file_path
stringlengths
20
207
content
stringlengths
5
3.85M
size
int64
5
3.85M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.26
0.93
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/omni/viplanner/viplanner/mdp/actions/__init__.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from .navigation_actions import * # noqa: F401, F403
203
Python
24.499997
60
0.729064
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/omni/viplanner/viplanner/mdp/commands/path_follower_command_generator_cfg.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing command generators for the velocity-based locomotion task.""" import math from dataclasses import MISSING from omni.isaac.orbit.managers import CommandTermCfg from omni.isaac.orbit.utils.configclass import configclass from typing_extensions import Literal from .path_follower_command_generator import PathFollowerCommandGenerator @configclass class PathFollowerCommandGeneratorCfg(CommandTermCfg): class_type: PathFollowerCommandGenerator = PathFollowerCommandGenerator """Name of the command generator class.""" robot_attr: str = MISSING """Name of the robot attribute from the environment.""" path_frame: Literal["world", "robot"] = "world" """Frame in which the path is defined. - ``world``: the path is defined in the world frame. Also called ``odom``. - ``robot``: the path is defined in the robot frame. Also called ``base``. """ lookAheadDistance: float = MISSING """The lookahead distance for the path follower.""" two_way_drive: bool = False """Allow robot to use reverse gear.""" switch_time_threshold: float = 1.0 """Time threshold to switch between the forward and backward drive.""" maxSpeed: float = 0.5 """Maximum speed of the robot.""" maxAccel: float = 2.5 / 100.0 # 2.5 / 100 """Maximum acceleration of the robot.""" joyYaw: float = 1.0 """TODO: add description""" yawRateGain: float = 7.0 # 3.5 """Gain for the yaw rate.""" stopYawRateGain: float = 7.0 # 3.5 """""" maxYawRate: float = 90.0 * math.pi / 360 dirDiffThre: float = 0.7 stopDisThre: float = 0.2 slowDwnDisThre: float = 0.3 slowRate1: float = 0.25 slowRate2: float = 0.5 noRotAtGoal: bool = True autonomyMode: bool = False dynamic_lookahead: bool = False min_points_within_lookahead: int = 3
2,121
Python
31.646153
86
0.689769
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/omni/viplanner/viplanner/mdp/commands/__init__.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from .path_follower_command_generator import PathFollowerCommandGenerator from .path_follower_command_generator_cfg import PathFollowerCommandGeneratorCfg __all__ = ["PathFollowerCommandGeneratorCfg", "PathFollowerCommandGenerator"]
383
Python
33.909088
80
0.806789
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/omni/viplanner/viplanner/mdp/commands/path_follower_command_generator.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # Copyright (c) 2022-2024, The ORBIT Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Sub-module containing command generators for the velocity-based locomotion task.""" from __future__ import annotations import math from typing import TYPE_CHECKING, Sequence import omni.isaac.orbit.utils.math as math_utils import torch from omni.isaac.orbit.assets.articulation import Articulation from omni.isaac.orbit.envs import RLTaskEnv from omni.isaac.orbit.managers import CommandTerm from omni.isaac.orbit.markers import VisualizationMarkers from omni.isaac.orbit.markers.config import ( BLUE_ARROW_X_MARKER_CFG, GREEN_ARROW_X_MARKER_CFG, ) from omni.isaac.orbit.sim import SimulationContext if TYPE_CHECKING: from .path_follower_command_generator_cfg import PathFollowerCommandGeneratorCfg class PathFollowerCommandGenerator(CommandTerm): r"""Command generator that generates a velocity command in SE(2) from a path given by a local planner. The command comprises of a linear velocity in x and y direction and an angular velocity around the z-axis. It is given in the robot's base frame. The path follower acts as a PD-controller that checks for the last point on the path within a lookahead distance and uses it to compute the steering angle and the linear velocity. """ cfg: PathFollowerCommandGeneratorCfg """The configuration of the command generator.""" def __init__(self, cfg: PathFollowerCommandGeneratorCfg, env: RLTaskEnv): """Initialize the command generator. Args: cfg (PathFollowerCommandGeneratorCfg): The configuration of the command generator. env (object): The environment. """ super().__init__(cfg, env) # -- robot self.robot: Articulation = env.scene[cfg.robot_attr] # -- Simulation Context self.sim: SimulationContext = SimulationContext.instance() # -- buffers self.vehicleSpeed: torch.Tensor = torch.zeros(self.num_envs, device=self.device) self.switch_time: torch.Tensor = torch.zeros(self.num_envs, device=self.device) self.vehicleYawRate: torch.Tensor = torch.zeros(self.num_envs, device=self.device) self.navigation_forward: torch.Tensor = torch.ones(self.num_envs, device=self.device, dtype=torch.bool) self.twist: torch.Tensor = torch.zeros((self.num_envs, 3), device=self.device) self.goal_reached: torch.Tensor = torch.zeros(self.num_envs, device=self.device, dtype=torch.bool) # -- debug vis self._base_vel_goal_markers = None self._base_vel_markers = None def __str__(self) -> str: """Return a string representation of the command generator.""" msg = "PathFollowerCommandGenerator:\n" msg += f"\tCommand dimension: {tuple(self.command.shape[1:])}\n" msg += f"\tLookahead distance: {self.cfg.lookAheadDistance}\n" return msg """ Properties """ @property def command(self) -> torch.Tensor: """The desired base velocity command in the base frame. Shape is (num_envs, 3).""" return self.twist """ Operations. """ def reset(self, env_ids: Sequence[int] | None = None) -> dict: """Reset the command generator. This function resets the command generator. It should be called whenever the environment is reset. Args: env_ids (Optional[Sequence[int]], optional): The list of environment IDs to reset. Defaults to None. """ if env_ids is None: env_ids = ... self.vehicleSpeed = torch.zeros(self.num_envs, device=self.device) self.switch_time = torch.zeros(self.num_envs, device=self.device) self.vehicleYawRate = torch.zeros(self.num_envs, device=self.device) self.navigation_forward = torch.ones(self.num_envs, device=self.device, dtype=torch.bool) self.twist = torch.zeros((self.num_envs, 3), device=self.device) self.goal_reached = torch.zeros(self.num_envs, device=self.device, dtype=torch.bool) return {} def compute(self, dt: float): """Compute the command. Paths as a tensor of shape (num_envs, N, 3) where N is number of poses on the path. The paths should be given in the base frame of the robot. Num_envs is equal to the number of robots spawned in all environments. """ # get paths paths = self._env.action_manager._terms[0]._processed_navigation_velocity_actions.clone() # get number of pases of the paths num_envs, N, _ = paths.shape assert N > 0, "PathFollowerCommandGenerator: paths must have at least one poses." # get the current simulation time curr_time = self.sim.current_time # define current maxSpeed for the velocities max_speed = torch.ones(num_envs, device=self.device) * self.cfg.maxSpeed # transform path in base/ robot frame if given in world frame if self.cfg.path_frame == "world": paths = math_utils.quat_apply( math_utils.quat_inv(self.robot.data.root_quat_w[:, None, :].repeat(1, N, 1)), paths - self.robot.data.root_pos_w[:, None, :], ) # get distance that robot has to travel until last set waypoint distance_end_point = torch.linalg.norm(paths[:, -1, :2], axis=1) # get point that is still within the lookAheadDis, compute its distance and the z-axis rotation dis_all_poses = torch.linalg.norm(paths[:, :, :2], axis=2) sorted_dis, sorted_dis_idx = torch.sort(dis_all_poses, dim=1) if self.cfg.dynamic_lookahead: dis_max = sorted_dis[:, self.cfg.min_points_within_lookahead - 1] dis_max_poses = paths[:, sorted_dis_idx[:, self.cfg.min_points_within_lookahead - 1], :2] else: sorted_dis[sorted_dis > self.cfg.lookAheadDistance] = 0.0 dis_max, dis_max_idx = sorted_dis.max(dim=1) dis_max_poses = paths[ torch.arange(self.num_envs), sorted_dis_idx[torch.arange(self.num_envs), dis_max_idx], :2 ] direction_diff = -torch.atan2(dis_max_poses[:, 1], dis_max_poses[:, 0]) # decide whether to drive forward or backward if self.cfg.two_way_drive: switch_time_threshold_exceeded = curr_time - self.switch_time > self.cfg.switch_time_threshold # get index of robots that should switch direction switch_to_backward_idx = torch.all( torch.vstack( (abs(direction_diff) > math.pi / 2, switch_time_threshold_exceeded, self.navigation_forward) ), dim=0, ) switch_to_forward_idx = torch.all( torch.vstack( (abs(direction_diff) < math.pi / 2, switch_time_threshold_exceeded, ~self.navigation_forward) ), dim=0, ) # update buffers self.navigation_forward[switch_to_backward_idx] = False self.navigation_forward[switch_to_forward_idx] = True self.switch_time[switch_to_backward_idx] = curr_time self.switch_time[switch_to_forward_idx] = curr_time # adapt direction difference and maxSpeed depending on driving direction direction_diff[~self.navigation_forward] += math.pi limit_radians = torch.all(torch.vstack((direction_diff > math.pi, ~self.navigation_forward)), dim=0) direction_diff[limit_radians] -= 2 * math.pi max_speed[~self.navigation_forward] *= -1 # determine yaw rate of robot vehicleYawRate = torch.zeros(num_envs, device=self.device) stop_yaw_rate_bool = abs(direction_diff) < 2.0 * self.cfg.maxAccel vehicleYawRate[stop_yaw_rate_bool] = -self.cfg.stopYawRateGain * direction_diff[stop_yaw_rate_bool] vehicleYawRate[~stop_yaw_rate_bool] = -self.cfg.yawRateGain * direction_diff[~stop_yaw_rate_bool] # limit yaw rate of robot vehicleYawRate[vehicleYawRate > self.cfg.maxYawRate] = self.cfg.maxYawRate vehicleYawRate[vehicleYawRate < -self.cfg.maxYawRate] = -self.cfg.maxYawRate # catch special cases if not self.cfg.autonomyMode: vehicleYawRate[max_speed == 0.0] = self.cfg.maxYawRate * self.cfg.joyYaw if N <= 1: vehicleYawRate *= 0 max_speed *= 0 elif self.cfg.noRotAtGoal: vehicleYawRate[dis_max < self.cfg.stopDisThre] = 0.0 # determine joyspeed at the end of the path slow_down_bool = distance_end_point / self.cfg.slowDwnDisThre < max_speed max_speed[slow_down_bool] *= distance_end_point[slow_down_bool] / self.cfg.slowDwnDisThre # update vehicle speed drive_at_max_speed = torch.all( torch.vstack((abs(direction_diff) < self.cfg.dirDiffThre, dis_max > self.cfg.stopDisThre)), dim=0 ) increase_speed = torch.all(torch.vstack((self.vehicleSpeed < max_speed, drive_at_max_speed)), dim=0) decrease_speed = torch.all(torch.vstack((self.vehicleSpeed > max_speed, drive_at_max_speed)), dim=0) self.vehicleSpeed[increase_speed] += self.cfg.maxAccel self.vehicleSpeed[decrease_speed] -= self.cfg.maxAccel increase_speed = torch.all(torch.vstack((self.vehicleSpeed <= 0, ~drive_at_max_speed)), dim=0) decrease_speed = torch.all(torch.vstack((self.vehicleSpeed > 0, ~drive_at_max_speed)), dim=0) self.vehicleSpeed[increase_speed] += self.cfg.maxAccel self.vehicleSpeed[decrease_speed] -= self.cfg.maxAccel # update twist command self.twist[:, 0] = self.vehicleSpeed self.twist[abs(self.vehicleSpeed) < self.cfg.maxAccel * dt, 0] = 0.0 self.twist[abs(self.vehicleSpeed) > self.cfg.maxSpeed, 0] = self.cfg.maxSpeed self.twist[:, 2] = vehicleYawRate return self.twist """ Implementation specific functions. """ def _update_command(self): pass def _update_metrics(self): pass def _resample_command(self, env_ids: Sequence[int]): pass def _set_debug_vis_impl(self, debug_vis: bool): # set visibility of markers # note: parent only deals with callbacks. not their visibility if debug_vis: # create markers if necessary for the first tome if not hasattr(self, "base_vel_goal_visualizer"): # -- goal marker_cfg = GREEN_ARROW_X_MARKER_CFG.copy() marker_cfg.prim_path = "/Visuals/Command/velocity_goal" marker_cfg.markers["arrow"].scale = (0.5, 0.5, 0.5) self.base_vel_goal_visualizer = VisualizationMarkers(marker_cfg) # -- current marker_cfg = BLUE_ARROW_X_MARKER_CFG.copy() marker_cfg.prim_path = "/Visuals/Command/velocity_current" marker_cfg.markers["arrow"].scale = (0.5, 0.5, 0.5) self.base_vel_visualizer = VisualizationMarkers(marker_cfg) # set their visibility to true self.base_vel_goal_visualizer.set_visibility(True) self.base_vel_visualizer.set_visibility(True) else: if hasattr(self, "base_vel_goal_visualizer"): self.base_vel_goal_visualizer.set_visibility(False) self.base_vel_visualizer.set_visibility(False) def _debug_vis_callback(self, event): # get marker location # -- base state base_pos_w = self.robot.data.root_pos_w.clone() base_pos_w[:, 2] += 0.5 # -- resolve the scales and quaternions vel_des_arrow_scale, vel_des_arrow_quat = self._resolve_xy_velocity_to_arrow(self.command[:, :2]) vel_arrow_scale, vel_arrow_quat = self._resolve_xy_velocity_to_arrow(self.robot.data.root_lin_vel_b[:, :2]) # display markers self.base_vel_goal_visualizer.visualize(base_pos_w, vel_des_arrow_quat, vel_des_arrow_scale) self.base_vel_visualizer.visualize(base_pos_w, vel_arrow_quat, vel_arrow_scale) """ Internal helpers. """ def _resolve_xy_velocity_to_arrow(self, xy_velocity: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: """Converts the XY base velocity command to arrow direction rotation.""" # obtain default scale of the marker default_scale = self.base_vel_goal_visualizer.cfg.markers["arrow"].scale # arrow-scale arrow_scale = torch.tensor(default_scale, device=self.device).repeat(xy_velocity.shape[0], 1) arrow_scale[:, 0] *= torch.linalg.norm(xy_velocity, dim=1) # arrow-direction heading_angle = torch.atan2(xy_velocity[:, 1], xy_velocity[:, 0]) zeros = torch.zeros_like(heading_angle) arrow_quat = math_utils.quat_from_euler_xyz(zeros, zeros, heading_angle) return arrow_scale, arrow_quat
13,132
Python
44.286207
116
0.640496
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/omni/viplanner/config/base_cfg.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import os import omni.viplanner.viplanner.mdp as mdp from omni.isaac.orbit.envs import RLTaskEnvCfg from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import RandomizationTermCfg as RandTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.managers import TerminationTermCfg as DoneTerm from omni.isaac.orbit.utils import configclass from omni.isaac.orbit.utils.assets import ISAAC_ORBIT_NUCLEUS_DIR ## # MDP settings ## @configclass class RewardsCfg: pass @configclass class ActionsCfg: """Action specifications for the MDP.""" paths = mdp.NavigationActionCfg( asset_name="robot", low_level_decimation=4, low_level_action=mdp.JointPositionActionCfg( asset_name="robot", joint_names=[".*"], scale=0.5, use_default_offset=True ), low_level_policy_file=os.path.join(ISAAC_ORBIT_NUCLEUS_DIR, "Policies", "ANYmal-C", "policy.pt"), ) @configclass class ObservationsCfg: """Observation specifications for the MDP.""" @configclass class PolicyCfg(ObsGroup): """Observations for policy group.""" # observation terms (order preserved) base_lin_vel = ObsTerm(func=mdp.base_lin_vel) base_ang_vel = ObsTerm(func=mdp.base_ang_vel) projected_gravity = ObsTerm(func=mdp.projected_gravity) velocity_commands = ObsTerm(func=mdp.generated_commands, params={"command_name": "vel_command"}) joint_pos = ObsTerm(func=mdp.joint_pos_rel) joint_vel = ObsTerm(func=mdp.joint_vel_rel) actions = ObsTerm(func=mdp.low_level_actions) height_scan = ObsTerm( func=mdp.height_scan, params={"sensor_cfg": SceneEntityCfg("height_scanner")}, clip=(-1.0, 1.0), ) def __post_init__(self): self.enable_corruption = True self.concatenate_terms = True @configclass class PlannerImageCfg(ObsGroup): depth_measurement = ObsTerm( func=mdp.isaac_camera_data, params={"sensor_cfg": SceneEntityCfg("depth_camera"), "data_type": "distance_to_image_plane"}, ) semantic_measurement = ObsTerm( func=mdp.isaac_camera_data, params={"sensor_cfg": SceneEntityCfg("semantic_camera"), "data_type": "semantic_segmentation"}, ) def __post_init__(self): self.concatenate_terms = False self.enable_corruption = False @configclass class PlannerTransformCfg(ObsGroup): cam_position = ObsTerm( func=mdp.cam_position, params={"sensor_cfg": SceneEntityCfg("depth_camera")}, ) cam_orientation = ObsTerm( func=mdp.cam_orientation, params={"sensor_cfg": SceneEntityCfg("depth_camera")}, ) def __post_init__(self): self.concatenate_terms = False self.enable_corruption = False # observation groups policy: PolicyCfg = PolicyCfg() planner_image: PlannerImageCfg = PlannerImageCfg() planner_transform: PlannerTransformCfg = PlannerTransformCfg() @configclass class TerminationsCfg: """Termination terms for the MDP.""" time_out = DoneTerm(func=mdp.time_out, time_out=True) base_contact = DoneTerm( func=mdp.illegal_contact, params={"sensor_cfg": SceneEntityCfg("contact_forces", body_names="base"), "threshold": 1.0}, ) @configclass class RandomizationCfg: """Configuration for randomization.""" reset_base = RandTerm( func=mdp.reset_root_state_uniform, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot"), "pose_range": {"x": (0, 0), "y": (0, 0), "yaw": (0, 0)}, "velocity_range": { "x": (0.0, 0.0), "y": (0.0, 0.0), "z": (0.0, 0.0), "roll": (0.0, 0.0), "pitch": (0.0, 0.0), "yaw": (0.0, 0.0), }, }, ) reset_robot_joints = RandTerm( func=mdp.reset_joints_by_scale, mode="reset", params={ "asset_cfg": SceneEntityCfg("robot"), "position_range": (0.0, 0.0), "velocity_range": (0.0, 0.0), }, ) @configclass class CommandsCfg: """Command specifications for the MDP.""" vel_command: mdp.PathFollowerCommandGeneratorCfg = mdp.PathFollowerCommandGeneratorCfg( robot_attr="robot", lookAheadDistance=1.0, debug_vis=True, ) ## # Environment configuration ## @configclass class ViPlannerBaseCfg(RLTaskEnvCfg): """Configuration for the locomotion velocity-tracking environment.""" # Basic settings observations: ObservationsCfg = ObservationsCfg() actions: ActionsCfg = ActionsCfg() commands: CommandsCfg = CommandsCfg() # managers terminations: TerminationsCfg = TerminationsCfg() randomization: RandomizationCfg = RandomizationCfg() rewards: RewardsCfg = RewardsCfg() def __post_init__(self): """Post initialization.""" # general settings self.decimation = 20 # 10 Hz self.episode_length_s = 60.0 # simulation settings self.sim.dt = 0.005 self.sim.disable_contact_processing = True self.sim.physics_material.static_friction = 1.0 self.sim.physics_material.dynamic_friction = 1.0 self.sim.physics_material.friction_combine_mode = "max" self.sim.physics_material.restitution_combine_mode = "max" # update sensor update periods # we tick all the sensors based on the smallest update period (physics update period) self.scene.height_scanner.update_period = 4 * self.sim.dt # should we low-level decimation self.scene.contact_forces.update_period = self.sim.dt
6,096
Python
30.590673
107
0.629429
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/omni/viplanner/config/carla_cfg.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import os import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import AssetBaseCfg from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.sensors import CameraCfg, ContactSensorCfg, RayCasterCfg, patterns from omni.isaac.orbit.utils import configclass from omni.viplanner.utils import UnRealImporterCfg ## # Pre-defined configs ## # isort: off from omni.isaac.orbit_assets.anymal import ANYMAL_C_CFG from .base_cfg import ViPlannerBaseCfg from ..viplanner import DATA_DIR ## # Scene definition ## @configclass class TerrainSceneCfg(InteractiveSceneCfg): """Configuration for the terrain scene with a legged robot.""" # ground terrain terrain = UnRealImporterCfg( prim_path="/World/Carla", physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, ), usd_path="${USER_PATH_TO_USD}/carla.usd", groundplane=True, cw_config_file=os.path.join(DATA_DIR, "town01", "cw_multiply_cfg.yml"), sem_mesh_to_class_map=os.path.join(DATA_DIR, "town01", "keyword_mapping.yml"), people_config_file=os.path.join(DATA_DIR, "town01", "people_cfg.yml"), vehicle_config_file=os.path.join(DATA_DIR, "town01", "vehicle_cfg.yml"), axis_up="Z", ) # robots robot = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") robot.init_state.pos = (8.0, -0.5, 0.6) robot.init_state.rot = (0.5253, 0.0, 0.0, 0.8509) # sensors height_scanner = RayCasterCfg( prim_path="{ENV_REGEX_NS}/Robot/base", offset=RayCasterCfg.OffsetCfg(pos=(0.0, 0.0, 0.5)), attach_yaw_only=True, pattern_cfg=patterns.GridPatternCfg(resolution=0.1, size=[1.6, 1.0]), debug_vis=True, mesh_prim_paths=["/World/GroundPlane"], ) contact_forces = ContactSensorCfg(prim_path="{ENV_REGEX_NS}/Robot/.*", history_length=3, debug_vis=False) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg( color=(1.0, 1.0, 1.0), intensity=1000.0, ), ) # camera depth_camera = CameraCfg( prim_path="{ENV_REGEX_NS}/Robot/base/depth_camera", offset=CameraCfg.OffsetCfg(pos=(0.510, 0.0, 0.015), rot=(-0.5, 0.5, -0.5, 0.5)), spawn=sim_utils.PinholeCameraCfg(), width=848, height=480, data_types=["distance_to_image_plane"], ) semantic_camera = CameraCfg( prim_path="{ENV_REGEX_NS}/Robot/base/semantic_camera", offset=CameraCfg.OffsetCfg(pos=(0.510, 0.0, 0.015), rot=(-0.5, 0.5, -0.5, 0.5)), spawn=sim_utils.PinholeCameraCfg(), width=1280, height=720, data_types=["semantic_segmentation"], ) ## # Environment configuration ## @configclass class ViPlannerCarlaCfg(ViPlannerBaseCfg): """Configuration for the locomotion velocity-tracking environment.""" # Scene settings scene: TerrainSceneCfg = TerrainSceneCfg(num_envs=1, env_spacing=1.0, replicate_physics=False) def __post_init__(self): """Post initialization.""" super().__post_init__() # adapt viewer self.viewer.eye = (105, -132, 6.5) self.viewer.lookat = (113.5, -132, 1.0) # change ANYmal position self.scene.robot.init_state.pos = (118.0, -126.0, 1.0)
3,637
Python
31.19469
109
0.640088
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/omni/viplanner/config/warehouse_cfg.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import os import omni.isaac.orbit.sim as sim_utils from omni.isaac.orbit.assets import AssetBaseCfg from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.sensors import CameraCfg, ContactSensorCfg, RayCasterCfg, patterns from omni.isaac.orbit.utils import configclass from omni.viplanner.utils import UnRealImporterCfg from ..viplanner import DATA_DIR from .base_cfg import ViPlannerBaseCfg ## # Pre-defined configs ## # isort: off from omni.isaac.orbit_assets.anymal import ANYMAL_C_CFG ## # Scene definition ## @configclass class TerrainSceneCfg(InteractiveSceneCfg): """Configuration for the terrain scene with a legged robot.""" # ground terrain terrain = UnRealImporterCfg( prim_path="/World/Warehouse", physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, ), usd_path="${USER_PATH_TO_USD}/warehouse_new.usd", groundplane=True, sem_mesh_to_class_map=os.path.join(DATA_DIR, "warehouse", "keyword_mapping.yml"), people_config_file=os.path.join(DATA_DIR, "warehouse", "people_cfg.yml"), axis_up="Z", ) # robots robot = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") robot.init_state.pos = (5.0, 5.5, 0.6) robot.init_state.rot = (0.5253, 0.0, 0.0, 0.8509) # sensors height_scanner = RayCasterCfg( prim_path="{ENV_REGEX_NS}/Robot/base", offset=RayCasterCfg.OffsetCfg(pos=(0.0, 0.0, 0.5)), attach_yaw_only=True, pattern_cfg=patterns.GridPatternCfg(resolution=0.1, size=[1.6, 1.0]), debug_vis=True, mesh_prim_paths=["/World/Warehouse"], ) contact_forces = ContactSensorCfg(prim_path="{ENV_REGEX_NS}/Robot/.*", history_length=3, debug_vis=False) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg( color=(1.0, 1.0, 1.0), intensity=1000.0, ), ) # camera depth_camera = CameraCfg( prim_path="{ENV_REGEX_NS}/Robot/base/depth_camera", offset=CameraCfg.OffsetCfg(pos=(0.510, 0.0, 0.015), rot=(-0.5, 0.5, -0.5, 0.5)), spawn=sim_utils.PinholeCameraCfg(), width=848, height=480, data_types=["distance_to_image_plane"], ) semantic_camera = CameraCfg( prim_path="{ENV_REGEX_NS}/Robot/base/semantic_camera", offset=CameraCfg.OffsetCfg(pos=(0.510, 0.0, 0.015), rot=(-0.5, 0.5, -0.5, 0.5)), spawn=sim_utils.PinholeCameraCfg(), width=1280, height=720, data_types=["semantic_segmentation"], ) ## # Environment configuration ## @configclass class ViPlannerWarehouseCfg(ViPlannerBaseCfg): """Configuration for the locomotion velocity-tracking environment.""" # Scene settings scene: TerrainSceneCfg = TerrainSceneCfg(num_envs=1, env_spacing=1.0) def __post_init__(self): """Post initialization.""" super().__post_init__() # adapt viewer self.viewer.eye = (5, 12, 5) self.viewer.lookat = (5, 0, 0.0)
3,363
Python
29.306306
109
0.641392
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/omni/viplanner/config/matterport_cfg.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import omni.isaac.orbit.sim as sim_utils import omni.viplanner.viplanner.mdp as mdp from omni.isaac.matterport.config import MatterportImporterCfg from omni.isaac.matterport.domains import MatterportRayCasterCfg from omni.isaac.orbit.assets import AssetBaseCfg from omni.isaac.orbit.managers import ObservationGroupCfg as ObsGroup from omni.isaac.orbit.managers import ObservationTermCfg as ObsTerm from omni.isaac.orbit.managers import SceneEntityCfg from omni.isaac.orbit.scene import InteractiveSceneCfg from omni.isaac.orbit.sensors import ContactSensorCfg, patterns from omni.isaac.orbit.utils import configclass from omni.viplanner.utils import VIPlannerMatterportRayCasterCameraCfg from .base_cfg import ObservationsCfg, ViPlannerBaseCfg ## # Pre-defined configs ## # isort: off from omni.isaac.orbit_assets.anymal import ANYMAL_C_CFG ## # Scene definition ## @configclass class TerrainSceneCfg(InteractiveSceneCfg): """Configuration for the terrain scene with a legged robot.""" # ground terrain terrain = MatterportImporterCfg( prim_path="/World/matterport", terrain_type="matterport", physics_material=sim_utils.RigidBodyMaterialCfg( friction_combine_mode="multiply", restitution_combine_mode="multiply", static_friction=1.0, dynamic_friction=1.0, ), obj_filepath="${USER_PATH_TO_USD}/matterport.usd", groundplane=True, ) # robots robot = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot") robot.init_state.pos = (8.0, -0.5, 0.6) robot.init_state.rot = (0.6126, 0.0327, 0.0136, -0.7896) # sensors height_scanner = MatterportRayCasterCfg( prim_path="{ENV_REGEX_NS}/Robot/base", offset=MatterportRayCasterCfg.OffsetCfg(pos=(0.0, 0.0, 0.5)), attach_yaw_only=True, pattern_cfg=patterns.GridPatternCfg(resolution=0.1, size=[1.6, 1.0]), debug_vis=True, mesh_prim_paths=["${USER_PATH_TO_USD}/matterport.ply"], ) contact_forces = ContactSensorCfg(prim_path="{ENV_REGEX_NS}/Robot/.*", history_length=3, debug_vis=False) # lights light = AssetBaseCfg( prim_path="/World/light", spawn=sim_utils.DistantLightCfg( color=(1.0, 1.0, 1.0), intensity=1000.0, ), ) sphere_1 = AssetBaseCfg( prim_path="/World/sphere_1", spawn=sim_utils.SphereLightCfg( color=(1.0, 1.0, 1.0), intensity=3000.0, ), ) sphere_1.init_state.pos = (8, 1, 2.0) sphere_2 = AssetBaseCfg( prim_path="/World/sphere_2", spawn=sim_utils.SphereLightCfg( color=(1.0, 1.0, 1.0), intensity=30000.0, ), ) sphere_2.init_state.pos = (10.5, -5.5, 2.0) sphere_3 = AssetBaseCfg( prim_path="/World/sphere_3", spawn=sim_utils.SphereLightCfg( color=(1.0, 1.0, 1.0), intensity=30000.0, ), ) sphere_3.init_state.pos = (6.0, -5.5, 2.0) sphere_4 = AssetBaseCfg( prim_path="/World/sphere_4", spawn=sim_utils.SphereLightCfg( color=(1.0, 1.0, 1.0), intensity=30000.0, ), ) sphere_4.init_state.pos = (8.0, -12, 2.0) # camera depth_camera = VIPlannerMatterportRayCasterCameraCfg( prim_path="{ENV_REGEX_NS}/Robot/base", offset=VIPlannerMatterportRayCasterCameraCfg.OffsetCfg( pos=(0.510, 0.0, 0.015), rot=(-0.5, 0.5, -0.5, 0.5) ), # FIXME: currently in ROS convention pattern_cfg=patterns.PinholeCameraPatternCfg( width=848, height=480, # intrinsics=(430.31607, 0.0, 428.28408, 0.0, 430.31607, 244.00695, 0.0, 0.0, 1.0), # FIXME: intrinsics not supported yet ), debug_vis=False, max_distance=10, mesh_prim_paths=["${USER_PATH_TO_USD}/matterport.ply"], data_types=["distance_to_image_plane"], ) semantic_camera = VIPlannerMatterportRayCasterCameraCfg( prim_path="{ENV_REGEX_NS}/Robot/base", offset=VIPlannerMatterportRayCasterCameraCfg.OffsetCfg( pos=(0.510, 0.0, 0.015), rot=(-0.5, 0.5, -0.5, 0.5) ), # FIXME: currently in ROS convention pattern_cfg=patterns.PinholeCameraPatternCfg( width=1280, height=720, # intrinsics=(644.15496, 0.0, 639.53125, 0.0, 643.49212, 366.30880, 0.0, 0.0, 1.0), # FIXME: intrinsics not supported yet ), data_types=["semantic_segmentation"], debug_vis=False, mesh_prim_paths=["${USER_PATH_TO_USD}/matterport.ply"], ) @configclass class MatterportObservationsCfg(ObservationsCfg): """Observations for locomotion and planner with adjustments for Matterport Environments""" @configclass class MatterportPlannerImageCfg(ObsGroup): depth_measurement = ObsTerm( func=mdp.matterport_raycast_camera_data, params={"sensor_cfg": SceneEntityCfg("depth_camera"), "data_type": "distance_to_image_plane"}, ) semantic_measurement = ObsTerm( func=mdp.matterport_raycast_camera_data, params={"sensor_cfg": SceneEntityCfg("semantic_camera"), "data_type": "semantic_segmentation"}, ) def __post_init__(self): self.concatenate_terms = False self.enable_corruption = False planner_image: MatterportPlannerImageCfg = MatterportPlannerImageCfg() ## # Environment configuration ## @configclass class ViPlannerMatterportCfg(ViPlannerBaseCfg): """Configuration for the locomotion velocity-tracking environment.""" # Scene settings scene: TerrainSceneCfg = TerrainSceneCfg(num_envs=1, env_spacing=1.0) # adjust image observations observations: MatterportObservationsCfg = MatterportObservationsCfg() def __post_init__(self): """Post initialization.""" super().__post_init__() # adapt viewer self.viewer.eye = (8.5, 3.0, 2.5) self.viewer.lookat = (8.5, -4.0, 0.0)
6,213
Python
33.715084
134
0.6385
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/omni/viplanner/config/__init__.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from .carla_cfg import ViPlannerCarlaCfg from .matterport_cfg import ViPlannerMatterportCfg from .warehouse_cfg import ViPlannerWarehouseCfg __all__ = [ "ViPlannerMatterportCfg", "ViPlannerCarlaCfg", "ViPlannerWarehouseCfg", ]
389
Python
23.374999
60
0.758355
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/omni/viplanner/utils/viplanner_matterport_raycast_camera.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import torch import yaml from omni.isaac.matterport.domains import MatterportRayCasterCamera from omni.isaac.orbit.sensors.ray_caster import RayCasterCameraCfg from omni.isaac.orbit.utils.configclass import configclass from omni.viplanner.viplanner import DATA_DIR from viplanner.config.viplanner_sem_meta import VIPlannerSemMetaHandler class VIPlannerMatterportRayCasterCamera(MatterportRayCasterCamera): def __init__(self, cfg: object): super().__init__(cfg) def _color_mapping(self): viplanner_sem = VIPlannerSemMetaHandler() with open(DATA_DIR + "/mpcat40_to_vip_sem.yml") as file: map_mpcat40_to_vip_sem = yaml.safe_load(file) color = viplanner_sem.get_colors_for_names(list(map_mpcat40_to_vip_sem.values())) self.color = torch.tensor(color, device=self._device, dtype=torch.uint8) @configclass class VIPlannerMatterportRayCasterCameraCfg(RayCasterCameraCfg): class_type = VIPlannerMatterportRayCasterCamera
1,132
Python
34.406249
89
0.757951
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/omni/viplanner/utils/unreal_importer.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from __future__ import annotations import os from typing import TYPE_CHECKING import carb import numpy as np import omni import omni.isaac.core.utils.prims as prim_utils import omni.isaac.orbit.sim as sim_utils import trimesh import yaml from omni.isaac.core.utils.semantics import add_update_semantics, remove_all_semantics from omni.isaac.orbit.terrains import TerrainImporter from omni.isaac.orbit.utils.assets import ISAAC_NUCLEUS_DIR from omni.isaac.orbit.utils.warp import convert_to_warp_mesh from pxr import Gf, Usd, UsdGeom if TYPE_CHECKING: from .unreal_importer_cfg import UnRealImporterCfg class UnRealImporter(TerrainImporter): """ Default stairs environment for testing """ cfg: UnRealImporterCfg def __init__(self, cfg: UnRealImporterCfg) -> None: """ :param """ super().__init__(cfg) # modify mesh if self.cfg.cw_config_file: self._multiply_crosswalks() if self.cfg.people_config_file: self._insert_people() if self.cfg.vehicle_config_file: self._insert_vehicles() # assign semantic labels if self.cfg.sem_mesh_to_class_map: self._add_semantics() """ Import Functions """ def import_usd(self, key: str, usd_path: str): """Import a mesh from a USD file. USD file can contain arbitrary many meshes. Note: We do not apply any material properties to the mesh. The material properties should be defined in the USD file. Args: key: The key to store the mesh. usd_path: The path to the USD file. Raises: ValueError: If a terrain with the same key already exists. """ # add mesh to the dict if key in self.meshes: raise ValueError(f"Mesh with key {key} already exists. Existing keys: {self.meshes.keys()}.") # add the prim path cfg = sim_utils.UsdFileCfg(usd_path=usd_path) if self.cfg.axis_up == "Y" or self.cfg.axis_up == "y": cfg.func(self.cfg.prim_path + f"/{key}", cfg, orientation=(0.2759, 0.4469, 0.4469, 0.7240)) else: cfg.func(self.cfg.prim_path + f"/{key}", cfg) # assign each submesh it's own geometry prim --> important for raytracing to be able to identify the submesh submeshes = self.get_mesh_prims(self.cfg.prim_path + f"/{key}") # get material # physics material # material = PhysicsMaterial( # "/World/PhysicsMaterial", static_friction=0.7, dynamic_friction=0.7, restitution=0 # ) for submesh, submesh_name in zip(submeshes[0], submeshes[1]): # # create geometry prim # GeometryPrim( # prim_path=submesh.GetPath().pathString, # name="collision", # position=None, # orientation=None, # collision=True, # ).apply_physics_material(material) # physx_utils.setCollider(submesh, approximationShape="None") # "None" will use the base triangle mesh if available # cast into UsdGeomMesh mesh_prim = UsdGeom.Mesh(submesh) # store the mesh vertices = np.asarray(mesh_prim.GetPointsAttr().Get()) faces = np.asarray(mesh_prim.GetFaceVertexIndicesAttr().Get()) # check if both faces and vertices are valid if not vertices or not faces: carb.log_warn(f"Mesh {submesh_name} has no faces or vertices.") continue faces = faces.reshape(-1, 3) self.meshes[submesh_name] = trimesh.Trimesh(vertices=vertices, faces=faces) # create a warp mesh device = "cuda" if "cuda" in self.device else "cpu" self.warp_meshes[submesh_name] = convert_to_warp_mesh(vertices, faces, device=device) # add colliders and physics material if self.cfg.groundplane: ground_plane_cfg = sim_utils.GroundPlaneCfg( physics_material=self.cfg.physics_material, size=(500, 500), visible=False ) ground_plane = ground_plane_cfg.func("/World/GroundPlane", ground_plane_cfg, translation=(0, 0, -0.1)) ground_plane.visible = False """ Assign Semantic Labels """ def _add_semantics(self): # remove all previous semantic labels remove_all_semantics(prim_utils.get_prim_at_path(self.cfg.prim_path + "/terrain"), recursive=True) # get mesh prims mesh_prims, mesh_prims_name = self.get_mesh_prims(self.cfg.prim_path + "/terrain") carb.log_info(f"Total of {len(mesh_prims)} meshes in the scene, start assigning semantic class ...") # mapping from prim name to class with open(self.cfg.sem_mesh_to_class_map) as stream: class_keywords = yaml.safe_load(stream) # make all the string lower case mesh_prims_name = [mesh_prim_single.lower() for mesh_prim_single in mesh_prims_name] keywords_class_mapping_lower = { key: [value_single.lower() for value_single in value] for key, value in class_keywords.items() } # assign class to mesh in ISAAC def recursive_semUpdate(prim, sem_class_name: str, update_submesh: bool) -> bool: # Necessary for Park Mesh if ( prim.GetName() == "HierarchicalInstancedStaticMesh" ): # or "FoliageInstancedStaticMeshComponent" in prim.GetName(): add_update_semantics(prim, sem_class_name) update_submesh = True children = prim.GetChildren() if len(children) > 0: for child in children: update_submesh = recursive_semUpdate(child, sem_class_name, update_submesh) return update_submesh def recursive_meshInvestigator(mesh_idx, mesh_name, mesh_prim_list) -> bool: success = False for class_name, keywords in keywords_class_mapping_lower.items(): if any([keyword in mesh_name for keyword in keywords]): update_submesh = recursive_semUpdate(mesh_prim_list[mesh_idx], class_name, False) if not update_submesh: add_update_semantics(mesh_prim_list[mesh_idx], class_name) success = True break if not success: success_child = [] mesh_prims_children, mesh_prims_name_children = self.get_mesh_prims( mesh_prim_list[mesh_idx].GetPrimPath().pathString ) mesh_prims_name_children = [mesh_prim_single.lower() for mesh_prim_single in mesh_prims_name_children] for mesh_idx_child, mesh_name_child in enumerate(mesh_prims_name_children): success_child.append( recursive_meshInvestigator(mesh_idx_child, mesh_name_child, mesh_prims_children) ) success = any(success_child) return success mesh_list = [] for mesh_idx, mesh_name in enumerate(mesh_prims_name): success = recursive_meshInvestigator(mesh_idx=mesh_idx, mesh_name=mesh_name, mesh_prim_list=mesh_prims) if success: mesh_list.append(mesh_idx) missing = [i for x, y in zip(mesh_list, mesh_list[1:]) for i in range(x + 1, y) if y - x > 1] assert len(mesh_list) > 0, "No mesh is assigned a semantic class!" assert len(mesh_list) == len( mesh_prims_name ), f"Not all meshes are assigned a semantic class! Following mesh names are included yet: {[mesh_prims_name[miss_idx] for miss_idx in missing]}" carb.log_info("Semantic mapping done.") return """ Modify Mesh """ def _multiply_crosswalks(self) -> None: """Increase number of crosswalks in the scene.""" with open(self.cfg.cw_config_file) as stream: multipy_cfg: dict = yaml.safe_load(stream) # get the stage stage = omni.usd.get_context().get_stage() # get town prim town_prim = multipy_cfg.pop("town_prim") # init counter crosswalk_add_counter = 0 for key, value in multipy_cfg.items(): print(f"Execute crosswalk multiplication '{key}'") # iterate over the number of crosswalks to be created for copy_idx in range(value["factor"]): success = omni.usd.duplicate_prim( stage=stage, prim_path=os.path.join(self.cfg.prim_path + "/terrain", town_prim, value["cw_prim"]), path_to=os.path.join( self.cfg.prim_path + "/terrain", town_prim, value["cw_prim"] + f"_cp{copy_idx}" + value.get("suffix", ""), ), duplicate_layers=True, ) assert success, f"Failed to duplicate crosswalk '{key}'" # get crosswalk prim prim = prim_utils.get_prim_at_path( os.path.join( self.cfg.prim_path + "/terrain", town_prim, value["cw_prim"] + f"_cp{copy_idx}" + value.get("suffix", ""), ) ) xform = UsdGeom.Mesh(prim).AddTranslateOp() xform.Set( Gf.Vec3d(value["translation"][0], value["translation"][1], value["translation"][2]) * (copy_idx + 1) ) # update counter crosswalk_add_counter += 1 carb.log_info(f"Number of crosswalks added: {crosswalk_add_counter}") print(f"Number of crosswalks added: {crosswalk_add_counter}") return def _insert_vehicles(self): # load vehicle config file with open(self.cfg.vehicle_config_file) as stream: vehicle_cfg: dict = yaml.safe_load(stream) # get the stage stage = omni.usd.get_context().get_stage() # get town prim and all its meshes town_prim = vehicle_cfg.pop("town_prim") mesh_prims: dict = prim_utils.get_prim_at_path(f"{self.cfg.prim_path}/terrain/{town_prim}").GetChildren() mesh_prims_name = [mesh_prim_single.GetName() for mesh_prim_single in mesh_prims] # car counter car_add_counter = 0 for key, vehicle in vehicle_cfg.items(): print(f"Execute vehicle multiplication '{key}'") # get all meshs that include the keystring meshs = [ mesh_prim_single for mesh_prim_single in mesh_prims_name if vehicle["prim_part"] in mesh_prim_single ] # iterate over the number of vehicles to be created for idx, translation in enumerate(vehicle["translation"]): for single_mesh in meshs: success = omni.usd.duplicate_prim( stage=stage, prim_path=os.path.join(self.cfg.prim_path + "/terrain", town_prim, single_mesh), path_to=os.path.join( self.cfg.prim_path + "/terrain", town_prim, single_mesh + key + f"_cp{idx}" ), duplicate_layers=True, ) assert success, f"Failed to duplicate vehicle '{key}'" prim = prim_utils.get_prim_at_path( os.path.join(self.cfg.prim_path + "/terrain", town_prim, single_mesh + key + f"_cp{idx}") ) xform = UsdGeom.Mesh(prim).AddTranslateOp() xform.Set(Gf.Vec3d(translation[0], translation[1], translation[2])) car_add_counter += 1 carb.log_info(f"Number of vehicles added: {car_add_counter}") print(f"Number of vehicles added: {car_add_counter}") return def _insert_people(self): # load people config file with open(self.cfg.people_config_file) as stream: people_cfg: dict = yaml.safe_load(stream) # if self.cfg.scale == 1.0: # scale_people = 100 # else: # scale_people = 1 for key, person_cfg in people_cfg.items(): carb.log_verbose(f"Insert person '{key}'") self.insert_single_person( person_cfg["prim_name"], person_cfg["translation"], scale_people=1, usd_path=person_cfg.get("usd_path", "People/Characters/F_Business_02/F_Business_02.usd"), ) # TODO: movement of the people carb.log_info(f"Number of people added: {len(people_cfg)}") print(f"Number of people added: {len(people_cfg)}") return @staticmethod def insert_single_person( prim_name: str, translation: list, scale_people: float = 1.0, usd_path: str = "People/Characters/F_Business_02/F_Business_02.usd", ) -> None: person_prim = prim_utils.create_prim( prim_path=os.path.join("/World/People", prim_name), translation=tuple(translation), usd_path=os.path.join(ISAAC_NUCLEUS_DIR, usd_path), scale=(scale_people, scale_people, scale_people), ) if isinstance(person_prim.GetAttribute("xformOp:orient").Get(), Gf.Quatd): person_prim.GetAttribute("xformOp:orient").Set(Gf.Quatd(1.0, 0.0, 0.0, 0.0)) else: person_prim.GetAttribute("xformOp:orient").Set(Gf.Quatf(1.0, 0.0, 0.0, 0.0)) add_update_semantics(person_prim, "person") # add collision body UsdGeom.Mesh(person_prim) return @staticmethod def get_mesh_prims(env_prim: str) -> tuple[list[Usd.Prim], list[str]]: def recursive_search(start_prim: str, mesh_prims: list): for curr_prim in prim_utils.get_prim_at_path(start_prim).GetChildren(): if curr_prim.GetTypeName() == "Xform" or curr_prim.GetTypeName() == "Mesh": mesh_prims.append(curr_prim) elif curr_prim.GetTypeName() == "Scope": mesh_prims = recursive_search(start_prim=curr_prim.GetPath().pathString, mesh_prims=mesh_prims) return mesh_prims assert prim_utils.is_prim_path_valid(env_prim), f"Prim path '{env_prim}' is not valid" mesh_prims = [] mesh_prims = recursive_search(env_prim, mesh_prims) # mesh_prims: dict = prim_utils.get_prim_at_path(self.cfg.prim_path + "/" + self.cfg.usd_name.split(".")[0]).GetChildren() mesh_prims_name = [mesh_prim_single.GetName() for mesh_prim_single in mesh_prims] return mesh_prims, mesh_prims_name
15,107
Python
38.653543
152
0.571854
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/omni/viplanner/utils/__init__.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from .unreal_importer import UnRealImporter from .unreal_importer_cfg import UnRealImporterCfg from .viplanner_matterport_raycast_camera import ( VIPlannerMatterportRayCasterCamera, VIPlannerMatterportRayCasterCameraCfg, ) __all__ = [ "VIPlannerMatterportRayCasterCamera", "VIPlannerMatterportRayCasterCameraCfg", "UnRealImporter", "UnRealImporterCfg", ]
529
Python
25.499999
60
0.773157
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/omni/viplanner/utils/unreal_importer_cfg.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from omni.isaac.orbit.terrains import TerrainImporterCfg from omni.isaac.orbit.utils import configclass from .unreal_importer import UnRealImporter @configclass class UnRealImporterCfg(TerrainImporterCfg): class_type: type = UnRealImporter """The class name of the terrain importer.""" terrain_type = "usd" """The type of terrain to generate. Defaults to "usd". """ # scale scale: float = 0.01 # 0.01 # carla: 0.01 nomoko: 1 park: 0.01 warehouse: 1.0 # scale the scene to be in meters # up axis axis_up: str = "Z" # carla, nomoko: "Y", park, warehouse: "Z" # multiply crosswalks cw_config_file: str | None = None # mesh to semantic class mapping --> only if set, semantic classes will be added to the scene sem_mesh_to_class_map: str | None = None # os.path.join(DATA_DIR, "park", "keyword_mapping.yml") os.path.join(DATA_DIR, "town01", "keyword_mapping.yml") # add Groundplane to the scene groundplane: bool = True # add people to the scene people_config_file: str | None = None # multiply vehicles vehicle_config_file: str | None = None groundplane: bool = True
1,306
Python
32.51282
158
0.682236
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/data/mpcat40_to_vip_sem.yml
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause void: static wall: wall floor: floor chair: furniture door: door table: furniture picture: wall cabinet: furniture cushion: furniture window: wall sofa: furniture bed: furniture curtain: wall chest_of_drawers: furniture plant: vegetation sink: furniture stairs: stairs ceiling: ceiling toilet: furniture stool: furniture towel: indoor_soft mirror: wall tv_monitor: wall shower: furniture column: wall bathtub: furniture counter: furniture fireplace: furniture lighting: static beam: furniture railing: wall shelving: wall blinds: wall gym_equipment: furniture seating: furniture board_panel: wall furniture: furniture appliances: dynamic clothes: indoor_soft objects: static misc: static unlabeled: static
1,286
YAML
25.265306
60
0.530327
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/data/town02/cw_multiply_cfg.yml
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # Definition of which crosswalks should be repeated how often along which axis # Adjusted for: TOWN02 # each entry has the following format: # name: # cw_prim: [str] prim of the crosswalk in the loaded town file # factor: [int] number how often the crosswalk should be repeated # translation: [float, float] vector along which the crosswalk should be repeated, defines the position of the first # repeated crosswalk, every following crosswalk will be placed at the position of the # previous one plus the translation vector # suffix: [str] optional, str will be added to the copied prim of the new crosswalk # NOTE: rotations and scales applied to the mesh are not applied to the translations given here, i.e. they have to be # in the original dataformat of the town file, i.e. y-up and in cm town_prim: "Town02" cw_2: cw_prim: "Road_Crosswalk_Town02_8" factor: 4 translation: [+1500, 0, 0] cw_3: cw_prim: "Road_Crosswalk_Town02_10" factor: 2 translation: [-1500, 0, 0] cw_4: cw_prim: "Road_Crosswalk_Town02_9" factor: 4 translation: [+1500, 0, 0] suffix: "_neg" cw_5: cw_prim: "Road_Crosswalk_Town02_11" factor: 4 translation: [1500, 0, 0] cw_6_pos: cw_prim: "Road_Crosswalk_Town02_12" factor: 1 translation: [0, 0, 1500] cw_6_neg: cw_prim: "Road_Crosswalk_Town02_12" factor: 2 translation: [0, 0, -1500] cw_7_neg: cw_prim: "Road_Crosswalk_Town02_7" factor: 1 translation: [-1500, 0, 0] cw_7_pos: cw_prim: "Road_Crosswalk_Town02_7" factor: 1 translation: [1500, 0, 0] cw_8: cw_prim: "Road_Crosswalk_Town02_4" factor: 2 translation: [1500, 0, 0] cw_9: cw_prim: "Road_Crosswalk_Town02_3" factor: 4 translation: [1500, 0, 0] cw_10: cw_prim: "Road_Crosswalk_Town02_6" factor: 2 translation: [-1500, 0, 0] cw_11_neg: cw_prim: "Road_Crosswalk_Town02_1" factor: 4 translation: [-1500, 0, 0] cw_11_pos: cw_prim: "Road_Crosswalk_Town02_1" factor: 2 translation: [+1500, 0, 0] cw_12: cw_prim: "Road_Crosswalk_Town02_2" factor: 4 translation: [-1500, 0, 0] cw_13: cw_prim: "Road_Crosswalk_Town02_13" factor: 2 translation: [0, 0, +1500] cw_14_pos: cw_prim: "Road_Crosswalk_Town02_15" factor: 2 translation: [0, 0, +1500] cw_14_neg: cw_prim: "Road_Crosswalk_Town02_15" factor: 1 translation: [0, 0, -1500] cw_15: cw_prim: "Road_Crosswalk_Town02_16" factor: 2 translation: [0, 0, -1500] cw_16_neg: cw_prim: "Road_Crosswalk_Town02_17" factor: 2 translation: [0, 0, -1500] cw_16_pos: cw_prim: "Road_Crosswalk_Town02_17" factor: 4 translation: [0, 0, +1500] cw_17_neg: cw_prim: "Road_Crosswalk_Town02_19" factor: 4 translation: [0, 0, -1500] cw_17_pos: cw_prim: "Road_Crosswalk_Town02_19" factor: 1 translation: [0, 0, +1500] cw_18: cw_prim: "Road_Crosswalk_Town02_20" factor: 3 translation: [0, 0, +1500] # EoF
3,140
YAML
21.276596
120
0.646178
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/data/town02/vehicle_cfg.yml
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # Definition of where additional vehicles should be added # Adjusted for: TOWN02 # each entry has the following format: # name: # prim_part: [str] part of the prim of the vehicle that should be multiplied (every prim containing this string will be multiplied) # translation: [[float, float, float]] list of translations of the vehicle # NOTE: rotations and scales applied to the mesh are not applied to the translations given here, i.e. they have to be # in the original dataformat of the town file, i.e. y-up and in cm # NOTE: for Town02, take "Vh_Car_SeatLeon_54" for vehicles along the x axis town_prim: "Town02" vehicle_1: prim_part: "Vh_Car_SeatLeon_54" translation: # horizontal road low - [3900, 0, 600] - [3900, 0, 3000] - [3900, 0, 3500] - [3900, 0, 4000] - [3900, 0, 6000] - [3900, 0, -1500] - [3900, 0, -4000] - [3900, 0, -7500] - [3900, 0, -8000] - [3500, 0, -10000] - [3500, 0, -7500] - [3500, 0, -3000] - [3500, 0, 1000] - [3500, 0, 5000] # horizontal road middle - [-10800, 0, 1000] - [-10800, 0, 5000] - [-10800, 0, -2500] # horizontal road high - [-15800, 0, 2000] - [-15800, 0, 4700] - [-16200, 0, 3400] - [-16200, 0, 0] - [-16200, 0, -3000] - [-16200, 0, -6000] - [-16200, 0, -9000] # EoF
1,585
YAML
28.37037
160
0.567192
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/data/town02/keyword_mapping.yml
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause road: - Road_Road - Road_Marking - ManholeCover - roadunique sidewalk: - Road_Sidewalk - SideWalkCube - Road_Grass # pedestrian terrain (between building, squares, ...) crosswalk: - Road_Crosswalk floor: - Pathwalk # way to the door of a building - PathWay # wat to the door of a building - curb - iron_plank - Cube - Floor vehicle: - Van - Vehicle - Car building: - NewBlueprint # roofs, windows, other parts of buildings - CityBuilding - Suburb - House - MergingBuilding - BuildingWall - garage - airConditioner - Office - Block - Apartment - ConstructBuilding - snacksStand - doghouse - streetCounter - fountain - container - pergola - GuardShelter - atm - awning - bus_stop - NewsStand - ironplank - kiosk - TownHall wall: - GardenWall - Wall - RepSpline # fences or walls to limit residential areas - RepeatedMeshesAlongSpline # should make the spline go around the building --> not working in isaac fence: - urbanFence - chain_barrier - picketFence - fence pole: - bollard - Lamppost - Parklight - CityLamp - Traffic_Light_Base - ElectricPole - PoleCylinder traffic_sign: - streetBillboard - RoundSign - roadsigns traffic_light: - TLights - TL_BotCover - SM_Charger - SM_FreewayLights bench: - bench vegetation: - tree - Stone - Cypress - PlantPot - TreePot - Maple - Beech - FanPalm - Sassafras - Pine_Bush - Hedge - Bush - palm - acer - plant_pit - arbusto_pine terrain: - dirtDebris # roughness in the terrain, street or sidewalk (traversable but more difficult) - GrassLeaf - Grass - LandscapeComponent - Ash water_surface: - TileLake sky: - terrain2 - sky dynamic: - Trashbag - advertise - creased_box - garbage - trashcan - clothes_line - barbecue - ConstructionCone - box - droppingasset - barrel static: - firehydrant - Gnome - metroMap - Bikeparking - StaticMesh # gate barrier - trampoline - wheelbarrow - NewspaperBox - swing - bin - big_plane - plane - slide - instancedfoliageactor - roadbillboard - prophitreacting_child # vending machines - prop_wateringcan furniture: - Campingtable - swingcouch - table - chair
2,436
YAML
15.466216
103
0.665435
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/data/town01/cw_multiply_cfg.yml
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # Definition of which crosswalks should be repeated how often along which axis # Adjusted for: TOWN01 # each entry has the following format: # name: # cw_prim: [str] prim of the crosswalk in the loaded town file # factor: [int] number how often the crosswalk should be repeated # translation: [float, float] vector along which the crosswalk should be repeated, defines the position of the first # repeated crosswalk, every following crosswalk will be placed at the position of the # previous one plus the translation vector # suffix: [str] optional, str will be added to the copied prim of the new crosswalk # NOTE: rotations and scales applied to the mesh are not applied to the translations given here, i.e. they have to be # in the original dataformat of the town file, i.e. y-up and in cm town_prim: "Town01_Opt/Town01_Opt" cw_2: cw_prim: "Road_Crosswalk_Town01_2" factor: 2 translation: [0, 0, -1500] cw_3_pos: cw_prim: "Road_Crosswalk_Town01_3" factor: 6 translation: [1500, 0, 0] cw_3_neg: cw_prim: "Road_Crosswalk_Town01_3" factor: 1 translation: [-1500, 0, 0] suffix: "_neg" cw_4: cw_prim: "Road_Crosswalk_Town01_4" factor: 1 translation: [1500, 0, 0] cw_5: cw_prim: "Road_Crosswalk_Town01_5" factor: 3 translation: [1500, 0, 0] cw_6: cw_prim: "Road_Crosswalk_Town01_6" factor: 3 translation: [0, 0, -1500] cw_9: cw_prim: "Road_Crosswalk_Town01_9" factor: 2 translation: [0, 0, -1500] cw_10: cw_prim: "Road_Crosswalk_Town01_10" factor: 1 translation: [0, 0, 1500] cw_11: cw_prim: "Road_Crosswalk_Town01_11" factor: 1 translation: [0, 0, 1500] cw_14: cw_prim: "Road_Crosswalk_Town01_14" factor: 1 translation: [0, 0, 1500] cw_15: cw_prim: "Road_Crosswalk_Town01_15" factor: 2 translation: [0, 0, -1500] cw_18: cw_prim: "Road_Crosswalk_Town01_18" factor: 5 translation: [1500, 0, 0] cw_19: cw_prim: "Road_Crosswalk_Town01_19" factor: 2 translation: [1500, 0, 0] cw_21: cw_prim: "Road_Crosswalk_Town01_21" factor: 3 translation: [1500, 0, 0] cw_22: cw_prim: "Road_Crosswalk_Town01_22" factor: 5 translation: [1500, 0, 0] cw_24: cw_prim: "Road_Crosswalk_Town01_24" factor: 3 translation: [-1500, 0, 0] cw_26_pos: cw_prim: "Road_Crosswalk_Town01_26" factor: 5 translation: [1500, 0, 0] cw_26_neg: cw_prim: "Road_Crosswalk_Town01_26" factor: 3 translation: [-1500, 0, 0] suffix: "_neg" cw_28: cw_prim: "Road_Crosswalk_Town01_28" factor: 4 translation: [0, 0, 1500] cw_29: cw_prim: "Road_Crosswalk_Town01_29" factor: 4 translation: [0, 0, 1500] cw_30: cw_prim: "Road_Crosswalk_Town01_30" factor: 4 translation: [0, 0, 1500] cw_31: cw_prim: "Road_Crosswalk_Town01_31" factor: 2 translation: [0, 0, 1500] cw_32: cw_prim: "Road_Crosswalk_Town01_32" factor: 6 translation: [0, 0, -1500] cw_33_pos: cw_prim: "Road_Crosswalk_Town01_33" factor: 4 translation: [1500, 0, 0] cw_33_neg: cw_prim: "Road_Crosswalk_Town01_33" factor: 3 translation: [-2500, 0, 0] suffix: "_neg" cw_34: cw_prim: "Road_Crosswalk_Town01_34" factor: 7 translation: [1500, 0, 0] cw_35: cw_prim: "Road_Crosswalk_Town01_35" factor: 1 translation: [1500, 0, 0] cw_36_pos: cw_prim: "Road_Crosswalk_Town01_36" factor: 1 translation: [0, 0, 1500] cw_36_neg: cw_prim: "Road_Crosswalk_Town01_36" factor: 5 translation: [0, 0, -1500] suffix: "_neg" cw_40: cw_prim: "Road_Crosswalk_Town01_40" factor: 4 translation: [1500, 0, 0] # EoF
3,790
YAML
20.178771
120
0.645646
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/data/town01/vehicle_cfg.yml
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # Definition of where additional vehicles should be added # Adjusted for: TOWN01 # each entry has the following format: # name: # prim_part: [str] part of the prim of the vehicle that should be multiplied (every prim containing this string will be multiplied) # translation: [[float, float, float]] list of translations of the vehicle # NOTE: rotations and scales applied to the mesh are not applied to the translations given here, i.e. they have to be # in the original dataformat of the town file, i.e. y-up and in cm # NOTE: for Town01, take "ChevroletImpala_High_V4" for vehicles along the x axis and "JeepWranglerRubicon_36" # for vehicles along the y axis town_prim: "Town01_Opt" vehicle_1: prim_part: "ChevroletImpala_High_V4" translation: - [-15300, 0, -4000] - [-15300, 0, 0] - [-15300, 0, 15000] - [-15600, 0, 21000] - [9000, 0, 20500] - [9400, 0, 15000] - [9400, 0, 9000] - [9400, 0, 7000] - [9000, 0, 6000] - [9000, 0, 500] - [9000, 0, -4000] vehicle_2: prim_part: "JeepWranglerRubicon_36" translation: - [0, 0, -1500] - [3500, 0, -1500] - [5300, 0, -1900] - [9000, 0, -1900] - [16500, 0, -1500] - [22500, 0, -1900] - [25000, 0, 3800] - [20000, 0, 4200] - [17000, 0, 4200] - [12000, 0, 3800] - [7000, 0, 3800] - [7000, 0, 11100] - [11000, 0, 11500] - [16000, 0, 11100] - [20000, 0, 11100] - [26000, 0, 11500] - [26000, 0, 17800] - [23000, 0, 18200] - [18000, 0, 18200] - [14000, 0, 17800] - [13500, 0, 18200] - [10000, 0, 18200] - [9500, 0, 17800] - [4000, 0, 17800] - [2000, 0, 30800] - [-1000, 0, 31300] - [6000, 0, 31300] - [12000, 0, 30800] - [15000, 0, 30800] - [15600, 0, 30800] - [16400, 0, 30800] - [21000, 0, 31300] - [25000, 0, 31300] # EoF
2,053
YAML
26.026315
160
0.571359
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/data/town01/area_filter_cfg.yaml
# Definition of which areas should not be explored and used to sample points # Adjusted for: TOWN01 # each entry has the following format: # name: # x_low: [float] low number of the x axis # x_high: [float] high number of the x axis # y_low: [float] low number of the y axis # y_high: [float] high number of the y axis area_1: x_low: 208.9 x_high: 317.8 y_low: 100.5 y_high: 325.5 area_2: x_low: 190.3 x_high: 315.8 y_low: 12.7 y_high: 80.6 area_3: x_low: 123.56 x_high: 139.37 y_low: 10 y_high: 80.0
601
YAML
20.499999
76
0.570715
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/data/town01/keyword_mapping.yml
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause road: - Road_Road - Road_Marking - ManholeCover - roadunique sidewalk: - Road_Sidewalk - SideWalkCube - Road_Grass # pedestrian terrain (between building, squares, ...) crosswalk: - Road_Crosswalk floor: - Pathwalk # way to the door of a building - PathWay # wat to the door of a building - curb - iron_plank - Cube vehicle: - Van - Vehicle - Car building: - NewBlueprint # roofs, windows, other parts of buildings - CityBuilding - Suburb - House - MergingBuilding - BuildingWall - garage - airConditioner - Office - Block - Apartment - ConstructBuilding - snacksStand - doghouse - streetCounter - fountain - container - pergola - GuardShelter - atm - awning - bus_stop - NewsStand - ironplank - kiosk wall: - GardenWall - Wall - RepSpline # fences or walls to limit residential areas - RepeatedMeshesAlongSpline # should make the spline go around the building --> not working in isaac fence: - urbanFence - chain_barrier - picketFence - fence pole: - bollard - Lamppost - Parklight - CityLamp - Traffic_Light_Base traffic_sign: - streetBillboard - RoundSign - roadsigns traffic_light: - TLights - TL_BotCover bench: - bench vegetation: - tree - Stone - Cypress - PlantPot - TreePot - Maple - Beech - FanPalm - Sassafras - Pine_Bush - Hedge - Bush - palm - acer terrain: - dirtDebris # roughness in the terrain, street or sidewalk (traversable but more difficult) - GrassLeaf - Grass - LandscapeComponent - Ash water_surface: - TileLake sky: - terrain2 - sky dynamic: - Trashbag - advertise - creased_box - garbage - trashcan - clothes_line - barbecue - ConstructionCone - box - droppingasset - barrel static: - firehydrant - Gnome - metroMap - Bikeparking - StaticMesh # gate barrier - trampoline - wheelbarrow - NewspaperBox - swing - bin - big_plane - slide - instancedfoliageactor - roadbillboard - prophitreacting_child # vending machines furniture: - Campingtable - swingcouch - table - chair
2,281
YAML
15.536232
103
0.666813
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/data/warehouse/people_cfg.yml
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause person_1: prim_name: "Person_1" translation: [4.23985, -2.42198, 0.0] target: [0, 0, 0] usd_path: People/Characters/male_adult_construction_01_new/male_adult_construction_01_new.usd person_2: prim_name: "Person_2" translation: [2.51653, 7.80822, 0.0] target: [0, 0, 0] usd_path: People/Characters/male_adult_construction_03/male_adult_construction_03.usd person_3: prim_name: "Person_3" translation: [5.07179, 3.8561, 0.0] target: [0, 0, 0] usd_path: People/Characters/male_adult_construction_05_new/male_adult_construction_05_new.usd person_4: prim_name: "Person_4" translation: [-3.2015, 11.79695, 0.0] target: [0, 0, 0] usd_path: People/Characters/original_male_adult_construction_01/male_adult_construction_01.usd person_5: prim_name: "Person_5" translation: [-6.70566, 7.58019, 0.0] target: [0, 0, 0] usd_path: People/Characters/original_male_adult_construction_02/male_adult_construction_02.usd person_6: prim_name: "Person_6" translation: [-5.12784, 2.43409, 0.0] target: [0, 0, 0] usd_path: People/Characters/original_male_adult_construction_05/male_adult_construction_05.usd person_7: prim_name: "Person_7" translation: [-6.98476, -9.47249, 0.0] target: [0, 0, 0] usd_path: People/Characters/male_adult_construction_01_new/male_adult_construction_01_new.usd person_8: prim_name: "Person_8" translation: [-1.63744, -3.43285, 0.0] target: [0, 0, 0] usd_path: People/Characters/male_adult_construction_01_new/male_adult_construction_01_new.usd person_9: prim_name: "Person_9" translation: [6.15617, -8.3114, 0.0] target: [0, 0, 0] usd_path: People/Characters/original_male_adult_construction_05/male_adult_construction_05.usd person_10: prim_name: "Person_10" translation: [5.34416, -7.47814, 0.0] target: [0, 0, 0] usd_path: People/Characters/male_adult_construction_05_new/male_adult_construction_05_new.usd
2,054
YAML
30.136363
96
0.706426
leggedrobotics/viplanner/omniverse/extension/omni.viplanner/data/warehouse/keyword_mapping.yml
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause floor: - SM_Floor1 - SM_Floor2 - SM_Floor3 - SM_Floor4 - SM_Floor5 - SM_Floor6 - groundplane wall: - FuseBox - SM_PillarA - SM_Sign - SM_Wall - S_Barcode bench: - Bench ceiling: - SM_Ceiling - PillarPartA - SM_Beam - SM_Bracket static: - LampCeiling - SM_FloorDecal - SM_FireExtinguisher furniture: - SM_Rack - SM_SignCVer - S_AisleSign - SM_Palette - SM_CardBox - SmallKLT - SM_PushCarta - SM_CratePlastic
617
YAML
12.434782
60
0.645057
leggedrobotics/viplanner/viplanner/depth_reconstruct.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # python import os import cv2 import numpy as np import open3d as o3d import scipy.spatial.transform as tf from tqdm import tqdm # imperative-cost-map from viplanner.config import ReconstructionCfg, VIPlannerSemMetaHandler class DepthReconstruction: """ Reconstruct 3D Map with depth images, assumes the ground truth camera odom is known Config parameters can be set in ReconstructionCfg Expects following datastructure: - env_name - camera_extrinsic.txt (format: x y z qx qy qz qw) - intrinsics.txt (expects ROS CameraInfo format --> P-Matrix) - depth (either png and/ or npy) - xxxx.png (images should be named with 4 digits, e.g. 0000.png, 0001.png, etc.) - xxxx.npy (arrays should be named with 4 digits, e.g. 0000.npy, 0001.npy, etc.) - semantics (optional) - xxxx.png (images should be named with 4 digits, e.g. 0000.png, 0001.png, etc., RGB images) when both depth and semantic images are available, then define sem_suffic and depth_suffix in ReconstructionCfg to differentiate between the two with the following structure: - env_name - camera_extrinsic{depth_suffix}.txt (format: x y z qx qy qz qw) - camera_extrinsic{sem_suffix}.txt (format: x y z qx qy qz qw) - intrinsics.txt (expects ROS CameraInfo format --> P-Matrix) (contains both intrinsics for depth and semantic images) - depth (either png and/ or npy) - xxxx{depth_suffix}.png (images should be named with 4 digits, e.g. 0000.png, 0001.png, etc.) - xxxx{depth_suffix}.npy (arrays should be named with 4 digits, e.g. 0000.npy, 0001.npy, etc.) - semantics (optional) - xxxx{sem_suffix}.png (images should be named with 4 digits, e.g. 0000.png, 0001.png, etc., RGB Images) in the case of high resolution depth images for the reconstruction, the following additional directory is expected: - depth_high_res (either png and/ or npy) - xxxx{depth_suffix}.png (images should be named with 4 digits, e.g. 0000.png, 0001.png, etc.) - xxxx{depth_suffix}.npy (arrays should be named with 4 digits, e.g. 0000.npy, 0001.npy, etc.) """ debug = False def __init__(self, cfg: ReconstructionCfg): # get config self._cfg: ReconstructionCfg = cfg # read camera params and odom self.K_depth: np.ndarray = None self.K_sem: np.ndarray = None self._read_intrinsic() self.extrinsics_depth: np.ndarray = None self.extrinsics_sem: np.ndarray = None self._read_extrinsic() # semantic classes for viplanner self.sem_handler = VIPlannerSemMetaHandler() # control flag if point-cloud has been loaded self._is_constructed = False # variables self._pcd: o3d.geometry.PointCloud = None print("Ready to read depth data.") # public methods def depth_reconstruction(self): # identify start and end image idx for the reconstruction N = len(self.extrinsics_depth) if self._cfg.max_images: self._start_idx = self._cfg.start_idx self._end_idx = min(self._cfg.start_idx + self._cfg.max_images, N) else: self._start_idx = 0 self._end_idx = N if self._cfg.point_cloud_batch_size > self._end_idx - self._start_idx: print( "[WARNING] batch size must be smaller or equal than number of" " images to reconstruct, now set to max value" f" {self._end_idx - self._start_idx}" ) self._cfg.point_cloud_batch_size = self._end_idx - self._start_idx print("total number of images for reconstruction:" f" {int(self._end_idx - self._start_idx)}") # get pixel tensor for reprojection pixels = self._computePixelTensor() # init point-cloud self._pcd = o3d.geometry.PointCloud() # point size (n, 3) first_batch = True # init lists points_all = [] if self._cfg.semantics: sem_map_all = [] for img_counter, img_idx in enumerate( tqdm( range(self._end_idx - self._start_idx), desc="Reconstructing 3D Points", ) ): im = self._load_depth_image(img_idx) extrinsics = self.extrinsics_depth[img_idx + self._start_idx] # project points in world frame rot = tf.Rotation.from_quat(extrinsics[3:]).as_matrix() points = im.reshape(-1, 1) * (rot @ pixels.T).T # filter points with 0 depth --> otherwise obstacles at camera position non_zero_idx = np.where(points.any(axis=1))[0] points_final = points[non_zero_idx] + extrinsics[:3] if self._cfg.semantics and self._cfg.high_res_depth: img_path = os.path.join( self._cfg.get_data_path(), "semantics", str(self._start_idx + img_idx).zfill(4) + self._cfg.sem_suffix + ".png", ) sem_image = cv2.imread(img_path) # load in BGR format sem_image = cv2.cvtColor(sem_image, cv2.COLOR_BGR2RGB) sem_points = sem_image.reshape(-1, 3)[non_zero_idx] points_all.append(points_final) sem_map_all.append(sem_points) elif self._cfg.semantics: sem_annotation, filter_idx = self._get_semantic_image(points_final, img_idx) points_all.append(points_final[filter_idx]) sem_map_all.append(sem_annotation) else: points_all.append(points_final) # update point cloud if img_counter % self._cfg.point_cloud_batch_size == 0: print("updating open3d geometry point cloud with" f" {self._cfg.point_cloud_batch_size} images ...") if first_batch: self._pcd.points = o3d.utility.Vector3dVector(np.vstack(points_all)) if self._cfg.semantics: self._pcd.colors = o3d.utility.Vector3dVector(np.vstack(sem_map_all) / 255.0) first_batch = False else: self._pcd.points.extend(np.vstack(points_all)) if self._cfg.semantics: self._pcd.colors.extend(np.vstack(sem_map_all) / 255.0) # reset buffer lists del points_all points_all = [] if self._cfg.semantics: del sem_map_all sem_map_all = [] # apply downsampling print("downsampling point cloud with voxel size" f" {self._cfg.voxel_size} ...") self._pcd = self._pcd.voxel_down_sample(self._cfg.voxel_size) # add last batch if len(points_all) > 0: print("updating open3d geometry point cloud with last images ...") self._pcd.points.extend(np.vstack(points_all)) points_all = None if self._cfg.semantics: self._pcd.colors.extend(np.vstack(sem_map_all) / 255.0) sem_map_all = None # apply downsampling print(f"downsampling point cloud with voxel size {self._cfg.voxel_size} ...") self._pcd = self._pcd.voxel_down_sample(self._cfg.voxel_size) # update flag self._is_constructed = True print("construction completed.") return def show_pcd(self): if not self._is_constructed: print("no reconstructed cloud") return origin = o3d.geometry.TriangleMesh.create_coordinate_frame( size=1.0, origin=np.min(np.asarray(self._pcd.points), axis=0) ) o3d.visualization.draw_geometries([self._pcd, origin], mesh_show_wireframe=True) # visualize point cloud return def save_pcd(self): if not self._is_constructed: print("save points failed, no reconstructed cloud!") print("save output files to: " + os.path.join(self._cfg.data_dir, self._cfg.env)) # pre-create the folder for the mapping os.makedirs( os.path.join( os.path.join(self._cfg.data_dir, self._cfg.env), "maps", "cloud", ), exist_ok=True, ) os.makedirs( os.path.join(os.path.join(self._cfg.data_dir, self._cfg.env), "maps", "data"), exist_ok=True, ) os.makedirs( os.path.join( os.path.join(self._cfg.data_dir, self._cfg.env), "maps", "params", ), exist_ok=True, ) # save clouds o3d.io.write_point_cloud( os.path.join(self._cfg.data_dir, self._cfg.env, "cloud.ply"), self._pcd, ) # save point cloud print("saved point cloud to ply file.") @property def pcd(self): return self._pcd """helper functions""" def _read_extrinsic(self) -> None: if self._cfg.semantics: extrinsic_path = os.path.join( self._cfg.get_data_path(), "camera_extrinsic" + self._cfg.sem_suffix + ".txt", ) self.extrinsics_sem = np.loadtxt(extrinsic_path, delimiter=",") if self._cfg.high_res_depth: assert self._cfg.semantics, ( "high res depth requires semantic images since depth should be" " recorded with semantic camera" ) self.extrinsics_depth = self.extrinsics_sem else: extrinsic_path = os.path.join( self._cfg.get_data_path(), "camera_extrinsic" + self._cfg.depth_suffix + ".txt", ) self.extrinsics_depth = np.loadtxt(extrinsic_path, delimiter=",") return def _read_intrinsic(self) -> None: intrinsic_path = os.path.join(self._cfg.get_data_path(), "intrinsics.txt") P = np.loadtxt(intrinsic_path, delimiter=",") # assumes ROS P matrix self._intrinsic = list(P) if self._cfg.semantics: self.K_depth = P[0].reshape(3, 4)[:3, :3] self.K_sem = P[1].reshape(3, 4)[:3, :3] else: self.K_depth = P.reshape(3, 4)[:3, :3] if self._cfg.high_res_depth: self.K_depth = self.K_sem return def _load_depth_image(self, idx: int) -> np.ndarray: # get path to images if self._cfg.high_res_depth: dir_path = os.path.join(self._cfg.get_data_path(), "depth_high_res") else: dir_path = os.path.join(self._cfg.get_data_path(), "depth") if os.path.isfile( os.path.join( dir_path, str(idx + self._start_idx).zfill(4) + self._cfg.depth_suffix + ".npy", ) ): img_array = ( np.load( os.path.join( dir_path, str(idx + self._start_idx).zfill(4) + self._cfg.depth_suffix + ".npy", ) ) / self._cfg.depth_scale ) else: img_path = os.path.join( dir_path, str(idx + self._start_idx).zfill(4) + self._cfg.depth_suffix + ".png", ) img_array = cv2.imread(img_path, cv2.IMREAD_ANYDEPTH) / self._cfg.depth_scale img_array[~np.isfinite(img_array)] = 0 return img_array def _computePixelTensor(self): depth_img = self._load_depth_image(0) # get image plane mesh grid pix_u = np.arange(0, depth_img.shape[1]) pix_v = np.arange(0, depth_img.shape[0]) grid = np.meshgrid(pix_u, pix_v) pixels = np.vstack(list(map(np.ravel, grid))).T pixels = np.hstack([pixels, np.ones((len(pixels), 1))]) # add ones for 3D coordinates # transform to camera frame k_inv = np.linalg.inv(self.K_depth) pix_cam_frame = np.matmul(k_inv, pixels.T) # reorder to be in "robotics" axis order (x forward, y left, z up) return pix_cam_frame[[2, 0, 1], :].T * np.array([1, -1, -1]) def _get_semantic_image(self, points, idx): # load semantic image and pose img_path = os.path.join( self._cfg.get_data_path(), "semantics", str(self._start_idx + idx).zfill(4) + self._cfg.sem_suffix + ".png", ) sem_image = cv2.imread(img_path) # loads in bgr order sem_image = cv2.cvtColor(sem_image, cv2.COLOR_BGR2RGB) pose_sem = self.extrinsics_sem[idx + self._cfg.start_idx] # transform points to semantic camera frame points_sem_cam_frame = (tf.Rotation.from_quat(pose_sem[3:]).as_matrix().T @ (points - pose_sem[:3]).T).T # normalize points points_sem_cam_frame_norm = points_sem_cam_frame / points_sem_cam_frame[:, 0][:, np.newaxis] # reorder points be camera convention (z-forward) points_sem_cam_frame_norm = points_sem_cam_frame_norm[:, [1, 2, 0]] * np.array([-1, -1, 1]) # transform points to pixel coordinates pixels = (self.K_sem @ points_sem_cam_frame_norm.T).T # filter points outside of image filter_idx = ( (pixels[:, 0] >= 0) & (pixels[:, 0] < sem_image.shape[1]) & (pixels[:, 1] >= 0) & (pixels[:, 1] < sem_image.shape[0]) ) # get semantic annotation sem_annotation = sem_image[ pixels[filter_idx, 1].astype(int), pixels[filter_idx, 0].astype(int), ] # remove all pixels that have no semantic annotation non_classified_idx = np.all(sem_annotation == self.sem_handler.class_color["static"], axis=1) sem_annotation = sem_annotation[~non_classified_idx] filter_idx[np.where(filter_idx)[0][non_classified_idx]] = False return sem_annotation, filter_idx if __name__ == "__main__": cfg = ReconstructionCfg() # start depth reconstruction depth_constructor = DepthReconstruction(cfg) depth_constructor.depth_reconstruction() depth_constructor.save_pcd() depth_constructor.show_pcd() # EoF
14,567
Python
38.16129
178
0.560102
leggedrobotics/viplanner/viplanner/__init__.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # This line will be programmatically read/write by setup.py. # Leave them at the bottom of this file and don't touch them. __version__ = "0.1"
292
Python
28.299997
61
0.726027
leggedrobotics/viplanner/viplanner/cost_builder.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # imperative-cost-map from viplanner.config import CostMapConfig from viplanner.cost_maps import CostMapPCD, SemCostMap, TsdfCostMap def main(cfg: CostMapConfig, final_viz: bool = True): assert any([cfg.semantics, cfg.geometry]), "no cost map type selected" # create semantic cost map if cfg.semantics: print("============ Creating Semantic Map from cloud ===============") sem_cost_map = SemCostMap(cfg.general, cfg.sem_cost_map, visualize=cfg.visualize) sem_cost_map.pcd_init() data, coord = sem_cost_map.create_costmap() # create tsdf cost map elif cfg.geometry: print("============== Creating tsdf Map from cloud =================") tsdf_cost_map = TsdfCostMap(cfg.general, cfg.tsdf_cost_map) tsdf_cost_map.ReadPointFromFile() data, coord = tsdf_cost_map.CreateTSDFMap() (tsdf_cost_map.VizCloud(tsdf_cost_map.obs_pcd) if cfg.visualize else None) else: raise ValueError("no cost map type selected") # set coords in costmap config cfg.x_start, cfg.y_start = coord # construct final cost map as pcd and save parameters print("======== Generate and Save costmap as Point-Cloud ===========") cost_mapper = CostMapPCD( cfg=cfg, tsdf_array=data[0], viz_points=data[1], ground_array=data[2], load_from_file=False, ) cost_mapper.SaveTSDFMap() if final_viz: cost_mapper.ShowTSDFMap(cost_map=True) return if __name__ == "__main__": cfg = CostMapConfig() main(cfg) # EoF
1,716
Python
30.796296
89
0.630536
leggedrobotics/viplanner/viplanner/train.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # python import torch torch.set_default_dtype(torch.float32) # imperative-planning-learning from viplanner.config import DataCfg, TrainCfg from viplanner.utils.trainer import Trainer if __name__ == "__main__": env_list_combi = [ "2azQ1b91cZZ", # matterport mesh "JeFG25nYj2p", # matterport mesh "Vvot9Ly1tCj", # matterport mesh "town01", # carla mesh "ur6pFq6Qu1A", # matterport mesh "B6ByNegPMKs", # matterport mesh "8WUmhLawc2A", # matterport mesh "town01", # carla mesh "2n8kARJN3HM", # matterport mesh ] carla: TrainCfg = TrainCfg( sem=True, cost_map_name="cost_map_sem", env_list=env_list_combi, test_env_id=8, file_name="combi_more_data", data_cfg=DataCfg( max_goal_distance=10.0, ), n_visualize=128, wb_project="viplanner", ) trainer = Trainer(carla) trainer.train() trainer.test() trainer.save_config() torch.cuda.empty_cache()
1,189
Python
25.444444
60
0.61312
leggedrobotics/viplanner/viplanner/cost_maps/cost_to_pcd.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import argparse import os from typing import Optional, Union import numpy as np import open3d as o3d import pypose as pp import torch import yaml # viplanner from viplanner.config.costmap_cfg import CostMapConfig, Loader torch.set_default_dtype(torch.float32) class CostMapPCD: def __init__( self, cfg: CostMapConfig, tsdf_array: np.ndarray, viz_points: np.ndarray, ground_array: np.ndarray, gpu_id: Optional[int] = 0, load_from_file: Optional[bool] = False, ): # determine device if torch.cuda.is_available() and gpu_id is not None: self.device = torch.device("cuda:" + str(gpu_id)) else: self.device = torch.device("cpu") # args self.cfg: CostMapConfig = cfg self.load_from_file: bool = load_from_file self.tsdf_array: torch.Tensor = torch.tensor(tsdf_array, device=self.device) self.viz_points: np.ndarray = viz_points self.ground_array: torch.Tensor = torch.tensor(ground_array, device=self.device) # init flag self.map_init = False # init pointclouds self.pcd_tsdf = o3d.geometry.PointCloud() self.pcd_viz = o3d.geometry.PointCloud() # execute setup self.num_x: int = 0 self.num_y: int = 0 self.setup() return def setup(self): # expand of cost map self.num_x, self.num_y = self.tsdf_array.shape # visualization points self.pcd_viz.points = o3d.utility.Vector3dVector(self.viz_points) # set cost map self.SetUpCostArray() # update pcd instance xv, yv = np.meshgrid( np.linspace(0, self.num_x * self.cfg.general.resolution, self.num_x), np.linspace(0, self.num_y * self.cfg.general.resolution, self.num_y), indexing="ij", ) T = np.concatenate((np.expand_dims(xv, axis=0), np.expand_dims(yv, axis=0)), axis=0) T = np.concatenate( ( T, np.expand_dims(self.cost_array.cpu().detach().numpy(), axis=0), ), axis=0, ) if self.load_from_file: wps = T.reshape(3, -1).T + np.array([self.cfg.x_start, self.cfg.y_start, 0.0]) self.pcd_tsdf.points = o3d.utility.Vector3dVector(wps) else: self.pcd_tsdf.points = o3d.utility.Vector3dVector(T.reshape(3, -1).T) self.map_init = True return def ShowTSDFMap(self, cost_map=True): # not run with cuda if not self.map_init: print("Error: cannot show map, map has not been init yet!") return if cost_map: o3d.visualization.draw_geometries([self.pcd_tsdf]) else: o3d.visualization.draw_geometries([self.pcd_viz]) return def Pos2Ind(self, points: Union[torch.Tensor, pp.LieTensor]): # points [torch shapes [num_p, 3]] start_xy = torch.tensor( [self.cfg.x_start, self.cfg.y_start], dtype=torch.float64, device=points.device, ).expand(1, 1, -1) if isinstance(points, pp.LieTensor): H = (points.tensor()[:, :, 0:2] - start_xy) / self.cfg.general.resolution else: H = (points[:, :, 0:2] - start_xy) / self.cfg.general.resolution mask = torch.logical_and( (H > 0).all(axis=2), (H < torch.tensor([self.num_x, self.num_y], device=points.device)[None, None, :]).all(axis=2), ) return self.NormInds(H), H[mask, :] def NormInds(self, H): norm_matrix = torch.tensor( [self.num_x / 2.0, self.num_y / 2.0], dtype=torch.float64, device=H.device, ) H = (H - norm_matrix) / norm_matrix return H def DeNormInds(self, NH): norm_matrix = torch.tensor( [self.num_x / 2.0, self.num_y / 2.0], dtype=torch.float64, device=NH.device, ) NH = NH * norm_matrix + norm_matrix return NH def SaveTSDFMap(self): if not self.map_init: print("Error: map has not been init yet!") return # make directories os.makedirs( os.path.join(self.cfg.general.root_path, "maps", "data"), exist_ok=True, ) os.makedirs( os.path.join(self.cfg.general.root_path, "maps", "cloud"), exist_ok=True, ) os.makedirs( os.path.join(self.cfg.general.root_path, "maps", "params"), exist_ok=True, ) map_path = os.path.join( self.cfg.general.root_path, "maps", "data", self.cfg.map_name + "_map.txt", ) ground_path = os.path.join( self.cfg.general.root_path, "maps", "data", self.cfg.map_name + "_ground.txt", ) cloud_path = os.path.join( self.cfg.general.root_path, "maps", "cloud", self.cfg.map_name + "_cloud.txt", ) # save data np.savetxt(map_path, self.tsdf_array.cpu()) np.savetxt(ground_path, self.ground_array.cpu()) np.savetxt(cloud_path, self.viz_points) # save config parameters yaml_path = os.path.join( self.cfg.general.root_path, "maps", "params", f"config_{self.cfg.map_name}.yaml", ) with open(yaml_path, "w+") as file: yaml.dump( vars(self.cfg), file, allow_unicode=True, default_flow_style=False, ) print("TSDF Map saved.") return def SetUpCostArray(self): self.cost_array = self.tsdf_array return @classmethod def ReadTSDFMap(cls, root_path: str, map_name: str, gpu_id: Optional[int] = None): # read config with open(os.path.join(root_path, "maps", "params", f"config_{map_name}.yaml")) as f: cfg: CostMapConfig = CostMapConfig(**yaml.load(f, Loader)) # load data tsdf_array = np.loadtxt(os.path.join(root_path, "maps", "data", map_name + "_map.txt")) viz_points = np.loadtxt(os.path.join(root_path, "maps", "cloud", map_name + "_cloud.txt")) ground_array = np.loadtxt(os.path.join(root_path, "maps", "data", map_name + "_ground.txt")) return cls( cfg=cfg, tsdf_array=tsdf_array, viz_points=viz_points, ground_array=ground_array, gpu_id=gpu_id, load_from_file=True, ) if __name__ == "__main__": # parse environment directory and cost_map name parser = argparse.ArgumentParser(prog="Show Costmap", description="Show Costmap") parser.add_argument( "-e", "--env", type=str, help="path to the environment directory", required=True, ) parser.add_argument("-m", "--map", type=str, help="name of the cost_map", required=True) args = parser.parse_args() # show costmap map = CostMapPCD.ReadTSDFMap(args.env, args.map) map.ShowTSDFMap() # EoF
7,414
Python
30.419491
106
0.545455
leggedrobotics/viplanner/viplanner/cost_maps/__init__.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from .cost_to_pcd import CostMapPCD from .sem_cost_map import SemCostMap from .tsdf_cost_map import TsdfCostMap __all__ = ["TsdfCostMap", "SemCostMap", "CostMapPCD"] # EoF
323
Python
22.142856
60
0.733746
leggedrobotics/viplanner/viplanner/cost_maps/sem_cost_map.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import math import multiprocessing as mp # python import os from functools import partial from typing import Tuple import matplotlib.pyplot as plt import numpy as np import open3d as o3d import scipy # imperative-cost-map from viplanner.config import ( OBSTACLE_LOSS, GeneralCostMapConfig, SemCostMapConfig, VIPlannerSemMetaHandler, ) class SemCostMap: """ Cost Map based on semantic information """ def __init__( self, cfg_general: GeneralCostMapConfig, cfg: SemCostMapConfig, visualize: bool = True, ): self._cfg_general = cfg_general self._cfg_sem = cfg self.visualize = visualize # init VIPlanner Semantic Class Meta Handler self.sem_meta = VIPlannerSemMetaHandler() # cost map init parameters self.pcd: o3d.geometry.PointCloud = None self.pcd_filtered: o3d.geometry.PointCloud = None self.height_map: np.ndarray = None self._num_x: int = 0.0 self._num_y: int = 0.0 self._start_x: float = 0.0 self._start_y: float = 0.0 self._init_done: bool = False # cost map self.grid_cell_loss: np.ndarray = None return def pcd_init(self) -> None: # load pcd and filter it print("COST-MAP INIT START") print("start loading and filtering point cloud from:" f" {self._cfg_general.ply_file}") pc_path = os.path.join(self._cfg_general.root_path, self._cfg_general.ply_file) assert os.path.exists(pc_path), f"point cloud file does not exist: {pc_path}" self.pcd = o3d.io.read_point_cloud(pc_path) # filter for x and y coordinates if any( [ self._cfg_general.x_max, self._cfg_general.x_min, self._cfg_general.y_max, self._cfg_general.y_min, ] ): pts = np.asarray(self.pcd.points) pts_x_idx_upper = ( (pts[:, 0] < self._cfg_general.x_max) if self._cfg_general.x_max is not None else np.ones(pts.shape[0], dtype=bool) ) pts_x_idx_lower = ( (pts[:, 0] > self._cfg_general.x_min) if self._cfg_general.x_min is not None else np.ones(pts.shape[0], dtype=bool) ) pts_y_idx_upper = ( (pts[:, 1] < self._cfg_general.y_max) if self._cfg_general.y_max is not None else np.ones(pts.shape[0], dtype=bool) ) pts_y_idx_lower = ( (pts[:, 1] > self._cfg_general.y_min) if self._cfg_general.y_min is not None else np.ones(pts.shape[0], dtype=bool) ) self.pcd = self.pcd.select_by_index( np.where( np.vstack( ( pts_x_idx_lower, pts_x_idx_upper, pts_y_idx_upper, pts_y_idx_lower, ) ).all(axis=0) )[0] ) # set parameters self._set_map_parameters(self.pcd) # get ground height map if self._cfg_sem.compute_height_map: self.height_map = self._pcd_ground_height_map(self.pcd) else: self.height_map = np.zeros((self._num_x, self._num_y)) # filter point cloud depending on height self.pcd_filtered = self._pcd_filter() # update init flag self._init_done = True print("COST-MAP INIT DONE") return def create_costmap(self) -> Tuple[list, list]: assert self._init_done, "cost map not initialized, call pcd_init() first" print("COST-MAP CREATION START") # get the loss for each grid cell grid_loss = self._get_grid_loss() # make grid loss differentiable grid_loss = self._dense_grid_loss(grid_loss) print("COST-MAP CREATION DONE") return [grid_loss, self.pcd_filtered.points, self.height_map], [ float(self._start_x), float(self._start_y), ] """Helper functions""" def _pcd_ground_height_map(self, pcd: o3d.geometry.PointCloud) -> np.ndarray: "Start building height map" # for each grid cell, get the point with the highest z value pts = np.asarray(pcd.points) pts_grid_idx_red, pts_idx = self._get_unqiue_grid_idx(pts) # ground height of human constructed things (buildings, bench, etc.) should be equal to the ground height of the surrounding terrain/ street # --> classify the selected points and change depending on the class # get colors color = np.asarray(pcd.colors)[pts_idx] * 255.0 # pts to class idx array pts_ground = np.zeros(color.shape[0], dtype=bool) # assign each point to a class color = color.astype(int) for class_name, class_color in self.sem_meta.class_color.items(): pts_idx_of_class = (color == class_color).all(axis=1).nonzero()[0] pts_ground[pts_idx_of_class] = self.sem_meta.class_ground[class_name] # filter outliers pts_ground_idx = pts_idx[pts_ground] if False: pcd_ground = pcd.select_by_index(pts_ground_idx) _, ind = pcd_ground.remove_radius_outlier(nb_points=5, radius=5 * self._cfg_general.resolution) pts_ground_idx = pts_ground_idx[ind] pts_ground_red = np.zeros(pts_grid_idx_red.shape[0], dtype=bool) pts_ground_red[np.where(pts_ground)[0][ind]] = True pts_ground = pts_ground_red # fit kdtree to the points on the ground and assign ground height to all other points based on the nearest neighbor pts_ground_location = pts[pts_ground_idx] ground_kdtree = scipy.spatial.KDTree(pts_ground_location) _, non_ground_neighbor_idx = ground_kdtree.query(pts[pts_idx[~pts_ground]], workers=-1) # init height map and assign ground height to all points on the ground height_pts_ground = np.zeros(pts_grid_idx_red.shape[0]) height_pts_ground[pts_ground] = pts_ground_location[:, 2] height_pts_ground[~pts_ground] = pts_ground_location[non_ground_neighbor_idx, 2] # fill the holes height_map = np.full((self._num_x, self._num_y), np.nan) height_map[pts_grid_idx_red[:, 0], pts_grid_idx_red[:, 1]] = height_pts_ground hole_idx = np.vstack(np.where(np.isnan(height_map))).T kdtree_grid = scipy.spatial.KDTree(pts_grid_idx_red) distance, neighbor_idx = kdtree_grid.query(hole_idx, k=3, workers=-1) weights = distance / np.sum(distance, axis=1)[:, None] height_map[hole_idx[:, 0], hole_idx[:, 1]] = np.sum(height_pts_ground[neighbor_idx] * weights, axis=1) if self.visualize: # visualize the height map plt.imshow(height_map) plt.colorbar() plt.show() print("Done building height map") return height_map def _pcd_filter(self) -> o3d.geometry.PointCloud: """remove points above the robot height, under the ground and filter for outliers""" pts = np.asarray(self.pcd.points) if self.height_map is not None: pts_grid_idx = ( np.round((pts[:, :2] - np.array([self._start_x, self._start_y])) / self._cfg_general.resolution) ).astype(int) pts[:, 2] -= self.height_map[pts_grid_idx[:, 0], pts_grid_idx[:, 1]] pts_ceil_idx = pts[:, 2] < self._cfg_sem.robot_height * self._cfg_sem.robot_height_factor pts_ground_idx = ( pts[:, 2] > self._cfg_sem.ground_height if self._cfg_sem.ground_height is not None else np.ones(pts.shape[0], dtype=bool) ) pcd_height_filtered = self.pcd.select_by_index( np.where(np.vstack((pts_ceil_idx, pts_ground_idx)).all(axis=0))[0] ) # downsampling if self._cfg_sem.downsample: pcd_height_filtered = pcd_height_filtered.voxel_down_sample(self._cfg_general.resolution) print("Voxel Downsampling applied") # remove statistical outliers pcd_filtered, _ = pcd_height_filtered.remove_statistical_outlier( nb_neighbors=self._cfg_sem.nb_neighbors, std_ratio=self._cfg_sem.std_ratio, ) return pcd_filtered def _set_map_parameters(self, pcd: o3d.geometry.PointCloud) -> None: """Define the size and start position of the cost map""" pts = np.asarray(pcd.points) assert pts.shape[0] > 0, "No points received." # get max and minimum of cost map max_x, max_y, _ = np.amax(pts, axis=0) + self._cfg_general.clear_dist min_x, min_y, _ = np.amin(pts, axis=0) - self._cfg_general.clear_dist prev_param = ( self._num_x, self._num_y, round(self._start_x, 3), round(self._start_y, 3), ) self._num_x = np.ceil((max_x - min_x) / self._cfg_general.resolution / 10).astype(int) * 10 self._num_y = np.ceil((max_y - min_y) / self._cfg_general.resolution / 10).astype(int) * 10 self._start_x = (max_x + min_x) / 2.0 - self._num_x / 2.0 * self._cfg_general.resolution self._start_y = (max_y + min_y) / 2.0 - self._num_y / 2.0 * self._cfg_general.resolution print(f"cost map size set to: {self._num_x} x {self._num_y}") if prev_param != ( self._num_x, self._num_y, round(self._start_x, 3), round(self._start_y, 3), ): print("Map parameters changed!") return True return False def _class_mapping(self) -> np.ndarray: # get colors color = np.asarray(self.pcd_filtered.colors) * 255.0 # pts to class idx array pts_class_idx = np.ones(color.shape[0], dtype=int) * -1 # assign each point to a class color = color.astype(int) for class_idx, class_color in enumerate(self.sem_meta.colors): pts_idx_of_class = (color == class_color).all(axis=1).nonzero()[0] pts_class_idx[pts_idx_of_class] = class_idx # identify points with unknown classes --> remove from point cloud known_idx = np.where(pts_class_idx != -1)[0] self.pcd_filtered = self.pcd_filtered.select_by_index(known_idx) print(f"Class of {len(known_idx)} points identified" f" ({len(known_idx) / len(color)} %).") return pts_class_idx[known_idx] @staticmethod def _smoother( pts_idx: np.ndarray, pts_grid: np.ndarray, pts_loss: np.ndarray, conv_crit: float, nb_neigh: int, change_decimal: int, max_iterations: int, ) -> np.ndarray: # get grid idx for each point print(f"Process {mp.current_process().name} started") lock.acquire() # do not access the same memort twice pts_loss_local = pts_loss[pts_idx].copy() pts_grid_local = pts_grid[pts_idx].copy() lock.release() print(f"Process {mp.current_process().name} data loaded") # fit kd-tree to available points kd_tree = scipy.spatial.KDTree(pts_grid_local) pt_dist, pt_neigh_idx = kd_tree.query(pts_grid_local, k=nb_neigh + 1) pt_dist = pt_dist[:, 1:] # filter the point itself pt_neigh_idx = pt_neigh_idx[:, 1:] # filter the point itself # turn distance into weight # pt_dist_weighted = pt_dist * np.linspace(1, 0.01, nb_neigh) pt_dist_inv = 1.0 / pt_dist pt_dist_inv[ ~np.isfinite(pt_dist_inv) ] = 0.0 # set inf to 0 (inf or nan values when closest point at the same position) pt_weights = scipy.special.softmax(pt_dist_inv, axis=1) # smooth losses counter = 0 pts_loss_smooth = pts_loss_local.copy() while counter < max_iterations: counter += 1 pts_loss_smooth = np.sum(pts_loss_smooth[pt_neigh_idx] * pt_weights, axis=1) conv_rate = ( np.sum(np.round(pts_loss_smooth, change_decimal) != np.round(pts_loss_local, change_decimal)) / pts_loss_local.shape[0] ) if conv_rate > conv_crit: print( f"Process {mp.current_process().name} converged with" f" {np.round(conv_rate * 100, decimals=2)} % of changed" f" points after {counter} iterations." ) break return pts_loss_smooth @staticmethod def _smoother_init(l_local: mp.Lock) -> None: global lock lock = l_local return def _get_grid_loss(self) -> np.ndarray: """convert points to grid""" # get class mapping --> execute first because pcd are filtered class_idx = self._class_mapping() # update map parameters --> has to be done after mapping because last step where points are removed changed = self._set_map_parameters(self.pcd_filtered) if changed and self._cfg_sem.compute_height_map: print("Recompute heightmap map due to changed parameters") self.height_map = self._pcd_ground_height_map(self.pcd_filtered) elif changed: self.height_map = np.zeros((self._num_x, self._num_y)) # get points pts = np.asarray(self.pcd_filtered.points) pts_grid = (pts[:, :2] - np.array([self._start_x, self._start_y])) / self._cfg_general.resolution # get loss for each point pts_loss = np.zeros(class_idx.shape[0]) for sem_class in range(len(self.sem_meta.losses)): pts_loss[class_idx == sem_class] = self.sem_meta.losses[sem_class] # split task index num_tasks = self._cfg_sem.nb_tasks if self._cfg_sem.nb_tasks else mp.cpu_count() pts_task_idx = np.array_split(np.random.permutation(pts_loss.shape[0]), num_tasks) # create pool with lock lock_local = mp.Lock() pool = mp.pool.Pool(processes=num_tasks, initializer=self._smoother_init, initargs=(lock_local,)) loss_array = pool.map( partial( self._smoother, pts_grid=pts_grid, pts_loss=pts_loss, conv_crit=self._cfg_sem.conv_crit, nb_neigh=self._cfg_sem.nb_neigh, change_decimal=self._cfg_sem.change_decimal, max_iterations=self._cfg_sem.max_iterations, ), pts_task_idx, ) pool.close() pool.join() # reassemble loss array smooth_loss = np.zeros_like(pts_loss) for process_idx in range(num_tasks): smooth_loss[pts_task_idx[process_idx]] = loss_array[process_idx] if False: # self.visualize: plt.scatter(pts[:, 0], pts[:, 1], c=smooth_loss, cmap="jet") plt.show() return smooth_loss def _distance_based_gradient( self, loss_level_idx: np.ndarray, loss_min: float, loss_max: float, log_scaling: bool, ) -> np.ndarray: grid = np.zeros((self._num_x, self._num_y)) # distance transform grid[loss_level_idx] = 1 grid = scipy.ndimage.distance_transform_edt(grid) # loss scaling if log_scaling: grid[grid > 0.0] = np.log(grid[grid > 0.0] + math.e) else: grid = (grid - np.min(grid)) / (np.max(grid) - np.min(grid)) grid = grid * (loss_max - loss_min) + loss_min return grid[loss_level_idx] def _dense_grid_loss(self, smooth_loss: np.ndarray) -> None: # get grid idx of all classified points pts = np.asarray(self.pcd_filtered.points) pts_grid_idx_red, pts_idx = self._get_unqiue_grid_idx(pts) grid_loss = np.ones((self._num_x, self._num_y)) * -10 grid_loss[pts_grid_idx_red[:, 0], pts_grid_idx_red[:, 1]] = smooth_loss[pts_idx] # get grid idx of all (non-) classified points non_classified_idx = np.where(grid_loss == -10) non_classified_idx = np.vstack((non_classified_idx[0], non_classified_idx[1])).T kdtree = scipy.spatial.KDTree(pts_grid_idx_red) distances, idx = kdtree.query(non_classified_idx, k=1) # only use points within the mesh, i.e. distance to nearest neighbor smaller than 10 cells within_mesh = distances < 10 # assign each point its neighbor loss grid_loss[ non_classified_idx[within_mesh, 0], non_classified_idx[within_mesh, 1], ] = grid_loss[ pts_grid_idx_red[idx[within_mesh], 0], pts_grid_idx_red[idx[within_mesh], 1], ] # apply smoothing for filter missclassified points grid_loss[ non_classified_idx[~within_mesh, 0], non_classified_idx[~within_mesh, 1], ] = OBSTACLE_LOSS grid_loss = scipy.ndimage.gaussian_filter(grid_loss, sigma=self._cfg_sem.sigma_smooth) # get different loss levels loss_levels = np.unique(self.sem_meta.losses) assert round(loss_levels[0], 3) == 0.0, f"Lowest loss level should be 0.0, instead found {loss_levels[0]}." if round(loss_levels[-1], 3) == 1.0: print("WARNING: Highest loss level should be 1.0, instead found" f" {loss_levels[-1]}.") # intended traversable area is best traversed with maximum distance to any area with higher cost # apply distance transform to nearest obstacle to enforce smallest loss when distance is max traversable_idx = np.where( np.round(grid_loss, decimals=self._cfg_sem.round_decimal_traversable) == loss_levels[0] ) grid_loss[traversable_idx] = ( self._distance_based_gradient( traversable_idx, loss_levels[0], abs(self._cfg_sem.negative_reward), False, ) * -1 ) # outside of the mesh is an obstacle and all points over obstacle threshold of grid loss are obstacles obs_within_mesh_idx = np.where(grid_loss > self._cfg_sem.obstacle_threshold * loss_levels[-1]) obs_idx = ( np.hstack((obs_within_mesh_idx[0], non_classified_idx[~within_mesh, 0])), np.hstack((obs_within_mesh_idx[1], non_classified_idx[~within_mesh, 1])), ) grid_loss[obs_idx] = self._distance_based_gradient(obs_idx, None, None, True) # repeat distance transform for intermediate loss levels for i in range(1, len(loss_levels) - 1): loss_level_idx = np.where( np.round(grid_loss, decimals=self._cfg_sem.round_decimal_traversable) == loss_levels[i] ) grid_loss[loss_level_idx] = self._distance_based_gradient( loss_level_idx, loss_levels[i], loss_levels[i + 1], False ) assert not (grid_loss == -10).any(), "There are still grid cells without a loss value." # elevate grid_loss to avoid negative values due to negative reward in area with smallest loss level if np.min(grid_loss) < 0: grid_loss = grid_loss + np.abs(np.min(grid_loss)) # smooth loss again loss_smooth = scipy.ndimage.gaussian_filter(grid_loss, sigma=self._cfg_general.sigma_smooth) # plot grid classes and losses if self.visualize: fig, axs = plt.subplots(2, 2) axs[0, 0].set_title("grid loss") axs[0, 0].imshow(grid_loss, cmap="jet") axs[0, 1].set_title("loss smooth") axs[0, 1].imshow(loss_smooth, cmap="jet") axs[1, 0].set_title("grid loss x-grad") axs[1, 0].imshow( np.log(np.abs(scipy.ndimage.sobel(grid_loss, axis=0, mode="constant")) + math.e) - 1, cmap="jet", ) axs[1, 1].set_title("grid loss y-grad") axs[1, 1].imshow( np.log(np.abs(scipy.ndimage.sobel(grid_loss, axis=1, mode="constant")) + math.e) - 1, cmap="jet", ) plt.show() return loss_smooth def _get_unqiue_grid_idx(self, pts): """ Will select the points that are unique in their grid position and have the highest z location """ pts_grid_idx = ( np.round((pts[:, :2] - np.array([self._start_x, self._start_y])) / self._cfg_general.resolution) ).astype(int) # convert pts_grid_idx to 1d array pts_grid_idx_1d = pts_grid_idx[:, 0] * self._num_x + pts_grid_idx[:, 1] # get index of all points mapped to the same grid location --> take highest value to avoid local minima in e.g. cars # following solution given at: https://stackoverflow.com/questions/30003068/how-to-get-a-list-of-all-indices-of-repeated-elements-in-a-numpy-array # creates an array of indices, sorted by unique element idx_sort = np.argsort(pts_grid_idx_1d) # sorts pts_grid_idx_1d so all unique elements are together pts_grid_idx_1d_sorted = pts_grid_idx_1d[idx_sort] # returns the unique values, the index of the first occurrence of a value, and the count for each element vals, idx_start, count = np.unique(pts_grid_idx_1d_sorted, return_counts=True, return_index=True) # splits the indices into separate arrays pts_grid_location_map = np.split(idx_sort, idx_start[1:]) # filter for points with more than one occurrence pts_grid_location_map = np.array(pts_grid_location_map, dtype=object) pts_grid_location_map_multiple = pts_grid_location_map[count > 1] # get index with maximum z value for all points mapped to the same grid location pts_grid_location_map_multiple_idx = np.array( [ pts_grid_location_map_multiple[idx][np.argmax(pts[pts_idx, 2])] for idx, pts_idx in enumerate(pts_grid_location_map_multiple) ] ) # combine indices to get for every grid location the index of the point with the highest z value grid_idx = np.zeros(len(pts_grid_location_map), dtype=int) grid_idx[count > 1] = pts_grid_location_map_multiple_idx grid_idx[count == 1] = pts_grid_location_map[count == 1] pts_grid_idx_red = pts_grid_idx[grid_idx] return pts_grid_idx_red, grid_idx # EoF
22,808
Python
38.736934
154
0.576026
leggedrobotics/viplanner/viplanner/cost_maps/tsdf_cost_map.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import math # python import os import numpy as np import open3d as o3d from scipy import ndimage from scipy.ndimage import gaussian_filter # imperative-cost-map from viplanner.config import GeneralCostMapConfig, TsdfCostMapConfig class TsdfCostMap: """ Cost Map based on geometric information """ def __init__(self, cfg_general: GeneralCostMapConfig, cfg_tsdf: TsdfCostMapConfig): self._cfg_general = cfg_general self._cfg_tsdf = cfg_tsdf # set init flag self.is_map_ready = False # init point clouds self.obs_pcd = o3d.geometry.PointCloud() self.free_pcd = o3d.geometry.PointCloud() return def UpdatePCDwithPs(self, P_obs, P_free, is_downsample=False): self.obs_pcd.points = o3d.utility.Vector3dVector(P_obs) self.free_pcd.points = o3d.utility.Vector3dVector(P_free) if is_downsample: self.obs_pcd = self.obs_pcd.voxel_down_sample(self._cfg_general.resolution) self.free_pcd = self.free_pcd.voxel_down_sample(self._cfg_general.resolution * 0.85) self.obs_points = np.asarray(self.obs_pcd.points) self.free_points = np.asarray(self.free_pcd.points) print("number of obs points: %d, free points: %d" % (self.obs_points.shape[0], self.free_points.shape[0])) def ReadPointFromFile(self): pcd_load = o3d.io.read_point_cloud(os.path.join(self._cfg_general.root_path, self._cfg_general.ply_file)) obs_p, free_p = self.TerrainAnalysis(np.asarray(pcd_load.points)) self.UpdatePCDwithPs(obs_p, free_p, is_downsample=True) if self._cfg_tsdf.filter_outliers: obs_p = self.FilterCloud(self.obs_points) free_p = self.FilterCloud(self.free_points, outlier_filter=False) self.UpdatePCDwithPs(obs_p, free_p) self.UpdateMapParams() return def TerrainAnalysis(self, input_points): obs_points = np.zeros(input_points.shape) free_poins = np.zeros(input_points.shape) obs_idx = 0 free_idx = 0 # naive approach with z values for p in input_points: p_height = p[2] + self._cfg_tsdf.offset_z if (p_height > self._cfg_tsdf.ground_height * 1.2) and ( p_height < self._cfg_tsdf.robot_height * self._cfg_tsdf.robot_height_factor ): # remove ground and ceiling obs_points[obs_idx, :] = p obs_idx = obs_idx + 1 elif p_height < self._cfg_tsdf.ground_height and p_height > -self._cfg_tsdf.ground_height: free_poins[free_idx, :] = p free_idx = free_idx + 1 return obs_points[:obs_idx, :], free_poins[:free_idx, :] def UpdateMapParams(self): if self.obs_points.shape[0] == 0: print("No points received.") return max_x, max_y, _ = np.amax(self.obs_points, axis=0) + self._cfg_general.clear_dist min_x, min_y, _ = np.amin(self.obs_points, axis=0) - self._cfg_general.clear_dist self.num_x = np.ceil((max_x - min_x) / self._cfg_general.resolution / 10).astype(int) * 10 self.num_y = np.ceil((max_y - min_y) / self._cfg_general.resolution / 10).astype(int) * 10 self.start_x = (max_x + min_x) / 2.0 - self.num_x / 2.0 * self._cfg_general.resolution self.start_y = (max_y + min_y) / 2.0 - self.num_y / 2.0 * self._cfg_general.resolution print("tsdf map initialized, with size: %d, %d" % (self.num_x, self.num_y)) self.is_map_ready = True def CreateTSDFMap(self): if not self.is_map_ready: raise ValueError("create tsdf map fails, no points received.") free_map = np.ones([self.num_x, self.num_y]) obs_map = np.zeros([self.num_x, self.num_y]) free_I = self.IndexArrayOfPs(self.free_points) obs_I = self.IndexArrayOfPs(self.obs_points) # create free place map for i in obs_I: obs_map[i[0], i[1]] = 1.0 obs_map = gaussian_filter(obs_map, sigma=self._cfg_tsdf.sigma_expand) for i in free_I: if i[0] < self.num_x and i[1] < self.num_y: free_map[i[0], i[1]] = 0 free_map = gaussian_filter(free_map, sigma=self._cfg_tsdf.sigma_expand) free_map[free_map < self._cfg_tsdf.free_space_threshold] = 0 # assign obstacles free_map[obs_map > self._cfg_tsdf.obstacle_threshold] = 1.0 print("occupancy map generation completed.") # Distance Transform tsdf_array = ndimage.distance_transform_edt(free_map) tsdf_array[tsdf_array > 0.0] = np.log(tsdf_array[tsdf_array > 0.0] + math.e) tsdf_array = gaussian_filter(tsdf_array, sigma=self._cfg_general.sigma_smooth) viz_points = np.concatenate((self.obs_points, self.free_points), axis=0) # TODO: Using true terrain analysis module ground_array = np.ones([self.num_x, self.num_y]) * 0.0 return [tsdf_array, viz_points, ground_array], [ float(self.start_x), float(self.start_y), ] def IndexArrayOfPs(self, points): indexes = points[:, :2] - np.array([self.start_x, self.start_y]) indexes = (np.round(indexes / self._cfg_general.resolution)).astype(int) return indexes def FilterCloud(self, points, outlier_filter=True): # crop points if any( [ self._cfg_general.x_max, self._cfg_general.x_min, self._cfg_general.y_max, self._cfg_general.y_min, ] ): points_x_idx_upper = ( (points[:, 0] < self._cfg_general.x_max) if self._cfg_general.x_max is not None else np.ones(points.shape[0], dtype=bool) ) points_x_idx_lower = ( (points[:, 0] > self._cfg_general.x_min) if self._cfg_general.x_min is not None else np.ones(points.shape[0], dtype=bool) ) points_y_idx_upper = ( (points[:, 1] < self._cfg_general.y_max) if self._cfg_general.y_max is not None else np.ones(points.shape[0], dtype=bool) ) points_y_idx_lower = ( (points[:, 1] > self._cfg_general.y_min) if self._cfg_general.y_min is not None else np.ones(points.shape[0], dtype=bool) ) points = points[ np.vstack( ( points_x_idx_lower, points_x_idx_upper, points_y_idx_upper, points_y_idx_lower, ) ).all(axis=0) ] if outlier_filter: # Filter outlier in points pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points) cl, _ = pcd.remove_statistical_outlier( nb_neighbors=self._cfg_tsdf.nb_neighbors, std_ratio=self._cfg_tsdf.std_ratio, ) points = np.asarray(cl.points) return points def VizCloud(self, pcd): o3d.visualization.draw_geometries([pcd]) # visualize point cloud # EoF
7,467
Python
38.723404
114
0.569707
leggedrobotics/viplanner/viplanner/plannernet/PlannerNet.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import torch.nn as nn def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation, ) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__( self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, ): super().__init__() if groups != 1 or base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.relu(out) out = self.conv2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class PlannerNet(nn.Module): def __init__( self, layers, block=BasicBlock, groups=1, width_per_group=64, replace_stride_with_dilation=None, ) -> None: super().__init__() self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError( "replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation) ) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer( block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0], ) self.layer3 = self._make_layer( block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1], ) self.layer4 = self._make_layer( block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2], ) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), ) layers = [] layers.append( block( self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, ) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, ) ) return nn.Sequential(*layers) def _forward_impl(self, x): # See note [TorchScript super()] x = self.conv1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def forward(self, x): return self._forward_impl(x)
4,857
Python
27.080925
96
0.53078
leggedrobotics/viplanner/viplanner/plannernet/__init__.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from .autoencoder import AutoEncoder, DualAutoEncoder from .rgb_encoder import PRE_TRAIN_POSSIBLE, get_m2f_cfg __all__ = [ "AutoEncoder", "DualAutoEncoder", "get_m2f_cfg", "PRE_TRAIN_POSSIBLE", ] # EoF
369
Python
19.555554
60
0.699187
leggedrobotics/viplanner/viplanner/plannernet/autoencoder.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from typing import Optional import torch import torch.nn as nn from viplanner.config import TrainCfg # visual-imperative-planner from .PlannerNet import PlannerNet from .rgb_encoder import PRE_TRAIN_POSSIBLE, RGBEncoder class AutoEncoder(nn.Module): def __init__(self, encoder_channel=64, k=5): super().__init__() self.encoder = PlannerNet(layers=[2, 2, 2, 2]) self.decoder = Decoder(512, encoder_channel, k) def forward(self, x: torch.Tensor, goal: torch.Tensor): x = x.expand(-1, 3, -1, -1) x = self.encoder(x) x, c = self.decoder(x, goal) return x, c class DualAutoEncoder(nn.Module): def __init__( self, train_cfg: TrainCfg, m2f_cfg=None, weight_path: Optional[str] = None, ): super().__init__() self.encoder_depth = PlannerNet(layers=[2, 2, 2, 2]) if train_cfg.rgb and train_cfg.pre_train_sem and PRE_TRAIN_POSSIBLE: self.encoder_sem = RGBEncoder(m2f_cfg, weight_path, freeze=train_cfg.pre_train_freeze) else: self.encoder_sem = PlannerNet(layers=[2, 2, 2, 2]) if train_cfg.decoder_small: self.decoder = DecoderS(1024, train_cfg.in_channel, train_cfg.knodes) else: self.decoder = Decoder(1024, train_cfg.in_channel, train_cfg.knodes) return def forward(self, x_depth: torch.Tensor, x_sem: torch.Tensor, goal: torch.Tensor): # encode depth x_depth = x_depth.expand(-1, 3, -1, -1) x_depth = self.encoder_depth(x_depth) # encode sem x_sem = self.encoder_sem(x_sem) # concat x = torch.cat((x_depth, x_sem), dim=1) # x.size = (N, 1024, 12, 20) # decode x, c = self.decoder(x, goal) return x, c class Decoder(nn.Module): def __init__(self, in_channels, goal_channels, k=5): super().__init__() self.k = k self.relu = nn.ReLU(inplace=True) self.fg = nn.Linear(3, goal_channels) self.sigmoid = nn.Sigmoid() self.conv1 = nn.Conv2d( (in_channels + goal_channels), 512, kernel_size=5, stride=1, padding=1, ) self.conv2 = nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=0) self.fc1 = nn.Linear(256 * 128, 1024) self.fc2 = nn.Linear(1024, 512) self.fc3 = nn.Linear(512, k * 3) self.frc1 = nn.Linear(1024, 128) self.frc2 = nn.Linear(128, 1) def forward(self, x, goal): # compute goal encoding goal = self.fg(goal[:, 0:3]) goal = goal[:, :, None, None].expand(-1, -1, x.shape[2], x.shape[3]) # cat x with goal in channel dim x = torch.cat((x, goal), dim=1) # compute x x = self.relu(self.conv1(x)) # size = (N, 512, x.H/32, x.W/32) x = self.relu(self.conv2(x)) # size = (N, 512, x.H/60, x.W/60) x = torch.flatten(x, 1) f = self.relu(self.fc1(x)) x = self.relu(self.fc2(f)) x = self.fc3(x) x = x.reshape(-1, self.k, 3) c = self.relu(self.frc1(f)) c = self.sigmoid(self.frc2(c)) return x, c class DecoderS(nn.Module): def __init__(self, in_channels, goal_channels, k=5): super().__init__() self.k = k self.relu = nn.ReLU(inplace=True) self.fg = nn.Linear(3, goal_channels) self.sigmoid = nn.Sigmoid() self.conv1 = nn.Conv2d( (in_channels + goal_channels), 512, kernel_size=5, stride=1, padding=1, ) self.conv2 = nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=0) self.conv3 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=0) self.conv4 = nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=0) self.fc1 = nn.Linear(64 * 48, 256) # --> in that setting 33 million parameters self.fc2 = nn.Linear(256, k * 3) self.frc1 = nn.Linear(256, 1) def forward(self, x, goal): # compute goal encoding goal = self.fg(goal[:, 0:3]) goal = goal[:, :, None, None].expand(-1, -1, x.shape[2], x.shape[3]) # cat x with goal in channel dim x = torch.cat((x, goal), dim=1) # x.size = (N, 1024+16, 12, 20) # compute x x = self.relu(self.conv1(x)) # size = (N, 512, x.H/32, x.W/32) --> (N, 512, 10, 18), x = self.relu(self.conv2(x)) # size = (N, 512, x.H/60, x.W/60) --> (N, 256, 8, 16) x = self.relu(self.conv3(x)) # size = (N, 512, x.H/90, x.W/90) --> (N, 128, 6, 14) x = self.relu(self.conv4(x)) # size = (N, 512, x.H/120, x.W/120) --> (N, 64, 4, 12) x = torch.flatten(x, 1) f = self.relu(self.fc1(x)) x = self.fc2(f) x = x.reshape(-1, self.k, 3) c = self.sigmoid(self.frc1(f)) return x, c # EoF
5,063
Python
30.65
98
0.542366
leggedrobotics/viplanner/viplanner/plannernet/rgb_encoder.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import argparse import pickle from typing import Optional import torch import torch.nn as nn # detectron2 and mask2former (used to load pre-trained models from Mask2Former) try: from detectron2.config import get_cfg from detectron2.modeling.backbone import build_resnet_backbone from detectron2.projects.deeplab import add_deeplab_config PRE_TRAIN_POSSIBLE = True except ImportError: PRE_TRAIN_POSSIBLE = False print("[Warning] Pre-trained ResNet50 models cannot be used since detectron2" " not found") try: from viplanner.third_party.mask2former.mask2former import add_maskformer2_config except ImportError: PRE_TRAIN_POSSIBLE = False print("[Warning] Pre-trained ResNet50 models cannot be used since" " mask2former not found") def get_m2f_cfg(cfg_path: str): # -> CfgNode: # load config from file cfg = get_cfg() add_deeplab_config(cfg) add_maskformer2_config(cfg) cfg.merge_from_file(cfg_path) cfg.freeze() return cfg class RGBEncoder(nn.Module): def __init__(self, cfg, weight_path: Optional[str] = None, freeze: bool = True) -> None: super().__init__() # load pre-trained resnet input_shape = argparse.Namespace() input_shape.channels = 3 self.backbone = build_resnet_backbone(cfg, input_shape) # load weights if weight_path is not None: with open(weight_path, "rb") as file: model_file = pickle.load(file, encoding="latin1") model_file["model"] = {k.replace("backbone.", ""): torch.tensor(v) for k, v in model_file["model"].items()} missing_keys, unexpected_keys = self.backbone.load_state_dict(model_file["model"], strict=False) if len(missing_keys) != 0: print(f"[WARNING] Missing keys: {missing_keys}") print(f"[WARNING] Unexpected keys: {unexpected_keys}") print(f"[INFO] Loaded pre-trained backbone from {weight_path}") # freeze network if freeze: for param in self.backbone.parameters(): param.requires_grad = False # layers to get correct output shape --> modifiable self.conv1 = nn.Conv2d(2048, 512, kernel_size=3, stride=1, padding=1) return def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.backbone(x)["res5"] # size = (N, 2048, 12, 20) (height and width same as ResNet18) x = self.conv1(x) # size = (N, 512, 12, 20) return x # EoF
2,659
Python
31.839506
119
0.647612
leggedrobotics/viplanner/viplanner/traj_cost_opt/traj_opt.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import torch torch.set_default_dtype(torch.float32) class CubicSplineTorch: # Reference: https://stackoverflow.com/questions/61616810/how-to-do-cubic-spline-interpolation-and-integration-in-pytorch def __init__(self): self.init_m = torch.tensor([1.0, 0.0, 0.0], dtype=torch.float32) def h_poly(self, t): alpha = torch.arange(4, device=t.device, dtype=t.dtype) tt = t[:, None, :] ** alpha[None, :, None] A = torch.tensor( [[1, 0, -3, 2], [0, 1, -2, 1], [0, 0, 3, -2], [0, 0, -1, 1]], dtype=t.dtype, device=t.device, ) return A @ tt def interp(self, x, y, xs): m = (y[:, 1:, :] - y[:, :-1, :]) / torch.unsqueeze(x[:, 1:] - x[:, :-1], 2) m = torch.cat([m[:, None, 0], (m[:, 1:] + m[:, :-1]) / 2, m[:, None, -1]], 1) idxs = torch.searchsorted(x[0, 1:], xs[0, :]) dx = x[:, idxs + 1] - x[:, idxs] hh = self.h_poly((xs - x[:, idxs]) / dx) hh = torch.transpose(hh, 1, 2) out = hh[:, :, 0:1] * y[:, idxs, :] out = out + hh[:, :, 1:2] * m[:, idxs] * dx[:, :, None] out = out + hh[:, :, 2:3] * y[:, idxs + 1, :] out = out + hh[:, :, 3:4] * m[:, idxs + 1] * dx[:, :, None] return out class TrajOpt: debug = False def __init__(self): self.cs_interp = CubicSplineTorch() def TrajGeneratorFromPFreeRot(self, preds, step): # Points is in se3 batch_size, num_p, dims = preds.shape points_preds = torch.cat( ( torch.zeros( batch_size, 1, dims, device=preds.device, requires_grad=preds.requires_grad, ), preds, ), axis=1, ) num_p = num_p + 1 xs = torch.arange(0, num_p - 1 + step, step, device=preds.device) xs = xs.repeat(batch_size, 1) x = torch.arange(num_p, device=preds.device, dtype=preds.dtype) x = x.repeat(batch_size, 1) waypoints = self.cs_interp.interp(x, points_preds, xs) if self.debug: import matplotlib.pyplot as plt # for plotting plt.scatter( points_preds[0, :, 0].cpu().numpy(), points_preds[0, :, 1].cpu().numpy(), label="Samples", color="purple", ) plt.plot( waypoints[0, :, 0].cpu().numpy(), waypoints[0, :, 1].cpu().numpy(), label="Interpolated curve", color="blue", ) plt.legend() plt.show() return waypoints # R3 def interpolate_waypoints(self, preds): shape = list(preds.shape) out_shape = [50, shape[2]] waypoints = torch.nn.functional.interpolate( preds.unsqueeze(1), size=tuple(out_shape), mode="bilinear", align_corners=True, ) waypoints = waypoints.squeeze(1) if self.debug: import matplotlib.pyplot as plt # for plotting plt.scatter( preds[0, :, 0].detach().cpu().numpy(), preds[0, :, 1].detach().cpu().numpy(), label="Samples", color="purple", ) plt.plot( waypoints[0, :, 0].detach().cpu().numpy(), waypoints[0, :, 1].detach().cpu().numpy(), label="Interpolated curve", color="blue", ) plt.legend() plt.show() return waypoints
3,829
Python
30.916666
125
0.464351
leggedrobotics/viplanner/viplanner/traj_cost_opt/traj_cost.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from typing import Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F torch.set_default_dtype(torch.float32) from viplanner.cost_maps import CostMapPCD # visual-imperative-planning from .traj_opt import TrajOpt try: import pypose as pp # only used for training import wandb # only used for training except ModuleNotFoundError or ImportError: # eval in issac sim # TODO: check if all can be installed in Isaac Sim print("[Warning] pypose or wandb not found, only use for evaluation") class TrajCost: debug = False def __init__( self, gpu_id: Optional[int] = 0, log_data: bool = False, w_obs: float = 0.25, w_height: float = 1.0, w_motion: float = 1.5, w_goal: float = 2.0, obstalce_thread: float = 0.75, robot_width: float = 0.6, robot_max_moving_distance: float = 0.15, ) -> None: # init map and optimizer self.gpu_id = gpu_id self.cost_map: CostMapPCD = None self.opt = TrajOpt() self.is_map = False self.neg_reward: torch.Tensor = None # loss weights self.w_obs = w_obs self.w_height = w_height self.w_motion = w_motion self.w_goal = w_goal # fear label threshold value self.obstalce_thread = obstalce_thread # footprint radius self.robot_width = robot_width self.robot_max_moving_distance = robot_max_moving_distance # logging self.log_data = log_data return @staticmethod def TransformPoints(odom, points): batch_size, num_p, _ = points.shape world_ps = pp.identity_SE3( batch_size, num_p, device=points.device, requires_grad=points.requires_grad, ) world_ps.tensor()[:, :, 0:3] = points world_ps = pp.SE3(odom[:, None, :]) @ pp.SE3(world_ps) return world_ps def SetMap(self, root_path, map_name): self.cost_map = CostMapPCD.ReadTSDFMap(root_path, map_name, self.gpu_id) self.is_map = True # get negative reward of cost-map self.neg_reward = torch.zeros(7, device=self.cost_map.device) if self.cost_map.cfg.semantics: self.neg_reward[2] = self.cost_map.cfg.sem_cost_map.negative_reward return def CostofTraj( self, waypoints: torch.Tensor, odom: torch.Tensor, goal: torch.Tensor, fear: torch.Tensor, log_step: int, ahead_dist: float, dataset: str = "train", ): batch_size, num_p, _ = waypoints.shape assert self.is_map, "Map has to be set for cost calculation" world_ps = self.TransformPoints(odom, waypoints).tensor() # Obstacle loss oloss_M = self._compute_oloss(world_ps, batch_size) oloss = torch.mean(torch.sum(oloss_M, axis=1)) # Terrian Height loss norm_inds, _ = self.cost_map.Pos2Ind(world_ps) height_grid = self.cost_map.ground_array.T.expand(batch_size, 1, -1, -1) hloss_M = ( F.grid_sample( height_grid, norm_inds[:, None, :, :], mode="bicubic", padding_mode="border", align_corners=False, ) .squeeze(1) .squeeze(1) ) hloss_M = torch.abs(world_ps[:, :, 2] - odom[:, None, 2] - hloss_M).to( torch.float32 ) # world_ps - odom to have them on the ground to be comparable to the height map hloss_M = torch.sum(hloss_M, axis=1) hloss = torch.mean(hloss_M) # Goal Cost - Control Cost gloss_M = torch.norm(goal[:, :3] - waypoints[:, -1, :], dim=1) # gloss = torch.mean(gloss_M) gloss = torch.mean(torch.log(gloss_M + 1.0)) # Moving Loss - punish staying desired_wp = self.opt.TrajGeneratorFromPFreeRot(goal[:, None, 0:3], step=1.0 / (num_p - 1)) desired_ds = torch.norm(desired_wp[:, 1:num_p, :] - desired_wp[:, 0 : num_p - 1, :], dim=2) wp_ds = torch.norm(waypoints[:, 1:num_p, :] - waypoints[:, 0 : num_p - 1, :], dim=2) mloss = torch.abs(desired_ds - wp_ds) mloss = torch.sum(mloss, axis=1) mloss = torch.mean(mloss) # Complete Trajectory Loss trajectory_loss = self.w_obs * oloss + self.w_height * hloss + self.w_motion * mloss + self.w_goal * gloss # Fear labels goal_dists = torch.cumsum(wp_ds, dim=1, dtype=wp_ds.dtype) goal_dists = torch.vstack([goal_dists] * 3) floss_M = torch.clone(oloss_M) floss_M[goal_dists > ahead_dist] = 0.0 fear_labels = torch.max(floss_M, 1, keepdim=True)[0] # fear_labels = nn.Sigmoid()(fear_labels-obstalce_thread) fear_labels = fear_labels > self.obstalce_thread + self.neg_reward[2] fear_labels = torch.any(fear_labels.reshape(3, batch_size).T, dim=1, keepdim=True).to(torch.float32) # Fear loss collision_probabilty_loss = nn.BCELoss()(fear, fear_labels.float()) # log if self.log_data: try: wandb.log( {f"Height Loss {dataset}": self.w_height * hloss}, step=log_step, ) wandb.log( {f"Obstacle Loss {dataset}": self.w_obs * oloss}, step=log_step, ) wandb.log( {f"Goal Loss {dataset}": self.w_goal * gloss}, step=log_step, ) wandb.log( {f"Motion Loss {dataset}": self.w_motion * mloss}, step=log_step, ) wandb.log( {f"Trajectory Loss {dataset}": trajectory_loss}, step=log_step, ) wandb.log( {f"Collision Loss {dataset}": collision_probabilty_loss}, step=log_step, ) except: # noqa: E722 print("wandb log failed") # TODO: kinodynamics cost return collision_probabilty_loss + trajectory_loss def obs_cost_eval(self, odom: torch.Tensor, waypoints: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """Compute Obstacle Loss for eval_sim_static script! Args: odom (torch.Tensor): Current odometry waypoints (torch.Tensor): waypoints in camera frame Returns: tuple: mean obstacle loss for each trajectory, max obstacle loss for each trajectory """ assert self.is_map, "Map has to be loaded for evaluation" # compute obstacle loss world_ps = self.TransformPoints(odom, waypoints).tensor() oloss_M = self._compute_oloss(world_ps, waypoints.shape[0]) # account for negative reward oloss_M = oloss_M - self.neg_reward[2] oloss_M[oloss_M < 0] = 0.0 oloss_M = oloss_M.reshape(-1, waypoints.shape[0], oloss_M.shape[1]) return torch.mean(oloss_M, axis=[0, 2]), torch.amax(oloss_M, dim=[0, 2]) def cost_of_recorded_path( self, waypoints: torch.Tensor, ) -> torch.Tensor: """Cost of recorded path - for evaluation only Args: waypoints (torch.Tensor): Path coordinates in world frame """ assert self.is_map, "Map has to be loaded for evaluation" oloss_M = self._compute_oloss(waypoints.unsqueeze(0), 1) return torch.max(oloss_M) def _compute_oloss(self, world_ps, batch_size): if world_ps.shape[1] == 1: # special case when evaluating cost of a recorded path world_ps_inflated = world_ps else: # include robot dimension as square tangent = world_ps[:, 1:, 0:2] - world_ps[:, :-1, 0:2] # get tangent vector tangent = tangent / torch.norm(tangent, dim=2, keepdim=True) # normalize normals vector normals = tangent[:, :, [1, 0]] * torch.tensor( [-1, 1], dtype=torch.float32, device=world_ps.device ) # get normal vector world_ps_inflated = torch.vstack([world_ps[:, :-1, :]] * 3) # duplicate points world_ps_inflated[:, :, 0:2] = torch.vstack( [ # movement corners world_ps[:, :-1, 0:2] + normals * self.robot_width / 2, # front_right world_ps[:, :-1, 0:2], # center world_ps[:, :-1, 0:2] - normals * self.robot_width / 2, # front_left ] ) norm_inds, cost_idx = self.cost_map.Pos2Ind(world_ps_inflated) # Obstacle Cost cost_grid = self.cost_map.cost_array.T.expand(world_ps_inflated.shape[0], 1, -1, -1) oloss_M = ( F.grid_sample( cost_grid, norm_inds[:, None, :, :], mode="bicubic", padding_mode="border", align_corners=False, ) .squeeze(1) .squeeze(1) ) oloss_M = oloss_M.to(torch.float32) if self.debug: # add negative reward for cost-map world_ps_inflated = world_ps_inflated + self.neg_reward import numpy as np # indexes in the cost map start_xy = torch.tensor( [self.cost_map.cfg.x_start, self.cost_map.cfg.y_start], dtype=torch.float64, device=world_ps_inflated.device, ).expand(1, 1, -1) H = (world_ps_inflated[:, :, 0:2] - start_xy) / self.cost_map.cfg.general.resolution cost_values = self.cost_map.cost_array[ H[[0, batch_size, batch_size * 2], :, 0].reshape(-1).detach().cpu().numpy().astype(np.int64), H[[0, batch_size, batch_size * 2], :, 1].reshape(-1).detach().cpu().numpy().astype(np.int64), ] import matplotlib.pyplot as plt _, (ax1, ax2, ax3) = plt.subplots(1, 3) sc1 = ax1.scatter( world_ps_inflated[[0, batch_size, batch_size * 2], :, 0].reshape(-1).detach().cpu().numpy(), world_ps_inflated[[0, batch_size, batch_size * 2], :, 1].reshape(-1).detach().cpu().numpy(), c=oloss_M[[0, batch_size, batch_size * 2]].reshape(-1).detach().cpu().numpy(), cmap="rainbow", vmin=0, vmax=torch.max(cost_grid).item(), ) ax1.set_aspect("equal", adjustable="box") ax2.scatter( H[[0, batch_size, batch_size * 2], :, 0].reshape(-1).detach().cpu().numpy(), H[[0, batch_size, batch_size * 2], :, 1].reshape(-1).detach().cpu().numpy(), c=cost_values.cpu().numpy(), cmap="rainbow", vmin=0, vmax=torch.max(cost_grid).item(), ) ax2.set_aspect("equal", adjustable="box") cost_array = self.cost_map.cost_array.cpu().numpy() max_cost = torch.max(self.cost_map.cost_array).item() scale_factor = [1.4, 1.8] for idx, run_idx in enumerate([0, batch_size, batch_size * 2]): _, cost_idx = self.cost_map.Pos2Ind(world_ps_inflated[run_idx, :, :].unsqueeze(0)) cost_array[ cost_idx.to(torch.int32).cpu().numpy()[:, 0], cost_idx.to(torch.int32).cpu().numpy()[:, 1], ] = ( max_cost * scale_factor[idx] ) ax3.imshow(cost_array) plt.figure() plt.title("cost_map") plt.imshow(cost_array) import open3d as o3d pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector( world_ps_inflated[[0, batch_size, batch_size * 2], :, :3].reshape(-1, 3).detach().cpu().numpy() ) pcd.colors = o3d.utility.Vector3dVector( sc1.to_rgba(oloss_M[[0, batch_size, batch_size * 2]].reshape(-1).detach().cpu().numpy())[:, :3] ) # pcd.colors = o3d.utility.Vector3dVector(sc2.to_rgba(cost_values[0].cpu().numpy())[:, :3]) o3d.visualization.draw_geometries([self.cost_map.pcd_tsdf, pcd]) return oloss_M # EoF
12,602
Python
36.846847
115
0.532058
leggedrobotics/viplanner/viplanner/traj_cost_opt/__init__.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from .traj_opt import CubicSplineTorch, TrajOpt # for deployment in omniverse, pypose module is not available try: import pypose as pp from .traj_cost import TrajCost from .traj_viz import TrajViz __all__ = ["TrajCost", "TrajOpt", "TrajViz", "CubicSplineTorch"] except ModuleNotFoundError: __all__ = ["TrajOpt", "CubicSplineTorch"] # EoF
511
Python
23.380951
68
0.710372
leggedrobotics/viplanner/viplanner/traj_cost_opt/traj_viz.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # python import copy from typing import Optional import cv2 import matplotlib.pyplot as plt import numpy as np import open3d as o3d import open3d.visualization.rendering as rendering import pypose as pp import scipy.spatial.transform as tf import torch # visual-planning-learning from viplanner.cost_maps import CostMapPCD from .traj_cost import TrajCost class TrajViz: def __init__( self, intrinsics: np.ndarray, cam_resolution: tuple = (360, 640), camera_tilt: float = 0.0, cost_map: Optional[CostMapPCD] = None, ): # get parameters self._cam_resolution = cam_resolution self._intrinsics = intrinsics self._cost_map = cost_map self._camera_tilt = camera_tilt # init camera self.set_camera() def set_camera(self): self.camera = o3d.camera.PinholeCameraIntrinsic( self._cam_resolution[1], # width self._cam_resolution[0], # height self._intrinsics[0, 0], # fx self._intrinsics[1, 1], # fy self._intrinsics[0, 2], # cx (width/2) self._intrinsics[1, 2], # cy (height/2) ) return def VizTrajectory( self, preds: torch.Tensor, waypoints: torch.Tensor, odom: torch.Tensor, goal: torch.Tensor, fear: torch.Tensor, augment_viz: torch.Tensor, cost_map: bool = True, visual_height: float = 0.5, mesh_size: float = 0.5, fov_angle: float = 0.0, ) -> None: """Visualize the trajectory within the costmap Args: preds (torch.Tensor): predicted keypoints waypoints (torch.Tensor): waypoints odom (torch.Tensor): odom tensor goal (torch.Tensor): goal tensor fear (torch.Tensor): if trajectory is risky augment_viz (torch.Tensor): if input has been augmented cost_map (bool, optional): visualize costmap. Defaults to True. visual_height (float, optional): visual height of the keypoints. Defaults to 0.5. mesh_size (float, optional): size of the mesh. Defaults to 0.5. fov_angle (float, optional): field of view angle. Defaults to 0.0. """ # transform to map frame if not isinstance(self._cost_map, CostMapPCD): print("Cost map is missing.") return batch_size = len(waypoints) # transform to world frame preds_ws = TrajCost.TransformPoints(odom, preds).tensor().cpu().detach().numpy() wp_ws = TrajCost.TransformPoints(odom, waypoints).tensor().cpu().detach().numpy() goal_ws = pp.SE3(odom) @ pp.SE3(goal) # convert to positions goal_ws = goal_ws.tensor()[:, 0:3].numpy() visual_list = [] if cost_map: visual_list.append(self._cost_map.pcd_tsdf) else: visual_list.append(self._cost_map.pcd_viz) visual_height = visual_height / 5.0 # visualize and trajs traj_pcd = o3d.geometry.PointCloud() wp_ws = np.concatenate(wp_ws, axis=0) wp_ws[:, 2] = wp_ws[:, 2] + visual_height traj_pcd.points = o3d.utility.Vector3dVector(wp_ws[:, 0:3]) traj_pcd.paint_uniform_color([0.99, 0.1, 0.1]) visual_list.append(traj_pcd) # start and goal marks mesh_sphere = o3d.geometry.TriangleMesh.create_sphere(mesh_size / 1.5) # start points mesh_sphere_augment = o3d.geometry.TriangleMesh.create_sphere(mesh_size / 1.5) # start points small_sphere = o3d.geometry.TriangleMesh.create_sphere(mesh_size / 3.0) # successful trajectory points small_sphere_fear = o3d.geometry.TriangleMesh.create_sphere(mesh_size / 3.0) # unsuccessful trajectory points mesh_box = o3d.geometry.TriangleMesh.create_box(mesh_size, mesh_size, mesh_size) # end points # set mesh colors mesh_box.paint_uniform_color([1.0, 0.64, 0.0]) small_sphere.paint_uniform_color([0.4, 1.0, 0.1]) small_sphere_fear.paint_uniform_color([1.0, 0.4, 0.1]) mesh_sphere_augment.paint_uniform_color([0.0, 0.0, 1.0]) # field of view visualization fov_vis_length = 0.75 # length of the fov visualization plane in meters fov_vis_pt_right = pp.SE3(odom) @ pp.SE3( [ fov_vis_length * np.cos(fov_angle / 2), fov_vis_length * np.sin(fov_angle / 2), 0, 0, 0, 0, 1, ] ) fov_vis_pt_left = pp.SE3(odom) @ pp.SE3( [ fov_vis_length * np.cos(fov_angle / 2), -fov_vis_length * np.sin(fov_angle / 2), 0, 0, 0, 0, 1, ] ) fov_vis_pt_right = fov_vis_pt_right.numpy()[:, 0:3] fov_vis_pt_right[:, 2] += visual_height fov_vis_pt_left = fov_vis_pt_left.numpy()[:, 0:3] fov_vis_pt_left[:, 2] += visual_height lines = [] points = [] for i in range(batch_size): lines.append([2 * i, 2 * i + 1]) gp = goal_ws[i, :] op = odom.numpy()[i, :] op[2] = op[2] + visual_height gp[2] = gp[2] + visual_height points.append(gp[:3].tolist()) points.append(op[:3].tolist()) # add fov visualization fov_mesh = o3d.geometry.TriangleMesh( vertices=o3d.utility.Vector3dVector(np.array([op[:3], fov_vis_pt_right[i], fov_vis_pt_left[i]])), triangles=o3d.utility.Vector3iVector(np.array([[2, 1, 0]])), ) fov_mesh.paint_uniform_color([1.0, 0.5, 0.0]) visual_list.append(fov_mesh) # add visualization if augment_viz[i]: visual_list.append(copy.deepcopy(mesh_sphere_augment).translate((op[0], op[1], op[2]))) else: visual_list.append(copy.deepcopy(mesh_sphere).translate((op[0], op[1], op[2]))) visual_list.append( copy.deepcopy(mesh_box).translate( ( gp[0] - mesh_size / 2.0, gp[1] - mesh_size / 2.0, gp[2] - mesh_size / 2.0, ) ) ) for j in range(preds_ws[i].shape[0]): kp = preds_ws[i][j, :] if fear[i, :] > 0.5: visual_list.append( copy.deepcopy(small_sphere_fear).translate((kp[0], kp[1], kp[2] + visual_height)) ) else: visual_list.append(copy.deepcopy(small_sphere).translate((kp[0], kp[1], kp[2] + visual_height))) # set line from odom to goal colors = [[0.99, 0.99, 0.1] for i in range(len(lines))] line_set = o3d.geometry.LineSet( o3d.utility.Vector3dVector(points), o3d.utility.Vector2iVector(lines), ) line_set.colors = o3d.utility.Vector3dVector(colors) visual_list.append(line_set) o3d.visualization.draw_geometries(visual_list) return def VizImages( self, preds: torch.Tensor, waypoints: torch.Tensor, odom: torch.Tensor, goal: torch.Tensor, fear, images: torch.Tensor, visual_offset=0.35, mesh_size=0.3, is_shown=True, iplanner: bool = False, transform: bool = True, ): batch_size = len(waypoints) if transform: preds_ws = TrajCost.TransformPoints(odom, preds).tensor().cpu().detach().numpy() wp_ws = TrajCost.TransformPoints(odom, waypoints).tensor().cpu().detach().numpy() if goal.shape[-1] != 7: pp_goal = pp.identity_SE3(batch_size, device=goal.device) pp_goal.tensor()[:, 0:3] = goal goal = pp_goal.tensor() goal_ws = pp.SE3(odom) @ pp.SE3(goal) # convert to positions goal_ws = goal_ws.tensor()[:, 0:3].cpu().detach().numpy() else: preds_ws = preds.cpu().detach().numpy() wp_ws = waypoints.cpu().detach().numpy() goal_ws = goal.cpu().detach().numpy() # adjust height goal_ws[:, 2] = goal_ws[:, 2] - visual_offset # set materia shader mtl = o3d.visualization.rendering.MaterialRecord() mtl.base_color = [1.0, 1.0, 1.0, 0.3] mtl.shader = "defaultUnlit" # set meshes small_sphere = o3d.geometry.TriangleMesh.create_sphere(mesh_size / 10.0) # trajectory points small_sphere_fear = o3d.geometry.TriangleMesh.create_sphere(mesh_size / 10.0) # trajectory points mesh_sphere = o3d.geometry.TriangleMesh.create_sphere(mesh_size / 2.0) # successful predict points mesh_sphere_fear = o3d.geometry.TriangleMesh.create_sphere(mesh_size / 2.0) # unsuccessful predict points mesh_box = o3d.geometry.TriangleMesh.create_box(mesh_size, mesh_size, mesh_size * 2) # end points # set colors if iplanner: small_sphere.paint_uniform_color([0.0, 0.0, 1.0]) # blue mesh_sphere.paint_uniform_color([1.0, 1.0, 0.0]) else: small_sphere.paint_uniform_color([0.99, 0.2, 0.1]) # green mesh_sphere.paint_uniform_color([0.4, 1.0, 0.1]) small_sphere_fear.paint_uniform_color([1.0, 0.4, 0.2]) mesh_sphere_fear.paint_uniform_color([1.0, 0.2, 0.1]) mesh_box.paint_uniform_color([1.0, 0.64, 0.1]) # init open3D render render = rendering.OffscreenRenderer(self.camera.width, self.camera.height) render.scene.set_background([0.0, 0.0, 0.0, 1.0]) # RGBA # wp_start_idx = int(waypoints.shape[1] / preds.shape[1]) wp_start_idx = 1 cv_img_list = [] if is_shown: fig, ax = plt.subplots() for i in range(batch_size): # add geometries gp = goal_ws[i, :] # add goal marker goal_mesh = copy.deepcopy(mesh_box).translate( ( gp[0] - mesh_size / 2.0, gp[1] - mesh_size / 2.0, gp[2] - mesh_size / 2.0, ) ) render.scene.add_geometry("goal_mesh", goal_mesh, mtl) # add predictions for j, kp in enumerate(preds_ws[i]): if fear[i, :] > 0.5: kp_mesh = copy.deepcopy(mesh_sphere_fear).translate((kp[0], kp[1], kp[2] - visual_offset)) else: kp_mesh = copy.deepcopy(mesh_sphere).translate((kp[0], kp[1], kp[2] - visual_offset)) render.scene.add_geometry("keypose" + str(j), kp_mesh, mtl) # add trajectory for k, wp in enumerate(wp_ws[i]): if k < wp_start_idx: continue if fear[i, :] > 0.5: wp_mesh = copy.deepcopy(small_sphere_fear).translate((wp[0], wp[1], wp[2] - visual_offset)) else: wp_mesh = copy.deepcopy(small_sphere).translate((wp[0], wp[1], wp[2] - visual_offset)) render.scene.add_geometry("waypoint" + str(k), wp_mesh, mtl) # set cameras self.CameraLookAtPose(odom[i, :], render) # project to image img_o3d = np.asarray(render.render_to_image()) mask = (img_o3d < 10).all(axis=2) # Attach image c_img = images[i, :, :].expand(3, -1, -1) c_img = c_img.cpu().detach().numpy() c_img = np.moveaxis(c_img, 0, 2) c_img = (c_img * 255 / np.max(c_img)).astype("uint8") img_o3d[mask, :] = c_img[mask, :] img_cv2 = cv2.cvtColor(img_o3d, cv2.COLOR_RGBA2BGRA) cv_img_list.append(img_cv2) if is_shown: plt.imshow(img_cv2) plt.draw() plt.waitforbuttonpress(0) # this will wait for indefinite time plt.close(fig) # clear render geometry render.scene.clear_geometry() return cv_img_list def CameraLookAtPose(self, odom, render): unit_vec = pp.identity_SE3(device=odom.device) unit_vec.tensor()[0] = 1.0 tilt_vec = [0, 0, 0] tilt_vec.extend(list(tf.Rotation.from_euler("y", self._camera_tilt, degrees=False).as_quat())) tilt_vec = torch.tensor(tilt_vec, device=odom.device, dtype=odom.dtype) target_pose = pp.SE3(odom) @ pp.SE3(tilt_vec) @ unit_vec camera_up = [0, 0, 1] # camera orientation eye = pp.SE3(odom) eye = eye.tensor()[0:3].cpu().detach().numpy() target = target_pose.tensor()[0:3].cpu().detach().numpy() render.scene.camera.look_at(target, eye, camera_up) return # EoF
13,197
Python
38.993939
118
0.537243
leggedrobotics/viplanner/viplanner/config/viplanner_sem_meta.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause OBSTACLE_LOSS = 2.0 TRAVERSABLE_INTENDED_LOSS = 0 TRAVERSABLE_UNINTENDED_LOSS = 0.5 ROAD_LOSS = 1.5 TERRAIN_LOSS = 1.0 # NOTE: only obstacle loss should be over obscale_loss defined in costmap_cfg.py # original coco meta VIPLANNER_SEM_META = [ # TRAVERSABLE SPACE ### # traversable intended { "name": "sidewalk", "loss": TRAVERSABLE_INTENDED_LOSS, "color": [0, 255, 0], "ground": True, }, { "name": "crosswalk", "loss": TRAVERSABLE_INTENDED_LOSS, "color": [0, 102, 0], "ground": True, }, { "name": "floor", "loss": TRAVERSABLE_INTENDED_LOSS, "color": [0, 204, 0], "ground": True, }, { "name": "stairs", "loss": TRAVERSABLE_INTENDED_LOSS, "color": [0, 153, 0], "ground": True, }, # traversable not intended { "name": "gravel", "loss": TRAVERSABLE_UNINTENDED_LOSS, "color": [204, 255, 0], "ground": True, }, { "name": "sand", "loss": TRAVERSABLE_UNINTENDED_LOSS, "color": [153, 204, 0], "ground": True, }, { "name": "snow", "loss": TRAVERSABLE_UNINTENDED_LOSS, "color": [204, 102, 0], "ground": True, }, { "name": "indoor_soft", # human made thing, can be walked on "color": [102, 153, 0], "loss": TERRAIN_LOSS, "ground": False, }, { "name": "terrain", "color": [255, 255, 0], "loss": TERRAIN_LOSS, "ground": True, }, { "name": "road", "loss": ROAD_LOSS, "color": [255, 128, 0], "ground": True, }, # OBSTACLES ### # human { "name": "person", "color": [255, 0, 0], "loss": OBSTACLE_LOSS, "ground": False, }, { "name": "anymal", "color": [204, 0, 0], "loss": OBSTACLE_LOSS, "ground": False, }, # vehicle { "name": "vehicle", "color": [153, 0, 0], "loss": OBSTACLE_LOSS, "ground": False, }, { "name": "on_rails", "color": [51, 0, 0], "loss": OBSTACLE_LOSS, "ground": False, }, { "name": "motorcycle", "color": [102, 0, 0], "loss": OBSTACLE_LOSS, "ground": False, }, { "name": "bicycle", "color": [102, 0, 0], "loss": OBSTACLE_LOSS, "ground": False, }, # construction { "name": "building", "loss": OBSTACLE_LOSS, "color": [127, 0, 255], "ground": False, }, { "name": "wall", "color": [102, 0, 204], "loss": OBSTACLE_LOSS, "ground": False, }, { "name": "fence", "color": [76, 0, 153], "loss": OBSTACLE_LOSS, "ground": False, }, { "name": "bridge", "color": [51, 0, 102], "loss": OBSTACLE_LOSS, "ground": False, }, { "name": "tunnel", "color": [51, 0, 102], "loss": OBSTACLE_LOSS, "ground": False, }, # object { "name": "pole", "color": [0, 0, 255], "loss": OBSTACLE_LOSS, "ground": False, }, { "name": "traffic_sign", "color": [0, 0, 153], "loss": OBSTACLE_LOSS, "ground": False, }, { "name": "traffic_light", "color": [0, 0, 204], "loss": OBSTACLE_LOSS, "ground": False, }, { "name": "bench", "color": [0, 0, 102], "loss": OBSTACLE_LOSS, "ground": False, }, # nature { "name": "vegetation", "color": [153, 0, 153], "loss": OBSTACLE_LOSS, "ground": False, }, { "name": "water_surface", "color": [204, 0, 204], "loss": OBSTACLE_LOSS, "ground": True, }, # sky { "name": "sky", "color": [102, 0, 51], "loss": OBSTACLE_LOSS, "ground": False, }, { "name": "background", "color": [102, 0, 51], "loss": OBSTACLE_LOSS, "ground": False, }, # void outdoor { "name": "dynamic", "color": [32, 0, 32], "loss": OBSTACLE_LOSS, "ground": False, }, { "name": "static", # also everything unknown "color": [0, 0, 0], "loss": OBSTACLE_LOSS, "ground": False, }, # indoor { "name": "furniture", "color": [0, 0, 51], "loss": OBSTACLE_LOSS, "ground": False, }, { "name": "door", "color": [153, 153, 0], "loss": OBSTACLE_LOSS, "ground": False, }, { "name": "ceiling", "color": [25, 0, 51], "loss": OBSTACLE_LOSS, "ground": False, }, ] class VIPlannerSemMetaHandler: """Useful functions for handling VIPlanner semantic meta data.""" def __init__(self) -> None: # meta config self.meta = VIPLANNER_SEM_META # class loss dict self.class_loss: dict = self._get_class_loss_dict() self.class_color: dict = self._get_class_color_dict() self.class_ground: dict = self._get_class_ground_dict() self.class_id: dict = self._get_class_id_dict() return def get_colors_for_names(self, name_list: list) -> list: """Get list of colors for a list of names.""" colors = [] name_to_color = {nc["name"]: nc["color"] for nc in self.meta} for name in name_list: if name in name_to_color: colors.append(name_to_color[name]) return colors def _get_class_loss_dict(self) -> dict: """Get class loss dict.""" return {nc["name"]: nc["loss"] for nc in self.meta} def _get_class_color_dict(self) -> dict: """Get class color dict.""" return {nc["name"]: nc["color"] for nc in self.meta} def _get_class_ground_dict(self) -> dict: """Get class ground dict.""" return {nc["name"]: nc["ground"] for nc in self.meta} def _get_class_id_dict(self) -> dict: """Get class id dict.""" return {nc["name"]: i for i, nc in enumerate(self.meta)} @property def colors(self) -> list: """Get list of colors.""" return list(self.class_color.values()) @property def losses(self) -> list: """Get list of losses.""" return list(self.class_loss.values()) @property def names(self) -> list: """Get list of names.""" return list(self.class_loss.keys()) @property def ground(self) -> list: """Get list of ground.""" return list(self.class_ground.values()) """CLASS COLOR VISUALIZATION""" if __name__ == "__main__": import matplotlib.pyplot as plt # init meta handler meta_handler = VIPlannerSemMetaHandler() # class ordering array cls_order = [ ["sky", "background", "ceiling", "dynamic", "static"], [ "building", "wall", "fence", "vegetation", "water_surface", ], # 'bridge', [ "pole", "traffic_light", "traffic_sign", "bench", "furniture", "door", ], ["gravel", "sand", "indoor_soft", "terrain", "snow", "road"], ["sidewalk", "floor", "stairs", "crosswalk"], ["person", "anymal", "vehicle", "motorcycle", "bicycle", "on_rails"], ] # Create the 8x8 grid of subplots fig, axs = plt.subplots(nrows=6, ncols=6, figsize=(10, 10)) # Loop over each subplot and plot the data for i in range(6): for j in range(6): ax = axs[i][j] # Remove the axis, axis ticks, border, ... ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["left"].set_visible(False) ax.set_xticks([]) ax.set_yticks([]) # plot color if j >= len(cls_order[i]): continue ax.imshow([[tuple(meta_handler.class_color[cls_order[i][j]])]]) ax.set_title(cls_order[i][j], fontsize=16) ax.set_xlabel(meta_handler.class_color[cls_order[i][j]], fontsize=12) # Set the overall title of the plot fig.suptitle("VIPlanner Semantic Classes Color Scheme", fontsize=22) # Adjust the spacing between subplots plt.subplots_adjust(wspace=0.4, hspace=0.4) plt.tight_layout() plt.savefig("/home/{$USER}/viplanner_semantic_classes_color_scheme.png", dpi=300) # Show the plot plt.show() # EoF
8,966
Python
23.839335
85
0.481151
leggedrobotics/viplanner/viplanner/config/__init__.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause from .coco_sem_meta import _COCO_MAPPING, get_class_for_id from .costmap_cfg import ( CostMapConfig, GeneralCostMapConfig, ReconstructionCfg, SemCostMapConfig, TsdfCostMapConfig, ) from .learning_cfg import DataCfg, TrainCfg from .viplanner_sem_meta import OBSTACLE_LOSS, VIPlannerSemMetaHandler __all__ = [ # configs "ReconstructionCfg", "SemCostMapConfig", "TsdfCostMapConfig", "CostMapConfig", "GeneralCostMapConfig", "TrainCfg", "DataCfg", # mapping "VIPlannerSemMetaHandler", "OBSTACLE_LOSS", "get_class_for_id", "_COCO_MAPPING", ] # EoF
766
Python
20.914285
70
0.693211
leggedrobotics/viplanner/viplanner/config/learning_cfg.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import os # python from dataclasses import dataclass, field from typing import List, Optional, Tuple, Union import yaml # define own loader class to include DataCfg class Loader(yaml.SafeLoader): pass def construct_datacfg(loader, node): add_dicts = {} for node_entry in node.value: if isinstance(node_entry[1], yaml.MappingNode): add_dicts[node_entry[0].value] = loader.construct_mapping(node_entry[1]) node.value.remove(node_entry) return DataCfg(**loader.construct_mapping(node), **add_dicts) Loader.add_constructor( "tag:yaml.org,2002:python/object:viplanner.config.learning_cfg.DataCfg", construct_datacfg, ) @dataclass class DataCfg: """Config for data loading""" # real world data used --> images have to be rotated by 180 degrees real_world_data: bool = False # from carla dataset (exclude certain spaces) carla: bool = False # identification suffix of the cameras for semantic and depth images depth_suffix = "_cam0" sem_suffix = "_cam1" # data processing max_depth: float = 15.0 "maximum depth for depth image" # odom (=start) point selection max_goal_distance: float = 15.0 min_goal_distance: float = 0.5 "maximum and minimum distance between odom and goal" distance_scheme: dict = field(default_factory=lambda: {1: 0.2, 3: 0.35, 5: 0.25, 7.5: 0.15, 10: 0.05}) # select goal points for the samples according to the scheme: # {distance: percentage of goals}, distances have to be increasing # and max distance has to be equal to max_goal_distance obs_cost_height: float = 1.5 "all odom points with cost of more than obs_cost_height are discarded (negative cost of cost_map will be automatically added)" fov_scale: float = 1.0 "scaling of the field of view (only goals within fov are considered)" depth_scale: float = 1000.0 "scaling of the depth image" # train val split ratio: float = 0.9 "ratio between train and val dataset" max_train_pairs: Optional[int] = None pairs_per_image: int = 4 "maximum number of train pairs (can be used to limit training time) can be set, otherwise number of recorded images times pairs_per_image is used" ratio_fov_samples: float = 1.0 ratio_front_samples: float = 0.0 ratio_back_samples: float = 0.0 "samples distribution -> either within the robots fov, in front of the robot but outside the fov or behind the robot" # edge blur (real world RealSense difficulties along edges) --> will be also visible in rgb/sem images due to warp noise_edges: bool = False # not activate for CARLA yet edge_threshold: int = 100 extend_kernel_size: Tuple[int, int] = field(default_factory=lambda: [5, 5]) # noise augmentation --> will be applied to a scaled image with range between [0, 1] depth_salt_pepper: Optional[float] = None # Proportion of image pixels to replace with noise on range [0, 1] depth_gaussian: Optional[float] = None # Standard deviation of the noise to add (no clipping applied) depth_random_polygons_nb: Optional[int] = None # Number of random polygons to add depth_random_polygon_size: int = 10 # Size of the random polygons in pixels sem_rgb_pepper: Optional[float] = None # Proportion of pixels to randomly set to 0 sem_rgb_black_img: Optional[float] = None # Randomly set this proportion of images to complete black images --> sem_rgb_random_polygons_nb: Optional[int] = None # Number of random polygons to add sem_rgb_random_polygon_size: int = 20 # Size of the random polygons in pixels @dataclass class TrainCfg: """Config for multi environment training""" # high level configurations sem: bool = True rgb: bool = False "use semantic/ rgb image" file_name: Optional[str] = None "appendix to the model filename if needed" seed: int = 0 "random seed" gpu_id: int = 0 "GPU id" file_path: str = "${USER_PATH_TO_MODEL_DATA}" "file path to models and data directory, can be overwritten by environment variable EXPERIMENT_DIRECTORY (e.g. for cluster)" # NOTE: since the environment variable is intended for cluster usage, some visualizations will be automatically switched off # data and dataloader configurations cost_map_name: str = "cost_map_sem" # "cost_map_sem" "cost map name" env_list: List[str] = field( default_factory=lambda: [ "2azQ1b91cZZ", "JeFG25nYj2p", "Vvot9Ly1tCj", "ur6pFq6Qu1A", "B6ByNegPMKs", "8WUmhLawc2A", "E9uDoFAP3SH", "QUCTc6BB5sX", "YFuZgdQ5vWj", "2n8kARJN3HM", ] ) test_env_id: int = 9 "the test env id in the id list" data_cfg: Union[DataCfg, List[DataCfg]] = DataCfg() "further data configuration (can be individualized for every environment)" multi_epoch_dataloader: bool = False "load all samples into RAM s.t. do not have to be reloaded for each epoch" num_workers: int = 4 "number of workers for dataloader" load_in_ram: bool = False "if true, all samples will be loaded into RAM s.t. do not have to be reloaded for each epoch" # loss configurations fear_ahead_dist: float = 2.5 "fear lookahead distance" w_obs: float = 0.25 w_height: float = 1.0 w_motion: float = 1.5 w_goal: float = 4.0 "weights for the loss components" obstacle_thread: float = 1.2 "obstacle threshold to decide if fear path or not (neg reward for semantic cost-maps is added automatically)" # network configurations img_input_size: Tuple[int, int] = field(default_factory=lambda: [360, 640]) "image size (will be cropped if larger or resized if smaller)" in_channel: int = 16 "goal input channel numbers" knodes: int = 5 "number of max waypoints predicted" pre_train_sem: bool = True pre_train_cfg: Optional[str] = "m2f_model/coco/panoptic/maskformer2_R50_bs16_50ep.yaml" pre_train_weights: Optional[str] = "m2f_model/coco/panoptic/model_final_94dc52.pkl" pre_train_freeze: bool = True "loading of a pre-trained rgb encoder from mask2former (possible is ResNet 50 or 101)" # NOTE: `pre_train_cfg` and `pre_train_weights` are assumed to be found under `file_path/models` (see above) decoder_small: bool = False "small decoder with less parameters" # training configurations resume: bool = False "resume training" epochs: int = 100 "number of training epochs" batch_size: int = 64 "number of minibatch size" hierarchical: bool = False hierarchical_step: int = 50 hierarchical_front_step_ratio: float = 0.02 hierarchical_back_step_ratio: float = 0.01 "hierarchical training with an adjusted data structure" # optimizer and scheduler configurations lr: float = 2e-3 "learning rate" factor: float = 0.5 "ReduceLROnPlateau factor" min_lr: float = 1e-5 "minimum lr for ReduceLROnPlateau" patience: int = 3 "patience of epochs for ReduceLROnPlateau" optimizer: str = "sgd" # either adam or sgd "optimizer" momentum: float = 0.1 "momentum of the optimizer" w_decay: float = 1e-4 "weight decay of the optimizer" # visualization configurations camera_tilt: float = 0.15 "camera tilt angle for visualization only" n_visualize: int = 15 "number of trajectories that are visualized" # logging configurations wb_project: str = "Matterport" wb_entity: str = "viplanner" wb_api_key: str = "enter_your_key_here" # functions def get_model_save(self, epoch: Optional[int] = None): input_domain = "DepSem" if self.sem else "Dep" cost_name = "Geom" if self.cost_map_name == "cost_map_geom" else "Sem" optim = "SGD" if self.optimizer == "sgd" else "Adam" name = f"_{self.file_name}" if self.file_name is not None else "" epoch = epoch if epoch is not None else self.epochs hierarch = "_hierarch" if self.hierarchical else "" return f"plannernet_env{self.env_list[0]}_ep{epoch}_input{input_domain}_cost{cost_name}_optim{optim}{hierarch}{name}" @property def all_model_dir(self): return os.path.join(os.getenv("EXPERIMENT_DIRECTORY", self.file_path), "models") @property def curr_model_dir(self): return os.path.join(self.all_model_dir, self.get_model_save()) @property def data_dir(self): return os.path.join(os.getenv("EXPERIMENT_DIRECTORY", self.file_path), "data") @property def log_dir(self): return os.path.join(os.getenv("EXPERIMENT_DIRECTORY", self.file_path), "logs") @classmethod def from_yaml(cls, yaml_path: str): # open yaml file and load config with open(yaml_path) as f: cfg_dict = yaml.load(f, Loader=Loader) return cls(**cfg_dict["config"]) # EoF
9,111
Python
36.04065
150
0.669191
leggedrobotics/viplanner/viplanner/config/costmap_cfg.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # python import os from dataclasses import dataclass from typing import Optional import yaml class Loader(yaml.SafeLoader): pass def construct_GeneralCostMapConfig(loader, node): return GeneralCostMapConfig(**loader.construct_mapping(node)) Loader.add_constructor( "tag:yaml.org,2002:python/object:viplanner.config.costmap_cfg.GeneralCostMapConfig", construct_GeneralCostMapConfig, ) def construct_ReconstructionCfg(loader, node): return ReconstructionCfg(**loader.construct_mapping(node)) Loader.add_constructor( "tag:yaml.org,2002:python/object:viplanner.config.costmap_cfg.ReconstructionCfg", construct_ReconstructionCfg, ) def construct_SemCostMapConfig(loader, node): return SemCostMapConfig(**loader.construct_mapping(node)) Loader.add_constructor( "tag:yaml.org,2002:python/object:viplanner.config.costmap_cfg.SemCostMapConfig", construct_SemCostMapConfig, ) def construct_TsdfCostMapConfig(loader, node): return TsdfCostMapConfig(**loader.construct_mapping(node)) Loader.add_constructor( "tag:yaml.org,2002:python/object:viplanner.config.costmap_cfg.TsdfCostMapConfig", construct_TsdfCostMapConfig, ) @dataclass class ReconstructionCfg: """ Arguments for 3D reconstruction using depth maps """ # directory where the environment with the depth (and semantic) images is located data_dir: str = "${USER_PATH_TO_DATA}" # environment name env: str = "town01" # image suffix depth_suffix = "_cam0" sem_suffix = "_cam1" # higher resolution depth images available for reconstruction (meaning that the depth images are also taked by the semantic camera) high_res_depth: bool = False # reconstruction parameters voxel_size: float = 0.05 # [m] 0.05 for matterport 0.1 for carla start_idx: int = 0 # start index for reconstruction max_images: Optional[int] = 1000 # maximum number of images to reconstruct, if None, all images are used depth_scale: float = 1000.0 # depth scale factor # semantic reconstruction semantics: bool = True # speed vs. memory trade-off parameters point_cloud_batch_size: int = ( 200 # 3d points of nbr images added to point cloud at once (higher values use more memory but faster) ) """ Internal functions """ def get_data_path(self) -> str: return os.path.join(self.data_dir, self.env) def get_out_path(self) -> str: return os.path.join(self.out_dir, self.env) @dataclass class SemCostMapConfig: """Configuration for the semantic cost map""" # point-cloud filter parameters ground_height: Optional[float] = -0.5 # None for matterport -0.5 for carla -1.0 for nomoko robot_height: float = 0.70 robot_height_factor: float = 3.0 nb_neighbors: int = 100 std_ratio: float = 2.0 # keep high, otherwise ground will be removed downsample: bool = False # smoothing nb_neigh: int = 15 change_decimal: int = 3 conv_crit: float = ( 0.45 # ration of points that have to change by at least the #change_decimal decimal value to converge ) nb_tasks: Optional[int] = 10 # number of tasks for parallel processing, if None, all available cores are used sigma_smooth: float = 2.5 max_iterations: int = 1 # obstacle threshold (multiplied with highest loss value defined for a semantic class) obstacle_threshold: float = 0.8 # 0.5/ 0.6 for matterport, 0.8 for carla # negative reward for space with smallest cost (introduces a gradient in area with smallest loss value, steering towards center) # NOTE: at the end cost map is elevated by that amount to ensure that the smallest cost is 0 negative_reward: float = 0.5 # loss values rounded up to decimal #round_decimal_traversable equal to 0.0 are selected and the traversable gradient is determined based on them round_decimal_traversable: int = 2 # compute height map compute_height_map: bool = False # false for matterport, true for carla and nomoko @dataclass class TsdfCostMapConfig: """Configuration for the tsdf cost map""" # offset of the point cloud offset_z: float = 0.0 # filter parameters ground_height: float = 0.35 robot_height: float = 0.70 robot_height_factor: float = 2.0 nb_neighbors: int = 50 std_ratio: float = 0.2 filter_outliers: bool = True # dilation parameters sigma_expand: float = 2.0 obstacle_threshold: float = 0.01 free_space_threshold: float = 0.5 @dataclass class GeneralCostMapConfig: """General Cost Map Configuration""" # path to point cloud root_path: str = "town01" ply_file: str = "cloud.ply" # resolution of the cost map resolution: float = 0.1 # [m] (0.04 for matterport, 0.1 for carla) # map parameters clear_dist: float = 1.0 # cost map expansion over the point cloud space (prevent paths to go out of the map) # smoothing parameters sigma_smooth: float = 3.0 # cost map expansion x_min: Optional[float] = -8.05 # [m] if None, the minimum of the point cloud is used None (carla town01: -8.05 matterport: None) y_min: Optional[float] = -8.05 # [m] if None, the minimum of the point cloud is used None (carla town01: -8.05 matterport: None) x_max: Optional[float] = 346.22 # [m] if None, the maximum of the point cloud is used None (carla town01: 346.22 matterport: None) y_max: Optional[float] = 336.65 # [m] if None, the maximum of the point cloud is used None (carla town01: 336.65 matterport: None) @dataclass class CostMapConfig: """General Cost Map Configuration""" # cost map domains semantics: bool = True geometry: bool = False # name map_name: str = "cost_map_sem" # general cost map configuration general: GeneralCostMapConfig = GeneralCostMapConfig() # individual cost map configurations sem_cost_map: SemCostMapConfig = SemCostMapConfig() tsdf_cost_map: TsdfCostMapConfig = TsdfCostMapConfig() # visualize cost map visualize: bool = True # FILLED BY CODE -> DO NOT CHANGE ### x_start: float = None y_start: float = None # EoF
6,332
Python
30.984848
149
0.695515
leggedrobotics/viplanner/viplanner/config/coco_sem_meta.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # Modified from https://github.com/google-research/deeplab2/blob/main/data/coco_constants.py # File containing the meta info of all classes from the COCO dataset. COCO_CATEGORIES = [ {"color": [220, 20, 60], "isthing": 1, "id": 1, "name": "person"}, {"color": [119, 11, 32], "isthing": 1, "id": 2, "name": "bicycle"}, {"color": [0, 0, 142], "isthing": 1, "id": 3, "name": "car"}, {"color": [0, 0, 230], "isthing": 1, "id": 4, "name": "motorcycle"}, {"color": [106, 0, 228], "isthing": 1, "id": 5, "name": "airplane"}, {"color": [0, 60, 100], "isthing": 1, "id": 6, "name": "bus"}, {"color": [0, 80, 100], "isthing": 1, "id": 7, "name": "train"}, {"color": [0, 0, 70], "isthing": 1, "id": 8, "name": "truck"}, {"color": [0, 0, 192], "isthing": 1, "id": 9, "name": "boat"}, {"color": [250, 170, 30], "isthing": 1, "id": 10, "name": "traffic light"}, {"color": [100, 170, 30], "isthing": 1, "id": 11, "name": "fire hydrant"}, {"color": [220, 220, 0], "isthing": 1, "id": 13, "name": "stop sign"}, {"color": [175, 116, 175], "isthing": 1, "id": 14, "name": "parking meter"}, {"color": [250, 0, 30], "isthing": 1, "id": 15, "name": "bench"}, {"color": [165, 42, 42], "isthing": 1, "id": 16, "name": "bird"}, {"color": [255, 77, 255], "isthing": 1, "id": 17, "name": "cat"}, {"color": [0, 226, 252], "isthing": 1, "id": 18, "name": "dog"}, {"color": [182, 182, 255], "isthing": 1, "id": 19, "name": "horse"}, {"color": [0, 82, 0], "isthing": 1, "id": 20, "name": "sheep"}, {"color": [120, 166, 157], "isthing": 1, "id": 21, "name": "cow"}, {"color": [110, 76, 0], "isthing": 1, "id": 22, "name": "elephant"}, {"color": [174, 57, 255], "isthing": 1, "id": 23, "name": "bear"}, {"color": [199, 100, 0], "isthing": 1, "id": 24, "name": "zebra"}, {"color": [72, 0, 118], "isthing": 1, "id": 25, "name": "giraffe"}, {"color": [255, 179, 240], "isthing": 1, "id": 27, "name": "backpack"}, {"color": [0, 125, 92], "isthing": 1, "id": 28, "name": "umbrella"}, {"color": [209, 0, 151], "isthing": 1, "id": 31, "name": "handbag"}, {"color": [188, 208, 182], "isthing": 1, "id": 32, "name": "tie"}, {"color": [0, 220, 176], "isthing": 1, "id": 33, "name": "suitcase"}, {"color": [255, 99, 164], "isthing": 1, "id": 34, "name": "frisbee"}, {"color": [92, 0, 73], "isthing": 1, "id": 35, "name": "skis"}, {"color": [133, 129, 255], "isthing": 1, "id": 36, "name": "snowboard"}, {"color": [78, 180, 255], "isthing": 1, "id": 37, "name": "sports ball"}, {"color": [0, 228, 0], "isthing": 1, "id": 38, "name": "kite"}, {"color": [174, 255, 243], "isthing": 1, "id": 39, "name": "baseball bat"}, {"color": [45, 89, 255], "isthing": 1, "id": 40, "name": "baseball glove"}, {"color": [134, 134, 103], "isthing": 1, "id": 41, "name": "skateboard"}, {"color": [145, 148, 174], "isthing": 1, "id": 42, "name": "surfboard"}, {"color": [255, 208, 186], "isthing": 1, "id": 43, "name": "tennis racket"}, {"color": [197, 226, 255], "isthing": 1, "id": 44, "name": "bottle"}, {"color": [171, 134, 1], "isthing": 1, "id": 46, "name": "wine glass"}, {"color": [109, 63, 54], "isthing": 1, "id": 47, "name": "cup"}, {"color": [207, 138, 255], "isthing": 1, "id": 48, "name": "fork"}, {"color": [151, 0, 95], "isthing": 1, "id": 49, "name": "knife"}, {"color": [9, 80, 61], "isthing": 1, "id": 50, "name": "spoon"}, {"color": [84, 105, 51], "isthing": 1, "id": 51, "name": "bowl"}, {"color": [74, 65, 105], "isthing": 1, "id": 52, "name": "banana"}, {"color": [166, 196, 102], "isthing": 1, "id": 53, "name": "apple"}, {"color": [208, 195, 210], "isthing": 1, "id": 54, "name": "sandwich"}, {"color": [255, 109, 65], "isthing": 1, "id": 55, "name": "orange"}, {"color": [0, 143, 149], "isthing": 1, "id": 56, "name": "broccoli"}, {"color": [179, 0, 194], "isthing": 1, "id": 57, "name": "carrot"}, {"color": [209, 99, 106], "isthing": 1, "id": 58, "name": "hot dog"}, {"color": [5, 121, 0], "isthing": 1, "id": 59, "name": "pizza"}, {"color": [227, 255, 205], "isthing": 1, "id": 60, "name": "donut"}, {"color": [147, 186, 208], "isthing": 1, "id": 61, "name": "cake"}, {"color": [153, 69, 1], "isthing": 1, "id": 62, "name": "chair"}, {"color": [3, 95, 161], "isthing": 1, "id": 63, "name": "couch"}, {"color": [163, 255, 0], "isthing": 1, "id": 64, "name": "potted plant"}, {"color": [119, 0, 170], "isthing": 1, "id": 65, "name": "bed"}, {"color": [0, 182, 199], "isthing": 1, "id": 67, "name": "dining table"}, {"color": [0, 165, 120], "isthing": 1, "id": 70, "name": "toilet"}, {"color": [183, 130, 88], "isthing": 1, "id": 72, "name": "tv"}, {"color": [95, 32, 0], "isthing": 1, "id": 73, "name": "laptop"}, {"color": [130, 114, 135], "isthing": 1, "id": 74, "name": "mouse"}, {"color": [110, 129, 133], "isthing": 1, "id": 75, "name": "remote"}, {"color": [166, 74, 118], "isthing": 1, "id": 76, "name": "keyboard"}, {"color": [219, 142, 185], "isthing": 1, "id": 77, "name": "cell phone"}, {"color": [79, 210, 114], "isthing": 1, "id": 78, "name": "microwave"}, {"color": [178, 90, 62], "isthing": 1, "id": 79, "name": "oven"}, {"color": [65, 70, 15], "isthing": 1, "id": 80, "name": "toaster"}, {"color": [127, 167, 115], "isthing": 1, "id": 81, "name": "sink"}, {"color": [59, 105, 106], "isthing": 1, "id": 82, "name": "refrigerator"}, {"color": [142, 108, 45], "isthing": 1, "id": 84, "name": "book"}, {"color": [196, 172, 0], "isthing": 1, "id": 85, "name": "clock"}, {"color": [95, 54, 80], "isthing": 1, "id": 86, "name": "vase"}, {"color": [128, 76, 255], "isthing": 1, "id": 87, "name": "scissors"}, {"color": [201, 57, 1], "isthing": 1, "id": 88, "name": "teddy bear"}, {"color": [246, 0, 122], "isthing": 1, "id": 89, "name": "hair drier"}, {"color": [191, 162, 208], "isthing": 1, "id": 90, "name": "toothbrush"}, {"color": [255, 255, 128], "isthing": 0, "id": 92, "name": "banner"}, {"color": [147, 211, 203], "isthing": 0, "id": 93, "name": "blanket"}, {"color": [150, 100, 100], "isthing": 0, "id": 95, "name": "bridge"}, {"color": [168, 171, 172], "isthing": 0, "id": 100, "name": "cardboard"}, {"color": [146, 112, 198], "isthing": 0, "id": 107, "name": "counter"}, {"color": [210, 170, 100], "isthing": 0, "id": 109, "name": "curtain"}, {"color": [92, 136, 89], "isthing": 0, "id": 112, "name": "door-stuff"}, {"color": [218, 88, 184], "isthing": 0, "id": 118, "name": "floor-wood"}, {"color": [241, 129, 0], "isthing": 0, "id": 119, "name": "flower"}, {"color": [217, 17, 255], "isthing": 0, "id": 122, "name": "fruit"}, {"color": [124, 74, 181], "isthing": 0, "id": 125, "name": "gravel"}, {"color": [70, 70, 70], "isthing": 0, "id": 128, "name": "house"}, {"color": [255, 228, 255], "isthing": 0, "id": 130, "name": "light"}, {"color": [154, 208, 0], "isthing": 0, "id": 133, "name": "mirror-stuff"}, {"color": [193, 0, 92], "isthing": 0, "id": 138, "name": "net"}, {"color": [76, 91, 113], "isthing": 0, "id": 141, "name": "pillow"}, {"color": [255, 180, 195], "isthing": 0, "id": 144, "name": "platform"}, {"color": [106, 154, 176], "isthing": 0, "id": 145, "name": "playingfield"}, {"color": [230, 150, 140], "isthing": 0, "id": 147, "name": "railroad"}, {"color": [60, 143, 255], "isthing": 0, "id": 148, "name": "river"}, {"color": [128, 64, 128], "isthing": 0, "id": 149, "name": "road"}, {"color": [92, 82, 55], "isthing": 0, "id": 151, "name": "roof"}, {"color": [254, 212, 124], "isthing": 0, "id": 154, "name": "sand"}, {"color": [73, 77, 174], "isthing": 0, "id": 155, "name": "sea"}, {"color": [255, 160, 98], "isthing": 0, "id": 156, "name": "shelf"}, {"color": [255, 255, 255], "isthing": 0, "id": 159, "name": "snow"}, {"color": [104, 84, 109], "isthing": 0, "id": 161, "name": "stairs"}, {"color": [169, 164, 131], "isthing": 0, "id": 166, "name": "tent"}, {"color": [225, 199, 255], "isthing": 0, "id": 168, "name": "towel"}, {"color": [137, 54, 74], "isthing": 0, "id": 171, "name": "wall-brick"}, {"color": [135, 158, 223], "isthing": 0, "id": 175, "name": "wall-stone"}, {"color": [7, 246, 231], "isthing": 0, "id": 176, "name": "wall-tile"}, {"color": [107, 255, 200], "isthing": 0, "id": 177, "name": "wall-wood"}, {"color": [58, 41, 149], "isthing": 0, "id": 178, "name": "water-other"}, {"color": [183, 121, 142], "isthing": 0, "id": 180, "name": "window-blind"}, {"color": [255, 73, 97], "isthing": 0, "id": 181, "name": "window-other"}, {"color": [107, 142, 35], "isthing": 0, "id": 184, "name": "tree-merged"}, {"color": [190, 153, 153], "isthing": 0, "id": 185, "name": "fence-merged"}, {"color": [146, 139, 141], "isthing": 0, "id": 186, "name": "ceiling-merged"}, {"color": [70, 130, 180], "isthing": 0, "id": 187, "name": "sky-other-merged"}, {"color": [134, 199, 156], "isthing": 0, "id": 188, "name": "cabinet-merged"}, {"color": [209, 226, 140], "isthing": 0, "id": 189, "name": "table-merged"}, {"color": [96, 36, 108], "isthing": 0, "id": 190, "name": "floor-other-merged"}, {"color": [96, 96, 96], "isthing": 0, "id": 191, "name": "pavement-merged"}, {"color": [64, 170, 64], "isthing": 0, "id": 192, "name": "mountain-merged"}, {"color": [152, 251, 152], "isthing": 0, "id": 193, "name": "grass-merged"}, {"color": [208, 229, 228], "isthing": 0, "id": 194, "name": "dirt-merged"}, {"color": [206, 186, 171], "isthing": 0, "id": 195, "name": "paper-merged"}, {"color": [152, 161, 64], "isthing": 0, "id": 196, "name": "food-other-merged"}, {"color": [116, 112, 0], "isthing": 0, "id": 197, "name": "building-other-merged"}, {"color": [0, 114, 143], "isthing": 0, "id": 198, "name": "rock-merged"}, {"color": [102, 102, 156], "isthing": 0, "id": 199, "name": "wall-other-merged"}, {"color": [250, 141, 255], "isthing": 0, "id": 200, "name": "rug-merged"}, ] _COCO_MAPPING = { "road": ["road"], "sidewalk": [ "pavement-merged", ], "floor": [ "floor-other-merged", "floor-wood", "platform", "playingfield", "rug-merged", ], "gravel": [ "gravel", ], "stairs": [ "stairs", ], "sand": [ "sand", ], "snow": [ "snow", ], "person": ["person"], "anymal": [ "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", ], "vehicle": [ "car", "bus", "truck", "boat", ], "on_rails": [ "train", "railroad", ], "motorcycle": [ "motorcycle", ], "bicycle": [ "bicycle", ], "building": [ "building-other-merged", "house", "roof", ], "wall": [ "wall-other-merged", "curtain", "mirror-stuff", "wall-brick", "wall-stone", "wall-tile", "wall-wood", "window-blind", "window-other", ], "fence": [ "fence-merged", ], "bridge": [ "bridge", ], "pole": [ "fire hydrant", "parking meter", ], "traffic_sign": [ "stop sign", ], "traffic_light": [ "traffic light", ], "bench": [ "bench", ], "vegetation": [ "potted plant", "flower", "tree-merged", "mountain-merged", "rock-merged", ], "terrain": [ "grass-merged", "dirt-merged", ], "water_surface": [ "river", "sea", "water-other", ], "sky": [ "sky-other-merged", "airplane", ], "dynamic": [ "backpack", "umbrella", "handbag", "tie", "suitcase", "book", # sports "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", # kitchen "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "microwave", "oven", "toaster", "sink", "refrigerator", # food "banana", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "fruit", "food-other-merged", "apple", # computer hardware "mouse", "remote", "keyboard", "cell phone", "laptop", # other "scissors", "teddy bear", "hair drier", "toothbrush", "net", "paper-merged", ], "static": [ "banner", "cardboard", "light", "tent", "unknown", ], "furniture": [ "chair", "couch", "bed", "dining table", "toilet", "clock", "vase", "blanket", "pillow", "shelf", "cabinet", "table-merged", "counter", "tv", ], "door": [ "door-stuff", ], "ceiling": ["ceiling-merged"], "indoor_soft": [ "towel", ], } def get_class_for_id(): id_to_class = {} for idx, id_dict in enumerate(COCO_CATEGORIES): success = False for class_name, keywords in _COCO_MAPPING.items(): if any(keyword in id_dict["name"] for keyword in keywords): id_to_class[idx] = class_name success = True break if not success: print("No mapping found for {}".format(id_dict["name"])) return id_to_class def get_class_for_id_mmdet(class_list: list): id_to_class = {} for idx, coco_class_name in enumerate(class_list): success = False for class_name, keywords in _COCO_MAPPING.items(): if any(keyword in coco_class_name for keyword in keywords): id_to_class[idx] = class_name success = True break if not success: print("No mapping found for {}".format(coco_class_name["name"])) return id_to_class if __name__ == "__main__": print(get_class_for_id())
14,752
Python
38.341333
92
0.46814
leggedrobotics/viplanner/viplanner/utils/__init__.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause
148
Python
23.833329
60
0.736486
leggedrobotics/viplanner/viplanner/utils/dataset.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import copy import math # python import os import random import shutil from pathlib import Path from random import sample from typing import Dict, List, Optional, Tuple import cv2 import networkx as nx import numpy as np import open3d as o3d import PIL import pypose as pp import scipy.spatial.transform as tf import torch import torch.nn.functional as F import torchvision.transforms as transforms from PIL import Image from scipy.spatial.kdtree import KDTree from skimage.util import random_noise from torch.utils.data import Dataset from tqdm import tqdm # implerative-planner-learning from viplanner.config import DataCfg from viplanner.cost_maps import CostMapPCD # set default dtype to float32 torch.set_default_dtype(torch.float32) class PlannerData(Dataset): def __init__( self, cfg: DataCfg, transform, semantics: bool = False, rgb: bool = False, pixel_mean: Optional[np.ndarray] = None, pixel_std: Optional[np.ndarray] = None, ) -> None: """_summary_ Args: cfg (DataCfg): Dataset COnfiguration transform (_type_): Compose torchvision transforms (resize and to tensor) semantics (bool, optional): If semantics are used in the network input. Defaults to False. """ self._cfg = cfg self.transform = transform self.semantics = semantics self.rgb = rgb assert not (semantics and rgb), "Semantics and RGB cannot be used at the same time" self.pixel_mean = pixel_mean self.pixel_std = pixel_std # vertical flip transform self.flip_transform = transforms.RandomHorizontalFlip(p=1.0) # init buffers self.depth_filename: List[str] = [] self.sem_rgb_filename: List[str] = [] self.depth_imgs: List[torch.Tensor] = [] self.sem_imgs: List[torch.Tensor] = [] self.odom: torch.Tensor = None self.goal: torch.Tensor = None self.pair_augment: np.ndarray = None self.fov_angle: float = 0.0 self.load_ram: bool = False return def update_buffers( self, depth_filename: List[str], sem_rgb_filename: List[str], odom: torch.Tensor, goal: torch.Tensor, pair_augment: np.ndarray, ) -> None: self.depth_filename = depth_filename self.sem_rgb_filename = sem_rgb_filename self.odom = odom self.goal = goal self.pair_augment = pair_augment return def set_fov(self, fov_angle): self.fov_angle = fov_angle return """Augment Images with black polygons""" def _add_random_polygons(self, image, nb_polygons, max_size): for i in range(nb_polygons): num_corners = random.randint(10, 20) polygon_points = np.random.randint(0, max_size, size=(num_corners, 2)) x_offset = np.random.randint(0, image.shape[0]) y_offset = np.random.randint(0, image.shape[1]) polygon_points[:, 0] += x_offset polygon_points[:, 1] += y_offset # Create a convex hull from the points hull = cv2.convexHull(polygon_points) # Draw the hull on the image cv2.fillPoly(image, [hull], (0, 0, 0)) return image """Load images""" def load_data_in_memory(self) -> None: """Load data into RAM to speed up training""" for idx in tqdm(range(len(self.depth_filename)), desc="Load images into RAM"): self.depth_imgs.append(self._load_depth_img(idx)) if self.semantics or self.rgb: self.sem_imgs.append(self._load_sem_rgb_img(idx)) self.load_ram = True return def _load_depth_img(self, idx) -> torch.Tensor: if self.depth_filename[idx].endswith(".png"): depth_image = Image.open(self.depth_filename[idx]) if self._cfg.real_world_data: depth_image = np.array(depth_image.transpose(PIL.Image.ROTATE_180)) else: depth_image = np.array(depth_image) else: depth_image = np.load(self.depth_filename[idx]) depth_image[~np.isfinite(depth_image)] = 0.0 depth_image = (depth_image / 1000.0).astype("float32") depth_image[depth_image > self._cfg.max_depth] = 0.0 # add noise to depth image if self._cfg.depth_salt_pepper or self._cfg.depth_gaussian: depth_norm = (depth_image - np.min(depth_image)) / (np.max(depth_image) - np.min(depth_image)) if self._cfg.depth_salt_pepper: depth_norm = random_noise( depth_norm, mode="s&p", amount=self._cfg.depth_salt_pepper, clip=False, ) if self._cfg.depth_gaussian: depth_norm = random_noise( depth_norm, mode="gaussian", mean=0, var=self._cfg.depth_gaussian, clip=False, ) depth_image = depth_norm * (np.max(depth_image) - np.min(depth_image)) + np.min(depth_image) if self._cfg.depth_random_polygons_nb and self._cfg.depth_random_polygons_nb > 0: depth_image = self._add_random_polygons( depth_image, self._cfg.depth_random_polygons_nb, self._cfg.depth_random_polygon_size, ) # transform depth image depth_image = self.transform(depth_image).type(torch.float32) if self.pair_augment[idx]: depth_image = self.flip_transform.forward(depth_image) return depth_image def _load_sem_rgb_img(self, idx) -> torch.Tensor: image = Image.open(self.sem_rgb_filename[idx]) if self._cfg.real_world_data: image = np.array(image.transpose(PIL.Image.ROTATE_180)) else: image = np.array(image) # normalize image if self.pixel_mean is not None and self.pixel_std is not None: image = (image - self.pixel_mean) / self.pixel_std # add noise to semantic image if self._cfg.sem_rgb_black_img: if random.randint(0, 99) < self._cfg.sem_rgb_black_img * 100: image = np.zeros_like(image) if self._cfg.sem_rgb_pepper: image = random_noise( image, mode="pepper", amount=self._cfg.depth_salt_pepper, clip=False, ) if self._cfg.sem_rgb_random_polygons_nb and self._cfg.sem_rgb_random_polygons_nb > 0: image = self._add_random_polygons( image, self._cfg.sem_rgb_random_polygons_nb, self._cfg.sem_rgb_random_polygon_size, ) # transform semantic image image = self.transform(image).type(torch.float32) assert image.round(decimals=1).max() <= 1.0, ( f"Image '{self.sem_rgb_filename[idx]}' is not normalized with max" f" value {image.max().item()}" ) if self.pair_augment[idx]: image = self.flip_transform.forward(image) return image """Get image in training""" def __len__(self): return len(self.depth_filename) def __getitem__(self, idx): """ Get batch items Returns: - depth_image: depth image - sem_rgb_image: semantic image - odom: odometry of the start pose (point and rotation) - goal: goal point in the camera frame - pair_augment: bool if the pair is augmented (flipped at the y-axis of the image) """ # get depth image if self.load_ram: depth_image = self.depth_imgs[idx] if self.semantics or self.rgb: sem_rgb_image = self.sem_imgs[idx] else: sem_rgb_image = 0 else: depth_image = self._load_depth_img(idx) if self.semantics or self.rgb: sem_rgb_image = self._load_sem_rgb_img(idx) else: sem_rgb_image = 0 return ( depth_image, sem_rgb_image, self.odom[idx], self.goal[idx], self.pair_augment[idx], ) class DistanceSchemeIdx: def __init__(self, distance: float) -> None: self.distance: float = distance self.odom_list: List[pp.LieTensor] = [] self.goal_list: List[pp.LieTensor] = [] self.pair_within_fov: List[bool] = [] self.pair_front_of_robot: List[bool] = [] self.pair_behind_robot: List[bool] = [] self.depth_img_list: List[str] = [] self.sem_rgb_img_list: List[str] = [] # flags self.has_data: bool = False return def update_buffers( self, odom: pp.LieTensor, goal: pp.LieTensor, within_fov: bool = False, front_of_robot: bool = False, behind_robot: bool = False, depth_filename: str = None, sem_rgb_filename: str = None, ) -> None: self.odom_list.append(odom) self.goal_list.append(goal) self.pair_within_fov.append(within_fov) self.pair_front_of_robot.append(front_of_robot) self.pair_behind_robot.append(behind_robot) self.depth_img_list.append(depth_filename) self.sem_rgb_img_list.append(sem_rgb_filename) self.has_data = len(self.odom_list) > 0 return def get_data( self, nb_fov: int, nb_front: int, nb_back: int, augment: bool = True, ) -> Tuple[List[pp.LieTensor], List[pp.LieTensor], List[str], List[str], np.ndarray,]: assert self.has_data, f"DistanceSchemeIdx for distance {self.distance} has no data" # get all pairs that are within the fov idx_fov = np.where(self.pair_within_fov)[0] idx_front = np.where(self.pair_front_of_robot)[0] idx_back = np.where(self.pair_behind_robot)[0] idx_augment = [] # augment pairs if not enough if len(idx_fov) == 0: print(f"[WARNING] for distance {self.distance} no 'within_fov'" " samples") idx_fov = np.array([], dtype=np.int64) elif len(idx_fov) < nb_fov: print( f"[INFO] for distance {self.distance} not enough 'within_fov'" f" samples ({len(idx_fov)} instead of {nb_fov})" ) if augment: idx_augment.append( np.random.choice( idx_fov, min(len(idx_fov), nb_fov - len(idx_fov)), replace=(nb_fov - len(idx_fov) > len(idx_fov)), ) ) else: idx_fov = np.random.choice(idx_fov, len(idx_fov), replace=False) else: idx_fov = np.random.choice(idx_fov, nb_fov, replace=False) if len(idx_front) == 0: print(f"[WARNING] for distance {self.distance} no 'front_of_robot'" " samples") idx_front = np.array([], dtype=np.int64) elif len(idx_front) < nb_front: print( f"[INFO] for distance {self.distance} not enough" f" 'front_of_robot' samples ({len(idx_front)} instead of" f" {nb_front})" ) if augment: idx_augment.append( np.random.choice( idx_front, min(len(idx_front), nb_front - len(idx_front)), replace=(nb_front - len(idx_front) > len(idx_front)), ) ) else: idx_front = np.random.choice(idx_front, len(idx_front), replace=False) else: idx_front = np.random.choice(idx_front, nb_front, replace=False) if len(idx_back) == 0: print(f"[WARNING] for distance {self.distance} no 'behind_robot'" " samples") idx_back = np.array([], dtype=np.int64) elif len(idx_back) < nb_back: print( f"[INFO] for distance {self.distance} not enough" f" 'behind_robot' samples ({len(idx_back)} instead of" f" {nb_back})" ) if augment: idx_augment.append( np.random.choice( idx_back, min(len(idx_back), nb_back - len(idx_back)), replace=(nb_back - len(idx_back) > len(idx_back)), ) ) else: idx_back = np.random.choice(idx_back, len(idx_back), replace=False) else: idx_back = np.random.choice(idx_back, nb_back, replace=False) idx = np.hstack([idx_fov, idx_front, idx_back]) # stack buffers odom = torch.stack(self.odom_list) goal = torch.stack(self.goal_list) # get pairs if idx_augment: idx_augment = np.hstack(idx_augment) odom = torch.vstack([odom[idx], odom[idx_augment]]) goal = torch.vstack( [ goal[idx], goal[idx_augment].tensor() * torch.tensor([[1, -1, 1, 1, 1, 1, 1]]), ] ) depth_img_list = [self.depth_img_list[j] for j in idx.tolist()] + [ self.depth_img_list[i] for i in idx_augment.tolist() ] sem_rgb_img_list = [self.sem_rgb_img_list[j] for j in idx.tolist()] + [ self.sem_rgb_img_list[i] for i in idx_augment.tolist() ] augment = np.hstack([np.zeros(len(idx)), np.ones(len(idx_augment))]) return odom, goal, depth_img_list, sem_rgb_img_list, augment else: return ( odom[idx], goal[idx], [self.depth_img_list[j] for j in idx.tolist()], [self.sem_rgb_img_list[j] for j in idx.tolist()], np.zeros(len(idx)), ) class PlannerDataGenerator(Dataset): debug = False mesh_size = 0.5 def __init__( self, cfg: DataCfg, root: str, semantics: bool = False, rgb: bool = False, cost_map: CostMapPCD = None, ) -> None: print( f"[INFO] PlannerDataGenerator init with semantics={semantics}," f" rgb={rgb} for ENV {os.path.split(root)[-1]}" ) # super().__init__() # set parameters self._cfg = cfg self.root = root self.cost_map = cost_map self.semantics = semantics self.rgb = rgb assert not (self.semantics and self.rgb), "semantics and rgb cannot be true at the same time" # init list for final odom, goal and img mapping self.depth_filename_list = [] self.sem_rgb_filename_list = [] self.odom_depth: torch.Tensor = None self.goal: torch.Tensor = None self.pair_outside: np.ndarray = None self.pair_difficult: np.ndarray = None self.pair_augment: np.ndarray = None self.pair_within_fov: np.ndarray = None self.pair_front_of_robot: np.ndarray = None self.odom_array_sem_rgb: pp.LieTensor = None self.odom_array_depth: pp.LieTensor = None self.odom_used: int = 0 self.odom_no_suitable_goals: int = 0 # set parameters self._device = "cuda:0" if torch.cuda.is_available() else "cpu" # get odom data and filter self.load_odom() self.filter_obs_inflation() # noise edges in depth image --> real world Realsense difficulties along edges if self._cfg.noise_edges: self.noise_edges() # find odom-goal pairs self.get_odom_goal_pairs() return """LOAD HELPER FUNCTIONS""" def load_odom(self) -> None: print("[INFO] Loading odom data...", end=" ") # load odom of every image odom_path = os.path.join(self.root, f"camera_extrinsic{self._cfg.depth_suffix}.txt") odom_np = np.loadtxt(odom_path, delimiter=",") self.odom_array_depth = pp.SE3(odom_np) if self.semantics or self.rgb: odom_path = os.path.join(self.root, f"camera_extrinsic{self._cfg.sem_suffix}.txt") odom_np = np.loadtxt(odom_path, delimiter=",") self.odom_array_sem_rgb = pp.SE3(odom_np) if self.debug: # plot odom small_sphere = o3d.geometry.TriangleMesh.create_sphere(self.mesh_size / 3.0) # successful trajectory points small_sphere.paint_uniform_color([0.4, 1.0, 0.1]) odom_vis_list = [] for i in range(len(self.odom_array_depth)): odom_vis_list.append( copy.deepcopy(small_sphere).translate( ( self.odom_array_depth[i, 0], self.odom_array_depth[i, 1], self.odom_array_depth[i, 2], ) ) ) odom_vis_list.append(self.cost_map.pcd_tsdf) o3d.visualization.draw_geometries(odom_vis_list) print("DONE!") return def load_images(self, root_path, domain: str = "depth"): img_path = os.path.join(root_path, domain) assert os.path.isdir(img_path), f"Image directory path '{img_path}' does not exist for domain" f" {domain}" assert len(os.listdir(img_path)) > 0, f"Image directory '{img_path}' is empty for domain {domain}" # use the more precise npy files if available img_filename_list = [str(s) for s in Path(img_path).rglob("*.npy")] if len(img_filename_list) == 0: img_filename_list = [str(s) for s in Path(img_path).rglob("*.png")] if domain == "depth": img_filename_list.sort(key=lambda x: int(x.split("/")[-1][: -(4 + len(self._cfg.depth_suffix))])) else: img_filename_list.sort(key=lambda x: int(x.split("/")[-1][: -(4 + len(self._cfg.sem_suffix))])) return img_filename_list """FILTER HELPER FUNCTIONS""" def filter_obs_inflation(self) -> None: """ Filter odom points within the inflation range of the obstacles in the cost map. Filtering only performed according to the position of the depth camera, due to the close position of depth and semantic camera. """ print( ("[INFO] Filter odom points within the inflation range of the" " obstacles in the cost map..."), end="", ) norm_inds, _ = self.cost_map.Pos2Ind(self.odom_array_depth[:, None, :3]) cost_grid = self.cost_map.cost_array.T.expand(self.odom_array_depth.shape[0], 1, -1, -1) norm_inds = norm_inds.to(cost_grid.device) oloss_M = ( F.grid_sample( cost_grid, norm_inds[:, None, :, :], mode="bicubic", padding_mode="border", align_corners=False, ) .squeeze(1) .squeeze(1) ) oloss_M = oloss_M.to(torch.float32).to("cpu") if self.semantics or self.rgb: points_free_space = oloss_M < self._cfg.obs_cost_height + abs( self.cost_map.cfg.sem_cost_map.negative_reward ) else: points_free_space = oloss_M < self._cfg.obs_cost_height if self._cfg.carla: # for CARLA filter large open spaces # Extract the x and y coordinates from the odom poses x_coords = self.odom_array_depth.tensor()[:, 0] y_coords = self.odom_array_depth.tensor()[:, 1] # Filter the point cloud based on the square coordinates mask_area_1 = (y_coords >= 100.5) & (y_coords <= 325.5) & (x_coords >= 208.9) & (x_coords <= 317.8) mask_area_2 = (y_coords >= 12.7) & (y_coords <= 80.6) & (x_coords >= 190.3) & (x_coords <= 315.8) mask_area_3 = (y_coords >= 10.0) & (y_coords <= 80.0) & (x_coords >= 123.56) & (x_coords <= 139.37) combined_mask = mask_area_1 | mask_area_2 | mask_area_3 | ~points_free_space.squeeze(1) points_free_space = (~combined_mask).unsqueeze(1) if self.debug: # plot odom odom_vis_list = [] small_sphere = o3d.geometry.TriangleMesh.create_sphere(self.mesh_size / 3.0) # successful trajectory points for i in range(len(self.odom_array_depth)): if round(oloss_M[i].item(), 3) == 0.0: small_sphere.paint_uniform_color([0.4, 0.1, 1.0]) # violette elif points_free_space[i]: small_sphere.paint_uniform_color([0.4, 1.0, 0.1]) # green else: small_sphere.paint_uniform_color([1.0, 0.4, 0.1]) # red if self.semantics or self.rgb: z_height = self.odom_array_depth.tensor()[i, 2] + abs( self.cost_map.cfg.sem_cost_map.negative_reward ) else: z_height = self.odom_array_depth.tensor()[i, 2] odom_vis_list.append( copy.deepcopy(small_sphere).translate( ( self.odom_array_depth.tensor()[i, 0], self.odom_array_depth.tensor()[i, 1], z_height, ) ) ) odom_vis_list.append(self.cost_map.pcd_tsdf) o3d.visualization.draw_geometries(odom_vis_list) nb_odom_point_prev = len(self.odom_array_depth) self.odom_array_depth = self.odom_array_depth[points_free_space.squeeze()] self.nb_odom_points = self.odom_array_depth.shape[0] # load depth image files as name list depth_filename_list = self.load_images(self.root, "depth") self.depth_filename_list = [ depth_filename_list[i] for i in range(len(depth_filename_list)) if points_free_space[i] ] if self.semantics: self.odom_array_sem_rgb = self.odom_array_sem_rgb[points_free_space.squeeze()] sem_rgb_filename_list = self.load_images(self.root, "semantics") self.sem_rgb_filename_list = [ sem_rgb_filename_list[i] for i in range(len(sem_rgb_filename_list)) if points_free_space[i] ] elif self.rgb: self.odom_array_sem_rgb = self.odom_array_sem_rgb[points_free_space.squeeze()] sem_rgb_filename_list = self.load_images(self.root, "rgb") self.sem_rgb_filename_list = [ sem_rgb_filename_list[i] for i in range(len(sem_rgb_filename_list)) if points_free_space[i] ] assert len(self.depth_filename_list) != 0, "No depth images left after filtering" print("DONE!") print( "[INFO] odom points outside obs inflation :" f" \t{self.nb_odom_points} ({round(self.nb_odom_points/nb_odom_point_prev*100, 2)} %)" ) return """GENERATE SAMPLES""" def get_odom_goal_pairs(self) -> None: # get fov self.get_intrinscs_and_fov() # construct graph self.get_graph() # get pairs self.get_pairs() # free up memory self.odom_array_depth = self.odom_array_sem_rgb = None return def compute_ratios(self) -> Tuple[float, float, float]: # ratio of general samples distribution num_within_fov = self.odom_depth[self.pair_within_fov].shape[0] ratio_fov = num_within_fov / self.odom_depth.shape[0] ratio_front = np.sum(self.pair_front_of_robot) / self.odom_depth.shape[0] ratio_back = 1 - ratio_front - ratio_fov # samples ratios within fov samples num_easy = ( num_within_fov - self.pair_difficult[self.pair_within_fov].sum().item() - self.pair_outside[self.pair_within_fov].sum().item() ) ratio_easy = num_easy / num_within_fov ratio_hard = self.pair_difficult[self.pair_within_fov].sum().item() / num_within_fov ratio_outside = self.pair_outside[self.pair_within_fov].sum().item() / num_within_fov return ( ratio_fov, ratio_front, ratio_back, ratio_easy, ratio_hard, ratio_outside, ) def get_intrinscs_and_fov(self) -> None: # load intrinsics intrinsic_path = os.path.join(self.root, "intrinsics.txt") P = np.loadtxt(intrinsic_path, delimiter=",") # assumes ROS P matrix self.K_depth = P[0].reshape(3, 4)[:3, :3] self.K_sem_rgb = P[1].reshape(3, 4)[:3, :3] self.alpha_fov = 2 * math.atan(self.K_depth[0, 0] / self.K_depth[0, 2]) return def get_graph(self) -> None: num_connections = 3 num_intermediate = 3 # get occpuancy map from tsdf map cost_array = self.cost_map.tsdf_array.cpu().numpy() if self.semantics or self.rgb: occupancy_map = ( cost_array > self._cfg.obs_cost_height + abs(self.cost_map.cfg.sem_cost_map.negative_reward) ).astype(np.uint8) else: occupancy_map = (cost_array > self._cfg.obs_cost_height).astype(np.uint8) # construct kdtree to find nearest neighbors of points odom_points = self.odom_array_depth.data[:, :2].data.cpu().numpy() kdtree = KDTree(odom_points) _, nearest_neighbors_idx = kdtree.query(odom_points, k=num_connections + 1, workers=-1) # remove first neighbor as it is the point itself nearest_neighbors_idx = nearest_neighbors_idx[:, 1:] # define origin and neighbor points origin_point = np.repeat(odom_points, repeats=num_connections, axis=0) neighbor_points = odom_points[nearest_neighbors_idx, :].reshape(-1, 2) # interpolate points between origin and neighbor points x_interp = ( origin_point[:, None, 0] + (neighbor_points[:, 0] - origin_point[:, 0])[:, None] * np.linspace(0, 1, num=num_intermediate + 1, endpoint=False)[1:] ) y_interp = ( origin_point[:, None, 1] + (neighbor_points[:, 1] - origin_point[:, 1])[:, None] * np.linspace(0, 1, num=num_intermediate + 1, endpoint=False)[1:] ) inter_points = np.stack((x_interp.reshape(-1), y_interp.reshape(-1)), axis=1) # get the indices of the interpolated points in the occupancy map occupancy_idx = ( inter_points - np.array([self.cost_map.cfg.x_start, self.cost_map.cfg.y_start]) ) / self.cost_map.cfg.general.resolution # check occupancy for collisions at the interpolated points collision = occupancy_map[ occupancy_idx[:, 0].astype(np.int64), occupancy_idx[:, 1].astype(np.int64), ] collision = np.any(collision.reshape(-1, num_intermediate), axis=1) # get edge indices idx_edge_start = np.repeat(np.arange(odom_points.shape[0]), repeats=num_connections, axis=0) idx_edge_end = nearest_neighbors_idx.reshape(-1) # filter collision edges idx_edge_end = idx_edge_end[~collision] idx_edge_start = idx_edge_start[~collision] # init graph self.graph = nx.Graph() # add nodes with position attributes self.graph.add_nodes_from(list(range(odom_points.shape[0]))) pos_attr = {i: {"pos": odom_points[i]} for i in range(odom_points.shape[0])} nx.set_node_attributes(self.graph, pos_attr) # add edges with distance attributes self.graph.add_edges_from(list(map(tuple, np.stack((idx_edge_start, idx_edge_end), axis=1)))) distance_attr = { (i, j): {"distance": np.linalg.norm(odom_points[i] - odom_points[j])} for i, j in zip(idx_edge_start, idx_edge_end) } nx.set_edge_attributes(self.graph, distance_attr) # DEBUG if self.debug: import matplotlib.pyplot as plt nx.draw_networkx( self.graph, nx.get_node_attributes(self.graph, "pos"), node_size=10, with_labels=False, node_color=[0.0, 1.0, 0.0], ) plt.show() return def get_pairs(self): # iterate over all odom points and find goal points self.odom_no_suitable_goals = 0 self.odom_used = 0 # init semantic warp parameters if self.semantics or self.rgb: # compute pixel tensor depth_filename = self.depth_filename_list[0] depth_img = self._load_depth_image(depth_filename) x_nums, y_nums = depth_img.shape self.pix_depth_cam_frame = self.compute_pixel_tensor(x_nums, y_nums, self.K_depth) # make dir os.makedirs(os.path.join(self.root, "img_warp"), exist_ok=True) # get distances between odom and goal points odom_goal_distances = dict( nx.all_pairs_dijkstra_path_length( self.graph, cutoff=self._cfg.max_goal_distance, weight="distance", ) ) # init dataclass for each entry in the distance scheme self.category_scheme_pairs: Dict[float, DistanceSchemeIdx] = { distance: DistanceSchemeIdx(distance=distance) for distance in self._cfg.distance_scheme.keys() } # iterate over all odom points for odom_idx in tqdm(range(self.nb_odom_points), desc="Start-End Pairs Generation"): odom = self.odom_array_depth[odom_idx] # transform all odom points to current odom frame goals = pp.Inv(odom) @ self.odom_array_depth # categorize goals ( within_fov, front_of_robot, behind_robot, ) = self.get_goal_categories( goals ) # returns goals in odom frame # filter odom if no suitable goals within the fov are found if within_fov.sum() == 0: self.odom_no_suitable_goals += 1 continue self.odom_used += 1 if self.semantics or self.rgb: # semantic warp img_new_path = self._get_overlay_img(odom_idx) else: img_new_path = None # get pair according to distance scheme for each category self.reduce_pairs( odom_idx, goals, within_fov, odom_goal_distances[odom_idx], img_new_path, within_fov=True, ) self.reduce_pairs( odom_idx, goals, behind_robot, odom_goal_distances[odom_idx], img_new_path, behind_robot=True, ) self.reduce_pairs( odom_idx, goals, front_of_robot, odom_goal_distances[odom_idx], img_new_path, front_of_robot=True, ) # DEBUG if self.debug: # plot odom small_sphere = o3d.geometry.TriangleMesh.create_sphere( self.mesh_size / 3.0 ) # successful trajectory points odom_vis_list = [] goal_odom = odom @ goals hit_pcd = (goal_odom).cpu().numpy()[:, :3] for idx, pts in enumerate(hit_pcd): if within_fov[idx]: small_sphere.paint_uniform_color([0.4, 1.0, 0.1]) elif front_of_robot[idx]: small_sphere.paint_uniform_color([0.0, 0.5, 0.5]) else: small_sphere.paint_uniform_color([0.0, 0.1, 1.0]) odom_vis_list.append(copy.deepcopy(small_sphere).translate((pts[0], pts[1], pts[2]))) # viz cost map odom_vis_list.append(self.cost_map.pcd_tsdf) # field of view visualization fov_vis_length = 0.75 # length of the fov visualization plane in meters fov_vis_pt_right = odom @ pp.SE3( [ fov_vis_length * np.cos(self.alpha_fov / 2), fov_vis_length * np.sin(self.alpha_fov / 2), 0, 0, 0, 0, 1, ] ) fov_vis_pt_left = odom @ pp.SE3( [ fov_vis_length * np.cos(self.alpha_fov / 2), -fov_vis_length * np.sin(self.alpha_fov / 2), 0, 0, 0, 0, 1, ] ) fov_vis_pt_right = fov_vis_pt_right.numpy()[:3] fov_vis_pt_left = fov_vis_pt_left.numpy()[:3] fov_mesh = o3d.geometry.TriangleMesh( vertices=o3d.utility.Vector3dVector( np.array( [ odom.data.cpu().numpy()[:3], fov_vis_pt_right, fov_vis_pt_left, ] ) ), triangles=o3d.utility.Vector3iVector(np.array([[2, 1, 0]])), ) fov_mesh.paint_uniform_color([1.0, 0.5, 0.0]) odom_vis_list.append(fov_mesh) # odom viz small_sphere.paint_uniform_color([1.0, 0.0, 0.0]) odom_vis_list.append( copy.deepcopy(small_sphere).translate( ( odom.data[0].item(), odom.data[1].item(), odom.data[2].item(), ) ) ) # plot goal o3d.visualization.draw_geometries(odom_vis_list) if self.debug: small_sphere = o3d.geometry.TriangleMesh.create_sphere(self.mesh_size / 3.0) # successful trajectory points odom_vis_list = [] for distance in self._cfg.distance_scheme.keys(): odoms = torch.vstack(self.category_scheme_pairs[distance].odom_list) odoms = odoms.tensor().cpu().numpy()[:, :3] for idx, odom in enumerate(odoms): odom_vis_list.append(copy.deepcopy(small_sphere).translate((odom[0], odom[1], odom[2]))) if idx > 10: break # viz cost map odom_vis_list.append(self.cost_map.pcd_tsdf) # plot goal o3d.visualization.draw_geometries(odom_vis_list) return def reduce_pairs( self, odom_idx: int, goals: pp.LieTensor, decision_tensor: torch.Tensor, odom_distances: dict, warp_img_path: Optional[str], within_fov: bool = False, behind_robot: bool = False, front_of_robot: bool = False, ): # remove all goals depending on the decision tensor from the odom_distances dict keep_distance_entries = decision_tensor[list(odom_distances.keys())] distances = np.array(list(odom_distances.values()))[keep_distance_entries.numpy()] goal_idx = np.array(list(odom_distances.keys()))[keep_distance_entries.numpy()] # max distance enforced odom_distances, here enforce min distance within_distance_idx = distances > self._cfg.min_goal_distance goal_idx = goal_idx[within_distance_idx] distances = distances[within_distance_idx] # check if there are any goals left if len(goal_idx) == 0: return # select the goal according to the distance_scheme for distance in self._cfg.distance_scheme.keys(): # select nbr_samples from goals within distance within_curr_distance_idx = distances < distance if sum(within_curr_distance_idx) == 0: continue selected_idx = np.random.choice( goal_idx[within_curr_distance_idx], min(3, sum(within_curr_distance_idx)), replace=False, ) # remove the selected goals from the list for further selection distances = distances[~within_curr_distance_idx] goal_idx = goal_idx[~within_curr_distance_idx] for idx in selected_idx: self.category_scheme_pairs[distance].update_buffers( odom=self.odom_array_depth[odom_idx], goal=goals[idx], within_fov=within_fov, front_of_robot=front_of_robot, behind_robot=behind_robot, depth_filename=self.depth_filename_list[odom_idx], sem_rgb_filename=warp_img_path, ) def get_goal_categories(self, goal_odom_frame: pp.LieTensor): """ Decide which of the samples are within the fov, in front of the robot or behind the robot. """ # get if odom-goal is within fov or outside the fov but still in front of the robot goal_angle = abs(torch.atan2(goal_odom_frame.data[:, 1], goal_odom_frame.data[:, 0])) within_fov = goal_angle < self.alpha_fov / 2 * self._cfg.fov_scale front_of_robot = goal_angle < torch.pi / 2 front_of_robot[within_fov] = False behind_robot = ~front_of_robot.clone() behind_robot[within_fov] = False return within_fov, front_of_robot, behind_robot """SPLIT HELPER FUNCTIONS""" def split_samples( self, test_dataset: PlannerData, train_dataset: Optional[PlannerData] = None, generate_split: bool = False, ratio_fov_samples: Optional[float] = None, ratio_front_samples: Optional[float] = None, ratio_back_samples: Optional[float] = None, allow_augmentation: bool = True, ) -> None: # check if ratios are given or defaults are used ratio_fov_samples = ratio_fov_samples if ratio_fov_samples is not None else self._cfg.ratio_fov_samples ratio_front_samples = ratio_front_samples if ratio_front_samples is not None else self._cfg.ratio_front_samples ratio_back_samples = ratio_back_samples if ratio_back_samples is not None else self._cfg.ratio_back_samples assert round(ratio_fov_samples + ratio_front_samples + ratio_back_samples, 2) == 1.0, ( "Sample ratios must sum up to 1.0, currently" f" {ratio_back_samples + ratio_front_samples + ratio_fov_samples}" ) # max sample number if self._cfg.max_train_pairs: max_sample_number = min( int(self._cfg.max_train_pairs / self._cfg.ratio), int(self.odom_used * self._cfg.pairs_per_image), ) else: max_sample_number = int(self.odom_used * self._cfg.pairs_per_image) # init buffers odom = torch.zeros((max_sample_number, 7), dtype=torch.float32) goal = torch.zeros((max_sample_number, 7), dtype=torch.float32) augment_samples = np.zeros((max_sample_number), dtype=bool) depth_filename = [] sem_rgb_filename = [] current_idx = 0 for distance, distance_percentage in self._cfg.distance_scheme.items(): if not self.category_scheme_pairs[distance].has_data: print(f"[WARN] No samples for distance {distance} in ENV" f" {os.path.split(self.root)[-1]}") continue # get number of samples buffer_data = self.category_scheme_pairs[distance].get_data( nb_fov=int(ratio_fov_samples * distance_percentage * max_sample_number), nb_front=int(ratio_front_samples * distance_percentage * max_sample_number), nb_back=int(ratio_back_samples * distance_percentage * max_sample_number), augment=allow_augmentation, ) nb_samples = buffer_data[0].shape[0] # add to buffers odom[current_idx : current_idx + nb_samples] = buffer_data[0] goal[current_idx : current_idx + nb_samples] = buffer_data[1] depth_filename += buffer_data[2] sem_rgb_filename += buffer_data[3] augment_samples[current_idx : current_idx + nb_samples] = buffer_data[4] current_idx += nb_samples # cut off unused space odom = odom[:current_idx] goal = goal[:current_idx] augment_samples = augment_samples[:current_idx] # print data mix print( f"[INFO] datamix containing {odom.shape[0]} suitable odom-goal" " pairs: \n" "\t fov :" f" \t{int(odom.shape[0] * ratio_fov_samples) } ({round(ratio_fov_samples*100, 2)} %) \n" "\t front of robot :" f" \t{int(odom.shape[0] * ratio_front_samples)} ({round(ratio_front_samples*100, 2)} %) \n" "\t back of robot :" f" \t{int(odom.shape[0] * ratio_back_samples) } ({round(ratio_back_samples*100, 2)} %) \n" "from" f" {self.odom_used} ({round(self.odom_used/self.nb_odom_points*100, 2)} %)" " different starting points where \n" "\t non-suitable filter:" f" {self.odom_no_suitable_goals} ({round(self.odom_no_suitable_goals/self.nb_odom_points*100, 2)} %)" ) # generate split idx = np.arange(odom.shape[0]) if generate_split: train_index = sample(idx.tolist(), int(len(idx) * self._cfg.ratio)) idx = np.delete(idx, train_index) train_dataset.update_buffers( depth_filename=[depth_filename[i] for i in train_index], sem_rgb_filename=([sem_rgb_filename[i] for i in train_index] if (self.semantics or self.rgb) else None), odom=odom[train_index], goal=goal[train_index], pair_augment=augment_samples[train_index], ) train_dataset.set_fov(self.alpha_fov) test_dataset.update_buffers( depth_filename=[depth_filename[i] for i in idx], sem_rgb_filename=([sem_rgb_filename[i] for i in idx] if (self.semantics or self.rgb) else None), odom=odom[idx], goal=goal[idx], pair_augment=augment_samples[idx], ) test_dataset.set_fov(self.alpha_fov) return """ Warp semantic on depth image helper functions""" @staticmethod def compute_pixel_tensor(x_nums: int, y_nums: int, K_depth: np.ndarray) -> None: # get image plane mesh grid pix_u = np.arange(0, y_nums) pix_v = np.arange(0, x_nums) grid = np.meshgrid(pix_u, pix_v) pixels = np.vstack(list(map(np.ravel, grid))).T pixels = np.hstack([pixels, np.ones((len(pixels), 1))]) # add ones for 3D coordinates # transform to camera frame k_inv = np.linalg.inv(K_depth) pix_cam_frame = np.matmul(k_inv, pixels.T) # reorder to be in "robotics" axis order (x forward, y left, z up) return pix_cam_frame[[2, 0, 1], :].T * np.array([1, -1, -1]) def _load_depth_image(self, depth_filename): if depth_filename.endswith(".png"): depth_image = Image.open(depth_filename) if self._cfg.real_world_data: depth_image = np.array(depth_image.transpose(PIL.Image.ROTATE_180)) else: depth_image = np.array(depth_image) else: depth_image = np.load(depth_filename) depth_image[~np.isfinite(depth_image)] = 0.0 depth_image = (depth_image / self._cfg.depth_scale).astype("float32") depth_image[depth_image > self._cfg.max_depth] = 0.0 return depth_image @staticmethod def compute_overlay( pose_dep, pose_sem, depth_img, sem_rgb_image, pix_depth_cam_frame, K_sem_rgb, ): # get 3D points of depth image rot = tf.Rotation.from_quat(pose_dep[3:]).as_matrix() dep_im_reshaped = depth_img.reshape( -1, 1 ) # flip s.t. start in lower left corner of image as (0,0) -> has to fit to the pixel tensor points = dep_im_reshaped * (rot @ pix_depth_cam_frame.T).T + pose_dep[:3] # transform points to semantic camera frame points_sem_cam_frame = (tf.Rotation.from_quat(pose_sem[3:]).as_matrix().T @ (points - pose_sem[:3]).T).T # normalize points points_sem_cam_frame_norm = points_sem_cam_frame / points_sem_cam_frame[:, 0][:, np.newaxis] # reorder points be camera convention (z-forward) points_sem_cam_frame_norm = points_sem_cam_frame_norm[:, [1, 2, 0]] * np.array([-1, -1, 1]) # transform points to pixel coordinates pixels = (K_sem_rgb @ points_sem_cam_frame_norm.T).T # filter points outside of image filter_idx = ( (pixels[:, 0] >= 0) & (pixels[:, 0] < sem_rgb_image.shape[1]) & (pixels[:, 1] >= 0) & (pixels[:, 1] < sem_rgb_image.shape[0]) ) # get semantic annotation sem_annotation = np.zeros((pixels.shape[0], 3), dtype=np.uint8) sem_annotation[filter_idx] = sem_rgb_image[ pixels[filter_idx, 1].astype(int), pixels[filter_idx, 0].astype(int), ] # reshape to image return sem_annotation.reshape(depth_img.shape[0], depth_img.shape[1], 3) def _get_overlay_img(self, odom_idx): # get corresponding filenames depth_filename = self.depth_filename_list[odom_idx] sem_rgb_filename = self.sem_rgb_filename_list[odom_idx] # load semantic and depth image and get their poses depth_img = self._load_depth_image(depth_filename) sem_rgb_image = Image.open(sem_rgb_filename) if self._cfg.real_world_data: sem_rgb_image = np.array(sem_rgb_image.transpose(PIL.Image.ROTATE_180)) else: sem_rgb_image = np.array(sem_rgb_image) pose_dep = self.odom_array_depth[odom_idx].data.cpu().numpy() pose_sem = self.odom_array_sem_rgb[odom_idx].data.cpu().numpy() sem_rgb_image_warped = self.compute_overlay( pose_dep, pose_sem, depth_img, sem_rgb_image, self.pix_depth_cam_frame, self.K_sem_rgb, ) assert sem_rgb_image_warped.dtype == np.uint8, "sem_rgb_image_warped has to be uint8" # DEBUG if self.debug: import matplotlib.pyplot as plt f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5)) ax1.imshow(depth_img) ax2.imshow(sem_rgb_image_warped / 255) ax3.imshow(sem_rgb_image) # ax3.imshow(depth_img) # ax3.imshow(sem_rgb_image_warped / 255, alpha=0.5) ax1.axis("off") ax2.axis("off") ax3.axis("off") plt.show() # save semantic image under the new path sem_rgb_filename = os.path.split(sem_rgb_filename)[1] sem_rgb_image_path = os.path.join(self.root, "img_warp", sem_rgb_filename) sem_rgb_image_warped = cv2.cvtColor(sem_rgb_image_warped, cv2.COLOR_RGB2BGR) # convert to BGR for cv2 assert cv2.imwrite(sem_rgb_image_path, sem_rgb_image_warped) return sem_rgb_image_path """Noise Edges helper functions""" def noise_edges(self): """ Along the edges in the depth image, set the values to 0. Mimics the real-world behavior where RealSense depth cameras have difficulties along edges. """ print("[INFO] Adding noise to edges in depth images ...", end=" ") new_depth_filename_list = [] # create new directory depth_noise_edge_dir = os.path.join(self.root, "depth_noise_edges") os.makedirs(depth_noise_edge_dir, exist_ok=True) for depth_filename in self.depth_filename_list: depth_img = self._load_depth_image(depth_filename) # Perform Canny edge detection image = ((depth_img / depth_img.max()) * 255).astype(np.uint8) # convert to CV_U8 format edges = cv2.Canny(image, self._cfg.edge_threshold, self._cfg.edge_threshold * 3) # Dilate the edges to extend their space kernel = np.ones(self._cfg.extend_kernel_size, np.uint8) dilated_edges = cv2.dilate(edges, kernel, iterations=1) # Erode the edges to refine their shape eroded_edges = cv2.erode(dilated_edges, kernel, iterations=1) # modify depth image depth_img[eroded_edges == 255] = 0.0 # save depth image depth_img = (depth_img * self._cfg.depth_scale).astype("uint16") if depth_filename.endswith(".png"): assert cv2.imwrite( os.path.join(depth_noise_edge_dir, os.path.split(depth_filename)[1]), depth_img, ) else: np.save( os.path.join(depth_noise_edge_dir, os.path.split(depth_filename)[1]), depth_img, ) new_depth_filename_list.append(os.path.join(depth_noise_edge_dir, os.path.split(depth_filename)[1])) self.depth_filename_list = new_depth_filename_list print("Done!") return """ Cleanup Script for files generated by this class""" def cleanup(self): print( ("[INFO] Cleaning up for environment" f" {os.path.split(self.root)[1]} ..."), end=" ", ) # remove semantic_warp directory if os.path.isdir(os.path.join(self.root, "img_warp")): shutil.rmtree(os.path.join(self.root, "img_warp")) # remove depth_noise_edges directory if os.path.isdir(os.path.join(self.root, "depth_noise_edges")): shutil.rmtree(os.path.join(self.root, "depth_noise_edges")) print("Done!") return # EoF
51,127
Python
38.481081
135
0.542707
leggedrobotics/viplanner/viplanner/utils/torchutil.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import torch import torch.fft class EarlyStopScheduler(torch.optim.lr_scheduler.ReduceLROnPlateau): def __init__( self, optimizer, mode="min", factor=0.1, patience=10, verbose=False, threshold=1e-4, threshold_mode="rel", cooldown=0, min_lr=0, eps=1e-8, ): super().__init__( optimizer=optimizer, mode=mode, factor=factor, patience=patience, threshold=threshold, threshold_mode=threshold_mode, cooldown=cooldown, min_lr=min_lr, eps=eps, verbose=verbose, ) self.no_decrease = 0 def step(self, metrics, epoch=None): # convert `metrics` to float, in case it's a zero-dim Tensor current = float(metrics) if epoch is None: epoch = self.last_epoch = self.last_epoch + 1 self.last_epoch = epoch if self.is_better(current, self.best): self.best = current self.num_bad_epochs = 0 else: self.num_bad_epochs += 1 if self.in_cooldown: self.cooldown_counter -= 1 self.num_bad_epochs = 0 # ignore any bad epochs in cooldown if self.num_bad_epochs > self.patience: self.cooldown_counter = self.cooldown self.num_bad_epochs = 0 self._reduce_lr(epoch) def _reduce_lr(self, epoch): for i, param_group in enumerate(self.optimizer.param_groups): old_lr = float(param_group["lr"]) new_lr = max(old_lr * self.factor, self.min_lrs[i]) if old_lr - new_lr > self.eps: param_group["lr"] = new_lr if self.verbose: print("Epoch {:5d}: reducing learning rate" " of group {} to {:.4e}.".format(epoch, i, new_lr)) return False else: return True def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad)
2,233
Python
28.394736
115
0.543215
leggedrobotics/viplanner/viplanner/utils/trainer.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause import contextlib # python import os from typing import List, Optional, Tuple import matplotlib.pyplot as plt import numpy as np import torch import torch.nn as nn import torch.optim as optim import torch.utils.data as Data import torchvision.transforms as transforms import tqdm import wandb # logging import yaml # imperative-planning-learning from viplanner.config import TrainCfg from viplanner.plannernet import ( PRE_TRAIN_POSSIBLE, AutoEncoder, DualAutoEncoder, get_m2f_cfg, ) from viplanner.traj_cost_opt import TrajCost, TrajViz from viplanner.utils.torchutil import EarlyStopScheduler, count_parameters from .dataset import PlannerData, PlannerDataGenerator torch.set_default_dtype(torch.float32) class Trainer: """ VIPlanner Trainer """ def __init__(self, cfg: TrainCfg) -> None: self._cfg = cfg # set model save/load path os.makedirs(self._cfg.curr_model_dir, exist_ok=True) self.model_path = os.path.join(self._cfg.curr_model_dir, "model.pt") if self._cfg.hierarchical: self.model_dir_hierarch = os.path.join(self._cfg.curr_model_dir, "hierarchical") os.makedirs(self.model_dir_hierarch, exist_ok=True) self.hierach_losses = {} # image transforms self.transform = transforms.Compose( [ transforms.ToTensor(), transforms.Resize((self._cfg.img_input_size), antialias=True), ] ) # init buffers DATA self.data_generators: List[PlannerDataGenerator] = [] self.data_traj_cost: List[TrajCost] = [] self.data_traj_viz: List[TrajViz] = [] self.fov_ratio: float = None self.front_ratio: float = None self.back_ratio: float = None self.pixel_mean: np.ndarray = None self.pixel_std: np.ndarray = None # inti buffers MODEL self.best_loss = float("inf") self.test_loss = float("inf") self.net: nn.Module = None self.optimizer: optim.Optimizer = None self.scheduler: EarlyStopScheduler = None print("[INFO] Trainer initialized") return """PUBLIC METHODS""" def train(self) -> None: print("[INFO] Start Training") # init logging self._init_logging() # load model and prepare model for training self._load_model(self._cfg.resume) self._configure_optimizer() # get dataloader for training self._load_data(train=True) if self._cfg.hierarchical: step_counter = 0 train_loader_list, val_loader_list = self._get_dataloader(step=step_counter) else: train_loader_list, val_loader_list = self._get_dataloader() try: wandb.watch(self.net) except: # noqa: E722 print("[WARNING] Wandb model watch failed") for epoch in range(self._cfg.epochs): train_loss = 0 val_loss = 0 for i in range(len(train_loader_list)): train_loss += self._train_epoch(train_loader_list[i], epoch, env_id=i) val_loss += self._test_epoch(val_loader_list[i], env_id=i, epoch=epoch) train_loss /= len(train_loader_list) val_loss /= len(train_loader_list) try: wandb.log( { "train_loss": train_loss, "val_loss": val_loss, "epoch": epoch, } ) except: # noqa: E722 print("[WARNING] Wandb logging failed") # if val_loss < best_loss: if val_loss < self.best_loss: print("[INFO] Save model of epoch %d" % (epoch)) torch.save((self.net.state_dict(), val_loss), self.model_path) self.best_loss = val_loss print("[INFO] Current val loss: %.4f" % (self.best_loss)) if self.scheduler.step(val_loss): print("[INFO] Early Stopping!") break if self._cfg.hierarchical and (epoch + 1) % self._cfg.hierarchical_step == 0: torch.save( (self.net.state_dict(), self.best_loss), os.path.join( self.model_dir_hierarch, ( f"model_ep{epoch}_fov{round(self.fov_ratio, 3)}_" f"front{round(self.front_ratio, 3)}_" f"back{round(self.back_ratio, 3)}.pt" ), ), ) step_counter += 1 train_loader_list, val_loader_list = self._get_dataloader(step=step_counter) self.hierach_losses[epoch] = self.best_loss torch.cuda.empty_cache() # cleanup data for generator in self.data_generators: generator.cleanup() # empty buffers self.data_generators = [] self.data_traj_cost = [] self.data_traj_viz = [] return def test(self, step: Optional[int] = None) -> None: print("[INFO] Start Training") # set random seed for reproducibility torch.manual_seed(self._cfg.seed) # define step if step is None and self._cfg.hierarchical: step = int(self._cfg.epochs / self._cfg.hierarchical_step) # load model self._load_model(resume=True) # get dataloader for training self._load_data(train=False) _, test_loader = self._get_dataloader(train=False, step=step) self.test_loss = self._test_epoch( test_loader[0], env_id=0, is_visual=not os.getenv("EXPERIMENT_DIRECTORY"), fov_angle=self.data_generators[0].alpha_fov, dataset="test", ) # cleanup data for generator in self.data_generators: generator.cleanup() def save_config(self) -> None: print(f"[INFO] val_loss: {self.best_loss:.2f}, test_loss," f"{self.test_loss:.4f}") """ Save config and loss to file""" path, _ = os.path.splitext(self.model_path) yaml_path = path + ".yaml" print(f"[INFO] Save config and loss to {yaml_path} file") loss_dict = {"val_loss": self.best_loss, "test_loss": self.test_loss} save_dict = {"config": vars(self._cfg), "loss": loss_dict} # dump yaml with open(yaml_path, "w+") as file: yaml.dump(save_dict, file, allow_unicode=True, default_flow_style=False) # logging with contextlib.suppress(Exception): wandb.finish() # plot hierarchical losses if self._cfg.hierarchical: plt.figure(figsize=(10, 10)) plt.plot( list(self.hierach_losses.keys()), list(self.hierach_losses.values()), ) plt.xlabel("Epoch") plt.ylabel("Validation Loss") plt.title("Hierarchical Losses") plt.savefig(os.path.join(self.model_dir_hierarch, "hierarchical_losses.png")) plt.close() return """PRIVATE METHODS""" # Helper function DATA def _load_data(self, train: bool = True) -> None: if not isinstance(self._cfg.data_cfg, list): self._cfg.data_cfg = [self._cfg.data_cfg] * len(self._cfg.env_list) assert len(self._cfg.data_cfg) == len(self._cfg.env_list), ( "Either single DataCfg or number matching number of environments" "must be provided" ) for idx, env_name in enumerate(self._cfg.env_list): if (train and idx == self._cfg.test_env_id) or (not train and idx != self._cfg.test_env_id): continue data_path = os.path.join(self._cfg.data_dir, env_name) # get trajectory cost map traj_cost = TrajCost( self._cfg.gpu_id, log_data=train, w_obs=self._cfg.w_obs, w_height=self._cfg.w_height, w_goal=self._cfg.w_goal, w_motion=self._cfg.w_motion, obstalce_thread=self._cfg.obstacle_thread, ) traj_cost.SetMap( data_path, self._cfg.cost_map_name, ) generator = PlannerDataGenerator( cfg=self._cfg.data_cfg[idx], root=data_path, semantics=self._cfg.sem, rgb=self._cfg.rgb, cost_map=traj_cost.cost_map, # trajectory cost class ) traj_viz = TrajViz( intrinsics=generator.K_depth, cam_resolution=self._cfg.img_input_size, camera_tilt=self._cfg.camera_tilt, cost_map=traj_cost.cost_map, ) self.data_generators.append(generator) self.data_traj_cost.append(traj_cost) self.data_traj_viz.append(traj_viz) print(f"LOADED DATA FOR ENVIRONMENT: {env_name}") print("[INFO] LOADED ALL DATA") return # Helper function TRAINING def _init_logging(self) -> None: # logging os.environ["WANDB_API_KEY"] = self._cfg.wb_api_key os.environ["WANDB_MODE"] = "online" os.makedirs(self._cfg.log_dir, exist_ok=True) try: wandb.init( project=self._cfg.wb_project, entity=self._cfg.wb_entity, name=self._cfg.get_model_save(), config=self._cfg.__dict__, dir=self._cfg.log_dir, ) except: # noqa: E722 print("[WARNING: Wandb not available") return def _load_model(self, resume: bool = False) -> None: if self._cfg.sem or self._cfg.rgb: if self._cfg.rgb and self._cfg.pre_train_sem: assert PRE_TRAIN_POSSIBLE, ( "Pretrained model not available since either detectron2" " not installed or mask2former not found in thrid_party" " folder" ) pre_train_cfg = os.path.join(self._cfg.all_model_dir, self._cfg.pre_train_cfg) pre_train_weights = ( os.path.join(self._cfg.all_model_dir, self._cfg.pre_train_weights) if self._cfg.pre_train_weights else None ) m2f_cfg = get_m2f_cfg(pre_train_cfg) self.pixel_mean = m2f_cfg.MODEL.PIXEL_MEAN self.pixel_std = m2f_cfg.MODEL.PIXEL_STD else: m2f_cfg = None pre_train_weights = None self.net = DualAutoEncoder(self._cfg, m2f_cfg=m2f_cfg, weight_path=pre_train_weights) else: self.net = AutoEncoder(self._cfg.in_channel, self._cfg.knodes) assert torch.cuda.is_available(), "Code requires GPU" print(f"Available GPU list: {list(range(torch.cuda.device_count()))}") print(f"Running on GPU: {self._cfg.gpu_id}") self.net = self.net.cuda(self._cfg.gpu_id) print(f"[INFO] MODEL LOADED ({count_parameters(self.net)} parameters)") if resume: model_state_dict, self.best_loss = torch.load(self.model_path) self.net.load_state_dict(model_state_dict) print(f"Resume train from {self.model_path} with loss " f"{self.best_loss}") return def _configure_optimizer(self) -> None: if self._cfg.optimizer == "adam": self.optimizer = optim.Adam( self.net.parameters(), lr=self._cfg.lr, weight_decay=self._cfg.w_decay, ) elif self._cfg.optimizer == "sgd": self.optimizer = optim.SGD( self.net.parameters(), lr=self._cfg.lr, momentum=self._cfg.momentum, weight_decay=self._cfg.w_decay, ) else: raise KeyError(f"Optimizer {self._cfg.optimizer} not supported") self.scheduler = EarlyStopScheduler( self.optimizer, factor=self._cfg.factor, verbose=True, min_lr=self._cfg.min_lr, patience=self._cfg.patience, ) print("[INFO] OPTIMIZER AND SCHEDULER CONFIGURED") return def _get_dataloader( self, train: bool = True, step: Optional[int] = None, allow_augmentation: bool = True, ) -> None: train_loader_list: List[Data.DataLoader] = [] val_loader_list: List[Data.DataLoader] = [] if step is not None: self.fov_ratio = ( 1.0 - (self._cfg.hierarchical_front_step_ratio + self._cfg.hierarchical_back_step_ratio) * step ) self.front_ratio = self._cfg.hierarchical_front_step_ratio * step self.back_ratio = self._cfg.hierarchical_back_step_ratio * step for generator in self.data_generators: # init data classes val_data = PlannerData( cfg=generator._cfg, transform=self.transform, semantics=self._cfg.sem, rgb=self._cfg.rgb, pixel_mean=self.pixel_mean, pixel_std=self.pixel_std, ) if train: train_data = PlannerData( cfg=generator._cfg, transform=self.transform, semantics=self._cfg.sem, rgb=self._cfg.rgb, pixel_mean=self.pixel_mean, pixel_std=self.pixel_std, ) else: train_data = None # split data in train and validation with given sample ratios if train: generator.split_samples( train_dataset=train_data, test_dataset=val_data, generate_split=train, ratio_back_samples=self.back_ratio, ratio_front_samples=self.front_ratio, ratio_fov_samples=self.fov_ratio, allow_augmentation=allow_augmentation, ) else: generator.split_samples( train_dataset=train_data, test_dataset=val_data, generate_split=train, ratio_back_samples=self.back_ratio, ratio_front_samples=self.front_ratio, ratio_fov_samples=self.fov_ratio, allow_augmentation=allow_augmentation, ) if self._cfg.load_in_ram: if train: train_data.load_data_in_memory() val_data.load_data_in_memory() if train: train_loader = Data.DataLoader( dataset=train_data, batch_size=self._cfg.batch_size, shuffle=True, pin_memory=True, num_workers=self._cfg.num_workers, ) val_loader = Data.DataLoader( dataset=val_data, batch_size=self._cfg.batch_size, shuffle=True, pin_memory=True, num_workers=self._cfg.num_workers, ) if train: train_loader_list.append(train_loader) val_loader_list.append(val_loader) return train_loader_list, val_loader_list def _train_epoch( self, loader: Data.DataLoader, epoch: int, env_id: int, ) -> float: train_loss, batches = 0, len(loader) enumerater = tqdm.tqdm(enumerate(loader)) for batch_idx, inputs in enumerater: odom = inputs[2].cuda(self._cfg.gpu_id) goal = inputs[3].cuda(self._cfg.gpu_id) self.optimizer.zero_grad() if self._cfg.sem or self._cfg.rgb: depth_image = inputs[0].cuda(self._cfg.gpu_id) sem_rgb_image = inputs[1].cuda(self._cfg.gpu_id) preds, fear = self.net(depth_image, sem_rgb_image, goal) else: image = inputs[0].cuda(self._cfg.gpu_id) preds, fear = self.net(image, goal) # flip y axis for augmented samples (clone necessary due to # inplace operation that otherwise leads to error in backprop) preds_flip = torch.clone(preds) preds_flip[inputs[4], :, 1] = preds_flip[inputs[4], :, 1] * -1 goal_flip = torch.clone(goal) goal_flip[inputs[4], 1] = goal_flip[inputs[4], 1] * -1 log_step = batch_idx + epoch * batches loss, _ = self._loss( preds_flip, fear, self.data_traj_cost[env_id], odom, goal_flip, log_step=log_step, ) wandb.log({"train_loss_step": loss}, step=log_step) loss.backward() self.optimizer.step() train_loss += loss.item() enumerater.set_description( f"Epoch: {epoch} in Env: " f"({env_id+1}/{len(self._cfg.env_list)-1}) " f"- train loss:{round(train_loss/(batch_idx+1), 4)} on" f" {batch_idx}/{batches}" ) return train_loss / (batch_idx + 1) def _test_epoch( self, loader, env_id: int, epoch: int = 0, is_visual=False, fov_angle: float = 90.0, dataset: str = "val", ) -> float: test_loss = 0 num_batches = len(loader) preds_viz = [] wp_viz = [] image_viz = [] with torch.no_grad(): for batch_idx, inputs in enumerate(loader): odom = inputs[2].cuda(self._cfg.gpu_id) goal = inputs[3].cuda(self._cfg.gpu_id) if self._cfg.sem or self._cfg.rgb: image = inputs[0].cuda(self._cfg.gpu_id) # depth sem_rgb_image = inputs[1].cuda(self._cfg.gpu_id) # sem preds, fear = self.net(image, sem_rgb_image, goal) else: image = inputs[0].cuda(self._cfg.gpu_id) preds, fear = self.net(image, goal) # flip y axis for augmented samples preds[inputs[4], :, 1] = preds[inputs[4], :, 1] * -1 goal[inputs[4], 1] = goal[inputs[4], 1] * -1 log_step = epoch * num_batches + batch_idx loss, waypoints = self._loss( preds, fear, self.data_traj_cost[env_id], odom, goal, log_step=log_step, dataset=dataset, ) if dataset == "val": wandb.log({f"{dataset}_loss_step": loss}, step=log_step) test_loss += loss.item() if is_visual and len(preds_viz) * batch_idx < self._cfg.n_visualize: if batch_idx == 0: odom_viz = odom.cpu() goal_viz = goal.cpu() fear_viz = fear.cpu() augment_viz = inputs[4].cpu() else: odom_viz = torch.cat((odom_viz, odom.cpu()), dim=0) goal_viz = torch.cat((goal_viz, goal.cpu()), dim=0) fear_viz = torch.cat((fear_viz, fear.cpu()), dim=0) augment_viz = torch.cat((augment_viz, inputs[4].cpu()), dim=0) preds_viz.append(preds.cpu()) wp_viz.append(waypoints.cpu()) image_viz.append(image.cpu()) if is_visual: preds_viz = torch.vstack(preds_viz) wp_viz = torch.vstack(wp_viz) image_viz = torch.vstack(image_viz) # limit again to number of visualizations since before # added as multiple of batch size preds_viz = preds_viz[: self._cfg.n_visualize] wp_viz = wp_viz[: self._cfg.n_visualize] image_viz = image_viz[: self._cfg.n_visualize] odom_viz = odom_viz[: self._cfg.n_visualize] goal_viz = goal_viz[: self._cfg.n_visualize] fear_viz = fear_viz[: self._cfg.n_visualize] augment_viz = augment_viz[: self._cfg.n_visualize] # visual trajectory and images self.data_traj_viz[env_id].VizTrajectory( preds_viz, wp_viz, odom_viz, goal_viz, fear_viz, fov_angle=fov_angle, augment_viz=augment_viz, ) self.data_traj_viz[env_id].VizImages(preds_viz, wp_viz, odom_viz, goal_viz, fear_viz, image_viz) return test_loss / (batch_idx + 1) def _loss( self, preds: torch.Tensor, fear: torch.Tensor, traj_cost: TrajCost, odom: torch.Tensor, goal: torch.Tensor, log_step: int, step: float = 0.1, dataset: str = "train", ) -> Tuple[torch.Tensor, torch.Tensor]: waypoints = traj_cost.opt.TrajGeneratorFromPFreeRot(preds, step=step) loss = traj_cost.CostofTraj( waypoints, odom, goal, fear, log_step, ahead_dist=self._cfg.fear_ahead_dist, dataset=dataset, ) return loss, waypoints # EoF
22,112
Python
34.608696
112
0.510899
leggedrobotics/viplanner/viplanner/utils/eval_utils.py
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab) # Author: Pascal Roth # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # python import os from typing import List, Optional, Union import matplotlib.pyplot as plt import numpy as np import torch import yaml # viplanner from viplanner.config.learning_cfg import Loader as TrainCfgLoader from viplanner.traj_cost_opt import TrajCost class BaseEvaluator: def __init__( self, distance_tolerance: float, obs_loss_threshold: float, cost_map_dir: Optional[str] = None, cost_map_name: Optional[str] = None, ) -> None: # args self.distance_tolerance = distance_tolerance self.obs_loss_threshold = obs_loss_threshold self.cost_map_dir = cost_map_dir self.cost_map_name = cost_map_name # parameters self._nbr_paths: int = 0 # load cost_map self._use_cost_map: bool = False if all([self.cost_map_dir, self.cost_map_name]): self._load_cost_map() return ## # Properties ## @property def nbr_paths(self) -> int: return self._nbr_paths def set_nbr_paths(self, nbr_paths: int) -> None: self._nbr_paths = nbr_paths return ## # Buffer ## def create_buffers(self) -> None: self.length_goal: np.ndarray = np.zeros(self._nbr_paths) self.length_path: np.ndarray = np.zeros(self._nbr_paths) self.path_extension: np.ndarray = np.zeros(self._nbr_paths) self.goal_distances: np.ndarray = np.zeros(self._nbr_paths) if self._use_cost_map: self.loss_obstacles: np.ndarray = np.zeros(self._nbr_paths) ## # Reset ## def reset(self) -> None: self.create_buffers() self.eval_stats = {} return ## # Cost Map ## def _load_cost_map(self) -> None: self._traj_cost: TrajCost = TrajCost(gpu_id=None) # use cpu for evaluation self._traj_cost.SetMap(self.cost_map_dir, self.cost_map_name) self._use_cost_map = True return def _get_cost_map_loss(self, path: Union[torch.Tensor, np.ndarray]) -> float: if isinstance(path, np.ndarray): waypoints = torch.tensor(path, dtype=torch.float32) else: waypoints = path.to(dtype=torch.float32) loss = self._traj_cost.cost_of_recorded_path(waypoints).numpy() if self._traj_cost.cost_map.cfg.semantics: loss -= self._traj_cost.cost_map.cfg.sem_cost_map.negative_reward return loss ## # Eval Statistics ## def eval_statistics(self) -> None: # Evaluate results goal_reached = self.goal_distances < self.distance_tolerance goal_reached_rate = sum(goal_reached) / len(goal_reached) avg_distance_to_goal = sum(self.goal_distances) / len(self.goal_distances) avg_distance_to_goal_reached = sum(self.goal_distances[goal_reached]) / sum(goal_reached) print( "All path segments been passed. Results: \nReached goal rate" f" (thres: {self.distance_tolerance}):\t{goal_reached_rate} \nAvg" f" goal-distance (all): \t{avg_distance_to_goal} \nAvg" f" goal-distance (reached):\t{avg_distance_to_goal_reached}" ) self.eval_stats = { "goal_reached_rate": goal_reached_rate, "avg_distance_to_goal_all": avg_distance_to_goal, "avg_distance_to_goal_reached": avg_distance_to_goal_reached, } if self._use_cost_map: within_obs_threshold = np.sum(self.loss_obstacles < self.obs_loss_threshold) / len(self.loss_obstacles) avg_obs_loss = sum(self.loss_obstacles) / len(self.loss_obstacles) avg_obs_loss_reached = sum(self.loss_obstacles[goal_reached]) / sum(goal_reached) max_obs_loss = max(self.loss_obstacles) max_obs_loss_reached = max(self.loss_obstacles[goal_reached]) if sum(goal_reached) > 0 else np.inf print( "Within obs threshold" f" ({self.obs_loss_threshold}):\t{within_obs_threshold} \nObstacle" f" loss (all): \t{avg_obs_loss} \nObstacle loss" f" (reached): \t{avg_obs_loss_reached} \nMax obstacle loss" f" (all): \t{max_obs_loss} \nMax obstacle loss" f" (reached):\t{max_obs_loss_reached}" ) self.eval_stats["avg_obs_loss_all"] = avg_obs_loss self.eval_stats["avg_obs_loss_reached"] = avg_obs_loss_reached self.eval_stats["max_obs_loss_all"] = max_obs_loss self.eval_stats["max_obs_loss_reached"] = max_obs_loss_reached return def save_eval_results(self, model_dir: str, save_name: str) -> None: # save eval results in model yaml yaml_path = model_dir[:-3] + ".yaml" if not os.path.exists(yaml_path): return with open(yaml_path) as file: data: dict = yaml.load(file, Loader=TrainCfgLoader) if "eval" not in data: data["eval"] = {} data["eval"][save_name] = self.eval_stats with open(yaml_path, "w") as file: yaml.dump(data, file) ## # Plotting ## def plt_single_model(self, eval_dir: str, show: bool = True) -> None: # check if directory exists os.makedirs(eval_dir, exist_ok=True) # get unique goal lengths and init buffers unique_goal_length = np.unique(np.round(self.length_goal, 1)) mean_path_extension = [] std_path_extension = [] mean_goal_distance = [] std_goal_distance = [] goal_counts = [] mean_obs_loss = [] std_obs_loss = [] for x in unique_goal_length: # get subset of path predictions with goal length x subset_idx = np.round(self.length_goal, 1) == x mean_path_extension.append(np.mean(self.path_extension[subset_idx])) std_path_extension.append(np.std(self.path_extension[subset_idx])) mean_goal_distance.append(np.mean(self.goal_distances[subset_idx])) std_goal_distance.append(np.std(self.goal_distances[subset_idx])) goal_counts.append(len(self.goal_distances[subset_idx])) if self._use_cost_map: mean_obs_loss.append(np.mean(self.loss_obstacles[subset_idx])) std_obs_loss.append(np.std(self.loss_obstacles[subset_idx])) # plot with the distance to the goal depending on the length between goal and start fig, ax = plt.subplots(figsize=(12, 10)) fig.suptitle("Path Length Increase", fontsize=20) ax.plot( unique_goal_length, mean_path_extension, color="blue", label="Average path length", ) ax.fill_between( unique_goal_length, np.array(mean_path_extension) - np.array(std_path_extension), np.array(mean_path_extension) + np.array(std_path_extension), color="blue", alpha=0.2, label="Uncertainty", ) ax.set_xlabel("Start-Goal Distance", fontsize=16) ax.set_ylabel("Path Length", fontsize=16) ax.set_title( ( "Avg increase of path length is" f" {round(np.mean(self.path_extension), 5)*100:.2f}% for" " successful paths with tolerance of" f" {self.distance_tolerance}" ), fontsize=16, ) ax.tick_params(axis="both", which="major", labelsize=14) ax.legend() fig.savefig(os.path.join(eval_dir, "path_length.png")) if show: plt.show() else: plt.close() # plot to compare the increase in path length depending on the distance between goal and start goal_success_mean = np.sum(self.goal_distances < self.distance_tolerance) / len(self.goal_distances) # Create a figure and two axis objects, with the second one sharing the x-axis of the first fig, ax1 = plt.subplots(figsize=(12, 10)) ax2 = ax1.twinx() fig.subplots_adjust(hspace=0.4) # Add some vertical spacing between the two plots # Plot the goal distance data ax1.plot( unique_goal_length, mean_goal_distance, color="blue", label="Average goal distance length", zorder=2, ) ax1.fill_between( unique_goal_length, np.array(mean_goal_distance) - np.array(std_goal_distance), np.array(mean_goal_distance) + np.array(std_goal_distance), color="blue", alpha=0.2, label="Uncertainty", zorder=1, ) ax1.set_xlabel("Start-Goal Distance", fontsize=16) ax1.set_ylabel("Goal Distance", fontsize=16) ax1.set_title( ( f"With a tolerance of {self.distance_tolerance} are" f" {round(goal_success_mean, 5)*100:.2f} % of goals reached" ), fontsize=16, ) ax1.tick_params(axis="both", which="major", labelsize=14) # Plot the goal counts data on the second axis ax2.bar( unique_goal_length, goal_counts, color="red", alpha=0.5, width=0.05, label="Number of samples", zorder=0, ) ax2.set_ylabel("Sample count", fontsize=16) ax2.tick_params(axis="both", which="major", labelsize=14) # Combine the legends from both axes lines, labels = ax1.get_legend_handles_labels() bars, bar_labels = ax2.get_legend_handles_labels() ax2.legend(lines + bars, labels + bar_labels, loc="upper center") plt.suptitle("Goal Distance", fontsize=20) fig.savefig(os.path.join(eval_dir, "goal_distance.png")) if show: plt.show() else: plt.close() if self._use_cost_map: # plot to compare the obs loss depending on the distance between goal and start avg_obs_loss = np.mean(self.loss_obstacles) obs_threshold_success_rate = np.sum(self.loss_obstacles < self.obs_loss_threshold) / len( self.loss_obstacles ) fig, ax = plt.subplots(figsize=(12, 10)) fig.suptitle("Obstacle Loss", fontsize=20) ax.plot( unique_goal_length, mean_obs_loss, color="blue", label="Average obs loss", ) ax.fill_between( unique_goal_length, np.array(mean_obs_loss) - np.array(std_obs_loss), np.array(mean_obs_loss) + np.array(std_obs_loss), color="blue", alpha=0.2, label="Uncertainty", ) ax.set_xlabel("Start-Goal Distance", fontsize=16) ax.set_ylabel("Obstacle Loss", fontsize=16) ax.set_title( ( f"Avg obstacle loss {round(avg_obs_loss, 5):.5f} with" f" {obs_threshold_success_rate}% within obs thres" f" {self.obs_loss_threshold}" ), fontsize=16, ) ax.tick_params(axis="both", which="major", labelsize=14) ax.legend() fig.savefig(os.path.join(eval_dir, "obs_cost.png")) if show: plt.show() else: plt.close() return def plt_comparison( self, length_goal_list: List[np.ndarray], goal_distance_list: List[np.ndarray], path_extension_list: List[np.ndarray], model_dirs: List[str], save_dir: str, obs_loss_list: Optional[List[np.ndarray]] = None, model_names: Optional[List[str]] = None, ) -> None: # path increase plot fig_path, axs_path = plt.subplots(figsize=(12, 10)) fig_path.suptitle("Path Extension", fontsize=24) axs_path.set_xlabel("Start-Goal Distance [m]", fontsize=20) axs_path.set_ylabel("Path Extension [%]", fontsize=20) axs_path.tick_params(axis="both", which="major", labelsize=16) # goal distance plot fig_goal, axs_goal = plt.subplots(figsize=(12, 10)) fig_goal.suptitle("Goal Distance", fontsize=24) axs_goal.set_xlabel("Start-Goal Distance [m]", fontsize=20) axs_goal.set_ylabel("Goal Distance [m]", fontsize=20) axs_goal.tick_params(axis="both", which="major", labelsize=16) if self._use_cost_map: assert obs_loss_list is not None, "If cost map is used, obs_loss_list must be provided" # obs loss plot fig_obs, axs_obs = plt.subplots(figsize=(12, 10)) # fig_obs.suptitle("Mean Obstacle Loss Along Path", fontsize=24) axs_obs.set_xlabel("Start-Goal Distance [m]", fontsize=20) axs_obs.set_ylabel("Mean Obstacle Loss", fontsize=20) axs_obs.tick_params(axis="both", which="major", labelsize=16) bar_width = 0.8 / len(length_goal_list) for idx in range(len(length_goal_list)): if model_names is None: model_name = os.path.split(model_dirs[idx])[1] else: model_name = model_names[idx] goal_success_bool = goal_distance_list[idx] < self.distance_tolerance unique_goal_length = np.unique(np.round(length_goal_list[idx], 0)) mean_path_extension = [] std_path_extension = [] mean_goal_distance = [] std_goal_distance = [] mean_obs_loss = [] std_obs_loss = [] goal_length_obs_exists = [] unqiue_goal_length_used = [] for x in unique_goal_length: if x == 0: continue # get subset of path predictions with goal length x subset_idx = np.round(length_goal_list[idx], 0) == x mean_path_extension.append(np.mean(path_extension_list[idx][subset_idx])) std_path_extension.append(np.std(path_extension_list[idx][subset_idx])) mean_goal_distance.append(np.mean(goal_distance_list[idx][subset_idx])) std_goal_distance.append(np.std(goal_distance_list[idx][subset_idx])) if self._use_cost_map: y_obs_subset = obs_loss_list[idx][subset_idx] if len(y_obs_subset) != 0: mean_obs_loss.append(np.mean(y_obs_subset)) std_obs_loss.append(np.std(y_obs_subset)) goal_length_obs_exists.append(x) else: print(f"Warning: No obs loss for {model_name} at goal" f" distance {x}") unqiue_goal_length_used.append(x) unique_goal_length = np.array(unqiue_goal_length_used) goal_length_obs_exists = np.array(goal_length_obs_exists) bar_pos = bar_width / 2 + idx * bar_width - 0.4 # plot to compare the increase in path length depending in on the distance between goal and start for the successful paths avg_increase = np.mean(path_extension_list[idx]) axs_path.bar( unique_goal_length + bar_pos, mean_path_extension, width=bar_width, label=(f"{model_name} (avg {round(avg_increase, 5)*100:.2f} %))"), alpha=0.8, ) # yerr=std_path_extension, # axs_path.plot(goal_length_path_exists, mean_path_extension, label=f'{model_name} ({round(avg_increase, 5)*100:.2f} %))') # axs_path.fill_between(goal_length_path_exists, np.array(mean_path_extension) - np.array(std_path_extension), np.array(mean_path_extension) + np.array(std_path_extension), alpha=0.2) # plot with the distance to the goal depending on the length between goal and start goal_success = np.sum(goal_success_bool) / len(goal_distance_list[idx]) axs_goal.bar( unique_goal_length + bar_pos, mean_goal_distance, width=bar_width, label=(f"{model_name} (success rate" f" {round(goal_success, 5)*100:.2f} %)"), alpha=0.8, ) # yerr=std_goal_distance, # axs_goal.plot(unique_goal_length, mean_goal_distance, label=f'{model_name} ({round(goal_success, 5)*100:.2f} %)') # axs_goal.fill_between(unique_goal_length, np.array(mean_goal_distance) - np.array(std_goal_distance), np.array(mean_goal_distance) + np.array(std_goal_distance), alpha=0.2) if self._use_cost_map: # plot with the distance to the goal depending on the length between goal and start avg_obs_loss = np.mean(obs_loss_list[idx]) axs_obs.bar( goal_length_obs_exists + bar_pos, mean_obs_loss, width=bar_width, label=f"{model_name} (avg {round(avg_obs_loss, 5):.3f})", alpha=0.8, ) # yerr=std_obs_loss, # axs_obs.plot(goal_length_obs_exists, mean_obs_loss, label=f'{model_name} ({round(avg_obs_loss, 5):.5f} %)') # axs_obs.fill_between(goal_length_obs_exists, np.array(mean_obs_loss) - np.array(std_obs_loss), np.array(mean_obs_loss) + np.array(std_obs_loss), alpha=0.2) # plot threshold for successful path axs_goal.axhline( y=self.distance_tolerance, color="red", linestyle="--", label="threshold", ) axs_path.legend(fontsize=20) axs_goal.legend(fontsize=20) fig_path.savefig(os.path.join(save_dir, "path_length_comp.png")) fig_goal.savefig(os.path.join(save_dir, "goal_distance_comp.png")) if self._use_cost_map: axs_obs.legend(fontsize=20) fig_obs.savefig(os.path.join(save_dir, "obs_loss_comp.png")) plt.show() return # EoF
18,324
Python
37.906582
195
0.560358
boredengineering/awesome_terrains/README.md
# Awesome Terrains Extension !!! Please, feel free to collaborate on the project !!!<br/> **Authors** <br/> > Renan Monteiro Barbosa Requirements:<br/> > Isaac-Sim This extension is a study template to create Terrains programatically in Isaac-Sim.<br/> The idea is to explore making terrains to train Robots in OIGE.<br/> # Extension Project Template This project was automatically generated. - `app` - It is a folder link to the location of your *Omniverse Kit* based app. - `exts` - It is a folder where you can add new extensions. It was automatically added to extension search path. (Extension Manager -> Gear Icon -> Extension Search Path). Open this folder using Visual Studio Code. It will suggest you to install few extensions that will make python experience better. Look for "omni.isaac.terrain_generator" extension in extension manager and enable it. Try applying changes to any python files, it will hot-reload and you can observe results immediately. Alternatively, you can launch your app from console with this folder added to search path and your extension enabled, e.g.: ``` > app\omni.code.bat --ext-folder exts --enable company.hello.world ``` # App Link Setup If `app` folder link doesn't exist or broken it can be created again. For better developer experience it is recommended to create a folder link named `app` to the *Omniverse Kit* app installed from *Omniverse Launcher*. Convenience script to use is included. Run: ``` > link_app.bat ``` If successful you should see `app` folder link in the root of this repo. If multiple Omniverse apps is installed script will select recommended one. Or you can explicitly pass an app: ``` > link_app.bat --app create ``` You can also just pass a path to create link to: ``` > link_app.bat --path "C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4" ``` # Sharing Your Extensions This folder is ready to be pushed to any git repository. Once pushed direct link to a git repository can be added to *Omniverse Kit* extension search paths. Link might look like this: `git://github.com/[user]/[your_repo].git?branch=main&dir=exts` Notice `exts` is repo subfolder with extensions. More information can be found in "Git URL as Extension Search Paths" section of developers manual. To add a link to your *Omniverse Kit* based app go into: Extension Manager -> Gear Icon -> Extension Search Path
2,377
Markdown
36.156249
258
0.755574
boredengineering/awesome_terrains/tools/scripts/link_app.py
import argparse import json import os import sys import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,814
Python
32.117647
133
0.562189
boredengineering/awesome_terrains/tools/packman/config.packman.xml
<config remotes="cloudfront"> <remote2 name="cloudfront"> <transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" /> </remote2> </config>
211
XML
34.333328
123
0.691943
boredengineering/awesome_terrains/tools/packman/bootstrap/install_package.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import shutil import sys import tempfile import zipfile __author__ = "hfannar" logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") class TemporaryDirectory: def __init__(self): self.path = None def __enter__(self): self.path = tempfile.mkdtemp() return self.path def __exit__(self, type, value, traceback): # Remove temporary data created shutil.rmtree(self.path) def install_package(package_src_path, package_dst_path): with zipfile.ZipFile(package_src_path, allowZip64=True) as zip_file, TemporaryDirectory() as temp_dir: zip_file.extractall(temp_dir) # Recursively copy (temp_dir will be automatically cleaned up on exit) try: # Recursive copy is needed because both package name and version folder could be missing in # target directory: shutil.copytree(temp_dir, package_dst_path) except OSError as exc: logger.warning("Directory %s already present, packaged installation aborted" % package_dst_path) else: logger.info("Package successfully installed to %s" % package_dst_path) install_package(sys.argv[1], sys.argv[2])
1,844
Python
33.166666
108
0.703362
boredengineering/awesome_terrains/exts/omni.isaac.terrain_generator/config/extension.toml
[package] # Semantic Versioning is used: https://semver.org/ version = "1.0.0" # Lists people or organizations that are considered the "authors" of the package. authors = ["NVIDIA","Bored Engineering","Renan Monteiro Barbosa"] # The title and description fields are primarily for displaying extension info in UI title = "Awesome Terrain Generator" description="An extension to generate terrains for Isaac-Sim with focus on OIGE. Only works on Isaac-Sim." # Path (relative to the root) or content of readme markdown file for UI. readme = "docs/README.md" # URL of the extension source repository. repository = "https://github.com/boredengineering/awesome_terrains" # One of categories for UI. category = "Example" # Keywords for the extension keywords = ["isaac","isaac-sim","sim","oige","gym","kit", "example","terains"] # Location of change log file in target (final) folder of extension, relative to the root. # More info on writing changelog: https://keepachangelog.com/en/1.0.0/ changelog="docs/CHANGELOG.md" # Preview image and icon. Folder named "data" automatically goes in git lfs (see .gitattributes file). # Preview image is shown in "Overview" of Extensions window. Screenshot of an extension might be a good preview image. preview_image = "data/preview.png" # Icon is shown in Extensions window, it is recommended to be square, of size 256x256. icon = "data/icon.png" # Use omni.ui to build simple UI [dependencies] "omni.kit.uiapp" = {} # Main python module this extension provides, it will be publicly available as "import omni.isaac.terrain_generator". [[python.module]] name = "omni.isaac.terrain_generator" [[test]] # Extra dependencies only to be used during test run dependencies = [ "omni.kit.ui_test" # UI testing extension ]
1,764
TOML
35.770833
118
0.748299
boredengineering/awesome_terrains/exts/omni.isaac.terrain_generator/omni/isaac/terrain_generator/terrain_utils.py
import numpy as np from numpy.random import choice from scipy import interpolate from math import sqrt from omni.isaac.core.utils.prims import define_prim, get_prim_at_path from omni.isaac.core.prims import XFormPrim from pxr import UsdPhysics, Sdf, Gf, PhysxSchema, Usd import omni.kit.commands def random_uniform_terrain(terrain, min_height, max_height, step=1, downsampled_scale=None,): """ Generate a uniform noise terrain Parameters terrain (SubTerrain): the terrain min_height (float): the minimum height of the terrain [meters] max_height (float): the maximum height of the terrain [meters] step (float): minimum height change between two points [meters] downsampled_scale (float): distance between two randomly sampled points ( musty be larger or equal to terrain.horizontal_scale) """ if downsampled_scale is None: downsampled_scale = terrain.horizontal_scale # switch parameters to discrete units min_height = int(min_height / terrain.vertical_scale) max_height = int(max_height / terrain.vertical_scale) step = int(step / terrain.vertical_scale) heights_range = np.arange(min_height, max_height + step, step) height_field_downsampled = np.random.choice(heights_range, (int(terrain.width * terrain.horizontal_scale / downsampled_scale), int( terrain.length * terrain.horizontal_scale / downsampled_scale))) x = np.linspace(0, terrain.width * terrain.horizontal_scale, height_field_downsampled.shape[0]) y = np.linspace(0, terrain.length * terrain.horizontal_scale, height_field_downsampled.shape[1]) f = interpolate.interp2d(y, x, height_field_downsampled, kind='linear') x_upsampled = np.linspace(0, terrain.width * terrain.horizontal_scale, terrain.width) y_upsampled = np.linspace(0, terrain.length * terrain.horizontal_scale, terrain.length) z_upsampled = np.rint(f(y_upsampled, x_upsampled)) terrain.height_field_raw += z_upsampled.astype(np.int16) return terrain def sloped_terrain(terrain, slope=1): """ Generate a sloped terrain Parameters: terrain (SubTerrain): the terrain slope (int): positive or negative slope Returns: terrain (SubTerrain): update terrain """ x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) xx, yy = np.meshgrid(x, y, sparse=True) xx = xx.reshape(terrain.width, 1) max_height = int(slope * (terrain.horizontal_scale / terrain.vertical_scale) * terrain.width) terrain.height_field_raw[:, np.arange(terrain.length)] += (max_height * xx / terrain.width).astype(terrain.height_field_raw.dtype) return terrain def pyramid_sloped_terrain(terrain, slope=1, platform_size=1.): """ Generate a sloped terrain Parameters: terrain (terrain): the terrain slope (int): positive or negative slope platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) center_x = int(terrain.width / 2) center_y = int(terrain.length / 2) xx, yy = np.meshgrid(x, y, sparse=True) xx = (center_x - np.abs(center_x-xx)) / center_x yy = (center_y - np.abs(center_y-yy)) / center_y xx = xx.reshape(terrain.width, 1) yy = yy.reshape(1, terrain.length) max_height = int(slope * (terrain.horizontal_scale / terrain.vertical_scale) * (terrain.width / 2)) terrain.height_field_raw += (max_height * xx * yy).astype(terrain.height_field_raw.dtype) platform_size = int(platform_size / terrain.horizontal_scale / 2) x1 = terrain.width // 2 - platform_size x2 = terrain.width // 2 + platform_size y1 = terrain.length // 2 - platform_size y2 = terrain.length // 2 + platform_size min_h = min(terrain.height_field_raw[x1, y1], 0) max_h = max(terrain.height_field_raw[x1, y1], 0) terrain.height_field_raw = np.clip(terrain.height_field_raw, min_h, max_h) return terrain def discrete_obstacles_terrain(terrain, max_height, min_size, max_size, num_rects, platform_size=1.): """ Generate a terrain with gaps Parameters: terrain (terrain): the terrain max_height (float): maximum height of the obstacles (range=[-max, -max/2, max/2, max]) [meters] min_size (float): minimum size of a rectangle obstacle [meters] max_size (float): maximum size of a rectangle obstacle [meters] num_rects (int): number of randomly generated obstacles platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units max_height = int(max_height / terrain.vertical_scale) min_size = int(min_size / terrain.horizontal_scale) max_size = int(max_size / terrain.horizontal_scale) platform_size = int(platform_size / terrain.horizontal_scale) (i, j) = terrain.height_field_raw.shape height_range = [-max_height, -max_height // 2, max_height // 2, max_height] width_range = range(min_size, max_size, 4) length_range = range(min_size, max_size, 4) for _ in range(num_rects): width = np.random.choice(width_range) length = np.random.choice(length_range) start_i = np.random.choice(range(0, i-width, 4)) start_j = np.random.choice(range(0, j-length, 4)) terrain.height_field_raw[start_i:start_i+width, start_j:start_j+length] = np.random.choice(height_range) x1 = (terrain.width - platform_size) // 2 x2 = (terrain.width + platform_size) // 2 y1 = (terrain.length - platform_size) // 2 y2 = (terrain.length + platform_size) // 2 terrain.height_field_raw[x1:x2, y1:y2] = 0 return terrain def wave_terrain(terrain, num_waves=1, amplitude=1.): """ Generate a wavy terrain Parameters: terrain (terrain): the terrain num_waves (int): number of sine waves across the terrain length Returns: terrain (SubTerrain): update terrain """ amplitude = int(0.5*amplitude / terrain.vertical_scale) if num_waves > 0: div = terrain.length / (num_waves * np.pi * 2) x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) xx, yy = np.meshgrid(x, y, sparse=True) xx = xx.reshape(terrain.width, 1) yy = yy.reshape(1, terrain.length) terrain.height_field_raw += (amplitude*np.cos(yy / div) + amplitude*np.sin(xx / div)).astype( terrain.height_field_raw.dtype) return terrain def stairs_terrain(terrain, step_width, step_height): """ Generate a stairs Parameters: terrain (terrain): the terrain step_width (float): the width of the step [meters] step_height (float): the height of the step [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units step_width = int(step_width / terrain.horizontal_scale) step_height = int(step_height / terrain.vertical_scale) num_steps = terrain.width // step_width height = step_height for i in range(num_steps): terrain.height_field_raw[i * step_width: (i + 1) * step_width, :] += height height += step_height return terrain def pyramid_stairs_terrain(terrain, step_width, step_height, platform_size=1.): """ Generate stairs Parameters: terrain (terrain): the terrain step_width (float): the width of the step [meters] step_height (float): the step_height [meters] platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units step_width = int(step_width / terrain.horizontal_scale) step_height = int(step_height / terrain.vertical_scale) platform_size = int(platform_size / terrain.horizontal_scale) height = 0 start_x = 0 stop_x = terrain.width start_y = 0 stop_y = terrain.length while (stop_x - start_x) > platform_size and (stop_y - start_y) > platform_size: start_x += step_width stop_x -= step_width start_y += step_width stop_y -= step_width height += step_height terrain.height_field_raw[start_x: stop_x, start_y: stop_y] = height return terrain def stepping_stones_terrain(terrain, stone_size, stone_distance, max_height, platform_size=1., depth=-10): """ Generate a stepping stones terrain Parameters: terrain (terrain): the terrain stone_size (float): horizontal size of the stepping stones [meters] stone_distance (float): distance between stones (i.e size of the holes) [meters] max_height (float): maximum height of the stones (positive and negative) [meters] platform_size (float): size of the flat platform at the center of the terrain [meters] depth (float): depth of the holes (default=-10.) [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units stone_size = int(stone_size / terrain.horizontal_scale) stone_distance = int(stone_distance / terrain.horizontal_scale) max_height = int(max_height / terrain.vertical_scale) platform_size = int(platform_size / terrain.horizontal_scale) height_range = np.arange(-max_height-1, max_height, step=1) start_x = 0 start_y = 0 terrain.height_field_raw[:, :] = int(depth / terrain.vertical_scale) if terrain.length >= terrain.width: while start_y < terrain.length: stop_y = min(terrain.length, start_y + stone_size) start_x = np.random.randint(0, stone_size) # fill first hole stop_x = max(0, start_x - stone_distance) terrain.height_field_raw[0: stop_x, start_y: stop_y] = np.random.choice(height_range) # fill row while start_x < terrain.width: stop_x = min(terrain.width, start_x + stone_size) terrain.height_field_raw[start_x: stop_x, start_y: stop_y] = np.random.choice(height_range) start_x += stone_size + stone_distance start_y += stone_size + stone_distance elif terrain.width > terrain.length: while start_x < terrain.width: stop_x = min(terrain.width, start_x + stone_size) start_y = np.random.randint(0, stone_size) # fill first hole stop_y = max(0, start_y - stone_distance) terrain.height_field_raw[start_x: stop_x, 0: stop_y] = np.random.choice(height_range) # fill column while start_y < terrain.length: stop_y = min(terrain.length, start_y + stone_size) terrain.height_field_raw[start_x: stop_x, start_y: stop_y] = np.random.choice(height_range) start_y += stone_size + stone_distance start_x += stone_size + stone_distance x1 = (terrain.width - platform_size) // 2 x2 = (terrain.width + platform_size) // 2 y1 = (terrain.length - platform_size) // 2 y2 = (terrain.length + platform_size) // 2 terrain.height_field_raw[x1:x2, y1:y2] = 0 return terrain def convert_heightfield_to_trimesh(height_field_raw, horizontal_scale, vertical_scale, slope_threshold=None): """ Convert a heightfield array to a triangle mesh represented by vertices and triangles. Optionally, corrects vertical surfaces above the provide slope threshold: If (y2-y1)/(x2-x1) > slope_threshold -> Move A to A' (set x1 = x2). Do this for all directions. B(x2,y2) /| / | / | (x1,y1)A---A'(x2',y1) Parameters: height_field_raw (np.array): input heightfield horizontal_scale (float): horizontal scale of the heightfield [meters] vertical_scale (float): vertical scale of the heightfield [meters] slope_threshold (float): the slope threshold above which surfaces are made vertical. If None no correction is applied (default: None) Returns: vertices (np.array(float)): array of shape (num_vertices, 3). Each row represents the location of each vertex [meters] triangles (np.array(int)): array of shape (num_triangles, 3). Each row represents the indices of the 3 vertices connected by this triangle. """ hf = height_field_raw num_rows = hf.shape[0] num_cols = hf.shape[1] y = np.linspace(0, (num_cols-1)*horizontal_scale, num_cols) x = np.linspace(0, (num_rows-1)*horizontal_scale, num_rows) yy, xx = np.meshgrid(y, x) if slope_threshold is not None: slope_threshold *= horizontal_scale / vertical_scale move_x = np.zeros((num_rows, num_cols)) move_y = np.zeros((num_rows, num_cols)) move_corners = np.zeros((num_rows, num_cols)) move_x[:num_rows-1, :] += (hf[1:num_rows, :] - hf[:num_rows-1, :] > slope_threshold) move_x[1:num_rows, :] -= (hf[:num_rows-1, :] - hf[1:num_rows, :] > slope_threshold) move_y[:, :num_cols-1] += (hf[:, 1:num_cols] - hf[:, :num_cols-1] > slope_threshold) move_y[:, 1:num_cols] -= (hf[:, :num_cols-1] - hf[:, 1:num_cols] > slope_threshold) move_corners[:num_rows-1, :num_cols-1] += (hf[1:num_rows, 1:num_cols] - hf[:num_rows-1, :num_cols-1] > slope_threshold) move_corners[1:num_rows, 1:num_cols] -= (hf[:num_rows-1, :num_cols-1] - hf[1:num_rows, 1:num_cols] > slope_threshold) xx += (move_x + move_corners*(move_x == 0)) * horizontal_scale yy += (move_y + move_corners*(move_y == 0)) * horizontal_scale # create triangle mesh vertices and triangles from the heightfield grid vertices = np.zeros((num_rows*num_cols, 3), dtype=np.float32) vertices[:, 0] = xx.flatten() vertices[:, 1] = yy.flatten() vertices[:, 2] = hf.flatten() * vertical_scale triangles = -np.ones((2*(num_rows-1)*(num_cols-1), 3), dtype=np.uint32) for i in range(num_rows - 1): ind0 = np.arange(0, num_cols-1) + i*num_cols ind1 = ind0 + 1 ind2 = ind0 + num_cols ind3 = ind2 + 1 start = 2*i*(num_cols-1) stop = start + 2*(num_cols-1) triangles[start:stop:2, 0] = ind0 triangles[start:stop:2, 1] = ind3 triangles[start:stop:2, 2] = ind1 triangles[start+1:stop:2, 0] = ind0 triangles[start+1:stop:2, 1] = ind2 triangles[start+1:stop:2, 2] = ind3 return vertices, triangles # Cannot load DefinePrim def add_terrain_to_stage(stage, vertices, triangles, position=None, orientation=None): num_faces = triangles.shape[0] terrain_mesh = stage.DefinePrim("/World/terrain", "Mesh") terrain_mesh.GetAttribute("points").Set(vertices) terrain_mesh.GetAttribute("faceVertexIndices").Set(triangles.flatten()) terrain_mesh.GetAttribute("faceVertexCounts").Set(np.asarray([3]*num_faces)) terrain = XFormPrim(prim_path="/World/terrain", name="terrain", position=position, orientation=orientation) # Addind a simple Collider does not work # omni.kit.commands.execute('SetRigidBody', # path=Sdf.Path('/World/terrain'), # approximationShape='convexHull', # kinematic=False) # omni.kit.commands.execute('CreateJointsCommand', # stage=Usd.Stage.Open(rootLayer=Sdf.Find('anon:000001BFCF67EBB0:World0.usd'), sessionLayer=Sdf.Find('anon:000001BFCF67FC90:World0-session.usda')), # joint_type='Fixed', # paths=['/World/terrain'], # join_to_parent=False) UsdPhysics.CollisionAPI.Apply(terrain.prim) collision_api = UsdPhysics.MeshCollisionAPI.Apply(terrain.prim) # collision_api.CreateApproximationAttr().Set("meshSimplification") collision_api.CreateApproximationAttr().Set("sdf") physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(terrain.prim) physx_collision_api.GetContactOffsetAttr().Set(0.02) physx_collision_api.GetRestOffsetAttr().Set(0.00) class SubTerrain: def __init__(self, terrain_name="terrain", width=256, length=256, vertical_scale=1.0, horizontal_scale=1.0): self.terrain_name = terrain_name self.vertical_scale = vertical_scale self.horizontal_scale = horizontal_scale self.width = width self.length = length self.height_field_raw = np.zeros((self.width, self.length), dtype=np.int16) # stage = omni.usd.get_context().get_stage() # width=256 # length=256 # height_field_raw = np.zeros((width, length), dtype=np.int16) # vertices, triangles = convert_heightfield_to_trimesh(height_field_raw, horizontal_scale=1.0, vertical_scale=1.0, slope_threshold=None) # terrain = add_terrain_to_stage(stage, vertices, triangles) # random_uniform_terrain(terrain, min_height, max_height, step=1)
17,002
Python
42.822165
155
0.647159
boredengineering/awesome_terrains/exts/omni.isaac.terrain_generator/omni/isaac/terrain_generator/extension.py
import omni.ext import omni.ui as ui from .terrain_utils import * from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage from omni.isaac.core.utils.prims import define_prim, get_prim_at_path import omni.usd # Functions and vars are available to other extension as usual in python: `example.python_ext.some_public_function(x)` def some_public_function(x: int): print("[omni.isaac.terrain_generator] some_public_function was called with x: ", x) return x ** x # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be # instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled # on_shutdown() is called. class OmniIsaacTerrain_generatorExtension(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. def on_startup(self, ext_id): print("[omni.isaac.terrain_generator] omni isaac terrain_generator startup") self._count = 0 self._window = ui.Window("My Window", width=300, height=300) with self._window.frame: with ui.VStack(): label = ui.Label("") def on_click(): self.get_terrain() # self._count += 1 label.text = "Generate Terrain" def on_reset(): self.clear_terrain() # self._count = 0 label.text = "Clear Stage" on_reset() with ui.HStack(): ui.Button("Add Terrain", clicked_fn=on_click) ui.Button("Clear Stage", clicked_fn=on_reset) def on_shutdown(self): print("[omni.isaac.terrain_generator] omni isaac terrain_generator shutdown") # This deletes the terrain def clear_terrain(self): current_stage = get_current_stage() current_stage.RemovePrim("/World/terrain") # The stuff that makes terrain def get_terrain(self): stage = get_current_stage() # create all available terrain types num_terains = 8 terrain_width = 12. terrain_length = 12. horizontal_scale = 0.25 # [m] vertical_scale = 0.005 # [m] num_rows = int(terrain_width/horizontal_scale) num_cols = int(terrain_length/horizontal_scale) heightfield = np.zeros((num_terains*num_rows, num_cols), dtype=np.int16) def new_sub_terrain(): return SubTerrain(width=num_rows, length=num_cols, vertical_scale=vertical_scale, horizontal_scale=horizontal_scale) # weird heightfield[0:num_rows, :] = random_uniform_terrain(new_sub_terrain(), min_height=-0.2, max_height=0.2, step=0.2, downsampled_scale=0.5).height_field_raw # Make a plain slope, need to understand how to control. When deleted makes a flat terrain heightfield[num_rows:2*num_rows, :] = sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw # Pyramid slope, probably the base for the stairs code heightfield[2*num_rows:3*num_rows, :] = pyramid_sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw # nice square obstacles randomly generated heightfield[3*num_rows:4*num_rows, :] = discrete_obstacles_terrain(new_sub_terrain(), max_height=0.5, min_size=1., max_size=5., num_rects=20).height_field_raw # Nice curvy terrain heightfield[4*num_rows:5*num_rows, :] = wave_terrain(new_sub_terrain(), num_waves=2., amplitude=1.).height_field_raw # Adjust stair step size, how far it goes down or up. heightfield[5*num_rows:6*num_rows, :] = stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw # Need to figure out how to cahnge step heights and make a Pyramid Stair go up heightfield[6*num_rows:7*num_rows, :] = pyramid_stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw # Stepping Stones need fixing depth heightfield[7*num_rows:8*num_rows, :] = stepping_stones_terrain(new_sub_terrain(), stone_size=1., stone_distance=1., max_height=0.5, platform_size=0.).height_field_raw vertices, triangles = convert_heightfield_to_trimesh(heightfield, horizontal_scale=horizontal_scale, vertical_scale=vertical_scale, slope_threshold=1.5) position = np.array([-6.0, 48.0, 0]) orientation = np.array([0.70711, 0.0, 0.0, -0.70711]) add_terrain_to_stage(stage=stage, vertices=vertices, triangles=triangles, position=position, orientation=orientation) # Error # Cannot load DefinePrim # File "e:\bored engineer github\bored engineer\awesome_terrains\exts\omni.isaac.terrain_generator\omni\isaac\terrain_generator\extension.py", line 4, in <module> # from .terrain_utils import * # File "e:\bored engineer github\bored engineer\awesome_terrains\exts\omni.isaac.terrain_generator\omni\isaac\terrain_generator\terrain_utils.py", line 384, in <module> # terrain = add_terrain_to_stage(stage, vertices, triangles) # File "e:\bored engineer github\bored engineer\awesome_terrains\exts\omni.isaac.terrain_generator\omni\isaac\terrain_generator\terrain_utils.py", line 340, in add_terrain_to_stage # terrain_mesh = stage.DefinePrim("/World/terrain", "Mesh") # AttributeError: 'NoneType' object has no attribute 'DefinePrim'
5,526
Python
52.14423
182
0.666305
boredengineering/awesome_terrains/exts/omni.isaac.terrain_generator/omni/isaac/terrain_generator/__init__.py
from .extension import *
25
Python
11.999994
24
0.76
boredengineering/awesome_terrains/exts/omni.isaac.terrain_generator/omni/isaac/terrain_generator/create_terrain_demo.py
import os, sys SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(SCRIPT_DIR) import omni from omni.isaac.kit import SimulationApp import numpy as np import torch simulation_app = SimulationApp({"headless": False}) from abc import abstractmethod from omni.isaac.core.tasks import BaseTask from omni.isaac.core.prims import RigidPrimView, RigidPrim, XFormPrim from omni.isaac.core import World from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import define_prim, get_prim_at_path from omni.isaac.core.utils.nucleus import find_nucleus_server from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage from omni.isaac.core.materials import PreviewSurface from omni.isaac.cloner import GridCloner from pxr import UsdPhysics, UsdLux, UsdShade, Sdf, Gf, UsdGeom, PhysxSchema from .terrain_utils import * class TerrainCreation(BaseTask): def __init__(self, name, num_envs, num_per_row, env_spacing, config=None, offset=None,) -> None: BaseTask.__init__(self, name=name, offset=offset) self._num_envs = num_envs self._num_per_row = num_per_row self._env_spacing = env_spacing self._device = "cpu" self._cloner = GridCloner(self._env_spacing, self._num_per_row) self._cloner.define_base_env(self.default_base_env_path) define_prim(self.default_zero_env_path) @property def default_base_env_path(self): return "/World/envs" @property def default_zero_env_path(self): return f"{self.default_base_env_path}/env_0" def set_up_scene(self, scene) -> None: self._stage = get_current_stage() distantLight = UsdLux.DistantLight.Define(self._stage, Sdf.Path("/World/DistantLight")) distantLight.CreateIntensityAttr(2000) self.get_terrain() self.get_ball() super().set_up_scene(scene) prim_paths = self._cloner.generate_paths("/World/envs/env", self._num_envs) print(f"cloning {self._num_envs} environments...") self._env_pos = self._cloner.clone( source_prim_path="/World/envs/env_0", prim_paths=prim_paths ) return def get_terrain(self): # create all available terrain types num_terains = 8 terrain_width = 12. terrain_length = 12. horizontal_scale = 0.25 # [m] vertical_scale = 0.005 # [m] num_rows = int(terrain_width/horizontal_scale) num_cols = int(terrain_length/horizontal_scale) heightfield = np.zeros((num_terains*num_rows, num_cols), dtype=np.int16) def new_sub_terrain(): return SubTerrain(width=num_rows, length=num_cols, vertical_scale=vertical_scale, horizontal_scale=horizontal_scale) heightfield[0:num_rows, :] = random_uniform_terrain(new_sub_terrain(), min_height=-0.2, max_height=0.2, step=0.2, downsampled_scale=0.5).height_field_raw heightfield[num_rows:2*num_rows, :] = sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw heightfield[2*num_rows:3*num_rows, :] = pyramid_sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw heightfield[3*num_rows:4*num_rows, :] = discrete_obstacles_terrain(new_sub_terrain(), max_height=0.5, min_size=1., max_size=5., num_rects=20).height_field_raw heightfield[4*num_rows:5*num_rows, :] = wave_terrain(new_sub_terrain(), num_waves=2., amplitude=1.).height_field_raw heightfield[5*num_rows:6*num_rows, :] = stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw heightfield[6*num_rows:7*num_rows, :] = pyramid_stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw heightfield[7*num_rows:8*num_rows, :] = stepping_stones_terrain(new_sub_terrain(), stone_size=1., stone_distance=1., max_height=0.5, platform_size=0.).height_field_raw vertices, triangles = convert_heightfield_to_trimesh(heightfield, horizontal_scale=horizontal_scale, vertical_scale=vertical_scale, slope_threshold=1.5) position = np.array([-6.0, 48.0, 0]) orientation = np.array([0.70711, 0.0, 0.0, -0.70711]) add_terrain_to_stage(stage=self._stage, vertices=vertices, triangles=triangles, position=position, orientation=orientation) def get_ball(self): ball = DynamicSphere(prim_path=self.default_zero_env_path + "/ball", name="ball", translation=np.array([0.0, 0.0, 1.0]), mass=0.5, radius=0.2,) def post_reset(self): for i in range(self._num_envs): ball_prim = self._stage.GetPrimAtPath(f"{self.default_base_env_path}/env_{i}/ball") color = 0.5 + 0.5 * np.random.random(3) visual_material = PreviewSurface(prim_path=f"{self.default_base_env_path}/env_{i}/ball/Looks/visual_material", color=color) binding_api = UsdShade.MaterialBindingAPI(ball_prim) binding_api.Bind(visual_material.material, bindingStrength=UsdShade.Tokens.strongerThanDescendants) def get_observations(self): pass def calculate_metrics(self) -> None: pass def is_done(self) -> None: pass if __name__ == "__main__": world = World( stage_units_in_meters=1.0, rendering_dt=1.0/60.0, backend="torch", device="cpu", ) num_envs = 800 num_per_row = 80 env_spacing = 0.56*2 terrain_creation_task = TerrainCreation(name="TerrainCreation", num_envs=num_envs, num_per_row=num_per_row, env_spacing=env_spacing, ) world.add_task(terrain_creation_task) world.reset() while simulation_app.is_running(): if world.is_playing(): if world.current_time_step_index == 0: world.reset(soft=True) world.step(render=True) else: world.step(render=True) simulation_app.close()
6,310
Python
41.355704
166
0.61775
boredengineering/awesome_terrains/exts/omni.isaac.terrain_generator/omni/isaac/terrain_generator/tests/__init__.py
from .test_hello_world import *
31
Python
30.999969
31
0.774194
boredengineering/awesome_terrains/exts/omni.isaac.terrain_generator/omni/isaac/terrain_generator/tests/test_hello_world.py
# NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html import omni.kit.test # Extnsion for writing UI tests (simulate UI interaction) import omni.kit.ui_test as ui_test # Import extension python module we are testing with absolute import path, as if we are external user (other extension) import omni.isaac.terrain_generator # Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test class Test(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): pass # After running each test async def tearDown(self): pass # Actual test, notice it is "async" function, so "await" can be used if needed async def test_hello_public_function(self): result = omni.isaac.terrain_generator.some_public_function(4) self.assertEqual(result, 256) async def test_window_button(self): # Find a label in our window label = ui_test.find("My Window//Frame/**/Label[*]") # Find buttons in our window add_button = ui_test.find("My Window//Frame/**/Button[*].text=='Add'") reset_button = ui_test.find("My Window//Frame/**/Button[*].text=='Reset'") # Click reset button await reset_button.click() self.assertEqual(label.widget.text, "empty") await add_button.click() self.assertEqual(label.widget.text, "count: 1") await add_button.click() self.assertEqual(label.widget.text, "count: 2")
1,692
Python
35.021276
142
0.684397
boredengineering/awesome_terrains/exts/omni.isaac.terrain_generator/docs/CHANGELOG.md
# Changelog The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). ## [1.0.0] - 2021-04-26 - Initial version of extension UI template with a window
178
Markdown
18.888887
80
0.702247
boredengineering/awesome_terrains/exts/omni.isaac.terrain_generator/docs/README.md
# Awesome Terrain Generator Example [omni.isaac.terrain_generator] This extension is intened to help to explore how to programatically generate terrains for OIGE (Omniverse Isaac Gym Reinforcement Learning Environments for Isaac Sim).
237
Markdown
46.599991
167
0.827004
boredengineering/awesome_terrains/exts/omni.isaac.terrain_generator/docs/index.rst
omni.isaac.terrain_generator ############################# Example of Python only extension .. toctree:: :maxdepth: 1 README CHANGELOG .. automodule::"omni.isaac.terrain_generator" :platform: Windows-x86_64, Linux-x86_64 :members: :undoc-members: :show-inheritance: :imported-members: :exclude-members: contextmanager
357
reStructuredText
16.047618
45
0.633053
USDSync/MetaCloudExplorer/README.md
# USDSync.com # Meta Cloud Explorer (MCE) # NVIDIA Onmiverse Extension, a Scene Authoring Tool (In Beta Development phase) ![Meta Cloud Explorer](https://github.com/USDSync/MetaCloudExplorer/blob/main/exts/meta.cloud.explorer.azure/data/resources/meta_cloud_explorer_800.png) The true power of the Metaverse is to gain new insights to existing problems by experiencing things in a different way. A simple change in perspective can sometimes work wonders! Meta Cloud Explorer helps Cloud Architects visualize thier cloud infrastructure at scale. It's a dynamic metaverse creation tool for Nvidia's Omniverse. Quickly connect to your Cloud Infrastructure and visualize it in your private Omniverse!* This extension generates digital models of your Cloud Infrastructure that can be used to gain insights to drive better infrastructure, optimized resources, reduced costs, and breakthrough customer experiences. ![Meta Cloud Explorer](https://github.com/USDSync/MetaCloudExplorer/blob/main/exts/meta.cloud.explorer.azure/data/resources/azurescaled.png) **Gain Insight by seeing your infrastructure at scale:** ![Meta Cloud Explorer](https://github.com/USDSync/MetaCloudExplorer/blob/main/exts/meta.cloud.explorer.azure/data/resources/resourcegroups.png) **View resources by Location, Group, Type, Subscription** ![Meta Cloud Explorer](https://github.com/USDSync/MetaCloudExplorer/blob/main/exts/meta.cloud.explorer.azure/data/resources/westus.png) **Optional costs data integrated to groups** ![Meta Cloud Explorer](https://github.com/USDSync/MetaCloudExplorer/blob/main/exts/meta.cloud.explorer.azure/data/resources/costs.png) **Click any shape for more information** ![Meta Cloud Explorer](https://github.com/USDSync/MetaCloudExplorer/blob/main/exts/meta.cloud.explorer.azure/data/resources/CostDetails.png) **Can support multiple clouds!** ![Meta Cloud Explorer](https://github.com/USDSync/MetaCloudExplorer/blob/main/exts/meta.cloud.explorer.azure/data/resources/aws-azure-gcp.png) **Only works with Microsoft Azure Cloud currently* AWS, GCP planned on roadmap. The whole point of Meta Cloud Explorer (MCE) is to let you experience your cloud infrastructure in a new way. The Metaverse is here, it means a lot of different things, but one of the key tenants of the Metaverse is to be able to experience new things, or to experience existing things in a different or new contexts. A Metaverse is just a 3D space you can customize and share, or even visit it with other people. The ability to experience a virtual place with others opens up a world of possibility for training, knowledge sharing and helping others to understand technology. ### Cloud Infrastructure 2023 + Azure, AWS, GCP are massive in reach, with millions of customers, and probably billions of pieces of infrastructure, it's a lot for cloud architect, infrastructure and SRE engineers manage. Cloud Architects have many tools to help manage the complexity and risk of managing cloud operations, infrastructure and deployments at scale. Infrastructure is now managed just like code, in Source Control and connected to powerful Cloud Orchestration software like Cloud Formation, Terraform, Bicep and others, giving Cloud Architects, Engineers and Developers even more powerful tools to help scale and manage the cloud. Existing Web based UIs suffer from "focusing on small groups of trees" which makes it hard to "see the forest" in this context. There is no shortage of "Infrastructure diagram generation" tools that can produce 2d representations of your cloud infrastructure. Visio, Lucid Scale and other cloud based diagramming tools help architects manage and understand cloud infrastructure design and architecture. Many diagrams are still manually maintained and time-consuming. Lucid Scale lets you generate a model from your cloud infrastructure like this: ![Current state of 2D diagrams](https://d15shllkswkct0.cloudfront.net/wp-content/blogs.dir/1/files/2021/10/lucidscale-overview.png) ### NVIDIA Omniverse and USD Universal Scene Description Meta Cloud Explorer doesn't replace any of these tools, It's a new tool, a new way to see, understand and experience your cloud infrastructure at scale. Thanks to the power of NVIDIA's Omniverse, we can now create real-time, photo realistic environments modeled directly from your cloud infrastructure! As Meta Cloud Explorer matures, it will help you travel through time, see infrastructure differences and configurations in new ways, even create entirely new architectures. The power to visualize networks, network traffic and "the edge" can help engineers understand cloud security, endpoints and vulnerabilities. In version 1.0 of Meta Cloud Explorer, we've just began to bridge the gap between cloud infrastructure and the metaverse. There is so much that can be done in this new context! v1.0 provides a read-only view of your cloud infrastructure and gives you an easy to use toolbox to create a simulated world that represents your cloud. Future versions will let you create infrastructure from template libraries, learn about new architecture techniques and simulate design changes. USDSync.com aims to create a SaaS based "AzureverseAsAService", where we can host your "Azureverse" live and in sync with your real cloud 24x7. No more scene composition and design, USDSync.com can host these resources and keep them in sync automatically. ### The right tool for the right job Have you ever tried to cleanup your hard drive? Windows File Explorer suffers from the same problem as the Azure, AWS and GCP UI portals. You are always in just one folder, or just one group or just one project, it's really hard just to understand the scale of the whole thing! Want to understand "Whats taking up space on your hard disk?"... Good luck... Yes, you can right click on every folder and view usage, but it's just not as easy as it should be! - We just keep running out of space and adding bigger and bigger hard drives! Ever used WinDirStat? WinDirStat is a free program that shows visually what is taking up space on your hard drive allowing you to gain insights that windows just doesn't provide. Once it has scanned your drive it visually shows you all the files on your disk, in a bin-packed graph. This graph allows you to easily see and understand what files and folders are taking up the space on your disk. Look what a simple change in context does for you?!?! ![MCE is like the WinDirStat of Cloud Infrastructure](https://github.com/USDSync/MetaCloudExplorer/blob/ab0d10ca2035e5db79b426425c54b79eb70ad4d9/exts/meta.cloud.explorer.azure/data/resources/windirstat.png) Think of MCE as the "WinDirStat" of your Azure,. AWS, GCP cloud infrastructure.. just another tool, but wow, the instant insights, change in context, really helps sometimes. I honestly don't know how you would figure out whats taking up space on your hard disk without a tool like WinDirStat. Look at the difference between looking at your infrastructure in Azure, AWS or GCP, vs looking at it in MCE! While the context is obviously a bit different and MCE does not replace these tools at all, you can immediately gain insight! ### Azure Portal ![](https://github.com/USDSync/MetaCloudExplorer/blob/0f864116d2b2ea3e65532fdf9f1b7105e79158ab/exts/meta.cloud.explorer.azure/data/resources/azure_resource_list.png) ### AWS Portal ![](https://github.com/USDSync/MetaCloudExplorer/blob/0f864116d2b2ea3e65532fdf9f1b7105e79158ab/exts/meta.cloud.explorer.azure/data/resources/aws_services_list.png) ### GCP Portal ![](https://github.com/USDSync/MetaCloudExplorer/blob/0f864116d2b2ea3e65532fdf9f1b7105e79158ab/exts/meta.cloud.explorer.azure/data/resources/google_cloud_ui.png) ### I just want to see ALL MY INFRASTRUCUTRE, in ONE PLACE, RIGHT NOW! I don't always want to just look at one resource group at a time. I don't want to endlessly filter lists or search for things. I don't always want to just look at diagrams or templates or even the code that built this infrastructure, I JUST WANT TO SEE IT! In one place, like it's a place I could go and if its virtual, be able to rearrange it instantly! I rest my case, may I present **Meta Cloud Explorer**!! :) ### Meta Cloud Explorer Extension in Omniverse! ![](https://github.com/USDSync/MetaCloudExplorer/blob/0f864116d2b2ea3e65532fdf9f1b7105e79158ab/exts/meta.cloud.explorer.azure/data/resources/resourcegroups.png) This is just "a picture" of my Azureverse. It's really a digital world I can travel around inside, rearrange, re-group, change groupings, costs, layouts and more. It's an easy way to just see your cloud infrastructure, right now, visually.. it's actually quite cool ;) MCE even works in Omniverse XR! Just save your USD scene and open it in Omniverse XR, strap on your VR headset and immerse yourself inside your cloud. The future is here and it's time you have a tool that lets you quickly understand your cloud infrastructure, costs and resources distribution. To the Metaverse and beyond! (kinda dumb I know, but it's better than Infinity, heh) Goto the Wiki to Get Started! https://github.com/USDSync/MetaCloudExplorer/wiki
9,153
Markdown
93.371133
429
0.799847
USDSync/MetaCloudExplorer/azure-pipelines.yml
# Python package # Create and test a Python package on multiple Python versions. # Add steps that analyze code, save the dist with the build record, publish to a PyPI-compatible index, and more: # https://docs.microsoft.com/azure/devops/pipelines/languages/python trigger: - main pool: vmImage: ubuntu-latest strategy: matrix: Python27: python.version: '2.7' Python35: python.version: '3.5' Python36: python.version: '3.6' Python37: python.version: '3.7' steps: - task: UsePythonVersion@0 inputs: versionSpec: '$(python.version)' displayName: 'Use Python $(python.version)' - script: | python -m pip install --upgrade pip pip install -r requirements.txt displayName: 'Install dependencies' - script: | pip install pytest pytest-azurepipelines pytest displayName: 'pytest'
849
YAML
21.972972
113
0.696113
USDSync/MetaCloudExplorer/tools/scripts/link_app.py
import os import argparse import sys import json import packmanapi import urllib3 def find_omniverse_apps(): http = urllib3.PoolManager() try: r = http.request("GET", "http://127.0.0.1:33480/components") except Exception as e: print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}") sys.exit(1) apps = {} for x in json.loads(r.data.decode("utf-8")): latest = x.get("installedVersions", {}).get("latest", "") if latest: for s in x.get("settings", []): if s.get("version", "") == latest: root = s.get("launch", {}).get("root", "") apps[x["slug"]] = (x["name"], root) break return apps def create_link(src, dst): print(f"Creating a link '{src}' -> '{dst}'") packmanapi.link(src, dst) APP_PRIORITIES = ["code", "create", "view"] if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher") parser.add_argument( "--path", help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'", required=False, ) parser.add_argument( "--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False ) args = parser.parse_args() path = args.path if not path: print("Path is not specified, looking for Omniverse Apps...") apps = find_omniverse_apps() if len(apps) == 0: print( "Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers." ) sys.exit(0) print("\nFound following Omniverse Apps:") for i, slug in enumerate(apps): name, root = apps[slug] print(f"{i}: {name} ({slug}) at: '{root}'") if args.app: selected_app = args.app.lower() if selected_app not in apps: choices = ", ".join(apps.keys()) print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}") sys.exit(0) else: selected_app = next((x for x in APP_PRIORITIES if x in apps), None) if not selected_app: selected_app = next(iter(apps)) print(f"\nSelected app: {selected_app}") _, path = apps[selected_app] if not os.path.exists(path): print(f"Provided path doesn't exist: {path}") else: SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__)) create_link(f"{SCRIPT_ROOT}/../../app", path) print("Success!")
2,813
Python
32.5
133
0.562389
USDSync/MetaCloudExplorer/tools/packman/config.packman.xml
<config remotes="cloudfront"> <remote2 name="cloudfront"> <transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" /> </remote2> </config>
211
XML
34.333328
123
0.691943
USDSync/MetaCloudExplorer/tools/packman/bootstrap/install_package.py
# Copyright 2019 NVIDIA CORPORATION # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import zipfile import tempfile import sys import shutil __author__ = "hfannar" logging.basicConfig(level=logging.WARNING, format="%(message)s") logger = logging.getLogger("install_package") class TemporaryDirectory: def __init__(self): self.path = None def __enter__(self): self.path = tempfile.mkdtemp() return self.path def __exit__(self, type, value, traceback): # Remove temporary data created shutil.rmtree(self.path) def install_package(package_src_path, package_dst_path): with zipfile.ZipFile( package_src_path, allowZip64=True ) as zip_file, TemporaryDirectory() as temp_dir: zip_file.extractall(temp_dir) # Recursively copy (temp_dir will be automatically cleaned up on exit) try: # Recursive copy is needed because both package name and version folder could be missing in # target directory: shutil.copytree(temp_dir, package_dst_path) except OSError as exc: logger.warning( "Directory %s already present, packaged installation aborted" % package_dst_path ) else: logger.info("Package successfully installed to %s" % package_dst_path) install_package(sys.argv[1], sys.argv[2])
1,888
Python
31.568965
103
0.68697
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/csv_data_manager.py
# Selection UI window for importing CSV files import carb from omni.kit.window.file_importer import get_file_importer import os.path import asyncio from pathlib import Path # external python lib import csv import itertools from .data_store import DataStore from .prim_utils import cleanup_prim_path import omni.kit.notification_manager as nm #This class is designed to import data from 3 input files #This file acts like a data provider for the data_manager class CSVDataManager(): def __init__(self): self._dataStore = DataStore.instance() # Get A Singleton instance, store data here # limit the number of rows read self.max_elements = 5000 #specify the filesnames to load def loadFilesManual(self, grpFile:str, resFile:str): self.load_grp_file_manual(grpFile) self.load_res_file_manual(resFile) #Load all the data from CSV files and process it def loadFiles(self): self.load_grp_file() self.load_res_file() #Resource Groups File Import #NAME,SUBSCRIPTION,LOCATION def load_grp_file_manual(self, fileName): i=1 with open(fileName, encoding='utf-8-sig', newline='') as csvfile: reader = csv.DictReader(csvfile, delimiter=',') for row in reader: name = row["NAME"] subs = row["SUBSCRIPTION"] location = row["LOCATION"] grp = {name:{"name":name, "subs": subs, "location":location}} self._dataStore._groups.update(grp) i=i+1 if i > self.max_elements: return self.sendNotify("MCE: Azure groups loaded: " + str(len(self._dataStore._groups)), nm.NotificationStatus.INFO) #Groups File Import def load_grp_file(self): if os.path.exists(self._dataStore._rg_csv_file_path): self.load_grp_file_manual(self._dataStore._rg_csv_file_path) # Read CSV Resources file # Expects fields: # NAME,TYPE,RESOURCE GROUP,LOCATION,SUBSCRIPTION, LMCOST def load_res_file_manual(self, fileName): i=1 with open(fileName, encoding='utf-8-sig') as file: reader = csv.DictReader(file, delimiter=',') for row in reader: name = row["NAME"] type = row["TYPE"] group = row["RESOURCE GROUP"] location = row["LOCATION"] subscription = row["SUBSCRIPTION"] lmcost = row["LMCOST"] #fix spacing, control chars early name = cleanup_prim_path(self, Name=name) self._dataStore._resources[name] = {"name":name, "type": type, "group": group, "location":location, "subscription":subscription, "lmcost": lmcost} i=i+1 if i > self.max_elements: return self.sendNotify("MCE: Azure resources loaded: " + str(len(self._dataStore._resources)), nm.NotificationStatus.INFO) #Resources File Import def load_res_file(self): # check that CSV exists if os.path.exists(self._dataStore._rs_csv_file_path): self.load_res_file_manual(self._dataStore._rs_csv_file_path) # Handles the click of the Load button for file selection dialog def select_file(self, fileType: str): self.file_importer = get_file_importer() if fileType == "rg": self.file_importer.show_window( title="Select a CSV File", import_button_label="Select", import_handler=self._on_click_rg_open, file_extension_types=[(".csv", "CSV Files (*.csv)")], file_filter_handler=self._on_filter_item ) if fileType == "res": self.file_importer.show_window( title="Select a CSV File", import_button_label="Select", import_handler=self._on_click_res_open, file_extension_types=[(".csv", "CSV Files (*.csv)")], file_filter_handler=self._on_filter_item ) if fileType == "bgl": self.file_importer.show_window( title="Select a png image file", import_button_label="Select", import_handler=self._on_click_bgl_open, file_extension_types=[(".png", "PNG Files (*.png)")], file_filter_handler=self._on_filter_item ) if fileType == "bgm": self.file_importer.show_window( title="Select a png image file", import_button_label="Select", import_handler=self._on_click_bgm_open, file_extension_types=[(".png", "PNG Files (*.png)")], file_filter_handler=self._on_filter_item ) if fileType == "bgh": self.file_importer.show_window( title="Select a png image file", import_button_label="Select", import_handler=self._on_click_bgh_open, file_extension_types=[(".png", "PNG Files (*.png)")], file_filter_handler=self._on_filter_item ) # Handles the click of the open button within the file importer dialog def _on_click_rg_open(self, filename: str, dirname: str, selections): # File name should not be empty. filename = filename.strip() if not filename: carb.log_warn(f"Filename must be provided.") return # create the full path to csv file if dirname: fullpath = f"{dirname}/{filename}" else: fullpath = filename self._dataStore._rg_csv_file_path = fullpath self._dataStore._rg_csv_field_model.set_value(str(fullpath)) # Handles the click of the open button within the file importer dialog def _on_click_res_open(self, filename: str, dirname: str, selections): # File name should not be empty. filename = filename.strip() if not filename: carb.log_warn(f"Filename must be provided.") return # create the full path to csv file if dirname: fullpath = f"{dirname}/{filename}" else: fullpath = filename self._dataStore._rs_csv_file_path = fullpath self._dataStore._rs_csv_field_model.set_value(str(fullpath)) # Handles the click of the open button within the file importer dialog def _on_click_bgl_open(self, filename: str, dirname: str, selections): # File name should not be empty. filename = filename.strip() if not filename: carb.log_warn(f"Filename must be provided.") return # create the full path to csv file if dirname: fullpath = f"{dirname}/{filename}" else: fullpath = filename self._dataStore._bgl_file_path = fullpath self._dataStore._bgl_field_model.set_value(str(fullpath)) self._dataStore.Save_Config_Data() # Handles the click of the open button within the file importer dialog def _on_click_bgm_open(self, filename: str, dirname: str, selections): # File name should not be empty. filename = filename.strip() if not filename: carb.log_warn(f"Filename must be provided.") return # create the full path to csv file if dirname: fullpath = f"{dirname}/{filename}" else: fullpath = filename self._dataStore._bgm_file_path = fullpath self._dataStore._bgm_field_model.set_value(str(fullpath)) self._dataStore.Save_Config_Data() # Handles the click of the open button within the file importer dialog def _on_click_bgh_open(self, filename: str, dirname: str, selections): # File name should not be empty. filename = filename.strip() if not filename: carb.log_warn(f"Filename must be provided.") return # create the full path to csv file if dirname: fullpath = f"{dirname}/{filename}" else: fullpath = filename self._dataStore._bgh_file_path = fullpath self._dataStore._bgh_field_model.set_value(str(fullpath)) self._dataStore.Save_Config_Data() # Handles the filtering of files within the file importer dialog def _on_filter_item(self, filename: str, filter_postfix: str, filter_ext: str) -> bool: if not filename: return True # Show only .csv files _, ext = os.path.splitext(filename) if ext == filter_ext: return True else: return False def sendNotify(self, message:str, status:nm.NotificationStatus): # https://docs.omniverse.nvidia.com/py/kit/source/extensions/omni.kit.notification_manager/docs/index.html?highlight=omni%20kit%20notification_manager# import omni.kit.notification_manager as nm ok_button = nm.NotificationButtonInfo("OK", on_complete=self.clicked_ok) nm.post_notification( message, hide_after_timeout=True, duration=3, status=status, button_infos=[], ) def clicked_ok(): carb.log_info("User clicked ok")
9,552
Python
35.323194
162
0.573702
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/widget_info_manipulator.py
## Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. ## ## NVIDIA CORPORATION and its licensors retain all intellectual property ## and proprietary rights in and to this software, related documentation ## and any modifications thereto. Any use, reproduction, disclosure or ## distribution of this software and related documentation without an express ## license agreement from NVIDIA CORPORATION is strictly prohibited. ## __all__ = ["WidgetInfoManipulator"] from omni.ui import color as cl from omni.ui import scene as sc import omni.ui as ui import carb class _ViewportLegacyDisableSelection: """Disables selection in the Viewport Legacy""" def __init__(self): self._focused_windows = None focused_windows = [] try: # For some reason is_focused may return False, when a Window is definitely in fact is the focused window! # And there's no good solution to this when mutliple Viewport-1 instances are open; so we just have to # operate on all Viewports for a given usd_context. import omni.kit.viewport_legacy as vp vpi = vp.acquire_viewport_interface() for instance in vpi.get_instance_list(): window = vpi.get_viewport_window(instance) if not window: continue focused_windows.append(window) if focused_windows: self._focused_windows = focused_windows for window in self._focused_windows: # Disable the selection_rect, but enable_picking for snapping window.disable_selection_rect(True) except Exception: pass class _DragPrioritize(sc.GestureManager): """Refuses preventing _DragGesture.""" def can_be_prevented(self, gesture): # Never prevent in the middle of drag return gesture.state != sc.GestureState.CHANGED def should_prevent(self, gesture, preventer): if preventer.state == sc.GestureState.BEGAN or preventer.state == sc.GestureState.CHANGED: return True class _DragGesture(sc.DragGesture): """"Gesture to disable rectangle selection in the viewport legacy""" def __init__(self): super().__init__(manager=_DragPrioritize()) def on_began(self): # When the user drags the slider, we don't want to see the selection # rect. In Viewport Next, it works well automatically because the # selection rect is a manipulator with its gesture, and we add the # slider manipulator to the same SceneView. # In Viewport Legacy, the selection rect is not a manipulator. Thus it's # not disabled automatically, and we need to disable it with the code. self.__disable_selection = _ViewportLegacyDisableSelection() def on_ended(self): # This re-enables the selection in the Viewport Legacy self.__disable_selection = None class WidgetInfoManipulator(sc.Manipulator): def __init__(self, **kwargs): super().__init__(**kwargs) #self.destroy() self._radius = 2 self._distance_to_top = 5 self._thickness = 2 self._radius_hovered = 20 def destroy(self): self._root = None self._path_label = None self._name_label = None self._grp_label = None self._type_label = None self._location_label = None self._sub_label = None self._cost_label = None def _on_build_widgets(self): carb.log_info("WidgetInfoManipulator - on_build_widgets") with ui.ZStack(): ui.Rectangle( style={ "background_color": cl(0.2), "border_color": cl(0.7), "border_width": 2, "border_radius": 4, } ) with ui.VStack(style={"font_size": 24}): ui.Spacer(height=4) with ui.ZStack(style={"margin": 1}, height=30): ui.Rectangle( style={ "background_color": cl(0.0), } ) ui.Line(style={"color": cl(0.7), "border_width": 2}, alignment=ui.Alignment.BOTTOM) ui.Label("MCE: Resource Information", height=0, alignment=ui.Alignment.LEFT) ui.Spacer(height=4) self._path_label = ui.Label("Path:", height=0, alignment=ui.Alignment.LEFT) self._name_label = ui.Label("Name:", height=0, alignment=ui.Alignment.LEFT) self._grp_label = ui.Label("RGrp:", height=0, alignment=ui.Alignment.LEFT) self._type_label = ui.Label("Type:", height=0, alignment=ui.Alignment.LEFT) self._location_label = ui.Label("Location:", height=0, alignment=ui.Alignment.LEFT) self._sub_label = ui.Label("Sub:", height=0, alignment=ui.Alignment.LEFT) self._cost_label = ui.Label("Cost:", height=0, alignment=ui.Alignment.LEFT) self.on_model_updated(None) # Additional gesture that prevents Viewport Legacy selection self._widget.gestures += [_DragGesture()] def on_build(self): carb.log_info("WidgetInfoManipulator - on_build") """Called when the model is chenged and rebuilds the whole slider""" self._root = sc.Transform(visible=False) with self._root: with sc.Transform(scale_to=sc.Space.SCREEN): with sc.Transform(transform=sc.Matrix44.get_translation_matrix(0, 100, 0)): # Label with sc.Transform(look_at=sc.Transform.LookAt.CAMERA): self._widget = sc.Widget(600, 250, update_policy=sc.Widget.UpdatePolicy.ON_MOUSE_HOVERED) self._widget.frame.set_build_fn(self._on_build_widgets) self._on_build_widgets() def on_model_updated(self, _): try: # if we don't have selection then show nothing if not self.model or not self.model.get_item("name"): if hasattr(self, "_root"): self._root.visible = False return else: # Update the shapes position = self.model.get_as_floats(self.model.get_item("position")) self._root.transform = sc.Matrix44.get_translation_matrix(*position) self._root.visible = True except: return #how to select parent ? # name = self.model.get_item('name') # if name.find("Collision") != -1: # return # Update the shape name if hasattr(self, "_name_label"): name = self.model.get_item('name') infoBlurb = name.replace("/World/RGrps/", "") infoBlurb = infoBlurb.replace("/World/Subs/", "") infoBlurb = infoBlurb.replace("/World/Locs/", "") infoBlurb = infoBlurb.replace("/World/Types/", "") try: self._path_label.text = f"{infoBlurb}" except: self._path_label = ui.Label("Path:", height=20, alignment=ui.Alignment.LEFT) try: self._name_label.text = "Name: " + self.model.get_custom('res_name') except: self._name_label = ui.Label("Name:" , height=40, alignment=ui.Alignment.LEFT) try: self._grp_label.text = "ResGrp: " + self.model.get_custom('res_grp') except: self._grp_label = ui.Label("RGrp:", height=60, alignment=ui.Alignment.LEFT) try: self._type_label.text = "Type: " + self.model.get_custom('res_type') except: self._type_label = ui.Label("Type: ", height=80, alignment=ui.Alignment.LEFT) try: self._location_label.text = "Location: " + self.model.get_custom('res_loc') except: self._location_label = ui.Label("Location: ", height=100, alignment=ui.Alignment.LEFT) try: self._sub_label.text = "Sub: " + self.model.get_custom('res_sub') except: self._sub_label = ui.Label("Sub: " , height=120, alignment=ui.Alignment.LEFT) try: self._cost_label.text = "Cost: " + self.model.get_custom('res_cost') except: self._cost_label = ui.Label("Cost:", height=140, alignment=ui.Alignment.LEFT)
8,503
Python
40.082125
117
0.57662
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/button.py
from .constant import COLORS, LightColors, DarkColors, MouseKey from .style import get_ui_style from .rectangle import DashRectangle, OpaqueRectangle from omni import ui class InvisibleButton(ui.Button): STYLE = { "InvisibleButton": {"background_color": COLORS.TRANSPARENT}, "InvisibleButton.Label": {"color": COLORS.TRANSPARENT}, } def __init__(self, *arg, **kwargs): kwargs["style"] = self.STYLE kwargs["style_type_name_override"] = "InvisibleButton" super().__init__("##INVISIBLE", **kwargs) class DashButton: def __init__( self, height=0, name=None, image_source=None, image_size=16, image_padding=7, dash_padding_x=2, padding=6, clicked_fn=None, alignment=ui.Alignment.LEFT, ): self._on_clicked_fn = clicked_fn with ui.ZStack(height=height): self._rectangle = OpaqueRectangle(height=height, name=name, style_type_name_override="Button") with ui.HStack(spacing=0): ui.Spacer(width=dash_padding_x + padding) if alignment == ui.Alignment.CENTER: ui.Spacer() self._build_image_label( image_source=image_source, name=name, image_size=image_size, image_padding=image_padding ) ui.Spacer() elif alignment == ui.Alignment.RIGHT: ui.Spacer() self._build_image_label( image_source=image_source, name=name, image_size=image_size, image_padding=image_padding ) else: self._build_image_label( image_source=image_source, name=name, image_size=image_size, image_padding=image_padding ) ui.Spacer() ui.Spacer(width=dash_padding_x) DashRectangle(500, height, padding_x=dash_padding_x) if clicked_fn: self._rectangle.set_mouse_pressed_fn(lambda x, y, btn, flag: self._on_clicked()) @property def enabled(self): return self._label.enabled @enabled.setter def enabled(self, value): self._label.enabled = value def _build_image_label(self, image_source=None, name=None, image_size=16, image_padding=7): if image_source: with ui.VStack(width=image_size + 2 * image_padding): ui.Spacer() ui.Image( image_source, width=image_size, height=image_size, name=name, style_type_name_override="Button.Image", ) ui.Spacer() self._label = ui.Label("Add", width=0, name=name, style_type_name_override="Button.Label") def _on_clicked(self): if self._label.enabled: if self._on_clicked_fn is not None: self._on_clicked_fn() class ImageButton: LIGHT_STYLE = { "ImageButton": {"background_color": COLORS.TRANSPARENT, "border_width": 0, "border_radius": 2.0}, "ImageButton:hovered": {"background_color": LightColors.ButtonHovered}, "ImageButton:pressed": {"background_color": LightColors.ButtonPressed}, "ImageButton:selected": {"background_color": LightColors.ButtonSelected}, } DARK_STYLE = { "ImageButton": {"background_color": COLORS.TRANSPARENT, "border_width": 0, "border_radius": 2.0}, "ImageButton:hovered": {"background_color": 0xFF373737}, "ImageButton:selected": {"background_color": 0xFF1F2123}, } UI_STYLES = {"NvidiaLight": LIGHT_STYLE, "NvidiaDark": DARK_STYLE} def __init__( self, name, width, height, image, clicked_fn, tooltip=None, visible=True, enabled=True, activated=False, tooltip_fn=None, ): self._name = name self._width = width self._height = height self._tooltip = tooltip self._tooltip_fn = tooltip_fn self._visible = visible self._enabled = enabled self._image = image self._clicked_fn = clicked_fn self._activated = activated self._panel = None self._bkground_widget = None self._image_widget = None self._mouse_x = 0 self._mouse_y = 0 def create(self, style=None, padding_x=2, padding_y=2): ww = self.get_width() hh = self.get_height() if style is None: style = ImageButton.UI_STYLES[get_ui_style()] self._panel = ui.ZStack(spacing=0, width=ww, height=hh, style=style) with self._panel: with ui.Placer(offset_x=0, offset_y=0): self._bkground_widget = ui.Rectangle( name=self._name, style_type_name_override="ImageButton", width=ww, height=hh ) self._bkground_widget.visible = self._visible and self._enabled with ui.Placer(offset_x=padding_x, offset_y=padding_y): self._image_widget = ui.Image( self._image, width=ww - padding_x * 2, height=hh - padding_y * 2, fill_policy=ui.FillPolicy.STRETCH, mouse_pressed_fn=(lambda x, y, key, m: self._on_mouse_pressed(x, y, key)), mouse_released_fn=(lambda x, y, key, m: self._on_mouse_released(x, y, key)), opaque_for_mouse_events=True, ) if self._bkground_widget is None or self._image_widget is None: return if self._tooltip: self._image_widget.set_tooltip(self._tooltip) if self._tooltip_fn: self._tooltip_fn(self._image_widget, self._tooltip) if not self._enabled: self._bkground_widget.enabled = False self._image_widget.enabled = False def destroy(self): if self._panel: self._panel.clear() if self._bkground_widget: self._bkground_widget = None if self._image_widget: self._image_widget = None @property def enabled(self): return self._enabled @enabled.setter def enabled(self, value): self.enable(value) def get_width(self): return self._width def get_height(self): return self._height def get_widget_pos(self): x = self._bkground_widget.screen_position_x y = self._bkground_widget.screen_position_y return (x, y) def enable(self, enabled): if self._enabled != enabled: self._enabled = enabled self._bkground_widget.visible = enabled and self._visible self._image_widget.enabled = enabled return False def set_tooltip(self, tooltip): self._tooltip = tooltip if self._image_widget is not None: self._image_widget.set_tooltip(self._tooltip) def set_tooltip_fn(self, tooltip_fn: callable): self._tooltip_fn = tooltip_fn if self._image_widget is not None: self._image_widget.set_tooltip_fn(lambda w=self._image_widget, name=self._tooltip: tooltip_fn(w, name)) def is_visible(self): return self._visible def set_visible(self, visible=True): if self._visible != visible: self._visible = visible self._bkground_widget.visible = visible and self._enabled self._image_widget.visible = visible def identify(self, name): return self._name == name def get_name(self): return self._name def is_activated(self): return self._activated def activate(self, activated=True): if self._activated == activated: return False self._activated = activated if self._bkground_widget is not None: self._bkground_widget.selected = activated def set_image(self, image): if self._image != image: self._image = image self._image_widget.source_url = image return False def _on_mouse_pressed(self, x, y, key): if not self._enabled: return # For left button, we do trigger the click event on mouse_released. # For other buttons, we trigger the click event right now since Widget will never has # mouse_released event for any buttons other than left. if key != MouseKey.LEFT: self._clicked_fn(key, x, y) else: self._mouse_x = x self._mouse_y = y def _on_mouse_released(self, x, y, key): if self._enabled: if key == MouseKey.LEFT: self._clicked_fn(MouseKey.LEFT, x, y) class SimpleImageButton(ImageButton): def __init__(self, image, size, clicked_fn=None, name=None, style=None, padding=2): self._on_clicked_fn = clicked_fn if name is None: name = "default_image_btn" super().__init__(name, size, size, image, self._on_clicked) self.create(style=style, padding_x=padding, padding_y=padding) @property def clicked_fn(self): return self._on_clicked_fn @clicked_fn.setter def clicked_fn(self, value): self._on_clicked_fn = None def _on_clicked(self, button, x, y): if self._on_clicked_fn: self._on_clicked_fn() class BoolImageButton(ImageButton): def __init__(self, true_image, false_image, size, state=True, clicked_fn=None): self._true_image = true_image self._false_image = false_image self._state = state self._on_clicked_fn = clicked_fn super().__init__("default_image_btn", size, size, self._get_image(), self._on_clicked) self.create() @property def state(self): return self._state @state.setter def state(self, value): self.set_state(value, notify=False) def set_state(self, state, notify=False): self._state = state self.set_image(self._get_image()) if notify and self._on_clicked_fn: self._on_clicked_fn(self._state) def _on_clicked(self, button, x, y): self.set_state(not self._state, notify=True) def _get_image(self): return self._true_image if self._state else self._false_image
10,437
Python
32.242038
115
0.566734
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/group_type.py
from .group_base import GroupBase from pxr import Gf, UsdGeom, UsdLux, Usd, Sdf from .math_utils import calcPlaneSizeForGroup from .prim_utils import cleanup_prim_path import locale import asyncio import carb import omni.client import omni.kit.app import omni.ui as ui import omni.usd import omni.kit.commands class TypeGrpView(GroupBase): def __init__(self, viewPath:str, scale:float, upAxis:str, shapeUpAxis:str, symPlanes:bool, binPack:bool): self._scale = scale self._upAxis = upAxis self._shapeUpAxis = shapeUpAxis self._view_path = viewPath self._symPlanes = symPlanes self._binPack = binPack super().__init__() def calcGroupPlaneSizes(self): self._dataStore._lcl_groups = [] self._dataStore._lcl_sizes = [] if len(self._dataStore._type_count) == 0: self._dataManager.refresh_data() #check it again if len(self._dataStore._type_count) == 0: return 0 # ---------- NO DATA #Clone the location groups gpz = self._dataStore._type_count.copy() #How big should the groups be? for grp in gpz: size = calcPlaneSizeForGroup( scaleFactor=self._scale, resourceCount=self._dataStore._type_count.get(grp) ) #mixed plane sizes self._dataStore._lcl_sizes.append(size) grp = cleanup_prim_path(self, grp) self._dataStore._lcl_groups.append({ "group":grp, "size":size }) #Should the groups all be the same size ? if self._symPlanes: self._dataStore._lcl_sizes.sort(reverse=True) maxPlaneSize = self._dataStore._lcl_sizes[0] #largest plane groupCount = len(self._dataStore._lcl_sizes) #count of groups #Reset plane sizes self._dataStore._lcl_sizes = [] for count in range(0,groupCount): self._dataStore._lcl_sizes.append(maxPlaneSize) self._dataStore._lcl_groups = [] for grp in gpz: self._dataStore._lcl_groups.append({ "group":grp, "size":maxPlaneSize }) def calulateCosts(self): for g in self._dataStore._lcl_groups: #Get the cost by resource group locale.setlocale( locale.LC_ALL, 'en_CA.UTF-8' ) try: self._cost = str(locale.currency(self._dataStore._type_cost[g])) except: self._cost = "" # blank not 0, blank means dont show it at all def selectGroupPrims(self): self.paths = [] base = Sdf.Path("/World/Types") for grp in self._dataStore.map_group.keys(): grp_path = base.AppendPath(cleanup_prim_path(self, grp)) self.paths.append(str(grp_path)) omni.kit.commands.execute('SelectPrimsCommand', old_selected_paths=[], new_selected_paths=self.paths, expand_in_stage=True) #Abstact to load resources def loadResources(self): self.view_path = Sdf.Path(self.root_path.AppendPath(self._view_path)) if (len(self._dataStore._lcl_groups)) >0 : #Cycle all the loaded groups for grp in self._dataStore._lcl_groups: carb.log_info(grp["group"]) #Cleanup the group name for a prim path group_prim_path = self.view_path.AppendPath(grp["group"]) #match the group to the resource map for key, values in self._dataStore._map_type.items(): #Is this the group? if key == grp["group"]: asyncio.ensure_future(self.loadGroupResources(key, group_prim_path, values)) def selectGroupPrims(self): self.paths = [] stage = omni.usd.get_context().get_stage() base = Sdf.Path("/World/Types") curr_prim = stage.GetPrimAtPath(base) for prim in Usd.PrimRange(curr_prim): # only process shapes and meshes tmp_path = str(prim.GetPath()) if '/CollisionMesh' not in tmp_path: if '/CollisionPlane' not in tmp_path: self.paths.append(tmp_path) # for grp in self._dataStore._map_subscription.keys(): # grp_path = base.AppendPath(cleanup_prim_path(self, grp)) # self.paths.append(str(grp_path)) omni.kit.commands.execute('SelectPrimsCommand', old_selected_paths=[], new_selected_paths=self.paths, expand_in_stage=True)
4,647
Python
31.732394
109
0.572628
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/scatter_on_planes.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # __all__ = ["scatterOnFixedPlane"] from typing import List, Optional import random from pxr import Gf def scatterOnFixedPlane( count: List[int], distance: List[float], scaleFactor:float=1.0 ): """ Returns generator with pairs containing transform matrices and ids to arrange multiple objects. ### Arguments: `count: List[int]` Number of matrices to generage per axis `distance: List[float]` The distance between objects per axis """ vectors = {} id_cnt = 0 for i in range(count[0]): x = (i - 0.5 * (count[0] - 1)) * distance[0]*scaleFactor for j in range(count[1]): y = (j - 0.5 * (count[1] - 1)) * distance[1]*scaleFactor for k in range(count[2]): z = (k - 0.5 * (count[2] - 1)) * distance[2]*scaleFactor #yield([x, y, z]) vec_id = id_cnt vec = {vec_id: Gf.Vec3f(x,y,z)} vectors.update(vec) id_cnt = id_cnt +1 return vectors
1,510
Python
25.982142
76
0.602649
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/style_button.py
__all__ = ["button_style"] button_styles = { "Button": { "border_width": 0.5, "border_radius": 0.0, "margin": 4.0, "padding": 4.0, "font_size" : 20 }, "Button::subs": { "background_color": 0x0096C8FA, "background_gradient_color": 0xFFFAB26D, "border_color": 0xFFFD761D, }, "Button.Label::subs": { "color": 0xFFFFFFFF, "font_size" : 16 }, "Button::subs:hovered": { "background_color": 0xFFFF6E00, "background_gradient_color": 0xFFFFAE5A }, "Button::subs:pressed": { "background_color": 0xFFFAB26D, "background_gradient_color": 0xFFFF7E09 }, "Button::clear": { "background_color": 0xFFFF7E09, "background_gradient_color": 0xFFFAB26D, "border_color": 0xFFFD761D, }, "Button.Label::clear": { "color": 0xFFFFFFFF, "font_size" : 16 }, "Button::rs": { "background_color": 0xFFFF7E09, "background_gradient_color": 0xFFFAB26D, "border_color": 0xFFFD761D, }, "Button::rs:hovered": { "background_color": 0xFFFF6E00, "background_gradient_color": 0xFFFFAE5A, "border_color": 0xFFFD761D, }, "Button::rs:pressed": { "background_color": 0xFFFAB26D, "background_gradient_color": 0xFFFF7E09, "border_color": 0xFFFD761D, }, "Button.Label::rs": { "color": 0xFFFFFFFF, "font_size" : 16 }, "Button::clr": { "background_color": 0xEE7070, "background_gradient_color": 0xFFFAB26D, "border_color": 0xFFFD761D, }, "Button.Label::clr": { "color": 0xFFFFFFFF, "font_size" : 16 }, "Button::clr:hovered": { "background_color": 0xFFFF6E00, "background_gradient_color": 0xFFFFAE5A }, "Button::clr:pressed": { "background_color": 0xFFFAB26D, "background_gradient_color": 0xFFFF7E09 }, "Button::help": { "background_color": 0x6464c8, "background_gradient_color": 0xFFFAB26D, "border_color": 0xFFFD761D, }, "Button.Label::help": { "color": 0xFFFFFFFF, "font_size" : 16 }, "Button::help:hovered": { "background_color": 0xFFFF6E00, "background_gradient_color": 0xFFFFAE5A }, "Button::help:pressed": { "background_color": 0xFFFAB26D, "background_gradient_color": 0xFFFF7E09 }, }
2,488
Python
25.478723
48
0.546222
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/pillow_text.py
import glob from PIL import Image, ImageDraw, ImageFont, ImageDraw import io import asyncio import os import time import sys import os.path as path from pathlib import Path import omni.kit.pipapi from datetime import datetime, timedelta #Create and draw images in async contexxt async def draw_text_on_image_at_position_async ( input_image_path:str, output_image_path:str, textToDraw:str, costToDraw:str, x:int, y:int, fillColor:str, font:str, fontSize:int): await draw_text_on_image_at_position( input_image_path, output_image_path, textToDraw, costToDraw, x, y, fillColor, font, fontSize ) def is_file_older_than_x_days(file, days=1): file_time = path.getmtime(file) # Check against 24 hours return ((time.time() - file_time) / 3600 > 24*days) #Create a new image with text def draw_text_on_image_at_position( input_image_path:str, output_image_path:str, textToDraw:str, costToDraw:str, x:int, y:int, fillColor:str, font:str, fontSize:int): makeFile = False if not os.path.exists(input_image_path): print("No src file: " + str(input_image_path)) return if os.path.exists(output_image_path): if is_file_older_than_x_days(output_image_path, 30): makeFile = True else: makeFile = True if makeFile: print("Refreshing Image " + str(output_image_path) + " with text: " + textToDraw + " cst: " + costToDraw) #font = ImageFont.load(str(font)) font = ImageFont.truetype(str(font), fontSize, encoding="unic") print("Loading src file: " + str(input_image_path)) image = Image.open(input_image_path) image = image.rotate(270, expand=1) draw = ImageDraw.Draw(image) textW, textH = draw.textsize(textToDraw, font) # how big is our text costW, costH = draw.textsize(costToDraw, font) # how big is cost text if costToDraw != "": costToDraw = str(costToDraw) + " /month" draw.text((x,y-75), textToDraw, font_size=fontSize,anchor="ls", font=font, fill=fillColor) draw.text((x,y+75), costToDraw, font_size=(fontSize-50), anchor="ls", font=font, fill="red") else: draw.text((x, y-50), textToDraw, font_size=fontSize,anchor="ls", font=font, fill=fillColor) image = image.rotate(-270, expand=1) with open(output_image_path, 'wb') as out_file: image.save(out_file, 'PNG') #image.save(output_image_path) # def create_image_with_text(output_image_path:str, textToDraw:str, x:int, y:int, h:int, w:int, color:str, alignment:str, fillColor:str, fontPath:str, fontSize:int): # image = Image.new("RGB", (h, w), color) # draw = ImageDraw.Draw(image) # # Load font from URI # #font1 = "https://github.com/googlefonts/Arimo/raw/main/fonts/ttf/Arimo-Regular.ttf" # font1 = 'https://github.com/googlefonts/roboto/blob/main/src/hinted/Roboto-Black.ttf?raw=true' # font = load_font_from_uri(fontSize, font1) # #font = ImageFont.truetype(fontPath, layout_engine=ImageFont.LAYOUT_BASIC, size=fontSize) # draw.text((x, y), textToDraw, font=font, anchor="ls", fill=fillColor) # image.save(output_image_path) #angled text #https://stackoverflow.com/questions/245447/how-do-i-draw-text-at-an-angle-using-pythons-pil def draw_text_90_into(text: str, into, at): # Measure the text area font = ImageFont.truetype (r'C:\Windows\Fonts\Arial.ttf', 16) wi, hi = font.getsize (text) # Copy the relevant area from the source image img = into.crop ((at[0], at[1], at[0] + hi, at[1] + wi)) # Rotate it backwards img = img.rotate (270, expand = 1) # Print into the rotated area d = ImageDraw.Draw (img) d.text ((0, 0), text, font = font, fill = (0, 0, 0)) # Rotate it forward again img = img.rotate (90, expand = 1) # Insert it back into the source image # Note that we don't need a mask into.paste (img, at) if __name__ == "__main__": #create_image_with_text("temp\\output2.jpg", "Mmmuuuurrrrrrrrrr", 10.0,525,575,575,"white", "left", "black", "temp\\airstrike.ttf", 44) draw_text_on_image_at_position("temp\\tron_grid_test.png", "temp\\output_test.png", "defaultresourcegroup_ea","$299.00", 200,1800, "yellow", 110) #'https://github.com/googlefonts/roboto/blob/main/src/hinted/Roboto-Black.ttf?raw=true' # input_image_path:str, # output_image_path:str, # textToDraw:str, # costToDraw:str, # x:int, y:int, # fillColor:str, fontSize:int):
4,635
Python
30.753424
169
0.63754
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/math_utils.py
# Calculate the size of the Plane to place Resource Group X's items on # using 2D spaces here, will locate all the items on a plane the size of the group # 1x, 2x2, 3x3, 4x4, 5x5, 6x6, 7x7, 8x8, etc... what size do we need? import math from pxr import Gf __all__ = ["calcPlaneSizeForGroup"] from re import I from typing import List from .scatter_on_planes import scatterOnFixedPlane # Calculate the size of the Group Plane to create def calcPlaneSizeForGroup(scaleFactor:float, resourceCount: int): # 1-30 squared, return the square root, this is the size of the space needed for i in [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484,529,576,625,676,729, 784, 841,900]: if resourceCount > 0 and resourceCount <= i: return float(((math.sqrt(i)*100)*scaleFactor)+1) #FIGURES OUT WHERE TO PUT THE PRIMS ON A VARIABLE SIZED-PLANE def calculateGroupTransforms(self, scale:float, count:int ): #ex 400.0 -> 800 - 400 plane is 800x800 plane_size = (calcPlaneSizeForGroup(scaleFactor=scale, resourceCount=count)*2) plane_class = ((plane_size/100)/2) #distance of objects depending on grid size.. dist = plane_size / plane_class #Use NVIDIAs Scatter algo to position on varying sized planes transforms = scatterOnFixedPlane( count=[int(plane_class), int(plane_class), 1], # Distribute accross the plane class distance=[dist,dist,dist], scaleFactor=scale ) #there should be at least one transform if len(transforms) == 0: vec_id = 0 vec = {vec_id: Gf.Vec3f(0,0,0)} transforms[0] = vec return transforms
1,686
Python
32.739999
146
0.677343
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/scatter_complex.py
__all__ = ["distributePlanes"] from typing import List, Optional import random from pxr import Gf def distributePlanes( UpAxis: 'Z', count: List[int], distance: List[float], sizes: List[float], randomization: List[float], seed: Optional[int] = None, scaleFactor:float=1.0 ): #print("UpAxis = " + UpAxis) random.seed(seed) if(UpAxis == 'Z'): nUpPlane = count[0]*count[1] elif(UpAxis == 'X'): nUpPlane = count[1]*count[2] else:#(UpAxis == 'Y'): nUpPlane = count[2]*count[0] for i in range(len(sizes)): iPlane = i % nUpPlane if(UpAxis == 'Z'): ix = iPlane // count[1] iy = iPlane % count[1] iz = i // nUpPlane elif(UpAxis == 'X'): iy = iPlane // count[2] iz = iPlane % count[2] ix = i // nUpPlane else:#(UpAxis == 'Y'): iz = iPlane // count[0] ix = iPlane % count[0] iy = i // nUpPlane x = ix*((distance[0]+sizes[i])*scaleFactor) * randomization[0] y = iy*((distance[1]+sizes[i])*scaleFactor) * randomization[1] z = iz*((distance[2]+sizes[i])*scaleFactor) * randomization[2] yield(Gf.Vec3d(x,y,z))
1,255
Python
24.632653
70
0.517928
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/group_location.py
from .group_base import GroupBase from pxr import Gf, UsdGeom, UsdLux, Usd, Sdf from .math_utils import calcPlaneSizeForGroup from .prim_utils import cleanup_prim_path import locale import asyncio import carb import omni.client import omni.kit.app import omni.ui as ui import omni.usd import omni.kit.commands class LocGrpView(GroupBase): def __init__(self, viewPath:str, scale:float, upAxis:str, shapeUpAxis:str, symPlanes:bool, binPack:bool): self._root_path = Sdf.Path(viewPath) self._scale = scale self._upAxis = upAxis self._shapeUpAxis = shapeUpAxis self._view_path = viewPath self._symPlanes = symPlanes self._binPack = binPack super().__init__() def calcGroupPlaneSizes(self): self._dataStore._lcl_groups = [] self._dataStore._lcl_sizes = [] if len(self._dataStore._location_count) == 0: self._dataManager.refresh_data() #check it again if len(self._dataStore._location_count) == 0: return 0 # ---------- NO DATA #Clone the location groups gpz = self._dataStore._location_count.copy() #How big should the groups be? for grp in gpz: size = calcPlaneSizeForGroup( scaleFactor=self._scale, resourceCount=self._dataStore._location_count.get(grp) ) #mixed plane sizes self._dataStore._lcl_sizes.append(size) grp = cleanup_prim_path(self, grp) self._dataStore._lcl_groups.append({ "group":grp, "size":size }) #Should the groups all be the same size ? if self._symPlanes: self._dataStore._lcl_sizes.sort(reverse=True) maxPlaneSize = self._dataStore._lcl_sizes[0] #largest plane groupCount = len(self._dataStore._lcl_sizes) #count of groups #Reset plane sizes self._dataStore._lcl_sizes = [] for count in range(0,groupCount): self._dataStore._lcl_sizes.append(maxPlaneSize) self._dataStore._lcl_groups = [] for grp in gpz: self._dataStore._lcl_groups.append({ "group":grp, "size":maxPlaneSize }) def calulateCosts(self): for g in self._dataStore._lcl_groups: #Get the cost by resource group locale.setlocale( locale.LC_ALL, 'en_CA.UTF-8' ) try: self._cost = str(locale.currency(self._dataStore._location_cost[g])) except: self._cost = "" # blank not 0, blank means dont show it at all #Abstact to load resources def loadResources(self): self.view_path = Sdf.Path(self.root_path.AppendPath(self._view_path)) if (len(self._dataStore._lcl_groups)) >0 : #Cycle all the loaded groups for grp in self._dataStore._lcl_groups: carb.log_info(grp["group"]) #Cleanup the group name for a prim path group_prim_path = self.view_path.AppendPath(grp["group"]) #match the group to the resource map for key, values in self._dataStore._map_location.items(): #Is this the group? if key == grp["group"]: asyncio.ensure_future(self.loadGroupResources(key, group_prim_path, values)) def selectGroupPrims(self): self.paths = [] base = Sdf.Path(self.root_path.AppendPath(self._view_path)) for grp in self._dataStore._map_location.keys(): grp_path = base.AppendPath(cleanup_prim_path(self, grp)) self.paths.append(str(grp_path)) omni.kit.commands.execute('SelectPrimsCommand', old_selected_paths=[], new_selected_paths=self.paths, expand_in_stage=True)
3,918
Python
31.932773
109
0.578356
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/style.py
from .constant import COLORS, LightColors, DarkColors, FontSize from omni import ui import carb.settings def get_ui_style(): settings = carb.settings.get_settings() style = settings.get_as_string("/persistent/app/window/uiStyle") if not style: style = "NvidiaDark" return style class DefaultWidgetStyle: LIGHT = { "Button": { "background_color": LightColors.Button, "border_radius": 2.0, "stack_direction": ui.Direction.LEFT_TO_RIGHT, }, "Button.Label": {"color": LightColors.Background}, "Button:hovered": {"background_color": LightColors.ButtonHovered}, "Button:pressed": {"background_color": LightColors.ButtonPressed}, "CollapsableFrame": { "color": COLORS.TRANSPARENT, "background_color": COLORS.TRANSPARENT, "secondary_color": COLORS.TRANSPARENT, }, "CollapsableFrame:hovered": {"secondary_color": COLORS.TRANSPARENT}, "CollapsableFrame:pressed": {"secondary_color": COLORS.TRANSPARENT}, "ComboBox": { "color": LightColors.Text, "background_color": LightColors.Background, "selected_color": LightColors.BackgroundSelected, "border_radius": 1, "padding_width": 0, "padding_height": 4, "secondary_padding": 8, }, "ComboBox:disabled": {"color": LightColors.TextDisabled}, "Field": {"background_color": LightColors.Background, "color": LightColors.Text, "border_radius": 2}, "Plot": {"background_color": LightColors.Background, "color": LightColors.TextSelected, "border_radius": 1}, "Triangle": {"background_color": LightColors.Background}, } DARK = { "Button": { "background_color": DarkColors.Button, "border_radius": 2.0, "stack_direction": ui.Direction.LEFT_TO_RIGHT, }, "Button.Label": {"color": DarkColors.Text}, "Button:hovered": {"background_color": DarkColors.ButtonHovered}, "Button:pressed": {"background_color": DarkColors.ButtonPressed}, "CollapsableFrame": { "color": COLORS.TRANSPARENT, "background_color": COLORS.TRANSPARENT, "secondary_color": COLORS.TRANSPARENT, }, "CollapsableFrame:hovered": {"secondary_color": COLORS.TRANSPARENT}, "CollapsableFrame:pressed": {"secondary_color": COLORS.TRANSPARENT}, "ComboBox": { "color": DarkColors.Text, "background_color": DarkColors.Background, "selected_color": DarkColors.BackgroundSelected, "border_radius": 1, }, "ComboBox:disabled": {"color": DarkColors.TextDisabled}, "Field": {"background_color": DarkColors.Background, "color": DarkColors.Text, "border_radius": 2}, "Plot": {"background_color": DarkColors.Background, "color": DarkColors.TextSelected, "border_radius": 1}, "Triangle": {"background_color": DarkColors.Background}, } @staticmethod def get_style(ui_style=None): if ui_style is None: ui_style = get_ui_style() if ui_style == "NvidiaDark": return DefaultWidgetStyle.DARK else: return DefaultWidgetStyle.LIGHT
3,323
Python
39.048192
116
0.607884
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/omni_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # __all__ = ["get_selection", "duplicate_prims", "create_prims, create_shaders"] from re import I from typing import List import omni.usd import asyncio import omni.kit.commands from pxr import Sdf, Gf, Usd, UsdGeom from .prim_utils import create_plane def get_selection() -> List[str]: """Get the list of currently selected prims""" return omni.usd.get_context().get_selection().get_selected_prim_paths() def duplicate_prims(transforms: List = [], prim_names: List[str] = [], target_path: str = "", mode: str = "Copy"): """ Returns generator with pairs containing transform matrices and ids to arrange multiple objects. ### Arguments: `transforms: List` Pairs containing transform matrices and ids to apply to new objects `prim_names: List[str]` Prims to duplicate `target_path: str` The parent for the new prims `mode: str` "Reference": Create a reference of the given prim path "Copy": Create a copy of the given prim path "PointInstancer": Create a PointInstancer """ if mode == "PointInstancer": omni.kit.commands.execute( "ScatterCreatePointInstancer", path_to=target_path, transforms=transforms, prim_names=prim_names, ) return usd_context = omni.usd.get_context() # Call commands in a single undo group. So the user will undo everything # with a single press of ctrl-z with omni.kit.undo.group(): # Create a group omni.kit.commands.execute("CreatePrim", prim_path=target_path, prim_type="Scope") for i, matrix in enumerate(transforms): id = matrix[1] matrix = matrix[0] path_from = Sdf.Path(prim_names[id]) path_to = Sdf.Path(target_path).AppendChild(f"{path_from.name}{i}") # Create a new prim if mode == "Copy": omni.kit.commands.execute("CopyPrims", paths_from=[path_from.pathString], paths_to=[path_to.pathString]) elif mode == "Reference": omni.kit.commands.execute( "CreateReference", usd_context=usd_context, prim_path=path_from, path_to=path_to, asset_path="" ) else: continue # Move omni.kit.commands.execute("TransformPrim", path=path_to, new_transform_matrix=matrix) def create_prims(up_axis:str, plane_size:List[float], transforms: List = [], prim_names: List[str] = [], parent_path:str = ""): """ Returns generator with pairs containing transform matrices and ids to arrange multiple objects. ### Arguments: `transforms: List` Pairs containing transform matrices and ids to apply to new objects `prim_names: List[str]` Prims to create `target_paths: List[str]` The paths for the new prims """ usd_context = omni.usd.get_context() stage_ref = usd_context.get_stage() # Call commands in a single undo group. So the user will undo everything # with a single press of ctrl-z #with omni.kit.undo.group(): #print("Prim count: " + str(len(prim_names))) # Create a group #omni.kit.commands.execute("CreatePrim", prim_path=parent_path, prim_type="Scope") i=0 for matrix in enumerate(transforms): if (i >= len(prim_names)): continue path = Sdf.Path(parent_path).AppendPath(prim_names[i]["group"]) print(str(i) + " adding plane:" + str(path) + " " + str(plane_size[i]) + " @ " + str(matrix[1])) if prim_names[i]["group"] == "observation_deck": matrix[1][0] = matrix[1][0] + 500 matrix[1][1] = matrix[1][1] + 500 matrix[1][2] = matrix[1][2] + 500 omni.kit.commands.execute('AddGroundPlaneCommand', stage=stage_ref, planePath=str(path), #'/RGrp/Test_Positioning' axis='Z', size=plane_size[i], position=matrix[1], color=Gf.Vec3f(0,0,0)) i=i+1 def get_selected_prims(self): """ Get the currently selected prims in the scene """ context = omni.usd.get_context() stage = context.get_stage() prims = [stage.GetPrimAtPath(m) for m in context.get_selection().get_selected_prim_paths()] return prims async def create_shaders(base_path:str, prim_name:str ): prim_path = Sdf.Path(base_path) prim_path = prim_path.AppendPath("CollisionMesh") #Select the Collision Mesh omni.kit.commands.execute('SelectPrims', old_selected_paths=[''], new_selected_paths=[str(prim_path)], expand_in_stage=True) #print("Creating Shader: " + str(prim_path)) #Create a Shader for the Mesh omni.kit.commands.execute('CreateAndBindMdlMaterialFromLibrary', mdl_name='OmniPBR.mdl', mtl_name='OmniPBR', prim_name=prim_name, mtl_created_list=None, bind_selected_prims=True) await omni.kit.app.get_app().next_update_async()
5,525
Python
32.490909
127
0.618643
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/data_manager.py
# This class manages both the offline data and online data from typing import Dict from .Singleton import Singleton from .csv_data_manager import CSVDataManager from .azure_data_manager_stub import AzureDataManager #Azure API disabled in this version, due to: from .data_store import DataStore from .prim_utils import cleanup_prim_path, draw_image from .azure_resource_map import shape_usda_name from .pillow_text import draw_text_on_image_at_position_async, draw_text_on_image_at_position from pathlib import Path from pxr import Sdf from .prim_utils import get_font_size_from_length import omni.kit.notification_manager as nm import omni import asyncio import logging import shutil import locale import carb # User either connects to Azure with connection info # OR User can import data from data files # depending on the mode, this class should return the same data # it is a DataManager type resource # User clicks Connect, Or Load, Goal is the same, load data from azure or files # and give the user some basic info to show the connection / import worked. # now connected, user can load different sets of resources and view then in different ways. ASYNC_ENABLED = True CURRENT_PATH = Path(__file__).parent DATA_PATH = CURRENT_PATH.joinpath("temp") RES_PATH = CURRENT_PATH.parent.parent.parent.parent.joinpath("data\\resources") IMPORTS_PATH = CURRENT_PATH.parent.parent.parent.parent.joinpath("data\\import") @Singleton class DataManager: def __init__(self): self._callbacks = [] logging.getLogger("asyncio").setLevel(logging.WARNING) carb.log_info("DataManager Created.") self._dataStore = DataStore.instance() self._offlineDataManager = CSVDataManager() self._onlineDataManager = AzureDataManager() self._dataStore.Load_Config_Data() self.refresh_data() #shut it down... def destroy(self): carb.log_info("DataManager Destroyed.") self._callbacks = [] self._offlineDataManager = None self._onlineDataManager = None self._dataStore = None #this seems to cause problems #add a callback for model changed def add_model_changed_callback(self, func): self._callbacks.append(func) #Invoke the callbacks that want to know when the data changes def _model_changed(self): for c in self._callbacks: c() #Load data from file def load_csv_files(self): self._dataStore._groups.clear() self._dataStore._resources.clear() self._lcl_sizes = [] self._lcl_groups = [] self._lcl_resources = [] self._dataStore._source_of_data = "OfflineData" self._dataStore.Save_Config_Data() #Load data from Cloud API self._offlineDataManager.loadFiles() #Aggregate the info, wait for it if len(self._dataStore._groups) >0: asyncio.ensure_future(self.process_data()) #Load data from Azure API def load_from_api(self): self._dataStore._groups.clear() self._dataStore._resources.clear() self._lcl_sizes = [] self._lcl_groups = [] self._lcl_resources = [] self._dataStore._source_of_data = "LiveAzureAPI" self._dataStore.Save_Config_Data() #Load the data and process it if self._onlineDataManager.connect(): self._onlineDataManager.load_data() #wait for data to finish loading if len(self._dataStore._groups) >0: asyncio.ensure_future(self.process_data()) def wipe_data(self): self._dataStore.wipe_data() self._model_changed() def refresh_data(self): if self._dataStore: if self._dataStore._source_of_data =="OfflineData": self.load_csv_files() carb.log_info("CSV Data Refreshed.") elif self._dataStore._source_of_data == "LiveAzureAPI": self.load_from_api() carb.log_info("Live Data Refreshed.") else: carb.log_info("Load some data!") #Load the "All resources (Shapes) set" #This sample contains 1 resource per group def load_sample_resources(self): if self._dataStore: self._dataStore.wipe_data() self._dataStore._source_of_data = "SampleFiles" src_filel = IMPORTS_PATH.joinpath("TestShapes_RG.csv") src_file2 = IMPORTS_PATH.joinpath("TestShapes_all.csv") self.load_and_process_manual(src_filel, src_file2) #Load the "Small Company sample" def load_small_company(self): if self._dataStore: self._dataStore.wipe_data() self._dataStore._source_of_data = "SampleFiles" src_filel = IMPORTS_PATH.joinpath("SmallCompany_RG.csv") src_file2 = IMPORTS_PATH.joinpath("SmallCompany_all.csv") self.load_and_process_manual(src_filel, src_file2) #Load the "Large Company sample" def load_large_company(self): if self._dataStore: self._dataStore.wipe_data() self._dataStore._source_of_data = "SampleFiles" src_filel = IMPORTS_PATH.joinpath("LargeCompany_RG.csv") src_file2 = IMPORTS_PATH.joinpath("LargeCompany_all.csv") self.load_and_process_manual(src_filel, src_file2) #load the files async def load_and_process_manual(self, grpFile, rgFIle ): #load the files self._offlineDataManager.loadFilesManual(grpFile, rgFIle) #Aggregate the info if len(self._dataStore._groups) >0: asyncio.ensure_future(self.process_data()) #Aggregate subscription, resources counts to DataManager Dictionaries async def process_data(self): carb.log_info("Processing Data...") #For every resrouce... for key in self._dataStore._resources: obj = self._dataStore._resources[key] #yield control await asyncio.sleep(0) ### AGGREGATE COUNTS self.AggregateCountsAsync(obj) ### AGGREGATE COSTS self.AggregateCostsAsync(obj) ### MAP RESOURCES TO AGGREGATES self.MapResourcesToGroupsAsync(obj) #Pre-create images for the groups carb.log_info("Creating images..") await self.CreateImagesForGroups() carb.log_info("Creating images complete..") #let everyone know, stuff changed... self._model_changed() #output aggregation results to console carb.log_info("Data processing complete..") carb.log_info(self._dataStore._source_of_data + " data refreshed.") carb.log_info(str(len(self._dataStore._resources)) + " Resources loaded from " + self._dataStore._source_of_data) carb.log_info(str(len(self._dataStore._groups)) + " Groups loaded from " + self._dataStore._source_of_data) #Create Images for all the maps async def CreateImagesForGroups(self): carb.log_info("Processing images async.") #go through all the maps and create images #this will save a ton of time later if self._dataStore._bgl_file_path is None: return if self._dataStore._bgm_file_path is None: return if self._dataStore._bgh_file_path is None: return src_filel = RES_PATH.joinpath(self._dataStore._bgl_file_path) src_filem = RES_PATH.joinpath(self._dataStore._bgm_file_path) src_fileh = RES_PATH.joinpath(self._dataStore._bgh_file_path) src_image = src_filel #SUBSCRIPTIONS #We need to create images for each group for rec in self._dataStore._map_subscription: recText = rec #Name of subscription #Let the Ui breathe ;) #TODO async #await omni.kit.app.get_app().next_update_async() output_file = DATA_PATH.joinpath(recText + ".png") cost_output_file = DATA_PATH.joinpath(recText + "-cost.png") textToDraw = recText costToDraw ="" #We dont care here if the user wants costs or not, we are pre-making images try: locale.setlocale( locale.LC_ALL, 'en_CA.UTF-8' ) rawCost = float(self._dataStore._subscription_cost[recText]) costToDraw = locale.currency(self._dataStore._subscription_cost[recText]) carb.log_info ("RawCost: " + recText + " $" + str(rawCost)) carb.log_info ("Cost: " + recText + " $" + str(costToDraw)) if rawCost < 500: src_image = src_filel if rawCost > 500 and rawCost < 1500: src_image = src_filem if rawCost > 1500: src_image = src_fileh except: costToDraw="" #todo change image based on score draw_image(self, output_file=output_file, src_file=src_image, textToDraw=textToDraw, costToDraw="") draw_image(self, output_file=cost_output_file, src_file=src_image, textToDraw=textToDraw, costToDraw=costToDraw) #LOCATIONS #We need to create images for each group for rec in self._dataStore._map_location: recText = rec #Let the Ui breathe ;) #await omni.kit.app.get_app().next_update_async() temp_file = recText + ".png" output_file = DATA_PATH.joinpath(temp_file) cost_output_file = DATA_PATH.joinpath(recText + "-cost.png") textToDraw = recText costToDraw ="" try: locale.setlocale( locale.LC_ALL, 'en_CA.UTF-8' ) rawCost = float(self._dataStore._location_cost[recText]) costToDraw = locale.currency(self._dataStore._location_cost[recText]) carb.log_info ("RawCost: " + recText + " $" + str(rawCost)) carb.log_info ("Cost: " + recText + " $" + str(costToDraw)) if rawCost < 500: src_image = src_filel if rawCost > 500 and rawCost < 1500: src_image = src_filem if rawCost > 1500: src_image = src_fileh except: costToDraw="" draw_image(self, output_file=output_file, src_file=src_image, textToDraw=textToDraw, costToDraw="") draw_image(self, output_file=cost_output_file, src_file=src_image, textToDraw=textToDraw, costToDraw=costToDraw) #RESOURCE GROUPS #We need to create images for each group for rec in self._dataStore._map_group: recText = rec #Let the Ui breathe ;) #await omni.kit.app.get_app().next_update_async() output_file = DATA_PATH.joinpath(recText + ".png") cost_output_file = DATA_PATH.joinpath(recText + "-cost.png") textToDraw = recText costToDraw ="" try: locale.setlocale( locale.LC_ALL, 'en_CA.UTF-8' ) rawCost = float(self._dataStore._group_cost[rec]) costToDraw = locale.currency(self._dataStore._group_cost[recText]) carb.log_info ("RawCost: " + recText + " $" + str(rawCost)) carb.log_info ("Cost: " + recText + " $" + str(costToDraw)) if rawCost < 500: src_image = src_filel if rawCost > 500 and rawCost < 1500: src_image = src_filem if rawCost > 1500: src_image = src_fileh except: costToDraw="" draw_image(self, output_file=output_file, src_file=src_image, textToDraw=textToDraw, costToDraw="") draw_image(self, output_file=cost_output_file, src_file=src_image, textToDraw=textToDraw, costToDraw=costToDraw) #TYPES #We need to create images for each group for rec in self._dataStore._map_type: recText = rec #Let the Ui breathe ;) #await omni.kit.app.get_app().next_update_async() output_file = DATA_PATH.joinpath(recText + ".png") cost_output_file = DATA_PATH.joinpath(recText + "-cost.png") textToDraw = recText costToDraw ="" try: locale.setlocale( locale.LC_ALL, 'en_CA.UTF-8' ) rawCost = float(self._dataStore._type_cost[recText]) costToDraw = locale.currency(self._dataStore._type_cost[recText]) carb.log_info ("RawCost: " + recText + " $" + str(rawCost)) carb.log_info ("Cost: " + recText + " $" + str(costToDraw)) if rawCost < 500: src_image = src_filel if rawCost > 500 and rawCost < 1500: src_image = src_filem if rawCost > 1500: src_image = src_fileh except: costToDraw="" draw_image(self, output_file=output_file, src_file=src_image, textToDraw=textToDraw, costToDraw="") draw_image(self, output_file=cost_output_file, src_file=src_image, textToDraw=textToDraw, costToDraw=costToDraw) #TAGS #We need to create images for each group for rec in self._dataStore._map_tag: recText = rec #Let the Ui breathe ;) #await omni.kit.app.get_app().next_update_async() output_file = DATA_PATH.joinpath(recText + ".png") cost_output_file = DATA_PATH.joinpath(recText + "-cost.png") textToDraw = recText costToDraw ="" try: locale.setlocale( locale.LC_ALL, 'en_CA.UTF-8' ) rawCost = float(self._dataStore._tag_cost[recText]) costToDraw = locale.currency(self._dataStore._tag_cost[recText]) carb.log_info ("RawCost: " + recText + " $" + str(rawCost)) carb.log_info ("Cost: " + recText + " $" + str(costToDraw)) if rawCost < 500: src_image = src_filel if rawCost > 500 and rawCost < 1500: src_image = src_filem if rawCost > 1500: src_image = src_fileh except: costToDraw="" draw_image(self, output_file=output_file, src_file=src_image, textToDraw=textToDraw, costToDraw="") draw_image(self, output_file=cost_output_file, src_file=src_image, textToDraw=textToDraw, costToDraw=costToDraw) carb.log_info("Processing images complete..") #Calculate the low, min, max, mean costs and score each group according to its peers def ScoreCosts(self): pass #Async context def AggregateCostsAsync(self, obj): ### AGGREGATE COSTS #Cost per Sub subKey = cleanup_prim_path(self, obj["subscription"]) if subKey not in self._dataStore._subscription_cost.keys(): self._dataStore._subscription_cost[subKey] = float(obj["lmcost"]) else: self._dataStore._subscription_cost[subKey] = float(self._dataStore._subscription_cost[subKey]) + float(obj["lmcost"]) #Cost per Location locKey = cleanup_prim_path(self, obj["location"]) if locKey not in self._dataStore._location_cost.keys(): self._dataStore._location_cost[locKey] = float(obj["lmcost"]) else: self._dataStore._location_cost[locKey] = float(self._dataStore._location_cost[locKey]) + float(obj["lmcost"]) #Cost per Type typeKey = cleanup_prim_path(self, obj["type"]) if typeKey not in self._dataStore._type_cost.keys(): self._dataStore._type_cost[typeKey] = float(obj["lmcost"]) else: self._dataStore._type_cost[typeKey] = float(self._dataStore._type_cost[typeKey]) + float(obj["lmcost"]) #Cost per Group grpKey = cleanup_prim_path(self, obj["group"]) if grpKey not in self._dataStore._group_cost.keys(): self._dataStore._group_cost[grpKey] = float(obj["lmcost"]) else: self._dataStore._group_cost[grpKey] = float(self._dataStore._group_cost[grpKey]) + float(obj["lmcost"]) #Async Context def AggregateCountsAsync(self, obj): ### AGGREGATE COUNTS #Count per Sub subKey = cleanup_prim_path(self, obj["subscription"]) if subKey not in self._dataStore._subscription_count.keys(): self._dataStore._subscription_count[subKey] = 1 else: self._dataStore._subscription_count[subKey] = self._dataStore._subscription_count[subKey] + 1 #Count per Location locKey = cleanup_prim_path(self, obj["location"]) if locKey not in self._dataStore._location_count.keys(): self._dataStore._location_count[locKey] = 1 else: self._dataStore._location_count[locKey] = self._dataStore._location_count[locKey] + 1 #Count per Type typeKey = cleanup_prim_path(self, obj["type"]) if typeKey not in self._dataStore._type_count.keys(): self._dataStore._type_count[typeKey] = 1 else: self._dataStore._type_count[typeKey] = self._dataStore._type_count[typeKey] + 1 #Count per Group grpKey = cleanup_prim_path(self, obj["group"]) if grpKey not in self._dataStore._group_count.keys(): self._dataStore._group_count[grpKey] = 1 else: self._dataStore._group_count[grpKey] = self._dataStore._group_count[grpKey] + 1 #Given a resource, Map it to all the groups it belongs to. def MapResourcesToGroupsAsync(self, obj): #Get the mapped shape and figure out the prim path for the map # Set a default shape_to_render = "omniverse://localhost/Resources/3dIcons/scene.usd" #NAME,TYPE,RESOURCE GROUP,LOCATION,SUBSCRIPTION, LMCOST try: resName = obj["name"] typeName = cleanup_prim_path(self, obj["type"]) #needs to be clean, used to map to shapes group = obj["group"] location = obj["location"] sub = obj["subscription"] cost =obj["lmcost"] shape_to_render = shape_usda_name[typeName] except: carb.log_info("Error getting priom values - " + resName) # SUBSCRIPTION MAP self.map_objects(resName, typeName, group, location, sub, cost, "/Subs" ,shape_to_render, self._dataStore._map_subscription, obj, "subscription") # GROUP MAP self.map_objects(resName, typeName, group, location, sub, cost, "/RGrps", shape_to_render, self._dataStore._map_group, obj, "group") # TYPE MAP self.map_objects(resName, typeName, group, location, sub, cost, "/Types", shape_to_render, self._dataStore._map_type, obj, "type") # LOCATION MAP self.map_objects(resName, typeName, group, location, sub, cost, "/Locs", shape_to_render, self._dataStore._map_location, obj, "location") #TODO TAGMAP #self.map_objects(typeName, "/Tag", shape_to_render, self._dataStore._tag_map, obj, "tag") #Maps objects to create to each aggregate def map_objects(self, resName, typeName,grp, loc, sub, cost, root, shape, map, obj, field:str): cleaned_group_name = cleanup_prim_path(self, Name=obj[field]) carb.log_info(cleaned_group_name) map_obj = {"name": resName, "type":typeName, "shape":shape, "location":loc, "subscription":sub, "group":grp, "cost":cost } if cleaned_group_name not in map.keys(): #new map! map[cleaned_group_name] = [map_obj] else: #get the map for this group, add this item mapObj = map[cleaned_group_name] mapObj.append(map_obj) #passthrough to csv manager def select_file(self, fileType: str): self._offlineDataManager.select_file(fileType=fileType) def clicked_ok(self): pass def sendNotify(self, message:str, status:nm.NotificationStatus): # https://docs.omniverse.nvidia.com/py/kit/source/extensions/omni.kit.notification_manager/docs/index.html?highlight=omni%20kit%20notification_manager# import omni.kit.notification_manager as nm ok_button = nm.NotificationButtonInfo("OK", on_complete=self.clicked_ok) nm.post_notification( message, hide_after_timeout=True, duration=5, status=status, button_infos=[ok_button] ) #-- SINGLETON SUPPORT def instance(self): """ Returns the singleton instance. Upon its first call, it creates a new instance of the decorated class and calls its `__init__` method. On all subsequent calls, the already created instance is returned. """ try: return self._instance except AttributeError: self._instance = self._decorated() return self._instance def __call__(self): raise TypeError('Singletons must be accessed through `instance()`.') def __instancecheck__(self, inst): return isinstance(inst, self._decorated)
21,491
Python
37.174067
159
0.593551
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/stage_position.py
__all__ = ["scatterWithPlaneSize"] from typing import List, Optional import random from pxr import Gf def scatterWithPlaneSize( count: List[int], distance: List[float], sizes: List[float], randomization: List[float], id_count: int = 1, seed: Optional[int] = None, scaleFactor:float=1.0 ): """ Returns generator with pairs containing transform matrices and ids to arrange multiple objects. ### Arguments: `count: List[int]`ce1dcf85-c041-4bb9-8275-4b96e70252a2 Number of matrices to generage per axis `distance: List[float]` The distance between objects per axis `randomization: List[float]` Random distance per axis `id_count: int` Count of differrent id `seed: int` If seed is omitted or None, the current system time is used. If seed is an int, it is used directly. """ print("Generating " + str(id_count) + " postions: " + str(count[0]) + "|" + str(count[1]) + "|" + str(count[2])) for i in range(id_count): if (sizes[i]>250): x = (i - 0.5 * (count[0] - 1)) * (distance[0]*scaleFactor) + (sizes[i]*2) else: x = (i - 0.5 * (count[0] - 1)) * (distance[0]*scaleFactor) + (sizes[i]*2) for j in range(count[1]): if (sizes[i]>250): y = (j - 0.5 * (count[1] - 1)) * (distance[1]*scaleFactor) + (sizes[i]*2) else: y = (j - 0.5 * (count[1] - 1)) * (distance[1]*scaleFactor) + (sizes[i]*2) for k in range(count[2]): if (sizes[i]>250): z = (k - 0.5 * (count[2] - 1)) * (distance[2]*scaleFactor) + (sizes[i]*2) else: z = (k - 0.5 * (count[2] - 1)) * (distance[2]*scaleFactor) + (sizes[i]*2) result = Gf.Vec3d(x,y,z) yield (result) def position_resource_on_target( planeSize: float, resourceNumber: int, ): # pass if (planeSize == 100.0): pass if (planeSize == 200.0): pass if (planeSize == 300.0): pass if (planeSize == 400.0): pass if (planeSize == 500.0): pass if (planeSize == 600.0): pass
2,305
Python
24.340659
116
0.509328
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/data_store.py
__all__ = ["Save_Config_Data", "Load_Config_Data"] import carb from .Singleton import Singleton import omni.ui as ui from .combo_box_model import ComboBoxModel from pathlib import Path import os CURRENT_PATH = Path(__file__).parent DATA_PATH = CURRENT_PATH.joinpath("temp") RES_PATH = CURRENT_PATH.parent.parent.parent.parent.joinpath("data\\resources") @Singleton class DataStore(): def __init__(self): print("DataStore initialized") #Azure Resoruce Groups #NAME,SUBSCRIPTION,LOCATION self._groups = {} #All the reosurces #NAME,TYPE,RESOURCE GROUP,LOCATION,SUBSCRIPTION, LMCOST self._resources = {} #aggregated data (counts) self._aad_count = {} self._subscription_count = {} self._location_count = {} self._group_count = {} self._type_count = {} self._tag_count = {} #aggregated data (costs) self._aad_cost = {} self._subscription_cost = {} self._location_cost = {} self._group_cost = {} self._type_cost = {} self._tag_cost = {} #mapped resources (indexes) self._map_aad = {} self._map_subscription = {} self._map_location = {} self._map_group = {} self._map_type = {} self._map_tag = {} #track where the data last came from (state) self._source_of_data = "" self._use_symmetric_planes = False self._use_packing_algo = True self._show_info_widgets = True self._last_view_type = "ByGroup" # ByGroup, ByLocation, ByType, BySub, ByTag self._scale_model = 1.0 #temporary arrays #Calc Plane sizes based on items in group self._lcl_sizes = [] #Plane sizes determined by resource counts self._lcl_groups = [] #Group data for creating planes self._lcl_resources = [] #Resources to show on stage #Variables for files to import (UI settings) self._rg_csv_file_path = "" self._rg_csv_field_model = ui.SimpleStringModel() self._rs_csv_file_path = "" self._rs_csv_field_model = ui.SimpleStringModel() self._bgl_file_path = "" self._bgl_field_model = ui.SimpleStringModel() self._bgm_file_path = "" self._bgm_field_model = ui.SimpleStringModel() self._bgh_file_path = "" self._bgh_field_model = ui.SimpleStringModel() #azure connection info self._azure_tenant_id = "" self._azure_tenant_id_model =ui.SimpleStringModel() self._azure_client_id = "" self._azure_client_id_model = ui.SimpleStringModel() self._azure_client_secret = "" self._azure_client_secret_model = ui.SimpleStringModel() self._azure_subscription_id = "" self._azure_subscription_id_model = ui.SimpleStringModel() #composition options (UI settings) self._symmetric_planes_model = ui.SimpleBoolModel(False) self._packing_algo_model = ui.SimpleBoolModel(True) self._show_info_widgets_model = ui.SimpleBoolModel(True) self._primary_axis_model = ComboBoxModel("Z", "X", "Y") # track which Axis is up self._shape_up_axis_model = ComboBoxModel("Z", "X", "Y") # track which Axis is up for the shape placement self._composition_scale_model = ui.SimpleFloatModel() self._options_count_models = [ui.SimpleIntModel(), ui.SimpleIntModel(), ui.SimpleIntModel()] self._options_dist_models = [ui.SimpleFloatModel(), ui.SimpleFloatModel(), ui.SimpleFloatModel()] self._options_random_models = [ui.SimpleFloatModel(), ui.SimpleFloatModel(), ui.SimpleFloatModel()] self._composition_scale_model.as_float = 1.0 self._options_count_models[0].as_int = 10 self._options_count_models[1].as_int = 10 self._options_count_models[2].as_int = 1 self._options_dist_models[0].as_float = 250 self._options_dist_models[1].as_float = 250 self._options_dist_models[2].as_float = 250 self._options_random_models[0].as_float = 1.0 self._options_random_models[1].as_float = 1.0 self._options_random_models[2].as_float = 1.0 self.Load_Config_Data() def wipe_data(self): self._groups.clear() self._resources.clear() self._subscription_count = {} self._location_count = {} self._group_count = {} self._type_count = {} self._tag_count = {} self._subscription_cost = {} self._location_cost = {} self._group_cost = {} self._type_cost = {} self._tag_cost = {} self._map_aad = {} self._map_subscription = {} self._map_location = {} self._map_group = {} self._map_type = {} self._map_tag = {} self._lcl_sizes = [] self._lcl_groups = [] self._lcl_resources = [] carb.log_info("Data Cleared.") def Save_Config_Data(self): settings = carb.settings.get_settings() if self._rg_csv_file_path != "": settings.set("/persistent/exts/meta.cloud.explorer.azure/rg_csv_file_path", self._rg_csv_file_path) if self._rs_csv_file_path != "": settings.set("/persistent/exts/meta.cloud.explorer.azure/rs_csv_file_path", self._rs_csv_file_path) if self._azure_tenant_id != "": settings.set("/persistent/exts/meta.cloud.explorer.azure/azure_tenant_id", self._azure_tenant_id) if self._azure_client_id != "": settings.set("/persistent/exts/meta.cloud.explorer.azure/azure_client_id", self._azure_client_id) if self._azure_subscription_id != "": settings.set("/persistent/exts/meta.cloud.explorer.azure/azure_subscription_id", self._azure_subscription_id) if self._source_of_data != "": settings.set("/persistent/exts/meta.cloud.explorer.azure/last_data_source", self._source_of_data) if self._bgl_file_path != "": settings.set("/persistent/exts/meta.cloud.explorer.azure/bgl_file_path", self._bgl_file_path) if self._bgm_file_path != "": settings.set("/persistent/exts/meta.cloud.explorer.azure/bgm_file_path", self._bgm_file_path) if self._bgh_file_path != "": settings.set("/persistent/exts/meta.cloud.explorer.azure/bgh_file_path", self._bgh_file_path) if self._last_view_type != "": settings.set("/persistent/exts/meta.cloud.explorer.azure/last_view_type", self._last_view_type) if self._options_count_models[0].as_int >0: settings.set("/persistent/exts/meta.cloud.explorer.azure/x_group_count", self._options_count_models[0].as_int) if self._options_count_models[1].as_int >0: settings.set("/persistent/exts/meta.cloud.explorer.azure/y_group_count", self._options_count_models[1].as_int) if self._options_count_models[2].as_int >= 0: settings.set("/persistent/exts/meta.cloud.explorer.azure/z_group_count", self._options_count_models[2].as_int) if self._options_dist_models[0].as_float >= 0: settings.set("/persistent/exts/meta.cloud.explorer.azure/x_dist_count", self._options_dist_models[0].as_float) if self._options_dist_models[1].as_float >= 0: settings.set("/persistent/exts/meta.cloud.explorer.azure/y_dist_count", self._options_dist_models[1].as_float) if self._options_dist_models[2].as_float >= 0: settings.set("/persistent/exts/meta.cloud.explorer.azure/z_dist_count", self._options_dist_models[2].as_float) if self._options_random_models[0].as_float >= 0: settings.set("/persistent/exts/meta.cloud.explorer.azure/x_random_count", self._options_random_models[0].as_float) if self._options_random_models[1].as_float >= 0: settings.set("/persistent/exts/meta.cloud.explorer.azure/y_random_count", self._options_random_models[1].as_float) if self._options_random_models[2].as_float >= 0: settings.set("/persistent/exts/meta.cloud.explorer.azure/z_random_count", self._options_random_models[2].as_float) settings.set("/persistent/exts/meta.cloud.explorer.azure/show_info_widgets", self._show_info_widgets) #Load Saved config data def Load_Config_Data(self): settings = carb.settings.get_settings() self._rg_csv_file_path = settings.get("/persistent/exts/meta.cloud.explorer.azure/rg_csv_file_path") self._rs_csv_file_path = settings.get("/persistent/exts/meta.cloud.explorer.azure/rs_csv_file_path") self._azure_tenant_id = settings.get("/persistent/exts/meta.cloud.explorer.azure/azure_tenant_id") self._azure_client_id = settings.get("/persistent/exts/meta.cloud.explorer.azure/azure_client_id") self._azure_subscription_id = settings.get("/persistent/exts/meta.cloud.explorer.azure/azure_subscription_id") try: self._azure_client_secret = os.getenv('MCE_CLIENT_SECRET') except: self._azure_client_secret= "" self._source_of_data = settings.get("/persistent/exts/meta.cloud.explorer.azure/last_data_source") self._bgl_file_path = settings.get("/persistent/exts/meta.cloud.explorer.azure/bgl_file_path") self._bgm_file_path = settings.get("/persistent/exts/meta.cloud.explorer.azure/bgm_file_path") self._bgh_file_path = settings.get("/persistent/exts/meta.cloud.explorer.azure/bgh_file_path") self._last_view_type= settings.get("/persistent/exts/meta.cloud.explorer.azure/last_view_type") self._show_info_widgets= settings.get("/persistent/exts/meta.cloud.explorer.azure/show_info_widgets") try: self._options_count_models[0].set_value(int(settings.get("/persistent/exts/meta.cloud.explorer.azure/x_group_count"))) self._options_count_models[1].set_value(int(settings.get("/persistent/exts/meta.cloud.explorer.azure/y_group_count"))) self._options_count_models[2].set_value(int(settings.get("/persistent/exts/meta.cloud.explorer.azure/z_group_count"))) self._options_dist_models[0].set_value(float(settings.get("/persistent/exts/meta.cloud.explorer.azure/x_dist_count"))) self._options_dist_models[1].set_value(float(settings.get("/persistent/exts/meta.cloud.explorer.azure/y_dist_count"))) self._options_dist_models[2].set_value(float(settings.get("/persistent/exts/meta.cloud.explorer.azure/z_dist_count"))) self._options_random_models[0].set_value(float(settings.get("/persistent/exts/meta.cloud.explorer.azure/x_random_count"))) self._options_random_models[1].set_value(float(settings.get("/persistent/exts/meta.cloud.explorer.azure/y_random_count"))) self._options_random_models[2].set_value(float(settings.get("/persistent/exts/meta.cloud.explorer.azure/z_random_count"))) except: #set defualts self._last_view_type = "ByGroup" self._composition_scale_model.set_value(1.0) self._options_count_models[0].set_value(10) self._options_count_models[1].set_value(10) self._options_count_models[2].set_value(1) self._options_dist_models[0].set_value(250) self._options_dist_models[1].set_value(250) self._options_dist_models[2].set_value(250) self._options_random_models[0].set_value(1.0) self._options_random_models[1].set_value(1.0) self._options_random_models[2].set_value(1) #set defaults if self._bgl_file_path is None: self._bgl_file_path = RES_PATH.joinpath("grid_green.png") self._bgm_file_path = RES_PATH.joinpath("grid_blue.png") self._bgh_file_path = RES_PATH.joinpath("grid_red.png") self.Save_Config_Data() #-- SINGLETON SUPPORT def instance(self): """ Returns the singleton instance. Upon its first call, it creates a new instance of the decorated class and calls its `__init__` method. On all subsequent calls, the already created instance is returned. """ try: return self._instance except AttributeError: self._instance = self._decorated() return self._instance def __call__(self): raise TypeError('Singletons must be accessed through `instance()`.') def __instancecheck__(self, inst): return isinstance(inst, self._decorated)
12,674
Python
47.563218
150
0.621272
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/group_aad.py
from .group_base import GroupBase from pxr import Gf, UsdGeom, UsdLux, Usd, Sdf import locale class AADGrpView(GroupBase): def __init__(self, viewPath:str, scale:float, upAxis:str, shapeUpAxis:str): self._scale = scale self._upAxis = upAxis self._shapeUpAxis = shapeUpAxis self.view_path = viewPath super().__init__() def calcGroupPlaneSizes(self): pass def calulateCosts(self): for g in self._dataStore._lcl_groups: #Get the cost by resource group locale.setlocale( locale.LC_ALL, 'en_CA.UTF-8' ) try: self._cost = str(locale.currency(self._dataStore._aad_cost[g])) except: self._cost = "" # blank not 0, blank means dont show it at all def prepResources(self): pass # Requires subclass implm
879
Python
28.333332
83
0.588168
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/extension.py
import sys import carb import omni.ext import asyncio from functools import partial import omni.ext import omni.kit.ui import omni.ui as ui import omni.kit.pipapi # Requires Code 2022.1.2+ - Blocked by typing_extensions incompatibility from omni.kit.viewport.utility import get_active_viewport_window from .views import MainView, WINDOW_NAME from .viewport_scene import ViewportScene from .object_info_model import ObjectInfoModel from .widget_info_model import WidgetInfoModel ## AZURE API DISABLED IN 2022.1.3, due to PIP library problem wtih typing_extensions library. #omni.kit.pipapi.install("azure-identity", module="azure-identity", ignore_import_check=True, ignore_cache=True, surpress_output=False,use_online_index=True ) #omni.kit.pipapi.install("azure-mgmt-resource", module="azure-mgmt-resource", ignore_import_check=True, ignore_cache=True, surpress_output=False,use_online_index=True ) #omni.kit.pipapi.install("pandas", module="pandas", ignore_import_check=True, ignore_cache=True, surpress_output=False,use_online_index=True ) #sys.path.append("D:/python37/lib/site-packages") #print(sys.modules.keys()) #from azure.mgmt.resource import ResourceManagementClient #from azure.identity import AzureCliCredential # Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) # will be instantiated when extension gets enabled and `on_startup(ext_id)` will be called. # Later when extension gets disabled on_shutdown() is called class MetaCloudExplorerAzure(omni.ext.IExt): # ext_id is current extension id. It can be used with extension manager to query additional information, like where # this extension is located on filesystem. MENU_PATH = f"Window/{WINDOW_NAME}" def on_startup(self, ext_id): carb.log_info("[meta.cloud.explorer.azure.extension] MetaCloudExplorer startup") self._ext_id = ext_id self._menu_path = f"Window/{WINDOW_NAME}" self._window = None def on_menu_click(menu, toggled): """Handles showing and hiding the window from the 'Windows' menu.""" if toggled: # Get the active Viewport (which at startup is the default Viewport) self._viewport_window = get_active_viewport_window() # Issue an error if there is no Viewport if not self._viewport_window: carb.log_error(f"No Viewport Window to add {self._ext_id} scene to") return # Build out the scene objModel = ObjectInfoModel() widModel = WidgetInfoModel() self._viewport_scene = ViewportScene(viewport_window=self._viewport_window, ext_id=self._ext_id,widgetModel=widModel, objectModel=objModel) self._window = MainView(WINDOW_NAME, widgetModel=widModel, objectModel=objModel) else: self._window.show() # Deregister the function that shows the window from omni.ui #ui.Workspace.set_show_window_fn(MetaCloudExplorerAzure.WINDOW_NAME, None) self._menu = omni.kit.ui.get_editor_menu().add_item(self._menu_path, on_menu_click, True) def on_shutdown(self): carb.log_info("[meta.cloud.explorer.azure.extension] MetaCloudExplorer shutdown") omni.kit.ui.get_editor_menu().remove_item(self._menu) if hasattr(self, "_window"): if self._window: self._window.destroy() self._window = None if hasattr(self, "_viewport_scene"): if self._viewport_scene: self._viewport_scene.destroy() self._viewport_scene = None
3,749
Python
43.117647
168
0.672713
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/azure_data_manager.py
# import omni.kit.pipapi # import carb # import os # import json # import sys # from datetime import datetime # import omni.kit.notification_manager as nm # omni.kit.pipapi.install("azure-identity", module="azure-identity", ignore_import_check=True, ignore_cache=True, surpress_output=False,use_online_index=True ) # omni.kit.pipapi.install("azure-mgmt-resource", module="azure-mgmt-resource", ignore_import_check=True, ignore_cache=True, surpress_output=False,use_online_index=True ) # sys.path.append("D:/python37/lib/site-packages") # #print(sys.modules.keys()) # from .data_store import DataStore # from .prim_utils import cleanup_prim_path # from azure.mgmt.resource import ResourceManagementClient # from azure.mgmt.resource.subscriptions import SubscriptionClient # from azure.identity import ClientSecretCredential # import asyncio # import os # # Manage resources and resource groups - create, update and delete a resource group, # # deploy a solution into a resource group, export an ARM template. Create, read, update # # and delete a resource # class AzureDataManager(): # def __init__(self): # self._dataStore = DataStore.instance() # Get A Singleton instance, store data here # def get_token(self): # # Acquire a credential object using CLI-based authentication. # if self._dataStore._azure_tenant_id =="": # self.sendNotify("MCE: Please enter Azure credentials to connect...", nm.NotificationStatus.WARNING) # return # if self._dataStore._azure_client_secret =="": # self.sendNotify("MCE: Please enter Azure client secret to connect...", nm.NotificationStatus.WARNING) # return False # self.sendNotify("MCE: Connecting to Azure Tenant...", nm.NotificationStatus.INFO) # self._token_credential = ClientSecretCredential( # self._dataStore._azure_tenant_id, # self._dataStore._azure_client_id, # self._dataStore._azure_client_secret) # # Retrieve subscription ID from environment variable. # self._subscription_id = self._dataStore._azure_subscription_id # return True # #validate we can connect # def connect(self): # #Get a token # valid = self.get_token() # try: # if (valid): # # List subscriptions # subscription_client = SubscriptionClient(credential=self._token_credential) # page_result = subscription_client.subscriptions.list() # result = [item for item in page_result] # for item in result: # carb.log_warn(item.subscription_id) # carb.log_warn(item.tags) # except: # valid = False # error = sys.exc_info()[0] # carb.log_error("Oops! " + str(error) + " occurred.") # self.sendNotify("MCE: Error:" + str(error), nm.NotificationStatus.WARNING) # return valid # def clicked_ok(): # carb.log_info("User clicked ok") # def sendNotify(self, message:str, status:nm.NotificationStatus): # # https://docs.omniverse.nvidia.com/py/kit/source/extensions/omni.kit.notification_manager/docs/index.html?highlight=omni%20kit%20notification_manager# # import omni.kit.notification_manager as nm # ok_button = nm.NotificationButtonInfo("OK", on_complete=self.clicked_ok) # nm.post_notification( # message, # hide_after_timeout=True, # duration=3, # status=status, # button_infos=[], # ) # #Connect to API and load adata # def load_data(self): # self.save_connection_data() # self.load_groups() # self.load_resources() # def save_connection_data(self): # self._dataStore.Save_Config_Data() # def load_resources(self): # try: # resCnt = 0 # for grp in self._dataStore._groups: # resources = self.list_group_resources(grp) # for res in resources: # resCnt = resCnt +1 # name = cleanup_prim_path(self, Name=res.name) # self._dataStore._resources[name] = {"name":name, "type": res.type, "group": grp, "location":res.location, "subscription":self._subscription_id, "lmcost": 0} # #self._dataStore.res["name"] = {"name":res["name"], "type": type, "group": group, "location":location, "subscription":subscription, "lmcost": lmcost} # self.sendNotify("MCE: Azure resources loaded: " + str(len(self._dataStore._resources)), nm.NotificationStatus.INFO) # carb.log_info("Azure API resources loaded: " + str(len(self._dataStore._resources))) # except: # error = sys.exc_info()[0] # carb.log_error("Oops! " + str(error) + " occurred.") # self.sendNotify("MCE: Error:" + str(error), nm.NotificationStatus.WARNING) # def load_groups(self): # try: # resource_client = ResourceManagementClient(self._token_credential, self._subscription_id) # rg_groups = resource_client.resource_groups.list() # grpCnt = 0 # for group in rg_groups: # grp = {group.name:{"name":group.name, "subs": self._subscription_id, "location":group.location}} # self._dataStore._groups.update(grp) # grpCnt = grpCnt + 1 # self.sendNotify("MCE: Azure groups loaded: " + str(len(self._dataStore._groups)), nm.NotificationStatus.INFO) # carb.log_info("Azure API groups loaded: " + str(len(self._dataStore._groups))) # except: # error = sys.exc_info()[0] # carb.log_error("Oops! " + str(error) + " occurred.") # self.sendNotify("MCE: Error:" + str(error), nm.NotificationStatus.WARNING) # #return a list of resource groups # def get_resource_groups(self): # # Obtain the management object for resources. # try: # resource_client = ResourceManagementClient(self._token_credential, self._subscription_id) # rg_groups = resource_client.resource_groups.list() # return rg_groups # except: # error = sys.exc_info()[0] # carb.log_error("Oops! " + str(error) + " occurred.") # self.sendNotify("MCE: Error:" + str(error), nm.NotificationStatus.WARNING) # #for item in rg_groups: # # print(item) # # List Resources within the group # def list_group_resources(self, groupName:str): # # Obtain the management object for resources. # resource_client = ResourceManagementClient(self._token_credential, self._subscription_id) # carb.log_info("List all of the resources within the group") # res = resource_client.resources.list_by_resource_group(groupName) # return res # #creates a resource group with groupName at location # def create_resource_group(self, groupName:str, location:str): # # Obtain the management object for resources. # resource_client = ResourceManagementClient(self._token_credential, self._subscription_id) # # # # Managing resource groups # # # resource_group_params = {"location": location} # # Create Resource group # print("Create Resource Group: " + groupName + " @ " + location) # self.print_item( # resource_client.resource_groups.create_or_update( # groupName, resource_group_params) # ) # def print_item(self, group): # """Print a ResourceGroup instance.""" # print("\tName: {}".format(group.name)) # print("\tId: {}".format(group.id)) # print("\tLocation: {}".format(group.location)) # print("\tTags: {}".format(group.tags)) # self.print_properties(group.properties) # def print_properties(self, props): # """Print a ResourceGroup properties instance.""" # if props and props.provisioning_state: # print("\tProperties:") # print("\t\tProvisioning State: {}".format(props.provisioning_state)) # print("\n\n") # # Create a Key Vault in the Resource Group # def create_key_vault(self, vaultName:str, location:str, groupName:str): # # Obtain the management object for resources. # resource_client = ResourceManagementClient(self._token_credential, self._subscription_id) # print("Create a Key Vault via a Generic Resource Put") # key_vault_params = { # "location": location, # "properties": { # "sku": {"family": "A", "name": "standard"}, # "tenantId": self._dataStore._azure_tenant_id, # "accessPolicies": [], # "enabledForDeployment": True, # "enabledForTemplateDeployment": True, # "enabledForDiskEncryption": True # }, # } # resource_client.resources.begin_create_or_update( # resource_group_name=groupName, # resource_provider_namespace="Microsoft.KeyVault", # parent_resource_path="", # resource_type="vaults", # # Suffix random string to make vault name unique # resource_name=vaultName + datetime.utcnow().strftime("-%H%M%S"), # api_version="2019-09-01", # parameters=key_vault_params # ).result() # # Export the Resource group template # def export_group_template(self, groupName:str): # # Obtain the management object for resources. # resource_client = ResourceManagementClient(self._token_credential, self._subscription_id) # print("Export Resource Group Template") # BODY = { # 'resources': ['*'] # } # result = json.dumps( # resource_client.resource_groups.begin_export_template( # groupName, BODY).result().template, indent=4 # ) # print(result + "\n\n") # return result # # def run_example(): # # """Resource Group management example.""" # # # # # # Create the Resource Manager Client with an Application (service principal) token provider # # # # # subscription_id = os.environ.get("AZURE_SUBSCRIPTION_ID", None) # your Azure Subscription Id # # credentials = DefaultAzureCredential() # # client = ResourceManagementClient(credentials, subscription_id) # # # # # # Managing resource groups # # # # # resource_group_params = {"location": "westus"} # # # List Resource Groups # # print("List Resource Groups") # # for item in client.resource_groups.list(): # # print_item(item) # # # Create Resource group # # print("Create Resource Group") # # print_item( # # client.resource_groups.create_or_update( # # GROUP_NAME, resource_group_params) # # ) # # # Modify the Resource group # # print("Modify Resource Group") # # resource_group_params.update(tags={"hello": "world"}) # # print_item( # # client.resource_groups.update( # # GROUP_NAME, resource_group_params) # # ) # # # Create a Key Vault in the Resource Group # # print("Create a Key Vault via a Generic Resource Put") # # key_vault_params = { # # "location": "westus", # # "properties": { # # "sku": {"family": "A", "name": "standard"}, # # "tenantId": os.environ["AZURE_TENANT_ID"], # # "accessPolicies": [], # # "enabledForDeployment": True, # # "enabledForTemplateDeployment": True, # # "enabledForDiskEncryption": True # # }, # # } # # client.resources.begin_create_or_update( # # resource_group_name=GROUP_NAME, # # resource_provider_namespace="Microsoft.KeyVault", # # parent_resource_path="", # # resource_type="vaults", # # # Suffix random string to make vault name unique # # resource_name="azureSampleVault" + datetime.utcnow().strftime("-%H%M%S"), # # api_version="2019-09-01", # # parameters=key_vault_params # # ).result() # # # List Resources within the group # # print("List all of the resources within the group") # # for item in client.resources.list_by_resource_group(GROUP_NAME): # # print_item(item) # # # Export the Resource group template # # print("Export Resource Group Template") # # BODY = { # # 'resources': ['*'] # # } # # print( # # json.dumps( # # client.resource_groups.begin_export_template( # # GROUP_NAME, BODY).result().template, indent=4 # # ) # # ) # # print("\n\n") # # # Delete Resource group and everything in it # # print("Delete Resource Group") # # delete_async_operation = client.resource_groups.begin_delete(GROUP_NAME) # # delete_async_operation.wait() # # print("\nDeleted: {}".format(GROUP_NAME))
13,676
Python
38.758721
178
0.568368
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/viewport_scene.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # __all__ = ["ViewportScene"] from omni.ui import scene as sc import omni.ui as ui from .object_info_manipulator import ObjectInfoManipulator from .widget_info_manipulator import WidgetInfoManipulator class ViewportScene(): """The Object Info Manipulator, placed into a Viewport""" def __init__(self, viewport_window: ui.Window, ext_id: str, widgetModel, objectModel) -> None: self._scene_view = None self._viewport_window = viewport_window self._widgetModel = widgetModel self._objectModel = objectModel # Create a unique frame for our SceneView with self._viewport_window.get_frame(ext_id): # Create a default SceneView (it has a default camera-model) self._scene_view = sc.SceneView() # Add the manipulator into the SceneView's scene with self._scene_view.scene: WidgetInfoManipulator(model=self._widgetModel) ObjectInfoManipulator(model=self._objectModel) # Register the SceneView with the Viewport to get projection and view updates self._viewport_window.viewport_api.add_scene_view(self._scene_view) def __del__(self): self.destroy() def destroy(self): if self._scene_view: # Empty the SceneView of any elements it may have self._scene_view.scene.clear() # Be a good citizen, and un-register the SceneView from Viewport updates if self._viewport_window: self._viewport_window.viewport_api.remove_scene_view(self._scene_view) # Remove our references to these objects self._viewport_window = None self._scene_view = None
2,132
Python
40.01923
98
0.682458
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/__init__.py
from .extension import *
25
Python
11.999994
24
0.76
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/combo_box_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # __all__ = ["ComboBoxModel"] from typing import Optional import omni.ui as ui class ListItem(ui.AbstractItem): """Single item of the model""" def __init__(self, text): super().__init__() self.name_model = ui.SimpleStringModel(text) def __repr__(self): return f'"{self.name_model.as_string}"' @property def as_string(self): """Return the string of the name model""" return self.name_model.as_string class ComboBoxModel(ui.AbstractItemModel): """ Represents the model for lists. It's very easy to initialize it with any string list: string_list = ["Hello", "World"] model = ComboBoxModel(*string_list) ui.ComboBox(model) """ def __init__(self, *args, default=0): super().__init__() self._children = [ListItem(t) for t in args] self._default = ui.SimpleIntModel() self._default.as_int = default # Update the combo box when default is changed self._default.add_value_changed_fn(lambda _: self._item_changed(None)) def get_item_children(self, item): """Returns all the children when the widget asks it.""" if item is not None: # Since we are doing a flat list, we return the children of root only. # If it's not root we return. return [] return self._children def get_item_value_model_count(self, item): """The number of columns""" return 1 def get_item_value_model(self, item: Optional[ListItem], column_id): """ Return value model. It's the object that tracks the specific value. In our case we use ui.SimpleStringModel. """ if item is None: return self._default return item.name_model def get_current_item(self) -> ListItem: """Returns the currently selected item in ComboBox""" return self._children[self._default.as_int]
2,391
Python
30.893333
82
0.637808
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/rectangle.py
from omni import ui from .constant import COLORS # A rectangle that will block mouse events to deeper class OpaqueRectangle(ui.Rectangle): def __init__(self, **kwargs): kwargs["opaque_for_mouse_events"] = True kwargs["mouse_pressed_fn"] = lambda *_: self._dummy() super().__init__(**kwargs) def _dummy(self): pass class ShortSeparator: def __init__(self, height): self._panel = ui.HStack(width=2, height=height) with self._panel: with ui.VStack(width=2, height=height, style={"Line": {"color": COLORS.LIGHRT_GARY, "border_width": 1}}): ui.Spacer(height=2) ui.Line(width=1, alignment=ui.Alignment.LEFT) ui.Line(width=1, alignment=ui.Alignment.LEFT) ui.Spacer(height=2) class DashRectangle: def __init__(self, width, height, padding_x=2, padding_y=2, w_step=10, h_step=10): w_num = int((width - 2 * padding_x - 2) / w_step) h_num = int((height - 2 * padding_y) / h_step) with ui.ZStack(): with ui.VStack(style={"Line": {"color": COLORS.LIGHRT_GARY, "border_width": 1}}): ui.Spacer(height=padding_y) self._build_horizontal_line(w_num, padding_x) ui.Spacer(height=height - 2 * padding_y - 2) self._build_horizontal_line(w_num, padding_x) ui.Spacer(height=padding_y) with ui.HStack(height=height): ui.Spacer(width=padding_x) self._build_vertical_line(height, h_step, h_num, padding_y) ui.Spacer() self._build_vertical_line(height, h_step, h_num, padding_y) ui.Spacer(width=padding_x - 2) def _build_horizontal_line(self, w_num, padding_x): with ui.HStack(): ui.Spacer(width=padding_x) for _ in range(w_num): ui.Line(width=6, height=1) ui.Spacer() ui.Line(height=1) ui.Spacer(width=padding_x) def _build_vertical_line(self, height, h_step, h_num, padding_y): with ui.VStack(width=2, height=height): ui.Spacer(height=padding_y) for _ in range(h_num): ShortSeparator(h_step)
2,269
Python
36.833333
117
0.555751
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/packer.py
""" MIT License Copyright (c) 2016 Michael Shihrer ([email protected]) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """ EXAMPLE USAGE: https://repl.it/NfZq/1 blocks = [] blocks.append(Block((21,10))) blocks.append(Block((5,10))) blocks.append(Block((5,10))) blocks.append(Block((7,13))) blocks.append(Block((2,4))) pack = Packer() pack.fit(blocks) for block in blocks: if block.fit: print("size: {} loc: {}".format(block.size, block.fit.location)) else: print("not fit: {}".format(block.size)) """ """ For a more fleshed out example, see: https://github.com/shihrer/BinPacker/tree/Develop This has a number of optimizations like removing recursion so it can run on much, much large inputs without hitting any stack limitations. Basically an order of magnitude faster on very large inputs. Also includes a simple visualizer for the results using pygame. """ class Packer: """ Defines a packer object to be used on a list of blocks. """ def __init__(self): self.root = None def fit(self, blocks): """ Initiates the packing. blocks: A list of block objects with a 'size' proprety representing (w,h) as a tuple. """ self.root = Node((0, 0), blocks[0].size) for block in blocks: some_node = self.find_node(self.root, block.size) if some_node is not None: block.fit = self.split_node(some_node, block.size) else: block.fit = self.grow_node(block.size) return None def find_node(self, some_node, size): if some_node.used: return self.find_node(some_node.right, size) or self.find_node(some_node.down, size) elif (size[0] <= some_node.size[0]) and (size[1] <= some_node.size[1]): return some_node else: return None def split_node(self, some_node, size): some_node.used = True some_node.down = Node((some_node.location[0], some_node.location[1] + size[1]), (some_node.size[0], some_node.size[1] - size[1])) some_node.right = Node((some_node.location[0] + size[0], some_node.location[1]), (some_node.size[0] - size[0], size[1])) return some_node def grow_node(self, size): can_go_down = size[0] <= self.root.size[0] can_go_right = size[1] <= self.root.size[1] should_go_down = can_go_down and (self.root.size[0] >= (self.root.size[1] + size[1])) should_go_right = can_go_right and (self.root.size[1] >= (self.root.size[0] + size[0])) if should_go_right: return self.grow_right(size) elif should_go_down: return self.grow_down(size) elif can_go_right: return self.grow_right(size) elif can_go_down: return self.grow_down(size) else: return None def grow_right(self, size): new_root = Node((0, 0), (self.root.size[0] + size[0], self.root.size[1])) new_root.used = True new_root.down = self.root new_root.right = Node((self.root.size[0], 0), (size[0], self.root.size[1])) self.root = new_root some_node = self.find_node(self.root, size) if some_node is not None: return self.split_node(some_node, size) else: return None def grow_down(self, size): new_root = Node((0, 0), (self.root.size[0], self.root.size[1] + size[1])) new_root.used = True new_root.down = Node((0, self.root.size[1]), (self.root.size[0], size[1])) new_root.right = self.root self.root = new_root some_node = self.find_node(self.root, size) if some_node is not None: return self.split_node(some_node, size) else: return None class Block: """ Defines an object Block with two properties. size: tuple representing the blocks size (w,h) fit: Stores a Node object for output. """ def __init__(self, size): self.size = size self.fit = None class Node: """ Defines an object Node for use in the packer function. Represents the space that a block is placed. used: Boolean to determine if a node has been used. down: A node located beneath the current node. right: A node located to the right of the current node. size: A tuple (w,h) representing the size of the node. location: A tuple representing the (x,y) coordinate of the top left of the node. """ def __init__(self, location, size): self.used = False self.down = None self.right = None self.size = size self.location = location
5,737
Python
34.419753
104
0.625937
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/style_meta.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # __all__ = ["meta_window_style"] from omni.ui import color as cl from omni.ui import constant as fl from omni.ui import url import omni.kit.app import omni.ui as ui import pathlib # Pre-defined constants. It's possible to change them runtime. cl.meta_window_hovered = cl("#2b2e2e") cl.meta_window_text = cl("#9e9e9e") fl.meta_window_attr_hspacing = 10 fl.meta_window_attr_spacing = 1 fl.meta_window_group_spacing = 2 # Pre-defined constants. It's possible to change them runtime. fl_attr_hspacing = 10 fl_attr_spacing = 1 fl_group_spacing = 5 cl_attribute_dark = cl("#202324") cl_attribute_red = cl("#ac6060") cl_attribute_green = cl("#60ab7c") cl_attribute_blue = cl("#35889e") cl_line = cl("#404040") cl_text_blue = cl("#5eb3ff") cl_text_gray = cl("#707070") cl_text = cl("#a1a1a1") cl_text_hovered = cl("#ffffff") cl_field_text = cl("#5f5f5f") cl_widget_background = cl("#1f2123") cl_attribute_default = cl("#505050") cl_attribute_changed = cl("#55a5e2") cl_slider = cl("#383b3e") cl_combobox_background = cl("#252525") cl_main_background = cl("#2a2b2c") cls_temperature_gradient = [cl("#fe0a00"), cl("#f4f467"), cl("#a8b9ea"), cl("#2c4fac"), cl("#274483"), cl("#1f334e")] cls_color_gradient = [cl("#fa0405"), cl("#95668C"), cl("#4b53B4"), cl("#33C287"), cl("#9fE521"), cl("#ff0200")] cls_tint_gradient = [cl("#1D1D92"), cl("#7E7EC9"), cl("#FFFFFF")] cls_grey_gradient = [cl("#020202"), cl("#525252"), cl("#FFFFFF")] cls_button_gradient = [cl("#232323"), cl("#656565")] # The main style dict meta_window_style = { "Label::attribute_name": { "color": cl.meta_window_text, "margin_height": fl.meta_window_attr_spacing, "margin_width": fl.meta_window_attr_hspacing, }, "CollapsableFrame::group": {"margin_height": fl.meta_window_group_spacing}, "CollapsableFrame::group:hovered": {"secondary_color": cl.meta_window_hovered}, # for Gradient Image "ImageWithProvider::gradient_slider":{"border_radius": 4, "corner_flag": ui.CornerFlag.ALL}, "ImageWithProvider::button_background_gradient": {"border_radius": 3, "corner_flag": ui.CornerFlag.ALL}, } #Functions from NVIDIA def hex_to_color(hex: int) -> tuple: # convert Value from int red = hex & 255 green = (hex >> 8) & 255 blue = (hex >> 16) & 255 alpha = (hex >> 24) & 255 rgba_values = [red, green, blue, alpha] return rgba_values def _interpolate_color(hex_min: int, hex_max: int, intep): max_color = hex_to_color(hex_max) min_color = hex_to_color(hex_min) color = [int((max - min) * intep) + min for max, min in zip(max_color, min_color)] return (color[3] << 8 * 3) + (color[2] << 8 * 2) + (color[1] << 8 * 1) + color[0] def get_gradient_color(value, max, colors): step_size = len(colors) - 1 step = 1.0/float(step_size) percentage = value / float(max) idx = (int) (percentage / step) if idx == step_size: color = colors[-1] else: color = _interpolate_color(colors[idx], colors[idx+1], percentage) return color def generate_byte_data(colors): data = [] for color in colors: data += hex_to_color(color) _byte_provider = ui.ByteImageProvider() _byte_provider.set_bytes_data(data, [len(colors), 1]) return _byte_provider def build_gradient_image(colors, height, style_name): byte_provider = generate_byte_data(colors) ui.ImageWithProvider(byte_provider,fill_policy=omni.ui.IwpFillPolicy.IWP_STRETCH, height=height, name=style_name) return byte_provider
3,926
Python
34.378378
117
0.670148
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/group_sub.py
from .group_base import GroupBase from pxr import Gf, UsdGeom, UsdLux, Usd, Sdf from .math_utils import calcPlaneSizeForGroup from .prim_utils import cleanup_prim_path import locale import asyncio import carb import omni.client import omni.kit.app import omni.ui as ui import omni.usd import omni.kit.commands #--- SUBSCRIPTION BASED GROUPS class SubGrpView(GroupBase): def __init__(self, viewPath:str, scale:float, upAxis:str, shapeUpAxis:str, symPlanes:bool, binPack:bool): self._scale = scale self._upAxis = upAxis self._shapeUpAxis = shapeUpAxis self._view_path = viewPath self._symPlanes = symPlanes self._binPack = binPack super().__init__() def calcGroupPlaneSizes(self): self._dataStore._lcl_groups = [] self._dataStore._lcl_sizes = [] if len(self._dataStore._subscription_count) == 0: self._dataManager.refresh_data() #check it again if len(self._dataStore._subscription_count) == 0: return 0 #Clone the sub groups gpz = self._dataStore._subscription_count.copy() for grp in gpz: size = calcPlaneSizeForGroup( scaleFactor=self._scale, resourceCount=self._dataStore._subscription_count.get(grp) ) #mixed plane sizes self._dataStore._lcl_sizes.append(size) grp = cleanup_prim_path(self, grp) self._dataStore._lcl_groups.append({ "group":grp, "size":size }) #Should the groups all be the same size ? if self._symPlanes: self._dataStore._lcl_sizes.sort(reverse=True) maxPlaneSize = self._dataStore._lcl_sizes[0] #largest plane groupCount = len(self._dataStore._lcl_sizes) #count of groups #Reset plane sizes self._dataStore._lcl_sizes = [] for count in range(0,groupCount): self._dataStore._lcl_sizes.append(maxPlaneSize) self._dataStore._lcl_groups = [] for grp in gpz: self._dataStore._lcl_groups.append({ "group":grp, "size":maxPlaneSize }) def calulateCosts(self): for g in self._dataStore._lcl_groups: #Get the cost by resource group locale.setlocale( locale.LC_ALL, 'en_CA.UTF-8' ) try: self._cost = str(locale.currency(self._dataStore._subscription_cost[g]["group"])) except: self._cost = "" # blank not 0, blank means dont show it at all #Abstact to load resources def loadResources(self): self.view_path = Sdf.Path(self.root_path.AppendPath(self._view_path)) if (len(self._dataStore._lcl_groups)) >0 : #Cycle all the loaded groups for grp in self._dataStore._lcl_groups: carb.log_info(grp["group"]) #Cleanup the group name for a prim path group_prim_path = self.view_path.AppendPath(grp["group"]) #match the group to the resource map for key, values in self._dataStore._map_subscription.items(): #Is this the group? if key == grp["group"]: asyncio.ensure_future(self.loadGroupResources(key, group_prim_path, values)) def selectGroupPrims(self): self.paths = [] stage = omni.usd.get_context().get_stage() base = Sdf.Path("/World/Subs") curr_prim = stage.GetPrimAtPath(base) for prim in Usd.PrimRange(curr_prim): # only process shapes and meshes tmp_path = str(prim.GetPath()) if '/CollisionMesh' not in tmp_path: if '/CollisionPlane' not in tmp_path: self.paths.append(tmp_path) # for grp in self._dataStore._map_subscription.keys(): # grp_path = base.AppendPath(cleanup_prim_path(self, grp)) # self.paths.append(str(grp_path)) omni.kit.commands.execute('SelectPrimsCommand', old_selected_paths=[], new_selected_paths=self.paths, expand_in_stage=True)
4,244
Python
32.96
109
0.57705
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/group_base.py
from abc import ABC, abstractmethod import omni.client import omni.kit.app import omni.ui as ui import omni.usd import omni.kit.commands from pathlib import Path import shutil import os import asyncio import locale import carb from .prim_utils import create_plane from .prim_utils import get_font_size_from_length from .prim_utils import draw_image from .prim_utils import cleanup_prim_path, create_and_place_prim, get_parent_child_prim_path from pxr import Gf, UsdGeom, UsdLux, Usd, Sdf from .data_manager import DataManager from .data_store import DataStore from .math_utils import calculateGroupTransforms from .scatter_complex import distributePlanes from .omni_utils import create_prims, create_shaders from os.path import exists CURRENT_PATH = Path(__file__).parent DATA_PATH = CURRENT_PATH.joinpath("temp") #Defines an Abstract class of an Aggregate set of resource views #Children access specific data sets for the base class GroupBase(ABC): def __init__(self): self._dataManager = DataManager.instance() # Get A Singleton instance self._dataStore = DataStore.instance() # Get A Singleton instance #root prim paths self.root_path = Sdf.Path('/World') # limit the number of rows read self.max_elements = 5000 self.base_prim_size = 50 #limits self.x_threshold = 50000 self.y_threshold = 50000 self.z_threshold = 50000 self.x_extent = 0 self.y_extent = 0 self.z_extent = 0 #Create the stage... def initializeStage(self, stage_unit_per_meter:float): self._stage = omni.usd.get_context().get_stage() root_prim = self._stage.GetPrimAtPath(self.root_path) # set the up axis UsdGeom.SetStageUpAxis(self._stage, UsdGeom.Tokens.z) # set the unit of the world UsdGeom.SetStageMetersPerUnit(self._stage, stage_unit_per_meter) self._stage.SetDefaultPrim(root_prim) #Depending on the Active View, "groups" will contain different aggreagetes. #This function creates the GroundPlane objects on the stage for each group async def CreateGroups(self, transforms): #b = sorted(groups) #carb.log_info("Sorted keys",b) if (len(self._dataStore._lcl_groups)) >0 : #Create new prims and then transform them path = str(Sdf.Path(self.root_path).AppendPath(self._view_path)) create_prims( transforms=transforms, prim_names=self._dataStore._lcl_groups, parent_path=path, up_axis="Z", plane_size=self._dataStore._lcl_sizes ) #DEBUG i=0 for grp in self._dataStore._lcl_groups: prim_path = Sdf.Path(self.root_path).AppendPath(str(self._view_path)) prim_path = Sdf.Path(prim_path).AppendPath(grp["group"]) #Selects prim, creates associated OMNIPBR shaders carb.log_info("Create shader " + grp["group"] + " of " + str(len(self._dataStore._lcl_groups))) await create_shaders(base_path=prim_path, prim_name=grp["group"]) await omni.kit.app.get_app().next_update_async() #Set the shader images for the groups await self.AddShaderImages() await omni.kit.app.get_app().next_update_async() #Assign Images to the group Shaders async def AddShaderImages(self): #Images have been pre-made, jsut assign them for g in self._dataStore._lcl_groups: clean = cleanup_prim_path(self, g["group"]) #Dont show cost output_file = DATA_PATH.joinpath(clean + ".png") file_exists = exists(output_file) if not file_exists: draw_image(self, output_file=output_file, src_file=self._dataStore._bgl_file_path , textToDraw=g, costToDraw="") #Get Stage stage = omni.usd.get_context().get_stage() #Find the /Looks root curr_prim = stage.GetPrimAtPath("/") looks_path = "" for prim in Usd.PrimRange(curr_prim): if prim.GetPath() == "/Looks": looks_path = "/Looks" break elif prim.GetPath() == "/World/Looks": looks_path = "/World/Looks" break #carb.log_info("Looks root is: " +looks_path) #Get the Shader and set the image property if (looks_path == ""): looks_path = "/Looks" shader_path = Sdf.Path(looks_path) shader_path = Sdf.Path(shader_path.AppendPath(clean)) shader_path = Sdf.Path(shader_path.AppendPath("Shader")) #select the shader selection = omni.usd.get_context().get_selection() selection.set_selected_prim_paths([str(shader_path)], False) #Get the Shader shader_prim = stage.GetPrimAtPath(str(shader_path)) carb.log_info("Shader Attributes:-----" + str(shader_path)) #carb.log_info(shader_prim.GetAttributes()) carb.log_info("Set shader image " + str(output_file)) try: shader_prim.CreateAttribute("inputs:diffuse_texture", Sdf.ValueTypeNames.Asset) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(shader_path).AppendPath('.inputs:diffuse_texture'), value=str(output_file), prev=str(output_file)) await omni.kit.app.get_app().next_update_async() except: #Do it again! omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(shader_path).AppendPath('.inputs:diffuse_texture'), value=str(output_file),prev=str(output_file)) #Change the Group Shaders textures to /from cost images async def showHideCosts(self): #Get Stage stage = omni.usd.get_context().get_stage() #Find the /Looks root curr_prim = stage.GetPrimAtPath("/") looks_path = "" for prim in Usd.PrimRange(curr_prim): if prim.GetPath() == "/Looks": looks_path = "/Looks" break elif prim.GetPath() == "/World/Looks": looks_path = "/World/Looks" break #carb.log_info("Looks root is: " +looks_path) #Get the Shader and set the image property if (looks_path == ""): looks_path = "/Looks" #Flip the shader images on all group shader prims for g in self._dataStore._lcl_groups: clean = cleanup_prim_path(self, g["group"]) cost_file = DATA_PATH.joinpath(clean + "-cost.png") file_exists = exists(cost_file) if not file_exists: draw_image(self, output_file=cost_file, src_file=self._dataStore._bg_file_path , textToDraw=g, costToDraw=self._cost) output_file = DATA_PATH.joinpath(clean + ".png") file_exists = exists(output_file) if not file_exists: draw_image(self, output_file=output_file, src_file=self._dataStore._bg_file_path , textToDraw=g, costToDraw="") #Get the Shaders shader_path = Sdf.Path(looks_path) shader_path = Sdf.Path(shader_path.AppendPath(clean)) shader_path = Sdf.Path(shader_path.AppendPath("Shader")) #select the shader selection = omni.usd.get_context().get_selection() selection.set_selected_prim_paths([str(shader_path)], False) #Get the Shader shader_prim = stage.GetPrimAtPath(str(shader_path)) # carb.log_info("Shader Attributes:-----" + str(shader_path)) # carb.log_info(shader_prim.GetAttributes()) try: currentVal = shader_prim.GetAttribute("inputs:diffuse_texture").Get() if "-cost.png" not in str(currentVal): omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(shader_path).AppendPath('.inputs:diffuse_texture'), value=str(cost_file), prev=str(output_file)) else: omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(shader_path).AppendPath('.inputs:diffuse_texture'), value=str(output_file), prev=str(cost_file)) except: pass #Load the resources from map async def loadGroupResources(self,group_name, group_prim_path, values): i=0 # prim count tracker resCount = len(values) #Get the transform coordinates for a plane of this size with nn resources transforms = calculateGroupTransforms(self=self, scale=self._scale, count=resCount) for res in values: carb.log_info("Placing prim " + res["type"] + " " + str(i) + " of " + str(resCount)) resName = res["name"] resShape = res["shape"] resType = res["type"] resGrp = res["group"] resLoc = res["location"] resSub = res["subscription"] cost = res["cost"] prim_vector = transforms[i] carb.log_info("Creating prim path:" + str(group_prim_path) + " " + str(resName)) new_prim_path = get_parent_child_prim_path(self, group_prim_path, resName) carb.log_info("New prim path:" + str(new_prim_path)) await create_and_place_prim(self, prim_type= resType, prim_name=resName, grp_name=resGrp, sub_name=resSub, loc_name=resLoc, cost=cost, new_prim_path=str(new_prim_path), shapeToRender=resShape, scale=(self._scale*self.base_prim_size), position=prim_vector ) omni.kit.commands.execute('ChangeMetadata', object_paths=[str(new_prim_path)], key='kind', value='component') i=i+1 #increment resource id # Create Group Planes for the aggregates @abstractmethod def calcGroupPlaneSizes(self): pass # Requires subclass implm # Calc Costs for the aggregates @abstractmethod def calulateCosts(self): pass # Requires subclass implm # Load the resources for this view's groups @abstractmethod def loadResources(self): pass # Requires subclass implm #Selcet the active group's prims @abstractmethod def selectGroupPrims(self): pass # Requires subclass implm
11,167
Python
35.736842
142
0.563535
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/Singleton.py
class Singleton: """ A non-thread-safe helper class to ease implementing singletons. This should be used as a decorator -- not a metaclass -- to the class that should be a singleton. The decorated class can define one `__init__` function that takes only the `self` argument. Also, the decorated class cannot be inherited from. Other than that, there are no restrictions that apply to the decorated class. To get the singleton instance, use the `instance` method. Trying to use `__call__` will result in a `TypeError` being raised. """ def __init__(self, decorated): self._decorated = decorated def instance(self): """ Returns the singleton instance. Upon its first call, it creates a new instance of the decorated class and calls its `__init__` method. On all subsequent calls, the already created instance is returned. """ try: return self._instance except AttributeError: self._instance = self._decorated() return self._instance def __call__(self): raise TypeError('Singletons must be accessed through `instance()`.') def __instancecheck__(self, inst): return isinstance(inst, self._decorated)
1,279
Python
33.594594
76
0.647381
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/azure_data_manager_stub.py
# AZURE DATA MANAGER STUB # MOSTLY COMMENTED OUT, API DISABLED # CANT LOAD azure-identity library in Code 2022.1.2 + # https://forums.developer.nvidia.com/t/pip-library-wont-load-in-2021-1-2/222719 import omni.kit.pipapi import carb import os import json import sys from datetime import datetime import omni.kit.notification_manager as nm #omni.kit.pipapi.install("azure-identity", module="azure-identity", ignore_import_check=True, ignore_cache=True, surpress_output=False,use_online_index=True ) #omni.kit.pipapi.install("azure-mgmt-resource", module="azure-mgmt-resource", ignore_import_check=True, ignore_cache=True, surpress_output=False,use_online_index=True ) #sys.path.append("D:/python37/lib/site-packages") #print(sys.modules.keys()) from .data_store import DataStore from .prim_utils import cleanup_prim_path #from azure.mgmt.resource import ResourceManagementClient #from azure.mgmt.resource.subscriptions import SubscriptionClient #from azure.identity import ClientSecretCredential import asyncio import os # Manage resources and resource groups - create, update and delete a resource group, # deploy a solution into a resource group, export an ARM template. Create, read, update # and delete a resource class AzureDataManager(): def __init__(self): pass #self._dataStore = DataStore.instance() # Get A Singleton instance, store data here def get_token(self): # Acquire a credential object using CLI-based authentication. # if self._dataStore._azure_tenant_id =="": # self.sendNotify("MCE: Please enter Azure credentials to connect...", nm.NotificationStatus.WARNING) # return # if self._dataStore._azure_client_secret =="": # self.sendNotify("MCE: Please enter Azure client secret to connect...", nm.NotificationStatus.WARNING) # return False # self.sendNotify("MCE: Connecting to Azure Tenant...", nm.NotificationStatus.INFO) # self._token_credential = ClientSecretCredential( # self._dataStore._azure_tenant_id, # self._dataStore._azure_client_id, # self._dataStore._azure_client_secret) # # Retrieve subscription ID from environment variable. # self._subscription_id = self._dataStore._azure_subscription_id return False #validate we can connect def connect(self): self.sendNotify("MCE: Azure API DISABLED in 2022.1.3, due to library incompatibility, use data files!", nm.NotificationStatus.WARNING) #Get a token # valid = self.get_token() # try: # if (valid): # # List subscriptions # subscription_client = SubscriptionClient(credential=self._token_credential) # page_result = subscription_client.subscriptions.list() # result = [item for item in page_result] # for item in result: # carb.log_warn(item.subscription_id) # carb.log_warn(item.tags) # except: # valid = False # error = sys.exc_info()[0] # carb.log_error("Oops! " + str(error) + " occurred.") # self.sendNotify("MCE: Error:" + str(error), nm.NotificationStatus.WARNING) return False def clicked_ok(self): carb.log_info("User clicked ok") def sendNotify(self, message:str, status:nm.NotificationStatus): # https://docs.omniverse.nvidia.com/py/kit/source/extensions/omni.kit.notification_manager/docs/index.html?highlight=omni%20kit%20notification_manager# import omni.kit.notification_manager as nm ok_button = nm.NotificationButtonInfo("OK", on_complete=self.clicked_ok) nm.post_notification( message, hide_after_timeout=False, duration=0, status=status, button_infos=[ok_button], ) #Connect to API and load adata def load_data(self): pass #self.save_connection_data() #self.load_groups() #self.load_resources() #def save_connection_data(self): # self._dataStore.Save_Config_Data() # def load_resources(self): # try: # resCnt = 0 # for grp in self._dataStore._groups: # resources = self.list_group_resources(grp) # for res in resources: # resCnt = resCnt +1 # name = cleanup_prim_path(self, Name=res.name) # self._dataStore._resources[name] = {"name":name, "type": res.type, "group": grp, "location":res.location, "subscription":self._subscription_id, "lmcost": 0} # #self._dataStore.res["name"] = {"name":res["name"], "type": type, "group": group, "location":location, "subscription":subscription, "lmcost": lmcost} # self.sendNotify("MCE: Azure resources loaded: " + str(len(self._dataStore._resources)), nm.NotificationStatus.INFO) # carb.log_info("Azure API resources loaded: " + str(len(self._dataStore._resources))) # except: # error = sys.exc_info()[0] # carb.log_error("Oops! " + str(error) + " occurred.") # self.sendNotify("MCE: Error:" + str(error), nm.NotificationStatus.WARNING) # def load_groups(self): # try: # resource_client = ResourceManagementClient(self._token_credential, self._subscription_id) # rg_groups = resource_client.resource_groups.list() # grpCnt = 0 # for group in rg_groups: # grp = {group.name:{"name":group.name, "subs": self._subscription_id, "location":group.location}} # self._dataStore._groups.update(grp) # grpCnt = grpCnt + 1 # self.sendNotify("MCE: Azure groups loaded: " + str(len(self._dataStore._groups)), nm.NotificationStatus.INFO) # carb.log_info("Azure API groups loaded: " + str(len(self._dataStore._groups))) # except: # error = sys.exc_info()[0] # carb.log_error("Oops! " + str(error) + " occurred.") # self.sendNotify("MCE: Error:" + str(error), nm.NotificationStatus.WARNING) #return a list of resource groups # def get_resource_groups(self): # # Obtain the management object for resources. # try: # resource_client = ResourceManagementClient(self._token_credential, self._subscription_id) # rg_groups = resource_client.resource_groups.list() # return rg_groups # except: # error = sys.exc_info()[0] # carb.log_error("Oops! " + str(error) + " occurred.") # self.sendNotify("MCE: Error:" + str(error), nm.NotificationStatus.WARNING) # #for item in rg_groups: # # print(item) # # List Resources within the group # def list_group_resources(self, groupName:str): # # Obtain the management object for resources. # resource_client = ResourceManagementClient(self._token_credential, self._subscription_id) # carb.log_info("List all of the resources within the group") # res = resource_client.resources.list_by_resource_group(groupName) # return res # #creates a resource group with groupName at location # def create_resource_group(self, groupName:str, location:str): # # Obtain the management object for resources. # resource_client = ResourceManagementClient(self._token_credential, self._subscription_id) # # # # Managing resource groups # # # resource_group_params = {"location": location} # # Create Resource group # print("Create Resource Group: " + groupName + " @ " + location) # self.print_item( # resource_client.resource_groups.create_or_update( # groupName, resource_group_params) # ) # def print_item(self, group): # """Print a ResourceGroup instance.""" # print("\tName: {}".format(group.name)) # print("\tId: {}".format(group.id)) # print("\tLocation: {}".format(group.location)) # print("\tTags: {}".format(group.tags)) # self.print_properties(group.properties) # def print_properties(self, props): # """Print a ResourceGroup properties instance.""" # if props and props.provisioning_state: # print("\tProperties:") # print("\t\tProvisioning State: {}".format(props.provisioning_state)) # print("\n\n") # # Create a Key Vault in the Resource Group # def create_key_vault(self, vaultName:str, location:str, groupName:str): # # Obtain the management object for resources. # resource_client = ResourceManagementClient(self._token_credential, self._subscription_id) # print("Create a Key Vault via a Generic Resource Put") # key_vault_params = { # "location": location, # "properties": { # "sku": {"family": "A", "name": "standard"}, # "tenantId": self._dataStore._azure_tenant_id, # "accessPolicies": [], # "enabledForDeployment": True, # "enabledForTemplateDeployment": True, # "enabledForDiskEncryption": True # }, # } # resource_client.resources.begin_create_or_update( # resource_group_name=groupName, # resource_provider_namespace="Microsoft.KeyVault", # parent_resource_path="", # resource_type="vaults", # # Suffix random string to make vault name unique # resource_name=vaultName + datetime.utcnow().strftime("-%H%M%S"), # api_version="2019-09-01", # parameters=key_vault_params # ).result() # # Export the Resource group template # def export_group_template(self, groupName:str): # # Obtain the management object for resources. # resource_client = ResourceManagementClient(self._token_credential, self._subscription_id) # print("Export Resource Group Template") # BODY = { # 'resources': ['*'] # } # result = json.dumps( # resource_client.resource_groups.begin_export_template( # groupName, BODY).result().template, indent=4 # ) # print(result + "\n\n") # return result # def run_example(): # """Resource Group management example.""" # # # # Create the Resource Manager Client with an Application (service principal) token provider # # # subscription_id = os.environ.get("AZURE_SUBSCRIPTION_ID", None) # your Azure Subscription Id # credentials = DefaultAzureCredential() # client = ResourceManagementClient(credentials, subscription_id) # # # # Managing resource groups # # # resource_group_params = {"location": "westus"} # # List Resource Groups # print("List Resource Groups") # for item in client.resource_groups.list(): # print_item(item) # # Create Resource group # print("Create Resource Group") # print_item( # client.resource_groups.create_or_update( # GROUP_NAME, resource_group_params) # ) # # Modify the Resource group # print("Modify Resource Group") # resource_group_params.update(tags={"hello": "world"}) # print_item( # client.resource_groups.update( # GROUP_NAME, resource_group_params) # ) # # Create a Key Vault in the Resource Group # print("Create a Key Vault via a Generic Resource Put") # key_vault_params = { # "location": "westus", # "properties": { # "sku": {"family": "A", "name": "standard"}, # "tenantId": os.environ["AZURE_TENANT_ID"], # "accessPolicies": [], # "enabledForDeployment": True, # "enabledForTemplateDeployment": True, # "enabledForDiskEncryption": True # }, # } # client.resources.begin_create_or_update( # resource_group_name=GROUP_NAME, # resource_provider_namespace="Microsoft.KeyVault", # parent_resource_path="", # resource_type="vaults", # # Suffix random string to make vault name unique # resource_name="azureSampleVault" + datetime.utcnow().strftime("-%H%M%S"), # api_version="2019-09-01", # parameters=key_vault_params # ).result() # # List Resources within the group # print("List all of the resources within the group") # for item in client.resources.list_by_resource_group(GROUP_NAME): # print_item(item) # # Export the Resource group template # print("Export Resource Group Template") # BODY = { # 'resources': ['*'] # } # print( # json.dumps( # client.resource_groups.begin_export_template( # GROUP_NAME, BODY).result().template, indent=4 # ) # ) # print("\n\n") # # Delete Resource group and everything in it # print("Delete Resource Group") # delete_async_operation = client.resource_groups.begin_delete(GROUP_NAME) # delete_async_operation.wait() # print("\nDeleted: {}".format(GROUP_NAME))
13,810
Python
38.235795
178
0.583128
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/unit_tests.py
import unittest from .math_utils import calcPlaneSizeForGroup class TestRGPlaneSizeCalc(unittest.TestCase): def test_lower(self): planeSize = calcPlaneSizeForGroup(1) self.assertEqual(planeSize, 1) def test_lower(self): planeSize = calcPlaneSizeForGroup(2) self.assertEqual(planeSize, 2) def test_lower(self): planeSize = calcPlaneSizeForGroup(3) self.assertEqual(planeSize, 2) def test_lower(self): planeSize = calcPlaneSizeForGroup(4) self.assertEqual(planeSize, 2) def test_lower(self): planeSize = calcPlaneSizeForGroup(5) self.assertEqual(planeSize, 3) def test_lower(self): planeSize = calcPlaneSizeForGroup(6) self.assertEqual(planeSize, 3) if __name__ == '__main__': unittest.main()
823
Python
24.749999
45
0.665857
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/azure_resource_map.py
shape_usda_name = { "AAD":"omniverse://localhost/MCE/3dIcons/AzureAAD_1.1.usd", "Resource_Group":"omniverse://localhost/MCE/3dIcons/Resource_Groups_3.0.usd", "Storage_account":"omniverse://localhost/MCE/3dIcons/StorageAccounts_2_8.usd", "App_Service":"omniverse://localhost/MCE/3dIcons/AppServices_1.2.usd", "Subscription":"omniverse://localhost/MCE/3dIcons/Subscriptions_1.3.usd", "API_Connection":"omniverse://localhost/MCE/3dIcons/API_Connection.usd", "API_Management_service":"omniverse://localhost/MCE/3dIcons/API_management_services_fix.usd", "App_Configuration":"omniverse://localhost/MCE/3dIcons/App-Configuration.usd", "App_Service_plan":"omniverse://localhost/MCE/3dIcons/app_service_plan_fix.usd", "App_Service":"omniverse://localhost/MCE/3dIcons/AppServices_1.2.usd", "Application_Insights":"omniverse://localhost/MCE/3dIcons/Application_Insights_4.0.usd", "Application_gateway":"omniverse://localhost/MCE/3dIcons/Application_Gateway.usd", "Automation_Account":"omniverse://localhost/MCE/3dIcons/automation_accounts_fix.usd", "Availability_test":"omniverse://localhost/MCE/3dIcons/Availability_Test.usd", "Azure_Bot":"omniverse://localhost/MCE/3dIcons/Web_App_Bot.usd", "Azure_Cosmos_DB_API_for_MongoDB_account":"omniverse://localhost/MCE/3dIcons/Azure_Cosmos_DB_API_MongoDB.usd", "Azure_Cosmos_DB_account":"omniverse://localhost/MCE/3dIcons/Azure_Cosmos_DB.usd", "Azure_Data_Explorer_Cluster":"omniverse://localhost/MCE/3dIcons/azure_data_explorer_clusters_fix.usd", "Azure_DevOps_organization":"omniverse://localhost/MCE/3dIcons/Azure_Dev_Ops.usd", "Azure_Machine_Learning":"omniverse://localhost/MCE/3dIcons/Azure_Machine_Learning.usd", "Azure_Workbook":"omniverse://localhost/MCE/3dIcons/azure_workbook_fix.usd", "Bastion":"omniverse://localhost/MCE/3dIcons/Bastion.usd", "Cognitive_Service":"omniverse://localhost/MCE/3dIcons/Cognitive_Services.usd", "Container_registry":"omniverse://localhost/MCE/3dIcons/container_registries.usd", "Data_Lake_Analytics":"omniverse://localhost/MCE/3dIcons/Data_Lake_Analytics_1.2.usd", "Data_Lake_Storage_Gen1":"omniverse://localhost/MCE/3dIcons/data_lake_storage_gen1_fix.usd", "Data_factory__V2_":"omniverse://localhost/MCE/3dIcons/data_factory_fix.usd", "Disk":"omniverse://localhost/MCE/3dIcons/Disk_1.0.usd", "DNS_zone":"omniverse://localhost/MCE/3dIcons/DNS_Zone.usd", "DNS_Zone":"omniverse://localhost/MCE/3dIcons/DNS_Zone.usd", "Event_Grid_System_Topic":"omniverse://localhost/MCE/3dIcons/event_grid_topics_fix.usd", "Event_Hubs_Namespace":"omniverse://localhost/MCE/3dIcons/events_hub_fix.usd", "Firewall_Policy":"omniverse://localhost/MCE/3dIcons/Firewall_Policy.usd", "Firewall":"omniverse://localhost/MCE/3dIcons/Firewall.usd", "Function_App":"omniverse://localhost/MCE/3dIcons/function_apps_fix.usd", "Image":"omniverse://localhost/MCE/3dIcons/image_fix.usd", "Key_vault":"omniverse://localhost/MCE/3dIcons/Key_Vaults_2.0.usd", "Kubernetes_service":"omniverse://localhost/MCE/3dIcons/kubernetess_services_fix.usd", "Language":"omniverse://localhost/MCE/3dIcons/Language_Understanding.usd", "Language_understanding":"omniverse://localhost/MCE/3dIcons/Language_Understanding.usd", "Load_balancer":"omniverse://localhost/MCE/3dIcons/load_balancer_fix.usd", "Log_Analytics_query_pack":"omniverse://localhost/MCE/3dIcons/Log_Analytics_Query_Pack.usd", "Log_Analytics_workspace":"omniverse://localhost/MCE/3dIcons/Log_Analytics_Workspace.usd", "Logic_App__Standard_":"omniverse://localhost/MCE/3dIcons/Logic_Apps_Std.usd", "Logic_app":"omniverse://localhost/MCE/3dIcons/Logic_apps_fix.usd", "Logic_apps_custom_connector":"omniverse://localhost/MCE/3dIcons/Logic_Apps_Custom_Connector.usd", "Managed_Identity":"omniverse://localhost/MCE/3dIcons/Managed_Identity.usd", "Managed_application":"omniverse://localhost/MCE/3dIcons/Managed_Identity.usd", "Network_Interface":"omniverse://localhost/MCE/3dIcons/network_interface_fix.usd", "Microsoft_Network_networkInterfaces":"omniverse://localhost/MCE/3dIcons/network_interface_fix.usd", "Network_Watcher":"omniverse://localhost/MCE/3dIcons/network_watcher_fix.usd", "Network_security_group":"omniverse://localhost/MCE/3dIcons/network_security_group_fix.usd", "Microsoft_Network_networkSecurityGroups" : "omniverse://localhost/MCE/3dIcons/network_security_group_fix.usd", "Power_BI_Embedded":"omniverse://localhost/MCE/3dIcons/Power_BI_Embedded_2.0.usd", "Private_DNS_zone":"omniverse://localhost/MCE/3dIcons/Private_DNS_Zone_2.0.usd", "Private_endpoint":"omniverse://localhost/MCE/3dIcons/Private_End_Point.usd", "Public_IP_address":"omniverse://localhost/MCE/3dIcons/public_ip_adresses_fix.usd", "Recovery_Services_vault":"omniverse://localhost/MCE/3dIcons/Recovery_Services_Vault.usd", "Restore_Point_Collection":"omniverse://localhost/MCE/3dIcons/Restore_Point_Collection_2.0.usd", "Runbook":"omniverse://localhost/MCE/3dIcons/Runbook.usd", "SQL_database":"omniverse://localhost/MCE/3dIcons/SQLDatabase.usd", "SQL_elastic_pool":"omniverse://localhost/MCE/3dIcons/SQL_Elastic_Pools.usd", "SQL_server":"omniverse://localhost/MCE/3dIcons/SQLServer.usd", "SQL_virtual_machine":"omniverse://localhost/MCE/3dIcons/SQL_Virtual_Machine_1.1.usd", "Search_service":"omniverse://localhost/MCE/3dIcons/Search_Services_1.0.usd", "Service_Bus_Namespace":"omniverse://localhost/MCE/3dIcons/service_bus_fix.usd", "Service_Fabric_cluster":"omniverse://localhost/MCE/3dIcons/service-fabric-clusters_fix.usd", "Shared_dashboard":"omniverse://localhost/MCE/3dIcons/Shared_Dashboard.usd", "Snapshot":"omniverse://localhost/MCE/3dIcons/Snapshot.usd", "Solution":"omniverse://localhost/MCE/3dIcons/solution.usd", "Storage_account":"omniverse://localhost/MCE/3dIcons/StorageAccounts_2.8.usd", "Traffic_Manager_profile":"omniverse://localhost/MCE/3dIcons/Traffic_Manager_Profiles_1.0.usd", "Virtual_machine_scale_set":"omniverse://localhost/MCE/3dIcons/Virtual_Machines_Scale_Sets_2.0.usd", "Virtual_machine":"omniverse://localhost/MCE/3dIcons/Virtual_Machine_1.1.usd", "Virtual_network":"omniverse://localhost/MCE/3dIcons/Virtual_Network.usd", "Web_App_Bot":"omniverse://localhost/MCE/3dIcons/Web_App_Bot.usd", "Coat_Rack":"omniverse://localhost/MCE/3dIcons/Coat_Rack_Bowler_Hat.usdz", "Observation_Chair":"omniverse://localhost/MCE/3dIcons/Green-Ball-Chair.usd", "Leather_Jacket":"omniverse://localhost/MCE/3dIcons/Leather_Jacket.usdz", "Rug_V4": "omniverse://localhost/MCE/3dIcons/RugV4.usd", "Neon_All_Resources": "omniverse://localhost/MCE/NeonSigns/all_resources/all_resources.usd", "Neon_By_Group": "omniverse://localhost/MCE/NeonSigns/resources_by_group/resources_by_group.usd", "Neon_By_Subscription": "omniverse://localhost/MCE/NeonSigns/resources_by_cost/resources_by_cost.usd", "Neon_By_Location": "omniverse://localhost/MCE/NeonSigns/resources_by_location/resources_by_location.usd", "Neon_Azure_Cloud": "omniverse://localhost/MCE/NeonSigns/azure cloud/azure cloud.usd", "Microsoft_Web_certificates" :"omniverse://localhost/MCE/3dIcons/App_Service_Certificates.usd", "Microsoft_ClassicStorage_storageAccounts":"omniverse://localhost/MCE/3dIcons/StorageAccounts_2.8.usd", "Storage_account__classic_":"omniverse://localhost/MCE/3dIcons/StorageAccounts_2.8.usd", "microsoft_alertsmanagement_smartDetectorAlertRules": "omniverse://localhost/MCE/3dIcons/Alerts.usd", "Microsoft_KeyVault_vaults":"omniverse://localhost/MCE/3dIcons/Key_Vaults_2.0.usd", "Microsoft_Storage_storageAccounts" : "omniverse://localhost/MCE/3dIcons/StorageAccounts_2.8.usd", "Microsoft_Network_dnszones" : "omniverse://localhost/MCE/3dIcons/DNS_Zone.usd", "Microsoft_Web_sites": "omniverse://localhost/MCE/3dIcons/AppServices_1.2.usd", "Microsoft_Web_serverFarms" : "omniverse://localhost/MCE/3dIcons/app_service_plan_fix.usd", "Microsoft_Network_networkWatchers" : "omniverse://localhost/MCE/3dIcons/network_watcher_fix.usd", "Microsoft_OperationalInsights_workspaces" : "omniverse://localhost/MCE/3dIcons/Log_Analytics_Workspace.usd", "Microsoft_OperationsManagement_solutions" : "omniverse://localhost/MCE/3dIcons/solution.usd", "microsoft_insights_autoscalesettings" : "omniverse://localhost/MCE/3dIcons/scene.usd", "microsoft_visualstudio_account" :"omniverse://localhost/MCE/3dIcons/azure_devops_fix.usd", "Microsoft_Migrate_moveCollections" : "omniverse://localhost/MCE/3dIcons/scene.usd", "microsoft_insights_actiongroups" : "omniverse://localhost/MCE/3dIcons/scene.usd", "Microsoft_Insights_components":"omniverse://localhost/MCE/3dIcons/Application_Insights_4.0.usd", "Microsoft_Portal_dashboards" : "omniverse://localhost/MCE/3dIcons/Shared_Dashboard.usd", "Microsoft_ContainerRegistry_registries": "omniverse://localhost/MCE/3dIcons/container_registries_fix.usd", "Microsoft_RecoveryServices_vaults":"omniverse://localhost/MCE/3dIcons/recovery_service_vault_fix.usd", "Microsoft_DevTestLab_schedules": "omniverse://localhost/MCE/3dIcons/scene.usd", "User_Red":"omniverse://localhost/MCE/3dIcons/User_Red.usd", "User_Blue":"omniverse://localhost/MCE/3dIcons/User_Blue.usd", "User_Orange":"omniverse://localhost/MCE/3dIcons/User_Orange.usd", "User_Green":"omniverse://localhost/MCE/3dIcons/User_Green.usd", }
9,535
Python
81.206896
115
0.745254
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/object_info_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # __all__ = ["ObjectInfoModel"] from pxr import Tf from pxr import Usd from pxr import UsdGeom from omni.ui import scene as sc import omni.usd from .prim_utils import only_select_parent_prims # The distance to raise above the top of the object's bounding box TOP_OFFSET = 5 class ObjectInfoModel(sc.AbstractManipulatorModel): """ The model tracks the position and info of the selected object. """ class PositionItem(sc.AbstractManipulatorItem): """ The Model Item represents the position. It doesn't contain anything because we take the position directly from USD when requesting. """ def __init__(self): super().__init__() self.value = [0, 0, 0] def __init__(self): super().__init__() # Current selected prim and material self._current_paths = [] self.positions = [] self._stage_listener = None self.populate() # Track selection changes self.events = self._get_context().get_stage_event_stream() self.stage_event_delegate = self.events.create_subscription_to_pop( self.on_stage_event, name="Object Info Selection Update" ) def on_stage_event(self, event): """Called by stage_event_stream. We only care about selection changes.""" # NEW: if statement to only check when selection changed if event.type == int(omni.usd.StageEventType.SELECTION_CHANGED): self.populate() def destroy(self): self.events = None self.stage_event_delegate.unsubscribe() def populate(self): self._current_paths = [] self.positions = [] usd_context = self._get_context() stage = usd_context.get_stage() #Get selected prims usd_context = omni.usd.get_context() self._stage: Usd.Stage = usd_context.get_stage() self._selection = usd_context.get_selection() self._paths = self._selection.get_selected_prim_paths() #Selectively choose the paths self._paths = only_select_parent_prims(prim_paths=self._paths) #if len(self._current_paths) > 1: #ONLY SHOW ON MULTISELECT! for path in self._paths: prim = stage.GetPrimAtPath(path) if not prim.IsValid(): return for child in prim.GetChildren(): if child.IsA(UsdGeom.Imageable): if str(path).find("Collision") == -1: if str(path).find("Baked") == -1: if str(path).find("/materials") == -1: self._current_paths.append(child.GetPath()) self.positions.append(ObjectInfoModel.PositionItem()) # Position is changed because new selected object has a different position self._item_changed(self.positions[-1]) #elif len(self._current_paths == 0): # pass def _get_context(self): # Get the UsdContext we are attached to return omni.usd.get_context() def _notice_changed(self, notice: Usd.Notice, stage: Usd.Stage) -> None: """Called by Tf.Notice. Used when the current selected object changes in some way.""" for p in notice.GetChangedInfoOnlyPaths(): for i, watched_path in enumerate(self._current_paths): if str(watched_path) in str(p.GetPrimPath()): self._item_changed(self.positions[i]) def get_name(self, index): stage = self._get_context().get_stage() prim = stage.GetPrimAtPath(self._current_paths[index]) return prim.GetCustomDataByKey('res_name') def get_num_prims(self): return len(self._current_paths) def get_position(self, index): """Returns position of currently selected object""" stage = self._get_context().get_stage() if not stage or not self._current_paths[index]: return [0, 0, 0] # Get position directly from USD prim = stage.GetPrimAtPath(self._current_paths[index]) box_cache = UsdGeom.BBoxCache(Usd.TimeCode.Default(), includedPurposes=[UsdGeom.Tokens.default_]) bound = box_cache.ComputeWorldBound(prim) range = bound.ComputeAlignedBox() bboxMin = range.GetMin() bboxMax = range.GetMax() # Find the top center of the bounding box and add a small offset upward. position = [(bboxMin[0] + bboxMax[0]) * 0.5, bboxMax[1] + TOP_OFFSET, (bboxMin[2] + bboxMax[2]) * 0.5] return position
5,078
Python
35.021276
110
0.611461
USDSync/MetaCloudExplorer/exts/meta.cloud.explorer.azure/meta/cloud/explorer/azure/stage_manager.py
# This class is intended to manage the stage # Using the requested view and the loaded dataset, we need to translate data into Prims # There are 2 variables here. The prims you want to see, and the way you want to see them # the data gives resource counts by subscription, group, or location. # it also contains resource group data and data about all the raw resources # we need to put the resource prims in groups on the stage, floating islands ? # I want to try and build a floating island for each resource group, IE a plane that prims can rest on. # The islands will be 2d planes in 3d space, big enough to accomidate the resources in said group. # the more resources the bigger the island. #we can then postion the islands in novel ways for exploration # Model related # Python built-in from textwrap import fill import time from cgitb import text import os.path from unicodedata import name import carb import locale from pathlib import Path # external python lib import csv import itertools # USD imports from pxr import Gf, UsdGeom, UsdLux, Usd, Sdf # omniverse import omni.client import omni.kit.app import omni.ui as ui import omni.usd import omni.kit.commands import shutil import os import asyncio import omni.kit.notification_manager as nm from .prim_utils import create_plane from .prim_utils import cleanup_prim_path from .prim_utils import get_font_size_from_length from .packer import Node, Block, Packer from omni.kit.window.file_importer import get_file_importer from omni.ui import color as cl #import utilities from .azure_resource_map import shape_usda_name from .data_manager import DataManager from .data_store import DataStore from .scatter_complex import distributePlanes #Import View Models from .group_aad import AADGrpView from .group_group import ResGrpView from .group_sub import SubGrpView from .group_location import LocGrpView from .group_type import TypeGrpView from .group_tag import TagGrpView CURRENT_PATH = Path(__file__).parent DATA_PATH = CURRENT_PATH.joinpath("temp") # The Stage Manager is responsible for drawing the stage based on the ViewType # It will start from scratch and create the Ground plane and groups on the plane # It will render the resources in each group on individual planes class StageManager(): def __init__(self): self._dataManager = DataManager.instance() # Get A Singleton instance self._dataStore = DataStore.instance() # Get A Singleton instance #self._dataManager.add_model_changed_callback(self.model_changed) self.stage_unit_per_meter = 1 #Get Composition Options from UI try: self._scale = self._dataStore._scale_model except: self._scale=1.0 try: self._use_packing_algo = self._dataStore._use_packing_algo except: self._use_packing_algo = False try: self._use_symmetric_planes = self._dataStore._use_symmetric_planes except: self._use_symmetric_planes = False try: self._last_view_type = self._dataStore._last_view_type except: self._last_view_type = "ByGroup" if self._last_view_type is None: self._last_view_type = "ByGroup" self._upAxis="Z" self._shapeUpAxis="Z" self.ActiveView = self.SetActiveView(self._last_view_type) def SetActiveView(self, viewType:str): #Set a subclass to handle the View Creation if viewType == "ByGroup": view = ResGrpView(viewPath="RGrps", scale=self._scale, upAxis=self._upAxis, shapeUpAxis=self._shapeUpAxis, symPlanes=self._dataStore._symmetric_planes_model.as_bool, binPack=self._use_packing_algo) if viewType == "ByLocation": view = LocGrpView(viewPath="Locs", scale=self._scale, upAxis=self._upAxis, shapeUpAxis=self._shapeUpAxis, symPlanes=self._dataStore._symmetric_planes_model.as_bool, binPack=self._use_packing_algo) if viewType == "ByType": view = TypeGrpView(viewPath="Types", scale=self._scale, upAxis=self._upAxis, shapeUpAxis=self._shapeUpAxis, symPlanes=self._dataStore._symmetric_planes_model.as_bool, binPack=self._use_packing_algo) if viewType == "BySub": view = SubGrpView(viewPath="Subs", scale=self._scale, upAxis=self._upAxis, shapeUpAxis=self._shapeUpAxis, symPlanes=self._dataStore._symmetric_planes_model.as_bool, binPack=self._use_packing_algo) if viewType == "ByTag": view = TagGrpView(viewPath="Tags", scale=self._scale, upAxis=self._upAxis, shapeUpAxis=self._shapeUpAxis, symPlanes=self._dataStore._symmetric_planes_model.as_bool, binPack=self._use_packing_algo) return view # def model_changed(): # pass #Invoked from UI - Show the Stages based on the View. def ShowStage(self, viewType:str): #Reset view data self._dataStore._lcl_sizes = [] self._dataStore._lcl_groups = [] self._dataStore._lcl_resources = [] self.ActiveView = self.SetActiveView(viewType) #populate the stage self.ActiveView.initializeStage(self.stage_unit_per_meter) #Base Method self.ActiveView.calcGroupPlaneSizes() #Abstract Method self.ActiveView.calulateCosts() #Abstract Method transforms = self.getTransforms() #Cooredinates for the group planes #sort the groups to add largest first self._dataStore._lcl_groups.sort(key=lambda element: element['size'], reverse=True) self._dataStore._lcl_sizes.sort(reverse=True) asyncio.ensure_future(self.AddLightsToStage()) #Create the groups in an async loop grpCnt = len(self._dataStore._lcl_groups) if (grpCnt) >0 : asyncio.ensure_future(self.ActiveView.CreateGroups(transforms=transforms)) self.ActiveView.loadResources() #Abstract Method self.sendNotify("Stage loading complete: " + str(grpCnt) + " groups loaded.", nm.NotificationStatus.INFO) #Load the resources by group def LoadResources(self, viewType:str): self.ActiveView = self.SetActiveView(viewType) self.ActiveView.initializeStage(self.stage_unit_per_meter) #Base Method self.ActiveView.calcGroupPlaneSizes() #Abstract Method self.ActiveView.calulateCosts() #Abstract Method #View is already set, show resources for specific or all paths if self.ActiveView is None: self.ActiveView = self.SetActiveView(self._last_view_type) self.ActiveView.loadResources() #Abstract Method #Gets the x,y,z coordinates to place the grouping planes def getTransforms(self): if (self._dataStore._use_packing_algo): #Use Packer Algorithm to determine positioning transforms = [] blocks = [] if len(self._dataStore._lcl_sizes) >0: sorted_sizes = sorted(self._dataStore._lcl_sizes, reverse=True) for size in sorted_sizes: sz = (size*2) #double the size end to end blocks.append(Block((sz,sz))) pack = Packer() pack.fit(blocks) for block in blocks: if block.fit: fitX = block.fit.location[0] fitY = block.fit.location[1] fitZ = 0 transforms.append(Gf.Vec3f(fitX, fitY ,fitZ)) #print("size: {} loc: {},{}".format(str(block.size[0]), str(block.fit.location[0]), str(block.fit.location[1]))) else: print("not fit: {}".format(block.size[0])) return transforms else: #Use the scatter distribution method maxDims = (self._dataStore._options_count_models[0].as_float * self._dataStore._options_count_models[1].as_float * self._dataStore._options_count_models[2].as_float) grpCnt = len(self._dataStore._lcl_groups) if grpCnt > maxDims: self.sendNotify("Not enough dimensions for ..." + str(grpCnt) + "res groups, Max Dims: " + str(maxDims), nm.NotificationStatus.WARNING) return if grpCnt >0: #Use Customized Scatter algorithm get coordinates for varying sized planes transforms = distributePlanes( UpAxis=self._upAxis, count=[m.as_int for m in self._dataStore._options_count_models], distance=[m.as_float for m in self._dataStore._options_dist_models], sizes=self._dataStore._lcl_sizes, randomization=[m.as_float for m in self._dataStore._options_random_models], seed=0, scaleFactor=self._dataStore._composition_scale_model.as_float) return transforms async def AddLightsToStage(self): stage = omni.usd.get_context().get_stage() try: if stage.GetPrimAtPath('/Environment/sky'): omni.kit.commands.execute('DeletePrimsCommand', paths=['/Environment/sky']) except: pass #ignore this await omni.kit.app.get_app().next_update_async() omni.kit.commands.execute('CreateDynamicSkyCommand', sky_url='http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Skies/Dynamic/NightSky.usd', sky_path='/Environment/sky') omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path('/Environment/sky.xformOp:rotateZYX'), value=Gf.Vec3f(90.0, 0.0, 0.0), prev=Gf.Vec3f(0.0, 0.0, 0.0)) def Select_Planes(self): if self.ActiveView is None: self.ActiveView = self.SetActiveView(self._last_view_type) self.ActiveView.selectGroupPrims() else: self.ActiveView.selectGroupPrims() def get_size(self, element): return element['size'] def ShowCosts(self): if self.ActiveView is None: self.ActiveView = self.SetActiveView(self._last_view_type) asyncio.ensure_future(self.ActiveView.showHideCosts()) # Set Color # next_shape.GetDisplayColorAttr().Set( # category_colors[int(cluster) % self.max_num_clusters]) def clicked_ok(self): pass def sendNotify(self, message:str, status:nm.NotificationStatus): # https://docs.omniverse.nvidia.com/py/kit/source/extensions/omni.kit.notification_manager/docs/index.html?highlight=omni%20kit%20notification_manager# import omni.kit.notification_manager as nm ok_button = nm.NotificationButtonInfo("OK", on_complete=self.clicked_ok) nm.post_notification( message, hide_after_timeout=True, duration=5, status=status, button_infos=[] ) #log the vectors def log_transforms(self, vectors): for v in vectors: logdata = str(vectors[v][0]) + "," + str(vectors[v][1]) + "," + str(vectors[v][2]) print(logdata)
11,398
Python
36.49671
177
0.631953