file_path
stringlengths
21
202
content
stringlengths
19
1.02M
size
int64
19
1.02M
lang
stringclasses
8 values
avg_line_length
float64
5.88
100
max_line_length
int64
12
993
alphanum_fraction
float64
0.27
0.93
MomentFactory/Omniverse-Lidar-Live-Synthetic-Data/source/extensions/mf.ov.lidar_live_synth/config/extension.toml
[package] version = "0.2.0" title = "MF Lidar live synthetic data" description = "Send real-time Lidar synthetic point cloud data from Omniverse to third party software." category = "Graph" keywords = ["lidar", "UDP", "omnigraph", "Graph", "Node", "OmniGraph", "synthetic", "realtime"] preview_image = "data/preview.png" icon = "data/icon.png" changelog = "docs/CHANGELOG.md" readme = "docs/README.md" authors = ["Moment Factory","Frederic Lestage","Steven Beliveau"] repository = "https://github.com/MomentFactory/Omniverse-Lidar-extension" [dependencies] "omni.graph" = {} [[python.module]] name = "mf.ov.lidar_live_synth" [[native.plugin]] path = "bin/*.plugin" [documentation] pages = [ "docs/README.md", "docs/CHANGELOG.md", ] [package.target] kit = ["105.1"] [package.writeTarget] kit = true python = false
829
TOML
22.055555
103
0.694813
MomentFactory/Omniverse-Lidar-Live-Synthetic-Data/source/extensions/mf.ov.lidar_live_synth/plugins/mf.ov.lidar_live_synth/LidarLiveSyntheticDataExtension.cpp
#define CARB_EXPORTS #include <carb/PluginUtils.h> #include <omni/ext/IExt.h> #include <omni/graph/core/IGraphRegistry.h> #include <omni/graph/core/ogn/Database.h> #include <omni/graph/core/ogn/Registration.h> // Standard plugin definitions required by Carbonite. const struct carb::PluginImplDesc pluginImplDesc = { "mf.ov.lidar_live_synth.plugin", "MF Lidar live synthetic data.", "MF", carb::PluginHotReload::eEnabled, "dev" }; // These interface dependencies are required by all OmniGraph node types CARB_PLUGIN_IMPL_DEPS(omni::graph::core::IGraphRegistry, omni::fabric::IPath, omni::fabric::IToken) // This macro sets up the information required to register your node type definitions with OmniGraph DECLARE_OGN_NODES() namespace mf { namespace ov { namespace lidar_live_synth { class LidarLiveSyntheticDataExtension : public omni::ext::IExt { public: void onStartup(const char* extId) override { // This macro walks the list of pending node type definitions and registers them with OmniGraph INITIALIZE_OGN_NODES() } void onShutdown() override { // This macro walks the list of registered node type definitions and deregisters all of them. This is required // for hot reload to work. RELEASE_OGN_NODES() } private: }; } } } CARB_PLUGIN_IMPL(pluginImplDesc, mf::ov::lidar_live_synth::LidarLiveSyntheticDataExtension) void fillInterface(mf::ov::lidar_live_synth::LidarLiveSyntheticDataExtension& iface) { }
1,622
C++
26.982758
118
0.676326
MomentFactory/Omniverse-Lidar-Live-Synthetic-Data/source/extensions/mf.ov.lidar_live_synth/plugins/nodes/OgnBeamToOusterUDPNode.cpp
#include <OgnBeamToOusterUDPNodeDatabase.h> #include <chrono> #define WIN32_LEAN_AND_MEAN #define _WINSOCK_DEPRECATED_NO_WARNINGS #ifdef _WIN32 #include <Winsock2.h> #else #include <arpa/inet.h> #include <netdb.h> #include <netinet/in.h> #include <sys/select.h> #include <sys/socket.h> #include <sys/types.h> #define SOCKET int #define INVALID_SOCKET (SOCKET)(~0) #define SOCKET_ERROR (-1) #define closesocket close #define SOCKADDR sockaddr #endif namespace mf { namespace ov { namespace lidar_live_synth { static const int kColumnsPerPacket = 16; static const float kPi = 3.14159265359f; static const float kTwoPi = kPi * 2.0f; static const float kDegToRad = kTwoPi / 360.0f; static const int kOusterNumRotAngles = 90112; static const float kOusterNumRotAnglesOverTwoPi = kOusterNumRotAngles / kTwoPi; class OgnBeamToOusterUDPNode { int m_frameId{ 0 }; #pragma pack(push,4) // Force packing in 4-byte packs (Words) struct OusterChannelDataBlock { unsigned int rangemm; unsigned short reflectivity; unsigned short signal_photons; unsigned short noise_photons; unsigned short unused; OusterChannelDataBlock() : rangemm(0) , reflectivity(0) , signal_photons(0) , noise_photons(0) , unused(0) {} }; template <int NUMROWS> struct OusterAzimuthBlock { unsigned long long timeStamp; // Word 0,1 unsigned short measurementId; // Word 2[0:15] unsigned short frameId; // Word 2[16:31] unsigned int encoderCount; // Word 3 OusterChannelDataBlock channelDataBlock[NUMROWS]; // Word [4:195] in groups of 3 unsigned int azimuthDataBlockStatus; // word 196 OusterAzimuthBlock() : timeStamp(0) , measurementId(0) , frameId(0) , encoderCount(0) , channelDataBlock{} , azimuthDataBlockStatus(0) {} }; template <int NUMROWS> struct OusterDataPacket { OusterAzimuthBlock<NUMROWS> block[16]; // Each packet consists of 16 azimuth blocks OusterDataPacket() :block{} {} }; #pragma pack(pop) class OgnBeamToOusterUDPNodeSocket { public: OgnBeamToOusterUDPNodeSocket() : SendSocket(INVALID_SOCKET) , isBroadcastSocket(false) {} virtual ~OgnBeamToOusterUDPNodeSocket() { if (SendSocket != INVALID_SOCKET) { closesocket(SendSocket); } } bool prepare(OgnBeamToOusterUDPNodeDatabase& db) { if (isBroadcastSocket != db.inputs.broadcast()) { closesocket(SendSocket); SendSocket = INVALID_SOCKET; } if (SendSocket == INVALID_SOCKET) { SendSocket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); if (SendSocket == INVALID_SOCKET) { db.logError("Error in OgnBeamToOusterUDPNode opening socket : %d", SendSocket); return false; } if (db.inputs.broadcast()) { char broadcast = 1; int iResult = setsockopt(SendSocket, SOL_SOCKET, SO_BROADCAST, &broadcast, sizeof(broadcast)); if (!iResult) { closesocket(SendSocket); SendSocket = INVALID_SOCKET; db.logError("Error in OgnBeamToOusterUDPNode setting socket options : %d", iResult); return false; } } isBroadcastSocket = db.inputs.broadcast(); } RecvAddr.sin_family = AF_INET; RecvAddr.sin_port = htons(db.inputs.port()); std::string ipAddress = db.inputs.ip_address(); RecvAddr.sin_addr.s_addr = inet_addr(ipAddress.data()); return true; } template <int NUMROWS> bool send(const OusterDataPacket<NUMROWS>& packet, OgnBeamToOusterUDPNodeDatabase& db) { int iResult = sendto(SendSocket, reinterpret_cast<const char*>(&packet), sizeof(packet), 0, (SOCKADDR*)&RecvAddr, sizeof(RecvAddr)); if (iResult == SOCKET_ERROR) { db.logError("Error in OgnBeamToOusterUDPNode sending data on socket : %d", iResult); return false; } return true; } private: SOCKET SendSocket; sockaddr_in RecvAddr; bool isBroadcastSocket; }; OgnBeamToOusterUDPNodeSocket m_ognBeamToOusterUDPNodeSocket; template<int NUMROWS> static bool computeForSize(OgnBeamToOusterUDPNodeDatabase& db) { auto& state = db.internalState<OgnBeamToOusterUDPNode>(); const auto& linearDepthData = db.inputs.linearDepthData(); const int& numCols = db.inputs.numCols(); const float& azimuthStart = db.inputs.azimuthRange()[0] + kTwoPi + kTwoPi; const float& horizontalStepInRads = -1.0f * db.inputs.horizontalResolution() * kDegToRad; const int& frameId = state.m_frameId % 65536; try { if (!state.m_ognBeamToOusterUDPNodeSocket.prepare(db)) { return false; } int measurementId = 0; OusterDataPacket<NUMROWS> packet; int currentChunkColumn = 0; // We need to send data in ascending angle (encoder_count) order // Data is in right-to-left order, we need to iterate left-to-right // We also need to start at the middle (center) of the data which is encoderCount 0 int colEndIndex = (numCols - 1) / 2; int colStartIndex = colEndIndex + numCols; for (int tempColIndex = colStartIndex; tempColIndex > colEndIndex; tempColIndex--) { int colIndex = tempColIndex % numCols; // This assumes consistent input data across azimuthRange, horizontalResolution, numCols, numRows and linearDepthData size int currentEncoderCount = int((azimuthStart + horizontalStepInRads * tempColIndex) * kOusterNumRotAnglesOverTwoPi); if (currentEncoderCount < 0 || currentEncoderCount >= kOusterNumRotAngles) { db.logError("currentEncoderCount must be between 0 and %d, not %d", kOusterNumRotAngles, currentEncoderCount); return false; } // If previous chunk is complete, start new one if (currentChunkColumn == kColumnsPerPacket) { state.m_ognBeamToOusterUDPNodeSocket.send<NUMROWS>(packet, db); packet = OusterDataPacket<NUMROWS>(); currentChunkColumn = 0; } packet.block[currentChunkColumn].timeStamp = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now().time_since_epoch()).count(); packet.block[currentChunkColumn].measurementId = measurementId; packet.block[currentChunkColumn].frameId = frameId; packet.block[currentChunkColumn].encoderCount = currentEncoderCount; measurementId = (measurementId + 1) % 65536; int colIndexStart = colIndex * NUMROWS; for (int rowIndex = 0; rowIndex < NUMROWS; rowIndex++) { packet.block[currentChunkColumn].channelDataBlock[rowIndex].rangemm = (int)(linearDepthData[colIndexStart + rowIndex] * 1000.0f); packet.block[currentChunkColumn].channelDataBlock[rowIndex].signal_photons = 0xFFFF; //0xFFFF means valid } packet.block[currentChunkColumn].azimuthDataBlockStatus = 0xFFFFFFFF; //0xFFFFFFFF means valid currentChunkColumn++; } if (currentChunkColumn != 0) { for (int extraColumnIndex = currentChunkColumn; extraColumnIndex < kColumnsPerPacket; extraColumnIndex++) { packet.block[extraColumnIndex].timeStamp = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now().time_since_epoch()).count(); packet.block[extraColumnIndex].measurementId = measurementId; packet.block[extraColumnIndex].frameId = frameId; packet.block[extraColumnIndex].encoderCount = kOusterNumRotAngles; } state.m_ognBeamToOusterUDPNodeSocket.send<NUMROWS>(packet, db); } } catch (...) { db.logError("Error in OgnBeamToOusterUDPNode::compute"); return false; } state.m_frameId++; // Always enable the output execution db.outputs.execOut() = omni::graph::core::ExecutionAttributeState::kExecutionAttributeStateEnabled; // Even if inputs were edge cases like empty arrays, correct outputs mean success return true; } public: static bool compute(OgnBeamToOusterUDPNodeDatabase& db) { // TODO: why is state declared here // auto& state = db.internalState<OgnBeamToOusterUDPNode>(); const int& numRows = db.inputs.numRows(); switch (numRows) { case 16: return computeForSize<16>(db); break; case 32: return computeForSize<32>(db); break; case 64: return computeForSize<64>(db); break; case 128: return computeForSize<128>(db); break; } db.logError("Row count must be either 16, 32, 64 or 128, not %d", numRows); return false; } }; // This macro provides the information necessary to OmniGraph that lets it automatically register and deregister // your node type definition. REGISTER_OGN_NODE() } } }
10,237
C++
32.348534
149
0.58142
MomentFactory/Omniverse-Lidar-Live-Synthetic-Data/source/extensions/mf.ov.lidar_live_synth/docs/CHANGELOG.md
# Changelog ## [0.2.0] - 2023-12-20 ### Modified - Adapted for compatibility with kit 105 - Enhanced documentation ### Added - Linux support thanks to [@Samahu](https://github.com/Samahu)'s PR on Github ## [0.1.3] - 2023-08-30 ### Changed - Version bump for registry publishing ## [0.1.2] - 2023-08-30 ### Added - New example with more Lidars ### Modified - Now comes as C++ for maximum performance. ## [0.1.1] - 2023-05-09 ### Added - Documentation ### Modified - Name of the Node - Icon ## [0.1.0] - 2023-05-09 ### Added - Action Graph Node that sends Isaac Lidar Point Cloud data in UDP
603
Markdown
14.894736
77
0.658375
MomentFactory/Omniverse-Lidar-Live-Synthetic-Data/source/extensions/mf.ov.lidar_live_synth/docs/README.md
# MF Lidar live synthetic data [mf.ov.lidar_live_synth] Adds an Action Graph Node ("Generic/Beam to Ouster UDP") to send Isaac beam data via the Ouster(tm) UDP procotol. This allows any third party software implementing Ouster(tm) lidars to be connected to simulated sensors instead of physical sensors. Developped for kit 105.1 and currently working only in Isaac Sim. This extensions provides pre-built binaries for Windows and Linux x86_64. You may want to compile from the [source code](https://github.com/MomentFactory/Omniverse-Lidar-Live-Synthetic-Data)
562
Markdown
69.374991
133
0.798932
openhackathons-org/End-to-End-AI-for-Science/CONTRIBUTING.md
Contributing ------------ Please use the following guidelines when contributing to this project. Before contributing significant changes, please begin a discussion of the desired changes via a GitHub Issue to prevent doing unnecessary or overlapping work. ## License The preferred license for source code contributed to this project is the Apache License 2.0 (https://www.apache.org/licenses/LICENSE-2.0) and for documentation, including Jupyter notebooks and text documentation, is the Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/). Contributions under other, compatible licenses will be considered on a case-by-case basis. ## Styling Please use the following style guidelines when making contributions. ### Source Code * Tab indentation, no spaces * To the extent possible, variable names should be descriptive * Code should be documentation with detail like what function does and returns making the code readable. The code should also have proper license at the beginning of the file. * The following file extensions should be used appropriately: * Python = .py ### Jupyter Notebooks & Markdown * When they appear inline with the text; directive names, clauses, function or subroutine names, variable names, file names, commands and command-line arguments should appear between two backticks. * Code blocks should begin with three backticks and either 'python' or 'yaml' to enable appropriate source formatting and end with three backticks. * Leave an empty line before and after the codeblock. Emphasis, including quotes made for emphasis and introduction of new terms should be highlighted between a single pair of asterisks * A level 1 heading should appear at the top of the notebook as the title of the notebook. * A horizontal rule should appear between sections that begin with a level 2 heading. Please refer to the following template for jupyter notebook styling in the github repository:misc/jupyter_lab_template ## Contributing Labs/Modules ### Directory stucture for Github Before starting to work on new lab it is important to follow the recommended git structure as shown below to avoid reformatting. Each lab will have following files/directories consisting of training material for the lab. * jupyter_notebook folder: Consists of jupyter notebooks and its corresponding images. * source_code folder: Source codes are stored in a separate directory because sometime not all clusters may support jupyter notebooks. During such bootcamps, we should be able to use the source codes directly from this directory. Source code folder may optionally contain Makefile especially for HPC labs. * presentations: Consists of presentations for the labs ( pdf format is preferred ) * Dockerfile and Singularity: Each lab should have both Docker and Singularity recipes. The lab optionally may also add custom license in case of any deviation from the top level directory license ( Apache 2.0 ). The base of the module contains individual subdirectory containing versions of the module for languages respectively(C/C++/Fortran…). Each of these directories should contain a directory for individual language translation provided (English, for instance). Each lab translation and programming language combination should have a solutions directory containing correct solutions Additionally there are two folders "experimental" and "archived" for labs covering features which are in early access phase ( not stable ) or deprecated features repectively. ### Git Branching Adding a new feature/lab will follow a forking workflow. Which means a feature branch development will happen on a forked repo which later gets merged into our original project (OpenHackathons.org) repository. ![Git Branching Workflow](workspace/python/jupyter_notebook/images/git_branching.jpg) The 5 main steps depicted in image above are as follows: 1. Fork: To create a new lab/feature the repository must be forked. Fork will create a snapshot of repository at the time it was forked. Any new feature/lab that will be developed should be based on the develop branch of the repository. 2. Clone: Developer can than clone this new repository to local machine Create Feature Branch: Create a new branch with a feature name in which your changes will be done. Recommend naming convention of feature branch is naming convention for branch: <feature_name>. The new changes that developer makes can be added, committed and pushed 3. Push: After the changes are committed, the developer pushes the changes to the remote branch. Push command helps the local changes to github repository 4. Pull: Submit a pull request. Upon receiving pull request a Hackathon team reviewer/owner will review the changes and upon accepting it can be merged into the develop branch of GpuHacakthons.org Git Branch details are as follows: * main branch: Consists of the stable branch. * origin/main to be the main branch where the source code of HEAD always reflects a production-ready state * Merge request is possible through: develop branch * develop branch: branched from master branch * Must branch from: main branch * Must merge back into: main branch * It is the main development branch where the source code of HEAD always reflects a state with the latest delivered development changes for the next release. * When the source code in the develop branch reaches a stable point and is ready to be released, all of the changes should be merged back into master somehow and then tagged with a release number * All feature development should happen by forking and branching from develop branch only.
5,650
Markdown
76.410958
502
0.80354
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import gdown import os ## FCN Dataset url = 'https://drive.google.com/uc?id=1mSN6eLqPYEo9d9pBjSGzQ-ocLd8itP0P&export=download' output = str(os.path.realpath(os.path.dirname(__file__)))+ '/fourcastnet/dataset.zip' gdown.cached_download(url, output, quiet=False,proxy=None,postprocess=gdown.extractall) os.remove(output) ## FCN Pre-trained url = 'https://drive.google.com/uc?id=1oSkK69LGP3DfU2tlH5iaejOh94VNsMDu&export=download' output = str(os.path.realpath(os.path.dirname(__file__)))+ '/../jupyter_notebook/FourCastNet/pre_trained.zip' gdown.cached_download(url, output, quiet=False,proxy=None,postprocess=gdown.extractall) os.remove(output) ## NS Data url = 'https://drive.google.com/uc?id=1IXEGbM3NOO6Dig1sxG1stHubwb09-D2N&export=download' output = str(os.path.realpath(os.path.dirname(__file__)))+ '/navier_stokes/dataset.zip' gdown.cached_download(url, output, quiet=False,proxy=None,postprocess=gdown.extractall) os.remove(output) ## FCN for Omniverse-P1 url = 'https://drive.google.com/uc?id=16YqSnstqoSJdgBzerbzYIkYagwS12lK3&export=download' output = str(os.path.realpath(os.path.dirname(__file__)))+ '/FCN.zip' gdown.cached_download(url, output, quiet=False,proxy=None,postprocess=gdown.extractall) os.remove(output) ## FCN for Omniverse-P2 url = 'https://drive.google.com/uc?id=1lSSx8eKfqCcHAbDvXTeUMoZGHfVQe-HG&export=download' output = str(os.path.realpath(os.path.dirname(__file__)))+ '/FCN/dataset.zip' gdown.cached_download(url, output, quiet=False,proxy=None,postprocess=gdown.extractall) os.remove(output) ## Download and Install Omniverse url = 'https://drive.google.com/uc?id=1DugS2IbHhBPyCE-EuZczLHBZnlnFViIm&export=download' output = str(os.path.realpath(os.path.dirname(__file__)))+'/ov.zip' gdown.cached_download(url, output, quiet=False,proxy=None,postprocess=gdown.extractall) os.remove(output)
2,958
Python
46.725806
110
0.772481
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/spring_mass/spring_mass_solver.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import numpy as np from sympy import Symbol, Eq import modulus from modulus.sym.hydra import ModulusConfig, instantiate_arch from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_1d import Point1D from modulus.sym.geometry import Parameterization from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseBoundaryConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.key import Key from modulus.sym.node import Node from spring_mass_ode import SpringMass @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on sm = SpringMass(k=(2, 1, 1, 2), m=(1, 1, 1)) sm_net = instantiate_arch( input_keys=[Key("t")], output_keys=[Key("x1"), Key("x2"), Key("x3")], cfg=cfg.arch.fully_connected, ) nodes = sm.make_nodes() + [ sm_net.make_node(name="spring_mass_network", jit=cfg.jit) ] # add constraints to solver # make geometry geo = Point1D(0) t_max = 10.0 t_symbol = Symbol("t") x = Symbol("x") time_range = {t_symbol: (0, t_max)} # make domain domain = Domain() # initial conditions IC = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"x1": 1.0, "x2": 0, "x3": 0, "x1__t": 0, "x2__t": 0, "x3__t": 0}, batch_size=cfg.batch_size.IC, lambda_weighting={ "x1": 1.0, "x2": 1.0, "x3": 1.0, "x1__t": 1.0, "x2__t": 1.0, "x3__t": 1.0, }, parameterization=Parameterization({t_symbol: 0}), ) domain.add_constraint(IC, name="IC") # solve over given time period interior = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"ode_x1": 0.0, "ode_x2": 0.0, "ode_x3": 0.0}, batch_size=cfg.batch_size.interior, parameterization=Parameterization(time_range), ) domain.add_constraint(interior, "interior") # add validation data deltaT = 0.001 t = np.arange(0, t_max, deltaT) t = np.expand_dims(t, axis=-1) invar_numpy = {"t": t} outvar_numpy = { "x1": (1 / 6) * np.cos(t) + (1 / 2) * np.cos(np.sqrt(3) * t) + (1 / 3) * np.cos(2 * t), "x2": (2 / 6) * np.cos(t) + (0 / 2) * np.cos(np.sqrt(3) * t) - (1 / 3) * np.cos(2 * t), "x3": (1 / 6) * np.cos(t) - (1 / 2) * np.cos(np.sqrt(3) * t) + (1 / 3) * np.cos(2 * t), } validator = PointwiseValidator( nodes=nodes, invar=invar_numpy, true_outvar=outvar_numpy, batch_size=1024 ) domain.add_validator(validator) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
4,033
Python
31.532258
81
0.631044
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/spring_mass/spring_mass_ode.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from sympy import Symbol, Function, Number from modulus.sym.eq.pde import PDE class SpringMass(PDE): name = "SpringMass" def __init__(self, k=(2, 1, 1, 2), m=(1, 1, 1)): self.k = k self.m = m k1 = k[0] k2 = k[1] k3 = k[2] k4 = k[3] m1 = m[0] m2 = m[1] m3 = m[2] t = Symbol("t") input_variables = {"t": t} x1 = Function("x1")(*input_variables) x2 = Function("x2")(*input_variables) x3 = Function("x3")(*input_variables) if type(k1) is str: k1 = Function(k1)(*input_variables) elif type(k1) in [float, int]: k1 = Number(k1) if type(k2) is str: k2 = Function(k2)(*input_variables) elif type(k2) in [float, int]: k2 = Number(k2) if type(k3) is str: k3 = Function(k3)(*input_variables) elif type(k3) in [float, int]: k3 = Number(k3) if type(k4) is str: k4 = Function(k4)(*input_variables) elif type(k4) in [float, int]: k4 = Number(k4) if type(m1) is str: m1 = Function(m1)(*input_variables) elif type(m1) in [float, int]: m1 = Number(m1) if type(m2) is str: m2 = Function(m2)(*input_variables) elif type(m2) in [float, int]: m2 = Number(m2) if type(m3) is str: m3 = Function(m3)(*input_variables) elif type(m3) in [float, int]: m3 = Number(m3) self.equations = {} self.equations["ode_x1"] = m1 * (x1.diff(t)).diff(t) + k1 * x1 - k2 * (x2 - x1) self.equations["ode_x2"] = ( m2 * (x2.diff(t)).diff(t) + k2 * (x2 - x1) - k3 * (x3 - x2) ) self.equations["ode_x3"] = m3 * (x3.diff(t)).diff(t) + k3 * (x3 - x2) + k4 * x3
2,999
Python
34.294117
87
0.585195
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/spring_mass/spring_mass_inverse.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import torch import numpy as np from sympy import Symbol, Eq import modulus from modulus.sym.hydra import ModulusConfig, instantiate_arch from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_1d import Point1D from modulus.sym.geometry import Parameterization from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.key import Key from modulus.sym.node import Node from spring_mass_ode import SpringMass @modulus.sym.main(config_path="conf", config_name="config_inverse") def run(cfg: ModulusConfig) -> None: # prepare data t_max = 10.0 deltaT = 0.01 t = np.arange(0, t_max, deltaT) t = np.expand_dims(t, axis=-1) invar_numpy = {"t": t} outvar_numpy = { "x1": (1 / 6) * np.cos(t) + (1 / 2) * np.cos(np.sqrt(3) * t) + (1 / 3) * np.cos(2 * t), "x2": (2 / 6) * np.cos(t) + (0 / 2) * np.cos(np.sqrt(3) * t) - (1 / 3) * np.cos(2 * t), "x3": (1 / 6) * np.cos(t) - (1 / 2) * np.cos(np.sqrt(3) * t) + (1 / 3) * np.cos(2 * t), } outvar_numpy.update({"ode_x1": np.full_like(invar_numpy["t"], 0)}) outvar_numpy.update({"ode_x2": np.full_like(invar_numpy["t"], 0)}) outvar_numpy.update({"ode_x3": np.full_like(invar_numpy["t"], 0)}) # make list of nodes to unroll graph on sm = SpringMass(k=(2, 1, 1, "k4"), m=("m1", 1, 1)) sm_net = instantiate_arch( input_keys=[Key("t")], output_keys=[Key("x1"), Key("x2"), Key("x3")], cfg=cfg.arch.fully_connected, ) invert_net = instantiate_arch( input_keys=[Key("t")], output_keys=[Key("m1"), Key("k4")], cfg=cfg.arch.fully_connected, ) nodes = ( sm.make_nodes( detach_names=[ "x1", "x1__t", "x1__t__t", "x2", "x2__t", "x2__t__t", "x3", "x3__t", "x3__t__t", ] ) + [sm_net.make_node(name="spring_mass_network", jit=cfg.jit)] + [invert_net.make_node(name="invert_network", jit=cfg.jit)] ) # add constraints to solver # make geometry geo = Point1D(0) t_symbol = Symbol("t") x = Symbol("x") time_range = {t_symbol: (0, t_max)} # make domain domain = Domain() # initial conditions IC = PointwiseBoundaryConstraint( nodes=nodes, geometry=geo, outvar={"x1": 1.0, "x2": 0, "x3": 0, "x1__t": 0, "x2__t": 0, "x3__t": 0}, batch_size=cfg.batch_size.IC, lambda_weighting={ "x1": 1.0, "x2": 1.0, "x3": 1.0, "x1__t": 1.0, "x2__t": 1.0, "x3__t": 1.0, }, parameterization=Parameterization({t_symbol: 0}), ) domain.add_constraint(IC, name="IC") # data and pdes data = PointwiseConstraint.from_numpy( nodes=nodes, invar=invar_numpy, outvar=outvar_numpy, batch_size=cfg.batch_size.data, ) domain.add_constraint(data, name="Data") # add monitors monitor = PointwiseMonitor( invar_numpy, output_names=["m1"], metrics={"mean_m1": lambda var: torch.mean(var["m1"])}, nodes=nodes, ) domain.add_monitor(monitor) monitor = PointwiseMonitor( invar_numpy, output_names=["k4"], metrics={"mean_k4": lambda var: torch.mean(var["k4"])}, nodes=nodes, ) domain.add_monitor(monitor) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
4,988
Python
29.796296
81
0.591419
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/spring_mass/conf/config_inverse.yaml
defaults : - modulus_default - arch: - fully_connected - scheduler: tf_exponential_lr - optimizer: adam - loss: sum - _self_ arch: fully_connected: layer_size: 256 save_filetypes : "vtk,npz" scheduler: decay_rate: 0.95 decay_steps: 100 training: rec_results_freq: 1000 max_steps : 10000 batch_size: IC: 10 data: 1000
364
YAML
12.518518
32
0.634615
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/projectile/projectile.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import numpy as np from sympy import Symbol, sin, cos, pi, Eq import torch import modulus from modulus.sym.hydra import instantiate_arch, ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_1d import Line1D,Point1D from modulus.sym.geometry.primitives_2d import Rectangle from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.inferencer import PointwiseInferencer from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.key import Key from modulus.sym.node import Node from projectile_eqn import ProjectileEquation from modulus.sym.utils.io import ( csv_to_dict, ValidatorPlotter, InferencerPlotter, ) @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: #Creating Nodes and Domain pe = ProjectileEquation() projectile_net = instantiate_arch( input_keys=[Key("t")], output_keys=[Key("x"),Key("y")], cfg=cfg.arch.fully_connected, ) nodes = pe.make_nodes() + [projectile_net.make_node(name="projectile_network")] x, y, t = Symbol("x"), Symbol("y"), Symbol("t") #Creating Geometry and adding constraint geo = Point1D(0) #make domain projectile_domain = Domain() #add constraint to solver v_o = 40.0 theta = np.pi/3 time_range = {t :(0.0,5.0)} #initial condition # Set boundary to be only left boundary IC = PointwiseBoundaryConstraint( nodes = nodes, geometry = geo, outvar = {"x": 0.0,"y":0.0, "x__t":v_o*cos(theta), "y__t":v_o*sin(theta)}, batch_size = cfg.batch_size.initial_x, parameterization = {t:0.0} ) projectile_domain.add_constraint(IC,"IC") #interior interior = PointwiseBoundaryConstraint( nodes = nodes, geometry = geo, outvar = {"ode_x":0.0,"ode_y":-9.81}, batch_size = cfg.batch_size.interior, parameterization = time_range, ) projectile_domain.add_constraint(interior,"interior") # Setup validator delta_T = 0.01 t_val = np.arange(0.,5.,delta_T) T_val = np.expand_dims(t_val.flatten(), axis = -1) X_val = v_o*np.cos(theta)*T_val Y_val = v_o*np.sin(theta)*T_val - 0.5*9.81*(T_val**2) invar_numpy = {"t": T_val} outvar_numpy = {"x":X_val, "y": Y_val} validator = PointwiseValidator( nodes=nodes, invar=invar_numpy, true_outvar=outvar_numpy, batch_size=128, plotter = ValidatorPlotter(), ) projectile_domain.add_validator(validator) # Setup Inferencer t_infe = np.arange(0,8,0.001) T_infe = np.expand_dims(t_infe.flatten(), axis = -1) invar_infe = {"t":T_infe} grid_inference = PointwiseInferencer( nodes=nodes, invar=invar_infe, output_names=["x","y"], batch_size=128, plotter=InferencerPlotter(), ) projectile_domain.add_inferencer(grid_inference, "inferencer_data") #make solver slv = Solver(cfg, projectile_domain) #start solve slv.solve() if __name__ == "__main__": run()
4,482
Python
25.370588
86
0.657073
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/projectile/conf/config.yaml
defaults : - modulus_default - arch: - fully_connected - scheduler: tf_exponential_lr - optimizer: adam - loss: sum - _self_ save_filetypes : "vtk,npz" scheduler: decay_rate: 0.95 decay_steps: 100 training: rec_validation_freq: 1000 rec_inference_freq: 2000 rec_monitor_freq: 1000 rec_constraint_freq: 2000 max_steps : 5000 batch_size: initial_x: 100 interior: 1000 graph: func_arch: true cuda_graphs: True cuda_graph_warmup: 20
479
YAML
14
32
0.670146
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/fourcastnet/fourcastnet.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # Script to train Fourcastnet on ERA5 # Ref: https://arxiv.org/abs/2202.11214 import modulus from modulus.sym.hydra.config import ModulusConfig from modulus.sym.key import Key from modulus.sym.domain import Domain from modulus.sym.domain.constraint import SupervisedGridConstraint from modulus.sym.domain.validator import GridValidator from modulus.sym.solver import Solver from modulus.sym.utils.io import GridValidatorPlotter from src.dataset import ERA5HDF5GridDataset from src.fourcastnet import FourcastNetArch from src.loss import LpLoss @modulus.sym.main(config_path="conf", config_name="config_FCN") def run(cfg: ModulusConfig) -> None: # load training/ test data channels = list(range(cfg.custom.n_channels)) train_dataset = ERA5HDF5GridDataset( cfg.custom.training_data_path, chans=channels, tstep=cfg.custom.tstep, n_tsteps=cfg.custom.n_tsteps, patch_size=cfg.arch.afno.patch_size, ) test_dataset = ERA5HDF5GridDataset( cfg.custom.test_data_path, chans=channels, tstep=cfg.custom.tstep, n_tsteps=cfg.custom.n_tsteps, patch_size=cfg.arch.afno.patch_size, n_samples_per_year=20, ) # define input/output keys input_keys = [Key(k, size=train_dataset.nchans) for k in train_dataset.invar_keys] output_keys = [Key(k, size=train_dataset.nchans) for k in train_dataset.outvar_keys] # make list of nodes to unroll graph on model = FourcastNetArch( input_keys=input_keys, output_keys=output_keys, img_shape=test_dataset.img_shape, patch_size=cfg.arch.afno.patch_size, embed_dim=cfg.arch.afno.embed_dim, depth=cfg.arch.afno.depth, num_blocks=cfg.arch.afno.num_blocks, ) nodes = [model.make_node(name="FCN")] # make domain domain = Domain() # add constraints to domain supervised = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset, batch_size=cfg.batch_size.grid, loss=LpLoss(), num_workers=cfg.custom.num_workers.grid, ) domain.add_constraint(supervised, "supervised") # add validator val = GridValidator( nodes, dataset=test_dataset, batch_size=cfg.batch_size.validation, plotter=GridValidatorPlotter(n_examples=5), num_workers=cfg.custom.num_workers.validation, ) domain.add_validator(val, "test") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
3,688
Python
33.157407
88
0.706345
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/fourcastnet/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #"Script to carry out Fourcastnet inference" import omegaconf import torch import logging import numpy as np from torch.utils.data import DataLoader, Sampler from modulus.sym.hydra import to_absolute_path from modulus.sym.key import Key from modulus.sym.distributed.manager import DistributedManager from src.dataset import ERA5HDF5GridDataset from src.fourcastnet import FourcastNetArch from src.metrics import Metrics logging.basicConfig(format="[%(levelname)s] - %(message)s", level=logging.INFO) var_key_dict = { 0: "u10", 1: "v10", 2: "t2m", 3: "sp", 4: "msl", 5: "t850", 6: "u1000", 7: "v1000", 8: "z1000", 9: "u850", 10: "v850", 11: "z850", 12: "u500", 13: "v500", 14: "z500", 15: "t500", 16: "z50", 17: "r500", 18: "r850", 19: "tcwv", } def to_device(tensor_dict): return { key: torch.as_tensor(value, dtype=torch.float32, device=device) for key, value in tensor_dict.items() } class SubsetSequentialBatchSampler(Sampler): """Custom subset sequential batch sampler for inferencer""" def __init__(self, subset): self.subset = subset def __iter__(self): for i in self.subset: yield [i] # batch size of 1 def __len__(self): return len(self.subset) # load configuration cfg = omegaconf.OmegaConf.load("conf/config_FCN.yaml") model_path = to_absolute_path("fcn_era5.pth") # get device device = DistributedManager().device # load test data test_dataset = ERA5HDF5GridDataset( cfg.custom.test_data_path, # Test data location e.g. /era5/20var/test chans=list(range(cfg.custom.n_channels)), tstep=cfg.custom.tstep, n_tsteps=1, # set to one for inference patch_size=cfg.arch.afno.patch_size, ) m = Metrics( test_dataset.img_shape, clim_mean_path="/data/stats/time_means.npy", # Path to climate mean device=device ) # define input/output keys input_keys = [Key(k, size=test_dataset.nchans) for k in test_dataset.invar_keys] output_keys = [Key(k, size=test_dataset.nchans) for k in test_dataset.outvar_keys] # create model model = FourcastNetArch( input_keys=input_keys, output_keys=output_keys, img_shape=test_dataset.img_shape, patch_size=cfg.arch.afno.patch_size, embed_dim=cfg.arch.afno.embed_dim, depth=cfg.arch.afno.depth, num_blocks=cfg.arch.afno.num_blocks, ) # load parameters model.load_state_dict(torch.load(model_path)) model.to(device) logging.info(f"Loaded model {model_path}") # define subsets of dataset to run inference nics = 180 # Number of 2 day correl time samples nsteps = 25 last = len(test_dataset) - 1 - nsteps * cfg.custom.tstep # Variable dictionary acc_recursive = {key: [] for key in var_key_dict.values()} rmse_recursive = {key: [] for key in var_key_dict.values()} # Normalization stats mu = torch.tensor(test_dataset.mu[0]).to(device) # shape [C, 1, 1] sd = torch.tensor(test_dataset.sd[0]).to(device) # shape [C, 1, 1] # run inference with torch.no_grad(): for ic in range(0, min([8 * nics + 1, last])): subset = cfg.custom.tstep * np.arange(nsteps) + ic if (ic + 1) % 8 == 0 or (ic + 1) % 36 == 0 or ic == 0: logging.info(f"Running IC at step {ic}") # get dataloader dataloader = DataLoader( dataset=test_dataset, batch_sampler=SubsetSequentialBatchSampler(subset), pin_memory=True, num_workers=1, worker_init_fn=test_dataset.worker_init_fn, ) acc_error = torch.zeros(nsteps, test_dataset.nchans) rmse_error = torch.zeros(nsteps, test_dataset.nchans) for tstep, (invar, true_outvar, _) in enumerate(dataloader): if tstep % 10 == 0: logging.info(f"ic: {ic} tstep: {tstep}/{nsteps}") # place tensors on device invar = to_device(invar) true_outvar = to_device(true_outvar) # 1. single step inference pred_outvar_single = model(invar) pred_single = sd * pred_outvar_single["x_t1"][0] # 2. recursive inference if tstep == 0: pred_outvar_recursive = model(invar) else: pred_outvar_recursive = model( {"x_t0": pred_outvar_recursive["x_t1"]} ) # get unormalised target / prediction true = sd * true_outvar["x_t1"][0] pred_recursive = sd * pred_outvar_recursive["x_t1"][0] # Calc metrics rmse_error[tstep] = m.weighted_rmse(pred_recursive, true).detach().cpu() acc_error[tstep] = m.weighted_acc(pred_recursive, true).detach().cpu() # Save fields into dictionary if (ic + 1) % 8 == 0 or (ic + 1) % 36 == 0 or ic == 0: for i, fld in var_key_dict.items(): # Fields with 9 day (36) dc time if fld == "z500" or fld == "t2m" or fld == "t850": if (ic + 1) % 36 == 0 or ic == 0: acc_recursive[fld].append(acc_error[:, i].numpy()) rmse_recursive[fld].append(rmse_error[:, i].numpy()) # Rest have regular 2 day (8) dc time else: if (ic + 1) % 8 == 0 or ic == 0: acc_recursive[fld].append(acc_error[:, i].numpy()) rmse_recursive[fld].append(rmse_error[:, i].numpy()) # Field stacking for var_dict in [acc_recursive, rmse_recursive]: for key, value in var_dict.items(): print(f"{len(value)} samples for field {key}") var_dict[key] = np.stack(value, axis=0) np.save("rmse_recursive", rmse_recursive) np.save("acc_recursive", acc_recursive)
7,069
Python
33.827586
88
0.610553
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/fourcastnet/src/fourcastnet.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Defines the FCN architecture""" import logging import torch from torch import Tensor from typing import List, Tuple, Dict from modulus.sym.models.afno.afno import AFNONet from modulus.sym.models.arch import Arch from modulus.sym.key import Key class FourcastNetArch(Arch): "Defines the FourcastNet architecture" def __init__( self, input_keys: List[Key], output_keys: List[Key], img_shape: Tuple[int, int], detach_keys: List[Key] = [], patch_size: int = 16, embed_dim: int = 256, depth: int = 4, num_blocks: int = 4, ) -> None: """Fourcastnet model. This is a simple wrapper for Modulus' AFNO model. The only difference is that FourcastNet needs multi-step training. This class allows the model to auto-regressively predict multiple timesteps Parameters (Same as AFNO) ---------- input_keys : List[Key] Input key list. The key dimension size should equal the variables channel dim. output_keys : List[Key] Output key list. The key dimension size should equal the variables channel dim. img_shape : Tuple[int, int] Input image dimensions (height, width) detach_keys : List[Key], optional List of keys to detach gradients, by default [] patch_size : int, optional Size of image patchs, by default 16 embed_dim : int, optional Embedded channel size, by default 256 depth : int, optional Number of AFNO layers, by default 4 num_blocks : int, optional Number of blocks in the frequency weight matrices, by default 4 """ super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys, ) # get number of timesteps steps to unroll assert ( len(self.input_keys) == 1 ), "Error, FourcastNet only accepts one input variable (x_t0)" self.n_tsteps = len(self.output_keys) logging.info(f"Unrolling FourcastNet over {self.n_tsteps} timesteps") # get number of input/output channels in_channels = self.input_keys[0].size out_channels = self.output_keys[0].size # intialise AFNO kernel self._impl = AFNONet( in_channels=in_channels, out_channels=out_channels, patch_size=(patch_size, patch_size), img_size=img_shape, embed_dim=embed_dim, depth=depth, num_blocks=num_blocks, ) def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: # prepare input tensor x = self.prepare_input( input_variables=in_vars, mask=self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=1, input_scales=self.input_scales, ) # unroll model over multiple timesteps ys = [] for t in range(self.n_tsteps): x = self._impl(x) ys.append(x) y = torch.cat(ys, dim=1) # prepare output dict return self.prepare_output( output_tensor=y, output_var=self.output_key_dict, dim=1, output_scales=self.output_scales, )
4,496
Python
35.560975
91
0.630338
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/fourcastnet/src/metrics.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import torch import numpy as np from typing import Tuple class Metrics: """Class used for computing performance related metrics. Expects predictions / targets to be of shape [C, H, W] where H is latitude dimension and W is longitude dimension. Metrics are computed for each channel separately. Parameters ---------- img_shape : Tuple[int] Shape of input image (resolution for fourcastnet) clim_mean_path : str, optional Path to total climate mean data, needed for ACC. By default "/era5/stats/time_means.npy" device : torch.device, optional Pytorch device model is on, by default 'cpu' """ def __init__( self, img_shape: Tuple[int], clim_mean_path: str = "/era5/stats/time_means.npy", device: torch.device = "cpu", ): self.img_shape = tuple(img_shape) self.device = device # Load climate mean value self.clim_mean = torch.as_tensor(np.load(clim_mean_path)) # compute latitude weighting nlat = img_shape[0] lat = torch.linspace(90, -90, nlat) lat_weight = torch.cos(torch.pi * (lat / 180)) lat_weight = nlat * lat_weight / lat_weight.sum() self.lat_weight = lat_weight.view(1, nlat, 1) # place on device if self.device is not None: self.lat_weight = self.lat_weight.to(self.device) self.clim_mean = self.clim_mean.to(self.device) def _check_shape(self, *args): # checks for shape [C, H, W] for x in args: assert x.ndim == 3 assert tuple(x.shape[1:]) == self.img_shape def weighted_acc(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: """Computes the anomaly correlation coefficient (ACC). The ACC calculation is weighted based on the latitude. Parameters ---------- pred : torch.Tensor [C, H, W] Predicted tensor target : torch.Tensor [C, H, W] Target tensor Returns ------- torch.Tensor [C] ACC values for each channel """ self._check_shape(pred, target) # subtract climate means (n_chans, img_x, img_y) = pred.shape clim_mean = self.clim_mean[0, 0:n_chans, 0:img_x] pred_hat = pred - clim_mean target_hat = target - clim_mean # Weighted mean pred_bar = torch.sum( self.lat_weight * pred_hat, dim=(1, 2), keepdim=True ) / torch.sum( self.lat_weight * torch.ones_like(pred_hat), dim=(1, 2), keepdim=True ) target_bar = torch.sum( self.lat_weight * target_hat, dim=(1, 2), keepdim=True ) / torch.sum( self.lat_weight * torch.ones_like(target_hat), dim=(1, 2), keepdim=True ) pred_diff = pred_hat - pred_bar target_diff = target_hat - target_bar # compute weighted acc # Ref: https://www.atmos.albany.edu/daes/atmclasses/atm401/spring_2016/ppts_pdfs/ECMWF_ACC_definition.pdf p1 = torch.sum(self.lat_weight * pred_diff * target_diff, dim=(1, 2)) p2 = torch.sum(self.lat_weight * pred_diff * pred_diff, dim=(1, 2)) p3 = torch.sum(self.lat_weight * target_diff * target_diff, dim=(1, 2)) m = p1 / torch.sqrt(p2 * p3) return m def weighted_rmse(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: """Computes RMSE weighted based on latitude Parameters ---------- pred : torch.Tensor [C, H, W] Predicted tensor target : torch.Tensor [C, H, W] Target tensor Returns ------- torch.Tensor [C] Weighted RSME values for each channel """ self._check_shape(pred, target) # compute weighted rmse m = torch.sqrt(torch.mean(self.lat_weight * (pred - target) ** 2, dim=(1, 2))) return m
5,098
Python
34.657342
113
0.616712
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/fourcastnet/src/dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import h5py import logging import numpy as np from typing import List from pathlib import Path from modulus.sym.hydra import to_absolute_path from modulus.sym.dataset import Dataset class ERA5HDF5GridDataset(Dataset): """Lazy-loading ERA5 dataset. Parameters ---------- data_dir : str Directory where ERA5 data is stored chans : List[int] Defines which ERA5 variables to load tstep : int Defines the size of the timestep between the input and output variables n_tsteps : int, optional Defines how many timesteps are included in the output variables Default is 1 patch_size : int, optional If specified, crops input and output variables so image dimensions are divisible by patch_size Default is None n_samples_per_year : int, optional If specified, randomly selects n_samples_per_year samples from each year rather than all of the samples per year Default is None stats_dir : str, optional Directory to test data statistic numpy files that have the global mean and variance """ def __init__( self, data_dir: str, chans: List[int], tstep: int = 1, n_tsteps: int = 1, patch_size: int = None, n_samples_per_year: int = None, stats_dir: str = None, ): self.data_dir = Path(to_absolute_path(data_dir)) print(self.data_dir) self.chans = chans self.nchans = len(self.chans) self.tstep = tstep self.n_tsteps = n_tsteps self.patch_size = patch_size self.n_samples_per_year = n_samples_per_year if stats_dir is None: self.stats_dir = self.data_dir.parent / "stats" # check root directory exists assert ( self.data_dir.is_dir() ), f"Error, data directory {self.data_dir} does not exist" assert ( self.stats_dir.is_dir() ), f"Error, stats directory {self.stats_dir} does not exist" # get all input data files self.data_paths = sorted(self.data_dir.glob("??????.h5")) for data_path in self.data_paths: logging.info(f"ERA5 file found: {data_path}") self.n_years = len(self.data_paths) logging.info(f"Number of months: {self.n_years}") # get total number of examples and image shape from the first file, # assuming other files have exactly the same format. logging.info(f"Getting file stats from {self.data_paths[0]}") with h5py.File(self.data_paths[0], "r") as f: self.n_samples_per_year_all = f["fields"].shape[0] self.img_shape = f["fields"].shape[2:] logging.info(f"Number of channels available: {f['fields'].shape[1]}") # get example indices to use if self.n_samples_per_year is None: self.n_samples_per_year = self.n_samples_per_year_all self.samples = [ np.arange(self.n_samples_per_year) for _ in range(self.n_years) ] else: if self.n_samples_per_year > self.n_samples_per_year_all: raise ValueError( f"n_samples_per_year ({self.n_samples_per_year}) > number of samples available ({self.n_samples_per_year_all})!" ) self.samples = [ np.random.choice( np.arange(self.n_samples_per_year_all), self.n_samples_per_year, replace=False, ) for _ in range(self.n_years) ] logging.info(f"Number of samples/month: {self.n_samples_per_year}") # get total length self.length = self.n_years * self.n_samples_per_year # adjust image shape if patch_size defined if self.patch_size is not None: self.img_shape = [s - s % self.patch_size for s in self.img_shape] logging.info(f"Input image shape: {self.img_shape}") # load normalisation values # has shape [1, C, 1, 1] self.mu = np.load(self.stats_dir / "global_means.npy")[:, self.chans] # has shape [1, C, 1, 1] self.sd = np.load(self.stats_dir / "global_stds.npy")[:, self.chans] assert ( self.mu.shape == self.sd.shape == (1, self.nchans, 1, 1) ), "Error, normalisation arrays have wrong shape" def worker_init_fn(self, iworker): super().worker_init_fn(iworker) # open all year files at once on worker thread self.data_files = [h5py.File(path, "r") for path in self.data_paths] @property def invar_keys(self): return ["x_t0"] @property def outvar_keys(self): return [f"x_t{(i+1)*self.tstep}" for i in range(self.n_tsteps)] def __getitem__(self, idx): # get local indices from global index year_idx = int(idx / self.n_samples_per_year) local_idx = int(idx % self.n_samples_per_year) in_idx = self.samples[year_idx][local_idx] # get output indices out_idxs = [] for i in range(self.n_tsteps): out_idx = in_idx + (i + 1) * self.tstep # if at end of dataset, just learn identity instead if out_idx > (self.n_samples_per_year_all - 1): out_idx = in_idx out_idxs.append(out_idx) # get data xs = [] for idx in [in_idx] + out_idxs: # get array # has shape [C, H, W] x = self.data_files[year_idx]["fields"][idx, self.chans] assert x.ndim == 3, f"Expected 3 dimensions, but got {x.shape}" # apply input / output normalisation (broadcasted operation) x = (x - self.mu[0]) / self.sd[0] # crop data if needed if self.patch_size is not None: x = x[..., : self.img_shape[0], : self.img_shape[1]] xs.append(x) # convert to tensor dicts invar = {"x_t0": xs[0]} outvar = {f"x_t{(i+1)*self.tstep}": x for i, x in enumerate(xs[1:])} invar = Dataset._to_tensor_dict(invar) outvar = Dataset._to_tensor_dict(outvar) # TODO: get rid to lambda weighting lambda_weighting = Dataset._to_tensor_dict( {k: np.ones_like(v) for k, v in outvar.items()} ) # lambda_weighting = Dataset._to_tensor_dict( # {k: np.array([1]) for k, v in outvar.items()} # ) return invar, outvar, lambda_weighting def __len__(self): return self.length
7,719
Python
36.294686
132
0.598523
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/fourcastnet/src/loss.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import torch from typing import Dict Tensor = torch.Tensor class LpLoss(torch.nn.Module): def __init__( self, d: float = 2.0, p: float = 2.0, ): """Relative Lp loss normalized seperately in the batch dimension. Expects inputs of the shape [B, C, ...] Parameters ---------- p : float, optional Norm power, by default 2.0 """ super(LpLoss, self).__init__() # Dimension and Lp-norm type are postive assert p > 0.0 self.p = p def _rel(self, x: torch.Tensor, y: torch.Tensor) -> float: num_examples = x.size()[0] xv = x.reshape(num_examples, -1) yv = y.reshape(num_examples, -1) diff_norms = torch.linalg.norm(xv - yv, ord=self.p, dim=1) y_norms = torch.linalg.norm(yv, ord=self.p, dim=1) return torch.mean(diff_norms / y_norms) def forward( self, invar: Dict[str, Tensor], pred_outvar: Dict[str, Tensor], true_outvar: Dict[str, Tensor], lambda_weighting: Dict[str, Tensor], step: int, ) -> Dict[str, float]: losses = {} for key, value in pred_outvar.items(): losses[key] = self._rel(pred_outvar[key], true_outvar[key]) return losses
2,433
Python
33.28169
73
0.648993
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/fourcastnet/conf/config_FCN.yaml
defaults : - modulus_default - arch: - afno - scheduler: cosine_annealing - optimizer: adam - loss: sum - _self_ arch: afno: patch_size: 8 embed_dim: 512 depth: 10 num_blocks: 8 optimizer: lr: 0.0005 scheduler: T_max: 80000 custom: n_channels: 20 tstep: 1 n_tsteps: 1 training_data_path: "/workspace/python/source_code/fourcastnet/data/train" # Training dataset path here test_data_path: "/workspace/python/source_code/fourcastnet/data/test" # Test dataset path here num_workers: grid: 4 validation: 4 tag: batch_size: grid: 1 validation: 1 training: amp: true rec_constraint_freq: 10000 rec_results_freq : 1000 save_network_freq: 1000 print_stats_freq: 100 summary_freq: 1000 max_steps : 71000
787
YAML
15.765957
105
0.662008
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/diffusion_1d/plot_results.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import numpy as np import matplotlib.pyplot as plt network_dir = "./outputs/diffusion_bar/validators/" data_1 = np.load(network_dir + "Val1.npz", allow_pickle=True) data_2 = np.load(network_dir + "Val2.npz", allow_pickle=True) data_1 = np.atleast_1d(data_1.f.arr_0)[0] data_2 = np.atleast_1d(data_2.f.arr_0)[0] plt.plot(data_1["x"][:, 0], data_1["pred_u_1"][:, 0], "--", label="u_1_pred") plt.plot(data_2["x"][:, 0], data_2["pred_u_2"][:, 0], "--", label="u_2_pred") plt.plot(data_1["x"][:, 0], data_1["true_u_1"][:, 0], label="u_1_true") plt.plot(data_2["x"][:, 0], data_2["true_u_2"][:, 0], label="u_2_true") plt.legend() plt.savefig("image_diffusion_problem_bootcamp")
1,801
Python
46.421051
77
0.716824
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/diffusion_1d/diffusion_bar.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import torch import numpy as np from sympy import Symbol, Eq, Function, Number import modulus from modulus.sym.hydra import instantiate_arch , ModulusConfig from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.geometry.primitives_1d import Line1D from modulus.sym.domain.constraint import ( PointwiseBoundaryConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.validator import PointwiseValidator from modulus.sym.domain.monitor import PointwiseMonitor from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.pde import PDE # params for domain L1 = Line1D(0, 1) L2 = Line1D(1, 2) D1 = 1e1 D2 = 1e-1 Tc = 100 Ta = 0 Tb = (Tc + (D1 / D2) * Ta) / (1 + (D1 / D2)) print(Ta) print(Tb) print(Tc) class Diffusion(PDE): name = "Diffusion" def __init__(self, T="T", D="D", Q=0, dim=3, time=True): # set params self.T = T self.dim = dim self.time = time # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # time t = Symbol("t") # make input variables input_variables = {"x": x, "y": y, "z": z, "t": t} if self.dim == 1: input_variables.pop("y") input_variables.pop("z") elif self.dim == 2: input_variables.pop("z") if not self.time: input_variables.pop("t") # Temperature assert type(T) == str, "T needs to be string" T = Function(T)(*input_variables) # Diffusivity if type(D) is str: D = Function(D)(*input_variables) elif type(D) in [float, int]: D = Number(D) # Source if type(Q) is str: Q = Function(Q)(*input_variables) elif type(Q) in [float, int]: Q = Number(Q) # set equations self.equations = {} self.equations["diffusion_" + self.T] = ( T.diff(t) - (D * T.diff(x)).diff(x) - (D * T.diff(y)).diff(y) - (D * T.diff(z)).diff(z) - Q ) class DiffusionInterface(PDE): name = "DiffusionInterface" def __init__(self, T_1, T_2, D_1, D_2, dim=3, time=True): # set params self.T_1 = T_1 self.T_2 = T_2 self.dim = dim self.time = time # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") normal_x, normal_y, normal_z = ( Symbol("normal_x"), Symbol("normal_y"), Symbol("normal_z"), ) # time t = Symbol("t") # make input variables input_variables = {"x": x, "y": y, "z": z, "t": t} if self.dim == 1: input_variables.pop("y") input_variables.pop("z") elif self.dim == 2: input_variables.pop("z") if not self.time: input_variables.pop("t") # Diffusivity if type(D_1) is str: D_1 = Function(D_1)(*input_variables) elif type(D_1) in [float, int]: D_1 = Number(D_1) if type(D_2) is str: D_2 = Function(D_2)(*input_variables) elif type(D_2) in [float, int]: D_2 = Number(D_2) # variables to match the boundary conditions (example Temperature) T_1 = Function(T_1)(*input_variables) T_2 = Function(T_2)(*input_variables) # set equations self.equations = {} self.equations["diffusion_interface_dirichlet_" + self.T_1 + "_" + self.T_2] = ( T_1 - T_2 ) flux_1 = D_1 * ( normal_x * T_1.diff(x) + normal_y * T_1.diff(y) + normal_z * T_1.diff(z) ) flux_2 = D_2 * ( normal_x * T_2.diff(x) + normal_y * T_2.diff(y) + normal_z * T_2.diff(z) ) self.equations["diffusion_interface_neumann_" + self.T_1 + "_" + self.T_2] = ( flux_1 - flux_2 ) @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # make list of nodes to unroll graph on diff_u1 = Diffusion(T="u_1", D=D1, dim=1, time=False) diff_u2 = Diffusion(T="u_2", D=D2, dim=1, time=False) diff_in = DiffusionInterface("u_1", "u_2", D1, D2, dim=1, time=False) diff_net_u_1 = instantiate_arch( input_keys=[Key("x")], output_keys=[Key("u_1")], cfg=cfg.arch.fully_connected, ) diff_net_u_2 = instantiate_arch( input_keys=[Key("x")], output_keys=[Key("u_2")], cfg=cfg.arch.fully_connected, ) nodes = ( diff_u1.make_nodes() + diff_u2.make_nodes() + diff_in.make_nodes() + [diff_net_u_1.make_node(name="u1_network", jit=cfg.jit)] + [diff_net_u_2.make_node(name="u2_network", jit=cfg.jit)] ) # make domain add constraints to the solver domain = Domain() # sympy variables x = Symbol("x") # right hand side (x = 2) Pt c rhs = PointwiseBoundaryConstraint( nodes=nodes, geometry=L2, outvar={"u_2": Tc}, batch_size=cfg.batch_size.rhs, criteria=Eq(x, 2), ) domain.add_constraint(rhs, "right_hand_side") # left hand side (x = 0) Pt a lhs = PointwiseBoundaryConstraint( nodes=nodes, geometry=L1, outvar={"u_1": Ta}, batch_size=cfg.batch_size.lhs, criteria=Eq(x, 0), ) domain.add_constraint(lhs, "left_hand_side") # interface 1-2 interface = PointwiseBoundaryConstraint( nodes=nodes, geometry=L1, outvar={ "diffusion_interface_dirichlet_u_1_u_2": 0, "diffusion_interface_neumann_u_1_u_2": 0, }, batch_size=cfg.batch_size.interface, criteria=Eq(x, 1), ) domain.add_constraint(interface, "interface") # interior 1 interior_u1 = PointwiseInteriorConstraint( nodes=nodes, geometry=L1, outvar={"diffusion_u_1": 0}, bounds={x: (0, 1)}, batch_size=cfg.batch_size.interior_u1, ) domain.add_constraint(interior_u1, "interior_u1") # interior 2 interior_u2 = PointwiseInteriorConstraint( nodes=nodes, geometry=L2, outvar={"diffusion_u_2": 0}, bounds={x: (1, 2)}, batch_size=cfg.batch_size.interior_u2, ) domain.add_constraint(interior_u2, "interior_u2") # validation data x = np.expand_dims(np.linspace(0, 1, 100), axis=-1) u_1 = x * Tb + (1 - x) * Ta invar_numpy = {"x": x} outvar_numpy = {"u_1": u_1} val = PointwiseValidator(nodes=nodes,invar=invar_numpy, true_outvar=outvar_numpy) domain.add_validator(val, name="Val1") # make validation data line 2 x = np.expand_dims(np.linspace(1, 2, 100), axis=-1) u_2 = (x - 1) * Tc + (2 - x) * Tb invar_numpy = {"x": x} outvar_numpy = {"u_2": u_2} val = PointwiseValidator(nodes=nodes, invar=invar_numpy, true_outvar=outvar_numpy) domain.add_validator(val, name="Val2") # make monitors invar_numpy = {"x": [[1.0]]} monitor = PointwiseMonitor( invar_numpy, output_names=["u_1__x"], metrics={"flux_u1": lambda var: torch.mean(var["u_1__x"])}, nodes=nodes, requires_grad=True, ) domain.add_monitor(monitor) monitor = PointwiseMonitor( invar_numpy, output_names=["u_2__x"], metrics={"flux_u2": lambda var: torch.mean(var["u_2__x"])}, nodes=nodes, requires_grad=True, ) domain.add_monitor(monitor) # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
8,835
Python
28.065789
88
0.572835
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/diffusion_1d/conf/config.yaml
defaults : - modulus_default - arch: - fully_connected - scheduler: tf_exponential_lr - optimizer: adam - loss: sum - _self_ arch: fully_connected: layer_size: 256 save_filetypes : "vtk,npz" scheduler: decay_rate: 0.95 decay_steps: 100 optimizer: lr : 1e-4 training: rec_results_freq: 1000 max_steps : 5000 batch_size: rhs: 2 lhs: 2 interface: 2 interior_u1: 200 interior_u2: 200
437
YAML
12.272727
32
0.631579
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/darcy/darcy_FNO_lazy.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import modulus from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.key import Key from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.domain.constraint import SupervisedGridConstraint from modulus.sym.domain.validator import GridValidator from modulus.sym.dataset import HDF5GridDataset from modulus.sym.utils.io.plotter import GridValidatorPlotter from utilities import download_FNO_dataset @modulus.sym.main(config_path="conf", config_name="config_FNO") def run(cfg: ModulusConfig) -> None: # load training/ test data input_keys = [Key("coeff", scale=(7.48360e00, 4.49996e00))] output_keys = [Key("sol", scale=(5.74634e-03, 3.88433e-03))] download_FNO_dataset("Darcy_241", outdir="datasets/") train_path = to_absolute_path( "datasets/Darcy_241/piececonst_r241_N1024_smooth1.hdf5" ) test_path = to_absolute_path( "datasets/Darcy_241/piececonst_r241_N1024_smooth2.hdf5" ) # make datasets train_dataset = HDF5GridDataset( train_path, invar_keys=["coeff"], outvar_keys=["sol"], n_examples=1000 ) test_dataset = HDF5GridDataset( test_path, invar_keys=["coeff"], outvar_keys=["sol"], n_examples=100 ) # make list of nodes to unroll graph on decoder_net = instantiate_arch( cfg=cfg.arch.decoder, output_keys=output_keys, ) fno = instantiate_arch( cfg=cfg.arch.fno, input_keys=input_keys, decoder_net=decoder_net, ) nodes = [fno.make_node('fno')] # make domain domain = Domain() # add constraints to domain supervised = SupervisedGridConstraint( nodes=nodes, dataset=train_dataset, batch_size=cfg.batch_size.grid, num_workers=4, # number of parallel data loaders ) domain.add_constraint(supervised, "supervised") # add validator val = GridValidator( nodes, dataset=test_dataset, batch_size=cfg.batch_size.validation, plotter=GridValidatorPlotter(n_examples=5), ) domain.add_validator(val, "test") # make solver slv = Solver(cfg, domain) # start solver slv.solve() if __name__ == "__main__": run()
3,392
Python
32.264706
79
0.704009
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/darcy/utilities.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import os import zipfile try: import gdown except: gdown = None import scipy.io import numpy as np import h5py from modulus.sym.hydra import to_absolute_path # list of FNO dataset url ids on drive: https://drive.google.com/drive/folders/1UnbQh2WWc6knEHbLn-ZaXrKUZhp7pjt- _FNO_datatsets_ids = { "Darcy_241": "1ViDqN7nc_VCnMackiXv_d7CHZANAFKzV", "Darcy_421": "1Z1uxG9R8AdAGJprG5STcphysjm56_0Jf", } _FNO_dataset_names = { "Darcy_241": ( "piececonst_r241_N1024_smooth1.hdf5", "piececonst_r241_N1024_smooth2.hdf5", ), "Darcy_421": ( "piececonst_r421_N1024_smooth1.hdf5", "piececonst_r421_N1024_smooth2.hdf5", ), } def load_FNO_dataset(path, input_keys, output_keys, n_examples=None): "Loads a FNO dataset" if not path.endswith(".hdf5"): raise Exception( ".hdf5 file required: please use utilities.preprocess_FNO_mat to convert .mat file" ) # load data path = to_absolute_path(path) data = h5py.File(path, "r") _ks = [k for k in data.keys() if not k.startswith("__")] print(f"loaded: {path}\navaliable keys: {_ks}") # parse data invar, outvar = dict(), dict() for d, keys in [(invar, input_keys), (outvar, output_keys)]: for k in keys: # get data x = data[k] # N, C, H, W # cut examples out if n_examples is not None: x = x[:n_examples] # print out normalisation values print(f"selected key: {k}, mean: {x.mean():.5e}, std: {x.std():.5e}") d[k] = x del data return (invar, outvar) def download_FNO_dataset(name, outdir="datasets/"): "Tries to download FNO dataset from drive" if name not in _FNO_datatsets_ids: raise Exception( f"Error: FNO dataset {name} not recognised, select one from {list(_FNO_datatsets_ids.keys())}" ) id = _FNO_datatsets_ids[name] outdir = to_absolute_path(outdir) + "/" namedir = f"{outdir}{name}/" # skip if already exists exists = True for file_name in _FNO_dataset_names[name]: if not os.path.isfile(namedir + file_name): exists = False break if exists: return print(f"FNO dataset {name} not detected, downloading dataset") # Make sure we have gdown installed if gdown is None: raise ModuleNotFoundError("gdown package is required to download the dataset!") # get output directory os.makedirs(namedir, exist_ok=True) # download dataset zippath = f"{outdir}{name}.zip" _download_file_from_google_drive(id, zippath) # unzip with zipfile.ZipFile(zippath, "r") as f: f.extractall(namedir) os.remove(zippath) # preprocess files for file in os.listdir(namedir): if file.endswith(".mat"): matpath = f"{namedir}{file}" preprocess_FNO_mat(matpath) os.remove(matpath) def _download_file_from_google_drive(id, path): "Downloads a file from google drive" # use gdown library to download file gdown.download(id=id, output=path) def preprocess_FNO_mat(path): "Convert a FNO .mat file to a hdf5 file, adding extra dimension to data arrays" assert path.endswith(".mat") data = scipy.io.loadmat(path) ks = [k for k in data.keys() if not k.startswith("__")] with h5py.File(path[:-4] + ".hdf5", "w") as f: for k in ks: x = np.expand_dims(data[k], axis=1) # N, C, H, W f.create_dataset( k, data=x, dtype="float32" ) # note h5 files larger than .mat because no compression used
4,794
Python
30.339869
112
0.646016
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/darcy/ops.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import torch import torch.nn.functional as F def dx(inpt, dx, channel, dim, order=1, padding="zeros"): "Compute first order numerical derivatives of input tensor" var = inpt[:, channel : channel + 1, :, :] # get filter if order == 1: ddx1D = torch.Tensor( [ -0.5, 0.0, 0.5, ] ).to(inpt.device) elif order == 3: ddx1D = torch.Tensor( [ -1.0 / 60.0, 3.0 / 20.0, -3.0 / 4.0, 0.0, 3.0 / 4.0, -3.0 / 20.0, 1.0 / 60.0, ] ).to(inpt.device) ddx3D = torch.reshape(ddx1D, shape=[1, 1] + dim * [1] + [-1] + (1 - dim) * [1]) # apply convolution if padding == "zeros": var = F.pad(var, 4 * [(ddx1D.shape[0] - 1) // 2], "constant", 0) elif padding == "replication": var = F.pad(var, 4 * [(ddx1D.shape[0] - 1) // 2], "replicate") output = F.conv2d(var, ddx3D, padding="valid") output = (1.0 / dx) * output if dim == 0: output = output[:, :, :, (ddx1D.shape[0] - 1) // 2 : -(ddx1D.shape[0] - 1) // 2] elif dim == 1: output = output[:, :, (ddx1D.shape[0] - 1) // 2 : -(ddx1D.shape[0] - 1) // 2, :] return output def ddx(inpt, dx, channel, dim, order=1, padding="zeros"): "Compute second order numerical derivatives of input tensor" var = inpt[:, channel : channel + 1, :, :] # get filter if order == 1: ddx1D = torch.Tensor( [ 1.0, -2.0, 1.0, ] ).to(inpt.device) elif order == 3: ddx1D = torch.Tensor( [ 1.0 / 90.0, -3.0 / 20.0, 3.0 / 2.0, -49.0 / 18.0, 3.0 / 2.0, -3.0 / 20.0, 1.0 / 90.0, ] ).to(inpt.device) ddx3D = torch.reshape(ddx1D, shape=[1, 1] + dim * [1] + [-1] + (1 - dim) * [1]) # apply convolution if padding == "zeros": var = F.pad(var, 4 * [(ddx1D.shape[0] - 1) // 2], "constant", 0) elif padding == "replication": var = F.pad(var, 4 * [(ddx1D.shape[0] - 1) // 2], "replicate") output = F.conv2d(var, ddx3D, padding="valid") output = (1.0 / dx ** 2) * output if dim == 0: output = output[:, :, :, (ddx1D.shape[0] - 1) // 2 : -(ddx1D.shape[0] - 1) // 2] elif dim == 1: output = output[:, :, (ddx1D.shape[0] - 1) // 2 : -(ddx1D.shape[0] - 1) // 2, :] return output
3,754
Python
33.136363
88
0.531167
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/darcy/conf/config_FNO-Backup.yaml
defaults : - modulus_default - arch: - fno - scheduler: tf_exponential_lr - optimizer: adam - loss: sum - _self_ jit: false arch: fno: dimension: 2 nr_fno_layers: 4 fno_layer_size: 32 fno_modes: 12 padding: 9 output_fc_layer_sizes: - 128 scheduler: decay_rate: 0.95 decay_steps: 1000 training: rec_results_freq : 1000 max_steps : 10000 batch_size: grid: 32 validation: 32
443
YAML
12.875
32
0.604966
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/darcy/conf/config_AFNO.yaml
defaults : - modulus_default - arch: - afno - scheduler: tf_exponential_lr - optimizer: adam - loss: sum - _self_ arch: afno: patch_size: 16 embed_dim: 256 depth: 4 num_blocks: 8 scheduler: decay_rate: 0.95 decay_steps: 1000 training: rec_results_freq : 1000 max_steps : 10000 batch_size: grid: 32 validation: 32
369
YAML
12.214285
32
0.609756
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/darcy/conf/config_FNO.yaml
defaults : - modulus_default - /arch/[email protected] - /arch/[email protected] - scheduler: tf_exponential_lr - optimizer: adam - loss: sum - _self_ arch: decoder: input_keys: [z, 32] output_keys: sol nr_layers: 1 layer_size: 32 fno: input_keys: coeff dimension: 2 nr_fno_layers: 4 fno_modes: 12 padding: 9 scheduler: decay_rate: 0.95 decay_steps: 1000 training: rec_results_freq : 1000 max_steps : 10000 batch_size: grid: 32 validation: 32
532
YAML
14.67647
47
0.633459
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/navier_stokes/navier_stokes.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import numpy as np import os from sympy import Symbol, Eq, Abs, sin, cos import modulus from modulus.sym.hydra import to_absolute_path, instantiate_arch, ModulusConfig from modulus.sym.eq.pdes.navier_stokes import NavierStokes from modulus.sym.geometry.primitives_2d import Rectangle as rect from modulus.sym.models.fully_connected import FullyConnectedArch from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.solver import Solver from modulus.sym.domain import Domain from modulus.sym.domain.constraint import ( PointwiseConstraint, PointwiseInteriorConstraint, ) from modulus.sym.domain.inferencer import PointVTKInferencer from modulus.sym.utils.io import ( VTKUniformGrid, ) def read_wf_data(velocity_scale,pressure_scale): path = "/workspace/python/source_code/navier_stokes/data_lat.npy" print(path) ic = np.load(path).astype(np.float32) Pa_to_kgm3 = 0.10197 mesh_y, mesh_x = np.meshgrid( np.linspace(-0.720, 0.719, ic[0].shape[0]), np.linspace(-0.720, 0.719, ic[0].shape[1]), indexing="ij", ) invar = {} invar["x"] = np.expand_dims(mesh_x.astype(np.float32).flatten(),axis=-1) invar["y"] = np.expand_dims(mesh_y.astype(np.float32).flatten(),axis=-1) invar["t"] = np.full_like(invar["x"], 0) outvar = {} outvar["u"] = np.expand_dims((ic[0]/velocity_scale).flatten(),axis=-1) outvar["v"] = np.expand_dims((ic[1]/velocity_scale).flatten(),axis=-1) outvar["p"] = np.expand_dims((ic[2]*Pa_to_kgm3/pressure_scale).flatten(),axis=-1) return invar, outvar @modulus.sym.main(config_path="conf", config_name="config") def run(cfg: ModulusConfig) -> None: # define sympy variables to parametrize domain curves x, y = Symbol("x"), Symbol("y") # make geometry for problem length = (-0.720, 0.720) height = (-0.720, 0.720) box_bounds = {x: length, y: height} # define geometry rec = rect( (length[0], height[0]), (length[1], height[1]) ) # Scaling and Nondimensionalizing the Problem ############# # Real Params ############# fluid_kinematic_viscosity = 1.655e-5 # m**2/s fluid_density = 1.1614 # kg/m**3 fluid_specific_heat = 1005 # J/(kg K) fluid_conductivity = 0.0261 # W/(m K) ################ # Non dim params for normalisation ################ # Diameter of Earth : 12742000 m over range of 1.440 length_scale = 12742000/1.440 # 60 hrs to 1 timestep- every inference frame is a 6 hour prediction (s) time_scale = 60*60*60 # Calcuale velocity & pressure scale velocity_scale = length_scale / time_scale # m/s pressure_scale = fluid_density * ((length_scale / time_scale) ** 2) # kg / (m s**2) # Density scale density_scale = 1.1614 # kg/m3 ############################## # Nondimensionalization Params for NavierStokes fn ############################## # fluid params nd_fluid_kinematic_viscosity = fluid_kinematic_viscosity / ( length_scale ** 2 / time_scale ) nd_fluid_density = fluid_density / density_scale # time window parameters time_window_size = 1.0 t_symbol = Symbol("t") time_range = {t_symbol: (0, time_window_size)} # make navier stokes equations ns = NavierStokes(nu=nd_fluid_kinematic_viscosity, rho=nd_fluid_density, dim=2, time=True) # make network flow_net = FullyConnectedArch( input_keys=[Key("x"), Key("y"), Key("t")], output_keys=[Key("u"), Key("v"), Key("p")], periodicity={"x": length, "y" : height}, layer_size=256, ) # make nodes to unroll graph on nodes = ns.make_nodes() + [flow_net.make_node(name="flow_net")] # make initial condition domain navier = Domain("navier_stokes") # make initial condition ic_invar,ic_outvar = read_wf_data(velocity_scale,pressure_scale) ic = PointwiseConstraint.from_numpy( nodes, ic_invar, ic_outvar, batch_size=cfg.batch_size.initial_condition, ) navier.add_constraint(ic, name="ic") # make interior constraint interior = PointwiseInteriorConstraint( nodes=nodes, geometry=rec, outvar={"continuity": 0, "momentum_x": 0, "momentum_y": 0}, bounds=box_bounds, batch_size=cfg.batch_size.interior, parameterization=time_range, ) navier.add_constraint(interior, name="interior") # add inference data for time slices for i, specific_time in enumerate(np.linspace(0, time_window_size, 10)): vtk_obj = VTKUniformGrid( bounds=[(-0.720, 0.720), (-0.360, 0.360)], npoints=[1440,720], export_map={"u": ["u", "v"], "p": ["p"]}, ) grid_inference = PointVTKInferencer( vtk_obj=vtk_obj, nodes=nodes, input_vtk_map={"x": "x", "y": "y"}, output_names=["u", "v", "p"], requires_grad=False, invar={"t": np.full([720 *1440, 1], specific_time)}, batch_size=100000, ) navier.add_inferencer(grid_inference, name="time_slice_" + str(i).zfill(4)) slv = Solver(cfg, navier) # start solver slv.solve() if __name__ == "__main__": run()
6,473
Python
33.43617
94
0.631083
openhackathons-org/End-to-End-AI-for-Science/workspace/python/source_code/navier_stokes/conf/config.yaml
defaults : - modulus_default - arch: - fully_connected - scheduler: tf_exponential_lr - optimizer: adam - loss: sum - _self_ save_filetypes : "vtk,npz" scheduler: decay_rate: 0.95 decay_steps: 3000 training: rec_results_freq : 1000 rec_constraint_freq: 5000 max_steps : 110000 batch_size: initial_condition: 2048 interior: 2048
364
YAML
14.208333
32
0.67033
metaiintw/build-an-avatar-with-ASR-TTS-Transformer-Omniverse-Audio2Face/README.md
# Build an avatar with ASR, Sentence-transformer, Similarity Search, TTS and Omniverse Audio2Face ## Project Description I'll show you how I used several Python packages and NVIDIA's Omniverse Audio2Face to quickly implement an avatar that can answer questions defined in a knowledge set or FAQ. ## Demo [![IMAGE ALT TEXT](https://user-images.githubusercontent.com/104120636/166487700-9f14813c-13b9-42bc-b477-c0f8aff7db5d.png)](http://www.youtube.com/watch?v=G_c94cGIKgs "Video Title") ## How It Works ![](https://i.imgur.com/BZIBUAt.png) #### ***Automatic Speech Recognition, ASR*** Upon receiving user's request, the [SpeechRecognition API](https://pypi.org/project/SpeechRecognition/) records the frequencies and sound waves from user's voice and translates them into text. #### ***Language Understanding*** [Sentence-Transformer](https://www.sbert.net/) is for state-of-the-art sentence, text and image embeddings that can encode input questions into feature vectors. The feature vectors represent entire sentences and their semantic information, this helps the machine in understanding the context, intention, and other nuances in the entire text. We’ll conduct a similarity search, comparing a user input question to a list of FAQs and return the most likely answers by [Facebook’s Similarity Search API](https://ai.facebook.com/tools/faiss/). #### ***Text To Speech*** The avatar's voice is fully synthesized by the [Gtts API](https://pypi.org/project/gTTS/), which turns text into natural-sounding speech. The synthesized voice is also used to drive the avatar's facial animation. #### ***Omniverse Audio2Face*** ![](https://i.imgur.com/7ioYQHj.png) Omniverse Audio2Face is an application brings our avatars to life. With [Omniverse Audio2Face](https://www.nvidia.com/en-us/omniverse/apps/audio2face/), anyone can now create realistic facial expressions and emotions to match any voice-over track. The technology feeds the audio input into a pre-trained Deep Neural Network, based on NVIDIA and the output of the network drives the facial animation of 3D characters in real-time. ## System Requirements | Element | Minimum Specifications | | ---- | ---- | | OS Supported | Windows 10 64-bit (Version 1909 and above) | | CPU | Intel I7, AMD Ryzen 2.5GHz or greater | | CPU Cores | 4 or higher | | RAM | 16 GB or higher | | Storage | 500 Gb SSD or higher | | GPU | Any RTX GPU | | VRAM | 6 GB or higher | | Min. Video Driver Version | See latest drivers [here](https://developer.nvidia.com/omniverse/driver) | ## How to Install and Run the Project Before you begin, you'll need to clone the repository with the template code used in this repo. Open your Terminal app and find a directory where you'd like to store the code. Run this command to clone the GitHub App template repository: ``` $ git clone https://github.com/metaiintw/build-an-avatar-with-ASR-TTS-Transformer-Omniverse-Audio2Face.git ``` #### Creating an environment from an environment. yml file Make sure Anaconda is installed on your local machine. Use the following command to install packages included in requirements.yml: ``` $ conda env create -f /path/to/requirements.yml ``` #### Download and Install Omniverse Launcher [NVIDIA Omniverse](https://docs.omniverse.nvidia.com/prod_install-guide/prod_install-guide.html) is a development platform for 3D simulation and design collaboration, it is free for individual, you can download Omniverse Launcher [here](https://www.nvidia.com/en-us/omniverse/download/). I also recommend you to watch this [video tutorial](https://www.youtube.com/watch?v=Ol-bCNBgyFw), which guides you through the installation process. | ![](https://i.imgur.com/4imNFt1.jpg) | |:--:| | *Omniverse Launcher* | #### Install Omniverse Audio2Face | ![](https://i.imgur.com/6kbTCRW.jpg) | |:--:| | *Omniverse apps* | Once you got Omniverse Launcher installed, you can immediate access to all the apps, including [Omniverse Audio2Face](https://www.nvidia.com/en-us/omniverse/apps/audio2face/). Next, simply install Omniverse Audio2Face and you're good to go. | ![](https://i.imgur.com/N94KDTc.png) | |:--:| | *Omniverse Audio2Face* | #### Omniverse Audio2Face setup To get our Python program interacts with Omniverse Audio2Face, you should use streaming audio player that allows developers to stream audio data from an external source or applications via the gRPC protocol. | ![](https://i.imgur.com/qZUQVS0.png) | |:--:| | *streaming audio player allows developers to stream audio data from an external source* | This [tutorial](https://www.youtube.com/watch?v=qKhPwdcOG_w&t=17s) showcases how to create an audio player and connect it to the audio2face instance using the omnigraph editor. #### Bring Your Avatar to life Now we're ready to bring our avatar to life, simply enter the following commands into your terminal. ``` $ cd path_to_the_project_folder $ conda activate avatar $ jupyter lab ``` Execute the .ipynb notebook file named ***1.Creating_a_simple_avatar.ipynb***, start building your first avatar! | ![](https://i.imgur.com/YTSdxJT.png) | |:--:| | *1.Creating_a_simple_avatar.ipynb* | ## Creators **Renton Hsu** - [Linkedin](https://www.linkedin.com/in/renton-hsu-bba5a0102) - [Facebook](https://www.facebook.com/renton.hsu/)
5,296
Markdown
53.608247
429
0.749056
metaiintw/build-an-avatar-with-ASR-TTS-Transformer-Omniverse-Audio2Face/1.Create_A_Simple_Avatar/requirements.yml
name: avatar666 channels: - conda-forge - pytorch-nightly dependencies: - argon2-cffi=21.3.0 - argon2-cffi-bindings=21.2.0 - ca-certificates=2020.10.14 - charset-normalizer=2.0.4 - huggingface_hub=0.5.1 - importlib-metadata=4.11.3 - intel-openmp=2021.4.0 - libfaiss-avx2=1.7.2 - lz4-c=1.9.3=h2bbff1b_1 - m2w64-gcc-libgfortran=5.3.0 - m2w64-gcc-libs=5.3.0=7 - m2w64-gcc-libs-core=5.3.0=7 - m2w64-gmp=6.1.0 - m2w64-libwinpthread-git=5.0.0.4634.697f757=2 - matplotlib-inline=0.1.2 - mkl-service=2.4.0 - msys2-conda-epoch=20160418 - nest-asyncio=1.5.5 - numpy-base=1.21.5 - prompt-toolkit=3.0.20 - python-dateutil=2.8.2 - python-fastjsonschema=2.15.1 - pytorch-mutex=1.0 - scikit-learn=1.0.2 - sentence-transformers=2.2.0 - typing-extensions=4.1.1 - websocket-client=0.58.0 - ffmpeg-python=0.2.0 - pyaudio=0.2.11 - faiss=1.7.2 - pip: # Package that is only on PyPI - jupyter - notebook - jupyterlab - grpcio - pandas - faiss - pydub - soundfile - google - protobuf==3.20.0 - gtts - librosa==0.7.2 - numba==0.48 - SpeechRecognition
1,184
YAML
22.235294
48
0.614865
eliabntt/animated_human_SMPL_to_USD/generate_sequence.py
import json import os import humangenerator import bpy import humangenerator as hgen import argparse import ipdb import sys import yaml parser = argparse.ArgumentParser() parser.add_argument("--dataset", help="Dataset from which you want to generate data") parser.add_argument("--output_dir", help="Path to where the data should be saved") parser.add_argument("--samples_dir", help="Paths where the data is stored") parser.add_argument("--last_sample", help="Last sample processed, this must be the FULL name of the folder (e.g. 00001). This WILL be processed", default="") parser.add_argument("--parent_path", help="Path containing the subfolders for the datasets (with the pkl models)", default="") parser.add_argument("--sample_id", help="ID of the sample, if emtpy process all", default="all") parser.add_argument("--with_cache", help="Write \"False\" if generating blendshapes", default="True") parser.add_argument("--suppress_out", help="Write \"False\" if output in console", default="False") parser.add_argument("--write_verts", help="Write \"True\" if you want to write verts info in the pkl", default="False") parser.add_argument("--frame", help="The n-th frame to generate. Default all", default="all") parser.add_argument("--config_file", help="json file containing the configuration", default="") parser.add_argument("--exp_name", help="The name of the \"experiment\" of the dataset. By default the name of the samples_dir folder", default="") # structure should be `parent_path/[surreal/datageneration/smpl_data,body_models/{smplh,dmpls}]` args = parser.parse_args() with open(os.path.join("humangenerator", "avail_datasets.yaml"), 'r') as stream: data_loaded = yaml.safe_load(stream) avail_datasets = data_loaded["datasets"] processor = None if avail_datasets == [] or args.dataset not in avail_datasets: if not avail_datasets: print("No avail dataset. Check file") else: print(f"Sought dataset is not yet avail. The avail ones are {avail_datasets}") exit(-1) else: print(f"Processing {args.dataset} data") found = (args.last_sample == "") try: WITH_CACHE = (False if args.with_cache == "False" else True) parent_path = args.parent_path smpl_body_list = [] # Init SMPL models smpl_path = os.path.join(parent_path, "surreal", "datageneration", "smpl_data") smpl_models = { 'f': hgen.SMPLModel(os.path.join(smpl_path, 'smpl', 'models', 'basicModel_f_lbs_10_207_0_v1.0.0.pkl')), 'm': hgen.SMPLModel(os.path.join(smpl_path, 'smpl', 'models', 'basicModel_m_lbs_10_207_0_v1.0.0.pkl')), } if args.frame != "all": try: frame = int(args.frame) except: print("Error converting frame to int, considering the WHOLE sequence") frame = None else: frame = None print("Whole sequence considered") print("This will export only the whole sequence") hgen.init() # Parse args PATH_SAMPLES = args.samples_dir if args.exp_name == "": exp_name = os.path.split(PATH_SAMPLES)[-1] else: exp_name = args.exp_name PATH_OUT = os.path.join(args.output_dir, exp_name) if not os.path.exists(PATH_OUT): os.makedirs(PATH_OUT) if args.config_file == "": config = {} else: if os.path.exists(args.config_file): with open(args.config_file, "r") as f: config = json.load(f) else: raise Exception("The taxonomy file could not be found: {}".format(args.config_file)) processor, PATH_SAMPLES = hgen.get_processor(args.dataset, parent_path, WITH_CACHE, PATH_OUT, PATH_SAMPLES, smpl_models, args.write_verts.lower() == "false", config) sample_id = args.sample_id if sample_id != "all": print("Processing single sample") # Check if sample exists if not os.path.isdir(os.path.join(PATH_SAMPLES, sample_id)): print("Specified sample does not exist") exit(-1) else: sample_id = [sample_id] else: print("Processing all samples") sample_id = os.listdir(PATH_SAMPLES) if not sample_id: print("No subfolder found") exit(-1) if len(smpl_body_list) == 0: smpl_body_list = processor.generator.load_SMPLs_objects() found = (args.last_sample == "") sample_id.sort() clean_cnt = 1 for sample in sample_id: if not found: if sample == args.last_sample: found = True else: continue if clean_cnt % 100 == 0: clean_cnt = 0 hgen.init() smpl_body_list = processor.generator.load_SMPLs_objects() clean_cnt += 1 print("------------------------------") print(f"Processing {sample}") isdone = False count = 0 while (not isdone and count <= 5): hgen.deselect() if len(sample_id) > 1: hgen.clean_mesh_and_textures( exclude=['Material_0', 'Material_1', 'Armature_0', 'Armature_1', 'body_0', 'body_1']) print("Scene cleaned!\n\n") count += 1 path_sample = os.path.join(PATH_OUT, sample + ('_with_cache' if WITH_CACHE else '')) if not os.path.exists(path_sample): os.makedirs(path_sample) with open(os.path.join(path_sample, f"out_{count}.txt"), "w") as file_out, open( os.path.join(path_sample, f"err_{count}.txt"), "w") as file_err: # file logging try: if args.suppress_out == "True": sys.stdout = file_out sys.stderr = file_err res = processor.process_sample(sample, frame, smpl_body_list) if res: print("Exported!") else: raise Exception("Unknown error") isdone = True except: import traceback sys.stderr.write('error\n') sys.stderr.write(traceback.format_exc()) print(f"Failed -- going with try {count}\n\n") finally: sys.stderr.flush() sys.stdout.flush() sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ except: import traceback sys.stderr.write('error\n') sys.stderr.write(traceback.format_exc()) sys.stdout.flush() sys.stderr.flush() sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ print('error') print(traceback.format_exc()) extype, value, tb = sys.exc_info() ipdb.post_mortem(tb)
6,955
Python
35.610526
128
0.570669
eliabntt/animated_human_SMPL_to_USD/start_blend_debug.py
import bpy import sys import ipdb import os from pathlib import Path from bl_ui.space_text import TEXT_MT_editor_menus repo_root_directory = os.path.join(os.path.dirname(__file__), ".") sys.path.append(repo_root_directory) argv = sys.argv[sys.argv.index("--") + 1:] bpy.context.window.workspace = bpy.data.workspaces["Scripting"] bpy.context.view_layer.update() if argv[0].endswith(".py"): print(f"Loading: {os.path.join(os.path.dirname(os.path.abspath(__file__)), argv[0])}") text = bpy.data.texts.load(os.path.join(os.path.dirname(os.path.abspath(__file__)), argv[0])) sys.argv = argv[:] print(f"New argv: {sys.argv}") else: print("First argument should be the script file") exit(-1) # Declare operator that runs the blender proc script class RunHumanGeneratorOperator(bpy.types.Operator): bl_idname = "wm.run_humangenerator" bl_label = "Run Human Generator" bl_description = "This operator runs the loaded HumanGenerator script and also makes sure to unload all modules before starting." bl_options = {"REGISTER"} def execute(self, context): # Delete all loaded models inside src/, as they are cached inside blender for module in list(sys.modules.keys()): if module.startswith("humangenerator"): del sys.modules[module] # Make sure the parent of the humangenerator folder is in sys.path import_path = os.path.abspath(os.path.join(os.path.dirname(__file__), ".")) if import_path not in sys.path: sys.path.append(import_path) # Run the script try: bpy.ops.text.run_script() except RuntimeError: # Skip irrelevant error messages (The relevant stacktrace+error has already been printed at this point) pass return {"FINISHED"} bpy.utils.register_class(RunHumanGeneratorOperator) def draw(self, context): layout = self.layout st = context.space_data text = st.text is_syntax_highlight_supported = st.is_syntax_highlight_supported() layout.template_header() TEXT_MT_editor_menus.draw_collapsible(context, layout) if text and text.is_modified: row = layout.row(align=True) row.alert = True row.operator("text.resolve_conflict", text="", icon='HELP') layout.separator_spacer() row = layout.row(align=True) row.template_ID(st, "text", new="text.new", unlink="text.unlink", open="text.open") if text: is_osl = text.name.endswith((".osl", ".osl")) if is_osl: row.operator("node.shader_script_update", text="", icon='FILE_REFRESH') else: row = layout.row() row.active = is_syntax_highlight_supported # The following line has changed compared to the orignal code, it starts our operator instead of text.run_script row.operator("wm.run_humangenerator", text="Run") layout.separator_spacer() row = layout.row(align=True) row.prop(st, "show_line_numbers", text="") row.prop(st, "show_word_wrap", text="") syntax = row.row(align=True) syntax.active = is_syntax_highlight_supported syntax.prop(st, "show_syntax_highlight", text="") # Set our draw function as the default draw function for text area headers bpy.types.TEXT_HT_header.draw = draw # Put text into scripting tool for area in bpy.data.workspaces["Scripting"].screens[0].areas.values(): if area.type == 'TEXT_EDITOR': area.spaces.active.text = text
3,540
Python
34.767676
133
0.652825
eliabntt/animated_human_SMPL_to_USD/convert_fbx.py
import json import os import humangenerator import bpy import humangenerator as hgen import argparse import ipdb import sys import yaml parser = argparse.ArgumentParser() parser.add_argument("--fbx", help="Path to the fbx file") parser.add_argument("--output_dir", help="Path to where the data should be saved") parser.add_argument("--temp_dir", help="Path to where the data should be temporary saved") parser.add_argument("--usd", help="True if export usd is necessary, default to false", default="False") args = parser.parse_args() out_dir = args.output_dir if not os.path.exists(out_dir): os.makedirs(out_dir) fbx = args.fbx for o in bpy.context.scene.objects: o.select_set(True) # Call the operator only once bpy.ops.object.delete() with open(os.path.join(out_dir, f"out.txt"), "w") as file_out, open( os.path.join(out_dir, f"err.txt"), "w") as file_err: try: sys.stdout = file_out sys.stderr = file_err bpy.ops.import_scene.fbx(filepath=fbx) filepath=os.path.join(out_dir,os.path.basename(fbx[:-4])+".usd") temp_filepath = os.path.join(args.temp_dir,os.path.basename(fbx[:-4])+".usd") hgen.export_data(temp_path, out_dir, os.path.basename(fbx[:-4]), False, None, {}, {}, False, args.usd.lower() == "true") bpy.ops.object.select_all(action='SELECT') bpy.ops.object.delete() succeed = True except: import traceback sys.stderr.write('error\n') sys.stderr.write(traceback.format_exc()) finally: sys.stdout.flush() sys.stderr.flush() sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__
1,653
Python
30.807692
128
0.655777
eliabntt/animated_human_SMPL_to_USD/notes.md
Installation instructions From the `generate_people` folder ``` mkdir data_folder cd data_folder git clone https://github.com/gulvarol/surreact surreal ``` - Download the following two fbx files for SMPL for Maya from https://smpl.is.tue.mpg.de/ using your credentials. Please comply with their license. The files are `basicModel_f_lbs_10_207_0_v1.0.2.fbx` and `basicModel_m_lbs_10_207_0_v1.0.2.fbx` and can be downloaded with this [link](https://download.is.tue.mpg.de/download.php?domain=smpl&sfile=SMPL_maya.zip). Place them in `.../surreal/datageneration/smpl_data`. - download this [pkl](https://raw.githubusercontent.com/gulvarol/surreal/master/datageneration/pkl/segm_per_v_overlap.pkl) and place it in `.../surreal/datageneration/smpl_data` - get [SMPL_python_v.1.0.0](https://download.is.tue.mpg.de/download.php?domain=smpl&sfile=SMPL_python_v.1.0.0.zip). Extract the basicModel\_[m,f]\_lbs\_10\_207\_0\_v1.0.0.pkl. Place those two files in `.../surreal/datageneration/smpl_data/smpl/models/basicModel_{f,m}_lbs_10_207_0_v1.0.0.pkl`. Run `mv basicmodel_m_lbs_10_207_0_v1.0.0.pkl basicModel_m_lbs_10_207_0_v1.0.0.pkl` - `cp .../surreal/datageneration/misc/prepare_smpl_data/extract_J_regressors.py .../surreal/datageneration/smpl_data/smpl/` - run `python3 extract_J_regressor.py` ## Surreal Textures - Accept surreal terms and get an account (you will need username and password to download textures) - get the download script https://github.com/gulvarol/surreal/blob/master/download/download_smpl_data.sh and place it somewhere you like let's call this location "loc" - download this file https://github.com/gulvarol/surreal/blob/master/download/files/files_smpl_data.txt and place it "loc/files/files_smpl_data.txt"(alongside the fbx models) essentially you have ./loc/{script,files/files_smpl_data.txt} - call the download script with `./download_smpl_data.sh /yourpath/surreal/datageneration/smpl_data username_surreal pw_surreal` _____ At this point you should have smpl_data/basicModel_{f,m}_lbs_10_207_0_v1.0.2.fbx smpl_data/smpl/models/basicModel_{f,m}_lbs_10_207_0_v1.0.0.pkl smpl_data/segm_per_v_overlap.pkl smpl_data/joint_regressors.pkl _____ ## For AMASS - create a `body_models` folder in `data_folder` - create inside `smplh` and `dmpls` folders - download [dmpls](https://download.is.tue.mpg.de/download.php?domain=smpl&sfile=dmpls.tar.xz) (DMPLs compatibile with SMPL) and [smplh](https://mano.is.tue.mpg.de/download.php) and get `Extended SMPLH model for AMASS` (accepting the respective licenses) there. NOTE: If exporting WITH cache, the hand movement will be complete, if exporting WITHOUT cache it will not as the basic model for blendshapes is the SMPL model WITHOUT hand. It shouldn't be too difficult to adapt the code to your needs eventually. TESTED ONLY WITH CMU DATA
2,822
Markdown
56.612244
414
0.759036
eliabntt/animated_human_SMPL_to_USD/README.md
# Human animations to USD ## This repository is part of the [GRADE](https://eliabntt.github.io/GRADE-RR/home) project ### This was tested on Windows, using Omniverse suggested Drivers and CUDA version. The goal of this code is to show how you can convert any SMPL-based animation to a USD-based animation. The script is capable of managing mesh caches and skeletal animations. It can export point-sequence based animations and skeletal-based animations. ### Installation instructions Install blender connector from the Omniverse launcher. This code was tested with versions 3.4.0-usd.101.0 (main branch). For the paper work we used 3.1.0-usd.100.1.10. Some limitations of 3.1.0-usd.100.1.10: - you might need to use the mesh cache modifier instead of the blendshape. There is a _minimal_ difference that arise when loading the animation in Omniverse's products. - keep textures with absolute paths. You can replace them whenever you want afterwards with our tool [USD_text_replace](https://github.com/eliabntt/GRADE-RR/tree/main/scripts/process_paths) Install the necessary *dependencies*. Locate the blender installation path and run `python.exe -m pip install ipdb pyquaternion scipy torch pyyaml chumpy`. e.g. In my case `C:\User\ebonetto\AppData\Local\ov\pkg\blender-3.4.0-usd.101.0\Release\3.4\python\bin\python.exe -m pip install ipdb pyquaternion scipy torch pyyaml chumpy` Additionally, you need to follow [this]() to fill up the installation missing files that we cannot redistribute because of licensing. ### Already Supported datasets and HowTo expand We are already supporting two datasets. [Cloth3D](https://chalearnlap.cvc.uab.cat/dataset/38/description/) and [AMASS](https://amass.is.tue.mpg.de/). If you want to add a different dataset for AMASS you need to add it to the `data_folder/taxonomy.json` file ### Run the code *From the cloned repository main folder* `\AppData\Local\ov\pkg\blender-3.4.0-usd.101.0\Release\blender.exe --python-use-system-env --python-exit-code 0 --python start_blend_debug.py -- generate_sequence.py --dataset ... --output_dir ... --samples_dir ... --last_sample ... --parent_path ... --sample_id ...` The parameters are explained in the code or self-explaining. `dataset` can be either `[cloth3d, amass]`. With `amass` a necessary configuration file needs to be included (e.g. `--config_file this_repo\humangenerator\amass.json`). We provide a sample config [here](https://github.com/eliabntt/generate_people/blob/main/humangenerator/amass.json). Note that AMASS will process the folder directly (by querying subfolders) differently than Cloth3D for which you need to give the main parent folder (eg. `cloth3d/train_t1`). `sample_id` if is an ID it will process that ID otherwise you can set it to all or leave it empty and it will process the whole set of data. `last_sample` is used in case `sample_id` is empty and will be used to signal where to restart the processing. If running multiple generations the code will automatically periodically _clean_ the whole simulation environment including textures and materials to avoid crashing. - Cloth3D single sample example `--python-use-system-env --python-exit-code 0 --python start_blend_debug.py -- generate_sequence.py --dataset cloth3d --output_dir outdir --samples_dir cloth3d\train --last_sample 01056 --parent_path D:\generate_people\data_folder\ --sample_id 01056` - AMASS `--python-use-system-env --python-exit-code 0 --python start_blend_debug.py -- generate_sequence.py --dataset amass --output_dir D:\cloth3d\exported_usd --samples_dir D:\AMASS\CMU\ --parent_path D:\Cloth3D_to_usd\data_folder\ --config_file D:\Cloth3D_to_usd\humangenerator\amass.json` ### How does it work The texture of the person is random. In the Cloth3D case the chosen ones are the ones with underwears, with AMASS the ones with clothes. You have the possibility of exporting the SMPL information, the vertex info, the USD file, the STL trace of the animation and much more. You can also suppress the output from the shell. However, the exporter in USD forcibly write directly to stdout. I have found no redirect strategy that works. The system will replicate the input folder structure in the output folder. You can also select a single frame. You are encouraged to extend this and create pull requests. Cloth3D clothes are loaded and exported as MeshCaches. For the human animations you can chose. ### How to edit You can create your own processor by creating a new class [here](https://github.com/eliabntt/generate_people/tree/main/humangenerator), adding your dataset name [here](https://github.com/eliabntt/generate_people/blob/main/humangenerator/avail_datasets.yaml) and write the else [here](https://github.com/eliabntt/generate_people/blob/main/humangenerator/generator.py#L17). In practice you need to write your own python `dataset_gen.py`. That file needs to have a `process_sample` method which will be then called by the main script. Within `process_sample` you want to take care either of the sample (CLOTH3D) or of the whole folder (AMASS). Your choice. We see the processing from the loading of the animation to writing data. In the main script then there is a call to `get_processor` that returns `processor, PATH_SAMPLES`, `processor` is the instance of the class you just created. Few lines below you find `res = processor.process_sample(sample, frame, smpl_body_list)`. ### Some notes The exported USDs will have 24 fps as default. We did not investigate this much. You can change this by using the usd converter to text and change the 4th line to 30 fps. This value will influence how the mesh will be loaded into the simulation by the scripts used in GRADE. In our work we did NOT change this value. _______ ### LICENSING For licensing information, please refer to the main repository located [here](https://github.com/eliabntt/GRADE-RR/). __________ ### CITATION If you find this work useful please cite our work based on [this](https://github.com/eliabntt/GRADE-RR#citation) information __________ ### Acknowledgment Code based on - [blenderproc](https://github.com/DLR-RM/BlenderProc/) - [amass](https://amass.is.tue.mpg.de/) - [Cloth3D starter kit](http://158.109.8.102/CLOTH3D/StarterKit.zip) - [surreact](https://github.com/gulvarol/surreact) and [surreal](https://github.com/gulvarol/surreal)
6,354
Markdown
58.95283
371
0.765974
eliabntt/animated_human_SMPL_to_USD/LICENSE.md
For licensing information please refer to the main repository of the project located [here](https://github.com/eliabntt/GRADE-RR/). The same terms and conditions apply.
169
Markdown
83.999958
168
0.798817
eliabntt/animated_human_SMPL_to_USD/data_folder/smpl/smpl_np.py
import sys import numpy as np import pickle class SMPLModel(): def __init__(self, model_path): """ SMPL model. Parameter: --------- model_path: Path to the SMPL model parameters, pre-processed by `preprocess.py`. """ with open(model_path, 'rb') as f: if sys.version_info[0] == 2: params = pickle.load(f) # Python 2.x elif sys.version_info[0] == 3: params = pickle.load(f, encoding='latin1') # Python 3.x self.J_regressor = params['J_regressor'] self.weights = params['weights'] self.posedirs = params['posedirs'] self.v_template = params['v_template'] self.shapedirs = params['shapedirs'] self.faces = params['f'] self.kintree_table = params['kintree_table'] id_to_col = { self.kintree_table[1, i]: i for i in range(self.kintree_table.shape[1]) } self.parent = { i: id_to_col[self.kintree_table[0, i]] for i in range(1, self.kintree_table.shape[1]) } self.pose_shape = [24, 3] self.beta_shape = [10] self.trans_shape = [3] self.pose = np.zeros(self.pose_shape) self.beta = np.zeros(self.beta_shape) self.trans = np.zeros(self.trans_shape) self.verts = None self.J = None self.R = None self.update() def set_params(self, pose=None, beta=None, trans=None): """ Set pose, shape, and/or translation parameters of SMPL model. Verices of the model will be updated and returned. Parameters: --------- pose: Also known as 'theta', a [24,3] matrix indicating child joint rotation relative to parent joint. For root joint it's global orientation. Represented in a axis-angle format. beta: Parameter for model shape. A vector of shape [10]. Coefficients for PCA component. Only 10 components were released by MPI. trans: Global translation of shape [3]. Return: ------ Updated vertices. """ if pose is not None: self.pose = pose if beta is not None: self.beta = beta if trans is not None: self.trans = trans self.update() return self.verts, self.J def update(self): """ Called automatically when parameters are updated. """ # how beta affect body shape v_shaped = self.shapedirs.dot(self.beta) + self.v_template # joints location self.J = self.J_regressor.dot(v_shaped) pose_cube = self.pose.reshape((-1, 1, 3)) # rotation matrix for each joint self.R = self.rodrigues(pose_cube) I_cube = np.broadcast_to( np.expand_dims(np.eye(3), axis=0), (self.R.shape[0]-1, 3, 3) ) lrotmin = (self.R[1:] - I_cube).ravel() # how pose affect body shape in zero pose v_posed = v_shaped + self.posedirs.dot(lrotmin) # world transformation of each joint G = np.empty((self.kintree_table.shape[1], 4, 4)) G[0] = self.with_zeros(np.hstack((self.R[0], self.J[0, :].reshape([3, 1])))) for i in range(1, self.kintree_table.shape[1]): G[i] = G[self.parent[i]].dot( self.with_zeros( np.hstack( [self.R[i],((self.J[i, :]-self.J[self.parent[i],:]).reshape([3,1]))] ) ) ) G = G - self.pack( np.matmul( G, np.hstack([self.J, np.zeros([24, 1])]).reshape([24, 4, 1]) ) ) # transformation of each vertex T = np.tensordot(self.weights, G, axes=[[1], [0]]) rest_shape_h = np.hstack((v_posed, np.ones([v_posed.shape[0], 1]))) v = np.matmul(T, rest_shape_h.reshape([-1, 4, 1])).reshape([-1, 4])[:, :3] self.verts = v + self.trans.reshape([1, 3]) def rodrigues(self, r): """ Rodrigues' rotation formula that turns axis-angle vector into rotation matrix in a batch-ed manner. Parameter: ---------- r: Axis-angle rotation vector of shape [batch_size, 1, 3]. Return: ------- Rotation matrix of shape [batch_size, 3, 3]. """ theta = np.linalg.norm(r, axis=(1, 2), keepdims=True) # avoid zero divide theta = np.maximum(theta, np.finfo(np.float64).tiny) r_hat = r / theta cos = np.cos(theta) z_stick = np.zeros(theta.shape[0]) m = np.dstack([ z_stick, -r_hat[:, 0, 2], r_hat[:, 0, 1], r_hat[:, 0, 2], z_stick, -r_hat[:, 0, 0], -r_hat[:, 0, 1], r_hat[:, 0, 0], z_stick] ).reshape([-1, 3, 3]) i_cube = np.broadcast_to( np.expand_dims(np.eye(3), axis=0), [theta.shape[0], 3, 3] ) A = np.transpose(r_hat, axes=[0, 2, 1]) B = r_hat dot = np.matmul(A, B) R = cos * i_cube + (1 - cos) * dot + np.sin(theta) * m return R def with_zeros(self, x): """ Append a [0, 0, 0, 1] vector to a [3, 4] matrix. Parameter: --------- x: Matrix to be appended. Return: ------ Matrix after appending of shape [4,4] """ return np.vstack((x, np.array([[0.0, 0.0, 0.0, 1.0]]))) def pack(self, x): """ Append zero matrices of shape [4, 3] to vectors of [4, 1] shape in a batched manner. Parameter: ---------- x: Matrices to be appended of shape [batch_size, 4, 1] Return: ------ Matrix of shape [batch_size, 4, 4] after appending. """ return np.dstack((np.zeros((x.shape[0], 4, 3)), x))
5,242
Python
27.037433
80
0.571347
eliabntt/animated_human_SMPL_to_USD/humangenerator/cloth3d_gen.py
from humangenerator.util.blender_util import * import bpy from .util.cloth3d_util import loadInfo, bodyCache, loadGarment import humangenerator as hgen from pathlib import Path class cloth3d: def __init__(self, parent_path, with_cache, path_out, path_samples, smpl_models, write_verts): from humangenerator.generator import generator # temporary usd export path, we cannot directly write in mounted network drives sometimes temp_path = os.path.join(parent_path, 'usd_exports') # surreal path for textures smpl_path = os.path.join(parent_path, "surreal", "datageneration", "smpl_data") self.generator = generator(smpl_path) self.with_cache = with_cache self.path_out = path_out self.path_samples = path_samples self.smpl = smpl_models self.temp_path = temp_path self.write_verts = (write_verts == "True") def animateSMPL(self, sample, smpl_ob, info, j): if self.with_cache: bodyCache(self.path_cache, sample, info, smpl_ob.ob, self.smpl) # generate blendshapes + trans s = info['shape'] smpl_ob.reset_joint_positions(s, bpy.data.scenes["Scene"]) if len(info['poses'].shape) > 1: N = info['poses'].shape[1] else: sys.stderr.write('Error animation is ONLY ONE FRAME \n') N = 1 for i in range(N): if N > 1: p = info['poses'][:, i] t = info['trans'][:, i].reshape((3,)) - j[0] else: p = info['poses'][:] t = info['trans'][:].reshape((3,)) - j[0] bpy.data.scenes["Scene"].frame_set(i) smpl_ob.apply_trans_pose_shape(t, p, s, i, with_blendshapes=not self.with_cache) def generate_SMPLbody_animation(self, sample, info, gender, index): print("Generate Animation..") if len(info['poses'].shape) > 1: p = info['poses'][:, 0].reshape((24, 3)) t = info['trans'][:, 0].reshape((3,)) else: p = info['poses'][:].reshape((24, 3)) t = info['trans'][:].reshape((3,)) s = info['shape'] v, j = self.smpl[gender].set_params(pose=p, beta=s, trans=t) cloth_img_name = self.generator.pick_skin_texture(gender=gender, clothing_option="grey") img = bpy.data.materials[f'Material_{index}'].node_tree.nodes["Image Texture"] img.image = bpy.data.images.load(cloth_img_name) material = bpy.data.materials[f'Material_{index}'] self.smpl_body_list[index].refine_SMPL(material, j, info['zrot']) self.animateSMPL(sample, self.smpl_body_list[index], info, j) # Smooth bpy.ops.object.shade_smooth() def loadCloth3DSequence(self, sample: str, info: dict, frame: int = None): if len(info['poses'].shape) > 1: bpy.context.scene.frame_end = info['poses'].shape[-1] - 1 else: bpy.context.scene.frame_end = 1 bpy.ops.object.select_all(action='DESELECT') # delete current garments for obj in bpy.data.objects.values(): if 'body' not in obj.name.lower() and 'armature' not in obj.name.lower(): obj.select_set(True) bpy.ops.object.delete() # Load new garments for garment in info['outfit']: loadGarment(self.path_samples, self.path_cache, sample, garment, info) for obj in bpy.data.objects.values(): obj.select_set(False) gender = 'm' if info['gender'] else 'f' index = 0 if info['gender'] else 1 self.generate_SMPLbody_animation(sample, info, gender, index) bpy.context.view_layer.objects.active = bpy.data.objects[f'Armature_{index}'] arm_obj = bpy.data.objects[f'Armature_{index}'] bpy.context.scene.frame_current = bpy.context.scene.frame_start for obj in bpy.data.objects.values(): if 'body' not in obj.name.lower() and 'armature' not in obj.name.lower(): obj.select_set(True) obj.parent = arm_obj obj.rotation_euler = [0, 0, 0] obj.select_set(False) for obj in bpy.data.objects.values(): if 'armature' not in obj.name.lower() and 'body' not in obj.name.lower(): obj.select_set(True) else: if str(index) in obj.name: obj.select_set(True) if frame != None and frame >= 0 and frame <= bpy.context.scene.frame_end: bpy.context.scene.frame_current = frame def process_sample(self, sample: str, frame: int, smpl_body_list): # load info info = loadInfo(os.path.join(self.path_samples, sample, 'info.mat')) self.smpl_body_list = smpl_body_list subfolder_name = Path(sample).stem + ('_with_cache' if self.with_cache else '') self.path_cache = hgen.create_outfolder_structure(self.path_out, subfolder_name, self.with_cache) if frame is None: self.loadCloth3DSequence(sample, info) else: self.loadCloth3DSequence(sample, info, frame) bpy.ops.wm.save_as_mainfile(filepath=os.path.join(self.path_out, subfolder_name, subfolder_name + ".blend")) return hgen.export_data(self.temp_path, self.path_out, Path(sample).stem, self.with_cache, frame, info, info['zrot'], self.write_verts)
5,429
Python
42.095238
143
0.589796
eliabntt/animated_human_SMPL_to_USD/humangenerator/__init__.py
import os import sys # check the python version, only python 3.X is allowed: if sys.version_info.major < 3: raise Exception("HumanGenerator requires at least python 3.X to run.") sys.path.remove(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) from .util.blender_util import * from data_folder.smpl.smpl_np import SMPLModel from .generator import *
370
Python
29.916664
79
0.737838
eliabntt/animated_human_SMPL_to_USD/humangenerator/generator.py
import os from random import choice import bpy from .util.smplutils import SMPL_Body, rotate_vector from .cloth3d_gen import * from .amass_gen import * from .util.blender_util import export_stl_data, write_pkl_data, write_usd # import amass_gen def get_processor(dataset, parent_path, with_cache, path_out, path_samples, smpl_models, write_verts, config={}): if dataset == "cloth3d": return cloth3d(parent_path, with_cache, path_out, path_samples, smpl_models, write_verts), path_samples if dataset == "amass": # todo fixme tmp_obj = amass(parent_path, with_cache, path_out, path_samples, smpl_models, write_verts, config) return tmp_obj, path_samples raise Exception("NOT A VALID DATASET") def export_data(temp_path, path_out, sample, with_cache, frame, info, orient, write_verts, usd=True): try: if usd: write_usd(temp_path, path_out, sample + ('_with_cache' if with_cache else ''), with_cache, True if frame == None else False, 0 if frame == None else frame) for obj in bpy.data.objects.values(): if "body" in obj.name.lower() and obj.select_get(): ob = obj elif "armature" in obj.name.lower() and obj.select_get(): arm_ob = obj export_stl_data(path_out, sample + ('_with_cache' if with_cache else ''), [ob for ob in bpy.data.objects if ob.select_get()], orient) write_pkl_data(path_out, sample + ('_with_cache' if with_cache else ''), arm_ob, ob, info, write_verts=write_verts) except: return False return True def create_outfolder_structure(path_out, subfolder_name, with_cache): if (with_cache): path_cache = os.path.join(path_out, subfolder_name, 'view_cache') if not os.path.exists(path_cache): os.makedirs(path_cache) else: path_cache = os.path.join(path_out, subfolder_name, 'view_cache') if not os.path.exists(path_cache): os.makedirs(path_cache) return path_cache class generator: def __init__(self, smpl_path, write_verts=False): self.SMPL_PATH = smpl_path def pick_skin_texture(self, split_name='all', clothing_option="grey", gender="m"): if gender == "f": with open( os.path.join(self.SMPL_PATH, "textures", "female_{}.txt".format(split_name)) ) as f: txt_paths = f.read().splitlines() else: with open( os.path.join(self.SMPL_PATH, "textures", "male_{}.txt".format(split_name)) ) as f: txt_paths = f.read().splitlines() # if using only one source of clothing if clothing_option == "nongrey": txt_paths = [k for k in txt_paths if "nongrey" in k] elif clothing_option == "grey": txt_paths = [k for k in txt_paths if "nongrey" not in k] elif clothing_option == "same": # Orig txt_paths = ["textures/male/nongrey_male_0244.jpg"] elif clothing_option == "all": txt_paths = [k for k in txt_paths] # random clothing texture cloth_img_name = choice(txt_paths) cloth_img_name = os.path.join(self.SMPL_PATH, cloth_img_name) print("Picked skin texture: {}".format(cloth_img_name)) return cloth_img_name def create_material_SMPL(self, gender="m", person_no=0, clothing_option="grey", split_name="all"): print("Creating SMPL texture material") cloth_img_name = self.pick_skin_texture(split_name, clothing_option, gender) material = bpy.data.materials.new(name=f"Material_{person_no}") material.use_nodes = True # Add nodes tree = material.node_tree nodes = tree.nodes # Principled BSDf bsdf = nodes['Principled BSDF'] # Image img = nodes.new('ShaderNodeTexImage') img.image = bpy.data.images.load(cloth_img_name) # Links tree.links.new(img.outputs[0], bsdf.inputs[0]) return material def load_SMPLs_objects(self): # create the material for SMPL material = self.create_material_SMPL("m", 0) print("Male Material Created") smpl_body_list = [] # create the SMPL_Body object smpl_body_list.append( SMPL_Body(self.SMPL_PATH, material, 0, "male", person_no=0) ) print("Male created") material = self.create_material_SMPL("f", 1) print("Female material created") smpl_body_list.append( SMPL_Body(self.SMPL_PATH, material, 0, "female", person_no=1) ) print("Female created") return smpl_body_list
4,735
Python
38.140496
123
0.597043
eliabntt/animated_human_SMPL_to_USD/humangenerator/amass_gen.py
from pathlib import Path from humangenerator.util.blender_util import * import bpy from .util.amass_util import loadInfo, bodyCache, _load_parametric_body_model, _get_supported_mocap_datasets, \ _get_sequence_path import humangenerator as hgen class amass: def __init__(self, parent_path, with_cache, path_out, path_samples, smpl_models, write_verts, config): # temporary usd export path, we cannot directly write in mounted network drives sometimes temp_path = os.path.join(parent_path, 'usd_exports') # surreal path for textures smpl_path = os.path.join(parent_path, "surreal", "datageneration", "smpl_data") from humangenerator.generator import generator self.generator = generator(smpl_path) self.with_cache = with_cache self.path_out = path_out self.path_samples = path_samples self.smpl = smpl_models self.sub_dataset_id = config['sub_dataset_id'] self.num_betas = config['num_betas'] self.num_dmpls = config['num_dmpls'] self.subject_ids = config['subject_ids'].split() self.write_verts = (write_verts == "True") self.temp_path = temp_path self.body_model_m, self.faces_m = _load_parametric_body_model(parent_path, "male", self.num_betas, self.num_dmpls) self.body_model_f, self.faces_f = _load_parametric_body_model(parent_path, "female", self.num_betas, self.num_dmpls) taxonomy_file_path = os.path.join(parent_path, "taxonomy.json") self.supported_datasets = _get_supported_mocap_datasets(taxonomy_file_path, path_samples) def animateSMPL(self, sample, smpl_ob, info, body_model): if self.with_cache: bodyCache(self.path_cache, sample, info, smpl_ob.ob, body_model, self.num_betas, self.num_dmpls) # generate blendshapes + trans s = info['betas'][:10] smpl_ob.reset_joint_positions(s, bpy.data.scenes["Scene"]) for i in range(info['poses'].shape[0]): p = np.append(info['poses'][i][:66].reshape(-1, 3), [[0, 0, 0], [0, 0, 0]], 0) t = info['trans'][i].reshape((3,)) bpy.data.scenes["Scene"].frame_set(i) smpl_ob.apply_trans_pose_shape(t, p, s, i, with_blendshapes=not self.with_cache) def generate_SMPLbody_animation(self, sample, info, gender, index, body_model): print("Generate Animation..") orient = info['poses'][0, :3][2] p = np.append(info['poses'][0][:66].reshape(-1, 3), [[0, 0, 0], [0, 0, 0]], 0) t = info['trans'][0].reshape((3,)) s = info['betas'][:10] v, j = self.smpl[gender].set_params(pose=p, beta=s, trans=t) cloth_img_name = self.generator.pick_skin_texture(gender=gender, clothing_option="all") img = bpy.data.materials[f'Material_{index}'].node_tree.nodes["Image Texture"] img.image = bpy.data.images.load(cloth_img_name) material = bpy.data.materials[f'Material_{index}'] self.smpl_body_list[index].refine_SMPL(material, j, orient) # info['zrot'] self.animateSMPL(sample, self.smpl_body_list[index], info, body_model) # Smooth bpy.ops.object.shade_smooth() def loadAmassSequence(self, sample: str, info: dict, body_model, frame: int = None): bpy.context.scene.frame_end = info['poses'].shape[0] - 1 bpy.ops.object.select_all(action='DESELECT') # delete current garments for obj in bpy.data.objects.values(): if 'body' not in obj.name.lower() and 'armature' not in obj.name.lower(): obj.select_set(True) bpy.ops.object.delete() for obj in bpy.data.objects.values(): obj.select_set(False) gender = 'm' if info['gender'] == 'male' else 'f' index = 0 if info['gender'] == 'male' else 1 self.generate_SMPLbody_animation(sample, info, gender, index, body_model) bpy.context.view_layer.objects.active = bpy.data.objects[f'Armature_{index}'] arm_obj = bpy.data.objects[f'Armature_{index}'] bpy.context.scene.frame_current = bpy.context.scene.frame_start for obj in bpy.data.objects.values(): if 'body' not in obj.name.lower() and 'armature' not in obj.name.lower(): obj.select_set(True) obj.parent = arm_obj obj.rotation_euler = [0, 0, 0] obj.select_set(False) for obj in bpy.data.objects.values(): if 'armature' not in obj.name.lower() and 'body' not in obj.name.lower(): obj.select_set(True) else: if str(index) in obj.name: obj.select_set(True) if frame != None and frame >= 0 and frame <= bpy.context.scene.frame_end: bpy.context.scene.frame_current = frame def process_sample(self, sample: str, frame: int, smpl_body_list): # load info if sample in self.subject_ids: for subject_id in os.listdir(os.path.join(self.path_samples, sample)): sequence_path, main_path = _get_sequence_path(self.supported_datasets, self.sub_dataset_id, sample, subject_id) info = loadInfo(sequence_path) self.smpl_body_list = smpl_body_list subfolder_name = Path(subject_id).stem + ('_with_cache' if self.with_cache else '') self.path_cache = hgen.create_outfolder_structure(self.path_out, subfolder_name, self.with_cache) if frame is None: self.loadAmassSequence(sample, info, self.body_model_m if info["gender"] == "male" else self.body_model_f) else: self.loadAmassSequence(sample, info, self.body_model_m if info["gender"] == "male" else self.body_model_f, frame) bpy.ops.wm.save_as_mainfile(filepath=os.path.join(self.path_out, subfolder_name, subfolder_name + ".blend")) my_l = list(info.keys()) new_info = {} for i in my_l: new_info[i] = info[i] hgen.export_data(self.temp_path, self.path_out, Path(subject_id).stem, self.with_cache, frame, new_info, info['poses'][0, :3][2], self.write_verts) return True
6,545
Python
47.488889
126
0.579221
eliabntt/animated_human_SMPL_to_USD/humangenerator/util/amass_util.py
import numpy as np import glob import os import random from .IO import readPC2, writePC2 import bpy, sys, torch from .blender_util import mesh_cache from typing import Tuple def bodyCache(path_cache, sample, info, ob, body_model, num_betas, num_dmpls): print("Processing Body Cache") pc2_path = os.path.join(path_cache, sample + '.pc2') V = np.zeros((info['poses'].shape[1], 6890, 3), np.float32) bdata = info time_length = len(bdata['trans']) comp_device = torch.device("cuda" if torch.cuda.is_available() else "cpu") body_params = { 'root_orient': torch.Tensor(bdata['poses'][:, :3]).to(comp_device), # controls the global root orientation 'pose_body': torch.Tensor(bdata['poses'][:, 3:66]).to(comp_device), # controls the body 'pose_hand': torch.Tensor(bdata['poses'][:, 66:]).to(comp_device), # controls the finger articulation 'trans': torch.Tensor(bdata['trans']).to(comp_device), # controls the global body position 'betas': torch.Tensor(np.repeat(bdata['betas'][:num_betas][np.newaxis], repeats=time_length, axis=0)).to( comp_device), # controls the body shape. Body shape is static 'dmpls': torch.Tensor(bdata['dmpls'][:, :num_dmpls]).to(comp_device) # controls soft tissue dynamics } body_trans_root = body_model( **{k: v for k, v in body_params.items() if k in ['pose_body', 'betas', 'pose_hand', 'dmpls', 'trans', 'root_orient']}) if not os.path.isfile(pc2_path): V = body_trans_root.v.data.cpu().numpy() print("Writing PC2 file...") writePC2(pc2_path, V) else: V = readPC2(pc2_path)['V'] if V.shape[1] != len(ob.data.vertices): sys.stderr.write("ERROR IN THE VERTEX COUNT FOR THE BODY!!!!!") sys.stderr.flush() mesh_cache(ob, pc2_path) bpy.ops.object.shade_smooth() return body_trans_root def loadInfo(sequence_path): if os.path.exists(sequence_path): # load AMASS dataset sequence file which contains the coefficients for the whole motion sequence sequence_body_data = np.load(sequence_path) # get the number of supported frames return sequence_body_data else: raise Exception( "Invalid sequence/subject category identifiers, please choose a " "valid one. Used path: {}".format(sequence_path)) def _get_sequence_path(supported_mocap_datasets: dict, used_sub_dataset_id: str, used_subject_id: str, used_sequence_id: str) -> [str, str]: """ Extract pose and shape parameters corresponding to the requested pose from the database to be processed by the parametric model :param supported_mocap_datasets: A dict which maps sub dataset names to their paths. :param used_sub_dataset_id: Identifier for the sub dataset, the dataset which the human pose object should be extracted from. :param used_subject_id: Type of motion from which the pose should be extracted, this is dataset dependent parameter. :param used_sequence_id: Sequence id in the dataset, sequences are the motion recorded to represent certain action. :return: tuple of arrays contains the parameters. Type: tuple """ # check if the sub_dataset is supported if used_sub_dataset_id in supported_mocap_datasets: # get path from dictionary sub_dataset_path = supported_mocap_datasets[used_sub_dataset_id] # concatenate path to specific if not used_subject_id: # if none was selected possible_subject_ids = glob.glob(os.path.join(sub_dataset_path, "*")) possible_subject_ids.sort() if len(possible_subject_ids) > 0: used_subject_id_str = os.path.basename(random.choice(possible_subject_ids)) else: raise Exception("No subjects found in folder: {}".format(sub_dataset_path)) else: try: used_subject_id_str = "{:02d}".format(int(used_subject_id)) except: used_subject_id_str = used_subject_id subject_path = os.path.join(sub_dataset_path, used_subject_id_str) sequence_path = os.path.join(subject_path, used_sequence_id) return sequence_path, subject_path else: raise Exception( "The requested mocap dataset is not yest supported, please choose anothe one from the following " "supported datasets: {}".format([key for key, value in supported_mocap_datasets.items()])) def _load_parametric_body_model(data_path: str, used_body_model_gender: str, num_betas: int, num_dmpls: int) -> Tuple["BodyModel", np.array]: """ loads the parametric model that is used to generate the mesh object :return: parametric model. Type: tuple. """ import torch from human_body_prior.body_model.body_model import BodyModel bm_path = os.path.join(data_path, 'body_models', 'smplh', used_body_model_gender, 'model.npz') # body model dmpl_path = os.path.join(data_path, 'body_models', 'dmpls', used_body_model_gender, 'model.npz') # deformation model if not os.path.exists(bm_path) or not os.path.exists(dmpl_path): raise Exception("Parametric Body model doesn't exist, please follow download instructions section in AMASS Example") comp_device = torch.device("cuda" if torch.cuda.is_available() else "cpu") body_model = BodyModel(bm_path=bm_path, num_betas=num_betas, num_dmpls=num_dmpls, path_dmpl=dmpl_path).to(comp_device) faces = body_model.f.detach().cpu().numpy() return body_model, faces def _get_supported_mocap_datasets(taxonomy_file_path: str, data_path: str) -> dict: """ get latest updated list from taxonomoy json file about the supported mocap datasets supported in the loader module and update.supported_mocap_datasets list :param taxonomy_file_path: path to taxomomy.json file which contains the supported datasets and their respective paths. Type: string. :param data_path: path to the AMASS dataset root folder. Type: string. """ import json # dictionary contains mocap dataset name and path to its sub folder within the main dataset, dictionary will # be filled from taxonomy.json file which indicates the supported datastests supported_mocap_datasets = {} if os.path.exists(taxonomy_file_path): with open(taxonomy_file_path, "r") as f: loaded_data = json.load(f) for block in loaded_data: if "sub_data_id" in block: sub_dataset_id = block["sub_data_id"] supported_mocap_datasets[sub_dataset_id] = os.path.join(data_path, block["path"]) else: raise Exception("The taxonomy file could not be found: {}".format(taxonomy_file_path)) return supported_mocap_datasets
6,996
Python
50.448529
163
0.646512
eliabntt/animated_human_SMPL_to_USD/humangenerator/util/cloth3d_util.py
import numpy as np import scipy.io as sio from math import cos, sin from .blender_util import readOBJ, createBPYObj, setMaterial, mesh_cache, convert_meshcache import os, sys from .IO import readPC2, writePC2 import bpy def loadInfo(path: str): ''' this function should be called instead of direct sio.loadmat as it cures the problem of not properly recovering python dictionaries from mat files. It calls the function check keys to cure all entries which are still mat-objects ''' data = sio.loadmat(path, struct_as_record=False, squeeze_me=True) del data['__globals__'] del data['__header__'] del data['__version__'] return _check_keys(data) def _check_keys(dict): ''' checks if entries in dictionary are mat-objects. If yes todict is called to change them to nested dictionaries ''' for key in dict: if isinstance(dict[key], sio.matlab.mio5_params.mat_struct): dict[key] = _todict(dict[key]) return dict def _todict(matobj): ''' A recursive function which constructs from matobjects nested dictionaries ''' dict = {} for strg in matobj._fieldnames: elem = matobj.__dict__[strg] if isinstance(elem, sio.matlab.mio5_params.mat_struct): dict[strg] = _todict(elem) elif isinstance(elem, np.ndarray) and np.any([isinstance(item, sio.matlab.mio5_params.mat_struct) for item in elem]): dict[strg] = [None] * len(elem) for i,item in enumerate(elem): if isinstance(item, sio.matlab.mio5_params.mat_struct): dict[strg][i] = _todict(item) else: dict[strg][i] = item else: dict[strg] = elem return dict # Computes matrix of rotation around z-axis for 'zrot' radians def zRotMatrix(zrot): c, s = cos(zrot), sin(zrot) return np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]], np.float32) """ CAMERA """ def intrinsic(): RES_X = 640 RES_Y = 480 f_mm = 50 # blender default sensor_w_mm = 36 # blender default sensor_h_mm = sensor_w_mm * RES_Y / RES_X fx_px = f_mm * RES_X / sensor_w_mm; fy_px = f_mm * RES_Y / sensor_h_mm; u = RES_X / 2; v = RES_Y / 2; return np.array([[fx_px, 0, u], [0, fy_px, v], [0, 0, 1]], np.float32) def extrinsic(camLoc): R_w2bc = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]], np.float32) T_w2bc = -1 * R_w2bc.dot(camLoc) R_bc2cv = np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]], np.float32) R_w2cv = R_bc2cv.dot(R_w2bc) T_w2cv = R_bc2cv.dot(T_w2bc) return np.concatenate((R_w2cv, T_w2cv[:,None]), axis=1) def proj(camLoc): return intrinsic().dot(extrinsic(camLoc)) """ Mesh to UV map Computes correspondences between 3D mesh and UV map NOTE: 3D mesh vertices can have multiple correspondences with UV vertices """ def mesh2UV(F, Ft): m2uv = {v: set() for f in F for v in f} for f, ft in zip(F, Ft): for v, vt in zip(f, ft): m2uv[v].add(vt) # m2uv = {k:list(v) for k,v in m2uv.items()} return m2uv # Maps UV coordinates to texture space (pixel) IMG_SIZE = 2048 # all image textures have this squared size def uv_to_pixel(vt): px = vt * IMG_SIZE # scale to image plane px %= IMG_SIZE # wrap to [0, IMG_SIZE] # Note that Blender graphic engines invert vertical axis return int(px[0]), int(IMG_SIZE - px[1]) # texel X, texel Y def loadGarment(path_sample, path_cache, sample, garment, info): print("Processing Garment Cache") print(f"Loading {garment}") texture = info['outfit'][garment]['texture'] # Read OBJ file and create BPY object V, F, Vt, Ft = readOBJ(os.path.join(path_sample, sample, garment + '.obj')) ob = createBPYObj(V, F, Vt, Ft, name=sample + '_' + garment) # z-rot ob.rotation_euler[2] = info['zrot'] # Convert cache PC16 to PC2 pc2_path = os.path.join(path_cache, sample + '_' + garment + '.pc2' ) if not os.path.isfile(pc2_path): # Convert PC16 to PC2 (and move to view_cache folder) # Add trans to vertex locations pc16_path = os.path.join(path_sample, sample, garment + '.pc16') V = readPC2(pc16_path, True)['V'] for i in range(V.shape[0]): sys.stdout.write('\r' + str(i + 1) + '/' + str(V.shape[0])) sys.stdout.flush() if V.shape[0] > 1: V[i] += info['trans'][:, i][None] else: V[i] += info['trans'][:][None] writePC2(pc2_path, V) else: V = readPC2(pc2_path)['V'] if V.shape[1] != len(ob.data.vertices): sys.stderr.write("ERROR IN THE VERTEX COUNT!!!!!") sys.stderr.flush() mesh_cache(ob, pc2_path) # necessary to have this in the old version of the code with the old omni-blender # convert_meshcache(bpy.ops.object) # Set material setMaterial(path_sample, ob, sample, garment, texture) # Smooth bpy.ops.object.shade_smooth() print(f"\nLoaded {garment}.\n") def bodyCache(path_cache, sample, info, ob, smpl): print("Processing Body Cache") pc2_path = os.path.join(path_cache, sample + '.pc2') if not os.path.isfile(pc2_path): # Compute body sequence print("Computing body sequence...") print("") gender = 'm' if info['gender'] else 'f' if len(info['poses'].shape)>1: N = info['poses'].shape[1] else: N = 1 V = np.zeros((N, 6890, 3), np.float32) for i in range(N): sys.stdout.write('\r' + str(i + 1) + '/' + str(N)) sys.stdout.flush() s = info['shape'] if N == 1: p = info['poses'][:].reshape((24, 3)) t = info['trans'][:].reshape((3,)) else: p = info['poses'][:, i].reshape((24, 3)) t = info['trans'][:, i].reshape((3,)) v, j = smpl[gender].set_params(pose=p, beta=s, trans=t) V[i] = v - j[0:1] print("") print("Writing PC2 file...") writePC2(pc2_path, V) else: V = readPC2(pc2_path)['V'] if V.shape[1] != len(ob.data.vertices): sys.stderr.write("ERROR IN THE VERTEX COUNT FOR THE BODY!!!!!") sys.stderr.flush() mesh_cache(ob, pc2_path) bpy.ops.object.shade_smooth()
6,626
Python
32.469697
125
0.551313
eliabntt/animated_human_SMPL_to_USD/humangenerator/util/smplutils.py
import bpy from bpy_extras.object_utils import world_to_camera_view from mathutils import Matrix, Quaternion import numpy as np import pickle as pkl import os import math from pyquaternion import Quaternion # computes rotation matrix through Rodrigues formula as in cv2.Rodrigues def Rodrigues(rotvec): theta = np.linalg.norm(rotvec) r = (rotvec / theta).reshape(3, 1) if theta > 0.0 else rotvec cost = np.cos(theta) mat = np.asarray([[0, -r[2], r[1]], [r[2], 0, -r[0]], [-r[1], r[0], 0]]) return cost * np.eye(3) + (1 - cost) * r.dot(r.T) + np.sin(theta) * mat # transformation between pose and blendshapes def rodrigues2bshapes(pose): rod_rots = np.asarray(pose).reshape(24, 3) mat_rots = [Rodrigues(rod_rot) for rod_rot in rod_rots] bshapes = np.concatenate( [(mat_rot - np.eye(3)).ravel() for mat_rot in mat_rots[1:]] ) return mat_rots, bshapes def rotate_vector(vector, axis, angle): """ Rotate a vector around an axis by an angle. """ q = Quaternion(axis=axis, angle=angle) return q.rotate(vector) class SMPL_Body: def __init__(self, smpl_data_folder, material, j, gender="female", person_no=0, zrot=0): # load fbx model bpy.ops.import_scene.fbx( filepath=os.path.join( smpl_data_folder, "basicModel_{}_lbs_10_207_0_v1.0.2.fbx".format(gender[0]), ), axis_forward="Y", axis_up="Z", global_scale=100, ) J_regressors = pkl.load( open(os.path.join(smpl_data_folder, "joint_regressors.pkl"), "rb") ) # 24 x 6890 regressor from vertices to joints self.joint_regressor = J_regressors["J_regressor_{}".format(gender)] self.j = j armature_name = "Armature_{}".format(person_no) bpy.context.active_object.name = armature_name self.gender_name = "{}_avg".format(gender[0]) self.obj_name = "body_{:d}".format(person_no) bpy.data.objects[armature_name].children[0].name = self.obj_name # not the default self.gender_name because each time fbx is loaded it adds some suffix self.ob = bpy.data.objects[self.obj_name] # Rename the armature self.ob.data.use_auto_smooth = False # autosmooth creates artifacts # assign the existing spherical harmonics material self.ob.active_material = bpy.data.materials["Material_{}".format(person_no)] bpy.ops.object.origin_set(type='GEOMETRY_ORIGIN', center='MEDIAN') # clear existing animation data # self.ob.shape_key_clear() self.ob.data.shape_keys.animation_data_clear() self.arm_ob = bpy.data.objects[armature_name] self.arm_ob.animation_data_clear() self.setState0() # self.ob.select = True # blender < 2.8x self.ob.select_set(True) # bpy.context.scene.objects.active = self.ob # blender < 2.8x bpy.context.view_layer.objects.active = self.ob self.smpl_data_folder = smpl_data_folder self.materials = self.create_segmentation(material, smpl_data_folder) # unblocking both the pose and the blendshape limits for k in self.ob.data.shape_keys.key_blocks.keys(): self.ob.data.shape_keys.key_blocks[k].slider_min = -100 self.ob.data.shape_keys.key_blocks[k].slider_max = 100 # bpy.context.scene.objects.active = self.arm_ob # blender < 2.8x bpy.context.view_layer.objects.active = self.arm_ob # order self.part_match = { "root": "root", "bone_00": "Pelvis", "bone_01": "L_Hip", "bone_02": "R_Hip", "bone_03": "Spine1", "bone_04": "L_Knee", "bone_05": "R_Knee", "bone_06": "Spine2", "bone_07": "L_Ankle", "bone_08": "R_Ankle", "bone_09": "Spine3", "bone_10": "L_Foot", "bone_11": "R_Foot", "bone_12": "Neck", "bone_13": "L_Collar", "bone_14": "R_Collar", "bone_15": "Head", "bone_16": "L_Shoulder", "bone_17": "R_Shoulder", "bone_18": "L_Elbow", "bone_19": "R_Elbow", "bone_20": "L_Wrist", "bone_21": "R_Wrist", "bone_22": "L_Hand", "bone_23": "R_Hand", } def refine_SMPL(self, material, j, zrot): self.j = j self.arm_ob.rotation_euler = [0, 0, zrot] self.ob.data.shape_keys.animation_data_clear() self.arm_ob.animation_data_clear() self.ob.select_set(True) bpy.ops.object.origin_set(type='GEOMETRY_ORIGIN', center='MEDIAN') # bpy.context.scene.objects.active = self.ob # blender < 2.8x bpy.context.view_layer.objects.active = self.ob self.materials = self.create_segmentation(material, self.smpl_data_folder) for k in self.ob.data.shape_keys.key_blocks.keys(): self.ob.data.shape_keys.key_blocks[k].slider_min = -10 self.ob.data.shape_keys.key_blocks[k].slider_max = 10 # bpy.context.scene.objects.active = self.arm_ob # blender < 2.8x bpy.context.view_layer.objects.active = self.arm_ob def setState0(self): for ob in bpy.data.objects.values(): # ob.select = False # blender < 2.8x ob.select_set(False) # bpy.context.scene.objects.active = None # blender < 2.8x bpy.context.view_layer.objects.active = None # create one material per part as defined in a pickle with the segmentation # this is useful to render the segmentation in a material pass def create_segmentation(self, material, smpl_path): print("Creating materials segmentation") sorted_parts = [ "hips", "leftUpLeg", "rightUpLeg", "spine", "leftLeg", "rightLeg", "spine1", "leftFoot", "rightFoot", "spine2", "leftToeBase", "rightToeBase", "neck", "leftShoulder", "rightShoulder", "head", "leftArm", "rightArm", "leftForeArm", "rightForeArm", "leftHand", "rightHand", "leftHandIndex1", "rightHandIndex1", ] part2num = {part: (ipart + 1) for ipart, part in enumerate(sorted_parts)} materials = {} vgroups = {} with open(os.path.join(smpl_path,"segm_per_v_overlap.pkl"), "rb") as f: vsegm = pkl.load(f) if len(self.ob.material_slots) <= 1: bpy.ops.object.material_slot_remove() parts = sorted(vsegm.keys()) existing = False cnt = 0 for part in parts: vs = vsegm[part] # vgroups[part] = self.ob.vertex_groups.new(part) # blender < 2.8x if part not in self.ob.vertex_groups: vgroups[part] = self.ob.vertex_groups.new(name=part) vgroups[part].add(vs, 1.0, "ADD") else: existing = True bpy.ops.object.vertex_group_set_active(group=part) materials[part] = material.copy() materials[part].pass_index = part2num[part] if not existing: bpy.ops.object.material_slot_add() self.ob.material_slots[-1].material = materials[part] bpy.ops.object.mode_set(mode="EDIT") bpy.ops.mesh.select_all(action="DESELECT") bpy.ops.object.vertex_group_select() bpy.ops.object.material_slot_assign() bpy.ops.object.mode_set(mode="OBJECT") else: self.ob.material_slots[cnt].material = materials[part] cnt += 1 for scene_material in bpy.data.materials: if not scene_material.users and len(scene_material.name) != len(material.name): bpy.data.materials.remove(scene_material) return materials def quaternion_multiply(self, quaternion1, quaternion0): w0, x0, y0, z0 = quaternion0 w1, x1, y1, z1 = quaternion1 return np.array([-x1 * x0 - y1 * y0 - z1 * z0 + w1 * w0, x1 * w0 + y1 * z0 - z1 * y0 + w1 * x0, -x1 * z0 + y1 * w0 + z1 * x0 + w1 * y0, x1 * y0 - y1 * x0 + z1 * w0 + w1 * z0], dtype=np.float64) def euler_from_quaternion(self, quat): """ Convert a quaternion into euler angles (roll, pitch, yaw) roll is rotation around x in radians (counterclockwise) pitch is rotation around y in radians (counterclockwise) yaw is rotation around z in radians (counterclockwise) """ w,x,y,z = quat t0 = +2.0 * (w * x + y * z) t1 = +1.0 - 2.0 * (x * x + y * y) roll_x = math.atan2(t0, t1) t2 = +2.0 * (w * y - z * x) t2 = +1.0 if t2 > +1.0 else t2 t2 = -1.0 if t2 < -1.0 else t2 pitch_y = math.asin(t2) t3 = +2.0 * (w * z + x * y) t4 = +1.0 - 2.0 * (y * y + z * z) yaw_z = math.atan2(t3, t4) return roll_x*180/3.1415, pitch_y*180/3.1415, yaw_z*180/3.1415 # in radians def apply_trans_pose_shape(self, trans, pose, shape, frame=None, with_blendshapes = True): """ Apply trans pose and shape to character """ # transform pose into rotation matrices (for pose) and pose blendshapes mrots, bsh = rodrigues2bshapes(pose) # set the location of the first bone to the translation parameter mytrans = [0,0,0] mytrans[2] = trans[2] mytrans[1] = trans[1] mytrans[0] = trans[0] self.arm_ob.pose.bones[self.gender_name + "_Pelvis"].location = mytrans if frame is not None: self.arm_ob.pose.bones[self.gender_name + "_root"].keyframe_insert( "location", frame=frame ) self.arm_ob.pose.bones[self.gender_name + "_root"].keyframe_insert( "rotation_quaternion", frame=frame ) # set the pose of each bone to the quaternion specified by pose for ibone, mrot in enumerate(mrots): bone = self.arm_ob.pose.bones[ self.gender_name + "_" + self.part_match["bone_{:02d}".format(ibone)] ] bone.rotation_quaternion = Matrix(mrot).to_quaternion() if frame is not None: bone.keyframe_insert("rotation_quaternion", frame=frame) bone.keyframe_insert("location", frame=frame) # apply pose blendshapes if with_blendshapes: for ibshape, bshape in enumerate(bsh): self.ob.data.shape_keys.key_blocks[ "Pose{:03d}".format(ibshape) ].value = bshape if frame is not None: self.ob.data.shape_keys.key_blocks[ "Pose{:03d}".format(ibshape) ].keyframe_insert("value", index=-1, frame=frame) # apply shape blendshapes for ibshape, shape_elem in enumerate(shape): self.ob.data.shape_keys.key_blocks[ "Shape{:03d}".format(ibshape) ].value = shape_elem if frame is not None: self.ob.data.shape_keys.key_blocks[ "Shape{:03d}".format(ibshape) ].keyframe_insert("value", index=-1, frame=frame) else: mod = self.ob.modifiers.get('Armature') if mod is not None: self.ob.modifiers.remove(mod) def reset_joint_positions(self, shape, scene): orig_trans = np.asarray( self.arm_ob.pose.bones[self.gender_name + "_Pelvis"].location ).copy() # zero the pose and trans to obtain joint positions in zero pose self.apply_trans_pose_shape(orig_trans, np.zeros(72), shape) bpy.ops.wm.memory_statistics() depsgraph = bpy.context.evaluated_depsgraph_get() me = self.ob.evaluated_get(depsgraph).to_mesh() num_vertices = len(me.vertices) # 6890 reg_vs = np.empty((num_vertices, 3)) for iiv in range(num_vertices): reg_vs[iiv] = me.vertices[iiv].co # bpy.data.meshes.remove(me) # blender < 2.8x self.ob.evaluated_get(depsgraph).to_mesh_clear() # regress joint positions in rest pose joint_xyz = self.j # adapt joint positions in rest pose # self.arm_ob.hide = False # Added this line # bpy.context.scene.objects.active = self.arm_ob # blender < 2.8x bpy.context.view_layer.objects.active = self.arm_ob bpy.ops.object.mode_set(mode="EDIT") # self.arm_ob.hide = True for ibone in range(24): bb = self.arm_ob.data.edit_bones[ self.gender_name + "_" + self.part_match["bone_{:02d}".format(ibone)] ] bboffset = bb.tail - bb.head bb.head = joint_xyz[ibone] bb.tail = bb.head + bboffset bpy.ops.object.mode_set(mode="OBJECT")
13,308
Python
37.915205
94
0.550646
eliabntt/animated_human_SMPL_to_USD/humangenerator/util/blender_util.py
import os import bpy from humangenerator.util.IO import readOBJ, readPC2, writePC2 import numpy as np import bmesh import sys import pickle as pkl import shutil import random PI = 3.14159 """ Scene """ def init(): clean() # scene return scene() def clean(): for collection in dir(bpy.data): data_structure = getattr(bpy.data, collection) # Check that it is a data collection if isinstance(data_structure, bpy.types.bpy_prop_collection) and hasattr(data_structure, "remove") and collection not in [ "texts"]: # Go over all entities in that collection for block in data_structure: # Remove everything besides the default scene if not isinstance(block, bpy.types.Scene) or block.name != "Scene": data_structure.remove(block) def clean_mesh_and_textures(exclude=[]): # ensure everything is lowered exclude = [i.lower() for i in exclude] for block in bpy.data.objects: if block.users == 0 or block.name.lower() not in exclude: bpy.data.objects.remove(block) for block in bpy.data.meshes: if block.users == 0: bpy.data.meshes.remove(block) for block in bpy.data.materials: if block.users == 0 and block.name.lower() not in exclude: bpy.data.materials.remove(block) for block in bpy.data.textures: if block.users == 0: bpy.data.textures.remove(block) for block in bpy.data.images: bpy.data.images.remove(block) for block in bpy.data.shape_keys: if block.users == 0: bpy.data.textures.remove(block) for block in bpy.data.actions: if block.users == 0: bpy.data.actions.remove(block) def scene(): scene = bpy.data.scenes["Scene"] scene.render.engine = "CYCLES" # bpy.data.materials['Material'].use_nodes = True scene.cycles.shading_system = True scene.use_nodes = True scene.render.film_transparent = True scene.frame_current = 0 scene.render.fps = 30 scene.render.resolution_x = 640 scene.render.resolution_y = 480 return scene """ BPY obj manipulation """ def select(ob, only=True): if type(ob) is str: ob = bpy.data.objects[ob] if only: deselect() ob.select_set(True) bpy.context.view_layer.objects.active = ob return ob def deselect(): for obj in bpy.data.objects.values(): obj.select_set(False) bpy.context.view_layer.objects.active = None def delete(ob): select(ob) bpy.ops.object.delete() def createBPYObj(V, F, Vt=None, Ft=None, name='new_obj'): # Create obj mesh = bpy.data.meshes.new('mesh') ob = bpy.data.objects.new(name, mesh) # Add to collection bpy.context.collection.objects.link(ob) select(ob) mesh = bpy.context.object.data bm = bmesh.new() # Vertices for v in V: bm.verts.new(v) bm.verts.ensure_lookup_table() # Faces for f in F: v = [bm.verts[i] for i in f] bm.faces.new(v) bm.to_mesh(mesh) bm.free() # UV Map if not Vt is None: # Create UV layer ob.data.uv_layers.new() # Assign UV coords iloop = 0 for f in Ft: for i in f: ob.data.uv_layers['UVMap'].data[iloop].uv = Vt[i] iloop += 1 return ob def convert_meshcache(ob: bpy.ops.object, offset=0): # Converts a MeshCache or Cloth modifiers to ShapeKeys bpy.context.scene.frame_current = bpy.context.scene.frame_start for frame in range(bpy.context.scene.frame_end + 1): bpy.context.scene.frame_current = frame # for alembic files converted to PC2 and loaded as MeshCache bpy.ops.object.modifier_apply_as_shapekey(keep_modifier=True, modifier="MeshCache") # loop through shapekeys and add as keyframe per frame # https://blender.stackexchange.com/q/149045/87258 bpy.context.scene.frame_current = bpy.context.scene.frame_start for frame in range(bpy.context.scene.frame_end + 1): bpy.context.scene.frame_current = frame shapekey = bpy.data.shape_keys[-1] for i, keyblock in enumerate(shapekey.key_blocks): if keyblock.name != "Basis": curr = i - 1 if curr != frame: keyblock.value = 0 keyblock.keyframe_insert("value", frame=frame) else: keyblock.value = 1 keyblock.keyframe_insert("value", frame=frame) bpy.ops.object.modifier_remove(modifier="MeshCache") def setMaterial(path_sample, ob, sample, garment, texture): mat = bpy.data.materials.new(name=sample + '_' + garment + '_Material') mat.use_nodes = True ob.data.materials.append(mat) if texture['type'] == 'color': mat.node_tree.nodes['Principled BSDF'].inputs[0].default_value = texture['data'].tolist() + [1] elif texture['type'] == 'pattern': # Read pattern img_path = os.path.join(path_sample, sample, garment + '.png') # Add nodes tree = mat.node_tree nodes = tree.nodes # Principled BSDf bsdf = nodes['Principled BSDF'] # Image img = nodes.new('ShaderNodeTexImage') try: img.image = bpy.data.images.load(img_path) # Links tree.links.new(img.outputs[0], bsdf.inputs[0]) except: mat.node_tree.nodes['Principled BSDF'].inputs[0].default_value = [random.random(), random.random(), random.random(), 1] """ Modifiers """ def mesh_cache(ob, cache, scale=1): ob = select(ob) bpy.ops.object.modifier_add(type='MESH_CACHE') ob.modifiers['MeshCache'].cache_format = 'PC2' ob.modifiers['MeshCache'].filepath = cache ob.modifiers['MeshCache'].frame_scale = scale def write_usd(temppath, filepath, filename, with_cache, export_animation=True, sf=0, ef=-1, frame_step=1): outpath = os.path.join(filepath, filename) filepath = os.path.join(filepath, filename, filename + ".usd") if ef == -1: ef = bpy.context.scene.frame_end print(f"\nExporting usd to {filepath}\n") print(f"With blendshapes = {not with_cache}") bpy.ops.wm.usd_export(filepath=os.path.join(temppath, filename + ".usd"), filemode=8, display_type='DEFAULT', sort_method='DEFAULT', selected_objects_only=True, visible_objects_only=True, export_animation=export_animation, export_hair=True, export_vertices=True, export_vertex_colors=True, export_vertex_groups=True, export_face_maps=True, export_uvmaps=True, export_normals=True, export_transforms=True, export_materials=True, export_meshes=True, export_lights=True, export_cameras=False, export_blendshapes=(not with_cache), export_curves=True, export_particles=True, export_armatures=True, use_instancing=False, evaluation_mode='VIEWPORT', default_prim_path=f"/body_{filename}", root_prim_path=f"/body_{filename}", material_prim_path=f"/body_{filename}/materials", generate_cycles_shaders=False, generate_preview_surface=True, generate_mdl=True, convert_uv_to_st=True, convert_orientation=True, convert_to_cm=True, export_global_forward_selection='Y', export_global_up_selection='Z', export_child_particles=False, export_as_overs=False, merge_transform_and_shape=False, export_custom_properties=True, add_properties_namespace=False, export_identity_transforms=False, apply_subdiv=True, author_blender_name=True, vertex_data_as_face_varying=False, frame_step=frame_step, start=sf, end=ef, override_shutter=False, init_scene_frame_range=True, export_textures=True, relative_paths=True, light_intensity_scale=1, convert_light_to_nits=True, scale_light_radius=True, convert_world_material=True, fix_skel_root=True, xform_op_mode='SRT') shutil.move(os.path.join(temppath, filename + ".usd"), filepath) shutil.move(os.path.join(temppath, "textures"), os.path.join(outpath, "textures")) def export_stl_data(filepath, filename, lobs, zrot): context = bpy.context dg = context.evaluated_depsgraph_get() scene = context.scene coll = context.collection step = 5 for ob in lobs: if ob.type != 'MESH': print(ob.name) print(ob.type) ob.select_set(False) continue bpy.context.view_layer.objects.active = ob rings = [] me = ob.data nverts = len(me.vertices) nedges = len(me.edges) bm = bmesh.new() f = scene.frame_start while f <= scene.frame_end: scene.frame_set(f) bm.from_object(ob, dg, cage=True) bmesh.ops.remove_doubles(bm, verts=bm.verts, dist=0.02) # bmesh.ops.transform(bm, verts=bm.verts[:], matrix=ob.matrix_world) f += step rings.append(bm.edges[:]) print("Frames processeds, going to do rings") # build from rings next = rings.pop() while rings: ring = rings.pop() bmesh.ops.bridge_loops(bm, edges=ring + next) next = ring rme = bpy.data.meshes.new("Rib") bm.to_mesh(rme) copy = bpy.data.objects.new("Rib", rme) coll.objects.link(copy) print("DONE" + ob.name) for ob in bpy.data.objects: if 'Rib' in ob.name: ob.select_set(True) bpy.context.view_layer.objects.active = ob else: ob.select_set(False) bpy.ops.object.join() ob = bpy.context.view_layer.objects.active ob.select_set(True) ob.rotation_euler = [0, 0, zrot] bpy.ops.export_mesh.stl(filepath=os.path.join(filepath, filename, filename + ".stl"), check_existing=True, use_selection=True, global_scale=1, ascii=False, use_mesh_modifiers=False, batch_mode='OFF', axis_forward='Y', axis_up='Z') bpy.ops.object.delete() def write_pkl_data(filepath, filename, arm_ob, ob, info, frame_step=1, write_verts=False): bpy.context.scene.frame_current = bpy.context.scene.frame_start N = int((bpy.context.scene.frame_end - bpy.context.scene.frame_start + 1) / frame_step) n_bones = len(arm_ob.pose.bones) - 1 n_verts = len(ob.data.vertices) if write_verts: d = { 'frame': [], 'bones': np.zeros((N, n_bones, 3), np.float32), 'info': info, 'verts': np.zeros((N, n_verts, 3), np.float32), 'sf': bpy.context.scene.frame_start, 'ef': bpy.context.scene.frame_end + 1, 'nframes': frame_step } else: d = { 'frame': [], 'bones': np.zeros((N, n_bones, 3), np.float32), 'info': info, 'sf': bpy.context.scene.frame_start, 'ef': bpy.context.scene.frame_end + 1, 'nframes': frame_step } select(ob) dg = bpy.context.evaluated_depsgraph_get() cnt = 0 for f in range(bpy.context.scene.frame_start, bpy.context.scene.frame_end + 1): sys.stdout.write('\r' + str(f) + '/' + str(N * frame_step)) sys.stdout.flush() bpy.context.scene.frame_current = f bpy.context.view_layer.update() d['frame'].append(f) select(ob) tmp = ob.evaluated_get(dg) me = tmp.to_mesh() if write_verts: d['verts'][cnt] = np.reshape([ob.matrix_world @ v.co for v in me.vertices], (n_verts, 3)) select(arm_ob) d['bones'][cnt] = np.reshape([arm_ob.matrix_world @ bone.head for bone in arm_ob.pose.bones[1:]], (n_bones, 3)) cnt += 1 if not os.path.exists(os.path.join(filepath, filename)): os.makedirs(os.path.join(filepath, filename)) filepath = os.path.join(filepath, filename, filename + ".pkl") out = open(filepath, 'wb') pkl.dump(d, out) out.close()
12,339
Python
35.081871
120
0.593322
eliabntt/animated_human_SMPL_to_USD/humangenerator/util/IO.py
import os import numpy as np from struct import pack, unpack """ Reads OBJ files Only handles vertices, faces and UV maps Input: - file: path to .obj file Outputs: - V: 3D vertices - F: 3D faces - Vt: UV vertices - Ft: UV faces Correspondence between mesh and UV map is implicit in F to Ft correspondences If no UV map data in .obj file, it shall return Vt=None and Ft=None """ def readOBJ(file): V, Vt, F, Ft = [], [], [], [] with open(file, 'r') as f: T = f.readlines() for t in T: # 3D vertex if t.startswith('v '): v = [float(n) for n in t.replace('v ','').split(' ')] V += [v] # UV vertex elif t.startswith('vt '): v = [float(n) for n in t.replace('vt ','').split(' ')] Vt += [v] # Face elif t.startswith('f '): idx = [n.split('/') for n in t.replace('f ','').split(' ')] f = [int(n[0]) - 1 for n in idx] F += [f] # UV face if '/' in t: f = [int(n[1]) - 1 for n in idx] Ft += [f] V = np.array(V, np.float32) Vt = np.array(Vt, np.float32) if Ft: assert len(F) == len(Ft), 'Inconsistent .obj file, mesh and UV map do not have the same number of faces' else: Vt, Ft = None, None return V, F, Vt, Ft """ Writes OBJ files Only handles vertices, faces and UV maps Inputs: - file: path to .obj file (overwrites if exists) - V: 3D vertices - F: 3D faces - Vt: UV vertices - Ft: UV faces Correspondence between mesh and UV map is implicit in F to Ft correspondences If no UV map data as input, it will write only 3D data in .obj file """ def writeOBJ(file, V, F, Vt=None, Ft=None): if not Vt is None: assert len(F) == len(Ft), 'Inconsistent data, mesh and UV map do not have the same number of faces' with open(file, 'w') as file: # Vertices for v in V: line = 'v ' + ' '.join([str(_) for _ in v]) + '\n' file.write(line) # UV verts if not Vt is None: for v in Vt: line = 'vt ' + ' '.join([str(_) for _ in v]) + '\n' file.write(line) # 3D Faces / UV faces if Ft: F = [[str(i+1)+'/'+str(j+1) for i,j in zip(f,ft)] for f,ft in zip(F,Ft)] else: F = [[str(i + 1) for i in f] for f in F] for f in F: line = 'f ' + ' '.join(f) + '\n' file.write(line) """ Reads PC2 files, and proposed format PC16 files Inputs: - file: path to .pc2/.pc16 file - float16: False for PC2 files, True for PC16 Output: - data: dictionary with .pc2/.pc16 file data NOTE: 16-bit floats lose precision with high values (positive or negative), we do not recommend using this format for data outside range [-2, 2] """ def readPC2(file, float16=False): # assert file.endswith('.pc2') and not float16 or file.endswith('.pc16') and float16, 'File format not consistent with specified input format' data = {} bytes = 2 if float16 else 4 dtype = np.float16 if float16 else np.float32 with open(file, 'rb') as f: # Header data['sign'] = f.read(12) # data['version'] = int.from_bytes(f.read(4), 'little') data['version'] = unpack('<i', f.read(4))[0] # Num points # data['nPoints'] = int.from_bytes(f.read(4), 'little') data['nPoints'] = unpack('<i', f.read(4))[0] # Start frame data['startFrame'] = unpack('f', f.read(4)) # Sample rate data['sampleRate'] = unpack('f', f.read(4)) # Number of samples # data['nSamples'] = int.from_bytes(f.read(4), 'little') data['nSamples'] = unpack('<i', f.read(4))[0] # Animation data size = data['nPoints']*data['nSamples']*3*bytes data['V'] = np.frombuffer(f.read(size), dtype=dtype).astype(np.float32) data['V'] = data['V'].reshape(data['nSamples'], data['nPoints'], 3) return data """ Reads an specific frame of PC2/PC16 files Inputs: - file: path to .pc2/.pc16 file - frame: number of the frame to read - float16: False for PC2 files, True for PC16 Output: - T: mesh vertex data at specified frame """ def readPC2Frame(file, frame, float16=False): assert file.endswith('.pc2') and not float16 or file.endswith('.pc16') and float16, 'File format not consistent with specified input format' assert frame >= 0 and isinstance(frame,int), 'Frame must be a positive integer' bytes = 2 if float16 else 4 dtype = np.float16 if float16 else np.float32 with open(file,'rb') as f: # Num points f.seek(16) # nPoints = int.from_bytes(f.read(4), 'little') nPoints = unpack('<i', f.read(4))[0] # Number of samples f.seek(28) # nSamples = int.from_bytes(f.read(4), 'little') nSamples = unpack('<i', f.read(4))[0] if frame > nSamples: print("Frame index outside size") print("\tN. frame: " + str(frame)) print("\tN. samples: " + str(nSamples)) return # Read frame size = nPoints * 3 * bytes f.seek(size * frame, 1) # offset from current '1' T = np.frombuffer(f.read(size), dtype=dtype).astype(np.float32) return T.reshape(nPoints, 3) """ Writes PC2 and PC16 files Inputs: - file: path to file (overwrites if exists) - V: 3D animation data as a three dimensional array (N. Frames x N. Vertices x 3) - float16: False for writing as PC2 file, True for PC16 This function assumes 'startFrame' to be 0 and 'sampleRate' to be 1 NOTE: 16-bit floats lose precision with high values (positive or negative), we do not recommend using this format for data outside range [-2, 2] """ def writePC2(file, V, float16=False): assert file.endswith('.pc2') and not float16 or file.endswith('.pc16') and float16, 'File format not consistent with specified input format' if float16: V = V.astype(np.float16) else: V = V.astype(np.float32) with open(file, 'wb') as f: # Create the header headerFormat='<12siiffi' headerStr = pack(headerFormat, b'POINTCACHE2\0', 1, V.shape[1], 0, 1, V.shape[0]) f.write(headerStr) # Write vertices f.write(V.tobytes()) """ Reads proposed compressed file format for mesh topology. Inputs: - fname: name of the file to read Outputs: - F: faces of the mesh, as triangles """ def readFaceBIN(fname): if '.' in os.path.basename(fname) and not fname.endswith('.bin'): print("File name extension should be '.bin'") return elif not '.' in os.path.basename(fname): fname += '.bin' with open(fname, 'rb') as f: F = np.frombuffer(f.read(), dtype=np.uint16).astype(np.int32) return F.reshape((-1,3)) """ Compress mesh topology into uint16 (Note that this imposes a maximum of 65,536 vertices). Writes this data into the specified file. Inputs: - fname: name of the file to be created (provide NO extension) - F: faces. MUST be an Nx3 array """ def writeFaceBIN(fname, F): assert type(F) is np.ndarray, "Make sure faces is an Nx3 NumPy array" assert len(F.shape) == 2 and F.shape[1] == 3, "Faces have the wron shape (should be Nx3)" if '.' in os.path.basename(fname) and not fname.endswith('.bin'): print("File name extension should be '.bin'") return elif not '.' in os.path.basename(fname): fname += '.bin' F = F.astype(np.uint16) with open(fname, 'wb') as f: f.write(F.tobytes())
6,824
Python
31.971014
143
0.652989
eliabntt/GRADE-RR/TipsAndTricks.md
## Tips and tricks ### Main concepts The simulation has various components. 1. `kit` or `SimulationApp` used to access the engine itself. Essentially, the base engine over which everything works [link](https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.kit/docs/index.html). You can't do much with this. It's always the first call, prior to loading isaac/omni components (even python import calls). 2. The simulation context. This class provide functions that take care of many time-related events such as perform a physics or a render step for instance. It also includes an instance of PhysicsContext which takes care of many physics related settings such as setting physics dt, solver type..etc [link](https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.core/docs/index.html?highlight=context#module-omni.isaac.core.simulation_context). 3. The `stage` object. Accessed with `omni.usd.get_context().get_stage()`. Used to access all the simulations objects and their properties, e.g. through `prim = stage.GetPrimAtPath('/whatever')`. 4. `omni` is generally available, independently in which piece of code you are. Thus using 3. or `omni.kit.app.get_app()` you should be able to access everything you need without passing objects around. You'll work mainly with 2 and 3. All functions have autocomplete capabilities, just place a breakpoint and walk your way through them. If you hover over some properties in the UI sometimes a helper dialog will give you the name of the property. Otherwise, the `prim.GetPropertyNames()` will give you the available properties. In general, the prims and their properties are accessed through a prim tree. Sometimes, some properties, are accessible only if the prim is accessed as a specific kind (e.g. a mesh [link](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/smpl_and_bbox.py#L206)) or under specific additional keywords (e.g. the physics collision [link](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/utils/misc_utils.py#L275)). Unfortunately, there is no easy way to figure this out due to the symbiosys between Isaac and USD. NOTE that some functions are highly customized (e.g. `set_drone_joints_init_loc`)! This is thought to help you out set up your _custom_ simulation, and not an off the shelf solution! ### Clear properties For each object that you load you should call `clear_properties(path)` [link](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/utils/misc_utils.py#L414). This will ensure that the translate, rotate and scale operations are attached to the objects as expected. ### Viewports and cameras Each rendering component will have a viewport associated to that. In our testing we found out that switching cameras related to a viewport (to reduce memory consumption) may lead to memory leakage and other problems. What we suggest is to have one viewport for every thing that you want to render, be that a full-res camera or a ROS-camera. If you want both high-res and low-res images, we suggest to have two viewports. It will slow down things (as rendering will be slower), but it will be easier to manage. ### Try out before deployment You can easily try out code in the script tool of the main simulation. In short you want to open the stage, open the script toolbox, and try out your snippets there. Remember that it is not possible to render/update the simulation in this case. If you need the physics, stop and play the simulation using the corresponding buttons. You will probably need the `stage` object (see point 3 above), and your own code. Remember that you need to import any additional module. Some commands can also be seen copied and used using the [Command Tool](https://docs.omniverse.nvidia.com/isaacsim/latest/ext_omni_kit_commands.html) util. <details closed> ![Alt text](image.png) </details closed> ### Time For robotics applications the time is goverened by the physics time. On the other hand, the default step of the simulation in Isaac is governed by the rendering. The easy way to solve this is to manually publish the clock as shown in the tutorials, and keep the timeline tool under "control". The timeline tool is what controls the animations. You can access that using ``` timeline = setup_timeline(config) # config containing some additional options # or timeline = omni.timeline.get_timeline_interface() ``` And perform various operations such as ``` timeline.set_current_time(0) timeline.get_current_time() timeline.forward/backward_one_frame() timeline.play() timeline.stop() ``` `timeline.set_auto_update(False)` is used to stop the timeline advancing every rendering call. The timeline must be `playing` for the physics, clock etc, to work correctly. Thus, in theory, it would be possible to set the update to false, forward the timeline step before rendering whenever necessary, and the problem would be solved. *However, this is apparently not working in the current version of Isaac Sim. Thus, in the `sleeping()` function [link](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/utils/simulation_utils.py#L149) we constantly reset the time to the current time so that the rendering is correct. Also, continuously call `play` and `stop` might cause problems.* ### Simulation rendering, manual interaction, and UI The simulation app UI will be refreshed ONLY when you do a rendering call. For stepping the physics and rendering you have different options: 1. `kit.update()` will step both the physics and the rendering 2. `simulation_context.render()` will do only a SINGLE rendering step 3. `simulation_context.step()` will do both a rendering and physics step. Not always working 4. `simulation_context.step(render=False)` will do a physics step 5. `omni.kit.app.get_app().update()` as `kit.update()`, but accessible if you do not have access to the kit object itself. My suggestion is to always work with a combination of `simulation_context.render()/step(render=False)` and to stick to that. If needed, you will be able to interact with the application only when fast enough rendering calls are made. Sometimes, it is necessary to also step the physics to see the effects of your actions. A quick way to do this is to: 1. enter debug mode in python 2. run a loop such as ``` for _ in range(1000): simulation_context.step(render=False) simulation_context.render() ``` #### *The rendering calls are NOT blocking. This means that every time you render it will do that for either 1) a fixed amount of time in case of RTX rendering, or 2) a single step for path tracing rendering. This has been solved by us through the `sleeping` function in the `simulation_utils.py`.* #### *The visual information on the application is updated after the SECOND render call.* ### Save the GT information The process is to either save stuff from the main simulation loop, or to use the synthetic recorder extension. In the latter case you can use directly what we provide in `isaac_internals/exts/omni.isaac.synthetic_recorder/omni/isaac/synthetic_recorder/extension_custom.py` and expand it alongside with `isaac_internals/exts/omni.isaac.synthetic_utils/omni/isaac/synthetic_utils/writers/numpy.py` and `isaac_internals/exts/omni.isaac.synthetic_utils/omni/isaac/synthetic_utils/syntheticdata.py` code. Then you can create a recorder directly in your code using: ``` from omni.isaac.synthetic_recorder import extension_custom my_recorder = extension_custom.MyRecorder() my_recorder.on_startup() # necessary call _settings = my_recorder.get_default_settings() _settings["rgb"]["enabled"] = True # inspect and extend this dictionary my_recorder.set_single_settings(_settings) my_recorder._dir_name = os.path.join(out_path) my_recorder._enable_record = True # set to false to disable my_recorder.skip_cameras = 0 # number of viewports to skip # do stuff my_recorder._update() # write data if enabled ``` This will create the desired data for EACH viewport. A shorter version is by using ``` recorder = recorder_setup(recorder_setup(_recorder_settings, out_path, enabled, skip_cameras) recorder._update() ``` Skip cameras is used to let the system know how many viewports it need to skip when saving the data itself. Multiple recorders can be set in place. They will all cycle through all the viewports, unless you change the code yourself. All data can be also accessed in the main simulation loop. Some examples are the vertices, or the lidar information (see the replay experiment script). Potentially, you could also get as output of the recorder `_update()` call all the information, edit, and publish them as ROS messages. ### Save the motion vector This is not possible during rendering itself. To save it you need to manually render (for the second time), wait for the data to be produced, and then save the motion vector itself. See the repeating experiment tool for an example on how to do that [here](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/replay_experiment.py#L391-L392). Note that the motion vector can be only visualized by the default Isaac installation and not saved (see [here](https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.sensor/docs/index.html#module-omni.isaac.sensor.scripts.camera)). Thus, we cannot ensure correctness. ### Traverse the stage To traverse all the prims in the stage you can simply run `for prim in stage.Traverse(): ...` ### Enable/Disable collisions Add colliders [here](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/utils/misc_utils.py#L125) See [here](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/utils/misc_utils.py#L106) ### Hide objects from the viewport Change visibility of a list of objects [here](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/utils/misc_utils.py#L513) ### Postprocess the data Please check our dedicated repository [here](https://github.com/robot-perception-group/GRADE_tools). ### Colorize the saved data Simply run `python scripts/colorize.py --viewport_folder main_folder_with_npy_files`. Check our code [here](https://github.com/eliabntt/GRADE-RR/blob/main/scripts/colorize.py), you can save images, images and videos, and decide which kind of data you want. ### Get skeletal, vertices, and SMPL information while correcting bounding boxes Look [here](https://github.com/eliabntt/GRADE-RR/blob/main/simulator/smpl_and_bbox.py). This is mainly tuned for our data. However, it can be easily expanded to your own dataset. In short, for skeleton you need to open the prim as `AnimationSchema.SkelJoint(prim).GetJoint()` [here](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/smpl_and_bbox.py#L192), for the vertices use `points = UsdGeom.PointBased(prim)`[here](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/smpl_and_bbox.py#L206). Using the latters, you can get the bounding boxes. ### Edit directly USD files Check the tutorial [here](https://github.com/eliabntt/GRADE-RR/blob/37ee985abccc6239bec7f22241c49da0acc5402c/EDIT_USDS.md). This will help you convert USD to txt files for easy file processing. ### How to move/control the camera/robot You have several possibilities with and without ROS, with and without physics. Check them out [here](https://github.com/eliabntt/GRADE-RR/blob/37ee985abccc6239bec7f22241c49da0acc5402c/MOVEMENT.md) ### Possible missing textures/wrong paths When loading humans or environments (or anything else) it may be necessar for you to edit the paths of the shaders, especially when moving between Windows and Linux. To do that you can use the [`change_shader_path`](https://github.com/eliabntt/GRADE-RR/blob/main/simulator/utils/misc_utils.py#L62) or the [correct paths](https://github.com/eliabntt/GRADE-RR/tree/main/scripts/process_paths) scripts. Otherwise, you can simply process the text files as explained [here](https://github.com/eliabntt/GRADE-RR/blob/main/EDIT_USDS.md). ### Segmentation <-> instance Instance segmentation files will save also the mappings between classes. An example on how to do the mapping and process those file is [here](https://github.com/robot-perception-group/GRADE-eval/blob/main/mapping_and_visualization/convert_classes.py). ### Shapenet and GSO For the objects please download at least some assets from ShapeNetv2 or GSO websites. Paths should be `../gso/folders_of_the_objects` and `../shapenet/synsetIds/...`. For ShapeNet please also add `../shapenet/v1_csv/all_of_the_synset_csvs`. Our code will convert locally in `../gso/exported_usd` and `../shapenet/local-converted-USD`. Clearly, you can pre-process everything and use only the USDs afterwards (to save space). All the code is on `simulator/utils/object_utils.py`. ### Project pixels to world Look at `scripts/pixel_to_world.py` ### Bag processing Average stats `scripts/average_rosbag.py` Filter and compress `scripts/filter_compress.sh` ### Automatically generate data See `scripts/bash_process.zsh` using `screen`
13,343
Markdown
71.129729
727
0.781908
eliabntt/GRADE-RR/HOWTO.md
## Requirements and basic software installation Please check the [requirements](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/requirements.html) on the official page. Then download the omniverse launcher and install Nucleus, Cache, and Isaac Sim. From now on, we will assume that you installed Isaac Sim within a `ISAAC_FOLDER`. Default location is `~/.local/share/ov/pkg/isaac-version/`. Clone this repository. You can clone this wherever you prefer. For simplicity, we usually download it within the `isaac` folder. However, by using global paths you should be able to run this code anywhere in your PC. _Note_ Isaac will have its own python installation, if you need packages and you run software within the Isaac python executable remember that. To do so, you usually do something like ``` cd $ISAAC_FOLDER ./python.sh -m pip install ... # or ./python.sh python_file.py ``` We have some dependencies which are not installed by default. To install them run `sh req.sh $ISAAC_FOLDER`. (This will simply use the main Isaac `python.sh` to install everything via `pip`). Independently on where you cloned the repository you need to run `sh cp_local_to_different_folder.sh $CLONE_FOLDER $ISAAC_FOLDER` This will copy the edited files from $1 (source) to the $2 (destination). You can use it in reverse (from Isaac to repo), or with any couple of folders. ## Misc A general note: every script has been more or less commented and almost each piece of code should be self-explanatory. If you don't find it like that please **open an issue**. I worked on this mainly alone so the code is far from perfect, super-modular, or anything like that. But together we can make it better. Thus, we welcome any contribution that you might have. Include coding style, comments, additions, or better strategies that you want to propose (of course after you have published your paper). ## How to start the simulation To launch Isaac you can run `./isaac-sim.sh` from the main installation folder to launch the simulator. It is suggested to do this once before starting any other coding activity. To control the simulation with your own code the general process is `./python.sh python_script args`. In `args` you can specify either python arguments arguments for the Isaac simulator itself (e.g. ` --/renderer/enabled='iray'`). The functions that we use in our scripts are all contained in the `simulator/utils` folder. An explanation of each one of the function is given in their comment, while a brief overview is given [here](https://github.com/eliabntt/GRADE-RR/blob/main/simulator/utils/UTILS.md). ## Main concept Our programs all follow the same structure. - load the basic kit and start the initial simulation - load a basic environment with some settings pre-applied (some config changes cannot be made with the code itself) - load libraries and settings - load your main environment - edit the environment - load the robots - attach sensors to the robot - correct the camera fov (bug in Isaac that changes it) - [optional] load and place humans, objects and animate objects - setup information recorder - loop the simulation and publish/write the information when necessary Every aspect can be personalized or adapted. The basic environment could be your final one, the humans/animations can be present or placed in a different way, robot can have your set of sensors or your own publishing rate. Our code is thought in such a way that each robot is loaded pre-fixed with the `my_robot_` name, and this applies to each topic that is published from that robot. The exception lies in the `tf` topic, for which we will have a publisher for each robot. Data can be published in ROS and saved as npy files. If you want both, with the former using a lowres camera and the latter an high res camera you should first load all the robots, and then call `add_npy_cameras` adjusting the skipped camera of your `recorder`. See the [tips](https://github.com/eliabntt/GRADE-RR/blob/main/TipsAndTricks.md) readme for more insights. ## Your first code [Here](https://github.com/eliabntt/GRADE-RR/blob/main/simulator/first_run.py) is a first example showing how to launch the simulation, load a basic environment, and perform some basic actions. The workflow will always be the same. Import general modules, create the `SimulationApp`, import the IsaacSim related stuff, and proceed. Please, look at the comments in the code directly. Brief explanations are also given below. ## Going past your first code Before adventuring here, please be sure to download our sample [world]() and [animated assets](). Those scripts will be incremental (i.e. based on the previous one). Please open all the downloaded USDs once at least to be sure that textures and everything else is correctly loaded. We marked _Optional_ what can be skipped in future iterations of _your_ code, but still, please go through them. They will go step by step from the general environment to the animated house. **Beore launching any simulation that need ros you need to start `roscore` if using ROS preferably with sim time set to true (`rosparam set use_sim_time true`)** In these codes, we consider our provided sampled world, the animated assets, and the drone provided with this repository. For the objects, you will find a note in the corresponding tutorial details. Additional samples (our used code, adapted from v2021), will be added in the next section. ##### Still WIP, need to add links and make sure that the code works. But most of it should work rn. - Using a config file, adding your own "world", and a robot [here](https://github.com/eliabntt/GRADE-RR/blob/main/simulator/world_and_robot.py). <details closed> - To create a robot you can either import our `usds/drone_2022.usd` or `usds/robotino.usd`, use your own URDF [link](https://docs.omniverse.nvidia.com/isaacsim/latest/ext_omni_isaac_urdf.html), create your own USD (add a mesh and attach some joints to it, [link](https://docs.omniverse.nvidia.com/isaacsim/latest/tutorial_gui_simple_robot.html)), or use one of the already available models. For now, the USD file is enough. - The world can be either empty (thus you can skip loading), just with static objects, or with pre-placed animated objects (as in the zebra case). The world needs to be placed into a subfolder, e.g. `worlds/Savana/...`. Inside, you could (not mandatory) have: - `npy` file with the limits of the environment - `stl` file with the 3D occupancy of the environment If you do NOT have those, just disable the flags in the config file (see last point of this list). Otherwise, they will be used as shown [here](https://github.com/eliabntt/GRADE-RR/blob/455891d5021009695a5da13c4feda0ceb258d476/simulator/utils/environment_utils.py). - You will also see how to add colliders to the environment, how to generate a 2D occupancy map, how to use the meters per unit, how to move the robot before starting the simulation (by moving the joints). - Launch this with `./python.sh simulator/world_and_robot.py --config="/your_full_path/simulator/world_and_robot.yaml" --fix_env=Something`. `--config` is mandatory, `--fix_env` will tell to the system to select the `Something` world from the `world` environments folder, e.g. `Sample_house` </details closed> - [Optional] Fix the rendering engine, add and publish some ROS components to the robot itself [here](https://github.com/eliabntt/GRADE-RR/blob/main/simulator/robot_with_ros.py). <details closed> - You will see how to add the clock to the simulation. Thanks to how we define it [here](https://github.com/eliabntt/GRADE-RR/blob/455891d5021009695a5da13c4feda0ceb258d476/simulator/utils/robot_utils.py#L274) the clock will tick with pysics steps, but will need to be manually published. - Our phylosophy is to manually publish ROS messages for better flexibility - We will show both how to add single components, or a batch of them, i.e. through custom "add all sensors" functions as we have done [here](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/utils/robot_utils.py#L557). - How to publish data (either manually with ROS messages or using the internal Isaac Components) - You can then fix the rendering engine (path vs raytracing), and get to know the `sleeping` function - Place a breakpoint somewhere and try to manually render the environment while the timeline is playing (not using sleeping). Note how the rendering will advance the timeline of more than what you want. This does not affect the physics, but will affect the animations. Keep this in mind. See [here](https://github.com/eliabntt/GRADE-RR/blob/6e42652201509ed7ad95624d9a551e24fe5ce03c/TipsAndTricks.md#L38) for more details. - Launch this with `./python.sh simulator/robot_with_ros.py --config="/your_full_path/simulator/robot_with_ros.yaml" --fix_env=Something`. `--config` is mandatory, `--fix_env` will tell to the system to select the `Something` world from the `world` environments folder, e.g. `Sample_house` </details closed> - [Optional] Add animated people, additional objects, and animate those while solving the timeline problem [here](). <details closed> - You can get a sample human from [here](). Soon, we will upload our collection. Since then, you can follow our other repository [here](https://github.com/eliabntt/animated_human_SMPL_to_USD) to convert your SMPL models to USD. The preferred folder structure is `main/dataset/ID`, you will provide the `main` folder to allow the randomizer to work. - You can either place the models manually into your world beforehand (see the zebra case), use pre-fixed (or random) locations, or use a placement technique. Our placement technique will be explored in the additional scripts since it requires setting up the catkin workspace as well. - For the objects please download at least some assets from ShapeNetv2 or GSO websites. If not, please comment out that part of the code, or adapt it to your own assets. We think the GSO part can be made general quite easily. Paths should be `../gso/folders_of_the_objects` and `../shapenet/synsetIds/...`. For ShapeNet please also add `../shapenet/v1_csv/all_of_the_synset_csvs`. In the config add the `gso` and the `shapenet` folders. Additional options are there. - The animation will use the timeline interface see [here](https://github.com/eliabntt/GRADE-RR/blob/064c1b888727c6faa191f88519184dc272a8b950/simulator/utils/objects_utils.py#L135). - The objects loading code is [here](https://github.com/eliabntt/GRADE-RR/blob/064c1b888727c6faa191f88519184dc272a8b950/simulator/utils/objects_utils.py), for both shapenet and google scanned objects. You can see how the conversion works [here](https://github.com/eliabntt/GRADE-RR/blob/064c1b888727c6faa191f88519184dc272a8b950/simulator/utils/objects_utils.py#L65). The system will automatically save the converted USD for backup and to avoid re-conversion. - Launch this with `./python.sh simulator/people_and_objects.py --config="/your_full_path/simulator/humans_and_objects.yaml" --fix_env=Something`. `--config` is mandatory, `--fix_env` will tell to the system to select the `Something` world from the `world` environments folder, e.g. `Sample_house` </details closed> - [Optional] Launch your own SIL from within your own simulation script, add some randomization (e.g. lights, textures etc) and save GT data [link]() ## Additional scripts ### Correct data and smpl_and_bbox [This](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/smpl_and_bbox.py) and [this](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/correct_data.py) show how to access low-level information of the meshes, how it is possible to correct the 3DBbox and pose incorrect information. ### Zebra data generation and Animation Sequences [This](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/zebra_datagen.py) is the code that we used to generate the data for the Zebra paper. Unfortunately, we cannot share the USDs of the environments, whith the exception of the Savanna one, due to licensing limitations. You can however explore how to access low level animation sequences [link](https://github.com/eliabntt/GRADE-RR/blob/455891d5021009695a5da13c4feda0ceb258d476/simulator/utils/zebra_utils.py#L136) and how we managed to generate our data for the [Synthetic Data-based Detection of Zebras in Drone Imagery paper](https://arxiv.org/abs/2305.00432). Run it with `./python.sh GRADE-RR/simulator/zebra_datagen.py --/renderer/enabled='rtx,iray' --config='configs/config_zebra_datagen.yaml' --headless=False --fix_env=Savana` ### Replay experiment [This](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/replay_experiment.py) is a very useful piece of code. You can use this to replay any previously recorded experiment, modify the robot (or the scene conditions) and record new data. You can replay the experiment in two modalities, namely using teleport or by physically interpolating the trajectory. Note that the latter is subject to some drift due to the interpolation of the data itself. <details closed> Please run ``` ./python.sh GRADE-RR/simulator/replay_experiment.py --experiment_folder FOLDER ``` to do so. In our code we show how to create a new stereo camera, save previously unsaved data, save motion-vector, and create a LiDAR sensor. You need some information to be able to repeat an experiment. Namely, the joint positions. We load those [from the rosbags](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/replay_experiment.py#L177), although you can access them from the GT pose arrays. </details closed> ### Paper autonomous indoor exploration (humans, objects, SIL, active SLAM etc) ### Multi robot management ## Known issues 1. ros clock might have some delay in publishing. This implies that you need to sleep the simulation every time that component gets triggered. Other component behave consistently based on our tests. Alternatively, you can post-process the data as shown in [here](https://github.com/robot-perception-group/GRADE-eval) 2. BBOX3D are wrong for moving objects. The script [here](https://github.com/eliabntt/GRADE-RR/blob/main/simulator/correct_data.py#L267) show a way to solve this. 3. Pose information is wrong for some moving objects. The code [here](https://github.com/eliabntt/GRADE-RR/blob/main/simulator/correct_data.py#L224) will solve this. 4. Collisions for dynamic objects are not computed most of the times due to PhysX limitations. This is addressed by the new LiDAR-RTX of the new Isaac Sim version. However, its management is not intuitive. 5. The rendering is not blocking. Multiple calls (especially for path tracing) are necessary. Thus, this usually disrupt the motion-vector data. A possible workaround is to do two rendering steps and save the motion-vector data, and then finish rendering to save the rgb information. See [here](https://github.com/eliabntt/GRADE-RR/blob/main/simulator/replay_experiment.py#L390) an example on how to do that. Note that a rendering call is done just after the clocking. 6. In the v2022 it is not possible to set indipendent vfov of the cameras. It will take the hfov and use the AR to have a "correct" vfov. 7. In the v2022 the internal PD control for the joints will NOT work using position setpoints. Also, the maximum velocity set is not considered. 8. In the v2022 the timeline gets updated automatically even if you do not want it. You need to keep track of the ctime and constantly re-update it to correctly generate the data you want.
15,825
Markdown
96.691357
619
0.776114
eliabntt/GRADE-RR/SAMPLES.md
# Our Samples Still WIP. We have several showcase examples (all located in the simulator folder). Each one of the python files has its own configuration yaml file. More details will be given below for each file To follow these tutorials, we suggest that either you download one of our example environments [here]() and human animations [here]() or you use our code [SMPL to USD](https://github.com/eliabntt/animated_human_SMPL_to_USD) and [Blender to USD](https://github.com/eliabntt/Front3D_to_USD) to create your own assets. We also suggest that you pre-install the [drone](https://github.com/eliabntt/ros_isaac_drone) control and placement repository. This is necessary to be able to use our placement strategy, control the drone with our custom 6DOF controller, or use FUEL with IsaacSim. Each simulation file will power up the environment, load the assets and manage the saving based on the loaded configuration file. The scripts are the following: 1. `FUEL_indoor_simulation` this is the code that we used to generate the dataset. 4. `irotate_simulation` this is the code that we used to simulate [iRotate](https://github.com/eliabntt/irotate_active_slam), our active SLAM method, with Isaac Sim. This is very similar to 1 and 2, despite using an initial location but shwos how you can manage different robot with practically the same code. 5. `multi_robot_sim` simulate multi robots, a bit hardcoded but generalizable. This simulate two drones and a ground robot. The two drones will be controlled independently with two FUEL sessions, while the ground robot is controlled with iRotate. 6. `savana_simulation` to show how we created the Savana with the Zebras. Animated animals are pre-positioned within the environment. The robot is controlled through joint waypoints. **THIS DOES NOT WORK in v2022.2.1 DUE TO ISAACSIM BUGS** **Each config needs to be updated with your own paths** ___ ## Paper(ros) simulation Install ROS and create a `catkin_ws` and install [this](https://github.com/eliabntt/ros_isaac_drone). The default location for this installation is `$HOME` (`/home/user/catkin_ws`). The repo above will install 1. `FUEL`, our chosen exploration manager 2. `mav_comm` and `mav_control_rw` which are used to control the robot and get velocity commands to follow the path generated by `FUEL` 3. `custom_6dof_joint_controller` which is the bridge between the position/velocity commands and the joint velocities expected by IsaacSim 4. `moveit_based_collision_checker_and_placement` which is needed to do the placement of the "objects" The [README](https://github.com/eliabntt/ros_isaac_drone/blob/main/README.md) already explicate the dependencies. If you install it in a different location _update `setup_python_env.sh:2`_ with your new location. Remember that you can also `source ... --extend` to source different environments in cascade. At this point, assuming you are locate in the ISAAC folder you can run ``` ./python.sh GRADE-RR/simulator/paper_simulation.py --config="/GLOBAL/GRADE-RR/simulator/configs/config_paper.yaml" ``` *BASH PROCESSING* If you want to run everything (including the exploration visualization and the rosbag recorder) the `bash_process.zsh` file is what you are looking for. That file is what we used to streamline the generation and process in batches. In the config file you can easily chose which sensor to use. Similarly ``` ./python.sh GRADE-RR/simulator/simulator_ros.py --config="/GLOBAL/simulator/configs/config.yaml" ``` would work. Note that in this case you need to edit both the configs and the code otherwise the robot will not move. _______ ## iRotate simulation Download and install the iRotate package [here](https://github.com/eliabntt/irotate_active_slam/tree/isaac) from the Isaac branch. This simulation by default does NOT use animated objects. You can see how one can have a blueprint and quickly edit it based on its own convenience. _update `setup_python_env.sh:2`_ with your catkin workspace location. Before launching the simulation you need to open a terminal and run `python[3] irotate_specific/republish_tf.py` Also, run `irotate` as explained in the repo. A set of commands could be: ``` roslaunch robotino_simulations world.launch roslaunch robotino_simulations rtabmap.launch delete:=-d roslaunch active_slam active_node.launch roslaunch robotino_mpc robotino_mpc.launch ``` Note that we launch the FSM later on. With iRotate we usually let the robot start from `0,0,0` and `yaw=0`. If you change this, like with the previous work, you need to change the ekfs accordingly. The transform `world->map` is constant. `map->odom` is done by `rtabmap`. `odom->base_link` is done from the ekfs. Isaac is setted up to publish the tfs to the `/tf2` topic. Step 4 is necessary to publish everything back to the `/tf` cleaned up of the ground truth estimation. The custom joint controller has been updated. You need to be sure you are running the one from irotate repository. Thus, we need either to build everything in the same workspace or use `source ... --extend` if you are using two workspaces. You can eventually change the scripts to have it working how you want. You can launch an rviz visualization with `rviz -d irotate_specific irotate.rviz` ``` ./python.sh GRADE-RR/simulator/irotate_simulation.py --config="/GLOBAL/GRADE-RR/simulator/configs/config_irotate.yaml" ``` Once the simulation is running, you can launch `roslaunch robotino_fsm robotino_fsm.launch kind:=2 only_last_set:=false pre_fix:=true mid_optimizer:=true weighted_avg:=true robot_odom:=/odometry/filtered cam_odom:=/camera/odometry/filtered` Note how the topics are stilll without `/my_robot_x`. This should be changed in the EKF formulation. _______ ## Multi robot For this you need both the irotate repository and the original paper repository. The code will launch first the irotate robot and then two drones. You need to include both workspaces in `setup_python_env.sh:2` using first the _ros_isaac_drone_ and then the _irotate_ workspace (use the `--extend` keyword). You can follow a similar procedure like the one above to launch `iRotate`. To run the main simulation ``` ./python.sh GRADE-RR/simulator/multi_robot_sim.py --config="/GLOBAL/GRADE-RR/simulator/configs/config_multi_robot.yaml" ``` This piece of code show you how multiple robots can be loaded and controlled, how the configuration file can be expanded (e.g. only iRotate's robot has an initial location) and how everything can be customized. _______ ## Savana - not working on 2022 Is another simple scenario since everything is managed internally. The animations are already placed within the environment and the robot has pre-defined waypoints. The FSM is internal to the main source code which can be launched with ``` ./python.sh GRADE-RR/simulator/savana_simulation.py --config="/GLOBAL/GRADE-RR/simulator/configs/config_savana.yaml" ```
6,912
Markdown
57.092436
315
0.774306
eliabntt/GRADE-RR/PARAMS.md
# Which parameters are available and how to edit them Note: we try our best to update this consistently, but there might be some misalignment, this should be normal also considering different code runs. For example the "init_loc" parameter can be either a number or a list, depending on which version of the code you are running. The main simulation parameters are the last ones in this page. _____ ### Python params for simulator/smpl_and_bbox - `experiment_folder`, mandatory, the experiment folder with the USD file and the info file - `body` When true process the bodies - `garments` When true process the garments - `base_path` Human prim base path, i.e. filtering prim paths - `headless` Whether run this headless or not - `write` Whether to write results - `fast` Whether to write only the axis-aligned box or the oriented one, if False, the program will be slow - `both` Whether to write both vertex types -- preference in code is both - `only_exp` Whether to export only the experiment (considering the reverse strategy) or the whole sequences - `get_skel` Whether to get/include the skeleton info - `skel_root` This is a recognizable last part of the root of the skeleton prim, in our case _avg_root It will process ONLY the path of which the last part is this root _____ ### Python params for scripts/colorize - `viewport_folder` mandatory, the "viewport" folder where npy data is saved - `img_id` if negative process the whole sequence, otherwise just the img_id - `save_imgs` if save images - `save_video` if save videos (will produce two videos using ffmpeg) - `always_update_map` if always updating the instance mapping. default to false using the first one. Useful if you toggle objects - `semantics` if generate semantic - `output_dir` output directory _____ ### Params for scripts/process_paths - `config_file` configuration file with options to normalize the path, and critical keys that will be used in the main folder. You want to change these to your paths - `input` input USDA file. Check the main readme on how to convert the USD file and convert back or use the .sh script - `output_name` output USDA file - `output_dir` output dir _____ ### Python params for the main simulator/[*simulation.py, multi_robot_sim.py] files All the parameters are optional with the exception of the config file. If you remove something from the config file please be sure that is not used in the code. Otherwise, it will crash. - `config_file` mandatory, the yaml file with mosst of the params - `headless` if it's true the visualization is turned off - `rtx_mode` if it's true the simulation will launch with the RTX rendering (faster), else the PathTracing is used - `record` if it's true it will write to disk - `debug_vis` if it's true it will loop visualization and ros camera publishing - `neverending` if it's true it will continue forever the main loop - `fix_env` you can set this to the _name_ of the sub-folder containing the environment that you want to load ### Simulation Config YAML params -- these are described for how they are used. You can easily edit and modiy their behavior (e.g. `human_path` can be your only human asset) ***"Mandatory" params*** - `env_path`: folder containing the subfolders of the environments (`env_path/env1, env_path/env2, ...`). You can randomly chose or use `fix_env` to specify an environment. - `human_path`: folder that contains the subfolders of the human animated assets, separated in the various datasets (`human_path/dataset1/animationX`,`human_path/dataset2/animationX`) - `base_env_path`: global path of the basic environment (the background). NOTE: some configs cannot be changed from the code - `usd_robot_path`: global path of the USD of the robot. Can be an array as for multi_robot case - `robot_mesh_path`: global path of the mesh of the robot. Can be an array as for multi_robot case - `out_folder`: path of the output folder in which we will save the ROS logs, and the map - `out_folder_npy`: path of the output folder in which we will save the groundtruth from the simulator code (not the rosbags) - `num_robots`: number of robots - `_recorder_settings`: what to save or what not to save. Note that some things are not implemented. I strongly suggest to NOT save colorize data. Motion-vectors can be saved with the strategy shown in replay experiment - `fps` the fps of the simulation - `physics_hz`: NOTE THAT THIS IS THE RATE OF CLOCK AND IMU - `render_hz`: LEAVE IT EQUAL TO PHYSICS HZ - `env_prim_path` IsaacSim internal path for the prim of the environment - `robot_base_prim_path` same thing for the robot (the number of the robot is the postfix) - `is_iRotate` whether the robot is Robotino or not, this changes the launched ROS and some settings. Note that this can be a vector, and can be expanded to different robots ***THE OPTIONAL PARAMETER NEED TO BE EXPLICITLY ADDRESSED IN THE CODE. This wants to be a reference to search code and understand what is going on*** ***Depending on usage params - experiment*** - `experiment_length`: camera frames length of the experiment (`seconds * camera_fps`), will be overridden by `neverending`. In the savana experiment this has not been used (experiment ends when last waypoint reached) - `num_humans`: depends on your usage, can be fixed, minimum number or whatever you want - `[robot,npy]_sensor_size` camera sensor size for robot and npy data. Can be equal. Npy not necessary if not loaded. - `bootstrap_exploration`: seconds to boostrap the simulation before starting from time 0 (min(abs(this_value), 1/(physics_hz/ratio_camera)). It sets the time negative and cicle through physics and rendering. - `reverse_strategy`: timeline reverse strategy based on the loaded animation lengths. Possibilities are [min, max, avg, half, none], works only with animated sequences. It makes the timeline going backward/forward based on this. It will roll back the simulation timeline (not the time, just the animation). This uses the animation length (see `paper_simulation.py`) - `anim_exp_len` an alternative of `reverse_strategy`, rewinding the simulation after this many frames - `clean_base_env` whether to remove some things from the base environment loaded at the beginning. - `reload_references` whether to reload the references of the assets or not. Sometimes it might be necessary (seems solved in the newer versions) - `generate_map` whether to generate the occupancy map or not. Works only if stls are loaded. Suggest to use only with limited environments (it takes a while to add collisions). ***Depending on usage params - robot movement*** - `autonomous`: true -> use FUEL, false -> use random goals (not fully tested), this is applicable only to the main paper simulation, used with autonomous=True. just to show it. - `use_robot_traj`: Whether to use or not a predefined traj *not physics enabled* - `use_joint_traj`: Whether to use or not joint trajecotry *physics enabled*. This cannot be true at the same time of robot_traj. - `robot_traj`: The trajectory remember that movement will be linear and instantaneous. No acceleration or anything. This implies no odom, nor IMU data. If you want those, please add the same trajectory to a joint publisher. - `init_loc`: initial location for the robot (the elements can be vectors as in the multi-robot case) ***Depending on usage params - humans*** - `max_distance_human_ground`: max distance from human to ground to be consider to force the first frame grounding of animations - `allow_collision`: max number of collisions allowed between the stl of the human and the stl of the environment - `human_base_prim_path` for the humans (the number of the human is the postfix) - `[max,min]_human_anim_len`: [Max,Min]imum human animation to be considered. ***Depending on usage params - objects*** - `obstacles`: increase those numbers to load shapenet or google objects (or any other objects) - `google_obj_folder`: google_scanned_objects folder. Structure is `folder/exported_usd` and `folder/assets` - `google_obj_shortlist`: shortlist some objects, not fully tested - `shapenet_local_dir`: local dir of ShapeNet *suggestion is to download this beforehand* - `shapenet_username`: if want to download on the fly. Last time I tried it was not working anymore. - `shapenet_password`: if want to download on the fly. Last time I tried it was not working anymore. - `synsetId`: shortlist some objects, not fully tested - `modelId`: shortlist some objects, not fully tested ***Depending on usage params - simulation*** - `ratio_[tf,odom,camera,...]`: physics_hz/ratio_tf = tf publish hz - `_random_light` - `intensity` If intensity needs to be changed - `color` If color needs to be changed - `intensity_interval` - `during_experiment` Change color/intensity during the experiment - `n-frames` if during experiment True switch the color of the light - `smooth` NOT IMPLEMENTED - `_random_roughness` Roughness/reflectance of the materials - `enabled` If enabled - `intensity_interval` ***Depending on usage params - others*** - `only_placement` if the placement strategy should be the only ROS thing launched. Following a similar strategy all ROS can be disabled. - `use_stl` wheter to load the STLs of env/humans or not. This will have repercussion but gives the possibility to avoid generating/loading the STL files.
9,347
Markdown
75.62295
366
0.758853
eliabntt/GRADE-RR/EDIT_USDS.md
If you desire to edit an usd file offline for whatever reason there is an easy way to do it. `.usd` files are binary files. However, they can be converted to text file easily. Just go to the official [USD](https://github.com/PixarAnimationStudios/USD) repository and install it in your system. Then you can run the following: `usdcat -o text_version.usda binary_version.usd` to obtain the text file of your `usd`. With that you can edit all the paths and many other things (e.g. keyframe information). This may or may not be convenient depending on the use case. Both are loadable by the system. However, if you wish to convert back to binary format you can run the same command again with `usdcat -o binary_version.usd text_version.usda`. Alternatively check out our `scripts/process_paths` folder. It will be automatic and easily adaptable to your use case.
867
Markdown
47.22222
126
0.775087
eliabntt/GRADE-RR/MOVEMENT.md
# Movement control There are two main aspects: ROS and Physics. You can control the movement with or without ROS and with or without Physics. In general, including ROS implies having physics. With "With ROS" we mean that ROS is involved in the input. Clearly, you can always publish ROS information from the simulation. When using joints, the system will essentially always use physics in some way. Clearly, as in Gazebo, you can disable gravity, collisions etc to your convenience. An important thing to remember is that by being physics enabled implies that joints will be affected by the mass of the object to which those are attached. Clearly, even with teleport this might be true. In practice, not being physically enabled requires you to disable gravity of the object and collisions. To disable gravity, do so by changing the property (if exists) of the asset, similarly to what we do for the collision [here](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/utils/misc_utils.py#L106). With the exception of options 2 and 4 (which are pretty much equivalent) of the _Without ROS_ case. ### With ROS 1. Attach a joint publisher/listener to the robot ([link](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/utils/robot_utils.py#L233)) and directly publish a `joint_commands` ROS message either on your own [link](https://docs.ros.org/en/melodic/api/control_msgs/html/msg/JointJog.html), using our 6DOF joint controller [link](https://github.com/eliabntt/custom_6dof_joint_controller), through MoveIt (see the [tutorial](https://docs.omniverse.nvidia.com/isaacsim/latest/tutorial_ros_moveit.html)). 2. Use an embedded controller provided by IsaacSim and publish `cmd_vel` commands dependending on your use case. 3. Use ROS to publish setpoints in some ways, listen to the topic within the simulation loop, and fall back to the "without ROS" section. ### Without ROS 1. Move the robot by sending _joint_ position/velocity setpoints directly from IsaacSim. This will output physics and will abide the settings that you use for your joints (mass, force...). The implementations within IsaacSim is through a PD control. An example of this has been implemented [here](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/utils/robot_utils.py#L760). Although the implementation there is different (it assume a set of predefined checkpoints) the concept is the same. To learn about stiffness and damping, please check [this](https://forums.developer.nvidia.com/t/stiffness-damping-setting-in-joint-drive/213916) or [this](https://docs.omniverse.nvidia.com/isaacsim/latest/ext_omni_isaac_motion_generation.html). Note that this has some issues in the 2022.2.1 version of the engine. Clearly, using this you can write your own controller. <details closed> ```python import omni.kit.commands from pxr import Sdf omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path('/World/robot/.../PrismaticJoint.drive:linear:physics:targetPosition'), value=10, prev=0) ``` ```python import omni.kit.commands from pxr import Sdf omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path('/World/Cone/PrismaticJoint.drive:linear:physics:targetVelocity'), value=10, prev=0.0) ``` </details closed> 2. Use a strategy like the one we use for the [flying objects](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/utils/objects_utils.py#L191) adding [translation](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/utils/misc_utils.py#L288) and [rotation](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/utils/misc_utils.py#304) animations (also scale is possible). However, this does NOT include physics, collision or anything similar whatsoever. In this case the trajectory is followed blindly and interpolated based on your settings. 3. Use [teleporting](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/utils/misc_utils.py#L497). For this see [replay experiment](https://github.com/eliabntt/GRADE-RR/blob/main/simulator/replay_experiment.py) code. Note that running the physics steps will imply that the robot will be affected by physics (e.g. collisions, gravity etc) 4. Create a spline, animation sequence, or whatever and saving that to the USD file itself. Once loaded, the robot will behave as an animated object. Again, this won't follow physics low. It will still be affected by physics (accel, velocities) but not to collisions, gravity, etc. See [here](https://docs.omniverse.nvidia.com/extensions/latest/ext_animation-timeline.html) and related resources. Similar to #2. 5. Directly set joint status as done in [replay experiment](https://github.com/eliabntt/GRADE-RR/blob/7d9cb9a3d75d57628adacb9b9f969909d7663f3d/simulator/replay_experiment.py#L348) from within the simulation itself, although this is quite similar to do #1.
5,063
Markdown
94.547168
904
0.796563
eliabntt/GRADE-RR/README.md
# GRADE-RR or how to Generate Realistic Animated Dynamic Environments for Robotics Research ### Note that while we used the v2021 for the paper, that version is now deprecated. I will work only on v2022+ GRADE is a system I developed to seamlessly manage the Isaac Sim simulation software to Generate Realistic Animated Dynamic Environments for Robotics Research ![prom](NewCover.png) This will help you in: 1. managing the simulation 2. load, place, animate assets 3. load and control any robot --- with or without ROS, with or without physics 4. get sensor readings from such robots, saving *ground truth* or *noisy* data 5. customize your workflow 6. postprocess the data --- add noise, reorganize the bags, prep the data for DL models... 7. repeat any experiment --- *this includes recording new sensor, getting new data, changing the conditions and repair the data while working in realistically looking environments and in a physics enabled simulator.* Each step of the pipeline can be easily customized, expanded or removed from your workflow. If you want more information check out the [paper](https://arxiv.org/abs/2303.04466) or our [website](https://eliabntt.github.io/grade-rr). _______ ## Useful related repositories (that couldn't fit this page) 1. The tools to process the data, add noise to the rosbags or during the simulation, to evaluate the SLAM methods, generate training data can be found [here](https://github.com/robot-perception-group/GRADE_tools) 2. The code to convert SMPL-based animations to USD files is [here](https://github.com/eliabntt/animated_human_SMPL_to_USD). Use this if you want to convert AMASS animated SMPL models, the Cloth3D dataset, or any other dataset that you might have that contains skeletal animations. If you use something different than SMPL (or some of its variations), you will need to extend this code. 3. To convert any environment from Blender to USD and generate some accompanying data use [this](https://github.com/eliabntt/Front3D_to_USD). This has a special focus in indoor environmets and Front3D. Based on BlenderProc. You can use this tool also to convert ANY fbx or other file. 4. The tools we used to autonomously explore the environments during the data generation is [here](https://github.com/eliabntt/ros_isaac_drone), using RotorS, FUEL, our custom 6DOF controller, etc. 5. The modified version of DynaSLAM working with Python3 and using `detectron2` is [here](https://github.com/eliabntt/DynaSLAM) 6. `custom_6dof_joint_controller` is the bridge between the position/velocity commands and the joint velocities expected by IsaacSim. This will allow you to control any robot within the simulation environment. [Link here](https://github.com/eliabntt/custom_6dof_joint_controller/tree/main). 7. `moveit_based_collision_checker_and_placement` our Move-it based placement strategy. [Link here](https://github.com/eliabntt/moveit_based_collision_checker_and_placement/tree/main) ______ ## Our projects ### Active SLAM, indoor scenes data collection, and dynamic SLAM With this framework in conjuction with our [people generator](https://github.com/eliabntt/animated_human_SMPL_to_USD), [environment exporter](https://github.com/eliabntt/Front3D_to_USD) and [control framework](https://github.com/eliabntt/ros_isaac_drone) (which can control virtually anything thanks to our expandable [custom 6DOF joint controller](https://github.com/eliabntt/custom_6dof_joint_controller)), we generated an extensive dataset of indoor animated scenes. The data generated has been then post-processed and evaluated with our set of [tools](https://github.com/robot-perception-group/GRADE_tools) against popular SLAM libraries, and used to test the realism your synthetic data. With those tests we showed how many of these methods cannot recover from failures, and have highly degraded performance in dynamic environments even during very short sequences(60 seconds). ### In the wild Zebras observed by drones We used the teleport capabilities of the system to generate both an **outdoor synthetic Zebra** datasets. The details are in the corresponding [Zebra](https://arxiv.org/abs/2305.00432) paper. The goal was to try to bridge the gap between simulation and reality and demonstrate that we can avoid tedious tasks such as precise data annotation. Using a variety of environments from Unreal Engine and a freely available zebra model we were able to generate data realistic enough to obtain models trained from *scratch* that reached >90% accuracy on real world data. _______ ### Folder structure <details closed> <summary>A folder structure summary with comments of what is inside each folder</summary> ```bash ├── cp_local_to_diff_folder.sh # update code from/to isaac folder ├── irotate_specific # specific files used for simulate irotate in isaac sim and instructions │   └── ... ├── isaac_internals # edited isaac files │   ├── apps │   │   └── omni.isaac.sim.python.kit # pre-load some additional extensions and disable a moveit (so that we can load the one from the system) │   ├── kit # solve some bugs in the synthetic data processing │   ├── exts │   │   ├── omni.isaac.shapenet # slightly modified loader │   │   ├── omni.isaac.synthetic_recorder # custom recorder extension that allows more control │   │   └── omni.isaac.synthetic_utils # minor edits │   └── setup_python_env.sh # source the ros environment and show how to source multiple ones ├── kill.sh # script to kill the whole simulation ├── req.sh # requirements file ├── scripts # useful scripts and additional accompanying stuff │   └── ... ├── simulator # main simulator folder, each main file will have it's own description │   ├── configs # yaml configuration files │   ├── utils # utils loaded and used by the main files │ └── ... ├── meshes # folder containing meshes └── usds # usds files ``` </details closed> ___________________ ## HowToS, Installation, Tips, and Known issues The system, contrary to Gazebo, is not straightforward. This is the price you have to pay to be able to access low level APIs and have more control. We highly encourage thorugh readings of the documentation, of the tips section, and for you to get acquainted to the utils that we have organized (perhaps badly, open a pull request please). [Install, StartUp, Issues](https://github.com/eliabntt/GRADE-RR/blob/main/HOWTO.md) [Tips](https://github.com/eliabntt/GRADE-RR/blob/main/TipsAndTricks.md) --- highly encouraged reading! To [generate people based on SMPL](https://github.com/eliabntt/animated_human_SMPL_to_USD), [convert environments/objects from Front3D or other files beforehand](https://github.com/eliabntt/Front3D_to_USD) and see a possible [control framework](https://github.com/eliabntt/ros_isaac_drone) (which can act thanks to our [custom 6DOF joint controller](https://github.com/eliabntt/custom_6dof_joint_controller)), please check our other repositories. Additional scripts are provided [here](https://github.com/eliabntt/GRADE-RR/blob/main/scripts). Those can be used to process paths, get statistics of the rosbags, colorize the data filter and compress rosbags, transform the pixels to world coordinates etc. A brief description of the utils libraries used in our code is [here](https://github.com/eliabntt/GRADE-RR/blob/main/simulator/utils/UTILS.md). _____ ## Isaac's edited files details <details closed> <summary>We had to edit some of the files to have more flexibility and solve some bugs. Here are reported details</summary> Edited files are inside `isaac_internals`. The edited ones are the one that are copied by the `cp_local..` script. As per Isaac requirements, we had to include all the licenses and other files. Note that these might be outdated w.r.t. your current installation. - _synthetic\_recorder_ created a custom extension to save our data, and offset the number of cameras. In that way we can save high-resolution images to the disk, while providing ROS smaller images. We found this faster than resizing images afterwards and caused less "issues". - _synthetic\_utils_ we edited the `numpy.py` and the `syntheticdata.py` to save more data and have more flexibility. What is still missing (our bad) is the vertical fov of the camera, which is not directly exposed by Isaac Sim. - In `setup_python_env.sh` we had to prevent the loading of `$SCRIPT_DIR/exts/omni.isaac.motion_planning/bin` (you can find it commented at the very end of line 8), to be able to run the system version of `move_base`. That module could be necessary for some of the Isaac extensions or configurations. Please be aware of this. - `apps/omni.isaac.sim.python.kit` will load a couple of additional necessary extensions - `isaac_internals/kit/extscore/omni.syntheticdata` will simply solve some bugs related to out of bounds and processing errors </details closed> ______ ## Download data The data will be available in our [data repository](https://github.com/eliabntt/GRADE_data/). __________ ## Citations You acknowledge that the Data & Software is a valuable scientific resource and agree to appropriately reference the following paper in any publication making use of the Data & Software. Citation: ``` @misc{bonetto2023grade, doi = {10.48550/ARXIV.2303.04466}, url = {https://arxiv.org/abs/2303.04466}, author = {Bonetto, Elia and Xu, Chenghao and Ahmad, Aamir}, title = {GRADE: Generating Realistic Animated Dynamic Environments for Robotics Research}, publisher = {arXiv}, year = {2023}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` Additionally: - If you use any Data and/or Software related to zebras(animal) detection from drone imagery reference the following paper in any publication as well ``` @INPROCEEDINGS{10256293, author={Bonetto, Elia and Ahmad, Aamir}, booktitle={2023 European Conference on Mobile Robots (ECMR)}, title={Synthetic Data-Based Detection of Zebras in Drone Imagery}, year={2023}, volume={}, number={}, pages={1-8}, doi={10.1109/ECMR59166.2023.10256293}} } ``` - If you use any Data and/or Software related to our Dyanmic SLAM evaluations ``` @inproceedings{bonetto2023dynamicSLAM, title={{S}imulation of {D}ynamic {E}nvironments for {SLAM}}, author={Elia Bonetto and Chenghao Xu and Aamir Ahmad}, booktitle={ICRA2023 Workshop on Active Methods in Autonomous Navigation}, year={2023}, url={https://arxiv.org/abs/2305.04286}, month = jun, month_numeric = {6} } ``` - If you use any Data and/or Software related to the tasks of detection/segmentation of humans in dynamic environments. ``` @inproceedings{bonetto2023learning, title={Learning from synthetic data generated with {GRADE}}, author={Elia Bonetto and Chenghao Xu and Aamir Ahmad}, booktitle={ICRA2023 Workshop on Pretraining for Robotics (PT4R)}, year={2023}, url={https://openreview.net/forum?id=SUIOuV2y-Ce}, month = jun, month_numeric = {6} } ``` ____________ ## LICENSE By downloading and/or using the Data & Software (including downloading, cloning, installing, and any other use of the corresponding github repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Data & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License. Please read the [licensing](https://github.com/eliabntt/GRADE-RR/blob/main/LICENSE.md) agreement prior to any use of our Data or Software. Accompanying software, such as, but not limited to, the one from Isaac Sim, is licensed according to their specific term of use. If you use data/software from other projects such as, but not limited to, TUM RGB-D, 3D-Front, 3D-Future, ... it is your responsibility to follow their licensing terms, whose you implicitly agree. If you have questions regarding the license, please contact the [[email protected]](mailto:[email protected]). ______ ## Thanks I would like to thank the amazing [NVIDIA support](http://forums.developer.nvidia.com) for their quick response times and precise answers. [Chenghao Xu](http://kyle-xu-001.github.io/) for helping in testing and refining the evaluation scripts. [Aamir Ahmad](aamirahmad.de) for his supervision.
12,526
Markdown
61.949748
617
0.749481
eliabntt/GRADE-RR/LICENSE.md
# Data & Software Copyright License for non-commercial scientific research purposes Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use GRADE data, models, and software, (the "Data & Software"), including synthetic images and videos, SMPL and SMPL-X parameters, 3D body and clothing meshes, 2D textures, and scripts. By downloading and/or using the Data & Software (including downloading, cloning, installing, and any other use of the corresponding code repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Data & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License ## Ownership / Licensees The Data & Software and the associated materials have been developed at the Max Planck Institute for Intelligent Systems (hereinafter "MPI"). Any copyright or patent right is owned by and proprietary material of the Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (hereinafter “MPG”; MPI and MPG hereinafter collectively “Max-Planck”) hereinafter the “Licensor”. ## License Grant Licensor grants you (Licensee) personally a single-user, non-exclusive, non-transferable, free of charge right: To install the Data & Software on computers owned, leased or otherwise controlled by you and/or your organization; To use the Data & Software for the sole purpose of performing non-commercial scientific research, non-commercial education, or non-commercial artistic projects; Any other use, in particular any use for commercial, pornographic, military, or surveillance, purposes is prohibited. This includes, without limitation, incorporation in a commercial product, use in a commercial service, or production of other artifacts for commercial purposes. The Data & Software may not be used to create fake, libelous, misleading, or defamatory content of any kind excluding analyses in peer-reviewed scientific research. The Data & Software may not be reproduced, modified and/or made available in any form to any third party without Max-Planck’s prior written permission. The Data & Software may not be used for pornographic purposes or to generate pornographic material whether commercial or not. This license also prohibits the use of the Data & Software to train methods/algorithms/neural networks/etc. for commercial, pornographic, military, surveillance, or defamatory use of any kind. By downloading the Data & Software, you agree not to reverse engineer it. ## No Distribution The Data & Software and the license herein granted shall not be copied, shared, distributed, re-sold, offered for re-sale, transferre d or sub-licensed in whole or in part except that you may make one copy for archive purposes only. ## Disclaimer of Representations and Warranties You expressly acknowledge and agree that the Data & Software results from basic research, is provided “AS IS”, may contain errors, and that any use of the Data & Software is at your sole risk. LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE DATA & SOFTWARE, NEITHER EXPRESS NOR IMPLIED, AND THE ABSENCE OF ANY LEGAL OR ACTUAL DEFECTS, WHETHER DISCOVERABLE OR NOT. Specifically, and not to limit the foregoing, licensor makes no representations or warranties (i) regarding the merchantability or fitness for a particular purpose of the Data & Software, (ii) that the use of the Data & Software will not infringe any patents, copyrights or other intellectual property rights of a third party, and (iii) that the use of the Data & Software will not cause any damage of any kind to you or a third party. ## Limitation of Liability Because this Data & Software License Agreement qualifies as a donation, according to Section 521 of the German Civil Code (Bürgerliches Gesetzbuch – BGB) Licensor as a donor is liable for intent and gross negligence only. If the Licensor fraudulently conceals a legal or material defect, they are obliged to compensate the Licensee for the resulting damage. Licensor shall be liable for loss of data only up to the amount of typical recovery costs which would have arisen had proper and regular data backup measures been taken. For the avoidance of doubt Licensor shall be liable in accordance with the German Product Liability Act in the event of product liability. The foregoing applies also to Licensor’s legal representatives or assistants in performance. Any further liability shall be excluded. Patent claims generated through the usage of the Data & Software cannot be directed towards the copyright holders. The Data & Software is provided in the state of development the licensor defines. If modified or extended by Licensee, the Licensor makes no claims about the fitness of the Data & Software and is not responsible for any problems such modifications cause. ## No Maintenance Services You understand and agree that Licensor is under no obligation to provide either maintenance services, update services, notices of latent defects, or corrections of defects with regard to the Data & Software. Licensor nevertheless reserves the right to update, modify, or discontinue the Data & Software at any time. Defects of the Data & Software must be notified in writing to the Licensor with a comprehensible description of the error symptoms. The notification of the defect should enable the reproduction of the error. The Licensee is encouraged to communicate any use, results, modification, or publication. ## Publications using the Data & Software You acknowledge that the Data & Software is a valuable scientific resource and agree to appropriately reference the following paper in any publication making use of the Data & Software. Citation: ``` @misc{bonetto2023grade, doi = {10.48550/ARXIV.2303.04466}, url = {https://arxiv.org/abs/2303.04466}, author = {Bonetto, Elia and Xu, Chenghao and Ahmad, Aamir}, title = {GRADE: Generating Realistic Animated Dynamic Environments for Robotics Research}, publisher = {arXiv}, year = {2023}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` Additionally: - If you use any Data and/or Software related to zebras(animal) detection from drone imagery reference the following paper in any publication as well ``` @inproceedings{bonetto2023synthetic, title={Synthetic Data-based Detection of Zebras in Drone Imagery}, author={Elia Bonetto and Aamir Ahmad}, year={2023}, month = sep, month_numeric = {9}, publisher = {IEEE}, url = {https://arxiv.org/abs/2305.00432}, booktitle = {2023 European Conference on Mobile Robots (ECMR 2023)}, note={To appear} } ``` - If you use any Data and/or Software related to our Dyanmic SLAM evaluations ``` @inproceedings{bonetto2023dynamicSLAM, title={{S}imulation of {D}ynamic {E}nvironments for {SLAM}}, author={Elia Bonetto and Chenghao Xu and Aamir Ahmad}, booktitle={ICRA2023 Workshop on Active Methods in Autonomous Navigation}, year={2023}, url={https://arxiv.org/abs/2305.04286}, month = jun, month_numeric = {6} } ``` - If you use any Data and/or Software related to the tasks of detection/segmentation of humans in dynamic environments. ``` @inproceedings{bonetto2023learning, title={Learning from synthetic data generated with {GRADE}}, author={Elia Bonetto and Chenghao Xu and Aamir Ahmad}, booktitle={ICRA2023 Workshop on Pretraining for Robotics (PT4R)}, year={2023}, url={https://openreview.net/forum?id=SUIOuV2y-Ce}, month = jun, month_numeric = {6} } ``` ## Commercial licensing opportunities For commercial use of the Data & Software, please send emails to [email protected] This Agreement shall be governed by the laws of the Federal Republic of Germany except for the UN Sales Convention.
8,214
Markdown
74.366972
826
0.758461
eliabntt/GRADE-RR/additional_scripts/average_rosbag.py
""" This is the code used to get the average acc speed and dynamic frames for the GRADE paper. You need some experiment folders. This code will use the bags files in those folder. Please change the folders as desired (first loop in the code, first two lines). We also suppose that you have the instance images to compute the percentage of dynamic frames. """ import rosbag import sys import numpy as np import os # loop through all the bags in the folder folders = [] folders.append("/ps/project/irotate/GRADE-paper/Test.bak2/d94ecc9f-10f6-4f6d-b49f-1ed841f86772") folders.append("/ps/project/irotate/GRADE-paper/Test.bak2/d8c14dd6-d794-46d5-aa59-01d3552828c7") folders.append("/ps/project/irotate/GRADE-paper/Test.bak2/b13a4874-00a4-49a5-aa2d-e22d7d864b56") folders.append("/ps/project/irotate/GRADE-paper/Test.bak2/75bf66e8-acb0-4f27-842d-1945ad42f9de") folders.append("/ps/project/irotate/GRADE-paper/Test.bak2/53bfe530-122d-42cb-a1f4-453e6a2a617f") folders.append("/ps/project/irotate/GRADE-paper/Test.bak2/23aae785-c0bc-4645-9e64-fdea78c42e2d") folders.append("/ps/project/irotate/GRADE-paper/Test.bak2/b0a9c3c3-d470-45ea-82c6-ac529b6882ea") folders.append("/ps/project/irotate/GRADE-paper/Test.bak2/12e463c1-4993-4ea8-9cbf-54ba9403e5f8") names = ["d94ecc9f-10f6-4f6d-b49f-1ed841f86772","d8c14dd6-d794-46d5-aa59-01d3552828c7","b13a4874-00a4-49a5-aa2d-e22d7d864b56","75bf66e8-acb0-4f27-842d-1945ad42f9de","53bfe530-122d-42cb-a1f4-453e6a2a617f","23aae785-c0bc-4645-9e64-fdea78c42e2d","b0a9c3c3-d470-45ea-82c6-ac529b6882ea","12e463c1-4993-4ea8-9cbf-54ba9403e5f8"] import pandas as pd df = pd.DataFrame(columns=['name','speed','acc','dynamic_frames','dynamic_frames_avg_coverage']) for folder in folders: bag_folder = os.path.join(folder, "reindex_bags") bags = [] for bag in os.listdir(bag_folder): if bag.endswith(".bag"): for n in names: if n in bag: bags.append(bag) break # sort bags according to the number bags = sorted(bags, key=lambda x: int(x.split("_")[1].split(".")[0])) avg_speed = [] # avg absolute speed per axis avg_acc = [] # avg absolute acc per axis for bagname in bags: print(bagname) # open the bag bag = rosbag.Bag(os.path.join(bag_folder, bagname)) old_t = None # loop through all the topics for topic, msg, t in bag.read_messages(topics=['/my_robot_0/odom']): # if the topic is the one we want if topic == "/my_robot_0/odom": # get the data data_lin = np.array([msg.twist.twist.linear.x, msg.twist.twist.linear.y, msg.twist.twist.linear.z]) data_ang = np.array([msg.twist.twist.angular.x, msg.twist.twist.angular.y, msg.twist.twist.angular.z]) # get the speed avg_speed.append([np.abs(data_lin[0]), np.abs(data_lin[1]), np.abs(data_lin[2]), np.abs(data_ang[0]), np.abs(data_ang[1]), np.abs(data_ang[2])]) # get the acceleration by using the difference between the current and the previous time if old_t is None: old_speed = [data_lin[0], data_lin[1], data_lin[2], data_ang[0], data_ang[1], data_ang[2]] old_t = t else: # get the difference between the current and the previous time dt = (t - old_t).to_sec() # get the acceleration avg_acc.append(np.abs(np.array( [(data_lin[0] - old_speed[0]) / dt, (data_lin[1] - old_speed[1]) / dt, (data_lin[2] - old_speed[2]) / dt, (data_ang[0] - old_speed[3]) / dt, (data_ang[1] - old_speed[4]) / dt, (data_ang[2] - old_speed[5]) / dt]))) # update the old speed and time old_speed = [data_lin[0], data_lin[1], data_lin[2], data_ang[0], data_ang[1], data_ang[2]] old_t = t bag.close() df = pd.concat([df, pd.DataFrame([[bagname[:-6], np.round(np.mean(avg_speed, axis=0),3), np.round(np.mean(avg_acc, axis=0),3), 0, 0]], columns=df.columns)]) folders = [] folders.append("/ps/project/irotate/DE_few_obs_cam0_horiz/d94ecc9f-10f6-4f6d-b49f-1ed841f86772") folders.append("/ps/project/irotate/DE_few_obs_cam0_horiz/d8c14dd6-d794-46d5-aa59-01d3552828c7") folders.append("/ps/project/irotate/DE_cam0_horiz/b13a4874-00a4-49a5-aa2d-e22d7d864b56") folders.append("/ps/project/irotate/DE_cam1/75bf66e8-acb0-4f27-842d-1945ad42f9de") folders.append("/ps/project/irotate/DE_few_obs_cam1/53bfe530-122d-42cb-a1f4-453e6a2a617f") folders.append("/ps/project/irotate/DE_lot_obs_cam0/23aae785-c0bc-4645-9e64-fdea78c42e2d") import cv2 for folder in folders: dynamic_images = 0 dynamic_coverage = 0 masks = os.path.join(folder, "Viewport0_occluded/instance") for mask in os.listdir(masks): if mask.endswith(".npy"): f = np.load(os.path.join(masks, mask), allow_pickle=True) classes = [] for item in f[1]: if item[3] == "human" or item[3] == "google" or item[3] == "shapenet": classes.append(item[0]) """ opencv reshape f[0] to (640, 480) """ img = cv2.resize(f[0].astype(np.uint16), (640, 480), interpolation=cv2.INTER_NEAREST) out = np.isin(img, classes) """count the number of elements of img that are equal to an element of classes""" if len(out[out==True]) > 0: dynamic_coverage += len(out[out==True]) / img.size dynamic_images += 1 df.loc[df["name"] == folder.split("/")[-1], "dynamic_frames"] = dynamic_images df.loc[df["name"] == folder.split("/")[-1], "dynamic_frames_avg_coverage"] = round(dynamic_coverage / dynamic_images*100,2) # print dataframe as latex table print(df.to_latex(index=False)) df.to_pickle("dynamic_frames.pkl")
5,411
Python
46.060869
321
0.697653
eliabntt/GRADE-RR/additional_scripts/colorize.py
""" Use this code to colorize the generated data. The code is thought to colorize all the data, create videos, and fix the vertical fov issue. Please check the arguments to understand how to use it. Please set the corresponding data_enabled to False if you do not want to colorize some kind of data (eg. depth_enabled) """ import math import argparse import colorsys import confuse import copy import cv2 import ipdb import numpy as np import os import pickle as pkl import random from PIL import Image, ImageDraw def project_pinhole(points, view_proj_matrix): """ Project 3D points to 2D camera view using a pinhole camera model. Args: points (numpy.ndarray): Array of points in world frame of shape (num_points, 3). viewport (omni.kit.viewport._viewport.IViewportWindow): Viewport from which to retrieve/create sensor. Returns: (numpy.ndarray): Image-space points of shape (num_points, 3) """ homo = np.pad(points, ((0, 0), (0, 1)), constant_values=1.0) tf_points = np.dot(homo, view_proj_matrix) tf_points = tf_points / (tf_points[..., -1:]) tf_points[..., :2] = 0.5 * (tf_points[..., :2] + 1) return tf_points[..., :3] def random_colours(N, enable_random=True, num_channels=3): """ Generate random colors. Generate visually distinct colours by linearly spacing the hue channel in HSV space and then convert to RGB space. """ start = 0 if enable_random: random.seed(10) start = random.random() hues = [(start + i / N) % 1.0 for i in range(N)] colours = [list(colorsys.hsv_to_rgb(h, 0.9, 1.0)) for i, h in enumerate(hues)] if num_channels == 4: for color in colours: color.append(1.0) if enable_random: random.shuffle(colours) return colours def colorize_bboxes(bboxes_2d_data, rgb, num_channels=4): """ Colorizes 2D bounding box data for visualization. Args: bboxes_2d_data (numpy.ndarray): 2D bounding box data from the sensor. rgb (numpy.ndarray): RGB data from the sensor to embed bounding box. num_channels (int): Specify number of channels i.e. 3 or 4. """ obj_name_list = [] rgb_img = Image.fromarray(rgb).convert("RGBA") rgb_img2 = Image.fromarray(rgb) overlay = Image.new("RGBA", rgb_img.size, (0, 0, 0, 0)) rgb_img_draw = ImageDraw.Draw(overlay) rgb_img_draw2 = ImageDraw.Draw(rgb_img2) for bbox_2d in bboxes_2d_data: obj_name_list.append(bbox_2d[1]) obj_name_list_np = np.unique(np.array(obj_name_list)) color_list = random_colours(len(obj_name_list_np.tolist()), True, num_channels) for bbox_2d in bboxes_2d_data: index = np.where(obj_name_list_np == bbox_2d[1])[0][0] bbox_color = color_list[index] outline = (int(255 * bbox_color[0]), int(255 * bbox_color[1]), int(255 * bbox_color[2])) if num_channels == 4: outline = ( int(255 * bbox_color[0]), int(255 * bbox_color[1]), int(255 * bbox_color[2]), int(255 * bbox_color[3]), ) fill = ( int(255 * bbox_color[0]), int(255 * bbox_color[1]), int(255 * bbox_color[2]), int(0.25 * 255), ) rgb_img_draw.rectangle([(bbox_2d[6], bbox_2d[7]), (bbox_2d[8], bbox_2d[9])], fill=fill, outline=outline, width=3) rgb_img_draw2.rectangle([(bbox_2d[6], bbox_2d[7]), (bbox_2d[8], bbox_2d[9])], outline=outline, width=3) bboxes_2d_rgb = Image.alpha_composite(rgb_img, overlay) bboxes_2d_rgb = np.array(bboxes_2d_rgb) bboxes_2d_rgb2 = np.array(rgb_img2) bboxes_2d_rgb3 = np.array(Image.alpha_composite(rgb_img2.convert("RGBA"), overlay)) return bboxes_2d_rgb3 # , bboxes_2d_rgb2 #only boxes def colorize_depth(depth_image): """ It takes a depth image, normalizes it, and then maps it to a color image :param depth_image: The depth image to be colorized :return: The colorized depth image. """ height, width = depth_image.shape[:2] colorized_image = np.zeros((height, width, 4)) depth_image *= 100 depth_image = np.reciprocal(depth_image) depth_image[depth_image == 0.0] = 1e-5 depth_image = np.clip(depth_image, 0, 255) depth_image -= np.min(depth_image) if np.max(depth_image) > 0: depth_image /= np.max(depth_image) + 1e-8 colorized_image[:, :, 0] = depth_image colorized_image[:, :, 1] = depth_image colorized_image[:, :, 2] = depth_image colorized_image[:, :, 3] = 1 colorized_image = (colorized_image * 255).astype(np.uint8) return colorized_image def colorize_semantic_from_instance(instance_image, instance_mappings, sem = False): """ It takes the instance image and the instance mappings and returns a colorized image :param instance_image: the instance image from the instance segmentation :param instance_mappings: a list of dictionaries, each of which has the following keys: """ if len(instance_mappings) == 0: segmentation_image = np.zeros_like(instance_image) segmentation_ids = np.unique(segmentation_image) num_colours = len(segmentation_ids) # This is to avoid generating lots of colours for semantic classes not in frame lut = np.array([segmentation_ids, list(range(num_colours))]) re_instanced = lut[1, np.searchsorted(lut[0, :], segmentation_image)] colours = np.array([[0.0] * 4] + random_colours(num_colours)) else: semantic_instances = {} changed = np.zeros(instance_image.shape) for im in instance_mappings[::-1]: semantic_instances.setdefault(im["semanticId"], []).extend(im["instanceIds"]) changed[instance_image == im["uniqueId"]] = max(im["instanceIds"]) instance_image = changed.astype(np.uint32) max_semantic_instance_id = np.max([max(il) for _, il in semantic_instances.items()]) max_instance_id = instance_image.max() lut = np.zeros(max(max_semantic_instance_id, max_instance_id) + 1, dtype=np.uint32) if sem: for i, (_, il) in enumerate(semantic_instances.items()): lut[np.array(il)] = i + 1 # +1 to differentiate from background re_instanced = np.take(lut, instance_image) colours = np.array([[0.0] * 3] + random_colours(len(semantic_instances))) else: colours = np.array([[0.0] * 3] + random_colours(len(lut))) re_instanced = instance_image rgb = np.zeros((re_instanced.shape[0], re_instanced.shape[1], 3)) for i in range(len(colours)): rgb[re_instanced == i] = colours[i] rgb = rgb * 255 return rgb.astype(np.uint8) def colorize_bboxes_3d(bboxes_3d_corners, rgb): """ > It takes a list of 3D bounding boxes and a RGB image, and returns the RGB image with the 3D bounding boxes drawn on it :param bboxes_3d_corners: in the local camera frame :param rgb: the image :return: the image with the bounding boxes drawn on it. """ height, width = rgb.shape[:2] # FILTER BOXES mask_uv = ~np.any(np.all(bboxes_3d_corners < 0, axis=1), axis=1) & ~np.any( np.all(bboxes_3d_corners > 1, axis=1), axis=1 ) mask_z = np.all(np.all(bboxes_3d_corners[..., 2:] >= 0, axis=1), axis=1) & np.all( np.all(bboxes_3d_corners[..., 2:] <= 1, axis=1), axis=1 ) bboxes_3d_corners = bboxes_3d_corners[mask_uv & mask_z] bboxes_3d_corners = bboxes_3d_corners[..., :2].reshape(-1, 8, 2) * np.array([[width, height]]) face_idx_list = [[0, 1, 3, 2], [4, 5, 7, 6], [2, 3, 7, 6], [0, 1, 5, 4], [0, 2, 6, 4], [1, 3, 7, 5]] colours = random_colours(len(face_idx_list)) master_overlay_img = Image.new("RGBA", (width, height), (0, 0, 0, 0)) for face_idxs, colour in zip(face_idx_list, colours): overlay = Image.new("RGBA", (width, height)) draw = ImageDraw.Draw(overlay) colour = [int(c * 255) for c in colour] for p in bboxes_3d_corners: draw.polygon([tuple(xy) for xy in p[face_idxs]], fill=tuple([*colour[:3], 120])) draw.line([tuple(xy) for xy in p[face_idxs]], width=3, fill=tuple(colour)) master_overlay_img = Image.alpha_composite(master_overlay_img, overlay) rgb_img = Image.fromarray(rgb).convert("RGBA") rgb_img = Image.alpha_composite(rgb_img, master_overlay_img) return np.asarray(rgb_img) def colorize_normals(normals): """ It takes a 3-channel array of normals, and returns a 4-channel array of normals with the background pixels set to transparent :param normals: a numpy array of shape (H, W, 3) containing the surface normals :return: the normals of the image. """ background_mask = np.sum(normals, axis=-1) == 0.0 # normalize from [-1, 1] to [0, 255] normals = (normals + 1.0) / 2 * 255 # Set background alpha to 0. normals = np.pad(normals, ((0, 0), (0, 0), (0, 1)), constant_values=255) normals[background_mask, 3] = 0. return normals.astype(np.uint8) def colorize_motion_vector(data): """Convert motion vector into colored image. The conversion is done by mapping 3D direction vector to HLS space, then converted to RGB. Args: data (numpy.array): data returned by the annotator of shape (H, W, 4). Return: (np.array): Data converted to uint8 RGBA image. """ r, theta, phi = _cartesian_to_spherical(data[:, :, :3]) phi += np.pi theta_degree = theta * 180 / np.pi phi_degree = phi * 180 / np.pi h = phi_degree / 360 l = theta_degree / 180 r = cv2.normalize(r, None, 0, 1, cv2.NORM_MINMAX) pixels = np.dstack((h * 180, l * 255, r * 255)).astype(np.uint8) rgb = cv2.cvtColor(pixels, cv2.COLOR_HLS2RGB) return rgb def _cartesian_to_spherical(xyz): """ It takes a 3D Cartesian coordinate and returns the corresponding spherical coordinates :param xyz: the 3D coordinates of the points in the image """ h, w = xyz.shape[0], xyz.shape[1] xyz = xyz.reshape(-1, 3) xy = xyz[:, 0] ** 2 + xyz[:, 1] ** 2 r = np.sqrt(xy + xyz[:, 2] ** 2) theta = np.arctan2(np.sqrt(xy), xyz[:, 2]) # for elevation angle defined from Z-axis down phi = np.arctan2(xyz[:, 1], xyz[:, 0]) # for elevation angle defined from XY-plane up return r.reshape(h, w), theta.reshape(h, w), phi.reshape(h, w) def boolean_string(s): """ It takes a string and returns a boolean :param s: the string to convert :return: The boolean value of the string. """ if s.lower() not in {'false', 'true'}: raise ValueError('Not a valid boolean string') return s.lower() == 'true' parser = argparse.ArgumentParser(description="Colorize data") parser.add_argument("--viewport_folder", type=str) parser.add_argument("--img_id", type=str, default="-1") parser.add_argument("--save_imgs", type=boolean_string, default=True) parser.add_argument("--save_video", type=boolean_string, default=False) parser.add_argument("--always_update_map", type=boolean_string, default=False) parser.add_argument("--semantics", type=boolean_string, default=False) parser.add_argument("--convert_depth", type=boolean_string, default=True) # used to better visualize inverse depth parser.add_argument("--corrected_bbox_folder", type=str, default="") parser.add_argument("--vertical_aperture", type=float, default=2.32) parser.add_argument("--change_aperture", type=boolean_string, default=False) parser.add_argument("--output_dir", type=str) args, unknown = parser.parse_known_args() config = confuse.Configuration("ColorizeData", __name__) config.set_args(args) minid = 1 maxid = 1801 isdigit = False try: int(config["img_id"].get()) isdigit = True except: isdigit = False if isdigit: img_id = int(config["img_id"].get()) if img_id <= -1: print("Processing all images") else: minid = img_id maxid = img_id + 1 ids = [i for i in range(minid, maxid)] else: ids = [config["img_id"].get()] vertical_aperture = config["vertical_aperture"].get() change_aperture = config["change_aperture"].get() viewport = config["viewport_folder"].get() subfolders = os.listdir(config["viewport_folder"].get()) depth_enabled = "depth" in subfolders depthLinear_enabled = "depthLinear" in subfolders normals_enabled = "normals" in subfolders bbox2d_enabled = "bbox_2d_tight" in subfolders bbox3d_enabled = "bbox_3d" in subfolders # todo these need to be fixed instance_enabled = "instance" in subfolders sem_enabled = "instance" in subfolders and config["semantics"].get() motion_enabled = "motion-vector" in subfolders always_update_map = config["always_update_map"].get() save_video = config["save_video"].get() save_img = config["save_imgs"].get() if save_video or save_img: outdir = config["output_dir"].get() if not os.path.exists(config["output_dir"].get()): os.makedirs(outdir) if config["corrected_bbox_folder"].get() != "": corrected_bbox_folder = config["corrected_bbox_folder"].get() else: corrected_bbox_folder = None old_instance_map = None vrgb, vdepth, vdepthLinear, vnormals, vbbox2d, vbbox3d, vinstance, vmotion, vsem = [], [], [], [], [], [], [], [], [] for i in ids: rgb = cv2.imread(os.path.join(viewport, "rgb", f"{i}.png")) if save_img: cv2.imwrite(os.path.join(outdir, f"rgb_{i}.png"), rgb) if save_video: vrgb.append(os.path.join(outdir, f"rgb_{i}.png")) if depthLinear_enabled: depth = np.load(os.path.join(viewport, "depthLinear", f"{i}.npy")) depth = colorize_depth(depth) if save_img: cv2.imwrite(os.path.join(outdir, f"depthLinear_{i}.png"), depth) if save_video: vdepthLinear.append(os.path.join(outdir, f"depthLinear_{i}.png")) if depth_enabled: depth = np.load(os.path.join(viewport, "depth", f"{i}.npy")) if config["convert_depth"].get(): depth = 1/depth depth = colorize_depth(depth) if save_img: cv2.imwrite(os.path.join(outdir, f"depth_{i}.png"), depth) if save_video: vdepth.append(os.path.join(outdir, f"depth_{i}.png")) if normals_enabled: normals = np.load(os.path.join(viewport, "normals", f"{i}.npy")) normals = colorize_normals(normals) if save_img: cv2.imwrite(os.path.join(outdir, f"normals_{i}.png"), normals) if save_video: vnormals.append(os.path.join(outdir, f"normals_{i}.png")) if bbox2d_enabled: bbox2d = np.load(os.path.join(viewport, "bbox_2d_tight", f"{i}.npy"), allow_pickle=True) rgb_data = copy.deepcopy(rgb) bbox2d = colorize_bboxes(bbox2d, rgb_data) if save_img: cv2.imwrite(os.path.join(outdir, f"bbox2d_{i}.png"), bbox2d) if save_video: vbbox2d.append(os.path.join(outdir, f"bbox2d_{i}.png")) if bbox3d_enabled: bbox3d = np.load(os.path.join(viewport, "bbox_3d", f"{i}.npy"), allow_pickle=True) viewport_mat = np.load(os.path.join(viewport, "camera", f"{i}.npy"), allow_pickle=True) view_mat = viewport_mat.item()["view_projection_matrix"] pose_mat = viewport_mat.item()["pose"] if change_aperture: viewproj_mat = np.dot(pose_mat, view_mat) vertical_aperture = vertical_aperture vfov = 2 * math.atan(vertical_aperture / (2 * viewport_mat.item()["focal_length"])) viewproj_mat[1,1] = 1 / math.tan(vfov / 2) viewproj_mat = np.dot(np.linalg.inv(pose_mat), viewproj_mat) corners = project_pinhole(bbox3d["corners"].reshape(-1, 3), viewproj_mat) corners = corners.reshape(-1, 8, 3) rgb_data = copy.deepcopy(rgb) e = [] for idx,bb in enumerate(bbox3d): if bb['semanticLabel'] in ['zebra','human','google','shapenet']: e.append(corners[idx]) if corrected_bbox_folder is not None: corrected_bbox = np.load(os.path.join(corrected_bbox_folder, f"{i}.npy"), allow_pickle=True) corrected_bbox = corrected_bbox.item() for idx, bb in enumerate(bbox3d): if bb[1] in corrected_bbox['bbox3d']: print(f"Correcting bbox3d for {bb[1]}") # if corrected_bbox['bbox3d'] is dictionary if isinstance(corrected_bbox['bbox3d'][bb[1]], dict): bbox3d[idx]["corners"] = corrected_bbox['bbox3d'][bb[1]]["oriented"] / 0.01 else: bbox3d[idx]["corners"] = corrected_bbox['bbox3d'][bb[1]] / 0.01 bbox3d = colorize_bboxes_3d(np.array(e), rgb_data) if save_img: cv2.imwrite(os.path.join(outdir, f"bbox3d_{i}.png"), bbox3d) if save_video: vbbox3d.append(os.path.join(outdir, f"bbox3d_{i}.png")) if instance_enabled: instance = np.load(os.path.join(viewport, "instance", f"{i}.npy"), allow_pickle=True) if old_instance_map is None or always_update_map: old_instance_map = copy.deepcopy(instance[1]) instance[1] = copy.deepcopy(old_instance_map) instance_img = colorize_semantic_from_instance(instance[0], instance[1]) if save_img: cv2.imwrite(os.path.join(outdir, f"instance_{i}.png"), instance_img) if save_video: vinstance.append(os.path.join(outdir, f"instance_{i}.png")) if sem_enabled: sem = colorize_semantic_from_instance(instance[0], instance[1], sem=True) if save_img: cv2.imwrite(os.path.join(outdir, f"sem_{i}.png"), sem) if save_video: vsem.append(os.path.join(outdir, f"sem_{i}.png")) if motion_enabled: motion = np.load(os.path.join(viewport, "motion-vector", f"{i}.npy"), allow_pickle=True) motion = colorize_motion_vector(motion) if save_img: cv2.imwrite(os.path.join(outdir, f"motion_{i}.png"), motion) if save_video: vmotion.append(os.path.join(outdir, f"motion_{i}.png")) if save_video: height, width, layers = rgb.shape for v in zip([vrgb, vdepth, vdepthLinear, vnormals, vbbox2d, vbbox3d, vinstance, vmotion, vsem], ["rgb", "depth", "depthLinear", "normals", "bbox2d", "bbox3d", "instance", "motion", "sem"]): if len(v[0]) > 0: video = cv2.VideoWriter(os.path.join(outdir, f"{v[1]}.mp4"), cv2.VideoWriter_fourcc(*"mp4v"), 30, (width, height)) for img_path in v[0]: img = cv2.imread(img_path) if img.shape[2] < 3: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) video.write(img[:, :, :3]) video.release() os.system("ffmpeg -i " + os.path.join(outdir, f"{v[1]}.mp4") + " -vcodec libx264 -y " + os.path.join(outdir, f"{v[1]}_conv.mp4"))
17,948
Python
37.027542
127
0.651159
eliabntt/GRADE-RR/additional_scripts/pixel_to_world.py
""" This code serve as an example to project the points from the pixel coordinates to the world coordinates. You need the camera pose and projection matrix, as well as clearly the pixel depth. Those are available in the viewport folder, for example: Viewport0/camera Viewport0/depth (or depthLinear) You will load the camera viewport_mat from the camera folder. This dictionary will have the view projection matrix and the global camera pose They use a near/far clipping plane model, and not a focal length model. At the end of the file you can also check how to use the focal length model, but you need to know the focal length of the camera """ viewport_mat = np.load(os.path.join(viewport, 'camera',f'{i}.npy'), allow_pickle=True) # in Isaac view_projection is np.dot(view_matrix, proj_matrix) # view_matrix is local to world, i.e. the inverse of the pose matrix # the proj_matrix use the near far clipping plane model # a = -1.0 / np.tan(np.radians(fov / 2)) # b = -a * aspect_ratio # c = z_far / (z_far - z_near) # d = z_near * z_far / (z_far - z_near) # Construct the camera projection matrix # projection_matrix = np.array([ # [a, 0.0, 0.0, 0.0], # [0.0, b, 0.0, 0.0], # [0.0, 0.0, c, 1.0], # [0.0, 0.0, d, 0.0] # ]) view_mat = viewport_mat.item()["view_projection_matrix"] pose_mat = viewport_mat.item()["pose"] inv_VP = np.linalg.inv(view_mat) pixel_x = .... pixel_y = .... pixel_d = .... width = viewport_mat['resolution']['width'] width = viewport_mat['resolution']['height'] F = viewport_mat['clipping_range'][1] N = viewport_mat['clipping_range'][0] W = -pixel_d ndc_x = (2 * pixel_x) / width - 1 ndc_y = 1 - (2 * pixel_y) / height Z = ( (W*F/(F-N)) + N*F/(F-N) )/(W) xyz = np.array([ndc_x, ndc_y, Z, 1]) * W xyz = np.dot(xyz, inv_VP) # alternatively consider that a = -fx, b = fy, cx = widht / 2, cy = height /2 # and that the pose_mat has the translation in the last ROW (in unit coordinates, so mind the scale) tmp = np.dot(pose_mat, view_mat) fx = -tmp[0,0] fy = tmp[1,1] cx = width / 2 cy = height / 2 x = (px - cx) * d / fx y = (py - cy) * d / fy pt = [x,y,z,1] xyz = np.dot(cpose.T, pt)[:3]
2,131
Python
33.387096
128
0.656969
eliabntt/GRADE-RR/additional_scripts/check_folders.py
""" Use this to check if all the files/folders are there """ import os import ipdb mainpath = "/ps/project/irotate/" folders = ["DE_lot_obs_cam0"] tocheck = ["bbox_2d_loose","bbox_2d_tight","bbox_3d","camera","depthLinear","instance","poses","rgb"] for mainfolder in folders: for folder in os.listdir(os.path.join(mainpath, mainfolder)): for subfolder in [os.path.join(mainpath, mainfolder, folder, "Viewport0"), os.path.join(mainpath, mainfolder, folder, "Viewport0_occluded")]: print(subfolder) data = os.listdir(subfolder) if len(data) > len(tocheck): print("More than expected folders") print(subfolder) ipdb.set_trace() if len(data) < len(tocheck): print("Less than expected folders") print(subfolder) ipdb.set_trace() for f in data: if f not in tocheck: continue if len(os.listdir(os.path.join(subfolder, f))) != 1801: print("Not enough files in folder") print(os.path.join(subfolder, f)) ipdb.set_trace()
991
Python
29.060605
143
0.672048
eliabntt/GRADE-RR/additional_scripts/process_paths/parser_config.yaml
cc_path: "../.." # set your cc_texture path prefix_cc: "" front3d_path: "../.." # set your global 3d_front path prefix_front3d: "" cloth3d_path: "../../.." prefix_cloth3d: "" surreal_path: "../.." prefix_surreal: "" normpath: True
235
YAML
15.857142
53
0.604255
eliabntt/GRADE-RR/additional_scripts/process_paths/change_paths.py
import argparse import confuse import os def change_path(c_line, prefix, my_cc_path, match_str, normpath, remove_prefix=True): if remove_prefix: offset = len(match_str) else: offset = -1 path = os.path.join(my_cc_path + c_line[c_line.find(match_str) + offset:]) if normpath: path = os.path.normpath(path[:path.rfind("@")].replace('\\',"/")) + path[path.rfind("@"):] new_path = c_line[:c_line.find("@") + 1] + prefix + path return new_path parser = argparse.ArgumentParser(description="USD reference changer") parser.add_argument("--config_file", type=str, default="parser_config.yaml") parser.add_argument("--input", type=str) parser.add_argument("--output_name", type=str, default="") parser.add_argument("--output_dir", type=str, default="") args, unknown = parser.parse_known_args() config = confuse.Configuration("USDRefChanger", __name__) config.set_file(args.config_file) config.set_args(args) filename = config["input"].get() output_loc = config["output_dir"].get() if output_loc == "": output_loc = os.path.dirname(config["input"].get()) out_name = config["output_name"].get() if out_name == "": out_name = os.path.basename(config["input"].get())[:-4] + "_proc.usda" else: if out_name[-4:] != "usda": out_name += ".usda" out_file_path = os.path.join(output_loc, out_name) prefix_cc = config["prefix_cc"].get() my_cc_path = config["cc_path"].get() prefix_3dfront = config["prefix_front3d"].get() my_front_path = config["front3d_path"].get() prefix_cloth3d = config["prefix_cloth3d"].get() my_cloth_path = config["cloth3d_path"].get() prefix_surreal = config["prefix_surreal"].get() my_surr_path = config["surreal_path"].get() normpath = config["normpath"].get() with open(out_file_path, "w") as o_file, open(filename, "r") as i_file: lines = i_file.readlines() for line in lines: c_line = line if ".png" in line or ".jpg" in line or ".jpeg" in line or ".tga" in line or ".tif" in line or ".bmp" in line and "cc_textures" not in line: # remove 3D-FUTURE-model if "3D-FUTURE-model" in line: # import ipdb; ipdb.set_trace() c_line = line.replace("3D-FUTURE-model/", "") if "cc_textures" not in line: # and "../../" in line: # import ipdb; ipdb.set_trace() # add after ../../ 3D-FUTURE-model l_index = c_line.find("../../") c_line = c_line[:l_index+6] + "3D-FUTURE-model/" + c_line[l_index+6:] if "opacity_constant" in line or "reflection_roughness_constant" in line or "metallic_constant" in line: tmp = c_line.split(" ") tmp[-1] = tmp[-1].replace("\n", "") if "int" in tmp: tmp[tmp.index("int")] = "float" if float(tmp[-1]) == 0: tmp[-1] = str(0.00001) try: tmp[-1] = str(format(float(tmp[-1]))) except: import ipdb; ipdb.set_trace() c_line = " ".join(tmp)+"\n" elif "cc_textures" in line: c_line = change_path(c_line, prefix_cc, my_cc_path, "cc_textures", normpath, remove_prefix=False) elif "3DFRONT" in line or "3D-FUTURE" in line: if "future" in line.lower(): c_line = change_path(c_line, prefix_3dfront, my_front_path, "3D-FUTURE-model", normpath) else: import ipdb; ipdb.set_trace() c_line = change_path(c_line, prefix_3dfront, my_front_path, "3DFRONT", normpath) elif "cloth3d" in line: c_line = change_path(c_line, prefix_cloth3d, my_cloth_path, "cloth_3d", normpath) elif "surreal" in line: c_line = change_path(c_line, prefix_surreal, my_surr_path, "surreal", normpath) o_file.write(c_line)
3,457
Python
34.285714
141
0.647961
eliabntt/GRADE-RR/additional_scripts/process_paths/README.md
Requirements: Please install the following packages: [OpenUSD](https://github.com/PixarAnimationStudios/OpenUSD) These files are useful to automatically change some text in the USD files. In short you will edit the `change_paths` script to your desire using python and the `parser_config.yaml` config file. Then you can run `process_paths.sh` to process the USD file. The processing work as follow: USD -> convert to USDA -> process -> convert back to USD
462
Markdown
34.615382
118
0.774892
eliabntt/GRADE-RR/simulator/people_and_objects.py
import argparse import time import os import numpy as np # base_env_path and other settings are in the config file out_dir = "" # set this to a temporary empty dir from omni.isaac.kit import SimulationApp def boolean_string(s): if s.lower() not in {'false', 'true'}: raise ValueError('Not a valid boolean string') return s.lower() == 'true' parser = argparse.ArgumentParser(description="Your second IsaacSim run") parser.add_argument("--headless", type=boolean_string, default=True, help="Wheter to run it in headless mode or not") parser.add_argument("--rtx_mode", type=boolean_string, default=False, help="Use rtx when True, use path tracing when False") parser.add_argument("--config_file", type=str, default="config.yaml") parser.add_argument("--fix_env", type=str, default="", help="leave it empty to have a random env, fix it to use a fixed one. Useful for loop processing") args, unknown = parser.parse_known_args() config = confuse.Configuration("world_and_robot", __name__) config.set_file(args.config_file) config.set_args(args) CONFIG = {"display_options": 3286, "width": 1280, "height": 720, "headless": config["headless"].get()} kit = SimulationApp(launch_config=CONFIG, experience=f"{os.environ['EXP_PATH']}/omni.isaac.sim.python.kit") omni.usd.get_context().open_stage(config["base_env_path"].get(), None) kit.update() kit.update() print("Loading stage...") while is_stage_loading(): kit.update() print("Loading Complete") context = omni.usd.get_context() stage = context.get_stage() meters_per_unit = config["meters_per_unit"].get() simulation_context = SimulationContext(physics_dt=1.0 / config["physics_hz"].get(), rendering_dt=1.0 / config["render_hz"].get(), stage_units_in_meters=meters_per_unit, backend='torch') simulation_context.initialize_physics() physx_interface = omni.physx.acquire_physx_interface() physx_interface.start_simulation() print("Adding ROS clock, you can check with rostopic echo /clock") _clock_graph = add_clock() simulation_context.play() for _ in range(10): simulation_context.step() og.Controller.evaluate_sync(_clock_graph) simulation_context.stop() import utils.misc_utils from utils.misc_utils import * from utils.robot_utils import * from utils.simulation_utils import * from utils.objects_utils import * from utils.human_utils import * simulation_environment_setup(need_ros = True) if base_world_path != "": from utils.environment_utils import * print("Loading environment...") environment = environment(config, meters_per_unit=meters_per_unit) env_prim_path = environment.load_and_center(config["env_prim_path"].get()) process_semantics(config["env_prim_path"].get()) print("Visualization...") for _ in range(1000): simulation_context.render() simulation_context.step(render=False) print("Environment loading done...") add_colliders(env_prim_path) print("Colliders added..") simulation_context.play() x, y, z = 0, 0, 0 if out_dir != "": environment.generate_map(out_dir, origin=[x,y,z]) print("Map generated..") simulation_context.stop() ros_transform_components = [] camera_list = [] viewport_list = [] camera_pose, camera_pose_pub = [], [] imus,imu_pubs = [], [] lidars = [] odoms, odom_pubs = [], [] from omni.isaac.sensor import _sensor _is = _sensor.acquire_imu_sensor_interface() old_h_ape, old_v_ape = [], [] _dc = dynamic_control_interface() print("Loading robots..") robot_base_prim_path = config["robot_base_prim_path"].get() usd_robot_path = str(config["usd_robot_path"].get()) for n in range(config["num_robots"].get()): import_robot(robot_base_prim_path, n, usd_robot_path) x, y, z, yaw = np.random.randint(-100,100,4) set_drone_joints_init_loc(f"{robot_base_prim_path}{n}", [x / meters_per_unit, y / meters_per_unit, z / meters_per_unit], [0, 0, np.deg2rad(yaw)], upper_zlim = z * 2, lower_zlim = -z * 2 ) print("Adding ROS components") add_ros_components(robot_base_prim_path, n, ros_transform_components, camera_list, viewport_list, camera_pose, camera_pose_pub, imu_pubs, imus, odoms, odom_pubs, lidars, [], config, old_h_ape, old_v_ape, _is, simulation_context, _clock, irotate=False) kit.update() timeline = setup_timeline(config) # setup the timeline before adding anything animated print("Loading people") n = 0 human_base_prim_path = config["human_base_prim_path"].get() while n < config["num_humans"].get(): folder = rng.choice(human_folders) random_name = rng.choice(os.listdir(os.path.join(human_export_folder, folder))) asset_path = os.path.join(human_export_folder, folder, random_name, random_name + ".usd") print("Loading human {} from {}".format(random_name, folder)) tmp_pkl = pkl.load(open(os.path.join(human_export_folder, folder, random_name, random_name + ".pkl"), 'rb')) used_ob_stl_paths.append(os.path.join(human_export_folder, folder, random_name, random_name + ".stl")) load_human(human_base_prim_path, n, asset_path) stl_path = os.path.join(human_export_folder, folder, random_name, random_name + ".stl") x = np.random.randint(environment.env_limits_shifted[0], environment.env_limits_shifted[3]) y = np.random.randint(environment.env_limits_shifted[1], environment.env_limits_shifted[4]) z = 0 yaw = np.random.randint(0,360) # position the mesh set_translate(stage.GetPrimAtPath(f"{human_base_prim_path}{n}"), [x / meters_per_unit, y / meters_per_unit, z / meters_per_unit]) set_scale(stage.GetPrimAtPath(f"{human_base_prim_path}{n}"), 1 / meters_per_unit) set_rotate(stage.GetPrimAtPath(f"{human_base_prim_path}{n}"), [0, 0, np.deg2rad(yaw)]) n += 1 print("Load objects") google_ob_used, shapenet_ob_used = load_objects(config, environment, np.random.default_rng(), [], 1/meters_per_unit) if (config["rtx_mode"].get()): set_raytracing_settings(config["physics_hz"].get()) else: set_pathtracing_settings(config["physics_hz"].get()) print("Note that the rendering is now blocking until finished") for i in range(100): print(f"Iteration {i}/100", end="\r") sleeping(simulation_context, viewport_list, raytracing=config["rtx_mode"].get()) # deselect all objects omni.usd.get_context().get_selection().clear_selected_prim_paths() omni.usd.get_context().get_selection().set_selected_prim_paths([], False) timeline.set_current_time(0) timeline.set_auto_update(False) # this no longer works as expected. # Theoretically, once this is set and the timeline plays, rendering will not advance the timeline # this is no longer the case. Thus, keep track of the ctime (as we do within sleeping function) # the simulation context can be kept stopped, but that will prevent physics and time to advance. # https://forums.developer.nvidia.com/t/the-timeline-set-auto-update-false-no-longer-works/253504/10 simulation_context.play() for i in range(2000): simulation_context.step(render=False) og.Controller.evaluate_sync(_clock) time.sleep(0.2) simulation_context.render() # publish IMU print("Publishing IMU...") pub_imu(_is, imu_pubs, robot_imu_frames, meters_per_unit) if i % ratio_joints == 0: for js in joint_states: og.Controller.set(og.Controller.attribute(f"{js}/OnImpulseEvent.state:enableImpulse"), True) if i % ratio_tf: for tf in tf_trees: og.Controller.set(og.Controller.attribute(f"{tf}/OnImpulseEvent.state:enableImpulse"), True) if simulation_step % ratio_odom == 0: c_pose, _ = pub_odom(odoms, odom_pubs, _dc, meters_per_unit) pub_cam_pose(camera_pose, camera_pose_pub, _dc, meters_per_unit) if simulation_step % ratio_camera == 0: # The RTX LiDAR is still a fuzzy component. The "normal" LiDAR is more stable, but won't see non-colliding objects for lidar in lidars: og.Controller.attribute(lidar+".inputs:step").set(1) ctime = timeline.get_current_time() simulation_context.render() timeline.set_current_time(ctime) for lidar in lidars: og.Controller.attribute(lidar+".inputs:step").set(0) pub_and_write_images(simulation_context, viewport_list, ros_camera_list, raytracing) # clearly not writing anything here timeline.forward_one_frame() # advancing the timeline simulation_context.stop() try: kit.close() except: pass
8,219
Python
37.411215
185
0.709089
eliabntt/GRADE-RR/simulator/smpl_and_bbox.py
import argparse import carb import confuse import ipdb import math import numpy as np import os import roslaunch import rospy import scipy.spatial.transform as tf import sys import time import traceback import trimesh import yaml from omni.isaac.kit import SimulationApp from time import sleep from omni.syntheticdata import sensors, helpers as sensors, generic_helper_lib def get_obj_pose(time): """Get pose of all objects with a semantic label. """ stage = omni.usd.get_context().get_stage() mappings = generic_helper_lib.get_instance_mappings() pose = [] for m in mappings: prim_path = m[1] prim = stage.GetPrimAtPath(prim_path) prim_tf = omni.usd.get_world_transform_matrix(prim, time) pose.append((str(prim_path), m[2], str(m[3]), np.array(prim_tf))) return pose def boolean_string(s): if s.lower() not in {'false', 'true'}: raise ValueError('Not a valid boolean string') return s.lower() == 'true' """ Exported information will have the shape of [[prim_asset_path, bbox] [prim_asset_path,skel] [prim_asset_path, init_tf, init_rot]] prim_asset_path is string of the asset in the simulation. It will be processed in order so expect groups of human,cloth --- possibly reversed All is output in WORLD frame. Please check the notes regarding projection in camera frame. bbox will be of shape (ef, 8, 3) if only one bbox is saved or (ef, 2, 8, 3) if both are saved ef will be either the last animated frame (given the simulated environment) or the last frame of the animations + 1 if you need to access the bbox of the mesh after that just use [-1] skel is the smpl skeleton info use the flags below to export only the skeleton, only the garments or only the body or any combination init_rot is the same of the info file init_tf is equal, except that here we account for the small vertical translation that is added to meshes very close to the ground -- this was a bug during the data generation which actually has very little influence (< 0.1 cm in vertical displacement) -- the design choice was to save the placement value and then have always a way to recover the eventual vertical displacement which is anyway based on a rule (check human_utils.py:move_humans_to_ground) everything is in meters NOTE: We start writing images from timeline.frame = 1 (1/fps) since the "forward_timeline" call has been placed _before_ the publishing """ try: parser = argparse.ArgumentParser(description="Get Bounding Boxes") parser.add_argument("--experiment_folder", type=str, help="The experiment folder with the USD file and the info file") parser.add_argument("--body", type=boolean_string, default=True, help="When true process the bodies") parser.add_argument("--garments", type=boolean_string, default=True, help="When true process the garments") parser.add_argument("--base_path", type=str, default="my_human_", help="Human prim base path") parser.add_argument("--headless", type=boolean_string, default=False, help="Whether run this headless or not") parser.add_argument("--write", type=boolean_string, default=True, help="Whether to write results") parser.add_argument("--both", type=boolean_string, default=False, help="Whether to write both vertex types -- preference in code is both - fast - slow") parser.add_argument("--fast", type=boolean_string, default=True, help="Whether to write only the axis-aligned box or the oriented one") parser.add_argument("--only_exp", type=boolean_string, default=True, help="Whether to export only the experiment (considering the reverse strategy) or the whole sequences") parser.add_argument("--get_skel", type=boolean_string, default=True, help="Whether to include the skeleton info") parser.add_argument("--skel_root", type=str, default="avg_root", help="This is a recognizable last part of the root of the skeleton prim, in our case _avg_root " + "It will process ONLY the path of which the last part is this root") parser.add_argument("--correct_poses", type=boolean_string, default=False) args, unknown = parser.parse_known_args() config = confuse.Configuration("BoundingBoxes", __name__) config.set_args(args) exp_info = np.load(os.path.join(config["experiment_folder"].get(), "experiment_info.npy"), allow_pickle=True) exp_info = exp_info.item() CONFIG = {"display_options": 3286, "width": 1280, "height": 720, "headless": config["headless"].get()} kit = SimulationApp(launch_config=CONFIG, experience=f"{os.environ['EXP_PATH']}/omni.isaac.sim.python.kit") import utils.misc_utils from utils.misc_utils import * from utils.robot_utils import * from utils.simulation_utils import * from utils.objects_utils import * from utils.environment_utils import * from utils.human_utils import * simulation_environment_setup() local_file_prefix = "my-computer://" omni.usd.get_context().open_stage(local_file_prefix + config["experiment_folder"].get() + "/loaded_stage.usd", None) kit.update() kit.update() print("Loading stage...") while is_stage_loading(): kit.update() print("Loading Complete") context = omni.usd.get_context() stage = context.get_stage() set_stage_up_axis("Z") simulation_context = SimulationContext(physics_dt=1.0 / exp_info["config"]["physics_hz"].get(), rendering_dt=1.0 / exp_info["config"]["render_hz"].get(), stage_units_in_meters=0.01) simulation_context.start_simulation() meters_per_unit = UsdGeom.GetStageMetersPerUnit(stage) set_raytracing_settings(exp_info["config"]["physics_hz"].get()) timeline = setup_timeline(exp_info["config"]) base_path = config["base_path"].get() fast, both, slow = False, False, False if config["both"].get(): both = True elif config["fast"].get(): fast = True else: slow = True get_skel = config["get_skel"] only_exp = config["only_exp"].get() humans_info = exp_info["humans"] write = config["write"].get() if write: results = [] stime = time.time() helper_list_global = [] helper_list_skel = [] skel_root = config["skel_root"].get() smpl_info_path = "" for prim in stage.Traverse(): prim_path = str(prim.GetPath()).lower() if base_path in prim_path: if (get_skel and skel_root in prim_path and prim_path[:prim_path.find(skel_root)] not in helper_list_skel) or \ (str(prim.GetTypeName()).lower() == "mesh" and "points" in prim.GetPropertyNames()): print(f"Processing {prim}") parent = prim.GetParent() refs = omni.usd.get_composed_references_from_prim(parent) while len(refs) == 0: parent = parent.GetParent() refs = omni.usd.get_composed_references_from_prim(parent) human_global_path = str(omni.usd.get_composed_references_from_prim(parent)[0][0].assetPath) human_global_path = human_global_path[len(local_file_prefix):] index = humans_info['folders'].index(human_global_path[:-3] + "stl") init_tf = np.array(parent.GetAttribute("xformOp:translate").Get()) init_rot = parent.GetAttribute("xformOp:orient").Get() init_rot = np.array([init_rot.GetImaginary()[0], init_rot.GetImaginary()[1], init_rot.GetImaginary()[2], init_rot.GetReal()]) init_rot_mat = tf.Rotation.from_quat(init_rot).as_matrix() if write and str(parent.GetPath()) not in helper_list_global: results.append([str(parent.GetPath()), init_tf, init_rot]) helper_list_global.append(str(parent.GetPath())) if human_global_path[:-3] + "pkl" != smpl_info_path: smpl_info_path = human_global_path[:-3] + "pkl" smpl_anim_info = pkl.load(open(smpl_info_path, 'rb')) smpl_info = smpl_anim_info["info"] r = smpl_info["zrot"] rot_mat = tf.Rotation.from_euler('z', r).as_matrix() ef = int(math.ceil(smpl_anim_info["ef"] * exp_info["config"]["fps"].get() / 24)) if only_exp: ef = min(ef, int(math.ceil( exp_info["config"]["experiment_length"].get() / exp_info['reversing_timeline_ratio']))) if (get_skel and skel_root in prim_path): helper_list_skel.append(prim_path[:prim_path.find(skel_root)]) skeleton, joint_token = AnimationSchema.SkelJoint(prim).GetJoint() skel_cache = UsdSkel.Cache() skel_query = skel_cache.GetSkelQuery(UsdSkel.Skeleton(skeleton.GetPrim())) xfCache = UsdGeom.XformCache() skeleton_info = np.empty((ef, 3), dtype=object) for i in range(0, ef): xfCache.SetTime(i) transforms = skel_query.ComputeJointWorldTransforms(xfCache) translates, rotations, scales = UsdSkel.DecomposeTransforms(transforms) skeleton_info[i] = [np.array(translates) * meters_per_unit, np.array(rotations), np.array(scales) * meters_per_unit] if write: results.append([str(prim.GetPath()), np.array(skeleton_info)]) else: points = UsdGeom.PointBased(prim) if both: bounds = np.zeros((ef, 2, 8, 3)) else: bounds = np.zeros((ef, 8, 3)) for i in range(0, ef): points_in_mesh = points.ComputePointsAtTime(i, Usd.TimeCode(i)) points_in_mesh = np.array(points_in_mesh) # bound = points.ComputeWorldBound(i, "default") # for j in range(8): # print(bound.ComputeAlignedRange().GetCorner(j)) points_in_mesh = ((points_in_mesh @ rot_mat.T @ init_rot_mat.T) + init_tf * meters_per_unit) # normals = prim.GetAttribute("normals").Get(i) # normals = np.array(normals) mymesh = trimesh.PointCloud(points_in_mesh) if fast: temp_bounds = mymesh.bounding_box.vertices elif slow: temp_bounds = mymesh.bounding_box_oriented.vertices elif both: temp_bounds = [mymesh.bounding_box.vertices, mymesh.bounding_box_oriented.vertices] bounds[i] = temp_bounds if write: results.append([str(prim.GetPath()), bounds]) results = np.array(results, dtype=object) print(f"etime {time.time() - stime}") if write: np.save(os.path.join(config["experiment_folder"].get(), "bboxes.npy"), results) except: extype, value, tb = sys.exc_info() traceback.print_exc() import ipdb ipdb.set_trace() finally: simulation_context.stop() try: kit.close() except: pass
10,213
Python
39.693227
202
0.684911
eliabntt/GRADE-RR/simulator/replay_experiment.py
import argparse import carb import confuse import cv2 import ipdb import math import numpy as np import os import rosbag import roslaunch import rospy import scipy.spatial.transform as tf import sys import time import traceback import trimesh import yaml from omni.isaac.kit import SimulationApp from time import sleep def boolean_string(s): if s.lower() not in {'false', 'true'}: raise ValueError('Not a valid boolean string') return s.lower() == 'true' """ Suppose you want a stereo camera And to have optical flow And LiDAR (not fully supported yet) of the experiments. This is a way in which you can re-process your info and get the results. Suggestion: teleport is much more precise (sub mm difference). Working with velocities is fisy This code is a bit hard-coded as it is a demonstration code. """ try: parser = argparse.ArgumentParser(description="Get Bounding Boxes") parser.add_argument("--experiment_folder", type=str, help="The experiment folder with the USD file and the info file") parser.add_argument("--headless", type=boolean_string, default=False, help="Whether run this headless or not") parser.add_argument("--write", type=boolean_string, default=False, help="Whether to write new cameras results") parser.add_argument("--write_flow", type=boolean_string, default=False, help="Whether to write optical flow") parser.add_argument("--write_normals", type=boolean_string, default=False, help="Whether to write normals") parser.add_argument("--use_teleport", type=boolean_string, default=False, help="Whether to use teleport or force joint vel, both have adv and disadv") parser.add_argument("--use_reindex", type=boolean_string, default=False, help="Whether to use reindexed bags") parser.add_argument("--bag_basename", type=str, default="7659a6c9-9fc7-4be5-bc93-5b202ff2a22b") parser.add_argument("--out_folder_npy", type=str, default='additional_data') parser.add_argument("--bag_subpath", type=str, default="") args, unknown = parser.parse_known_args() config = confuse.Configuration("NewSensor", __name__) config.set_args(args) exp_info = np.load(os.path.join(config["experiment_folder"].get(), "experiment_info.npy"), allow_pickle=True) exp_info = exp_info.item() poses_path = os.path.join(config["experiment_folder"].get(), "Viewport0", "camera") write_flow = config["write_flow"].get() write_normals = config["write_normals"].get() write = config["write"].get() CONFIG = {"display_options": 3286, "width": 1280, "height": 720, "headless": config["headless"].get()} kit = SimulationApp(launch_config=CONFIG, experience=f"{os.environ['EXP_PATH']}/omni.isaac.sim.python.kit") import utils.misc_utils from utils.misc_utils import * from utils.robot_utils import * from utils.simulation_utils import * from utils.objects_utils import * from utils.environment_utils import * from utils.human_utils import * simulation_environment_setup() rospy.init_node("new_sensor_publisher", anonymous=True, disable_signals=True, log_level=rospy.ERROR) local_file_prefix = "my-computer://" omni.usd.get_context().open_stage(local_file_prefix + config["experiment_folder"].get() + "/loaded_stage.usd", None) kit.update() kit.update() print("Loading stage...") while is_stage_loading(): kit.update() print("Loading Complete") context = omni.usd.get_context() stage = context.get_stage() simulation_context = SimulationContext(physics_dt=1.0 / exp_info["config"]["physics_hz"].get(), rendering_dt=1.0 / exp_info["config"]["render_hz"].get(), stage_units_in_meters=0.01) simulation_context.initialize_physics() meters_per_unit = UsdGeom.GetStageMetersPerUnit(stage) set_raytracing_settings(exp_info["config"]["physics_hz"].get()) timeline = setup_timeline(exp_info["config"]) reversing_timeline_ratio = exp_info['reversing_timeline_ratio'] experiment_length = exp_info['config']['experiment_length'].get() ratio_camera = exp_info['config']['ratio_camera'].get() cnt_reversal = 1 simulation_context.stop() ### here we add the new camera to the robot. It will be located 5 cm to the right w.r.t. the original one old_h_ape = [] old_v_ape = [] viewport_window_list = [] ros_camera_list = [] # omni.kit.commands.execute('CopyPrim', # path_from='/my_robot_0/camera_link/Camera', # path_to='/my_robot_0/camera_link/Camera_stereo', # exclusive_select=False) # set_translate(stage.GetPrimAtPath('/my_robot_0/camera_link/Camera_stereo'), [1, 0, 0]) # component, viewport = add_camera_and_viewport("/my_robot_0/camera_link", # exp_info["config"]["robot_sensor_size"].get(), old_h_ape, old_v_ape, # simulation_context, 0, 0, camera_path="Camera_stereo") # cam_outputs = control_camera(viewport, simulation_context) # ros_camera_list.append([0, component, cam_outputs]) # viewport_window_list.append(viewport) # omni.kit.commands.execute('CopyPrim', # path_from='/my_robot_0/camera_link/Camera_npy', # path_to='/my_robot_0/camera_link/Camera_npy_stereo', # exclusive_select=False) # # set_translate(stage.GetPrimAtPath('/my_robot_0/camera_link/Camera_npy_stereo'), [1, 0, 0]) # viewport_npy, _ = create_viewport("/my_robot_0/camera_link/Camera_npy_stereo", config["headless"].get(), # 0, exp_info["config"]["npy_sensor_size"].get(), old_h_ape, old_v_ape, simulation_context) # viewport_window_list.append(viewport_npy) viewport_npy, _ = create_viewport("/my_robot_0/camera_link/Camera_npy", config["headless"].get(), 0, exp_info["config"]["npy_sensor_size"].get(), old_h_ape, old_v_ape, simulation_context) viewport_window_list.append(viewport_npy) is_rtx = exp_info["config"]["rtx_mode"].get() if is_rtx: set_raytracing_settings(exp_info["config"]["physics_hz"].get()) else: set_pathtracing_settings(exp_info["config"]["physics_hz"].get()) simulation_context.play() for _ in range(5): simulation_context.render() old_v_ape = [2.32] * len(old_v_ape) # todo this is harcoded for index, cam in enumerate(viewport_window_list): simulation_context.step(render=False) simulation_context.render() camera = stage.GetPrimAtPath(cam.get_active_camera()) camera.GetAttribute("horizontalAperture").Set(old_h_ape[index]) camera.GetAttribute("verticalAperture").Set(old_v_ape[index]) simulation_context.stop() _clock_graph = add_clock() # add ROS clock og.Controller.evaluate_sync(_clock_graph) # add a new sensor lidars = [] # sensor = add_lidar(f"/my_robot_0/yaw_link", [0, 0, -.1], [0, 0, 0], is_3d=True, is_2d=False) # lidars.append(sensor) kit.update() cnt_tf = -1 use_teleport = config["use_teleport"].get() use_reindex = config["use_reindex"].get() id_bag = 0 bag_path = os.path.join(config["experiment_folder"].get(), config['bag_subpath'].get(), f"{config['bag_basename'].get()}_{id_bag}.bag") joint_order = ['x_joint', 'y_joint', 'z_joint', 'roll_joint', 'pitch_joint', 'yaw_joint'] joint_position = [] joint_velocity = [] joint_time = [] robot_pose = [] started = use_reindex while os.path.exists(bag_path): bag = rosbag.Bag(bag_path) for topic, msg, t in bag.read_messages( topics=["/my_robot_0/joint_states", "/my_robot_0/odom", "/starting_experiment"]): if not started: if topic == "/starting_experiment": started = True continue else: continue if 'joint' in topic: joint_position.append(msg.position) joint_velocity.append(msg.velocity) joint_time.append(msg.header.stamp) else: robot_pose.append([msg.pose.pose.position, msg.pose.pose.orientation]) id_bag += 1 bag_path = os.path.join(config["experiment_folder"].get(), config['bag_subpath'].get(), f"{config['bag_basename'].get()}_{id_bag}.bag") if len(joint_position) == 0: print("No bag found") sys.exit(-1) ratio_tf = exp_info['config']['ratio_tf'].get() init_x, init_y, init_z, init_roll, init_pitch, init_yaw = get_robot_joint_init_loc('/my_robot_0') init_pos = np.array([init_x, init_y, init_z]) init_rot = np.array([init_roll, init_pitch, init_yaw]) change_collision_at_path(False,paths=['/my_robot_0/camera_link/Cube.physics:collisionEnabled','/my_robot_0/yaw_link/visuals.physics:collisionEnabled']) kit.update() set_drone_joints_init_loc('/my_robot_0', [0, 0, 0], [0,0,0], 300, lower_zlim=0) # todo use actual limit from simulation kit.update() simulation_context.play() for _ in range(5): simulation_context.step(render=False) simulation_context.render() timeline.set_auto_update(False) timeline.set_current_time(min(- 1 / (exp_info['config']["physics_hz"].get() / ratio_camera), -abs(exp_info['config']["bootstrap_exploration"].get()))) simulation_step = int(timeline.get_current_time() * exp_info['config']["physics_hz"].get()) - 1 out_dir_npy = os.path.join(config['experiment_folder'].get(), config['out_folder_npy'].get()) if write_flow: _tmp = extension_custom.MyRecorder() _tmp.on_startup() _settings = _tmp.get_default_settings() _settings["rgb"]["enabled"] = False _settings["motion-vector"]["enabled"] = write_flow _settings["motion-vector"]["colorize"] = False _settings["motion-vector"]["npy"] = True my_recorder_flow = recorder_setup(_settings, out_dir_npy, True, 0) my_recorder_flow._enable_record = False if write_normals: _tmp = extension_custom.MyRecorder() _tmp.on_startup() _settings = _tmp.get_default_settings() _settings["rgb"]["enabled"] = True _settings["normals"]["enabled"] = write_normals _settings["motion-vector"]["colorize"] = False _settings["motion-vector"]["npy"] = True my_recorder_normals = recorder_setup(_settings, out_dir_npy, True, 0) my_recorder_normals._enable_record = False if write: _tmp = exp_info['config']['_recorder_settings'].get() _tmp["depth"]["enabled"] = False _tmp["depthLinear"]["enabled"] = False _tmp["semantic"]["enabled"] = False _tmp["normals"]["enabled"] = False _tmp["bbox_2d_loose"]["enabled"] = False _tmp["bbox_2d_tight"]["enabled"] = False _tmp["bbox_3d"]["enabled"] = False my_recorder = recorder_setup(_tmp, out_dir_npy, True, 0) my_recorder._enable_record = False # how to hide dynamic content dynamicprims = [] for prim in stage.Traverse(): if 'my_human' in str(prim.GetPath()).lower(): dynamicprims.append(prim) for prim in stage.GetPrimAtPath("/World").GetChildren()[6:]: dynamicprims.append(prim) toggle_dynamic_objects(dynamicprims, False) forward = True while kit.is_running(): simulation_step += 1 if simulation_step == 0: _dc = dynamic_control_interface() handle = _dc.get_rigid_body('/my_robot_0/yaw_link') if not use_teleport: art = _dc.get_articulation('/my_robot_0') joints = [] _dc.wake_up_articulation(art) for joint in joint_order: joints.append(_dc.find_articulation_dof(art, joint)) change_collision_at_path(True,paths=['/my_robot_0/camera_link/Cube.physics:collisionEnabled','/my_robot_0/yaw_link/visuals.physics:collisionEnabled']) og.Controller.evaluate_sync(_clock_graph) # since the first image generated is at time=1/30, we add 7/240 prev_time = timeline.get_current_time() + 7 / 240 * (simulation_step == 0) timeline.set_current_time(prev_time) simulation_step += 8 sleeping(simulation_context, viewport_window_list, is_rtx) try: if write: my_recorder._update() my_recorder._enable_record = True if write_flow: my_recorder_flow._update() my_recorder_flow._enable_record = True if write_normals: my_recorder_normals._update() my_recorder_normals._enable_record = True except: sleeping(simulation_context, viewport_window_list, is_rtx) if write: my_recorder._update() my_recorder._enable_record = True if write_flow: my_recorder_flow._update() my_recorder_flow._enable_record = True if write_normals: my_recorder_normals._update() my_recorder_normals._enable_record = True simulation_context.render() simulation_context.render() timeline.set_current_time(prev_time) if simulation_step < 0: simulation_context.step(render=False) if (simulation_step % ratio_camera == 0): timeline.forward_one_frame() continue if use_teleport: if simulation_step % ratio_tf == 0: cnt_tf += 1 teleport("/my_robot_0", np.array(joint_position[cnt_tf][:3]) / meters_per_unit + init_pos , tf.Rotation.from_euler('XYZ', joint_position[cnt_tf][3:] + init_rot).as_quat()) if (simulation_step % (ratio_tf * 2) == 0): # odm is published half the rate of the tf myp = _dc.get_rigid_body_pose(handle) print( f"pose diff {np.array(_dc.get_rigid_body_pose(handle).p) / 100 - np.array([robot_pose[int(cnt_tf / 2)][0].x, robot_pose[int(cnt_tf / 2)][0].y, robot_pose[int(cnt_tf / 2)][0].z])}") else: vel = np.array(joint_velocity[ cnt_tf]) # or average position between the two, or use the IMU to interpolate also which has 240 hz pos = (np.array(joint_position[cnt_tf][:3]) + vel[:3] * 1 / 240) / meters_per_unit + init_pos ori = (np.array(joint_position[cnt_tf][3:]) + vel[3:] * 1 / 240) + init_rot teleport("/my_robot_0", pos, tf.Rotation.from_euler('XYZ', ori).as_quat()) else: _dc.wake_up_articulation(art) if simulation_step % ratio_tf == 0: cnt_tf += 1 vel = np.array(joint_velocity[cnt_tf]) next_vel = vel if cnt_tf < len(joint_position) - 1: next_vel = np.array(joint_velocity[cnt_tf + 1]) if cnt_tf == 0: pos = np.append(np.array(joint_position[cnt_tf][:3]) / meters_per_unit + init_pos - vel[:3] * 1 / 240, joint_position[cnt_tf][3:] + init_rot - vel[3:] * 1 / 240) for idx, joint in enumerate(joints): _dc.set_dof_position(joint, pos[idx] * (-1 if idx == 1 else 1)) cvel = (vel + next_vel) / 2 cvel[:3] = cvel[:3] / meters_per_unit _dc.set_articulation_dof_velocity_targets(art, list(cvel)) for idx, joint in enumerate(joints): _dc.set_dof_velocity(joint, cvel[idx] * (-1 if idx == 1 else 1)) if (simulation_step % (ratio_tf * 2) == 0): myp = _dc.get_rigid_body_pose(handle) print( f"pose diff {np.array(_dc.get_rigid_body_pose(handle).p) / 100 - np.array([robot_pose[int(cnt_tf / 2)][0].x, robot_pose[int(cnt_tf / 2)][0].y, robot_pose[int(cnt_tf / 2)][0].z])}") if simulation_step % 8 == 0: # tmp = np.load( # f'/ps/project/irotate/GRADE_DATA/DE/7659a6c9-9fc7-4be5-bc93-5b202ff2a22b/Viewport0/camera/{int(simulation_step/8)}.npy', # allow_pickle=True).item() prim_tf = omni.usd.get_world_transform_matrix(stage.GetPrimAtPath('/my_robot_0/camera_link/Camera')) # in v2022 this is the only viable option to control time since timeline.set_auto_update=False is not working timeline.set_current_time(prev_time + 1 / 240 * (1 if forward else -1)) prev_time = timeline.get_current_time() simulation_context.step(render=False) simulation_context.render() print("Clocking...") # NOTE THAT THIS MIGHT GET CONFUSING -- reindexing/retiming is needed for sure. Tests need to be careful! og.Controller.evaluate_sync(_clock_graph) if simulation_step == 0: og.Controller.evaluate_sync(_clock_graph) time.sleep(0.2) if simulation_step % ratio_camera == 0: if (simulation_step + ratio_camera) / ratio_camera < (experiment_length / reversing_timeline_ratio) * ( cnt_reversal): forward = True else: if (simulation_step + ratio_camera) / ratio_camera >= ((experiment_length - 1) / reversing_timeline_ratio) * ( cnt_reversal + 1) or \ (timeline.get_current_time() - 1 / timeline.get_time_codes_per_seconds()) < 0: cnt_reversal += 2 forward = True else: forward = False if write_flow: if my_recorder_flow._enable_record: simulation_context.render() my_recorder_flow._counter += 1 time.sleep(1.5) # this seems necessary my_recorder_flow._update() # you have two ways to proceed here. the sleeping performs just the rendering and then you manually toggle the recorder below # otherwise use pub_and_write_images which automatically calls it if necessary. In the latter case, remember to increase the counter sleeping(simulation_context, viewport_window_list, is_rtx) # if write: # if my_recorder._enable_record: # my_recorder._counter += 1 # pub_and_write_images(simulation_context, viewport_window_list, ros_camera_list, is_rtx, my_recorder) if write: if my_recorder._enable_record: my_recorder._counter += 1 my_recorder._update() if write_normals: if my_recorder_normals._enable_record: my_recorder_normals._counter += 1 my_recorder_normals._update() # new sensor here -- imagine 30 fps -- in that case I need to publish # if you need sensors in the middle you need to interpolate # using IMU and TF readings # you can access those from the rosbags # note you might need to work with the timeline times if the rate that you want is different # if simulation_step % ratio_camera == 0: # for lidar in lidars: # og.Controller.attribute(lidar + ".inputs:step").set(1) # ctime = timeline.get_current_time() # simulation_context.render() # # point_cloud = og.Controller().node("/Render/PostProcess/SDGPipeline/RenderProduct_Replicator_RtxSensorCpuIsaacComputeRTXLidarPointCloud").get_attribute("outputs:pointCloudData").get() # # laser_scan = og.Controller().node("/Render/PostProcess/SDGPipeline/RenderProduct_Replicator_RtxSensorCpuIsaacComputeRTXLidarFlatScan").get_attribute("outputs:linearDepthData").get() # timeline.set_current_time(ctime) # for lidar in lidars: # og.Controller.attribute(lidar+".inputs:step").set(0) if simulation_step % ratio_camera == 0 and simulation_step / ratio_camera == experiment_length: print("End of experiment!!!") simulation_context.pause() break except: extype, value, tb = sys.exc_info() traceback.print_exc() import ipdb ipdb.set_trace() finally: simulation_context.stop() try: kit.close() except: pass
18,401
Python
40.26009
190
0.668062
eliabntt/GRADE-RR/simulator/zebra_datagen.py
import argparse import carb import confuse import ipdb import numpy as np import os import sys import time import traceback import yaml from omni.isaac.kit import SimulationApp from time import sleep def boolean_string(s): if s.lower() not in {'false', 'true'}: raise ValueError('Not a valid boolean string') return s.lower() == 'true' def compute_points(skel_root_path, prim, ef, stage): usdSkelRoot = UsdSkel.Root.Get(stage, skel_root_path) UsdSkel.BakeSkinning(usdSkelRoot, Gf.Interval(0, ef)) prim = UsdGeom.PointBased(prim) xformCache = UsdGeom.XformCache() final_points = np.zeros((ef, len(prim.GetPointsAttr().Get()), 3)) for prim in Usd.PrimRange(usdSkelRoot.GetPrim()): if prim.GetTypeName() != "Mesh": continue localToWorld = xformCache.GetLocalToWorldTransform(prim) for time in range(ef): points = UsdGeom.Mesh(prim).GetPointsAttr().Get(time) for index in range(len(points)): points[index] = localToWorld.Transform(points[index]) points = np.array(points) final_points[time] = points return final_points def randomize_floor_position(floor_data, floor_translation, scale, meters_per_unit, env_name, rng): floor_points = np.zeros((len(floor_data), 3)) if env_name == "Windmills": yaw = np.deg2rad(-155) rot = np.array([[np.cos(yaw), -np.sin(yaw), 0], [np.sin(yaw), np.cos(yaw), 0], [0, 0, 1]]) floor_translation = np.matmul(floor_translation, rot) if env_name == "L_Terrain": meters_per_unit = 1 for i in range(len(floor_data)): floor_points[i, 0] = floor_data[i][0] * scale[0] * meters_per_unit + floor_translation[0] * meters_per_unit floor_points[i, 1] = floor_data[i][1] * scale[1] * meters_per_unit + floor_translation[1] * meters_per_unit floor_points[i, 2] = floor_data[i][2] * scale[2] * meters_per_unit + floor_translation[2] * meters_per_unit if env_name == "L_Terrain": meters_per_unit = 0.01 max_floor_x = max(floor_points[:, 0]) min_floor_x = min(floor_points[:, 0]) max_floor_y = max(floor_points[:, 1]) min_floor_y = min(floor_points[:, 1]) if env_name == "Windmills": min_floor_x = -112 max_floor_x = 161 min_floor_y = -209 max_floor_y = 63 rows = np.where((floor_points[:, 0] > min_floor_x) & (floor_points[:, 0] < max_floor_x) & (floor_points[:, 1] > min_floor_y) & (floor_points[:, 1] < max_floor_y))[0] floor_points = floor_points[rows] rows = [] while (len(rows) == 0): size_x = rng.integers(40, 120) size_y = rng.integers(40, 120) # get all floor_points within a size x size square randomly centered min_x = rng.uniform(min(floor_points[:, 0]), max(floor_points[:, 0])) max_x = min_x + min(size_x, max(floor_points[:, 0]) - min(floor_points[:, 0])) while max_x > max(floor_points[:, 0]): min_x = rng.uniform(min(floor_points[:, 0]), max(floor_points[:, 0])) max_x = min_x + min(size_x, max(floor_points[:, 0]) - min(floor_points[:, 0])) min_y = rng.uniform(min(floor_points[:, 1]), max(floor_points[:, 1])) max_y = min_y + min(size_y, max(floor_points[:, 1]) - min(floor_points[:, 1])) while max_y > max(floor_points[:, 1]): min_y = rng.uniform(min(floor_points[:, 1]), max(floor_points[:, 1])) max_y = min_y + min(size_y, max(floor_points[:, 1]) - min(floor_points[:, 1])) # FIXME this is just an approximation which MAY NOT WORK ALWAYS! rows = np.where((min_x <= floor_points[:,0]) & (floor_points[:,0] <= max_x) & (floor_points[:,1]<=max_y) & (floor_points[:,1]>= min_y))[0] floor_points = floor_points[rows] shape = (len(np.unique(floor_points[:, 0])), -1, 3) floor_points = floor_points.reshape(shape) if (floor_points[0, 1, 0] - floor_points[0, 0, 0]) > 1: zoom_factor = int(floor_points[0, 1, 0] - floor_points[0, 0, 0]) import scipy.ndimage.interpolation as interpolation floor_points = interpolation.zoom(floor_points, (zoom_factor, zoom_factor, 1)) return floor_points, max_floor_x, min_floor_x, max_floor_y, min_floor_y try: parser = argparse.ArgumentParser(description="Dynamic Worlds Simulator") parser.add_argument("--config_file", type=str, default="config.yaml") parser.add_argument("--headless", type=boolean_string, default=True, help="Wheter to run it in headless mode or not") parser.add_argument("--rtx_mode", type=boolean_string, default=False, help="Use rtx when True, use path tracing when False") parser.add_argument("--record", type=boolean_string, default=False, help="Writing data to the disk") parser.add_argument("--debug_vis", type=boolean_string, default=False, help="When true continuosly loop the rendering") parser.add_argument("--neverending", type=boolean_string, default=False, help="Never stop the main loop") parser.add_argument("--fix_env", type=str, default="", help="leave it empty to have a random env, fix it to use a fixed one. Useful for loop processing") args, unknown = parser.parse_known_args() config = confuse.Configuration("DynamicWorlds", __name__) config.set_file(args.config_file) config.set_args(args) can_start = True CONFIG = {"display_options": 3286, "width": 1280, "height": 720, "headless": config["headless"].get()} kit = SimulationApp(launch_config=CONFIG, experience=f"{os.environ['EXP_PATH']}/omni.isaac.sim.python.kit") # Cannot move before SimApp is launched import utils.misc_utils from utils.misc_utils import * from utils.robot_utils import * from utils.simulation_utils import * from utils.environment_utils import * from pxr import UsdGeom, UsdLux, Gf, Vt, UsdPhysics, PhysxSchema, Usd, UsdShade, Sdf, UsdSkel simulation_environment_setup(need_ros=False) all_env_names = ["Bliss", "Forest", "Grasslands", "Iceland", "L_Terrain", "Meadow", "Moorlands", "Nature_1", 'Nature_2', "Savana", "Windmills", "Woodland"] ground_area_name = ["Landscape_1", "Landscape_1", "Landscape_1", "Landscape_0", "Terrain_5", "Landscape_0", "Landscape_2", "Ground", "Ground", "Landscape_1", "Landscape_0", "Landscape_1"] need_sky = [True] * len(all_env_names) env_id = all_env_names.index(config["fix_env"].get()) rng = np.random.default_rng() rng_state = np.random.get_state() local_file_prefix = "" # setup environment variables environment = environment(config, rng, local_file_prefix) out_dir = os.path.join(config['out_folder'].get(), environment.env_name) out_dir_npy = os.path.join(config['out_folder_npy'].get(), environment.env_name) if not os.path.exists(out_dir): os.makedirs(out_dir) omni.usd.get_context().open_stage(local_file_prefix + config["base_env_path"].get(), None) # Wait two frames so that stage starts loading kit.update() kit.update() print("Loading stage...") while is_stage_loading(): kit.update() print("Loading Complete") context = omni.usd.get_context() stage = context.get_stage() set_stage_up_axis("Z") omni.kit.commands.execute("DeletePrimsCommand", paths=["/World/GroundPlane"]) # do this AFTER loading the world simulation_context = SimulationContext(physics_dt=1.0 / config["physics_hz"].get(), rendering_dt=1.0 / config["render_hz"].get(), stage_units_in_meters=0.01) simulation_context.initialize_physics() simulation_context.play() simulation_context.stop() kit.update() meters_per_unit = 0.01 # use rtx while setting up! set_raytracing_settings(config["physics_hz"].get()) env_prim_path = environment.load_and_center(config["env_prim_path"].get()) process_semantics(config["env_prim_path"].get(), "World") if all_env_names[env_id] == "L_Terrain": set_scale(stage.GetPrimAtPath(f"/World/home"), 100) while is_stage_loading(): kit.update() floor_data = stage.GetPrimAtPath(f"/World/home/{ground_area_name[env_id]}/{ground_area_name[env_id]}").GetProperty( 'points').Get() floor_translation = np.array(stage.GetPrimAtPath(f"/World/home/{ground_area_name[env_id]}").GetProperty( 'xformOp:translate').Get()) scale = np.array(stage.GetPrimAtPath(f"/World/home/{ground_area_name[env_id]}").GetProperty("xformOp:scale").Get()) # i need to consider that z has a bounding box and that the position is on the top corner for _ in range(50): simulation_context.render() floor_points, max_floor_x, min_floor_x, max_floor_y, min_floor_y = randomize_floor_position(floor_data, floor_translation, scale, meters_per_unit, all_env_names[env_id], rng) add_semantics(stage.GetPrimAtPath("/World/home"), "world") # set timeline of the experiment timeline = setup_timeline(config) viewport_window_list = [] dynamic_prims = [] first = True simulation_context.stop() simulation_context.play() for _ in range(10): simulation_context.step() _dc = dynamic_control_interface() print("Loading robots..") robot_base_prim_path = config["robot_base_prim_path"].get() usd_robot_path = str(config["usd_robot_path"].get()) old_h_ap = [] old_v_ap = [] simulation_context.stop() for n in range(config["num_robots"].get()): import_robot(robot_base_prim_path, n, usd_robot_path, local_file_prefix) change_prim_collision(False, robot_base_prim_path + str(n)) set_drone_joints_init_loc(robot_base_prim_path + str(n), [0, 0, 0], [0, 0, 0], 10e15) kit.update() for n in range(config["num_robots"].get()): add_npy_viewport(viewport_window_list, robot_base_prim_path, n, old_h_ap, old_v_ap, config,simulation_context, tot_num_ros_cam=0) kit.update() for _ in range(5): simulation_context.render() for index, cam in enumerate(viewport_window_list): camera = stage.GetPrimAtPath(cam.get_active_camera()) camera.GetAttribute("horizontalAperture").Set(old_h_ap[index]) camera.GetAttribute("verticalAperture").Set(old_v_ap[index]) print("Loading robot complete") print("Loading zebras..") zebra_anims_loc = config["zebra_anims_loc"].get() # get a list of .usd file in the folder import glob zebra_files = glob.glob(f"{zebra_anims_loc}/*.usd") from utils.zebra_utils import * from omni.kit.window.sequencer.scripts import sequencer_drop_controller _, sequence = omni.kit.commands.execute("SequencerCreateSequenceCommand") sequence_path = sequence.GetPrim().GetPath() kit.update() zebra_anim_names = ["Attack", "Attack01", "Attack02", "Eating", "Gallop", "Hit_Back", "Hit_Front", "Hit_Left", "Hit_Right", "Idle", "Idle2", "Idle3", "Idle4", "Jump", "Tarsus", "Trot", "Walkback"] zebra_seq_lengths = [27, 54, 32, 133, 12, 15, 17, 20, 15, 48, 72, 119, 201, 43, 29, 24, 27] zebra_mesh_paths = [ "Attack/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0_001", "Attack01/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0_001", "Attack02/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0_001", "Eating/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0", "Gallop/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0", "Hit_Back/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0", "Hit_Front/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0", "Hit_Left/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0", "Hit_Right/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0", "Idle/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0", "Idle2/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0", "Idle3/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0", "Idle4/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0", "Jump/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0", "Tarsus/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0", "Trot/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0", "Walkback/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6/Object_45/Zebra_SHP2_0_Zebra_Mat_0"] zebra_info = {} for i, v in enumerate(zebra_anim_names): zebra_info[v] = {"path": zebra_mesh_paths[i], "length": zebra_seq_lengths[i], "mesh_path": zebra_mesh_paths[i]} for zebra_file in zebra_files: if not os.path.exists(zebra_file[:-4] + "_points.npy"): zebra_name = zebra_file.split("/")[-1].split(".")[0] zebra_index = zebra_anim_names.index(zebra_name) zebra_path = load_zebra("/zebra_", zebra_index, zebra_file) kit.update() kit.update() zebra_name = zebra_file.split("/")[-1].split(".")[0] zebra_index = zebra_anim_names.index(zebra_name) prim = stage.GetPrimAtPath(zebra_path + zebra_mesh_paths[zebra_index][len(zebra_name):]) skel_root_path = zebra_path + "/Zebra_motions/African_Animal___Zebra/_Object_Pivot_Node_/Object_6" points = compute_points(skel_root_path, prim, zebra_seq_lengths[zebra_index], stage) * meters_per_unit np.save(zebra_file[:-4] + "_points.npy", points) zebra_info[zebra_name]["points"] = points omni.kit.commands.execute("DeletePrimsCommand", paths=[zebra_path]) else: zebra_name = zebra_file.split("/")[-1].split(".")[0] zebra_index = zebra_anim_names.index(zebra_name) zebra_info[zebra_name]["points"] = np.load(zebra_file[:-4] + "_points.npy") max_anim_length = max(zebra_seq_lengths) # IT IS OF CRUCIAL IMPORTANCE THAT AFTER THIS POINT THE RENDER GETS DONE WITH THE SLEEPING CALL! OTHERWISE PATH TRACING SPP WILL GET RUINED if (config["rtx_mode"].get()): set_raytracing_settings(config["physics_hz"].get()) else: set_pathtracing_settings(config["physics_hz"].get()) omni.usd.get_context().get_selection().set_selected_prim_paths([], False) for _ in range(5): simulation_context.step(render=False) sleeping(simulation_context, viewport_window_list, config["rtx_mode"].get()) timeline.set_current_time(0) simulation_step = 0 # this is NOT the frame, this is the "step" (related to physics_hz) my_recorder = recorder_setup(config['_recorder_settings'].get(), out_dir_npy, config['record'].get(), 0) timeline.set_current_time(0) # set to 0 to be sure that the first frame is recorded timeline.set_auto_update(False) # two times, this will ensure that totalSpp is reached sleeping(simulation_context, viewport_window_list, config["rtx_mode"].get()) sleeping(simulation_context, viewport_window_list, config["rtx_mode"].get()) my_recorder._enable_record = False exp_len = config["anim_exp_len"].get() my_recorder._enable_record = False sleeping(simulation_context, viewport_window_list, config["rtx_mode"].get()) if config["rtx_mode"].get(): my_recorder._update() hidden_position = [min_floor_x / meters_per_unit, min_floor_y / meters_per_unit, -10e5] all_zebras = preload_all_zebras(config, rng, zebra_files, zebra_info, simulation_context, sequencer_drop_controller, max_anim_length, hidden_position) substep = 3 simulation_context.play() import ipdb; ipdb.set_trace() while kit.is_running(): if simulation_step > 0: for zebra in all_zebras: set_translate(stage.GetPrimAtPath(zebra), list(hidden_position)) floor_points, max_floor_x, min_floor_x, max_floor_y, min_floor_y = randomize_floor_position(floor_data, floor_translation, scale, meters_per_unit, all_env_names[env_id], rng) frame_info = place_zebras(all_zebras, rng, floor_points, meters_per_unit, hidden_position, config, max_anim_length, zebra_info) for c_substep in range(substep): average_zebra_x = 0 average_zebra_y = 0 average_zebra_z = 0 max_zebra_x = -1e10 max_zebra_y = -1e10 min_zebra_x = 1e10 min_zebra_y = 1e10 counter = 0 for prim in frame_info: if "zebra" in prim: average_zebra_x += frame_info[prim]["position"][0] average_zebra_y += frame_info[prim]["position"][1] average_zebra_z += frame_info[prim]["position"][2] max_zebra_x = max(max_zebra_x, frame_info[prim]["position"][0]) max_zebra_y = max(max_zebra_y, frame_info[prim]["position"][1]) min_zebra_x = min(min_zebra_x, frame_info[prim]["position"][0]) min_zebra_y = min(min_zebra_y, frame_info[prim]["position"][1]) counter += 1 average_zebra_x /= counter average_zebra_y /= counter average_zebra_z /= counter delta_x = max_zebra_x - min_zebra_x delta_y = max_zebra_y - min_zebra_y used_x = [] used_y = [] used_z = [] for n in range(config["num_robots"].get()): safe = False while not safe: # -100 + 100 random_x = rng.uniform(average_zebra_x - delta_x/2 - 5, average_zebra_x + delta_x/2 + 5) # keep random_x within max_floor_x min_floor_x random_x = max(random_x, min_floor_x) random_x = min(random_x, max_floor_x) random_y = rng.uniform(average_zebra_y - delta_y/2 -5, average_zebra_y + delta_y/2 + 5) # keep random_y within max_floor_y min_floor_y random_y = max(random_y, min_floor_y) random_y = min(random_y, max_floor_y) random_z = rng.uniform(average_zebra_z + 5, average_zebra_z + 20) if len(used_x) > 0: for i in range(len(used_x)): safe = True if np.sqrt((used_x[i] - random_x) ** 2 + (used_y[i] - random_y) ** 2 + (used_z[i] - random_z) ** 2) < .5: safe = False break else: safe = True if safe: used_x.append(random_x) used_y.append(random_y) used_z.append(random_z) # get angle between robot and average_zebra angle = np.arctan2(average_zebra_y - random_y, average_zebra_x - random_x) # randomize yaw +- 30 degrees yaw = rng.uniform(-np.pi / 6, np.pi / 6) + angle # randomize yaw +- 15 degrees yaw = rng.uniform(-np.pi / 12, np.pi / 12) + angle # get pitch + 15 degrees (camera already pitched) # with a weight based on the average zebra location pitch = - np.arctan2(average_zebra_z - random_z, np.sqrt( (average_zebra_x - random_x) ** 2 + (average_zebra_y - random_y) ** 2)) # roll minimal -10, 10 degrees roll = rng.uniform(-np.pi / 18, np.pi / 18) rot = Rotation.from_euler('xyz', [roll, pitch, yaw]) teleport(robot_base_prim_path + str(n), [random_x / meters_per_unit, random_y / meters_per_unit, random_z / meters_per_unit], rot.as_quat()) frame_info[f"{robot_base_prim_path}{n}"] = {"position": [random_x, random_y, random_z], "rotation": [roll, pitch, yaw]} simulation_context.step(render=False) simulation_context.step(render=False) for _ in range(3): simulation_context.step(render=False) simulation_context.render() sleep(0.5) # two frames with the same animation point # todo fix the time import ipdb; ipdb.set_trace() timeline.set_current_time(max_anim_length / timeline.get_time_codes_per_seconds()) if need_sky[env_id]: # with probability 0.9 during day hours stage.GetPrimAtPath("/World/Looks/SkyMaterial/Shader").GetAttribute("inputs:SunPositionFromTOD").Set(True) if rng.uniform() < 0.9: stage.GetPrimAtPath("/World/Looks/SkyMaterial/Shader").GetAttribute("inputs:TimeOfDay").Set( rng.uniform(5, 20)) else: if rng.uniform() < 0.5: stage.GetPrimAtPath("/World/Looks/SkyMaterial/Shader").GetAttribute("inputs:TimeOfDay").Set( rng.uniform(0, 5)) else: stage.GetPrimAtPath("/World/Looks/SkyMaterial/Shader").GetAttribute("inputs:TimeOfDay").Set( rng.uniform(20, 24)) print("Publishing cameras...") my_recorder._enable_record = True frame_info["step"] = simulation_step frame_info["substep"] = c_substep pub_try_cnt = 0 success_pub = False while not success_pub and pub_try_cnt < 3: try: pub_and_write_images(simulation_context, viewport_window_list, [], config["rtx_mode"].get(), my_recorder) success_pub = True except: print("Error publishing camera") pub_try_cnt += 1 import ipdb; ipdb.set_trace() # simulation_context.stop() # simulation_context.play() sleep(0.5) simulation_context.render() simulation_context.render() if not success_pub: frame_info["error"] = True else: frame_info["error"] = False np.save(out_dir_npy + f"/frame_{simulation_step}_{c_substep}.npy", frame_info) simulation_context.stop() # clips = [f"/World/Sequence{k}{k}_Clip" for k in frame_info.keys() if k.startswith("/zebra")] # remove targets from clips # for clip in clips: # relationship = stage.GetPrimAtPath(clip).GetProperty("animation") # relationship.RemoveTarget(relationship.GetTargets()[0]) # relationship = stage.GetPrimAtPath(clip).GetProperty("assetPrim") # asset = relationship.GetTargets()[0] # relationship.RemoveTarget(asset) # omni.kit.commands.execute("DeletePrimsCommand", # paths=clips) # omni.kit.commands.execute("DeletePrimsCommand", # paths= # [f"/World/Sequence{k}" for k in frame_info.keys() if k.startswith("/zebra")]) # omni.kit.commands.execute("DeletePrimsCommand", paths=[k for k in frame_info.keys() if k.startswith("/zebra")]) timeline.set_current_time(0) my_recorder._counter += 1 simulation_step += 1 if simulation_step >= exp_len: break except: extype, value, tb = sys.exc_info() traceback.print_exc() ipdb.post_mortem(tb) finally: simulation_context.stop() try: kit.close() except: pass
22,410
Python
40.88972
167
0.65328
eliabntt/GRADE-RR/simulator/FUEL_indoor_simulation.py
import argparse import carb import confuse import ipdb import numpy as np import os import roslaunch import rospy import sys import time import traceback import yaml from omni.isaac.kit import SimulationApp from time import sleep def boolean_string(s): if s.lower() not in {'false', 'true'}: raise ValueError('Not a valid boolean string') return s.lower() == 'true' try: parser = argparse.ArgumentParser(description="Dynamic Worlds Simulator") parser.add_argument("--config_file", type=str, default="config.yaml") parser.add_argument("--headless", type=boolean_string, default=True, help="Wheter to run it in headless mode or not") parser.add_argument("--rtx_mode", type=boolean_string, default=False, help="Use rtx when True, use path tracing when False") parser.add_argument("--record", type=boolean_string, default=True, help="Writing data to the disk") parser.add_argument("--debug_vis", type=boolean_string, default=False, help="When true continuosly loop the rendering") parser.add_argument("--neverending", type=boolean_string, default=False, help="Never stop the main loop") parser.add_argument("--fix_env", type=str, default="", help="leave it empty to have a random env, fix it to use a fixed one. Useful for loop processing") args, unknown = parser.parse_known_args() config = confuse.Configuration("DynamicWorlds", __name__) config.set_file(args.config_file) config.set_args(args) os.environ["SHAPENET_LOCAL_DIR"] = config["shapenet_local_dir"].get() experiment_length = config["experiment_length"].get() can_start = True CONFIG = {"display_options": 3286, "width": 1280, "height": 720, "headless": config["headless"].get()} kit = SimulationApp(launch_config=CONFIG, experience=f"{os.environ['EXP_PATH']}/omni.isaac.sim.python.kit") # Cannot move before SimApp is launched import utils.misc_utils from utils.misc_utils import * from utils.robot_utils import * from utils.simulation_utils import * from utils.objects_utils import * from utils.environment_utils import * from utils.human_utils import * def monitor_movement(msg, args): global second_start global last_check_time global c_pose global old_pose global rng global env_prim_path wait_time = rospy.Duration(1) index, environment = args[0], args[1] if second_start and rospy.Time.now() > last_check_time + wait_time: last_check_time = rospy.Time.now() diff_x = abs(old_pose[index][0] - c_pose[index][0]) ** 2 diff_y = abs(old_pose[index][1] - c_pose[index][1]) ** 2 diff_z = abs(old_pose[index][2] - c_pose[index][2]) ** 2 dist = (diff_x + diff_y + diff_z) ** 0.5 if (dist) < 0.1: my_pose = PoseStamped() if (rng.uniform() > .9): x, y, z, yaw = position_object(environment, type=0) x = x[0] y = y[0] z = z[0] yaw = yaw[0] + rng.uniform(0, 2 * np.pi) else: yaw = get_robot_yaw(c_pose[index][0], c_pose[index][1], c_pose[index][2], environment.env_mesh, environment.shifts) x = c_pose[index][0] + 0.2 * np.cos(yaw) y = c_pose[index][1] + 0.2 * np.sin(yaw) z = c_pose[index][2] yaw += rng.uniform(0, 2 * np.pi) my_pose.pose.position.x = x my_pose.pose.position.y = y my_pose.pose.position.z = z rot = np.array(yaw) * 180 / np.pi quat = ( Gf.Rotation(Gf.Vec3d.XAxis(), 0) * Gf.Rotation(Gf.Vec3d.YAxis(), 0) * Gf.Rotation(Gf.Vec3d.ZAxis(), rot) ).GetQuat() my_pose.pose.orientation.x = quat.imaginary[0] my_pose.pose.orientation.y = quat.imaginary[1] my_pose.pose.orientation.z = quat.imaginary[2] my_pose.pose.orientation.w = quat.real print( f"Publishing random goal since robot {index} stuck [{x},{y},{z}, {yaw} ({yaw * 180 / 3.14})].") my_pose.header.frame_id = "world" my_pose.header.stamp = rospy.Time.now() movement_monitor_pubs[index].publish(my_pose) if (dist) < 0.05: set_colliders(env_prim_path, True) else: old_pose[index] = c_pose[index] set_colliders(env_prim_path, True) def autostart_exploration(msg, index): global first_start global second_start global can_start global can_change_second_start global last_pub_time if (msg.data == "PUB_FIRST_360"): can_change_second_start = True wait_time = rospy.Duration(0, 500000000) if second_start else rospy.Duration(1) if (msg.data == "WAIT_TRIGGER" or ( msg.data == "PUB_360" and not second_start) and rospy.Time.now() > last_pub_time + wait_time): if can_start: if not first_start: first_start = True elif can_change_second_start: second_start = True print("Exploration will start at the end of this movement") default_pose = PoseStamped() default_pose.header.frame_id = "world" default_pose.header.stamp = rospy.Time.now() start_explorer_pubs[index].publish(default_pose) last_pub_time = rospy.Time.now() def publish_random_goal(msg, args): global last_pub_time global first_start global second_start global can_start global can_change_second_start index, environment = args[0], args[1] if (msg.data == "PUB_FIRST_360"): can_change_second_start = True if (msg.data == "WAIT_TRIGGER" or ( msg.data == "PUB_360" and not second_start) and rospy.Time.now() > last_pub_time + rospy.Duration(0, 500000000)): if can_start: if not first_start: first_start = True elif can_change_second_start: second_start = True my_pose = PoseStamped() x, y, z, yaw = position_object(environment, type=0) my_pose.pose.position.x = x[0] my_pose.pose.position.y = y[0] my_pose.pose.position.z = z[0] rot = np.array(yaw[0]) * 180 / np.pi quat = ( Gf.Rotation(Gf.Vec3d.XAxis(), 0) * Gf.Rotation(Gf.Vec3d.YAxis(), 0) * Gf.Rotation(Gf.Vec3d.ZAxis(), rot) ).GetQuat() my_pose.pose.orientation.x = quat.imaginary[0] my_pose.pose.orientation.y = quat.imaginary[1] my_pose.pose.orientation.z = quat.imaginary[2] my_pose.pose.orientation.w = quat.real print(f"Publishing random goal [{x[0]},{y[0]},{z[0]}, {yaw[0]} ({yaw[0] * 180 / 3.14})] for robot {index}") my_pose.header.frame_id = "fixing_manual" my_pose.header.stamp = rospy.Time.now() send_waypoint_pubs[index].publish(my_pose) last_pub_time = rospy.Time.now() simulation_environment_setup() # set timeline of the experiment timeline = setup_timeline(config) rospy.init_node("my_isaac_ros_app", anonymous=True, disable_signals=True, log_level=rospy.ERROR) starting_pub = rospy.Publisher('starting_experiment', String) rng = np.random.default_rng() rng_state = np.random.get_state() local_file_prefix = "" # if something is broken try my-computer:// # setup environment variables meters_per_unit = config["meters_per_unit"].get() environment = environment(config, rng, local_file_prefix, meters_per_unit) uuid = roslaunch.rlutil.get_or_generate_uuid(None, False) out_dir = os.path.join(config['out_folder'].get(), environment.env_name) out_dir_npy = os.path.join(config['out_folder_npy'].get(), environment.env_name) if not os.path.exists(out_dir): os.makedirs(out_dir) os.environ["ROS_LOG_DIR"] = out_dir roslaunch.configure_logging(uuid) launch_files = ros_launchers_setup(roslaunch, environment.env_limits_shifted, config) parent = roslaunch.parent.ROSLaunchParent(uuid, launch_files, force_log=True) omni.usd.get_context().open_stage(local_file_prefix + config["base_env_path"].get(), None) # Wait two frames so that stage starts loading kit.update() kit.update() print("Loading stage...") while is_stage_loading(): kit.update() print("Loading Complete") context = omni.usd.get_context() stage = context.get_stage() set_stage_up_axis("Z") # do this AFTER loading the world simulation_context = SimulationContext(physics_dt=1.0 / config["physics_hz"].get(), rendering_dt=1.0 / config["render_hz"].get(), stage_units_in_meters=meters_per_unit, backend='torch') simulation_context.initialize_physics() physx_interface = omni.physx.acquire_physx_interface() physx_interface.start_simulation() _clock_graph = add_clock() # add ROS clock simulation_context.play() for _ in range(10): simulation_context.step() og.Controller.evaluate_sync(_clock_graph) last_pub_time = rospy.Time.now() simulation_context.stop() # fixme IDK why this is necessary sometimes try: parent.start() except: print("Failed to start roslaunch, retry") try: parent.start() except: print("Failed to start roslaunch, exit") exit(1) print("ros node launched") kit.update() # use rtx while setting up! set_raytracing_settings(config["physics_hz"].get()) env_prim_path = environment.load_and_center(config["env_prim_path"].get()) process_semantics(config["env_prim_path"].get()) randomize_and_fix_lights(config["_random_light"].get(), rng, env_prim_path, environment.env_limits[-1] - 0.2, meters_per_unit, is_rtx=config["rtx_mode"].get()) randomize_roughness(config["_random_roughness"].get(), rng, env_prim_path) ros_camera_list = [] ros_transform_components = [] # list of tf and joint components, one (of each) for each robot viewport_window_list = [] dynamic_prims = [] imus_handle_list = [] robot_odom_frames = [] robot_imu_frames = [] camera_pose_frames = [] imu_pubs = [] odom_pubs = [] cam_pose_pubs = [] first = True simulation_context.play() for _ in range(100): og.Controller.evaluate_sync(_clock_graph) simulation_context.step() last_pub_time = rospy.Time.now() simulation_context.stop() print("Generating map...") if add_colliders(env_prim_path): simulation_context.play() x, y, z, yaw = position_object(environment, type=3) environment.generate_map(out_dir, origin=[x[0], y[0], 0]) for _ in range(10): simulation_context.step() timeline.set_current_time(0) # set to 0 to be sure that the first frame is recorded else: simulation_context.play() for _ in range(10): simulation_context.step() print("Error generating collisions", file=sys.stderr) simulation_context.play() _dc = dynamic_control_interface() print("Loading robots..") from omni.isaac.sensor import _sensor _is = _sensor.acquire_imu_sensor_interface() robot_base_prim_path = config["robot_base_prim_path"].get() usd_robot_path = str(config["usd_robot_path"].get()) c_pose = [] old_pose = [] old_h_ap = [] old_v_ap = [] lidars = [] simulation_context.stop() for n in range(config["num_robots"].get()): import_robot(robot_base_prim_path, n, usd_robot_path, local_file_prefix) x, y, z, yaw = get_valid_robot_location(environment, first) set_drone_joints_init_loc(f"{robot_base_prim_path}{n}", [x / meters_per_unit, y / meters_per_unit, z / meters_per_unit], [0,0,yaw], (environment.env_limits[5]) / meters_per_unit, 0.3/meters_per_unit, irotate=config["is_iRotate"].get()) c_pose.append([x, y, z]) old_pose.append([x, y, z]) # todo make a comment about this and the number of cameras add_ros_components(robot_base_prim_path, n, ros_transform_components, ros_camera_list, viewport_window_list, camera_pose_frames, cam_pose_pubs, imu_pubs, robot_imu_frames, robot_odom_frames, odom_pubs, lidars, dynamic_prims, config, old_h_ap, old_v_ap, _is, simulation_context, _clock_graph) kit.update() first = False for n in range(config["num_robots"].get()): add_npy_viewport(viewport_window_list, robot_base_prim_path, n, old_h_ap, old_v_ap, config, simulation_context, config["num_robots"].get() * 1) for _ in range(50): simulation_context.render() print("Loading robot complete") print("WARNING: CAMERA APERTURE MANUAL SET NO LONGER WORKS, NEEDS TO BE FIXED BY NVIDIA!!!!") time.sleep(5) # # legacy code # for index, cam in enumerate(viewport_window_list): # camera = stage.GetPrimAtPath(cam.get_active_camera()) # camera.GetAttribute("horizontalAperture").Set(old_h_ap[index]) # camera.GetAttribute("verticalAperture").Set(old_v_ap[index]) print("Starting FSM - setting up topics...") start_explorer_pubs = [] send_waypoint_pubs = [] movement_monitor_pubs = [] for index, _ in enumerate(robot_odom_frames): print("Waiting for fsm to start for robot {}".format(index)) my_topic = f"{robot_base_prim_path}{index}/exploration_node/fsm_exploration/state" if config["autonomous"].get(): rospy.Subscriber(my_topic, String, callback=autostart_exploration, callback_args=index) start_explorer_pubs.append( rospy.Publisher(f"{robot_base_prim_path}{index}/traj_start_trigger", PoseStamped, queue_size=10)) else: rospy.Subscriber(my_topic, String, callback=publish_random_goal, callback_args=(index, environment)) send_waypoint_pubs.append( rospy.Publisher(f"{robot_base_prim_path}{index}/exploration_node/manual_goal", PoseStamped, queue_size=10)) rospy.Subscriber(my_topic, String, callback=monitor_movement, callback_args=(index, environment)) movement_monitor_pubs.append( rospy.Publisher(f"{robot_base_prim_path}{index}/command/pose", PoseStamped, queue_size=10)) print("fsm management for robot {} setted up".format(index)) print("FSM setted up") print("Loading humans..") my_humans = [] my_humans_heights = [] human_export_folder = config["human_path"].get() human_folders = os.listdir(human_export_folder) tot_area = 0 areas = [] initial_dynamics = len(dynamic_prims) used_ob_stl_paths = [] ## todo cycle to complete area, need to update the service probably n = 0 human_anim_len = [] added_prims = [] human_base_prim_path = config["human_base_prim_path"].get() while n < rng.integers(7, 1 + max(7, config["num_humans"].get())): anim_len = 0 # the animation needs to be shorter than config["max_anim_len"].get() and longer than 0/min_len while anim_len < max(config["min_human_anim_len"].get(), 0) or anim_len > config["max_human_anim_len"].get(): folder = rng.choice(human_folders) while "old_textures" in folder: folder = rng.choice(human_folders) random_name = rng.choice(os.listdir(os.path.join(human_export_folder, folder))) asset_path = local_file_prefix + os.path.join(human_export_folder, folder, random_name, random_name + ".usd") tmp_pkl = pkl.load(open(os.path.join(human_export_folder, folder, random_name, random_name + ".pkl"), 'rb')) anim_len = tmp_pkl['ef'] print("Loading human {} from {}".format(random_name, folder)) used_ob_stl_paths.append(os.path.join(human_export_folder, folder, random_name, random_name + ".stl")) human_anim_len.append(tmp_pkl['ef']) if "verts" in tmp_pkl.keys(): my_humans_heights.append(tmp_pkl['verts'][:, :, 2]) else: my_humans_heights.append(None) my_humans.append(random_name) load_human(human_base_prim_path, n, asset_path, dynamic_prims, added_prims) stl_path = os.path.join(human_export_folder, folder, random_name, random_name + ".stl") this_mesh = mesh.Mesh.from_file(stl_path) areas.append((this_mesh.x.max() - this_mesh.x.min()) * (this_mesh.y.max() - this_mesh.y.min())) tot_area += areas[-1] n += 1 x, y, z, yaw = position_object(environment, type=1, objects=my_humans, ob_stl_paths=used_ob_stl_paths, max_collisions=int(config["allow_collision"].get())) to_be_removed = [] human_prim_list = [] body_origins = [] for n, human in enumerate(my_humans): if z[n] < 0: to_be_removed.append(n) tot_area -= areas[n] else: set_translate(stage.GetPrimAtPath(f"{human_base_prim_path}{n}"), [x[n] / meters_per_unit, y[n] / meters_per_unit, z[n] / meters_per_unit]) set_scale(stage.GetPrimAtPath(f"{human_base_prim_path}{n}"), 1 / meters_per_unit) set_rotate(stage.GetPrimAtPath(f"{human_base_prim_path}{n}"), [0, 0, yaw[n]]) human_prim_list.append(f"{human_base_prim_path}{n}") body_origins.append([x[n], y[n], z[n], yaw[n]]) if len(to_be_removed) > 0: print("Removing humans that are out of the environment") to_be_removed.reverse() cumsum = np.cumsum(added_prims) for n in to_be_removed: my_humans.pop(n) used_ob_stl_paths.pop(n) my_humans_heights.pop(n) for _ in range(added_prims[n]): if n > 0: dynamic_prims.pop(cumsum[n - 1] + initial_dynamics) else: dynamic_prims.pop(initial_dynamics) human_anim_len.pop(n) omni.kit.commands.execute("DeletePrimsCommand", paths=[f"{human_base_prim_path}{n}" for n in to_be_removed]) print("Loading human complete") google_ob_used, shapenet_ob_used = load_objects(config, environment, rng, dynamic_prims, 1/meters_per_unit) # IT IS OF CRUCIAL IMPORTANCE THAT AFTER THIS POINT THE RENDER GETS DONE WITH THE SLEEPING CALL! OTHERWISE PATH TRACING SPP WILL GET RUINED if (config["rtx_mode"].get()): set_raytracing_settings(config["physics_hz"].get()) else: set_pathtracing_settings(config["physics_hz"].get()) omni.usd.get_context().get_selection().clear_selected_prim_paths() omni.usd.get_context().get_selection().set_selected_prim_paths([], False) for _ in range(5): simulation_context.step(render=False) sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) timeline.set_current_time(0) simulation_step = 0 # this is NOT the frame, this is the "step" (related to physics_hz) my_recorder = recorder_setup(config['_recorder_settings'].get(), out_dir_npy, config['record'].get(), skip_cameras=1) simulation_context.stop() timeline.set_current_time(0) # set to 0 to be sure that the first frame is recorded timeline.set_auto_update(False) for _ in range(5): kit.update() simulation_context.play() timeline.set_auto_update(False) first_start = False second_start = False can_change_second_start = False # two times, this will ensure that totalSpp is reached sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) last_pub_time = rospy.Time.now() last_check_time = rospy.Time.now() if config['debug_vis'].get(): cnt = 0 while 1: cnt += 1 if cnt % 10000 == 0: import ipdb ipdb.set_trace() print("Debug vis") sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) reversing_timeline_ratio = compute_timeline_ratio(human_anim_len, config["reverse_strategy"].get(), experiment_length) print(f"The reversing ratio is {reversing_timeline_ratio}.\n" f"This implies that that every {experiment_length / reversing_timeline_ratio} frames we reverse the animations") cnt_reversal = 1 # example # exp length: 600, ratio: 4 # forward 0-150, 151-300 backward, 300-450 forward, 450-600 backward (so 4 slots) # exp length: 1200, ratio: 4 # forward 0-300, 301-600 backward, 601-900 forward, 901-1200 backward (so 4 slots) ratio_camera = config["ratio_camera"].get() ratio_odom = config["ratio_odom"].get() ratio_tf = config["ratio_tf"].get() starting_to_pub = False my_recorder._enable_record = False status = True while kit.is_running(): # NOTE EVERYTHING THAT NEEDS TO BE RENDERED NEEDS TO BE MOVED AFTER THE TIMELINE UPDATE CONSISTENTLY if can_start: last_check_time = rospy.Time.now() if second_start: if config['record'].get(): sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) my_recorder._update() sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) starting_to_pub = True timeline.set_current_time(min(- 1 / (config["physics_hz"].get() / ratio_camera), -abs(config["bootstrap_exploration"].get()))) simulation_step = int(timeline.get_current_time() * config["physics_hz"].get()) - 1 # reset_physics(timeline, simulation_context) print("Bootstrap started") can_start = False simulation_step += 1 if starting_to_pub and simulation_step == 0: timeline.set_current_time(0) # reset_physics(timeline, simulation_context) move_humans_to_ground(my_humans_heights, human_prim_list, simulation_step / ratio_camera, meters_per_unit, config["max_distance_human_ground"].get()) print("Starting recording NOW!") msg = String("starting") starting_pub.publish(msg) starting_to_pub = False time.sleep(0.5) if config['record'].get(): my_recorder._enable_record = True last_check_time = rospy.Time.now() if (config["_random_light"].get()["during_experiment"]): if (simulation_step % config["_random_light"].get()["n-frames"] == 0): # fixme todo smooth change, idea get max-min and time window randomize_and_fix_lights(config["_random_light"].get(), rng, env_prim_path, environment.env_limits[-1], environment.meters_per_unit, is_rtx=config["rtx_mode"].get()) # step the physics simulation_context.step(render=False) # get the current time in ROS print("Clocking...") og.Controller.evaluate_sync(_clock_graph) time.sleep(0.1) ctime = timeline.get_current_time() simulation_context.render() timeline.set_current_time(ctime) # publish IMU print("Publishing IMU...") pub_imu(_is, imu_pubs, robot_imu_frames, meters_per_unit) # publish joint status (ca 120 Hz) if simulation_step % ratio_tf == 0: print("Publishing joint/tf status...") for component in ros_transform_components: og.Controller.set(og.Controller.attribute(f"{component}/OnImpulseEvent.state:enableImpulse"), True) # publish odometry (60 hz) if simulation_step % ratio_odom == 0: print("Publishing odometry...") c_pose, _ = pub_odom(robot_odom_frames, odom_pubs, _dc, meters_per_unit) pub_cam_pose(camera_pose_frames, cam_pose_pubs, _dc, meters_per_unit) # we consider ratio_camera to forward the animation. # If you want it different ratio_animation < ratio_camera to avoid # two frames with the same animation point if second_start: if simulation_step % ratio_camera == 0: if my_recorder._enable_record: # update the image counter externally so that we can use it in the recorder and all images have the same index my_recorder._counter += 1 if simulation_step / ratio_camera < (experiment_length / reversing_timeline_ratio) * ( cnt_reversal): timeline.forward_one_frame() else: if simulation_step / ratio_camera >= ((experiment_length - 1) / reversing_timeline_ratio) * ( cnt_reversal + 1) or \ (timeline.get_current_time() - 1 / timeline.get_time_codes_per_seconds()) < 0: cnt_reversal += 2 timeline.forward_one_frame() else: timeline.rewind_one_frame() if simulation_step % ratio_camera == 0: for lidar in lidars: og.Controller.attribute(lidar+".inputs:step").set(1) ctime = timeline.get_current_time() simulation_context.render() timeline.set_current_time(ctime) for lidar in lidars: og.Controller.attribute(lidar+".inputs:step").set(0) # publish camera (30 hz) if simulation_step % ratio_camera == 0: ctime = timeline.get_current_time() print("Publishing cameras...") # FIRST ONE WRITTEN IS AT 1/30 on the timeline pub_and_write_images(simulation_context, viewport_window_list, ros_camera_list, config["rtx_mode"].get(), my_recorder, second_start) timeline.set_current_time(ctime) if simulation_step % ratio_camera == 0 and simulation_step / ratio_camera == experiment_length \ and not config["neverending"].get(): print("End of experiment!!!") simulation_context.pause() if my_recorder.data_writer is not None: my_recorder.data_writer.stop_threads() timeline.set_current_time(0) context.save_as_stage(os.path.join(out_dir, "loaded_stage.usd")) experiment_info = {} experiment_info["config"] = config experiment_info["reversing_timeline_ratio"] = reversing_timeline_ratio experiment_info["humans"] = {} experiment_info["humans"]["ids"] = my_humans experiment_info["humans"]["folders"] = used_ob_stl_paths experiment_info["humans"]["origins"] = body_origins # x y z yaw experiment_info["google_obs"] = google_ob_used experiment_info["shapenet_obs"] = shapenet_ob_used experiment_info["environment"] = {} experiment_info["environment"]["id"] = environment.env_name experiment_info["environment"]["folder"] = environment.env_path experiment_info["environment"]["shifts"] = environment.shifts experiment_info["rng_state"] = rng_state np.save(os.path.join(out_dir, "experiment_info.npy"), experiment_info) break except: extype, value, tb = sys.exc_info() traceback.print_exc() ipdb.post_mortem(tb) finally: for pub in odom_pubs: pub.unregister() for pub in imu_pubs: pub.unregister() for pub in cam_pose_pubs: pub.unregister() for pub in start_explorer_pubs: pub.unregister() for pub in send_waypoint_pubs: pub.unregister() parent.shutdown() rospy.signal_shutdown("my_simulation complete") simulation_context.stop() try: kit.close() except: pass
25,227
Python
37.457317
156
0.674793
eliabntt/GRADE-RR/simulator/robot_with_ros.py
import argparse import time import os import numpy as np # base_env_path and other settings are in the config file out_dir = "" # set this to a temporary empty dir from omni.isaac.kit import SimulationApp def boolean_string(s): if s.lower() not in {'false', 'true'}: raise ValueError('Not a valid boolean string') return s.lower() == 'true' parser = argparse.ArgumentParser(description="Your second IsaacSim run") parser.add_argument("--headless", type=boolean_string, default=True, help="Wheter to run it in headless mode or not") parser.add_argument("--rtx_mode", type=boolean_string, default=False, help="Use rtx when True, use path tracing when False") parser.add_argument("--config_file", type=str, default="config.yaml") parser.add_argument("--fix_env", type=str, default="", help="leave it empty to have a random env, fix it to use a fixed one. Useful for loop processing") args, unknown = parser.parse_known_args() config = confuse.Configuration("world_and_robot", __name__) config.set_file(args.config_file) config.set_args(args) CONFIG = {"display_options": 3286, "width": 1280, "height": 720, "headless": config["headless"].get()} kit = SimulationApp(launch_config=CONFIG, experience=f"{os.environ['EXP_PATH']}/omni.isaac.sim.python.kit") omni.usd.get_context().open_stage(config["base_env_path"].get(), None) kit.update() kit.update() print("Loading stage...") while is_stage_loading(): kit.update() print("Loading Complete") context = omni.usd.get_context() stage = context.get_stage() meters_per_unit = config["meters_per_unit"].get() simulation_context = SimulationContext(physics_dt=1.0 / config["physics_hz"].get(), rendering_dt=1.0 / config["render_hz"].get(), stage_units_in_meters=meters_per_unit, backend='torch') simulation_context.initialize_physics() physx_interface = omni.physx.acquire_physx_interface() physx_interface.start_simulation() print("Adding ROS clock, you can check with rostopic echo /clock") _clock_graph = add_clock() # add ROS clock simulation_context.play() for _ in range(10): simulation_context.step() # remember that this step also the physics og.Controller.evaluate_sync(_clock_graph) simulation_context.stop() import utils.misc_utils from utils.misc_utils import * from utils.robot_utils import * from utils.simulation_utils import * simulation_environment_setup(need_ros = True) if base_world_path != "": from utils.environment_utils import * print("Loading environment...") environment = environment(config, meters_per_unit=meters_per_unit) env_prim_path = environment.load_and_center(config["env_prim_path"].get()) process_semantics(config["env_prim_path"].get()) print("Visualization...") for _ in range(1000): simulation_context.render() simulation_context.step(render=False) print("Environment loading done...") add_colliders(env_prim_path) print("Colliders added..") simulation_context.play() x, y, z = 0, 0, 0 if out_dir != "": environment.generate_map(out_dir, origin=[x,y,z]) print("Map generated..") simulation_context.stop() # prepare some containers joint_states = [] tf_trees = [] camera_list = [] viewport_list = [] camera_pose, camera_pose_pub = [], [] imus,imu_pubs = [], [] lidars = [] odoms, odom_pubs = [], [] # get the interface to add imu sensors from omni.isaac.sensor import _sensor _is = _sensor.acquire_imu_sensor_interface() # these are kept because the aperture is resetted based on the h aperture by IsaacSim. # In v2021 this could have been reverted. In v2022 not. old_h_ape, old_v_ape = [], [] # get the interface to access dynamics of the assets _dc = dynamic_control_interface() print("Loading robots..") robot_base_prim_path = config["robot_base_prim_path"].get() usd_robot_path = str(config["usd_robot_path"].get()) for n in range(config["num_robots"].get()): import_robot(robot_base_prim_path, n, usd_robot_path) x, y, z, yaw = np.random.randint(-100,100,4) set_drone_joints_init_loc(f"{robot_base_prim_path}{n}", [x / meters_per_unit, y / meters_per_unit, z / meters_per_unit], [0, 0, np.deg2rad(yaw)], upper_zlim = z * 2, lower_zlim = -z * 2 ) print("Adding ROS components") joint_states.append(add_joint_state(f"{robot_base_prim_path}{n}")) tf_trees.append(add_pose_tree(f"{robot_base_prim_path}{n}")) # create the viewport, the camera component component, viewport = add_camera_and_viewport(f"{robot_base_prim_path}{n}/camera_link", config["robot_sensor_size"].get(), old_h_ape, old_v_ape, simulation_context, 0, n, cam_per_robot=1) # cam index is useful if you want multiple cameras cam_outputs = control_camera(viewport, simulation_context) camera_list.append([n + 0, component, cam_outputs]) viewport_list.append(viewport) omni.kit.app.get_app().update() camera_pose.append(f"{robot_base_prim_path}{n}/camera_link") camera_pose_pub.append(rospy.Publisher(f"{robot_base_prim_path}{n}/camera/pose", PoseStamped, queue_size=10)) setup_imu_sensor(_is, config, f"{robot_base_prim_path}{n}/imu_link") imu_pubs.append(rospy.Publisher(f"{robot_base_prim_path}{n}/imu_body", Imu, queue_size=10)) imus.append(f"{robot_base_prim_path}{n}/imu_link") odoms.append(f"{robot_base_prim_path}{n}/yaw_link") odom_pubs.append(rospy.Publisher(f"{robot_base_prim_path}{n}/odom", Odometry, queue_size=10)) sensor = add_lidar(f"{robot_base_prim_path}{n}/yaw_link", [0, 0, -.1], [0, 0, 0], is_3d=True, is_2d=True) lidars.append(sensor) # alternatively # add_ros_components(robot_base_prim_path, n, ros_transform_components, camera_list, viewport_list, # camera_pose, camera_pose_pub, imu_pubs, imus, # odoms, odom_pubs, lidars, # [], config, old_h_ape, old_v_ape, _is, simulation_context, _clock, irotate=False): print("Loading robots done") # set some settings for the rendering if (config["rtx_mode"].get()): set_raytracing_settings(config["physics_hz"].get()) else: set_pathtracing_settings(config["physics_hz"].get()) print("Note that the rendering is now blocking until finished") for i in range(100): print(f"Iteration {i}/100", end="\r") sleeping(simulation_context, viewport_list, raytracing=config["rtx_mode"].get()) # deselect all objects omni.usd.get_context().get_selection().clear_selected_prim_paths() omni.usd.get_context().get_selection().set_selected_prim_paths([], False) simulation_context.play() for i in range(2000): simulation_context.step(render=False) og.Controller.evaluate_sync(_clock) time.sleep(0.2) simulation_context.render() # publish IMU print("Publishing IMU...") pub_imu(_is, imu_pubs, robot_imu_frames, meters_per_unit) if i % ratio_joints == 0: for js in joint_states: og.Controller.set(og.Controller.attribute(f"{js}/OnImpulseEvent.state:enableImpulse"), True) if i % ratio_tf: for tf in tf_trees: og.Controller.set(og.Controller.attribute(f"{tf}/OnImpulseEvent.state:enableImpulse"), True) if simulation_step % ratio_odom == 0: c_pose, _ = pub_odom(odoms, odom_pubs, _dc, meters_per_unit) pub_cam_pose(camera_pose, camera_pose_pub, _dc, meters_per_unit) if simulation_step % ratio_camera == 0: # The RTX LiDAR is still a fuzzy component. The "normal" LiDAR is more stable, but won't see non-colliding objects for lidar in lidars: og.Controller.attribute(lidar+".inputs:step").set(1) ctime = timeline.get_current_time() simulation_context.render() timeline.set_current_time(ctime) for lidar in lidars: og.Controller.attribute(lidar+".inputs:step").set(0) pub_and_write_images(simulation_context, viewport_list, ros_camera_list, raytracing) # clearly not writing anything here simulation_context.stop() try: kit.close() except: pass
7,858
Python
36.966183
185
0.693688
eliabntt/GRADE-RR/simulator/world_and_robot.py
import argparse # base_env_path and other settings are in the config file out_dir = "" # set this to a temporary empty dir from omni.isaac.kit import SimulationApp def boolean_string(s): if s.lower() not in {'false', 'true'}: raise ValueError('Not a valid boolean string') return s.lower() == 'true' parser = argparse.ArgumentParser(description="Your second IsaacSim run") parser.add_argument("--headless", type=boolean_string, default=True, help="Wheter to run it in headless mode or not") parser.add_argument("--rtx_mode", type=boolean_string, default=False, help="Use rtx when True, use path tracing when False") # new options parser.add_argument("--config_file", type=str, default="config.yaml") parser.add_argument("--fix_env", type=str, default="", help="leave it empty to have a random env, fix it to use a fixed one. Useful for loop processing") args, unknown = parser.parse_known_args() config = confuse.Configuration("world_and_robot", __name__) # load the config file specified config.set_file(args.config_file) config.set_args(args) CONFIG = {"display_options": 3286, "width": 1280, "height": 720, "headless": config["headless"].get()} kit = SimulationApp(launch_config=CONFIG, experience=f"{os.environ['EXP_PATH']}/omni.isaac.sim.python.kit") omni.usd.get_context().open_stage(config["base_env_path"].get(), None) kit.update() kit.update() print("Loading stage...") while is_stage_loading(): kit.update() print("Loading Complete") context = omni.usd.get_context() stage = context.get_stage() meters_per_unit = config["meters_per_unit"].get() simulation_context = SimulationContext(physics_dt=1.0 / config["physics_hz"].get(), rendering_dt=1.0 / config["render_hz"].get(), stage_units_in_meters=meters_per_unit, backend='torch') simulation_context.initialize_physics() physx_interface = omni.physx.acquire_physx_interface() physx_interface.start_simulation() for _ in range(100): simulation_context.render() simulation_context.step(render=False) import utils.misc_utils from utils.misc_utils import * from utils.robot_utils import * from utils.simulation_utils import * simulation_environment_setup(need_ros = False) # enable some extensions, check if ros is running automatically if base_world_path != "": from utils.environment_utils import * print("Loading environment...") environment = environment(config, meters_per_unit=meters_per_unit) # setup the class env_prim_path = environment.load_and_center(config["env_prim_path"].get()) # actually load the env process_semantics(config["env_prim_path"].get()) # add semantic information based either on label you provide, or looking into fields of the objcets. This applies semantic to all childs print("Visualization...") for _ in range(1000): simulation_context.render() simulation_context.step(render=False) print("Environment loading done...") print("Add colliders to the environment, if the environment is big this could take ages..") add_colliders(env_prim_path) # add colliders to the environment print("Colliders added..") print("For the next step please check out the code and set x, y, z manually to test them out..") print() ipdb.set_trace() simulation_context.play() x, y, z = 0, 0, 0 if out_dir == "": print("Change out_dir") environment.generate_map(out_dir, origin=[x,y,z]) print("Map generated..") simulation_context.stop() print("Loading robots..") robot_base_prim_path = config["robot_base_prim_path"].get() usd_robot_path = str(config["usd_robot_path"].get()) for n in range(config["num_robots"].get()): import_robot(robot_base_prim_path, n, usd_robot_path) x, y, z, yaw = np.random.randint(-100,100,4) set_drone_joints_init_loc(f"{robot_base_prim_path}{n}", [x / meters_per_unit, y / meters_per_unit, z / meters_per_unit], [0, 0, np.deg2rad(yaw)], upper_zlim = z * 2, lower_zlim = -z * 2 ) print("Loading robots done") simulation_context.play() for _ in range(2000): simulation_context.render() simulation_context.step(render=False) simulation_context.stop() try: kit.close() except: pass
4,102
Python
35.633928
186
0.714529
eliabntt/GRADE-RR/simulator/irotate_simulation.py
import argparse import carb import confuse import ipdb import numpy as np import os import roslaunch import rospy import sys import time import traceback import yaml from omni.isaac.kit import SimulationApp from time import sleep def boolean_string(s): if s.lower() not in {'false', 'true'}: raise ValueError('Not a valid boolean string') return s.lower() == 'true' try: parser = argparse.ArgumentParser(description="Dynamic Worlds Simulator") parser.add_argument("--config_file", type=str, default="config.yaml") parser.add_argument("--headless", type=boolean_string, default=True, help="Wheter to run it in headless mode or not") parser.add_argument("--rtx_mode", type=boolean_string, default=False, help="Use rtx when True, use path tracing when False") parser.add_argument("--record", type=boolean_string, default=True, help="Writing data to the disk") parser.add_argument("--debug_vis", type=boolean_string, default=False, help="When true continuosly loop the rendering") parser.add_argument("--neverending", type=boolean_string, default=False, help="Never stop the main loop") parser.add_argument("--fix_env", type=str, default="", help="leave it empty to have a random env, fix it to use a fixed one. Useful for loop processing") args, unknown = parser.parse_known_args() config = confuse.Configuration("DynamicWorlds", __name__) config.set_file(args.config_file) config.set_args(args) experiment_length = config["experiment_length"].get() can_start = True CONFIG = {"display_options": 3286, "width": 1280, "height": 720, "headless": config["headless"].get()} kit = SimulationApp(launch_config=CONFIG, experience=f"{os.environ['EXP_PATH']}/omni.isaac.sim.python.kit") # Cannot move before SimApp is launched import utils.misc_utils from utils.misc_utils import * from utils.robot_utils import * from utils.simulation_utils import * from utils.environment_utils import * simulation_environment_setup() rospy.init_node("my_isaac_ros_app", anonymous=True, disable_signals=True, log_level=rospy.ERROR) starting_pub = rospy.Publisher('starting_experiment', String) rng = np.random.default_rng() rng_state = np.random.get_state() local_file_prefix = "my-computer://" # setup environment variables environment = environment(config, rng, local_file_prefix) uuid = roslaunch.rlutil.get_or_generate_uuid(None, False) out_dir = os.path.join(config['out_folder'].get(), environment.env_name) out_dir_npy = os.path.join(config['out_folder_npy'].get(), environment.env_name) if not os.path.exists(out_dir): os.makedirs(out_dir) os.environ["ROS_LOG_DIR"] = out_dir roslaunch.configure_logging(uuid) launch_files = ros_launchers_setup(roslaunch, environment.env_limits_shifted, config) parent = roslaunch.parent.ROSLaunchParent(uuid, launch_files, force_log=True) omni.usd.get_context().open_stage(local_file_prefix + config["base_env_path"].get(), None) # Wait two frames so that stage starts loading kit.update() kit.update() print("Loading stage...") while is_stage_loading(): kit.update() print("Loading Complete") context = omni.usd.get_context() stage = context.get_stage() set_stage_up_axis("Z") # do this AFTER loading the world simulation_context = SimulationContext(physics_dt=1.0 / config["physics_hz"].get(), rendering_dt=1.0 / config["render_hz"].get(), stage_units_in_meters=0.01) simulation_context.start_simulation() add_clock() # add ROS clock simulation_context.play() for _ in range(100): omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_Clock") simulation_context.step() last_pub_time = rospy.Time.now() simulation_context.stop() # fixme IDK why this is necessary sometimes try: parent.start() except: print("Failed to start roslaunch, retry") try: parent.start() except: print("Failed to start roslaunch, exit") exit(1) print("ros node launched") kit.update() meters_per_unit = UsdGeom.GetStageMetersPerUnit(stage) # use rtx while setting up! set_raytracing_settings(config["physics_hz"].get()) env_prim_path = environment.load_and_center(config["env_prim_path"].get()) process_semantics(config["env_prim_path"].get()) randomize_and_fix_lights(config["_random_light"].get(), rng, env_prim_path, environment.env_limits[-1] - 0.2, environment.meters_per_unit, is_rtx=config["rtx_mode"].get()) randomize_roughness(config["_random_roughness"].get(), rng, env_prim_path) # set timeline of the experiment timeline = setup_timeline(config) ros_camera_list = [] ros_transform_components = [] # list of tf and joint components, one (of each) for each robot viewport_window_list = [] dynamic_prims = [] imus_handle_list = [] robot_odom_frames = [] robot_imu_frames = [] camera_pose_frames = [] imu_pubs = [] odom_pubs = [] cam_pose_pubs = [] camera_odom_pubs = [] camera_odom_frames = [] lidar_components = [] first = True imu_sensor, imu_props = setup_imu_sensor(config) simulation_context.play() for _ in range(100): omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_Clock") simulation_context.step() last_pub_time = rospy.Time.now() simulation_context.stop() print("Generating map...") if add_colliders(env_prim_path): simulation_context.play() x, y, z, yaw = position_object(environment, type=3) environment.generate_map(out_dir, origin=[x[0], y[0], 0]) for _ in range(10): simulation_context.step() timeline.set_current_time(0) # set to 0 to be sure that the first frame is recorded else: simulation_context.play() for _ in range(10): simulation_context.step() print("Error generating collisions", file=sys.stderr) simulation_context.play() _dc = dynamic_control_interface() print("Loading robots..") robot_base_prim_path = config["robot_base_prim_path"].get() usd_robot_path = str(config["usd_robot_path"].get()) c_pose = [] old_pose = [] old_h_ap = [] old_v_ap = [] for n in range(config["num_robots"].get()): simulation_context.stop() import_robot(robot_base_prim_path, n, usd_robot_path, local_file_prefix) x, y, z, yaw = 0, 0, 0, 0 simulation_context.stop() set_drone_joints_init_loc(f"{robot_base_prim_path}{n}", [x / meters_per_unit, y / meters_per_unit, z / meters_per_unit], [0, 0, yaw], (environment.env_limits[5]) / meters_per_unit, irotate=config["is_iRotate"].get()) c_pose.append([x, y, z]) old_pose.append([x, y, z]) kit.update() simulation_context.play() kit.update() add_ros_components(robot_base_prim_path, n, ros_transform_components, ros_camera_list, viewport_window_list, camera_pose_frames, cam_pose_pubs, imus_handle_list, imu_pubs, robot_imu_frames, robot_odom_frames, odom_pubs, dynamic_prims, config, imu_sensor, imu_props, old_h_ap, old_v_ap, config["is_iRotate"].get()) add_irotate_ros_components(camera_odom_frames, camera_odom_pubs, lidar_components, robot_base_prim_path, n) kit.update() first = False for n in range(config["num_robots"].get()): add_npy_viewport(viewport_window_list, robot_base_prim_path, n, old_h_ap, old_v_ap, config, config["num_robots"].get() * 1) kit.update() for _ in range(50): simulation_context.render() print("Loading robot complete") for index, cam in enumerate(viewport_window_list): camera = stage.GetPrimAtPath(cam.get_active_camera()) camera.GetAttribute("horizontalAperture").Set(old_h_ap[index]) camera.GetAttribute("verticalAperture").Set(old_v_ap[index]) # setup manual ticks for all components (just to be sure) # IMU not necessary as it is NOT a ROS component itself for component in ros_camera_list: omni.kit.commands.execute("RosBridgeTickComponent", path=str(component.GetPath())) for component in ros_transform_components: omni.kit.commands.execute("RosBridgeTickComponent", path=str(component.GetPath())) # IT IS OF CRUCIAL IMPORTANCE THAT AFTER THIS POINT THE RENDER GETS DONE WITH THE SLEEPING CALL! OTHERWISE PATH TRACING SPP WILL GET RUINED if (config["rtx_mode"].get()): set_raytracing_settings(config["physics_hz"].get()) else: set_pathtracing_settings(config["physics_hz"].get()) omni.usd.get_context().get_selection().set_selected_prim_paths([], False) simulation_context.stop() simulation_context.play() for _ in range(5): simulation_context.step(render=False) sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) timeline.set_current_time(0) simulation_step = 0 # this is NOT the frame, this is the "step" (related to physics_hz) my_recorder = recorder_setup(config['_recorder_settings'].get(), out_dir_npy, config['record'].get()) timeline.set_current_time(0) # set to 0 to be sure that the first frame is recorded timeline.set_auto_update(False) omni.kit.commands.execute("RosBridgeUseSimTime", use_sim_time=True) omni.kit.commands.execute("RosBridgeUsePhysicsStepSimTime", use_physics_step_sim_time=True) # two times, this will ensure that totalSpp is reached sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) last_pub_time = rospy.Time.now() last_check_time = rospy.Time.now() if config['debug_vis'].get(): cnt = 0 while 1: cnt += 1 if cnt % 10000 == 0: import ipdb ipdb.set_trace() print("DEBUGGING VIS") sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) for i, cam in enumerate(ros_camera_list): omni.kit.commands.execute("RosBridgeTickComponent", path=str(cam.GetPath())) reversing_timeline_ratio = 1 print( f"The reversing ratio is {reversing_timeline_ratio}.\n" f"This implies that that every {experiment_length / reversing_timeline_ratio} frames we reverse the animations") cnt_reversal = 1 ratio_camera = config["ratio_camera"].get() ratio_odom = config["ratio_odom"].get() ratio_tf = config["ratio_tf"].get() starting_to_pub = False my_recorder._enable_record = False second_start = False while kit.is_running(): if can_start: last_check_time = rospy.Time.now() if config['record'].get(): sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) my_recorder._update() sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) starting_to_pub = True timeline.set_current_time(min(- 1 / (config["physics_hz"].get() / ratio_camera), -abs(config["bootstrap_exploration"].get()))) simulation_step = int(timeline.get_current_time() * config["physics_hz"].get()) - 1 print("Bootstrap started") can_start = False second_start = True simulation_step += 1 if starting_to_pub and simulation_step == 0: print("Starting recording NOW!") msg = String("starting") starting_pub.publish(msg) starting_to_pub = False time.sleep(0.5) if config['record'].get(): my_recorder._enable_record = True last_check_time = rospy.Time.now() if (config["_random_light"].get()["during_experiment"]): if (simulation_step % config["_random_light"].get()["n-frames"] == 0): # fixme todo smooth change, idea get max-min and time window randomize_and_fix_lights(config["_random_light"].get(), rng, env_prim_path, environment.env_limits[-1], environment.meters_per_unit, is_rtx=config["rtx_mode"].get()) # step the physics simulation_context.step(render=False) # get the current time in ROS print("Clocking...") omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_Clock") time.sleep(0.2) # publish IMU print("Publishing IMU...") pub_imu(imus_handle_list, imu_sensor, imu_pubs, robot_imu_frames, meters_per_unit) # publish joint status (ca 120 Hz) if simulation_step % ratio_tf == 0: print("Publishing joint/tf status...") for component in ros_transform_components: omni.kit.commands.execute("RosBridgeTickComponent", path=str(component.GetPath())) # publish odometry (60 hz) if simulation_step % ratio_odom == 0: print("Publishing odometry...") pub_cam_pose(camera_pose_frames, cam_pose_pubs, _dc, meters_per_unit) c_pose, _ = pub_odom(camera_odom_frames, camera_odom_pubs, _dc, meters_per_unit, robot_odom_frames) c_pose, _ = pub_odom(robot_odom_frames, odom_pubs, _dc, meters_per_unit) for component in lidar_components: omni.kit.commands.execute("RosBridgeTickComponent", path=str(component.GetPath())) # we consider ratio_camera to forward the animation. # If you want it different ratio_animation < ratio_camera to avoid # two frames with the same animation point if simulation_step % ratio_camera == 0: if my_recorder._enable_record: # update the image counter externally so that we can use it in the recorder and all images have the same index my_recorder._counter += 1 if simulation_step / ratio_camera < (experiment_length / reversing_timeline_ratio) * ( cnt_reversal): timeline.forward_one_frame() else: if simulation_step / ratio_camera >= ((experiment_length - 1) / reversing_timeline_ratio) * ( cnt_reversal + 1) or \ (timeline.get_current_time() - 1 / timeline.get_time_codes_per_seconds()) < 0: cnt_reversal += 2 timeline.forward_one_frame() else: timeline.rewind_one_frame() # publish camera (30 hz) if simulation_step % ratio_camera == 0: print("Publishing cameras...") # getting skel pose for each joint # get_skeleton_info(meters_per_unit, body_origins, body_list) # FIRST ONE WRITTEN IS AT 1/30 on the timeline pub_and_write_images(simulation_context, viewport_window_list, ros_camera_list, config["rtx_mode"].get(), my_recorder, second_start) if simulation_step % ratio_camera == 0 and simulation_step / ratio_camera == experiment_length \ and not config["neverending"].get(): print("End of experiment!!!") simulation_context.pause() if my_recorder.data_writer is not None: my_recorder.data_writer.stop_threads() timeline.set_current_time(0) context.save_as_stage(os.path.join(out_dir, "loaded_stage.usd")) experiment_info = {} experiment_info["config"] = config experiment_info["reversing_timeline_ratio"] = reversing_timeline_ratio experiment_info["environment"] = {} experiment_info["environment"]["id"] = environment.env_name experiment_info["environment"]["folder"] = environment.env_path experiment_info["environment"]["shifts"] = environment.shifts experiment_info["rng_state"] = rng_state np.save(os.path.join(out_dir, "experiment_info.npy"), experiment_info) break except: extype, value, tb = sys.exc_info() traceback.print_exc() # ipdb.post_mortem(tb) finally: for pub in odom_pubs: pub.unregister() for pub in imu_pubs: pub.unregister() for pub in cam_pose_pubs: pub.unregister() parent.shutdown() rospy.signal_shutdown("my_simulation complete") simulation_context.stop() try: kit.close() except: pass
15,217
Python
36.761787
143
0.693829
eliabntt/GRADE-RR/simulator/multi_robot_sim.py
import argparse import carb import confuse import ipdb import numpy as np import os import roslaunch import rospy import sys import time import traceback import yaml from omni.isaac.kit import SimulationApp from time import sleep def boolean_string(s): if s.lower() not in {'false', 'true'}: raise ValueError('Not a valid boolean string') return s.lower() == 'true' try: parser = argparse.ArgumentParser(description="Dynamic Worlds Simulator") parser.add_argument("--config_file", type=str, default="config.yaml") parser.add_argument("--headless", type=boolean_string, default=True, help="Wheter to run it in headless mode or not") parser.add_argument("--rtx_mode", type=boolean_string, default=False, help="Use rtx when True, use path tracing when False") parser.add_argument("--record", type=boolean_string, default=True, help="Writing data to the disk") parser.add_argument("--debug_vis", type=boolean_string, default=False, help="When true continuosly loop the rendering") parser.add_argument("--neverending", type=boolean_string, default=False, help="Never stop the main loop") parser.add_argument("--fix_env", type=str, default="", help="leave it empty to have a random env, fix it to use a fixed one. Useful for loop processing") args, unknown = parser.parse_known_args() config = confuse.Configuration("DynamicWorlds", __name__) config.set_file(args.config_file) config.set_args(args) os.environ["SHAPENET_LOCAL_DIR"] = config["shapenet_local_dir"].get() experiment_length = config["experiment_length"].get() can_start = True CONFIG = {"display_options": 3286, "width": 1280, "height": 720, "headless": config["headless"].get()} kit = SimulationApp(launch_config=CONFIG, experience=f"{os.environ['EXP_PATH']}/omni.isaac.sim.python.kit") # Cannot move before SimApp is launched import utils.misc_utils from utils.misc_utils import * from utils.robot_utils import * from utils.simulation_utils import * from utils.objects_utils import * from utils.environment_utils import * from utils.human_utils import * def monitor_movement(msg, args): global second_start global last_check_time global c_pose global old_pose global rng global env_prim_path wait_time = rospy.Duration(1) index, environment = args[0], args[1] if second_start and rospy.Time.now() > last_check_time + wait_time: last_check_time = rospy.Time.now() diff_x = abs(old_pose[index][0] - c_pose[index][0]) ** 2 diff_y = abs(old_pose[index][1] - c_pose[index][1]) ** 2 diff_z = abs(old_pose[index][2] - c_pose[index][2]) ** 2 dist = (diff_x + diff_y + diff_z) ** 0.5 if (dist) < 0.1: my_pose = PoseStamped() if (rng.uniform() > .9): x, y, z, yaw = position_object(environment, type=0) x = x[0] y = y[0] z = z[0] yaw = yaw[0] + rng.uniform(0, 2 * np.pi) else: yaw = get_robot_yaw(c_pose[index][0], c_pose[index][1], c_pose[index][2], environment.env_mesh, environment.shifts) x = c_pose[index][0] + 0.2 * np.cos(yaw) y = c_pose[index][1] + 0.2 * np.sin(yaw) z = c_pose[index][2] yaw += rng.uniform(0, 2 * np.pi) my_pose.pose.position.x = x my_pose.pose.position.y = y my_pose.pose.position.z = z rot = np.array(yaw) * 180 / np.pi quat = ( Gf.Rotation(Gf.Vec3d.XAxis(), 0) * Gf.Rotation(Gf.Vec3d.YAxis(), 0) * Gf.Rotation(Gf.Vec3d.ZAxis(), rot) ).GetQuat() my_pose.pose.orientation.x = quat.imaginary[0] my_pose.pose.orientation.y = quat.imaginary[1] my_pose.pose.orientation.z = quat.imaginary[2] my_pose.pose.orientation.w = quat.real print( f"Publishing random goal since robot {index} stuck [{x},{y},{z}, {yaw} ({yaw * 180 / 3.14})].") my_pose.header.frame_id = "world" my_pose.header.stamp = rospy.Time.now() movement_monitor_pubs[index].publish(my_pose) if (dist) < 0.05: set_colliders(env_prim_path, True) else: old_pose[index] = c_pose[index] set_colliders(env_prim_path, True) def autostart_exploration(msg, index): global first_start global second_start global can_start global can_change_second_start global last_pub_time if (msg.data == "PUB_FIRST_360"): can_change_second_start = True wait_time = rospy.Duration(0, 500000000) if second_start else rospy.Duration(1) if (msg.data == "WAIT_TRIGGER" or ( msg.data == "PUB_360" and not second_start) and rospy.Time.now() > last_pub_time + wait_time): if can_start: if not first_start: first_start = True elif can_change_second_start: second_start = True print("Exploration will start at the end of this movement") default_pose = PoseStamped() default_pose.header.frame_id = "world" default_pose.header.stamp = rospy.Time.now() start_explorer_pubs[index].publish(default_pose) last_pub_time = rospy.Time.now() def publish_random_goal(msg, args): global last_pub_time global first_start global second_start global can_start global can_change_second_start index, environment = args[0], args[1] if (msg.data == "PUB_FIRST_360"): can_change_second_start = True if (msg.data == "WAIT_TRIGGER" or ( msg.data == "PUB_360" and not second_start) and rospy.Time.now() > last_pub_time + rospy.Duration(0, 500000000)): if can_start: if not first_start: first_start = True elif can_change_second_start: second_start = True my_pose = PoseStamped() x, y, z, yaw = position_object(environment, type=0) my_pose.pose.position.x = x[0] my_pose.pose.position.y = y[0] my_pose.pose.position.z = z[0] rot = np.array(yaw[0]) * 180 / np.pi quat = ( Gf.Rotation(Gf.Vec3d.XAxis(), 0) * Gf.Rotation(Gf.Vec3d.YAxis(), 0) * Gf.Rotation(Gf.Vec3d.ZAxis(), rot) ).GetQuat() my_pose.pose.orientation.x = quat.imaginary[0] my_pose.pose.orientation.y = quat.imaginary[1] my_pose.pose.orientation.z = quat.imaginary[2] my_pose.pose.orientation.w = quat.real print(f"Publishing random goal [{x[0]},{y[0]},{z[0]}, {yaw[0]} ({yaw[0] * 180 / 3.14})] for robot {index}") my_pose.header.frame_id = "fixing_manual" my_pose.header.stamp = rospy.Time.now() send_waypoint_pubs[index].publish(my_pose) last_pub_time = rospy.Time.now() simulation_environment_setup() rospy.init_node("my_isaac_ros_app", anonymous=True, disable_signals=True, log_level=rospy.ERROR) starting_pub = rospy.Publisher('starting_experiment', String) rng = np.random.default_rng() rng_state = np.random.get_state() local_file_prefix = "my-computer://" # setup environment variables environment = environment(config, rng, local_file_prefix) uuid = roslaunch.rlutil.get_or_generate_uuid(None, False) out_dir = os.path.join(config['out_folder'].get(), environment.env_name) out_dir_npy = os.path.join(config['out_folder_npy'].get(), environment.env_name) if not os.path.exists(out_dir): os.makedirs(out_dir) os.environ["ROS_LOG_DIR"] = out_dir roslaunch.configure_logging(uuid) launch_files = ros_launchers_setup(roslaunch, environment.env_limits_shifted, config) parent = roslaunch.parent.ROSLaunchParent(uuid, launch_files, force_log=True) omni.usd.get_context().open_stage(local_file_prefix + config["base_env_path"].get(), None) # Wait two frames so that stage starts loading kit.update() kit.update() print("Loading stage...") while is_stage_loading(): kit.update() print("Loading Complete") context = omni.usd.get_context() stage = context.get_stage() set_stage_up_axis("Z") # do this AFTER loading the world simulation_context = SimulationContext(physics_dt=1.0 / config["physics_hz"].get(), rendering_dt=1.0 / config["render_hz"].get(), stage_units_in_meters=0.01) simulation_context.start_simulation() add_clock() # add ROS clock simulation_context.play() for _ in range(100): omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_Clock") simulation_context.step() last_pub_time = rospy.Time.now() simulation_context.stop() # fixme IDK why this is necessary sometimes try: parent.start() except: print("Failed to start roslaunch, retry") try: parent.start() except: print("Failed to start roslaunch, exit") exit(1) print("ros node launched") kit.update() meters_per_unit = UsdGeom.GetStageMetersPerUnit(stage) # use rtx while setting up! set_raytracing_settings(config["physics_hz"].get()) env_prim_path = environment.load_and_center(config["env_prim_path"].get()) process_semantics(config["env_prim_path"].get()) randomize_and_fix_lights(config["_random_light"].get(), rng, env_prim_path, environment.env_limits[-1] - 0.2, environment.meters_per_unit, is_rtx=config["rtx_mode"].get()) randomize_roughness(config["_random_roughness"].get(), rng, env_prim_path) # set timeline of the experiment timeline = setup_timeline(config) ros_camera_list = [] ros_transform_components = [] # list of tf and joint components, one (of each) for each robot viewport_window_list = [] dynamic_prims = [] imus_handle_list = [] robot_odom_frames = [] robot_imu_frames = [] camera_pose_frames = [] imu_pubs = [] odom_pubs = [] cam_pose_pubs = [] irotate_cam_odom_pubs = [] irotate_cam_odom_frames = [] irotate_differential_odom_frames = [] lidar_components = [] first = True imu_sensor, imu_props = setup_imu_sensor(config) simulation_context.play() for _ in range(100): omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_Clock") simulation_context.step() last_pub_time = rospy.Time.now() simulation_context.stop() print("Generating map...") if add_colliders(env_prim_path): simulation_context.play() x, y, z, yaw = position_object(environment, type=3) environment.generate_map(out_dir, origin=[x[0], y[0], 0]) for _ in range(10): simulation_context.step() timeline.set_current_time(0) # set to 0 to be sure that the first frame is recorded else: simulation_context.play() for _ in range(10): simulation_context.step() print("Error generating collisions", file=sys.stderr) simulation_context.play() _dc = dynamic_control_interface() print("Loading robots..") robot_base_prim_path = config["robot_base_prim_path"].get() usd_robot_path = [str(i) for i in config["usd_robot_path"].get()] c_pose = [] old_pose = [] old_h_ap = [] old_v_ap = [] is_irotate = np.array(config["is_iRotate"].get()) for n in range(config["num_robots"].get()): simulation_context.stop() import_robot(robot_base_prim_path, n, usd_robot_path[n], local_file_prefix) if is_irotate[n]: x, y, z, yaw = 0, 0, 0, 0 else: x, y, z, yaw = get_valid_robot_location(environment, first) simulation_context.stop() set_drone_joints_init_loc(f"{robot_base_prim_path}{n}", [x / meters_per_unit, y / meters_per_unit, z / meters_per_unit], [0, 0, yaw], (environment.env_limits[5]) / meters_per_unit, 0.3/meters_per_unit, is_irotate[n]) c_pose.append([x, y, z]) old_pose.append([x, y, z]) kit.update() simulation_context.play() kit.update() add_ros_components(robot_base_prim_path, n, ros_transform_components, ros_camera_list, viewport_window_list, camera_pose_frames, cam_pose_pubs, imus_handle_list, imu_pubs, robot_imu_frames, robot_odom_frames, odom_pubs, dynamic_prims, config, imu_sensor, imu_props, old_h_ap, old_v_ap, is_irotate[n]) if is_irotate[n]: add_irotate_ros_components(irotate_cam_odom_frames, irotate_cam_odom_pubs, lidar_components, robot_base_prim_path, n) irotate_differential_odom_frames.append(robot_odom_frames[-1]) kit.update() first = False for n in range(config["num_robots"].get()): add_npy_viewport(viewport_window_list, robot_base_prim_path, n, old_h_ap, old_v_ap, config, config["num_robots"].get()*1) for _ in range(50): simulation_context.render() print("Loading robot complete") for index, cam in enumerate(viewport_window_list): camera = stage.GetPrimAtPath(cam.get_active_camera()) camera.GetAttribute("horizontalAperture").Set(old_h_ap[index]) camera.GetAttribute("verticalAperture").Set(old_v_ap[index]) # IMU not necessary as it is NOT a ROS component itself for component in ros_camera_list: omni.kit.commands.execute("RosBridgeTickComponent", path=str(component.GetPath())) for component in ros_transform_components: omni.kit.commands.execute("RosBridgeTickComponent", path=str(component.GetPath())) print("Starting FSM - setting up topics...") start_explorer_pubs = [] send_waypoint_pubs = [] movement_monitor_pubs = [] for index, _ in enumerate(robot_odom_frames): print("Waiting for fsm to start for robot {}".format(index)) my_topic = f"{robot_base_prim_path}{index}/exploration_node/fsm_exploration/state" if config["autonomous"].get(): rospy.Subscriber(my_topic, String, callback=autostart_exploration, callback_args=index) start_explorer_pubs.append( rospy.Publisher(f"{robot_base_prim_path}{index}/traj_start_trigger", PoseStamped, queue_size=10)) else: rospy.Subscriber(my_topic, String, callback=publish_random_goal, callback_args=(index, environment)) send_waypoint_pubs.append( rospy.Publisher(f"{robot_base_prim_path}{index}/exploration_node/manual_goal", PoseStamped, queue_size=10)) rospy.Subscriber(my_topic, String, callback=monitor_movement, callback_args=(index, environment)) movement_monitor_pubs.append( rospy.Publisher(f"{robot_base_prim_path}{index}/command/pose", PoseStamped, queue_size=10)) print("fsm management for robot {} setted up".format(index)) print("FSM setted up") print("Loading humans..") my_humans = [] my_humans_heights = [] human_export_folder = config["human_path"].get() human_folders = os.listdir(human_export_folder) tot_area = 0 areas = [] initial_dynamics = len(dynamic_prims) used_ob_stl_paths = [] ## todo cycle to complete area, need to update the service probably n = 0 human_anim_len = [] added_prims = [] human_base_prim_path = config["human_base_prim_path"].get() n_humans_loading = rng.integers(7, 1 + max(7, config["num_humans"].get())) while n < n_humans_loading: anim_len = 0 # the animation needs to be shorter than config["max_anim_len"].get() and longer than 0/min_len while anim_len < max(config["min_human_anim_len"].get(), 0) or anim_len > config["max_human_anim_len"].get(): folder = rng.choice(human_folders) random_name = rng.choice(os.listdir(os.path.join(human_export_folder, folder))) asset_path = local_file_prefix + os.path.join(human_export_folder, folder, random_name, random_name + ".usd") tmp_pkl = pkl.load(open(os.path.join(human_export_folder, folder, random_name, random_name + ".pkl"), 'rb')) anim_len = tmp_pkl['ef'] print("Loading human {} from {}".format(random_name, folder)) used_ob_stl_paths.append(os.path.join(human_export_folder, folder, random_name, random_name + ".stl")) human_anim_len.append(tmp_pkl['ef']) if "verts" in tmp_pkl.keys(): my_humans_heights.append(tmp_pkl['verts'][:, :, 2]) else: my_humans_heights.append(None) my_humans.append(random_name) load_human(human_base_prim_path, n, asset_path, dynamic_prims, added_prims) stl_path = os.path.join(human_export_folder, folder, random_name, random_name + ".stl") this_mesh = mesh.Mesh.from_file(stl_path) areas.append((this_mesh.x.max() - this_mesh.x.min()) * (this_mesh.y.max() - this_mesh.y.min())) tot_area += areas[-1] # if not config["use_area"].get(): n += 1 # if env_area / area_polygon * 100 > config["area_percentage"].get(): # break x, y, z, yaw = position_object(environment, type=1, objects=my_humans, ob_stl_paths=used_ob_stl_paths, max_collisions=int(config["allow_collision"].get())) to_be_removed = [] human_prim_list = [] body_origins = [] for n, human in enumerate(my_humans): if z[n] < 0: to_be_removed.append(n) tot_area -= areas[n] else: set_translate(stage.GetPrimAtPath(f"{human_base_prim_path}{n}"), [x[n] / meters_per_unit, y[n] / meters_per_unit, z[n] / meters_per_unit]) set_rotate(stage.GetPrimAtPath(f"{human_base_prim_path}{n}"), [0, 0, yaw[n]]) human_prim_list.append(f"{human_base_prim_path}{n}") body_origins.append([x[n], y[n], z[n], yaw[n]]) if len(to_be_removed) > 0: print("Removing humans that are out of the environment") to_be_removed.reverse() cumsum = np.cumsum(added_prims) for n in to_be_removed: my_humans.pop(n) used_ob_stl_paths.pop(n) my_humans_heights.pop(n) for _ in range(added_prims[n]): if n > 0: dynamic_prims.pop(cumsum[n - 1] + initial_dynamics) else: dynamic_prims.pop(initial_dynamics) human_anim_len.pop(n) omni.kit.commands.execute("DeletePrimsCommand", paths=[f"{human_base_prim_path}{n}" for n in to_be_removed]) print("Loading human complete") google_ob_used, shapenet_ob_used = load_objects(config, environment, rng, dynamic_prims) # IT IS OF CRUCIAL IMPORTANCE THAT AFTER THIS POINT THE RENDER GETS DONE WITH THE SLEEPING CALL! OTHERWISE PATH TRACING SPP WILL GET RUINED if (config["rtx_mode"].get()): set_raytracing_settings(config["physics_hz"].get()) else: set_pathtracing_settings(config["physics_hz"].get()) omni.usd.get_context().get_selection().set_selected_prim_paths([], False) simulation_context.stop() simulation_context.play() for _ in range(5): simulation_context.step(render=False) sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) timeline.set_current_time(0) simulation_step = 0 # this is NOT the frame, this is the "step" (related to physics_hz) my_recorder = recorder_setup(config['_recorder_settings'].get(), out_dir_npy, config['record'].get(), config["num_robots"].get() * 1) timeline.set_current_time(0) # set to 0 to be sure that the first frame is recorded timeline.set_auto_update(False) first_start = False second_start = False can_change_second_start = False omni.kit.commands.execute("RosBridgeUseSimTime", use_sim_time=True) omni.kit.commands.execute("RosBridgeUsePhysicsStepSimTime", use_physics_step_sim_time=True) # two times, this will ensure that totalSpp is reached sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) last_pub_time = rospy.Time.now() last_check_time = rospy.Time.now() if config['debug_vis'].get(): cnt = 0 while 1: cnt += 1 if cnt % 10000 == 0: import ipdb ipdb.set_trace() print("DEBUGGING VIS") sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) for i, cam in enumerate(ros_camera_list): omni.kit.commands.execute("RosBridgeTickComponent", path=str(cam.GetPath())) reversing_timeline_ratio = compute_timeline_ratio(human_anim_len, config["reverse_strategy"].get(), experiment_length) print( f"The reversing ratio is {reversing_timeline_ratio}.\n" f"This implies that that every {experiment_length / reversing_timeline_ratio} frames we reverse the animations") cnt_reversal = 1 ratio_camera = config["ratio_camera"].get() ratio_odom = config["ratio_odom"].get() ratio_tf = config["ratio_tf"].get() starting_to_pub = False my_recorder._enable_record = False while kit.is_running(): if can_start: last_check_time = rospy.Time.now() if second_start: if config['record'].get(): sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) my_recorder._update() sleeping(simulation_context, viewport_window_list, raytracing=config["rtx_mode"].get()) starting_to_pub = True timeline.set_current_time(min(- 1 / (config["physics_hz"].get() / ratio_camera), -abs(config["bootstrap_exploration"].get()))) simulation_step = int(timeline.get_current_time() * config["physics_hz"].get()) - 1 print("Bootstrap started") can_start = False simulation_step += 1 if starting_to_pub and simulation_step == 0: move_humans_to_ground(my_humans_heights, human_prim_list, simulation_step / ratio_camera, meters_per_unit, config["max_distance_human_ground"].get()) print("Starting recording NOW!") msg = String("starting") starting_pub.publish(msg) starting_to_pub = False time.sleep(0.5) if config['record'].get(): my_recorder._enable_record = True last_check_time = rospy.Time.now() if (config["_random_light"].get()["during_experiment"]): if (simulation_step % config["_random_light"].get()["n-frames"] == 0): # fixme todo smooth change, idea get max-min and time window randomize_and_fix_lights(config["_random_light"].get(), rng, env_prim_path, environment.env_limits[-1], environment.meters_per_unit, is_rtx=config["rtx_mode"].get()) # step the physics simulation_context.step(render=False) # get the current time in ROS print("Clocking...") omni.kit.commands.execute("RosBridgeTickComponent", path="/ROS_Clock") time.sleep(0.2) # publish IMU print("Publishing IMU...") pub_imu(imus_handle_list, imu_sensor, imu_pubs, robot_imu_frames, meters_per_unit) # publish joint status (ca 120 Hz) if simulation_step % ratio_tf == 0: print("Publishing joint/tf status...") for component in ros_transform_components: omni.kit.commands.execute("RosBridgeTickComponent", path=str(component.GetPath())) # publish odometry (60 hz) if simulation_step % ratio_odom == 0: print("Publishing odometry...") c_pose, _ = pub_odom(robot_odom_frames, odom_pubs, _dc, meters_per_unit) pub_cam_pose(camera_pose_frames, cam_pose_pubs, _dc, meters_per_unit) _, _ = pub_odom(irotate_cam_odom_frames, irotate_cam_odom_pubs, _dc, meters_per_unit, irotate_differential_odom_frames) for component in lidar_components: omni.kit.commands.execute("RosBridgeTickComponent", path=str(component.GetPath())) # we consider ratio_camera to forward the animation. # If you want it different ratio_animation < ratio_camera to avoid # two frames with the same animation point if second_start: if simulation_step % ratio_camera == 0: if my_recorder._enable_record: # update the image counter externally so that we can use it in the recorder and all images have the same index my_recorder._counter += 1 if simulation_step / ratio_camera < (experiment_length / reversing_timeline_ratio) * ( cnt_reversal): timeline.forward_one_frame() else: if simulation_step / ratio_camera >= ((experiment_length - 1) / reversing_timeline_ratio) * ( cnt_reversal + 1) or \ (timeline.get_current_time() - 1 / timeline.get_time_codes_per_seconds()) < 0: cnt_reversal += 2 timeline.forward_one_frame() else: timeline.rewind_one_frame() # publish camera (30 hz) if simulation_step % ratio_camera == 0: print("Publishing cameras...") # getting skel pose for each joint # get_skeleton_info(meters_per_unit, body_origins, body_list) # FIRST ONE WRITTEN IS AT 1/30 on the timeline pub_and_write_images(simulation_context, viewport_window_list, ros_camera_list, config["rtx_mode"].get(), my_recorder, second_start) if simulation_step % ratio_camera == 0 and simulation_step / ratio_camera == experiment_length \ and not config["neverending"].get(): print("End of experiment!!!") simulation_context.pause() if my_recorder.data_writer is not None: my_recorder.data_writer.stop_threads() timeline.set_current_time(0) context.save_as_stage(os.path.join(out_dir, "loaded_stage.usd")) experiment_info = {} experiment_info["config"] = config experiment_info["reversing_timeline_ratio"] = reversing_timeline_ratio experiment_info["humans"] = {} experiment_info["humans"]["ids"] = my_humans experiment_info["humans"]["folders"] = used_ob_stl_paths experiment_info["humans"]["origins"] = body_origins # x y z yaw experiment_info["google_obs"] = google_ob_used experiment_info["shapenet_obs"] = shapenet_ob_used experiment_info["environment"] = {} experiment_info["environment"]["id"] = environment.env_name experiment_info["environment"]["folder"] = environment.env_path experiment_info["environment"]["shifts"] = environment.shifts experiment_info["rng_state"] = rng_state np.save(os.path.join(out_dir, "experiment_info.npy"), experiment_info) break except: extype, value, tb = sys.exc_info() traceback.print_exc() # ipdb.post_mortem(tb) finally: for pub in odom_pubs: pub.unregister() for pub in imu_pubs: pub.unregister() for pub in cam_pose_pubs: pub.unregister() for pub in start_explorer_pubs: pub.unregister() for pub in send_waypoint_pubs: pub.unregister() parent.shutdown() rospy.signal_shutdown("my_simulation complete") simulation_context.stop() try: kit.close() except: pass
26,681
Python
39.550152
144
0.639331
eliabntt/GRADE-RR/simulator/first_run.py
import argparse base_environment_path = "" # please edit this e.g. GRADE-RR/usds/env_base.usd # necessary import from omni.isaac.kit import SimulationApp # simply use this to correctly parse booleans def boolean_string(s): if s.lower() not in {'false', 'true'}: raise ValueError('Not a valid boolean string') return s.lower() == 'true' parser = argparse.ArgumentParser(description="Your first IsaacSim run") parser.add_argument("--headless", type=boolean_string, default=True, help="Wheter to run it in headless mode or not") parser.add_argument("--rtx_mode", type=boolean_string, default=False, help="Use rtx when True, use path tracing when False") args, unknown = parser.parse_known_args() config = confuse.Configuration("first_run", __name__) config.set_args(args) # create a kit object which is your Simulation App CONFIG = {"display_options": 3286, "width": 1280, "height": 720, "headless": config["headless"].get()} kit = SimulationApp(launch_config=CONFIG, experience=f"{os.environ['EXP_PATH']}/omni.isaac.sim.python.kit") # !!! you can ONLY load Isaac modules AFTER this point !!! # after here you can do everything that you desire # first step is usually opening a basic stage, perhaps with some assets already in as the sky omni.usd.get_context().open_stage(base_environment_path, None) # Wait two frames so that stage starts loading kit.update() kit.update() print("Loading stage...") while is_stage_loading(): kit.update() print("Loading Complete") context = omni.usd.get_context() stage = context.get_stage() # used to access the elements of the simulation simulation_context = SimulationContext(physics_dt=1.0 / 60, rendering_dt=1.0 / 60, stage_units_in_meters=0.01, backend='torch') simulation_context.initialize_physics() physx_interface = omni.physx.acquire_physx_interface() physx_interface.start_simulation() for _ in range(100): simulation_context.render() simulation_context.step(render=False) try: kit.close() except: pass
1,978
Python
33.719298
127
0.73913
eliabntt/GRADE-RR/simulator/savana_simulation.py
import carb import rospy from omni.isaac.kit import SimulationApp import argparse import os import time import numpy as np import roslaunch from time import sleep import yaml import confuse import ipdb, traceback, sys def boolean_string(s): if s.lower() not in {'false', 'true'}: raise ValueError('Not a valid boolean string') return s.lower() == 'true' try: parser = argparse.ArgumentParser(description="Dynamic Worlds Simulator") parser.add_argument("--config_file", type=str, default="config.yaml") parser.add_argument("--headless", type=boolean_string, default=True, help="Wheter to run it in headless mode or not") parser.add_argument("--rtx_mode", type=boolean_string, default=False, help="Use rtx when True, use path tracing when False") parser.add_argument("--record", type=boolean_string, default=True, help="Writing data to the disk") parser.add_argument("--debug_vis", type=boolean_string, default=False, help="When true continuosly loop the rendering") parser.add_argument("--neverending", type=boolean_string, default=False, help="Never stop the main loop") parser.add_argument("--fix_env", type=str, default="", help="leave it empty to have a random env, fix it to use a fixed one. Useful for loop processing") args, unknown = parser.parse_known_args() config = confuse.Configuration("DynamicWorlds", __name__) config.set_file(args.config_file) config.set_args(args) can_start = True CONFIG = {"display_options": 3286, "width": 1280, "height": 720, "headless": config["headless"].get()} kit = SimulationApp(launch_config=CONFIG, experience=f"{os.environ['EXP_PATH']}/omni.isaac.sim.python.kit") # Cannot move before SimApp is launched import utils.misc_utils from utils.misc_utils import * from utils.robot_utils import * from utils.simulation_utils import * from utils.environment_utils import * simulation_environment_setup() # set timeline of the experiment timeline = setup_timeline(config) rospy.init_node("my_isaac_ros_app", anonymous=True, disable_signals=True, log_level=rospy.ERROR) starting_pub = rospy.Publisher('starting_experiment', String) rng = np.random.default_rng() rng_state = np.random.get_state() local_file_prefix = "" # setup environment variables meters_per_unit = config["meters_per_unit"].get() environment = environment(config, rng, local_file_prefix, meters_per_unit) out_dir = os.path.join(config['out_folder'].get(), environment.env_name) out_dir_npy = os.path.join(config['out_folder_npy'].get(), environment.env_name) if not os.path.exists(out_dir): os.makedirs(out_dir) os.environ["ROS_LOG_DIR"] = out_dir omni.usd.get_context().open_stage(local_file_prefix + config["base_env_path"].get(), None) # Wait two frames so that stage starts loading kit.update() kit.update() print("Loading stage...") while is_stage_loading(): kit.update() print("Loading Complete") context = omni.usd.get_context() stage = context.get_stage() set_stage_up_axis("Z") if config["clean_base_env"].get(): omni.kit.commands.execute("DeletePrimsCommand", paths=["/World/GroundPlane"]) # do this AFTER loading the world simulation_context = SimulationContext(physics_dt=1.0 / config["physics_hz"].get(), rendering_dt=1.0 / config["render_hz"].get(), stage_units_in_meters=0.01) simulation_context.initialize_physics() physx_interface = omni.physx.acquire_physx_interface() physx_interface.start_simulation() _clock_graph = add_clock() # add ROS clock simulation_context.play() for _ in range(10): simulation_context.step() og.Controller.evaluate_sync(_clock_graph) last_pub_time = rospy.Time.now() simulation_context.stop() kit.update() # use rtx while setting up! set_raytracing_settings(config["physics_hz"].get()) env_prim_path = environment.load_and_center(config["env_prim_path"].get()) process_semantics(config["env_prim_path"].get()) ros_camera_list = [] ros_transform_components = [] # list of tf and joint components, one (of each) for each robot viewport_window_list = [] dynamic_prims = [] imus_handle_list = [] robot_odom_frames = [] robot_imu_frames = [] camera_pose_frames = [] imu_pubs = [] odom_pubs = [] cam_pose_pubs = [] simulation_context.play() for _ in range(100): og.Controller.evaluate_sync(_clock_graph) simulation_context.step() print("Loading robots..") from omni.isaac.sensor import _sensor _is = _sensor.acquire_imu_sensor_interface() _dc = dynamic_control_interface() robot_base_prim_path = config["robot_base_prim_path"].get() usd_robot_path = str(config["usd_robot_path"].get()) old_h_ap = [] old_v_ap = [] robot_init_loc = [] robot_init_ang = [] simulation_context.stop() for n in range(config["num_robots"].get()): import_robot(robot_base_prim_path, n, usd_robot_path, local_file_prefix) if config["init_loc"].get()["use"]: # assuming we go here x = config["init_loc"].get()["x"][n] y = config["init_loc"].get()["y"][n] z = config["init_loc"].get()["z"][n] yaw = np.deg2rad(config["init_loc"].get()["yaw"][n]) roll = np.deg2rad(config["init_loc"].get()["roll"][n]) pitch = np.deg2rad(config["init_loc"].get()["pitch"][n]) robot_init_loc.append([x,y,z]) robot_init_ang.append([roll, pitch, yaw]) set_drone_joints_init_loc(f"{robot_base_prim_path}{n}", [x / meters_per_unit, y / meters_per_unit, z / meters_per_unit], [roll, pitch, yaw], (environment.env_limits[5]) / meters_per_unit) add_ros_components(robot_base_prim_path, n, ros_transform_components, ros_camera_list, viewport_window_list, camera_pose_frames, cam_pose_pubs, imu_pubs, robot_imu_frames, robot_odom_frames, odom_pubs, None, #lidars = None dynamic_prims, config, old_h_ap, old_v_ap, _is, simulation_context, _clock_graph) kit.update() if config["use_robot_traj"].get(): add_robot_traj(f"{robot_base_prim_path}{n}",config,meters_per_unit,timeline.get_time_codes_per_seconds()) for n in range(config["num_robots"].get()): add_npy_viewport(viewport_window_list, robot_base_prim_path, n, old_h_ap, old_v_ap, config, simulation_context, config["num_robots"].get()) for _ in range(50): simulation_context.render() print("Loading robot complete") print("WARNING: CAMERA APERTURE MANUAL SET NO LONGER WORKS, NEEDS TO BE FIXED BY NVIDIA!!!!") time.sleep(5) for index, cam in enumerate(viewport_window_list): camera = stage.GetPrimAtPath(cam.get_active_camera()) camera.GetAttribute("horizontalAperture").Set(old_h_ap[index]) camera.GetAttribute("verticalAperture").Set(old_v_ap[index]) # IT IS OF CRUCIAL IMPORTANCE THAT AFTER THIS POINT THE RENDER GETS DONE WITH THE SLEEPING CALL! OTHERWISE PATH TRACING SPP WILL GET RUINED if (config["rtx_mode"].get()): set_raytracing_settings(config["physics_hz"].get()) else: set_pathtracing_settings(config["physics_hz"].get()) omni.usd.get_context().get_selection().set_selected_prim_paths([], False) simulation_context.stop() simulation_context.play() for _ in range(5): simulation_context.step(render=False) sleeping(simulation_context, viewport_window_list, config["rtx_mode"].get()) timeline.set_current_time(0) simulation_step = 0 # this is NOT the frame, this is the "step" (related to physics_hz) my_recorder = recorder_setup(config['_recorder_settings'].get(), out_dir_npy, config['record'].get()) timeline.set_current_time(0) # set to 0 to be sure that the first frame is recorded timeline.set_auto_update(False) # two times, this will ensure that totalSpp is reached sleeping(simulation_context, viewport_window_list, config["rtx_mode"].get()) sleeping(simulation_context, viewport_window_list, config["rtx_mode"].get()) if config['debug_vis'].get(): cnt = 0 while 1: cnt += 1 if cnt % 10000 == 0: import ipdb ipdb.set_trace() print("DEBUGGING VIS") simulation_context.step(render=False) simulation_context.step(render=True) sleeping(simulation_context, viewport_window_list, config["rtx_mode"].get()) for i, cam in enumerate(ros_camera_list): omni.kit.commands.execute("RosBridgeTickComponent", path=str(cam.GetPath())) ratio_camera = config["ratio_camera"].get() ratio_odom = config["ratio_odom"].get() ratio_tf = config["ratio_tf"].get() starting_to_pub = False my_recorder._enable_record = False forward = True goal_list = [] exp_len = config["anim_exp_len"].get() if not config["use_robot_traj"].get() and config["use_joint_traj"].get(): for elem in config["robot_traj"].get(): goal_list.append([elem["pose"]["x"], elem["pose"]["y"], elem["pose"]["z"], elem["pose"]["roll"], elem["pose"]["pitch"], elem["pose"]["yaw"]]) while kit.is_running(): if can_start: if config['record'].get(): # reload_references("/World/home") sleeping(simulation_context, viewport_window_list, config["rtx_mode"].get()) my_recorder._update() sleeping(simulation_context, viewport_window_list, config["rtx_mode"].get()) starting_to_pub = True timeline.set_current_time(min(- 1 / (config["physics_hz"].get() / ratio_camera), -abs(config["bootstrap_exploration"].get()))) simulation_step = int(timeline.get_current_time() * config["physics_hz"].get()) - 1 print("Bootstrap started") can_start = False simulation_step += 1 if starting_to_pub and simulation_step == 0: print("Starting recording NOW!") msg = String("starting") starting_pub.publish(msg) time.sleep(0.5) starting_to_pub = False if config['record'].get(): my_recorder._enable_record = True # step the physics simulation_context.step(render=False) # get the current time in ROS print("Clocking...") og.Controller.evaluate_sync(_clock_graph) ctime = timeline.get_current_time() simulation_context.render() timeline.set_current_time(ctime) # publish IMU print("Publishing IMU...") pub_imu(_is, imu_pubs, robot_imu_frames, meters_per_unit) # publish joint status (ca 120 Hz) if simulation_step % ratio_tf == 0: print("Publishing joint/tf status...") for component in ros_transform_components: og.Controller.set(og.Controller.attribute(f"{component}/OnImpulseEvent.state:enableImpulse"), True) # publish odometry (60 hz) if simulation_step % ratio_odom == 0: print("Publishing odometry...") c_pose, c_angle = pub_odom(robot_odom_frames, odom_pubs, _dc, meters_per_unit) pub_cam_pose(camera_pose_frames, cam_pose_pubs, _dc, meters_per_unit) if config["use_joint_traj"].get(): if len(goal_list)>0 and simulation_step >= 0: # this needs to be expanded to multiple robots goal_list = check_pose_and_goals(robot_init_loc[0], robot_init_ang[0], c_pose[0], c_angle[0], "/my_robot_0", goal_list, meters_per_unit, simulation_step == 0) if len(goal_list)==0: break # we consider ratio_camera to forward the animation. # If you want it different ratio_animation < ratio_camera to avoid # two frames with the same animation point if simulation_step % ratio_camera == 0: if my_recorder._enable_record: # update the image counter externally so that we can use it in the recorder and all images have the same index my_recorder._counter += 1 if (simulation_step > 0 and (simulation_step / ratio_camera + 1) % exp_len == 0): forward = not forward if (timeline.get_current_time() - 1 / timeline.get_time_codes_per_seconds()<0): forward = True if forward: timeline.forward_one_frame() else: timeline.rewind_one_frame() # publish camera (30 hz) if simulation_step % ratio_camera == 0: ctime = timeline.get_current_time() print("Publishing cameras...") pub_and_write_images(simulation_context, viewport_window_list, ros_camera_list, config["rtx_mode"].get(), my_recorder) timeline.set_current_time(ctime) except: extype, value, tb = sys.exc_info() traceback.print_exc() # ipdb.post_mortem(tb) finally: for pub in odom_pubs: pub.unregister() for pub in imu_pubs: pub.unregister() for pub in cam_pose_pubs: pub.unregister() parent.shutdown() rospy.signal_shutdown("my_simulation complete") simulation_context.stop() try: kit.close() except: pass
13,742
Python
39.780415
174
0.613375
eliabntt/GRADE-RR/simulator/configs/config_multi_robot.yaml
# GENERAL NOTE the paths need to be ABSOLUTE! env_path: "/media/ebonetto/WindowsData/Demo_GRADE" use_stl: True # this disable stl loading thus placement AND robot heading human_path: "/ps/project/irotate/cloth3d/exported_usd/" base_env_path: "/home/ebonetto/.local/share/ov/pkg/isaac_sim-2021.2.1/isaac_sim_manager/usds/empty.usd" clean_base_env: False only_placement: False robot_mesh_path: ["/home/ebonetto/.local/share/ov/pkg/isaac_sim-2021.2.1/isaac_sim_manager/meshes/robotino.dae", "/home/ebonetto/.local/share/ov/pkg/isaac_sim-2021.2.1/isaac_sim_manager/meshes/drone.dae","/home/ebonetto/.local/share/ov/pkg/isaac_sim-2021.2.1/isaac_sim_manager/meshes/drone.dae"] usd_robot_path: ["/home/ebonetto/.local/share/ov/pkg/isaac_sim-2021.2.1/multi_robot/usds/robotino.usd", "/home/ebonetto/.local/share/ov/pkg/isaac_sim-2021.2.1/isaac_sim_manager/usds/drone_paper.usd", "/home/ebonetto/.local/share/ov/pkg/isaac_sim-2021.2.1/isaac_sim_manager/usds/drone_paper.usd"] out_folder: "/media/ebonetto/WindowsData/exp_out2" out_folder_npy: "/media/ebonetto/WindowsData/exp_out2" #out_folder: "/home/ebonetto/exp_out" fps: 30 num_robots: 3 num_humans: 40 max_distance_human_ground: 0.1 # max distance from human to ground to be consider to force the first frame grounding of animations allow_collision: 200 experiment_length: 3600 # camera frames length autonomous: True # true -> FUEL, false -> random goals obstacles: { "shapenet": 0, "google": 0 } physics_hz: 240 # NOTE THAT THIS IS THE RATE OF CLOCK AND IMU render_hz: 240 # LEAVE IT EQUAL TO PHYSICS HZ ratio_tf: 2 # physics_hz/ratio_tf = tf publish hz ratio_odom: 4 # physics_hz/ratio_odom = odom publish hz ratio_camera: 8 # physics_hz/ratio_cam = imgs publish hz bootstrap_exploration: 1 # seconds to boostrap exploration (min(abs(this_value), 1/(physics_hz/ratio_camera)) reverse_strategy: "avg" # in [min, max, avg, half, none], works only with animated sequences robot_sensor_size: [ 640, 480 ] npy_sensor_size: [ 640, 480] _random_light: { "intensity": True, "color": True, "intensity_interval": [ 600, 4500 ], # [min, max], for rtx "during_experiment": False, "n-frames": 24, "smooth": False } _random_roughness: { "enabled": True, "intensity_interval": [ 0.1, 0.9 ] } env_prim_path: "/World/home" robot_base_prim_path: "/my_robot_" human_base_prim_path: "/my_human_" max_human_anim_len: 500 # max human anim length to be considered in frames min_human_anim_len: 50 # min human anim length to be loaded in frames _recorder_settings: { "rgb": { "enabled": True }, "depth": { "enabled": False, "colorize": False, "npy": True }, "depthLinear": { "enabled": True, "colorize": False, "npy": True }, "instance": { "enabled": True, "colorize": False, "npy": True, "mappings": True }, "semantic": { "enabled": False, "colorize": False, "npy": True, "mappings": True }, "bbox_2d_tight": { "enabled": True, "colorize": False, "npy": True }, "bbox_2d_loose": { "enabled": True, "colorize": False, "npy": True }, "normals": { "enabled": False, "colorize": False, "npy": True }, "motion-vector": { "enabled": False, "colorize": True, "npy": True }, "bbox_3d": { "enabled": True, "colorize": False, "npy": True }, "camera": { "enabled": True, "colorize": True, "npy": True }, "poses": { "enabled": True, "colorize": True, "npy": True }, } google_obj_folder: "/ps/project/irotate/google_scanned_objects" google_obj_shortlist: "" shapenet_local_dir: "/ps/project/irotate/ShapeNet" shapenet_username: "" shapenet_password: "" synsetId: "random" modelId: "random" is_iRotate: [True, False, False]
3,691
YAML
50.277777
182
0.678136
eliabntt/GRADE-RR/simulator/configs/config_paper.yaml
# GENERAL NOTE the paths need to be ABSOLUTE! env_path: "/ps/project/irotate/3DFRONT/USD-exports" use_stl: True # this disable stl loading thus placement AND initial robot heading use_npy: True # use limits of the environment saved in the npy file located in the same folder of the environment meters_per_unit: 0.01 human_path: "/ps/project/irotate/cloth3d/exported_usd/" base_env_path: "/media/ebonetto/WindowsData/ov/isaac_sim-2022.2.1/GRADE-RR/usds/env_base.usd" reload_references: False generate_map: True clean_base_env: False only_placement: False robot_mesh_path: "/media/ebonetto/WindowsData/ov/isaac_sim-2022.2.1/GRADE-RR/meshes/drone.dae" usd_robot_path: "/media/ebonetto/WindowsData/ov/isaac_sim-2022.2.1/GRADE-RR/usds/drone_2022.usd" out_folder: "/media/ebonetto/WindowsData/exp_out2/" out_folder_npy: "/media/ebonetto/WindowsData/exp_out2/" fps: 30 num_robots: 1 num_humans: 40 max_distance_human_ground: 0.1 # max distance from human to ground to be consider to force the first frame grounding of animations allow_collision: 200 experiment_length: 1800 # camera frames length autonomous: True # true -> FUEL, false -> random goals obstacles: { "shapenet": 0, # 5, 10 "google": 1 } physics_hz: 240 # NOTE THAT THIS IS THE RATE OF CLOCK AND IMU render_hz: 240 # LEAVE IT EQUAL TO PHYSICS HZ ratio_tf: 2 # physics_hz/ratio_tf = tf publish hz ratio_odom: 4 # physics_hz/ratio_odom = odom publish hz ratio_camera: 8 # physics_hz/ratio_cam = imgs publish hz bootstrap_exploration: 1 # seconds to boostrap exploration (min(abs(this_value), 1/(physics_hz/ratio_camera)) reverse_strategy: "avg" # in [min, max, avg, half, none], works only with animated sequences robot_sensor_size: [ 640, 480 ] npy_sensor_size: [ 1920, 1080] _random_light: { "intensity": True, "color": True, "intensity_interval": [ 600, 4500 ], # [min, max], for rtx "during_experiment": False, "n-frames": 24, "smooth": False } _random_roughness: { "enabled": True, "intensity_interval": [ 0.1, 0.9 ] } env_prim_path: "/World/home" robot_base_prim_path: "/my_robot_" human_base_prim_path: "/my_human_" max_human_anim_len: 500 # max human anim length to be considered in frames min_human_anim_len: 50 # min human anim length to be loaded in frames _recorder_settings: { "rgb": { "enabled": True }, "depth": { "enabled": False, "colorize": False, "npy": True }, "depthLinear": { "enabled": True, "colorize": False, "npy": True }, "instance": { "enabled": True, "colorize": False, "npy": True, "mappings": True }, "semantic": { "enabled": False, "colorize": False, "npy": True, "mappings": True }, "bbox_2d_tight": { "enabled": True, "colorize": False, "npy": True }, "bbox_2d_loose": { "enabled": True, "colorize": False, "npy": True }, "normals": { "enabled": False, "colorize": False, "npy": True }, "motion-vector": { "enabled": False, "colorize": True, "npy": True }, "bbox_3d": { "enabled": True, "colorize": False, "npy": True }, "camera": { "enabled": True, "colorize": True, "npy": True }, "poses": { "enabled": True, "colorize": True, "npy": True }, } google_obj_folder: "/ps/project/irotate/google_scanned_objects" google_obj_shortlist: "" shapenet_local_dir: "/ps/project/irotate/ShapeNet" shapenet_username: "" shapenet_password: "" synsetId: "random" modelId: "random" is_iRotate: False
3,391
YAML
45.465753
130
0.6821
eliabntt/GRADE-RR/simulator/configs/config_savana.yaml
# GENERAL NOTE the paths need to be ABSOLUTE! env_path: "/media/ebonetto/WindowsData/Demo_GRADE" use_stl: False # this disable stl loading thus placement AND robot heading base_env_path: "/media/ebonetto/WindowsData/ov/isaac_sim-2022.2.1/GRADE-RR/usds/env_base.usd" clean_base_env: True only_placement: True robot_mesh_path: "/media/ebonetto/WindowsData/ov/isaac_sim-2022.2.1/GRADE-RR/meshes/drone.dae" usd_robot_path: "/media/ebonetto/WindowsData/ov/isaac_sim-2022.2.1/GRADE-RR/usds/drone_2022.usd" out_folder: "/media/ebonetto/WindowsData/exp_out2022" out_folder_npy: "/media/ebonetto/WindowsData/exp_out2022" fps: 30 num_robots: 1 anim_exp_len: 450 # after how many frames we should roll back the animations physics_hz: 240 # NOTE THAT THIS IS THE RATE OF CLOCK AND IMU render_hz: 240 # LEAVE IT EQUAL TO PHYSICS HZ ratio_tf: 2 # physics_hz/ratio_tf = tf publish hz ratio_odom: 4 # physics_hz/ratio_odom = odom publish hz ratio_camera: 8 # physics_hz/ratio_cam = imgs publish hz bootstrap_exploration: 1 # seconds to boostrap exploration (min(abs(this_value), 1/(physics_hz/ratio_camera)) robot_sensor_size: [ 640, 480 ] npy_sensor_size: [ 1920,1080] env_prim_path: "/World/home" robot_base_prim_path: "/my_robot_" use_npy: True meters_per_unit: 0.01 _recorder_settings: { "rgb": { "enabled": True }, "depth": { "enabled": True, "colorize": False, "npy": True }, "depthLinear": { "enabled": True, "colorize": False, "npy": True }, "instance": { "enabled": True, "colorize": False, "npy": True, "mappings": True }, "semantic": { "enabled": False, "colorize": False, "npy": True, "mappings": True }, "bbox_2d_tight": { "enabled": True, "colorize": False, "npy": True }, "bbox_2d_loose": { "enabled": True, "colorize": False, "npy": True }, "normals": { "enabled": False, "colorize": False, "npy": True }, "motion-vector": { "enabled": False, "colorize": True, "npy": True }, "bbox_3d": { "enabled": True, "colorize": False, "npy": True }, "camera": { "enabled": True, "colorize": True, "npy": True }, "poses": { "enabled": True, "colorize": True, "npy": True }, } # the following cannot be both true at the same time # if so, only the robot traj will be executed # if both false we assume an external source is publishing something to your robot (in our case on /my_robot_0/joint_commands) use_robot_traj: False # this is an absolute value. Note that the main root link and the actual position of the robot may differ based on the initial shift(which remains constant) use_joint_traj: True # this is a relative value w.r.t. the starting location robot_traj: # remember that movement will be linear and instantaneous. No acceleration or anything. This implies no odom, nor IMU data. If you want those, please add the same trajectory to a joint publisher. - {pose: {x: 0, y: 0, z: 0, roll: 0, pitch: 0, yaw: 0}, time: 0} - {pose: {x: -16.61, y: 4.4, z: 6.55, roll: 20, pitch: -10, yaw: 15}, time: 2} - {pose: {x: -58.83, y: 11.00, z: -2.67, roll: 4, pitch: -22, yaw: 60}, time: 3} - {pose: {x: 56.38, y: -55.85, z: 45.23, roll: -10, pitch: 30, yaw: 120}, time: 7} - {pose: {x: -20.95, y: -37.64, z: -4.46, roll: 10, pitch: 50, yaw: 240}, time: 10} - {pose: {x: 0, y: 0, z: 0, roll: 0, pitch: 0, yaw: 0}, time: 0} init_loc: { "use": [True], "x": [26.35], "y": [241.43], "z": [8.57], "yaw": [271], "roll": [0], "pitch": [0] }
3,373
YAML
54.311475
207
0.664987
eliabntt/GRADE-RR/simulator/configs/humans_and_objects.yaml
# GENERAL NOTE the paths need to be ABSOLUTE! physics_hz: 240 # the size of a single physics step render_hz: 240 # not influencing anything for now base_env_path: "" # the base environment, e.g. GRADE-RR/usds/env_base.usd env_path: "" # the parent folder that contains your environments, in subfolders use_stl: True # use_npy: True # meters_per_unit: 0.01 # how many meters are in one single unit in the simulation. In this case x=1 will be 1 cm. usd_robot_path: "" # the usd path of the robot, e.g. GRADE-RR/usds/drone_2022.usd num_robots: 1 # how many robots we want to load robot_sensor_size: [640,480] ratio_joints: 2 ratio_tf: 2 # physics_hz/ratio_tf = tf publish hz ratio_odom: 4 # physics_hz/ratio_odom = odom publish hz ratio_camera: 8 # physics_hz/ratio_cam = imgs publish hz # prefixes where to load the prims env_prim_path: "/World/home" robot_base_prim_path: "/my_robot_" # 0, 1, 2 ... num_robots obstacles: { "shapenet": 0, # 5, 10 "google": 1 } human_base_prim_path: "/my_human_" max_human_anim_len: 500 # max human anim length to be considered in frames min_human_anim_len: 50 # min human anim length to be loaded in frames google_obj_folder: "" # the main folder of the google_scanned_objects models google_obj_shortlist: "" # check out here https://github.com/eliabntt/GRADE-RR/blob/064c1b888727c6faa191f88519184dc272a8b950/simulator/utils/objects_utils.py#L55 shapenet_local_dir: "" # the main folder of the shapenet predownloaded models shapenet_username: "" # leave empty, or find a way to download from the website dynamically shapenet_password: "" synsetId: "random" # check out here https://github.com/eliabntt/GRADE-RR/blob/064c1b888727c6faa191f88519184dc272a8b950/simulator/utils/objects_utils.py#L22 modelId: "random"
1,756
YAML
42.924999
161
0.742027
eliabntt/GRADE-RR/simulator/configs/world_and_robot.yaml
# GENERAL NOTE the paths need to be ABSOLUTE! physics_hz: 240 # the size of a single physics step render_hz: 240 # not influencing anything for now base_env_path: "" # the base environment, e.g. GRADE-RR/usds/env_base.usd env_path: "" # the parent folder that contains your environments, in subfolders use_stl: True # use_npy: True # meters_per_unit: 0.01 # how many meters are in one single unit in the simulation. In this case x=1 will be 1 cm. usd_robot_path: "" # the usd path of the robot, e.g. GRADE-RR/usds/drone_2022.usd num_robots: 1 # how many robots we want to load # prefixes where to load the prims env_prim_path: "/World/home" robot_base_prim_path: "/my_robot_" # 0, 1, 2 ... num_robots
706
YAML
38.277776
112
0.715297
eliabntt/GRADE-RR/simulator/configs/config.yaml
# GENERAL NOTE the paths need to be ABSOLUTE! env_path: "3DFRONT/USD-exports" #env_path: "/media/ebonetto/WindowsData/Demo_GRADE" use_stl: True # this disable stl loading thus placement AND robot heading human_path: "cloth3d/exported_usd/" base_env_path: "../usds/env_base.usd" meters_per_unit: 1 clean_base_env: False robot_mesh_path: "../meshes/drone.dae" usd_robot_path: "../usds/drone.usd" out_folder: "exp_out" out_folder_npy: "exp_out" num_robots: 1 num_humans: 40 # min 5, if 0 change the main code max_distance_human_ground: 0.1 # max distance from human to ground to be consider to force the first frame grounding of animations allow_collision: 200 experiment_length: 1800 # camera frames length autonomous: True # true -> FUEL, false -> random goals obstacles: { "shapenet": 0, "google": 0 } physics_hz: 240 # NOTE THAT THIS IS THE RATE OF CLOCK AND IMU render_hz: 240 # LEAVE IT EQUAL TO PHYSICS HZ ratio_tf: 2 # physics_hz/ratio_tf = tf publish hz ratio_odom: 4 # physics_hz/ratio_odom = odom publish hz ratio_camera: 8 # physics_hz/ratio_cam = imgs publish hz bootstrap_exploration: 1 # seconds to boostrap exploration (min(abs(this_value), 1/(physics_hz/ratio_camera)) reverse_strategy: "avg" # in [min, max, avg, half, none], works only with animated sequences robot_sensor_size: [ 640, 480 ] npy_sensor_size: [ 1920, 1080] _random_light: { "intensity": True, "color": True, "intensity_interval": [ 600, 4500 ], # [min, max], for rtx "during_experiment": False, "n-frames": 24, "smooth": False } _random_roughness: { "enabled": True, "intensity_interval": [ 0.1, 0.9 ] } env_prim_path: "/World/home" robot_base_prim_path: "/my_robot_" human_base_prim_path: "/my_human_" max_human_anim_len: 500 # max human anim length to be considered in frames min_human_anim_len: 50 # min human anim length to be loaded in frames _recorder_settings: { "rgb": { "enabled": True }, "depth": { "enabled": True, "colorize": False, "npy": True }, "depthLinear": { "enabled": True, "colorize": False, "npy": True }, "instance": { "enabled": True, "colorize": False, "npy": True, "mappings": True }, "semantic": { "enabled": True, "colorize": False, "npy": True, "mappings": True }, "bbox_2d_tight": { "enabled": True, "colorize": False, "npy": True }, "bbox_2d_loose": { "enabled": True, "colorize": False, "npy": True }, "normals": { "enabled": True, "colorize": False, "npy": True }, "motion-vector": { "enabled": False, "colorize": False, "npy": False }, "bbox_3d": { "enabled": True, "colorize": False, "npy": True }, "camera": { "enabled": True, "colorize": True, "npy": True }, "poses": { "enabled": True, "colorize": True, "npy": True }, } google_obj_folder: "google_scanned_objects" google_obj_shortlist: "" shapenet_local_dir: "ShapeNet" shapenet_username: "" shapenet_password: "" synsetId: "random" modelId: "random" is_iRotate: False # the following cannot be both true at the same time # if so, only the robot traj will be executed # if both false we assume an external source is publishing something to your robot (in our case on /my_robot_0/joint_commands) use_robot_traj: False # this is an absolute value. Note that the main root link and the actual position of the robot may differ based on the initial shift(which remains constant) use_joint_traj: False # this is a relative value w.r.t. the starting location robot_traj: # remember that movement will be linear and instantaneous. No acceleration or anything. This implies no odom, nor IMU data. If you want those, please add the same trajectory to a joint publisher. - {pose: {x: 0, y: 0, z: 0, roll: 0, pitch: 0, yaw: 0}, time: 0} - {pose: {x: -16.61, y: 4.4, z: 6.55, roll: 20, pitch: -15, yaw: 15}, time: 2} - {pose: {x: -58.83, y: 11.00, z: -2.67, roll: 4, pitch: -27, yaw: 60}, time: 3} - {pose: {x: 56.38, y: -55.85, z: 45.23, roll: -10, pitch: 40, yaw: 120}, time: 7} - {pose: {x: -20.95, y: -37.64, z: -4.46, roll: 27, pitch: 15, yaw: 240}, time: 10} init_loc: { "use": False, "x": 26.35, "y": 241.43, "z": 8.57, "yaw": 271, "roll": 0, "pitch": 0 }
4,164
YAML
45.797752
208
0.657541
eliabntt/GRADE-RR/simulator/configs/config_zebra_datagen.yaml
# GENERAL NOTE the paths need to be ABSOLUTE! env_path: "/media/ebonetto/WindowsData/Zebra_envs/Usable" use_stl: False # this disable stl loading thus placement AND robot heading use_npy: False base_env_path: "/media/ebonetto/WindowsData/ov/isaac_sim-2022.2.1/GRADE-RR/usds/env_base.usd" zebra_anims_loc: "/media/ebonetto/WindowsData/Zebra_anims" randomize_sky: True # only if allowed robot_mesh_path: "/media/ebonetto/WindowsData/ov/isaac_sim-2021.2.1/GRADE-RR/meshes/drone.dae" usd_robot_path: "/media/ebonetto/WindowsData/ov/isaac_sim-2022.2.1/GRADE-RR/usds/drone_2022.usd" out_folder: "/media/ebonetto/WindowsData/zebra_out_close" out_folder_npy: "/media/ebonetto/WindowsData/zebra_out_close" fps: 30 num_robots: 3 experiment_length: 220 anim_exp_len: 200 physics_hz: 240 # NOTE THAT THIS IS THE RATE OF CLOCK AND IMU render_hz: 240 # LEAVE IT EQUAL TO PHYSICS HZ npy_sensor_size: [1920, 1080] env_prim_path: "/World/home" robot_base_prim_path: "/my_robot_" _recorder_settings: { "rgb": { "enabled": True }, "depth": { "enabled": False, "colorize": False, "npy": True }, "depthLinear": { "enabled": True, "colorize": False, "npy": True }, "instance": { "enabled": True, "colorize": False, "npy": True, "mappings": True }, "semantic": { "enabled": False, "colorize": False, "npy": True, "mappings": True }, "bbox_2d_tight": { "enabled": True, "colorize": False, "npy": True }, "bbox_2d_loose": { "enabled": True, "colorize": False, "npy": True }, "normals": { "enabled": False, "colorize": False, "npy": True }, "motion-vector": { "enabled": False, "colorize": True, "npy": True }, "bbox_3d": { "enabled": True, "colorize": False, "npy": True }, "camera": { "enabled": True, "colorize": True, "npy": True }, "poses": { "enabled": True, "colorize": True, "npy": True }, } min_number_zebras: 2 max_number_zebras: 5
1,840
YAML
48.756755
96
0.681522
eliabntt/GRADE-RR/simulator/configs/config_irotate.yaml
# GENERAL NOTE the paths need to be ABSOLUTE! env_path: "/media/ebonetto/WindowsData/Demo_GRADE" use_stl: True # this disable stl loading thus placement AND robot heading base_env_path: "/home/ebonetto/Desktop/empty.usd" clean_base_env: False only_placement: False robot_mesh_path: "/home/ebonetto/.local/share/ov/pkg/isaac_sim-2021.2.1/main_repo/meshes/robotino.dae" usd_robot_path: "/home/ebonetto/.local/share/ov/pkg/isaac_sim-2021.2.1/main_repo/usds/robotino.usd" out_folder: "/media/ebonetto/WindowsData/exp_out2/" out_folder_npy: "/media/ebonetto/WindowsData/exp_out2/" fps: 30 num_robots: 1 experiment_length: 180 # camera frames length autonomous: True # true -> FUEL, false -> random goals physics_hz: 240 # NOTE THAT THIS IS THE RATE OF CLOCK AND IMU render_hz: 240 # LEAVE IT EQUAL TO PHYSICS HZ ratio_tf: 2 # physics_hz/ratio_tf = tf publish hz ratio_odom: 4 # physics_hz/ratio_odom = odom publish hz ratio_camera: 8 # physics_hz/ratio_cam = imgs publish hz bootstrap_exploration: 1 # seconds to boostrap exploration (min(abs(this_value), 1/(physics_hz/ratio_camera)) robot_sensor_size: [ 640, 480 ] npy_sensor_size: [ 1920, 1080] _random_light: { "intensity": True, "color": True, "intensity_interval": [ 600, 4500 ], # [min, max], for rtx "during_experiment": False, "n-frames": 24, "smooth": False } _random_roughness: { "enabled": True, "intensity_interval": [ 0.1, 0.9 ] } env_prim_path: "/World/home" robot_base_prim_path: "/my_robot_" _recorder_settings: { "rgb": { "enabled": True }, "depth": { "enabled": False, "colorize": False, "npy": True }, "depthLinear": { "enabled": True, "colorize": False, "npy": True }, "instance": { "enabled": True, "colorize": False, "npy": True, "mappings": True }, "semantic": { "enabled": False, "colorize": False, "npy": True, "mappings": True }, "bbox_2d_tight": { "enabled": True, "colorize": False, "npy": True }, "bbox_2d_loose": { "enabled": True, "colorize": False, "npy": True }, "normals": { "enabled": True, "colorize": False, "npy": True }, "motion-vector": { "enabled": False, "colorize": True, "npy": True }, "bbox_3d": { "enabled": True, "colorize": False, "npy": True }, "camera": { "enabled": True, "colorize": True, "npy": True }, "poses": { "enabled": True, "colorize": True, "npy": True }, } is_iRotate: True
2,394
YAML
47.87755
109
0.651211
eliabntt/GRADE-RR/simulator/configs/robot_with_ros.yaml
# GENERAL NOTE the paths need to be ABSOLUTE! physics_hz: 240 # the size of a single physics step render_hz: 240 # not influencing anything for now base_env_path: "" # the base environment, e.g. GRADE-RR/usds/env_base.usd env_path: "" # the parent folder that contains your environments, in subfolders use_stl: True # use_npy: True # meters_per_unit: 0.01 # how many meters are in one single unit in the simulation. In this case x=1 will be 1 cm. usd_robot_path: "" # the usd path of the robot, e.g. GRADE-RR/usds/drone_2022.usd num_robots: 1 # how many robots we want to load robot_sensor_size: [640,480] ratio_joints: 2 ratio_tf: 2 # physics_hz/ratio_tf = tf publish hz ratio_odom: 4 # physics_hz/ratio_odom = odom publish hz ratio_camera: 8 # physics_hz/ratio_cam = imgs publish hz # prefixes where to load the prims env_prim_path: "/World/home" robot_base_prim_path: "/my_robot_" # 0, 1, 2 ... num_robots
916
YAML
35.679999
112
0.716157
eliabntt/GRADE-RR/simulator/utils/robot_utils.py
import utils.misc_utils from omni.isaac.core.utils.prims import set_targets from scipy.spatial.transform import Rotation from utils.misc_utils import * from omni.isaac.core.utils.render_product import create_hydra_texture def create_odom_message(_dc, robot_body_ptr, handle, meters_per_unit): """ Create odometry message for the robot_body_ptr. Converts the readings from the IsaacSim unit to the mps when necessary Gets the current rostime header frame us "WORLD" and the child frame is from the "handle" """ lin_vel = _dc.get_rigid_body_local_linear_velocity(robot_body_ptr) ang_vel = _dc.get_rigid_body_angular_velocity(robot_body_ptr) pose = _dc.get_rigid_body_pose(robot_body_ptr) odom_msg = Odometry() odom_msg.header.frame_id = "world" odom_msg.header.stamp = rospy.Time.now() odom_msg.child_frame_id = handle[1:] if handle.startswith("/") else handle odom_msg.pose.pose.position.x = pose.p.x * meters_per_unit odom_msg.pose.pose.position.y = pose.p.y * meters_per_unit odom_msg.pose.pose.position.z = pose.p.z * meters_per_unit odom_msg.pose.pose.orientation.x = pose.r.x odom_msg.pose.pose.orientation.y = pose.r.y odom_msg.pose.pose.orientation.z = pose.r.z odom_msg.pose.pose.orientation.w = pose.r.w odom_msg.twist.twist.linear.x = lin_vel.x * meters_per_unit odom_msg.twist.twist.linear.y = lin_vel.y * meters_per_unit odom_msg.twist.twist.linear.z = lin_vel.z * meters_per_unit odom_msg.twist.twist.angular.x = ang_vel.x odom_msg.twist.twist.angular.y = ang_vel.y odom_msg.twist.twist.angular.z = ang_vel.z p_cov = np.array([0.0] * 36).reshape(6, 6) p_cov[0:2, 0:2] = 0.00 p_cov[5, 5] = 0.00 odom_msg.pose.covariance = tuple(p_cov.ravel().tolist()) odom_msg.twist.covariance = tuple(p_cov.ravel().tolist()) return odom_msg def create_diff_odom_message(_dc, robot_body_ptr, handle, meters_per_unit, base_body_ptr, base_handle): """ Create odometry message for the robot_body_ptr. Converts the readings from the IsaacSim unit to the mps when necessary Gets the current rostime header frame us "WORLD" and the child frame is from the "handle" """ lin_vel = _dc.get_rigid_body_local_linear_velocity(robot_body_ptr) ang_vel = _dc.get_rigid_body_angular_velocity(robot_body_ptr) pose = _dc.get_rigid_body_pose(robot_body_ptr) base_lin_vel = _dc.get_rigid_body_local_linear_velocity(base_body_ptr) base_ang_vel = _dc.get_rigid_body_angular_velocity(base_body_ptr) base_pose = _dc.get_rigid_body_pose(base_body_ptr) odom_msg = Odometry() odom_msg.header.frame_id = base_handle odom_msg.header.stamp = rospy.Time.now() odom_msg.child_frame_id = handle[1:] if handle.startswith("/") else handle odom_msg.pose.pose.position.x = (pose.p.x - base_pose.p.x) * meters_per_unit odom_msg.pose.pose.position.y = (pose.p.y - base_pose.p.y) * meters_per_unit odom_msg.pose.pose.position.z = (pose.p.z - base_pose.p.z) * meters_per_unit q1 = Quaternion(base_pose.r.w, base_pose.r.x, base_pose.r.y, base_pose.r.z) q2 = Quaternion(pose.r.w, pose.r.x, pose.r.y, pose.r.z) q = q1.conjugate * q2 odom_msg.pose.pose.orientation.x = q.x odom_msg.pose.pose.orientation.y = q.y odom_msg.pose.pose.orientation.z = q.z odom_msg.pose.pose.orientation.w = q.w odom_msg.twist.twist.linear.x = (lin_vel.x - base_lin_vel.x) * meters_per_unit odom_msg.twist.twist.linear.y = (lin_vel.y - base_lin_vel.y) * meters_per_unit odom_msg.twist.twist.linear.z = (lin_vel.z - base_lin_vel.z) * meters_per_unit odom_msg.twist.twist.angular.x = (ang_vel.x - base_ang_vel.x) odom_msg.twist.twist.angular.y = (ang_vel.y - base_ang_vel.y) odom_msg.twist.twist.angular.z = (ang_vel.z - base_ang_vel.z) p_cov = np.array([0.0] * 36).reshape(6, 6) p_cov[0:2, 0:2] = 0.00 p_cov[5, 5] = 0.00 odom_msg.pose.covariance = tuple(p_cov.ravel().tolist()) odom_msg.twist.covariance = tuple(p_cov.ravel().tolist()) return odom_msg def create_camera_pose_message(_dc, camera_body_ptr, handle, meters_per_unit): """ Similar to the odom, but it's just for a pose message, in this case for the camera """ pose = _dc.get_rigid_body_pose(camera_body_ptr) camera_pose = PoseStamped() camera_pose.header.frame_id = "world" camera_pose.header.stamp = rospy.Time.now() camera_pose.pose.position.x = pose.p.x * meters_per_unit camera_pose.pose.position.y = pose.p.y * meters_per_unit camera_pose.pose.position.z = pose.p.z * meters_per_unit camera_pose.pose.orientation.x = pose.r.x camera_pose.pose.orientation.y = pose.r.y camera_pose.pose.orientation.z = pose.r.z camera_pose.pose.orientation.w = pose.r.w return camera_pose def add_pose_tree(path: str, irotate: bool=False): """ Add the tf publisher to the desired path. This path should be the robot itself. Each robot has a pose tree. """ if path.startswith("/"): path = path[1:] og.Controller.edit( {"graph_path": f"/{path}/TFActionGraph", "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("OnImpulseEvent", "omni.graph.action.OnImpulseEvent"), ("PublishTF", "omni.isaac.ros_bridge.ROS1PublishTransformTree"), ], og.Controller.Keys.CONNECT: [ ("OnImpulseEvent.outputs:execOut", "PublishTF.inputs:execIn"), ("ReadSimTime.outputs:simulationTime", "PublishTF.inputs:timeStamp"), ], og.Controller.Keys.SET_VALUES: [ ("PublishTF.inputs:nodeNamespace", f"/{path}"), ] }, ) # fixme if irotate: omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path('/my_robot_0/ROS_PoseTree.poseTreePubTopic'), value='/tf2', prev='/tf') set_target_prims(primPath=f"/{path}/TFActionGraph/PublishTF", inputName="inputs:targetPrims", targetPrimPaths=[f"/{path}"]) return f"/{path}/TFActionGraph" def add_camera_and_viewport(path: str, resolution: list, old_h_ape, old_v_ape, sc, index=0, robot_index=0, cam_per_robot=1, camera_path="Camera"): """ The function create first the ROSBridge Camera and then the corresponding viewport. index is the number of the camera for the given robot. headless is a boolean that indicates if the simulation is headless or not (i.e. create a visual viewport or not). robot_index correspond to the n-th robot in the scene. """ resolution = tuple(resolution) camera_path = path + f"/{camera_path}" index = robot_index * cam_per_robot + index stage = omni.usd.get_context().get_stage() camera = stage.GetPrimAtPath(camera_path) old_h_ape.append(camera.GetAttribute("horizontalAperture").Get()) old_v_ape.append(camera.GetAttribute("verticalAperture").Get()) viewport_name = "Viewport" + (f" {index + 1}" if str(index + 1) != "0" and str(index + 1) != "1" else "") sc.step() keys = og.Controller.Keys (camera_graph, _, _, _) = og.Controller.edit( { "graph_path": f"{path}/ROSCamera_{index}_Graph", "evaluator_name": "push", "pipeline_stage": og.GraphPipelineStage.GRAPH_PIPELINE_STAGE_ONDEMAND, }, { keys.CREATE_NODES: [ ("OnTick", "omni.graph.action.OnTick"), ("createViewport", "omni.isaac.core_nodes.IsaacCreateViewport"), ("setViewportResolution", "omni.isaac.core_nodes.IsaacSetViewportResolution"), ("getRenderProduct", "omni.isaac.core_nodes.IsaacGetViewportRenderProduct"), ("setCamera", "omni.isaac.core_nodes.IsaacSetCameraOnRenderProduct"), ("cameraHelperRgb", "omni.isaac.ros_bridge.ROS1CameraHelper"), ("cameraHelperInfo", "omni.isaac.ros_bridge.ROS1CameraHelper"), ("cameraHelperDepth", "omni.isaac.ros_bridge.ROS1CameraHelper"), ], keys.CONNECT: [ ("OnTick.outputs:tick", "createViewport.inputs:execIn"), ("createViewport.outputs:execOut", "getRenderProduct.inputs:execIn"), ("createViewport.outputs:viewport", "getRenderProduct.inputs:viewport"), ("createViewport.outputs:execOut", "setViewportResolution.inputs:execIn"), ("createViewport.outputs:viewport", "setViewportResolution.inputs:viewport"), ("getRenderProduct.outputs:execOut", "setCamera.inputs:execIn"), ("getRenderProduct.outputs:renderProductPath", "setCamera.inputs:renderProductPath"), ("setCamera.outputs:execOut", "cameraHelperRgb.inputs:execIn"), ("setCamera.outputs:execOut", "cameraHelperInfo.inputs:execIn"), ("setCamera.outputs:execOut", "cameraHelperDepth.inputs:execIn"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperRgb.inputs:renderProductPath"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperInfo.inputs:renderProductPath"), ("getRenderProduct.outputs:renderProductPath", "cameraHelperDepth.inputs:renderProductPath"), ], og.Controller.Keys.SET_VALUES: [ ("createViewport.inputs:viewportId", index), ("setViewportResolution.inputs:height", int(resolution[1])), ("setViewportResolution.inputs:width", int(resolution[0])), ("cameraHelperRgb.inputs:frameId", path[1:]), ("cameraHelperRgb.inputs:topicName", path + f"/{index}/rgb/image_raw"), ("cameraHelperRgb.inputs:type", "rgb"), ("cameraHelperDepth.inputs:frameId", path[1:]), ("cameraHelperDepth.inputs:topicName", path + f"/{index}/depth/image_raw"), ("cameraHelperDepth.inputs:type", "depth"), ("cameraHelperInfo.inputs:frameId", path[1:]), ("cameraHelperInfo.inputs:topicName", path + f"/{index}/camera_info"), ("cameraHelperInfo.inputs:type", "camera_info"), ], }, ) set_targets( prim=omni.usd.get_context().get_stage().GetPrimAtPath(f"{path}/ROSCamera_{index}_Graph/setCamera"), attribute="inputs:cameraPrim", target_prim_paths=[camera_path], ) og.Controller.evaluate_sync(camera_graph) for _ in range(5): sc.step() omni.kit.app.get_app().update() viewport_handle = [x for x in omni.kit.viewport.window.get_viewport_window_instances()][-1].viewport_api viewport_handle.set_texture_resolution((resolution[0], resolution[1])) for _ in range(5): sc.step() omni.kit.app.get_app().update() return camera_graph.get_path_to_graph(), viewport_handle def add_joint_state(path: str): if path.startswith("/"): path = path[1:] og.Controller.edit( {"graph_path": f"/{path}/JointActionGraph", "evaluator_name": "execution"}, { og.Controller.Keys.CREATE_NODES: [ ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("OnImpulseEvent", "omni.graph.action.OnImpulseEvent"), ("PublishJointState", "omni.isaac.ros_bridge.ROS1PublishJointState"), ("SubscribeJointState", "omni.isaac.ros_bridge.ROS1SubscribeJointState"), ("ArticulationController", "omni.isaac.core_nodes.IsaacArticulationController"), ], og.Controller.Keys.CONNECT: [ ("OnImpulseEvent.outputs:execOut", "PublishJointState.inputs:execIn"), ("OnImpulseEvent.outputs:execOut", "SubscribeJointState.inputs:execIn"), ("OnImpulseEvent.outputs:execOut", "ArticulationController.inputs:execIn"), ("ReadSimTime.outputs:simulationTime", "PublishJointState.inputs:timeStamp"), ("SubscribeJointState.outputs:jointNames", "ArticulationController.inputs:jointNames"), ("SubscribeJointState.outputs:positionCommand", "ArticulationController.inputs:positionCommand"), ("SubscribeJointState.outputs:velocityCommand", "ArticulationController.inputs:velocityCommand"), ("SubscribeJointState.outputs:effortCommand", "ArticulationController.inputs:effortCommand"), ], og.Controller.Keys.SET_VALUES: [ # Providing path to Articulation Controller node # Providing the robot path is equivalent to setting the targetPrim in Articulation Controller node ("ArticulationController.inputs:usePath", True), ("ArticulationController.inputs:robotPath", "/" + path), # Assigning topic names to clock publishers ("PublishJointState.inputs:topicName", "/" + path + "/joint_states"), ("SubscribeJointState.inputs:topicName", "/" + path + "/joint_commands"), ], }, ) # set_target_prims(primPath=f"/{path}/JointActionGraph/SubscribeJointState", targetPrimPaths=[f"/{path}"]) set_target_prims(primPath=f"/{path}/JointActionGraph/PublishJointState", targetPrimPaths=[f"/{path}"]) return f"/{path}/JointActionGraph" def add_clock(): (_clock_graph, _, _, _) = og.Controller.edit( {"graph_path": "/ClockActionGraph", "evaluator_name": "push", "pipeline_stage": og.GraphPipelineStage.GRAPH_PIPELINE_STAGE_ONDEMAND, }, { og.Controller.Keys.CREATE_NODES: [ ("ReadSimTime", "omni.isaac.core_nodes.IsaacReadSimulationTime"), ("OnTick", "omni.graph.action.OnTick"), ("PublishManualClock", "omni.isaac.ros_bridge.ROS1PublishClock"), ], og.Controller.Keys.CONNECT: [ # Connecting execution of OnImpulseEvent node to PublishManualClock so it will only publish when an impulse event is triggered ("OnTick.outputs:tick", "PublishManualClock.inputs:execIn"), # Connecting simulationTime data of ReadSimTime to the clock publisher nodes ("ReadSimTime.outputs:simulationTime", "PublishManualClock.inputs:timeStamp"), ], og.Controller.Keys.SET_VALUES: [ # Assigning topic names to clock publishers ("PublishManualClock.inputs:topicName", "/clock"), ], }, ) return _clock_graph def get_robot_yaw(x, y, z, env_mesh, shifts): """ Checks the best robot yaw angle for the given position. Cast rays from the robot position to the environment mesh and returns the angle It considers 36 rays. For each ray we compute the distance to the nearest point on the mesh. If the distance is infinite, it gets interpolated. We compute a rolling window sum (with a window size of 4 rays) of the distances. Return the best yaw angle in RADIANS. """ checking_steps = 36 angles = [[np.cos(np.pi * 2.0 / checking_steps * c_step), np.sin(np.pi * 2.0 / checking_steps * c_step), 0] for c_step in range(checking_steps)] positions = [[x + shifts[0], y + shifts[1], z + shifts[2]] for _ in range(checking_steps)] checking_rays = trimesh.proximity.longest_ray(env_mesh, positions, angles) checking_rays[checking_rays < 0] = 0 nans, x = inf_helper(checking_rays) checking_rays[nans] = np.interp(x(nans), x(~nans), checking_rays[~nans]) checking_rays[checking_rays > 8] = 8 rolling_rays = int(40 / (360 / checking_steps)) checking_rays = np.append(checking_rays, checking_rays[:rolling_rays - 1]) checking_rays = np.convolve(checking_rays, np.ones(rolling_rays, dtype=int), 'valid') / rolling_rays return (np.argmax(checking_rays) + rolling_rays / 2) * 2 * np.pi / checking_steps def get_vp_list(): from omni.kit.viewport.window import get_viewport_window_instances return [x for x in get_viewport_window_instances()] def create_viewport(camera_path, is_headless, index, resolution, old_h_ape, old_v_ape, sc): """ The function create the viewport for the given camera. Creates an handle, a viewport and the window position/size if the system is not headless. """ stage = omni.usd.get_context().get_stage() camera = stage.GetPrimAtPath(camera_path) old_h_ape.append(camera.GetAttribute("horizontalAperture").Get()) old_v_ape.append(camera.GetAttribute("verticalAperture").Get()) index += 1 # omniverse starts from 1 viewport_name = "Viewport" + (f" {index}" if str(index) != "0" and str(index) != "1" else "") viewport = omni.kit.viewport.utility.get_active_viewport_window(window_name=viewport_name) viewport_handle = omni.kit.viewport.utility.get_viewport_from_window_name(viewport_name) if not viewport_handle: viewport = omni.kit.viewport.utility.create_viewport_window(name=viewport_name) viewport_handle = omni.kit.viewport.utility.get_viewport_from_window_name(viewport.name) if not is_headless: viewport.setPosition(1000, 400) viewport.height, viewport.width = 300, 300 viewport_handle.set_active_camera(camera_path) for _ in range(10): sc.step() viewport_handle.set_texture_resolution((resolution[0], resolution[1])) sc.step() return viewport_handle, viewport.name def ros_launchers_setup(roslaunch, env_limits_shifted, config): """ Setup the ros launchers for the simulation. We need an exploration manager for every robot, and a collision checking service to place the objects. """ roslaunch_files = [] roslaunch_args = [] launch_files = [] print("launching ros nodes...") if not config["only_placement"].get(): for i in range(config["num_robots"].get()): # TODO hack to be compatible with the old version if type(config["is_iRotate"].get()) == list: is_irotate = config["is_iRotate"].get()[i] else: is_irotate = config["is_iRotate"].get() if not is_irotate: cli_args1 = ["exploration_manager", "my_exploration.launch", # cli_args1 = ["/home/ebonetto/catkin_ws/src/FUEL/fuel_planner/exploration_manager/launch/my_exploration.launch", "box_min_x:={:.4f}".format(env_limits_shifted[0] - 0.2), "box_min_y:={:.4f}".format(env_limits_shifted[1] - 0.2), "box_min_z:={:.4f}".format(env_limits_shifted[2]), "box_max_x:={:.4f}".format(env_limits_shifted[3] + 0.2), "box_max_y:={:.4f}".format(env_limits_shifted[4] + 0.2), "box_max_z:={:.4f}".format(min(3, env_limits_shifted[5] - 0.1)), f"mav_name:={config['robot_base_prim_path'].get()}{i}"] roslaunch_files.append(roslaunch.rlutil.resolve_launch_arguments(cli_args1)[0]) roslaunch_args.append(cli_args1[2:]) launch_files.append((roslaunch_files[-1], roslaunch_args[-1])) else: cli_args1 = ["custom_joint_controller_ros_irotate", "publish_joint_commands_node.launch", "position_limit_x:={:.4f}".format(env_limits_shifted[3] + 0.2), "position_limit_y:={:.4f}".format(env_limits_shifted[4] + 0.2), "position_limit_z:={:.4f}".format(3), "robot_id:=1", "frame_id:='base'"] roslaunch_files.append(roslaunch.rlutil.resolve_launch_arguments(cli_args1)[0]) roslaunch_args.append(cli_args1[2:]) launch_files.append((roslaunch_files[-1], roslaunch_args[-1])) # TODO hack because we pre-cache the robot mesh if type(config["robot_mesh_path"].get()) == list: mesh_path = config["robot_mesh_path"].get()[0] else: mesh_path = config["robot_mesh_path"].get() cli_args2 = ["collision_check", "collision_check.launch", "robot_mesh_path:={}".format(mesh_path)] roslaunch_file2 = roslaunch.rlutil.resolve_launch_arguments(cli_args2)[0] roslaunch_args2 = cli_args2[2:] launch_files.append((roslaunch_file2, roslaunch_args2)) return launch_files def create_imu_message(frame, last_reading, meters_per_unit): """ Create the IMU message from the last reading. """ imu_msg = Imu() imu_msg.header.frame_id = frame[1:] if frame.startswith("/") else frame imu_msg.header.stamp = rospy.Time.now() imu_msg.angular_velocity.x = last_reading.ang_vel_x imu_msg.angular_velocity.y = last_reading.ang_vel_y imu_msg.angular_velocity.z = last_reading.ang_vel_z imu_msg.linear_acceleration.x = last_reading.lin_acc_x * meters_per_unit * meters_per_unit imu_msg.linear_acceleration.y = last_reading.lin_acc_y * meters_per_unit * meters_per_unit imu_msg.linear_acceleration.z = last_reading.lin_acc_z * meters_per_unit * meters_per_unit imu_msg.angular_velocity_covariance = [0, 0, 0, 0, 0, 0, 0, 0, 0] imu_msg.linear_acceleration_covariance = [0, 0, 0, 0, 0, 0, 0, 0, 0] return imu_msg def setup_imu_sensor(_is, config, imu_sensor_path): """ Setup the IMU sensor config. Keep in mind that this is relative to the parent body, so any transform the parent has is already reflected. """ add_imu_sensor, sensor = omni.kit.commands.execute( "IsaacSensorCreateImuSensor", path="/imu_sensor", parent=imu_sensor_path, sensor_period=1 / config["physics_hz"].get(), orientation=Gf.Quatd(1, 0, 0, 0), visualize=False, ) if not add_imu_sensor: raise Exception("Failed to add IMU sensor") return sensor def pub_imu(_is, imu_pubs, robot_imu_frames, meters_per_unit): """ Simple message publisher """ for index, handle in enumerate(robot_imu_frames): last_reading = _is.get_sensor_sim_reading(handle + "/imu_sensor") imu_pubs[index].publish(create_imu_message(handle, last_reading, meters_per_unit)) def pub_cam_pose(camera_pose_frames, cam_pose_pubs, _dc, meters_per_unit): """ Simple message publisher """ for index, handle in enumerate(camera_pose_frames): camera_body_ptr = _dc.get_rigid_body(handle) cam_pose_pubs[index].publish(create_camera_pose_message(_dc, camera_body_ptr, handle, meters_per_unit)) def pub_odom(robot_odom_frames, odom_pubs, _dc, meters_per_unit, diff_odom_frames=[]): """ Simple message publisher """ odoms = [] angles = [] if len(diff_odom_frames) == 0: for index, handle in enumerate(robot_odom_frames): robot_body_ptr = _dc.get_rigid_body(handle) odom = create_odom_message(_dc, robot_body_ptr, handle, meters_per_unit) odoms.append([odom.pose.pose.position.x, odom.pose.pose.position.y, odom.pose.pose.position.z]) angles.append(Rotation.from_quat( [odom.pose.pose.orientation.x, odom.pose.pose.orientation.y, odom.pose.pose.orientation.z, odom.pose.pose.orientation.w]).as_euler("XYZ")) odom_pubs[index].publish(odom) else: for index, handle in enumerate(robot_odom_frames): robot_body_ptr = _dc.get_rigid_body(handle) diff_body_ptr = _dc.get_rigid_body(diff_odom_frames[index]) diff_handle = diff_odom_frames[index][1:] if diff_odom_frames[index].startswith("/") else diff_odom_frames[ index] odom = create_diff_odom_message(_dc, robot_body_ptr, handle, meters_per_unit, diff_body_ptr, diff_handle) odoms.append([odom.pose.pose.position.x, odom.pose.pose.position.y, odom.pose.pose.position.z]) angles.append(Rotation.from_quat( [odom.pose.pose.orientation.x, odom.pose.pose.orientation.y, odom.pose.pose.orientation.z, odom.pose.pose.orientation.w]).as_euler("XYZ")) odom_pubs[index].publish(odom) return odoms, angles def import_robot(robot_base_prim_path, n, usd_robot_path, local_file_prefix=''): """ Add the robot to the stage. Add semantics. """ stage = omni.usd.get_context().get_stage() res, _ = omni.kit.commands.execute("CreateReferenceCommand", usd_context=omni.usd.get_context(), path_to=f"{robot_base_prim_path}{n}", asset_path=local_file_prefix + usd_robot_path, instanceable=False) if res: clear_properties(f"{robot_base_prim_path}{n}") add_semantics(stage.GetPrimAtPath(f"{robot_base_prim_path}{n}"), "robot") else: raise Exception("Failed to import robot") def get_valid_robot_location(environment, first): """ Query the service to place the robot in a free space AND compute an initial good yaw. """ x, y, z, _ = position_object(environment, type=0, reset=first) # robot is nearly circular so I do not have to worry about collisionsif environment.env_mesh != None: if environment.env_mesh != None: yaw = get_robot_yaw(x[0], y[0], z[0], environment.env_mesh, environment.shifts) print(f"Initial yaw: {yaw}") return x[0], y[0], z[0], yaw def control_camera(viewport, sc): sc.step() if viewport is not None: import omni.syntheticdata._syntheticdata as sd stage = omni.usd.get_context().get_stage() # Required for editing the SDGPipeline graph which exists in the Session Layer with Usd.EditContext(stage, stage.GetSessionLayer()): # Get name of rendervar for RGB sensor type rv_rgb = omni.syntheticdata.SyntheticData.convert_sensor_type_to_rendervar(sd.SensorType.Rgb.name) # Get path to IsaacSimulationGate node in RGB pipeline rgb_camera_gate_path = omni.syntheticdata.SyntheticData._get_node_path( rv_rgb + "IsaacSimulationGate", viewport.get_render_product_path() ) # Get name of rendervar for DistanceToImagePlane sensor type rv_depth = omni.syntheticdata.SyntheticData.convert_sensor_type_to_rendervar( sd.SensorType.DistanceToImagePlane.name) # Get path to IsaacSimulationGate node in Depth pipeline depth_camera_gate_path = omni.syntheticdata.SyntheticData._get_node_path( rv_depth + "IsaacSimulationGate", viewport.get_render_product_path() ) # Get path to IsaacSimulationGate node in CameraInfo pipeline camera_info_gate_path = omni.syntheticdata.SyntheticData._get_node_path( "PostProcessDispatch" + "IsaacSimulationGate", viewport.get_render_product_path() ) return rgb_camera_gate_path, depth_camera_gate_path, camera_info_gate_path def add_ros_components(robot_base_prim_path, n, ros_transform_components, ros_camera_list, viewport_window_list, camera_pose_frames, cam_pose_pubs, imu_pubs, robot_imu_frames, robot_odom_frames, odom_pubs, lidars, dynamic_prims, config, old_h_ape, old_v_ape, _is, simulation_context, _clock, irotate=False): """ Add the ROS components to the robot. This is done because we need different topics for each robot. Components added: - joint_states (publisher and subscriber) - tf broadcaster - camera - camera pose - imu - odom When necessary we create also the corresponding publisher (whenever the RosBridge component is not available). Publishers created: - imu - odom - camera pose """ ros_transform_components.append(add_joint_state(f"{robot_base_prim_path}{n}")) ros_transform_components.append(add_pose_tree(f"{robot_base_prim_path}{n}", irotate)) # create camera component, viewport = add_camera_and_viewport(f"{robot_base_prim_path}{n}/camera_link", config["robot_sensor_size"].get(), old_h_ape, old_v_ape, simulation_context, 0, n, cam_per_robot=1) # cam index is useful if you want multiple cameras cam_outputs = control_camera(viewport, simulation_context) ros_camera_list.append([n + 0, component, cam_outputs]) viewport_window_list.append(viewport) # component, viewport = add_camera_and_viewport(f"{robot_base_prim_path}{n}/camera_link", # config["robot_sensor_size"].get(), # old_h_ape, old_v_ape, simulation_context, # 1, n, cam_per_robot=2) # cam index is useful if you want multiple cameras # cam_outputs = control_camera(viewport, simulation_context) # ros_camera_list.append([n + 1, component, cam_outputs]) # viewport_window_list.append(viewport) omni.kit.app.get_app().update() # append camera pose frame (we need only one) and pubs camera_pose_frames.append(f"{robot_base_prim_path}{n}/camera_link") cam_pose_pubs.append(rospy.Publisher(f"{robot_base_prim_path}{n}/camera/pose", PoseStamped, queue_size=10)) for _ in range(10): og.Controller.set(og.Controller.attribute(f"{ros_transform_components[-1]}/OnImpulseEvent.state:enableImpulse"), True) og.Controller.set(og.Controller.attribute(f"{ros_transform_components[-2]}/OnImpulseEvent.state:enableImpulse"), True) og.Controller.evaluate_sync(_clock) simulation_context.step() # attach IMU sensor to the robot if irotate: setup_imu_sensor(_is, config, f"{robot_base_prim_path}{n}/imu_link") imu_pubs.append(rospy.Publisher(f"{robot_base_prim_path}{n}/imu_cam", Imu, queue_size=10)) robot_imu_frames.append(f"{robot_base_prim_path}{n}/imu_link") setup_imu_sensor(_is, config, f"{robot_base_prim_path}{n}/base_link") imu_pubs.append(rospy.Publisher(f"{robot_base_prim_path}{n}/imu_body", Imu, queue_size=10)) robot_imu_frames.append(f"{robot_base_prim_path}{n}/base_link") robot_odom_frames.append(f"{robot_base_prim_path}{n}/base_link") else: setup_imu_sensor(_is, config, f"{robot_base_prim_path}{n}/imu_link") imu_pubs.append(rospy.Publisher(f"{robot_base_prim_path}{n}/imu_body", Imu, queue_size=10)) robot_imu_frames.append(f"{robot_base_prim_path}{n}/imu_link") setup_imu_sensor(_is, config, f"{robot_base_prim_path}{n}/camera_link") imu_pubs.append(rospy.Publisher(f"{robot_base_prim_path}{n}/imu_camera", Imu, queue_size=10)) robot_imu_frames.append(f"{robot_base_prim_path}{n}/camera_link") robot_odom_frames.append(f"{robot_base_prim_path}{n}/yaw_link") odom_pubs.append(rospy.Publisher(f"{robot_base_prim_path}{n}/odom", Odometry, queue_size=10)) stage = omni.usd.get_context().get_stage() dynamic_prims.append(stage.GetPrimAtPath(f"{robot_base_prim_path}{n}")) if lidars: stage = omni.usd.get_context().get_stage() dynamic_prims.append(stage.GetPrimAtPath(f"{robot_base_prim_path}{n}")) sensor = add_lidar(f"{robot_base_prim_path}{n}/yaw_link", [0, 0, -.1], [0, 0, 0], is_3d=True, is_2d=True) lidars.append(sensor) def get_robot_joint_init_loc(name): """ It gets the initial location of the robot's joints :param name: The name of the robot :return: The initial location of the robot's joints. """ stage = omni.usd.get_context().get_stage() x = UsdPhysics.Joint.Get(stage, name + '/base_link/x_joint').GetLocalPos0Attr().Get()[0] y = UsdPhysics.Joint.Get(stage, name + '/x_link/y_joint').GetLocalPos0Attr().Get()[1] z = UsdPhysics.Joint.Get(stage, name + '/y_link/z_joint').GetLocalPos0Attr().Get()[2] roll = UsdPhysics.RevoluteJoint.Get(stage, name + '/z_link/roll_joint').GetLocalRot0Attr().Get() roll = Rotation.from_quat([roll.imaginary[0], roll.imaginary[1], roll.imaginary[2], roll.real]).as_euler('XYZ')[0] pitch = UsdPhysics.RevoluteJoint.Get(stage, name + '/roll_link/pitch_joint').GetLocalRot0Attr().Get() pitch = Rotation.from_quat([pitch.imaginary[0], pitch.imaginary[1], pitch.imaginary[2], pitch.real]).as_euler('XYZ')[ 1] yaw = UsdPhysics.RevoluteJoint.Get(stage, name + '/pitch_link/yaw_joint').GetLocalRot0Attr().Get() yaw = Rotation.from_quat([yaw.imaginary[0], yaw.imaginary[1], yaw.imaginary[2], yaw.real]).as_euler('XYZ')[2] return x, y, z, roll, pitch, yaw def set_drone_joints_init_loc(name: str, pos: [], orientation: [], upper_zlim: float=100, lower_zlim: float=0, irotate=False): """ Move the drone to the specified location by acting on the JOINTS. PLEASE NOTE: the intial joint position published by joint_states will be 0,0,0 strangely. #IsaacBug The joints should be named as follows: - base_link/x_joint - x_link/y_joint - y_link/z_joint - z_link/roll_joint - roll_link/pitch_joint - pitch_link/yaw_joint name: the name of the robot (e.g. "my_robot_0", the prim path) pos: the position of the robot (x,y,z) orientation: the orientation of the robot (roll,pitch,yaw), in rad upper_zlim: the z limit of the robot (z) irotate: if True, the joints considered are the iRotate ones """ x, y, z = pos upper_zlim = max(upper_zlim, z) roll, pitch, yaw = orientation stage = omni.usd.get_context().get_stage() if irotate: UsdPhysics.Joint.Get(stage, name + '/x_link/x_joint').GetLocalPos0Attr().Set(Gf.Vec3f(x, 0, 0)) UsdPhysics.Joint.Get(stage, name + '/y_link/y_joint').GetLocalPos0Attr().Set(Gf.Vec3f(0, y, 0)) yaw = np.rad2deg(yaw) quat = ( Gf.Rotation(Gf.Vec3d.XAxis(), 0) * Gf.Rotation(Gf.Vec3d.YAxis(), 0) * Gf.Rotation(Gf.Vec3d.ZAxis(), yaw) ) UsdPhysics.RevoluteJoint.Get(stage, name + '/yaw_link/yaw_joint').GetLocalRot1Attr().Set(Gf.Quatf(quat.GetQuat())) else: UsdPhysics.Joint.Get(stage, name + '/base_link/x_joint').GetLocalPos0Attr().Set(Gf.Vec3f(x, 0, 0)) UsdPhysics.Joint.Get(stage, name + '/x_link/y_joint').GetLocalPos0Attr().Set(Gf.Vec3f(0, y, 0)) UsdPhysics.Joint.Get(stage, name + '/y_link/z_joint').GetLocalPos0Attr().Set(Gf.Vec3f(0, 0, z)) stage.GetPrimAtPath(name + '/y_link/z_joint').GetAttribute('physics:lowerLimit').Set(-z + lower_zlim) stage.GetPrimAtPath(name + '/y_link/z_joint').GetAttribute('physics:upperLimit').Set(upper_zlim - z) roll = np.rad2deg(roll) quat = ( Gf.Rotation(Gf.Vec3d.XAxis(), roll) * Gf.Rotation(Gf.Vec3d.YAxis(), 0) * Gf.Rotation(Gf.Vec3d.ZAxis(), 0) ) UsdPhysics.RevoluteJoint.Get(stage, name + '/z_link/roll_joint').GetLocalRot0Attr().Set(Gf.Quatf(quat.GetQuat())) pitch = np.rad2deg(pitch) quat = ( Gf.Rotation(Gf.Vec3d.XAxis(), pitch) * Gf.Rotation(Gf.Vec3d.YAxis(), 0) * Gf.Rotation(Gf.Vec3d.ZAxis(), 90) ) UsdPhysics.RevoluteJoint.Get(stage, name + '/roll_link/pitch_joint').GetLocalRot0Attr().Set( Gf.Quatf(quat.GetQuat())) yaw = np.rad2deg(yaw) quat = ( Gf.Rotation(Gf.Vec3d.XAxis(), 0) * Gf.Rotation(Gf.Vec3d.YAxis(), 0) * Gf.Rotation(Gf.Vec3d.ZAxis(), yaw) ) UsdPhysics.RevoluteJoint.Get(stage, name + '/pitch_link/yaw_joint').GetLocalRot0Attr().Set(Gf.Quatf(quat.GetQuat())) def add_robot_traj(path: str, config, meters_per_unit, time_codes_per_second): """ It adds a translation and rotation animation to the given path, using the given configuration, meters per unit, and time codes per second :param path: The path to the USD stage :type path: str :param config: The configuration file that contains the robot trajectory :param meters_per_unit: The scale of the scene :param time_codes_per_second: This is the number of time codes per second. This is the same as the frame rate of the animation """ clear_properties(path) for entry in config["robot_traj"].get(): add_translate_anim(path, Gf.Vec3d(entry["pose"]["x"] / meters_per_unit, entry["pose"]["y"] / meters_per_unit, entry["pose"]["z"] / meters_per_unit), entry["time"] * time_codes_per_second) add_rotation_anim(path, Gf.Vec3d(entry["pose"]["roll"], entry["pose"]["pitch"], entry["pose"]["yaw"]), entry["time"] * time_codes_per_second, use_double=True) def diff_angle(alpha, beta): dist = (alpha - beta + np.pi + 2 * np.pi) % (2 * np.pi) - np.pi return dist # assume position control def check_pose_and_goals(init_loc, init_angle, c_pose, c_angle, path, goal_list, meters_per_unit, first): """ It sets the target position of the joints to the next goal in the list :param init_loc: the initial location of the robot :param init_angle: the initial orientation of the robot :param c_pose: current pose of the robot :param c_angle: current angle of the robot :param path: the path to the robot in the simulation :param goal_list: a list of goals, each goal is a list of 6 elements: x, y, z, roll, pitch, yaw :param meters_per_unit: This is the scale of the robot :param first: whether this is the first time the function is called :return: The goal list is being returned. """ dist_roll = abs(diff_angle(np.deg2rad(goal_list[0][3]), diff_angle(c_angle[0], init_angle[0]))) dist_pitch = abs(diff_angle(np.deg2rad(goal_list[0][4]), diff_angle(c_angle[1], init_angle[1]))) dist_yaw = abs(diff_angle(np.deg2rad(goal_list[0][5]), diff_angle(c_angle[2], init_angle[2]))) sum_dist = dist_roll + dist_pitch + dist_yaw if not first and \ (np.linalg.norm(np.array([goal_list[0][0], goal_list[0][1], goal_list[0][2]]) - np.array(c_pose) + np.array( init_loc[0:3])) > 0.8 \ or sum_dist > 0.6): return goal_list if not first: goal_list.pop(0) if len(goal_list) == 0: return [] omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/base_link/x_joint.drive:linear:physics:stiffness'), value=1200.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/base_link/x_joint.drive:linear:physics:damping'), value=1000.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/base_link/x_joint.drive:linear:physics:maxForce'), value=500.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/base_link/x_joint.physxJoint:maxJointVelocity'), value=200.0, # cm/s prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/base_link/x_joint.drive:linear:physics:targetPosition'), value=(goal_list[0][0]) / meters_per_unit, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/x_link/y_joint.drive:linear:physics:stiffness'), value=1200.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/x_link/y_joint.drive:linear:physics:damping'), value=1000.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/x_link/y_joint.drive:linear:physics:maxForce'), value=500.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/x_link/y_joint.physxJoint:maxJointVelocity'), value=200.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/x_link/y_joint.drive:linear:physics:targetPosition'), value=(goal_list[0][1]) / meters_per_unit, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/y_link/z_joint.drive:linear:physics:stiffness'), value=1200.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/y_link/z_joint.drive:linear:physics:damping'), value=1000.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/y_link/z_joint.drive:linear:physics:maxForce'), value=500.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/y_link/z_joint.physxJoint:maxJointVelocity'), value=200.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/y_link/z_joint.drive:linear:physics:targetPosition'), value=(goal_list[0][2]) / meters_per_unit, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/z_link/roll_joint.drive:angular:physics:stiffness'), value=1200.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/z_link/roll_joint.drive:angular:physics:damping'), value=1000.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/z_link/roll_joint.drive:angular:physics:maxForce'), value=300.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/z_link/roll_joint.physxJoint:maxJointVelocity'), value=0.2, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/z_link/roll_joint.drive:angular:physics:targetPosition'), value=(goal_list[0][3]), prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/roll_link/pitch_joint.drive:angular:physics:stiffness'), value=1200.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/roll_link/pitch_joint.drive:angular:physics:damping'), value=1000.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/roll_link/pitch_joint.drive:angular:physics:maxForce'), value=300.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/roll_link/pitch_joint.physxJoint:maxJointVelocity'), value=0.2, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/roll_link/pitch_joint.drive:angular:physics:targetPosition'), value=(goal_list[0][4]), prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/pitch_link/yaw_joint.drive:angular:physics:stiffness'), value=1200.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/pitch_link/yaw_joint.drive:angular:physics:damping'), value=1000.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/pitch_link/yaw_joint.drive:angular:physics:maxForce'), value=300.0, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/pitch_link/yaw_joint.physxJoint:maxJointVelocity'), value=1.3, prev=0.0) omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{path}/pitch_link/yaw_joint.drive:angular:physics:targetPosition'), value=(goal_list[0][5]), prev=0.0) return goal_list def add_irotate_ros_components(camera_odom_frames, camera_odom_pubs, lidar_components, robot_base_prim_path, n): """ Add the irotate-specific ros-components to the robot. """ camera_odom_frames.append(f"{robot_base_prim_path}{n}/cameraholder_link") camera_odom_pubs.append(rospy.Publisher(f"{robot_base_prim_path}{n}/camera_odom", Odometry, queue_size=10)) lidar_components.append(add_lidar(f"{robot_base_prim_path}{n}/lasersensor_link"), is_2d = True, is_3d=False) def add_lidar(path, translation=[0, 0, 0], orientation=[0, 0, 0], is_2d=True, is_3d=False, degrees=True): # drive sim applies 0.5,-0.5,-0.5,w(-0.5), we have to apply the reverse base_or = tf.Rotation.from_quat([0.5, -0.5, -0.5, -0.5]) orientation = tf.Rotation.from_euler('XYZ', orientation, degrees=degrees) orientation = (base_or * orientation).as_quat() success, sensor = omni.kit.commands.execute( "IsaacSensorCreateRtxLidar", path="/RTX_Lidar", parent=path, config="Example_Rotary", translation=(translation[0], translation[1], translation[2]), orientation=Gf.Quatd(orientation[3], orientation[0], orientation[1], orientation[2]), # Gf.Quatd is w,i,j,k ) omni.kit.app.get_app().update() omni.kit.app.get_app().update() omni.kit.app.get_app().update() render_product_path = rep.create.render_product(sensor.GetPath().pathString, resolution=(1, 1)) # _, render_product_path = create_hydra_texture([1, 1], sensor.GetPath().pathString) omni.kit.app.get_app().update() omni.kit.app.get_app().update() # add the lidar to the graph # config is isaac_sim-2022.2.1/exts/omni.sensors.nv.lidar/data/Example_Rotary.json if is_3d: writer = rep.writers.get("RtxLidar" + "ROS1PublishPointCloud") writer.initialize(topicName=f"{path}/lidar/point_cloud", frameId=path[1:]) writer.attach([render_product_path]) if is_2d: writer = rep.writers.get("RtxLidar" + "ROS1PublishLaserScan") writer.initialize(topicName=f"{path}/lidar/laser_scan", frameId=path[1:], rotationRate=100, horizontalFov=360, depthRange=[0.1,10000], horizontalResolution=0.1) writer.attach([render_product_path]) # todo for lidar one can change directly /Render/PostProcess/SDGPipeline/RenderProduct_Isaac_RtxSensorCpuIsaacComputeRTXLidarFlatScan # but NOT for the 3d lidar # todo theoretically I can avoid returning anything making just sure that I render at each loop return omni.syntheticdata.SyntheticData._get_node_path( "PostProcessDispatch" + "IsaacSimulationGate", render_product_path ) def add_npy_viewport(viewport_window_list, robot_base_prim_path, n, old_h_ape, old_v_ape, config, sc, tot_num_ros_cam=1): viewport_npy, _ = create_viewport(f"{robot_base_prim_path}{n}/camera_link/Camera_npy", config["headless"].get(), tot_num_ros_cam + 1 * n, config["npy_sensor_size"].get(), old_h_ape, old_v_ape, sc) viewport_window_list.append(viewport_npy) def change_joint_limit(joint: str, limit): omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(f'{joint}'), value=(limit), prev=0.0)
45,348
Python
45.086382
135
0.661066
eliabntt/GRADE-RR/simulator/utils/environment_utils.py
""" Use this class to load the environment and the relative information. The init function should be used to load the environment. It will get the environment from a given folder and create the necessary support variables. """ from omni.isaac.occupancy_map import _occupancy_map from omni.isaac.occupancy_map.scripts.utils import update_location, compute_coordinates, generate_image import utils.misc_utils from utils.misc_utils import * class environment: def __init__(self, config, rng = np.random.default_rng(), local_file_prefix = '', meters_per_unit=0.01): self.get_environment(config, rng, local_file_prefix) self.meters_per_unit = meters_per_unit def set_meters_per_unit(self, meters_per_unit): self.meters_per_unit = meters_per_unit def get_environment(self, config, rng: np.random.default_rng, local_file_prefix: str): """ If the name is not specified the environment will be taken at random using the rng. Based on the config one can decide if 1. loading the stl of the environment 2. loading the environment limits with the npy file [note that this is preferable, otherwise default values will be used] 3. Using the limits the system will compute the necessary translations to center the environment in 0,0,0 config: the configuration processed by the main algorithm rng: global rng local_file_prefix: necessary to access the local storage from isaacsim """ self.env_usd_export_folder = config["env_path"].get() if config["fix_env"].get() != "": self.env_name = config["fix_env"].get() else: self.env_name = rng.choice([f for f in os.listdir(self.env_usd_export_folder) if not f.startswith('.')]) self.env_path = local_file_prefix + os.path.join(self.env_usd_export_folder, self.env_name, self.env_name + ".usd") if config["use_stl"].get(): self.env_stl_path = os.path.join(self.env_usd_export_folder, self.env_name, self.env_name + ".stl") self.env_mesh = trimesh.load(os.path.join(self.env_usd_export_folder, self.env_name, self.env_name + ".stl")) else: self.env_stl_path = None self.env_mesh = None if config["use_npy"].get(): self.env_info = np.load(os.path.join(self.env_usd_export_folder, self.env_name, self.env_name + ".npy"), allow_pickle=True) self.env_info = self.env_info.tolist() else: self.env_info = [0, 0, 0, 0, 0, 0, np.array([[-1000, -1000], [-1000, 1000], [1000, 1000], [1000, -1000]])] self.env_limits = self.env_info[0:6] self.shifts = [(self.env_limits[0] + self.env_limits[3]) / 2, (self.env_limits[1] + self.env_limits[4]) / 2, self.env_limits[2]] self.env_limits_shifted = [self.env_limits[i] - self.shifts[i % 3] for i, _ in enumerate(self.env_limits)] self.area_polygon = get_area(self.env_info[6]) self.env_polygon = [Point(i[0], i[1], 0) for i in self.env_info[-1]] def generate_map(self, out_path: str, zlim=[0, 1], cell_size = 0.05, origin=[0, 0, 0]): """ WARNING: HACK! ALL UNKNWON ARE WHITE! Generates a map for the environment and save it to the out_path location in the disk. First it searches for a non colliding location. Then it creates a map of the environment. We ovverride the unknown color to be "white" (i.e. free) as the system map unknown unreachable areas. out_path: the folder where to save the map z_limit: height to consider for projection cell_size: size of a single cell in the map (cm) origin: computed origin. Must be a free cell """ bound = int( max(abs(self.env_limits_shifted[0]) + abs(self.env_limits_shifted[3]), abs(self.env_limits_shifted[1]) + abs(self.env_limits_shifted[4])) / self.meters_per_unit * 1.5) _om = _occupancy_map.acquire_occupancy_map_interface() lower_bound = [-bound, -bound, zlim[0]/ self.meters_per_unit] lower_bound = np.array(lower_bound) - np.array(origin) / self.meters_per_unit upper_bound = [bound, bound, zlim[1]/ self.meters_per_unit *.8] upper_bound = np.array(upper_bound) - np.array(origin) / self.meters_per_unit center = np.array(origin) / self.meters_per_unit center[2] += 0.1 / self.meters_per_unit # 10 cm above the floor update_location(_om, center, lower_bound, upper_bound) _om.set_cell_size(cell_size/self.meters_per_unit) _om.generate() image_buffer = generate_image(_om, [0, 0, 0, 255], [255, 255, 255, 255], [255, 255, 255, 255]) dims = _om.get_dimensions() _im = Image.frombytes("RGBA", (dims.x, dims.y), bytes(image_buffer)) image_width = _im.width image_height = _im.height size = [0, 0, 0] size[0] = image_width * cell_size size[1] = image_height * cell_size scale_to_meters = 1.0 / self.meters_per_unit default_image_name = os.path.join(out_path, "map.png") top_left, top_right, bottom_left, bottom_right, image_coords = compute_coordinates(_om, cell_size) ros_yaml_file_text = "image: " + default_image_name ros_yaml_file_text += f"\nresolution: {float(cell_size / scale_to_meters)}" ros_yaml_file_text += ( f"\norigin: [{float(bottom_left[0] / scale_to_meters)}, {float(bottom_left[1] / scale_to_meters)}, 0.0000]" ) ros_yaml_file_text += "\nnegate: 0" ros_yaml_file_text += f"\noccupied_thresh: {0.65}" ros_yaml_file_text += "\nfree_thresh: 0.196" _im.save(default_image_name) with open(default_image_name[:-3] + "yaml", 'w') as f: f.write(ros_yaml_file_text) center = lower_bound center[2] = -100000000.0 update_location(_om, center, [0, 0, 0], [0, 0, 0]) _om.generate() # disable_extension('omni.isaac.occupancy_map') def load_and_center(self, prim_path: str = "/World/home", correct_paths_req: bool = False, push_in_floor: bool = False): """ Load the environment from the usd path env_path Center it wrt the world coordinate frames The environment is loaded at prim_path prim_path: path that the environment should have in the prim tree correct_paths_req: if True, corrects the paths of the assets in the environment push_in_floor: if True, pushes the environment in the floor a bit. Useful for thin meshes that sometimes are not correctly visualized (flickering) """ stage = omni.usd.get_context().get_stage() print("loading environment {}".format(self.env_name)) # from omni.isaac.core.utils.nucleus import find_nucleus_server # result, nucleus_server = find_nucleus_server() res, _ = omni.kit.commands.execute('CreateReferenceCommand', usd_context=omni.usd.get_context(), path_to=prim_path, asset_path=self.env_path, # asset_path= nucleus_server + "/Isaac/Environments/Simple_Warehouse/warehouse.usd", instanceable=True) if res: clear_properties(prim_path) if correct_paths_req: print("Correcting paths... --- note that you might want to change utils/misc_utils.py:correct_paths") try: correct_paths(prim_path) except: print("Failed to correct paths for {}".format(prim_path)) time.sleep(10) else: print("Not correcting paths --- check that all textures are visibile and the reflection maps are correct") # center the home in the middle of the environment set_translate(stage.GetPrimAtPath(prim_path), list(- np.array(self.shifts) / self.meters_per_unit)) for child in stage.GetPrimAtPath(prim_path).GetAllChildren(): if "xform" == child.GetTypeName().lower(): clear_properties(str(child.GetPath())) if push_in_floor and "floor" not in str(child.GetPath()).lower(): myold = child.GetProperty('xformOp:translate').Get() myold = [myold[0], myold[1], myold[2] - 0.04] set_translate(child, list(np.array(myold))) return prim_path else: raise Exception("Failed to load environment {}".format(self.env_name))
7,793
Python
45.118343
148
0.674451
eliabntt/GRADE-RR/simulator/utils/UTILS.md
## Environment utils Used to manage the environment. With these functions you can load and center the environment, create a 2D occupancy map (only if the collisions are turned on), and center the environment. This is where you want to act if you want to remove the centering of the environment, create a different kind of occupancy, or do something specific while loading. Nothing super-fancy here. ## Human utils Human management functions. Can load the human, correct the paths of the assets if necessary, move it to the ground. Just showcasing some functions. ## Misc utils Used as a collage library. There are tools to add semantic information, change the path of the textures, add colliders (or unset them), randomize lights and roughness of the materials, add translate and rotate animations, the service to position objects (that works with ROS), tools to rotate/translate objects, teleport the prim. This is the main file you want to edit for example if you want to change the position strategy. Our position strategy uses FCL library from MoveIt and check collisios between two STL meshes. The system is done in a way in which it caches the environment and the robot stls at the beginning. We have different placement strategies for different objects (eg. humans, robot, and objects have different rules). ## Objects utils Used to load the objects in the simulation. It will automatically convert the objects to the USD format to cache it. The objects are converted in local directories located in the GSO/shapenet folders. Semantic and collisions can be added to objects using thee utilities. Everything can be expanded easily by adding new object types. The `shapenet` and `google_scanned_objects` folders are set up at runtime for example through the `os.environ["SHAPENET_LOCAL_DIR"]`. ## Robot utils Various ways to create messages, add sensors, differentiate between poses (`create_diff_odom_message`), create viewports and publish stuff. Moreover, you want to use this to load your robot, set its initial joint locations and manage the trajectory. In general each component is loaded with auto publishing false and need to be automatically ticked or published. Some things like the odometry do not have a specific sensor but you can publish all the data that you want. Edit if you need new sensors, publish different data, or remove sensors. You would also like to clean the code or add noise to the data directly here. ## Simulation utils Mainly used for configuration settings (enalbe/disable extensions, change raytracing/pathtracing options), check that nucleus is powered up and ros is working, and manage the timeline.
2,661
Markdown
65.549998
470
0.796317
eliabntt/GRADE-RR/simulator/utils/zebra_utils.py
import utils.misc_utils from omni.kit.sequencer.usd import SequenceSchema, usd_sequencer from utils.misc_utils import * def load_zebra(zebra_base_prim_path, n, asset_path): stage = omni.usd.get_context().get_stage() res, _ = omni.kit.commands.execute("CreateReferenceCommand", usd_context=omni.usd.get_context(), path_to=f"{zebra_base_prim_path}{n}", asset_path=asset_path, instanceable=False) clear_properties(f"{zebra_base_prim_path}{n}") return f"{zebra_base_prim_path}{n}" def place_zebras(frame_info, rng, floor_points, meters_per_unit, hidden_position, config, max_anim_len, zebra_info): stage = omni.usd.get_context().get_stage() # create bool array as big as floor_points occupied = np.zeros((floor_points.shape[0]-2, floor_points.shape[1]-2), dtype=bool) deleted_zebras = [] out_frame_info = {} min_number_zebras = config["min_number_zebras"].get() max_number_zebras = config["max_number_zebras"].get() selected_zebras = rng.choice(list(frame_info.keys()), size=int(rng.uniform(min_number_zebras, max_number_zebras)), replace=False) for zebra in selected_zebras: out_frame_info[zebra] = frame_info[zebra].copy() out_frame_info[zebra] = randomize_frame(out_frame_info[zebra], rng, max_anim_len, zebra_info) # process the box and extract xmin xmax ymin ymax box = np.array(out_frame_info[zebra]["box"]) xmin = np.min(box[:, 0]) xmax = np.max(box[:, 0]) ymin = np.min(box[:, 1]) ymax = np.max(box[:, 1]) # box is the 2D box box = np.array([[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]]) # random yaw rotation of the box yaw = rng.uniform(0, 2 * np.pi) # create a rotation matrix rot = np.array([[np.cos(yaw), -np.sin(yaw)], [np.sin(yaw), np.cos(yaw)]]) # rotate the box box = np.matmul(box, rot) positioned = False newbox = [] # get intermediate int points for i in range(4): p1 = np.round(box[i]).astype(int) p2 = np.round(box[(i + 1) % 4]).astype(int) # compute all int numbers between p1 and p2 dx = p2[0] - p1[0] dy = p2[1] - p1[1] if dx == 0: x = p1[0] y = np.arange(min(p1[1], p2[1]), max(p1[1], p2[1]) + 1 if max(p1[1], p2[1]) >= 0 else -1) for j in range(len(y)): newbox.append([x, y[j]]) elif dy == 0: x = np.arange(min(p1[0], p2[0]), max(p1[0], p2[0]) + 1 if max(p1[0], p2[0]) >= 0 else -1) y = p1[1] for j in range(len(x)): newbox.append([x[j], y]) elif dx == 0 and dy == 0: newbox.append([p1[0], p1[1]]) else: x = np.arange(min(p1[0], p2[0]), max(p1[0], p2[0]) + 1 if max(p1[0], p2[0]) >= 0 else -1) y = p1[1] + (x - p1[0]) * dy / dx for j in range(len(x)): newbox.append([x[j], y[j]]) newbox = np.unique(np.array(newbox).astype(int), axis=0).astype(int) for _ in range(100): # get a random location in occupied -- this will be my center center = np.array([rng.integers(0, occupied.shape[1]), rng.integers(0, occupied.shape[0])]) # check if all the cells covered by the box in occupied are free -- not only the boundaries collision = False for x_coor, y_coor in newbox: try: if occupied[center[0] - y_coor, center[1] + x_coor]: collision = True break except IndexError: collision = True break if collision: break if not collision: tmp_floor_points = [] newcenter = np.array([center[0] + 1, center[1] + 1]) # if there is no collision, set the cells covered by the box to occupied for x_coor, y_coor in newbox: occupied[center[0] - y_coor, center[1] + x_coor] = True # get the corresponding floor point given the center and x_coor and col # NOTE THAT Y IS OPPOSITE SIGN tmp_floor_points.append(floor_points[newcenter[0] - y_coor, newcenter[1] + x_coor]) # set the position of the zebra to the center loc = np.mean(tmp_floor_points, axis=0) / meters_per_unit loc = np.array(floor_points[newcenter[0], newcenter[1]]) / meters_per_unit set_translate(stage.GetPrimAtPath(zebra), list(loc)) # set the rotation of the zebra to the roll, pitch, yaw # lower_point = np.min(tmp_floor_points, axis=0) # upper_point = np.max(tmp_floor_points, axis=0) # vector = np.array(upper_point) - np.array(lower_point) # compute roll pitch and yaw of vector # roll, pitch, yaw = Rotation.from_rotvec(vector).as_euler("XYZ") # transform = Rotation.from_matrix( # trimesh.PointCloud(tmp_floor_points).bounding_box_oriented.transform[:3, :3]).as_euler("XYZ") out_frame_info[zebra]["position"] = loc * meters_per_unit out_frame_info[zebra]["rotation"] = [0, 0, yaw] out_frame_info[zebra]["center"] = newcenter out_frame_info[zebra]["box"] = box set_rotate(stage.GetPrimAtPath(zebra), [0, 0, yaw]) # todo refine this to account for terrain positioned = True break if not positioned: print("Could not position zebra", zebra) # delete the zebra deleted_zebras.append(zebra) set_translate(stage.GetPrimAtPath(zebra), list(hidden_position)) for zebra in deleted_zebras: del out_frame_info[zebra] return out_frame_info def randomize_frame(zebra, rng, max_anim_len, zebra_info): stage = omni.usd.get_context().get_stage() zebra_path = zebra["path"] scale = rng.integers(40, 100) set_scale(stage.GetPrimAtPath(zebra_path), scale) zebra_name = zebra["name"] prim = stage.GetPrimAtPath(f"/World/Sequence{zebra_path}{zebra_path}_Clip") anim_len = zebra_info[zebra_name]["length"] timeslot = max_anim_len - rng.integers(0, anim_len) prim.GetAttribute("startTime").Set(Sdf.TimeCode(timeslot * 1.0)) prim.GetAttribute("endTime").Set( Sdf.TimeCode(float(max(timeslot + zebra_info[zebra_name]["length"], max_anim_len)))) points_in_mesh = zebra_info[zebra_name]["points"][max_anim_len - timeslot] * scale / 100 zebra = {"name": zebra_name, "time": timeslot, "used_frame": max_anim_len - timeslot + 1, "scale": scale, "box": trimesh.PointCloud(points_in_mesh).bounding_box.vertices, "path": zebra_path} return zebra def preload_all_zebras(config, rng, zebra_files, zebra_info, simulation_context, sequencer_drop_controller, max_anim_len, hidden_position): stage = omni.usd.get_context().get_stage() # load a random number of zebras between min_number_zebra and max_number_zebra num_zebras = config["max_number_zebras"].get() frame_info = {} for n in range(num_zebras): # load a random zebra zebra_file = rng.choice(zebra_files) # load the zebra zebra_path = load_zebra("/zebra_", n, zebra_file) scale = rng.integers(40, 100) set_scale(stage.GetPrimAtPath(zebra_path), scale) zebra_name = zebra_file.split("/")[-1].split(".")[0] add_semantics(stage.GetPrimAtPath(zebra_path), "zebra") timeslot = max_anim_len - rng.integers(0, zebra_info[zebra_name]["length"]) sequencer_drop_controller.sequencer_drop(stage.GetPrimAtPath("/World/Sequence"), zebra_path, float(timeslot)) prim = stage.GetPrimAtPath(f"/World/Sequence{zebra_path}{zebra_path}_Clip") prim.GetAttribute("startTime").Set(Sdf.TimeCode(timeslot * 1.0)) prim.GetAttribute("endTime").Set( Sdf.TimeCode(float(max(timeslot + zebra_info[zebra_name]["length"], max_anim_len)))) points_in_mesh = zebra_info[zebra_name]["points"][max_anim_len - timeslot] * scale / 100 frame_info[zebra_path] = {"name": zebra_name, "time": timeslot, "used_frame": max_anim_len - timeslot + 1, "scale": scale, "box": trimesh.PointCloud(points_in_mesh).bounding_box.vertices, "path": zebra_path} simulation_context.step(render=False) simulation_context.render() set_translate(stage.GetPrimAtPath(zebra_path), hidden_position) return frame_info
7,881
Python
40.052083
121
0.642431
eliabntt/GRADE-RR/simulator/utils/misc_utils.py
import asyncio import carb import ipdb import json import ntpath import numpy as np import os import pickle as pkl from PIL import Image from pyquaternion import Quaternion import scipy.spatial.transform as tf from stl import mesh import time import trimesh from typing import Dict, Optional, Union # ros import rospy, rosgraph from geometry_msgs.msg import PoseStamped, Point from nav_msgs.msg import Odometry from sensor_msgs.msg import Imu from std_msgs.msg import String # omni import omni.isaac.shapenet as shapenet import omni.kit from omni.isaac import RangeSensorSchema from omni.isaac.core import SimulationContext, PhysicsContext import omni.replicator.core as rep from omni.isaac.core.prims import XFormPrim from omni.isaac.core.utils.carb import set_carb_setting from omni.isaac.core.utils.extensions import enable_extension, disable_extension from omni.isaac.core.utils.stage import is_stage_loading, set_stage_up_axis from omni.isaac.dynamic_control import _dynamic_control import omni.isaac.IsaacSensorSchema as IsaacSensorSchema from omni.isaac.synthetic_recorder import extension_custom from omni.physxcommands import SetStaticColliderCommand, RemoveStaticColliderCommand from pxr import UsdGeom, Gf, Usd, UsdSkel, AnimationSchema, Semantics, UsdPhysics, Sdf, UsdShade from pxr.Usd import Prim # 2022 edits import omni.graph.core as og from omni.isaac.core_nodes.scripts.utils import set_target_prims def add_semantics(prim: Prim, semantic_label: str): """ Adds semantic labels to the prim. prim: the prim to add the semantic label to semantic_label: the semantic label to add """ if not prim.HasAPI(Semantics.SemanticsAPI): sem = Semantics.SemanticsAPI.Apply(prim, "Semantics") sem.CreateSemanticTypeAttr() sem.CreateSemanticDataAttr() else: sem = Semantics.SemanticsAPI.Get(prim, "Semantics") sem.GetSemanticTypeAttr().Set("class") sem.GetSemanticDataAttr().Set(str(semantic_label)) def correct_paths(parent_name: str): """ Helper function to correct the paths of the world's materials (as they come from Windows). parent_name: the prim path of the father. """ stage = omni.usd.get_context().get_stage() for prim in stage.Traverse(): shader_path = prim.GetPath() if parent_name.lower() in str(shader_path).lower(): if prim.GetTypeName().lower() == "mesh": prim.GetProperty('doubleSided').Set(False) if prim.GetTypeName().lower() == "shader": try: change_shader_path(shader_path) except: print(f"Error changing shader of in {shader_path}") time.sleep(5) def change_shader_path(shader_path: str): """ Changes the shader path of the material. material_path: the prim path to the material collection (e.g. "/World/my_robot_0/materials, /World/home/materials") """ stage = omni.usd.get_context().get_stage() shader = stage.GetPrimAtPath(shader_path) if 'inputs:diffuse_texture' in shader.GetPropertyNames(): old_path = str(shader.GetAttribute('inputs:diffuse_texture').Get().resolvedPath) new_path = old_path.replace("@", "") # print(f"Changing path {old_path}") if "something" in old_path or "P:" in old_path: new_path = old_path.replace(ntpath.sep, os.sep).replace('P:/', '').replace("@", "") elif "somethingelse" in old_path.lower(): splitted = old_path.split(ntpath.sep) tmp_path = "" for i in splitted: tmp_path += i + ntpath.sep if "something" in i: break tmp_path = tmp_path.replace(ntpath.sep, os.sep) new_path = old_path.replace(ntpath.sep, os.sep).replace(tmp_path, '').replace( "@", "") shader.GetAttribute('inputs:diffuse_texture').Set(new_path) if 'inputs:reflectionroughness_texture' in shader.GetPropertyNames(): old_path = str(shader.GetAttribute('inputs:reflectionroughness_texture').Get().resolvedPath) new_path = old_path.replace("@", "") # print(f"Changing path {old_path}") if "something" in old_path or "P:" in old_path: new_path = old_path.replace(ntpath.sep, os.sep).replace('P:/', '').replace("@", "") elif "somethingelse" in old_path.lower(): splitted = old_path.split(ntpath.sep) tmp_path = "" for i in splitted: tmp_path += i + ntpath.sep if "something" in i: break tmp_path = tmp_path.replace(ntpath.sep, os.sep) new_path = old_path.replace(ntpath.sep, os.sep).replace(tmp_path, '').replace( "@", "") shader.GetAttribute('inputs:reflectionroughness_texture').Set(new_path) def set_colliders(path_main_asset: str, value: bool): """ It takes a path to a main asset, and a boolean value, and sets the physics:collisionEnabled attribute to the boolean value for all children of the main asset. This effectively enable or disable collisions. :param path_main_asset: The path to the main asset in the USD file :type path_main_asset: str :param value: bool :type value: bool """ stage = omni.usd.get_context().get_stage() for j in stage.GetPrimAtPath(path_main_asset).GetAllChildren(): for i in j.GetAllChildren(): if "physics:collisionEnabled" in i.GetPropertyNames(): if i.GetProperty("physics:collisionEnabled").Get() == value: continue i.GetProperty("physics:collisionEnabled").Set(value) def add_colliders(path_main_asset: str): """ Adds the colliders to the main asset. This allows the object to have collisions or not (if supported). Return True if the colliders were added, False otherwise. path_main_asset: the path of the prim asset whose childs need to be processed """ stage = omni.usd.get_context().get_stage() fres = True for prim in stage.Traverse(): prim_path = prim.GetPath() if path_main_asset.lower() in str(prim_path).lower(): if prim.GetTypeName().lower() == "mesh" or prim.GetTypeName().lower() == "xform": res, _ = SetStaticColliderCommand.execute(str(prim.GetPath())) fres = res and fres return fres def process_semantics(parent_name: str, name_to_label: str = None): """ Processes the semantics of the world. In case the name_to_label is specified (not coming from Front3D), it will be set to the name_to_label param. parent_name: the prim path of the father. label: the eventual label to give to the set of assets """ for prim in omni.usd.get_context().get_stage().Traverse(): primpath = prim.GetPath() if parent_name.lower() in str(primpath).lower(): if prim.GetTypeName().lower() == "mesh" or prim.GetTypeName().lower() == "xform": if name_to_label == None: # tmp = prim.GetAttribute('userProperties:category_id') tmp = prim.GetAttribute('userProperties:semantic') if tmp.Get() != None: add_semantics(prim, str(tmp.Get())) else: add_semantics(prim, name_to_label) def randomize_and_fix_lights(config: dict, rng: np.random.default_rng, parent_name: str, z_lim, meters_per_unit, is_rtx: bool = False): """ Randomize the lights within an environment config: the configuration dict with the parameters and enabled/disabled config for intensity/color rng: global rng parent_name: parent whose childs need to be considered to change the lights """ stage = omni.usd.get_context().get_stage() if not (config["intensity"] or config["color"]): return min_int = config.get("intensity_interval", 0.0)[0] max_int = config.get("intensity_interval", 1.0)[1] for prim in stage.Traverse(): path = prim.GetPath() if parent_name.lower() in str(path).lower(): if "light" in prim.GetTypeName().lower(): if "environment" in str(path).lower(): continue if config["intensity"]: prim.GetAttribute('intensity').Set(rng.uniform(low=min_int, high=max_int)) if config["color"]: col = rng.random(size=3) prim.GetAttribute('color').Set(Gf.Vec3f(col[0], col[1], col[2])) if not is_rtx: prim.GetAttribute('diffuse').Set(4) prim.GetAttribute('specular').Set(4) # FIXME no actual check I'm not moving other stuff. but this should work based on the "existance" of segmentation info and that lights on its own does not have a translation attribute z_lamp = omni.usd.get_world_transform_matrix(prim)[3, 2] * meters_per_unit if z_lamp > z_lim - 0.08: diff = z_lamp - z_lim - 0.08 while not prim.HasAttribute('xformOp:translate'): prim = prim.GetParent() # while (not "semantic:Semantics:params:semanticData" in parent.GetPropertyNames()): # parent = parent.GetParent() p_lamp = prim.GetAttribute('xformOp:translate').Get() p_lamp[2] -= diff prim.GetAttribute('xformOp:translate').Set(p_lamp) # move the light if it is too high def randomize_roughness(config: dict, rng: np.random.default_rng, parent_name: str): """ Randomize the roughness (reflectivity) of assets within an environment config: the configuration dict with the parameters and enabled/disabled config for intensity/color rng: global rng parent_name: parent whose childs need to be considered to change the lights """ stage = omni.usd.get_context().get_stage() if not (config["enabled"]): return min_int = config.get("intensity_interval", 0.0)[0] max_int = config.get("intensity_interval", 1.0)[1] for prim in stage.Traverse(): path = prim.GetPath() if parent_name.lower() in str(path).lower(): if prim.GetTypeName().lower() == "material" or prim.GetTypeName().lower() == "shader": if "inputs:RoughnessMin" in prim.GetPropertyNames(): val = rng.uniform(low=min_int, high=max_int) prim.GetAttribute('inputs:RoughnessMin').Set(val) prim.GetAttribute('inputs:RoughnessMax').Set(val) def get_area(polygon): """ Computes the area of a polygon. """ x = polygon[:, 0] y = polygon[:, 1] return .5 * np.absolute(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) def change_prim_collision(enable, prim_path): for j in omni.usd.get_context().get_stage().Traverse(): if str(j.GetPath()).startswith(prim_path): if 'physics:collisionEnabled' in j.GetPropertyNames(): omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(str(j.GetPath())+'.physics:collisionEnabled'), value=enable, prev=None) def change_collision_at_path(enable, paths=['/my_robot_0/camera_link/Cube.physics:collisionEnabled','/my_robot_0/yaw_link/visuals.physics:collisionEnabled']): """ It enables or disables collisions for the paths :param enable: True or False """ for path in paths: omni.kit.commands.execute('ChangeProperty', prop_path=Sdf.Path(path), value=enable, prev=None) def add_translate_anim(prim_path: str, pos: Gf.Vec3d, time: float = 0.0): """ Add a goal location at a given timecode. The object will EVENTUALLY move there with a smooth movement. prim_path: the path of the asset to be moved pos: the final position time: the time in FRAME """ omni.kit.commands.execute('ChangePropertyCommand', prop_path=prim_path + '.xformOp:translate', value=pos, prev=Gf.Vec3d(0, 0, 0), type_to_create_if_not_exist=UsdGeom.XformOp.TypeTranslate, timecode=Usd.TimeCode(time)) def add_rotation_anim(prim_path: str, rot: list, time: float = 0.0, use_double=False): """ Add a goal rotation at a given timecode. The object will EVENTUALLY move there with a smooth movement. EXPECT ROT IN RAD! prim_path: the path of the asset to be moved rot: the final position time: the time in FRAME """ rot = np.array(rot) * 180 / np.pi quat = ( Gf.Rotation(Gf.Vec3d.XAxis(), rot[0]) * Gf.Rotation(Gf.Vec3d.YAxis(), rot[1]) * Gf.Rotation(Gf.Vec3d.ZAxis(), rot[2]) ) omni.kit.commands.execute('ChangePropertyCommand', prop_path=prim_path + ".xformOp:orient", value=Gf.Quatf(quat.GetQuat()) if not use_double else Gf.Quatd(quat.GetQuat()), prev=Gf.Quatf(0, 0, 0, 1) if not use_double else Gf.Quatd(0, 0, 0, 1), type_to_create_if_not_exist=UsdGeom.XformOp.TypeOrient, timecode=Usd.TimeCode(time)) def inf_helper(y: np.array): """Helper to handle indices and logical indices of NaNs. Input: - y, 1d numpy array with possible NaNs Output: - nans, logical indices of NaNs - index, a function, with signature indices= index(logical_indices), to convert logical indices of NaNs to 'equivalent' indices """ return np.isinf(y), lambda z: z.nonzero()[0] def position_object(environment, type: int, objects: list = [], ob_stl_paths: list = [], reset: bool = False, max_collisions: int = 200): """ type = 0 -> camera z_lim = [0.8 - 1.8] using camera stl type = 1 -> humans z_lim = [0 - 0] using human stl type = 2 -> shapenet z_lim = [0 - 1.8] using camera stl type = 3 -> origin z_lim = [0 - 0] using camera stl note: when min == max we apply a small offset to the max to address shifts in the z-axis to allow small collisions. However, the result will be still published at the wanted height. envionment: the environment object type: see above objects: the list of objects to be placed ob_stl_paths: the corresponding stls reset: if the collision checker need to be resetted forcefully """ # thih import will work if you compile our https://github.com/eliabntt/moveit_based_collision_checker_and_placement/tree/main # and you add the source catkin command to isaac_X_X/setup_python_env.sh from collision_check.srv import * if environment.env_stl_path == None: print( "No stl is being loaded for the environment, please pre-fix all objects locations or implement your own strategy") environment.env_stl_path = "" print("Wait for service") rospy.wait_for_service("/fake/collision_checker/check") print("Service loaded") try: check_collision = rospy.ServiceProxy("/fake/collision_checker/check", collision_check_srv) req = collision_check_srvRequest() req.env_stl_path = environment.env_stl_path req.env_polygon = environment.env_polygon req.reset = reset if type == 1: for ob in objects: req.ob_names.append(ob) req.ob_stl_paths = ob_stl_paths req.is_cam = True if type != 1 else False min_z = (0.8 + environment.env_limits[2]) if type == 0 else environment.env_limits[2] max_z = environment.env_limits[2] if (type == 1 or type == 3) else min(1.8 + environment.env_limits[2], environment.env_limits[5] - 0.5) if type == 4: min_z = environment.env_limits[2] max_z = environment.env_limits[2] has_forced_z = -1 if min_z == max_z: max_z += 0.5 has_forced_z = min_z req.min_limits = [environment.env_limits[0] + 0.5, environment.env_limits[1] + 0.5, min_z] req.max_limits = [environment.env_limits[3] - 0.5, environment.env_limits[4] - 0.5, max_z] req.limit_collision = 0 if type != 1 else max_collisions req.forced_z = has_forced_z res = check_collision.call(req) if has_forced_z != -1: res.z = [min(has_forced_z, z) for z in res.z] return np.array(res.x) - environment.shifts[0], np.array(res.y) - environment.shifts[1], np.array(res.z) - \ environment.shifts[2], res.yaw except rospy.ServiceException as e: print("Service call failed: %s" % e) return [-1] * len(objects), [-1] * len(objects), [-1] * len(objects), [0] * len(objects) def set_scale(prim: Prim, scale: float = 1.0): """ Set the scale of a Prim prim: the prim scale: the scale """ prop_names = prim.GetPropertyNames() if "xformOp:scale" not in prop_names: xformable = UsdGeom.Xformable(prim) xform_op_scale = xformable.AddXformOp(UsdGeom.XformOp.TypeScale, UsdGeom.XformOp.PrecisionDouble, "") else: xform_op_scale = UsdGeom.XformOp(prim.GetAttribute("xformOp:scale")) xform_op_scale.Set(Gf.Vec3d([scale, scale, scale])) def clear_properties(path: str): """ The function clears all the POSE properties of the given prim. This is to ensure a consistent way of setting those properties for different objects. This should be called with ALL loaded objects so that we have consistent xformOp:trans/Orient """ current_position, current_orientation = XFormPrim(path).get_world_pose() def set_translate(prim: Prim, new_loc: list): """ prim: must be prim type, the prim to be moved new_loc: list [x-y-z] for the single prim """ properties = prim.GetPropertyNames() if "xformOp:translate" in properties: translate_attr = prim.GetAttribute("xformOp:translate") translate_attr.Set(Gf.Vec3d(new_loc)) elif "xformOp:transform" in properties: transform_attr = prim.GetAttribute("xformOp:transform") matrix = prim.GetAttribute("xformOp:transform").Get() matrix.SetTranslateOnly(Gf.Vec3d(new_loc)) transform_attr.Set(matrix) else: xform = UsdGeom.Xformable(prim) xform_op = xform.AddXformOp(UsdGeom.XformOp.TypeTranslate, UsdGeom.XformOp.PrecisionDouble, "") xform_op.Set(Gf.Vec3d(new_loc)) def set_rotate(prim: XFormPrim, rot: list): """ expects rot in rad prim: The prim to be rotated rot: roll-pitch-yaw in RAD """ properties = prim.GetPropertyNames() rot = np.array(rot) * 180 / np.pi quat = ( Gf.Rotation(Gf.Vec3d.XAxis(), rot[0]) * Gf.Rotation(Gf.Vec3d.YAxis(), rot[1]) * Gf.Rotation(Gf.Vec3d.ZAxis(), rot[2]) ) if "xformOp:orient" in properties: rotation = prim.GetAttribute("xformOp:orient") rotation.Set(Gf.Quatd(quat.GetQuat())) else: xform = UsdGeom.Xformable(prim) xform_op = xform.AddXformOp(UsdGeom.XformOp.TypeOrient, UsdGeom.XformOp.PrecisionDouble, "") xform_op.Set(Gf.Quatd(quat.GetQuat())) def dynamic_control_interface(): """ This is placed here as the extension is not loaded in the main script. """ return _dynamic_control.acquire_dynamic_control_interface() def reload_references(path): """ It reloads all the references and payloads of a given prim :param path: The path to the prim you want to reload references for """ stage = omni.usd.get_context().get_stage() prim_list = [] for j in stage.GetPrimAtPath(path).GetAllChildren(): prim_list.append(j) layers = set() for prim in prim_list: for (ref, intro_layer) in omni.usd.get_composed_references_from_prim(prim): layer = Sdf.Find(intro_layer.ComputeAbsolutePath(ref.assetPath)) if ref.assetPath else None if layer: layers.add(layer) for (ref, intro_layer) in omni.usd.get_composed_payloads_from_prim(prim): layer = Sdf.Find(intro_layer.ComputeAbsolutePath(ref.assetPath)) if ref.assetPath else None if layer: layers.add(layer) for l in layers: l.Reload(force=True) def teleport(path, loc, rot): """ It teleports the object at the given path to the given location and rotation :param path: The path to the object you want to teleport :param loc: (x, y, z) :param rot: (x, y, z, w) """ omni.kit.commands.execute( "IsaacSimTeleportPrim", prim_path=path, translation=(loc[0], loc[1], loc[2]), rotation=(rot[0], rot[1], rot[2], rot[3]), ) def toggle_dynamic_objects(dynamic_prims: list, status: bool): """ It toggles the visibility of the dynamic objects in the scene :param dynamic_prims: a list of prims that you want to toggle :type dynamic_prims: list """ # print("Toggling environment...") for _ in range(3): for prim in dynamic_prims: imageable = UsdGeom.Imageable(prim) if status: imageable.MakeVisible() else: imageable.MakeInvisible() imageable = [] def reset_physics(timeline, simulation_context): timeline.stop() simulation_context.reset() timeline.play()
20,439
Python
39
191
0.658056
eliabntt/GRADE-RR/simulator/utils/simulation_utils.py
import time import utils.misc_utils from utils.misc_utils import * GRAPH_PATH = "/Render/PostProcess/SDGPipeline" def set_common_stage_properties(rate): """ Note: some properties as of now can only be set with the general environment USD file. """ _desired_render_settings: Dict[str, Union[bool, int]] = { "/app/asyncRendering": False, "/app/renderer/skipWhileMinimized": False, "/app/renderer/sleepMsOnFocus": 0, "/app/renderer/sleepMsOutOfFocus": 0, "/app/runLoops/main/rateLimitEnabled": True, "/app/runLoops/main/rateLimitFrequency": rate, "/persistent/simulation/minFrameRate": rate, "/app/runLoops/main/rateLimitUseBusyLoop": True, "/app/runLoops/rendering_0/rateLimitEnabled": True, "/app/viewport/showSettingMenu": True, "/app/viewport/showCameraMenu": True, "/app/viewport/showRendererMenu": True, "/app/viewport/showHideMenu": True, "/app/viewport/showLayerMenu": True, "/app/viewport/grid/showOrigin": False, "/app/viewport/grid/enabled": False, ## this does not work "/persistent/app/viewport/grid/lineWidth": 0, "/rtx/multiThreading/enabled": True, "/app/asyncRenderingLowLatency": False, # "/persistent/app/captureFrame/viewport": True, } for setting_key, desired_value in _desired_render_settings.items(): set_carb_setting(carb.settings.get_settings(), setting_key, desired_value) def simulation_environment_setup(need_ros = True): """ Enable the necessary extensions that will be used within the simulation """ enable_extension("omni.isaac.ros_bridge") enable_extension("omni.isaac.physics_inspector") enable_extension("omni.isaac.physics_utilities") enable_extension("omni.anim.skelJoint") enable_extension("omni.kit.window.sequencer") enable_extension("omni.isaac.dynamic_control") enable_extension("omni.isaac.shapenet") enable_extension("semantics.schema.editor") enable_extension("omni.hydra.iray") enable_extension("omni.iray.settings.core") enable_extension('omni.isaac.occupancy_map') enable_extension('omni.isaac.shapenet') enable_extension('omni.isaac.range_sensor') disable_extension('omni.isaac.sun_study') enable_extension('omni.isaac.core_nodes') enable_extension('omni.isaac.sensor') # Necessary ONLY if using NUCLEUS # Locate /Isaac folder on nucleus server to load sample from omni.isaac.core.utils.nucleus import get_assets_root_path nucleus_server = get_assets_root_path() if nucleus_server is None: carb.log_error("Could not find nucleus server with /Isaac folder, exiting") exit() if need_ros: if not rosgraph.is_master_online(): carb.log_error("Please run roscore before executing this script") exit() def set_raytracing_settings(physics_hz): set_common_stage_properties(physics_hz) settings = carb.settings.get_settings() settings.set("/app/hydraEngine/waitIdle", True) settings.set_string("/rtx/rendermode", "RayTracing") settings.set_int('/rtx/post/aa/op', 2) def set_pathtracing_settings(physics_hz): set_common_stage_properties(physics_hz) settings = carb.settings.get_settings() settings.set_string("/rtx/rendermode", "PathTracing") settings.set_int('/rtx/post/aa/op', 1) # settings.set_int('/rtx/multiThreading/enabled', True) # settings.set_bool('/rtx/multiThreading/enabled', True) settings.set_int('/rtx/post/histogram/filterType', 1) settings.set_int('/rtx/post/histogram/tau', 100) settings.set_float('/rtx/post/histogram/minEV', 2) settings.set_float('/rtx/post/histogram/maxEV', 50) settings.set_bool('/rtx/post/histogram/enabaled', True) settings.set_int('/rtx/post/tonemap/filmIso', 100) # 400 settings.set_int('/rtx/post/tonemap/cameraShutter', 30) settings.set_int('/rtx/post/tonemap/fStop', 4) settings.set_int("/rtx/pathtracing/maxBounces", 6) # 6 settings.set_int("/rtx/pathtracing/maxSpecularAndTransmissionBounces", 6) # settings.set_int("/rtx/pathtracing/maxDiffuseBounces", 10) settings.set_int("/rtx/pathtracing/spp", 1) settings.set_int("/rtx/pathtracing/totalSpp", 64) settings.set_int("/rtx/pathtracing/clampSpp", 64) settings.set_int("/rtx/pathtracing/cached/enabled", False) settings.set_bool("/rtx/pathtracing/cached/enabled", False) settings.set_int("/rtx/pathtracing/lightcache/cached/enabled", False) settings.set_bool("/rtx/pathtracing/lightcache/cached/enabled", False) settings.set("/app/hydraEngine/waitIdle", False) def compute_timeline_ratio(human_anim_len, reverse_strategy, experiment_length): """ based on the reverse strategy compute how the system should roll back animations This might be counter-productive in some instances """ if len(human_anim_len) == 0: return 1 if reverse_strategy == "avg": return float(experiment_length) / (sum(human_anim_len) / len(human_anim_len)) elif reverse_strategy == "min": return float(experiment_length) / min(human_anim_len) elif reverse_strategy == "max": return float(experiment_length) / max(human_anim_len) elif reverse_strategy == "half": return 2 elif reverse_strategy == "none": return 1 else: return 1 def pub_and_write_images(simulation_context, viewport_window_list, ros_camera_list, raytracing, my_recorder=None, enable_recorder=True): sleeping(simulation_context, viewport_window_list, raytracing) ctime = omni.timeline.get_timeline_interface().get_current_time() for i, cam, outs in ros_camera_list: print(f"Publishing camera {cam}...") for output in outs: og.Controller.attribute(output+ ".inputs:step").set(1) simulation_context.render() for i, cam, outs in ros_camera_list: for output in outs: og.Controller.attribute(output+ ".inputs:step").set(0) omni.timeline.get_timeline_interface().set_current_time(ctime) if my_recorder and my_recorder._enable_record and enable_recorder: my_recorder._update() print("Writing") def sleeping(simulation_context, viewport_window_list, raytracing, totalSpp=64, spp=1): """ Sleeps the simulation to be sure that the whole frame has been rendered and updated. First we render a couple of frames. In rtx mode we need to wait the fps of the viewport to be reached. In pathtracing mode we need to do "/rtx/pathtracing/spp" rendering steps. e.g. carb.settings.get_settings().get("/rtx/pathtracing/totalSpp") carb.settings.get_settings().get("/rtx/pathtracing/spp") """ # todo is there a better way? I don"t think so, this is variable # fixme making sure timeline does not advance timeline = omni.timeline.get_timeline_interface() mytime = timeline.get_current_time() if raytracing: sleep_time = 0 start = time.time() for _ in range(100): for vp in viewport_window_list: if vp.fps == 0: continue sleep_time = max(1 / vp.fps * 1.1, sleep_time) if sleep_time != 0 and time.time() - start > sleep_time * 2: # overly cautious break simulation_context.render() timeline.set_current_time(mytime) else: cnt = totalSpp increase = spp while cnt >= 0: simulation_context.render() timeline.set_current_time(mytime) cnt -= increase simulation_context.render() timeline.set_current_time(mytime) simulation_context.render() timeline.set_current_time(mytime) time.sleep(0.2) def recorder_setup(_recorder_settings, out_path, enabled, skip_cameras=1): my_recorder = extension_custom.MyRecorder() my_recorder.on_startup() my_recorder.set_single_settings(_recorder_settings) my_recorder._dir_name = os.path.join(out_path) my_recorder._enable_record = enabled my_recorder.skip_cameras = skip_cameras return my_recorder def setup_timeline(config): """ It sets up the timeline to have a start time of 0.0, an end time of the experiment length * 2, and a time code per second of the fps :param config: a dictionary of parameters that are used to configure the experiment :return: timeline """ timeline = omni.timeline.get_timeline_interface() timeline.set_start_time(0.0) if "fps" not in config: fps = 30 else: fps = config['fps'].get() if "experiment_length" in config: timeline.set_end_time(config["experiment_length"].get() * 2 / fps) # *2 to have room else: print("No experiment length found, setting it to 3600") timeline.set_end_time(3600 / fps) timeline.set_time_codes_per_second(fps) return timeline
8,162
Python
35.936651
136
0.735849
eliabntt/GRADE-RR/simulator/utils/human_utils.py
import utils.misc_utils from utils.misc_utils import * def move_humans_to_ground(my_humans_heights: list, body_lists: list, frame: float, meters_per_unit: float, max_height: float): """ Function to keep the human at ground level (0 for now, but can be elaborated) my_human_heights: list of [animation_frames, [vertices, z_loc]]. For every frame of the animation, for every vertex, the z loc body_lists: Using to access the prim, list of prim paths frame: the simulation frame we are in (float or int will get a cast to int) meters_per_unit: meter per unit of distance in the simulation """ stage = omni.usd.get_context().get_stage() for index, height in enumerate(my_humans_heights): z_min = None if height is None: context = omni.usd.get_context() stage = context.get_stage() prim = stage.GetPrimAtPath(body_lists[index]) for i in prim.GetAllChildren(): if "armature" in str(i.GetPath()).lower(): prim = i for i in prim.GetAllChildren(): if "body" in str(i.GetPath()).lower(): prim = i for i in prim.GetAllChildren(): if "mesh" in str(i.GetPath()).lower(): prim = i l = prim.GetPropertyNames() if "points" in l: k = prim.GetAttribute("points").Get() if k is not None: k = np.array(k) z_min = min(k[:, 2]) else: z_min = min(height[int(min(max(frame - 1, 0), len(height) - 1))]) / meters_per_unit if z_min is None: continue if z_min < max_height: loc = stage.GetPrimAtPath(body_lists[index]).GetProperty('xformOp:translate').Get() loc = [loc[0], loc[1], loc[2] - z_min] set_translate(stage.GetPrimAtPath(body_lists[index]), loc) def load_human(human_base_prim_path, n, asset_path, dynamic_prims=[], added_prims=[], correct_texture_paths=False): """ Load the human based on the usd path and add it to the dynamic prims list Follow prim naming convention /human_base_prim_path+n Add also the semantic with the label "human" human_base_prim_path: the base path to which we add the n of the n-th human as per the prim path n: the number of the human asset_path: the path of the ussd of the human dynamic_prims: the list of dynamic prims in the world. Only the body, and the clothes will be added (not the armature) as separate objects added_prims: the list of the number of prims added to the world correct_texture_paths: if True, correct the texture paths to the correct path """ stage = omni.usd.get_context().get_stage() res, _ = omni.kit.commands.execute("CreateReferenceCommand", usd_context=omni.usd.get_context(), path_to=f"{human_base_prim_path}{n}", asset_path=asset_path, instanceable=False) cnt = 0 if res: for child in stage.GetPrimAtPath(f"{human_base_prim_path}{n}").GetAllChildren(): if "armature" in child.GetName().lower(): for sub_child in child.GetAllChildren(): if "armature" not in sub_child.GetName().lower(): dynamic_prims.append(sub_child) cnt += 1 added_prims.append(cnt) clear_properties(f"{human_base_prim_path}{n}") if correct_texture_paths: print("Correcting texture paths, you might want to change utils/misc_utils.py:correct_paths") correct_paths(f"{human_base_prim_path}{n}") else: print("Not correcting texture paths, you might want to check the textures") process_semantics(f"{human_base_prim_path}{n}", "human") else: raise Exception(f"Failed to load human {n} from {asset_path}")
3,553
Python
41.309523
139
0.663102
eliabntt/GRADE-RR/simulator/utils/objects_utils.py
import utils.misc_utils from utils.misc_utils import * mtl_created_list = [] def setup_shapenet(username, password, csv_location): global database shapenet.settings.ShapenetSettings() if not os.path.exists(csv_location): logged_in = shapenet.login.save_v1_csvs(username, password, csv_location) database = shapenet.globals.get_database() return database def load_object(rng=np.random.default_rng(), obj_name="shapenet", config=None, scale=1): if obj_name == "shapenet": return load_shapenet_object(rng, config, scale) elif obj_name == "google": return load_google_obj(rng, config, scale) def load_shapenet_object(rng=np.random.default_rng(), config=None, scale=1): """ It loads a random object from the ShapeNet database :param rng: a random number generator. If you don't have one, you can use np.random.default_rng() :param config: a dictionary of parameters that can be set by the user :param scale: The scale of the object, defaults to 1 (optional) :return: The path to the object and the synsetId and modelId of the object. """ global database scale /= 100 synsetId = rng.choice(list(database)) if config["synsetId"].get() == "random" else config["synsetId"].get() modelId = rng.choice(list(database[synsetId])) if config["modelId"].get() == "random" else config["modelId"].get() _settings = carb.settings.get_settings() prim = shapenet.shape.addShapePrim(_settings.get("/isaac/shapenet/omniverseServer"), synsetId, modelId, Gf.Vec3d(0, 0, 0), Gf.Rotation(Gf.Vec3d(1, 0, 0), 0), scale, True, True) if type(prim) == str: raise Exception(prim) return str(prim.GetPath()), [synsetId, modelId] def load_google_obj(rng=np.random.default_rng(), config=None, scale = 1): """ It loads a random Google 3D asset from the Google Scanned Object, converts it to USD, and then creates a reference to it in the current stage :param rng: a random number generator :param config: a dictionary of the config file :return: The prim path of the asset and the name of the asset """ google_obj_folder = config['google_obj_folder'].get() if config['google_obj_shortlist'].get() == "": asset = rng.choice(os.listdir(google_obj_folder)) else: with (open(config['google_obj_shortlist'].get(), 'r')) as f: asset = rng.choice(f.read().splitlines()) if not os.path.exists(f"{google_obj_folder}/exported_usd/{asset}/"): os.makedirs(f"{google_obj_folder}/exported_usd/{asset}/") usd_asset_path = f"{google_obj_folder}/exported_usd/{asset}/{asset}.usd" obj_asset_path = f"{google_obj_folder}/{asset}/meshes/model.obj" print(f"Converting {obj_asset_path} to {usd_asset_path}") if not os.path.exists(usd_asset_path): success = asyncio.new_event_loop().run_until_complete(convert_google_obj(obj_asset_path, usd_asset_path)) if not success: raise Exception("Failed to convert obj to usd") stage = omni.usd.get_context().get_stage() prim_path = str(stage.GetDefaultPrim().GetPath()) + "/" + asset insta_count = 0 prim_path_len = len(prim_path) while stage.GetPrimAtPath(prim_path): insta_count += 1 prim_path = f"{prim_path[:prim_path_len]}_{insta_count}" omni.kit.commands.execute('CreateReferenceCommand', usd_context=omni.usd.get_context(), path_to=prim_path, asset_path=usd_asset_path, instanceable=True) texture_list = os.listdir(f"{google_obj_folder}/{asset}/materials/textures")[0] # shader = UsdShade.Shader(stage.GetPrimAtPath(f"{prim_path}/Looks/material_0/material_0")) # shader.CreateInput("diffuse_texture", Sdf.ValueTypeNames.Asset) # omni.kit.commands.execute('ChangePropertyCommand', # prop_path=f'{prim_path}/Looks/material_0/material_0.inputs:diffuse_texture', # value=f"{google_obj_folder}/{asset}/materials/textures/{texture_list}", # prev=None) global mtl_created_list omni.kit.commands.execute( "CreateAndBindMdlMaterialFromLibrary", mdl_name="OmniPBR.mdl", mtl_name=f"{asset}", mtl_created_list=mtl_created_list, ) mtl_prim = stage.GetPrimAtPath(mtl_created_list[0]) omni.usd.create_material_input( mtl_prim, "diffuse_texture", "my-computer://" + texture_list, # my-computer seems necessary Sdf.ValueTypeNames.Asset, ) obj_shade = UsdShade.Material(mtl_prim) for child in stage.GetPrimAtPath(prim_path).GetAllChildren(): if child.GetTypeName().lower() == "xform": for subchild in child.GetAllChildren(): if subchild.GetTypeName().lower() == "mesh": UsdShade.MaterialBindingAPI(subchild).Bind(obj_shade, UsdShade.Tokens.strongerThanDescendants) set_scale(stage.GetPrimAtPath(prim_path), scale) return str(prim_path), asset async def convert_google_obj(in_path, out_path): """ It converts a Google 3D model to a format that can be used in Omni :param in_path: The path to the file you want to convert :param out_path: The path to the output file :return: A boolean value. """ import omni.kit.asset_converter as assetimport context = omni.kit.asset_converter.AssetConverterContext() converter_manager = omni.kit.asset_converter.get_instance() context.embed_textures = False task = converter_manager.create_converter_task(in_path, out_path, None, context) success = await task.wait_until_finished() return success def load_objects(config, environment, rng, dynamic_prims, scale): """ Load objects in the environment Config should contain `config["obstacles"]` with the various considered keys. In our case those are shapenet and google(scanned_objects) In config we define the # of objects for each class. If the import fails the system tries to load it from another class. For now we do not generate positions that are collision free, so the objects will go through obstacles/humans/camera. config: the config dictionary environment: the environment object rng: the global rng dynamic_prims: the list of dynamic prims that will be used in the main thread """ stage = omni.usd.get_context().get_stage() shapenet_obs = config["obstacles"]["shapenet"].get() google_obs = config["obstacles"]["google"].get() num_obstacles = shapenet_obs + google_obs loc = '' google_obs_used = [] shapenet_obs_used = [] meters_per_unit = environment.meters_per_unit if (num_obstacles > 0): print("Loading obstacles..") for n in range(num_obstacles): print("Loading obstacle {}".format(n)) # set random valid location, use "camera" x, y, z, yaw = position_object(environment, type=2) if google_obs > 0: ob_type = "google" google_obs -= 1 else: ob_type = "shapenet" if loc == '': loc = shapenet.globals.get_local_shape_loc() print("Location is {}".format(loc)) csv_location = loc + "/v1_csv/" database = setup_shapenet(config["shapenet_username"].get(), config["shapenet_password"].get(), csv_location) if database is None: print("Error loading database, resort to google") ob_type = "google" shapenet_obs -= 1 try: my_shape, shape_infos = load_object(rng, ob_type, config, scale) except: print("Error loading object, try with the other type") try: my_shape, shape_infos = load_object(rng, "google" if ob_type == "shapenet" else "shapenet", config, scale) except: print("Error loading object, giving up") continue google_obs_used.append(shape_infos) if ob_type == "google" else shapenet_obs_used.append(shape_infos) print(f"{my_shape} loaded.. pose and adding animation") clear_properties(my_shape) add_translate_anim(my_shape, Gf.Vec3d(x[0] / meters_per_unit, y[0] / meters_per_unit, z[0] / meters_per_unit)) add_rotation_anim(my_shape, Gf.Vec3d(rng.uniform(0, 2 * np.pi), rng.uniform(0, 2 * np.pi), rng.uniform(0, 2 * np.pi))) dynamic_prims.append(stage.GetPrimAtPath(my_shape)) num_keys = rng.choice(range(1, config["experiment_length"].get()), rng.integers(1, 10)).astype(float) num_keys.sort() for key in num_keys: key *= 1 x, y, z, yaw = position_object(environment, type=2) add_translate_anim(my_shape, Gf.Vec3d(x[0] / meters_per_unit, y[0] / meters_per_unit, z[0] / meters_per_unit), key) add_rotation_anim(my_shape, Gf.Vec3d(rng.uniform(0, 360), rng.uniform(0, 360), rng.uniform(0, 360)), key) if ob_type == "google": add_colliders(my_shape) add_semantics(stage.GetPrimAtPath(my_shape), ob_type) print("Loading obstacle complete") return google_obs_used, shapenet_obs_used
8,654
Python
40.018957
121
0.681303
eliabntt/GRADE-RR/irotate_specific/republish_tf.py
#!/usr/bin/env python import rospy import ipdb import random from tf2_msgs.msg import TFMessage import copy def callback(data, pub): data_to_pub = TFMessage() data_to_pub.transforms = copy.copy(data.transforms) cnt = 0 for i, d in enumerate(data.transforms): if "x_link" in d.child_frame_id or "y_link" in d.child_frame_id or "yaw_link" in d.child_frame_id or "base_link" in d.child_frame_id or "cameraholder_link" in d.child_frame_id: data_to_pub.transforms.pop(i - cnt) cnt += 1 pub.publish(data_to_pub) return def listener(): rospy.init_node('tf_republisher') pub = rospy.Publisher("tf", TFMessage, queue_size=1) rospy.Subscriber("/tf2", TFMessage, callback, callback_args=(pub)) rospy.spin() if __name__ == '__main__': listener()
816
Python
29.259258
187
0.650735
eliabntt/GRADE-RR/isaac_internals/exts/omni.isaac.synthetic_utils/PACKAGE-LICENSES/omni.isaac.synthetic_utils-LICENSE.md
Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. NVIDIA CORPORATION and its licensors retain all intellectual property and proprietary rights in and to this software, related documentation and any modifications thereto. Any use, reproduction, disclosure or distribution of this software and related documentation without an express license agreement from NVIDIA CORPORATION is strictly prohibited.
412
Markdown
57.999992
74
0.839806
eliabntt/GRADE-RR/isaac_internals/exts/omni.isaac.synthetic_utils/config/extension.toml
[core] reloadable = true order = 0 [package] version = "0.4.3" category = "Simulation" title = "Isaac Sim Synthetic Data Utilities" description = "Utility functions for generating synthetic data" authors = ["NVIDIA"] repository = "" keywords = ["isaac", "synthetic", "utils"] changelog = "docs/CHANGELOG.md" readme = "docs/README.md" icon = "data/icon.png" writeTarget.kit = true [dependencies] "omni.kit.uiapp" = {} "omni.syntheticdata" = {} "omni.kit.pip_archive" = {} # pulls in pillow "omni.isaac.core" = {} "omni.isaac.core_archive" = {} [[python.module]] name = "omni.isaac.synthetic_utils" [[python.module]] name = "omni.isaac.synthetic_utils.tests" [[test]] dependencies = [ "omni.hydra.rtx", # "omni.hydra.pxr", Can we run and pass with Storm ? "omni.kit.viewport.utility", "omni.kit.viewport.window", "omni.physx", "omni.kit.primitive.mesh", "omni.kit.material.library", ]
934
TOML
22.374999
96
0.6606
eliabntt/GRADE-RR/isaac_internals/exts/omni.isaac.synthetic_utils/omni/isaac/synthetic_utils/syntheticdata.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Helper class for obtaining groundtruth data from OmniKit. Support provided for RGB, Depth, Bounding Box (2D Tight, 2D Loose, 3D), segmentation (instance and semantic), and camera parameters. Typical usage example: kit = OmniKitHelper() # Start omniverse kit sd_helper = SyntheticDataHelper() gt = sd_helper.get_groundtruth(['rgb', 'depth', 'boundingBox2DTight'], viewport) """ import math import time import typing import asyncio import carb import omni import numpy as np import builtins from pxr import Usd class SyntheticDataHelper: def __init__(self): self.app = omni.kit.app.get_app_interface() ext_manager = self.app.get_extension_manager() ext_manager.set_extension_enabled("omni.syntheticdata", True) from omni.syntheticdata import sensors, helpers import omni.syntheticdata._syntheticdata as sd # Must be imported after getting app interface self.sd = sd self.sd_interface = self.sd.acquire_syntheticdata_interface() self.carb_settings = carb.settings.acquire_settings_interface() self.sensor_helper_lib = sensors self.generic_helper_lib = helpers self.sensor_helpers = { "rgb": sensors.get_rgb, "depth": sensors.get_distance_to_image_plane, "depthLinear": sensors.get_distance_to_camera, "instanceSegmentation": sensors.get_instance_segmentation, "semanticSegmentation": sensors.get_semantic_segmentation, "boundingBox2DTight": sensors.get_bounding_box_2d_tight, "boundingBox2DLoose": sensors.get_bounding_box_2d_loose, "boundingBox3D": sensors.get_bounding_box_3d, "motion-vector": sensors.get_motion_vector, "normals": sensors.get_normals, "camera": self.get_camera_params, "pose": self.get_pose, "occlusion": sensors.get_occlusion, } self.sensor_types = { "rgb": self.sd.SensorType.Rgb, "depth": self.sd.SensorType.DistanceToImagePlane, "depthLinear": self.sd.SensorType.DistanceToCamera, "instanceSegmentation": self.sd.SensorType.InstanceSegmentation, "semanticSegmentation": self.sd.SensorType.SemanticSegmentation, "boundingBox2DTight": self.sd.SensorType.BoundingBox2DTight, "boundingBox2DLoose": self.sd.SensorType.BoundingBox2DLoose, "boundingBox3D": self.sd.SensorType.BoundingBox3D, "occlusion": self.sd.SensorType.Occlusion, "motion-vector": self.sd.SensorType.MotionVector, "normals": self.sd.SensorType.Normal, } self.sensor_state = {s: False for s in list(self.sensor_helpers.keys())} def get_camera_params(self, viewport): """Get active camera intrinsic and extrinsic parameters. Returns: A dict of the active camera's parameters. pose (numpy.ndarray): camera position in world coordinates, fov (float): horizontal field of view in radians focal_length (float) horizontal_aperture (float) view_projection_matrix (numpy.ndarray(dtype=float64, shape=(4, 4))) resolution (dict): resolution as a dict with 'width' and 'height'. clipping_range (tuple(float, float)): Near and Far clipping values. """ stage = omni.usd.get_context().get_stage() prim = stage.GetPrimAtPath(viewport.get_active_camera()) prim_tf = omni.usd.get_world_transform_matrix(prim) current_time = omni.timeline.get_timeline_interface().get_current_time() view_params = self.generic_helper_lib.get_view_params(viewport) hfov = 2 * math.atan(view_params["horizontal_aperture"] / (2 * view_params["focal_length"])) vfov = prim.GetAttribute('verticalAperture').Get() view_proj_mat = self.generic_helper_lib.get_view_proj_mat(view_params) return { "pose": np.array(prim_tf), "hfov": hfov, "vfov": vfov, "ctime": current_time, "focal_length": view_params["focal_length"], "horizontal_aperture": view_params["horizontal_aperture"], "view_projection_matrix": view_proj_mat, "resolution": {"width": view_params["width"], "height": view_params["height"]}, "clipping_range": view_params["clipping_range"], } def get_pose(self): """Get pose of all objects with a semantic label. """ stage = omni.usd.get_context().get_stage() mappings = self.generic_helper_lib.get_instance_mappings() pose = [] timeline = omni.timeline.get_timeline_interface() time = timeline.get_current_time() * timeline.get_time_codes_per_seconds() time = Usd.TimeCode(time) for m in mappings: prim_path = m[1] prim = stage.GetPrimAtPath(prim_path) prim_tf = omni.usd.get_world_transform_matrix(prim, time) pose.append((str(prim_path), m[2], str(m[3]), np.array(prim_tf))) return pose def initialize(self, sensor_names, viewport_api): """Initialize sensors in the list provided. Args: viewport_api (Any): Viewport from which to retrieve/create sensor. sensor_types (list of omni.syntheticdata._syntheticdata.SensorType): List of sensor types to initialize. """ for sensor_name in sensor_names: if sensor_name != "camera" and sensor_name != "pose": self.sensor_helper_lib.enable_sensors(viewport_api, [self.sensor_types[sensor_name]]) if builtins.ISAAC_LAUNCHED_FROM_JUPYTER: data = [] while data == []: self.app.update() data = self.sensor_helpers[sensor_name](viewport_api) else: future = asyncio.ensure_future(self.sensor_helper_lib.next_sensor_data_async(viewport_api)) while not future.done(): self.app.update() self.app.update() async def initialize_async(self, sensor_names, viewport_api): """Initialize sensors in the list provided. Async version Args: viewport_api (Any): Viewport from which to retrieve/create sensor. sensor_types (list of omni.syntheticdata._syntheticdata.SensorType): List of sensor types to initialize. """ for sensor_name in sensor_names: if sensor_name != "camera" and sensor_name != "pose": await self.sensor_helper_lib.initialize_async(viewport_api, [self.sensor_types[sensor_name]]) await self.sensor_helper_lib.next_sensor_data_async(viewport_api) pass def get_groundtruth(self, sensor_names, viewport_api, verify_sensor_init=True, wait_for_sensor_data=0.1): """Get groundtruth from specified gt_sensors. Args: sensor_names (list): List of strings of sensor names. Valid sensors names: rgb, depth, instanceSegmentation, semanticSegmentation, boundingBox2DTight, boundingBox2DLoose, boundingBox3D, camera viewport_api (Any): Viewport from which to retrieve/create sensor. verify_sensor_init (bool): Additional check to verify creation and initialization of sensors. wait_for_sensor_data (float): Additional time to sleep before returning ground truth so are correctly filled. Default is 0.1 seconds Returns: Dict of sensor outputs """ if wait_for_sensor_data > 0: time.sleep(wait_for_sensor_data) # Create and initialize sensors if verify_sensor_init: loop = asyncio.get_event_loop() if loop and loop.is_running(): carb.log_warn("Set verify_sensor_init to false if running with asyncio") pass else: self.initialize(sensor_names, viewport_api) gt = {} sensor_state = {} # Process non-RT-only sensors for sensor in sensor_names: if sensor not in ["camera", "pose"]: if sensor == "instanceSegmentation": gt[sensor] = self.sensor_helpers[sensor](viewport_api, parsed=True, return_mapping=True) elif sensor == "boundingBox3D": gt[sensor] = self.sensor_helpers[sensor](viewport_api, parsed=True, return_corners=True) else: gt[sensor] = self.sensor_helpers[sensor](viewport_api) self.sensor_helper_lib.create_or_retrieve_sensor(viewport_api, self.sensor_types[sensor]) # sensors are always initialized after they are created sensor_state[sensor] = True elif sensor == "pose": sensor_state[sensor] = True gt[sensor] = self.sensor_helpers[sensor]() else: sensor_state[sensor] = True gt[sensor] = self.sensor_helpers[sensor](viewport_api) gt["state"] = sensor_state return gt def get_semantic_ids(self, semantic_data: list = [[]]) -> typing.List[int]: """Returns unique id's for a semantic image Args: semantic_data (list, optional): Semantic Image. Defaults to [[]]. Returns: typing.List[int]: List of unique semantic IDs in image """ return list(np.unique(semantic_data)) def get_semantic_id_map(self, semantic_labels: list = []) -> dict: """ Get map of semantic ID from label """ output = {} if len(semantic_labels) > 0: for label in semantic_labels: idx = self.sd_interface.get_semantic_segmentation_id_from_data("class", label) output[label] = idx return output def get_semantic_label_map(self, semantic_ids: list = []) -> dict: """ Get map of semantic label from ID """ output = {} if len(semantic_ids) > 0: for idx in semantic_ids: label = self.sd_interface.get_semantic_segmentation_data_from_id(idx) output[idx] = label return output def get_mapped_semantic_data( self, semantic_data: list = [[]], user_semantic_label_map: dict = {}, remap_using_base_class=False ) -> dict: """Map semantic segmentation data to IDs specified by user Usage: gt = get_groundtruth() user_semantic_label_map ={"cone":4, "cylinder":5, "cube":6} mapped_data = get_mapped_semantic_data(gt["semanticSegmentation"], user_semantic_label_map) Args: semantic_data (list, optional): Raw semantic image. Defaults to [[]]. user_semantic_label_map (dict, optional): Dictionary of label to id pairs. Defaults to {}. remap_using_base_class (bool, optional): If multiple class labels are found, use the topmost one. Defaults to False. Returns: dict: [description] """ semantic_data_np = np.array(semantic_data) unique_semantic_ids = list(np.unique(semantic_data_np)) unique_semantic_labels_map = self.get_semantic_label_map(unique_semantic_ids) for unique_id, unique_label in unique_semantic_labels_map.items(): label = unique_label if remap_using_base_class: label = unique_label.split(":")[-1] if label in user_semantic_label_map: semantic_data_np[np.where(semantic_data == unique_id)] = user_semantic_label_map[label] return semantic_data_np.tolist()
10,852
Python
37.214789
145
0.69084
eliabntt/GRADE-RR/isaac_internals/exts/omni.isaac.synthetic_utils/omni/isaac/synthetic_utils/visualization.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import struct import random import colorsys import numpy as np from PIL import Image, ImageDraw def random_colours(N, enable_random=True, num_channels=3): """ Generate random colors. Generate visually distinct colours by linearly spacing the hue channel in HSV space and then convert to RGB space. """ start = 0 if enable_random: random.seed(10) start = random.random() hues = [(start + i / N) % 1.0 for i in range(N)] colours = [list(colorsys.hsv_to_rgb(h, 0.9, 1.0)) for i, h in enumerate(hues)] if num_channels == 4: for color in colours: color.append(1.0) if enable_random: random.shuffle(colours) return colours def plot_boxes(ax, bboxes, labels=None, colours=None, label_size=10): import matplotlib.pyplot as plt if colours is None: colours = random_colours(len(bboxes)) if labels is None: labels = [""] * len(bboxes) for bb, label, colour in zip(bboxes, labels, colours): maxint = 2 ** (struct.Struct("i").size * 8 - 1) - 1 # if a bbox is not visible, do not draw if bb[0] != maxint and bb[1] != maxint: x = bb[0] y = bb[1] w = bb[2] - x h = bb[3] - y box = plt.Rectangle((x, y), w, h, fill=False, edgecolor=colour) ax.add_patch(box) if label: font = {"family": "sans-serif", "color": colour, "size": label_size} ax.text(bb[0], bb[1], label, fontdict=font) def colorize_depth(depth_image, width, height, num_channels=3): """ Colorizes depth data for visualization. Args: depth_image (numpy.ndarray): Depth data from the sensor. width (int): Width of the viewport. height (int): Height of the viewport. num_channels (int): Specify number of channels i.e. 3 or 4. """ colorized_image = np.zeros((height, width, num_channels)) depth_image[depth_image == 0.0] = 1e-5 depth_image = np.clip(depth_image, 0, 255) depth_image -= np.min(depth_image) depth_image /= np.max(depth_image) - np.min(depth_image) colorized_image[:, :, 0] = depth_image colorized_image[:, :, 1] = depth_image colorized_image[:, :, 2] = depth_image if num_channels == 4: colorized_image[:, :, 3] = 1 colorized_image = (colorized_image * 255).astype(int) return colorized_image def colorize_segmentation(segmentation_image, width, height, num_channels=3, num_colors=None): """ Colorizes segmentation data for visualization. Args: segmentation_image (numpy.ndarray): Segmentation data from the sensor. width (int): Width of the viewport. height (int): Height of the viewport. num_channels (int): Specify number of channels i.e. 3 or 4. num_colors (int): Specify number of colors for consistency across frames. """ segmentation_mappings = segmentation_image[:, :, 0] segmentation_list = np.unique(segmentation_mappings) if num_colors is None: num_colors = np.max(segmentation_list) + 1 color_pixels = random_colours(num_colors, True, num_channels) color_pixels = [[color_pixel[i] * 255 for i in range(num_channels)] for color_pixel in color_pixels] segmentation_masks = np.zeros((len(segmentation_list), *segmentation_mappings.shape), dtype=np.bool) index_list = [] for index, segmentation_id in enumerate(segmentation_list): segmentation_masks[index] = segmentation_mappings == segmentation_id index_list.append(segmentation_id) color_image = np.zeros((height, width, num_channels), dtype=np.uint8) for index, mask, colour in zip(index_list, segmentation_masks, color_pixels): color_image[mask] = color_pixels[index] if index > 0 else 0 return color_image def colorize_bboxes(bboxes_2d_data, bboxes_2d_rgb, num_channels=3): """ Colorizes 2D bounding box data for visualization. Args: bboxes_2d_data (numpy.ndarray): 2D bounding box data from the sensor. bboxes_2d_rgb (numpy.ndarray): RGB data from the sensor to embed bounding box. num_channels (int): Specify number of channels i.e. 3 or 4. """ semantic_id_list = [] bbox_2d_list = [] rgb_img = Image.fromarray(bboxes_2d_rgb) rgb_img_draw = ImageDraw.Draw(rgb_img) for bbox_2d in bboxes_2d_data: if bbox_2d[5] > 0: semantic_id_list.append(bbox_2d[1]) bbox_2d_list.append(bbox_2d) semantic_id_list_np = np.unique(np.array(semantic_id_list)) color_list = random_colours(len(semantic_id_list_np.tolist()), True, num_channels) for bbox_2d in bbox_2d_list: index = np.where(semantic_id_list_np == bbox_2d[1])[0][0] bbox_color = color_list[index] outline = (int(255 * bbox_color[0]), int(255 * bbox_color[1]), int(255 * bbox_color[2])) if num_channels == 4: outline = ( int(255 * bbox_color[0]), int(255 * bbox_color[1]), int(255 * bbox_color[2]), int(255 * bbox_color[3]), ) rgb_img_draw.rectangle([(bbox_2d[6], bbox_2d[7]), (bbox_2d[8], bbox_2d[9])], outline=outline, width=2) bboxes_2d_rgb = np.array(rgb_img) return bboxes_2d_rgb
5,785
Python
39.461538
110
0.626102
eliabntt/GRADE-RR/isaac_internals/exts/omni.isaac.synthetic_utils/omni/isaac/synthetic_utils/tests/test_synthetic_utils.py
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # # NOTE: # omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests # For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html from omni.isaac.core.utils.viewports import set_camera_view import omni.kit.test import omni.kit.commands import carb import carb.tokens import copy import os import asyncio import numpy as np from pxr import Gf, UsdGeom, UsdPhysics import random # Import extension python module we are testing with absolute import path, as if we are external user (other extension) from omni.isaac.synthetic_utils import SyntheticDataHelper from omni.isaac.synthetic_utils.writers import NumpyWriter from omni.isaac.synthetic_utils.writers import KittiWriter from omni.syntheticdata.tests.utils import add_semantics from omni.isaac.core.utils.physics import simulate_async from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.semantics import add_update_semantics from omni.isaac.core.utils.extensions import get_extension_path_from_name from omni.isaac.core.utils.stage import set_stage_up_axis from omni.isaac.core import PhysicsContext from omni.physx.scripts.physicsUtils import add_ground_plane from omni.kit.viewport.utility import get_active_viewport # Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test class TestSyntheticUtils(omni.kit.test.AsyncTestCase): # Before running each test async def setUp(self): await omni.usd.get_context().new_stage_async() await omni.kit.app.get_app().next_update_async() self._physics_rate = 60 set_stage_up_axis("z") PhysicsContext(physics_dt=1.0 / self._physics_rate) self._time_step = 1.0 / self._physics_rate carb.settings.get_settings().set_int("/app/runLoops/main/rateLimitFrequency", int(self._physics_rate)) carb.settings.get_settings().set_bool("/app/runLoops/main/rateLimitEnabled", True) carb.settings.get_settings().set_int("/persistent/simulation/minFrameRate", int(self._physics_rate)) carb.settings.get_settings().set("/app/asyncRendering", False) carb.settings.get_settings().set("/app/hydraEngine/waitIdle", True) carb.settings.get_settings().set("/rtx/hydra/enableSemanticSchema", True) await omni.kit.app.get_app().next_update_async() # Start Simulation and wait self._timeline = omni.timeline.get_timeline_interface() self._viewport_api = get_active_viewport() self._usd_context = omni.usd.get_context() self._sd_helper = SyntheticDataHelper() self._synthetic_utils_path = get_extension_path_from_name("omni.isaac.synthetic_utils") self._stage = self._usd_context.get_stage() self._camera_path = "/Camera" camera = self._stage.DefinePrim(self._camera_path, "Camera") self._viewport_api.set_active_camera(self._camera_path) pass # After running each test async def tearDown(self): await omni.kit.app.get_app().next_update_async() self._timeline.stop() while omni.usd.get_context().get_stage_loading_status()[2] > 0: print("tearDown, assets still loading, waiting to finish...") await omni.kit.app.get_app().next_update_async() await omni.kit.app.get_app().next_update_async() pass async def initialize_sensors(self): # Initialize syntheticdata sensors await omni.kit.app.get_app().next_update_async() await self._sd_helper.initialize_async( [ "rgb", "depth", "instanceSegmentation", "semanticSegmentation", "boundingBox2DTight", "boundingBox2DLoose", "boundingBox3D", ], self._viewport_api, ) await omni.kit.app.get_app().next_update_async() # Acquire a copy of the ground truth. def get_groundtruth(self): gt = self._sd_helper.get_groundtruth( [ "rgb", "depthLinear", "boundingBox2DTight", "boundingBox2DLoose", "instanceSegmentation", "semanticSegmentation", "boundingBox3D", "camera", "pose", ], self._viewport_api, verify_sensor_init=False, ) return copy.deepcopy(gt) async def load_robot_scene(self): assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") return robot_usd = assets_root_path + "/Isaac/Robots/Carter/carter_v1.usd" add_ground_plane(self._stage, "/physics/groundPlane", "Z", 1000.0, Gf.Vec3f(0.0, 0, -0.25), Gf.Vec3f(1.0)) # setup high-level robot prim self.prim = self._stage.DefinePrim("/robot", "Xform") self.prim.GetReferences().AddReference(robot_usd) add_semantics(self.prim, "robot") rot_mat = Gf.Matrix3d(Gf.Rotation((0, 0, 1), 90)) omni.kit.commands.execute( "TransformPrimCommand", path=self.prim.GetPath(), old_transform_matrix=None, new_transform_matrix=Gf.Matrix4d().SetRotate(rot_mat).SetTranslateOnly(Gf.Vec3d(0, -0.64, 0)), ) # setup scene camera set_camera_view([3.00, 3.0, 3.00], [0, -0.64, 0], self._camera_path, self._viewport_api) await self.initialize_sensors() # Unit test for sensor groundtruth async def test_groundtruth(self): await self.load_robot_scene() self._timeline.play() await omni.kit.app.get_app().next_update_async() await simulate_async(1.0) await omni.syntheticdata.sensors.next_sensor_data_async(self._viewport_api) gt = self.get_groundtruth() # Validate Depth groundtruth gt_depth = gt["depthLinear"] self.assertAlmostEqual(np.min(gt_depth), 5.11157, delta=0.1) self.assertAlmostEqual(np.max(gt_depth), 7.4313293, delta=0.1) # Validate 2D BBox groundtruth gt_bbox2d = gt["boundingBox2DTight"] self.assertEqual(len(gt_bbox2d), 1) self.assertAlmostEqual(gt_bbox2d[0][6], 432, delta=2) self.assertAlmostEqual(gt_bbox2d[0][7], 138, delta=2) self.assertAlmostEqual(gt_bbox2d[0][8], 844, delta=2) self.assertAlmostEqual(gt_bbox2d[0][9], 542, delta=2) # Validate semantic segmentation groundtruth - 0 (unlabeled) and 1 (robot) gt_semantic = gt["semanticSegmentation"] self.assertEqual(len(np.unique(gt_semantic)), 2) user_semantic_label_map = {"robot": 4, "cylinder": 5, "cube": 6} mapped_data = self._sd_helper.get_mapped_semantic_data(gt_semantic, user_semantic_label_map, True) unique_data = np.unique(mapped_data) self.assertEqual(unique_data[0], 0) self.assertEqual(unique_data[1], 4) # Validate 3D BBox groundtruth gt_bbox3d = gt["boundingBox3D"] self.assertEqual(len(gt_bbox3d), 1) self.assertAlmostEqual(gt_bbox3d[0][6], -0.43041847, delta=0.01) self.assertAlmostEqual(gt_bbox3d[0][7], -0.31312422, delta=0.01) self.assertAlmostEqual(gt_bbox3d[0][8], -0.25173292, delta=0.01) self.assertAlmostEqual(gt_bbox3d[0][9], 0.24220554, delta=0.01) self.assertAlmostEqual(gt_bbox3d[0][10], 0.3131649, delta=0.01) self.assertAlmostEqual(gt_bbox3d[0][11], 0.4119104, delta=0.01) # Validate camera groundtruth - position, fov, focal length, aperature gt_camera = gt["camera"] gt_camera_trans = gt_camera["pose"][3, :3] self.assertAlmostEqual(gt_camera_trans[0], 3.000, delta=0.001) self.assertAlmostEqual(gt_camera_trans[1], 3.000, delta=0.001) self.assertAlmostEqual(gt_camera_trans[2], 3.000, delta=0.001) self.assertEqual(gt_camera["resolution"]["width"], 1280) self.assertEqual(gt_camera["resolution"]["height"], 720) self.assertAlmostEqual(gt_camera["fov"], 0.4131223226073451, 1e-5) self.assertAlmostEqual(gt_camera["focal_length"], 50.0, 1e-5) self.assertAlmostEqual(gt_camera["horizontal_aperture"], 20.954999923706055, 1e-2) # Validate pose groundtruth - prim path, semantic label, position gt_pose = gt["pose"] self.assertEqual(len(gt_pose), 1) self.assertEqual(gt_pose[0][0], "/robot") self.assertEqual(gt_pose[0][2], "robot") gt_pose_trans = (gt_pose[0])[3][3, :3] self.assertAlmostEqual(gt_pose_trans[0], 0.0, delta=0.001) self.assertAlmostEqual(gt_pose_trans[1], -0.640, delta=0.001) self.assertAlmostEqual(gt_pose_trans[2], 0.0, delta=0.001) pass # Unit test for data writer async def test_writer(self): await self.load_robot_scene() self._timeline.play() await omni.kit.app.get_app().next_update_async() await simulate_async(1.0) await omni.kit.app.get_app().next_update_async() viewport_window = omni.kit.viewport.utility.get_active_viewport_window() # Setting up config for writer sensor_settings = {} sensor_settings_viewport = {"rgb": {"enabled": True}} viewport_name = viewport_window.title sensor_settings[viewport_name] = copy.deepcopy(sensor_settings_viewport) # Initialize data writer output_folder = os.getcwd() + "/output" data_writer = NumpyWriter(output_folder, 4, 100, sensor_settings) data_writer.start_threads() # Get rgb groundtruth gt = self._sd_helper.get_groundtruth(["rgb"], self._viewport_api, verify_sensor_init=False) # Write rgb groundtruth image_id = 1 groundtruth = {"METADATA": {"image_id": str(image_id), "viewport_name": viewport_name}, "DATA": {}} groundtruth["DATA"]["RGB"] = gt["rgb"] data_writer.q.put(groundtruth) # Validate output file output_file_path = os.path.join(output_folder, viewport_name, "rgb", str(image_id) + ".png") data_writer.stop_threads() await asyncio.sleep(0.1) self.assertEqual(os.path.isfile(output_file_path), True) pass # Unit test for data writer async def test_kitti_writer(self): await self.load_robot_scene() self._timeline.play() await omni.kit.app.get_app().next_update_async() await simulate_async(1.0) await omni.kit.app.get_app().next_update_async() viewport_window = omni.kit.viewport.utility.get_active_viewport_window() # Setting up config for writer sensor_settings = {} sensor_settings_viewport = {"rgb": {"enabled": True}} viewport_name = viewport_window.title sensor_settings[viewport_name] = copy.deepcopy(sensor_settings_viewport) # Initialize data writer output_folder_tight = os.getcwd() + "/kitti_tight" output_folder_loose = os.getcwd() + "/kitti_loose" data_writer_tight = KittiWriter( output_folder_tight, 4, 100, train_size=1, classes="robot", bbox_type="BBOX2DTIGHT" ) data_writer_tight.start_threads() data_writer_loose = KittiWriter( output_folder_loose, 4, 100, train_size=1, classes="robot", bbox_type="BBOX2DLOOSE" ) data_writer_loose.start_threads() # Get rgb groundtruth gt = self._sd_helper.get_groundtruth( ["rgb", "boundingBox2DTight", "boundingBox2DLoose"], self._viewport_api, verify_sensor_init=False ) # Write rgb groundtruth image_id = 0 groundtruth = { "METADATA": { "image_id": str(image_id), "viewport_name": viewport_name, "BBOX2DTIGHT": {}, "BBOX2DLOOSE": {}, }, "DATA": {}, } image = gt["rgb"] groundtruth["DATA"]["RGB"] = image groundtruth["DATA"]["BBOX2DTIGHT"] = gt["boundingBox2DTight"] groundtruth["METADATA"]["BBOX2DTIGHT"]["WIDTH"] = image.shape[1] groundtruth["METADATA"]["BBOX2DTIGHT"]["HEIGHT"] = image.shape[0] groundtruth["DATA"]["BBOX2DLOOSE"] = gt["boundingBox2DLoose"] groundtruth["METADATA"]["BBOX2DLOOSE"]["WIDTH"] = image.shape[1] groundtruth["METADATA"]["BBOX2DLOOSE"]["HEIGHT"] = image.shape[0] for f in range(2): groundtruth["METADATA"]["image_id"] = image_id data_writer_tight.q.put(copy.deepcopy(groundtruth)) data_writer_loose.q.put(copy.deepcopy(groundtruth)) image_id = image_id + 1 # Validate output file data_writer_tight.stop_threads() data_writer_loose.stop_threads() await asyncio.sleep(0.1) for output_folder in [output_folder_tight, output_folder_loose]: self.assertEqual(os.path.isfile(os.path.join(output_folder + "/training/image_2", str(0) + ".png")), True) self.assertEqual(os.path.isfile(os.path.join(output_folder + "/training/label_2", str(0) + ".txt")), True) self.assertEqual(os.path.isfile(os.path.join(output_folder + "/testing/image_2", str(1) + ".png")), True) pass # create a cube. async def add_cube(self, path, size, offset): cubeGeom = UsdGeom.Cube.Define(self._stage, path) cubePrim = self._stage.GetPrimAtPath(path) # use add_semantics to set its class to Cube add_semantics(cubePrim, "cube") cubeGeom.CreateSizeAttr(size) cubeGeom.ClearXformOpOrder() cubeGeom.AddTranslateOp().Set(offset) await omni.kit.app.get_app().next_update_async() UsdPhysics.CollisionAPI.Apply(cubePrim) return cubePrim, cubeGeom # create a scene with a cube. async def load_cube_scene(self): # ensure we are done with all of scene setup. await omni.kit.app.get_app().next_update_async() # check units meters_per_unit = UsdGeom.GetStageMetersPerUnit(self._stage) add_ground_plane(self._stage, "/physics/groundPlane", "Z", 1000.0, Gf.Vec3f(0.0, 0, -25), Gf.Vec3f(1.0)) # Add a cube at a "close" location self.cube_location = Gf.Vec3f(-300.0, 0.0, 50.0) self.cube, self.cube_geom = await self.add_cube("/World/Cube", 100.0, self.cube_location) # setup scene camera set_camera_view([1000, 1000, 1000], [0, 0, 0], self._camera_path, self._viewport_api) await self.initialize_sensors() # Unit test for sensor groundtruth async def frame_lag_test(self, move): # start the scene # wait for update move(Gf.Vec3f(random.random() * 100, random.random() * 100, random.random() * 100)) await omni.syntheticdata.sensors.next_sensor_data_async(self._viewport_api) # grab ground truth gt1 = self.get_groundtruth() # move the cube move(Gf.Vec3f(random.random() * 100, random.random() * 100, random.random() * 100)) # wait for update await omni.syntheticdata.sensors.next_sensor_data_async(self._viewport_api) # grab ground truth gt2 = self.get_groundtruth() await omni.syntheticdata.sensors.next_sensor_data_async(self._viewport_api) gt3 = self.get_groundtruth() # ensure segmentation is identical gt_seg1 = gt1["semanticSegmentation"] gt_seg2 = gt2["semanticSegmentation"] self.assertEqual(len(np.unique(gt_seg1)), len(np.unique(gt_seg2))) # the cube 3d bboxes should be different after update gt_box3d1 = gt1["boundingBox3D"] gt_box3d2 = gt2["boundingBox3D"] gt_box3d3 = gt3["boundingBox3D"] # check the list size self.assertEqual(len(gt_box3d1), len(gt_box3d2)) # check the corners, they should/must move to pass the test. self.assertNotEqual(gt_box3d1["corners"].tolist(), gt_box3d2["corners"].tolist()) # Should be no change between these two frames self.assertEqual(gt_box3d2["corners"].tolist(), gt_box3d3["corners"].tolist()) await omni.syntheticdata.sensors.next_sensor_data_async(self._viewport_api) # stop the scene pass # Test lag by executing a command async def test_oneframelag_kitcommand(self): await self.load_cube_scene() def set_prim_pose(location): omni.kit.commands.execute( "TransformPrimCommand", path=self.cube.GetPath(), old_transform_matrix=None, new_transform_matrix=Gf.Matrix4d() .SetRotate(Gf.Matrix3d(Gf.Rotation((0, 0, 1), 90))) .SetTranslateOnly(Gf.Vec3d(location)), ) for frame in range(50): await self.frame_lag_test(set_prim_pose) pass # Test lag using a USD prim. async def test_oneframelag_usdprim(self): await self.load_cube_scene() def set_prim_pose(location): properties = self.cube.GetPropertyNames() if "xformOp:translate" in properties: translate_attr = self.cube.GetAttribute("xformOp:translate") translate_attr.Set(location) for frame in range(50): await self.frame_lag_test(set_prim_pose) pass async def test_remap_semantics(self): set_camera_view([1000, 1000, 1000], [0, 0, 0], self._camera_path, self._viewport_api) usd_path = self._synthetic_utils_path + "/data/usd/tests/nested_semantics.usd" self.prim = self._stage.DefinePrim("/test_nested", "Xform") self.prim.GetReferences().AddReference(usd_path) await omni.kit.app.get_app().next_update_async() await self.initialize_sensors() gt = self.get_groundtruth() ids = self._sd_helper.get_semantic_ids(gt["semanticSegmentation"]) labels = self._sd_helper.get_semantic_label_map(ids) # make sure remapping with remap_using_base_class True should work even if we don't have nested classes mapped_id_a = self._sd_helper.get_semantic_ids( self._sd_helper.get_mapped_semantic_data( gt["semanticSegmentation"], {"red": 1, "green": 10, "blue": 100}, remap_using_base_class=True ) ) mapped_id_b = self._sd_helper.get_semantic_ids( self._sd_helper.get_mapped_semantic_data( gt["semanticSegmentation"], {"red": 1, "green": 10, "blue": 100}, remap_using_base_class=False ) ) # if labels aren't nested, they should remain the same unique_data_a = np.unique(mapped_id_a).tolist() unique_data_b = np.unique(mapped_id_b).tolist() self.assertListEqual(unique_data_a, unique_data_b) self.assertEqual(unique_data_a[0], 0) self.assertEqual(unique_data_a[1], 1) self.assertEqual(unique_data_a[2], 10) self.assertEqual(unique_data_a[3], 100) async def test_nested_semantics(self): set_camera_view([1000, 1000, 1000], [0, 0, 0], self._camera_path, self._viewport_api) usd_path = self._synthetic_utils_path + "/data/usd/tests/nested_semantics.usd" self.prim = self._stage.DefinePrim("/test_nested", "Xform") add_update_semantics(self.prim, "combined") self.prim.GetReferences().AddReference(usd_path) await omni.kit.app.get_app().next_update_async() await self.initialize_sensors() gt = self.get_groundtruth() ids = self._sd_helper.get_semantic_ids(gt["semanticSegmentation"]) labels = self._sd_helper.get_semantic_label_map(ids) mapped_id_a = self._sd_helper.get_semantic_ids( self._sd_helper.get_mapped_semantic_data( gt["semanticSegmentation"], {"combined": 99}, remap_using_base_class=True ) ) mapped_id_b = self._sd_helper.get_semantic_ids( self._sd_helper.get_mapped_semantic_data( gt["semanticSegmentation"], {"combined": 99}, remap_using_base_class=False ) ) unique_data_a = np.unique(mapped_id_a).tolist() unique_data_b = np.unique(mapped_id_b).tolist() self.assertEqual(unique_data_a[0], 0) self.assertEqual(unique_data_a[1], 99) # remap_using_base_class false should result in the mapping not changing self.assertEqual(unique_data_b[0], 0) self.assertEqual(unique_data_b[1], 1) self.assertEqual(unique_data_b[2], 2) self.assertEqual(unique_data_b[3], 3)
21,136
Python
43.876858
142
0.629731
eliabntt/GRADE-RR/isaac_internals/exts/omni.isaac.synthetic_utils/omni/isaac/synthetic_utils/writers/numpy.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Helper class for writing groundtruth data offline in numpy format. """ import copy import omni import os import numpy as np from PIL import Image from .base import BaseWriter from omni.isaac.core.utils.viewports import get_viewport_names class NumpyWriter(BaseWriter): def __init__(self, data_dir, num_worker_threads, max_queue_size=500, sensor_settings=None): BaseWriter.__init__(self, data_dir, num_worker_threads, max_queue_size) from omni.isaac.synthetic_utils import visualization self.visualization = visualization self.create_output_folders(sensor_settings) def worker(self): """Processes task from queue. Each tasks contains groundtruth data and metadata which is used to transform the output and write it to disk.""" while True: groundtruth = self.q.get() if groundtruth is None: break filename = groundtruth["METADATA"]["image_id"] viewport_name = groundtruth["METADATA"]["viewport_name"] for gt_type, data in groundtruth["DATA"].items(): if gt_type == "RGB": self.save_image(viewport_name, gt_type, data, filename) elif gt_type == "DEPTH": if groundtruth["METADATA"]["DEPTH"]["NPY"]: self.depth_folder = self.data_dir + "/" + str(viewport_name) + "/depth/" np.save(self.depth_folder + filename + ".npy", data) if groundtruth["METADATA"]["DEPTH"]["COLORIZE"]: self.save_image(viewport_name, gt_type, data, filename) elif gt_type == "DEPTHLINEAR": if groundtruth["METADATA"]["DEPTHLINEAR"]["NPY"]: self.depthLinear_folder = self.data_dir + "/" + str(viewport_name) + "/depthLinear/" np.save(self.depthLinear_folder + filename + ".npy", data) if groundtruth["METADATA"]["DEPTHLINEAR"]["COLORIZE"]: self.save_image(viewport_name, gt_type, data, filename) elif gt_type == "INSTANCE": self.save_segmentation( viewport_name, gt_type, data, filename, groundtruth["METADATA"]["INSTANCE"]["WIDTH"], groundtruth["METADATA"]["INSTANCE"]["HEIGHT"], groundtruth["METADATA"]["INSTANCE"]["COLORIZE"], groundtruth["METADATA"]["INSTANCE"]["MAPPINGS"], groundtruth["METADATA"]["INSTANCE"]["NPY"], ) elif gt_type == "SEMANTIC": self.save_segmentation( viewport_name, gt_type, data, filename, groundtruth["METADATA"]["SEMANTIC"]["WIDTH"], groundtruth["METADATA"]["SEMANTIC"]["HEIGHT"], groundtruth["METADATA"]["SEMANTIC"]["COLORIZE"], groundtruth["METADATA"]["SEMANTIC"]["MAPPINGS"], groundtruth["METADATA"]["SEMANTIC"]["NPY"], ) elif gt_type in ["BBOX2DTIGHT", "BBOX2DLOOSE"]: self.save_bbox( viewport_name, gt_type, data, filename, groundtruth["METADATA"][gt_type]["COLORIZE"], groundtruth["DATA"]["RGB"], groundtruth["METADATA"][gt_type]["NPY"], ) elif gt_type in ["BBOX3D"]: self.save_bbox( viewport_name, gt_type, data, filename, groundtruth["METADATA"][gt_type]["COLORIZE"], groundtruth["METADATA"]["BBOX3D_IMAGE"], groundtruth["METADATA"][gt_type]["NPY"], ) elif gt_type in ["MOTIONVECTOR"]: self.save_motion( viewport_name, gt_type, data, filename, groundtruth["METADATA"][gt_type]["COLORIZE"], groundtruth["DATA"]["RGB"], groundtruth["METADATA"][gt_type]["NPY"], ) elif gt_type == "CAMERA": self.camera_folder = self.data_dir + "/" + str(viewport_name) + "/camera/" np.save(self.camera_folder + filename + ".npy", data) elif gt_type == "POSES": self.poses_folder = self.data_dir + "/" + str(viewport_name) + "/poses/" np.save(self.poses_folder + filename + ".npy", data) elif gt_type == "NORMALS": self.normals_folder = self.data_dir + "/" + str(viewport_name) + "/normals/" np.save(self.normals_folder + filename + ".npy", data) else: raise NotImplementedError self.q.task_done() def save_motion( self, viewport_name, data_type, data, filename, width=1280, height=720, display_rgb=True, save_npy=True ): self.motion_folder = self.data_dir + "/" + str(viewport_name) + "/motion-vector/" if save_npy: np.save(self.motion_folder + filename + ".npy", data) def save_segmentation( self, viewport_name, data_type, data, filename, width=1280, height=720, display_rgb=True, mappings=True, save_npy=True): self.instance_folder = self.data_dir + "/" + str(viewport_name) + "/instance/" self.semantic_folder = self.data_dir + "/" + str(viewport_name) + "/semantic/" # Save ground truth data locally as npy if not mappings: data = data[0] if data_type == "INSTANCE" and save_npy: np.save(self.instance_folder + filename + ".npy", data) if data_type == "SEMANTIC" and save_npy: np.save(self.semantic_folder + filename + ".npy", data) if mappings: data = data[0] if display_rgb: image_data = np.frombuffer(data, dtype=np.uint8).reshape(*data.shape, -1) num_colors = 50 if data_type == "SEMANTIC" else None color_image = self.visualization.colorize_segmentation(image_data, width, height, 3, num_colors) # color_image = visualize.colorize_instance(image_data) color_image_rgb = Image.fromarray(color_image, "RGB") if data_type == "INSTANCE": color_image_rgb.save(f"{self.instance_folder}/{filename}.png") if data_type == "SEMANTIC": color_image_rgb.save(f"{self.semantic_folder}/{filename}.png") def save_image(self, viewport_name, img_type, image_data, filename): self.rgb_folder = self.data_dir + "/" + str(viewport_name) + "/rgb/" self.depth_folder = self.data_dir + "/" + str(viewport_name) + "/depth/" self.depthLinear_folder = self.data_dir + "/" + str(viewport_name) + "/depthLinear/" if img_type == "RGB": # Save ground truth data locally as png rgb_img = Image.fromarray(image_data, "RGBA") rgb_img.save(f"{self.rgb_folder}/{filename}.png") elif img_type == "DEPTH" or img_type == "DEPTHLINEAR": # Convert linear depth to inverse depth for better visualization image_data = image_data * 100 # Save ground truth data locally as png image_data[image_data == 0.0] = 1e-5 image_data = np.clip(image_data, 0, 255) image_data -= np.min(image_data) if np.max(image_data) > 0: image_data /= np.max(image_data) depth_img = Image.fromarray((image_data * 255.0).astype(np.uint8)) if img_type == "DEPTH": depth_img.save(f"{self.depth_folder}/{filename}.png") if img_type == "DEPTHLINEAR": depth_img.save(f"{self.depthLinear_folder}/{filename}.png") def save_bbox(self, viewport_name, data_type, data, filename, display_rgb=True, rgb_data=None, save_npy=True): self.bbox_2d_tight_folder = self.data_dir + "/" + str(viewport_name) + "/bbox_2d_tight/" self.bbox_2d_loose_folder = self.data_dir + "/" + str(viewport_name) + "/bbox_2d_loose/" self.bbox_3d_folder = self.data_dir + "/" + str(viewport_name) + "/bbox_3d/" # Save ground truth data locally as npy if data_type == "BBOX2DTIGHT" and save_npy: np.save(self.bbox_2d_tight_folder + filename + ".npy", data) if data_type == "BBOX2DLOOSE" and save_npy: np.save(self.bbox_2d_loose_folder + filename + ".npy", data) if data_type == "BBOX3D" and save_npy: np.save(self.bbox_3d_folder + filename + ".npy", data) if display_rgb and rgb_data is not None: if "2D" in data_type: color_image = self.visualization.colorize_bboxes(data, rgb_data) color_image_rgb = Image.fromarray(color_image, "RGBA") if data_type == "BBOX2DTIGHT": color_image_rgb.save(f"{self.bbox_2d_tight_folder}/{filename}.png") if data_type == "BBOX2DLOOSE": color_image_rgb.save(f"{self.bbox_2d_loose_folder}/{filename}.png") if "3D" in data_type: rgb_img = Image.fromarray(rgb_data, "RGBA") rgb_img.save(f"{self.bbox_3d_folder}/{filename}.png") def create_output_folders(self, sensor_settings=None): """Checks if the sensor output folder corresponding to each viewport is created. If not, it creates them.""" if not os.path.exists(self.data_dir): os.mkdir(self.data_dir) if sensor_settings is None: sensor_settings = dict() viewport_names = get_viewport_names() sensor_settings_viewport = { "rgb": {"enabled": True}, "depth": {"enabled": True, "colorize": True, "npy": True}, "depthLinear": {"enabled": True, "colorize": True, "npy": True}, "instance": {"enabled": True, "colorize": True, "npy": True}, "semantic": {"enabled": True, "colorize": True, "npy": True}, "bbox_2d_tight": {"enabled": True, "colorize": True, "npy": True}, "bbox_2d_loose": {"enabled": True, "colorize": True, "npy": True}, "camera": {"enabled": True, "npy": True}, "poses": {"enabled": True, "npy": True}, "motion-vector": {"enabled": True, "npy": True, "colorize": True}, "bbox_3d": {"enabled": True, "npy": True, "colorize": True}, "normals": {"enabled": True, "npy": True, "colorize": True}, } for name in viewport_names: sensor_settings[name] = copy.deepcopy(sensor_settings_viewport) for viewport_name in sensor_settings: viewport_folder = self.data_dir + "/" + str(viewport_name) if not os.path.exists(viewport_folder): os.mkdir(viewport_folder) for sensor_name in sensor_settings[viewport_name]: if sensor_settings[viewport_name][sensor_name]["enabled"]: sensor_folder = self.data_dir + "/" + str(viewport_name) + "/" + str(sensor_name) if not os.path.exists(sensor_folder): os.mkdir(sensor_folder)
12,152
Python
51.83913
150
0.534398
eliabntt/GRADE-RR/isaac_internals/exts/omni.isaac.synthetic_utils/omni/isaac/synthetic_utils/writers/base.py
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Base class for writing groundtruth data offline. """ import atexit import queue import threading class BaseWriter: def __init__(self, data_dir, num_worker_threads, max_queue_size=500): atexit.register(self.stop_threads) # Threading for multiple scenes self.num_worker_threads = num_worker_threads # Initialize queue with a specified size self.q = queue.Queue(max_queue_size) self.data_dir = data_dir self.threads = [] def start_threads(self): """Start worker threads.""" for _ in range(self.num_worker_threads): t = threading.Thread(target=self.worker, daemon=True) t.start() self.threads.append(t) def stop_threads(self): """Waits for all tasks to be completed before stopping worker threads.""" print("Finish writing data...") # Block until all tasks are done self.q.join() print("Done.") def worker(self): """Processes task from queue. Each tasks contains groundtruth data and metadata which is used to transform the output and write it to disk.""" pass
1,581
Python
32.659574
150
0.679317