file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
AndreiVoica/P10-MAP/src/kr3_config_dispenser/config/stomp_planning.yaml
stomp/arm: group_name: arm optimization: num_timesteps: 60 num_iterations: 40 num_iterations_after_valid: 0 num_rollouts: 30 max_rollouts: 30 initialization_method: 1 # [1 : LINEAR_INTERPOLATION, 2 : CUBIC_POLYNOMIAL, 3 : MININUM_CONTROL_COST] control_cost_weight: 0.0 task: noise_generator: - class: stomp_moveit/NormalDistributionSampling stddev: [0.05, 0.05, 0.05, 0.05, 0.05, 0.05] cost_functions: - class: stomp_moveit/CollisionCheck collision_penalty: 1.0 cost_weight: 1.0 kernel_window_percentage: 0.2 longest_valid_joint_move: 0.05 noisy_filters: - class: stomp_moveit/JointLimits lock_start: True lock_goal: True - class: stomp_moveit/MultiTrajectoryVisualization line_width: 0.02 rgb: [255, 255, 0] marker_array_topic: stomp_trajectories marker_namespace: noisy update_filters: - class: stomp_moveit/PolynomialSmoother poly_order: 6 - class: stomp_moveit/TrajectoryVisualization line_width: 0.05 rgb: [0, 191, 255] error_rgb: [255, 0, 0] publish_intermediate: True marker_topic: stomp_trajectory marker_namespace: optimized stomp/hand: group_name: hand optimization: num_timesteps: 60 num_iterations: 40 num_iterations_after_valid: 0 num_rollouts: 30 max_rollouts: 30 initialization_method: 1 # [1 : LINEAR_INTERPOLATION, 2 : CUBIC_POLYNOMIAL, 3 : MININUM_CONTROL_COST] control_cost_weight: 0.0 task: noise_generator: - class: stomp_moveit/NormalDistributionSampling stddev: [] cost_functions: - class: stomp_moveit/CollisionCheck collision_penalty: 1.0 cost_weight: 1.0 kernel_window_percentage: 0.2 longest_valid_joint_move: 0.05 noisy_filters: - class: stomp_moveit/JointLimits lock_start: True lock_goal: True - class: stomp_moveit/MultiTrajectoryVisualization line_width: 0.02 rgb: [255, 255, 0] marker_array_topic: stomp_trajectories marker_namespace: noisy update_filters: - class: stomp_moveit/PolynomialSmoother poly_order: 6 - class: stomp_moveit/TrajectoryVisualization line_width: 0.05 rgb: [0, 191, 255] error_rgb: [255, 0, 0] publish_intermediate: True marker_topic: stomp_trajectory marker_namespace: optimized
2,497
YAML
31.025641
106
0.632759
AndreiVoica/P10-MAP/src/kr3_config_dispenser/config/kinematics.yaml
arm: kinematics_solver: kdl_kinematics_plugin/KDLKinematicsPlugin kinematics_solver_search_resolution: 0.005 kinematics_solver_timeout: 0.005
147
YAML
35.999991
62
0.816327
AndreiVoica/P10-MAP/src/kr3_config_dispenser/config/gazebo_controllers.yaml
# Publish joint_states joint_state_controller: type: joint_state_controller/JointStateController publish_rate: 50
118
YAML
22.799995
51
0.805085
AndreiVoica/P10-MAP/src/kr3_config_dispenser/config/joint_limits.yaml
# joint_limits.yaml allows the dynamics properties specified in the URDF to be overwritten or augmented as needed # For beginners, we downscale velocity and acceleration limits. # You can always specify higher scaling factors (<= 1.0) in your motion requests. # Increase the values below to 1.0 to always move at maximum speed. default_velocity_scaling_factor: 0.1 default_acceleration_scaling_factor: 0.1 # Specific joint properties can be changed with the keys [max_position, min_position, max_velocity, max_acceleration] # Joint limits can be turned off with [has_velocity_limits, has_acceleration_limits] joint_limits: joint_a1: has_velocity_limits: true max_velocity: 9.250245035569947 has_acceleration_limits: false max_acceleration: 0 joint_a2: has_velocity_limits: true max_velocity: 9.232791743050003 has_acceleration_limits: false max_acceleration: 0 joint_a3: has_velocity_limits: true max_velocity: 9.389871375729493 has_acceleration_limits: false max_acceleration: 0 joint_a4: has_velocity_limits: true max_velocity: 10.47197551196598 has_acceleration_limits: false max_acceleration: 0 joint_a5: has_velocity_limits: true max_velocity: 10.47197551196598 has_acceleration_limits: false max_acceleration: 0 joint_a6: has_velocity_limits: true max_velocity: 13.96263401595464 has_acceleration_limits: false max_acceleration: 0
1,447
YAML
35.199999
150
0.744299
AndreiVoica/P10-MAP/src/kr3_config_dispenser/config/fake_controllers.yaml
controller_list: - name: fake_arm_controller type: $(arg fake_execution_type) joints: - joint_a1 - joint_a2 - joint_a3 - joint_a4 - joint_a5 - joint_a6 - name: fake_hand_controller type: $(arg fake_execution_type) joints: [] initial: # Define initial robot poses per group - group: arm pose: down
365
YAML
20.529411
48
0.583562
AndreiVoica/P10-MAP/src/kr3_config_dispenser/config/ros_controllers.yaml
arm_controller: type: effort_controllers/JointTrajectoryController joints: - joint_a1 - joint_a2 - joint_a3 - joint_a4 - joint_a5 - joint_a6 gains: joint_a1: p: 100 d: 1 i: 1 i_clamp: 1 joint_a2: p: 100 d: 1 i: 1 i_clamp: 1 joint_a3: p: 100 d: 1 i: 1 i_clamp: 1 joint_a4: p: 100 d: 1 i: 1 i_clamp: 1 joint_a5: p: 100 d: 1 i: 1 i_clamp: 1 joint_a6: p: 100 d: 1 i: 1 i_clamp: 1
573
YAML
13.35
52
0.425829
AndreiVoica/P10-MAP/src/kr3_config_gripper/package.xml
<package> <name>kr3_config_gripper</name> <version>0.3.0</version> <description> An automatically generated package with all the configuration and launch files for using the kuka_kr3r540 with the MoveIt Motion Planning Framework </description> <author email="[email protected]">Andrei Voica</author> <maintainer email="[email protected]">Andrei Voica</maintainer> <license>BSD</license> <url type="website">http://moveit.ros.org/</url> <url type="bugtracker">https://github.com/ros-planning/moveit/issues</url> <url type="repository">https://github.com/ros-planning/moveit</url> <buildtool_depend>catkin</buildtool_depend> <run_depend>moveit_ros_move_group</run_depend> <run_depend>moveit_fake_controller_manager</run_depend> <run_depend>moveit_kinematics</run_depend> <run_depend>moveit_planners</run_depend> <run_depend>moveit_ros_visualization</run_depend> <run_depend>moveit_setup_assistant</run_depend> <run_depend>moveit_simple_controller_manager</run_depend> <run_depend>joint_state_publisher</run_depend> <run_depend>joint_state_publisher_gui</run_depend> <run_depend>robot_state_publisher</run_depend> <run_depend>rviz</run_depend> <run_depend>tf2_ros</run_depend> <run_depend>xacro</run_depend> <!-- The next 2 packages are required for the gazebo simulation. We don't include them by default to prevent installing gazebo and all its dependencies. --> <!-- <run_depend>joint_trajectory_controller</run_depend> --> <!-- <run_depend>gazebo_ros_control</run_depend> --> <!-- This package is referenced in the warehouse launch files, but does not build out of the box at the moment. Commented the dependency until this works. --> <!-- <run_depend>warehouse_ros_mongo</run_depend> --> <run_depend>kuka_kr3_support</run_depend> </package>
1,834
XML
42.690475
160
0.731734
AndreiVoica/P10-MAP/src/kr3_config_gripper/launch/sensor_manager.launch.xml
<launch> <!-- This file makes it easy to include the settings for sensor managers --> <!-- Params for 3D sensors config --> <rosparam command="load" file="$(find kr3_config_gripper)/config/sensors_3d.yaml" /> <!-- Params for the octomap monitor --> <!-- <param name="octomap_frame" type="string" value="some frame in which the robot moves" /> --> <param name="octomap_resolution" type="double" value="0.025" /> <param name="max_range" type="double" value="5.0" /> <!-- Load the robot specific sensor manager; this sets the moveit_sensor_manager ROS parameter --> <arg name="moveit_sensor_manager" default="kuka_kr3r540" /> <include file="$(dirname)/$(arg moveit_sensor_manager)_moveit_sensor_manager.launch.xml" /> </launch>
751
XML
40.777776
100
0.680426
AndreiVoica/P10-MAP/src/kr3_config_gripper/launch/kuka_kr3r540_moveit_sensor_manager.launch.xml
<launch> </launch>
20
XML
4.249999
9
0.6
AndreiVoica/P10-MAP/src/kr3_config_gripper/launch/fake_moveit_controller_manager.launch.xml
<launch> <!-- execute the trajectory in 'interpolate' mode or jump to goal position in 'last point' mode --> <arg name="fake_execution_type" default="interpolate" /> <!-- Set the param that trajectory_execution_manager needs to find the controller plugin --> <param name="moveit_controller_manager" value="moveit_fake_controller_manager/MoveItFakeControllerManager"/> <!-- The rest of the params are specific to this plugin --> <rosparam subst_value="true" file="$(find kr3_config_gripper)/config/fake_controllers.yaml"/> </launch>
548
XML
41.230766
110
0.729927
AndreiVoica/P10-MAP/src/kr3_config_gripper/launch/stomp_planning_pipeline.launch.xml
<launch> <!-- Stomp Plugin for MoveIt --> <arg name="planning_plugin" value="stomp_moveit/StompPlannerManager" /> <arg name="start_state_max_bounds_error" value="0.1" /> <arg name="jiggle_fraction" value="0.05" /> <!-- The request adapters (plugins) used when planning. ORDER MATTERS! --> <arg name="planning_adapters" default="default_planner_request_adapters/LimitMaxCartesianLinkSpeed default_planner_request_adapters/AddTimeParameterization default_planner_request_adapters/FixWorkspaceBounds default_planner_request_adapters/FixStartStateBounds default_planner_request_adapters/FixStartStateCollision default_planner_request_adapters/FixStartStatePathConstraints" /> <param name="planning_plugin" value="$(arg planning_plugin)" /> <param name="request_adapters" value="$(arg planning_adapters)" /> <param name="start_state_max_bounds_error" value="$(arg start_state_max_bounds_error)" /> <param name="jiggle_fraction" value="$(arg jiggle_fraction)" /> <rosparam command="load" file="$(find kr3_config_gripper)/config/stomp_planning.yaml"/> </launch>
1,168
XML
47.708331
91
0.699486
AndreiVoica/P10-MAP/src/kr3_config_gripper/launch/pilz_industrial_motion_planner_planning_pipeline.launch.xml
<launch> <!-- The request adapters (plugins) used when planning. ORDER MATTERS! --> <arg name="planning_adapters" default="" /> <param name="planning_plugin" value="pilz_industrial_motion_planner::CommandPlanner" /> <param name="request_adapters" value="$(arg planning_adapters)" /> <!-- Define default planner (for all groups) --> <param name="default_planner_config" value="PTP" /> <!-- MoveGroup capabilities to load for this pipeline, append sequence capability --> <param name="capabilities" value="pilz_industrial_motion_planner/MoveGroupSequenceAction pilz_industrial_motion_planner/MoveGroupSequenceService" /> </launch>
685
XML
41.874997
95
0.691971
AndreiVoica/P10-MAP/src/kr3_config_gripper/launch/simple_moveit_controller_manager.launch.xml
<launch> <!-- Define the MoveIt controller manager plugin to use for trajectory execution --> <param name="moveit_controller_manager" value="moveit_simple_controller_manager/MoveItSimpleControllerManager" /> <!-- Load controller list to the parameter server --> <rosparam file="$(find kr3_config_gripper)/config/simple_moveit_controllers.yaml" /> <rosparam file="$(find kr3_config_gripper)/config/ros_controllers.yaml" /> </launch>
443
XML
48.333328
115
0.747178
AndreiVoica/P10-MAP/src/kr3_config_gripper/launch/chomp_planning_pipeline.launch.xml
<launch> <arg name="start_state_max_bounds_error" default="0.1" /> <arg name="jiggle_fraction" default="0.05" /> <!-- The request adapters (plugins) used when planning. ORDER MATTERS! --> <arg name="planning_adapters" default="default_planner_request_adapters/LimitMaxCartesianLinkSpeed default_planner_request_adapters/AddTimeParameterization default_planner_request_adapters/ResolveConstraintFrames default_planner_request_adapters/FixWorkspaceBounds default_planner_request_adapters/FixStartStateBounds default_planner_request_adapters/FixStartStateCollision default_planner_request_adapters/FixStartStatePathConstraints" /> <param name="planning_plugin" value="chomp_interface/CHOMPPlanner" /> <param name="request_adapters" value="$(arg planning_adapters)" /> <param name="start_state_max_bounds_error" value="$(arg start_state_max_bounds_error)" /> <param name="jiggle_fraction" value="$(arg jiggle_fraction)" /> <rosparam command="load" file="$(find kr3_config_gripper)/config/chomp_planning.yaml" /> </launch>
1,157
XML
51.636361
91
0.696629
AndreiVoica/P10-MAP/src/kr3_config_gripper/launch/ros_control_moveit_controller_manager.launch.xml
<launch> <!-- Define MoveIt controller manager plugin --> <param name="moveit_controller_manager" value="moveit_ros_control_interface::MoveItControllerManager" /> </launch>
175
XML
34.199993
105
0.754286
AndreiVoica/P10-MAP/src/kr3_config_gripper/launch/ompl-chomp_planning_pipeline.launch.xml
<launch> <!-- load OMPL planning pipeline, but add the CHOMP planning adapter. --> <include file="$(find kr3_config_gripper)/launch/ompl_planning_pipeline.launch.xml"> <arg name="planning_adapters" default="default_planner_request_adapters/LimitMaxCartesianLinkSpeed default_planner_request_adapters/AddTimeParameterization default_planner_request_adapters/FixWorkspaceBounds default_planner_request_adapters/FixStartStateBounds default_planner_request_adapters/FixStartStateCollision default_planner_request_adapters/FixStartStatePathConstraints chomp/OptimizerAdapter" /> </include> <!-- load chomp config --> <rosparam command="load" file="$(find kr3_config_gripper)/config/chomp_planning.yaml" /> <!-- override trajectory_initialization_method: Use OMPL-generated trajectory --> <param name="trajectory_initialization_method" value="fillTrajectory"/> </launch>
1,020
XML
47.619045
90
0.688235
AndreiVoica/P10-MAP/src/kr3_config_gripper/launch/planning_pipeline.launch.xml
<launch> <!-- This file makes it easy to include different planning pipelines; It is assumed that all planning pipelines are named XXX_planning_pipeline.launch --> <arg name="pipeline" default="ompl" /> <include ns="$(arg pipeline)" file="$(dirname)/$(arg pipeline)_planning_pipeline.launch.xml" /> </launch>
327
XML
28.818179
97
0.69419
AndreiVoica/P10-MAP/src/kr3_config_gripper/launch/warehouse_settings.launch.xml
<launch> <!-- Set the parameters for the warehouse and run the mongodb server. --> <!-- The default DB port for moveit (not default MongoDB port to avoid potential conflicts) --> <arg name="moveit_warehouse_port" default="33829" /> <!-- The default DB host for moveit --> <arg name="moveit_warehouse_host" default="localhost" /> <!-- Set parameters for the warehouse --> <param name="warehouse_port" value="$(arg moveit_warehouse_port)"/> <param name="warehouse_host" value="$(arg moveit_warehouse_host)"/> <param name="warehouse_exec" value="mongod" /> <param name="warehouse_plugin" value="warehouse_ros_mongo::MongoDatabaseConnection" /> </launch>
675
XML
38.764704
97
0.694815
AndreiVoica/P10-MAP/src/kr3_config_gripper/launch/trajectory_execution.launch.xml
<launch> <!-- This file summarizes all settings required for trajectory execution --> <!-- Define moveit controller manager plugin: fake, simple, or ros_control --> <arg name="moveit_controller_manager" /> <arg name="fake_execution_type" default="interpolate" /> <!-- Flag indicating whether MoveIt is allowed to load/unload or switch controllers --> <arg name="moveit_manage_controllers" default="true"/> <param name="moveit_manage_controllers" value="$(arg moveit_manage_controllers)"/> <!-- When determining the expected duration of a trajectory, this multiplicative factor is applied to get the allowed duration of execution --> <param name="trajectory_execution/allowed_execution_duration_scaling" value="1.2"/> <!-- default 1.2 --> <!-- Allow more than the expected execution time before triggering a trajectory cancel (applied after scaling) --> <param name="trajectory_execution/allowed_goal_duration_margin" value="0.5"/> <!-- default 0.5 --> <!-- Allowed joint-value tolerance for validation that trajectory's first point matches current robot state --> <param name="trajectory_execution/allowed_start_tolerance" value="0.01"/> <!-- default 0.01 --> <!-- We use pass_all_args=true here to pass fake_execution_type, which is required by fake controllers, but not by real-robot controllers. As real-robot controller_manager.launch files shouldn't be required to define this argument, we use the trick of passing all args. --> <include file="$(dirname)/$(arg moveit_controller_manager)_moveit_controller_manager.launch.xml" pass_all_args="true" /> </launch>
1,609
XML
66.083331
145
0.73151
AndreiVoica/P10-MAP/src/kr3_config_gripper/launch/ompl_planning_pipeline.launch.xml
<launch> <!-- The request adapters (plugins) used when planning with OMPL. ORDER MATTERS! --> <arg name="planning_adapters" default="default_planner_request_adapters/LimitMaxCartesianLinkSpeed default_planner_request_adapters/AddTimeParameterization default_planner_request_adapters/ResolveConstraintFrames default_planner_request_adapters/FixWorkspaceBounds default_planner_request_adapters/FixStartStateBounds default_planner_request_adapters/FixStartStateCollision default_planner_request_adapters/FixStartStatePathConstraints" /> <arg name="start_state_max_bounds_error" default="0.1" /> <arg name="jiggle_fraction" default="0.05" /> <param name="planning_plugin" value="ompl_interface/OMPLPlanner" /> <param name="request_adapters" value="$(arg planning_adapters)" /> <param name="start_state_max_bounds_error" value="$(arg start_state_max_bounds_error)" /> <param name="jiggle_fraction" value="$(arg jiggle_fraction)" /> <rosparam command="load" file="$(find kr3_config_gripper)/config/ompl_planning.yaml"/> </launch>
1,166
XML
45.679998
91
0.69554
AndreiVoica/P10-MAP/src/kr3_config_gripper/config/simple_moveit_controllers.yaml
controller_list: - name: hand_controller action_ns: follow_joint_trajectory type: FollowJointTrajectory default: True joints: - joint_left - joint_right - name: arm_controller action_ns: follow_joint_trajectory type: FollowJointTrajectory default: True joints: - joint_a1 - joint_a2 - joint_a3 - joint_a4 - joint_a5 - joint_a6
410
YAML
20.631578
38
0.614634
AndreiVoica/P10-MAP/src/kr3_config_gripper/config/chomp_planning.yaml
planning_time_limit: 10.0 max_iterations: 200 max_iterations_after_collision_free: 5 smoothness_cost_weight: 0.1 obstacle_cost_weight: 1.0 learning_rate: 0.01 smoothness_cost_velocity: 0.0 smoothness_cost_acceleration: 1.0 smoothness_cost_jerk: 0.0 ridge_factor: 0.0 use_pseudo_inverse: false pseudo_inverse_ridge_factor: 1e-4 joint_update_limit: 0.1 collision_clearance: 0.2 collision_threshold: 0.07 use_stochastic_descent: true enable_failure_recovery: false max_recovery_attempts: 5
487
YAML
24.684209
38
0.794661
AndreiVoica/P10-MAP/src/kr3_config_gripper/config/stomp_planning.yaml
stomp/hand: group_name: hand optimization: num_timesteps: 60 num_iterations: 40 num_iterations_after_valid: 0 num_rollouts: 30 max_rollouts: 30 initialization_method: 1 # [1 : LINEAR_INTERPOLATION, 2 : CUBIC_POLYNOMIAL, 3 : MININUM_CONTROL_COST] control_cost_weight: 0.0 task: noise_generator: - class: stomp_moveit/NormalDistributionSampling stddev: [0.05, 0.05] cost_functions: - class: stomp_moveit/CollisionCheck collision_penalty: 1.0 cost_weight: 1.0 kernel_window_percentage: 0.2 longest_valid_joint_move: 0.05 noisy_filters: - class: stomp_moveit/JointLimits lock_start: True lock_goal: True - class: stomp_moveit/MultiTrajectoryVisualization line_width: 0.02 rgb: [255, 255, 0] marker_array_topic: stomp_trajectories marker_namespace: noisy update_filters: - class: stomp_moveit/PolynomialSmoother poly_order: 6 - class: stomp_moveit/TrajectoryVisualization line_width: 0.05 rgb: [0, 191, 255] error_rgb: [255, 0, 0] publish_intermediate: True marker_topic: stomp_trajectory marker_namespace: optimized stomp/arm: group_name: arm optimization: num_timesteps: 60 num_iterations: 40 num_iterations_after_valid: 0 num_rollouts: 30 max_rollouts: 30 initialization_method: 1 # [1 : LINEAR_INTERPOLATION, 2 : CUBIC_POLYNOMIAL, 3 : MININUM_CONTROL_COST] control_cost_weight: 0.0 task: noise_generator: - class: stomp_moveit/NormalDistributionSampling stddev: [0.05, 0.05, 0.05, 0.05, 0.05, 0.05] cost_functions: - class: stomp_moveit/CollisionCheck collision_penalty: 1.0 cost_weight: 1.0 kernel_window_percentage: 0.2 longest_valid_joint_move: 0.05 noisy_filters: - class: stomp_moveit/JointLimits lock_start: True lock_goal: True - class: stomp_moveit/MultiTrajectoryVisualization line_width: 0.02 rgb: [255, 255, 0] marker_array_topic: stomp_trajectories marker_namespace: noisy update_filters: - class: stomp_moveit/PolynomialSmoother poly_order: 6 - class: stomp_moveit/TrajectoryVisualization line_width: 0.05 rgb: [0, 191, 255] error_rgb: [255, 0, 0] publish_intermediate: True marker_topic: stomp_trajectory marker_namespace: optimized
2,507
YAML
31.153846
106
0.632629
AndreiVoica/P10-MAP/src/kr3_config_gripper/config/kinematics.yaml
arm: kinematics_solver: kdl_kinematics_plugin/KDLKinematicsPlugin kinematics_solver_search_resolution: 0.005 kinematics_solver_timeout: 0.005
147
YAML
35.999991
62
0.816327
AndreiVoica/P10-MAP/src/kr3_config_gripper/config/gazebo_controllers.yaml
# Publish joint_states joint_state_controller: type: joint_state_controller/JointStateController publish_rate: 50
118
YAML
22.799995
51
0.805085
AndreiVoica/P10-MAP/src/kr3_config_gripper/config/joint_limits.yaml
# joint_limits.yaml allows the dynamics properties specified in the URDF to be overwritten or augmented as needed # For beginners, we downscale velocity and acceleration limits. # You can always specify higher scaling factors (<= 1.0) in your motion requests. # Increase the values below to 1.0 to always move at maximum speed. default_velocity_scaling_factor: 0.1 default_acceleration_scaling_factor: 0.1 # Specific joint properties can be changed with the keys [max_position, min_position, max_velocity, max_acceleration] # Joint limits can be turned off with [has_velocity_limits, has_acceleration_limits] joint_limits: joint_a1: has_velocity_limits: true max_velocity: 9.250245035569947 has_acceleration_limits: false max_acceleration: 0 joint_a2: has_velocity_limits: true max_velocity: 9.232791743050003 has_acceleration_limits: false max_acceleration: 0 joint_a3: has_velocity_limits: true max_velocity: 9.389871375729493 has_acceleration_limits: false max_acceleration: 0 joint_a4: has_velocity_limits: true max_velocity: 10.47197551196598 has_acceleration_limits: false max_acceleration: 0 joint_a5: has_velocity_limits: true max_velocity: 10.47197551196598 has_acceleration_limits: false max_acceleration: 0 joint_a6: has_velocity_limits: true max_velocity: 13.96263401595464 has_acceleration_limits: false max_acceleration: 0 joint_left: has_velocity_limits: true max_velocity: 2.00001 has_acceleration_limits: false max_acceleration: 0 joint_right: has_velocity_limits: true max_velocity: 2.00001 has_acceleration_limits: false max_acceleration: 0
1,706
YAML
33.139999
150
0.736225
AndreiVoica/P10-MAP/src/kr3_config_gripper/config/fake_controllers.yaml
controller_list: - name: fake_hand_controller type: $(arg fake_execution_type) joints: - joint_left - joint_right - name: fake_arm_controller type: $(arg fake_execution_type) joints: - joint_a1 - joint_a2 - joint_a3 - joint_a4 - joint_a5 - joint_a6 initial: # Define initial robot poses per group - group: hand pose: open - group: arm pose: down
426
YAML
20.349999
48
0.584507
AndreiVoica/P10-MAP/src/kr3_config_gripper/config/ros_controllers.yaml
hand_controller: type: velocity_controllers/JointTrajectoryController joints: - joint_left - joint_right gains: joint_left: p: 100 d: 1 i: 1 i_clamp: 1 joint_right: p: 100 d: 1 i: 1 i_clamp: 1 arm_controller: type: velocity_controllers/JointTrajectoryController joints: - joint_a1 - joint_a2 - joint_a3 - joint_a4 - joint_a5 - joint_a6 gains: joint_a1: p: 20000 d: 1 i: 1 i_clamp: 1 joint_a2: p: 20000 d: 1 i: 1 i_clamp: 1 joint_a3: p: 20000 d: 1 i: 1 i_clamp: 1 joint_a4: p: 20000 d: 1 i: 1 i_clamp: 1 joint_a5: p: 20000 d: 1 i: 1 i_clamp: 1 joint_a6: p: 20000 d: 1 i: 1 i_clamp: 1
850
YAML
14.196428
54
0.469412
AndreiVoica/P10-MAP/src/schunk_25nnb/package.xml
<package format="2"> <name>schunk_25nnb</name> <version>1.0.0</version> <description> <p>URDF Description package for schunk_25nnb</p> <p>This package contains configuration data, 3D models and launch files for schunk_25nnb robot</p> </description> <author>TODO</author> <maintainer email="[email protected]" /> <license>BSD</license> <buildtool_depend>catkin</buildtool_depend> <depend>roslaunch</depend> <depend>robot_state_publisher</depend> <depend>rviz</depend> <depend>joint_state_publisher_gui</depend> <depend>gazebo</depend> <export> <architecture_independent /> </export> </package>
631
XML
29.095237
75
0.708399
AndreiVoica/P10-MAP/maps/maps_extension.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.examples.maps import MAPs import asyncio import omni.ui as ui from omni.isaac.ui.ui_utils import btn_builder class MAPsExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="", submenu_name="", name="MAPs", title="Material Acceleration Platform AAU", doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_core_hello_world.html", overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.", sample=MAPs(), file_path=os.path.abspath(__file__), number_of_extra_frames=3, ) self.task_ui_elements = {} frame = self.get_frame(index=0) self.build_simulation_controls_ui(frame) frame = self.get_frame(index=1) self.build_real_controls_ui(frame) frame = self.get_frame(index=2) self.build_experiment_controls_ui(frame) return def _on_sim_control_button_event(self): asyncio.ensure_future(self.sample._on_sim_control_event_async()) self.task_ui_elements["Simulation Control"].enabled = False self.task_ui_elements["Real Setup Control"].enabled = True self.task_ui_elements["Connect PMC"].enabled = True self.task_ui_elements["Start Experiment"].enabled = True return def _on_real_control_button_event(self): asyncio.ensure_future(self.sample._on_real_control_event_async()) self.task_ui_elements["Real Setup Control"].enabled = False self.task_ui_elements["Simulation Control"].enabled = True self.task_ui_elements["Connect PMC"].enabled = False self.task_ui_elements["Start Experiment"].enabled = True return def _on_connect_pmc_button_event(self): self.sample._connect_pmc() self.task_ui_elements["Real Setup Control"].enabled = True self.task_ui_elements["Simulation Control"].enabled = True self.task_ui_elements["Connect PMC"].enabled = False self.task_ui_elements["Start Experiment"].enabled = True return def _on_start_experiment_button_event(self): asyncio.ensure_future(self.sample._on_start_experiment_event_async()) self.task_ui_elements["Real Setup Control"].enabled = False self.task_ui_elements["Simulation Control"].enabled = False self.task_ui_elements["Connect PMC"].enabled = False self.task_ui_elements["Start Experiment"].enabled = True return def post_reset_button_event(self): self.task_ui_elements["Simulation Control"].enabled = True self.task_ui_elements["Real Setup Control"].enabled = True self.task_ui_elements["Connect PMC"].enabled = True self.task_ui_elements["Start Experiment"].enabled = True return def post_load_button_event(self): self.task_ui_elements["Simulation Control"].enabled = True self.task_ui_elements["Real Setup Control"].enabled = False self.task_ui_elements["Connect PMC"].enabled = True self.task_ui_elements["Start Experiment"].enabled = True return def post_clear_button_event(self): self.task_ui_elements["Simulation Control"].enabled = False self.task_ui_elements["Real Setup Control"].enabled = False self.task_ui_elements["Connect PMC"].enabled = False self.task_ui_elements["Start Experiment"].enabled = False return def build_simulation_controls_ui(self, frame): with frame: with ui.VStack(spacing=5): # Update the Frame Title frame.title = "Simulation" frame.visible = True dict = { "label": "Simulation Control", "type": "button", "text": "Start Simulation", "tooltip": "Simulation Control", "on_clicked_fn": self._on_sim_control_button_event, } self.task_ui_elements["Simulation Control"] = btn_builder(**dict) self.task_ui_elements["Simulation Control"].enabled = False def build_real_controls_ui(self, frame): with frame: with ui.VStack(spacing=5): # Update the Frame Title frame.title = "Real Setup" frame.visible = True dict = { "label": "Connect PMC", "type": "button", "text": "Connect", "tooltip": "Connect PMC", "on_clicked_fn": self._on_connect_pmc_button_event, } self.task_ui_elements["Connect PMC"] = btn_builder(**dict) self.task_ui_elements["Connect PMC"].enabled = False dict = { "label": "Real Setup Control", "type": "button", "text": "Start Real Setup", "tooltip": "Real Setup Control", "on_clicked_fn": self._on_real_control_button_event, } self.task_ui_elements["Real Setup Control"] = btn_builder(**dict) self.task_ui_elements["Real Setup Control"].enabled = False def build_experiment_controls_ui(self, frame): with frame: with ui.VStack(spacing=5): # Update the Frame Title frame.title = "Experiment Control" frame.visible = True dict = { "label": "Start Experiment", "type": "button", "text": "Start", "tooltip": "Start Experiment", "on_clicked_fn": self._on_start_experiment_button_event, } self.task_ui_elements["Start Experiment"] = btn_builder(**dict) self.task_ui_elements["Start Experiment"].enabled = False # dict = { # "label": "Real Setup Control", # "type": "button", # "text": "Start Real Setup", # "tooltip": "Real Setup Control", # "on_clicked_fn": self._on_real_control_button_event, # } # self.task_ui_elements["Real Setup Control"] = btn_builder(**dict) # self.task_ui_elements["Real Setup Control"].enabled = False
7,136
Python
40.982353
135
0.579036
AndreiVoica/P10-MAP/maps/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.maps.maps import MAPs from omni.isaac.examples.maps.maps_extension import MAPsExtension from omni.isaac.examples.maps.maps_reader import ControllerJointsLoader
615
Python
42.999997
76
0.821138
AndreiVoica/P10-MAP/maps/maps_reader.py
import yaml class ControllerJointsLoader: """ This class loads the controller joints data from the simple_moveit_controllers.yaml file """ def __init__(self, filename): self.filename = filename self.controller_data = {} self.load_controller_data() def load_controller_data(self): with open(self.filename, 'r') as file: data = yaml.safe_load(file) arm_count = 1 hand_count = 1 for controller in data['controller_list']: # Remove "_controller" from the name name = controller['name'].replace('_controller', '') # Extract the base name for eef_link eef_name = name.split('_')[0] + '_' + name.split('_')[1] # Create robot_arm or robot_hand key if 'arm' in name: planning_group = 'robot_arm_' + str(arm_count) arm_count += 1 elif 'hand' in name: robot_number = name.split('_')[1] planning_group = 'robot_hand_' + robot_number hand_count += 1 else: continue # Store the planning_group, its corresponding joints, controller name and eef_link in the dictionary self.controller_data[planning_group] = { 'planning_group': name, 'joints': controller['joints'], 'eef_link': eef_name + '_link_6' } def get_controller_data(self): return self.controller_data class RecipeLoader: def __init__(self, actions_file): self.actions_file = actions_file def read_instructions_from_yaml(self): with open(self.actions_file, 'r') as file: instructions_list = yaml.safe_load(file) # for instruction in instructions_list: # instruction_name = instruction['name'] # parameters = instruction['parameters'] return instructions_list # Using the class # filename = '/home/robotlab/Documents/Github/P10-MAP/src/kuka_config_multiple/config/simple_moveit_controllers.yaml' # Path to the yaml file # controller_data = loader.get_controller_data() # print(controller_data)
2,216
Python
35.344262
141
0.575361
AndreiVoica/P10-MAP/maps/maps.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # Author: Daniel Moreno París ([email protected]) & Andrei Voica ([email protected]) from omni.isaac.examples.maps.maps_reader import ControllerJointsLoader from omni.isaac.examples.maps.maps_reader import RecipeLoader from omni.isaac.examples.base_sample import BaseSample from omni.isaac.core import World from omni.isaac.core.prims import GeometryPrim, XFormPrim, RigidPrim import omni.kit.commands from pxr import Sdf, Gf, UsdPhysics from omni.isaac.core.utils.rotations import euler_angles_to_quat, quat_to_euler_angles, euler_to_rot_matrix import numpy as np from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.core.robots import Robot from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.articulations import Articulation, ArticulationSubset from omni.isaac.core.physics_context import PhysicsContext import carb # PMC Library Imports from pmclib import system_commands as sys # PMC System related commands from pmclib import xbot_commands as bot # PMC Mover related commands from pmclib import pmc_types # PMC API Types import time import random import functools from omni.isaac.core.utils import viewports, extensions from omni.isaac.core.utils.prims import set_targets import asyncio import rospy from sensor_msgs.msg import JointState from std_msgs.msg import String, Header from geometry_msgs.msg import Pose, PoseStamped, PoseArray, Point, Quaternion import math # import sys # Action graph imports import omni.graph.core as og import rosgraph ######################################################################################################### class MAPs(BaseSample): def __init__(self) -> None: super().__init__() # # Positions are relative to parents, so set them with reversed values # SCENE GEOMETRY # env (group) spacing: self._env_spacing = 2.0 self.last_update_time = time.time() # Lab Setup: self._lab_setup_position = np.array([0.0, 0.0, 0.0]) # Gf.Vec3f(0.5, 0.0, 0.0) self._lab_setup_orientation = np.array([0, 0, 0, 1]) self._lab_setup_scale = 1.0 # Shuttles Grid: self._grid_position = np.array([1.2877, -1.0415, 0.0]) shuttle_orientation = np.pi/2 self._grid_orientation = np.array([np.cos(shuttle_orientation/2), 0, 0, np.sin(shuttle_orientation/2)]) #Rotates 90 degrees around z-axis # Shuttles: self._number_shuttles = 4 # self._shuttle_position = np.array([1.2277, -0.9815, 1.07]) self._shuttle_position = np.array([0.06, 0.06, 1.07]) #([0.06, 0.06, 1.07]) self._platform_limits = np.array([0.0, 0.0, 0.832, 0.596]) # x_min, y_min, x_max, y_max self._shuttle_scale = 0.01 # self.xbot_ids = [1, 2, 3, 4, 5, 6, 7, 8] self.xbot_ids = [i for i in range(1, self._number_shuttles + 1)] self.targets_x = [] self.targets_y = [] # Trays self._number_tray_vial = 1 self._tray_vial_position = np.array([0.35992, -0.15884, 1.063]) #([0.06, 0.06, 1.10]) # self._tray_vial_position = np.array([1.2277, -1.2, 1]) self._tray_vial_scale = 0.0098 self._number_tray_beaker = 1 # self._tray_beaker_position = np.array([0.30, 0.06, 1.090]) self._tray_beaker_position = np.array([0.57916, -0.15884, 1.063]) self._tray_beaker_scale = 0.0099 # Flyways: # DEFINE FLYWAYS MATRIX self.flyways_matrix = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]]) # Flyway offsets self._flyway_position = np.array([1.165, -0.92398, 0.99302]) self._flyway_orientation = np.array([0, 0, 0, 1]) self._flyway_scale = 0.01 # Grid for BFS Algorithm self.grid = [] for row in self.flyways_matrix: grid_row = [] for cell in row: grid_row.extend([cell]*2) # each cell in flyways_matrix is 2 cells in grid for _ in range(2): # each cell in flyways_matrix is 2 cells in grid self.grid.append(grid_row) # Magnetic Stirrer self._stirrer_position = np.array([-0.15554, 0.71716, 1.0049]) self._stirrer_orientation = np.array(euler_angles_to_quat([np.pi/2, 0, 0])) self._stirrer_scale = 1.0 # HPLC #self._hplc_position = np.array([1.05725, -0.10274, 0.0369]) self._hplc_position = np.array([-1.03033, 0.15418, 1.0049]) self._hplc_orientation = np.array(euler_angles_to_quat([0, 0, 0])) self._hplc_scale = 0.01 # Loading station #self._loading_station_position = np.array([1.42345, -0.53634, 0.0369]) self._loading_station_position = np.array([-1.47442, 0.58184, 1.0049]) self._loading_station_orientation = np.array(euler_angles_to_quat([0, 0, np.pi/2])) self._loading_station_scale = 0.01 # Removing station #self._removing_station_position = np.array([1.15523, -1.15596, 0.0369]) self._removing_station_position = np.array([-1.04649, 1.23841, 1.0049]) self._removing_station_orientation = np.array(euler_angles_to_quat([0, 0, 0])) self._removing_station_scale = 0.01 # Kuka Multiple Arms: self._kuka_arms_position = np.array([0.0, 0.0, 1.0]) self._kuka_arms_orientation = np.array(euler_angles_to_quat([0, 0, 0])) self._kuka_arms_scale = 1.0 # Repository path: # self.repo_folder = "/home/andrei/P10-MAP/" self.repo_folder = "/home/robotlab/Documents/Github/P10-MAP/" # USD asset paths: # self.asset_folder = "omniverse://localhost/Projects/MAPs-AAU/Assets/" self.asset_folder = self.repo_folder + "assets/" self.asset_paths = { #"kr3": self.asset_folder + "kr3r540/kr3r540_v3/kr3r540_v3.usd", #"kr3": self.asset_folder + "kr3r540/kr3r540_v4/kr3r540_v4.usd", # Schunk Kr3 "kr3": self.asset_folder + "kr3r540_v4/kr3r540_v4g.usd", # Schunk Kr3 "kr4": self.asset_folder + "kr4r600/kr4r600_v2.usd", "kuka_multiple": self.asset_folder + "kuka_multiple_arms/kuka_multiple_arms_5.usd", "franka": "omniverse://localhost/NVIDIA/Assets/Isaac/2022.2.1/Isaac/Robots/Franka/franka_alt_fingers.usd", "flyway": self.asset_folder + "flyways/flyway_segment.usd", # "shuttle": self.asset_folder + "120x120x10/acopos_shuttle_120.usd", # Basic shuttle "shuttle": self.asset_folder + "120x120x10/shuttle_wh.usd", "tray_vial" : self.asset_folder + "Trays/Tray_vial_w.usd", "tray_flask" : self.asset_folder + "Trays/Tray_beaker_w.usd", "vial" : self.asset_folder + "vials/vial.usd", "stirrer" : self.asset_folder + "Magnetic_stirrer/Magnetic_stirrer.usd", #"lab_setup": self.asset_folder + "Lab_setup_v2.usd" # Lab Setup with robots #"lab_setup": self.asset_folder + "Lab_setup_v1.usd" # Lab Setup without robots "lab_setup": self.asset_folder + "Lab_setup_v0.usd", # Lab Setup without robots or Acopos Matrix "hplc": self.asset_folder + "Loading_station/Loading_station.usd", "loading_station": self.asset_folder + "Loading_station/Loading_station.usd", "removing_station": self.asset_folder + "Loading_station/Loading_station.usd" } # Prim paths Dictionaries: self.shuttles_prim_dict = {} # Dictionary to store shuttle prim paths self.items_prim_dict = {} # Dictionary to store tray vial prim paths self.eef_link_prim_dict = {} # Dictionary to store eef link prim paths for each robot self.gripper_prim_dict = {} # Dictionary to store gripper prim paths for each robot self.current_pos_dict = {} # Dictionary to store shuttle current positions # Get dictionary with planning group, joints and eef link for each robot self.filename = self.repo_folder + "src/kuka_config_multiple/config/simple_moveit_controllers.yaml" self.joints_loader = ControllerJointsLoader(self.filename) self.robot_joints_data = self.joints_loader.get_controller_data() print(self.robot_joints_data) # Load recipe with experiment instructions self.actions_file = self.repo_folder + "recipe/recipe_v2.yaml" self.actions_loader = RecipeLoader(self.actions_file) self.recipe = self.actions_loader.read_instructions_from_yaml() # Ros topics messages self.planning_group = String() # ROS topic name for move group self.joint_state_request = JointState() self.pose_request = Pose() self.cartesian_path_request = PoseArray() self.action_completed = False self.start_time = 0 self.action_times = {} self.control_switch = 0 # 0: Sim, 1: PMC return # This function is called to setup the assets in the scene for the first time # Class variables should not be assigned here, since this function is not called # after a hot-reload, its only called to load the world starting from an EMPTY stage def setup_scene(self): # Check if ROS master is running if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") # A world is defined in the BaseSample, can be accessed everywhere EXCEPT __init__ world = self.get_world() world = World.instance() # stage.SetDefaultPrim(world) world.scene.add_default_ground_plane() # adds a default ground plane to the scene # Add physics context physx_context = PhysicsContext() # Enable GPU dynamics physx_context.enable_gpu_dynamics(True) # Reload recipe self.recipe = self.actions_loader.read_instructions_from_yaml() # Add Xform reference for the shuttles world.scene.add(XFormPrim(prim_path="/World/LabSetup", name=f"LabSetup")) # Add Xform reference for the shuttles world.scene.add(XFormPrim(prim_path="/World/LabSetup/Grid", name=f"Grid")) # Add Xform reference for the flyways for i in range(len(self.flyways_matrix)): for j in range(len(self.flyways_matrix[i])): if self.flyways_matrix[i][j] == 1: add_reference_to_stage(usd_path=self.asset_paths["flyway"], prim_path="/World/LabSetup/Grid/flyway_{}{}".format((i+1),(j+1))) world.scene.add(GeometryPrim(prim_path="/World/LabSetup/Grid/flyway_{}{}".format((i+1),(j+1)), name="flyway_{}{}_ref_geom".format(i+1, j+1), collision=True)) # Add shuttles references for i in range(self._number_shuttles): add_reference_to_stage(usd_path=self.asset_paths["shuttle"], prim_path="/World/LabSetup/Grid/shuttle_{}".format(i+1)) world.scene.add(RigidPrim(prim_path="/World/LabSetup/Grid/shuttle_{}".format(i+1), name="shuttle_{}_ref_geom".format(i+1), position= self._shuttle_position + np.array([0.12 *i, 0, 0]), scale = np.full((3,), self._shuttle_scale), mass = 0.30)) self.targets_x = np.append(self.targets_x, self._shuttle_position[0] + np.array([0.12 *i])) self.targets_y = np.append(self.targets_y, self._shuttle_position[1]) # Add Trays for i in range(self._number_tray_vial): add_reference_to_stage(usd_path=self.asset_paths["tray_vial"], prim_path="/World/LabSetup/Grid/tray_vial_{}".format(i+1)) world.scene.add(RigidPrim(prim_path="/World/LabSetup/Grid/tray_vial_{}".format(i+1), name="tray_vial_{}_ref_geom".format(i+1), position= self._tray_vial_position + np.array([0.12 *i, 0, 0]), scale = np.full((3,), self._tray_vial_scale), mass = 0.15)) for i in range(self._number_tray_beaker): add_reference_to_stage(usd_path=self.asset_paths["tray_flask"], prim_path="/World/LabSetup/Grid/tray_beaker_{}".format(i+1)) world.scene.add(RigidPrim(prim_path="/World/LabSetup/Grid/tray_beaker_{}".format(i+1), name="tray_beaker_{}_ref_geom".format(i+1), position= self._tray_beaker_position + np.array([0.12 *i, 0, 0]), scale = np.full((3,), self._tray_beaker_scale), mass = 0.15)) # Add Magnetic Stirrer add_reference_to_stage(usd_path=self.asset_paths["stirrer"], prim_path="/World/LabSetup/Stirrer") world.scene.add(RigidPrim(prim_path ="/World/LabSetup/Stirrer", name="magnetic_stirrer", position = self._stirrer_position, orientation = self._stirrer_orientation, mass = 3)) # Add HPLC add_reference_to_stage(usd_path=self.asset_paths["hplc"], prim_path="/World/LabSetup/hplc") world.scene.add(RigidPrim(prim_path ="/World/LabSetup/hplc", name="hplc", position = self._hplc_position, orientation = self._hplc_orientation, mass = 20)) # Add Loading station add_reference_to_stage(usd_path=self.asset_paths["loading_station"], prim_path="/World/LabSetup/loading_station") world.scene.add(RigidPrim(prim_path ="/World/LabSetup/loading_station", name="loading_station", position = self._loading_station_position, orientation = self._loading_station_orientation, mass = 20)) # Add Remove station add_reference_to_stage(usd_path=self.asset_paths["removing_station"], prim_path="/World/LabSetup/removing_station") world.scene.add(RigidPrim(prim_path ="/World/LabSetup/removing_station", name="removing_station", position = self._removing_station_position, orientation = self._removing_station_orientation, mass = 20)) # Add Robots references add_reference_to_stage(usd_path=self.asset_paths["kuka_multiple"], prim_path="/World/Kuka_Multiple_Arms") self.kukas = world.scene.add(Articulation(prim_path ="/World/Kuka_Multiple_Arms", name="Kuka_Multiple_Arms", position = self._kuka_arms_position, orientation = self._kuka_arms_orientation)) return # Here we assign the class's variables this function is called after load button is pressed # regardless starting from an empty stage or not this is called after setup_scene and after # one physics time step to propagate appropriate physics handles which are needed to retrieve # many physical properties of the different objects async def setup_post_load(self): # Load World and Assets --CHECK self._world = self.get_world() self._world.scene.enable_bounding_boxes_computations() # Camera Initial Viewport viewports.set_camera_view(eye=np.array([3.3, -0.7, 2.2]), target=np.array([0.8, -0.7, 1.05])) # Add USD Assets await self._add_lab_setup() await self._add_shuttles_grid() for i in range(len(self.flyways_matrix)): for j in range(len(self.flyways_matrix[i])): if self.flyways_matrix[i][j] == 1: await self._add_flyway(i, j) # Shuttles Prim Dictionary stage = omni.usd.get_context().get_stage() for shuttle_number in range(self._number_shuttles): shuttle_path = "/World/LabSetup/Grid/shuttle_{}".format(shuttle_number + 1) prim = stage.GetPrimAtPath(shuttle_path) if prim: key_name = "prim_{}".format(shuttle_number + 1) self.shuttles_prim_dict[key_name] = prim else: print("Error: shuttle prim not found at path {}".format(shuttle_path)) # Items Prim Dictionary for tray_vial in range(self._number_tray_vial): tray_vial_path = "/World/LabSetup/Grid/tray_vial_{}".format(tray_vial + 1) prim = stage.GetPrimAtPath(tray_vial_path) if prim: key_name = "prim_tray_vial_{}".format(tray_vial + 1) self.items_prim_dict[key_name] = prim for tray_beaker in range(self._number_tray_beaker): tray_beaker_path = "/World/LabSetup/Grid/tray_beaker_{}".format(tray_beaker + 1) prim = stage.GetPrimAtPath(tray_beaker_path) if prim: key_name = "prim_tray_beaker_{}".format(tray_beaker + 1) while key_name in self.items_prim_dict: # Check if the key already exists in the dictionary tray_beaker += self._number_tray_vial # Increment the index by the number of vials tray_beaker_path = "/World/LabSetup/Grid/tray_beaker_{}".format(tray_beaker + 1) prim = stage.GetPrimAtPath(tray_beaker_path) key_name = "prim_{}_beaker".format(tray_beaker + 1) self.items_prim_dict[key_name] = prim print("ITEMS DICT: ", self.items_prim_dict) # Iterate over each robot for robot_name, robot_data in self.robot_joints_data.items(): eef_link = robot_data['eef_link'] eef_link_path = "/World/Kuka_Multiple_Arms/{}".format(eef_link) prim = stage.GetPrimAtPath(eef_link_path) if prim: self.eef_link_prim_dict[robot_name] = prim else: print("Error: eef link prim not found at path {}".format(eef_link_path)) print("EEF DICT: ", self.eef_link_prim_dict) # Create rospy node to publish requested joint positions rospy.init_node('isaac_joint_request_publisher') self.pub_group = rospy.Publisher('/joint_move_group_isaac', String, queue_size=10) self.pub_joints = rospy.Publisher('/joint_command_isaac', JointState, queue_size=10) self.pub_pose = rospy.Publisher('/pose_command_isaac', Pose, queue_size=10) self.pub_cartesian_path = rospy.Publisher('/cartesian_path_command_isaac', PoseArray, queue_size=10) # Creating a action graph with ROS component nodes try: og.Controller.edit( {"graph_path": "/World/Kuka_Multiple_Arms/ActionGraph", "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("OnImpulseEvent", "omni.graph.action.OnImpulseEvent"), ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("PublishJointState", "omni.isaac.ros_bridge.ROS1PublishJointState"), ("SubscribeJointState", "omni.isaac.ros_bridge.ROS1SubscribeJointState"), ("ArticulationController", "omni.isaac.core_nodes.IsaacArticulationController"), ("PublishTF", "omni.isaac.ros_bridge.ROS1PublishTransformTree"), ("PublishClock", "omni.isaac.ros_bridge.ROS1PublishClock"), ], og.Controller.Keys.CONNECT: [ ("OnImpulseEvent.outputs:execOut", "PublishJointState.inputs:execIn"), ("OnImpulseEvent.outputs:execOut", "SubscribeJointState.inputs:execIn"), ("OnImpulseEvent.outputs:execOut", "PublishTF.inputs:execIn"), ("OnImpulseEvent.outputs:execOut", "PublishClock.inputs:execIn"), ("OnImpulseEvent.outputs:execOut", "ArticulationController.inputs:execIn"), ("ReadSimTime.outputs:simulationTime", "PublishJointState.inputs:timeStamp"), ("ReadSimTime.outputs:simulationTime", "PublishClock.inputs:timeStamp"), ("ReadSimTime.outputs:simulationTime", "PublishTF.inputs:timeStamp"), ("SubscribeJointState.outputs:jointNames", "ArticulationController.inputs:jointNames"), ("SubscribeJointState.outputs:positionCommand", "ArticulationController.inputs:positionCommand"), ("SubscribeJointState.outputs:velocityCommand", "ArticulationController.inputs:velocityCommand"), ("SubscribeJointState.outputs:effortCommand", "ArticulationController.inputs:effortCommand"), ], og.Controller.Keys.SET_VALUES: [ # Setting the /Kuka target prim to Articulation Controller node ("SubscribeJointState.inputs:topicName", "joint_command"), ("ArticulationController.inputs:usePath", False), ("ArticulationController.inputs:robotPath", ""), ], }, ) except Exception as e: print(e) # Setting the /Kuka target prim to Publish JointState node set_targets( prim = stage.GetPrimAtPath("/World/Kuka_Multiple_Arms/ActionGraph/PublishJointState"), attribute="inputs:targetPrim", target_prim_paths=["/World/Kuka_Multiple_Arms"] ) # Setting the /Kuka target prim to Articulation Controller node set_targets( prim = stage.GetPrimAtPath("/World/Kuka_Multiple_Arms/ActionGraph/ArticulationController"), attribute="inputs:targetPrim", target_prim_paths=["/World/Kuka_Multiple_Arms"] ) # Setting the /Kuka target prim to Publish Transform Tree node set_targets( prim = stage.GetPrimAtPath("/World/Kuka_Multiple_Arms/ActionGraph/PublishTF"), attribute = "inputs:targetPrims", target_prim_paths=["/World/Kuka_Multiple_Arms"] ) # Control Switch if self.control_switch == 0: # self._world.add_physics_callback("sim_step_shuttles", callback_fn=self.sim_xbots_movement_2) # rospy.init_node('isaac_test', anonymous=True) # self.pub_joints = rospy.Publisher("/joint_command_desired", queue_size=1) #self.on_impulse_event() self._world.add_physics_callback("sim_step_impulse", callback_fn=self.on_impulse_event) # self._world.add_physics_callback("sim_step_shuttles", self.sim_xbots_movement) elif self.control_switch == 1: self._connect_pmc() # Connect to PMC self._world.add_physics_callback("sim_step_read_acopos", callback_fn=self.read_xbots_positions) #callback names have to be unique self._world.add_physics_callback("sim_step_move_acopos", callback_fn=self.send_xbots_positions) return # Add Lab Setup reference async def _add_lab_setup(self): self._lab_setup_ref_geom = self._world.scene.get_object(f"LabSetup") # self._lab_setup_ref_geom.set_local_scale(np.array([self._lab_setup_scale])) self._lab_setup_ref_geom.set_world_pose(position=self._lab_setup_position, orientation=self._lab_setup_orientation) self._lab_setup_ref_geom.set_default_state(position=self._lab_setup_position, orientation=self._lab_setup_orientation) # self._lab_setup_ref_geom.set_collision_approximation("none") # self._convexIncludeRel.AddTarget(self._table_ref_geom.prim_path) # Add flyways to the scene async def _add_flyway(self, x, y): self._flyway_ref_geom = self._world.scene.get_object(f"flyway_{x+1}{y+1}_ref_geom") self._flyway_ref_geom.set_local_scale(np.array([self._flyway_scale])) self._flyway_ref_geom.set_world_pose(position = self._flyway_position + (-0.24 * (x), +0.24 * (y), 0)) self._flyway_ref_geom.set_default_state(position = self._flyway_position) self._flyway_ref_geom.set_collision_approximation("none") # Add xForm shuttles reference async def _add_shuttles_grid(self): self._shuttles_grid_ref_geom = self._world.scene.get_object(f"Grid") self._shuttles_grid_ref_geom.set_world_pose(position=self._grid_position, orientation=self._grid_orientation) self._shuttles_grid_ref_geom.set_default_state(position=self._grid_position, orientation=self._grid_orientation) ## Interface Functions: async def _on_sim_control_event_async(self): world = self.get_world() self.targets_x, self.targets_y = self.create_random_coordinates(self._number_shuttles) if world.physics_callback_exists("sim_step_read_acopos"): world.remove_physics_callback("sim_step_read_acopos") # world.add_physics_callback("sim_step_shuttles", self.sim_xbots_movement) await world.play_async() return async def _on_real_control_event_async(self): world = self.get_world() if world.physics_callback_exists("sim_step_shuttles"): world.remove_physics_callback("sim_step_shuttles") self._world.add_physics_callback("sim_step_read_acopos", callback_fn=self.read_xbots_positions) #callback names have to be unique #self._world.add_physics_callback("sim_step_move_acopos", callback_fn=self.send_xbots_positions) ## Random positions right now await world.play_async() return ## CONTROL FUNCTIONS # Function to move selected robot to desired joints position def move_to_joint_state(self, planning_group, joint_state_request): moveit_planning_group = self.robot_joints_data[planning_group]["planning_group"] self.planning_group = planning_group self.joint_state_request.position = joint_state_request self.pub_group.publish(moveit_planning_group) self.pub_joints.publish(self.joint_state_request) if len(joint_state_request) == 6: # Add a physics callback to check when the action has been completed callback_fn = functools.partial(self.on_sim_step_check, planning_group, joint_state_request) self._world.add_physics_callback("sim_step_check", callback_fn) return # Function to move selected robot to desired pose def move_to_pose(self, planning_group, position, orientation = [0.0, np.pi/2, 0.0]): moveit_planning_group = self.robot_joints_data[planning_group]["planning_group"] self.planning_group = planning_group quaternion = euler_angles_to_quat(orientation) # reverse the order of the angles to be rxyz as in ROS self.pose_request = self.create_pose_msg(position, quaternion) self.pub_group.publish(moveit_planning_group) self.pub_pose.publish(self.pose_request) # Add a physics callback to check when the action has been completed callback_fn = functools.partial(self.on_sim_step_check, planning_group, position) self._world.add_physics_callback("sim_step_check", callback_fn) return # Function to move selected robot to desired pose using cartesian path def move_along_cartesian_path(self, planning_group, waypoints): moveit_planning_group = self.robot_joints_data[planning_group]["planning_group"] self.planning_group = planning_group self.cartesian_path_request.header.stamp = rospy.Time.now() self.cartesian_path_request.header.frame_id = 'world' # or whatever frame_id you are using for waypoint in waypoints: position, orientation = waypoint quaternion = euler_angles_to_quat(orientation) # convert euler to quaternion pose = self.create_pose_msg(position, quaternion) self.cartesian_path_request.poses.append(pose) print("Cartesian path request: ", self.cartesian_path_request) self.pub_group.publish(moveit_planning_group) self.pub_cartesian_path.publish(self.cartesian_path_request) # Add a physics callback to check when the action has been completed self._world.add_physics_callback("sim_step_check", lambda arg: self.on_sim_step_check(planning_group, position)) return # Function to move selected selected shuttle to desired position def move_shuttle_to_target(self, xbot_id: int , target_x, target_y): # Check if the xbot_id exists in xbot_ids if xbot_id in self.xbot_ids: # Update the corresponding target_x and target_y values self.targets_x[xbot_id - 1] = target_x self.targets_y[xbot_id - 1] = target_y else: # If the xbot_id doesn't exist in xbot_ids, raise an exception raise ValueError(f"xbot_id {xbot_id} not found in xbot_ids") desired_position = [target_x, target_y] print("xbot_id_function: ", xbot_id) print("desired_position: ", desired_position) # Add physics callback to move the selected shuttle to the desired position # and to check when the action has been completed self._world.add_physics_callback("sim_step_shuttles", self.sim_xbots_movement) callback_fn = functools.partial(self.on_sim_step_check, xbot_id, desired_position) self._world.add_physics_callback("sim_step_check", callback_fn) # self._world.add_physics_callback("sim_step_check", lambda xbot_id=xbot_id, desired_position=desired_position: self.on_sim_step_check(xbot_id, desired_position)) def attach_object(self, planning_group, state, item): # Attach the shuttle to the robot arm callback_fn = functools.partial(self.on_sim_attach_object, planning_group, state, item) self._world.add_physics_callback("sim_attach_object", callback_fn) def on_sim_attach_object(self, planning_group, state, item, step_size = 0.01): # Get prim of item prim_item = self.items_prim_dict['prim_{}'.format(item)] # Get prim of robot arm offset = 0.02 if isinstance(planning_group, int): if state == True: shuttle_pos = self.get_shuttle_position(planning_group) prim_item.GetAttribute('xformOp:translate').Set(( shuttle_pos[0], shuttle_pos[1] , shuttle_pos[2] + offset )) elif isinstance(planning_group, str): # eef_pos, eef_orient = self.get_eef_link_position(planning_group) print("Not working") # # Set the position of the item # item_pos = prim_item.GetAttribute('xformOp:translate').Get() # prim_item.GetAttribute('xformOp:translate').Set(( eef_pos[1] + 1.03443 , -eef_pos[0] +1.46063 -0.18, eef_pos[2] + 1 )) # # CHECK Maybe create a fake point in between both grippers to attach the item to the robot arm # # Convert orientation from GfQuatd to GfQuatf # # eef_orient_f = Gf.Quatf(eef_orient) # # print(eef_orient_f) # # prim_item.GetAttribute('xformOp:orient').Set(eef_orient_f) # # Transform orientation from euler angles to quaternion # quat_prim = euler_angles_to_quat([0.0, 0.0, 0.0]) # quat = Gf.Quatf(*quat_prim) # # Set Orientation of item # prim_item.GetAttribute('xformOp:orient').Set(quat) # Function to open and close the gripper def gripper_control(self, planning_group, state): if state == "open": self.move_to_joint_state(planning_group, [0.0 , 0.0]) elif state == "close": self.move_to_joint_state(planning_group, [-0.0030 , -0.0030]) else: raise ValueError(f"state {state} not found in gripper_control") desired_position = state callback_fn = functools.partial(self.on_sim_step_check, planning_group, desired_position) self._world.add_physics_callback("sim_step_check", callback_fn) ## GET DATA FUNCTIONS def get_eef_link_position(self, robot_arm): # Collect end effector position prim_eef_link = self.eef_link_prim_dict[robot_arm] # Robot arm is a string (e.g. "robot_arm_1"") eef_pos = prim_eef_link.GetAttribute('xformOp:translate').Get() eef_orient = prim_eef_link.GetAttribute('xformOp:orient').Get() return eef_pos[0], eef_pos[1], eef_pos[2], eef_orient # return eef_pos, eef_orient def get_shuttle_position(self, xbot_id): # Retrieve the shuttle position shuttle_prim = self.shuttles_prim_dict["prim_{}".format(xbot_id)] shuttle_pos = shuttle_prim.GetAttribute('xformOp:translate').Get() return shuttle_pos[0], shuttle_pos[1], shuttle_pos[2] def get_gripper_joints_position(self, robot_hand): """ Get the current joint positions of the robot gripper """ # Create an ArticulationSubset instance articulation_subset = ArticulationSubset(articulation=self.kukas, joint_names=self.robot_joints_data[robot_hand]['joints']) # Get the joint positions joint_pos_left, joint_pos_right = articulation_subset.get_joint_positions() return joint_pos_left, joint_pos_right def get_joints_position(self, robot_arm): """ Get the current joint positions of the robot arm """ articulation_subset = ArticulationSubset(articulation=self.kukas, joint_names=self.robot_joints_data[robot_arm]['joints']) current_joint_values = articulation_subset.get_joint_positions() # # Debugging: # current_joint_states = self.get_joints_position("robot_arm_1") # carb.log_warn("Current joint states {}: {}".format("robot_arm_1" ,repr(current_joint_states))) # current_joint_states = self.get_joints_position("robot_arm_2") # carb.log_warn("Current joint states {}: {}".format("robot_arm_2" ,repr(current_joint_states))) # current_joint_states = self.get_joints_position("robot_arm_3") # carb.log_warn("Current joint states {}: {}".format("robot_arm_3" ,repr(current_joint_states))) # current_joint_states = self.get_joints_position("robot_arm_4") # carb.log_warn("Current joint states {}: {}".format("robot_arm_4" ,repr(current_joint_states))) # current_joint_states = self.get_joints_position("robot_arm_5") # carb.log_warn("Current joint states {}: {}".format("robot_arm_5" ,repr(current_joint_states))) return current_joint_values def has_reached_position(self, planning_group, desired_position, tolerance=0.01): """ Check if the robot/shuttle has reached the desired position planning_group: string (Robot Arm) or integer (Shuttle) desired_position: list of 3 floats [x, y, z] in Isaac Sim coordinates or string ("open" or "close") for gripper """ if isinstance(desired_position, str) and desired_position in ["open", "close"]: # Get the gripper joint positions joint_pos_left, joint_pos_right = self.get_gripper_joints_position(planning_group) print("Joint positions: ", joint_pos_left, joint_pos_right) # Check if the gripper is open or closed if (desired_position == "close" and (joint_pos_left < -0.0010 or joint_pos_right < -0.0010)) or \ (desired_position == "open" and (joint_pos_left > -0.0001 and joint_pos_right > -0.0001)): elapsed_time = time.time() - self.start_time action_name = "{} gripper {}".format(planning_group, desired_position) self.action_times.setdefault(action_name, []).append(elapsed_time) carb.log_warn("{} completed in {:.3f} seconds".format(action_name, elapsed_time)) self.action_completed = True # Set the action_completed flag to True return True else: print("Current gripper position: ", joint_pos_left, joint_pos_right) return False elif isinstance(planning_group, str): # Get current position of the robot if len(desired_position) == 3: # Move to Pose checking (eef position) current_position = self.get_eef_link_position(planning_group) # Compute the distance between the current position and the desired position distance = math.sqrt((current_position[0] - desired_position[0])**2 + (current_position[1] - desired_position[1])**2 + (current_position[2] - desired_position[2])**2) # Check if the distance is within the tolerance if distance <= tolerance: elapsed_time = time.time() - self.start_time action_name = "{} moved to target".format(planning_group) self.action_times.setdefault(action_name, []).append(elapsed_time) carb.log_warn("{} completed in {:.3f} seconds".format(action_name, elapsed_time)) self.action_completed = True # Set the action_completed flag to True current_joint_states = self.get_joints_position(planning_group) carb.log_warn("Current joint states: {}".format(repr(current_joint_states))) return True else: print("Current position: ", current_position) print("Distance: ", distance) return False elif len(desired_position) == 6: # Move to Joint States checking (joint positions) current_joint_states = self.get_joints_position(planning_group) # Compute the distance between the current position and the desired position distance = math.sqrt((current_joint_states[0] - desired_position[0])**2 + (current_joint_states[1] - desired_position[1])**2 + (current_joint_states[2] - desired_position[2])**2 + (current_joint_states[3] - desired_position[3])**2 + (current_joint_states[4] - desired_position[4])**2 + (current_joint_states[5] - desired_position[5])**2) # Check if the distance is within the tolerance if distance <= tolerance: elapsed_time = time.time() - self.start_time action_name = "{} moved to joint states".format(planning_group) self.action_times.setdefault(action_name, []).append(elapsed_time) carb.log_warn("{} completed in {:.3f} seconds".format(action_name, elapsed_time)) self.action_completed = True else: print("Current position: ", current_joint_states) print("Distance: ", distance) return False else: print("Invalid desired position") return False if isinstance(planning_group, int): # Get current position of the shuttle current_position = self.get_shuttle_position(planning_group) # Compute the distance between the current position and the desired position distance = math.sqrt((current_position[0] - desired_position[0])**2 + (current_position[1] - desired_position[1])**2) # Check if the distance is within the tolerance if distance <= tolerance: elapsed_time = time.time() - self.start_time action_name = "Shuttle {} moved to target".format(planning_group) self.action_times.setdefault(action_name, []).append(elapsed_time) carb.log_warn("{} completed in {:.3f} seconds".format(action_name, elapsed_time)) self.action_completed = True # Set the action_completed flag to True return True else: print("Current position: ", current_position) print("Distance: ", distance) return False else: print("Invalid planning group type. Must be a string for a robot arm or integer for a shuttle.") return False def print_action_times_summary(self): # Print the sum of times for each action, ordered by the number of actions for action, times in sorted(self.action_times.items(), key=lambda item: len(item[1])): carb.log_warn("Action '{}': completed {} times, total time {:.3f} seconds".format(action, len(times), sum(times))) def execute_actions(self): if len(self.recipe) > 0: if self.action_completed: action = self.recipe.pop(0) # Retrieve the first action in the list action_name = action['action'] parameters = action['parameters'] self.start_time = time.time() # Record the start time for each action # Print the action to be executed with its parameters carb.log_warn("Executing action: " + action_name + ": " + str(parameters)) world= self.get_world() if world.physics_callback_exists("sim_step_check"): world.remove_physics_callback("sim_step_check") if world.physics_callback_exists("sim_step_shuttles"): world.remove_physics_callback("sim_step_shuttles") self.action_completed = False # Set the action_completed flag to False if action_name == 'MOVE_TO_JOINT_STATE': self.move_to_joint_state(**parameters) # The ** operator is used to unpack the dictionary into keyword arguments elif action_name == 'MOVE_TO_POSE_MOVEIT': self.move_to_pose(**parameters) # The ** operator is used to unpack the dictionary into keyword arguments elif action_name == 'MOVE_TO_POSE_IN_PLATFORM': position_xy = self.platform_pos_to_coordinates(parameters['position'][0],parameters['position'][1], moveit_offset = True) self.move_to_pose(parameters['planning_group'], [position_xy[0],position_xy[1],parameters['position'][2]], parameters['orientation']) elif action_name == 'MOVE_ALONG_CARTESIAN_PATH': self.move_along_cartesian_path(**parameters) elif action_name == 'MOVE_SHUTTLE_TO_TARGET': position_xy = self.platform_pos_to_coordinates(parameters['target_x'],parameters['target_y'], moveit_offset = False) xbot_id = int(parameters['xbot_id']) self.move_shuttle_to_target(xbot_id, position_xy[0], position_xy[1]) elif action_name == 'GRIPPER_CONTROL': self.gripper_control(**parameters) elif action_name == 'ATTACH_OBJECT': if parameters['state'] == True: self.attach_object(**parameters) elif parameters['state'] == False: world= self.get_world() if world.physics_callback_exists("sim_attach_object"): world.remove_physics_callback("sim_attach_object") # Remove the physics callback self.action_completed = True else: print("Invalid action name: ", action_name) else: world= self.get_world() if world.physics_callback_exists("sim_step_auto_play"): world.remove_physics_callback("sim_step_auto_play") if world.physics_callback_exists("sim_step_check"): world.remove_physics_callback("sim_step_check") if world.physics_callback_exists("sim_step_shuttles"): world.remove_physics_callback("sim_step_shuttles") carb.log_warn("Recipe completed!") self.print_action_times_summary() async def _on_start_experiment_event_async(self): self.action_completed = True self._world.add_physics_callback("sim_step_auto_play", callback_fn=self.on_automatic_execution) #self.execute_actions() return def on_impulse_event(self, step_size): # Tick the Publish/Subscribe JointState, Publish TF and Publish Clock nodes each frame og.Controller.set(og.Controller.attribute("/World/Kuka_Multiple_Arms/ActionGraph/OnImpulseEvent.state:enableImpulse"), True) def on_sim_step_check(self, planning_group, desired_position, step_size=1): # Check if the robot has reached the desired position self.has_reached_position(planning_group, desired_position) def on_automatic_execution(self, step_size=1): # Execute the actions in the recipe self.execute_actions() async def setup_pre_reset(self): # world = self.get_world() # if world.physics_callback_exists("sim_step"): # world.remove_physics_callback("sim_step") return async def setup_post_reset(self): # await self._world.play_async() return def world_cleanup(self): return # Move xbots in simulation (No collision detection) def sim_xbots_movement(self, step_size): max_speed = 1.0 # m/s move_increment = step_size * max_speed for shuttle_number in range(self._number_shuttles): prim = self.shuttles_prim_dict["prim_{}".format(shuttle_number + 1)] current_pos = prim.GetAttribute('xformOp:translate').Get() #Move shuttle up if (self.targets_y[shuttle_number]) > current_pos[1]: prim.GetAttribute('xformOp:translate').Set((current_pos[0], current_pos[1] + move_increment, current_pos[2])) if (current_pos[1] + move_increment) > self.targets_y[shuttle_number]: prim.GetAttribute('xformOp:translate').Set((current_pos[0], self.targets_y[shuttle_number], current_pos[2])) # Move shuttle down elif (self.targets_y[shuttle_number]) < current_pos[1]: prim.GetAttribute('xformOp:translate').Set((current_pos[0], current_pos[1] - move_increment, current_pos[2])) if (current_pos[1] - move_increment) < self.targets_y[shuttle_number]: prim.GetAttribute('xformOp:translate').Set((current_pos[0], self.targets_y[shuttle_number], current_pos[2])) # check if we reached the target in y axis, then start moving in x direction. if abs(current_pos[1] - self.targets_y[shuttle_number]) < move_increment: # Move shuttle right if (self.targets_x[shuttle_number]) > current_pos[0]: prim.GetAttribute('xformOp:translate').Set((current_pos[0] + move_increment, current_pos[1], current_pos[2])) if (current_pos[0] + move_increment) > self.targets_x[shuttle_number]: prim.GetAttribute('xformOp:translate').Set((self.targets_x[shuttle_number], current_pos[1], current_pos[2])) # Move shuttle left elif (self.targets_x[shuttle_number]) < current_pos[0]: prim.GetAttribute('xformOp:translate').Set((current_pos[0] - move_increment, current_pos[1], current_pos[2])) if (current_pos[0] - move_increment) < self.targets_x[shuttle_number]: prim.GetAttribute('xformOp:translate').Set((self.targets_x[shuttle_number], current_pos[1], current_pos[2])) # Move xbots in simulation (Checking other shuttles in the path) def sim_xbots_movement_collision(self, step_size): max_speed = 1.0 # m/s move_increment = step_size * max_speed for xbot in range(self._number_shuttles): prim = self.shuttles_prim_dict["prim_{}".format(xbot + 1)] current_pos = prim.GetAttribute('xformOp:translate').Get() x_pos_control = [] y_pos_control = [] # Collect all shuttles positions for shuttle_number in range(self._number_shuttles): prim_others = self.shuttles_prim_dict["prim_{}".format(shuttle_number + 1)] shuttles_pos = prim_others.GetAttribute('xformOp:translate').Get() x_pos_control.append(shuttles_pos[0]) y_pos_control.append(shuttles_pos[1]) # Decide which direction to move in dx = self.targets_x[xbot] - current_pos[0] dy = self.targets_y[xbot] - current_pos[1] for shuttle in range(self._number_shuttles): continue_flag = False if xbot != shuttle and ((current_pos[1] > (y_pos_control[shuttle] - 0.0602 - move_increment) and current_pos[1] < (y_pos_control[shuttle] + 0.0602 + move_increment)) or (current_pos[0] > (x_pos_control[shuttle] - 0.0602 - move_increment) and current_pos[0] < (x_pos_control[shuttle] + 0.0602 + move_increment))): continue_flag = True if continue_flag: continue # if moving right is safe if dx > 0: prim.GetAttribute('xformOp:translate').Set((current_pos) + (move_increment, 0.0, 0.0)) if (current_pos[0] + move_increment) > self.targets_x[xbot]: prim.GetAttribute('xformOp:translate').Set((self.targets_x[xbot], current_pos[1], current_pos[2])) break # if moving left is safe elif dx < 0: prim.GetAttribute('xformOp:translate').Set((current_pos) - (move_increment, 0.0 , 0.0)) if (current_pos[0] - move_increment) < self.targets_x[xbot]: prim.GetAttribute('xformOp:translate').Set((self.targets_x[xbot], current_pos[1], current_pos[2])) break # if moving up is safe if dy > 0: prim.GetAttribute('xformOp:translate').Set((current_pos[0], current_pos[1] + move_increment, current_pos[2])) if (current_pos[1] + move_increment) > self.targets_y[xbot]: prim.GetAttribute('xformOp:translate').Set((current_pos[0], self.targets_y[xbot], current_pos[2])) break # if moving down is safe elif dy < 0: prim.GetAttribute('xformOp:translate').Set((current_pos[0], current_pos[1] - move_increment, current_pos[2])) if (current_pos[1] - move_increment) < self.targets_y[xbot]: prim.GetAttribute('xformOp:translate').Set((current_pos[0], self.targets_y[xbot], current_pos[2])) break # Read shuttles position and orientation from physical setup def read_xbots_positions(self, step_size): # Read info for every shuttle xbot_list = bot.get_all_xbot_info(1) xbot_positions = [(xbot.x_pos, xbot.y_pos, xbot.z_pos, xbot.rx_pos, xbot.ry_pos, xbot.rz_pos, xbot.xbot_state) for xbot in xbot_list] # Set position and orientation of shuttles for shuttle_number in range(self._number_shuttles): prim = self.shuttles_prim_dict["prim_{}".format(shuttle_number + 1)] # Set position of shuttle prim.GetAttribute('xformOp:translate').Set((xbot_positions[shuttle_number][0], xbot_positions[shuttle_number][1] , xbot_positions[shuttle_number][2] + 1.06)) # Transform orientation from euler angles to quaternion quat_prim = (euler_angles_to_quat([xbot_positions[shuttle_number][3], xbot_positions[shuttle_number][4], xbot_positions[shuttle_number][5]])) # quat = Gf.Quatd(*quat_prim) quat = Gf.Quatf(*quat_prim) # Set Orientation of shuttle prim.GetAttribute('xformOp:orient').Set(quat) def send_xbots_positions(self, step_size): """Send commands to the Xbots to move them to the next target position. Planning is done using PMC algorithm.""" # Only update the Xbots if at least some time (s) have passed since the last update if time.time() - self.last_update_time >= 0.5: #print(bot.get_xbot_status(xbot_id=xid).xbot_state) xbot_list = bot.get_all_xbot_info(1) xbot_positions = [(xbot.x_pos, xbot.y_pos, xbot.z_pos, xbot.rx_pos, xbot.ry_pos, xbot.rz_pos, xbot.xbot_state) for xbot in xbot_list] # Don't send commands while the xbots are moving if all(xbot_state[6] == pmc_types.XbotState.XBOT_IDLE for xbot_state in xbot_positions): #xbot_state[6] --> xbot_state # Get random unique targets for each shuttle targets_x, targets_y = self.create_random_coordinates(self._number_shuttles) print("target_x ", targets_x) print("target_y ", targets_y) bot.auto_driving_motion_si(self._number_shuttles, xbot_ids=self.xbot_ids, targets_x=targets_x, targets_y=targets_y) else: print("Xbots are moving") self.last_update_time = time.time() # if bot.get_xbot_status(xbot_id=xid).xbot_state is pmc_types.XbotState.XBOT_IDLE: # #self.sample_motions(input_id=xid) # bot.auto_driving_motion_si(8, xbot_ids=xbot_ids, targets_x=targets_x, targets_y=targets_y) # # Recover Disabled xbot # elif bot.get_xbot_status(xbot_id=xid).xbot_state is pmc_types.XbotState.XBOT_DISABLED: # bot.recover_accident_xbot(xbot_id=xid) # print("Recovering xbot: ", xid) def create_random_coordinates(self, num_shuttles): """Create random coordinates for each shuttle in num_shuttles""" x_coords = [] y_coords = [] coords_dict = {} for i in range(num_shuttles): while True: x = random.randint(0, 5) * 0.12 + 0.06 y = random.randint(0, 7) * 0.12 + 0.06 if (x, y) not in coords_dict: coords_dict[(x, y)] = 1 break x_coords.append(x) y_coords.append(y) return x_coords, y_coords def sample_motions(self, input_id): max_speed = 1.0 max_accel = 10.0 bot.linear_motion_si(xbot_id=input_id, target_x=0.18, target_y=0.06, max_speed=max_speed, max_accel=max_accel) bot.linear_motion_si(xbot_id=input_id, target_x=0.18, target_y=0.90, max_speed=max_speed, max_accel=max_accel) bot.linear_motion_si(xbot_id=input_id, target_x=0.66, target_y=0.90, max_speed=max_speed, max_accel=max_accel) bot.linear_motion_si(xbot_id=input_id, target_x=0.66, target_y=0.06, max_speed=max_speed, max_accel=max_accel) # bot.rotary_motion_timed_spin(xbot_id=input_id,rot_time=3, target_rz=3.14, # max_speed=3.0, max_accel=max_accel) # bot.linear_motion_si(xbot_id=input_id, target_x=0.60, target_y=0.36, # max_speed=max_speed, max_accel=max_accel) # bot.rotary_motion_timed_spin(xbot_id=input_id,rot_time=3, target_rz=3.14, # max_speed=3.0, max_accel=max_accel) def wait_for_xbot_done(xid): while bot.get_xbot_status(xbot_id=xid).xbot_state is not pmc_types.XbotState.XBOT_IDLE: time.sleep(0.5) def _connect_pmc(self): """Connect to PMC and gain mastership""" # Connect to PMC sys.auto_connect_to_pmc() if not sys.auto_connect_to_pmc(): sys.connect_to_pmc("192.168.10.100") #sys.auto_connect_to_pmc() carb.log_warn("Connected: " + str(sys.auto_connect_to_pmc())) carb.log_warn("Status: " + str(sys.get_pmc_status())) # Gain mastership if not sys.is_master(): sys.gain_mastership() carb.log_warn("Master: " + str(sys.is_master())) # Activate xBots bot.activate_xbots() def create_pose_msg(self, position, orientation, frame_id=''): """Create a ROS Pose message object from a position and orientation""" # Create a new Pose object pose = Pose() # Given a position and orientation as lists and a frame id as string, return a PoseStamped message object. header = Header() header.frame_id = frame_id header.stamp = rospy.Time.now() # Set the position field of the Pose object position_obj = Point() position_obj.x = position[0] position_obj.y = position[1] position_obj.z = position[2] pose.position = position_obj # Set the orientation field of the Pose object (rxyz) orientation_obj = Quaternion() orientation_obj.x = orientation[1] orientation_obj.y = orientation[2] orientation_obj.z = orientation[3] orientation_obj.w = orientation[0] pose.orientation = orientation_obj pose_stamped = PoseStamped(header=header, pose=pose) return pose def platform_pos_to_coordinates(self, x_pos, y_pos, moveit_offset=False, robot_arm=None): """ Description: Converts the acopos platform positions to the platform coordinates. Origin of the matrix is at the bottom left corner (0,0) Limits of the acopos matrix are (5,7) Use moveit_offset to convert the coordinates to the moveit frame --> Robot arms EEF Poses. """ ## TBD - Add robot end effector offsets if robot_arm is None: robot_arm = self.planning_group #if self.planning_group is not None else None lim_x = self.flyways_matrix.shape[1] * 2 lim_y = self.flyways_matrix.shape[0] * 2 # Moveit offset offset = [1.275, -1.04, 0.0] if moveit_offset: x_coord = -(y_pos * 0.12 + 0.06) + offset[0] y_coord = (x_pos * 0.12 + 0.06) + offset[1] else: x_coord = x_pos * 0.12 + 0.06 y_coord = y_pos * 0.12 + 0.06 if x_pos > (lim_x - 1): raise ValueError("x_pos exceeds the size of the platform.") if y_pos > (lim_y - 1): raise ValueError("y_pos exceeds the size of the platform.") return x_coord, y_coord ############################################################################################################## ########################################## BFS Algortihm ##################################################### ############################################################################################################## def sim_xbots_movement_bfs(self, step_size): max_speed = 1.0 # m/s move_increment = step_size * max_speed for xbot in range(self._number_shuttles): prim = self.shuttles_prim_dict["prim_{}".format(xbot + 1)] current_pos = prim.GetAttribute('xformOp:translate').Get() # Convert current_pos and target to grid coordinates start = (int((current_pos[0] + 0.06)/0.12), len(self.grid) - 1 - int((current_pos[1] + 0.06)/0.12)) end = (int((self.targets_x[xbot] + (0.06 if self.targets_x[xbot] % 0.12 != 0 else 0))/0.12), len(self.grid) - 1 - int((self.targets_y[xbot] + (0.06 if self.targets_y[xbot] % 0.12 != 0 else 0))/0.12)) path = self.bfs(self.grid, start, end) if path is not None and len(path) > 1: next_step = path[1] # Take the second step in the path (first is current position) # Convert next_step from grid coordinates back to simulation's coordinates next_step_sim = ((next_step[0]*0.12) + (0.06 if next_step[0] % 1 != 0 else 0), ((len(self.grid) - 1 - next_step[1])*0.12) + (0.06 if (len(self.grid) - 1 - next_step[1]) % 1 != 0 else 0)) prim.GetAttribute('xformOp:translate').Set((next_step_sim[0], next_step_sim[1], current_pos[2])) print("Moving xbot {} to {}".format(xbot + 1, next_step_sim)) # BFS algorithm def bfs(self, grid, start, end): queue = [] queue.append([start]) # Wrap the start tuple in a list visited = set(start) # Create a set to store visited nodes while queue: path = queue.pop(0) node = path[-1] # Get the last node in this path if node == end: return path for direction in [(0, 1), (0, -1), (1, 0), (-1, 0)]: # Right, Left, Down, Up new_node = (node[0] + direction[0], node[1] + direction[1]) if (new_node[0] >= 0 and new_node[0] < len(grid) and # Check grid boundaries new_node[1] >= 0 and new_node[1] < len(grid[0]) and grid[new_node[0]][new_node[1]] == 1 and # Check if new_node is walkable new_node not in visited): # Check if the node has not been visited new_path = list(path) new_path.append(new_node) queue.append(new_path) visited.add(new_node) # Add the new node to the visited set print("No valid path found.") return None
63,928
Python
49.417192
344
0.580184
AndreiVoica/P10-MAP/user_examples/acopos_extension.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.examples.user_examples import Acopos class AcoposExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="", submenu_name="", name="Acopos", title="My Awesome Example", doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_core_hello_world.html", overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.", file_path=os.path.abspath(__file__), sample=Acopos(), ) return
1,188
Python
41.464284
135
0.702862
AndreiVoica/P10-MAP/user_examples/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.user_examples.acopos import Acopos from omni.isaac.examples.user_examples.acopos_extension import AcoposExtension
568
Python
46.416663
78
0.820423
AndreiVoica/P10-MAP/user_examples/acopos.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from omni.isaac.examples.base_sample import BaseSample from omni.isaac.core import World from omni.isaac.core.prims import GeometryPrim, XFormPrim import omni.kit.commands from pxr import Sdf, Gf, UsdPhysics from omni.isaac.core.utils.rotations import euler_angles_to_quat import numpy as np from omni.isaac.core.utils.nucleus import get_assets_root_path, get_server_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.core.robots import Robot from omni.isaac.core.utils.types import ArticulationAction import carb from pmclib import system_commands as sys # PMC System related commands from pmclib import xbot_commands as bot # PMC Mover related commands from pmclib import pmc_types # PMC API Types import time import random class Acopos(BaseSample): def __init__(self) -> None: super().__init__() # SCENE GEOMETRY # env (group) spacing: self._env_spacing = 2.0 self.last_update_time = time.time() # Lab Setup: self._lab_setup_position = np.array([0.0, 0.0, 0.0]) # Gf.Vec3f(0.5, 0.0, 0.0) self._lab_setup_orientation = np.array([0, 0, 0, 1]) self._lab_setup_scale = 1.0 # Shuttles: self._number_shuttles = 8 self._shuttle_position = np.array([1.2277, -0.9815, 1.07]) # Gf.Vec3f(0.5, 0.0, 0.0) self._platform_limits = np.array([0.0, 0.0, 0.832, 0.596]) # x_min, y_min, x_max, y_max self._target = np.array([0.8, 0.52]) self._shuttle_scale = 0.01 # Shuttles Grid: self._grid_position = np.array([1.2877, -1.0415, 0.0]) # Gf.Vec3f(0.5, 0.0, 0.0) shuttle_orientation = np.pi/2 self._grid_orientation = np.array([np.cos(shuttle_orientation/2), 0, 0, np.sin(shuttle_orientation/2)]) #Rotates 90 degrees around z-axis # USD asset paths: self.asset_folder = "omniverse://localhost/Projects/MAPs-AAU/Assets/" self.asset_paths = { "shuttle": self.asset_folder + "120x120x10/acopos_shuttle_120.usd", "lab_setup": self.asset_folder + "Lab_setup_v2.usd" } self.prim_dict = {} self.control_switch = 1 # 0: Sim, 1: PMC return # This function is called to setup the assets in the scene for the first time # Class variables should not be assigned here, since this function is not called # after a hot-reload, its only called to load the world starting from an EMPTY stage def setup_scene(self): # A world is defined in the BaseSample, can be accessed everywhere EXCEPT __init__ world = self.get_world() world = World.instance() world.scene.add_default_ground_plane() # adds a default ground plane to the scene # Add Lab Setup Reference add_reference_to_stage(usd_path=self.asset_paths["lab_setup"], prim_path="/World") world.scene.add(GeometryPrim(prim_path="/World", name=f"lab_setup_ref_geom", collision=True)) # Add Xform reference for the shuttles world.scene.add(XFormPrim(prim_path="/World/LabSetup/Grid", name=f"Grid")) # Add shuttles references for i in range(self._number_shuttles): add_reference_to_stage(usd_path=self.asset_paths["shuttle"], prim_path="/World/LabSetup/Grid/shuttle_{}".format(i+1)) world.scene.add(GeometryPrim(prim_path="/World/LabSetup/Grid/shuttle_{}".format(i+1), name="shuttle_{}_ref_geom".format(i+1), collision=True)) # world.scene.add(Robot(prim_path="/World/LabSetup/Grid/shuttle_{}".format(i+1), # name="shuttle_{}_ref_geom".format(i+1))) return # Here we assign the class's variables this function is called after load button is pressed # regardless starting from an empty stage or not this is called after setup_scene and after # one physics time step to propagate appropriate physics handles which are needed to retrieve # many physical properties of the different objects async def setup_post_load(self): # Load World and Assets self._world = self.get_world() self._world.scene.enable_bounding_boxes_computations() # Add USD Assets await self._add_lab_setup() await self._add_shuttles_grid() for i in range(self._number_shuttles): await self._add_shuttle(i) # Shuttles Prim Dictionary stage = omni.usd.get_context().get_stage() for shuttle_number in range(self._number_shuttles): shuttle_path = "/World/LabSetup/Grid/shuttle_{}".format(shuttle_number + 1) prim = stage.GetPrimAtPath(shuttle_path) if prim: key_name = "prim_{}".format(shuttle_number + 1) self.prim_dict[key_name] = prim else: print("Error: shuttle prim not found at path {}".format(shuttle_path)) # Control Switch if self.control_switch == 0: self._world.add_physics_callback("sim_step", callback_fn=self.sim_xbots_movement) elif self.control_switch == 1: self.connect_pmc() # Connect to PMC self._world.add_physics_callback("sim_step", callback_fn=self.read_xbots_positions) #callback names have to be unique self._world.add_physics_callback("sim_step_move", callback_fn=self.send_xbots_positions) return # Add Lab Setup reference async def _add_lab_setup(self): self._lab_setup_ref_geom = self._world.scene.get_object(f"lab_setup_ref_geom") self._lab_setup_ref_geom.set_local_scale(np.array([self._lab_setup_scale])) self._lab_setup_ref_geom.set_world_pose(position=self._lab_setup_position, orientation=self._lab_setup_orientation) self._lab_setup_ref_geom.set_default_state(position=self._lab_setup_position, orientation=self._lab_setup_orientation) # lb = self._world.scene.compute_object_AABB(name=f"lab_setup_ref_geom") # zmin = lb[0][2] # zmax = lb[1][2] # self._lab_setup_position[2] = -zmin # self._lab_setup_height = zmax self._lab_setup_ref_geom.set_collision_approximation("none") #self._convexIncludeRel.AddTarget(self._table_ref_geom.prim_path) # Add xForm shuttles reference async def _add_shuttles_grid(self): self._shuttles_grid_ref_geom = self._world.scene.get_object(f"Grid") self._shuttles_grid_ref_geom.set_world_pose(position=self._grid_position, orientation=self._grid_orientation) self._shuttles_grid_ref_geom.set_default_state(position=self._grid_position, orientation=self._grid_orientation) # Add shuttles to the scene async def _add_shuttle(self, shuttle_number): self._shuttle_ref_geom = self._world.scene.get_object(f"shuttle_{shuttle_number+1}_ref_geom") self._shuttle_ref_geom.set_local_scale(np.array([self._shuttle_scale])) self._shuttle_ref_geom.set_world_pose(position= self._shuttle_position + (-0.121 * (shuttle_number), 0, 0)) self._shuttle_ref_geom.set_default_state(position=self._shuttle_position) self._shuttle_ref_geom.set_collision_approximation("none") #self._shuttle_articulation_controller = self._shuttle.get_articulation_controller() async def on_sim_control_event_async(self): world = self.get_world() world.add_physics_callback("sim_step", self.sim_xbots_movement) await world.play_async() return # def on_pmc_connection_event(self): # self.connect_pmc() # return async def setup_pre_reset(self): return async def setup_post_reset(self): return def world_cleanup(self): return def sim_xbots_movement(self, step_size): #print("step_size: ", step_size) #print(self.translate) #stage = omni.usd.get_context().get_stage() max_speed = 3.0 # m/s max_accel = 10.0 # m/s^2 for shuttle_number in range(1): # for shuttle_number in range(self._number_shuttles): prim = self.prim_dict["prim_{}".format(shuttle_number + 1)] current_pos = prim.GetAttribute('xformOp:translate').Get() # Move cube to the right if (self._target[1] + 0.1) < current_pos[0]: prim.GetAttribute('xformOp:translate').Set((current_pos)-(step_size*max_speed, 0.0, 0.0)) continue # Move cube to the left elif (self._target[1] - 0.1) > current_pos[0]: prim.GetAttribute('xformOp:translate').Set((current_pos)+(step_size*max_speed, 0.0, 0.0)) continue #current_pos = prim.GetAttribute('xformOp:translate').Get() # Move cube up if (self._target[0] + 0.1) > current_pos[1]: prim.GetAttribute('xformOp:translate').Set((current_pos)+(0.0, step_size*max_speed, 0.0)) continue # Move cube down elif (self._target[0] - 0.1) < current_pos[1]: prim.GetAttribute('xformOp:translate').Set((current_pos)-(0.0, step_size*max_speed, 0.0)) continue # Read shuttles position and orientation from physical setup def read_xbots_positions(self, step_size): # Read info for every shuttle xbot_list = bot.get_all_xbot_info(1) xbot_positions = [(xbot.x_pos, xbot.y_pos, xbot.z_pos, xbot.rx_pos, xbot.ry_pos, xbot.rz_pos, xbot.xbot_state) for xbot in xbot_list] # Set position and orientation of shuttles for shuttle_number in range(self._number_shuttles): prim = self.prim_dict["prim_{}".format(shuttle_number + 1)] # Set position of shuttle prim.GetAttribute('xformOp:translate').Set((xbot_positions[shuttle_number][0], xbot_positions[shuttle_number][1] , xbot_positions[shuttle_number][2] + 1.06)) # Transform orientation from euler angles to quaternion quat_prim = (euler_angles_to_quat([xbot_positions[shuttle_number][3], xbot_positions[shuttle_number][4], xbot_positions[shuttle_number][5]])) quat = Gf.Quatd(*quat_prim) # Set Orientation of shuttle prim.GetAttribute('xformOp:orient').Set(quat) def send_xbots_positions(self, step_size): xbot_ids = [1, 2, 3, 4, 5, 6, 7, 8] # Only update the Xbots if at least 2 seconds have passed since the last update if time.time() - self.last_update_time >= 2: #print(bot.get_xbot_status(xbot_id=xid).xbot_state) xbot_list = bot.get_all_xbot_info(1) xbot_positions = [(xbot.x_pos, xbot.y_pos, xbot.z_pos, xbot.rx_pos, xbot.ry_pos, xbot.rz_pos, xbot.xbot_state) for xbot in xbot_list] # Don't send commands while the xbots are moving if all(xbot_state[6] == pmc_types.XbotState.XBOT_IDLE for xbot_state in xbot_positions): # Get random unique targets for each shuttle targets_x, targets_y = self.create_random_coordinates(self._number_shuttles) print("target_x ", targets_x) print("target_y ", targets_y) bot.auto_driving_motion_si(8, xbot_ids=xbot_ids, targets_x=targets_x, targets_y=targets_y) else: print("Xbots are moving") self.last_update_time = time.time() # if bot.get_xbot_status(xbot_id=xid).xbot_state is pmc_types.XbotState.XBOT_IDLE: # #self.sample_motions(input_id=xid) # bot.auto_driving_motion_si(8, xbot_ids=xbot_ids, targets_x=targets_x, targets_y=targets_y) # # Recover Disabled xbot # elif bot.get_xbot_status(xbot_id=xid).xbot_state is pmc_types.XbotState.XBOT_DISABLED: # bot.recover_accident_xbot(xbot_id=xid) # print("Recovering xbot: ", xid) def create_random_coordinates(self, num_shuttles): x_coords = [] y_coords = [] coords_dict = {} for i in range(num_shuttles): while True: x = random.randint(0, 6) * 0.12 + 0.06 y = random.randint(0, 8) * 0.12 + 0.06 if (x, y) not in coords_dict: coords_dict[(x, y)] = 1 break x_coords.append(x) y_coords.append(y) return x_coords, y_coords def sample_motions(self, input_id): max_speed = 1.0 max_accel = 10.0 bot.linear_motion_si(xbot_id=input_id, target_x=0.18, target_y=0.06, max_speed=max_speed, max_accel=max_accel) bot.linear_motion_si(xbot_id=input_id, target_x=0.18, target_y=0.90, max_speed=max_speed, max_accel=max_accel) bot.linear_motion_si(xbot_id=input_id, target_x=0.66, target_y=0.90, max_speed=max_speed, max_accel=max_accel) bot.linear_motion_si(xbot_id=input_id, target_x=0.66, target_y=0.06, max_speed=max_speed, max_accel=max_accel) # bot.rotary_motion_timed_spin(xbot_id=input_id,rot_time=3, target_rz=3.14, # max_speed=3.0, max_accel=max_accel) # bot.linear_motion_si(xbot_id=input_id, target_x=0.60, target_y=0.36, # max_speed=max_speed, max_accel=max_accel) # bot.rotary_motion_timed_spin(xbot_id=input_id,rot_time=3, target_rz=3.14, # max_speed=3.0, max_accel=max_accel) def wait_for_xbot_done(xid): while bot.get_xbot_status(xbot_id=xid).xbot_state is not pmc_types.XbotState.XBOT_IDLE: time.sleep(0.5) def connect_pmc(self): # Connect to PMC if not sys.auto_connect_to_pmc(): sys.connect_to_pmc("192.168.10.100") #sys.auto_connect_to_pmc() print("Connected: ", sys.auto_connect_to_pmc()) print("Status: ", sys.get_pmc_status()) # Gain mastership if not sys.is_master(): sys.gain_mastership() print("Master: ", sys.is_master()) # Activate xBots bot.activate_xbots() ############################################################################################################ def print_cube_info(self, step_size): position, orientation = self._cube.get_world_pose() linear_velocity = self._cube.get_linear_velocity() # will be shown on terminal print("Cube position is : " + str(position)) print("Cube's orientation is : " + str(orientation)) print("Cube's linear velocity is : " + str(linear_velocity)) def _change_property(self, prim_path: str, attribute_name:str, value:float): usd_path = Sdf.Path(prim_path + "." + attribute_name) omni.kit.commands.execute( "ChangeProperty", prop_path=usd_path, value=value, prev=self._get_property(prim_path, attribute_name), ) def _get_property(self, prim_path: str, attribute: str): prim = self.stage.GetPrimAtPath(prim_path) prim_property = prim.GetAttribute(attribute) return prim_property.Get()
16,317
Python
40.734015
145
0.585953
AndreiVoica/P10-MAP/scripts/TestScripts/avoid_obstacles.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.motion_generation.lula import RmpFlow from omni.isaac.motion_generation import ArticulationMotionPolicy from omni.isaac.core.robots import Robot from omni.isaac.core.objects import cuboid from omni.isaac.core import World from omni.isaac.core.utils.stage import open_stage import numpy as np import os import argparse #TODO: Fill in tutorial directory with absolute path to this file TUTORIAL_DIRECTORY = "/home/robotlab/Documents/Github/P10-MAP/" rmp_config_dir = os.path.join(TUTORIAL_DIRECTORY,"Assets/kr3r540/") parser = argparse.ArgumentParser() parser.add_argument("--urdf_path",type=str,default="kr3r540.urdf") parser.add_argument("--rmpflow_config_path",type=str,default="kr3r540_rmpflow_config.yaml") parser.add_argument("--end_effector_frame_name",type=str,default="gripper_base_link") args = parser.parse_args() open_stage(usd_path=os.path.join(rmp_config_dir,"kr3r540.usd")) my_world = World(stage_units_in_meters=1.0) robot = my_world.scene.add(Robot(prim_path="/kuka_kr3r540", name="Kr3r540")) #Initialize an RmpFlow object rmpflow = RmpFlow( robot_description_path = os.path.join(rmp_config_dir,"kr3_description_v1.0.yaml"), urdf_path = os.path.join(rmp_config_dir,args.urdf_path), rmpflow_config_path = os.path.join(rmp_config_dir,args.rmpflow_config_path), end_effector_frame_name = args.end_effector_frame_name, #This frame name must be present in the URDF maximum_substep_size = .0034 ) physics_dt = 1/60. articulation_rmpflow = ArticulationMotionPolicy(robot,rmpflow,physics_dt) articulation_controller = robot.get_articulation_controller() #Make a target to follow target_cube = cuboid.VisualCuboid("/World/target",position = np.array([.5,0,.5]),color = np.array([1.,0,0]),size = .1) #Make an obstacle to avoid obstacle = cuboid.VisualCuboid("/World/obstacle",position = np.array([.8,0,.5]),color = np.array([0,1.,0]), size = .1) rmpflow.add_obstacle(obstacle) my_world.reset() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() #Set rmpflow target to be the current position of the target cube. rmpflow.set_end_effector_target( target_position=target_cube.get_world_pose()[0], #target_orientation=target_cube.get_world_pose()[1] ) #Query the current obstacle position rmpflow.update_world() actions = articulation_rmpflow.get_next_articulation_action() articulation_controller.apply_action(actions) simulation_app.close()
3,123
Python
37.567901
118
0.741274
AndreiVoica/P10-MAP/scripts/TestScripts/test.py
from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import ParallelGripper from omni.isaac.core.utils.types import ArticulationAction import numpy as np from omni.isaac.dynamic_control import _dynamic_control dc = _dynamic_control.acquire_dynamic_control_interface() articulation1 = dc.get_articulation("/World/kr3_01") # Call this each frame of simulation step if the state of the articulation is changing. dc.wake_up_articulation(articulation1) joint_angles1 = [np.random.rand(9) * 2 - 1] dc.set_articulation_dof_position_targets(articulation1, joint_angles1) dc = _dynamic_control.acquire_dynamic_control_interface() articulation2 = dc.get_articulation("/World/kr3_02") # Call this each frame of simulation step if the state of the articulation is changing. dc.wake_up_articulation(articulation2) joint_angles2 = [np.random.rand(9) * 2 - 1] dc.set_articulation_dof_position_targets(articulation2, joint_angles2) dc = _dynamic_control.acquire_dynamic_control_interface() articulation3 = dc.get_articulation("/World/kr3_03") # Call this each frame of simulation step if the state of the articulation is changing. dc.wake_up_articulation(articulation3) joint_angles3 = [np.random.rand(9) * 2 - 1] dc.set_articulation_dof_position_targets(articulation3, joint_angles3) dc = _dynamic_control.acquire_dynamic_control_interface() articulation4 = dc.get_articulation("/World/kr3_04") # Call this each frame of simulation step if the state of the articulation is changing. dc.wake_up_articulation(articulation4) joint_angles4 = [np.random.rand(9) * 2 - 1] dc.set_articulation_dof_position_targets(articulation4, joint_angles4) dc = _dynamic_control.acquire_dynamic_control_interface() articulation5 = dc.get_articulation("/World/kr4") # Call this each frame of simulation step if the state of the articulation is changing. dc.wake_up_articulation(articulation5) joint_angles5 = [np.random.rand(9) * 2 - 1] dc.set_articulation_dof_position_targets(articulation5, joint_angles5) ''' dc = _dynamic_control.acquire_dynamic_control_interface() articulationGrip = dc.get_articulation("/World/kr3_03/tool0") # Call this each frame of simulation step if the state of the articulation is changing. dc.wake_up_articulation(articulationGrip) joint_anglesGrip = [np.random.rand(9) * 2 - 1] dc.set_articulation_dof_position_targets(articulationGrip, joint_anglesGrip) ''' ''' dc = _dynamic_control.acquire_dynamic_control_interface() articulation1 = dc.get_articulation("/World/kr3_01") dc.wake_up_articulation(articulation1) dof_ptr1 = dc.find_articulation_dof(articulation1, "joint_a2") dc.set_dof_position_target(dof_ptr1, -1) articulation2 = dc.get_articulation("/World/kr3_02") dc.wake_up_articulation(articulation2) dof_ptr2 = dc.find_articulation_dof(articulation2, "joint_a2") dc.set_dof_position_target(dof_ptr2, -1) '''
2,857
Python
45.852458
87
0.782989
AndreiVoica/P10-MAP/scripts/TestScripts/planar_motors_basic.py
def _change_property(self, prim_path: str, attribute_name:str, value:float): usd_path = Sdf.Path(prim_path + "." + attribute_name) omni.kit.commands.execute( "ChangeProperty", prop_path=usd_path, value=value, prev=self._get_property(prim_path, attribute_name), ) def _get_property(self, prim_path: str, attribute: str): prim= self.stage.GetPrimAtPath(prim_path) prim_property = prim.GetAttribute(attribute) return prim_property.Get()
492
Python
31.866665
76
0.664634
AndreiVoica/P10-MAP/scripts/TestScripts/pipettetest.py
from omni.isaac.manipulators import SingleManipulator from omni.isaac.manipulators.grippers import ParallelGripper from omni.isaac.core.utils.types import ArticulationAction import numpy as np from omni.isaac.dynamic_control import _dynamic_control def home(): dc = _dynamic_control.acquire_dynamic_control_interface() joint1 = dc.get_articulation("/World/kr3") dc.wake_up_articulation(joint1) dof_ptr1 = dc.find_articulation_dof(joint1, "joint_a1") dc.set_dof_position_target(dof_ptr1, 0) joint2 = dc.get_articulation("/World/kr3") dc.wake_up_articulation(joint2) dof_ptr2 = dc.find_articulation_dof(joint2, "joint_a2") dc.set_dof_position_target(dof_ptr2, 0) joint3 = dc.get_articulation("/World/kr3") dc.wake_up_articulation(joint3) dof_ptr3 = dc.find_articulation_dof(joint3, "joint_a3") dc.set_dof_position_target(dof_ptr3, 0) joint4 = dc.get_articulation("/World/kr3") dc.wake_up_articulation(joint4) dof_ptr4 = dc.find_articulation_dof(joint4, "joint_a4") dc.set_dof_position_target(dof_ptr4, 0) joint5 = dc.get_articulation("/World/kr3") dc.wake_up_articulation(joint5) dof_ptr5 = dc.find_articulation_dof(joint5, "joint_a5") dc.set_dof_position_target(dof_ptr5, 0) joint6 = dc.get_articulation("/World/kr3") dc.wake_up_articulation(joint6) dof_ptr6 = dc.find_articulation_dof(joint1, "joint_a6") dc.set_dof_position_target(dof_ptr6, 0) def position1(): dc = _dynamic_control.acquire_dynamic_control_interface() joint1 = dc.get_articulation("/World/kr3") dc.wake_up_articulation(joint1) dof_ptr1 = dc.find_articulation_dof(joint1, "joint_a1") dc.set_dof_position_target(dof_ptr1, 0) joint2 = dc.get_articulation("/World/kr3") dc.wake_up_articulation(joint2) dof_ptr2 = dc.find_articulation_dof(joint2, "joint_a2") dc.set_dof_position_target(dof_ptr2, -0.33) joint3 = dc.get_articulation("/World/kr3") dc.wake_up_articulation(joint3) dof_ptr3 = dc.find_articulation_dof(joint3, "joint_a3") dc.set_dof_position_target(dof_ptr3, 0.342) joint4 = dc.get_articulation("/World/kr3") dc.wake_up_articulation(joint4) dof_ptr4 = dc.find_articulation_dof(joint4, "joint_a4") dc.set_dof_position_target(dof_ptr4, 0) joint5 = dc.get_articulation("/World/kr3") dc.wake_up_articulation(joint5) dof_ptr5 = dc.find_articulation_dof(joint5, "joint_a5") dc.set_dof_position_target(dof_ptr5, 0) joint6 = dc.get_articulation("/World/kr3") dc.wake_up_articulation(joint6) dof_ptr6 = dc.find_articulation_dof(joint1, "joint_a6") dc.set_dof_position_target(dof_ptr6, 0) home() position1()
2,686
Python
35.808219
61
0.699926
AndreiVoica/P10-MAP/scripts/TestScripts/basic_follow_target.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) from omni.isaac.motion_generation.lula import RmpFlow from omni.isaac.motion_generation import ArticulationMotionPolicy from omni.isaac.core.robots import Robot from omni.isaac.core.objects import cuboid from omni.isaac.core import World from omni.isaac.core.utils.stage import open_stage import numpy as np import os import argparse #TODO: Fill in tutorial directory with absolute path to this file TUTORIAL_DIRECTORY = "E:/Stuff/Faculta/P10/Assets/P10-MAP" rmp_config_dir = os.path.join(TUTORIAL_DIRECTORY,"Assets/kr3r540") parser = argparse.ArgumentParser() parser.add_argument("--urdf_path",type=str,default="kr3r540.urdf") parser.add_argument("--rmpflow_config_path",type=str,default="kr3r540_rmpflow_config.yaml") parser.add_argument("--end_effector_frame_name",type=str,default="gripper_base_link") args = parser.parse_args() open_stage(usd_path=os.path.join(rmp_config_dir,"kr3r540.usd")) my_world = World(stage_units_in_meters=0.01) robot = my_world.scene.add(Robot(prim_path="/kr3r540", name="Kr3r540")) #Initialize an RmpFlow object rmpflow = RmpFlow( robot_description_path = os.path.join(rmp_config_dir,"kr3_description_v1.0.yaml"), urdf_path = os.path.join(rmp_config_dir,args.urdf_path), rmpflow_config_path = os.path.join(rmp_config_dir,args.rmpflow_config_path), end_effector_frame_name = args.end_effector_frame_name, #This frame name must be present in the URDF maximum_substep_size = .0034 ) #Uncomment this line to visualize the collision spheres in the robot_description YAML file #rmpflow.visualize_collision_spheres() physics_dt = 1/60. articulation_rmpflow = ArticulationMotionPolicy(robot,rmpflow,physics_dt) articulation_controller = robot.get_articulation_controller() #Make a target to follow target_cube = cuboid.VisualCuboid("/World/target",position = np.array([0.,0,1.5]),color=np.array([1.,0,0]),size = .1) my_world.reset() while simulation_app.is_running(): my_world.step(render=True) if my_world.is_playing(): if my_world.current_time_step_index == 0: my_world.reset() #Set rmpflow target to be the current position of the target cube. rmpflow.set_end_effector_target( target_position=target_cube.get_world_pose()[0], #target_orientation=target_cube.get_world_pose()[1] ) actions = articulation_rmpflow.get_next_articulation_action() articulation_controller.apply_action(actions) simulation_app.close()
2,988
Python
37.818181
117
0.750669
AndreiVoica/P10-MAP/docs/installation/planar_motor_control_API/basic_example.py
""" Planar Motor Python API Basic Example (c) Planar Motor Inc 2022 """ from pmclib import system_commands as sys # PMC System related commands from pmclib import xbot_commands as bot # PMC Mover related commands from pmclib import pmc_types # PMC API Types import time # %% Connect to the PMC # To start sending commands to the system, the library must # first connect to the Planar Motor Controller (PMC) via TCP/IP. # this can be done by explicitly connecting to a known PMC IP # address, or by scanning the network using an auto-connect # command. By default, the PMC IP address is 192.168.10.100. sys.connect_to_pmc("192.168.10.100") # or # sys.auto_connect_to_pmc() # %% Activating the system # On bootup, all the movers within the system will be in a # "Deactivated" state. Which means that they are not actively # position controlled. To start controlling the system, the # "activate" command must be sent. bot.activate_xbots() # Now we wait for the movers to be levitated and fully controlled. # This can be done by periodically polling for the PMC status. maxTime = time.time() + 60 # Set timeout of 60s while sys.get_pmc_status() is not pmc_types.PmcStatus.PMC_FULLCTRL: time.sleep(0.5) if time.time() > maxTime: raise TimeoutError("PMC Activation timeout") # %% Basic mover commands # Now that the mover are levitated, they are now ready to receive # motion commands. bot.linear_motion_si(xbot_id=1, target_x=0.06, target_y=0.06, max_speed=1.0, max_accel=10.0) # The commands will return as soon the PMC receives and acknowledges # that the command is valid/invalid. Multiple motion commands can be # buffered to the same mover, and they will execute continuously in the # order that the command was sent. Let's define a simple sample motion: def sample_motions(input_id): bot.linear_motion_si(xbot_id=input_id, target_x=0.18, target_y=0.06, max_speed=1.0, max_accel=10.0) bot.linear_motion_si(xbot_id=input_id, target_x=0.18, target_y=0.18, max_speed=1.0, max_accel=10.0) bot.linear_motion_si(xbot_id=input_id, target_x=0.06, target_y=0.18, max_speed=1.0, max_accel=10.0) bot.linear_motion_si(xbot_id=input_id, target_x=0.06, target_y=0.06, max_speed=1.0, max_accel=10.0) # Sending all commands, will buffer into the movers "Motion Buffer" sample_motions(input_id=1) # To check if all buffered motions are complete, we poll for # the xbot information, and check that it's state is IDLE. # Let's define a helper function for this: def wait_for_xbot_done(xid): while bot.get_xbot_status(xbot_id=xid).xbot_state is not pmc_types.XbotState.XBOT_IDLE: time.sleep(0.5) # Now we can wait for all motions buffered to an mover to be # complete wait_for_xbot_done(xid=1) # %% Macros # We can also save a series of motion commands as a "macro", which # can be re-used for different movers. Macros are programmed by sending # commands to mover ID 128 - 191 # First we clear the macro bot.edit_motion_macro( option=pmc_types.MotionMacroOptions.CLEAR_MACRO, macro_id=128) # The the commands can be programmed to the macro sample_motions(input_id=128) # Then the macro can be saved,and run bot.edit_motion_macro( option=pmc_types.MotionMacroOptions.SAVE_MACRO, macro_id=128) bot.run_motion_macro(macro_id=128, xbot_id=1) wait_for_xbot_done(xid=1) # Macros can be infinitely looped/ chained together by sending # run_motion_macro commands to macro IDs. i.e. to run macro id # 128 in a loop: # First clear the macro so we can edit it again bot.edit_motion_macro( option=pmc_types.MotionMacroOptions.CLEAR_MACRO, macro_id=128) # Send some motion commands sample_motions(input_id=128) # Then send run_macro 128 to macro ID 128 bot.run_motion_macro(macro_id=128, xbot_id=128) bot.edit_motion_macro( option=pmc_types.MotionMacroOptions.SAVE_MACRO, macro_id=128) # Now when we run, the macro will infinitely loop bot.run_motion_macro(macro_id=128, xbot_id=1) time.sleep(5) # To stop the motion, we can send the stop motion command bot.stop_motion(xbot_id=1)
4,179
Python
34.423729
91
0.714286
AndreiVoica/P10-MAP/docs/installation/planar_motor_control_API/README.md
# PMI_Python_Lib Python API for interfacing with the Planar Motor Controller It is highly recommended to create a conda virtual environment when using the API with Isaac Sim. To see how to create conda environment for Isaac Sim check [Isaac Sim Python Environment](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/install_python.html) ## Installing the library on Windows First install wheel and pythonnet. ``` # install pythonnet pip install wheel pip install pythonnet==2.5.2 ``` The library can be installed using `pip install /path/to/.whl/file/` ## Installing the library on Ubuntu Installing the library on linux is a little bit trickier, since dotnet and some required libraries needs to be installed before installing pythonnet. If these libraries aren't installed beforehand, the installation of pythonnet will fail. Run the following commands: Replace VERSION with the Ubuntu version. (i.e. bionic 18.04) or focal (20.04)) ``` sudo apt-get update # install mono (.NET implementation) sudo apt install gnupg ca-certificates sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys 3FA7E0328081BFF6A14DA29AA6A19B38D3D831EF echo "deb https://download.mono-project.com/repo/ubuntu stable-VERSION main" | sudo tee /etc/apt/sources.list.d/mono-official-stable.list sudo apt update sudo apt install mono-devel ``` Before installing the needed python libraries ``` # install pythonnet pip install wheel pip install pythonnet==2.5.2 ``` If building the wheel for pythonnet fails, try installing the following libaries ``` # install libraries needed to build pythonnet sudo apt-get install clang sudo apt-get install libglib2.0-dev ``` Finally, the library can be installed using `pip install /path/to/.whl/file/` ## Using the library Once installed, it can be used like any other python library, i.e: ``` from pmclib import system_commands as sys from pmclib import xbot_commands as bot if not sys.is_master(): sys.gain_mastership() sys.auto_connect_to_pmc() bot.activate_xbots() bot.linear_motion_si(1, 0.18, 0.18, 0.5, 10) ``` ## VS Code Security settings ``` "terminal.integrated.profiles.windows": { "PowerShell": { "source": "PowerShell", "icon": "terminal-powershell", "args": ["-ExecutionPolicy", "Bypass"] } } ```
2,302
Markdown
29.706666
268
0.752824
AndreiVoica/P10-MAP/docs/installation/Nvidia Isaac Sim ROS2/README.md
# Nvidia Isaac Sim Nvidia Isaac Sim is a simulation software developed by Nvidia. In the first instance, the project was intended to be developed using ROS2, these steps may be useful for implementation with ROS2. ## Installing Nvidia Isaac Sim on Ubuntu 20.04 Follow the [Workstation Installation](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/install_workstation.html) tutorial. # ROS 2 Foxy Nvidia Isaac Sim is currently compatible with ROS 2 Foxy (Ubuntu 20.04) due to ROS 2 bridge. Follow the [ROS2 Foxy installation method](https://docs.ros.org/en/foxy/Installation/Ubuntu-Install-Debians.html). # ROS 2 Humble in Docker ROS 2 Humble is used only for Moveit2 assistant, since it is not available on Foxy. 1. Install Docker following [this tutorial](https://docs.docker.com/engine/install/ubuntu/); 2. Open a terminal and run ```docker pull ubuntu:jammy``` 3. In the terminal run ```docker images``` and copy the IMAGE ID 4. Run the docker image using ```docker run -it IMAGE ID``` 5. Start installing ROS 2 Humble following [this tutorial](https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debians.html) 6. Install moveit2 setup assistant ```sudo apt install ros-humble-moveit``` 7. Create a colcon workspace ```source /opt/ros/humble/setup.bash``` ``` mkdir -p ~/ros2_ws/src cd ~/ros2_ws/src ``` 8. Clone the repo (TBD) 9. ``` cd .. rosdep install -i --from-path src --rosdistro humble -y ``` # Converting ROS1 packages to ROS2 To be able to build using colcon, the packages have to be converted to support it. # Using Moveit2 # Connecting Moveit2 to Isaac using a custom robot configuration # Troubleshooting ## QT unable to find display in while trying to launch a GUI application (such as rviz2 or moveit setup assistant) If you encounter an error related to QT5 not being able to find a display (this will be needed if you are going to use any application with a GUI in docker) run ```xhost local:root``` in the terminal and after run the docker image by using the command below and skip step 4. Recommended to add ```xhost local:root``` in your .bashrc. ``` docker run -it --rm \ --network host \ -e DISPLAY=$DISPLAY \ -v /tmp/.X11-unix/:/tmp/.X11-unix \ IMAGE ID ``` ## URDF files require double If you have for example velocity = 2.0, try velocity = 2.00001
2,327
Markdown
39.842105
333
0.743017
AndreiVoica/P10-MAP/docs/installation/MAPs_Extension/README.md
## How to install MAPs Extension 1. Copy the *maps* folder into the Isaac Sim extensions folder. The default path in Ubuntu (Isaac Sim 2022.2.1) is: ``` /home/$USER$/.local/share/ov/pkg/isaac_sim-2022.2.1/exts/omni.isaac.examples/omni/isaac/examples/maps ``` 2. In the *extensions.toml* file, add the following lines: ``` PATH: /home/$USER$/.local/share/ov/pkg/isaac_sim-2022.2.1/exts/omni.isaac.examples/config/extensions.toml TO ADD: [[python.module]] name = "omni.isaac.examples.maps" ``` 3. Once the extension is installed, it is necessary to launch the ROS master in a terminal using `roscore` before opening Isaac Sim GUI. 4. Then you can run the MAPs extension from the Isaac Examples tab in the Isaac Sim GUI: ![MAPs Extension](/docs/imgs/MAPs_extension_menu.jpg) ### Known Issues The first time you load the Isaac Sim GUI, the MAPs extension doesn't appear, to fix this just go to the *maps.py* file and save it again. This will load the files and allow you to launch it from the GUI. ``` /home/$USER$/.local/share/ov/pkg/isaac_sim-2022.2.1/exts/omni.isaac.examples/omni/isaac/examples/maps/maps.py ```
1,123
Markdown
34.124999
204
0.738201
Ngochuy2137/omni_isaac_examples/README.md
# omni_isaac_examples
22
Markdown
10.499995
21
0.772727
Ngochuy2137/omni_isaac_examples/path_planning/__init__.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.path_planning.path_planning import PathPlanning from omni.isaac.examples.path_planning.path_planning_controller import PathPlannerController from omni.isaac.examples.path_planning.path_planning_extension import PathPlanningExtension from omni.isaac.examples.path_planning.path_planning_task import PathPlanningTask
772
Python
54.214282
92
0.838083
Ngochuy2137/omni_isaac_examples/path_planning/path_planning.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.base_sample import BaseSample from .path_planning_controller import FrankaRrtController from .path_planning_task import FrankaPathPlanningTask class PathPlanning(BaseSample): def __init__(self) -> None: super().__init__() self._controller = None self._articulation_controller = None def setup_scene(self): world = self.get_world() world.add_task(FrankaPathPlanningTask("Plan To Target Task")) return async def setup_pre_reset(self): world = self.get_world() if world.physics_callback_exists("sim_step"): world.remove_physics_callback("sim_step") self._controller.reset() return def world_cleanup(self): self._controller = None return async def setup_post_load(self): self._franka_task = list(self._world.get_current_tasks().values())[0] self._task_params = self._franka_task.get_params() my_franka = self._world.scene.get_object(self._task_params["robot_name"]["value"]) my_franka.disable_gravity() self._controller = FrankaRrtController(name="franka_rrt_controller", robot_articulation=my_franka) self._articulation_controller = my_franka.get_articulation_controller() return async def _on_follow_target_event_async(self): world = self.get_world() self._pass_world_state_to_controller() await world.play_async() if not world.physics_callback_exists("sim_step"): world.add_physics_callback("sim_step", self._on_follow_target_simulation_step) def _pass_world_state_to_controller(self): self._controller.reset() for wall in self._franka_task.get_obstacles(): self._controller.add_obstacle(wall) def _on_follow_target_simulation_step(self, step_size): observations = self._world.get_observations() actions = self._controller.forward( target_end_effector_position=observations[self._task_params["target_name"]["value"]]["position"], target_end_effector_orientation=observations[self._task_params["target_name"]["value"]]["orientation"], ) kps, kds = self._franka_task.get_custom_gains() self._articulation_controller.set_gains(kps, kds) self._articulation_controller.apply_action(actions) return def _on_add_wall_event(self): world = self.get_world() current_task = list(world.get_current_tasks().values())[0] cube = current_task.add_obstacle() return def _on_remove_wall_event(self): world = self.get_world() current_task = list(world.get_current_tasks().values())[0] obstacle_to_delete = current_task.get_obstacle_to_delete() current_task.remove_obstacle() return def _on_logging_event(self, val): world = self.get_world() data_logger = world.get_data_logger() if not world.get_data_logger().is_started(): robot_name = self._task_params["robot_name"]["value"] target_name = self._task_params["target_name"]["value"] def frame_logging_func(tasks, scene): return { "joint_positions": scene.get_object(robot_name).get_joint_positions().tolist(), "applied_joint_positions": scene.get_object(robot_name) .get_applied_action() .joint_positions.tolist(), "target_position": scene.get_object(target_name).get_world_pose()[0].tolist(), } data_logger.add_data_frame_logging_func(frame_logging_func) if val: data_logger.start() else: data_logger.pause() return def _on_save_data_event(self, log_path): world = self.get_world() data_logger = world.get_data_logger() data_logger.save(log_path=log_path) data_logger.reset() return
4,416
Python
38.4375
115
0.634511
Ngochuy2137/omni_isaac_examples/path_planning/path_planning_task.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from collections import OrderedDict from typing import List, Optional, Tuple import numpy as np from omni.isaac.core.objects import FixedCuboid, VisualCuboid from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.scenes.scene import Scene from omni.isaac.core.tasks import BaseTask from omni.isaac.core.utils.prims import is_prim_path_valid from omni.isaac.core.utils.rotations import euler_angles_to_quat from omni.isaac.core.utils.stage import get_stage_units from omni.isaac.core.utils.string import find_unique_string_name from omni.isaac.franka import Franka class PathPlanningTask(BaseTask): def __init__( self, name: str, target_prim_path: Optional[str] = None, target_name: Optional[str] = None, target_position: Optional[np.ndarray] = None, target_orientation: Optional[np.ndarray] = None, offset: Optional[np.ndarray] = None, ) -> None: BaseTask.__init__(self, name=name, offset=offset) self._robot = None self._target_name = target_name self._target = None self._target_prim_path = target_prim_path self._target_position = target_position self._target_orientation = target_orientation self._target_visual_material = None self._obstacle_walls = OrderedDict() if self._target_position is None: self._target_position = np.array([0.8, 0.3, 0.4]) / get_stage_units() return def set_up_scene(self, scene: Scene) -> None: """[summary] Args: scene (Scene): [description] """ super().set_up_scene(scene) scene.add_default_ground_plane() if self._target_orientation is None: self._target_orientation = euler_angles_to_quat(np.array([-np.pi, 0, np.pi])) if self._target_prim_path is None: self._target_prim_path = find_unique_string_name( initial_name="/World/TargetCube", is_unique_fn=lambda x: not is_prim_path_valid(x) ) if self._target_name is None: self._target_name = find_unique_string_name( initial_name="target", is_unique_fn=lambda x: not self.scene.object_exists(x) ) self.set_params( target_prim_path=self._target_prim_path, target_position=self._target_position, target_orientation=self._target_orientation, target_name=self._target_name, ) self._robot = self.set_robot() scene.add(self._robot) self._task_objects[self._robot.name] = self._robot self._move_task_objects_to_their_frame() return def set_params( self, target_prim_path: Optional[str] = None, target_name: Optional[str] = None, target_position: Optional[np.ndarray] = None, target_orientation: Optional[np.ndarray] = None, ) -> None: """[summary] Args: target_prim_path (Optional[str], optional): [description]. Defaults to None. target_name (Optional[str], optional): [description]. Defaults to None. target_position (Optional[np.ndarray], optional): [description]. Defaults to None. target_orientation (Optional[np.ndarray], optional): [description]. Defaults to None. """ if target_prim_path is not None: if self._target is not None: del self._task_objects[self._target.name] if is_prim_path_valid(target_prim_path): self._target = self.scene.add( XFormPrim( prim_path=target_prim_path, position=target_position, orientation=target_orientation, name=target_name, ) ) else: self._target = self.scene.add( VisualCuboid( name=target_name, prim_path=target_prim_path, position=target_position, orientation=target_orientation, color=np.array([1, 0, 0]), size=1.0, scale=np.array([0.03, 0.03, 0.03]) / get_stage_units(), ) ) self._task_objects[self._target.name] = self._target self._target_visual_material = self._target.get_applied_visual_material() if self._target_visual_material is not None: if hasattr(self._target_visual_material, "set_color"): self._target_visual_material.set_color(np.array([1, 0, 0])) else: self._target.set_local_pose(position=target_position, orientation=target_orientation) return def get_params(self) -> dict: """[summary] Returns: dict: [description] """ params_representation = dict() params_representation["target_prim_path"] = {"value": self._target.prim_path, "modifiable": True} params_representation["target_name"] = {"value": self._target.name, "modifiable": True} position, orientation = self._target.get_local_pose() params_representation["target_position"] = {"value": position, "modifiable": True} params_representation["target_orientation"] = {"value": orientation, "modifiable": True} params_representation["robot_name"] = {"value": self._robot.name, "modifiable": False} return params_representation def get_task_objects(self) -> dict: """[summary] Returns: dict: [description] """ return self._task_objects def get_observations(self) -> dict: """[summary] Returns: dict: [description] """ joints_state = self._robot.get_joints_state() target_position, target_orientation = self._target.get_local_pose() return { self._robot.name: { "joint_positions": np.array(joints_state.positions), "joint_velocities": np.array(joints_state.velocities), }, self._target.name: {"position": np.array(target_position), "orientation": np.array(target_orientation)}, } def target_reached(self) -> bool: """[summary] Returns: bool: [description] """ end_effector_position, _ = self._robot.end_effector.get_world_pose() target_position, _ = self._target.get_world_pose() if np.mean(np.abs(np.array(end_effector_position) - np.array(target_position))) < (0.035 / get_stage_units()): return True else: return False def pre_step(self, time_step_index: int, simulation_time: float) -> None: """[summary] Args: time_step_index (int): [description] simulation_time (float): [description] """ if self._target_visual_material is not None: if hasattr(self._target_visual_material, "set_color"): if self.target_reached(): self._target_visual_material.set_color(color=np.array([0, 1.0, 0])) else: self._target_visual_material.set_color(color=np.array([1.0, 0, 0])) return def add_obstacle(self, position: np.ndarray = None, orientation=None): """[summary] Args: position (np.ndarray, optional): [description]. Defaults to np.array([0.1, 0.1, 1.0]). """ # TODO: move to task frame if there is one cube_prim_path = find_unique_string_name( initial_name="/World/WallObstacle", is_unique_fn=lambda x: not is_prim_path_valid(x) ) cube_name = find_unique_string_name(initial_name="wall", is_unique_fn=lambda x: not self.scene.object_exists(x)) if position is None: position = np.array([0.6, 0.1, 0.3]) / get_stage_units() if orientation is None: orientation = euler_angles_to_quat(np.array([0, 0, np.pi / 3])) cube = self.scene.add( VisualCuboid( name=cube_name, position=position + self._offset, orientation=orientation, prim_path=cube_prim_path, size=1.0, scale=np.array([0.1, 0.5, 0.6]) / get_stage_units(), color=np.array([0, 0, 1.0]), ) ) self._obstacle_walls[cube.name] = cube return cube def remove_obstacle(self, name: Optional[str] = None) -> None: """[summary] Args: name (Optional[str], optional): [description]. Defaults to None. """ if name is not None: self.scene.remove_object(name) del self._obstacle_walls[name] else: obstacle_to_delete = list(self._obstacle_walls.keys())[-1] self.scene.remove_object(obstacle_to_delete) del self._obstacle_walls[obstacle_to_delete] return def get_obstacles(self) -> List: return list(self._obstacle_walls.values()) def get_obstacle_to_delete(self) -> None: """[summary] Returns: [type]: [description] """ obstacle_to_delete = list(self._obstacle_walls.keys())[-1] return self.scene.get_object(obstacle_to_delete) def obstacles_exist(self) -> bool: """[summary] Returns: bool: [description] """ if len(self._obstacle_walls) > 0: return True else: return False def cleanup(self) -> None: """[summary]""" obstacles_to_delete = list(self._obstacle_walls.keys()) for obstacle_to_delete in obstacles_to_delete: self.scene.remove_object(obstacle_to_delete) del self._obstacle_walls[obstacle_to_delete] return def get_custom_gains(self) -> Tuple[np.array, np.array]: return None, None class FrankaPathPlanningTask(PathPlanningTask): def __init__( self, name: str, target_prim_path: Optional[str] = None, target_name: Optional[str] = None, target_position: Optional[np.ndarray] = None, target_orientation: Optional[np.ndarray] = None, offset: Optional[np.ndarray] = None, franka_prim_path: Optional[str] = None, franka_robot_name: Optional[str] = None, ) -> None: PathPlanningTask.__init__( self, name=name, target_prim_path=target_prim_path, target_name=target_name, target_position=target_position, target_orientation=target_orientation, offset=offset, ) self._franka_prim_path = franka_prim_path self._franka_robot_name = franka_robot_name self._franka = None return def set_robot(self) -> Franka: """[summary] Returns: Franka: [description] """ if self._franka_prim_path is None: self._franka_prim_path = find_unique_string_name( initial_name="/World/Franka", is_unique_fn=lambda x: not is_prim_path_valid(x) ) if self._franka_robot_name is None: self._franka_robot_name = find_unique_string_name( initial_name="my_franka", is_unique_fn=lambda x: not self.scene.object_exists(x) ) self._franka = Franka(prim_path=self._franka_prim_path, name=self._franka_robot_name) return self._franka def get_custom_gains(self) -> Tuple[np.array, np.array]: return (1e15 * np.ones(9), 1e13 * np.ones(9))
12,187
Python
37.206896
120
0.576024
Ngochuy2137/omni_isaac_examples/path_planning/path_planning_extension.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import os import carb import omni.ui as ui from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.examples.path_planning import PathPlanning from omni.isaac.ui.ui_utils import btn_builder, state_btn_builder, str_builder class PathPlanningExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="Manipulation", submenu_name="", name="Path Planning", title="Path Planning Task", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/advanced_tutorials/tutorial_motion_generation_rrt.html#isaac-sim-app-tutorial-motion-generation-rrt", overview="This Example shows how to plan a path through a complicated static environment with the Franka robot in Isaac Sim.\n\nPress the 'Open in IDE' button to view the source code.", sample=PathPlanning(), file_path=os.path.abspath(__file__), number_of_extra_frames=2, ) self.task_ui_elements = {} frame = self.get_frame(index=0) self.build_task_controls_ui(frame) frame = self.get_frame(index=1) self.build_data_logging_ui(frame) return def _on_follow_target_button_event(self): asyncio.ensure_future(self.sample._on_follow_target_event_async()) return def _on_add_wall_button_event(self): self.sample._on_add_wall_event() self.task_ui_elements["Remove Wall"].enabled = True return def _on_remove_wall_button_event(self): self.sample._on_remove_wall_event() world = self.sample.get_world() current_task = list(world.get_current_tasks().values())[0] if not current_task.obstacles_exist(): self.task_ui_elements["Remove Wall"].enabled = False return def _on_logging_button_event(self, val): self.sample._on_logging_event(val) self.task_ui_elements["Save Data"].enabled = True return def _on_save_data_button_event(self): self.sample._on_save_data_event(self.task_ui_elements["Output Directory"].get_value_as_string()) return def post_reset_button_event(self): self.task_ui_elements["Move To Target"].enabled = True self.task_ui_elements["Remove Wall"].enabled = False self.task_ui_elements["Add Wall"].enabled = True self.task_ui_elements["Start Logging"].enabled = True self.task_ui_elements["Save Data"].enabled = False return def post_load_button_event(self): self.task_ui_elements["Move To Target"].enabled = True self.task_ui_elements["Add Wall"].enabled = True self.task_ui_elements["Start Logging"].enabled = True self.task_ui_elements["Save Data"].enabled = False return def post_clear_button_event(self): self.task_ui_elements["Move To Target"].enabled = False self.task_ui_elements["Remove Wall"].enabled = False self.task_ui_elements["Add Wall"].enabled = False self.task_ui_elements["Start Logging"].enabled = False self.task_ui_elements["Save Data"].enabled = False return def shutdown_cleanup(self): return def build_task_controls_ui(self, frame): with frame: with ui.VStack(spacing=5): # Update the Frame Title frame.title = "Task Controls" frame.visible = True dict = { "label": "Move To Target", "type": "button", "text": "Move To Target", "tooltip": "Plan a Path and Move to Target", "on_clicked_fn": self._on_follow_target_button_event, } self.task_ui_elements["Move To Target"] = btn_builder(**dict) self.task_ui_elements["Move To Target"].enabled = False dict = { "label": "Add Wall", "type": "button", "text": "ADD", "tooltip": "Add a Wall", "on_clicked_fn": self._on_add_wall_button_event, } self.task_ui_elements["Add Wall"] = btn_builder(**dict) self.task_ui_elements["Add Wall"].enabled = False dict = { "label": "Remove Wall", "type": "button", "text": "REMOVE", "tooltip": "Remove Wall", "on_clicked_fn": self._on_remove_wall_button_event, } self.task_ui_elements["Remove Wall"] = btn_builder(**dict) self.task_ui_elements["Remove Wall"].enabled = False def build_data_logging_ui(self, frame): with frame: with ui.VStack(spacing=5): frame.title = "Data Logging" frame.visible = True dict = { "label": "Output Directory", "type": "stringfield", "default_val": os.path.join(os.getcwd(), "output_data.json"), "tooltip": "Output Directory", "on_clicked_fn": None, "use_folder_picker": False, "read_only": False, } self.task_ui_elements["Output Directory"] = str_builder(**dict) dict = { "label": "Start Logging", "type": "button", "a_text": "START", "b_text": "PAUSE", "tooltip": "Start Logging", "on_clicked_fn": self._on_logging_button_event, } self.task_ui_elements["Start Logging"] = state_btn_builder(**dict) self.task_ui_elements["Start Logging"].enabled = False dict = { "label": "Save Data", "type": "button", "text": "Save Data", "tooltip": "Save Data", "on_clicked_fn": self._on_save_data_button_event, } self.task_ui_elements["Save Data"] = btn_builder(**dict) self.task_ui_elements["Save Data"].enabled = False return
6,822
Python
39.135294
197
0.557021
Ngochuy2137/omni_isaac_examples/path_planning/path_planning_controller.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from typing import Optional import carb import numpy as np import omni.isaac.core.objects import omni.isaac.motion_generation.interface_config_loader as interface_config_loader from omni.isaac.core.articulations import Articulation from omni.isaac.core.controllers.base_controller import BaseController from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.motion_generation import ArticulationTrajectory from omni.isaac.motion_generation.lula import RRT from omni.isaac.motion_generation.lula.trajectory_generator import LulaCSpaceTrajectoryGenerator from omni.isaac.motion_generation.path_planner_visualizer import PathPlannerVisualizer from omni.isaac.motion_generation.path_planning_interface import PathPlanner class PathPlannerController(BaseController): def __init__( self, name: str, path_planner_visualizer: PathPlannerVisualizer, cspace_trajectory_generator: LulaCSpaceTrajectoryGenerator, physics_dt=1 / 60.0, rrt_interpolation_max_dist=0.01, ): BaseController.__init__(self, name) self._robot = path_planner_visualizer.get_robot_articulation() self._cspace_trajectory_generator = cspace_trajectory_generator self._path_planner = path_planner_visualizer.get_path_planner() self._path_planner_visualizer = path_planner_visualizer self._last_solution = None self._action_sequence = None self._physics_dt = physics_dt self._rrt_interpolation_max_dist = rrt_interpolation_max_dist def _convert_rrt_plan_to_trajectory(self, rrt_plan): # This example uses the LulaCSpaceTrajectoryGenerator to convert RRT waypoints to a cspace trajectory. # In general this is not theoretically guaranteed to work since the trajectory generator uses spline-based # interpolation and RRT only guarantees that the cspace position of the robot can be linearly interpolated between # waypoints. For this example, we verified experimentally that a dense interpolation of cspace waypoints with a maximum # l2 norm of .01 between waypoints leads to a good enough approximation of the RRT path by the trajectory generator. interpolated_path = self._path_planner_visualizer.interpolate_path(rrt_plan, self._rrt_interpolation_max_dist) trajectory = self._cspace_trajectory_generator.compute_c_space_trajectory(interpolated_path) art_trajectory = ArticulationTrajectory(self._robot, trajectory, self._physics_dt) return art_trajectory.get_action_sequence() def _make_new_plan( self, target_end_effector_position: np.ndarray, target_end_effector_orientation: Optional[np.ndarray] = None ) -> None: self._path_planner.set_end_effector_target(target_end_effector_position, target_end_effector_orientation) self._path_planner.update_world() path_planner_visualizer = PathPlannerVisualizer(self._robot, self._path_planner) active_joints = path_planner_visualizer.get_active_joints_subset() if self._last_solution is None: start_pos = active_joints.get_joint_positions() else: start_pos = self._last_solution self._rrt_plan = self._path_planner.compute_path(start_pos, np.array([])) if self._rrt_plan is None or self._rrt_plan == []: carb.log_warn("No plan could be generated to target pose: " + str(target_end_effector_position)) self._action_sequence = [] return self._action_sequence = self._convert_rrt_plan_to_trajectory(self._rrt_plan) self._last_solution = self._action_sequence[-1].joint_positions def forward( self, target_end_effector_position: np.ndarray, target_end_effector_orientation: Optional[np.ndarray] = None ) -> ArticulationAction: if self._action_sequence is None: # This will only happen the first time the forward function is used self._make_new_plan(target_end_effector_position, target_end_effector_orientation) if len(self._action_sequence) == 0: # The plan is completed; return null action to remain in place return ArticulationAction() if len(self._action_sequence) == 1: final_positions = self._action_sequence[0].joint_positions # print("Steady State Error: ", np.linalg.norm(self._robot.get_joint_positions()[:7]-final_positions[:7])) return ArticulationAction( final_positions, np.zeros_like(final_positions), joint_indices=self._action_sequence[0].joint_indices ) return self._action_sequence.pop(0) def add_obstacle(self, obstacle: omni.isaac.core.objects, static: bool = False) -> None: self._path_planner.add_obstacle(obstacle, static) def remove_obstacle(self, obstacle: omni.isaac.core.objects) -> None: self._path_planner.remove_obstacle(obstacle) def reset(self) -> None: # PathPlannerController will make one plan per reset self._path_planner.reset() self._action_sequence = None self._last_solution = None def get_path_planner(self) -> PathPlanner: return self._path_planner class FrankaRrtController(PathPlannerController): def __init__( self, name, robot_articulation: Articulation, ): ext_manager = omni.kit.app.get_app().get_extension_manager() ext_id = ext_manager.get_enabled_extension_id("omni.isaac.examples") examples_extension_path = ext_manager.get_extension_path(ext_id) # Load default RRT config files stored in the omni.isaac.motion_generation extension rrt_config = interface_config_loader.load_supported_path_planner_config("Franka", "RRT") # Replace the default robot description file with a copy that has inflated collision spheres rrt_config["robot_description_path"] = os.path.join( examples_extension_path, "omni", "isaac", "examples", "path_planning", "path_planning_example_assets", "franka_conservative_spheres_robot_description.yaml", ) rrt = RRT(**rrt_config) # Create a trajectory generator to convert RRT cspace waypoints to trajectories cspace_trajectory_generator = LulaCSpaceTrajectoryGenerator( rrt_config["robot_description_path"], rrt_config["urdf_path"] ) # It is important that the Robot Description File includes optional Jerk and Acceleration limits so that the generated trajectory # can be followed closely by the simulated robot Articulation assert cspace_trajectory_generator._lula_kinematics.has_c_space_acceleration_limits() assert cspace_trajectory_generator._lula_kinematics.has_c_space_jerk_limits() visualizer = PathPlannerVisualizer(robot_articulation, rrt) PathPlannerController.__init__(self, name, visualizer, cspace_trajectory_generator)
7,463
Python
45.943396
137
0.7028
Ngochuy2137/omni_isaac_examples/base_sample/base_sample.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import gc from abc import abstractmethod from omni.isaac.core import World from omni.isaac.core.scenes.scene import Scene from omni.isaac.core.utils.stage import create_new_stage_async, update_stage_async class BaseSample(object): def __init__(self) -> None: self._world = None self._current_tasks = None self._world_settings = {"physics_dt": 1.0 / 60.0, "stage_units_in_meters": 1.0, "rendering_dt": 1.0 / 60.0} # self._logging_info = "" return def get_world(self): return self._world def set_world_settings(self, physics_dt=None, stage_units_in_meters=None, rendering_dt=None): if physics_dt is not None: self._world_settings["physics_dt"] = physics_dt if stage_units_in_meters is not None: self._world_settings["stage_units_in_meters"] = stage_units_in_meters if rendering_dt is not None: self._world_settings["rendering_dt"] = rendering_dt return async def load_world_async(self): """Function called when clicking load buttton""" if World.instance() is None: await create_new_stage_async() self._world = World(**self._world_settings) await self._world.initialize_simulation_context_async() self.setup_scene() else: self._world = World.instance() self._current_tasks = self._world.get_current_tasks() await self._world.reset_async() await self._world.pause_async() await self.setup_post_load() if len(self._current_tasks) > 0: self._world.add_physics_callback("tasks_step", self._world.step_async) return async def reset_async(self): """Function called when clicking reset buttton""" if self._world.is_tasks_scene_built() and len(self._current_tasks) > 0: self._world.remove_physics_callback("tasks_step") await self._world.play_async() await update_stage_async() await self.setup_pre_reset() await self._world.reset_async() await self._world.pause_async() await self.setup_post_reset() if self._world.is_tasks_scene_built() and len(self._current_tasks) > 0: self._world.add_physics_callback("tasks_step", self._world.step_async) return @abstractmethod def setup_scene(self, scene: Scene) -> None: """used to setup anything in the world, adding tasks happen here for instance. Args: scene (Scene): [description] """ return @abstractmethod async def setup_post_load(self): """called after first reset of the world when pressing load, intializing provate variables happen here. """ return @abstractmethod async def setup_pre_reset(self): """called in reset button before resetting the world to remove a physics callback for instance or a controller reset """ return @abstractmethod async def setup_post_reset(self): """called in reset button after resetting the world which includes one step with rendering""" return @abstractmethod async def setup_post_clear(self): """called after clicking clear button or after creating a new stage and clearing the instance of the world with its callbacks """ return # def log_info(self, info): # self._logging_info += str(info) + "\n" # return def _world_cleanup(self): self._world.stop() self._world.clear_all_callbacks() self._current_tasks = None self.world_cleanup() return def world_cleanup(self): """Function called when extension shutdowns and starts again, (hot reloading feature)""" return async def clear_async(self): """Function called when clicking clear buttton""" await create_new_stage_async() if self._world is not None: self._world_cleanup() self._world.clear_instance() self._world = None gc.collect() await self.setup_post_clear() return
4,600
Python
34.945312
115
0.631957
Ngochuy2137/omni_isaac_examples/base_sample/base_sample_extension.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import weakref from abc import abstractmethod import omni.ext import omni.ui as ui from omni.isaac.core import World from omni.isaac.examples.base_sample import BaseSample from omni.isaac.ui.menu import make_menu_item_description from omni.isaac.ui.ui_utils import btn_builder, get_style, scrolling_frame_builder, setup_ui_headers from omni.kit.menu.utils import MenuItemDescription, add_menu_items, remove_menu_items class BaseSampleExtension(omni.ext.IExt): def on_startup(self, ext_id: str): self._menu_items = None self._buttons = None self._ext_id = ext_id self._sample = None self._extra_frames = [] return def start_extension( self, menu_name: str, submenu_name: str, name: str, title: str, doc_link: str, overview: str, file_path: str, sample=None, number_of_extra_frames=1, window_width=350, keep_window_open=False, ): if sample is None: self._sample = BaseSample() else: self._sample = sample menu_items = [make_menu_item_description(self._ext_id, name, lambda a=weakref.proxy(self): a._menu_callback())] if menu_name == "" or menu_name is None: self._menu_items = menu_items elif submenu_name == "" or submenu_name is None: self._menu_items = [MenuItemDescription(name=menu_name, sub_menu=menu_items)] else: self._menu_items = [ MenuItemDescription( name=menu_name, sub_menu=[MenuItemDescription(name=submenu_name, sub_menu=menu_items)] ) ] add_menu_items(self._menu_items, "Isaac Examples") self._buttons = dict() self._build_ui( name=name, title=title, doc_link=doc_link, overview=overview, file_path=file_path, number_of_extra_frames=number_of_extra_frames, window_width=window_width, keep_window_open=keep_window_open, ) return @property def sample(self): return self._sample def get_frame(self, index): if index >= len(self._extra_frames): raise Exception("there were {} extra frames created only".format(len(self._extra_frames))) return self._extra_frames[index] def get_world(self): return World.instance() def get_buttons(self): return self._buttons def _build_ui( self, name, title, doc_link, overview, file_path, number_of_extra_frames, window_width, keep_window_open ): self._window = omni.ui.Window( name, width=window_width, height=0, visible=keep_window_open, dockPreference=ui.DockPreference.LEFT_BOTTOM ) with self._window.frame: self._main_stack = ui.VStack(spacing=5, height=0) with self._main_stack: setup_ui_headers(self._ext_id, file_path, title, doc_link, overview) self._controls_frame = ui.CollapsableFrame( title="World Controls", width=ui.Fraction(1), height=0, collapsed=False, style=get_style(), horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with ui.VStack(style=get_style(), spacing=5, height=0): for i in range(number_of_extra_frames): self._extra_frames.append( ui.CollapsableFrame( title="", width=ui.Fraction(0.33), height=0, visible=False, collapsed=False, style=get_style(), horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) ) with self._controls_frame: with ui.VStack(style=get_style(), spacing=5, height=0): dict = { "label": "Load World", "type": "button", "text": "Load", "tooltip": "Load World and Task", "on_clicked_fn": self._on_load_world, } self._buttons["Load World"] = btn_builder(**dict) self._buttons["Load World"].enabled = True dict = { "label": "Reset", "type": "button", "text": "Reset", "tooltip": "Reset robot and environment", "on_clicked_fn": self._on_reset, } self._buttons["Reset"] = btn_builder(**dict) self._buttons["Reset"].enabled = False return def _set_button_tooltip(self, button_name, tool_tip): self._buttons[button_name].set_tooltip(tool_tip) return def _on_load_world(self): async def _on_load_world_async(): await self._sample.load_world_async() await omni.kit.app.get_app().next_update_async() self._sample._world.add_stage_callback("stage_event_1", self.on_stage_event) self._enable_all_buttons(True) self._buttons["Load World"].enabled = False self.post_load_button_event() self._sample._world.add_timeline_callback("stop_reset_event", self._reset_on_stop_event) asyncio.ensure_future(_on_load_world_async()) return def _on_reset(self): async def _on_reset_async(): await self._sample.reset_async() await omni.kit.app.get_app().next_update_async() self.post_reset_button_event() asyncio.ensure_future(_on_reset_async()) return @abstractmethod def post_reset_button_event(self): return @abstractmethod def post_load_button_event(self): return @abstractmethod def post_clear_button_event(self): return def _enable_all_buttons(self, flag): for btn_name, btn in self._buttons.items(): if isinstance(btn, omni.ui._ui.Button): btn.enabled = flag return def _menu_callback(self): self._window.visible = not self._window.visible return def _on_window(self, status): # if status: return def on_shutdown(self): self._extra_frames = [] if self._sample._world is not None: self._sample._world_cleanup() if self._menu_items is not None: self._sample_window_cleanup() if self._buttons is not None: self._buttons["Load World"].enabled = True self._enable_all_buttons(False) self.shutdown_cleanup() return def shutdown_cleanup(self): return def _sample_window_cleanup(self): remove_menu_items(self._menu_items, "Isaac Examples") self._window = None self._menu_items = None self._buttons = None return def on_stage_event(self, event): if event.type == int(omni.usd.StageEventType.CLOSED): if World.instance() is not None: self.sample._world_cleanup() self.sample._world.clear_instance() if hasattr(self, "_buttons"): if self._buttons is not None: self._enable_all_buttons(False) self._buttons["Load World"].enabled = True return def _reset_on_stop_event(self, e): if e.type == int(omni.timeline.TimelineEventType.STOP): self._buttons["Load World"].enabled = False self._buttons["Reset"].enabled = True self.post_clear_button_event() return
8,761
Python
35.815126
119
0.543659
Ngochuy2137/omni_isaac_examples/base_sample/__init__.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.base_sample.base_sample import BaseSample from omni.isaac.examples.base_sample.base_sample_extension import BaseSampleExtension
585
Python
47.833329
85
0.823932
Ngochuy2137/omni_isaac_examples/unitree_quadruped/quadruped_example.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import carb import numpy as np import omni import omni.appwindow # Contains handle to keyboard from omni.isaac.examples.base_sample import BaseSample from omni.isaac.quadruped.robots import Unitree class QuadrupedExample(BaseSample): def __init__(self) -> None: super().__init__() self._world_settings["stage_units_in_meters"] = 1.0 self._world_settings["physics_dt"] = 1.0 / 400.0 self._world_settings["rendering_dt"] = 5.0 / 400.0 self._enter_toggled = 0 self._base_command = [0.0, 0.0, 0.0, 0] self._event_flag = False # bindings for keyboard to command self._input_keyboard_mapping = { # forward command "NUMPAD_8": [5, 0.0, 0.0], "UP": [5, 0.0, 0.0], # back command "NUMPAD_2": [-5, 0.0, 0.0], "DOWN": [-5, 0.0, 0.0], # left command "NUMPAD_6": [0.0, -4.0, 0.0], "RIGHT": [0.0, -4.0, 0.0], # right command "NUMPAD_4": [0.0, 4.0, 0.0], "LEFT": [0.0, 4.0, 0.0], # yaw command (positive) "NUMPAD_7": [0.0, 0.0, 1.0], "N": [0.0, 0.0, 1.0], # yaw command (negative) "NUMPAD_9": [0.0, 0.0, -1.0], "M": [0.0, 0.0, -1.0], } return def setup_scene(self) -> None: world = self.get_world() self._world.scene.add_default_ground_plane( z_position=0, name="default_ground_plane", prim_path="/World/defaultGroundPlane", static_friction=0.2, dynamic_friction=0.2, restitution=0.01, ) self._a1 = world.scene.add( Unitree( prim_path="/World/A1", name="A1", position=np.array([0, 0, 0.400]), physics_dt=self._world_settings["physics_dt"], ) ) timeline = omni.timeline.get_timeline_interface() self._event_timer_callback = timeline.get_timeline_event_stream().create_subscription_to_pop_by_type( int(omni.timeline.TimelineEventType.STOP), self._timeline_timer_callback_fn ) return async def setup_post_load(self) -> None: self._world = self.get_world() self._appwindow = omni.appwindow.get_default_app_window() self._input = carb.input.acquire_input_interface() self._keyboard = self._appwindow.get_keyboard() self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._sub_keyboard_event) self._world.add_physics_callback("sending_actions", callback_fn=self.on_physics_step) await self._world.play_async() return async def setup_pre_reset(self) -> None: self._event_flag = False return async def setup_post_reset(self) -> None: await self._world.play_async() self._a1.set_state(self._a1._default_a1_state) self._a1.post_reset() return def on_physics_step(self, step_size) -> None: if self._event_flag: self._a1._qp_controller.switch_mode() self._event_flag = False self._a1.advance(step_size, self._base_command) def _sub_keyboard_event(self, event, *args, **kwargs) -> bool: """Subscriber callback to when kit is updated.""" # reset event self._event_flag = False # when a key is pressedor released the command is adjusted w.r.t the key-mapping if event.type == carb.input.KeyboardEventType.KEY_PRESS: # on pressing, the command is incremented if event.input.name in self._input_keyboard_mapping: self._base_command[0:3] += np.array(self._input_keyboard_mapping[event.input.name]) self._event_flag = True # enter, toggle the last command if event.input.name == "ENTER" and self._enter_toggled is False: self._enter_toggled = True if self._base_command[3] == 0: self._base_command[3] = 1 else: self._base_command[3] = 0 self._event_flag = True elif event.type == carb.input.KeyboardEventType.KEY_RELEASE: # on release, the command is decremented if event.input.name in self._input_keyboard_mapping: self._base_command[0:3] -= np.array(self._input_keyboard_mapping[event.input.name]) self._event_flag = True # enter, toggle the last command if event.input.name == "ENTER": self._enter_toggled = False # since no error, we are fine :) return True def _timeline_timer_callback_fn(self, event) -> None: self._a1.post_reset() return
5,275
Python
38.373134
111
0.570237
Ngochuy2137/omni_isaac_examples/unitree_quadruped/__init__.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # NOTE: Import here your extension examples to be propagated to ISAAC SIM Extensions startup from omni.isaac.examples.unitree_quadruped.quadruped_example import QuadrupedExample from omni.isaac.examples.unitree_quadruped.quadruped_example_extension import QuadrupedExampleExtension
715
Python
50.142854
103
0.830769
Ngochuy2137/omni_isaac_examples/unitree_quadruped/quadruped_example_extension.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.examples.unitree_quadruped import QuadrupedExample class QuadrupedExampleExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) overview = "This Example shows quadruped simulation in Isaac Sim. Currently there is a performance issue with " overview += ( "the quadruped gait controller; it's being investigated and will be improved in an upcoming release." ) overview += "\n\tKeybord Input:" overview += "\n\t\tup arrow / numpad 8: Move Forward" overview += "\n\t\tdown arrow/ numpad 2: Move Reverse" overview += "\n\t\tleft arrow/ numpad 4: Move Left" overview += "\n\t\tright arrow / numpad 6: Move Right" overview += "\n\t\tN / numpad 7: Spin Counterclockwise" overview += "\n\t\tM / numpad 9: Spin Clockwise" overview += "\n\nPress the 'Open in IDE' button to view the source code." super().start_extension( menu_name="", submenu_name="", name="Quadruped", title="Unitree A1 Quadruped Example", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/features/robots_simulation/ext_omni_isaac_quadruped.html", overview=overview, file_path=os.path.abspath(__file__), sample=QuadrupedExample(), ) return
1,908
Python
41.422221
130
0.672432
Ngochuy2137/omni_isaac_examples/franka_nut_and_bolt/nut_bolt_controller.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import typing import numpy as np from omni.isaac.core.controllers.base_controller import BaseController from omni.isaac.core.utils.rotations import euler_angles_to_quat, quat_to_euler_angles from omni.isaac.core.utils.stage import get_stage_units from omni.isaac.franka.controllers.rmpflow_controller import RMPFlowController from omni.isaac.franka.franka import Franka from omni.isaac.manipulators.controllers.pick_place_controller import PickPlaceController from .nut_vibra_table_controller import VibraFSM from .screw_controller import ScrewController class NutBoltController(BaseController): """ A state machine to tie nuts onto bolts with a vibrating table feeding the nuts - State 0: Pick and Place from pickup location on vibration table to different bolts - State 1: Screw nut onto bolt Args: name (str): Name id of the controller franka (Franka): Franka Robot """ def __init__(self, name: str, franka: Franka) -> None: BaseController.__init__(self, name=name) self._event = 0 self._franka = franka self._gripper = self._franka.gripper self._end_effector_initial_height = self._franka.get_world_pose()[0][2] + (0.4 / get_stage_units()) self._pause = False self._cspace_controller = RMPFlowController(name="pickplace_cspace_controller", robot_articulation=self._franka) pick_place_events_dt = [0.008, 0.005, 1, 0.1, 0.05, 0.01, 0.0025] self._pick_place_controller = PickPlaceController( name="pickplace_controller", cspace_controller=self._cspace_controller, gripper=self._gripper, end_effector_initial_height=self._end_effector_initial_height, events_dt=pick_place_events_dt, ) self._screw_controller = ScrewController( name=f"screw_controller", cspace_controller=self._cspace_controller, gripper=self._gripper ) self._vibraSM = VibraFSM() self._i = self._vibraSM._i self._vibraSM.stop_feed_after_delay(delay_sec=5.0) return def is_paused(self) -> bool: """ Returns: bool: True if the state machine is paused. Otherwise False. """ return self._pause def get_current_event(self) -> int: """ Returns: int: Current event/ phase of the state machine """ return self._event def forward( self, initial_picking_position: np.ndarray, bolt_top: np.ndarray, gripper_to_nut_offset: np.ndarray, x_offset: np.ndarray, ) -> np.ndarray: """Runs the controller one step. Args: initial_picking_position (np.ndarray): initial nut position at table feeder bolt_top (np.ndarray): bolt target position #""" _vibra_table_transforms = np.array([0.0, 0.0, 0.0]) if self.is_paused(): return _vibra_table_transforms offsetPos = self._vibraSM.update() _vibra_table_transforms = np.array(offsetPos, dtype=float) if self._vibraSM._state == "stop" and self._event == 0: initial_effector_orientation = quat_to_euler_angles(self._gripper.get_world_pose()[1]) initial_effector_orientation[2] = np.pi / 2 initial_end_effector_orientation = euler_angles_to_quat(initial_effector_orientation) actions = self._pick_place_controller.forward( picking_position=initial_picking_position + gripper_to_nut_offset, placing_position=bolt_top + np.array([x_offset, 0.0, 0.0]), current_joint_positions=self._franka.get_joint_positions(), end_effector_orientation=initial_end_effector_orientation, ) self._franka.apply_action(actions) if self._pick_place_controller.is_done(): self._vibraSM._set_delayed_state_change(delay_sec=1.0, nextState="backward") self._event = 1 if self._event == 1: actions2 = self._screw_controller.forward( franka_art_controller=self._franka.get_articulation_controller(), bolt_position=bolt_top, current_joint_positions=self._franka.get_joint_positions(), current_joint_velocities=self._franka.get_joint_velocities(), ) self._franka.apply_action(actions2) if self._screw_controller.is_paused(): self.pause() self._i += 1 return _vibra_table_transforms def reset(self, franka: Franka) -> None: """Resets the state machine to start from the first phase/ event Args: franka (Franka): Franka Robot """ BaseController.reset(self) self._event = 0 self._pause = False self._franka = franka self._gripper = self._franka.gripper self._end_effector_initial_height = self._franka.get_world_pose()[0][2] + (0.4 / get_stage_units()) self._pick_place_controller.reset(end_effector_initial_height=self._end_effector_initial_height) self._screw_controller.reset() return def pause(self) -> None: """Pauses the state machine's time and phase.""" self._pause = True return def resume(self) -> None: """Resumes the state machine's time and phase.""" self._pause = False return
5,896
Python
38.313333
120
0.633311
Ngochuy2137/omni_isaac_examples/franka_nut_and_bolt/screw_controller.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import typing import numpy as np from omni.isaac.core.articulations import Articulation from omni.isaac.core.controllers.articulation_controller import ArticulationController from omni.isaac.core.controllers.base_controller import BaseController from omni.isaac.core.utils.rotations import euler_angles_to_quat, quat_to_euler_angles from omni.isaac.core.utils.stage import get_stage_units from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.manipulators.grippers.gripper import Gripper class ScrewController(BaseController): """ A state machine for screwing nuts on bolts Each phase runs for 1 second, which is the internal time of the state machine Dt of each phase/ event step is defined - State 0: Lower end_effector down to encircle the nut - State 1: Close grip - State 2: Re-Center end-effector grip with that of the nut and bolt - State 3: Screw Clockwise - State 4: Open grip (initiates at this state and cycles until limit) - State 5: Screw counter-clockwise Args: name (str): Name id of the controller cspace_controller (BaseController): a cartesian space controller that returns an ArticulationAction type gripper (Gripper): a gripper controller for open/ close actions. events_dt (typing.Optional[typing.List[float]], optional): Dt of each phase/ event step. 10 phases dt has to be defined. Defaults to None. Raises: Exception: events dt need to be list or numpy array Exception: events dt need have length of 5 or less """ def __init__( self, name: str, cspace_controller: BaseController, gripper: Gripper, events_dt: typing.Optional[typing.List[float]] = None, ) -> None: BaseController.__init__(self, name=name) self._event = 4 self._t = 0 self._events_dt = events_dt if self._events_dt is None: self._events_dt = [0.01, 0.1, 0.1, 0.025, 0.1, 0.05] else: if not isinstance(self._events_dt, np.ndarray) and not isinstance(self._events_dt, list): raise Exception("events dt need to be list or numpy array") elif isinstance(self._events_dt, np.ndarray): self._events_dt = self._events_dt.tolist() if len(self._events_dt) > 5: raise Exception("events dt need have length of 5 or less") self._cspace_controller = cspace_controller self._gripper = gripper self._pause = False self._start = True self._screw_position = np.array([0.0, 0.0, 0.0]) self._final_position = np.array([0.0, 0.0, 0.0]) self._screw_speed = 360.0 / 180.0 * np.pi self._screw_speed_back = 720.0 / 180.0 * np.pi return def is_paused(self) -> bool: """ Returns: bool: True if the state machine is paused. Otherwise False. """ return self._pause def get_current_event(self) -> int: """ Returns: int: Current event/ phase of the state machine """ return self._event def forward( self, franka_art_controller: ArticulationController, bolt_position: np.ndarray, current_joint_positions: np.ndarray, current_joint_velocities: np.ndarray, ) -> ArticulationAction: """Runs the controller one step. Args: franka_art_controller (ArticulationController): Robot's Articulation Controller. bolt_position (np.ndarray): bolt position to reference for screwing position. current_joint_positions (np.ndarray): Current joint positions of the robot. current_joint_velocities (np.ndarray): Current joint velocities of the robot. Returns: ArticulationAction: action to be executed by the ArticulationController """ if self._pause or self._event >= len(self._events_dt): target_joints = [None] * current_joint_positions.shape[0] return ArticulationAction(joint_positions=target_joints) if self._event == 0 and self._start: self._screw_position = np.copy(bolt_position) self._final_position = np.copy(bolt_position) self._start = False self._target_end_effector_orientation = self._gripper.get_world_pose()[1] if self._event == 0: franka_art_controller.switch_dof_control_mode(dof_index=6, mode="position") orientation_quat = self._gripper.get_world_pose()[1] self.orientation_euler = quat_to_euler_angles(orientation_quat) target_orientation_euler = np.array([self.orientation_euler[0], self.orientation_euler[1], -np.pi / 2]) target_orientation_quat = euler_angles_to_quat(target_orientation_euler) target_joints = self._cspace_controller.forward( target_end_effector_position=self._screw_position, target_end_effector_orientation=target_orientation_quat, ) if self._event == 1: self._lower = False franka_art_controller.switch_dof_control_mode(dof_index=6, mode="position") target_joints = self._gripper.forward(action="close") if self._event == 2: franka_art_controller.switch_dof_control_mode(dof_index=6, mode="position") orientation_quat = self._gripper.get_world_pose()[1] self.orientation_euler = quat_to_euler_angles(orientation_quat) target_orientation_euler = np.array([self.orientation_euler[0], self.orientation_euler[1], -np.pi / 2]) target_orientation_quat = euler_angles_to_quat(target_orientation_euler) finger_pos = current_joint_positions[-2:] positive_x_offset = finger_pos[1] - finger_pos[0] target_joints = self._cspace_controller.forward( target_end_effector_position=self._screw_position + np.array([positive_x_offset, 0.0, -0.001]), target_end_effector_orientation=target_orientation_quat, ) if self._event == 3: franka_art_controller.switch_dof_control_mode(dof_index=6, mode="velocity") target_joint_velocities = [None] * current_joint_velocities.shape[0] target_joint_velocities[6] = self._screw_speed if current_joint_positions[6] > 2.7: target_joint_velocities[6] = 0.0 target_joints = ArticulationAction(joint_velocities=target_joint_velocities) if self._event == 4: franka_art_controller.switch_dof_control_mode(dof_index=6, mode="position") target_joints = self._gripper.forward(action="open") if self._event == 5: franka_art_controller.switch_dof_control_mode(dof_index=6, mode="velocity") target_joint_velocities = [None] * current_joint_velocities.shape[0] target_joint_velocities[6] = -self._screw_speed_back if current_joint_positions[6] < -0.4: target_joint_velocities[6] = 0.0 target_joints = ArticulationAction(joint_velocities=target_joint_velocities) self._t += self._events_dt[self._event] if self._t >= 1.0: self._event = (self._event + 1) % 6 self._t = 0 if self._event == 5: if not self._start and (bolt_position[2] - self._final_position[2] > 0.0198): self.pause() return ArticulationAction(joint_positions=[None] * current_joint_positions.shape[0]) if self._start: self._screw_position[2] -= 0.001 self._final_position[2] -= 0.001 if bolt_position[2] - self._screw_position[2] < 0.013: self._screw_position[2] -= 0.0018 self._final_position[2] -= 0.0018 return target_joints def reset(self, events_dt: typing.Optional[typing.List[float]] = None) -> None: """Resets the state machine to start from the first phase/ event Args: events_dt (typing.Optional[typing.List[float]], optional): Dt of each phase/ event step. Defaults to None. Raises: Exception: events dt need to be list or numpy array Exception: events dt need have length of 5 or less """ BaseController.reset(self) self._cspace_controller.reset() self._event = 4 self._t = 0 self._pause = False self._start = True self._screw_position = np.array([0.0, 0.0, 0.0]) self._final_position = np.array([0.0, 0.0, 0.0]) self._screw_speed = 360.0 / 180.0 * np.pi self._screw_speed_back = 720.0 / 180.0 * np.pi # self._gripper = gripper if events_dt is not None: self._events_dt = events_dt if not isinstance(self._events_dt, np.ndarray) and not isinstance(self._events_dt, list): raise Exception("events dt need to be list or numpy array") elif isinstance(self._events_dt, np.ndarray): self._events_dt = self._events_dt.tolist() if len(self._events_dt) > 5: raise Exception("events dt need have length of 5 or less") return def is_done(self) -> bool: """ Returns: bool: True if the state machine reached the last phase. Otherwise False. """ if self._event >= len(self._events_dt): return True else: return False def pause(self) -> None: """Pauses the state machine's time and phase.""" self._pause = True return def resume(self) -> None: """Resumes the state machine's time and phase.""" self._pause = False return
10,293
Python
42.434599
146
0.61605
Ngochuy2137/omni_isaac_examples/franka_nut_and_bolt/__init__.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.franka_nut_and_bolt.franka_nut_and_bolt import FrankaNutAndBolt from omni.isaac.examples.franka_nut_and_bolt.franka_nut_and_bolt_extension import FrankaNutAndBoltExtension
629
Python
51.499996
107
0.823529
Ngochuy2137/omni_isaac_examples/franka_nut_and_bolt/franka_nut_and_bolt.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import numpy as np from omni.isaac.core.materials.physics_material import PhysicsMaterial from omni.isaac.core.physics_context.physics_context import PhysicsContext from omni.isaac.core.prims.geometry_prim import GeometryPrim from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.examples.base_sample import BaseSample from omni.isaac.franka.franka import Franka from pxr import Gf, PhysxSchema, Usd, UsdPhysics, UsdShade from .nut_bolt_controller import NutBoltController # Note: checkout the required tutorials at https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html class FrankaNutAndBolt(BaseSample): def __init__(self) -> None: super().__init__() # SCENE GEOMETRY # env (group) spacing: self._env_spacing = 2.0 # franka self._stool_height = 0.15 self._franka_position = np.array([0.269, 0.1778, 0.0]) # Gf.Vec3f(0.269, 0.1778, 0.0) # table and vibra table: self._table_position = np.array([0.5, 0.0, 0.0]) # Gf.Vec3f(0.5, 0.0, 0.0) self._table_scale = 0.01 self._tooling_plate_offset = np.array([0.0, 0.0, 0.0]) self._vibra_table_position_offset = np.array([0.157, -0.1524, 0.0]) self._vibra_top_offset = np.array([0.0, 0.0, 0.15]) self._vibra_table_top_to_collider_offset = np.array([0.05, 2.5, -0.59]) * 0.01 # xyz relative to the vibra table where the nut should be picked up self._vibra_table_nut_pickup_pos_offset = np.array([0.124, 0.24, 0.158]) # nut self._nut_height = 0.016 self._nut_spiral_center_vibra_offset = np.array([-0.04, -0.17, 0.01]) # randomize initial nut and bolt positions self._nut_radius = 0.055 self._nut_height_delta = 0.03 self._nut_dist_delta = 0.03 self._mass_nut = 0.065 # pipe and bolt parameters self._bolt_length = 0.1 self._bolt_radius = 0.11 self._pipe_pos_on_table = np.array([0.2032, 0.381, 0.0]) self._bolt_z_offset_to_pipe = 0.08 self._gripper_to_nut_offset = np.array([0.0, 0.0, 0.003]) self._top_of_bolt = ( np.array([0.0, 0.0, self._bolt_length + (self._nut_height / 2)]) + self._gripper_to_nut_offset ) # randomization self._randomize_nut_positions = True self._nut_position_noise_minmax = 0.005 self._rng_seed = 8 # states self._reset_hydra_instancing_on_shutdown = False self._time = 0.0 self._fsm_time = 0.0 # some global sim options: self._time_steps_per_second = 240 # 4.167ms aprx self._fsm_update_rate = 60 self._solverPositionIterations = 4 self._solverVelocityIterations = 1 self._solver_type = "TGS" self._ik_damping = 0.1 self._num_bolts = 6 self._num_nuts = 12 self._sim_dt = 1.0 / self._time_steps_per_second self._fsm_update_dt = 1.0 / self._fsm_update_rate return def setup_scene(self): # setup asset paths: self.nucleus_server = get_assets_root_path() self.asset_folder = self.nucleus_server + "/Isaac/Samples/Examples/FrankaNutBolt/" self.asset_paths = { "shop_table": self.asset_folder + "SubUSDs/Shop_Table/Shop_Table.usd", "tooling_plate": self.asset_folder + "SubUSDs/Tooling_Plate/Tooling_Plate.usd", "nut": self.asset_folder + "SubUSDs/Nut/M20_Nut_Tight_R256_Franka_SI.usd", "bolt": self.asset_folder + "SubUSDs/Bolt/M20_Bolt_Tight_R512_Franka_SI.usd", "vibra_table_top": self.asset_folder + "SubUSDs/VibrationTable_Top/VibrationTable_Top.usd", "vibra_table_bot": self.asset_folder + "SubUSDs/VibrationTable_Base/VibrationTable_Base.usd", "vibra_table_collision": self.asset_folder + "SubUSDs/VibrationTable_Top_collision.usd", "vibra_table_clamps": self.asset_folder + "SubUSDs/Clamps/Clamps.usd", "pipe": self.asset_folder + "SubUSDs/Pipe/Pipe.usd", } world = self.get_world() world.scene.add_default_ground_plane() world.scene.add(XFormPrim(prim_path="/World/collisionGroups", name="collision_groups_xform")) self._setup_simulation() # add_table_assets add_reference_to_stage(usd_path=self.asset_paths["shop_table"], prim_path="/World/env/table") world.scene.add(GeometryPrim(prim_path="/World/env/table", name=f"table_ref_geom", collision=True)) add_reference_to_stage(usd_path=self.asset_paths["tooling_plate"], prim_path="/World/env/tooling_plate") world.scene.add(GeometryPrim(prim_path="/World/env/tooling_plate", name=f"tooling_plate_geom", collision=True)) add_reference_to_stage(usd_path=self.asset_paths["pipe"], prim_path="/World/env/pipe") world.scene.add(GeometryPrim(prim_path="/World/env/pipe", name=f"pipe_geom", collision=True)) # add_vibra_table_assets add_reference_to_stage(usd_path=self.asset_paths["vibra_table_bot"], prim_path="/World/env/vibra_table_bottom") world.scene.add(GeometryPrim(prim_path="/World/env/vibra_table_bottom", name=f"vibra_table_bottom_geom")) add_reference_to_stage( usd_path=self.asset_paths["vibra_table_clamps"], prim_path="/World/env/vibra_table_clamps" ) world.scene.add( GeometryPrim(prim_path="/World/env/vibra_table_clamps", name=f"vibra_table_clamps_geom", collision=True) ) world.scene.add(XFormPrim(prim_path="/World/env/vibra_table", name=f"vibra_table_xform")) add_reference_to_stage(usd_path=self.asset_paths["vibra_table_top"], prim_path="/World/env/vibra_table/visual") add_reference_to_stage( usd_path=self.asset_paths["vibra_table_collision"], prim_path="/World/env/vibra_table/collision" ) world.scene.add(XFormPrim(prim_path="/World/env/vibra_table/visual", name=f"vibra_table_visual_xform")) world.scene.add( GeometryPrim( prim_path="/World/env/vibra_table/collision", name=f"vibra_table_collision_ref_geom", collision=True ) ) # add_nuts_bolts_assets for bolt in range(self._num_bolts): add_reference_to_stage(usd_path=self.asset_paths["bolt"], prim_path=f"/World/env/bolt{bolt}") world.scene.add(GeometryPrim(prim_path=f"/World/env/bolt{bolt}", name=f"bolt{bolt}_geom")) for nut in range(self._num_nuts): add_reference_to_stage(usd_path=self.asset_paths["nut"], prim_path=f"/World/env/nut{nut}") world.scene.add(GeometryPrim(prim_path=f"/World/env/nut{nut}", name=f"nut{nut}_geom")) # add_franka_assets world.scene.add(Franka(prim_path="/World/env/franka", name=f"franka")) return async def setup_post_load(self): self._world = self.get_world() self._rng = np.random.default_rng(self._rng_seed) self._world.scene.enable_bounding_boxes_computations() await self._setup_materials() # next four functions are for setting up the right positions and orientations for all assets await self._add_table() await self._add_vibra_table() await self._add_nuts_and_bolt(add_debug_nut=self._num_nuts == 2) await self._add_franka() self._controller = NutBoltController(name="nut_bolt_controller", franka=self._franka) self._franka.gripper.open() self._rbApi2 = UsdPhysics.RigidBodyAPI.Apply(self._vibra_table_xform.prim.GetPrim()) self._world.add_physics_callback(f"sim_step", callback_fn=self.physics_step) await self._world.play_async() return def physics_step(self, step_size): if self._controller.is_paused(): if self._controller._i >= min(self._num_nuts, self._num_bolts): self._rbApi2.CreateVelocityAttr().Set(Gf.Vec3f(0.0, 0.0, 0.0)) return self._controller.reset(self._franka) if self._controller._i < min(self._num_nuts, self._num_bolts): initial_position = self._vibra_table_nut_pickup_pos_offset + self._vibra_table_position self._bolt_geom = self._world.scene.get_object(f"bolt{self._controller._i}_geom") finger_pos = self._franka.get_joint_positions()[-2:] positive_x_offset = finger_pos[1] - finger_pos[0] bolt_position, _ = self._bolt_geom.get_world_pose() placing_position = bolt_position + self._top_of_bolt _vibra_table_transforms = self._controller.forward( initial_picking_position=initial_position, bolt_top=placing_position, gripper_to_nut_offset=self._gripper_to_nut_offset, x_offset=positive_x_offset, ) self._rbApi2.CreateVelocityAttr().Set( Gf.Vec3f(_vibra_table_transforms[0], _vibra_table_transforms[1], _vibra_table_transforms[2]) ) return async def _setup_materials(self): self._bolt_physics_material = PhysicsMaterial( prim_path="/World/PhysicsMaterials/BoltMaterial", name="bolt_material_physics", static_friction=0.2, dynamic_friction=0.2, ) self._nut_physics_material = PhysicsMaterial( prim_path="/World/PhysicsMaterials/NutMaterial", name="nut_material_physics", static_friction=0.2, dynamic_friction=0.2, ) self._vibra_table_physics_material = PhysicsMaterial( prim_path="/World/PhysicsMaterials/VibraTableMaterial", name="vibra_table_material_physics", static_friction=0.2, dynamic_friction=0.2, ) self._franka_finger_physics_material = PhysicsMaterial( prim_path="/World/PhysicsMaterials/FrankaFingerMaterial", name="franka_finger_material_physics", static_friction=0.7, dynamic_friction=0.7, ) await self._world.reset_async() async def _add_table(self): ##shop_table self._table_ref_geom = self._world.scene.get_object(f"table_ref_geom") self._table_ref_geom.set_local_scale(np.array([self._table_scale])) self._table_ref_geom.set_world_pose(position=self._table_position) self._table_ref_geom.set_default_state(position=self._table_position) lb = self._world.scene.compute_object_AABB(name=f"table_ref_geom") zmin = lb[0][2] zmax = lb[1][2] self._table_position[2] = -zmin self._table_height = zmax self._table_ref_geom.set_collision_approximation("none") self._convexIncludeRel.AddTarget(self._table_ref_geom.prim_path) ##tooling_plate self._tooling_plate_geom = self._world.scene.get_object(f"tooling_plate_geom") self._tooling_plate_geom.set_local_scale(np.array([self._table_scale])) lb = self._world.scene.compute_object_AABB(name=f"tooling_plate_geom") zmin = lb[0][2] zmax = lb[1][2] tooling_transform = self._tooling_plate_offset tooling_transform[2] = -zmin + self._table_height tooling_transform = tooling_transform + self._table_position self._tooling_plate_geom.set_world_pose(position=tooling_transform) self._tooling_plate_geom.set_default_state(position=tooling_transform) self._tooling_plate_geom.set_collision_approximation("boundingCube") self._table_height += zmax - zmin self._convexIncludeRel.AddTarget(self._tooling_plate_geom.prim_path) ##pipe self._pipe_geom = self._world.scene.get_object(f"pipe_geom") self._pipe_geom.set_local_scale(np.array([self._table_scale])) lb = self._world.scene.compute_object_AABB(name=f"pipe_geom") zmin = lb[0][2] zmax = lb[1][2] self._pipe_height = zmax - zmin pipe_transform = self._pipe_pos_on_table pipe_transform[2] = -zmin + self._table_height pipe_transform = pipe_transform + self._table_position self._pipe_geom.set_world_pose(position=pipe_transform, orientation=np.array([0, 0, 0, 1])) self._pipe_geom.set_default_state(position=pipe_transform, orientation=np.array([0, 0, 0, 1])) self._pipe_geom.set_collision_approximation("none") self._convexIncludeRel.AddTarget(self._pipe_geom.prim_path) await self._world.reset_async() async def _add_vibra_table(self): self._vibra_table_bottom_geom = self._world.scene.get_object(f"vibra_table_bottom_geom") self._vibra_table_bottom_geom.set_local_scale(np.array([self._table_scale])) lb = self._world.scene.compute_object_AABB(name=f"vibra_table_bottom_geom") zmin = lb[0][2] bot_part_pos = self._vibra_table_position_offset bot_part_pos[2] = -zmin + self._table_height bot_part_pos = bot_part_pos + self._table_position self._vibra_table_bottom_geom.set_world_pose(position=bot_part_pos) self._vibra_table_bottom_geom.set_default_state(position=bot_part_pos) self._vibra_table_bottom_geom.set_collision_approximation("none") self._convexIncludeRel.AddTarget(self._vibra_table_bottom_geom.prim_path) # clamps self._vibra_table_clamps_geom = self._world.scene.get_object(f"vibra_table_clamps_geom") self._vibra_table_clamps_geom.set_collision_approximation("none") self._convexIncludeRel.AddTarget(self._vibra_table_clamps_geom.prim_path) # vibra_table self._vibra_table_xform = self._world.scene.get_object(f"vibra_table_xform") self._vibra_table_position = bot_part_pos vibra_kinematic_prim = self._vibra_table_xform.prim rbApi = UsdPhysics.RigidBodyAPI.Apply(vibra_kinematic_prim.GetPrim()) rbApi.CreateRigidBodyEnabledAttr(True) rbApi.CreateKinematicEnabledAttr(True) # visual self._vibra_table_visual_xform = self._world.scene.get_object(f"vibra_table_visual_xform") self._vibra_table_visual_xform.set_world_pose(position=self._vibra_top_offset) self._vibra_table_visual_xform.set_default_state(position=self._vibra_top_offset) self._vibra_table_visual_xform.set_local_scale(np.array([self._table_scale])) # not clear why this makes a difference for the position (new bug although no change to code) self._vibra_table_visual_xform.prim.SetInstanceable(True) # collision self._vibra_table_collision_ref_geom = self._world.scene.get_object(f"vibra_table_collision_ref_geom") offset = self._vibra_top_offset + self._vibra_table_top_to_collider_offset self._vibra_table_collision_ref_geom.set_local_scale(np.array([1.0])) self._vibra_table_collision_ref_geom.set_world_pose(position=offset) self._vibra_table_collision_ref_geom.set_default_state(position=offset) self._vibra_table_collision_ref_geom.apply_physics_material(self._vibra_table_physics_material) self._convexIncludeRel.AddTarget(self._vibra_table_collision_ref_geom.prim_path) self._vibra_table_collision_ref_geom.set_collision_approximation("convexHull") vibra_kinematic_prim.SetInstanceable(True) self._vibra_table_xform.set_world_pose(position=self._vibra_table_position, orientation=np.array([0, 0, 0, 1])) self._vibra_table_xform.set_default_state( position=self._vibra_table_position, orientation=np.array([0, 0, 0, 1]) ) self._vibra_table_visual_xform.set_default_state( position=self._vibra_table_visual_xform.get_world_pose()[0], orientation=self._vibra_table_visual_xform.get_world_pose()[1], ) self._vibra_table_collision_ref_geom.set_default_state( position=self._vibra_table_collision_ref_geom.get_world_pose()[0], orientation=self._vibra_table_collision_ref_geom.get_world_pose()[1], ) await self._world.reset_async() async def _add_nuts_and_bolt(self, add_debug_nut=False): angle_delta = np.pi * 2.0 / self._num_bolts for j in range(self._num_bolts): self._bolt_geom = self._world.scene.get_object(f"bolt{j}_geom") self._bolt_geom.prim.SetInstanceable(True) bolt_pos = np.array(self._pipe_pos_on_table) + self._table_position bolt_pos[0] += np.cos(j * angle_delta) * self._bolt_radius bolt_pos[1] += np.sin(j * angle_delta) * self._bolt_radius bolt_pos[2] = self._bolt_z_offset_to_pipe + self._table_height self._bolt_geom.set_world_pose(position=bolt_pos) self._bolt_geom.set_default_state(position=bolt_pos) self._boltMeshIncludeRel.AddTarget(self._bolt_geom.prim_path) self._bolt_geom.apply_physics_material(self._bolt_physics_material) await self._generate_nut_initial_poses() for nut_idx in range(self._num_nuts): nut_pos = self._nut_init_poses[nut_idx, :3].copy() if add_debug_nut and nut_idx == 0: nut_pos[0] = 0.78 nut_pos[1] = self._vibra_table_nut_pickup_pos_offset[1] + self._vibra_table_position[1] # 0.0264 if add_debug_nut and nut_idx == 1: nut_pos[0] = 0.78 nut_pos[1] = 0.0264 - 0.04 self._nut_geom = self._world.scene.get_object(f"nut{nut_idx}_geom") self._nut_geom.prim.SetInstanceable(True) self._nut_geom.set_world_pose(position=np.array(nut_pos.tolist())) self._nut_geom.set_default_state(position=np.array(nut_pos.tolist())) physxRBAPI = PhysxSchema.PhysxRigidBodyAPI.Apply(self._nut_geom.prim) physxRBAPI.CreateSolverPositionIterationCountAttr().Set(self._solverPositionIterations) physxRBAPI.CreateSolverVelocityIterationCountAttr().Set(self._solverVelocityIterations) self._nut_geom.apply_physics_material(self._nut_physics_material) self._convexIncludeRel.AddTarget(self._nut_geom.prim_path + "/M20_Nut_Tight_Convex") self._nutMeshIncludeRel.AddTarget(self._nut_geom.prim_path + "/M20_Nut_Tight_SDF") rbApi3 = UsdPhysics.RigidBodyAPI.Apply(self._nut_geom.prim.GetPrim()) rbApi3.CreateRigidBodyEnabledAttr(True) physxAPI = PhysxSchema.PhysxRigidBodyAPI.Apply(self._nut_geom.prim.GetPrim()) physxAPI.CreateSleepThresholdAttr().Set(0.0) massAPI = UsdPhysics.MassAPI.Apply(self._nut_geom.prim.GetPrim()) massAPI.CreateMassAttr().Set(self._mass_nut) await self._world.reset_async() async def _generate_nut_initial_poses(self): self._nut_init_poses = np.zeros((self._num_nuts, 7), dtype=np.float32) self._nut_init_poses[:, -1] = 1 # quat to identity nut_spiral_center = self._vibra_table_position + self._nut_spiral_center_vibra_offset nut_spiral_center += self._vibra_top_offset for nut_idx in range(self._num_nuts): self._nut_init_poses[nut_idx, :3] = np.array(nut_spiral_center) self._nut_init_poses[nut_idx, 0] += self._nut_radius * np.sin( np.pi / 3.0 * nut_idx ) + self._nut_dist_delta * (nut_idx // 6) self._nut_init_poses[nut_idx, 1] += self._nut_radius * np.cos( np.pi / 3.0 * nut_idx ) + self._nut_dist_delta * (nut_idx // 6) self._nut_init_poses[nut_idx, 2] += self._nut_height_delta * (nut_idx // 6) if self._randomize_nut_positions: self._nut_init_poses[nut_idx, 0] += self._rng.uniform( -self._nut_position_noise_minmax, self._nut_position_noise_minmax ) self._nut_init_poses[nut_idx, 1] += self._rng.uniform( -self._nut_position_noise_minmax, self._nut_position_noise_minmax ) await self._world.reset_async() async def _add_franka(self): self._franka = self._world.scene.get_object(f"franka") franka_pos = np.array(self._franka_position) franka_pos[2] = franka_pos[2] + self._table_height self._franka.set_world_pose(position=franka_pos) self._franka.set_default_state(position=franka_pos) self._franka.gripper.open() kps = np.array([6000000.0, 600000.0, 6000000.0, 600000.0, 25000.0, 15000.0, 25000.0, 15000.0, 15000.0]) kds = np.array([600000.0, 60000.0, 300000.0, 30000.0, 3000.0, 3000.0, 3000.0, 6000.0, 6000.0]) self._franka.get_articulation_controller().set_gains(kps=kps, kds=kds, save_to_usd=True) self._frankaHandIncludeRel.AddTarget(self._franka.prim_path + "/panda_leftfinger") self._frankaHandIncludeRel.AddTarget(self._franka.prim_path + "/panda_rightfinger") franka_left_finger = self._world.stage.GetPrimAtPath( "/World/env/franka/panda_leftfinger/geometry/panda_leftfinger" ) x = UsdShade.MaterialBindingAPI.Apply(franka_left_finger) x.Bind( self._franka_finger_physics_material.material, bindingStrength="weakerThanDescendants", materialPurpose="physics", ) franka_right_finger = self._world.stage.GetPrimAtPath( "/World/env/franka/panda_rightfinger/geometry/panda_rightfinger" ) x2 = UsdShade.MaterialBindingAPI.Apply(franka_right_finger) x2.Bind( self._franka_finger_physics_material.material, bindingStrength="weakerThanDescendants", materialPurpose="physics", ) await self._world.reset_async() def _setup_simulation(self): self._scene = PhysicsContext() self._scene.set_solver_type(self._solver_type) self._scene.set_broadphase_type("GPU") self._scene.enable_gpu_dynamics(flag=True) self._scene.set_friction_offset_threshold(0.01) self._scene.set_friction_correlation_distance(0.0005) self._scene.set_gpu_total_aggregate_pairs_capacity(10 * 1024) self._scene.set_gpu_found_lost_pairs_capacity(10 * 1024) self._scene.set_gpu_heap_capacity(64 * 1024 * 1024) self._scene.set_gpu_found_lost_aggregate_pairs_capacity(10 * 1024) # added because of new errors regarding collisionstacksize physxSceneAPI = PhysxSchema.PhysxSceneAPI.Apply(get_prim_at_path("/physicsScene")) physxSceneAPI.CreateGpuCollisionStackSizeAttr().Set(76000000) # or whatever min is needed # group to include SDF mesh of nut only self._meshCollisionGroup = UsdPhysics.CollisionGroup.Define( self._world.scene.stage, "/World/collisionGroups/meshColliders" ) collectionAPI = Usd.CollectionAPI.Apply(self._meshCollisionGroup.GetPrim(), "colliders") self._nutMeshIncludeRel = collectionAPI.CreateIncludesRel() # group to include all convex collision (nut convex, pipe, table, vibrating table, other small assets on the table) self._convexCollisionGroup = UsdPhysics.CollisionGroup.Define( self._world.scene.stage, "/World/collisionGroups/convexColliders" ) collectionAPI = Usd.CollectionAPI.Apply(self._convexCollisionGroup.GetPrim(), "colliders") self._convexIncludeRel = collectionAPI.CreateIncludesRel() # group to include bolt prim only (only has SDF mesh) self._boltCollisionGroup = UsdPhysics.CollisionGroup.Define( self._world.scene.stage, "/World/collisionGroups/boltColliders" ) collectionAPI = Usd.CollectionAPI.Apply(self._boltCollisionGroup.GetPrim(), "colliders") self._boltMeshIncludeRel = collectionAPI.CreateIncludesRel() # group to include the franka hands prims only self._frankaHandCollisionGroup = UsdPhysics.CollisionGroup.Define( self._world.scene.stage, "/World/collisionGroups/frankaHandColliders" ) collectionAPI = Usd.CollectionAPI.Apply(self._frankaHandCollisionGroup.GetPrim(), "colliders") self._frankaHandIncludeRel = collectionAPI.CreateIncludesRel() # invert group logic so only groups that filter each-other will collide: self._scene.set_invert_collision_group_filter(True) # # the SDF mesh collider nuts should only collide with the bolts filteredRel = self._meshCollisionGroup.CreateFilteredGroupsRel() filteredRel.AddTarget("/World/collisionGroups/boltColliders") # # the convex hull nuts should collide with other nuts, the vibra table, table, pipe and small assets on the table. # It should also collide with the franka grippers filteredRel = self._convexCollisionGroup.CreateFilteredGroupsRel() filteredRel.AddTarget("/World/collisionGroups/convexColliders") filteredRel.AddTarget("/World/collisionGroups/frankaHandColliders") # # the SDF mesh bolt only collides with the SDF mesh nut colliders # and with the franka grippers filteredRel = self._boltCollisionGroup.CreateFilteredGroupsRel() filteredRel.AddTarget("/World/collisionGroups/meshColliders") filteredRel.AddTarget("/World/collisionGroups/frankaHandColliders") async def setup_pre_reset(self): return async def setup_post_reset(self): self._controller._vibraSM.reset() self._controller._vibraSM._i = 2 self._controller.reset(franka=self._franka) self._controller._i = self._controller._vibraSM._i self._franka.gripper.open() self._controller._vibraSM.start_feed() await self._world.play_async() return def world_cleanup(self): self._controller = None return
26,377
Python
50.721569
124
0.646851
Ngochuy2137/omni_isaac_examples/franka_nut_and_bolt/franka_nut_and_bolt_extension.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.examples.franka_nut_and_bolt import FrankaNutAndBolt class FrankaNutAndBoltExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="Manipulation", submenu_name="", name="Franka Nut and Bolt", title="Franka Nut and Bolt", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/advanced_tutorials/tutorial_advanced_sdf_nut_and_bolt.html#franka-nut-and-bolt-tutorial", overview="Franka robot arms picking and screwing nuts onto bolts", file_path=os.path.abspath(__file__), sample=FrankaNutAndBolt(), ) return
1,241
Python
40.399999
161
0.713135
Ngochuy2137/omni_isaac_examples/franka_nut_and_bolt/nut_vibra_table_controller.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import numpy as np class VibraFSM: _amplitudes = { "stop": np.array((0.0, 0.0, 0.0), dtype=np.float32), # [m] "run_feed": np.array((0.000, 0.03, 0.02), dtype=np.float32), # [m] "backward": np.array((0.000, -0.03, 0.02), dtype=np.float32), # [m] "realign": np.array((-0.03, 0.0, 0.02), dtype=np.float32), # [m] } _motion_frequency = 60.0 # [Hz] # configure unblock-cycle: _feed_time = 3.5 _stop_time = 5.0 _backward_time = 0.75 _realign_time = 0.75 def __init__(self, dt=None): self.reset() self._i = 2 if dt is not None: self._dt = dt def reset(self): self._dt = 1.0 / 240.0 self._time = 0.0 self.state = "stop" self._after_delay_state = None def start_feed(self): self.state = "run_feed" # kick off unblock cycle self._set_delayed_state_change(delay_sec=self._feed_time, nextState="backward") def stop_feed_after_delay(self, delay_sec: float): self.state = "run_feed" self._set_delayed_state_change(delay_sec=delay_sec, nextState="stop") def _set_delayed_state_change(self, delay_sec: float, nextState: str): self._after_delay_state = nextState self._wait_end_time = self._time + delay_sec def update(self): self._time += self._dt # process wait if necessary if self._after_delay_state is not None and self._time > self._wait_end_time: self.state = self._after_delay_state # auto-unblock cycle if self._state == "run_feed": self.stop_feed_after_delay(self._stop_time) elif self._state == "backward": self._set_delayed_state_change(delay_sec=self._backward_time, nextState="realign") elif self._state == "realign": self._set_delayed_state_change(delay_sec=self._realign_time, nextState="run_feed") else: self._after_delay_state = None return self._motion_amplitude def is_stopped(self): return self._state == "stop" def is_stopping(self): return self.is_stopped() or self._after_delay_state == "stop" @property def state(self): return self._state @state.setter def state(self, newState): self._state = newState if self._state in self._amplitudes: self._motion_amplitude = self._amplitudes[self._state] else: self._motion_amplitude = self._amplitudes["stop"]
2,983
Python
34.105882
98
0.601408
Ngochuy2137/omni_isaac_examples/omnigraph_keyboard/omnigraph_keyboard_extension.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import os from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.examples.omnigraph_keyboard import OmnigraphKeyboard class OmnigraphKeyboardExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) overview = "This Example shows how to change the size of a cube using the keyboard through omnigraph progrmaming in Isaac Sim." overview += "\n\tKeybord Input:" overview += "\n\t\ta: Grow" overview += "\n\t\td: Shrink" overview += "\n\nPress the 'Open in IDE' button to view the source code." overview += "\nOpen Visual Scripting Window to see Omnigraph" super().start_extension( menu_name="Input Devices", submenu_name="", name="Omnigraph Keyboard", title="NVIDIA Omnigraph Scripting Example", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/gui_tutorials/tutorial_advanced_input_devices.html", overview=overview, file_path=os.path.abspath(__file__), sample=OmnigraphKeyboard(), )
1,562
Python
42.416665
135
0.697183
Ngochuy2137/omni_isaac_examples/omnigraph_keyboard/omnigraph_keyboard.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import numpy as np import omni.ext import omni.graph.core as og from omni.isaac.core.objects import VisualCuboid from omni.isaac.core.utils.viewports import set_camera_view from omni.isaac.examples.base_sample import BaseSample class OmnigraphKeyboard(BaseSample): def __init__(self) -> None: super().__init__() self._gamepad_gains = (40.0, 40.0, 2.0) self._gamepad_deadzone = 0.15 def setup_scene(self): world = self.get_world() world.scene.add( VisualCuboid( prim_path="/Cube", # The prim path of the cube in the USD stage name="cube", # The unique name used to retrieve the object from the scene later on position=np.array([0, 0, 1.0]), # Using the current stage units which is cms by default. size=1.0, # most arguments accept mainly numpy arrays. color=np.array([0, 1.0, 1.0]), # RGB channels, going from 0-1 ) ) world.scene.add_default_ground_plane() set_camera_view(eye=np.array([5, 5, 3]), target=np.array([0, 0, 0])) # setup graph keys = og.Controller.Keys og.Controller.edit( {"graph_path": "/controller_graph", "evaluator_name": "execution"}, { keys.CREATE_NODES: [ ("OnTick", "omni.graph.action.OnTick"), ("A", "omni.graph.nodes.ReadKeyboardState"), ("D", "omni.graph.nodes.ReadKeyboardState"), ("ToDouble1", "omni.graph.nodes.ToDouble"), ("ToDouble2", "omni.graph.nodes.ToDouble"), ("Negate", "omni.graph.nodes.Multiply"), ("DeltaAdd", "omni.graph.nodes.Add"), ("SizeAdd", "omni.graph.nodes.Add"), ("NegOne", "omni.graph.nodes.ConstantInt"), ("ScaleDown", "omni.graph.nodes.Multiply"), ("ScaleFactor", "omni.graph.nodes.ConstantDouble"), ("CubeWrite", "omni.graph.nodes.WritePrimAttribute"), # write prim property translate ("CubeRead", "omni.graph.nodes.ReadPrimAttribute"), ], keys.SET_VALUES: [ ("A.inputs:key", "A"), ("D.inputs:key", "D"), ("OnTick.inputs:onlyPlayback", True), # only tick when simulator is playing ("NegOne.inputs:value", -1), ("ScaleFactor.inputs:value", 0.1), ("CubeWrite.inputs:name", "size"), ("CubeWrite.inputs:primPath", "/Cube"), ("CubeWrite.inputs:usePath", True), ("CubeRead.inputs:name", "size"), ("CubeRead.inputs:primPath", "/Cube"), ("CubeRead.inputs:usePath", True), ], keys.CONNECT: [ ("OnTick.outputs:tick", "CubeWrite.inputs:execIn"), ("A.outputs:isPressed", "ToDouble1.inputs:value"), ("D.outputs:isPressed", "ToDouble2.inputs:value"), ("ToDouble2.outputs:converted", "Negate.inputs:a"), ("NegOne.inputs:value", "Negate.inputs:b"), ("ToDouble1.outputs:converted", "DeltaAdd.inputs:a"), ("Negate.outputs:product", "DeltaAdd.inputs:b"), ("DeltaAdd.outputs:sum", "ScaleDown.inputs:a"), ("CubeRead.outputs:value", "SizeAdd.inputs:b"), ("SizeAdd.outputs:sum", "CubeWrite.inputs:value"), ("ScaleFactor.inputs:value", "ScaleDown.inputs:b"), ("ScaleDown.outputs:product", "SizeAdd.inputs:a"), ], }, ) def world_cleanup(self): pass
4,293
Python
46.186813
106
0.541113
Ngochuy2137/omni_isaac_examples/omnigraph_keyboard/__init__.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.omnigraph_keyboard.omnigraph_keyboard import OmnigraphKeyboard from omni.isaac.examples.omnigraph_keyboard.omnigraph_keyboard_extension import OmnigraphKeyboardExtension
627
Python
51.333329
106
0.835726
Ngochuy2137/omni_isaac_examples/surface_gripper/__init__.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.surface_gripper.surface_gripper import *
498
Python
44.363632
76
0.813253
Ngochuy2137/omni_isaac_examples/surface_gripper/surface_gripper.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import weakref import numpy as np import omni import omni.ext import omni.kit.commands import omni.kit.usd import omni.physx as _physx import omni.ui as ui from omni.isaac.core.utils.viewports import set_camera_view from omni.isaac.dynamic_control import _dynamic_control as dc # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.surface_gripper._surface_gripper import Surface_Gripper, Surface_Gripper_Properties from omni.isaac.ui.menu import make_menu_item_description from omni.isaac.ui.ui_utils import ( add_separator, btn_builder, combo_floatfield_slider_builder, get_style, setup_ui_headers, state_btn_builder, ) from omni.kit.menu.utils import MenuItemDescription, add_menu_items, remove_menu_items from pxr import Gf, Sdf, UsdGeom, UsdLux, UsdPhysics EXTENSION_NAME = "Surface Gripper" class Extension(omni.ext.IExt): def on_startup(self, ext_id: str): """Initialize extension and UI elements""" self._ext_id = ext_id # Loads interfaces self._timeline = omni.timeline.get_timeline_interface() self._dc = dc.acquire_dynamic_control_interface() self._usd_context = omni.usd.get_context() self._window = None self._models = {} # Creates UI window with default size of 600x300 # self._window = omni.ui.Window( # title=EXTENSION_NAME, width=300, height=200, visible=False, dockPreference=ui.DockPreference.LEFT_BOTTOM # ) menu_items = [ make_menu_item_description(ext_id, EXTENSION_NAME, lambda a=weakref.proxy(self): a._menu_callback()) ] self._menu_items = [MenuItemDescription(name="Manipulation", sub_menu=menu_items)] add_menu_items(self._menu_items, "Isaac Examples") self._build_ui() self.surface_gripper = None self.cone = None self.box = None self._stage_id = -1 def _build_ui(self): if not self._window: self._window = ui.Window( title=EXTENSION_NAME, width=0, height=0, visible=False, dockPreference=ui.DockPreference.LEFT_BOTTOM ) self._window.set_visibility_changed_fn(self._on_window) with self._window.frame: with ui.VStack(spacing=5, height=0): title = "Surface Gripper Example" doc_link = "https://docs.omniverse.nvidia.com/isaacsim/latest/features/robots_simulation/ext_omni_isaac_surface_gripper.html" overview = "This Example shows how to simulate a suction-cup gripper in Isaac Sim. " overview += "It simulates suction by creating a Joint between two bodies when the parent and child bodies are close at the gripper's point of contact." overview += "\n\nPress the 'Open in IDE' button to view the source code." setup_ui_headers(self._ext_id, __file__, title, doc_link, overview) frame = ui.CollapsableFrame( title="Command Panel", height=0, collapsed=False, style=get_style(), style_type_name_override="CollapsableFrame", horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED, vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON, ) with frame: with ui.VStack(style=get_style(), spacing=5): args = { "label": "Load Scene", "type": "button", "text": "Load", "tooltip": "Load a gripper into the Scene", "on_clicked_fn": self._on_create_scenario_button_clicked, } self._models["create_button"] = btn_builder(**args) args = { "label": "Gripper State", "type": "button", "a_text": "Close", "b_text": "Open", "tooltip": "Open and Close the Gripper", "on_clicked_fn": self._on_toggle_gripper_button_clicked, } self._models["toggle_button"] = state_btn_builder(**args) add_separator() args = { "label": "Gripper Force (UP)", "default_val": 0, "min": 0, "max": 1.0e2, "step": 1, "tooltip": ["Force in ()", "Force in ()"], } self._models["force_slider"], slider = combo_floatfield_slider_builder(**args) args = { "label": "Set Force", "type": "button", "text": "APPLY", "tooltip": "Apply the Gripper Force to the Z-Axis of the Cone", "on_clicked_fn": self._on_force_button_clicked, } self._models["force_button"] = btn_builder(**args) args = { "label": "Gripper Speed (UP)", "default_val": 0, "min": 0, "max": 5.0e1, "step": 1, "tooltip": ["Speed in ()", "Speed in ()"], } add_separator() self._models["speed_slider"], slider = combo_floatfield_slider_builder(**args) args = { "label": "Set Speed", "type": "button", "text": "APPLY", "tooltip": "Apply Cone Velocity in the Z-Axis", "on_clicked_fn": self._on_speed_button_clicked, } self._models["speed_button"] = btn_builder(**args) ui.Spacer() def on_shutdown(self): remove_menu_items(self._menu_items, "Isaac Examples") self._physx_subs = None self._window = None def _on_window(self, status): if status: self._usd_context = omni.usd.get_context() if self._usd_context is not None: self._stage_event_sub = ( omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(self._on_update_ui) ) else: self._stage_event_sub = None self._physx_subs = None def _menu_callback(self): self._window.visible = not self._window.visible def _on_update_ui(self, widget): self._models["create_button"].enabled = self._timeline.is_playing() self._models["toggle_button"].enabled = self._timeline.is_playing() self._models["force_button"].enabled = self._timeline.is_playing() self._models["speed_button"].enabled = self._timeline.is_playing() # If the scene has been reloaded, reset UI to create Scenario if self._usd_context.get_stage_id() != self._stage_id: self._models["create_button"].enabled = True # self._models["create_button"].text = "Create Scenario" self._models["create_button"].set_tooltip("Creates a new scenario with the cone on top of the Cube") self._models["create_button"].set_clicked_fn(self._on_create_scenario_button_clicked) self.cone = None self.box = None self._stage_id = -1 def _toggle_gripper_button_ui(self): # Checks if the surface gripper has been created if self.surface_gripper is not None: if self.surface_gripper.is_closed(): self._models["toggle_button"].text = "OPEN" else: self._models["toggle_button"].text = "CLOSE" pass def _on_simulation_step(self, step): # Checks if the simulation is playing, and if the stage has been loaded if self._timeline.is_playing() and self._stage_id != -1: # Check if the handles for cone and box have been loaded if self.cone is None: self.cone = self._dc.get_rigid_body("/GripperCone") self.box = self._dc.get_rigid_body("/Box") # If the surface Gripper has been created, update wheter it has been broken or not if self.surface_gripper is not None: self.surface_gripper.update() if self.surface_gripper.is_closed(): self.coneGeom.GetDisplayColorAttr().Set([self.color_closed]) else: self.coneGeom.GetDisplayColorAttr().Set([self.color_open]) self._toggle_gripper_button_ui() def _on_reset_scenario_button_clicked(self): if self._timeline.is_playing() and self._stage_id != -1: if self.surface_gripper is not None: self.surface_gripper.open() self._dc.set_rigid_body_linear_velocity(self.cone, [0, 0, 0]) self._dc.set_rigid_body_linear_velocity(self.box, [0, 0, 0]) self._dc.set_rigid_body_angular_velocity(self.cone, [0, 0, 0]) self._dc.set_rigid_body_angular_velocity(self.box, [0, 0, 0]) self._dc.set_rigid_body_pose(self.cone, self.gripper_start_pose) self._dc.set_rigid_body_pose(self.box, self.box_start_pose) async def _create_scenario(self, task): done, pending = await asyncio.wait({task}) if task in done: # Repurpose button to reset Scene # self._models["create_button"].text = "Reset Scene" self._models["create_button"].set_tooltip("Resets scenario with the cone on top of the Cube") # Get Handle for stage and stage ID to check if stage was reloaded self._stage = self._usd_context.get_stage() self._stage_id = self._usd_context.get_stage_id() self._timeline.stop() self._models["create_button"].set_clicked_fn(self._on_reset_scenario_button_clicked) # Adds a light to the scene distantLight = UsdLux.DistantLight.Define(self._stage, Sdf.Path("/DistantLight")) distantLight.CreateIntensityAttr(500) distantLight.AddOrientOp().Set(Gf.Quatf(-0.3748, -0.42060, -0.0716, 0.823)) # Set up stage with Z up, treat units as cm, set up gravity and ground plane UsdGeom.SetStageUpAxis(self._stage, UsdGeom.Tokens.z) UsdGeom.SetStageMetersPerUnit(self._stage, 1.0) self.scene = UsdPhysics.Scene.Define(self._stage, Sdf.Path("/physicsScene")) self.scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0)) self.scene.CreateGravityMagnitudeAttr().Set(9.81) omni.kit.commands.execute( "AddGroundPlaneCommand", stage=self._stage, planePath="/groundPlane", axis="Z", size=10.000, position=Gf.Vec3f(0), color=Gf.Vec3f(0.5), ) # Colors to represent when gripper is open or closed self.color_closed = Gf.Vec3f(1.0, 0.2, 0.2) self.color_open = Gf.Vec3f(0.2, 1.0, 0.2) # Cone that will represent the gripper self.gripper_start_pose = dc.Transform([0, 0, 0.301], [1, 0, 0, 0]) self.coneGeom = self.createRigidBody( UsdGeom.Cone, "/GripperCone", 0.100, [0.10, 0.10, 0.10], self.gripper_start_pose.p, self.gripper_start_pose.r, self.color_open, ) # Box to be picked self.box_start_pose = dc.Transform([0, 0, 0.10], [1, 0, 0, 0]) self.boxGeom = self.createRigidBody( UsdGeom.Cube, "/Box", 0.10, [0.1, 0.1, 0.1], self.box_start_pose.p, self.box_start_pose.r, [0.2, 0.2, 1] ) # Reordering the quaternion to follow DC convention for later use. self.gripper_start_pose = dc.Transform([0, 0, 0.301], [0, 0, 0, 1]) self.box_start_pose = dc.Transform([0, 0, 0.10], [0, 0, 0, 1]) # Gripper properties self.sgp = Surface_Gripper_Properties() self.sgp.d6JointPath = "/GripperCone/SurfaceGripper" self.sgp.parentPath = "/GripperCone" self.sgp.offset = dc.Transform() self.sgp.offset.p.x = 0 self.sgp.offset.p.z = -0.1001 self.sgp.offset.r = [0.7071, 0, 0.7071, 0] # Rotate to point gripper in Z direction self.sgp.gripThreshold = 0.02 self.sgp.forceLimit = 1.0e2 self.sgp.torqueLimit = 1.0e3 self.sgp.bendAngle = np.pi / 4 self.sgp.stiffness = 1.0e4 self.sgp.damping = 1.0e3 self.surface_gripper = Surface_Gripper(self._dc) self.surface_gripper.initialize(self.sgp) # Set camera to a nearby pose and looking directly at the Gripper cone set_camera_view( eye=[4.00, 4.00, 4.00], target=self.gripper_start_pose.p, camera_prim_path="/OmniverseKit_Persp" ) self._physx_subs = _physx.get_physx_interface().subscribe_physics_step_events(self._on_simulation_step) self._timeline.play() def _on_create_scenario_button_clicked(self): # wait for new stage before creating scenario task = asyncio.ensure_future(omni.usd.get_context().new_stage_async()) asyncio.ensure_future(self._create_scenario(task)) def _on_toggle_gripper_button_clicked(self, val=False): if self._timeline.is_playing(): if self.surface_gripper.is_closed(): self.surface_gripper.open() else: self.surface_gripper.close() if self.surface_gripper.is_closed(): self._models["toggle_button"].text = "OPEN" else: self._models["toggle_button"].text = "CLOSE" def _on_speed_button_clicked(self): if self._timeline.is_playing(): self._dc.set_rigid_body_linear_velocity( self.cone, [0, 0, self._models["speed_slider"].get_value_as_float()] ) def _on_force_button_clicked(self): if self._timeline.is_playing(): self._dc.apply_body_force( self.cone, [0, 0, self._models["force_slider"].get_value_as_float()], [0, 0, 0], True ) def createRigidBody(self, bodyType, boxActorPath, mass, scale, position, rotation, color): p = Gf.Vec3f(position[0], position[1], position[2]) orientation = Gf.Quatf(rotation[0], rotation[1], rotation[2], rotation[3]) scale = Gf.Vec3f(scale[0], scale[1], scale[2]) bodyGeom = bodyType.Define(self._stage, boxActorPath) bodyPrim = self._stage.GetPrimAtPath(boxActorPath) bodyGeom.AddTranslateOp().Set(p) bodyGeom.AddOrientOp().Set(orientation) bodyGeom.AddScaleOp().Set(scale) bodyGeom.CreateDisplayColorAttr().Set([color]) UsdPhysics.CollisionAPI.Apply(bodyPrim) if mass > 0: massAPI = UsdPhysics.MassAPI.Apply(bodyPrim) massAPI.CreateMassAttr(mass) UsdPhysics.RigidBodyAPI.Apply(bodyPrim) UsdPhysics.CollisionAPI(bodyPrim) print(bodyPrim.GetPath().pathString) return bodyGeom
16,637
Python
44.583562
171
0.542586
Ngochuy2137/omni_isaac_examples/bin_filling/__init__.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.bin_filling.bin_filling import BinFilling from omni.isaac.examples.bin_filling.bin_filling_extension import BinFillingExtension
585
Python
47.833329
85
0.823932
Ngochuy2137/omni_isaac_examples/bin_filling/bin_filling_extension.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import os import omni.ui as ui from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.examples.bin_filling import BinFilling from omni.isaac.ui.ui_utils import btn_builder class BinFillingExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="Manipulation", submenu_name="", name="Bin Filling", title="Bin Filling", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_adding_manipulator.html", overview="This Example shows how to do bin filling using UR10 robot in Isaac Sim.\n It showcases a realistic surface gripper that breaks with heavy bin load.\nPress the 'Open in IDE' button to view the source code.", sample=BinFilling(), file_path=os.path.abspath(__file__), number_of_extra_frames=1, ) self.task_ui_elements = {} frame = self.get_frame(index=0) self.build_task_controls_ui(frame) return def _on_fill_bin_button_event(self): asyncio.ensure_future(self.sample.on_fill_bin_event_async()) self.task_ui_elements["Start Bin Filling"].enabled = False return def post_reset_button_event(self): self.task_ui_elements["Start Bin Filling"].enabled = True return def post_load_button_event(self): self.task_ui_elements["Start Bin Filling"].enabled = True return def post_clear_button_event(self): self.task_ui_elements["Start Bin Filling"].enabled = False return def build_task_controls_ui(self, frame): with frame: with ui.VStack(spacing=5): # Update the Frame Title frame.title = "Task Controls" frame.visible = True dict = { "label": "Start Bin Filling", "type": "button", "text": "Start Bin Filling", "tooltip": "Start Bin Filling", "on_clicked_fn": self._on_fill_bin_button_event, } self.task_ui_elements["Start Bin Filling"] = btn_builder(**dict) self.task_ui_elements["Start Bin Filling"].enabled = False
2,800
Python
38.450704
228
0.632857
Ngochuy2137/omni_isaac_examples/bin_filling/bin_filling.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import numpy as np from omni.isaac.core.utils.rotations import euler_angles_to_quat from omni.isaac.examples.base_sample import BaseSample from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController from omni.isaac.universal_robots.tasks import BinFilling as BinFillingTask class BinFilling(BaseSample): def __init__(self) -> None: super().__init__() self._controller = None self._articulation_controller = None self._added_screws = False def setup_scene(self): world = self.get_world() world.add_task(BinFillingTask(name="bin_filling")) return async def setup_post_load(self): self._ur10_task = self._world.get_task(name="bin_filling") self._task_params = self._ur10_task.get_params() my_ur10 = self._world.scene.get_object(self._task_params["robot_name"]["value"]) self._controller = PickPlaceController( name="pick_place_controller", gripper=my_ur10.gripper, robot_articulation=my_ur10 ) self._articulation_controller = my_ur10.get_articulation_controller() return def _on_fill_bin_physics_step(self, step_size): observations = self._world.get_observations() actions = self._controller.forward( picking_position=observations[self._task_params["bin_name"]["value"]]["position"], placing_position=observations[self._task_params["bin_name"]["value"]]["target_position"], current_joint_positions=observations[self._task_params["robot_name"]["value"]]["joint_positions"], end_effector_offset=np.array([0, -0.098, 0.03]), end_effector_orientation=euler_angles_to_quat(np.array([np.pi, 0, np.pi / 2.0])), ) if not self._added_screws and self._controller.get_current_event() == 6 and not self._controller.is_paused(): self._controller.pause() self._ur10_task.add_screws(screws_number=20) self._added_screws = True if self._controller.is_done(): self._world.pause() self._articulation_controller.apply_action(actions) return async def on_fill_bin_event_async(self): world = self.get_world() world.add_physics_callback("sim_step", self._on_fill_bin_physics_step) await world.play_async() return async def setup_pre_reset(self): world = self.get_world() if world.physics_callback_exists("sim_step"): world.remove_physics_callback("sim_step") self._controller.reset() self._added_screws = False return def world_cleanup(self): self._controller = None self._added_screws = False return
3,174
Python
41.333333
117
0.664146
Ngochuy2137/omni_isaac_examples/user_examples/__init__.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # NOTE: Import here your extension examples to be propagated to ISAAC SIM Extensions startup from omni.isaac.examples.user_examples.hello_world import HelloWorld from omni.isaac.examples.user_examples.hello_world_extension import HelloWorldExtension
684
Python
44.666664
92
0.821637
Ngochuy2137/omni_isaac_examples/user_examples/hello_world.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.base_sample import BaseSample import numpy as np # Can be used to create a new cube or to point to an already existing cube in stage. from omni.isaac.core.objects import DynamicCuboid from omni.isaac.dynamic_control import _dynamic_control from pxr import UsdLux, Gf from omni.usd import get_context # Note: checkout the required tutorials at https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html class HelloWorld(BaseSample): def __init__(self) -> None: super().__init__() return def setup_scene(self): world = self.get_world() world.scene.add_default_ground_plane() fancy_cube = world.scene.add( DynamicCuboid( prim_path="/World/my_fancy_cube", # The prim path of the cube in the USD stage name="fancy_cube", # The unique name used to retrieve the object from the scene later on position=np.array([0, 0, 1.0]), # Using the current stage units which is in meters by default. scale=np.array([0.5015, 0.5015, 0.5015]), # most arguments accept mainly numpy arrays. color=np.array([0, 0, 1.0]), # RGB channels, going from 0-1 )) # Create a dome light stage = get_context().get_stage() light_path = "/World/fancy_dome_light" light_prim = UsdLux.DomeLight.Define(stage, light_path) light_prim.CreateIntensityAttr().Set(1.0) light_prim.CreateColorAttr().Set(Gf.Vec3f(1.0, 1.0, 1.0)) return async def setup_post_load(self): self._world = self.get_world() self._cube = self._world.scene.get_object("fancy_cube") # "sim_step" is the name of the event # "callback_fn" is the callback function self._world.add_physics_callback("sim_step", callback_fn=self.print_cube_info) #callback names have to be unique return # here we define the physics callback to be called before each physics step, all physics callbacks must take # step_size as an argument # Tham số này thường là kích thước bước thời gian (time step) của mỗi bước vật lý trong mô phỏng. # Tuy nhiên, trong ví dụ này, step_size không được sử dụng trực tiếp trong hàm. def print_cube_info(self, step_size): position, orientation = self._cube.get_world_pose() linear_velocity = self._cube.get_linear_velocity() # will be shown on terminal print("Cube position is : " + str(position)) print("Cube's orientation is : " + str(orientation)) print("Cube's linear velocity is : " + str(linear_velocity)) async def setup_pre_reset(self): return async def setup_post_reset(self): return def world_cleanup(self): return
3,231
Python
41.526315
120
0.665429
Ngochuy2137/omni_isaac_examples/user_examples/my_application.py
#launch Isaac Sim before any other imports #default first two lines in any standalone application from omni.isaac.kit import SimulationApp simulation_app = SimulationApp({"headless": False}) # we can also run as headless. from omni.isaac.core import World from omni.isaac.core.objects import DynamicCuboid import numpy as np world = World() world.scene.add_default_ground_plane() fancy_cube = world.scene.add( DynamicCuboid( prim_path="/World/random_cube", name="fancy_cube", position=np.array([0, 0, 1.0]), scale=np.array([0.5015, 0.5015, 0.5015]), color=np.array([0, 0, 1.0]), )) # Resetting the world needs to be called before querying anything related to an articulation specifically. # Its recommended to always do a reset after adding your assets, for physics handles to be propagated properly world.reset() for i in range(500): position, orientation = fancy_cube.get_world_pose() linear_velocity = fancy_cube.get_linear_velocity() # will be shown on terminal print("Cube position is : " + str(position)) print("Cube's orientation is : " + str(orientation)) print("Cube's linear velocity is : " + str(linear_velocity)) # we have control over stepping physics and rendering in this workflow # things run in sync world.step(render=True) # execute one physics step and one rendering step simulation_app.close() # close Isaac Sim
1,419
Python
40.764705
110
0.714588
Ngochuy2137/omni_isaac_examples/user_examples/hello_world_extension.py
import os from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.examples.user_examples import HelloWorld class HelloWorldExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="", submenu_name="", name="My Awesome Example", title="My Awesome Example", doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_core_hello_world.html", overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.", file_path=os.path.abspath(__file__), sample=HelloWorld(), ) return
779
Python
40.052629
135
0.650834
Ngochuy2137/omni_isaac_examples/replay_follow_target/replay_follow_target_extension.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import os import omni.ui as ui from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.examples.replay_follow_target import ReplayFollowTarget from omni.isaac.ui.ui_utils import btn_builder, str_builder class ReplayFollowTargetExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="Manipulation", submenu_name="", name="Replay Follow Target", title="Replay Follow Target Task", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_advanced_data_logging.html", overview="This Example shows how to use data logging to replay data collected\n\n from the follow target extension example.\n\n Press the 'Open in IDE' button to view the source code.", sample=ReplayFollowTarget(), file_path=os.path.abspath(__file__), number_of_extra_frames=2, window_width=700, ) self.task_ui_elements = {} frame = self.get_frame(index=0) self.build_data_logging_ui(frame) return def _on_replay_trajectory_button_event(self): asyncio.ensure_future( self.sample._on_replay_trajectory_event_async(self.task_ui_elements["Data File"].get_value_as_string()) ) self.task_ui_elements["Replay Trajectory"].enabled = False self.task_ui_elements["Replay Scene"].enabled = False return def _on_replay_scene_button_event(self): asyncio.ensure_future( self.sample._on_replay_scene_event_async(self.task_ui_elements["Data File"].get_value_as_string()) ) self.task_ui_elements["Replay Trajectory"].enabled = False self.task_ui_elements["Replay Scene"].enabled = False return def post_reset_button_event(self): self.task_ui_elements["Replay Trajectory"].enabled = True self.task_ui_elements["Replay Scene"].enabled = True return def post_load_button_event(self): self.task_ui_elements["Replay Trajectory"].enabled = True self.task_ui_elements["Replay Scene"].enabled = True return def post_clear_button_event(self): self.task_ui_elements["Replay Trajectory"].enabled = False self.task_ui_elements["Replay Scene"].enabled = False return def build_data_logging_ui(self, frame): with frame: with ui.VStack(spacing=5): frame.title = "Data Replay" frame.visible = True example_data_file = os.path.abspath( os.path.join(os.path.abspath(__file__), "../../../../../data/example_data_file.json") ) dict = { "label": "Data File", "type": "stringfield", "default_val": example_data_file, "tooltip": "Data File", "on_clicked_fn": None, "use_folder_picker": False, "read_only": False, } self.task_ui_elements["Data File"] = str_builder(**dict) dict = { "label": "Replay Trajectory", "type": "button", "text": "Replay Trajectory", "tooltip": "Replay Trajectory", "on_clicked_fn": self._on_replay_trajectory_button_event, } self.task_ui_elements["Replay Trajectory"] = btn_builder(**dict) self.task_ui_elements["Replay Trajectory"].enabled = False dict = { "label": "Replay Scene", "type": "button", "text": "Replay Scene", "tooltip": "Replay Scene", "on_clicked_fn": self._on_replay_scene_button_event, } self.task_ui_elements["Replay Scene"] = btn_builder(**dict) self.task_ui_elements["Replay Scene"].enabled = False return
4,574
Python
40.972477
197
0.587232
Ngochuy2137/omni_isaac_examples/replay_follow_target/__init__.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.replay_follow_target.replay_follow_target import ReplayFollowTarget from omni.isaac.examples.replay_follow_target.replay_follow_target_extension import ReplayFollowTargetExtension
637
Python
52.166662
111
0.832025
Ngochuy2137/omni_isaac_examples/replay_follow_target/replay_follow_target.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import numpy as np from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.examples.base_sample import BaseSample from omni.isaac.franka.tasks import FollowTarget as FollowTargetTask class ReplayFollowTarget(BaseSample): def __init__(self) -> None: super().__init__() self._articulation_controller = None def setup_scene(self): world = self.get_world() world.add_task(FollowTargetTask()) return async def setup_pre_reset(self): world = self.get_world() if world.physics_callback_exists("replay_trajectory"): world.remove_physics_callback("replay_trajectory") if world.physics_callback_exists("replay_scene"): world.remove_physics_callback("replay_scene") return async def setup_post_load(self): self._franka_task = list(self._world.get_current_tasks().values())[0] self._task_params = self._franka_task.get_params() my_franka = self._world.scene.get_object(self._task_params["robot_name"]["value"]) self._articulation_controller = my_franka.get_articulation_controller() self._data_logger = self._world.get_data_logger() return async def _on_replay_trajectory_event_async(self, data_file): self._data_logger.load(log_path=data_file) world = self.get_world() await world.play_async() world.add_physics_callback("replay_trajectory", self._on_replay_trajectory_step) return async def _on_replay_scene_event_async(self, data_file): self._data_logger.load(log_path=data_file) world = self.get_world() await world.play_async() world.add_physics_callback("replay_scene", self._on_replay_scene_step) return def _on_replay_trajectory_step(self, step_size): if self._world.current_time_step_index < self._data_logger.get_num_of_data_frames(): data_frame = self._data_logger.get_data_frame(data_frame_index=self._world.current_time_step_index) self._articulation_controller.apply_action( ArticulationAction(joint_positions=data_frame.data["applied_joint_positions"]) ) return def _on_replay_scene_step(self, step_size): if self._world.current_time_step_index < self._data_logger.get_num_of_data_frames(): target_name = self._task_params["target_name"]["value"] data_frame = self._data_logger.get_data_frame(data_frame_index=self._world.current_time_step_index) self._articulation_controller.apply_action( ArticulationAction(joint_positions=data_frame.data["applied_joint_positions"]) ) self._world.scene.get_object(target_name).set_world_pose( position=np.array(data_frame.data["target_position"]) ) return
3,300
Python
43.013333
111
0.671212
Ngochuy2137/omni_isaac_examples/robo_factory/robo_factory.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import numpy as np from omni.isaac.examples.base_sample import BaseSample from omni.isaac.franka.controllers.stacking_controller import StackingController from omni.isaac.franka.tasks import Stacking class RoboFactory(BaseSample): def __init__(self) -> None: super().__init__() self._tasks = [] self._controllers = [] self._articulation_controllers = [] self._robots = [] self._num_of_tasks = 4 return def setup_scene(self): world = self.get_world() for i in range(self._num_of_tasks): task = Stacking(name="task" + str(i), offset=np.array([0, (i * 2) - 3, 0])) world.add_task(task) return async def setup_post_load(self): for i in range(self._num_of_tasks): self._tasks.append(self._world.get_task(name="task" + str(i))) for i in range(self._num_of_tasks): self._robots.append(self._world.scene.get_object(self._tasks[i].get_params()["robot_name"]["value"])) self._controllers.append( StackingController( name="stacking_controller", gripper=self._robots[i].gripper, robot_articulation=self._robots[i], picking_order_cube_names=self._tasks[i].get_cube_names(), robot_observation_name=self._robots[i].name, ) ) for i in range(self._num_of_tasks): self._articulation_controllers.append(self._robots[i].get_articulation_controller()) return def _on_start_factory_physics_step(self, step_size): observations = self._world.get_observations() for i in range(self._num_of_tasks): actions = self._controllers[i].forward(observations=observations, end_effector_offset=np.array([0, 0, 0])) self._articulation_controllers[i].apply_action(actions) return async def _on_start_stacking_event_async(self): world = self.get_world() world.add_physics_callback("sim_step", self._on_start_factory_physics_step) await world.play_async() return async def setup_pre_reset(self): world = self.get_world() if world.physics_callback_exists("sim_step"): world.remove_physics_callback("sim_step") for i in range(len(self._controllers)): self._controllers[i].reset() return def world_cleanup(self): self._tasks = [] self._controllers = [] self._articulation_controllers = [] self._robots = [] return
3,052
Python
38.141025
118
0.616972
Ngochuy2137/omni_isaac_examples/robo_factory/__init__.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.robo_factory.robo_factory import RoboFactory from omni.isaac.examples.robo_factory.robo_factory_extension import RoboFactoryExtension
591
Python
48.333329
88
0.825719
Ngochuy2137/omni_isaac_examples/robo_factory/robo_factory_extension.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import os import omni.ui as ui from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.examples.robo_factory import RoboFactory from omni.isaac.ui.ui_utils import btn_builder class RoboFactoryExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="Multi-Robot", submenu_name="", name="RoboFactory", title="RoboFactory", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_adding_multiple_robots.html", overview="This Example shows how to run multiple tasks in the same scene.\n\nPress the 'Open in IDE' button to view the source code.", sample=RoboFactory(), file_path=os.path.abspath(__file__), number_of_extra_frames=1, ) self.task_ui_elements = {} frame = self.get_frame(index=0) self.build_task_controls_ui(frame) return def _on_start_stacking_button_event(self): asyncio.ensure_future(self.sample._on_start_stacking_event_async()) self.task_ui_elements["Start Stacking"].enabled = False return def post_reset_button_event(self): self.task_ui_elements["Start Stacking"].enabled = True return def post_load_button_event(self): self.task_ui_elements["Start Stacking"].enabled = True return def post_clear_button_event(self): self.task_ui_elements["Start Stacking"].enabled = False return def build_task_controls_ui(self, frame): with frame: with ui.VStack(spacing=5): # Update the Frame Title frame.title = "Task Controls" frame.visible = True dict = { "label": "Start Stacking", "type": "button", "text": "Start Stacking", "tooltip": "Start Stacking", "on_clicked_fn": self._on_start_stacking_button_event, } self.task_ui_elements["Start Stacking"] = btn_builder(**dict) self.task_ui_elements["Start Stacking"].enabled = False
2,717
Python
37.28169
146
0.630107
Ngochuy2137/omni_isaac_examples/robo_party/robo_party_extension.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import os import omni.ui as ui from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.examples.robo_party import RoboParty from omni.isaac.ui.ui_utils import btn_builder class RoboPartyExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="Multi-Robot", submenu_name="", name="RoboParty", title="RoboParty", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/core_api_tutorials/tutorial_core_adding_multiple_robots.html", overview="This Example shows how to run multiple tasks in the same scene.\n\nPress the 'Open in IDE' button to view the source code.", sample=RoboParty(), file_path=os.path.abspath(__file__), number_of_extra_frames=1, ) self.task_ui_elements = {} frame = self.get_frame(index=0) self.build_task_controls_ui(frame) return def _on_start_party_button_event(self): asyncio.ensure_future(self.sample._on_start_party_event_async()) self.task_ui_elements["Start Party"].enabled = False return def post_reset_button_event(self): self.task_ui_elements["Start Party"].enabled = True return def post_load_button_event(self): self.task_ui_elements["Start Party"].enabled = True return def post_clear_button_event(self): self.task_ui_elements["Start Party"].enabled = False return def build_task_controls_ui(self, frame): with frame: with ui.VStack(spacing=5): # Update the Frame Title frame.title = "Task Controls" frame.visible = True dict = { "label": "Start Party", "type": "button", "text": "Start Party", "tooltip": "Start Party", "on_clicked_fn": self._on_start_party_button_event, } self.task_ui_elements["Start Party"] = btn_builder(**dict) self.task_ui_elements["Start Party"].enabled = False
2,669
Python
36.605633
146
0.623454
Ngochuy2137/omni_isaac_examples/robo_party/robo_party.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import carb import numpy as np from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.dofbot.controllers import PickPlaceController from omni.isaac.dofbot.tasks import PickPlace from omni.isaac.examples.base_sample import BaseSample from omni.isaac.franka.controllers.stacking_controller import StackingController as FrankaStackingController from omni.isaac.franka.tasks import Stacking as FrankaStacking from omni.isaac.universal_robots.controllers import StackingController as UR10StackingController from omni.isaac.universal_robots.tasks import Stacking as UR10Stacking from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController from omni.isaac.wheeled_robots.controllers.holonomic_controller import HolonomicController from omni.isaac.wheeled_robots.robots import WheeledRobot from omni.isaac.wheeled_robots.robots.holonomic_robot_usd_setup import HolonomicRobotUsdSetup class RoboParty(BaseSample): def __init__(self) -> None: super().__init__() self._tasks = [] self._controllers = [] self._articulation_controllers = [] self._pick_place_task_params = None self._robots = [] return def setup_scene(self): world = self.get_world() self._tasks.append(FrankaStacking(name="task_0", offset=np.array([0, -2, 0]))) world.add_task(self._tasks[-1]) self._tasks.append(UR10Stacking(name="task_1", offset=np.array([0.5, 0.5, 0]))) world.add_task(self._tasks[-1]) self._tasks.append(PickPlace(name="task_2", offset=np.array([0, -1, 0]))) world.add_task(self._tasks[-1]) assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") return kaya_asset_path = assets_root_path + "/Isaac/Robots/Kaya/kaya.usd" world.scene.add( WheeledRobot( prim_path="/World/Kaya", name="my_kaya", wheel_dof_names=["axle_0_joint", "axle_1_joint", "axle_2_joint"], create_robot=True, usd_path=kaya_asset_path, position=np.array([-1, 0, 0]), ) ) jetbot_asset_path = assets_root_path + "/Isaac/Robots/Jetbot/jetbot.usd" world.scene.add( WheeledRobot( prim_path="/World/Jetbot", name="my_jetbot", wheel_dof_names=["left_wheel_joint", "right_wheel_joint"], create_robot=True, usd_path=jetbot_asset_path, position=np.array([-1.5, -1.5, 0]), ) ) return async def setup_post_load(self): self._tasks = [ self._world.get_task(name="task_0"), self._world.get_task(name="task_1"), self._world.get_task(name="task_2"), ] for i in range(3): self._robots.append(self._world.scene.get_object(self._tasks[i].get_params()["robot_name"]["value"])) self._robots.append(self._world.scene.get_object("my_kaya")) self._robots.append(self._world.scene.get_object("my_jetbot")) self._pick_place_task_params = self._tasks[2].get_params() self._controllers.append( FrankaStackingController( name="stacking_controller", gripper=self._robots[0].gripper, robot_articulation=self._robots[0], picking_order_cube_names=self._tasks[0].get_cube_names(), robot_observation_name=self._robots[0].name, ) ) self._controllers.append( UR10StackingController( name="pick_place_controller", gripper=self._robots[1].gripper, robot_articulation=self._robots[1], picking_order_cube_names=self._tasks[1].get_cube_names(), robot_observation_name=self._robots[1].name, ) ) self._controllers.append( PickPlaceController( name="pick_place_controller", gripper=self._robots[2].gripper, robot_articulation=self._robots[2] ) ) kaya_setup = HolonomicRobotUsdSetup( robot_prim_path="/World/Kaya", com_prim_path="/World/Kaya/base_link/control_offset" ) ( wheel_radius, wheel_positions, wheel_orientations, mecanum_angles, wheel_axis, up_axis, ) = kaya_setup.get_holonomic_controller_params() self._controllers.append( HolonomicController( name="holonomic_controller", wheel_radius=wheel_radius, wheel_positions=wheel_positions, wheel_orientations=wheel_orientations, mecanum_angles=mecanum_angles, wheel_axis=wheel_axis, up_axis=up_axis, ) ) self._controllers.append(DifferentialController(name="simple_control", wheel_radius=0.03, wheel_base=0.1125)) for i in range(5): self._articulation_controllers.append(self._robots[i].get_articulation_controller()) return def _on_start_party_physics_step(self, step_size): observations = self._world.get_observations() actions = self._controllers[0].forward(observations=observations, end_effector_offset=np.array([0, 0, 0])) self._articulation_controllers[0].apply_action(actions) actions = self._controllers[1].forward(observations=observations, end_effector_offset=np.array([0, 0, 0.02])) self._articulation_controllers[1].apply_action(actions) actions = self._controllers[2].forward( picking_position=observations[self._pick_place_task_params["cube_name"]["value"]]["position"], placing_position=observations[self._pick_place_task_params["cube_name"]["value"]]["target_position"], current_joint_positions=observations[self._pick_place_task_params["robot_name"]["value"]][ "joint_positions" ], end_effector_offset=np.array([0, -0.06, 0]), ) self._articulation_controllers[2].apply_action(actions) if self._world.current_time_step_index >= 0 and self._world.current_time_step_index < 500: self._robots[3].apply_wheel_actions(self._controllers[3].forward(command=[0.2, 0.0, 0.0])) self._robots[4].apply_wheel_actions(self._controllers[4].forward(command=[0.1, 0])) elif self._world.current_time_step_index >= 500 and self._world.current_time_step_index < 1000: self._robots[3].apply_wheel_actions(self._controllers[3].forward(command=[0, 0.2, 0.0])) self._robots[4].apply_wheel_actions(self._controllers[4].forward(command=[0.0, np.pi / 10])) elif self._world.current_time_step_index >= 1000 and self._world.current_time_step_index < 1500: self._robots[3].apply_wheel_actions(self._controllers[3].forward(command=[0, 0.0, 0.06])) self._robots[4].apply_wheel_actions(self._controllers[4].forward(command=[0.1, 0])) return async def _on_start_party_event_async(self): world = self.get_world() world.add_physics_callback("sim_step", self._on_start_party_physics_step) await world.play_async() return async def setup_pre_reset(self): world = self.get_world() if world.physics_callback_exists("sim_step"): world.remove_physics_callback("sim_step") for i in range(len(self._controllers)): self._controllers[i].reset() return def world_cleanup(self): self._tasks = [] self._controllers = [] self._articulation_controllers = [] self._pick_place_task_params = None self._robots = [] return
8,421
Python
44.27957
117
0.620116
Ngochuy2137/omni_isaac_examples/robo_party/__init__.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.robo_party.robo_party import RoboParty from omni.isaac.examples.robo_party.robo_party_extension import RoboPartyExtension
579
Python
47.333329
82
0.822107
Ngochuy2137/omni_isaac_examples/ur10_palletizing/__init__.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.ur10_palletizing.ur10_palletizing_extension import BinStackingExtension
529
Python
47.181814
96
0.824197
Ngochuy2137/omni_isaac_examples/ur10_palletizing/ur10_palletizing.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import random import numpy as np import omni import omni.isaac.cortex.math_util as math_util from omni.isaac.core.objects.capsule import VisualCapsule from omni.isaac.core.objects.sphere import VisualSphere from omni.isaac.core.prims.xform_prim import XFormPrim from omni.isaac.core.tasks.base_task import BaseTask from omni.isaac.core.utils.rotations import euler_angles_to_quat from omni.isaac.core.utils.stage import add_reference_to_stage from omni.isaac.cortex.cortex_rigid_prim import CortexRigidPrim from omni.isaac.cortex.cortex_utils import get_assets_root_path from omni.isaac.cortex.robot import CortexUr10 from omni.isaac.cortex.sample_behaviors.ur10 import bin_stacking_behavior as behavior from omni.isaac.examples.cortex.cortex_base import CortexBase class Ur10Assets: def __init__(self): self.assets_root_path = get_assets_root_path() self.ur10_table_usd = ( self.assets_root_path + "/Isaac/Samples/Leonardo/Stage/ur10_bin_stacking_short_suction.usd" ) self.small_klt_usd = self.assets_root_path + "/Isaac/Props/KLT_Bin/small_KLT.usd" self.background_usd = self.assets_root_path + "/Isaac/Environments/Simple_Warehouse/warehouse.usd" self.rubiks_cube_usd = self.assets_root_path + "/Isaac/Props/Rubiks_Cube/rubiks_cube.usd" def random_bin_spawn_transform(): x = random.uniform(-0.15, 0.15) y = 1.5 z = -0.15 position = np.array([x, y, z]) z = random.random() * 0.02 - 0.01 w = random.random() * 0.02 - 0.01 norm = np.sqrt(z**2 + w**2) quat = math_util.Quaternion([w / norm, 0, 0, z / norm]) if random.random() > 0.5: print("<flip>") # flip the bin so it's upside down quat = quat * math_util.Quaternion([0, 0, 1, 0]) else: print("<no flip>") return position, quat.vals class BinStackingTask(BaseTask): def __init__(self, env_path, assets) -> None: super().__init__("bin_stacking") self.assets = assets self.env_path = env_path self.bins = [] self.stashed_bins = [] self.on_conveyor = None def _spawn_bin(self, rigid_bin): x, q = random_bin_spawn_transform() rigid_bin.set_world_pose(position=x, orientation=q) rigid_bin.set_linear_velocity(np.array([0, -0.30, 0])) rigid_bin.set_visibility(True) def post_reset(self) -> None: if len(self.bins) > 0: for rigid_bin in self.bins: self.scene.remove_object(rigid_bin.name) self.bins.clear() self.on_conveyor = None def pre_step(self, time_step_index, simulation_time) -> None: """Spawn a new randomly oriented bin if the previous bin has been placed.""" spawn_new = False if self.on_conveyor is None: spawn_new = True else: (x, y, z), _ = self.on_conveyor.get_world_pose() is_on_conveyor = y > 0.0 and -0.4 < x and x < 0.4 if not is_on_conveyor: spawn_new = True if spawn_new: name = "bin_{}".format(len(self.bins)) prim_path = self.env_path + "/bins/{}".format(name) add_reference_to_stage(usd_path=self.assets.small_klt_usd, prim_path=prim_path) self.on_conveyor = self.scene.add(CortexRigidPrim(name=name, prim_path=prim_path)) self._spawn_bin(self.on_conveyor) self.bins.append(self.on_conveyor) def world_cleanup(self): self.bins = [] self.stashed_bins = [] self.on_conveyor = None return class BinStacking(CortexBase): def __init__(self, monitor_fn=None): super().__init__() self._monitor_fn = monitor_fn self.robot = None def setup_scene(self): world = self.get_world() env_path = "/World/Ur10Table" ur10_assets = Ur10Assets() add_reference_to_stage(usd_path=ur10_assets.ur10_table_usd, prim_path=env_path) add_reference_to_stage(usd_path=ur10_assets.background_usd, prim_path="/World/Background") background_prim = XFormPrim( "/World/Background", position=[10.00, 2.00, -1.18180], orientation=[0.7071, 0, 0, 0.7071] ) self.robot = world.add_robot(CortexUr10(name="robot", prim_path="{}/ur10".format(env_path))) obs = world.scene.add( VisualSphere( "/World/Ur10Table/Obstacles/FlipStationSphere", name="flip_station_sphere", position=np.array([0.73, 0.76, -0.13]), radius=0.2, visible=False, ) ) self.robot.register_obstacle(obs) obs = world.scene.add( VisualSphere( "/World/Ur10Table/Obstacles/NavigationDome", name="navigation_dome_obs", position=[-0.031, -0.018, -1.086], radius=1.1, visible=False, ) ) self.robot.register_obstacle(obs) az = np.array([1.0, 0.0, -0.3]) ax = np.array([0.0, 1.0, 0.0]) ay = np.cross(az, ax) R = math_util.pack_R(ax, ay, az) quat = math_util.matrix_to_quat(R) obs = world.scene.add( VisualCapsule( "/World/Ur10Table/Obstacles/NavigationBarrier", name="navigation_barrier_obs", position=[0.471, 0.276, -0.463 - 0.1], orientation=quat, radius=0.5, height=0.9, visible=False, ) ) self.robot.register_obstacle(obs) obs = world.scene.add( VisualCapsule( "/World/Ur10Table/Obstacles/NavigationFlipStation", name="navigation_flip_station_obs", position=np.array([0.766, 0.755, -0.5]), radius=0.5, height=0.5, visible=False, ) ) self.robot.register_obstacle(obs) async def setup_post_load(self): world = self.get_world() env_path = "/World/Ur10Table" ur10_assets = Ur10Assets() if not self.robot: self.robot = world._robots["robot"] world._current_tasks.clear() world._behaviors.clear() world._logical_state_monitors.clear() self.task = BinStackingTask(env_path, ur10_assets) print(world.scene) self.task.set_up_scene(world.scene) world.add_task(self.task) self.decider_network = behavior.make_decider_network(self.robot, self._on_monitor_update) world.add_decider_network(self.decider_network) return def _on_monitor_update(self, diagnostics): decision_stack = "" if self.decider_network._decider_state.stack: decision_stack = "\n".join( [ "{0}{1}".format(" " * i, element) for i, element in enumerate(str(i) for i in self.decider_network._decider_state.stack) ] ) if self._monitor_fn: self._monitor_fn(diagnostics, decision_stack) def _on_physics_step(self, step_size): world = self.get_world() world.step(False, False) return async def on_event_async(self): world = self.get_world() await omni.kit.app.get_app().next_update_async() world.reset_cortex() world.add_physics_callback("sim_step", self._on_physics_step) await world.play_async() return async def setup_pre_reset(self): world = self.get_world() if world.physics_callback_exists("sim_step"): world.remove_physics_callback("sim_step") return def world_cleanup(self): return
8,211
Python
34.860262
106
0.590427
Ngochuy2137/omni_isaac_examples/ur10_palletizing/ur10_palletizing_extension.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import os import omni.ui as ui from omni.isaac.cortex.cortex_world import CortexWorld from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.examples.ur10_palletizing.ur10_palletizing import BinStacking from omni.isaac.ui.ui_utils import btn_builder, cb_builder, get_style, str_builder class BinStackingExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="Cortex", submenu_name="", name="UR10 Palletizing", title="UR10 Palletizing", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/replicator_tutorials/tutorial_replicator_ur10_palletizing.html#isaac-sim-app-tutorial-replicator-ur10-palletizing", overview="This Example shows how to do Palletizing using UR10 robot and Cortex behaviors in Isaac Sim.\n\nPress the 'Open in IDE' button to view the source code.", sample=BinStacking(self.on_diagnostics), file_path=os.path.abspath(__file__), number_of_extra_frames=2, ) self.decision_stack = "" self.task_ui_elements = {} frame = self.get_frame(index=0) self.build_task_controls_ui(frame) return def on_diagnostics(self, diagnostic, decision_stack): if self.decision_stack != decision_stack: self.decision_stack = decision_stack if decision_stack: decision_stack = "\n".join( [ "{0}{1}".format(" " * (i + 1) if i > 0 else "", element) for i, element in enumerate(decision_stack.replace("]", "").split("[")) ] ) self.state_model.set_value(decision_stack) if diagnostic.bin_name: self.selected_bin.set_value(str(diagnostic.bin_name)) self.bin_base.set_value(str(diagnostic.bin_base.prim_path)) self.grasp_reached.set_value((diagnostic.grasp_reached)) self.is_attached.set_value((diagnostic.attached)) self.needs_flip.set_value((diagnostic.needs_flip)) else: self.selected_bin.set_value(str("No Bin Selected")) self.bin_base.set_value("") self.grasp_reached.set_value(False) self.is_attached.set_value(False) self.needs_flip.set_value(False) def get_world(self): return CortexWorld.instance() def _on_start_button_event(self): asyncio.ensure_future(self.sample.on_event_async()) self.task_ui_elements["Start Palletizing"].enabled = False return def post_reset_button_event(self): self.task_ui_elements["Start Palletizing"].enabled = True return def post_load_button_event(self): self.task_ui_elements["Start Palletizing"].enabled = True return def post_clear_button_event(self): self.task_ui_elements["Start Palletizing"].enabled = False return def build_task_controls_ui(self, frame): with frame: with ui.VStack(spacing=5): # Update the Frame Title frame.title = "Task Controls" frame.visible = True dict = { "label": "Start Palletizing", "type": "button", "text": "Start Palletizing", "tooltip": "Start Palletizing", "on_clicked_fn": self._on_start_button_event, } self.task_ui_elements["Start Palletizing"] = btn_builder(**dict) self.task_ui_elements["Start Palletizing"].enabled = False # with self._main_stack: with self.get_frame(index=1): self.get_frame(index=1).title = "Diagnostics" self.get_frame(index=1).visible = True self._diagnostics = ui.VStack(spacing=5) # self._diagnostics.enabled = False with self._diagnostics: ui.Label("Decision Stack", height=20) self.state_model = ui.SimpleStringModel() ui.StringField(self.state_model, multiline=True, height=120) self.selected_bin = str_builder("Selected Bin", "<No Bin Selected>", read_only=True) self.bin_base = str_builder("Bin Base", "", read_only=True) self.grasp_reached = cb_builder("Grasp Reached", False) self.is_attached = cb_builder("Is Attached", False) self.needs_flip = cb_builder("Needs Flip", False)
5,063
Python
43.034782
187
0.609125
Ngochuy2137/omni_isaac_examples/follow_target/__init__.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.follow_target.follow_target import FollowTarget from omni.isaac.examples.follow_target.follow_target_extension import FollowTargetExtension
597
Python
48.833329
91
0.827471
Ngochuy2137/omni_isaac_examples/follow_target/follow_target.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omni.isaac.examples.base_sample import BaseSample from omni.isaac.franka.controllers.rmpflow_controller import RMPFlowController from omni.isaac.franka.tasks import FollowTarget as FollowTargetTask class FollowTarget(BaseSample): def __init__(self) -> None: super().__init__() self._controller = None self._articulation_controller = None def setup_scene(self): world = self.get_world() world.add_task(FollowTargetTask()) return async def setup_pre_reset(self): world = self.get_world() if world.physics_callback_exists("sim_step"): world.remove_physics_callback("sim_step") self._controller.reset() return def world_cleanup(self): self._controller = None return async def setup_post_load(self): self._franka_task = list(self._world.get_current_tasks().values())[0] self._task_params = self._franka_task.get_params() my_franka = self._world.scene.get_object(self._task_params["robot_name"]["value"]) self._controller = RMPFlowController(name="target_follower_controller", robot_articulation=my_franka) self._articulation_controller = my_franka.get_articulation_controller() return async def _on_follow_target_event_async(self, val): world = self.get_world() if val: await world.play_async() world.add_physics_callback("sim_step", self._on_follow_target_simulation_step) else: world.remove_physics_callback("sim_step") return def _on_follow_target_simulation_step(self, step_size): observations = self._world.get_observations() actions = self._controller.forward( target_end_effector_position=observations[self._task_params["target_name"]["value"]]["position"], target_end_effector_orientation=observations[self._task_params["target_name"]["value"]]["orientation"], ) self._articulation_controller.apply_action(actions) return def _on_add_obstacle_event(self): world = self.get_world() current_task = list(world.get_current_tasks().values())[0] cube = current_task.add_obstacle() self._controller.add_obstacle(cube) return def _on_remove_obstacle_event(self): world = self.get_world() current_task = list(world.get_current_tasks().values())[0] obstacle_to_delete = current_task.get_obstacle_to_delete() self._controller.remove_obstacle(obstacle_to_delete) current_task.remove_obstacle() return def _on_logging_event(self, val): world = self.get_world() data_logger = world.get_data_logger() if not world.get_data_logger().is_started(): robot_name = self._task_params["robot_name"]["value"] target_name = self._task_params["target_name"]["value"] def frame_logging_func(tasks, scene): return { "joint_positions": scene.get_object(robot_name).get_joint_positions().tolist(), "applied_joint_positions": scene.get_object(robot_name) .get_applied_action() .joint_positions.tolist(), "target_position": scene.get_object(target_name).get_world_pose()[0].tolist(), } data_logger.add_data_frame_logging_func(frame_logging_func) if val: data_logger.start() else: data_logger.pause() return def _on_save_data_event(self, log_path): world = self.get_world() data_logger = world.get_data_logger() data_logger.save(log_path=log_path) data_logger.reset() return
4,208
Python
38.336448
115
0.633555
Ngochuy2137/omni_isaac_examples/follow_target/follow_target_extension.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import os import carb import omni.ui as ui from omni.isaac.examples.base_sample import BaseSampleExtension from omni.isaac.examples.follow_target import FollowTarget from omni.isaac.ui.ui_utils import btn_builder, state_btn_builder, str_builder class FollowTargetExtension(BaseSampleExtension): def on_startup(self, ext_id: str): super().on_startup(ext_id) super().start_extension( menu_name="Manipulation", submenu_name="", name="Follow Target", title="Follow Target Task", doc_link="https://docs.omniverse.nvidia.com/isaacsim/latest/advanced_tutorials/tutorial_advanced_adding_new_manipulator.html", overview="This Example shows how to follow a target using Franka robot in Isaac Sim.\n\nPress the 'Open in IDE' button to view the source code.", sample=FollowTarget(), file_path=os.path.abspath(__file__), number_of_extra_frames=2, ) self.task_ui_elements = {} frame = self.get_frame(index=0) self.build_task_controls_ui(frame) frame = self.get_frame(index=1) self.build_data_logging_ui(frame) return def _on_follow_target_button_event(self, val): asyncio.ensure_future(self.sample._on_follow_target_event_async(val)) return def _on_add_obstacle_button_event(self): self.sample._on_add_obstacle_event() self.task_ui_elements["Remove Obstacle"].enabled = True return def _on_remove_obstacle_button_event(self): self.sample._on_remove_obstacle_event() world = self.sample.get_world() current_task = list(world.get_current_tasks().values())[0] if not current_task.obstacles_exist(): self.task_ui_elements["Remove Obstacle"].enabled = False return def _on_logging_button_event(self, val): self.sample._on_logging_event(val) self.task_ui_elements["Save Data"].enabled = True return def _on_save_data_button_event(self): self.sample._on_save_data_event(self.task_ui_elements["Output Directory"].get_value_as_string()) return def post_reset_button_event(self): self.task_ui_elements["Follow Target"].enabled = True self.task_ui_elements["Remove Obstacle"].enabled = False self.task_ui_elements["Add Obstacle"].enabled = True self.task_ui_elements["Start Logging"].enabled = True self.task_ui_elements["Save Data"].enabled = False if self.task_ui_elements["Follow Target"].text == "STOP": self.task_ui_elements["Follow Target"].text = "START" return def post_load_button_event(self): self.task_ui_elements["Follow Target"].enabled = True self.task_ui_elements["Add Obstacle"].enabled = True self.task_ui_elements["Start Logging"].enabled = True self.task_ui_elements["Save Data"].enabled = False return def post_clear_button_event(self): self.task_ui_elements["Follow Target"].enabled = False self.task_ui_elements["Remove Obstacle"].enabled = False self.task_ui_elements["Add Obstacle"].enabled = False self.task_ui_elements["Start Logging"].enabled = False self.task_ui_elements["Save Data"].enabled = False if self.task_ui_elements["Follow Target"].text == "STOP": self.task_ui_elements["Follow Target"].text = "START" return def shutdown_cleanup(self): return def build_task_controls_ui(self, frame): with frame: with ui.VStack(spacing=5): # Update the Frame Title frame.title = "Task Controls" frame.visible = True dict = { "label": "Follow Target", "type": "button", "a_text": "START", "b_text": "STOP", "tooltip": "Follow Target", "on_clicked_fn": self._on_follow_target_button_event, } self.task_ui_elements["Follow Target"] = state_btn_builder(**dict) self.task_ui_elements["Follow Target"].enabled = False dict = { "label": "Add Obstacle", "type": "button", "text": "ADD", "tooltip": "Add Obstacle", "on_clicked_fn": self._on_add_obstacle_button_event, } self.task_ui_elements["Add Obstacle"] = btn_builder(**dict) self.task_ui_elements["Add Obstacle"].enabled = False dict = { "label": "Remove Obstacle", "type": "button", "text": "REMOVE", "tooltip": "Remove Obstacle", "on_clicked_fn": self._on_remove_obstacle_button_event, } self.task_ui_elements["Remove Obstacle"] = btn_builder(**dict) self.task_ui_elements["Remove Obstacle"].enabled = False def build_data_logging_ui(self, frame): with frame: with ui.VStack(spacing=5): frame.title = "Data Logging" frame.visible = True dict = { "label": "Output Directory", "type": "stringfield", "default_val": os.path.join(os.getcwd(), "output_data.json"), "tooltip": "Output Directory", "on_clicked_fn": None, "use_folder_picker": False, "read_only": False, } self.task_ui_elements["Output Directory"] = str_builder(**dict) dict = { "label": "Start Logging", "type": "button", "a_text": "START", "b_text": "PAUSE", "tooltip": "Start Logging", "on_clicked_fn": self._on_logging_button_event, } self.task_ui_elements["Start Logging"] = state_btn_builder(**dict) self.task_ui_elements["Start Logging"].enabled = False dict = { "label": "Save Data", "type": "button", "text": "Save Data", "tooltip": "Save Data", "on_clicked_fn": self._on_save_data_button_event, } self.task_ui_elements["Save Data"] = btn_builder(**dict) self.task_ui_elements["Save Data"].enabled = False return
7,114
Python
39.890804
157
0.55946
Ngochuy2137/omni_isaac_examples/tests/test_replay_follow_target.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import os import omni.kit import omni.kit.test # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html from omni.isaac.core.utils.extensions import get_extension_path_from_name from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.replay_follow_target import ReplayFollowTarget class TestReplayFollowTargetExampleExtension(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() await update_stage_async() self._sample = ReplayFollowTarget() self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0) await self._sample.load_world_async() await update_stage_async() while is_stage_loading(): await update_stage_async() return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await self._sample.clear_async() await update_stage_async() self._sample = None pass async def test_reset(self): await self._sample.reset_async() await update_stage_async() await update_stage_async() await self._sample.reset_async() await update_stage_async() await update_stage_async() pass async def test_replay_trajectory(self): await self._sample.reset_async() await update_stage_async() await self._sample._on_replay_trajectory_event_async( os.path.abspath( os.path.join(get_extension_path_from_name("omni.isaac.examples"), "data/example_data_file.json") ) ) await update_stage_async() # run for 2500 frames and print time for i in range(500): await update_stage_async() pass async def test_replay_scene(self): await self._sample.reset_async() await update_stage_async() await self._sample._on_replay_scene_event_async( os.path.abspath( os.path.join(get_extension_path_from_name("omni.isaac.examples"), "data/example_data_file.json") ) ) await update_stage_async() # run for 2500 frames and print time for i in range(500): await update_stage_async() pass
3,296
Python
36.465909
119
0.668386
Ngochuy2137/omni_isaac_examples/tests/test_path_planning.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import numpy as np import omni.kit # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.path_planning import PathPlanning class TestPathPlanningExampleExtension(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() await update_stage_async() self._sample = PathPlanning() self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0) await self._sample.load_world_async() await update_stage_async() while is_stage_loading(): await update_stage_async() return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await self._sample.clear_async() await update_stage_async() self._sample = None pass # Run all functions with simulation enabled async def test_follow_target(self): await self._sample.reset_async() await update_stage_async() await self._sample._on_follow_target_event_async() await update_stage_async() # run for 2500 frames and print time for i in range(500): await update_stage_async() pass # Run all functions with simulation enabled async def test_add_obstacle(self): await self._sample.reset_async() await update_stage_async() # run for 2500 frames and print time for i in range(500): await update_stage_async() if i % 50 == 0: self._sample._on_add_wall_event() await update_stage_async() await self._sample._on_follow_target_event_async() await update_stage_async() await self._sample.reset_async() await update_stage_async() pass async def test_reset(self): await self._sample.reset_async() await update_stage_async() pass
3,025
Python
35.457831
119
0.669091
Ngochuy2137/omni_isaac_examples/tests/test_nut_bolt.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio from math import isclose import omni.kit # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.franka_nut_and_bolt import FrankaNutAndBolt class NutBoltExampleExtension(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() await update_stage_async() self._sample = FrankaNutAndBolt() self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0) await self._sample.load_world_async() await update_stage_async() while is_stage_loading(): await update_stage_async() return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await self._sample.clear_async() await update_stage_async() self._sample = None pass # Run all functions with simulation enabled async def test_nut_bolt(self): world = self._sample.get_world() await update_stage_async() # run for 4000 frames for i in range(3500): await update_stage_async() nut_on_bolt = False bolt = world.scene.get_object(f"bolt2_geom") bolt_pos, _ = bolt.get_world_pose() for j in range(self._sample._num_nuts): nut = world.scene.get_object(f"nut{j}_geom") nut_pos, _ = nut.get_world_pose() if ( isclose(nut_pos[0], bolt_pos[0], abs_tol=0.0009) and isclose(nut_pos[1], bolt_pos[1], abs_tol=0.0009) and isclose(nut_pos[2], bolt_pos[2] + 0.09, abs_tol=0.015) ): nut_on_bolt = True self.assertTrue(nut_on_bolt) pass async def test_reset(self): await self._sample.reset_async() await update_stage_async() world = self._sample.get_world() await update_stage_async() for i in range(3500): await update_stage_async() nut_on_bolt = False bolt = world.scene.get_object(f"bolt2_geom") bolt_pos, _ = bolt.get_world_pose() for j in range(self._sample._num_nuts): nut = world.scene.get_object(f"nut{j}_geom") nut_pos, _ = nut.get_world_pose() if ( isclose(nut_pos[0], bolt_pos[0], abs_tol=0.0009) and isclose(nut_pos[1], bolt_pos[1], abs_tol=0.0009) and isclose(nut_pos[2], bolt_pos[2] + 0.09, abs_tol=0.015) ): nut_on_bolt = True self.assertTrue(nut_on_bolt) pass
3,659
Python
36.731958
119
0.626401
Ngochuy2137/omni_isaac_examples/tests/__init__.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from .test_bin_filling import * from .test_follow_target import * from .test_hello_world import * from .test_kaya_gamepad import * from .test_nut_bolt import * from .test_omnigraph_keyboard import * from .test_path_planning import * from .test_replay_follow_target import * from .test_robo_factory import * from .test_robo_party import * from .test_simple_stack import *
803
Python
37.285713
76
0.787049
Ngochuy2137/omni_isaac_examples/tests/test_bin_filling.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import carb import numpy as np import omni.kit # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.bin_filling import BinFilling class TestBinFillingExampleExtension(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() await update_stage_async() self._sample = BinFilling() self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0) await self._sample.load_world_async() await update_stage_async() while is_stage_loading(): await update_stage_async() settings = carb.settings.get_settings() settings.set("/app/player/useFixedTimeStepping", False) settings.set("/app/runLoops/main/rateLimitEnabled", False) return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await self._sample.clear_async() await update_stage_async() self._sample = None pass # Run all functions with simulation enabled async def test_bin_filling(self): await self._sample.reset_async() await update_stage_async() world = self._sample.get_world() ur10_task = world.get_task(name="bin_filling") task_params = ur10_task.get_params() my_ur10 = world.scene.get_object(task_params["robot_name"]["value"]) bin = world.scene.get_object(task_params["bin_name"]["value"]) await self._sample.on_fill_bin_event_async() await update_stage_async() # run for 1500 frames and print time for i in range(1500): await update_stage_async() my_ur10.gripper.update() if self._sample._controller.get_current_event() in [4, 5]: self.assertTrue(my_ur10.gripper.is_closed()) if self._sample._controller.get_current_event() == 5: self.assertGreater(bin.get_world_pose()[0][-1], 0.15) if self._sample._controller.get_current_event() > 5: if not my_ur10.gripper.is_closed(): break if my_ur10.gripper.is_closed(): bin.set_linear_velocity(np.array([0.0, 0.0, -15.0])) for i in range(100): await update_stage_async() self.assertTrue(not my_ur10.gripper.is_closed()) self.assertLess(bin.get_world_pose()[0][-1], 0.15) pass async def test_reset(self): await self._sample.reset_async() await update_stage_async() await self._sample.on_fill_bin_event_async() await update_stage_async() for i in range(2500): await update_stage_async() await self._sample.reset_async() await update_stage_async() await self._sample.on_fill_bin_event_async() await update_stage_async() for i in range(2500): await update_stage_async() pass
4,027
Python
39.686868
119
0.650112
Ngochuy2137/omni_isaac_examples/tests/test_robo_factory.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import numpy as np import omni.kit # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.robo_factory import RoboFactory class TestRoboFactoryExampleExtension(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() await update_stage_async() self._sample = RoboFactory() self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0) await self._sample.load_world_async() await update_stage_async() while is_stage_loading(): await update_stage_async() return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await self._sample.clear_async() await update_stage_async() self._sample = None pass # Run all functions with simulation enabled async def test_stacking(self): await self._sample.reset_async() await update_stage_async() await self._sample._on_start_stacking_event_async() await update_stage_async() # run for 2500 frames and print time for i in range(2000): await update_stage_async() cube_names = self._sample._tasks[0].get_cube_names() task_observations = self._sample._tasks[0].get_observations() for cube_name in cube_names: self.assertTrue( np.isclose(task_observations[cube_name]["position"][0:2], np.array([0.5, -2.5]), atol=1e-2).all() ) pass async def test_reset(self): await self._sample.reset_async() await update_stage_async() await update_stage_async() await self._sample.reset_async() await update_stage_async() await update_stage_async() pass
2,898
Python
37.653333
119
0.675293
Ngochuy2137/omni_isaac_examples/tests/test_robo_party.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import omni.kit # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.robo_party import RoboParty class TestRoboPartyExampleExtension(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() await update_stage_async() self._sample = RoboParty() self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0) await self._sample.load_world_async() await update_stage_async() while is_stage_loading(): await update_stage_async() return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await self._sample.clear_async() await update_stage_async() self._sample = None pass # Run all functions with simulation enabled async def test_stacking(self): await self._sample.reset_async() await update_stage_async() await self._sample._on_start_party_event_async() await update_stage_async() # run for 2500 frames and print time for i in range(500): await update_stage_async() pass async def test_reset(self): await self._sample.reset_async() await update_stage_async() await update_stage_async() await self._sample.reset_async() await update_stage_async() await update_stage_async() pass
2,542
Python
36.397058
119
0.686861
Ngochuy2137/omni_isaac_examples/tests/test_simple_stack.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import omni.kit # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.simple_stack import SimpleStack class TestSimpleStackExampleExtension(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() await update_stage_async() self._sample = SimpleStack() self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0) await self._sample.load_world_async() await update_stage_async() while is_stage_loading(): await update_stage_async() return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await self._sample.clear_async() await update_stage_async() self._sample = None pass # Run all functions with simulation enabled async def test_stacking(self): await self._sample.reset_async() await update_stage_async() await self._sample._on_stacking_event_async() await update_stage_async() # run for 2500 frames and print time for i in range(1000): await update_stage_async() pass async def test_reset(self): await self._sample.reset_async() await update_stage_async() await update_stage_async() await self._sample.reset_async() await update_stage_async() await update_stage_async() pass
2,548
Python
36.485294
119
0.687991
Ngochuy2137/omni_isaac_examples/tests/test_follow_target.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import omni.kit # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.follow_target import FollowTarget class TestFollowTargetExampleExtension(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() await update_stage_async() self._sample = FollowTarget() self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0) await self._sample.load_world_async() await update_stage_async() while is_stage_loading(): await update_stage_async() return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await self._sample.clear_async() await update_stage_async() self._sample = None pass # Run all functions with simulation enabled async def test_follow_target(self): await self._sample.reset_async() await update_stage_async() await self._sample._on_follow_target_event_async(True) await update_stage_async() # run for 2500 frames and print time for i in range(500): await update_stage_async() pass # Run all functions with simulation enabled async def test_add_obstacle(self): await self._sample.reset_async() await update_stage_async() await self._sample._on_follow_target_event_async(True) await update_stage_async() # run for 2500 frames and print time for i in range(500): await update_stage_async() if i % 50 == 0: self._sample._on_add_obstacle_event() await update_stage_async() await self._sample.reset_async() await update_stage_async() pass async def test_reset(self): await self._sample.reset_async() await update_stage_async() pass
3,000
Python
36.5125
119
0.673667
Ngochuy2137/omni_isaac_examples/tests/test_kaya_gamepad.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio import carb import omni.kit # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async from omni.isaac.core.world.world import World # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.examples.kaya_gamepad import KayaGamepad class TestKayaGamepadSample(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await create_new_stage_async() self._physics_rate = 60 self._provider = carb.input.acquire_input_provider() self._gamepad = self._provider.create_gamepad("test", "0") carb.settings.get_settings().set_int("/app/runLoops/main/rateLimitFrequency", int(self._physics_rate)) carb.settings.get_settings().set_bool("/app/runLoops/main/rateLimitEnabled", True) carb.settings.get_settings().set_int("/persistent/simulation/minFrameRate", int(self._physics_rate)) omni.usd.get_context().get_stage().SetTimeCodesPerSecond(self._physics_rate) omni.timeline.get_timeline_interface().set_target_framerate(self._physics_rate) await update_stage_async() self._sample = KayaGamepad() World.clear_instance() self._sample.set_world_settings(physics_dt=1.0 / self._physics_rate, stage_units_in_meters=1.0) await self._sample.load_world_async() return # After running each test async def tearDown(self): # In some cases the test will end before the asset is loaded, in this case wait for assets to load while is_stage_loading(): print("tearDown, assets still loading, waiting to finish...") await asyncio.sleep(1.0) await omni.kit.app.get_app().next_update_async() self._sample._world_cleanup() self._sample = None await update_stage_async() self._provider.destroy_gamepad(self._gamepad) await update_stage_async() World.clear_instance() pass # # Run all functions with simulation enabled # async def test_simulation(self): # await update_stage_async() # while is_stage_loading(): # await update_stage_async() # self._provider.set_gamepad_connected(self._gamepad, True) # self.assertLess(self._sample._kaya.get_world_pose()[0][1], 1) # await update_stage_async() # for i in range(100): # self._provider.buffer_gamepad_event(self._gamepad, carb.input.GamepadInput.LEFT_STICK_UP, 1.0) # await update_stage_async() # self._provider.set_gamepad_connected(self._gamepad, False) # await update_stage_async() # self.assertGreater(self._sample._kaya.get_world_pose()[0][1], 64.0) # pass
3,468
Python
44.644736
119
0.689735