argument( "--total_steps", help="the total number of steps before exiting and saving a final checkpoint", default=250000000, type=int, ) parser.add_argument( "--experimentFile", help="specify configuration via JSON. Overrides commandline", default="", type=str ) args = parser.parse_args() if args.experimentFile != "": args_dict = vars(args) if os.path.exists(args.experimentFile): with open(args.experimentFile) as f: json_args_dict = json.load(f) args_dict.update(json_args_dict) args = Namespace(**args_dict) print("running with args: ", args) def handle_exit(*args, **kwargs): print("Exiting training...") quit() signal.signal(signal.SIGINT, handle_exit) if args.eval: runEval(args) else: train(args)
5,897
Python
31.766666
119
0.652535
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import carb import omni from pxr import UsdGeom, Gf, UsdPhysics import numpy as np # Camera parameters FOCAL_LENGTH = 0.75 HORIZONTAL_APERTURE = 2.350 VERTICAL_APERTURE = 2.350 # Drive Parameters DRIVE_STIFFNESS = 10000.0 # The amount the camera points down at, decrease to raise camera angle CAMERA_PIVOT = 40.0 class Jetbot: def __init__(self, omni_kit): from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server self.omni_kit = omni_kit result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder") return self.usd_path = nucleus_server + "/Isaac/Robots/Jetbot/jetbot.usd" self.robot_prim = None self._dynamic_control = _dynamic_control self.dc = _dynamic_control.acquire_dynamic_control_interface() self.ar = None # rotation is in degrees def spawn(self, location, rotation): stage = self.omni_kit.get_stage() prefix = "/World/Robot/Jetbot" prim_path = omni.usd.get_stage_next_free_path(stage, prefix, False) self.robot_prim = stage.DefinePrim(prim_path, "Xform") self.robot_prim.GetReferences().AddReference(self.usd_path) xform = UsdGeom.Xformable(self.robot_prim) xform_op = xform.AddXformOp(UsdGeom.XformOp.TypeTransform, UsdGeom.XformOp.PrecisionDouble, "") mat = Gf.Matrix4d().SetTranslate(location) mat.SetRotateOnly(Gf.Rotation(Gf.Vec3d(0, 0, 1), rotation)) xform_op.Set(mat) self.camera_path = prim_path + "/chassis/rgb_camera/jetbot_camera" self.camera_pivot = prim_path + "/chassis/rgb_camera" # Set joint drive parameters left_wheel_joint = UsdPhysics.DriveAPI.Apply( stage.GetPrimAtPath(f"{prim_path}/chassis/left_wheel_joint"), "angular" ) left_wheel_joint.GetDampingAttr().Set(DRIVE_STIFFNESS) right_wheel_joint = UsdPhysics.DriveAPI.Apply( stage.GetPrimAtPath(f"{prim_path}/chassis/right_wheel_joint"), "angular" ) right_wheel_joint.GetDampingAttr().Set(DRIVE_STIFFNESS) def teleport(self, location, rotation, settle=False): if self.ar is None: self.ar = self.dc.get_articulation(self.robot_prim.GetPath().pathString) self.chassis = self.dc.get_articulation_root_body(self.ar) self.dc.wake_up_articulation(self.ar) rot_quat = Gf.Rotation(Gf.Vec3d(0, 0, 1), rotation).GetQuaternion() tf = self._dynamic_control.Transform( location, (rot_quat.GetImaginary()[0], rot_quat.GetImaginary()[1], rot_quat.GetImaginary()[2], rot_quat.GetReal()), ) self.dc.set_rigid_body_pose(self.chassis, tf) self.dc.set_rigid_body_linear_velocity(self.chassis, [0, 0, 0]) self.dc.set_rigid_body_angular_velocity(self.chassis, [0, 0, 0]) self.command((0, 0)) # Settle the robot onto the ground if settle: frame = 0 velocity = 1 while velocity > 0.1 and frame < 120: self.omni_kit.update(1.0 / 60.0) lin_vel = self.dc.get_rigid_body_linear_velocity(self.chassis) velocity = np.linalg.norm([lin_vel.x, lin_vel.y, lin_vel.z]) frame = frame + 1 def activate_camera(self): # Set camera parameters stage = self.omni_kit.get_stage() cameraPrim = UsdGeom.Camera(stage.GetPrimAtPath(self.camera_path)) cameraPrim.GetFocalLengthAttr().Set(FOCAL_LENGTH) cameraPrim.GetHorizontalApertureAttr().Set(HORIZONTAL_APERTURE) cameraPrim.GetVerticalApertureAttr().Set(VERTICAL_APERTURE) # Point camera down at road pivot_prim = stage.GetPrimAtPath(self.camera_pivot) transform_attr = pivot_prim.GetAttribute("xformOp:transform") transform_attr.Set( transform_attr.Get().SetRotateOnly(Gf.Matrix3d(Gf.Rotation(Gf.Vec3d(0, 1, 0), CAMERA_PIVOT))) ) vpi = omni.kit.viewport.get_viewport_interface() vpi.get_viewport_window().set_active_camera(str(self.camera_path)) def command(self, motor_value): if self.ar is None: self.ar = self.dc.get_articulation(self.robot_prim.GetPath().pathString) self.chassis = self.dc.get_articulation_root_body(self.ar) self.wheel_left = self.dc.find_articulation_dof(self.ar, "left_wheel_joint") self.wheel_right = self.dc.find_articulation_dof(self.ar, "right_wheel_joint") self.dc.wake_up_articulation(self.ar) left_speed = self.wheel_speed_from_motor_value(motor_value[0]) right_speed = self.wheel_speed_from_motor_value(motor_value[1]) self.dc.set_dof_velocity_target(self.wheel_left, np.clip(left_speed, -10, 10)) self.dc.set_dof_velocity_target(self.wheel_right, np.clip(right_speed, -10, 10)) # idealized motor model def wheel_speed_from_motor_value(self, input): return input def observations(self): if self.ar is None: self.ar = self.dc.get_articulation(self.robot_prim.GetPath().pathString) self.chassis = self.dc.get_articulation_root_body(self.ar) dc_pose = self.dc.get_rigid_body_pose(self.chassis) dc_lin_vel = self.dc.get_rigid_body_linear_velocity(self.chassis) dc_local_lin_vel = self.dc.get_rigid_body_local_linear_velocity(self.chassis) dc_ang_vel = self.dc.get_rigid_body_angular_velocity(self.chassis) return { "pose": (dc_pose.p.x, dc_pose.p.y, dc_pose.p.z, dc_pose.r.w, dc_pose.r.x, dc_pose.r.y, dc_pose.r.z), "linear_velocity": (dc_lin_vel.x, dc_lin_vel.y, dc_lin_vel.z), "local_linear_velocity": (dc_local_lin_vel.x, dc_local_lin_vel.y, dc_local_lin_vel.z), "angular_velocity": (dc_ang_vel.x, dc_ang_vel.y, dc_ang_vel.z), }
6,442
Python
44.373239
117
0.652903
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot_model.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import torch.nn as nn import torch.nn.functional as F from stable_baselines3.common.torch_layers import BaseFeaturesExtractor import gym from gym import spaces class CustomCNN(BaseFeaturesExtractor): """ :param observation_space: (gym.Space) :param features_dim: (int) Number of features extracted. This corresponds to the number of unit for the last layer. """ def __init__(self, observation_space: gym.spaces.Box, features_dim: int = 512): super(CustomCNN, self).__init__(observation_space, features_dim) # We assume CxHxW images (channels first) # Re-ordering will be done by pre-preprocessing or wrapper n_input_channels = observation_space.shape[0] # print(observation_space.shape) self.cnn = nn.Sequential( nn.Conv2d(n_input_channels, 32, kernel_size=8, stride=4, padding=0), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0), nn.ReLU(), nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=0), nn.ReLU(), nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0), nn.ReLU(), nn.Flatten(), ) # Compute shape by doing one forward pass with torch.no_grad(): n_flatten = self.cnn(torch.as_tensor(observation_space.sample()[None]).float()).shape[1] print("POST CONV FEATURES = ", n_flatten) # define the hidden layer to translate to a fixed number of features self.linear = nn.Sequential(nn.Linear(n_flatten, features_dim), nn.ReLU()) def forward(self, observations: torch.Tensor) -> torch.Tensor: return self.linear(self.cnn(observations))
2,166
Python
37.696428
100
0.669898
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot_env.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import numpy as np import carb from pxr import UsdGeom, Gf import os import time import atexit import asyncio import numpy as np import random import collections import matplotlib.pyplot as plt import omni from omni.isaac.synthetic_utils import visualization as vis from omni.isaac.python_app import OmniKitHelper from omni.isaac.synthetic_utils import SyntheticDataHelper from jetbot import Jetbot from road_environment import Environment import gym from gym import spaces class JetbotEnv: metadata = {"render.modes": ["human"]} def __init__( self, omni_kit, z_height=0, max_resets=10, updates_per_step=3, steps_per_rollout=1000, mirror_mode=False ): self.MIRROR_MODE = mirror_mode self.action_space = spaces.Box(low=0, high=2.0, shape=(2,), dtype=np.float32) # IMPORTANT NOTE! SB3 wraps all image spaces in a transposer. # it assumes the image outputed is of standard form self.observation_space = spaces.Box(low=0, high=255, shape=(224, 224, 1), dtype=np.uint8) self.noise = 0.05 # every time we update the stage, this is how much time will be simulated self.dt = 1 / 30.0 self.omniverse_kit = omni_kit self.sd_helper = SyntheticDataHelper() self.roads = Environment(self.omniverse_kit) # make environment z up self.omniverse_kit.set_up_axis(UsdGeom.Tokens.z) # we are going to train on a randomized loop that fits in a 2x2 tile area. self.shape = [2, 2] self.roads.generate_road(self.shape) self.roads.generate_lights() # spawn robot self.jetbot = Jetbot(self.omniverse_kit) self.initial_loc = self.roads.get_valid_location() self.jetbot.spawn(Gf.Vec3d(self.initial_loc[0], self.initial_loc[1], 5), 0) # switch kit camera to jetbot camera self.jetbot.activate_camera() # start simulation self.omniverse_kit.play() # Step simulation so that objects fall to rest # wait until all materials are loaded frame = 0 print("simulating physics...") while frame < 60 or self.omniverse_kit.is_loading(): self.omniverse_kit.update(self.dt) frame = frame + 1 print("done after frame: ", frame) self.initialized = False self.numsteps = 0 self.numresets = 0 self.maxresets = max_resets self.updates_per_step = updates_per_step self.steps_per_rollout = steps_per_rollout self.hist_length = collections.deque([0.0] * 10, maxlen=10) self.hist_forward_vel = collections.deque([0.0] * 10, maxlen=10) self.hist_ang_vel = collections.deque([0.0] * 30, maxlen=30) self.avg_forward_vel = 0 self.dist_traveled = 0 self.total_reward = 0 # Randomly mirror horizontally self.update_mirror_mode() def update_mirror_mode(self): # Mirror if mode is enabled and we randomly sample True self.mirror_mode = self.MIRROR_MODE & random.choice([False, True]) def calculate_reward(self): # distance to nearest point on path in units of block. [0,1] dist = self.roads.distance_to_path_in_tiles(self.current_pose) self.dist = dist dist_reward = np.exp(-dist ** 2 / 0.15 ** 2) reward = self.current_forward_velocity * dist_reward # if we are driving backwards, large negative reward # if self.current_forward_velocity < 0: # reward = self.current_forward_velocity # THIS IS FOR DEBUGGING ONLY if self.numsteps % 10 == 0 or reward < 0: print( "{:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.3f}".format( reward, self.current_forward_velocity, self.avg_forward_vel, dist_reward, self.dist_traveled, self.current_ang_vel, ) ) self.total_reward += reward return reward def is_dead(self): done = False # terminate if we leave boundary if not self.roads.is_inside_path_boundary(self.current_pose): print("dead not inside boundary", self.numsteps) done = True # kill the episode after 500 steps if self.numsteps > self.steps_per_rollout: print("dead self.numsteps > self.steps_per_rollout", self.numsteps) done = True # terminate if we are driving backwards for too long if self.avg_forward_vel <= 0 and self.numsteps > 35: print("dead self.avg_forward_vel <= 1 after 35 steps ", self.avg_forward_vel) done = True return done def transform_action(self, action): # If mirrored, swap wheel controls if self.mirror_mode: action = action[::-1] return action def transform_state_image(self, im): # If enabled, mirror image horizontally if self.mirror_mode: return np.flip(im, axis=1) return im def step(self, action): if self.initialized: self.previous_loc = self.current_loc transformed_action = self.transform_action(action) self.jetbot.command(transformed_action) frame = 0 reward = 0 # every time step is called we actually update the scene by updates_per_step. while frame < self.updates_per_step: # render at 1/30, simulate at 1/60, which means 2 substeps per frame self.omniverse_kit.update(self.dt, 1.0 / 60.0, 2.0) frame = frame + 1 # compute reward once simulation is complete obs = self.jetbot.observations() self.current_pose = obs["pose"] self.current_speed = np.linalg.norm(np.array(obs["linear_velocity"])) self.current_forward_velocity = obs["local_linear_velocity"][0] self.current_ang_vel = obs["angular_velocity"][2] self.current_loc = self.roads.get_tile_from_pose(self.current_pose) self.hist_forward_vel.append(self.current_forward_velocity) self.dist_traveled = self.dist_traveled + self.current_forward_velocity * self.dt self.hist_ang_vel.append(self.current_ang_vel) self.avg_forward_vel = sum(self.hist_forward_vel) / len(self.hist_forward_vel) if not self.initialized: self.previous_loc = self.roads.get_tile_from_pose(self.current_pose) reward = self.calculate_reward() # the synthetic data helper is our way of grabbing the image data we need from the camera. currently the SD helper # only supports a single camera, however you can use it to access camera data as a cuda tensor directly on the # device. stable baselines 3 is expecting a numpy array, so we pull the data to the host # additional sensors that could be of interest and can be added to this list: # "depth", "instanceSegmentation", "semanticSegmentation" viewport = omni.kit.viewport.get_default_viewport_window() gt = self.sd_helper.get_groundtruth(["rgb"], viewport) # we only need the rgb channels of the rgb image currentState = gt["rgb"][:, :, :3].astype(np.float) currentState = self.transform_state_image(currentState) if not self.initialized: self.previousState = currentState img = np.dot(currentState, [0.299, 0.587, 0.114]) # np.concatenate((currentState, self.previousState), axis=2) img = img.reshape((img.shape[0], img.shape[1], 1)) # the real camera will have noise on each pixel, so we add some uniform noise here to simulate thats # uncomment below to add noise to image img = np.clip((255 * self.noise * np.random.randn(224, 224, 1) + img.astype(np.float)), 0, 255).astype(np.uint8) self.previousState = currentState self.numsteps += 1 done = self.is_dead() return img, reward, done, {} def reset(self): # Randomly mirror horizontally self.update_mirror_mode() # randomize the road configuration every self.maxresets resets. if self.numresets % self.maxresets == 0: size = random.randrange(2, 6) self.shape = [size, size] self.roads.reset(self.shape) if not self.initialized: state, reward, done, info, = self.step([0, 0]) self.initialized = True # every time we reset, we move the robot to a random location, and pointing along the direction of the road loc = self.roads.get_valid_location() # the random angle offset can be increased here rot = self.roads.get_forward_direction(loc) + random.uniform(-10, 10) self.jetbot.teleport( Gf.Vec3d(loc[0] + random.uniform(-2.5, 2.5), loc[1] + random.uniform(-2.5, 2.5), 5), rot, settle=True ) obs = self.jetbot.observations() self.current_pose = obs["pose"] self.current_speed = np.linalg.norm(np.array(obs["linear_velocity"])) self.current_forward_velocity = obs["local_linear_velocity"][0] self.current_loc = self.roads.get_tile_from_pose(self.current_pose) self.previous_loc = self.roads.get_tile_from_pose(self.current_pose) self.dist = self.roads.distance_to_path_in_tiles(self.current_pose) # wait for loading if self.numresets % self.maxresets == 0: while self.omniverse_kit.is_loading(): self.omniverse_kit.update(self.dt) viewport = omni.kit.viewport.get_default_viewport_window() gt = self.sd_helper.get_groundtruth(["rgb"], viewport) currentState = gt["rgb"][:, :, :3] currentState = self.transform_state_image(currentState) img = np.dot( currentState.astype(np.float), [0.299, 0.587, 0.114] ) # np.concatenate((currentState, currentState), axis=2) img = img.reshape((img.shape[0], img.shape[1], 1)) # uncomment below to add noise to image img = np.clip((255 * self.noise * np.random.randn(224, 224, 1) + img.astype(np.float)), 0, 255).astype(np.uint8) print( "reset ", sum(self.hist_length) / len(self.hist_length), self.numresets, self.dist_traveled, self.avg_forward_vel, self.total_reward, ) self.numsteps = 0 self.previousState = currentState self.numresets += 1 self.total_reward = 0 self.dist_traveled = 0 return img
11,046
Python
37.093103
123
0.62457
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/road_environment.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import carb import omni import numpy as np from pxr import UsdGeom, Gf, Sdf, UsdPhysics from jetbot_city.road_map import * from jetbot_city.road_map_path_helper import * from jetbot_city.road_map_generator import * from omni.isaac.synthetic_utils import DomainRandomization import math class Environment: def __init__(self, omni_kit, z_height=0): from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server self.omni_kit = omni_kit result, nucleus_server = find_nucleus_server() if result is False: carb.log_error( "Could not find nucleus server with /Isaac folder. Please specify the correct nucleus server in apps/omni.isaac.sim.python.kit" ) return result, nucleus_server = find_nucleus_server("/Library/Props/Road_Tiles/Parts/") if result is False: carb.log_error( "Could not find nucleus server with /Library/Props/Road_Tiles/Parts/ folder. Please refer to the documentation to aquire the road tile assets" ) return # 1=I 2=L 3=T, 4=X self.tile_usd = { 0: None, 1: {"asset": nucleus_server + "/Library/Props/Road_Tiles/Parts/p4336p01.usd", "offset": 180}, 2: {"asset": nucleus_server + "/Library/Props/Road_Tiles/Parts/p4342p01.usd", "offset": 180}, 3: {"asset": nucleus_server + "/Library/Props/Road_Tiles/Parts/p4341p01.usd", "offset": 180}, 4: {"asset": nucleus_server + "/Library/Props/Road_Tiles/Parts/p4343p01.usd", "offset": 180}, } # list of tiles that can be spawned self.texture_list = [ nucleus_server + "/Isaac/Samples/DR/Materials/Textures/checkered.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/marble_tile.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/picture_a.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/picture_b.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/textured_wall.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/checkered_color.png", ] self.tile_size = [25.0, 25.0] # 1=UP, 2 = DOWN, 3 = LEFT, 4= RIGHT self.direction_map = {1: 180, 2: 0, 3: -90, 4: 90} self.prims = [] # list of spawned tiles self.height = z_height # height of the ground tiles self.tiles = None self.state = None # because the ground plane is what the robot drives on, we only do this once. We can then re-generate the road as often as we need without impacting physics self.setup_physics() self.road_map = None self.road_path_helper = None self.map_generator = LoopRoadMapGenerator() contents = omni.client.list(nucleus_server + "/Isaac/Props/Sortbot_Housing/Materials/Textures/")[1] for entry in contents: self.texture_list.append( nucleus_server + "/Isaac/Props/Sortbot_Housing/Materials/Textures/" + entry.relative_path ) contents = omni.client.list(nucleus_server + "/Isaac/Props/YCB/Axis_Aligned/")[1] names = [] loaded_paths = [] for entry in contents: if not entry.flags & omni.client.ItemFlags.CAN_HAVE_CHILDREN: names.append(nucleus_server + "/Isaac/Props/YCB/Axis_Aligned/" + entry.relative_path) loaded_paths.append("/DR/mesh_component/mesh_" + entry.relative_path[0:-4]) print(loaded_paths) self.omni_kit.create_prim("/World/Floor", "Xform") stage = omni.usd.get_context().get_stage() cubeGeom = UsdGeom.Cube.Define(stage, "/World/Floor/thefloor") cubeGeom.CreateSizeAttr(300) offset = Gf.Vec3f(75, 75, -150.1) cubeGeom.AddTranslateOp().Set(offset) # Create a sphere room so the world is not black self.omni_kit.create_prim("/World/Room", "Sphere", attributes={"radius": 1e3}) prims = [] self.dr = DomainRandomization() self.dr.toggle_manual_mode() self.dr.create_mesh_comp(prim_paths=prims, mesh_list=names, mesh_range=[1, 1]) self.omni_kit.update(1 / 60.0) print("waiting for materials to load...") while self.omni_kit.is_loading(): self.omni_kit.update(1 / 60.0) lights = [] for i in range(5): prim_path = "/World/Lights/light_" + str(i) self.omni_kit.create_prim( prim_path, "SphereLight", translation=(0, 0, 200), rotation=(0, 0, 0), attributes={"radius": 10, "intensity": 1000.0, "color": (1.0, 1.0, 1.0)}, ) lights.append(prim_path) frames = 1 # enable randomization for environment self.dr.create_movement_comp(prim_paths=loaded_paths, min_range=(0, 0, 15), max_range=(150, 150, 15)) self.dr.create_rotation_comp(prim_paths=loaded_paths) self.dr.create_visibility_comp(prim_paths=loaded_paths, num_visible_range=(15, 15)) self.dr.create_light_comp(light_paths=lights) self.dr.create_movement_comp(prim_paths=lights, min_range=(0, 0, 30), max_range=(150, 150, 30)) self.dr.create_texture_comp( prim_paths=["/World/Floor"], enable_project_uvw=True, texture_list=self.texture_list ) self.dr.create_color_comp(prim_paths=["/World/Room"]) def generate_lights(self): prim_path = omni.usd.get_stage_next_free_path(self.omni_kit.get_stage(), "/World/Env/Light", False) self.prims.append(prim_path) self.omni_kit.create_prim( prim_path, "RectLight", translation=(75, 75, 100), rotation=(0, 0, 0), attributes={"height": 150, "width": 150, "intensity": 2000.0, "color": (1.0, 1.0, 1.0)}, ) def reset(self, shape): # print(self.prims) # cmd = omni.kit.builtin.init.DeletePrimsCommand(self.prims) # cmd.do() stage = omni.usd.get_context().get_stage() for layer in stage.GetLayerStack(): edit = Sdf.BatchNamespaceEdit() for path in self.prims: prim_spec = layer.GetPrimAtPath(path) if prim_spec is None: continue parent_spec = prim_spec.realNameParent if parent_spec is not None: edit.Add(path, Sdf.Path.emptyPath) layer.Apply(edit) self.prims = [] self.generate_road(shape) self.dr.randomize_once() def generate_road(self, shape): self.tiles, self.state, self.road_map = self.map_generator.generate(shape) tiles = self.tiles state = self.state self.road_path_helper = RoadMapPathHelper(self.road_map) if tiles.shape != state.shape: print("tiles and state sizes don't match") return stage = self.omni_kit.get_stage() rows, cols = tiles.shape self.valid_tiles = [] for x in range(0, rows): for y in range(0, cols): if tiles[x, y] != 0: pos_x = x * self.tile_size[0] + 12.5 pos_y = y * self.tile_size[1] + 12.5 self.create_tile( stage, self.tile_usd[tiles[x, y]]["asset"], Gf.Vec3d(pos_x, pos_y, self.height), self.direction_map[state[x, y]] + self.tile_usd[tiles[x, y]]["offset"], ) for x in range(0, rows): for y in range(0, cols): # print(paths[x,y]) if tiles[x, y] != 0: self.valid_tiles.append([x, y]) def generate_road_from_numpy(self, tiles, state): self.tiles = tiles self.state = state self.road_map = RoadMap.create_from_numpy(self.tiles, self.state) self.road_path_helper = RoadMapPathHelper(self.road_map) if tiles.shape != state.shape: print("tiles and state sizes don't match") return stage = self.omni_kit.get_stage() rows, cols = tiles.shape self.valid_tiles = [] for x in range(0, rows): for y in range(0, cols): if tiles[x, y] != 0: pos_x = x * self.tile_size[0] + 12.5 pos_y = y * self.tile_size[1] + 12.5 self.create_tile( stage, self.tile_usd[tiles[x, y]]["asset"], Gf.Vec3d(pos_x, pos_y, self.height), self.direction_map[state[x, y]] + self.tile_usd[tiles[x, y]]["offset"], ) for x in range(0, rows): for y in range(0, cols): # print(paths[x,y]) if tiles[x, y] != 0: self.valid_tiles.append([x, y]) def create_tile(self, stage, path, location, rotation): prefix = "/World/Env/Tiles/Tile" prim_path = omni.usd.get_stage_next_free_path(stage, prefix, False) self.prims.append(prim_path) tile_prim = stage.DefinePrim(prim_path, "Xform") tile_prim.GetReferences().AddReference(path) xform = UsdGeom.Xformable(tile_prim) xform_op = xform.AddXformOp(UsdGeom.XformOp.TypeTransform, UsdGeom.XformOp.PrecisionDouble, "") mat = Gf.Matrix4d().SetTranslate(location) mat.SetRotateOnly(Gf.Rotation(Gf.Vec3d(0, 0, 1), rotation)) xform_op.Set(mat) def setup_physics(self): from pxr import PhysxSchema, PhysicsSchemaTools stage = self.omni_kit.get_stage() # Add physics scene scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/World/Env/PhysicsScene")) # Set gravity vector scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) scene.CreateGravityMagnitudeAttr().Set(981.0) # Set physics scene to use cpu physics PhysxSchema.PhysxSceneAPI.Apply(stage.GetPrimAtPath("/World/Env/PhysicsScene")) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Get(stage, "/World/Env/PhysicsScene") physxSceneAPI.CreateEnableCCDAttr(True) physxSceneAPI.CreateEnableStabilizationAttr(True) physxSceneAPI.CreateEnableGPUDynamicsAttr(False) physxSceneAPI.CreateBroadphaseTypeAttr("MBP") physxSceneAPI.CreateSolverTypeAttr("TGS") # Create physics plane for the ground PhysicsSchemaTools.addGroundPlane( stage, "/World/Env/GroundPlane", "Z", 100.0, Gf.Vec3f(0, 0, self.height), Gf.Vec3f(1.0) ) # Hide the visual geometry imageable = UsdGeom.Imageable(stage.GetPrimAtPath("/World/Env/GroundPlane/geom")) if imageable: imageable.MakeInvisible() def get_valid_location(self): if self.tiles is None: print("cannot provide valid location until road is generated") return (0, 0) i = np.random.choice(len(self.valid_tiles), 1)[0] dist, point = self.road_path_helper.distance_to_path(self.valid_tiles[i]) x, y = point print("get valid location called", self.valid_tiles[i], point) return (x * self.tile_size[0], y * self.tile_size[1]) # Computes an approximate forward vector based on the current spawn point and nearby valid path point def get_forward_direction(self, loc): if self.road_path_helper is not None: k = 100 dists, pts = self.road_path_helper.get_k_nearest_path_points(np.array([self.get_tile_from_pose(loc)]), k) pointa = pts[0][0] pointb = pts[0][k - 1] if random.choice([False, True]): pointa, pointb = pointb, pointa return math.degrees(math.atan2(pointb[1] - pointa[1], pointb[0] - pointa[0])) # Compute the x,y tile location from the robot pose def get_tile_from_pose(self, pose): return (pose[0] / self.tile_size[0], pose[1] / self.tile_size[1]) def distance_to_path(self, robot_pose): if self.road_path_helper is not None: distance, point = self.road_path_helper.distance_to_path(self.get_tile_from_pose(robot_pose)) return distance * self.tile_size[0] def distance_to_path_in_tiles(self, robot_pose): if self.road_path_helper is not None: distance, point = self.road_path_helper.distance_to_path(self.get_tile_from_pose(robot_pose)) return distance def distance_to_boundary(self, robot_pose): if self.road_path_helper is not None: distance = self.road_path_helper.distance_to_boundary(self.get_tile_from_pose(robot_pose)) return distance * self.tile_size[0] def is_inside_path_boundary(self, robot_pose): if self.road_path_helper is not None: return self.road_path_helper.is_inside_path_boundary(self.get_tile_from_pose(robot_pose))
13,501
Python
42.13738
164
0.595289
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot_city/__init__.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited.
431
Python
52.999993
76
0.812065
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot_city/road_map.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import enum import random from collections import deque import numpy as np import os import io import cv2 import PIL.Image import pickle from typing import List, Set, Dict, Tuple, Optional from .priority_queue import * DEFAULT_IMAGE_SIZE = (32, 32) def mask_L(size=256, thickness=1): mask = np.zeros((size, size), dtype=np.uint8) cv2.circle(mask, (size, 0), size // 2, (255, 255, 255), thickness) return PIL.Image.fromarray(mask) def mask_I(size=256, thickness=1): mask = np.zeros((size, size), dtype=np.uint8) cv2.line(mask, (size // 2, 0), (size // 2, size), (255, 255, 255), thickness, cv2.LINE_4) return PIL.Image.fromarray(mask) def mask_T(size=256, thickness=1): mask = np.zeros((size, size), dtype=np.uint8) mask = np.maximum(mask, cv2.circle(mask, (0, size), size // 2, (255, 255, 255), thickness)) mask = np.maximum(mask, cv2.circle(mask, (size, size), size // 2, (255, 255, 255), thickness)) mask = np.maximum(mask, cv2.line(mask, (0, size // 2), (size, size // 2), (255, 255, 255), thickness, cv2.LINE_4)) return PIL.Image.fromarray(mask) def mask_X(size=256, thickness=1): mask = mask_L(size, thickness) mask = np.maximum(mask, mask_I(size, thickness)) for i in range(4): mask = np.maximum(mask, cv2.rotate(mask, cv2.ROTATE_90_CLOCKWISE)) return PIL.Image.fromarray(mask) _I_IMAGE = mask_I() _L_IMAGE = mask_L() _T_IMAGE = mask_T() _X_IMAGE = mask_X() class RoadBlockType(enum.IntEnum): EMPTY = 0 I = 1 L = 2 T = 3 X = 4 def ports(self): if self == RoadBlockType.I: return [0, 1, 0, 1] # left, top, right, bottom elif self == RoadBlockType.L: return [0, 1, 1, 0] elif self == RoadBlockType.T: return [1, 0, 1, 1] elif self == RoadBlockType.X: return [1, 1, 1, 1] else: return [0, 0, 0, 0] def image(self, size=DEFAULT_IMAGE_SIZE): if self == RoadBlockType.I: return _I_IMAGE.resize(size) elif self == RoadBlockType.L: return _L_IMAGE.resize(size) elif self == RoadBlockType.T: return _T_IMAGE.resize(size) elif self == RoadBlockType.X: return _X_IMAGE.resize(size) else: return PIL.Image.fromarray(np.zeros(size + (3,), dtype=np.uint8)) def paths_mask(self, size=DEFAULT_IMAGE_SIZE, thickness=1): if self == RoadBlockType.I: return mask_I(size[0], thickness) elif self == RoadBlockType.L: return mask_L(size[0], thickness) elif self == RoadBlockType.T: return mask_T(size[0], thickness) elif self == RoadBlockType.X: return mask_X(size[0], thickness) else: return PIL.Image.fromarray(np.zeros(size, dtype=np.uint8)) class RoadBlockState(enum.IntEnum): HIDDEN = 0 UP = 1 # 0 DOWN = 2 # 180 LEFT = 3 # CCW 90 RIGHT = 4 # CW 90 @staticmethod def random(): return RoadBlockState(np.random.randint(len(RoadBlockState))) class RoadBlock(object): def __init__(self, type: RoadBlockType, state: RoadBlockState): self.type = type self.state = state def __iter__(self): yield self.type yield self.state def ports(self): if self.state == RoadBlockState.HIDDEN: return [0, 0, 0, 0] elif self.state == RoadBlockState.UP: return self.type.ports() elif self.state == RoadBlockState.DOWN: return list(np.roll(self.type.ports(), 2)) elif self.state == RoadBlockState.LEFT: return list(np.roll(self.type.ports(), -1)) else: return list(np.roll(self.type.ports(), 1)) def has_left_port(self): return self.ports()[0] def has_right_port(self): return self.ports()[2] def has_top_port(self): return self.ports()[1] def has_bottom_port(self): return self.ports()[3] def image(self, size=DEFAULT_IMAGE_SIZE): # if self.state == RoadBlockState.HIDDEN or self.type == RoadBlockType.EMPTY: # return PIL.Image.fromarray(np.zeros(size + (3,), dtype=np.uint8)) image = self.type.image(size=size) if self.state == RoadBlockState.LEFT: image = image.rotate(90) elif self.state == RoadBlockState.RIGHT: image = image.rotate(-90) elif self.state == RoadBlockState.DOWN: image = image.rotate(180) return image def paths_mask(self, size=DEFAULT_IMAGE_SIZE, thickness=1): # if self.state == RoadBlockState.HIDDEN or self.type == RoadBlockType.EMPTY: # return PIL.Image.fromarray(np.zeros(size, dtype=np.uint8)) image = self.type.paths_mask(size=size, thickness=thickness) if self.state == RoadBlockState.LEFT: image = image.rotate(90) elif self.state == RoadBlockState.RIGHT: image = image.rotate(-90) elif self.state == RoadBlockState.DOWN: image = image.rotate(180) return image def l1_distance(a, b): return abs(a[0] - b[0]) + abs(a[1] - b[1]) class RoadLocation(object): def __init__(self, i, j): self.i = i self.j = j def __iter__(self): yield self.i yield self.j class RoadMap(object): def __init__(self, grid: List[List[RoadBlock]]): self.grid = grid @staticmethod def create_random_from_types(types: List[RoadBlockType], NI, NJ): grid = [] for i in range(NI): row = [] for j in range(NJ): row.append(RoadBlock(RoadBlockType.EMPTY, RoadBlockState.random())) grid.append(row) # construct positions locations = [] for i in range(NI): for j in range(NJ): locations.append(RoadLocation(i, j)) np.random.shuffle(locations) locations = locations[0 : len(types)] for i, loc in enumerate(locations): grid[loc.i][loc.j] = RoadBlock(types[i], RoadBlockState.random()) return RoadMap(grid) @staticmethod def create_from_numpy(types, states): grid = [] for i in range(types.shape[0]): row = [] for j in range(types.shape[1]): row.append(RoadBlock(RoadBlockType(types[i, j]), RoadBlockState(states[i, j]))) grid.append(row) return RoadMap(grid) @property def NI(self): return len(self.grid) @property def NJ(self): return len(self.grid[0]) def numpy(self): types = [] states = [] for i in range(self.NI): types_i = [] states_i = [] for j in range(self.NJ): types_i.append(int(self.grid[i][j].type)) states_i.append(int(self.grid[i][j].state)) types.append(types_i) states.append(states_i) return np.array(types), np.array(states) def _children(self, i, j): block = self.grid[i][j] children = [] if i > 0: top = self.grid[i - 1][j] if top.has_bottom_port() and block.has_top_port(): children.append((i - 1, j)) if i < self.NI - 1: bottom = self.grid[i + 1][j] if bottom.has_top_port() and block.has_bottom_port(): children.append((i + 1, j)) if j > 0: left = self.grid[i][j - 1] if left.has_right_port() and block.has_left_port(): children.append((i, j - 1)) if j < self.NJ - 1: right = self.grid[i][j + 1] if right.has_left_port() and block.has_right_port(): children.append((i, j + 1)) return children def _search_path(self, i, j, visited): q = deque() q.append((i, j)) path = [] while q: i, j = q.popleft() path.append((i, j)) for child in self._children(i, j): if not visited[child[0], child[1]]: q.append(child) visited[child[0], child[1]] = True return path def find_shortest_path(self, a, b): visited = np.zeros((self.NI, self.NJ), dtype=np.bool) q = PriorityQueue() q.push((l1_distance(a, b), [a])) visited[a[0], a[1]] = 1 while not q.empty(): cost, path = q.pop() tail = path[-1] if tail[0] == b[0] and tail[1] == b[1]: return path for child in self._children(tail[0], tail[1]): if not visited[child[0], child[1]]: child_path = path + [child] child_cost = len(child_path) + l1_distance(child, b) q.push((child_cost, child_path)) visited[child[0], child[1]] = 1 return None def paths(self): visited = np.zeros((self.NI, self.NJ), dtype=np.bool) # set blocks that cannot be path components as visited for i in range(self.NI): for j in range(self.NJ): block = self.grid[i][j] if block.state == RoadBlockState.HIDDEN or block.type == RoadBlockType.EMPTY: visited[i, j] = True paths = [] for i in range(self.NI): for j in range(self.NJ): if not visited[i, j]: visited[i, j] = True path = self._search_path(i, j, visited) paths.append(path) return paths def num_open_ports(self): num_open = 0 for i in range(self.NJ): for j in range(self.NI): num_open += np.count_nonzero(self.grid[i][j].ports()) - len(self._children(i, j)) return num_open def num_ports(self): num_ports = 0 for i in range(self.NJ): for j in range(self.NI): num_ports += np.count_nonzero(self.grid[i][j].ports()) # - len(self._children(i, j)) return num_ports def num_closed_ports(self): num_ports = 0 for i in range(self.NJ): for j in range(self.NI): num_ports += len(self._children(i, j)) return num_ports def image(self, block_size=DEFAULT_IMAGE_SIZE): si = block_size[0] sj = block_size[1] image = np.zeros((si * self.NI, sj * self.NJ, 3), dtype=np.uint8) for i in range(self.NJ): for j in range(self.NI): image[i * si : i * si + si, j * sj : j * sj + sj] = np.array(self.grid[i][j].image(size=block_size)) return PIL.Image.fromarray(image) def paths_mask(self, block_size=DEFAULT_IMAGE_SIZE, thickness=1): si = block_size[0] sj = block_size[1] image = np.zeros((si * self.NI, sj * self.NJ), dtype=np.uint8) for i in range(self.NJ): for j in range(self.NI): image[i * si : i * si + si, j * sj : j * sj + sj] = np.array( self.grid[i][j].paths_mask(size=block_size, thickness=thickness) ) return PIL.Image.fromarray(image) def obs(self): obs = np.zeros((4, self.NI, self.NJ), dtype=np.float32) for i in range(self.NI): for j in range(self.NJ): obs[0, i, j] = self.grid[i][j].has_left_port() obs[1, i, j] = self.grid[i][j].has_top_port() obs[2, i, j] = self.grid[i][j].has_right_port() obs[3, i, j] = self.grid[i][j].has_bottom_port() return obs def swap_(self, a, b): tmp = self.grid[a[0]][a[1]] self.grid[a[0]][a[1]] = self.grid[b[0]][b[1]] self.grid[b[0]][b[1]] = tmp def render(self, widget): # Render the environment to the screen imgByteArr = io.BytesIO() self.image(block_size=(64, 64)).save(imgByteArr, format="PNG") imgByteArr = imgByteArr.getvalue() widget.value = imgByteArr def save(self, f): types, states = self.numpy() data = {"types": types, "states": states} if isinstance(f, str): with open(f, "wb") as f: pickle.dump(data, f) else: pickle.dump(data, f) @staticmethod def load(f): if isinstance(f, str): with open(f, "rb") as f: data = pickle.load(f) else: data = pickle.load(f) return RoadMap.create_from_numpy(data["types"], data["states"]) def ports(self): ports = np.zeros((self.NI, self.NJ, 4), np.bool) for i in range(self.NI): for j in range(self.NJ): ports[i, j, 0] = self.grid[i][j].has_left_port() ports[i, j, 1] = self.grid[i][j].has_top_port() ports[i, j, 2] = self.grid[i][j].has_right_port() ports[i, j, 3] = self.grid[i][j].has_bottom_port() return ports @staticmethod def create_from_ports(ports): NI = ports.shape[0] NJ = ports.shape[1] types = np.zeros(ports.shape[0:2], dtype=np.int64) states = np.zeros(ports.shape[0:2], dtype=np.int64) for i in range(NI): for j in range(NJ): pij = ports[i, j] for typ in RoadBlockType: if (np.roll(typ.ports(), 0) == pij).all(): types[i, j] = typ states[i, j] = RoadBlockState.UP break elif (np.roll(typ.ports(), 1) == pij).all(): types[i, j] = typ states[i, j] = RoadBlockState.RIGHT break elif (np.roll(typ.ports(), 2) == pij).all(): types[i, j] = typ states[i, j] = RoadBlockState.DOWN break elif (np.roll(typ.ports(), 3) == pij).all(): types[i, j] = typ states[i, j] = RoadBlockState.LEFT break return RoadMap.create_from_numpy(types, states)
14,731
Python
31.449339
118
0.530242
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot_city/road_map_generator.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from .road_map import * from .priority_queue import * def children(occupancy, point): NI = occupancy.shape[0] NJ = occupancy.shape[1] children = [] if point[0] > 0: pt = [point[0] - 1, point[1]] children.append(pt) if point[0] < NI - 1: pt = [point[0] + 1, point[1]] children.append(pt) if point[1] > 0: pt = [point[0], point[1] - 1] children.append(pt) if point[1] < NJ - 1: pt = [point[0], point[1] + 1] children.append(pt) return children def l1_distance(a, b): return abs(a[0] - b[0]) + abs(a[1] - b[1]) def find_path(occupancy, point_a, point_b): visited = np.copy(occupancy) visited[point_a[0], point_b[0]] = 1 q = PriorityQueue() # cost heuristic, path... for child in children(visited, point_a): if not visited[child[0], child[1]]: q.push((1 + l1_distance(child, point_b), [child])) visited[child[0], child[1]] = 1 while not q.empty(): cost, path = q.pop() tail = path[-1] for child in children(visited, tail): if child[0] == point_b[0] and child[1] == point_b[1]: return path elif not visited[child[0], child[1]]: child_cost = len(path) + l1_distance(child, point_b) child_path = path + [child] q.push((child_cost, child_path)) visited[child[0], child[1]] = 1 return None def add_port(ports, a, b): # port order: left,top,right,bottom if b[1] > a[1]: # b to right of a ports[a[0], a[1], 2] = 1 ports[b[0], b[1], 0] = 1 elif b[1] < a[1]: # b to left of a ports[a[0], a[1], 0] = 1 ports[b[0], b[1], 2] = 1 elif b[0] > a[0]: # b above a ports[a[0], a[1], 3] = 1 ports[b[0], b[1], 1] = 1 elif b[0] < a[0]: # b below a ports[a[0], a[1], 1] = 1 ports[b[0], b[1], 3] = 1 def ports_to_types_states(ports): NI = ports.shape[0] NJ = ports.shape[1] types = np.zeros(ports.shape[0:2], dtype=np.int64) states = np.zeros(ports.shape[0:2], dtype=np.int64) for i in range(NI): for j in range(NJ): pij = ports[i, j] for typ in RoadBlockType: if (np.roll(typ.ports(), 0) == pij).all(): types[i, j] = typ states[i, j] = RoadBlockState.UP break elif (np.roll(typ.ports(), 1) == pij).all(): types[i, j] = typ states[i, j] = RoadBlockState.RIGHT break elif (np.roll(typ.ports(), 2) == pij).all(): types[i, j] = typ states[i, j] = RoadBlockState.DOWN break elif (np.roll(typ.ports(), 3) == pij).all(): types[i, j] = typ states[i, j] = RoadBlockState.LEFT break return types, states class RoadMapGenerator(object): def generate(self, shape): raise NotImplementedError class LoopRoadMapGenerator(RoadMapGenerator): def generate(self, shape): GRID_SIZE = shape ports = np.zeros((GRID_SIZE[0], GRID_SIZE[1], 4), np.bool) occupancy = np.zeros(GRID_SIZE, np.uint8) start = (np.random.randint(GRID_SIZE[0]), np.random.randint(GRID_SIZE[1])) path = [] path.append(start) occupancy[start[0], start[1]] = 1 runner = start while True: # get valid children valid_children = [] for child in children(occupancy, runner): if not occupancy[child[0], child[1]]: child_occupancy = np.copy(occupancy) child_occupancy[child[0], child[1]] = 1 child_path = find_path(child_occupancy, child, start) if child_path is not None: valid_children.append(child) # exit if no valid child paths if len(valid_children) == 0: break # navigate to random child idx = np.random.randint(len(valid_children)) runner = valid_children[idx] path.append(runner) occupancy[runner[0], runner[1]] = 1 path = path + find_path(occupancy, runner, start) + [start] for i in range(len(path) - 1): add_port(ports, path[i], path[i + 1]) types, states = ports_to_types_states(ports) road_map = RoadMap.create_from_numpy(types, states) return types, states, road_map
5,124
Python
29.505952
82
0.523224
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot_city/priority_queue.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. class PriorityQueue(object): def __init__(self): self.items = [] def push(self, item): a = 0 b = len(self.items) - 1 while a <= b: c = a + (b - a) // 2 if self.items[c][0] < item[0]: # 0, 1 (0), a = c + 1 elif self.items[c][0] > item[0]: b = c - 1 else: break if a >= len(self.items): idx = len(self.items) elif b < 0: idx = 0 else: idx = a + (b - a) // 2 self.items.insert(idx, item) def pop(self): return self.items.pop(0) def empty(self): return len(self.items) == 0
1,137
Python
27.449999
76
0.550572
KazWong/omniverse_sample/ov_sample/python_samples/jetbot/jetbot_city/road_map_path_helper.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from .road_map import * from scipy.spatial import KDTree import cv2 import matplotlib.pyplot as plt import numpy as np class RoadMapPathHelper(object): def __init__(self, road_map, block_resolution=128, path_thickness_ratio=19 / 32): self._road_map = road_map self._block_resolution = block_resolution self._map_path_mask = np.array(self._road_map.paths_mask((block_resolution, block_resolution), thickness=1)) self._map_boundary_mask = np.array( self._road_map.paths_mask( (block_resolution, block_resolution), thickness=int(block_resolution * path_thickness_ratio) ) ) mask_pts = np.transpose(np.nonzero(self._map_path_mask)) mask_pts = mask_pts / block_resolution # get points in grid coordinates self._path_kdtree = KDTree(mask_pts) boundary_points = np.transpose(np.nonzero(cv2.Laplacian(self._map_boundary_mask, cv2.CV_32F))) boundary_points = boundary_points / block_resolution self._boundary_kdtree = KDTree(boundary_points) # print("boundary points shape! ", boundary_points.shape) # plt.imshow(self._map_boundary_mask) # plt.show() def get_k_nearest_path_points(self, points, k=1): dists, indices = self._path_kdtree.query(points, k=k) return dists, self._path_kdtree.data[indices] def distance_to_path(self, point): dists, pts = self.get_k_nearest_path_points(np.array([point])) return (float(dists[0]), pts[0]) def get_k_nearest_boundary_points(self, points, k=1): dists, indices = self._boundary_kdtree.query(points, k=k) return dists, self._boundary_kdtree.data[indices] def distance_to_boundary(self, point): dists, pts = self.get_k_nearest_boundary_points(np.array([point])) return float(dists[0]) def is_inside_path_boundary(self, point): return ( self._map_boundary_mask[int(point[0] * self._block_resolution), int(point[1] * self._block_resolution)] > 0 )
2,485
Python
41.862068
119
0.675654
KazWong/omniverse_sample/ov_sample/python_samples/ros/clock.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import time import carb from omni.isaac.python_app import OmniKitHelper CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "renderer": "RayTracedLighting", "headless": True, } if __name__ == "__main__": # Example ROS bridge sample showing rospy and rosclock interaction kit = OmniKitHelper(config=CONFIG) import omni # enable ROS bridge extension ext_manager = omni.kit.app.get_app().get_extension_manager() ext_manager.set_extension_enabled_immediate("omni.isaac.ros_bridge", True) # check if rosmaster node is running # this is to prevent this sample from waiting indefinetly if roscore is not running # can be removed in regular usage kit.update() result, check = omni.kit.commands.execute("RosBridgeRosMasterCheck") if not check: carb.log_error("Please run roscore before executing this script") kit.stop() kit.shutdown() exit() # Note that this is not the system level rospy, but one compiled for omniverse from rosgraph_msgs.msg import Clock import rospy # create a clock using sim time result, prim = omni.kit.commands.execute( "ROSBridgeCreateClock", path="/ROS_Clock_Sim", clock_topic="/sim_time", sim_time=True ) # create a clock using system time result, prim = omni.kit.commands.execute( "ROSBridgeCreateClock", path="/ROS_Clock_System", clock_topic="/system_time", sim_time=False ) # create a clock which we will publish manually, set enabled to false to make it manually controlled result, prim = omni.kit.commands.execute( "ROSBridgeCreateClock", path="/ROS_Clock_Manual", clock_topic="/manual_time", sim_time=True, enabled=False ) kit.update() kit.update() # Define ROS callbacks def sim_clock_callback(data): print("sim time:", data.clock.to_sec()) def system_clock_callback(data): print("system time:", data.clock.to_sec()) def manual_clock_callback(data): print("manual stepped sim time:", data.clock.to_sec()) # Create rospy ndoe rospy.init_node("isaac_sim_test_gripper", anonymous=True, disable_signals=True, log_level=rospy.ERROR) # create subscribers sim_clock_sub = rospy.Subscriber("sim_time", Clock, sim_clock_callback) system_clock_sub = rospy.Subscriber("system_time", Clock, system_clock_callback) manual_clock_sub = rospy.Subscriber("manual_time", Clock, manual_clock_callback) time.sleep(1.0) # start simulation kit.play() # perform a fixed number of steps with fixed step size for frame in range(20): # publish manual clock every 10 frames if frame % 10 == 0: result, status = omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_Clock_Manual") kit.update(1.0 / 60.0) # runs with a non-realtime clock # This sleep is to make this sample run a bit more deterministically for the subscriber callback # In general this sleep is not needed time.sleep(0.1) # perform a fixed number of steps with realtime clock for frame in range(20): # publish manual clock every 10 frames if frame % 10 == 0: result, status = omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_Clock_Manual") kit.update() # runs with a realtime clock # This sleep is to make this sample run a bit more deterministically for the subscriber callback # In general this sleep is not needed time.sleep(0.1) # cleanup and shutdown sim_clock_sub.unregister() system_clock_sub.unregister() manual_clock_sub.unregister() kit.stop() kit.shutdown()
4,151
Python
37.803738
114
0.687786
KazWong/omniverse_sample/ov_sample/python_samples/ros/carter_stereo.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import time import carb from omni.isaac.python_app import OmniKitHelper CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "renderer": "RayTracedLighting", "headless": False, } if __name__ == "__main__": # Example ROS bridge sample showing manual control over messages kit = OmniKitHelper(config=CONFIG) import omni from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server from pxr import Sdf # enable ROS bridge extension ext_manager = omni.kit.app.get_app().get_extension_manager() ext_manager.set_extension_enabled_immediate("omni.isaac.ros_bridge", True) # Locate /Isaac folder on nucleus server to load sample result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder, exiting") exit() usd_path = nucleus_server + "/Isaac/Samples/ROS/Scenario/carter_warehouse_navigation.usd" omni.usd.get_context().open_stage(usd_path, None) # Wait two frames so that stage starts loading kit.app.update() kit.app.update() print("Loading stage...") while kit.is_loading(): kit.update(1.0 / 60.0) print("Loading Complete") # Disable all ROS components so we can demonstrate publishing manually # Otherwise, if a component is enabled, it will publish every timestep omni.kit.commands.execute( "ChangeProperty", prop_path=Sdf.Path("/World/Carter_ROS/ROS_Camera_Stereo_Right.enabled"), value=False, prev=None, ) omni.kit.commands.execute( "ChangeProperty", prop_path=Sdf.Path("/World/Carter_ROS/ROS_Camera_Stereo_Left.enabled"), value=False, prev=None ) omni.kit.commands.execute( "ChangeProperty", prop_path=Sdf.Path("/World/Carter_ROS/ROS_Lidar.enabled"), value=False, prev=None ) omni.kit.commands.execute( "ChangeProperty", prop_path=Sdf.Path("/World/Carter_ROS/ROS_DifferentialBase.enabled"), value=False, prev=None ) omni.kit.commands.execute( "ChangeProperty", prop_path=Sdf.Path("/World/Carter_ROS/ROS_Carter_Lidar_Broadcaster.enabled"), value=False, prev=None, ) omni.kit.commands.execute( "ChangeProperty", prop_path=Sdf.Path("/World/Carter_ROS/ROS_Carter_Broadcaster.enabled"), value=False, prev=None ) omni.kit.commands.execute("ChangeProperty", prop_path=Sdf.Path("/World/ROS_Clock.enabled"), value=False, prev=None) kit.play() kit.update(1.0 / 60.0) # Tick all of the components once to make sure all of the ROS nodes are initialized # For cameras this also handles viewport initialization etc. omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Camera_Stereo_Right") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Camera_Stereo_Left") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Lidar") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_DifferentialBase") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Carter_Lidar_Broadcaster") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Carter_Broadcaster") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/ROS_Clock") # Simulate for one second to warm up sim and let everything settle for frame in range(60): kit.update(1.0 / 60.0) # Dock the second camera window right_viewport = omni.ui.Workspace.get_window("Viewport") left_viewport = omni.ui.Workspace.get_window("Viewport_2") if right_viewport is not None and left_viewport is not None: left_viewport.dock_in(right_viewport, omni.ui.DockPosition.LEFT) # Create a rostopic to publish message to spin robot in place # Note that this is not the system level rospy, but one compiled for omniverse from geometry_msgs.msg import Twist import rospy rospy.init_node("carter_stereo", anonymous=True, disable_signals=True, log_level=rospy.ERROR) pub = rospy.Publisher("cmd_vel", Twist, queue_size=10) frame = 0 while kit.app.is_running(): # Run with a fixed step size kit.update(1.0 / 60.0) # Publish clock every frame omni.kit.commands.execute("RosBridgeTickComponent", path="/World/ROS_Clock") # publish TF and Lidar every 2 frames if frame % 2 == 0: omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Lidar") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_DifferentialBase") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Carter_Lidar_Broadcaster") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Carter_Broadcaster") # because we only tick the differential base component every two frames, we can also publish the ROS message at the same rate message = Twist() message.angular.z = 0.2 # spin in place pub.publish(message) # Publish cameras every 60 frames or one second of simulation if frame % 60 == 0: omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Camera_Stereo_Right") omni.kit.commands.execute("RosBridgeTickComponent", path="/World/Carter_ROS/ROS_Camera_Stereo_Left") frame = frame + 1 pub.unregister() rospy.signal_shutdown("carter_stereo complete") kit.stop() kit.shutdown()
6,107
Python
45.984615
137
0.700508
KazWong/omniverse_sample/ov_sample/python_samples/ros/moveit.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import carb from omni.isaac.python_app import OmniKitHelper FRANKA_STAGE_PATH = "/Franka" FRANKA_USD_PATH = "/Isaac/Robots/Franka/franka_alt_fingers.usd" BACKGROUND_STAGE_PATH = "/background" BACKGROUND_USD_PATH = "/Isaac/Environments/Simple_Room/simple_room.usd" CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "renderer": "RayTracedLighting", "headless": False, } def wait_load_stage(): # Wait two frames so stage starts loading kit.app.update() kit.app.update() print("Loading stage...") while kit.is_loading(): kit.update(1.0 / 60.0) print("Loading Complete") if __name__ == "__main__": # Example ROS bridge sample demonstrating the manual loading of stages # and creation of ROS components kit = OmniKitHelper(config=CONFIG) import omni from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server from omni.isaac.utils.scripts.scene_utils import create_background from pxr import Gf # enable ROS bridge extension ext_manager = omni.kit.app.get_app().get_extension_manager() ext_manager.set_extension_enabled_immediate("omni.isaac.ros_bridge", True) # Locate /Isaac folder on nucleus server to load environment and robot stages result, _nucleus_path = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder, exiting") exit() # Initialize extension and UI elements _viewport = omni.kit.viewport.get_default_viewport_window() _usd_context = omni.usd.get_context() # Preparing stage _viewport.set_camera_position("/OmniverseKit_Persp", 120, 120, 80, True) _viewport.set_camera_target("/OmniverseKit_Persp", 0, 0, 50, True) _stage = _usd_context.get_stage() # Loading the simple_room environment background_asset_path = _nucleus_path + BACKGROUND_USD_PATH create_background(_stage, background_asset_path, background_path=BACKGROUND_STAGE_PATH, offset=Gf.Vec3d(0, 0, 0)) wait_load_stage() # Loading the franka robot USD franka_asset_path = _nucleus_path + FRANKA_USD_PATH prim = _stage.DefinePrim(FRANKA_STAGE_PATH, "Xform") prim.GetReferences().AddReference(franka_asset_path) rot_mat = Gf.Matrix3d(Gf.Rotation((0, 0, 1), 90)) omni.kit.commands.execute( "TransformPrimCommand", path=prim.GetPath(), old_transform_matrix=None, new_transform_matrix=Gf.Matrix4d().SetRotate(rot_mat).SetTranslateOnly(Gf.Vec3d(0, -64, 0)), ) wait_load_stage() # Loading all ROS components initially as disabled so we can demonstrate publishing manually # Otherwise, if a component is enabled, it will publish every timestep # Load ROS Clock omni.kit.commands.execute("ROSBridgeCreateClock", path="/ROS_Clock", enabled=False) # Load Joint State omni.kit.commands.execute( "ROSBridgeCreateJointState", path="/ROS_JointState", articulation_prim_rel=[FRANKA_STAGE_PATH], enabled=False ) # Load Pose Tree omni.kit.commands.execute( "ROSBridgeCreatePoseTree", path="/ROS_PoseTree", target_prims_rel=[FRANKA_STAGE_PATH], enabled=False ) kit.play() kit.update(1.0 / 60.0) # Tick all of the components once to make sure all of the ROS nodes are initialized omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_JointState") omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_PoseTree") omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_Clock") # Simulate for one second to warm up sim and let everything settle for frame in range(60): kit.update(1.0 / 60.0) kit.play() while kit.app.is_running(): # Run with a fixed step size kit.update(1.0 / 60.0) # Publish clock, TF and JointState each frame omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_Clock") omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_JointState") omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_PoseTree") kit.stop() kit.shutdown()
4,589
Python
35.72
117
0.70146
KazWong/omniverse_sample/ov_sample/python_samples/simple/asset_usd_converter.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import argparse import asyncio import omni import os from omni.isaac.python_app import OmniKitHelper async def convert(in_file, out_file, load_materials=False): # This import causes conflicts when global import omni.kit.asset_converter def progress_callback(progress, total_steps): pass converter_context = omni.kit.asset_converter.AssetConverterContext() # setup converter and flags converter_context.ignore_materials = not load_materials # converter_context.ignore_animation = False # converter_context.ignore_cameras = True # converter_context.single_mesh = True # converter_context.smooth_normals = True # converter_context.preview_surface = False # converter_context.support_point_instancer = False # converter_context.embed_mdl_in_usd = False # converter_context.use_meter_as_world_unit = True # converter_context.create_world_as_default_root_prim = False instance = omni.kit.asset_converter.get_instance() task = instance.create_converter_task(in_file, out_file, progress_callback, converter_context) success = True while True: success = await task.wait_until_finished() if not success: await asyncio.sleep(0.1) else: break return success def asset_convert(args): supported_file_formats = ["stl", "obj", "fbx"] for folder in args.folders: local_asset_output = folder + "_converted" result = omni.client.create_folder(f"{local_asset_output}") for folder in args.folders: print(f"\nConverting folder {folder}...") (result, models) = omni.client.list(folder) for i, entry in enumerate(models): if i >= args.max_models: print(f"max models ({args.max_models}) reached, exiting conversion") break model = str(entry.relative_path) model_name = os.path.splitext(model)[0] model_format = (os.path.splitext(model)[1])[1:] # Supported input file formats if model_format in supported_file_formats: input_model_path = folder + "/" + model converted_model_path = folder + "_converted/" + model_name + "_" + model_format + ".usd" if not os.path.exists(converted_model_path): status = asyncio.get_event_loop().run_until_complete( convert(input_model_path, converted_model_path, True) ) if not status: print(f"ERROR Status is {status}") print(f"---Added {converted_model_path}") if __name__ == "__main__": CONFIG = {"experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit'} kit = OmniKitHelper(config=CONFIG) parser = argparse.ArgumentParser("Convert OBJ/STL assets to USD") parser.add_argument( "--folders", type=str, nargs="+", default=None, help="List of folders to convert (space seperated)." ) parser.add_argument( "--max-models", type=int, default=50, help="If specified, convert up to `max-models` per folder." ) parser.add_argument( "--load-materials", action="store_true", help="If specified, materials will be loaded from meshes" ) args = parser.parse_args() if args.folders is None: raise ValueError(f"No folders specified via --folders argument") # Ensure Omniverse Kit is launched via OmniKitHelper before asset_convert() is called asset_convert(args) # cleanup kit.shutdown()
3,993
Python
38.156862
108
0.65164
KazWong/omniverse_sample/ov_sample/python_samples/simple/franka_articulation.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import carb from omni.isaac.python_app import OmniKitHelper CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "renderer": "RayTracedLighting", "headless": True, } if __name__ == "__main__": # This sample loads an articulation and prints its information kit = OmniKitHelper(config=CONFIG) import omni from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server stage = kit.get_stage() result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder") asset_path = nucleus_server + "/Isaac/Robots/Franka/franka_alt_fingers.usd" omni.usd.get_context().open_stage(asset_path) # start simulation kit.play() # perform timestep kit.update(1.0 / 60.0) dc = _dynamic_control.acquire_dynamic_control_interface() # Get handle to articulation art = dc.get_articulation("/panda") if art == _dynamic_control.INVALID_HANDLE: print("*** '%s' is not an articulation" % "/panda") else: # Print information about articulation root = dc.get_articulation_root_body(art) print(str("Got articulation handle %d \n" % art) + str("--- Hierarchy\n")) body_states = dc.get_articulation_body_states(art, _dynamic_control.STATE_ALL) print(str("--- Body states:\n") + str(body_states) + "\n") dof_states = dc.get_articulation_dof_states(art, _dynamic_control.STATE_ALL) print(str("--- DOF states:\n") + str(dof_states) + "\n") dof_props = dc.get_articulation_dof_properties(art) print(str("--- DOF properties:\n") + str(dof_props) + "\n") # Simulate robot coming to a rest configuration for i in range(100): kit.update(1.0 / 60.0) # Simulate robot for a fixed number of frames and specify a joint position target for i in range(100): dof_ptr = dc.find_articulation_dof(art, "panda_joint2") # This should be called each frame of simulation if state on the articulation is being changed. dc.wake_up_articulation(art) # Set joint position target dc.set_dof_position_target(dof_ptr, -1.5) kit.update(1.0 / 60.0) kit.stop() kit.shutdown()
2,778
Python
37.068493
103
0.674946
KazWong/omniverse_sample/ov_sample/python_samples/simple/control_your_robot.py
#https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/controlling_robot.html import os import omni from omni.isaac.python_app import OmniKitHelper omni.timeline.get_timeline_interface().play()
202
Python
24.374997
83
0.811881
KazWong/omniverse_sample/ov_sample/python_samples/simple/load_stage.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.python_app import OmniKitHelper import carb import omni # This sample loads a usd stage and starts simulation CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "width": 1280, "height": 720, "sync_loads": True, "headless": False, "renderer": "RayTracedLighting", } if __name__ == "__main__": import argparse # Set up command line arguments parser = argparse.ArgumentParser("Usd Load sample") parser.add_argument("--usd_path", type=str, help="Path to usd file", required=True) parser.add_argument("--headless", default=False, action="store_true", help="Run stage headless") parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") args, unknown = parser.parse_known_args() # Start the omniverse application CONFIG["headless"] = args.headless kit = OmniKitHelper(config=CONFIG) # Locate /Isaac folder on nucleus server to load sample from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder, exiting") exit() asset_path = nucleus_server + "/Isaac" usd_path = asset_path + args.usd_path omni.usd.get_context().open_stage(usd_path, None) # Wait two frames so that stage starts loading kit.app.update() kit.app.update() print("Loading stage...") while kit.is_loading(): kit.update(1.0 / 60.0) print("Loading Complete") kit.play() # Run in test mode, exit after a fixed number of steps if args.test is True: for i in range(10): # Run in realtime mode, we don't specify the step size kit.update() else: while kit.app.is_running(): # Run in realtime mode, we don't specify the step size kit.update() kit.stop() kit.shutdown()
2,421
Python
34.101449
100
0.678232
KazWong/omniverse_sample/ov_sample/python_samples/simple/livestream.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.python_app import OmniKitHelper import omni # This sample enables a livestream server to connect to when running headless CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "width": 1280, "height": 720, "window_width": 1920, "window_height": 1080, "headless": True, "renderer": "RayTracedLighting", "display_options": 3807, # Set display options to show default grid } if __name__ == "__main__": # Start the omniverse application kit = OmniKitHelper(config=CONFIG) # Enable Livestream extension ext_manager = omni.kit.app.get_app().get_extension_manager() kit.set_setting("/app/window/drawMouse", True) kit.set_setting("/app/livestream/proto", "ws") ext_manager.set_extension_enabled_immediate("omni.kit.livestream.core", True) ext_manager.set_extension_enabled_immediate("omni.kit.livestream.native", True) # Run until closed while kit.app.is_running(): # Run in realtime mode, we don't specify the step size kit.update() kit.stop() kit.shutdown()
1,538
Python
34.790697
83
0.714564
KazWong/omniverse_sample/ov_sample/python_samples/simple/change_resolution.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.python_app import OmniKitHelper import random CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "renderer": "RayTracedLighting", "headless": True, } if __name__ == "__main__": # Simple example showing how to change resolution kit = OmniKitHelper(config=CONFIG) kit.update(1.0 / 60.0) for i in range(100): width = random.randint(128, 1980) height = random.randint(128, 1980) kit.set_setting("/app/renderer/resolution/width", width) kit.set_setting("/app/renderer/resolution/height", height) kit.update(1.0 / 60.0) print(f"resolution set to: {width}, {height}") # cleanup kit.shutdown()
1,160
Python
34.181817
76
0.701724
KazWong/omniverse_sample/ov_sample/python_samples/simple/urdf_import.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.python_app import OmniKitHelper CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "renderer": "RayTracedLighting", "headless": True, } if __name__ == "__main__": # URDF import, configuration and simualtion sample kit = OmniKitHelper(config=CONFIG) import omni.kit.commands from pxr import Sdf, Gf, UsdPhysics, UsdLux, PhysxSchema # Setting up import configuration: status, import_config = omni.kit.commands.execute("URDFCreateImportConfig") import_config.merge_fixed_joints = False import_config.convex_decomp = False import_config.import_inertia_tensor = True import_config.fix_base = False # Get path to extension data: ext_manager = omni.kit.app.get_app().get_extension_manager() ext_id = ext_manager.get_enabled_extension_id("omni.isaac.urdf") extension_path = ext_manager.get_extension_path(ext_id) # Import URDF omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=extension_path + "/data/urdf/robots/carter/urdf/carter.urdf", import_config=import_config, ) # Get stage handle stage = omni.usd.get_context().get_stage() # Enable physics scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/physicsScene")) # Set gravity scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) scene.CreateGravityMagnitudeAttr().Set(981.0) # Set solver settings PhysxSchema.PhysxSceneAPI.Apply(stage.GetPrimAtPath("/physicsScene")) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Get(stage, "/physicsScene") physxSceneAPI.CreateEnableCCDAttr(True) physxSceneAPI.CreateEnableStabilizationAttr(True) physxSceneAPI.CreateEnableGPUDynamicsAttr(False) physxSceneAPI.CreateBroadphaseTypeAttr("MBP") physxSceneAPI.CreateSolverTypeAttr("TGS") # Add ground plane omni.kit.commands.execute( "AddGroundPlaneCommand", stage=stage, planePath="/groundPlane", axis="Z", size=1500.0, position=Gf.Vec3f(0, 0, -50), color=Gf.Vec3f(0.5), ) # Add lighting distantLight = UsdLux.DistantLight.Define(stage, Sdf.Path("/DistantLight")) distantLight.CreateIntensityAttr(500) # Get handle to the Drive API for both wheels left_wheel_drive = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/carter/chassis_link/left_wheel"), "angular") right_wheel_drive = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/carter/chassis_link/right_wheel"), "angular") # Set the velocity drive target in degrees/second left_wheel_drive.GetTargetVelocityAttr().Set(150) right_wheel_drive.GetTargetVelocityAttr().Set(150) # Set the drive damping, which controls the strength of the velocity drive left_wheel_drive.GetDampingAttr().Set(15000) right_wheel_drive.GetDampingAttr().Set(15000) # Set the drive stiffness, which controls the strength of the position drive # In this case because we want to do velocity control this should be set to zero left_wheel_drive.GetStiffnessAttr().Set(0) right_wheel_drive.GetStiffnessAttr().Set(0) # Start simulation kit.play() # perform simulation for frame in range(100): kit.update(1.0 / 60.0) # Shutdown and exit kit.stop() kit.shutdown()
3,757
Python
36.58
115
0.713335
KazWong/omniverse_sample/ov_sample/python_samples/simple/time_stepping.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import carb from omni.isaac.python_app import OmniKitHelper CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "renderer": "RayTracedLighting", "headless": True, } if __name__ == "__main__": # Example usage, with step size test kit = OmniKitHelper(config=CONFIG) import omni.physx from pxr import UsdPhysics, Sdf UsdPhysics.Scene.Define(kit.get_stage(), Sdf.Path("/World/physicsScene")) # Create callbacks to both editor and physics step callbacks def editor_update(e: carb.events.IEvent): dt = e.payload["dt"] print("kit update step:", dt, "seconds") def physics_update(dt: float): print("physics update step:", dt, "seconds") # start simulation kit.play() # assign callbacks update_sub = omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(editor_update) physics_sub = omni.physx.acquire_physx_interface().subscribe_physics_step_events(physics_update) # perform step experiments print(f"Rendering and Physics with {1} second step size:") kit.update(1.0) print(f"Rendering and Physics with {1/60} seconds step:") kit.update(1.0 / 60.0) print(f"Rendering {1/30} seconds step size and Physics {1/120} seconds step size:") kit.update(1.0 / 30.0, 1.0 / 120.0, 4) # cleanup update_sub = None physics_sub = None kit.stop() kit.shutdown()
1,873
Python
33.072727
107
0.695675
KazWong/omniverse_sample/ov_sample/python_samples/jetracer/gtc2020_track_utils.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import numpy as np from PIL import Image # TODO : This is custom, specific to the GTC2020 Jetracer course. # Make a more general solution. def line_seg_closest_point(v0, v1, p0): # Project p0 onto (v0, v1) line, then clamp to line segment d = v1 - v0 q = p0 - v0 t = np.dot(q, d) / np.dot(d, d) t = np.clip(t, 0, 1) return v0 + t * d def line_seg_distance(v0, v1, p0): p = line_seg_closest_point(v0, v1, p0) return np.linalg.norm(p0 - p) # Canonical arc is centered at origin, and goes from 0 to a0 radians def canonical_arc_distance(R, a0, x): a = np.arctan2(x[1], x[0]) if a < 0: a = a + 2 * np.pi if a > a0: if a < a0 / 2 + np.pi: a = a0 else: a = 0 p = R * np.array([np.cos(a), np.sin(a)]) return np.linalg.norm(x - p) def arc_distance(c, r, a0, a1, x): # Point relative to arc origin x0 = x - c # Rotate point to canonical angle (where arc starts at 0) c = np.cos(-a0) s = np.sin(-a0) R = np.array([[c, -s], [s, c]]) x0 = np.dot(R, x0) return canonical_arc_distance(r, a1 - a0, x0) def closest_point_arc(c, r, a0, a1, x): # Direction to point x0 = x - c x0 = x0 / np.linalg.norm(x0) # print(c, x0, r, c + x0 * r) return c + x0 * r # The forward direction at the closest point on an arc def closest_point_arc_direction(c, r, a0, a1, x): # Direction to point x0 = x - c x0 = x0 / np.linalg.norm(x0) # The tangent is unit circle point rotated pi/2 radians return np.array([-x0[1], x0[0]]) def arc_endpoints(c, r, a0, a1): c0 = np.cos(a0) s0 = np.sin(a0) c1 = np.cos(a1) s1 = np.sin(a1) return c + r * np.array([[c0, s0], [c1, s1]]) # Measurements (in meters) m0 = 7.620 m1 = 10.668 m2 = 5.491 m3 = 3.048 m4 = 4.348 m5 = 5.380 # Track width w = 1.22 w_2 = w / 2 # Arc arrays arc_center = np.zeros((4, 2)) arc_radius = np.zeros(4) arc_angles = np.zeros((4, 2)) # Arcs # Bottom left arc_center[0] = np.array([w, w]) arc_radius[0] = w_2 arc_angles[0] = [np.pi, np.pi * 1.5] # Top left arc_center[1] = np.array([m3, m0]) arc_radius[1] = m3 - w_2 arc_angles[1] = [1.75 * np.pi, 3 * np.pi] ep1 = arc_endpoints(arc_center[1], arc_radius[1], arc_angles[1][0], arc_angles[1][1]) # Others arc_center[2] = np.array([m5, m4]) arc_radius[2] = 0.5 * (2.134 + 0.914) arc_angles[2] = [0.75 * np.pi, 1.25 * np.pi] ep2 = arc_endpoints(arc_center[2], arc_radius[2], arc_angles[2][0], arc_angles[2][1]) arc_center[3] = np.array([m2, w]) arc_radius[3] = w_2 arc_angles[3] = [np.pi * 1.5, np.pi * 2.25] ep3 = arc_endpoints(arc_center[3], arc_radius[3], arc_angles[3][0], arc_angles[3][1]) # line segment points line_verts = [ np.array([w_2, w]), np.array([w_2, m0]), ep1[0], ep2[0], ep2[1], ep3[1], np.array([m2, w_2]), np.array([w, w_2]), ] def random_track_point(): # TODO : Refactor these dimensions, which show up in multiple places p = np.random.random(2) * [6.711, 10.668] result = track_segment_closest_point(p) return result * 100 # convert to cm. TODO standardize all entry points to cm # Minimum distances to all segments of the track def track_segment_distance(p): d = np.zeros(8) d[0] = line_seg_distance(line_verts[0], line_verts[1], p) d[1] = line_seg_distance(line_verts[2], line_verts[3], p) d[2] = line_seg_distance(line_verts[4], line_verts[5], p) d[3] = line_seg_distance(line_verts[6], line_verts[7], p) d[4] = arc_distance(arc_center[0], arc_radius[0], arc_angles[0][0], arc_angles[0][1], p) d[5] = arc_distance(arc_center[1], arc_radius[1], arc_angles[1][0], arc_angles[1][1], p) d[6] = arc_distance(arc_center[2], arc_radius[2], arc_angles[2][0], arc_angles[2][1], p) d[7] = arc_distance(arc_center[3], arc_radius[3], arc_angles[3][0], arc_angles[3][1], p) return d def track_segment_closest_point(p): d = track_segment_distance(p) # If a line segment is the closest if np.min(d[:4]) < np.min(d[4:]): idx = np.argmin(d[:4], axis=0) return line_seg_closest_point(line_verts[idx * 2], line_verts[idx * 2 + 1], p) # If an arc is the closest else: idx = np.argmin(d[4:], axis=0) return closest_point_arc(arc_center[idx], arc_radius[idx], arc_angles[idx][0], arc_angles[idx][1], p) # Distance to closest point on the track def center_line_dist(p): p = 0.01 * p # Convert from m to cm return np.min(track_segment_distance(p)) # Forward vector at the closest point on the center line def closest_point_track_direction(p): p = 0.01 * p # Convert from m to cm d = track_segment_distance(p) # If a line segment is the closest if np.min(d[:4]) < np.min(d[4:]): idx = np.argmin(d[:4], axis=0) v = line_verts[idx * 2 + 1] - line_verts[idx * 2] return v / np.linalg.norm(v) # If an arc is the closest else: idx = np.argmin(d[4:], axis=0) v = closest_point_arc_direction(arc_center[idx], arc_radius[idx], arc_angles[idx][0], arc_angles[idx][1], p) # TODO : All arcs are defined counter-clockwise, # but this doesn't always represent the forward direction on the track. # This is a hack to correct the tangent vector on all but one of the arcs. if idx != 2: v = -v return v LANE_WIDTH = 0.7 # width of whole track is w = 1.22. To get out of bound is > 1.22/2, so around 0.7 TRACK_DIMS = [671, 1066] # the track is within (0, 0) to (671.1 cm, 1066.8 cm) def is_racing_forward(prev_pose, curr_pose): prev_pose = 0.01 * prev_pose curr_pose = 0.01 * curr_pose bottom_left_corner = np.array([0, 0]) top_left_corner = np.array([0, 10.668]) top_right_corner = np.array([6.711, 10.668]) bottom_right_corner = np.array([6.711, 0]) d0 = line_seg_distance(bottom_left_corner, top_left_corner, curr_pose) d1 = line_seg_distance(top_left_corner, top_right_corner, curr_pose) d2 = line_seg_distance(top_right_corner, bottom_right_corner, curr_pose) d3 = line_seg_distance(bottom_right_corner, bottom_left_corner, curr_pose) min_d = np.min([d0, d1, d2, d3]) which_side = np.array([0, 0]) if min_d == d0: which_side = top_left_corner - bottom_left_corner elif min_d == d1: which_side = top_right_corner - top_left_corner elif min_d == d2: which_side = bottom_right_corner - top_right_corner elif min_d == d3: which_side = bottom_left_corner - bottom_right_corner which_size_unit = which_side / np.linalg.norm(which_side) curr_vel = curr_pose - prev_pose curr_vel_norm = np.linalg.norm(curr_vel) curr_vel_unit = np.array([0, 0]) # checking divide by zero if curr_vel_norm: curr_vel_unit = curr_vel / curr_vel_norm return np.dot(curr_vel_unit, which_size_unit) def is_outside_track_boundary(curr_pose): dist = center_line_dist(curr_pose) return dist < LANE_WIDTH if __name__ == "__main__": print("Generating test PNGs") # scale s = 0.02 H = int(10668 * s) W = int(6711 * s) d = np.zeros((H, W)) fwd = np.zeros((H, W, 3)) h = np.zeros((H, W)) print(H, W) for _ in range(10000): p_scaled = np.random.random(2) * [W, H] p_meters = p_scaled / s / 1000.0 # p_proj = line_seg_closest_point(line_verts[6], line_verts[7], p_meters) p_proj = track_segment_closest_point(p_meters) # print(h.shape, p_scaled, p_meters, p_proj, p_proj * s) p_proj = p_proj + np.random.normal([0, 0], 0.1) idx = p_proj * s * 1000.0 idx = np.floor(idx) idx = np.clip(idx, [0, 0], [W - 1, H - 1]) # HACK idx = idx.astype("int") h[idx[1], idx[0]] = h[idx[1], idx[0]] + 1 for i in range(H): y = ((i + 0.5) / s) / 10.0 if i % 10 == 0: print("{:0.1f}%".format(i / H * 100)) for j in range(W): x = ((j + 0.5) / s) / 10.0 p = np.array([x, y]) d[i, j] = center_line_dist(p) f = closest_point_track_direction(p) fwd[i, j] = np.array([0.5 * (f[0] + 1), 0.5 * (f[1] + 1), 0]) print("100.0%") # Images have zero at the top, so we flip vertically d = np.flipud(d) fwd = np.flip(fwd, axis=0) h = np.flipud(h) # Distance function im = Image.fromarray((d * 255 / np.max(d)).astype("uint8")) im.save("dist.png") # Track forward vector im = Image.fromarray((fwd * 255).astype("uint8"), "RGB") im.save("fwd.png") # Track forward vector X im = Image.fromarray((fwd[:, :, 0] * 255).astype("uint8")) im.save("fwd_x.png") # Track forward vector Y im = Image.fromarray((fwd[:, :, 1] * 255).astype("uint8")) im.save("fwd_y.png") # H h = h / np.max(h) im = Image.fromarray((h * 255).astype("uint8")) im.save("h.png")
9,404
Python
25.643059
116
0.581986
KazWong/omniverse_sample/ov_sample/python_samples/jetracer/jetracer_env.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch from torchvision.transforms import ColorJitter import PIL import numpy as np import carb import omni import omni.kit.app from pxr import UsdGeom, Gf, Sdf, Usd, Semantics import os import json import time import atexit import asyncio import numpy as np import random import matplotlib.pyplot as plt from omni.isaac.synthetic_utils import visualization as vis from omni.isaac.python_app import OmniKitHelper from omni.isaac.synthetic_utils import SyntheticDataHelper from jetracer import Jetracer from track_environment import Environment from gtc2020_track_utils import * import gym from gym import spaces class JetracerEnv: metadata = {"render.modes": ["human"]} # TODO : Extract more training options def __init__( self, omni_kit, z_height=0, max_resets=10, updates_per_step=3, steps_per_rollout=500, mirror_mode=False, backwards_term_mode=0, reward_mode=0, ): self.MIRROR_MODE = mirror_mode self.BACKWARDS_TERMINATION_MODE = backwards_term_mode self.REWARD_MODE = reward_mode print("MIRROR_MODE = {}".format(self.MIRROR_MODE)) print("BACKWARDS_TERMINATION_MODE = {}".format(self.BACKWARDS_TERMINATION_MODE)) print("REWARD_MODE = {}".format(self.REWARD_MODE)) self.action_space = spaces.Box(low=-1.0, high=1.0, shape=(2,), dtype=np.float32) self.observation_space = spaces.Box(low=0, high=255, shape=(224, 224, 6), dtype=np.uint8) self.color_jitter = ColorJitter(0.1, 0.05, 0.05, 0.05) self.noise = 0.05 self.dt = 1 / 30.0 self.omniverse_kit = omni_kit self.sd_helper = SyntheticDataHelper() self.roads = Environment(self.omniverse_kit) # make environment z up self.omniverse_kit.set_up_axis(UsdGeom.Tokens.z) # generate roads self.shape = [6, 6] self.roads.generate_road(self.shape) self.roads.generate_lights() # randomize once to initialize stage # the following two lines must be called prior to Jetracer initialization # any DR related setup calls should occur before this point self.omniverse_kit.update(1 / 60.0) self.roads.dr.randomize_once() # spawn robot self.jetracer = Jetracer(self.omniverse_kit) self.initial_loc = self.roads.get_valid_location() self.jetracer.spawn(Gf.Vec3d(self.initial_loc[0], self.initial_loc[1], 5), 0) self.prev_pose = [0, 0, 0] self.current_pose = [0, 0, 0] # switch kit camera to jetracer camera self.jetracer.activate_camera() # start simulation self.omniverse_kit.play() # Step simulation so that objects fall to rest # wait until all materials are loaded frame = 0 print("simulating physics...") while frame < 60 or self.omniverse_kit.is_loading(): self.omniverse_kit.update(self.dt) frame = frame + 1 print("done after frame: ", frame) self.initialized = False self.numsteps = 0 self.numresets = 0 self.maxresets = 10 # set this to 1 after around 200k steps to randomnize less # self.maxresets = 1 # Randomly mirror horizontally self.update_mirror_mode() def update_mirror_mode(self): # Mirror if mode is enabled and we randomly sample True self.mirror_mode = self.MIRROR_MODE & random.choice([False, True]) def calculate_reward(self): # Current and last positions pose = np.array([self.current_pose[0], self.current_pose[1]]) prev_pose = np.array([self.prev_pose[0], self.prev_pose[1]]) # Finite difference velocity calculation vel = pose - prev_pose vel_norm = vel vel_magnitude = np.linalg.norm(vel) if vel_magnitude > 0.0: vel_norm = vel / vel_magnitude # Distance from the center of the track dist = center_line_dist(pose) self.dist = dist # racing_forward = is_racing_forward(prev_pose, pose) # reward = racing_forward * self.current_speed * np.exp(-dist ** 2 / 0.05 ** 2) fwd_dir = closest_point_track_direction(pose) fwd_dot = np.dot(fwd_dir, vel_norm) if self.REWARD_MODE == 0: reward = fwd_dot * self.current_speed * np.exp(-dist ** 2 / 0.05 ** 2) elif self.REWARD_MODE == 1: reward = fwd_dot * self.current_speed return reward def is_dead(self): return not is_outside_track_boundary(np.array([self.current_pose[0], self.current_pose[1]])) def transform_action(self, action): # If mirrored, swap steering direction if self.mirror_mode: action[1] = -action[1] return action def transform_state_image(self, im): # If enabled, mirror image horizontally if self.mirror_mode: return np.flip(im, axis=1) return im def reset(self): # Randomly mirror horizontally self.update_mirror_mode() if self.numresets % self.maxresets == 0: self.roads.reset(self.shape) if not self.initialized: state, reward, done, info, = self.step([0, 0]) self.initialized = True # Random track point in cm, with a 10 cm stddev gaussian offset loc = random_track_point() loc = loc + np.random.normal([0.0, 0.0], 10.0) # Forward direction at that point fwd = closest_point_track_direction(loc) # Forward angle in degrees, with a 10 degree stddev gaussian offset rot = np.arctan2(fwd[1], fwd[0]) rot = rot * 180.0 / np.pi rot = rot + np.random.normal(10.0) self.jetracer.teleport(Gf.Vec3d(loc[0], loc[1], 5), rot, settle=True) obs = self.jetracer.observations() self.current_pose = obs["pose"] self.current_speed = np.linalg.norm(np.array(obs["linear_velocity"])) self.current_forward_velocity = obs["local_linear_velocity"][0] if self.numresets % self.maxresets == 0: frame = 0 while self.omniverse_kit.is_loading(): # or frame < 750: self.omniverse_kit.update(self.dt) frame += 1 viewport = omni.kit.viewport.get_default_viewport_window() gt = self.sd_helper.get_groundtruth(["rgb"], viewport) currentState = gt["rgb"][:, :, :3] currentState = self.transform_state_image(currentState) img = np.concatenate((currentState, currentState), axis=2) img = np.clip((255 * self.noise * np.random.randn(224, 224, 6) + img.astype(np.float)), 0, 255).astype(np.uint8) self.numsteps = 0 self.previousState = currentState self.numresets += 1 return img def is_driving_backwards(self): # TODO : Refactor, the bulk of this code is shared with the reward function. # Also, find out at what point in an iteration this is called, # compared to the reward, physics and stuff. # If off by a timestep it's close enough, probably won't cause any issues. # Current and last positions pose = np.array([self.current_pose[0], self.current_pose[1]]) prev_pose = np.array([self.prev_pose[0], self.prev_pose[1]]) # Finite difference velocity calculation vel = pose - prev_pose vel_norm = vel vel_magnitude = np.linalg.norm(vel) if vel_magnitude > 0.0: vel_norm = vel / vel_magnitude # Forward direction on the track fwd_dir = closest_point_track_direction(pose) # Normalized velocity projected onto the forward direction fwd_dot = np.dot(fwd_dir, vel_norm) # Going backwards more than 3*pi/8 radians return fwd_dot < np.cos(7.0 * np.pi / 8.0) def step(self, action): print("Number of steps ", self.numsteps) # print("Action ", action) transformed_action = self.transform_action(action) self.jetracer.command(transformed_action) frame = 0 total_reward = 0 reward = 0 while frame < 3: self.omniverse_kit.update(self.dt) obs = self.jetracer.observations() self.prev_pose = self.current_pose self.current_pose = obs["pose"] self.current_speed = np.linalg.norm(np.array(obs["linear_velocity"])) self.current_forward_velocity = obs["local_linear_velocity"][0] reward = self.calculate_reward() done = self.is_dead() total_reward += reward frame = frame + 1 viewport = omni.kit.viewport.get_default_viewport_window() gt = self.sd_helper.get_groundtruth(["rgb"], viewport) currentState = gt["rgb"][:, :, :3] currentState = self.transform_state_image(currentState) if not self.initialized: self.previousState = currentState img = np.concatenate((currentState, self.previousState), axis=2) img = np.clip((255 * self.noise * np.random.randn(224, 224, 6) + img.astype(np.float)), 0, 255).astype(np.uint8) self.previousState = currentState other = np.array( [*obs["pose"], *obs["linear_velocity"], *obs["local_linear_velocity"], *obs["angular_velocity"]] ) other = np.expand_dims(other.astype(float), 0) self.numsteps += 1 if done: print("robot is dead") if self.numsteps > 500: done = True print("robot stepped 500 times") if self.dist > LANE_WIDTH: print("robot out of bounds. dist = ", self.dist) done = True if self.BACKWARDS_TERMINATION_MODE == 0: if self.current_forward_velocity <= -35: print("robot was going backwards forward velocity = ", self.current_forward_velocity) done = True elif self.BACKWARDS_TERMINATION_MODE == 1: if self.is_driving_backwards(): print("Robot was driving backwards") done = True return img, reward, done, {}
10,660
Python
32.420063
120
0.61257
KazWong/omniverse_sample/ov_sample/python_samples/jetracer/jetracer_train.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import os import sys import json import signal import argparse from argparse import Namespace from omni.isaac.python_app import OmniKitHelper from jetracer_model import CustomCNN from stable_baselines3 import PPO from stable_baselines3.common.callbacks import BaseCallback, CheckpointCallback def train(args): CUSTOM_CONFIG = { "width": 224, "height": 224, "renderer": "RayTracedLighting", "headless": args.headless, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', } omniverse_kit = OmniKitHelper(CUSTOM_CONFIG) from jetracer_env import JetracerEnv # we disable all anti aliasing in the render because we want to train on the raw camera image. omniverse_kit.set_setting("/rtx/post/aa/op", 0) env = JetracerEnv( omniverse_kit, mirror_mode=args.mirror_mode, backwards_term_mode=args.backwards_termination_mode, reward_mode=args.reward_mode, max_resets=args.rand_freq, ) checkpoint_callback = CheckpointCallback(save_freq=args.save_freq, save_path="./params/", name_prefix="rl_model") net_arch = [512, 256, dict(pi=[128, 64, 32], vf=[128, 64, 32])] policy_kwargs = {"net_arch": net_arch, "features_extractor_class": CustomCNN, "activation_fn": torch.nn.ReLU} # create a new model if args.loaded_checkpoint == "": model = PPO( "CnnPolicy", env, verbose=1, tensorboard_log=args.tensorboard_dir, policy_kwargs=policy_kwargs, device="cuda", n_steps=args.step_freq, ) else: model = PPO.load(args.loaded_checkpoint, env) model.learn( total_timesteps=args.total_steps, callback=checkpoint_callback, eval_env=env, eval_freq=args.eval_freq, eval_log_path=args.evaluation_dir, reset_num_timesteps=args.reset_num_timesteps, ) model.save(args.checkpoint_name) def runEval(args): CUSTOM_CONFIG = { "width": 224, "height": 224, "renderer": "RayTracedLighting", "headless": args.headless, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', } # load a zip file to evaluate here. PPO also saves the best model so far in the eval_log folder. # You can evaluate those zip files in the params folder as well (i.e params/rl_model_125999_steps.zip) agent = PPO.load(args.evaluation_dir + "/best_model.zip", device="cuda") omniverse_kit = OmniKitHelper(CUSTOM_CONFIG) from jetracer_env import JetracerEnv # we disable all anti aliasing in the render because we want to train on the raw camera image. omniverse_kit.set_setting("/rtx/post/aa/op", 0) env = JetracerEnv( omniverse_kit, mirror_mode=args.mirror_mode, backwards_term_mode=args.backwards_termination_mode, reward_mode=args.reward_mode, max_resets=args.rand_freq, ) obs = env.reset() while True: action = agent.predict(obs) print(action) obs, rew, done, infos = env.step(action[0]) if done: obs = env.reset() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--loaded_checkpoint", help="path to checkpoint to be loaded", default="", nargs="?", type=str) parser.add_argument("-E", "--eval", help="evaluate checkpoint", action="store_true") parser.add_argument( "-R", "--reset_num_timesteps", help="reset the current timestep number (used in logging)", action="store_true" ) parser.add_argument( "-M", "--mirror_mode", help="reflect images and actions horizontally during training", action="store_true" ) parser.add_argument("-H", "--headless", help="run in headless mode (no GUI)", action="store_true") parser.add_argument( "--checkpoint_name", help="name of checkpoint file (no suffix)", default="checkpoint_25k", type=str ) parser.add_argument("--tensorboard_dir", help="path to tensorboard log directory", default="tensorboard", type=str) parser.add_argument("--evaluation_dir", help="path to evaluation log directory", default="eval_log", type=str) parser.add_argument("--save_freq", help="number of steps before saving a checkpoint", default=1000, type=int) parser.add_argument("--eval_freq", help="number of steps before running an evaluation", default=1000, type=int) parser.add_argument("--step_freq", help="number of steps before executing a PPO update", default=1000, type=int) parser.add_argument( "--rand_freq", help="number of environment resets before domain randomization", default=10, type=int ) parser.add_argument( "--total_steps", help="the total number of steps before exiting and saving a final checkpoint", default=25000, type=int, ) parser.add_argument("--backwards_termination_mode", help="???", default=0, type=int) parser.add_argument("--reward_mode", help="???", default=0, type=int) parser.add_argument( "--experimentFile", help="specify configuration via JSON. Overrides commandline", default="", type=str ) args = parser.parse_args() if args.experimentFile != "": args_dict = vars(args) if os.path.exists(args.experimentFile): with open(args.experimentFile) as f: json_args_dict = json.load(f) args_dict.update(json_args_dict) args = Namespace(**args_dict) print("running with args: ", args) def handle_exit(*args, **kwargs): print("Exiting training...") quit() signal.signal(signal.SIGINT, handle_exit) if args.eval: runEval(args) else: train(args)
6,256
Python
31.931579
119
0.651854
KazWong/omniverse_sample/ov_sample/python_samples/jetracer/jetracer.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import carb import omni from pxr import UsdGeom, Gf import numpy as np class Jetracer: def __init__(self, omni_kit): from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server self.omni_kit = omni_kit # Enable this after stage is loaded to prevent errors ext_manager = self.omni_kit.app.get_extension_manager() ext_manager.set_extension_enabled("omni.physx.vehicle", True) result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder") return self.usd_path = nucleus_server + "/Isaac/Robots/Jetracer/jetracer.usd" self.robot_prim = None self._dynamic_control = _dynamic_control self.dc = _dynamic_control.acquire_dynamic_control_interface() self.ar = None # rotation is in degrees def spawn(self, location, rotation): stage = self.omni_kit.get_stage() prefix = "/World/Robot/Jetracer" prim_path = omni.usd.get_stage_next_free_path(stage, prefix, False) print(prim_path) self.robot_prim = stage.DefinePrim(prim_path, "Xform") self.robot_prim.GetReferences().AddReference(self.usd_path) xform = UsdGeom.Xformable(self.robot_prim) xform_op = xform.AddXformOp(UsdGeom.XformOp.TypeTransform, UsdGeom.XformOp.PrecisionDouble, "") mat = Gf.Matrix4d().SetTranslate(location) mat.SetRotateOnly(Gf.Rotation(Gf.Vec3d(0, 0, 1), rotation)) xform_op.Set(mat) self.camera_path = prim_path + "/Jetracer/Vehicle/jetracer_camera" # self.camera_path = prim_path + "Vehicle/jetracer_camera" def teleport(self, location, rotation, settle=False): if self.ar is None: self.ar = self.dc.get_rigid_body(self.robot_prim.GetPath().pathString + "/Vehicle") self.chassis = self.ar self.dc.wake_up_rigid_body(self.ar) rot_quat = Gf.Rotation(Gf.Vec3d(0, 0, 1), rotation).GetQuaternion() tf = self._dynamic_control.Transform( location, (rot_quat.GetImaginary()[0], rot_quat.GetImaginary()[1], rot_quat.GetImaginary()[2], rot_quat.GetReal()), ) self.dc.set_rigid_body_pose(self.chassis, tf) self.dc.set_rigid_body_linear_velocity(self.chassis, [0, 0, 0]) self.dc.set_rigid_body_angular_velocity(self.chassis, [0, 0, 0]) self.command((0, 0)) if settle: frame = 0 velocity = 1 print("Settling robot...") while velocity > 0.1 and frame < 120: self.omni_kit.update(1.0 / 60.0) lin_vel = self.dc.get_rigid_body_linear_velocity(self.chassis) velocity = np.linalg.norm([lin_vel.x, lin_vel.y, lin_vel.z]) # print("velocity magnitude is: ", velocity) frame = frame + 1 # print("done after frame: HERE", frame) def activate_camera(self): vpi = omni.kit.viewport.get_viewport_interface() vpi.get_viewport_window().set_active_camera(str(self.camera_path)) def command(self, motor_value): if self.ar is None: vehicle_path = self.robot_prim.GetPath().pathString + "/Jetracer/Vehicle" print(vehicle_path) self.ar = self.dc.get_rigid_body(vehicle_path) self.chassis = self.ar print(self.chassis) stage = self.omni_kit.get_stage() # for child_prim in stage.Traverse(): # print(child_prim.GetPath().pathString) self.accelerator = stage.GetPrimAtPath(vehicle_path).GetAttribute("physxVehicleController:accelerator") self.left_steer = stage.GetPrimAtPath(vehicle_path).GetAttribute("physxVehicleController:steerLeft") self.right_steer = stage.GetPrimAtPath(vehicle_path).GetAttribute("physxVehicleController:steerRight") self.target_gear = stage.GetPrimAtPath(vehicle_path).GetAttribute("physxVehicleController:targetGear") # TODO add brake physxVehicleController:brake self.dc.wake_up_rigid_body(self.ar) accel_cmd = self.wheel_speed_from_motor_value(motor_value[0]) steer_left_cmd = self.wheel_speed_from_motor_value(motor_value[1]) acceleration = max(min(accel_cmd, 1), -1) steering = max(min(steer_left_cmd, 1), -1) gear = 1 # going forward if acceleration < 0: gear = -1 # reverse self.accelerator.Set(abs(acceleration)) self.target_gear.Set(gear) if steering > 0: self.right_steer.Set(steering) else: self.left_steer.Set(abs(steering)) # idealized motor model that converts a pwm value to a velocity def wheel_speed_from_motor_value(self, input): threshold = 0.05 if input >= 0: if input > threshold: return 1.604 * input - 0.05 else: return 0 elif input < 0: if input < -threshold: return 1.725 * input + 0.0757 else: return 0 def observations(self): if self.ar is None: self.ar = self.dc.get_rigid_body(self.robot_prim.GetPath().pathString + "/Vehicle") self.chassis = self.ar dc_pose = self.dc.get_rigid_body_pose(self.chassis) dc_lin_vel = self.dc.get_rigid_body_linear_velocity(self.chassis) dc_local_lin_vel = self.dc.get_rigid_body_local_linear_velocity(self.chassis) dc_ang_vel = self.dc.get_rigid_body_angular_velocity(self.chassis) return { "pose": (dc_pose.p.x, dc_pose.p.y, dc_pose.p.z, dc_pose.r.w, dc_pose.r.x, dc_pose.r.y, dc_pose.r.z), "linear_velocity": (dc_lin_vel.x, dc_lin_vel.y, dc_lin_vel.z), "local_linear_velocity": (dc_local_lin_vel.x, dc_local_lin_vel.y, dc_local_lin_vel.z), "angular_velocity": (dc_ang_vel.x, dc_ang_vel.y, dc_ang_vel.z), }
6,524
Python
42.21192
117
0.622777
KazWong/omniverse_sample/ov_sample/python_samples/jetracer/track_environment.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import carb import omni import random from pxr import UsdGeom, Gf, Sdf, UsdPhysics from omni.isaac.synthetic_utils import DomainRandomization from gtc2020_track_utils import * class Environment: def __init__(self, omni_kit, z_height=0): from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server self.omni_kit = omni_kit self.find_nucleus_server = find_nucleus_server result, nucleus_server = self.find_nucleus_server() if result is False: carb.log_error( "Could not find nucleus server with /Isaac folder. Please specify the correct nucleus server in apps/omni.isaac.sim.python.kit" ) return self.texture_list = [ nucleus_server + "/Isaac/Samples/DR/Materials/Textures/checkered.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/marble_tile.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/picture_a.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/picture_b.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/textured_wall.png", nucleus_server + "/Isaac/Samples/DR/Materials/Textures/checkered_color.png", ] self.prims = [] # list of spawned tiles self.height = z_height # height of the ground tiles self.state = None # because the ground plane is what the robot drives on, we only do this once. We can then re-generate the road as often as we need without impacting physics self.setup_physics() contents = omni.client.list(nucleus_server + "/Isaac/Props/Sortbot_Housing/Materials/Textures/")[1] for entry in contents: self.texture_list.append( nucleus_server + "/Isaac/Props/Sortbot_Housing/Materials/Textures/" + entry.relative_path ) contents = omni.client.list(nucleus_server + "/Isaac/Props/YCB/Axis_Aligned/")[1] names = [] loaded_paths = [] for entry in contents: if not entry.flags & omni.client.ItemFlags.CAN_HAVE_CHILDREN: names.append(nucleus_server + "/Isaac/Props/YCB/Axis_Aligned/" + entry.relative_path) loaded_paths.append("/World/DR/mesh_component/mesh_" + entry.relative_path[0:-4]) print(loaded_paths) self.omni_kit.create_prim("/World/Floor", "Xform") stage = omni.usd.get_context().get_stage() cubeGeom = UsdGeom.Cube.Define(stage, "/World/Floor/thefloor") cubeGeom.CreateSizeAttr(300) offset = Gf.Vec3f(75, 75, -150.1) cubeGeom.AddTranslateOp().Set(offset) prims = [] self.dr = DomainRandomization() self.dr.toggle_manual_mode() self.dr.create_mesh_comp(prim_paths=prims, mesh_list=names, mesh_range=[1, 1]) self.omni_kit.update(1 / 60.0) print("waiting for materials to load...") while self.omni_kit.is_loading(): self.omni_kit.update(1 / 60.0) lights = [] for i in range(5): prim_path = "/World/Lights/light_" + str(i) self.omni_kit.create_prim( prim_path, "SphereLight", translation=(0, 0, 200), rotation=(0, 0, 0), attributes={"radius": 10, "intensity": 1000.0, "color": (1.0, 1.0, 1.0)}, ) lights.append(prim_path) self.dr.create_movement_comp( prim_paths=loaded_paths, min_range=(0, 0, 15), max_range=(TRACK_DIMS[0], TRACK_DIMS[1], 15) ) self.dr.create_rotation_comp(prim_paths=loaded_paths) self.dr.create_visibility_comp(prim_paths=loaded_paths, num_visible_range=(15, 15)) self.dr.create_light_comp(light_paths=lights) self.dr.create_movement_comp( prim_paths=lights, min_range=(0, 0, 30), max_range=(TRACK_DIMS[0], TRACK_DIMS[1], 30) ) self.dr.create_texture_comp( prim_paths=["/World/Floor"], enable_project_uvw=True, texture_list=self.texture_list ) def generate_lights(self): # TODO: center this onto the track prim_path = omni.usd.get_stage_next_free_path(self.omni_kit.get_stage(), "/World/Env/Light", False) # self.prims.append(prim_path) # LOCMOD revisit (don't add so it won't be removed on reset) self.omni_kit.create_prim( prim_path, "RectLight", translation=(75, 75, 100), rotation=(0, 0, 0), attributes={"height": 150, "width": 150, "intensity": 2000.0, "color": (1.0, 1.0, 1.0)}, ) def reset(self, shape): # this deletes objects in self.prims stage = omni.usd.get_context().get_stage() for layer in stage.GetLayerStack(): edit = Sdf.BatchNamespaceEdit() for path in self.prims: prim_spec = layer.GetPrimAtPath(path) if prim_spec is None: continue parent_spec = prim_spec.realNameParent if parent_spec is not None: edit.Add(path, Sdf.Path.emptyPath) layer.Apply(edit) self.prims = [] # self.pxrImageable.MakeInvisible() # LOCMOD revisit # self.generate_road(shape) self.dr.randomize_once() def generate_road(self, shape): stage = self.omni_kit.get_stage() self.add_track(stage) def add_track(self, stage): result, nucleus_server = self.find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder") return path = nucleus_server + "/Isaac/Environments/Jetracer/jetracer_track_solid.usd" prefix = "/World/Env/Track" prim_path = omni.usd.get_stage_next_free_path(stage, prefix, False) # self.prims.append(prim_path) #(don't add so the jetracer track won't be removed on reset) track_prim = stage.DefinePrim(prim_path, "Xform") track_prim.GetReferences().AddReference(path) # xform = UsdGeom.Xformable(track_prim) # xform_op = xform.AddXformOp(UsdGeom.XformOp.TypeTransform, UsdGeom.XformOp.PrecisionDouble, "") # mat = Gf.Matrix4d().SetTranslate(location) # mat.SetRotateOnly(Gf.Rotation(Gf.Vec3d(0, 0, 1), rotation)) # xform_op.Set(mat) def setup_physics(self): from pxr import PhysxSchema, PhysicsSchemaTools stage = self.omni_kit.get_stage() # Add physics scene scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/World/Env/PhysicsScene")) # Set gravity vector scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) scene.CreateGravityMagnitudeAttr().Set(981.0) # Set physics scene to use cpu physics PhysxSchema.PhysxSceneAPI.Apply(stage.GetPrimAtPath("/World/Env/PhysicsScene")) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Get(stage, "/World/Env/PhysicsScene") physxSceneAPI.CreateEnableCCDAttr(True) physxSceneAPI.CreateEnableStabilizationAttr(True) physxSceneAPI.CreateEnableGPUDynamicsAttr(False) physxSceneAPI.CreateBroadphaseTypeAttr("MBP") physxSceneAPI.CreateSolverTypeAttr("TGS") # Create physics plane for the ground PhysicsSchemaTools.addGroundPlane( stage, "/World/Env/GroundPlane", "Z", 100.0, Gf.Vec3f(0, 0, self.height), Gf.Vec3f(1.0) ) # Hide the visual geometry imageable = UsdGeom.Imageable(stage.GetPrimAtPath("/World/Env/GroundPlane/geom")) if imageable: imageable.MakeInvisible() def get_valid_location(self): # keep try until within the center track dist = 1 x = 4 y = 4 while dist > LANE_WIDTH: x = random.randint(0, TRACK_DIMS[0]) y = random.randint(0, TRACK_DIMS[1]) dist = center_line_dist(np.array([x, y])) print("get valid location called", x, y) return (x, y)
8,502
Python
41.515
164
0.620325
KazWong/omniverse_sample/ov_sample/python_samples/jetracer/jetracer_model.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.distributions import Beta, Normal, Categorical from stable_baselines3.common.torch_layers import BaseFeaturesExtractor import gym from gym import spaces class CustomCNN(BaseFeaturesExtractor): """ :param observation_space: (gym.Space) :param features_dim: (int) Number of features extracted. This corresponds to the number of unit for the last layer. """ def __init__(self, observation_space: gym.spaces.Box, features_dim: int = 512): super(CustomCNN, self).__init__(observation_space, features_dim) # We assume CxHxW images (channels first) # Re-ordering will be done by pre-preprocessing or wrapper n_input_channels = observation_space.shape[0] self.cnn = nn.Sequential( nn.Conv2d(n_input_channels, 32, kernel_size=8, stride=4, padding=0), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0), nn.ReLU(), nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=0), nn.ReLU(), nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0), nn.ReLU(), nn.Flatten(), ) # Compute shape by doing one forward pass with torch.no_grad(): n_flatten = self.cnn(torch.as_tensor(observation_space.sample()[None]).float()).shape[1] print("POST CONV FEATURES = ", n_flatten) # define the hidden layer to translate to a fixed number of features self.linear = nn.Sequential(nn.Linear(n_flatten, features_dim), nn.ReLU()) def forward(self, observations: torch.Tensor) -> torch.Tensor: return self.linear(self.cnn(observations))
2,211
Python
37.807017
100
0.677069
KazWong/omniverse_sample/ov_sample/python_samples/syntheticdata/online_generation/segmentation/dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Dataset with online randomized scene generation for Instance Segmentation training. Use OmniKit to generate a simple scene. At each iteration, the scene is populated by adding assets from the user-specified classes with randomized pose and colour. The camera position is also randomized before capturing groundtruth consisting of an RGB rendered image, Tight 2D Bounding Boxes and Instance Segmentation masks. """ import os import glob import torch import random import numpy as np import signal import omni from omni.isaac.python_app import OmniKitHelper # to work around torch's SSL issue import ssl ssl._create_default_https_context = ssl._create_unverified_context # Setup default generation variables # Value are (min, max) ranges RANDOM_TRANSLATION_X = (-30.0, 30.0) RANDOM_TRANSLATION_Z = (-30.0, 30.0) RANDOM_ROTATION_Y = (0.0, 360.0) SCALE = 20 CAMERA_DISTANCE = 300 BBOX_AREA_THRESH = 16 # Default rendering parameters RENDER_CONFIG = { "renderer": "PathTracing", "samples_per_pixel_per_frame": 12, "headless": False, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', } class RandomObjects(torch.utils.data.IterableDataset): """Dataset of random ShapeNet objects. Objects are randomly chosen from selected categories and are positioned, rotated and coloured randomly in an empty room. RGB, BoundingBox2DTight and Instance Segmentation are captured by moving a camera aimed at the centre of the scene which is positioned at random at a fixed distance from the centre. This dataset is intended for use with ShapeNet but will function with any dataset of USD models structured as `root/category/**/*.usd. One note is that this is designed for assets without materials attached. This is to avoid requiring to compile MDLs and load textures while training. Args: categories (tuple of str): Tuple or list of categories. For ShapeNet, these will be the synset IDs. max_asset_size (int): Maximum asset file size that will be loaded. This prevents out of memory errors due to loading large meshes. num_assets_min (int): Minimum number of assets populated in the scene. num_assets_max (int): Maximum number of assets populated in the scene. split (float): Fraction of the USDs found to use for training. train (bool): If true, use the first training split and generate infinite random scenes. """ def __init__( self, root, categories, max_asset_size=None, num_assets_min=3, num_assets_max=5, split=0.7, train=True ): assert len(categories) > 1 assert (split > 0) and (split <= 1.0) self.kit = OmniKitHelper(config=RENDER_CONFIG) from omni.isaac.synthetic_utils import SyntheticDataHelper from omni.isaac.synthetic_utils import shapenet self.sd_helper = SyntheticDataHelper() self.stage = self.kit.get_stage() # If ShapeNet categories are specified with their names, convert to synset ID # Remove this if using with a different dataset than ShapeNet category_ids = [shapenet.LABEL_TO_SYNSET.get(c, c) for c in categories] self.categories = category_ids self.range_num_assets = (num_assets_min, max(num_assets_min, num_assets_max)) self.references = self._find_usd_assets(root, category_ids, max_asset_size, split, train) self._setup_world() self.cur_idx = 0 self.exiting = False signal.signal(signal.SIGINT, self._handle_exit) def _handle_exit(self, *args, **kwargs): print("exiting dataset generation...") self.exiting = True def _setup_world(self): from pxr import UsdGeom """Setup lights, walls, floor, ceiling and camera""" # In a practical setting, the room parameters should attempt to match those of the # target domain. Here, we insteady choose for simplicity. self.kit.create_prim( "/World/Room", "Sphere", attributes={"radius": 1e3, "primvars:displayColor": [(1.0, 1.0, 1.0)]} ) self.kit.create_prim( "/World/Ground", "Cylinder", translation=(0.0, -0.5, 0.0), rotation=(90.0, 0.0, 0.0), attributes={"height": 1, "radius": 1e4, "primvars:displayColor": [(1.0, 1.0, 1.0)]}, ) self.kit.create_prim( "/World/Light1", "SphereLight", translation=(-450, 350, 350), attributes={"radius": 100, "intensity": 30000.0, "color": (0.0, 0.365, 0.848)}, ) self.kit.create_prim( "/World/Light2", "SphereLight", translation=(450, 350, 350), attributes={"radius": 100, "intensity": 30000.0, "color": (1.0, 0.278, 0.0)}, ) self.kit.create_prim("/World/Asset", "Xform") self.camera_rig = UsdGeom.Xformable(self.kit.create_prim("/World/CameraRig", "Xform")) self.camera = self.kit.create_prim("/World/CameraRig/Camera", "Camera", translation=(0.0, 0.0, CAMERA_DISTANCE)) vpi = omni.kit.viewport.get_viewport_interface() vpi.get_viewport_window().set_active_camera(str(self.camera.GetPath())) self.viewport = omni.kit.viewport.get_default_viewport_window() self.kit.update() def _find_usd_assets(self, root, categories, max_asset_size, split, train=True): """Look for USD files under root/category for each category specified. For each category, generate a list of all USD files found and select assets up to split * len(num_assets) if `train=True`, otherwise select the remainder. """ references = {} for category in categories: all_assets = glob.glob(os.path.join(root, category, "**/*.usd"), recursive=True) # Filter out large files (which can prevent OOM errors during training) if max_asset_size is None: assets_filtered = all_assets else: assets_filtered = [] for a in all_assets: if os.stat(a).st_size > max_asset_size * 1e6: print(f"{a} skipped as it exceeded the max size {max_asset_size} MB.") else: assets_filtered.append(a) num_assets = len(assets_filtered) if num_assets == 0: raise ValueError(f"No USDs found for category {category} under max size {max_asset_size} MB.") if train: references[category] = assets_filtered[: int(num_assets * split)] else: references[category] = assets_filtered[int(num_assets * split) :] return references def _add_preview_surface(self, prim, diffuse, roughness, metallic): from pxr import UsdShade, Sdf """Add a preview surface material using the metallic workflow.""" path = f"{prim.GetPath()}/mat" material = UsdShade.Material.Define(self.stage, path) pbrShader = UsdShade.Shader.Define(self.stage, f"{path}/shader") pbrShader.CreateIdAttr("UsdPreviewSurface") pbrShader.CreateInput("diffuseColor", Sdf.ValueTypeNames.Float3).Set(diffuse) pbrShader.CreateInput("roughness", Sdf.ValueTypeNames.Float).Set(roughness) pbrShader.CreateInput("metallic", Sdf.ValueTypeNames.Float).Set(metallic) material.CreateSurfaceOutput().ConnectToSource(pbrShader, "surface") UsdShade.MaterialBindingAPI(prim).Bind(material) def load_single_asset(self, ref, semantic_label, suffix=""): from pxr import UsdGeom """Load a USD asset with random pose. args ref (str): Path to the USD that this prim will reference. semantic_label (str): Semantic label. suffix (str): String to add to the end of the prim's path. """ x = random.uniform(*RANDOM_TRANSLATION_X) z = random.uniform(*RANDOM_TRANSLATION_Z) rot_y = random.uniform(*RANDOM_ROTATION_Y) asset = self.kit.create_prim( f"/World/Asset/mesh{suffix}", "Xform", scale=(SCALE, SCALE, SCALE), rotation=(0.0, rot_y, 0.0), ref=ref, semantic_label=semantic_label, ) bound = UsdGeom.Mesh(asset).ComputeWorldBound(0.0, "default") box_min_y = bound.GetBox().GetMin()[1] UsdGeom.XformCommonAPI(asset).SetTranslate((x, -box_min_y, z)) return asset def populate_scene(self): """Clear the scene and populate it with assets.""" self.stage.RemovePrim("/World/Asset") self.assets = [] num_assets = random.randint(*self.range_num_assets) for i in range(num_assets): category = random.choice(list(self.references.keys())) ref = random.choice(self.references[category]) self.assets.append(self.load_single_asset(ref, category, i)) def randomize_asset_material(self): """Ranomize asset material properties""" for asset in self.assets: colour = (random.random(), random.random(), random.random()) # Here we choose not to have materials unrealistically rough or reflective. roughness = random.uniform(0.1, 0.9) # Here we choose to have more metallic than non-metallic objects. metallic = random.choices([0.0, 1.0], weights=(0.8, 0.2))[0] self._add_preview_surface(asset, colour, roughness, metallic) def randomize_camera(self): """Randomize the camera position.""" # By simply rotating a camera "rig" instead repositioning the camera # itself, we greatly simplify our job. # Clear previous transforms self.camera_rig.ClearXformOpOrder() # Change azimuth angle self.camera_rig.AddRotateYOp().Set(random.random() * 360) # Change elevation angle self.camera_rig.AddRotateXOp().Set(random.random() * -90) def __iter__(self): return self def __next__(self): # Generate a new scene self.populate_scene() self.randomize_camera() self.randomize_asset_material() # step once and then wait for materials to load self.kit.update() print("waiting for materials to load...") while self.kit.is_loading(): self.kit.update() print("done") self.kit.update() # Collect Groundtruth gt = self.sd_helper.get_groundtruth(["rgb", "boundingBox2DTight", "instanceSegmentation"], self.viewport) # RGB # Drop alpha channel image = gt["rgb"][..., :3] # Cast to tensor if numpy array if isinstance(gt["rgb"], np.ndarray): image = torch.tensor(image, dtype=torch.float, device="cuda") # Normalize between 0. and 1. and change order to channel-first. image = image.float() / 255.0 image = image.permute(2, 0, 1) # Bounding Box gt_bbox = gt["boundingBox2DTight"] # Create mapping from categories to index mapping = {cat: i + 1 for i, cat in enumerate(self.categories)} bboxes = torch.tensor(gt_bbox[["x_min", "y_min", "x_max", "y_max"]].tolist()) # For each bounding box, map semantic label to label index labels = torch.LongTensor([mapping[bb["semanticLabel"]] for bb in gt_bbox]) # Calculate bounding box area for each area areas = (bboxes[:, 2] - bboxes[:, 0]) * (bboxes[:, 3] - bboxes[:, 1]) # Idenfiy invalid bounding boxes to filter final output valid_areas = (areas > 0.0) * (areas < (image.shape[1] * image.shape[2])) # Instance Segmentation instance_data, instance_mappings = gt["instanceSegmentation"][0], gt["instanceSegmentation"][1] instance_list = [im[0] for im in gt_bbox] masks = np.zeros((len(instance_list), *instance_data.shape), dtype=np.bool) for i, instances in enumerate(instance_list): masks[i] = np.isin(instance_data, instances) if isinstance(masks, np.ndarray): masks = torch.tensor(masks, device="cuda") target = { "boxes": bboxes[valid_areas], "labels": labels[valid_areas], "masks": masks[valid_areas], "image_id": torch.LongTensor([self.cur_idx]), "area": areas[valid_areas], "iscrowd": torch.BoolTensor([False] * len(bboxes[valid_areas])), # Assume no crowds } self.cur_idx += 1 return image, target if __name__ == "__main__": "Typical usage" import argparse import matplotlib.pyplot as plt parser = argparse.ArgumentParser("Dataset test") parser.add_argument("--categories", type=str, nargs="+", required=True, help="List of object classes to use") parser.add_argument( "--max-asset-size", type=float, default=10.0, help="Maximum asset size to use in MB. Larger assets will be skipped.", ) parser.add_argument( "--root", type=str, default=None, help="Root directory containing USDs. If not specified, use {SHAPENET_LOCAL_DIR}_nomat as root.", ) args = parser.parse_args() # If root is not specified use the environment variable SHAPENET_LOCAL_DIR with the _nomat suffix as root if args.root is None: args.root = f"{os.path.abspath(os.environ['SHAPENET_LOCAL_DIR'])}_nomat" dataset = RandomObjects(args.root, args.categories, max_asset_size=args.max_asset_size) from omni.isaac.synthetic_utils import visualization as vis from omni.isaac.synthetic_utils import shapenet categories = [shapenet.LABEL_TO_SYNSET.get(c, c) for c in args.categories] # Iterate through dataset and visualize the output plt.ion() _, axes = plt.subplots(1, 2, figsize=(10, 5)) plt.tight_layout() for image, target in dataset: for ax in axes: ax.clear() ax.axis("off") np_image = image.permute(1, 2, 0).cpu().numpy() axes[0].imshow(np_image) num_instances = len(target["boxes"]) colours = vis.random_colours(num_instances, enable_random=False) overlay = np.zeros_like(np_image) for mask, colour in zip(target["masks"].cpu().numpy(), colours): overlay[mask, :3] = colour axes[1].imshow(overlay) mapping = {i + 1: cat for i, cat in enumerate(categories)} labels = [shapenet.SYNSET_TO_LABEL[mapping[label.item()]] for label in target["labels"]] vis.plot_boxes(ax, target["boxes"].tolist(), labels=labels, colours=colours) plt.draw() plt.savefig("dataset.png") if dataset.exiting: break # cleanup dataset.kit.shutdown()
15,242
Python
40.308943
120
0.63056
KazWong/omniverse_sample/ov_sample/python_samples/syntheticdata/online_generation/segmentation/train.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Instance Segmentation Training Demonstration Use a PyTorch dataloader together with OmniKit to generate scenes and groundtruth to train a [Mask-RCNN](https://arxiv.org/abs/1703.06870) model. """ import os import torch from torch.utils.data import DataLoader import torchvision import matplotlib.pyplot as plt import numpy as np import signal from dataset import RandomObjects def main(args): device = "cuda" # Setup data train_set = RandomObjects( args.root, args.categories, num_assets_min=3, num_assets_max=5, max_asset_size=args.max_asset_size ) train_loader = DataLoader(train_set, batch_size=2, collate_fn=lambda x: tuple(zip(*x))) def handle_exit(self, *args, **kwargs): print("exiting dataset generation...") train_set.exiting = True signal.signal(signal.SIGINT, handle_exit) from omni.isaac.synthetic_utils import visualization as vis from omni.isaac.synthetic_utils import shapenet # Setup Model model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=False, num_classes=1 + len(args.categories)) model = model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate) if args.visualize: plt.ion() fig, axes = plt.subplots(1, 2, figsize=(14, 7)) for i, train_batch in enumerate(train_loader): if i > args.max_iters or train_set.exiting: print("Exiting ...") train_set.kit.shutdown() break model.train() images, targets = train_batch images = [i.to(device) for i in images] targets = [{k: v.to(device) for k, v in t.items()} for t in targets] loss_dict = model(images, targets) loss = sum(loss for loss in loss_dict.values()) print(f"ITER {i} | {loss:.6f}") optimizer.zero_grad() loss.backward() optimizer.step() if i % 10 == 0: model.eval() with torch.no_grad(): predictions = model(images[:1]) if args.visualize: idx = 0 score_thresh = 0.5 mask_thresh = 0.5 pred = predictions[idx] np_image = images[idx].permute(1, 2, 0).cpu().numpy() for ax in axes: fig.suptitle(f"Iteration {i:05}", fontsize=14) ax.cla() ax.axis("off") ax.imshow(np_image) axes[0].set_title("Input") axes[1].set_title("Input + Predictions") score_filter = [i for i in range(len(pred["scores"])) if pred["scores"][i] > score_thresh] num_instances = len(score_filter) colours = vis.random_colours(num_instances, enable_random=False) overlay = np.zeros_like(np_image) for mask, colour in zip(pred["masks"], colours): overlay[mask.squeeze().cpu().numpy() > mask_thresh, :3] = colour axes[1].imshow(overlay, alpha=0.5) # If ShapeNet categories are specified with their names, convert to synset ID # Remove this if using with a different dataset than ShapeNet args.categories = [shapenet.LABEL_TO_SYNSET.get(c, c) for c in args.categories] mapping = {i + 1: cat for i, cat in enumerate(args.categories)} labels = [shapenet.SYNSET_TO_LABEL[mapping[label.item()]] for label in pred["labels"]] vis.plot_boxes(axes[1], pred["boxes"], labels=labels, colours=colours) plt.draw() plt.savefig("train.png") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser("Dataset test") parser.add_argument( "--root", type=str, default=None, help="Root directory containing ShapeNet USDs. If not specified, use {SHAPENET_LOCAL_DIR}_nomat as root.", ) parser.add_argument( "--categories", type=str, nargs="+", required=True, help="List of ShapeNet categories to use (space seperated)." ) parser.add_argument( "--max-asset-size", type=float, default=10.0, help="Maximum asset size to use in MB. Larger assets will be skipped.", ) parser.add_argument("-lr", "--learning_rate", type=float, default=1e-4, help="Learning rate") parser.add_argument("--max-iters", type=float, default=1000, help="Number of training iterations.") parser.add_argument("--visualize", action="store_true", help="Visualize predicted masks during training.") args = parser.parse_args() # If root is not specified use the environment variable SHAPENET_LOCAL_DIR with the _nomat suffix as root if args.root is None: args.root = f"{os.path.abspath(os.environ['SHAPENET_LOCAL_DIR'])}_nomat" main(args)
5,320
Python
35.951389
120
0.617105
KazWong/omniverse_sample/ov_sample/python_samples/syntheticdata/basic/visualize_groundtruth.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Demonstration of using OmniKit to generate a scene, collect groundtruth and visualize the results. """ import copy import os import omni import random import numpy as np from omni.isaac.python_app import OmniKitHelper import matplotlib.pyplot as plt TRANSLATION_RANGE = 300.0 SCALE = 50.0 def main(): kit = OmniKitHelper( {"renderer": "RayTracedLighting", "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit'} ) from pxr import UsdGeom, Semantics from omni.isaac.synthetic_utils import SyntheticDataHelper sd_helper = SyntheticDataHelper() from omni.syntheticdata import visualize, helpers # SCENE SETUP # Get the current stage stage = kit.get_stage() # Add a distant light stage.DefinePrim("/World/Light", "DistantLight") # Create 10 randomly positioned and coloured spheres and cube # We will assign each a semantic label based on their shape (sphere/cube) for i in range(10): prim_type = random.choice(["Cube", "Sphere"]) prim = stage.DefinePrim(f"/World/cube{i}", prim_type) translation = np.random.rand(3) * TRANSLATION_RANGE UsdGeom.XformCommonAPI(prim).SetTranslate(translation.tolist()) UsdGeom.XformCommonAPI(prim).SetScale((SCALE, SCALE, SCALE)) prim.GetAttribute("primvars:displayColor").Set([np.random.rand(3).tolist()]) # Add semantic label based on prim type sem = Semantics.SemanticsAPI.Apply(prim, "Semantics") sem.CreateSemanticTypeAttr() sem.CreateSemanticDataAttr() sem.GetSemanticTypeAttr().Set("class") sem.GetSemanticDataAttr().Set(prim_type) # Get groundtruth kit.update() viewport = omni.kit.viewport.get_default_viewport_window() gt = sd_helper.get_groundtruth( [ "rgb", "depth", "boundingBox2DTight", "boundingBox2DLoose", "instanceSegmentation", "semanticSegmentation", "boundingBox3D", ], viewport, ) # GROUNDTRUTH VISUALIZATION # Setup a figure _, axes = plt.subplots(2, 4, figsize=(20, 7)) axes = axes.flat for ax in axes: ax.axis("off") # RGB axes[0].set_title("RGB") for ax in axes[:-1]: ax.imshow(gt["rgb"]) # DEPTH axes[1].set_title("Depth") depth_data = np.clip(gt["depth"], 0, 255) axes[1].imshow(visualize.colorize_depth(depth_data.squeeze())) # BBOX2D TIGHT axes[2].set_title("BBox 2D Tight") rgb_data = copy.deepcopy(gt["rgb"]) axes[2].imshow(visualize.colorize_bboxes(gt["boundingBox2DTight"], rgb_data)) # BBOX2D LOOSE axes[3].set_title("BBox 2D Loose") rgb_data = copy.deepcopy(gt["rgb"]) axes[3].imshow(visualize.colorize_bboxes(gt["boundingBox2DLoose"], rgb_data)) # INSTANCE SEGMENTATION axes[4].set_title("Instance Segmentation") instance_seg = gt["instanceSegmentation"][0] instance_rgb = visualize.colorize_segmentation(instance_seg) axes[4].imshow(instance_rgb, alpha=0.7) # SEMANTIC SEGMENTATION axes[5].set_title("Semantic Segmentation") semantic_seg = gt["semanticSegmentation"] semantic_rgb = visualize.colorize_segmentation(semantic_seg) axes[5].imshow(semantic_rgb, alpha=0.7) # BBOX 3D axes[6].set_title("BBox 3D") bbox_3d_data = gt["boundingBox3D"] bboxes_3d_corners = bbox_3d_data["corners"] projected_corners = helpers.world_to_image(bboxes_3d_corners.reshape(-1, 3), viewport) projected_corners = projected_corners.reshape(-1, 8, 3) rgb_data = copy.deepcopy(gt["rgb"]) bboxes3D_rgb = visualize.colorize_bboxes_3d(projected_corners, rgb_data) axes[6].imshow(bboxes3D_rgb) # Save figure print("saving figure to: ", os.getcwd() + "/visualize_groundtruth.png") plt.savefig("visualize_groundtruth.png") # cleanup kit.shutdown() if __name__ == "__main__": main()
4,370
Python
31.139706
110
0.670252
KazWong/omniverse_sample/ov_sample/python_samples/syntheticdata/offline_generation/generator_stereo.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Generate offline synthetic dataset using two cameras """ import asyncio import copy import numpy as np import os import random import torch import signal import carb import omni from omni.isaac.python_app import OmniKitHelper # Default rendering parameters RENDER_CONFIG = { "renderer": "RayTracedLighting", "samples_per_pixel_per_frame": 12, "headless": False, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', } class RandomScenario(torch.utils.data.IterableDataset): def __init__(self, scenario_path, max_queue_size): self.kit = OmniKitHelper(config=RENDER_CONFIG) from omni.isaac.synthetic_utils import SyntheticDataHelper, DataWriter, DomainRandomization self.sd_helper = SyntheticDataHelper() self.dr_helper = DomainRandomization() self.writer_helper = DataWriter self.dr_helper.toggle_manual_mode() self.stage = self.kit.get_stage() self.result = True from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server if scenario_path is None: self.result, nucleus_server = find_nucleus_server() if self.result is False: carb.log_error("Could not find nucleus server with /Isaac folder") return self.asset_path = nucleus_server + "/Isaac" scenario_path = self.asset_path + "/Samples/Synthetic_Data/Stage/warehouse_with_sensors.usd" self.scenario_path = scenario_path self.max_queue_size = max_queue_size self.data_writer = None self._setup_world(scenario_path) self.cur_idx = 0 self.exiting = False self._viewport = omni.kit.viewport.get_viewport_interface() self._sensor_settings = {} signal.signal(signal.SIGINT, self._handle_exit) def _handle_exit(self, *args, **kwargs): print("exiting dataset generation...") self.exiting = True def add_stereo_setup(self): from pxr import Gf, UsdGeom stage = omni.usd.get_context().get_stage() # Create two camera center_point = Gf.Vec3d(0, 0, 200) stereoPrimPath = "/World/Stereo" leftCameraPrimPath = stereoPrimPath + "/LeftCamera" rightCameraPrimPath = stereoPrimPath + "/RightCamera" self.stereoPrim = stage.DefinePrim(stereoPrimPath, "Xform") UsdGeom.XformCommonAPI(self.stereoPrim).SetTranslate(center_point) leftCameraPrim = stage.DefinePrim(leftCameraPrimPath, "Camera") UsdGeom.XformCommonAPI(leftCameraPrim).SetTranslate(Gf.Vec3d(0, -10, 0)) UsdGeom.XformCommonAPI(leftCameraPrim).SetRotate(Gf.Vec3f(90, 0, 90)) rightCameraPrim = stage.DefinePrim(rightCameraPrimPath, "Camera") UsdGeom.XformCommonAPI(rightCameraPrim).SetTranslate(Gf.Vec3d(0, 10, 0)) UsdGeom.XformCommonAPI(rightCameraPrim).SetRotate(Gf.Vec3f(90, 0, 90)) # Need to set this before setting viewport window size carb.settings.acquire_settings_interface().set_int("/app/renderer/resolution/width", -1) carb.settings.acquire_settings_interface().set_int("/app/renderer/resolution/height", -1) # Get existing viewport, set active camera as left camera viewport_handle_1 = omni.kit.viewport.get_viewport_interface().get_instance("Viewport") viewport_window_1 = omni.kit.viewport.get_viewport_interface().get_viewport_window(viewport_handle_1) viewport_window_1.set_texture_resolution(1280, 720) viewport_window_1.set_active_camera(leftCameraPrimPath) # Create new viewport, set active camera as right camera viewport_handle_2 = omni.kit.viewport.get_viewport_interface().create_instance() viewport_window_2 = omni.kit.viewport.get_viewport_interface().get_viewport_window(viewport_handle_2) viewport_window_2.set_active_camera("/World/Stereo/RightCamera") viewport_window_2.set_texture_resolution(1280, 720) viewport_window_2.set_window_pos(720, 0) viewport_window_2.set_window_size(720, 890) # Setup stereo camera movement randomization radius = 100 target_points_list = [] for theta in range(200, 300): th = theta * np.pi / 180 x = radius * np.cos(th) + center_point[0] y = radius * np.sin(th) + center_point[1] target_points_list.append(Gf.Vec3f(x, y, center_point[2])) lookat_target_points_list = [a for a in target_points_list[1:]] lookat_target_points_list.append(target_points_list[0]) result, prim = omni.kit.commands.execute( "CreateTransformComponentCommand", prim_paths=[stereoPrimPath], target_points=target_points_list, lookat_target_points=lookat_target_points_list, enable_sequential_behavior=True, ) async def load_stage(self, path): await omni.usd.get_context().open_stage_async(path) def _setup_world(self, scenario_path): # Load scenario setup_task = asyncio.ensure_future(self.load_stage(scenario_path)) while not setup_task.done(): self.kit.update() self.add_stereo_setup() self.kit.update() self.kit.setup_renderer() self.kit.update() def __iter__(self): return self def __next__(self): # step once and then wait for materials to load self.dr_helper.randomize_once() self.kit.update() while self.kit.is_loading(): self.kit.update() # Enable/disable sensor output and their format sensor_settings_viewport_1 = { "rgb": {"enabled": True}, "depth": {"enabled": True, "colorize": True, "npy": True}, "instance": {"enabled": True, "colorize": True, "npy": True}, "semantic": {"enabled": True, "colorize": True, "npy": True}, "bbox_2d_tight": {"enabled": True, "colorize": True, "npy": True}, "bbox_2d_loose": {"enabled": True, "colorize": True, "npy": True}, } sensor_settings_viewport_2 = { "rgb": {"enabled": True}, "depth": {"enabled": True, "colorize": True, "npy": True}, "instance": {"enabled": True, "colorize": True, "npy": True}, "semantic": {"enabled": True, "colorize": True, "npy": True}, "bbox_2d_tight": {"enabled": True, "colorize": True, "npy": True}, "bbox_2d_loose": {"enabled": True, "colorize": True, "npy": True}, } viewports = self._viewport.get_instance_list() self._viewport_names = [self._viewport.get_viewport_window_name(vp) for vp in viewports] # Make sure two viewports are initialized if len(self._viewport_names) != 2: return self._sensor_settings[self._viewport_names[0]] = copy.deepcopy(sensor_settings_viewport_1) self._sensor_settings[self._viewport_names[1]] = copy.deepcopy(sensor_settings_viewport_2) self._num_worker_threads = 4 self._output_folder = os.getcwd() + "/output" # Write to disk if self.data_writer is None: self.data_writer = self.writer_helper( self._output_folder, self._num_worker_threads, self.max_queue_size, self._sensor_settings ) self.data_writer.start_threads() image = None for viewport_name in self._viewport_names: groundtruth = { "METADATA": { "image_id": str(self.cur_idx), "viewport_name": viewport_name, "DEPTH": {}, "INSTANCE": {}, "SEMANTIC": {}, "BBOX2DTIGHT": {}, "BBOX2DLOOSE": {}, }, "DATA": {}, } gt_list = [] if self._sensor_settings[viewport_name]["rgb"]["enabled"]: gt_list.append("rgb") if self._sensor_settings[viewport_name]["depth"]["enabled"]: gt_list.append("depthLinear") if self._sensor_settings[viewport_name]["bbox_2d_tight"]["enabled"]: gt_list.append("boundingBox2DTight") if self._sensor_settings[viewport_name]["bbox_2d_loose"]["enabled"]: gt_list.append("boundingBox2DLoose") if self._sensor_settings[viewport_name]["instance"]["enabled"]: gt_list.append("instanceSegmentation") if self._sensor_settings[viewport_name]["semantic"]["enabled"]: gt_list.append("semanticSegmentation") # Render new frame self.kit.update() # Collect Groundtruth viewport = self._viewport.get_viewport_window(self._viewport.get_instance(viewport_name)) gt = self.sd_helper.get_groundtruth(gt_list, viewport) # RGB image = gt["rgb"] if self._sensor_settings[viewport_name]["rgb"]["enabled"] and gt["state"]["rgb"]: groundtruth["DATA"]["RGB"] = gt["rgb"] # Depth if self._sensor_settings[viewport_name]["depth"]["enabled"] and gt["state"]["depthLinear"]: groundtruth["DATA"]["DEPTH"] = gt["depthLinear"].squeeze() groundtruth["METADATA"]["DEPTH"]["COLORIZE"] = self._sensor_settings[viewport_name]["depth"]["colorize"] groundtruth["METADATA"]["DEPTH"]["NPY"] = self._sensor_settings[viewport_name]["depth"]["npy"] # Instance Segmentation if self._sensor_settings[viewport_name]["instance"]["enabled"] and gt["state"]["instanceSegmentation"]: instance_data = gt["instanceSegmentation"][0] groundtruth["DATA"]["INSTANCE"] = instance_data groundtruth["METADATA"]["INSTANCE"]["WIDTH"] = instance_data.shape[1] groundtruth["METADATA"]["INSTANCE"]["HEIGHT"] = instance_data.shape[0] groundtruth["METADATA"]["INSTANCE"]["COLORIZE"] = self._sensor_settings[viewport_name]["instance"][ "colorize" ] groundtruth["METADATA"]["INSTANCE"]["NPY"] = self._sensor_settings[viewport_name]["instance"]["npy"] # Semantic Segmentation if self._sensor_settings[viewport_name]["semantic"]["enabled"] and gt["state"]["semanticSegmentation"]: semantic_data = gt["semanticSegmentation"] semantic_data[semantic_data == 65535] = 0 # deals with invalid semantic id groundtruth["DATA"]["SEMANTIC"] = semantic_data groundtruth["METADATA"]["SEMANTIC"]["WIDTH"] = semantic_data.shape[1] groundtruth["METADATA"]["SEMANTIC"]["HEIGHT"] = semantic_data.shape[0] groundtruth["METADATA"]["SEMANTIC"]["COLORIZE"] = self._sensor_settings[viewport_name]["semantic"][ "colorize" ] groundtruth["METADATA"]["SEMANTIC"]["NPY"] = self._sensor_settings[viewport_name]["semantic"]["npy"] # 2D Tight BBox if self._sensor_settings[viewport_name]["bbox_2d_tight"]["enabled"] and gt["state"]["boundingBox2DTight"]: groundtruth["DATA"]["BBOX2DTIGHT"] = gt["boundingBox2DTight"] groundtruth["METADATA"]["BBOX2DTIGHT"]["COLORIZE"] = self._sensor_settings[viewport_name][ "bbox_2d_tight" ]["colorize"] groundtruth["METADATA"]["BBOX2DTIGHT"]["NPY"] = self._sensor_settings[viewport_name]["bbox_2d_tight"][ "npy" ] # 2D Loose BBox if self._sensor_settings[viewport_name]["bbox_2d_loose"]["enabled"] and gt["state"]["boundingBox2DLoose"]: groundtruth["DATA"]["BBOX2DLOOSE"] = gt["boundingBox2DLoose"] groundtruth["METADATA"]["BBOX2DLOOSE"]["COLORIZE"] = self._sensor_settings[viewport_name][ "bbox_2d_loose" ]["colorize"] groundtruth["METADATA"]["BBOX2DLOOSE"]["NPY"] = self._sensor_settings[viewport_name]["bbox_2d_loose"][ "npy" ] self.data_writer.q.put(groundtruth) self.cur_idx += 1 return image if __name__ == "__main__": "Typical usage" import argparse parser = argparse.ArgumentParser("Stereo dataset generator") parser.add_argument("--scenario", type=str, help="Scenario to load from omniverse server") parser.add_argument("--num_frames", type=int, default=30, help="Number of frames to record") parser.add_argument("--max_queue_size", type=int, default=500, help="Max size of queue to store and process data") args = parser.parse_args() dataset = RandomScenario(args.scenario, args.max_queue_size) if dataset.result: # Iterate through dataset and visualize the output print("Loading materials. Will generate data soon...") for image in dataset: print("ID: ", dataset.cur_idx) if dataset.cur_idx == args.num_frames: break if dataset.exiting: break # cleanup dataset.kit.shutdown()
13,669
Python
44.415282
120
0.603117
KazWong/omniverse_sample/ov_sample/python_samples/syntheticdata/offline_generation/generator.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Generate offline synthetic dataset """ import asyncio import copy import os import torch import signal import carb import omni from omni.isaac.python_app import OmniKitHelper # Default rendering parameters RENDER_CONFIG = { "renderer": "RayTracedLighting", "samples_per_pixel_per_frame": 12, "headless": True, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "width": 1024, "height": 800, } class RandomScenario(torch.utils.data.IterableDataset): def __init__(self, scenario_path, writer_mode, data_dir, max_queue_size, train_size, classes): self.kit = OmniKitHelper(config=RENDER_CONFIG) from omni.isaac.synthetic_utils import SyntheticDataHelper, DataWriter, KittiWriter, DomainRandomization self.sd_helper = SyntheticDataHelper() self.dr_helper = DomainRandomization() self.writer_mode = writer_mode self.writer_helper = KittiWriter if writer_mode == "kitti" else DataWriter self.dr_helper.toggle_manual_mode() self.stage = self.kit.get_stage() self.result = True from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server if scenario_path is None: self.result, nucleus_server = find_nucleus_server() if self.result is False: carb.log_error("Could not find nucleus server with /Isaac folder") return self.asset_path = nucleus_server + "/Isaac" scenario_path = self.asset_path + "/Samples/Synthetic_Data/Stage/warehouse_with_sensors.usd" self.scenario_path = scenario_path self.max_queue_size = max_queue_size self.data_writer = None self.data_dir = data_dir self.train_size = train_size self.classes = classes self._setup_world(scenario_path) self.cur_idx = 0 self.exiting = False self._sensor_settings = {} signal.signal(signal.SIGINT, self._handle_exit) def _handle_exit(self, *args, **kwargs): print("exiting dataset generation...") self.exiting = True async def load_stage(self, path): await omni.usd.get_context().open_stage_async(path) def _setup_world(self, scenario_path): # Load scenario setup_task = asyncio.ensure_future(self.load_stage(scenario_path)) while not setup_task.done(): self.kit.update() self.kit.setup_renderer() self.kit.update() def __iter__(self): return self def __next__(self): # step once and then wait for materials to load self.dr_helper.randomize_once() self.kit.update() while self.kit.is_loading(): self.kit.update() # Enable/disable sensor output and their format self._enable_rgb = True self._enable_depth = True self._enable_instance = True self._enable_semantic = True self._enable_bbox_2d_tight = True self._enable_bbox_2d_loose = True self._enable_depth_colorize = True self._enable_instance_colorize = True self._enable_semantic_colorize = True self._enable_bbox_2d_tight_colorize = True self._enable_bbox_2d_loose_colorize = True self._enable_depth_npy = True self._enable_instance_npy = True self._enable_semantic_npy = True self._enable_bbox_2d_tight_npy = True self._enable_bbox_2d_loose_npy = True self._num_worker_threads = 4 self._output_folder = self.data_dir sensor_settings_viewport = { "rgb": {"enabled": self._enable_rgb}, "depth": { "enabled": self._enable_depth, "colorize": self._enable_depth_colorize, "npy": self._enable_depth_npy, }, "instance": { "enabled": self._enable_instance, "colorize": self._enable_instance_colorize, "npy": self._enable_instance_npy, }, "semantic": { "enabled": self._enable_semantic, "colorize": self._enable_semantic_colorize, "npy": self._enable_semantic_npy, }, "bbox_2d_tight": { "enabled": self._enable_bbox_2d_tight, "colorize": self._enable_bbox_2d_tight_colorize, "npy": self._enable_bbox_2d_tight_npy, }, "bbox_2d_loose": { "enabled": self._enable_bbox_2d_loose, "colorize": self._enable_bbox_2d_loose_colorize, "npy": self._enable_bbox_2d_loose_npy, }, } self._sensor_settings["Viewport"] = copy.deepcopy(sensor_settings_viewport) # Write to disk if self.data_writer is None: print(f"Writing data to {self._output_folder}") if self.writer_mode == "kitti": self.data_writer = self.writer_helper( self._output_folder, self._num_worker_threads, self.max_queue_size, self.train_size, self.classes ) else: self.data_writer = self.writer_helper( self._output_folder, self._num_worker_threads, self.max_queue_size, self._sensor_settings ) self.data_writer.start_threads() viewport_iface = omni.kit.viewport.get_viewport_interface() viewport_name = "Viewport" viewport = viewport_iface.get_viewport_window(viewport_iface.get_instance(viewport_name)) groundtruth = { "METADATA": { "image_id": str(self.cur_idx), "viewport_name": viewport_name, "DEPTH": {}, "INSTANCE": {}, "SEMANTIC": {}, "BBOX2DTIGHT": {}, "BBOX2DLOOSE": {}, }, "DATA": {}, } gt_list = [] if self._enable_rgb: gt_list.append("rgb") if self._enable_depth: gt_list.append("depthLinear") if self._enable_bbox_2d_tight: gt_list.append("boundingBox2DTight") if self._enable_bbox_2d_loose: gt_list.append("boundingBox2DLoose") if self._enable_instance: gt_list.append("instanceSegmentation") if self._enable_semantic: gt_list.append("semanticSegmentation") # Render new frame self.kit.update() # Collect Groundtruth gt = self.sd_helper.get_groundtruth(gt_list, viewport) # RGB image = gt["rgb"] if self._enable_rgb: groundtruth["DATA"]["RGB"] = gt["rgb"] # Depth if self._enable_depth: groundtruth["DATA"]["DEPTH"] = gt["depthLinear"].squeeze() groundtruth["METADATA"]["DEPTH"]["COLORIZE"] = self._enable_depth_colorize groundtruth["METADATA"]["DEPTH"]["NPY"] = self._enable_depth_npy # Instance Segmentation if self._enable_instance: instance_data = gt["instanceSegmentation"][0] instance_data_shape = instance_data.shape groundtruth["DATA"]["INSTANCE"] = instance_data groundtruth["METADATA"]["INSTANCE"]["WIDTH"] = instance_data_shape[1] groundtruth["METADATA"]["INSTANCE"]["HEIGHT"] = instance_data_shape[0] groundtruth["METADATA"]["INSTANCE"]["COLORIZE"] = self._enable_instance_colorize groundtruth["METADATA"]["INSTANCE"]["NPY"] = self._enable_instance_npy # Semantic Segmentation if self._enable_semantic: semantic_data = gt["semanticSegmentation"] semantic_data_shape = semantic_data.shape groundtruth["DATA"]["SEMANTIC"] = semantic_data groundtruth["METADATA"]["SEMANTIC"]["WIDTH"] = semantic_data_shape[1] groundtruth["METADATA"]["SEMANTIC"]["HEIGHT"] = semantic_data_shape[0] groundtruth["METADATA"]["SEMANTIC"]["COLORIZE"] = self._enable_semantic_colorize groundtruth["METADATA"]["SEMANTIC"]["NPY"] = self._enable_semantic_npy # 2D Tight BBox if self._enable_bbox_2d_tight: groundtruth["DATA"]["BBOX2DTIGHT"] = gt["boundingBox2DTight"] groundtruth["METADATA"]["BBOX2DTIGHT"]["COLORIZE"] = self._enable_bbox_2d_tight_colorize groundtruth["METADATA"]["BBOX2DTIGHT"]["NPY"] = self._enable_bbox_2d_tight_npy # 2D Loose BBox if self._enable_bbox_2d_loose: groundtruth["DATA"]["BBOX2DLOOSE"] = gt["boundingBox2DLoose"] groundtruth["METADATA"]["BBOX2DLOOSE"]["COLORIZE"] = self._enable_bbox_2d_loose_colorize groundtruth["METADATA"]["BBOX2DLOOSE"]["NPY"] = self._enable_bbox_2d_loose_npy groundtruth["METADATA"]["BBOX2DLOOSE"]["WIDTH"] = RENDER_CONFIG["width"] groundtruth["METADATA"]["BBOX2DLOOSE"]["HEIGHT"] = RENDER_CONFIG["height"] self.data_writer.q.put(groundtruth) self.cur_idx += 1 return image if __name__ == "__main__": "Typical usage" import argparse parser = argparse.ArgumentParser("Dataset generator") parser.add_argument("--scenario", type=str, help="Scenario to load from omniverse server") parser.add_argument("--num_frames", type=int, default=10, help="Number of frames to record") parser.add_argument("--writer_mode", type=str, default="npy", help="Specify output format - npy or kitti") parser.add_argument( "--data_dir", type=str, default=os.getcwd() + "/output", help="Location where data will be output" ) parser.add_argument("--max_queue_size", type=int, default=500, help="Max size of queue to store and process data") parser.add_argument( "--train_size", type=int, default=8, help="Number of frames for training set, works when writer_mode is kitti" ) parser.add_argument( "--classes", type=str, nargs="+", default=[], help="Which classes to write labels for, works when writer_mode is kitti. Defaults to all classes", ) args = parser.parse_args() dataset = RandomScenario( args.scenario, args.writer_mode, args.data_dir, args.max_queue_size, args.train_size, args.classes ) if dataset.result: # Iterate through dataset and visualize the output print("Loading materials. Will generate data soon...") for image in dataset: print("ID: ", dataset.cur_idx) if dataset.cur_idx == args.num_frames: break if dataset.exiting: break # cleanup dataset.kit.shutdown()
11,119
Python
37.881119
118
0.595377
KazWong/omniverse_sample/ov_sample/python_samples/syntheticdata/advanced/shapenet_usd_convertor.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import pprint from omni.isaac.python_app import OmniKitHelper """Convert ShapeNetCore V2 to USD without materials. By only converting the ShapeNet geometry, we can more quickly load assets into scenes for the purpose of creating large datasets or for online training of Deep Learning models. """ if __name__ == "__main__": RENDER_CONFIG = {"experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit'} kit = OmniKitHelper(config=RENDER_CONFIG) import argparse from omni.isaac.synthetic_utils import shapenet parser = argparse.ArgumentParser("Convert ShapeNet assets to USD") parser.add_argument( "--categories", type=str, nargs="+", default=None, help="List of ShapeNet categories to convert (space seperated).", ) parser.add_argument( "--max-models", type=int, default=None, help="If specified, convert up to `max-models` per category." ) parser.add_argument( "--load-materials", action="store_true", help="If specified, materials will be loaded from shapenet meshes" ) args = parser.parse_args() # Ensure Omniverse Kit is launched via OmniKitHelper before shapenet_convert() is called shapenet.shapenet_convert(args.categories, args.max_models, args.load_materials) # cleanup kit.shutdown()
1,763
Python
37.347825
115
0.723199
KazWong/omniverse_sample/ov_sample/python_samples/syntheticdata/advanced/domain_randomization.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Dataset with online randomized scene generation for Instance Segmentation training. Use OmniKit to generate a simple scene. At each iteration, the scene is populated by adding assets from the user-specified classes with randomized pose and colour. The camera position is also randomized before capturing groundtruth consisting of an RGB rendered image, Tight 2D Bounding Boxes and Instance Segmentation masks. """ import os import glob import torch import random import numpy as np import signal import carb import omni from omni.isaac.python_app import OmniKitHelper # Setup default generation variables # Value are (min, max) ranges RANDOM_TRANSLATION_X = (-30.0, 30.0) RANDOM_TRANSLATION_Z = (-30.0, 30.0) RANDOM_ROTATION_Y = (0.0, 360.0) SCALE = 20 CAMERA_DISTANCE = 300 BBOX_AREA_THRESH = 16 # Default rendering parameters RENDER_CONFIG = { "renderer": "PathTracing", "samples_per_pixel_per_frame": 12, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', } class RandomObjects(torch.utils.data.IterableDataset): """Dataset of random ShapeNet objects. Objects are randomly chosen from selected categories and are positioned, rotated and coloured randomly in an empty room. RGB, BoundingBox2DTight and Instance Segmentation are captured by moving a camera aimed at the centre of the scene which is positioned at random at a fixed distance from the centre. This dataset is intended for use with ShapeNet but will function with any dataset of USD models structured as `root/category/**/*.usd. One note is that this is designed for assets without materials attached. This is to avoid requiring to compile MDLs and load textures while training. Args: categories (tuple of str): Tuple or list of categories. For ShapeNet, these will be the synset IDs. max_asset_size (int): Maximum asset file size that will be loaded. This prevents out of memory errors due to loading large meshes. num_assets_min (int): Minimum number of assets populated in the scene. num_assets_max (int): Maximum number of assets populated in the scene. split (float): Fraction of the USDs found to use for training. train (bool): If true, use the first training split and generate infinite random scenes. """ def __init__( self, root, categories, max_asset_size=None, num_assets_min=3, num_assets_max=5, split=0.7, train=True ): assert len(categories) > 1 assert (split > 0) and (split <= 1.0) self.kit = OmniKitHelper(config=RENDER_CONFIG) from omni.isaac.synthetic_utils import SyntheticDataHelper, DomainRandomization from omni.isaac.synthetic_utils import shapenet self.sd_helper = SyntheticDataHelper() self.dr_helper = DomainRandomization() self.dr_helper.toggle_manual_mode() self.stage = self.kit.get_stage() from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder") return self.asset_path = nucleus_server + "/Isaac" # If ShapeNet categories are specified with their names, convert to synset ID # Remove this if using with a different dataset than ShapeNet category_ids = [shapenet.LABEL_TO_SYNSET.get(c, c) for c in categories] self.categories = category_ids self.range_num_assets = (num_assets_min, max(num_assets_min, num_assets_max)) self.references = self._find_usd_assets(root, category_ids, max_asset_size, split, train) self._setup_world() self.cur_idx = 0 self.exiting = False signal.signal(signal.SIGINT, self._handle_exit) def _handle_exit(self, *args, **kwargs): print("exiting dataset generation...") self.exiting = True def _setup_world(self): from pxr import UsdGeom """Setup lights, walls, floor, ceiling and camera""" # In a practical setting, the room parameters should attempt to match those of the # target domain. Here, we insteady choose for simplicity. self.kit.create_prim( "/World/Room", "Sphere", attributes={"radius": 1e3, "primvars:displayColor": [(1.0, 1.0, 1.0)]} ) self.kit.create_prim( "/World/Ground", "Cylinder", translation=(0.0, -0.5, 0.0), rotation=(90.0, 0.0, 0.0), attributes={"height": 1, "radius": 1e4, "primvars:displayColor": [(1.0, 1.0, 1.0)]}, ) self.kit.create_prim( "/World/Light1", "SphereLight", translation=(-450, 350, 350), attributes={"radius": 100, "intensity": 30000.0, "color": (0.0, 0.365, 0.848)}, ) self.kit.create_prim( "/World/Light2", "SphereLight", translation=(450, 350, 350), attributes={"radius": 100, "intensity": 30000.0, "color": (1.0, 0.278, 0.0)}, ) self.kit.create_prim("/World/Asset", "Xform") self.camera_rig = UsdGeom.Xformable(self.kit.create_prim("/World/CameraRig", "Xform")) self.camera = self.kit.create_prim("/World/CameraRig/Camera", "Camera", translation=(0.0, 0.0, CAMERA_DISTANCE)) vpi = omni.kit.viewport.get_viewport_interface() vpi.get_viewport_window().set_active_camera(str(self.camera.GetPath())) self.viewport = omni.kit.viewport.get_default_viewport_window() self.kit.update() # create DR components self.create_dr_comp() self.kit.update() def _find_usd_assets(self, root, categories, max_asset_size, split, train=True): """Look for USD files under root/category for each category specified. For each category, generate a list of all USD files found and select assets up to split * len(num_assets) if `train=True`, otherwise select the remainder. """ references = {} for category in categories: all_assets = glob.glob(os.path.join(root, category, "**/*.usd"), recursive=True) # Filter out large files (which can prevent OOM errors during training) if max_asset_size is None: assets_filtered = all_assets else: assets_filtered = [] for a in all_assets: if os.stat(a).st_size > max_asset_size * 1e6: print(f"{a} skipped as it exceeded the max size {max_asset_size} MB.") else: assets_filtered.append(a) num_assets = len(assets_filtered) if num_assets == 0: raise ValueError(f"No USDs found for category {category} under max size {max_asset_size} MB.") if train: references[category] = assets_filtered[: int(num_assets * split)] else: references[category] = assets_filtered[int(num_assets * split) :] return references def load_single_asset(self, ref, semantic_label, suffix=""): from pxr import UsdGeom """Load a USD asset with random pose. args ref (str): Path to the USD that this prim will reference. semantic_label (str): Semantic label. suffix (str): String to add to the end of the prim's path. """ x = random.uniform(*RANDOM_TRANSLATION_X) z = random.uniform(*RANDOM_TRANSLATION_Z) rot_y = random.uniform(*RANDOM_ROTATION_Y) asset = self.kit.create_prim( f"/World/Asset/mesh{suffix}", "Xform", scale=(SCALE, SCALE, SCALE), rotation=(0.0, rot_y, 0.0), ref=ref, semantic_label=semantic_label, ) bound = UsdGeom.Mesh(asset).ComputeWorldBound(0.0, "default") box_min_y = bound.GetBox().GetMin()[1] UsdGeom.XformCommonAPI(asset).SetTranslate((x, -box_min_y, z)) return asset def populate_scene(self): """Clear the scene and populate it with assets.""" self.stage.RemovePrim("/World/Asset") self.assets = [] num_assets = random.randint(*self.range_num_assets) for i in range(num_assets): category = random.choice(list(self.references.keys())) ref = random.choice(self.references[category]) self.assets.append(self.load_single_asset(ref, category, i)) def randomize_camera(self): """Randomize the camera position.""" # By simply rotating a camera "rig" instead repositioning the camera # itself, we greatly simplify our job. # Clear previous transforms self.camera_rig.ClearXformOpOrder() # Change azimuth angle self.camera_rig.AddRotateYOp().Set(random.random() * 360) # Change elevation angle self.camera_rig.AddRotateXOp().Set(random.random() * -90) def create_dr_comp(self): """Creates DR components with various attributes. The asset prims to randomize is an empty list for most components since we get a new list of assets every iteration. The asset list will be updated for each component in update_dr_comp() """ texture_list = [ self.asset_path + "/Samples/DR/Materials/Textures/checkered.png", self.asset_path + "/Samples/DR/Materials/Textures/marble_tile.png", self.asset_path + "/Samples/DR/Materials/Textures/picture_a.png", self.asset_path + "/Samples/DR/Materials/Textures/picture_b.png", self.asset_path + "/Samples/DR/Materials/Textures/textured_wall.png", self.asset_path + "/Samples/DR/Materials/Textures/checkered_color.png", ] material_list = [ self.asset_path + "/Samples/DR/Materials/checkered.mdl", self.asset_path + "/Samples/DR/Materials/checkered_color.mdl", self.asset_path + "/Samples/DR/Materials/marble_tile.mdl", self.asset_path + "/Samples/DR/Materials/picture_a.mdl", self.asset_path + "/Samples/DR/Materials/picture_b.mdl", self.asset_path + "/Samples/DR/Materials/textured_wall.mdl", ] light_list = ["World/Light1", "World/Light2"] self.texture_comp = self.dr_helper.create_texture_comp([], True, texture_list) self.color_comp = self.dr_helper.create_color_comp([]) self.material_comp = self.dr_helper.create_material_comp([], material_list) self.movement_comp = self.dr_helper.create_movement_comp([]) self.rotation_comp = self.dr_helper.create_rotation_comp([]) self.scale_comp = self.dr_helper.create_scale_comp([], max_range=(50, 50, 50)) self.light_comp = self.dr_helper.create_light_comp(light_list) self.visibility_comp = self.dr_helper.create_visibility_comp([]) def update_dr_comp(self, dr_comp): """Updates DR component with the asset prim paths that will be randomized""" comp_prim_paths_target = dr_comp.GetPrimPathsRel() comp_prim_paths_target.ClearTargets(True) for asset in self.assets: comp_prim_paths_target.AddTarget(asset.GetPrimPath()) def __iter__(self): return self def __next__(self): # Generate a new scene self.populate_scene() self.randomize_camera() """The below update calls set the paths of prims that need to be randomized with the settings provided in their corresponding DR create component """ # In this example, either update texture or color or material of assets # self.update_dr_comp(self.color_comp) self.update_dr_comp(self.texture_comp) # self.update_dr_comp(self.material_comp) # Also update movement, rotation and scale components # self.update_dr_comp(self.movement_comp) # self.update_dr_comp(self.rotation_comp) self.update_dr_comp(self.scale_comp) # randomize once self.dr_helper.randomize_once() # step once and then wait for materials to load self.kit.update() print("waiting for materials to load...") while self.kit.is_loading(): self.kit.update() print("done") self.kit.update() # Collect Groundtruth gt = self.sd_helper.get_groundtruth(["rgb", "boundingBox2DTight", "instanceSegmentation"], self.viewport) # RGB # Drop alpha channel image = gt["rgb"][..., :3] # Cast to tensor if numpy array if isinstance(gt["rgb"], np.ndarray): image = torch.tensor(image, dtype=torch.float, device="cuda") # Normalize between 0. and 1. and change order to channel-first. image = image.float() / 255.0 image = image.permute(2, 0, 1) # Bounding Box gt_bbox = gt["boundingBox2DTight"] # Create mapping from categories to index mapping = {cat: i + 1 for i, cat in enumerate(self.categories)} bboxes = torch.tensor(gt_bbox[["x_min", "y_min", "x_max", "y_max"]].tolist()) # For each bounding box, map semantic label to label index labels = torch.LongTensor([mapping[bb["semanticLabel"]] for bb in gt_bbox]) # Calculate bounding box area for each area areas = (bboxes[:, 2] - bboxes[:, 0]) * (bboxes[:, 3] - bboxes[:, 1]) # Idenfiy invalid bounding boxes to filter final output valid_areas = (areas > 0.0) * (areas < (image.shape[1] * image.shape[2])) # Instance Segmentation instance_data, instance_mappings = gt["instanceSegmentation"][0], gt["instanceSegmentation"][1] instance_list = [im[0] for im in gt_bbox] masks = np.zeros((len(instance_list), *instance_data.shape), dtype=np.bool) for i, instances in enumerate(instance_list): masks[i] = np.isin(instance_data, instances) if isinstance(masks, np.ndarray): masks = torch.tensor(masks, device="cuda") target = { "boxes": bboxes[valid_areas], "labels": labels[valid_areas], "masks": masks[valid_areas], "image_id": torch.LongTensor([self.cur_idx]), "area": areas[valid_areas], "iscrowd": torch.BoolTensor([False] * len(bboxes[valid_areas])), # Assume no crowds } self.cur_idx += 1 return image, target if __name__ == "__main__": "Typical usage" import argparse import matplotlib.pyplot as plt parser = argparse.ArgumentParser("Dataset test") parser.add_argument("--categories", type=str, nargs="+", required=True, help="List of object classes to use") parser.add_argument( "--max-asset-size", type=float, default=10.0, help="Maximum asset size to use in MB. Larger assets will be skipped.", ) parser.add_argument( "--root", type=str, default=None, help="Root directory containing USDs. If not specified, use {SHAPENET_LOCAL_DIR}_nomat as root.", ) args = parser.parse_args() # If root is not specified use the environment variable SHAPENET_LOCAL_DIR with the _nomat suffix as root if args.root is None: args.root = f"{os.path.abspath(os.environ['SHAPENET_LOCAL_DIR'])}_mat" dataset = RandomObjects(args.root, args.categories, max_asset_size=args.max_asset_size) from omni.isaac.synthetic_utils import visualization as vis from omni.isaac.synthetic_utils import shapenet categories = [shapenet.LABEL_TO_SYNSET.get(c, c) for c in args.categories] # Iterate through dataset and visualize the output plt.ion() _, axes = plt.subplots(1, 2, figsize=(10, 5)) plt.tight_layout() for image, target in dataset: for ax in axes: ax.clear() ax.axis("off") np_image = image.permute(1, 2, 0).cpu().numpy() axes[0].imshow(np_image) num_instances = len(target["boxes"]) colours = vis.random_colours(num_instances) overlay = np.zeros_like(np_image) for mask, colour in zip(target["masks"].cpu().numpy(), colours): overlay[mask, :3] = colour axes[1].imshow(overlay) mapping = {i + 1: cat for i, cat in enumerate(categories)} labels = [shapenet.SYNSET_TO_LABEL[mapping[label.item()]] for label in target["labels"]] vis.plot_boxes(ax, target["boxes"].tolist(), labels=labels, colours=colours) plt.draw() plt.pause(0.01) plt.savefig("domain_randomization.png") if dataset.exiting: break # cleanup dataset.kit.shutdown()
17,200
Python
41.056235
120
0.628953
KazWong/omniverse_sample/ov_sample/python_samples/syntheticdata/advanced/visualize_groundtruth_physics.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Demonstration of using OmniKit to generate a scene, collect groundtruth and visualize the results. This advanced sample also simulates physics and uses a custom glass material """ import copy import os import random import numpy as np from omni.isaac.python_app import OmniKitHelper import matplotlib.pyplot as plt TRANSLATION_RANGE = 300.0 SCALE = 50.0 # specify a custom config CUSTOM_CONFIG = { "width": 1024, "height": 1024, "renderer": "PathTracing", "samples_per_pixel_per_frame": 128, "max_bounces": 10, "max_specular_transmission_bounces": 6, "max_volume_bounces": 4, "subdiv_refinement_level": 2, "headless": True, "sync_loads": True, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', } def main(): kit = OmniKitHelper(CUSTOM_CONFIG) from pxr import Gf, Sdf, UsdShade, UsdGeom, Semantics from omni.isaac.synthetic_utils import SyntheticDataHelper sd_helper = SyntheticDataHelper() from omni.syntheticdata import visualize, helpers from omni.physx.scripts import utils from pxr import UsdPhysics, PhysxSchema, PhysicsSchemaTools import omni # SCENE SETUP # Get the current stage stage = kit.get_stage() # Add a sphere light kit.create_prim( "/World/Light1", "SphereLight", translation=(0, 200, 0), attributes={"radius": 100, "intensity": 100000.0, "color": (1, 1, 1)}, ) # Add physics scene scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/World/physicsScene")) # Set gravity vector scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) scene.CreateGravityMagnitudeAttr().Set(981.0) # Set physics scene to use cpu physics PhysxSchema.PhysxSceneAPI.Apply(stage.GetPrimAtPath("/World/physicsScene")) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Get(stage, "/World/physicsScene") physxSceneAPI.CreateEnableCCDAttr(True) physxSceneAPI.CreateEnableStabilizationAttr(True) physxSceneAPI.CreateEnableGPUDynamicsAttr(False) physxSceneAPI.CreateBroadphaseTypeAttr("MBP") physxSceneAPI.CreateSolverTypeAttr("TGS") # Create a ground plane PhysicsSchemaTools.addGroundPlane(stage, "/World/groundPlane", "Z", 1000, Gf.Vec3f(0, 0, -100), Gf.Vec3f(1.0)) # Create 10 randomly positioned and coloured spheres and cube # We will assign each a semantic label based on their shape (sphere/cube/cone) prims = [] for i in range(10): prim_type = random.choice(["Cube", "Sphere", "Cylinder"]) prim = stage.DefinePrim(f"/World/cube{i}", prim_type) translation = np.random.rand(3) * TRANSLATION_RANGE UsdGeom.XformCommonAPI(prim).SetTranslate(translation.tolist()) UsdGeom.XformCommonAPI(prim).SetScale((SCALE, SCALE, SCALE)) # prim.GetAttribute("primvars:displayColor").Set([np.random.rand(3).tolist()]) # Add semantic label based on prim type sem = Semantics.SemanticsAPI.Apply(prim, "Semantics") sem.CreateSemanticTypeAttr() sem.CreateSemanticDataAttr() sem.GetSemanticTypeAttr().Set("class") sem.GetSemanticDataAttr().Set(prim_type) # Add physics to prims utils.setRigidBody(prim, "convexHull", False) # Set Mass to 1 kg mass_api = UsdPhysics.MassAPI.Apply(prim) mass_api.CreateMassAttr(1) # add prim reference to list prims.append(prim) # Apply glass material for prim in prims: # Create Glass material mtl_created_list = [] kit.execute( "CreateAndBindMdlMaterialFromLibrary", mdl_name="OmniGlass.mdl", mtl_name="OmniGlass", mtl_created_list=mtl_created_list, ) mtl_prim = stage.GetPrimAtPath(mtl_created_list[0]) # Set material inputs, these can be determined by looking at the .mdl file # or by selecting the Shader attached to the Material in the stage window and looking at the details panel color = Gf.Vec3f(random.random(), random.random(), random.random()) omni.usd.create_material_input(mtl_prim, "glass_color", color, Sdf.ValueTypeNames.Color3f) omni.usd.create_material_input(mtl_prim, "glass_ior", 1.25, Sdf.ValueTypeNames.Float) # This value is the volumetric light absorption scale, reduce to zero to make glass clearer omni.usd.create_material_input(mtl_prim, "depth", 0.001, Sdf.ValueTypeNames.Float) # Enable for thin glass objects if needed omni.usd.create_material_input(mtl_prim, "thin_walled", False, Sdf.ValueTypeNames.Bool) # Bind the material to the prim prim_mat_shade = UsdShade.Material(mtl_prim) UsdShade.MaterialBindingAPI(prim).Bind(prim_mat_shade, UsdShade.Tokens.strongerThanDescendants) # force RayTracedLighting mode for better performance while simulating physics kit.set_setting("/rtx/rendermode", "RayTracedLighting") # start simulation kit.play() # Step simulation so that objects fall to rest # wait until all materials are loaded frame = 0 print("simulating physics...") while frame < 60 or kit.is_loading(): kit.update(1 / 60.0) frame = frame + 1 print("done") # Return to user specified render mode kit.set_setting("/rtx/rendermode", CUSTOM_CONFIG["renderer"]) print("capturing...") # Get groundtruth using glass material kit.update() viewport = omni.kit.viewport.get_default_viewport_window() gt = sd_helper.get_groundtruth( [ "rgb", "depth", "boundingBox2DTight", "boundingBox2DLoose", "instanceSegmentation", "semanticSegmentation", "boundingBox3D", ], viewport, ) print("done") # everything is captured, stop simulating kit.stop() print("visualize results") # GROUNDTRUTH VISUALIZATION # Setup a figure _, axes = plt.subplots(2, 4, figsize=(20, 7)) axes = axes.flat for ax in axes: ax.axis("off") # RGB axes[0].set_title("RGB") for ax in axes[:-1]: ax.imshow(gt["rgb"]) # DEPTH axes[1].set_title("Depth") depth_data = np.clip(gt["depth"], 0, 255) axes[1].imshow(visualize.colorize_depth(depth_data.squeeze())) # BBOX2D TIGHT axes[2].set_title("BBox 2D Tight") rgb_data = copy.deepcopy(gt["rgb"]) axes[2].imshow(visualize.colorize_bboxes(gt["boundingBox2DTight"], rgb_data)) # BBOX2D LOOSE axes[3].set_title("BBox 2D Loose") rgb_data = copy.deepcopy(gt["rgb"]) axes[3].imshow(visualize.colorize_bboxes(gt["boundingBox2DLoose"], rgb_data)) # INSTANCE SEGMENTATION axes[4].set_title("Instance Segmentation") instance_seg = gt["instanceSegmentation"][0] instance_rgb = visualize.colorize_segmentation(instance_seg) axes[4].imshow(instance_rgb, alpha=0.7) # SEMANTIC SEGMENTATION axes[5].set_title("Semantic Segmentation") semantic_seg = gt["semanticSegmentation"] semantic_rgb = visualize.colorize_segmentation(semantic_seg) axes[5].imshow(semantic_rgb, alpha=0.7) # BBOX 3D axes[6].set_title("BBox 3D") bbox_3d_data = gt["boundingBox3D"] bboxes_3d_corners = bbox_3d_data["corners"] projected_corners = helpers.world_to_image(bboxes_3d_corners.reshape(-1, 3), viewport) projected_corners = projected_corners.reshape(-1, 8, 3) rgb_data = copy.deepcopy(gt["rgb"]) bboxes3D_rgb = visualize.colorize_bboxes_3d(projected_corners, rgb_data) axes[6].imshow(bboxes3D_rgb) # Save figure print("saving figure to: ", os.getcwd() + "/visualize_groundtruth_physics.png") plt.savefig("visualize_groundtruth_physics.png") # cleanup kit.shutdown() if __name__ == "__main__": main()
8,243
Python
35.31718
114
0.672449
KazWong/omniverse_sample/ov_sample/python_samples/isaac_sdk/load_stage.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.python_app import OmniKitHelper import carb import omni # This sample loads a usd stage and creates a robot engine bridge application and starts simulation # Disposes average fps of the simulation for given time # Useful for testing an Isaac SDK sample scene using python CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "width": 1280, "height": 720, "sync_loads": True, "headless": False, "renderer": "RayTracedLighting", } class UsdLoadSample: def __init__(self, args): CONFIG["headless"] = args.headless self.kit = OmniKitHelper(config=CONFIG) self.usd_path = "" self._viewport = omni.kit.viewport.get_viewport_interface() def start(self): self.kit.play() def stop(self): self.kit.stop() omni.kit.commands.execute("RobotEngineBridgeDestroyApplication") self.kit.shutdown() def load_stage(self, args): from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder") return False self._asset_path = nucleus_server + "/Isaac" self.usd_path = self._asset_path + args.usd_path omni.usd.get_context().open_stage(self.usd_path, None) # Wait two frames so that stage starts loading self.kit.app.update() self.kit.app.update() return True def configure_bridge(self, json_file: str = "isaacsim.app.json"): """ Configure the SDK bridge application that publishes data over tcp """ ext_manager = omni.kit.app.get_app().get_extension_manager() ext_id = ext_manager.get_enabled_extension_id("omni.isaac.robot_engine_bridge") reb_extension_path = ext_manager.get_extension_path(ext_id) app_file = f"{reb_extension_path}/resources/isaac_engine/json/{json_file}" carb.log_info(f"create application with: {reb_extension_path} {app_file}") return omni.kit.commands.execute( "RobotEngineBridgeCreateApplication", asset_path=reb_extension_path, app_file=app_file ) def disable_existing_reb_cameras(self): """ Disable existing REB_Camera prims for perf testing """ import omni.isaac.RobotEngineBridgeSchema as REBSchema stage = self.kit.get_stage() for prim in stage.Traverse(): if prim.IsA(REBSchema.RobotEngineCamera): reb_camera_prim = REBSchema.RobotEngineCamera(prim) reb_camera_prim.GetEnabledAttr().Set(False) def create_reb_camera(self, cameraIndex, name, width, height): """Create a new REB camera in the stage""" from pxr import Gf result, reb_camera_prim = omni.kit.commands.execute( "RobotEngineBridgeCreateCamera", path="/World/REB_Camera", parent=None, rgb_output_component="output", rgb_output_channel="encoder_color_{}".format(cameraIndex), depth_output_component="output", depth_output_channel="encoder_depth_{}".format(cameraIndex), segmentation_output_component="output", segmentation_output_channel="encoder_segmentation_{}".format(cameraIndex), bbox2d_output_component="output", bbox2d_output_channel="encoder_bbox_{}".format(cameraIndex), bbox2d_class_list="", bbox3d_output_component="output", bbox3d_output_channel="encoder_bbox3d_{}".format(cameraIndex), bbox3d_class_list="", rgb_enabled=True, depth_enabled=False, segmentaion_enabled=True, bbox2d_enabled=False, bbox3d_enabled=False, camera_prim_rel=["{}".format(name)], resolution=Gf.Vec2i(int(width), int(height)), ) if __name__ == "__main__": import argparse import time parser = argparse.ArgumentParser("Usd Load sample") parser.add_argument("--usd_path", type=str, help="Path to usd file", required=True) parser.add_argument("--headless", default=False, action="store_true", help="Run stage headless") parser.add_argument("--test", default=False, action="store_true", help="Run in test mode") parser.add_argument("--benchmark", default=False, action="store_true", help="Run in benchmark mode") parser.add_argument( "--benchmark_timeout", type=int, default=60, help="Total walltime in seconds to calculate average FPS for" ) parser.add_argument( "--add_rebcamera", nargs="*", type=str, default=[], help="Total number of REB Camera prims to add, existing ones will be disabled if this option is specified", ) args, unknown = parser.parse_known_args() sample = UsdLoadSample(args) if sample.load_stage(args): print("Loading stage...") while sample.kit.is_loading(): sample.kit.update(1.0 / 60.0) print("Loading Complete") # Add parameterized rebcamera along with viewport if args.add_rebcamera is not None and len(args.add_rebcamera) > 0: # disable existing cameras if we are making new ones sample.disable_existing_reb_cameras() reb_count = 0 for name in args.add_rebcamera: info = name.split(",") sample.create_reb_camera(reb_count, info[0], info[1], info[2]) reb_count = reb_count + 1 sample.configure_bridge() sample.start() if args.test is True: for i in range(10): sample.kit.update() sample.stop() elif args.benchmark is True: # Warm up simulation while sample._viewport.get_viewport_window().get_fps() < 1: sample.kit.update(1.0 / 60.0) fps_count = 0 start_time = time.perf_counter() end_time = start_time + args.benchmark_timeout count = 0 # Calculate average fps while sample.kit.app.is_running() and end_time > time.perf_counter(): sample.kit.update(1.0 / 60.0) fps = sample._viewport.get_viewport_window().get_fps() fps_count = fps_count + fps count = count + 1 sample.stop() print(f"\n----------- Avg. FPS over {args.benchmark_timeout} sec : {fps_count/count}-----------") else: while sample.kit.app.is_running(): # Run in realtime mode, we don't specify the step size sample.kit.update() sample.stop()
7,211
Python
39.977273
115
0.617667
KazWong/omniverse_sample/ov_sample/python_samples/isaac_sdk/pose_estimation.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import random import os import omni from omni.isaac.python_app import OmniKitHelper import carb.tokens import argparse CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "width": 1280, "height": 720, "sync_loads": True, "headless": True, "renderer": "RayTracedLighting", } # D435 FOCAL_LEN = 1.93 HORIZONTAL_APERTURE = 2.682 VERTICAL_APERTURE = 1.509 FOCUS_DIST = 400 RANDOMIZE_SCENE_EVERY_N_STEPS = 10 class DualCameraSample: def __init__(self): self.kit = OmniKitHelper(config=CONFIG) import omni.physx from pxr import UsdGeom, Usd, Gf from omni.isaac.synthetic_utils import DomainRandomization from omni.isaac.synthetic_utils import SyntheticDataHelper from omni.isaac.robot_engine_bridge import _robot_engine_bridge self._re_bridge = _robot_engine_bridge.acquire_robot_engine_bridge_interface() self._viewport = omni.kit.viewport.get_viewport_interface() self.dr_helper = DomainRandomization() self.sd_helper = SyntheticDataHelper() self.frame = 0 self.Gf = Gf self.UsdGeom = UsdGeom self.Usd = Usd def shutdown(self): self.kit.shutdown() def start(self): self.kit.play() def stop(self): self.kit.stop() omni.kit.commands.execute("RobotEngineBridgeDestroyApplication") def create_stage(self): # open base stage and set up axis to Z stage = self.kit.get_stage() rootLayer = stage.GetRootLayer() rootLayer.SetPermissionToEdit(True) with self.Usd.EditContext(stage, rootLayer): self.UsdGeom.SetStageUpAxis(stage, self.UsdGeom.Tokens.z) # make two prims, one for env and one for just the room # this allows us to add other prims to environment for randomization and still hide them all at once self._environment = stage.DefinePrim("/environment", "Xform") self._room = stage.DefinePrim("/environment/room", "Xform") from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder") return False self._asset_path = nucleus_server + "/Isaac" stage_path = self._asset_path + "/Environments/Simple_Room/simple_room.usd" self._room.GetReferences().AddReference(stage_path) self._target_prim = self.kit.create_prim( "/objects/cube", "Cube", translation=(0, 0, 100), scale=(10, 10, 50), semantic_label="target" ) # make sure that we wait for the stage to load self.kit.app.update() self.kit.app.update() return True def create_camera(self): self._camera = self.kit.create_prim( "/World/Camera", "Camera", translation=(0.0, 0.0, 0.0), attributes={ "focusDistance": FOCUS_DIST, "focalLength": FOCAL_LEN, "horizontalAperture": HORIZONTAL_APERTURE, "verticalAperture": VERTICAL_APERTURE, }, ) # activate new camera self._viewport.get_viewport_window().set_active_camera(str(self._camera.GetPath())) # the camera reference frame between sdk and sim seems to be flipped 180 on x # this prim acts as a proxy to do that coordinate transformation self._camera_proxy = self.kit.create_prim("/World/Camera/proxy", "Xform", rotation=(180, 0, 0)) def create_bridge_components(self): result, self.occluded_provider = omni.kit.commands.execute( "RobotEngineBridgeCreateCamera", path="/World/REB_Occluded_Provider", parent=None, rgb_output_component="output", rgb_output_channel="encoder_color", depth_output_component="output", depth_output_channel="encoder_depth", segmentation_output_component="output", segmentation_output_channel="encoder_segmentation", bbox2d_output_component="output", bbox2d_output_channel="encoder_bbox", bbox2d_class_list="", bbox3d_output_component="output", bbox3d_output_channel="encoder_bbox3d", bbox3d_class_list="", rgb_enabled=True, depth_enabled=False, segmentaion_enabled=True, bbox2d_enabled=False, bbox3d_enabled=False, camera_prim_rel=[self._camera.GetPath()], resolution=self.Gf.Vec2i(1280, 720), ) result, self.unoccluded_provider = omni.kit.commands.execute( "RobotEngineBridgeCreateCamera", path="/World/REB_Unoccluded_Provider", parent=None, rgb_output_component="output", rgb_output_channel="decoder_color", depth_output_component="output", depth_output_channel="decoder_depth", segmentation_output_component="output", segmentation_output_channel="decoder_segmentation", bbox2d_output_component="output", bbox2d_output_channel="decoder_bbox", bbox2d_class_list="", bbox3d_output_component="output", bbox3d_output_channel="decoder_bbox3d", bbox3d_class_list="", rgb_enabled=True, depth_enabled=False, segmentaion_enabled=True, bbox2d_enabled=False, bbox3d_enabled=False, camera_prim_rel=[self._camera.GetPath()], resolution=self.Gf.Vec2i(1280, 720), ) # turn both cameras off so that we don't send an image when time is stepped self.occluded_provider.GetEnabledAttr().Set(False) self.unoccluded_provider.GetEnabledAttr().Set(False) # create rigid body sink to publish ground truth pose information result, self.rbs_provider = omni.kit.commands.execute( "RobotEngineBridgeCreateRigidBodySink", path="/World/REB_RigidBodiesSink", parent=None, enabled=False, output_component="output", output_channel="bodies", rigid_body_prims_rel=[self._camera_proxy.GetPath(), self._target_prim.GetPath()], ) # disable rigid body sink until the final image is sent out so its only published once self.rbs_provider.GetEnabledAttr().Set(False) def configure_bridge(self, json_file: str = "isaacsim.app.json"): ext_manager = omni.kit.app.get_app().get_extension_manager() ext_id = ext_manager.get_enabled_extension_id("omni.isaac.robot_engine_bridge") reb_extension_path = ext_manager.get_extension_path(ext_id) app_file = f"{reb_extension_path}/resources/isaac_engine/json/{json_file}" carb.log_info(f"create application with: {reb_extension_path} {app_file}") return omni.kit.commands.execute( "RobotEngineBridgeCreateApplication", asset_path=reb_extension_path, app_file=app_file ) def configure_randomization(self): texture_list = [ self._asset_path + "/Samples/DR/Materials/Textures/checkered.png", self._asset_path + "/Samples/DR/Materials/Textures/marble_tile.png", self._asset_path + "/Samples/DR/Materials/Textures/picture_a.png", self._asset_path + "/Samples/DR/Materials/Textures/picture_b.png", self._asset_path + "/Samples/DR/Materials/Textures/textured_wall.png", self._asset_path + "/Samples/DR/Materials/Textures/checkered_color.png", ] base_path = str(self._room.GetPath()) self.texture_comp = self.dr_helper.create_texture_comp([base_path], False, texture_list) # self.color_comp = self.dr_helper.create_color_comp([base_path+"/floor"]) # disable automatic DR, we run it ourselves in the step function # add a movement and rotation component # the movement component is offset by 100cm in z so that the object remains above the table self.movement_comp = self.dr_helper.create_movement_comp( [str(self._target_prim.GetPath())], min_range=(-10, -10, -10 + 100), max_range=(10, 10, 10 + 100) ) self.rotation_comp = self.dr_helper.create_rotation_comp([str(self._target_prim.GetPath())]) self.dr_helper.toggle_manual_mode() def randomize_camera(self): # randomize camera position self._viewport.get_viewport_window().set_camera_position( str(self._camera.GetPath()), random.randrange(-250, 250), random.randrange(-250, 250), random.randrange(10, 250), True, ) # get target pose and point camera at it pose = omni.usd.get_world_transform_matrix(self._target_prim) # can specify an offset on target position target = pose.ExtractTranslation() + self.Gf.Vec3d(0, 0, 0) self._viewport.get_viewport_window().set_camera_target( str(self._camera.GetPath()), target[0], target[1], target[2], True ) def randomize_scene(self): self.dr_helper.randomize_once() def toggle_environment(self, state): imageable = self.UsdGeom.Imageable(self._environment) if state: imageable.MakeVisible() else: imageable.MakeInvisible() def step(self): # randomize camera every frame self.randomize_camera() # randomize textures every 10 frames if self.frame % RANDOMIZE_SCENE_EVERY_N_STEPS == 0: self.randomize_scene() self.toggle_environment(True) self.kit.update(1.0 / 60.0) # render occluded view omni.kit.commands.execute("RobotEngineBridgeTickComponent", path=str(self.occluded_provider.GetPath())) # hide everything but the object self.toggle_environment(False) self.kit.update(0) # render unoccluded view omni.kit.commands.execute("RobotEngineBridgeTickComponent", path=str(self.unoccluded_provider.GetPath())) omni.kit.commands.execute("RobotEngineBridgeTickComponent", path=str(self.rbs_provider.GetPath())) # output fps every 100 frames if self.frame % 100 == 0: print("FPS: ", self._viewport.get_viewport_window().get_fps()) self.frame = self.frame + 1 if __name__ == "__main__": parser = argparse.ArgumentParser(description="Generate Occluded and Unoccluded data") parser.add_argument("--test", action="store_true") args, unknown = parser.parse_known_args() sample = DualCameraSample() # On start if state creation was successful if sample.create_stage(): sample.create_camera() sample.configure_randomization() # wait for stage to load while sample.kit.is_loading(): sample.kit.update(0) sample.create_bridge_components() sample.configure_bridge() sample.start() while sample.kit.app.is_running(): sample.step() if args.test: break sample.stop() sample.shutdown()
11,691
Python
39.041096
113
0.62886
KazWong/omniverse_sample/ov_sample/python_samples/core/app_framework.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import sys import carb import omni.kit.app import asyncio # Simple example showing the minimal setup to run omniverse app from python class PythonApp: def __init__(self): # Load app plugin self.framework = carb.get_framework() self.framework.load_plugins( loaded_file_wildcards=["omni.kit.app.plugin"], search_paths=[os.path.abspath(f'{os.environ["CARB_APP_PATH"]}/plugins')], ) self.app = omni.kit.app.get_app() # Path to where kit was built to app_root = os.environ["CARB_APP_PATH"] # Inject experience config: sys.argv.insert(1, f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit') # Add paths to extensions sys.argv.append(f"--ext-folder") sys.argv.append(f'{os.path.abspath(os.environ["ISAAC_PATH"])}/exts') # Run headless sys.argv.append("--no-window") # Set some settings sys.argv.append("--/app/asyncRendering=False") # Start the app self.app.startup("Isaac-Sim", app_root, sys.argv) def shutdown(self): # Shutdown self.app.shutdown() self.framework.unload_all_plugins() print("Shutdown complete") if __name__ == "__main__": kit = PythonApp() # Do something, in this case we wait for stage to open and then exit stage_task = asyncio.ensure_future(omni.usd.get_context().new_stage_async()) while not stage_task.done(): kit.app.update() kit.shutdown()
1,952
Python
30
85
0.655225
KazWong/omniverse_sample/ov_sample/python_samples/core/helper.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.python_app import OmniKitHelper CONFIG = { "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "renderer": "RayTracedLighting", "headless": True, } if __name__ == "__main__": # Simple example showing how to start and stop the helper kit = OmniKitHelper(config=CONFIG) ### Perform any omniverse imports here after the helper loads ### kit.play() # Start simulation kit.update(1.0 / 60.0) # Render a single frame kit.stop() # Stop Simulation kit.shutdown() # Cleanup application
1,000
Python
34.749999
76
0.727
KazWong/omniverse_sample/ov_sample/python_samples/dofbot/online_training/dofbot_cube_detection.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Dofbot Cube Detection Demonstration Use a PyTorch dataloader together with OmniKit to generate scenes and groundtruth to train a [MobileNetV3](https://arxiv.org/abs/1905.02244) model. """ import torch from torch.utils.data import DataLoader import torchvision import matplotlib.pyplot as plt import numpy as np import signal from dofbot_dataset import RandomObjects import ssl ssl._create_default_https_context = ssl._create_unverified_context def main(args): device = "cuda" # Setup data train_set = RandomObjects() train_loader = DataLoader(train_set, batch_size=2, collate_fn=lambda x: tuple(zip(*x))) def handle_exit(self, *args, **kwargs): print("exiting cube detection dataset generation...") train_set.exiting = True signal.signal(signal.SIGINT, handle_exit) from omni.isaac.synthetic_utils import visualization as vis # Setup Model if args.eval_model == "": model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn( pretrained=False, num_classes=1 + len(args.categories) ) model = model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate) else: model = torch.load(args.eval_model) if args.visualize: plt.ion() fig, axes = plt.subplots(1, 2, figsize=(14, 7)) for i, train_batch in enumerate(train_loader): if i > args.max_iters or train_set.exiting: print("Exiting ...") train_set.kit.shutdown() break if args.eval_model == "": model.train() images, targets = train_batch images = [i.to(device) for i in images] targets = [{k: v.to(device) for k, v in t.items()} for t in targets] if args.eval_model == "": loss_dict = model(images, targets) loss = sum(loss for loss in loss_dict.values()) print(f"ITER {i} | {loss:.6f}") optimizer.zero_grad() loss.backward() optimizer.step() if i % 10 == 0: model.eval() with torch.no_grad(): predictions = model(images[:1]) if args.visualize: idx = 0 score_thresh = 0.5 pred = predictions[idx] np_image = images[idx].permute(1, 2, 0).cpu().numpy() for ax in axes: if args.eval_model == "": fig.suptitle(f"Iteration {i:05} \n {loss:.6f}", fontsize=14) else: fig.suptitle(f"Iteration {i:05} \n Evaluating", fontsize=14) ax.cla() ax.axis("off") ax.imshow(np_image) axes[0].set_title("Input") axes[1].set_title("Input + Predictions") score_filter = [i for i in range(len(pred["scores"])) if pred["scores"][i] > score_thresh] num_instances = len(score_filter) colours = vis.random_colours(num_instances, enable_random=False) mapping = {i + 1: cat for i, cat in enumerate(args.categories)} labels = [mapping[label.item()] for label in pred["labels"]] vis.plot_boxes(ax, pred["boxes"].tolist(), labels=labels, colours=colours, label_size=10) if not labels: axes[1].set_title("None") plt.draw() plt.savefig("train.png") # save every 100 steps if i % 100 == 0 and args.eval_model == "": torch.save(model, "cube_model_" + str(i) + ".pth") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser("Dataset test") parser.add_argument("-lr", "--learning_rate", type=float, default=1e-4, help="Learning rate") parser.add_argument("--max-iters", type=float, default=1000, help="Number of training iterations.") parser.add_argument("--visualize", action="store_true", help="Visualize predicted bounding boxes during training.") parser.add_argument("--eval_model", help="model file to evaluate", default="", type=str) args = parser.parse_args() # Temporary args.visualize = True args.categories = ["None", "Cube", "Sphere", "Cone"] main(args)
4,774
Python
34.110294
119
0.591537
KazWong/omniverse_sample/ov_sample/python_samples/dofbot/online_training/dofbot_dataset.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Cube Dataset with online randomized scene generation for Bounding Box Detection training. Use OmniKit to generate a simple scene. At each iteration, the scene is populated by creating a cube that rests on a plane. The cube pose, colours and textures are randomized. The camera position is also randomized within a range expected for the Dofbot's POV before capturing groundtruth consisting of an RGB rendered image, and Tight 2D Bounding Boxes """ from math import floor import os import torch import random import numpy as np import signal import omni import carb from omni.isaac.python_app import OmniKitHelper # Setup default generation variables # Value are (min, max) ranges OBJ_TRANSLATION_X = (-60.0, 60.0) OBJ_TRANSLATION_Z = (-60.0, 60.0) OBJ_ROTATION_Y = (0.0, 360.0) LIGHT_INTENSITY = (500.0, 50000.0) # Camera POV generation variables AZIMUTH_ROTATION = (-30.0, 30.0) ELEVATION_ROTATION = (-70.0, -20.0) CAM_TRANSLATION_XYZ = (-50.0, 50.0) OBJECT_SCALE = (15, 20) CAMERA_DISTANCE = 800 BBOX_AREA_THRESH = 16 BLANK_SCENES = (5, 8) # between 5-8% # Default rendering parameters RENDER_CONFIG = { "renderer": "PathTracing", "samples_per_pixel_per_frame": 12, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', "headless": False, "width": 640, "height": 480, } class RandomObjects(torch.utils.data.IterableDataset): """Dataset of cube + distractor objects - domain randomize position/colour/texture/lighting/camera angle The RGB image and BoundingBox are captured by moving a camera aimed at the centre of the scene which is positioned at random but at a fixed distance from the centre. """ def __init__( self, categories=["None", "Cube", "Sphere", "Cone"], num_assets_min=1, num_assets_max=3, split=0.7, train=True ): assert len(categories) > 1 assert (split > 0) and (split <= 1.0) self.kit = OmniKitHelper(config=RENDER_CONFIG) self.stage = self.kit.get_stage() from omni.isaac.synthetic_utils import SyntheticDataHelper from omni.isaac.synthetic_utils import DomainRandomization self.sd_helper = SyntheticDataHelper() self.dr_helper = DomainRandomization() self.dr_helper.toggle_manual_mode() from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server result, nucleus_server = find_nucleus_server() if result is False: carb.log_error( "Could not find nucleus server with /Isaac folder. Please specify the correct nucleus server in apps/omni.isaac.sim.python.kit" ) return result, nucleus_server = find_nucleus_server("/Library/Props/Road_Tiles/Parts/") if result is False: carb.log_error( "Could not find nucleus server with /Library/Props/Road_Tiles/Parts/ folder. Please refer to the documentation to aquire the road tile assets" ) return self.categories = categories self.range_num_assets = (num_assets_min, num_assets_max) self.asset_path = nucleus_server + "/Isaac" self._setup_world() self.cur_idx = 0 self.empty_idx = floor(100 / random.uniform(*BLANK_SCENES)) self.exiting = False signal.signal(signal.SIGINT, self._handle_exit) # turn this on to fix the PathTracing + Play (needed for overlap test) producing line artifacts carb.settings.get_settings().set_bool("/rtx/resetPtAccumOnAnimTimeChange", True) def _handle_exit(self, *args, **kwargs): print("exiting dataset generation...") self.exiting = True def _setup_world(self): from pxr import Sdf, UsdGeom, Gf, UsdPhysics, PhysxSchema # Create physics scene for collision testing scene = UsdPhysics.Scene.Define(self.stage, Sdf.Path("/World/physicsScene")) scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) scene.CreateGravityMagnitudeAttr().Set(981.0) # Set physics scene to use cpu physics PhysxSchema.PhysxSceneAPI.Apply(self.stage.GetPrimAtPath("/World/physicsScene")) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Get(self.stage, "/World/physicsScene") physxSceneAPI.CreateEnableCCDAttr(True) physxSceneAPI.CreateEnableStabilizationAttr(True) physxSceneAPI.CreateEnableGPUDynamicsAttr(False) physxSceneAPI.CreateBroadphaseTypeAttr("MBP") physxSceneAPI.CreateSolverTypeAttr("TGS") """Setup lights, walls, floor, ceiling and camera""" # Setup Room self.kit.create_prim( "/World/Room", "Sphere", attributes={"radius": 1e3, "primvars:displayColor": [(1.0, 1.0, 1.0)]} ) # Setup ground plane ground_scale = max(OBJECT_SCALE) ground_prim = self.stage.DefinePrim("/World/Ground", "Cylinder") UsdGeom.XformCommonAPI(ground_prim).SetScale((ground_scale, ground_scale, ground_scale)) UsdGeom.XformCommonAPI(ground_prim).SetTranslate((0.0, ground_scale * -0.5, 0.0)) UsdGeom.XformCommonAPI(ground_prim).SetRotate((90.0, 0.0, 0.0)) attributes = {"height": 1, "radius": 1e4, "primvars:displayColor": [(1.0, 1.0, 1.0)]} for k, v in attributes.items(): ground_prim.GetAttribute(k).Set(v) # Setup lights self.kit.create_prim( "/World/Light1", "SphereLight", translation=(-450, 350, 350), attributes={"radius": 100, "intensity": 30000.0, "color": (0.0, 0.365, 0.848)}, ) self.kit.create_prim( "/World/Light2", "SphereLight", translation=(450, 350, 350), attributes={"radius": 100, "intensity": 30000.0, "color": (1.0, 0.278, 0.0)}, ) self.kit.create_prim("/World/Asset", "Xform") # Setup camera self.camera_rig = UsdGeom.Xformable(self.kit.create_prim("/World/CameraRig", "Xform")) self.camera = self.kit.create_prim("/World/CameraRig/Camera", "Camera", translation=(0.0, 0.0, CAMERA_DISTANCE)) # Change azimuth angle self.camera_rig.AddRotateYOp().Set(0) # Change elevation angle self.camera_rig.AddRotateXOp().Set(-40) vpi = omni.kit.viewport.get_viewport_interface() vpi.get_viewport_window().set_active_camera(str(self.camera.GetPath())) self.viewport = omni.kit.viewport.get_default_viewport_window() self.create_dr_comp() self.kit.update() def load_single_asset(self, prim_type, scale, i): from omni.physx.scripts import utils from pxr import Semantics, UsdGeom overlapping = True attempts = 0 max_attempts = 5 # after 5 placement attempts, move on stage = self.kit.get_stage() # Randomly generate transforms until a valid position is found # (i.e. new object will not overlap with existing ones) # print("attempting to spawn object...", end=" ") while overlapping and attempts < max_attempts: x = random.uniform(*OBJ_TRANSLATION_X) y = scale # assumes bounding box of standard prim is 1 cubic unit z = random.uniform(*OBJ_TRANSLATION_Z) rot_y = random.uniform(*OBJ_ROTATION_Y) # Validate this proposed transform rot = carb.Float4(0.0, 0.0, 1.0, 0.0) origin = carb.Float3(float(x), float(y), float(z)) extent = carb.Float3(float(scale), float(scale), float(scale)) overlapping = self.check_overlap(extent, origin, rot) attempts += 1 if overlapping: return None # print("object spawned!") # No overlap, define the prim and apply the transform prim = stage.DefinePrim(f"/World/Asset/obj{i}", prim_type) bound = UsdGeom.Mesh(prim).ComputeWorldBound(0.0, "default") box_min_y = bound.GetBox().GetMin()[1] * scale UsdGeom.XformCommonAPI(prim).SetScale((scale, scale, scale)) UsdGeom.XformCommonAPI(prim).SetTranslate((x, -box_min_y, z)) UsdGeom.XformCommonAPI(prim).SetRotate((0, rot_y, 0)) # Add semantic label based on prim type sem = Semantics.SemanticsAPI.Apply(prim, "Semantics") sem.CreateSemanticTypeAttr() sem.CreateSemanticDataAttr() sem.GetSemanticTypeAttr().Set("class") sem.GetSemanticDataAttr().Set(prim_type) # Add physics to the prim utils.setCollider(prim, approximationShape="convexHull") return prim # OVERLAP -------------------------------------------- def report_hit(self, hit): """ Existing object turns red if the proposed position would result in a collision Note: use for troubleshooting, material randomization must be disabled for this to work """ from pxr import UsdGeom, Gf, Vt hitColor = Vt.Vec3fArray([Gf.Vec3f(180.0 / 255.0, 16.0 / 255.0, 0.0)]) usdGeom = UsdGeom.Mesh.Get(self.stage, hit.rigid_body) usdGeom.GetDisplayColorAttr().Set(hitColor) return True def check_overlap(self, extent, origin, rot): from omni.physx import get_physx_scene_query_interface numHits = get_physx_scene_query_interface().overlap_box(extent, origin, rot, self.report_hit, False) return numHits > 0 # POPULATE AND RANDOMIZE ------------------------------- def create_dr_comp(self): """Creates DR components with various attributes. The asset prims to randomize is an empty list for most components since we get a new list of assets every iteration. The asset list will be updated for each component in update_dr_comp() """ texture_list = [ self.asset_path + "/Samples/DR/Materials/Textures/checkered.png", self.asset_path + "/Samples/DR/Materials/Textures/marble_tile.png", self.asset_path + "/Samples/DR/Materials/Textures/picture_a.png", self.asset_path + "/Samples/DR/Materials/Textures/picture_b.png", self.asset_path + "/Samples/DR/Materials/Textures/textured_wall.png", self.asset_path + "/Samples/DR/Materials/Textures/checkered_color.png", ] material_list = [ self.asset_path + "/Samples/DR/Materials/checkered.mdl", self.asset_path + "/Samples/DR/Materials/checkered_color.mdl", self.asset_path + "/Samples/DR/Materials/marble_tile.mdl", self.asset_path + "/Samples/DR/Materials/picture_a.mdl", self.asset_path + "/Samples/DR/Materials/picture_b.mdl", self.asset_path + "/Samples/DR/Materials/textured_wall.mdl", ] light_list = ["World/Light1", "World/Light2"] self.texture_comp = self.dr_helper.create_texture_comp([], True, texture_list) self.color_comp = self.dr_helper.create_color_comp([]) self.material_comp = self.dr_helper.create_material_comp([], material_list) self.movement_comp = self.dr_helper.create_movement_comp([]) self.rotation_comp = self.dr_helper.create_rotation_comp([]) self.scale_comp = self.dr_helper.create_scale_comp([], max_range=(50, 50, 50)) self.light_comp = self.dr_helper.create_light_comp(light_list) self.visibility_comp = self.dr_helper.create_visibility_comp([]) def update_dr_comp(self, dr_comp): """Updates DR component with the asset prim paths that will be randomized""" comp_prim_paths_target = dr_comp.GetPrimPathsRel() comp_prim_paths_target.ClearTargets(True) # Add targets for all objects in scene (cube + distractors) for asset in self.assets: comp_prim_paths_target.AddTarget(asset.GetPrimPath()) # Can also add target for ground plane # comp_prim_paths_target.AddTarget("/World/Ground") def populate_scene(self): from omni.physx.scripts import utils """Clear the scene and populate it with assets.""" self.stage.RemovePrim("/World/Asset") self.assets = [] # Start simulation so we can check overlaps before spawning self.kit.play() # After every (n = self.empty_idx) scenes, generate a blank scene if (self.cur_idx % self.empty_idx) != 0: # Add random number of objects num_objects = random.randint(*self.range_num_assets) for i in range(num_objects): prim_type = random.choice(self.categories) prim_scale = random.uniform(*OBJECT_SCALE) new_asset = self.load_single_asset(prim_type, prim_scale, i) # Make sure valid object was returned before appending if new_asset: self.assets.append(new_asset) self.kit.update() else: print("Blank scene -------------------------------------------------------------") self.stage.RemovePrim("/World/Asset") self.assets = [] # Pick a new value for (n = self.empty_idx) self.empty_idx = floor(100 / random.uniform(*BLANK_SCENES)) def randomize_camera(self): """Randomize the camera position.""" # Clear previous transforms self.camera_rig.ClearXformOpOrder() # Change azimuth angle self.camera_rig.AddRotateYOp().Set(random.uniform(*AZIMUTH_ROTATION)) # Change elevation angle self.camera_rig.AddRotateXOp().Set(random.uniform(*ELEVATION_ROTATION)) # Move camera position (translate) translation_xyz = tuple(random.uniform(*CAM_TRANSLATION_XYZ) for _ in range(3)) self.camera_rig.AddTranslateOp().Set(translation_xyz) def randomize_lighting(self): self.stage.RemovePrim("/World/Light1") intens = random.uniform(*LIGHT_INTENSITY) self.kit.create_prim( "/World/Light1", "SphereLight", translation=(-450, 350, 350), attributes={"radius": 100, "intensity": intens, "color": (0.0, 0.365, 0.848)}, ) self.kit.update() # ITERATION---------------------------------------------- def __iter__(self): return self def __next__(self): print("next!------------------------------") # Generate a new scene self.populate_scene() self.randomize_camera() self.update_dr_comp(self.texture_comp) self.dr_helper.randomize_once() self.randomize_lighting() # Step once and then wait for materials to load self.kit.update() print("waiting for materials to load...") while self.kit.is_loading(): self.kit.update() print("done") self.kit.update() # Collect Groundtruth gt = self.sd_helper.get_groundtruth(["rgb", "boundingBox2DTight"], self.viewport) # RGB # Drop alpha channel image = gt["rgb"][..., :3] # Cast to tensor if numpy array if isinstance(gt["rgb"], np.ndarray): image = torch.tensor(image, dtype=torch.float, device="cuda") # Normalize between 0. and 1. and change order to channel-first. image = image.float() / 255.0 image = image.permute(2, 0, 1) # Bounding Box gt_bbox = gt["boundingBox2DTight"] # Create mapping from categories to index self.categories = ["None", "Cube", "Sphere", "Cone"] mapping = {cat: i + 1 for i, cat in enumerate(self.categories)} bboxes = torch.tensor(gt_bbox[["x_min", "y_min", "x_max", "y_max"]].tolist()) labels = torch.LongTensor([mapping[bb["semanticLabel"]] for bb in gt_bbox]) # If no objects present in view if bboxes.nelement() == 0: print("No object present in view") target = { "boxes": torch.zeros((0, 4), dtype=torch.float32), "labels": torch.tensor([1], dtype=torch.int64), "image_id": torch.LongTensor([self.cur_idx]), "area": torch.tensor(0, dtype=torch.float32), "iscrowd": torch.zeros((0,), dtype=torch.int64), } else: # Calculate bounding box area for each area areas = (bboxes[:, 2] - bboxes[:, 0]) * (bboxes[:, 3] - bboxes[:, 1]) # Identify invalid bounding boxes to filter final output valid_areas = (areas > 0.0) * (areas < (image.shape[1] * image.shape[2])) target = { "boxes": bboxes[valid_areas], "labels": labels[valid_areas], "image_id": torch.LongTensor([self.cur_idx]), "area": areas[valid_areas], "iscrowd": torch.BoolTensor([False] * len(bboxes[valid_areas])), # Assume no crowds } self.cur_idx += 1 return image, target if __name__ == "__main__": "Typical usage" import argparse import matplotlib.pyplot as plt dataset = RandomObjects() from omni.isaac.synthetic_utils import visualization as vis # Iterate through dataset and visualize the output plt.ion() _, axes = plt.subplots(1, 2, figsize=(10, 5)) plt.tight_layout() count = 0 for image, target in dataset: for ax in axes: ax.clear() ax.axis("off") np_image = image.permute(1, 2, 0).cpu().numpy() axes[0].imshow(np_image) num_instances = len(target["boxes"]) colours = vis.random_colours(num_instances, enable_random=False) categories = categories = ["None", "Cube", "Sphere", "Cone"] mapping = {i + 1: cat for i, cat in enumerate(categories)} labels = [mapping[label.item()] for label in target["labels"]] vis.plot_boxes(ax, target["boxes"].tolist(), labels=labels, colours=colours) plt.draw() plt.savefig("dataset.png") if dataset.exiting: break # cleanup dataset.kit.stop() dataset.kit.shutdown()
18,433
Python
40.147321
158
0.616015
KazWong/omniverse_sample/ov_sample/ros_samples/joint_control/ros_publisher.py
#!/usr/bin/env python # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import rospy from sensor_msgs.msg import JointState import numpy as np import time import argparse parser = argparse.ArgumentParser() parser.add_argument( "--mode", required=True, help="position: for joint position control. velocity for joint velocity control" ) args = parser.parse_args() rospy.init_node("test_rosbridge", anonymous=True) pub = rospy.Publisher("/joint_command", JointState, queue_size=10) joint_state = JointState() joint_state.name = [ "panda_joint1", "panda_joint2", "panda_joint3", "panda_joint4", "panda_joint5", "panda_joint6", "panda_joint7", "panda_finger_joint1", "panda_finger_joint2", ] num_joints = len(joint_state.name) # make sure kit's editor is playing for receiving messages ## if args.mode == "position": joint_state.position = np.array([0.0] * num_joints) default_joints = [0.0, -1.16, -0.0, -2.3, -0.0, 1.6, 1.1, 0.4, 0.4] # limiting the movements to a smaller range (this is not the range of the robot, just the range of the movement max_joints = np.array(default_joints) + 0.5 min_joints = np.array(default_joints) - 0.5 # position control the robot to wiggle around each joint time_start = time.time() rate = rospy.Rate(20) while not rospy.is_shutdown(): joint_state.position = np.sin(time.time() - time_start) * (max_joints - min_joints) * 0.5 + default_joints pub.publish(joint_state) rate.sleep() elif args.mode == "velocity": rate = rospy.Rate(0.5) joint_state.position = [] joint_state.velocity = np.array([-0.7] * num_joints) while not rospy.is_shutdown(): pub.publish(joint_state) rate.sleep() joint_state.velocity = -joint_state.velocity else: print("control mode error")
2,235
Python
28.421052
115
0.689485
KazWong/omniverse_sample/ov_sample/ros_samples/isaac_moveit/scripts/panda_finger_joint2_publisher.py
#!/usr/bin/env python # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. #!/usr/bin/env python import rospy from sensor_msgs.msg import JointState finger_joint2 = JointState() finger_joint2.name = ["panda_finger_joint2"] def joint_states_callback(message): for i, name in enumerate(message.name): if name == "panda_finger_joint1": pos = message.position[i] finger_joint2.position = [pos] pub.publish(finger_joint2) return if __name__ == "__main__": rospy.init_node("panda_finger_joint2_publisher") pub = rospy.Publisher("/joint_command", JointState, queue_size=1) rospy.Subscriber("/joint_command", JointState, joint_states_callback, queue_size=1) rospy.spin()
1,116
Python
32.848484
87
0.72043
KazWong/omniverse_sample/ov_sample/ros_samples/navigation/carter_2dnav/map/carter_warehouse_navigation.yaml
image: carter_warehouse_navigation.png resolution: 0.05 origin: [-10.325, -12.225, 0.0000] negate: 0 occupied_thresh: 0.65 free_thresh: 0.196
142
YAML
19.428569
38
0.739437
KazWong/omniverse_sample/ov_sample/ros_samples/navigation/carter_2dnav/params/base_local_planner_params.yaml
TrajectoryPlannerROS: holonomic_robot: false max_vel_x: 0.5 min_vel_x: 0.1 max_vel_theta: 0.8 min_vel_theta: -0.8 min_in_place_vel_theta: 0.4 acc_lim_theta: 0.2 acc_lim_x: 0.5 acc_lim_y: 0.0 xy_goal_tolerance: 0.15 yaw_goal_tolerance: 0.05 occdist_scale: 1.0 escape_vel: -0.1
303
YAML
19.266665
29
0.646865
KazWong/omniverse_sample/ov_sample/ros_samples/navigation/carter_2dnav/params/costmap_common_params.yaml
obstacle_range: 100 raytrace_range: 3 robot_radius: 0.5 inflation_radius: 0.15 observation_sources: laser_scan_sensor laser_scan_sensor: {sensor_frame: carter_lidar, data_type: LaserScan, topic: /scan, marking: true, clearing: true}
233
YAML
32.428567
114
0.772532
KazWong/omniverse_sample/ov_sample/ros_samples/navigation/carter_2dnav/params/global_costmap_params.yaml
global_costmap: global_frame: map robot_base_frame: base_link update_frequency: 1.0 publish_frequency: 0.5 static_map: true transform_tolerance: 0.5
161
YAML
19.249998
29
0.726708
KazWong/omniverse_sample/ov_sample/ros_samples/navigation/carter_2dnav/params/local_costmap_params.yaml
local_costmap: global_frame: odom robot_base_frame: base_link update_frequency: 5.0 publish_frequency: 2.0 static_map: false rolling_window: true width: 7.0 height: 7.0 resolution: 0.1 transform_tolerance: 0.5
230
YAML
18.249998
29
0.704348
KazWong/omniverse_sample/ov_sample/ros_samples/teleport/ros_pose_client.py
#!/usr/bin/env python # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from __future__ import print_function from isaac_ros_messages.srv import IsaacPose, IsaacPoseRequest from geometry_msgs.msg import Pose, Twist, Vector3 import rospy import numpy as np def send_pose_cube_client(new_pose): rospy.wait_for_service("/teleport_pos") try: send_pose = rospy.ServiceProxy("/teleport_pos", IsaacPose) send_pose(new_pose) except rospy.ServiceException as e: print("Service call failed: %s" % e) def compose_pose(pos_vec, quat_vec): obj_pose = Pose() obj_pose.position.x = pos_vec[0] obj_pose.position.y = pos_vec[1] obj_pose.position.z = pos_vec[2] obj_pose.orientation.w = quat_vec[0] obj_pose.orientation.x = quat_vec[1] obj_pose.orientation.y = quat_vec[2] obj_pose.orientation.z = quat_vec[3] return obj_pose def compose_twist(lx, ly, lz, ax, ay, az): obj_twist = Twist() obj_twist.linear.x = lx obj_twist.linear.y = ly obj_twist.linear.z = lz obj_twist.angular.x = ax obj_twist.angular.y = ay obj_twist.angular.z = az return obj_twist def compose_vec3(x, y, z): obj_scale = Vector3() obj_scale.x = x obj_scale.y = y obj_scale.z = z return obj_scale if __name__ == "__main__": rospy.init_node("test_ros_teleport", anonymous=True) new_isaac_pose_cube = IsaacPoseRequest() new_isaac_pose_cube.names = ["/Cube"] cube_pos_vec = np.array([0.0, 0.0, 0.0]) quat_vec = np.array([1, 0.0, 0.0, 0.0]) rate = rospy.Rate(1) # hz while not rospy.is_shutdown(): # new random pose cube_pos_vec = np.random.rand(3) * 0.1 cube_pose = compose_pose(cube_pos_vec, quat_vec) new_isaac_pose_cube.poses = [cube_pose] # publish send_pose_cube_client(new_isaac_pose_cube) rate.sleep()
2,264
Python
28.415584
76
0.661219
KazWong/omniverse_sample/script_window/read_robot_joint.py
from omni.isaac.dynamic_control import _dynamic_control dc = _dynamic_control.acquire_dynamic_control_interface() art = dc.get_articulation("/World/wheelbarrow") dof_states = dc.get_articulation_dof_states(art, _dynamic_control.STATE_ALL) #print(dof_states) back_left = dc.find_articulation_dof(art, "wheel_left_joint") back_right = dc.find_articulation_dof(art, "wheel_right_joint") back_left_state = dc.get_dof_state(back_left) back_right_state = dc.get_dof_state(back_right) #print(back_left_state.pos) #print(back_right_state.pos) agv_base_link = dc.find_articulation_body(art, "agv_base_link") base_footprint = dc.find_articulation_body(art, "base_footprint") wheel_center_link = dc.find_articulation_body(art, "wheel_center_link") agv_base_link_state = dc.get_rigid_body_angular_velocity(agv_base_link) base_footprint_state = dc.get_rigid_body_angular_velocity(base_footprint) wheel_center_link_state = dc.get_rigid_body_angular_velocity(wheel_center_link) print(agv_base_link_state) print(base_footprint_state) print(wheel_center_link_state)
1,057
Python
35.482757
79
0.768212
KazWong/omniverse_sample/script_window/move_robot_joint.py
from omni.isaac.dynamic_control import _dynamic_control dc = _dynamic_control.acquire_dynamic_control_interface() art = dc.get_articulation("/World/soap_odom/odom/robot") front_left = dc.find_articulation_dof(art, "wheel_front_left_joint") front_right = dc.find_articulation_dof(art, "wheel_front_right_joint") back_left = dc.find_articulation_dof(art, "wheel_back_left_joint") back_right = dc.find_articulation_dof(art, "wheel_back_right_joint") dc.wake_up_articulation(art) dc.set_dof_velocity_target(front_left, -3.14) dc.set_dof_velocity_target(front_right, 3.14) dc.set_dof_velocity_target(back_left, -3.14) dc.set_dof_velocity_target(back_right, 3.14)
662
Python
37.999998
70
0.758308
KazWong/omniverse_sample/script_window/check_collision.py
from omni.physx.scripts import utils stage = omni.usd.get_context().get_stage() omni.kit.commands.execute("CreateMeshPrimCommand", prim_type="Cube") cube_prim = stage.GetPrimAtPath("/World/Cube") UsdGeom.XformCommonAPI(cube_prim).SetTranslate((0,0,100.0)) utils.setRigidBody(cube_prim, "convexHull", False) import carb import omni.physx from omni.physx import get_physx_scene_query_interface counter = 0 # Defines a cubic region to check overlap with extent = carb.Float3(200.0, 200.0, 200.0) origin = carb.Float3(0.0, 0.0, 0.0) rotation = carb.Float4(0.0, 0.0, 1.0, 0.0) def report_hit(hit): return True while True: # physX query to detect number of hits for a cubic region numHits = get_physx_scene_query_interface().overlap_box(extent, origin, rotation, report_hit, False) print(numHits) # physX query to detect number of hits for a spherical region # numHits = get_physx_scene_query_interface().overlap_sphere(radius, origin, self.report_hit, False) if numHits > 0: print("collide") break
1,040
Python
30.545454
104
0.723077
KazWong/omniverse_sample/script_window/random_cube.py
from omni.physx.scripts import utils stage = omni.usd.get_context().get_stage() prim = stage.DefinePrim(f"/World/cube1", "Cube") UsdGeom.XformCommonAPI(prim).SetTranslate([500.0, 2.0, 60.0]) UsdGeom.XformCommonAPI(prim).SetScale((50.0, 50.0, 50.0)) prim_path = stage.GetPrimAtPath(f"/World/cube1") utils.setRigidBody(prim_path, "convexHull", False)
352
Python
31.090906
61
0.738636
KazWong/omniverse_sample/script_window/spawn_and_move.py
import carb import omni import omni.kit.app import time from pxr import UsdGeom, Gf, Sdf from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server #from omni.isaac.dynamic_control import _dynamic_control from omni.physx.scripts import utils from omni.isaac.dynamic_control import _dynamic_control result, nucleus = find_nucleus_server() stage = omni.usd.get_context().get_stage() prefix = "/World/soap_odom" prim_path = omni.usd.get_stage_next_free_path(stage, prefix, False) print(prim_path) robot_prim = stage.DefinePrim(prim_path, "Xform") robot_prim.GetReferences().AddReference(nucleus + "/Library/Robots/Soap_0/soap_odom.usd") omni.timeline.get_timeline_interface().play() print("play") dc = _dynamic_control.acquire_dynamic_control_interface() art = dc.get_articulation("/World/soap_odom/odom/robot") front_left = dc.find_articulation_dof(art, "wheel_front_left_joint") front_right = dc.find_articulation_dof(art, "wheel_front_right_joint") back_left = dc.find_articulation_dof(art, "wheel_back_left_joint") back_right = dc.find_articulation_dof(art, "wheel_back_right_joint") dc.wake_up_articulation(art) app = omni.kit.app.get_app() while not app.is_running(): time.sleep(1.0) print("running") dc.set_dof_velocity_target(front_left, -3.14) dc.set_dof_velocity_target(front_right, 3.14) dc.set_dof_velocity_target(back_left, -3.14) dc.set_dof_velocity_target(back_right, 3.14) while not app.is_running(): app.update() #omni.timeline.get_timeline_interface().stop()
1,504
Python
27.396226
89
0.753324
KazWong/omniverse_sample/script_window/teleport_cube_on_run.py
from omni.isaac.dynamic_control import _dynamic_control dc = _dynamic_control.acquire_dynamic_control_interface() cube = dc.get_rigid_body(f"/World/cube1") dc.wake_up_rigid_body(cube) tf = _dynamic_control.Transform( (250.0, 250.0, 500.0), (0.0, 0.0, 0.0, 1.0)) dc.set_rigid_body_pose(cube, tf)
298
Python
28.899997
77
0.711409
KazWong/omniverse_sample/load_env_robot/test_env.py
import numpy as np class Env_config: def __init__(self, omni, kit): self.usd_path = "omniverse://localhost/Library/Robots/config_robot/robot_event_cam.usd" self.kit = kit self.omni = omni def create_objects(self, cube_num, cylinder_num, sphere_num): from pxr import UsdGeom, Gf, PhysxSchema, UsdPhysics, Sdf, PhysicsSchemaTools from omni.physx.scripts import utils TRANSLATION_RANGE = 500.0 object_list = [] # create cube stage = self.kit.get_stage() for num in range(cube_num): # create first cube result, path = self.omni.kit.commands.execute("CreateMeshPrimCommand", prim_type="Cube") if num == 0: object_list.append("/World/Cube") continue if num < 10: object_list.append("/World/Cube_0"+str(num)) else: object_list.append("/World/Cube_"+str(num)) # create cylinder for num in range(cylinder_num): # create first cylinder result, path = self.omni.kit.commands.execute("CreateMeshPrimCommand", prim_type="Cylinder") if num == 0: object_list.append("/World/Cylinder") continue if num < 10: object_list.append("/World/Cylinder_0"+str(num)) else: object_list.append("/World/Cylinder_"+str(num)) # create sphere for num in range(sphere_num): # create first sphere result, path = self.omni.kit.commands.execute("CreateMeshPrimCommand", prim_type="Sphere") if num == 0: object_list.append("/World/Sphere") continue if num < 10: object_list.append("/World/Sphere_0"+str(num)) else: object_list.append("/World/Sphere_"+str(num)) for mesh in object_list: translation = np.random.rand(3) * TRANSLATION_RANGE translation[2] = 40.0 cube_prim = stage.GetPrimAtPath(mesh) UsdGeom.XformCommonAPI(cube_prim).SetTranslate(translation.tolist()) #UsdGeom.XformCommonAPI(cube_prim).SetRotate((0.0, 0.0, 0.0)) #UsdGeom.XformCommonAPI(cube_prim).SetScale((30.0, 30.0, 30.0)) utils.setRigidBody(cube_prim, "convexHull", False) utils.setCollider(cube_prim, approximationShape="convexHull") return object_list def domain_randomization_test(self, target_list): import omni.isaac.dr as dr dr_interface = dr._dr.acquire_dr_interface() asset_path = "omniverse://localhost/Isaac" # List of textures to randomize from texture_list = [ asset_path + "/Samples/DR/Materials/Textures/checkered.png", asset_path + "/Samples/DR/Materials/Textures/marble_tile.png", asset_path + "/Samples/DR/Materials/Textures/picture_a.png", asset_path + "/Samples/DR/Materials/Textures/picture_b.png", asset_path + "/Samples/DR/Materials/Textures/textured_wall.png", asset_path + "/Samples/DR/Materials/Textures/checkered_color.png", ] # domain randomization on position result, prim = self.omni.kit.commands.execute( 'CreateMovementComponentCommand', path='/World/movement_component', prim_paths=target_list, min_range=(-600.0, -600.0, 50.0), max_range=(600.0, 600.0, 50.0), target_position=None, target_paths=None, duration=1, include_children=False, seed=12345) # domain randomization on textures #result, prim = self.omni.kit.commands.execute( # "CreateTextureComponentCommand", # path='/World/texture_component', # prim_paths=target_list, # enable_project_uvw=False, # texture_list=texture_list, # duration=1, # include_children=False, # seed=12345) # domain randomization on scale result, prim = self.omni.kit.commands.execute( 'CreateScaleComponentCommand', path='/World/scale_component', prim_paths=target_list, min_range=(0.5, 0.5, 1), max_range=(2.0, 2.0, 1), uniform_scaling=False, duration=1, include_children=False, seed=12345) dr_interface.toggle_manual_mode()
4,631
Python
39.278261
104
0.556467
KazWong/omniverse_sample/load_env_robot/load_env_robot.py
import numpy as np import random import os import sys import signal import argparse from argparse import Namespace from omni.isaac.python_app import OmniKitHelper def Run(args): startup_config = { "renderer": "RayTracedLighting", "headless": args.headless, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', } kit = OmniKitHelper(startup_config) #include after kit import carb import omni import omni.kit.app from pxr import UsdGeom, Gf, Sdf from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server #from omni.isaac.dynamic_control import _dynamic_control from omni.physx.scripts import utils result, nucleus = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server, exiting") exit() # enable extension ext_manager = omni.kit.app.get_app().get_extension_manager() ext_manager.set_extension_enabled_immediate("omni.isaac.ros_bridge", True) ext_manager.set_extension_enabled_immediate("omni.kit.window.stage", True) #load environment env_path = nucleus + args.env_path print(env_path) omni.usd.get_context().open_stage(env_path, None) #random 10 objects stage = kit.get_stage() TRANSLATION_RANGE = 1000.0 SCALE = 30.0 for i in range(10): prim_type = random.choice(["Cube", "Sphere", "Cylinder"]) prim = stage.DefinePrim(f"/World/cube{i}", prim_type) translation = np.random.rand(3) * TRANSLATION_RANGE translation[2] = 40.0 UsdGeom.XformCommonAPI(prim).SetTranslate(translation.tolist()) UsdGeom.XformCommonAPI(prim).SetScale((SCALE, SCALE, SCALE)) #prim.GetAttribute("primvars:displayColor").Set([np.random.rand(3).tolist()]) prim_path = stage.GetPrimAtPath(f"/World/cube{i}") utils.setRigidBody(prim_path, "convexHull", False) #load robot translation = np.random.rand(3) * TRANSLATION_RANGE angle = np.random.rand(1) prefix = "/World/soap_odom" prim_path = omni.usd.get_stage_next_free_path(stage, prefix, False) print(prim_path) robot_prim = stage.DefinePrim(prim_path, "Xform") robot_prim.GetReferences().AddReference(args.robo_path) xform = UsdGeom.Xformable(robot_prim) xform_op = xform.AddXformOp(UsdGeom.XformOp.TypeTransform, UsdGeom.XformOp.PrecisionDouble, "") mat = Gf.Matrix4d().SetTranslate(translation.tolist()) mat.SetRotateOnly(Gf.Rotation(Gf.Vec3d(0, 0, 1), (angle[0]))) xform_op.Set(mat) kit.app.update() kit.app.update() print("Loading stage...") while kit.is_loading(): kit.update(1.0 / 60.0) print("Loading Complete") omni.kit.commands.execute( "ChangeProperty", prop_path=Sdf.Path("/World/soap_odom/odom/robot/agv_lidar/ROS_Lidar.enabled"), value=True, prev=None) omni.kit.commands.execute( "ChangeProperty", prop_path=Sdf.Path("/World/soap_odom/odom/robot/ROS_PoseTree.enabled"), value=True, prev=None) omni.kit.commands.execute( "ChangeProperty", prop_path=Sdf.Path("/World/soap_odom/odom/robot/ROS_JointState.enabled"), value=True, prev=None) omni.kit.commands.execute("ChangeProperty", prop_path=Sdf.Path("/World/ROS_Clock.enabled"), value=True, prev=None) kit.play() while kit.app.is_running(): # Run in realtime mode, we don't specify the step size kit.update() kit.stop() kit.shutdown() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--headless", help="run in headless mode (no GUI)", action="store_true") parser.add_argument("--env_path", type=str, help="Path to environment usd file", required=True) parser.add_argument("--robo_path", type=str, help="Path to robot usd file", required=True) args = parser.parse_args() print("running with args: ", args) def handle_exit(*args, **kwargs): print("Exiting...") quit() signal.signal(signal.SIGINT, handle_exit) Run(args)
3,768
Python
30.672269
127
0.718684
KazWong/omniverse_sample/load_env_robot/load_env_robot_edited.py
import numpy as np import random import os import sys import signal import argparse from argparse import Namespace from test_env import Env_config from test_robot import Robot_config from omni.isaac.python_app import OmniKitHelper def Run(args): startup_config = { "renderer": "RayTracedLighting", "headless": args.headless, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', } kit = OmniKitHelper(startup_config) #include after kit import carb import omni import omni.kit.app from pxr import UsdGeom, Gf, Sdf, UsdPhysics from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server #from omni.isaac.dynamic_control import _dynamic_control from omni.physx.scripts import utils result, nucleus = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server, exiting") exit() # enable extension ext_manager = omni.kit.app.get_app().get_extension_manager() ext_manager.set_extension_enabled_immediate("omni.isaac.ros_bridge", True) ext_manager.set_extension_enabled_immediate("omni.kit.window.stage", True) #load environment env_path = nucleus + args.env_path print(env_path) omni.usd.get_context().open_stage(env_path, None) test_env = Env_config(omni,kit) # create objects obj_list = test_env.create_objects(4,4,4) import omni.isaac.dr as dr dr_interface = dr._dr.acquire_dr_interface() #print(obj_list) # domain randomization test_env.domain_randomization_test(obj_list) # load robot stage = kit.get_stage() TRANSLATION_RANGE = 1000.0 translation = np.random.rand(3) * TRANSLATION_RANGE angle = np.random.rand(1) prefix = "/World/soap_odom" prim_path = omni.usd.get_stage_next_free_path(stage, prefix, False) print(prim_path) robot_prim = stage.DefinePrim(prim_path, "Xform") robot_prim.GetReferences().AddReference(args.robo_path) xform = UsdGeom.Xformable(robot_prim) xform_op = xform.AddXformOp(UsdGeom.XformOp.TypeTransform, UsdGeom.XformOp.PrecisionDouble, "") mat = Gf.Matrix4d().SetTranslate(translation.tolist()) mat.SetRotateOnly(Gf.Rotation(Gf.Vec3d(0, 0, 1), (angle[0]))) xform_op.Set(mat) DRIVE_STIFFNESS = 10000.0 # Set joint drive parameters wheel_back_left_joint = UsdPhysics.DriveAPI.Apply(stage.GetPrimAtPath(f"{prim_path}/agv_base_link/wheel_back_left_joint"), "angular") wheel_back_left_joint.GetDampingAttr().Set(DRIVE_STIFFNESS) wheel_back_right_joint = UsdPhysics.DriveAPI.Apply(stage.GetPrimAtPath(f"{prim_path}/agv_base_link/wheel_back_right_joint"), "angular") wheel_back_right_joint.GetDampingAttr().Set(DRIVE_STIFFNESS) wheel_front_left_joint = UsdPhysics.DriveAPI.Apply(stage.GetPrimAtPath(f"{prim_path}/agv_base_link/wheel_front_left_joint"), "angular") wheel_front_left_joint.GetDampingAttr().Set(DRIVE_STIFFNESS) wheel_front_right_joint = UsdPhysics.DriveAPI.Apply(stage.GetPrimAtPath(f"{prim_path}/agv_base_link/wheel_front_right_joint"), "angular") wheel_front_right_joint.GetDampingAttr().Set(DRIVE_STIFFNESS) kit.app.update() kit.app.update() print("Loading stage...") while kit.is_loading(): kit.update(1.0 / 60.0) print("Loading Complete") #from omni.isaac import RosBridgeSchema #omni.kit.commands.execute('ROSBridgeCreatePoseTree', path='/World/soap_odom/ROS_PoseTree', parent=None) #omni.kit.commands.execute("ChangeProperty", prop_path=Sdf.Path("/World/soap_odom/ROS_PoseTree.enabled"), value=True, prev=None) #omni.kit.commands.execute('RosBridgeCreatePrim', path='/ROS_PoseTree', parent=None, enabled=True, scehma_type=<class 'omni.isaac.RosBridgeSchema.RosPoseTree'>) # add ros joint state #omni.kit.commands.execute('ROSBridgeCreateJointState', path='/World/soap_odom/ROS_JointState', parent=None) #omni.kit.commands.execute("ChangeProperty", prop_path=Sdf.Path("/World/soap_odom/ROS_JointState.enabled"), value=True, prev=None) #omni.kit.commands.execute('RosBridgeCreatePrim', path='/World/soap_odom/ROS_JointState', parent=None, enabled=True, scehma_type=<class 'omni.isaac.RosBridgeSchema.RosJointState'>) # add ros lidar #omni.kit.commands.execute('ROSBridgeCreateLidar', path='/World/soap_odom/agv_lidar/ROS_Lidar', parent=None) #omni.kit.commands.execute('RosBridgeCreatePrim', path='/World/soap_odom/agv_lidar/ROS_Lidar', parent=None, enabled=True, scehma_type=<class 'omni.isaac.RosBridgeSchema.RosLidar'>) # add ros clock omni.kit.commands.execute('ROSBridgeCreateClock',path='/ROS_Clock',parent=None) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path('/World/ROS_Clock.queueSize'), value=0, prev=10) #omni.kit.commands.execute("ChangeProperty", prop_path=Sdf.Path("/World/soap_odom/agv_lidar/ROS_Lidar.enabled"), value=True, prev=None) #omni.kit.commands.execute("ChangeProperty", prop_path=Sdf.Path("/World/soap_odom/ROS_PoseTree.enabled"), value=True, prev=None) #omni.kit.commands.execute("ChangeProperty", prop_path=Sdf.Path("/World/soap_odom/ROS_JointState.enabled"), value=True, prev=None) #omni.kit.commands.execute("ChangeProperty", prop_path=Sdf.Path("/World/ROS_Clock.enabled"), value=True, prev=None) kit.play() test_rob = Robot_config(stage, omni, robot_prim) # initial robot test_rob.teleport((0,0,30), 0) while kit.app.is_running(): # Run in realtime mode, we don't specify the step size if test_rob.check_overlap_box() == True: # # reset robot to origin print("colide!!, reset robot") test_rob.teleport((0,0,30), 0) dr_interface.randomize_once() #test_rob.check_overlap_box() kit.update() kit.stop() kit.shutdown() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--headless", help="run in headless mode (no GUI)", action="store_true") parser.add_argument("--env_path", type=str, help="Path to environment usd file", required=True) parser.add_argument("--robo_path", type=str, help="Path to robot usd file", required=True) args = parser.parse_args() print("running with args: ", args) def handle_exit(*args, **kwargs): print("Exiting...") quit() signal.signal(signal.SIGINT, handle_exit) Run(args)
6,073
Python
40.602739
184
0.739009
KazWong/omniverse_sample/load_env_robot/test_robot.py
import numpy as np class Robot_config: def __init__(self, stage, omni, robot_prim): self.usd_path = "omniverse://localhost/Library/Robots/config_robot/robot_event_cam.usd" self.omni = omni from omni.isaac.dynamic_control import _dynamic_control self.dc = _dynamic_control.acquire_dynamic_control_interface() self.omni = omni self.robot_prim = robot_prim self.ar = None self.stage = stage def teleport(self, location, rotation, settle=False): from pxr import Gf from omni.isaac.dynamic_control import _dynamic_control print("before teleport", self.ar) #if self.ar is None: print(type(self.robot_prim.GetPath().pathString), self.robot_prim.GetPath().pathString) self.ar = self.dc.get_articulation(self.robot_prim.GetPath().pathString) print("after teleport", self.ar) chassis = self.dc.get_articulation_root_body(self.ar) self.dc.wake_up_articulation(self.ar) rot_quat = Gf.Rotation(Gf.Vec3d(0, 0, 1), rotation).GetQuaternion() tf = _dynamic_control.Transform( location, (rot_quat.GetImaginary()[0], rot_quat.GetImaginary()[1], rot_quat.GetImaginary()[2], rot_quat.GetReal()), ) self.dc.set_rigid_body_pose(chassis, tf) self.dc.set_rigid_body_linear_velocity(chassis, [0, 0, 0]) self.dc.set_rigid_body_angular_velocity(chassis, [0, 0, 0]) self.command((-20, 20, -20, 20)) # Settle the robot onto the ground if settle: frame = 0 velocity = 1 while velocity > 0.1 and frame < 120: self.omni.usd.get_context().update(1.0 / 60.0) lin_vel = self.dc.get_rigid_body_linear_velocity(chassis) velocity = np.linalg.norm([lin_vel.x, lin_vel.y, lin_vel.z]) frame = frame + 1 def command(self,motor_value): chassis = self.dc.get_articulation_root_body(self.ar) #num_joints = self.dc.get_articulation_joint_count(self.ar) #num_dofs = self.dc.get_articulation_dof_count(self.ar) #num_bodies = self.dc.get_articulation_body_count(self.ar) wheel_back_left = self.dc.find_articulation_dof(self.ar, "wheel_back_left_joint") wheel_back_right = self.dc.find_articulation_dof(self.ar, "wheel_back_right_joint") wheel_front_left = self.dc.find_articulation_dof(self.ar, "wheel_front_left_joint") wheel_front_right = self.dc.find_articulation_dof(self.ar, "wheel_front_right_joint") self.dc.wake_up_articulation(self.ar) wheel_back_left_speed = self.wheel_speed_from_motor_value(motor_value[0]) wheel_back_right_speed = self.wheel_speed_from_motor_value(motor_value[1]) wheel_front_left_speed = self.wheel_speed_from_motor_value(motor_value[2]) wheel_front_right_speed = self.wheel_speed_from_motor_value(motor_value[3]) self.dc.set_dof_velocity_target(wheel_back_left, np.clip(wheel_back_left_speed, -10, 10)) self.dc.set_dof_velocity_target(wheel_back_right, np.clip(wheel_back_right_speed, -10, 10)) self.dc.set_dof_velocity_target(wheel_front_left, np.clip(wheel_front_left_speed, -10, 10)) self.dc.set_dof_velocity_target(wheel_front_right, np.clip(wheel_front_right_speed, -10, 10)) # idealized motor model def wheel_speed_from_motor_value(self, motor_input): print("speed is ",motor_input) return motor_input def check_overlap_box(self): # Defines a cubic region to check overlap with import omni.physx from omni.physx import get_physx_scene_query_interface import carb #print("*"*50) chassis = self.dc.get_articulation_root_body(self.ar) robot_base_pose = self.dc.get_rigid_body_pose(chassis) #print("chassis is ", chassis) #print("pose is ", robot_base_pose) print("pose is ", robot_base_pose.p) #print("*"*50) extent = carb.Float3(38.0, 26.0, 5.0) # origin = carb.Float3(0.0, 0.0, 0.0) origin = robot_base_pose.p rotation = carb.Float4(0.0, 0.0, 1.0, 0.0) # physX query to detect number of hits for a cubic region numHits = get_physx_scene_query_interface().overlap_box(extent, origin, rotation, self.report_hit, False) print("num of overlaps ", numHits) # physX query to detect number of hits for a spherical region # numHits = get_physx_scene_query_interface().overlap_sphere(radius, origin, self.report_hit, False) #self.kit.update() return numHits > 1 def report_hit(self, hit): from pxr import UsdGeom, Gf, Vt # When a collision is detected, the object colour changes to red. # hitColor = Vt.Vec3fArray([Gf.Vec3f(180.0 / 255.0, 16.0 / 255.0, 0.0)]) # usdGeom = UsdGeom.Mesh.Get(self.stage, hit.rigid_body) # usdGeom.GetDisplayColorAttr().Set(hitColor) return True
5,081
Python
47.4
117
0.623696
KazWong/omniverse_sample/load_env_robot/README.md
# load_env_robot This sample integral three functions: 1. Use OmniHelper to run omniverse 2. load environment 3. add rigid body and random position and orientation 4. load robot and enable ROS_bridge 5. random robot position and orientation
243
Markdown
23.399998
53
0.798354
KazWong/omniverse_sample/omnihelper/check_collision.py
import numpy as np import random import os import sys import signal import argparse from argparse import Namespace from omni.isaac.python_app import OmniKitHelper def check_overlap_box(): # Defines a cubic region to check overlap with import omni.physx from omni.physx import get_physx_scene_query_interface import carb #print("*"*50) extent = carb.Float3(50.0, 50.0, 50.0) origin = carb.Float3(0.0, 0.0, 0.0) rotation = carb.Float4(0.0, 0.0, 1.0, 0.0) # physX query to detect number of hits for a cubic region numHits = get_physx_scene_query_interface().overlap_box(extent, origin, rotation, report_hit, False) print("num of overlaps ", numHits) # physX query to detect number of hits for a spherical region # numHits = get_physx_scene_query_interface().overlap_sphere(radius, origin, self.report_hit, False) #self.kit.update() return numHits > 1 def report_hit(hit): #from pxr import UsdGeom, Gf, Vt #stage = kit.get_stage() ## When a collision is detected, the object colour changes to red. #hitColor = Vt.Vec3fArray([Gf.Vec3f(180.0 / 255.0, 16.0 / 255.0, 0.0)]) #usdGeom = UsdGeom.Mesh.Get(stage, hit.rigid_body) #usdGeom.GetDisplayColorAttr().Set(hitColor) return True def Run(args): startup_config = { "renderer": "RayTracedLighting", "headless": args.headless, "experience": f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.kit', } kit = OmniKitHelper(startup_config) #include after kit import carb import omni import omni.kit.app from pxr import UsdGeom, Gf, Sdf, UsdPhysics from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server from omni.physx.scripts import utils result, nucleus = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server, exiting") exit() ext_manager = omni.kit.app.get_app().get_extension_manager() ext_manager.set_extension_enabled_immediate("omni.isaac.ros_bridge", True) ext_manager.set_extension_enabled_immediate("omni.kit.window.stage", True) env_path = nucleus + args.env_path print(env_path) omni.usd.get_context().open_stage(env_path, None) stage = kit.get_stage() omni.kit.commands.execute("CreateMeshPrimCommand", prim_type="Cube") cube_prim = stage.GetPrimAtPath("/World/Cube") UsdGeom.XformCommonAPI(cube_prim).SetTranslate((0,0,100)) utils.setRigidBody(cube_prim, "convexHull", False) kit.app.update() kit.app.update() print("Loading stage...") while kit.is_loading(): kit.update(1.0 / 60.0) print("Loading Complete") kit.play() while kit.app.is_running(): # Run in realtime mode, we don't specify the step size if check_overlap_box() == True: # # reset robot to origin print("colide!!") kit.update() kit.stop() kit.shutdown() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--headless", help="run in headless mode (no GUI)", action="store_true") parser.add_argument("--env_path", type=str, help="Path to environment usd file", required=True) args = parser.parse_args() Run(args)
3,098
Python
29.99
104
0.698515
Moetassem/OmniverseLegRotateExtension/README.md
# Extension Project Template This project was automatically generated. - "app" - It is a folder link to the location of your *Omniverse Kit* based app. - "exts" - It is a folder where you can add new extensions. It was automatically added to extension search path. (Extension Manager -> Gear Icon -> Extension Search Path). Open this folder using Visual Studio Code. It will suggest you to install few extensions that will make python experience better. Look for "omni.gym.4LegRL" extension in extension manager and enable it. Try applying changes to any python files, it will hot-reload and you can observe results immediately. # Sharing Your Extensions This folder is ready to be pushed to any git repository. Once pushed direct link to a git repository can be added to *Omniverse Kit* extension search paths. Link might look like this: `git://github.com/[user]/[your_repo].git?branch=main&dir=exts` git://github.com/Moetassem/OmniverseLegRotateExtension.git?branch=master&dir=exts Notice `exts` is repo subfolder with extensions. More information can be found in "Git URL as Extension Search Paths" section of developers manual. To add a link to your *Omniverse Kit* based app go into: Extension Manager -> Gear Icon -> Extension Search Path
1,257
Markdown
53.69565
174
0.778839
Moetassem/OmniverseLegRotateExtension/exts/omni.gym.4LegRL/config/extension.toml
[package] # Semantic Versionning is used: https://semver.org/ version = "1.0.0" # The title and description fields are primarily for displaying extension info in UI title = "Simple UI Extension Template" description="The simplest python extension example. Use it as a starting point for your extensions." # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "" # One of categories for UI. category = "Example" # Keywords for the extension keywords = ["kit", "example"] # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} "omni.kit.pipapi" = {} # [python.pipapi] # requirements = ["gym"] # SWIPAT filed under: http://nvbugs/3193231 # Main python module this extension provides, it will be publicly available as "import omni.hello.world". [[python.module]] name = "omni.gym.4LegRL"
908
TOML
27.406249
105
0.731278
Moetassem/OmniverseLegRotateExtension/exts/omni.gym.4LegRL/omni/gym/4LegRL/Model.py
import omni.ui as ui class Model(ui.SimpleFloatModel): def __init__(self, stage, prim_path: str, axis: str): axes = ['x', 'y', 'z'] if axis not in axes: raise ValueError("Invalid sim type. Expected one of: %s" % axes) self.stage = stage self.prim_path = prim_path self.axis = axis self.axisIndex = axes.index(axis) self.prim = self.stage.GetPrimAtPath(self.prim_path) self.primRots = self.prim.GetAttribute('xformOp:rotateXYZ').Get() super().__init__(self.primRots[self.axisIndex]) def getAxisIndex(self): return self.axisIndex def getPrimPath(self): return self.prim_path # def setPrimPath(self, new_prim_path: str): # _value_changed() # self.prim_path = new_prim_path def _value_changed(self) -> None: return super()._value_changed()
884
Python
31.777777
76
0.602941
Moetassem/OmniverseLegRotateExtension/exts/omni.gym.4LegRL/omni/gym/4LegRL/extension.py
import omni.ext import omni.usd import omni.ui as ui import omni.kit.commands from pxr import Usd, Gf, Tf, Trace import carb import carb.events from .Model import * import traceback import asyncio # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class MyExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def __init__(self): self.context = None self.stage = None self.selection = None self.xmodel = None self.zmodel = None # self.app = omni.kit.app.get_app() # pass def on_startup(self, ext_id): print("[omni.gym.4LegRL] MyExtension startup") self.context = omni.usd.get_context() self.stage = self.context.get_stage() self.selection = self.context.get_selection() self.listener = Tf.Notice.Register(Usd.Notice.ObjectsChanged, self._on_change_event, self.stage) self._window = ui.Window("My Window", width=300, height=300, dockPreference=ui.DockPreference.RIGHT_BOTTOM) self.load_window() def _on_selection_event(e: carb.events.IEvent): if e.type==int(omni.usd.StageEventType.SELECTION_CHANGED): self.load_window() # print(f"Selection Changed!: %s \n" % str(self.context.get_selection().get_selected_prim_paths())) self.selection_event_sub = ( self.context.get_stage_event_stream().create_subscription_to_pop(_on_selection_event, name="Selection") ) def load_window(self): if len(self.context.get_selection().get_selected_prim_paths()) > 1: with self._window.frame: with ui.VStack(): ui.Label("Select only one component") elif len(self.context.get_selection().get_selected_prim_paths()) == 1: self.primSelectedPath = self.context.get_selection().get_selected_prim_paths()[0] self.xmodel = Model(self.stage, self.primSelectedPath, "x") self.zmodel = Model(self.stage, self.primSelectedPath, "z") def _on_slider_change(self): if self.axisIndex == 0: # await omni.kit.app.get_app().next_update_async() omni.kit.commands.execute('ChangePropertyCommand', prop_path=self.prim_path+'.xformOp:rotateXYZ', value= Gf.Vec3d(self.get_value_as_float(),self.primRots[1],self.primRots[2]), prev=self.primRots) elif self.axisIndex == 2: # await omni.kit.app.get_app().next_update_async() omni.kit.commands.execute('ChangePropertyCommand', prop_path=self.prim_path+'.xformOp:rotateXYZ', value= Gf.Vec3d(self.primRots[0],self.primRots[1],self.get_value_as_float()), prev=self.primRots) self.xmodel.add_value_changed_fn(_on_slider_change) self.zmodel.add_value_changed_fn(_on_slider_change) with self._window.frame: with ui.VStack(): ui.Label(f"Prim Selected: '{(self.primSelectedPath)}'") with ui.HStack(): ui.Spacer(height=ui.Percent(10)) ui.FloatSlider(self.xmodel, min=-30, max=30) ui.Spacer(height=ui.Percent(20)) ui.FloatSlider(self.zmodel, min=-30, max=30) ui.Spacer(height=ui.Percent(20)) else: with self._window.frame: with ui.VStack(): ui.Label("Select a Prim first") @Trace.TraceFunction def _on_change_event(self, notice, stage): # await omni.kit.app.get_app().next_update_async() self.load_window() def on_shutdown(self): print("[omni.gym.4LegRL] MyExtension shutdown")
4,517
Python
44.636363
119
0.552801
Moetassem/OmniverseLegRotateExtension/exts/omni.gym.4LegRL/omni/gym/4LegRL/__init__.py
from .extension import * from .Model import *
45
Python
21.999989
24
0.755556
xyang2013/kit-exts-command-library/README.md
# Extension Project Template This project was automatically generated. - `app` - It is a folder link to the location of your *Omniverse Kit* based app. - `exts` - It is a folder where you can add new extensions. It was automatically added to extension search path. (Extension Manager -> Gear Icon -> Extension Search Path). Open this folder using Visual Studio Code. It will suggest you to install few extensions that will make python experience better. Look for "dli.example.command_library" extension in extension manager and enable it. Try applying changes to any python files, it will hot-reload and you can observe results immediately. Alternatively, you can launch your app from console with this folder added to search path and your extension enabled, e.g.: ``` > app\omni.code.bat --ext-folder exts --enable company.hello.world ``` # App Link Setup If `app` folder link doesn't exist or broken it can be created again. For better developer experience it is recommended to create a folder link named `app` to the *Omniverse Kit* app installed from *Omniverse Launcher*. Convenience script to use is included. Run: ``` > link_app.bat ``` If successful you should see `app` folder link in the root of this repo. If multiple Omniverse apps is installed script will select recommended one. Or you can explicitly pass an app: ``` > link_app.bat --app create ``` You can also just pass a path to create link to: ``` > link_app.bat --path "C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4" ``` # Sharing Your Extensions This folder is ready to be pushed to any git repository. Once pushed direct link to a git repository can be added to *Omniverse Kit* extension search paths. Link might look like this: `git://github.com/[user]/[your_repo].git?branch=main&dir=exts` Notice `exts` is repo subfolder with extensions. More information can be found in "Git URL as Extension Search Paths" section of developers manual. To add a link to your *Omniverse Kit* based app go into: Extension Manager -> Gear Icon -> Extension Search Path
2,051
Markdown
37.71698
258
0.757679
xyang2013/kit-exts-command-library/tools/scripts/link_app.py
import argparse import json import os import sys import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,814
Python
32.117647
133
0.562189
xyang2013/kit-exts-command-library/tools/packman/config.packman.xml
<config remotes="cloudfront"> <remote2 name="cloudfront"> <transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" /> </remote2> </config>
211
XML
34.333328
123
0.691943
xyang2013/kit-exts-command-library/tools/packman/bootstrap/install_package.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import shutil import sys import tempfile import zipfile __author__ = "hfannar" logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") class TemporaryDirectory: def __init__(self): self.path = None def __enter__(self): self.path = tempfile.mkdtemp() return self.path def __exit__(self, type, value, traceback): # Remove temporary data created shutil.rmtree(self.path) def install_package(package_src_path, package_dst_path): with zipfile.ZipFile(package_src_path, allowZip64=True) as zip_file, TemporaryDirectory() as temp_dir: zip_file.extractall(temp_dir) # Recursively copy (temp_dir will be automatically cleaned up on exit) try: # Recursive copy is needed because both package name and version folder could be missing in # target directory: shutil.copytree(temp_dir, package_dst_path) except OSError as exc: logger.warning("Directory %s already present, packaged installation aborted" % package_dst_path) else: logger.info("Package successfully installed to %s" % package_dst_path) install_package(sys.argv[1], sys.argv[2])
1,844
Python
33.166666
108
0.703362
xyang2013/kit-exts-command-library/exts/dli.example.command_library/config/extension.toml
[package] # Semantic Versioning is used: https://semver.org/ version = "1.0.0" # Lists people or organizations that are considered the "authors" of the package. authors = ["NVIDIA"] # The title and description fields are primarily for displaying extension info in UI title = "dli example command_library" description="A simple python extension example to use as a starting point for your extensions." # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "" # One of categories for UI. category = "Example" # Keywords for the extension keywords = ["kit", "example"] # Location of change log file in target (final) folder of extension, relative to the root. # More info on writing changelog: https://keepachangelog.com/en/1.0.0/ changelog="docs/CHANGELOG.md" # Preview image and icon. Folder named "data" automatically goes in git lfs (see .gitattributes file). # Preview image is shown in "Overview" of Extensions window. Screenshot of an extension might be a good preview image. preview_image = "data/preview.png" # Icon is shown in Extensions window, it is recommended to be square, of size 256x256. icon = "data/icon.png" # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} # Main python module this extension provides, it will be publicly available as "import dli.example.command_library". [[python.module]] name = "dli.example.command_library" [[test]] # Extra dependencies only to be used during test run dependencies = [ "omni.kit.ui_test" # UI testing extension ]
1,607
TOML
32.499999
118
0.747355
xyang2013/kit-exts-command-library/exts/dli.example.command_library/dli/example/command_library/extension.py
import omni.kit.commands import omni.usd from typing import List import omni.ui as ui class ScaleIncrement(omni.kit.commands.Command): def __init__(self, prim_paths: List[str]): self.prim_paths = prim_paths self.stage = omni.usd.get_context().get_stage() def set_scale(self, undo: bool = False): for path in self.prim_paths: prim = self.stage.GetPrimAtPath(path) old_scale = prim.GetAttribute('xformOp:scale').Get() new_scale = tuple(x + 1 for x in old_scale) if undo: new_scale = tuple(x - 1 for x in old_scale) prim.GetAttribute('xformOp:scale').Set(new_scale) def do(self): self.set_scale() def undo(self): self.set_scale(True) def get_selection() -> List[str]: """Get the list of currently selected prims""" return omni.usd.get_context().get_selection().get_selected_prim_paths() class MyExtension(omni.ext.IExt): def on_startup(self, ext_id): print("[dli.example.command_library] MyExtension startup") self._window = ui.Window("My Window", width=300, height=300) with self._window.frame: with ui.VStack(): ui.Label("Prim Scaler") def on_click(): prim_paths = get_selection() omni.kit.commands.execute('ScaleIncrement', prim_paths=prim_paths) ui.Button("Scale Up!", clicked_fn=lambda: on_click()) def on_shutdown(self): print("[dli.example.command_library] MyExtension shutdown") self._window.destroy() self._window = None
1,637
Python
29.90566
86
0.598045
xyang2013/kit-exts-command-library/exts/dli.example.command_library/dli/example/command_library/__init__.py
from .extension import *
25
Python
11.999994
24
0.76
xyang2013/kit-exts-command-library/exts/dli.example.command_library/dli/example/command_library/tests/__init__.py
from .test_hello_world import *
31
Python
30.999969
31
0.774194
xyang2013/kit-exts-command-library/exts/dli.example.command_library/dli/example/command_library/tests/test_hello_world.py
# NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test # Extnsion for writing UI tests (simulate UI interaction) import omni.kit.ui_test as ui_test # Import extension python module we are testing with absolute import path, as if we are external user (other extension) import dli.example.command_library # Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test class Test(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): pass # After running each test async def tearDown(self): pass # Actual test, notice it is "async" function, so "await" can be used if needed async def test_hello_public_function(self): result = dli.example.command_library.some_public_function(4) self.assertEqual(result, 256) async def test_window_button(self): # Find a label in our window label = ui_test.find("My Window//Frame/**/Label[*]") # Find buttons in our window add_button = ui_test.find("My Window//Frame/**/Button[*].text=='Add'") reset_button = ui_test.find("My Window//Frame/**/Button[*].text=='Reset'") # Click reset button await reset_button.click() self.assertEqual(label.widget.text, "empty") await add_button.click() self.assertEqual(label.widget.text, "count: 1") await add_button.click() self.assertEqual(label.widget.text, "count: 2")
1,690
Python
34.978723
142
0.684024
xyang2013/kit-exts-command-library/exts/dli.example.command_library/docs/CHANGELOG.md
# Changelog The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). ## [1.0.0] - 2021-04-26 - Initial version of extension UI template with a window
178
Markdown
18.888887
80
0.702247
xyang2013/kit-exts-command-library/exts/dli.example.command_library/docs/README.md
# Python Extension Example [dli.example.command_library] This is an example of pure python Kit extension. It is intended to be copied and serve as a template to create new extensions.
186
Markdown
36.399993
126
0.790323
xyang2013/kit-exts-command-library/exts/dli.example.command_library/docs/index.rst
dli.example.command_library ############################# Example of Python only extension .. toctree:: :maxdepth: 1 README CHANGELOG .. automodule::"dli.example.command_library" :platform: Windows-x86_64, Linux-x86_64 :members: :undoc-members: :show-inheritance: :imported-members: :exclude-members: contextmanager
355
reStructuredText
15.95238
44
0.630986
AndreiVoica/P10-MAP/README.md
<a name="P10-MAP"></a> <!-- PROJECT SHIELDS --> <!-- *** I'm using markdown "reference style" links for readability. *** Reference links are enclosed in brackets [ ] instead of parentheses ( ). *** See the bottom of this document for the declaration of the reference variables *** for contributors-url, forks-url, etc. This is an optional, concise syntax you may use. *** https://www.markdownguide.org/basic-syntax/#reference-style-links --> [![Contributors][contributors-shield]][contributors-url] [![Stars][stars-shield]][stars-url] [![CC BY 4.0][cc-by-shield]][cc-by] <!-- PROJECT LOGO --> <br /> <div align="center"> <!-- <a href="https://github.com/AndreiVoica/P10-MAP/"> <img src="images/logo.png" alt="Logo" width="80" height="80"> </a> --> <h3 align="center">P10 - Material Acceleration Platforms</h3> <p align="center"> Master Thesis in Robotics - Aalborg University <br /> <a href="https://www.youtube.com/playlist?list=PLTbrI-WjdIEfSyzKvvQM6LQMU2solaiKI">View Demo</a> <br /> </div> <!-- TABLE OF CONTENTS --> <details> <summary>Table of Contents</summary> <ol> <li> <a href="#about-the-project">About The Project</a> <ul> <li><a href="#built-with">Built With</a></li> </ul> </li> <li> <a href="#getting-started">Getting Started</a> <ul> <li><a href="#prerequisites">Prerequisites</a></li> <li><a href="#installation">Installation</a></li> </ul> </li> <li><a href="#usage">Usage</a></li> <li><a href="#contributing">Contributing</a></li> <li><a href="#license">License</a></li> <li><a href="#contact">Contact</a></li> <li><a href="#acknowledgments">Acknowledgments</a></li> </ol> </details> <!-- ABOUT THE PROJECT --> ## About the Project <p align="center"> <img src="/docs/imgs/Frontpage.png" alt="Frontpage" width="700"> </p> This project focuses on the transformation of chemistry laboratories into autonomous environments that can accelerate the discovery of new materials. The main goal is to optimize chemical processes that are typically performed by humans and can thus be slow and prone to errors. The project utilizes robotic solutions and simulation to achieve this goal. The autonomous laboratory will be implemented on the AAU Matrix Production setup. This setup consists of five Kuka robotic manipulators, the B&R Automation Acopos 6D magnetic levitation platform, and various custom-made parts. For development purposes, Nvidia Isaac Sim is used to create a simulated environment that replicates the physical setup. This allows for the execution of different experiments in a virtual setting. The Robot Operating System (ROS1) is used to control both the simulated Kuka manipulators and their real-world counterparts. The simulation experiments demonstrate that the system is capable of automatically completing a chemical process. However, transferring these capabilities to the physical setup poses a significant challenge. The project is the outcome of a Master's thesis in Robotics at Aalborg University. <p align="right">(<a href="#readme-top">back to top</a>)</p> ### Built With Ubuntu 20.04 together with Isaac Sim 2022.2.1 and ROS Noetic was used for this project. <p align="left"> <a href="https://www.python.org" target="_blank"> <img src="https://raw.githubusercontent.com/devicons/devicon/master/icons/python/python-original.svg" alt="python" width="40" height="40"/> </a> <a href="https://www.w3schools.com/cpp/" target="_blank"> <img src="https://raw.githubusercontent.com/devicons/devicon/master/icons/cplusplus/cplusplus-original.svg" alt="cplusplus" width="40" height="40"/> </a> <a href="https://www.overleaf.com/"> <img src="https://images.ctfassets.net/nrgyaltdicpt/h9dpHuVys19B1sOAWvbP6/5f8d4c6d051f63e4ba450befd56f9189/ologo_square_colour_light_bg.svg" alt="overleaf_logo" width="40" height="40"> </a> <a href="https://git-scm.com/" target="_blank"> <img src="https://www.vectorlogo.zone/logos/git-scm/git-scm-icon.svg" alt="git" width="40" height="40"/> </a> <a href="https://www.linux.org/" target="_blank"> <img src="https://raw.githubusercontent.com/devicons/devicon/master/icons/linux/linux-original.svg" alt="linux" width="40" height="40"/> </a> <a href="https://www.nvidia.com/en-us/omniverse/" target="_blank"> <img src="https://docs.omniverse.nvidia.com/con_connect/_images/renderer.png" alt="OmniverseIsaacSim" width="40" height="40"/> </a> <a href="https://www.ros.org/"> <img src="https://upload.wikimedia.org/wikipedia/commons/b/bb/Ros_logo.svg" alt="ros_logo" height="36"> </a> </p> <p align="right">(<a href="#readme-top">back to top</a>)</p> <!-- GETTING STARTED --> ## Getting Started To get a local copy up and running follow these example steps. ### Prerequisites [06/06/2023] * Isaac Sim requirements: Some minimum requirements are needed to install Isaac Sim, check the [Link](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/requirements.html) for more details. | Element | Minimum Spec | Good | Ideal | |---------|------------------------------------|----------------|-----------------------------------------------------| | OS | Ubuntu 20.04/22.04, Windows 10/11 | Ubuntu 20.04/22.04, Windows 10/11 | Ubuntu 20.04/22.04, Windows 10/11 | | CPU | Intel Core i7 (7th Generation), AMD Ryzen 5 | Intel Core i7 (9th Generation), AMD Ryzen 7 | Intel Core i9, X-series or higher, AMD Ryzen 9, Threadripper or higher | | Cores | 4 | 8 | 16 | | RAM | 32GB* | 64GB* | 64GB* | | Storage | 50GB SSD | 500GB SSD | 1TB NVMe SSD | | GPU | GeForce RTX 2070 | GeForce RTX 3080| RTX A6000 | | VRAM | 8GB* | 10GB* | 48GB* | Note: GeForce RTX 2060 6GB VRAM is also compatible. Note: The asterisk (*) indicates that the specified amount is the minimum required, but more is recommended for better performance. ### Installation * Isaac Sim and MAPs Extension * ROS * MoveIt * KukaVarProxy * Planar Motor Controller API 1. To install Isaac Sim, follow the instructions in the [Isaac Sim documentation](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/install_workstation.html#). Once Isaac Sim is installed follow the steps in [MAPs Extension](/docs/installation/MAPs_Extension/README.md) 2. To install ROS, follow the instructions in the [ROS Noetic documentation](http://wiki.ros.org/noetic/Installation/Ubuntu) 3. To install MoveIt, follow the instructions in the [MoveIt documentation](https://moveit.ros.org/install/) 4. To install the KukaVarProxy, follow the instructions in the [KukaVarProxy documentation](https://github.com/ImtsSrl/KUKAVARPROXY) 5. To install the Planar Motor Controller PMC API, follow the instructions in the [planar motor controller API documentation](/docs/installation/planar_motor_control_API/README.md) <!-- USAGE EXAMPLES --> ## Usage The following image shows the communication workflow between ROS and physical robots (blue), Simulation environment (green) and Magnetic levitation platform (orange). Machine Readable Recipe is not implemented. <p align="center"> <img src="/docs/imgs/Workflow.drawio_v2.png" alt="Workflow Diagram" width="400"> </p> ### How to run the simulation 1. Launch `roscore` 2. Open Isaac Sim and launch MAPs Extension. Check [MAPs Extension](/docs/installation/MAPs_Extension/README.md) for troubleshooting. 3. Press Play in Isaac Sim GUI 4. Launch `roslaunch isaac_moveit kuka_isaac_execution.launch` from a sourced workspace 5. Start the simulation by pressing the `Start` button in the extension GUI ### How to run the Acopos 6D Digital Twin 1. Launch `roscore` 2. Open Isaac Sim and launch MAPs Extension. Check [MAPs Extension](/docs/installation/MAPs_Extension/README.md) for troubleshooting. 3. Check the computer is in the same range as the PMC (by default, PMC IP: 192.168.10.100) 4. In the MAPs GUI press Connect PMC 5. Press Start Real Setup Note 1: To send random targets for each shuttle, uncomment the following line: `#self._world.add_physics_callback("sim_step_move_acopos", callback_fn=self.send_xbots_positions)` under `async def _on_real_control_event_async` Note 2: Adjust `self._number_shuttles = 4` with the number of shuttles in the physical setup <p align="right">(<a href="#readme-top">back to top</a>)</p> <!-- CONTRIBUTING ## Contributing Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are **greatly appreciated**. If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again! 1. Fork the Project 2. Create your Feature Branch (`git checkout -b feature/AmazingFeature`) 3. Commit your Changes (`git commit -m 'Add some AmazingFeature'`) 4. Push to the Branch (`git push origin feature/AmazingFeature`) 5. Open a Pull Request <p align="right">(<a href="#readme-top">back to top</a>)</p> --> <!-- LICENSE --> ## License This work is licensed under a [Creative Commons Attribution 4.0 International License][cc-by]. <p align="right">(<a href="#readme-top">back to top</a>)</p> <!-- CONTACT --> ## Contact Daniel Moreno - [LinkedIn](https://www.linkedin.com/in/daniel-mparis/) - [email protected] Andrei Voica - [LinkedIn](https://www.linkedin.com/in/andrei-voica-825b7a104/) - [email protected] Project Link: [https://github.com/AndreiVoica/P10-MAP](https://github.com/AndreiVoica/P10-MAP) <p align="right">(<a href="#readme-top">back to top</a>)</p> <!-- ACKNOWLEDGMENTS --> <!-- ## Acknowledgments Use this space to list resources you find helpful and would like to give credit to. I've included a few of my favorites to kick things off! * [Choose an Open Source License](https://choosealicense.com) * [GitHub Emoji Cheat Sheet](https://www.webpagefx.com/tools/emoji-cheat-sheet) * [Malven's Flexbox Cheatsheet](https://flexbox.malven.co/) * [Malven's Grid Cheatsheet](https://grid.malven.co/) * [Img Shields](https://shields.io) * [GitHub Pages](https://pages.github.com) * [Font Awesome](https://fontawesome.com) * [React Icons](https://react-icons.github.io/react-icons/search) <p align="right">(<a href="#readme-top">back to top</a>)</p> --> <!-- MARKDOWN LINKS & IMAGES --> <!-- https://www.markdownguide.org/basic-syntax/#reference-style-links --> [contributors-shield]: https://img.shields.io/github/contributors/AndreiVoica/P10-MAP.svg?style=for-the-badge [contributors-url]: https://github.com/AndreiVoica/P10-MAP/graphs/contributors [stars-shield]: https://img.shields.io/github/stars/AndreiVoica/P10-MAP.svg?style=for-the-badge [stars-url]: https://github.com/AndreiVoica/P10-MAP/stargazers [issues-shield]: https://img.shields.io/github/issues/AndreiVoica/P10-MAP.svg?style=for-the-badge [issues-url]: https://github.com/othneildrew/Best-README-Template/issues [license-shield]: https://img.shields.io/github/license/othneildrew/Best-README-Template.svg?style=for-the-badge [license-url]: https://github.com/othneildrew/Best-README-Template/blob/master/LICENSE.txt [linkedin-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555 [linkedin-url]: https://linkedin.com/in/othneildrew [product-screenshot]: images/screenshot.png [Next.js]: https://img.shields.io/badge/next.js-000000?style=for-the-badge&logo=nextdotjs&logoColor=white [Python-url]: https://nextjs.org/ [React.js]: https://img.shields.io/badge/React-20232A?style=for-the-badge&logo=react&logoColor=61DAFB [React-url]: https://reactjs.org/ [Vue.js]: https://img.shields.io/badge/Vue.js-35495E?style=for-the-badge&logo=vuedotjs&logoColor=4FC08D [Vue-url]: https://vuejs.org/ [Angular.io]: https://img.shields.io/badge/Angular-DD0031?style=for-the-badge&logo=angular&logoColor=white [Angular-url]: https://angular.io/ [Svelte.dev]: https://img.shields.io/badge/Svelte-4A4A55?style=for-the-badge&logo=svelte&logoColor=FF3E00 [Svelte-url]: https://svelte.dev/ [Laravel.com]: https://img.shields.io/badge/Laravel-FF2D20?style=for-the-badge&logo=laravel&logoColor=white [Laravel-url]: https://laravel.com [Bootstrap.com]: https://img.shields.io/badge/Bootstrap-563D7C?style=for-the-badge&logo=bootstrap&logoColor=white [Bootstrap-url]: https://getbootstrap.com [JQuery.com]: https://img.shields.io/badge/jQuery-0769AD?style=for-the-badge&logo=jquery&logoColor=white [JQuery-url]: https://jquery.com [![CC BY 4.0][cc-by-image]][cc-by] [cc-by]: http://creativecommons.org/licenses/by/4.0/ [cc-by-image]: https://i.creativecommons.org/l/by/4.0/88x31.png [cc-by-shield]: https://img.shields.io/badge/License-CC%20BY%204.0-lightgrey.svg?style=for-the-badge
13,213
Markdown
44.723183
322
0.695603
AndreiVoica/P10-MAP/src/kuka_moveit_configuration/package.xml
<package> <name>kuka_moveit_configuration</name> <version>0.3.0</version> <description> An automatically generated package with all the configuration and launch files for using the kuka_kr3r540 with the MoveIt! Motion Planning Framework </description> <author email="[email protected]">Aytac Kahveci</author> <maintainer email="[email protected]">Aytac Kahveci</maintainer> <license>BSD</license> <url type="website">http://moveit.ros.org/</url> <url type="bugtracker">https://github.com/ros-planning/moveit/issues</url> <url type="repository">https://github.com/ros-planning/moveit</url> <buildtool_depend>catkin</buildtool_depend> <run_depend>moveit_ros_move_group</run_depend> <run_depend>moveit_kinematics</run_depend> <run_depend>moveit_planners_ompl</run_depend> <run_depend>moveit_ros_visualization</run_depend> <run_depend>joint_state_publisher</run_depend> <run_depend>robot_state_publisher</run_depend> <run_depend>xacro</run_depend> <!-- This package is referenced in the warehouse launch files, but does not build out of the box at the moment. Commented the dependency until this works. --> <!-- <run_depend>warehouse_ros_mongo</run_depend> --> <build_depend>kuka_kr3_support</build_depend> <run_depend>kuka_kr3_support</run_depend> </package>
1,326
XML
39.21212
160
0.739819
AndreiVoica/P10-MAP/src/kuka_moveit_configuration/launch/kuka_kr6r900sixx_moveit_sensor_manager.launch.xml
<launch> </launch>
20
XML
4.249999
9
0.6
AndreiVoica/P10-MAP/src/kuka_moveit_configuration/launch/sensor_manager.launch.xml
<launch> <!-- This file makes it easy to include the settings for sensor managers --> <!-- Params for the octomap monitor --> <!-- <param name="octomap_frame" type="string" value="some frame in which the robot moves" /> --> <param name="octomap_resolution" type="double" value="0.025" /> <param name="max_range" type="double" value="5.0" /> <!-- Load the robot specific sensor manager; this sets the moveit_sensor_manager ROS parameter --> <arg name="moveit_sensor_manager" default="kuka_kr3r540" /> <include file="$(find kuka_moveit_configuration)/launch/$(arg moveit_sensor_manager)_moveit_sensor_manager.launch.xml" /> </launch>
657
XML
42.866664
123
0.686454
AndreiVoica/P10-MAP/src/kuka_moveit_configuration/launch/kuka_kr3r540_moveit_sensor_manager.launch.xml
<launch> </launch>
20
XML
4.249999
9
0.6
AndreiVoica/P10-MAP/src/kuka_moveit_configuration/launch/fake_moveit_controller_manager.launch.xml
<launch> <!-- Set the param that trajectory_execution_manager needs to find the controller plugin --> <param name="moveit_controller_manager" value="moveit_fake_controller_manager/MoveItFakeControllerManager"/> <!-- The rest of the params are specific to this plugin --> <rosparam file="$(find kuka_moveit_configuration)/config/fake_controllers.yaml"/> </launch>
374
XML
36.499996
110
0.745989
AndreiVoica/P10-MAP/src/kuka_moveit_configuration/launch/kuka_kr6r900sixx_moveit_controller_manager.launch.xml
<launch> <arg name="sim" default="false" /> <arg name="moveit_controller_manager" default="moveit_simple_controller_manager/MoveItSimpleControllerManager"/> <param name="moveit_controller_manager" value="$(arg moveit_controller_manager)"/> <!-- load controller_list --> <rosparam file="$(find kuka_moveit_configuration)/config/controller.yaml"/> <!-- Load standard kuka controller joint names from YAML file to parameter server --> <include file="$(find kuka_hw_axis)/launch/trajectory.launch"> </include> </launch>
566
XML
46.249996
113
0.685512
AndreiVoica/P10-MAP/src/kuka_moveit_configuration/launch/trajectory_execution2.launch.xml
<launch> <!-- This file makes it easy to include the settings for trajectory execution --> <!-- Flag indicating whether MoveIt! is allowed to load/unload or switch controllers --> <arg name="moveit_manage_controllers" default="true"/> <param name="moveit_manage_controllers" value="$(arg moveit_manage_controllers)"/> <!-- When determining the expected duration of a trajectory, this multiplicative factor is applied to get the allowed duration of execution --> <param name="trajectory_execution/allowed_execution_duration_scaling" value="1.2"/> <!-- default 1.2 --> <!-- Allow more than the expected execution time before triggering a trajectory cancel (applied after scaling) --> <param name="trajectory_execution/allowed_goal_duration_margin" value="0.5"/> <!-- default 0.5 --> <!-- Allowed joint-value tolerance for validation that trajectory's first point matches current robot state --> <param name="trajectory_execution/allowed_start_tolerance" value="0.01"/> <!-- default 0.01 --> <!-- Load the robot specific controller manager; this sets the moveit_controller_manager ROS parameter --> <arg name="moveit_controller_manager" default="kuka_kr3r540" /> <include file="$(find kuka_moveit_configuration)/launch/$(arg moveit_controller_manager)_moveit_controller_manager2.launch.xml" /> </launch>
1,343
XML
60.090906
145
0.72971
AndreiVoica/P10-MAP/src/kuka_moveit_configuration/launch/planning_pipeline.launch.xml
<launch> <!-- This file makes it easy to include different planning pipelines; It is assumed that all planning pipelines are named XXX_planning_pipeline.launch --> <arg name="pipeline" default="ompl" /> <include file="$(find kuka_moveit_configuration)/launch/$(arg pipeline)_planning_pipeline.launch.xml" /> </launch>
339
XML
29.909088
106
0.707965
AndreiVoica/P10-MAP/src/kuka_moveit_configuration/launch/kuka_kr3r540_moveit_controller_manager2.launch.xml
<launch> <arg name="sim" default="false" /> <arg name="moveit_controller_manager" default="moveit_simple_controller_manager/MoveItSimpleControllerManager"/> <param name="moveit_controller_manager" value="$(arg moveit_controller_manager)"/> <!-- load controller_list --> <!--<rosparam file="$(find kuka_moveit_configuration)/config/controller.yaml"/>--> <rosparam file="$(find kuka_moveit_configuration)/config/controller2.yaml"/> <!-- Load standard kuka controller joint names from YAML file to parameter server --> <include file="$(find kuka_hw_axis)/launch/trajectory2.launch"> </include> </launch>
659
XML
53.999996
113
0.681335
AndreiVoica/P10-MAP/src/kuka_moveit_configuration/launch/kuka_kr3r540_moveit_controller_manager.launch.xml
<launch> <arg name="sim" default="false" /> <arg name="moveit_controller_manager" default="moveit_simple_controller_manager/MoveItSimpleControllerManager"/> <param name="moveit_controller_manager" value="$(arg moveit_controller_manager)"/> <!-- load controller_list --> <!--<rosparam file="$(find kuka_moveit_configuration)/config/controller.yaml"/>--> <rosparam file="$(find kuka_moveit_configuration)/config/controller.yaml"/> <!-- Load standard kuka controller joint names from YAML file to parameter server --> <include file="$(find kuka_hw_axis)/launch/trajectory.launch"> </include> </launch>
657
XML
53.833329
113
0.680365