file_path
stringlengths 21
207
| content
stringlengths 5
1.02M
| size
int64 5
1.02M
| lang
stringclasses 9
values | avg_line_length
float64 1.33
100
| max_line_length
int64 4
993
| alphanum_fraction
float64 0.27
0.93
|
---|---|---|---|---|---|---|
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/__init__.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import traceback
try:
from .extension import RLExtension, get_instance
# import omniisaacgymenvs.tests
except Exception as e:
pass
# print(e)
# print(traceback.format_exc())
| 1,753 | Python | 46.405404 | 80 | 0.775242 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/envs/vec_env_rlgames_mt.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
import torch
from omni.isaac.gym.vec_env import TaskStopException, VecEnvMT
from .vec_env_rlgames import VecEnvRLGames
# VecEnv Wrapper for RL training
class VecEnvRLGamesMT(VecEnvRLGames, VecEnvMT):
def _parse_data(self, data):
self._obs = data["obs"]
self._rew = data["rew"].to(self._task.rl_device)
self._states = torch.clamp(data["states"], -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device)
self._resets = data["reset"].to(self._task.rl_device)
self._extras = data["extras"]
def step(self, actions):
if self._stop:
raise TaskStopException()
if self._task.randomize_actions:
actions = self._task._dr_randomizer.apply_actions_randomization(
actions=actions, reset_buf=self._task.reset_buf
)
actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device)
self.send_actions(actions)
data = self.get_data()
if self._task.randomize_observations:
self._obs = self._task._dr_randomizer.apply_observations_randomization(
observations=self._obs.to(self._task.rl_device), reset_buf=self._task.reset_buf
)
self._obs = torch.clamp(self._obs, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device)
obs_dict = {}
obs_dict["obs"] = self._obs
obs_dict["states"] = self._states
return obs_dict, self._rew, self._resets, self._extras
| 3,109 | Python | 42.194444 | 118 | 0.705693 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/envs/vec_env_rlgames.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from datetime import datetime
import numpy as np
import torch
from omni.isaac.gym.vec_env import VecEnvBase
# VecEnv Wrapper for RL training
class VecEnvRLGames(VecEnvBase):
def _process_data(self):
self._obs = torch.clamp(self._obs, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device)
self._rew = self._rew.to(self._task.rl_device)
self._states = torch.clamp(self._states, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device)
self._resets = self._resets.to(self._task.rl_device)
self._extras = self._extras
def set_task(self, task, backend="numpy", sim_params=None, init_sim=True, rendering_dt=1.0 / 60.0) -> None:
super().set_task(task, backend, sim_params, init_sim, rendering_dt)
self.num_states = self._task.num_states
self.state_space = self._task.state_space
def step(self, actions):
# only enable rendering when we are recording, or if the task already has it enabled
to_render = self._render
if self._record:
if not hasattr(self, "step_count"):
self.step_count = 0
if self.step_count % self._task.cfg["recording_interval"] == 0:
self.is_recording = True
self.record_length = 0
if self.is_recording:
self.record_length += 1
if self.record_length > self._task.cfg["recording_length"]:
self.is_recording = False
if self.is_recording:
to_render = True
else:
if (self._task.cfg["headless"] and not self._task.enable_cameras and not self._task.cfg["enable_livestream"]):
to_render = False
self.step_count += 1
if self._task.randomize_actions:
actions = self._task._dr_randomizer.apply_actions_randomization(
actions=actions, reset_buf=self._task.reset_buf
)
actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device)
self._task.pre_physics_step(actions)
if (self.sim_frame_count + self._task.control_frequency_inv) % self._task.rendering_interval == 0:
for _ in range(self._task.control_frequency_inv - 1):
self._world.step(render=False)
self.sim_frame_count += 1
self._world.step(render=to_render)
self.sim_frame_count += 1
else:
for _ in range(self._task.control_frequency_inv):
self._world.step(render=False)
self.sim_frame_count += 1
self._obs, self._rew, self._resets, self._extras = self._task.post_physics_step()
if self._task.randomize_observations:
self._obs = self._task._dr_randomizer.apply_observations_randomization(
observations=self._obs.to(device=self._task.rl_device), reset_buf=self._task.reset_buf
)
self._states = self._task.get_states()
self._process_data()
obs_dict = {"obs": self._obs, "states": self._states}
return obs_dict, self._rew, self._resets, self._extras
def reset(self, seed=None, options=None):
"""Resets the task and applies default zero actions to recompute observations and states."""
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f"[{now}] Running RL reset")
self._task.reset()
actions = torch.zeros((self.num_envs, self._task.num_actions), device=self._task.rl_device)
obs_dict, _, _, _ = self.step(actions)
return obs_dict
| 5,196 | Python | 43.801724 | 126 | 0.65127 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/allegro_hand.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import numpy as np
import torch
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.torch import *
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.robots.articulations.allegro_hand import AllegroHand
from omniisaacgymenvs.robots.articulations.views.allegro_hand_view import AllegroHandView
from omniisaacgymenvs.tasks.shared.in_hand_manipulation import InHandManipulationTask
class AllegroHandTask(InHandManipulationTask):
def __init__(self, name, sim_config, env, offset=None) -> None:
self.update_config(sim_config)
InHandManipulationTask.__init__(self, name=name, env=env)
return
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self.object_type = self._task_cfg["env"]["objectType"]
assert self.object_type in ["block"]
self.obs_type = self._task_cfg["env"]["observationType"]
if not (self.obs_type in ["full_no_vel", "full"]):
raise Exception("Unknown type of observations!\nobservationType should be one of: [full_no_vel, full]")
print("Obs type:", self.obs_type)
self.num_obs_dict = {
"full_no_vel": 50,
"full": 72,
}
self.object_scale = torch.tensor([1.0, 1.0, 1.0])
self._num_observations = self.num_obs_dict[self.obs_type]
self._num_actions = 16
self._num_states = 0
InHandManipulationTask.update_config(self)
def get_starting_positions(self):
self.hand_start_translation = torch.tensor([0.0, 0.0, 0.5], device=self.device)
self.hand_start_orientation = torch.tensor([0.257551, 0.283045, 0.683330, -0.621782], device=self.device)
self.pose_dy, self.pose_dz = -0.2, 0.06
def get_hand(self):
allegro_hand = AllegroHand(
prim_path=self.default_zero_env_path + "/allegro_hand",
name="allegro_hand",
translation=self.hand_start_translation,
orientation=self.hand_start_orientation,
)
self._sim_config.apply_articulation_settings(
"allegro_hand",
get_prim_at_path(allegro_hand.prim_path),
self._sim_config.parse_actor_config("allegro_hand"),
)
allegro_hand_prim = self._stage.GetPrimAtPath(allegro_hand.prim_path)
allegro_hand.set_allegro_hand_properties(stage=self._stage, allegro_hand_prim=allegro_hand_prim)
allegro_hand.set_motor_control_mode(
stage=self._stage, allegro_hand_path=self.default_zero_env_path + "/allegro_hand"
)
def get_hand_view(self, scene):
return AllegroHandView(prim_paths_expr="/World/envs/.*/allegro_hand", name="allegro_hand_view")
def get_observations(self):
self.get_object_goal_observations()
self.hand_dof_pos = self._hands.get_joint_positions(clone=False)
self.hand_dof_vel = self._hands.get_joint_velocities(clone=False)
if self.obs_type == "full_no_vel":
self.compute_full_observations(True)
elif self.obs_type == "full":
self.compute_full_observations()
else:
print("Unkown observations type!")
observations = {self._hands.name: {"obs_buf": self.obs_buf}}
return observations
def compute_full_observations(self, no_vel=False):
if no_vel:
self.obs_buf[:, 0 : self.num_hand_dofs] = unscale(
self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits
)
self.obs_buf[:, 16:19] = self.object_pos
self.obs_buf[:, 19:23] = self.object_rot
self.obs_buf[:, 23:26] = self.goal_pos
self.obs_buf[:, 26:30] = self.goal_rot
self.obs_buf[:, 30:34] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot))
self.obs_buf[:, 34:50] = self.actions
else:
self.obs_buf[:, 0 : self.num_hand_dofs] = unscale(
self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits
)
self.obs_buf[:, self.num_hand_dofs : 2 * self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel
self.obs_buf[:, 32:35] = self.object_pos
self.obs_buf[:, 35:39] = self.object_rot
self.obs_buf[:, 39:42] = self.object_linvel
self.obs_buf[:, 42:45] = self.vel_obs_scale * self.object_angvel
self.obs_buf[:, 45:48] = self.goal_pos
self.obs_buf[:, 48:52] = self.goal_rot
self.obs_buf[:, 52:56] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot))
self.obs_buf[:, 56:72] = self.actions
| 6,329 | Python | 42.655172 | 115 | 0.658872 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/ball_balance.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import numpy as np
import torch
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.objects import DynamicSphere
from omni.isaac.core.prims import RigidPrim, RigidPrimView
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import get_current_stage
from omni.isaac.core.utils.torch.maths import *
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.robots.articulations.balance_bot import BalanceBot
from pxr import PhysxSchema
class BallBalanceTask(RLTask):
def __init__(self, name, sim_config, env, offset=None) -> None:
self.update_config(sim_config)
self._num_observations = 12 + 12
self._num_actions = 3
self.anchored = False
RLTask.__init__(self, name, env)
return
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._env_spacing = self._task_cfg["env"]["envSpacing"]
self._dt = self._task_cfg["sim"]["dt"]
self._table_position = torch.tensor([0, 0, 0.56])
self._ball_position = torch.tensor([0.0, 0.0, 1.0])
self._ball_radius = 0.1
self._action_speed_scale = self._task_cfg["env"]["actionSpeedScale"]
self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"]
def set_up_scene(self, scene) -> None:
self.get_balance_table()
self.add_ball()
super().set_up_scene(scene, replicate_physics=False)
self.set_up_table_anchors()
self._balance_bots = ArticulationView(
prim_paths_expr="/World/envs/.*/BalanceBot/tray", name="balance_bot_view", reset_xform_properties=False
)
scene.add(self._balance_bots)
self._balls = RigidPrimView(
prim_paths_expr="/World/envs/.*/Ball/ball", name="ball_view", reset_xform_properties=False
)
scene.add(self._balls)
return
def initialize_views(self, scene):
super().initialize_views(scene)
if scene.object_exists("balance_bot_view"):
scene.remove_object("balance_bot_view", registry_only=True)
if scene.object_exists("ball_view"):
scene.remove_object("ball_view", registry_only=True)
self._balance_bots = ArticulationView(
prim_paths_expr="/World/envs/.*/BalanceBot/tray", name="balance_bot_view", reset_xform_properties=False
)
scene.add(self._balance_bots)
self._balls = RigidPrimView(
prim_paths_expr="/World/envs/.*/Ball/ball", name="ball_view", reset_xform_properties=False
)
scene.add(self._balls)
def get_balance_table(self):
balance_table = BalanceBot(
prim_path=self.default_zero_env_path + "/BalanceBot", name="BalanceBot", translation=self._table_position
)
self._sim_config.apply_articulation_settings(
"table", get_prim_at_path(balance_table.prim_path), self._sim_config.parse_actor_config("table")
)
def add_ball(self):
ball = DynamicSphere(
prim_path=self.default_zero_env_path + "/Ball/ball",
translation=self._ball_position,
name="ball_0",
radius=self._ball_radius,
color=torch.tensor([0.9, 0.6, 0.2]),
)
self._sim_config.apply_articulation_settings(
"ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball")
)
def set_up_table_anchors(self):
from pxr import Gf
height = 0.08
stage = get_current_stage()
for i in range(self._num_envs):
base_path = f"{self.default_base_env_path}/env_{i}/BalanceBot"
for j, leg_offset in enumerate([(0.4, 0, height), (-0.2, 0.34641, 0), (-0.2, -0.34641, 0)]):
# fix the legs to ground
leg_path = f"{base_path}/lower_leg{j}"
ground_joint_path = leg_path + "_ground"
env_pos = stage.GetPrimAtPath(f"{self.default_base_env_path}/env_{i}").GetAttribute("xformOp:translate").Get()
anchor_pos = env_pos + Gf.Vec3d(*leg_offset)
self.fix_to_ground(stage, ground_joint_path, leg_path, anchor_pos)
def fix_to_ground(self, stage, joint_path, prim_path, anchor_pos):
from pxr import UsdPhysics, Gf
# D6 fixed joint
d6FixedJoint = UsdPhysics.Joint.Define(stage, joint_path)
d6FixedJoint.CreateBody0Rel().SetTargets(["/World/defaultGroundPlane"])
d6FixedJoint.CreateBody1Rel().SetTargets([prim_path])
d6FixedJoint.CreateLocalPos0Attr().Set(anchor_pos)
d6FixedJoint.CreateLocalRot0Attr().Set(Gf.Quatf(1.0, Gf.Vec3f(0, 0, 0)))
d6FixedJoint.CreateLocalPos1Attr().Set(Gf.Vec3f(0, 0, 0.18))
d6FixedJoint.CreateLocalRot1Attr().Set(Gf.Quatf(1.0, Gf.Vec3f(0, 0, 0)))
# lock all DOF (lock - low is greater than high)
d6Prim = stage.GetPrimAtPath(joint_path)
limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transX")
limitAPI.CreateLowAttr(1.0)
limitAPI.CreateHighAttr(-1.0)
limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transY")
limitAPI.CreateLowAttr(1.0)
limitAPI.CreateHighAttr(-1.0)
limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transZ")
limitAPI.CreateLowAttr(1.0)
limitAPI.CreateHighAttr(-1.0)
def get_observations(self) -> dict:
ball_positions, ball_orientations = self._balls.get_world_poses(clone=False)
ball_positions = ball_positions[:, 0:3] - self._env_pos
ball_velocities = self._balls.get_velocities(clone=False)
ball_linvels = ball_velocities[:, 0:3]
ball_angvels = ball_velocities[:, 3:6]
dof_pos = self._balance_bots.get_joint_positions(clone=False)
dof_vel = self._balance_bots.get_joint_velocities(clone=False)
sensor_force_torques = self._balance_bots.get_measured_joint_forces(joint_indices=self._sensor_indices) # (num_envs, num_sensors, 6)
self.obs_buf[..., 0:3] = dof_pos[..., self.actuated_dof_indices]
self.obs_buf[..., 3:6] = dof_vel[..., self.actuated_dof_indices]
self.obs_buf[..., 6:9] = ball_positions
self.obs_buf[..., 9:12] = ball_linvels
self.obs_buf[..., 12:15] = sensor_force_torques[..., 0] / 20.0
self.obs_buf[..., 15:18] = sensor_force_torques[..., 3] / 20.0
self.obs_buf[..., 18:21] = sensor_force_torques[..., 4] / 20.0
self.obs_buf[..., 21:24] = sensor_force_torques[..., 5] / 20.0
self.ball_positions = ball_positions
self.ball_linvels = ball_linvels
observations = {"ball_balance": {"obs_buf": self.obs_buf}}
return observations
def pre_physics_step(self, actions) -> None:
if not self.world.is_playing():
return
reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(reset_env_ids) > 0:
self.reset_idx(reset_env_ids)
# update position targets from actions
self.dof_position_targets[..., self.actuated_dof_indices] += (
self._dt * self._action_speed_scale * actions.to(self.device)
)
self.dof_position_targets[:] = tensor_clamp(
self.dof_position_targets, self.bbot_dof_lower_limits, self.bbot_dof_upper_limits
)
# reset position targets for reset envs
self.dof_position_targets[reset_env_ids] = 0
self._balance_bots.set_joint_position_targets(self.dof_position_targets) # .clone())
def reset_idx(self, env_ids):
num_resets = len(env_ids)
env_ids_32 = env_ids.type(torch.int32)
env_ids_64 = env_ids.type(torch.int64)
min_d = 0.001 # min horizontal dist from origin
max_d = 0.4 # max horizontal dist from origin
min_height = 1.0
max_height = 2.0
min_horizontal_speed = 0
max_horizontal_speed = 2
dists = torch_rand_float(min_d, max_d, (num_resets, 1), self._device)
dirs = torch_random_dir_2((num_resets, 1), self._device)
hpos = dists * dirs
speedscales = (dists - min_d) / (max_d - min_d)
hspeeds = torch_rand_float(min_horizontal_speed, max_horizontal_speed, (num_resets, 1), self._device)
hvels = -speedscales * hspeeds * dirs
vspeeds = -torch_rand_float(5.0, 5.0, (num_resets, 1), self._device).squeeze()
ball_pos = self.initial_ball_pos.clone()
ball_rot = self.initial_ball_rot.clone()
# position
ball_pos[env_ids_64, 0:2] += hpos[..., 0:2]
ball_pos[env_ids_64, 2] += torch_rand_float(min_height, max_height, (num_resets, 1), self._device).squeeze()
# rotation
ball_rot[env_ids_64, 0] = 1
ball_rot[env_ids_64, 1:] = 0
ball_velocities = self.initial_ball_velocities.clone()
# linear
ball_velocities[env_ids_64, 0:2] = hvels[..., 0:2]
ball_velocities[env_ids_64, 2] = vspeeds
# angular
ball_velocities[env_ids_64, 3:6] = 0
# reset root state for bbots and balls in selected envs
self._balls.set_world_poses(ball_pos[env_ids_64], ball_rot[env_ids_64], indices=env_ids_32)
self._balls.set_velocities(ball_velocities[env_ids_64], indices=env_ids_32)
# reset root pose and velocity
self._balance_bots.set_world_poses(
self.initial_bot_pos[env_ids_64].clone(), self.initial_bot_rot[env_ids_64].clone(), indices=env_ids_32
)
self._balance_bots.set_velocities(self.initial_bot_velocities[env_ids_64].clone(), indices=env_ids_32)
# reset DOF states for bbots in selected envs
self._balance_bots.set_joint_positions(self.initial_dof_positions[env_ids_64].clone(), indices=env_ids_32)
# bookkeeping
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
def post_reset(self):
dof_limits = self._balance_bots.get_dof_limits()
self.bbot_dof_lower_limits, self.bbot_dof_upper_limits = torch.t(dof_limits[0].to(device=self._device))
self.initial_dof_positions = self._balance_bots.get_joint_positions()
self.initial_bot_pos, self.initial_bot_rot = self._balance_bots.get_world_poses()
# self.initial_bot_pos[..., 2] = 0.559 # tray_height
self.initial_bot_velocities = self._balance_bots.get_velocities()
self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses()
self.initial_ball_velocities = self._balls.get_velocities()
self.dof_position_targets = torch.zeros(
(self.num_envs, self._balance_bots.num_dof), dtype=torch.float32, device=self._device, requires_grad=False
)
actuated_joints = ["lower_leg0", "lower_leg1", "lower_leg2"]
self.actuated_dof_indices = torch.tensor(
[self._balance_bots._dof_indices[j] for j in actuated_joints], device=self._device, dtype=torch.long
)
force_links = ["upper_leg0", "upper_leg1", "upper_leg2"]
self._sensor_indices = torch.tensor(
[self._balance_bots._body_indices[j] for j in force_links], device=self._device, dtype=torch.long
)
def calculate_metrics(self) -> None:
ball_dist = torch.sqrt(
self.ball_positions[..., 0] * self.ball_positions[..., 0]
+ (self.ball_positions[..., 2] - 0.7) * (self.ball_positions[..., 2] - 0.7)
+ (self.ball_positions[..., 1]) * self.ball_positions[..., 1]
)
ball_speed = torch.sqrt(
self.ball_linvels[..., 0] * self.ball_linvels[..., 0]
+ self.ball_linvels[..., 1] * self.ball_linvels[..., 1]
+ self.ball_linvels[..., 2] * self.ball_linvels[..., 2]
)
pos_reward = 1.0 / (1.0 + ball_dist)
speed_reward = 1.0 / (1.0 + ball_speed)
self.rew_buf[:] = pos_reward * speed_reward
def is_done(self) -> None:
reset = torch.where(
self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf
)
reset = torch.where(
self.ball_positions[..., 2] < self._ball_radius * 1.5, torch.ones_like(self.reset_buf), reset
)
self.reset_buf[:] = reset
| 13,952 | Python | 44.15534 | 140 | 0.630447 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/cartpole_camera.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from gym import spaces
import numpy as np
import torch
import omni.usd
from pxr import UsdGeom
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import get_current_stage
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.tasks.cartpole import CartpoleTask
from omniisaacgymenvs.robots.articulations.cartpole import Cartpole
class CartpoleCameraTask(CartpoleTask):
def __init__(self, name, sim_config, env, offset=None) -> None:
self.update_config(sim_config)
self._max_episode_length = 500
self._num_observations = self.camera_width * self.camera_height * 3
self._num_actions = 1
# use multi-dimensional observation for camera RGB
self.observation_space = spaces.Box(
np.ones((self.camera_width, self.camera_height, 3), dtype=np.float32) * -np.Inf,
np.ones((self.camera_width, self.camera_height, 3), dtype=np.float32) * np.Inf)
RLTask.__init__(self, name, env)
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._env_spacing = self._task_cfg["env"]["envSpacing"]
self._cartpole_positions = torch.tensor([0.0, 0.0, 2.0])
self._reset_dist = self._task_cfg["env"]["resetDist"]
self._max_push_effort = self._task_cfg["env"]["maxEffort"]
self.camera_type = self._task_cfg["env"].get("cameraType", 'rgb')
self.camera_width = self._task_cfg["env"]["cameraWidth"]
self.camera_height = self._task_cfg["env"]["cameraHeight"]
self.camera_channels = 3
self._export_images = self._task_cfg["env"]["exportImages"]
def cleanup(self) -> None:
# initialize remaining buffers
RLTask.cleanup(self)
# override observation buffer for camera data
self.obs_buf = torch.zeros(
(self.num_envs, self.camera_width, self.camera_height, 3), device=self.device, dtype=torch.float)
def add_camera(self) -> None:
stage = get_current_stage()
camera_path = f"/World/envs/env_0/Camera"
camera_xform = stage.DefinePrim(f'{camera_path}_Xform', 'Xform')
# set up transforms for parent and camera prims
position = (-4.2, 0.0, 3.0)
rotation = (0, -6.1155, -180)
UsdGeom.Xformable(camera_xform).AddTranslateOp()
UsdGeom.Xformable(camera_xform).AddRotateXYZOp()
camera_xform.GetAttribute('xformOp:translate').Set(position)
camera_xform.GetAttribute('xformOp:rotateXYZ').Set(rotation)
camera = stage.DefinePrim(f'{camera_path}_Xform/Camera', 'Camera')
UsdGeom.Xformable(camera).AddRotateXYZOp()
camera.GetAttribute("xformOp:rotateXYZ").Set((90, 0, 90))
# set camera properties
camera.GetAttribute('focalLength').Set(24)
camera.GetAttribute('focusDistance').Set(400)
# hide other environments in the background
camera.GetAttribute("clippingRange").Set((0.01, 20.0))
def set_up_scene(self, scene) -> None:
self.get_cartpole()
self.add_camera()
RLTask.set_up_scene(self, scene)
# start replicator to capture image data
self.rep.orchestrator._orchestrator._is_started = True
# set up cameras
self.render_products = []
env_pos = self._env_pos.cpu()
camera_paths = [f"/World/envs/env_{i}/Camera_Xform/Camera" for i in range(self._num_envs)]
for i in range(self._num_envs):
render_product = self.rep.create.render_product(camera_paths[i], resolution=(self.camera_width, self.camera_height))
self.render_products.append(render_product)
# initialize pytorch writer for vectorized collection
self.pytorch_listener = self.PytorchListener()
self.pytorch_writer = self.rep.WriterRegistry.get("PytorchWriter")
self.pytorch_writer.initialize(listener=self.pytorch_listener, device="cuda")
self.pytorch_writer.attach(self.render_products)
self._cartpoles = ArticulationView(
prim_paths_expr="/World/envs/.*/Cartpole", name="cartpole_view", reset_xform_properties=False
)
scene.add(self._cartpoles)
return
def get_observations(self) -> dict:
dof_pos = self._cartpoles.get_joint_positions(clone=False)
dof_vel = self._cartpoles.get_joint_velocities(clone=False)
self.cart_pos = dof_pos[:, self._cart_dof_idx]
self.cart_vel = dof_vel[:, self._cart_dof_idx]
self.pole_pos = dof_pos[:, self._pole_dof_idx]
self.pole_vel = dof_vel[:, self._pole_dof_idx]
# retrieve RGB data from all render products
images = self.pytorch_listener.get_rgb_data()
if images is not None:
if self._export_images:
from torchvision.utils import save_image, make_grid
img = images/255
save_image(make_grid(img, nrows = 2), 'cartpole_export.png')
self.obs_buf = torch.swapaxes(images, 1, 3).clone().float()/255.0
else:
print("Image tensor is NONE!")
return self.obs_buf
| 6,899 | Python | 42.396226 | 128 | 0.674301 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/anymal_terrain.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import numpy as np
import torch
from omni.isaac.core.simulation_context import SimulationContext
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import get_current_stage
from omni.isaac.core.utils.torch.rotations import *
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.robots.articulations.anymal import Anymal
from omniisaacgymenvs.robots.articulations.views.anymal_view import AnymalView
from omniisaacgymenvs.tasks.utils.anymal_terrain_generator import *
from omniisaacgymenvs.utils.terrain_utils.terrain_utils import *
from pxr import UsdLux, UsdPhysics
class AnymalTerrainTask(RLTask):
def __init__(self, name, sim_config, env, offset=None) -> None:
self.height_samples = None
self.custom_origins = False
self.init_done = False
self._env_spacing = 0.0
self._num_observations = 188
self._num_actions = 12
self.update_config(sim_config)
RLTask.__init__(self, name, env)
self.height_points = self.init_height_points()
self.measured_heights = None
# joint positions offsets
self.default_dof_pos = torch.zeros(
(self.num_envs, 12), dtype=torch.float, device=self.device, requires_grad=False
)
# reward episode sums
torch_zeros = lambda: torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False)
self.episode_sums = {
"lin_vel_xy": torch_zeros(),
"lin_vel_z": torch_zeros(),
"ang_vel_z": torch_zeros(),
"ang_vel_xy": torch_zeros(),
"orient": torch_zeros(),
"torques": torch_zeros(),
"joint_acc": torch_zeros(),
"base_height": torch_zeros(),
"air_time": torch_zeros(),
"collision": torch_zeros(),
"stumble": torch_zeros(),
"action_rate": torch_zeros(),
"hip": torch_zeros(),
}
return
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
# normalization
self.lin_vel_scale = self._task_cfg["env"]["learn"]["linearVelocityScale"]
self.ang_vel_scale = self._task_cfg["env"]["learn"]["angularVelocityScale"]
self.dof_pos_scale = self._task_cfg["env"]["learn"]["dofPositionScale"]
self.dof_vel_scale = self._task_cfg["env"]["learn"]["dofVelocityScale"]
self.height_meas_scale = self._task_cfg["env"]["learn"]["heightMeasurementScale"]
self.action_scale = self._task_cfg["env"]["control"]["actionScale"]
# reward scales
self.rew_scales = {}
self.rew_scales["termination"] = self._task_cfg["env"]["learn"]["terminalReward"]
self.rew_scales["lin_vel_xy"] = self._task_cfg["env"]["learn"]["linearVelocityXYRewardScale"]
self.rew_scales["lin_vel_z"] = self._task_cfg["env"]["learn"]["linearVelocityZRewardScale"]
self.rew_scales["ang_vel_z"] = self._task_cfg["env"]["learn"]["angularVelocityZRewardScale"]
self.rew_scales["ang_vel_xy"] = self._task_cfg["env"]["learn"]["angularVelocityXYRewardScale"]
self.rew_scales["orient"] = self._task_cfg["env"]["learn"]["orientationRewardScale"]
self.rew_scales["torque"] = self._task_cfg["env"]["learn"]["torqueRewardScale"]
self.rew_scales["joint_acc"] = self._task_cfg["env"]["learn"]["jointAccRewardScale"]
self.rew_scales["base_height"] = self._task_cfg["env"]["learn"]["baseHeightRewardScale"]
self.rew_scales["action_rate"] = self._task_cfg["env"]["learn"]["actionRateRewardScale"]
self.rew_scales["hip"] = self._task_cfg["env"]["learn"]["hipRewardScale"]
self.rew_scales["fallen_over"] = self._task_cfg["env"]["learn"]["fallenOverRewardScale"]
# command ranges
self.command_x_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_x"]
self.command_y_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_y"]
self.command_yaw_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["yaw"]
# base init state
pos = self._task_cfg["env"]["baseInitState"]["pos"]
rot = self._task_cfg["env"]["baseInitState"]["rot"]
v_lin = self._task_cfg["env"]["baseInitState"]["vLinear"]
v_ang = self._task_cfg["env"]["baseInitState"]["vAngular"]
self.base_init_state = pos + rot + v_lin + v_ang
# default joint positions
self.named_default_joint_angles = self._task_cfg["env"]["defaultJointAngles"]
# other
self.decimation = self._task_cfg["env"]["control"]["decimation"]
self.dt = self.decimation * self._task_cfg["sim"]["dt"]
self.max_episode_length_s = self._task_cfg["env"]["learn"]["episodeLength_s"]
self.max_episode_length = int(self.max_episode_length_s / self.dt + 0.5)
self.push_interval = int(self._task_cfg["env"]["learn"]["pushInterval_s"] / self.dt + 0.5)
self.Kp = self._task_cfg["env"]["control"]["stiffness"]
self.Kd = self._task_cfg["env"]["control"]["damping"]
self.curriculum = self._task_cfg["env"]["terrain"]["curriculum"]
self.base_threshold = 0.2
self.knee_threshold = 0.1
for key in self.rew_scales.keys():
self.rew_scales[key] *= self.dt
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._task_cfg["sim"]["default_physics_material"]["static_friction"] = self._task_cfg["env"]["terrain"][
"staticFriction"
]
self._task_cfg["sim"]["default_physics_material"]["dynamic_friction"] = self._task_cfg["env"]["terrain"][
"dynamicFriction"
]
self._task_cfg["sim"]["default_physics_material"]["restitution"] = self._task_cfg["env"]["terrain"][
"restitution"
]
self._task_cfg["sim"]["add_ground_plane"] = False
def _get_noise_scale_vec(self, cfg):
noise_vec = torch.zeros_like(self.obs_buf[0])
self.add_noise = self._task_cfg["env"]["learn"]["addNoise"]
noise_level = self._task_cfg["env"]["learn"]["noiseLevel"]
noise_vec[:3] = self._task_cfg["env"]["learn"]["linearVelocityNoise"] * noise_level * self.lin_vel_scale
noise_vec[3:6] = self._task_cfg["env"]["learn"]["angularVelocityNoise"] * noise_level * self.ang_vel_scale
noise_vec[6:9] = self._task_cfg["env"]["learn"]["gravityNoise"] * noise_level
noise_vec[9:12] = 0.0 # commands
noise_vec[12:24] = self._task_cfg["env"]["learn"]["dofPositionNoise"] * noise_level * self.dof_pos_scale
noise_vec[24:36] = self._task_cfg["env"]["learn"]["dofVelocityNoise"] * noise_level * self.dof_vel_scale
noise_vec[36:176] = (
self._task_cfg["env"]["learn"]["heightMeasurementNoise"] * noise_level * self.height_meas_scale
)
noise_vec[176:188] = 0.0 # previous actions
return noise_vec
def init_height_points(self):
# 1mx1.6m rectangle (without center line)
y = 0.1 * torch.tensor(
[-5, -4, -3, -2, -1, 1, 2, 3, 4, 5], device=self.device, requires_grad=False
) # 10-50cm on each side
x = 0.1 * torch.tensor(
[-8, -7, -6, -5, -4, -3, -2, 2, 3, 4, 5, 6, 7, 8], device=self.device, requires_grad=False
) # 20-80cm on each side
grid_x, grid_y = torch.meshgrid(x, y, indexing='ij')
self.num_height_points = grid_x.numel()
points = torch.zeros(self.num_envs, self.num_height_points, 3, device=self.device, requires_grad=False)
points[:, :, 0] = grid_x.flatten()
points[:, :, 1] = grid_y.flatten()
return points
def _create_trimesh(self, create_mesh=True):
self.terrain = Terrain(self._task_cfg["env"]["terrain"], num_robots=self.num_envs)
vertices = self.terrain.vertices
triangles = self.terrain.triangles
position = torch.tensor([-self.terrain.border_size, -self.terrain.border_size, 0.0])
if create_mesh:
add_terrain_to_stage(stage=self._stage, vertices=vertices, triangles=triangles, position=position)
self.height_samples = (
torch.tensor(self.terrain.heightsamples).view(self.terrain.tot_rows, self.terrain.tot_cols).to(self.device)
)
def set_up_scene(self, scene) -> None:
self._stage = get_current_stage()
self.get_terrain()
self.get_anymal()
super().set_up_scene(scene, collision_filter_global_paths=["/World/terrain"])
self._anymals = AnymalView(
prim_paths_expr="/World/envs/.*/anymal", name="anymal_view", track_contact_forces=True
)
scene.add(self._anymals)
scene.add(self._anymals._knees)
scene.add(self._anymals._base)
def initialize_views(self, scene):
# initialize terrain variables even if we do not need to re-create the terrain mesh
self.get_terrain(create_mesh=False)
super().initialize_views(scene)
if scene.object_exists("anymal_view"):
scene.remove_object("anymal_view", registry_only=True)
if scene.object_exists("knees_view"):
scene.remove_object("knees_view", registry_only=True)
if scene.object_exists("base_view"):
scene.remove_object("base_view", registry_only=True)
self._anymals = AnymalView(
prim_paths_expr="/World/envs/.*/anymal", name="anymal_view", track_contact_forces=True
)
scene.add(self._anymals)
scene.add(self._anymals._knees)
scene.add(self._anymals._base)
def get_terrain(self, create_mesh=True):
self.env_origins = torch.zeros((self.num_envs, 3), device=self.device, requires_grad=False)
if not self.curriculum:
self._task_cfg["env"]["terrain"]["maxInitMapLevel"] = self._task_cfg["env"]["terrain"]["numLevels"] - 1
self.terrain_levels = torch.randint(
0, self._task_cfg["env"]["terrain"]["maxInitMapLevel"] + 1, (self.num_envs,), device=self.device
)
self.terrain_types = torch.randint(
0, self._task_cfg["env"]["terrain"]["numTerrains"], (self.num_envs,), device=self.device
)
self._create_trimesh(create_mesh=create_mesh)
self.terrain_origins = torch.from_numpy(self.terrain.env_origins).to(self.device).to(torch.float)
def get_anymal(self):
anymal_translation = torch.tensor([0.0, 0.0, 0.66])
anymal_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0])
anymal = Anymal(
prim_path=self.default_zero_env_path + "/anymal",
name="anymal",
translation=anymal_translation,
orientation=anymal_orientation,
)
self._sim_config.apply_articulation_settings(
"anymal", get_prim_at_path(anymal.prim_path), self._sim_config.parse_actor_config("anymal")
)
anymal.set_anymal_properties(self._stage, anymal.prim)
anymal.prepare_contacts(self._stage, anymal.prim)
self.dof_names = anymal.dof_names
for i in range(self.num_actions):
name = self.dof_names[i]
angle = self.named_default_joint_angles[name]
self.default_dof_pos[:, i] = angle
def post_reset(self):
self.base_init_state = torch.tensor(
self.base_init_state, dtype=torch.float, device=self.device, requires_grad=False
)
self.timeout_buf = torch.zeros(self.num_envs, device=self.device, dtype=torch.long)
# initialize some data used later on
self.up_axis_idx = 2
self.common_step_counter = 0
self.extras = {}
self.noise_scale_vec = self._get_noise_scale_vec(self._task_cfg)
self.commands = torch.zeros(
self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False
) # x vel, y vel, yaw vel, heading
self.commands_scale = torch.tensor(
[self.lin_vel_scale, self.lin_vel_scale, self.ang_vel_scale],
device=self.device,
requires_grad=False,
)
self.gravity_vec = torch.tensor(
get_axis_params(-1.0, self.up_axis_idx), dtype=torch.float, device=self.device
).repeat((self.num_envs, 1))
self.forward_vec = torch.tensor([1.0, 0.0, 0.0], dtype=torch.float, device=self.device).repeat(
(self.num_envs, 1)
)
self.torques = torch.zeros(
self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False
)
self.actions = torch.zeros(
self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False
)
self.last_actions = torch.zeros(
self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False
)
self.feet_air_time = torch.zeros(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False)
self.last_dof_vel = torch.zeros((self.num_envs, 12), dtype=torch.float, device=self.device, requires_grad=False)
for i in range(self.num_envs):
self.env_origins[i] = self.terrain_origins[self.terrain_levels[i], self.terrain_types[i]]
self.num_dof = self._anymals.num_dof
self.dof_pos = torch.zeros((self.num_envs, self.num_dof), dtype=torch.float, device=self.device)
self.dof_vel = torch.zeros((self.num_envs, self.num_dof), dtype=torch.float, device=self.device)
self.base_pos = torch.zeros((self.num_envs, 3), dtype=torch.float, device=self.device)
self.base_quat = torch.zeros((self.num_envs, 4), dtype=torch.float, device=self.device)
self.base_velocities = torch.zeros((self.num_envs, 6), dtype=torch.float, device=self.device)
self.knee_pos = torch.zeros((self.num_envs * 4, 3), dtype=torch.float, device=self.device)
self.knee_quat = torch.zeros((self.num_envs * 4, 4), dtype=torch.float, device=self.device)
indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device)
self.reset_idx(indices)
self.init_done = True
def reset_idx(self, env_ids):
indices = env_ids.to(dtype=torch.int32)
positions_offset = torch_rand_float(0.5, 1.5, (len(env_ids), self.num_dof), device=self.device)
velocities = torch_rand_float(-0.1, 0.1, (len(env_ids), self.num_dof), device=self.device)
self.dof_pos[env_ids] = self.default_dof_pos[env_ids] * positions_offset
self.dof_vel[env_ids] = velocities
self.update_terrain_level(env_ids)
self.base_pos[env_ids] = self.base_init_state[0:3]
self.base_pos[env_ids, 0:3] += self.env_origins[env_ids]
self.base_pos[env_ids, 0:2] += torch_rand_float(-0.5, 0.5, (len(env_ids), 2), device=self.device)
self.base_quat[env_ids] = self.base_init_state[3:7]
self.base_velocities[env_ids] = self.base_init_state[7:]
self._anymals.set_world_poses(
positions=self.base_pos[env_ids].clone(), orientations=self.base_quat[env_ids].clone(), indices=indices
)
self._anymals.set_velocities(velocities=self.base_velocities[env_ids].clone(), indices=indices)
self._anymals.set_joint_positions(positions=self.dof_pos[env_ids].clone(), indices=indices)
self._anymals.set_joint_velocities(velocities=self.dof_vel[env_ids].clone(), indices=indices)
self.commands[env_ids, 0] = torch_rand_float(
self.command_x_range[0], self.command_x_range[1], (len(env_ids), 1), device=self.device
).squeeze()
self.commands[env_ids, 1] = torch_rand_float(
self.command_y_range[0], self.command_y_range[1], (len(env_ids), 1), device=self.device
).squeeze()
self.commands[env_ids, 3] = torch_rand_float(
self.command_yaw_range[0], self.command_yaw_range[1], (len(env_ids), 1), device=self.device
).squeeze()
self.commands[env_ids] *= (torch.norm(self.commands[env_ids, :2], dim=1) > 0.25).unsqueeze(
1
) # set small commands to zero
self.last_actions[env_ids] = 0.0
self.last_dof_vel[env_ids] = 0.0
self.feet_air_time[env_ids] = 0.0
self.progress_buf[env_ids] = 0
self.reset_buf[env_ids] = 1
# fill extras
self.extras["episode"] = {}
for key in self.episode_sums.keys():
self.extras["episode"]["rew_" + key] = (
torch.mean(self.episode_sums[key][env_ids]) / self.max_episode_length_s
)
self.episode_sums[key][env_ids] = 0.0
self.extras["episode"]["terrain_level"] = torch.mean(self.terrain_levels.float())
def update_terrain_level(self, env_ids):
if not self.init_done or not self.curriculum:
# do not change on initial reset
return
root_pos, _ = self._anymals.get_world_poses(clone=False)
distance = torch.norm(root_pos[env_ids, :2] - self.env_origins[env_ids, :2], dim=1)
self.terrain_levels[env_ids] -= 1 * (
distance < torch.norm(self.commands[env_ids, :2]) * self.max_episode_length_s * 0.25
)
self.terrain_levels[env_ids] += 1 * (distance > self.terrain.env_length / 2)
self.terrain_levels[env_ids] = torch.clip(self.terrain_levels[env_ids], 0) % self.terrain.env_rows
self.env_origins[env_ids] = self.terrain_origins[self.terrain_levels[env_ids], self.terrain_types[env_ids]]
def refresh_dof_state_tensors(self):
self.dof_pos = self._anymals.get_joint_positions(clone=False)
self.dof_vel = self._anymals.get_joint_velocities(clone=False)
def refresh_body_state_tensors(self):
self.base_pos, self.base_quat = self._anymals.get_world_poses(clone=False)
self.base_velocities = self._anymals.get_velocities(clone=False)
self.knee_pos, self.knee_quat = self._anymals._knees.get_world_poses(clone=False)
def pre_physics_step(self, actions):
if not self.world.is_playing():
return
self.actions = actions.clone().to(self.device)
for i in range(self.decimation):
if self.world.is_playing():
torques = torch.clip(
self.Kp * (self.action_scale * self.actions + self.default_dof_pos - self.dof_pos)
- self.Kd * self.dof_vel,
-80.0,
80.0,
)
self._anymals.set_joint_efforts(torques)
self.torques = torques
SimulationContext.step(self.world, render=False)
self.refresh_dof_state_tensors()
def post_physics_step(self):
self.progress_buf[:] += 1
if self.world.is_playing():
self.refresh_dof_state_tensors()
self.refresh_body_state_tensors()
self.common_step_counter += 1
if self.common_step_counter % self.push_interval == 0:
self.push_robots()
# prepare quantities
self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 0:3])
self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 3:6])
self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec)
forward = quat_apply(self.base_quat, self.forward_vec)
heading = torch.atan2(forward[:, 1], forward[:, 0])
self.commands[:, 2] = torch.clip(0.5 * wrap_to_pi(self.commands[:, 3] - heading), -1.0, 1.0)
self.check_termination()
self.get_states()
self.calculate_metrics()
env_ids = self.reset_buf.nonzero(as_tuple=False).flatten()
if len(env_ids) > 0:
self.reset_idx(env_ids)
self.get_observations()
if self.add_noise:
self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec
self.last_actions[:] = self.actions[:]
self.last_dof_vel[:] = self.dof_vel[:]
return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
def push_robots(self):
self.base_velocities[:, 0:2] = torch_rand_float(
-1.0, 1.0, (self.num_envs, 2), device=self.device
) # lin vel x/y
self._anymals.set_velocities(self.base_velocities)
def check_termination(self):
self.timeout_buf = torch.where(
self.progress_buf >= self.max_episode_length - 1,
torch.ones_like(self.timeout_buf),
torch.zeros_like(self.timeout_buf),
)
knee_contact = (
torch.norm(self._anymals._knees.get_net_contact_forces(clone=False).view(self._num_envs, 4, 3), dim=-1)
> 1.0
)
self.has_fallen = (torch.norm(self._anymals._base.get_net_contact_forces(clone=False), dim=1) > 1.0) | (
torch.sum(knee_contact, dim=-1) > 1.0
)
self.reset_buf = self.has_fallen.clone()
self.reset_buf = torch.where(self.timeout_buf.bool(), torch.ones_like(self.reset_buf), self.reset_buf)
def calculate_metrics(self):
# velocity tracking reward
lin_vel_error = torch.sum(torch.square(self.commands[:, :2] - self.base_lin_vel[:, :2]), dim=1)
ang_vel_error = torch.square(self.commands[:, 2] - self.base_ang_vel[:, 2])
rew_lin_vel_xy = torch.exp(-lin_vel_error / 0.25) * self.rew_scales["lin_vel_xy"]
rew_ang_vel_z = torch.exp(-ang_vel_error / 0.25) * self.rew_scales["ang_vel_z"]
# other base velocity penalties
rew_lin_vel_z = torch.square(self.base_lin_vel[:, 2]) * self.rew_scales["lin_vel_z"]
rew_ang_vel_xy = torch.sum(torch.square(self.base_ang_vel[:, :2]), dim=1) * self.rew_scales["ang_vel_xy"]
# orientation penalty
rew_orient = torch.sum(torch.square(self.projected_gravity[:, :2]), dim=1) * self.rew_scales["orient"]
# base height penalty
rew_base_height = torch.square(self.base_pos[:, 2] - 0.52) * self.rew_scales["base_height"]
# torque penalty
rew_torque = torch.sum(torch.square(self.torques), dim=1) * self.rew_scales["torque"]
# joint acc penalty
rew_joint_acc = torch.sum(torch.square(self.last_dof_vel - self.dof_vel), dim=1) * self.rew_scales["joint_acc"]
# fallen over penalty
rew_fallen_over = self.has_fallen * self.rew_scales["fallen_over"]
# action rate penalty
rew_action_rate = (
torch.sum(torch.square(self.last_actions - self.actions), dim=1) * self.rew_scales["action_rate"]
)
# cosmetic penalty for hip motion
rew_hip = (
torch.sum(torch.abs(self.dof_pos[:, 0:4] - self.default_dof_pos[:, 0:4]), dim=1) * self.rew_scales["hip"]
)
# total reward
self.rew_buf = (
rew_lin_vel_xy
+ rew_ang_vel_z
+ rew_lin_vel_z
+ rew_ang_vel_xy
+ rew_orient
+ rew_base_height
+ rew_torque
+ rew_joint_acc
+ rew_action_rate
+ rew_hip
+ rew_fallen_over
)
self.rew_buf = torch.clip(self.rew_buf, min=0.0, max=None)
# add termination reward
self.rew_buf += self.rew_scales["termination"] * self.reset_buf * ~self.timeout_buf
# log episode reward sums
self.episode_sums["lin_vel_xy"] += rew_lin_vel_xy
self.episode_sums["ang_vel_z"] += rew_ang_vel_z
self.episode_sums["lin_vel_z"] += rew_lin_vel_z
self.episode_sums["ang_vel_xy"] += rew_ang_vel_xy
self.episode_sums["orient"] += rew_orient
self.episode_sums["torques"] += rew_torque
self.episode_sums["joint_acc"] += rew_joint_acc
self.episode_sums["action_rate"] += rew_action_rate
self.episode_sums["base_height"] += rew_base_height
self.episode_sums["hip"] += rew_hip
def get_observations(self):
self.measured_heights = self.get_heights()
heights = (
torch.clip(self.base_pos[:, 2].unsqueeze(1) - 0.5 - self.measured_heights, -1, 1.0) * self.height_meas_scale
)
self.obs_buf = torch.cat(
(
self.base_lin_vel * self.lin_vel_scale,
self.base_ang_vel * self.ang_vel_scale,
self.projected_gravity,
self.commands[:, :3] * self.commands_scale,
self.dof_pos * self.dof_pos_scale,
self.dof_vel * self.dof_vel_scale,
heights,
self.actions,
),
dim=-1,
)
def get_ground_heights_below_knees(self):
points = self.knee_pos.reshape(self.num_envs, 4, 3)
points += self.terrain.border_size
points = (points / self.terrain.horizontal_scale).long()
px = points[:, :, 0].view(-1)
py = points[:, :, 1].view(-1)
px = torch.clip(px, 0, self.height_samples.shape[0] - 2)
py = torch.clip(py, 0, self.height_samples.shape[1] - 2)
heights1 = self.height_samples[px, py]
heights2 = self.height_samples[px + 1, py + 1]
heights = torch.min(heights1, heights2)
return heights.view(self.num_envs, -1) * self.terrain.vertical_scale
def get_ground_heights_below_base(self):
points = self.base_pos.reshape(self.num_envs, 1, 3)
points += self.terrain.border_size
points = (points / self.terrain.horizontal_scale).long()
px = points[:, :, 0].view(-1)
py = points[:, :, 1].view(-1)
px = torch.clip(px, 0, self.height_samples.shape[0] - 2)
py = torch.clip(py, 0, self.height_samples.shape[1] - 2)
heights1 = self.height_samples[px, py]
heights2 = self.height_samples[px + 1, py + 1]
heights = torch.min(heights1, heights2)
return heights.view(self.num_envs, -1) * self.terrain.vertical_scale
def get_heights(self, env_ids=None):
if env_ids:
points = quat_apply_yaw(
self.base_quat[env_ids].repeat(1, self.num_height_points), self.height_points[env_ids]
) + (self.base_pos[env_ids, 0:3]).unsqueeze(1)
else:
points = quat_apply_yaw(self.base_quat.repeat(1, self.num_height_points), self.height_points) + (
self.base_pos[:, 0:3]
).unsqueeze(1)
points += self.terrain.border_size
points = (points / self.terrain.horizontal_scale).long()
px = points[:, :, 0].view(-1)
py = points[:, :, 1].view(-1)
px = torch.clip(px, 0, self.height_samples.shape[0] - 2)
py = torch.clip(py, 0, self.height_samples.shape[1] - 2)
heights1 = self.height_samples[px, py]
heights2 = self.height_samples[px + 1, py + 1]
heights = torch.min(heights1, heights2)
return heights.view(self.num_envs, -1) * self.terrain.vertical_scale
@torch.jit.script
def quat_apply_yaw(quat, vec):
quat_yaw = quat.clone().view(-1, 4)
quat_yaw[:, 1:3] = 0.0
quat_yaw = normalize(quat_yaw)
return quat_apply(quat_yaw, vec)
@torch.jit.script
def wrap_to_pi(angles):
angles %= 2 * np.pi
angles -= 2 * np.pi * (angles > np.pi)
return angles
def get_axis_params(value, axis_idx, x_value=0.0, dtype=float, n_dims=3):
"""construct arguments to `Vec` according to axis index."""
zs = np.zeros((n_dims,))
assert axis_idx < n_dims, "the axis dim should be within the vector dimensions"
zs[axis_idx] = 1.0
params = np.where(zs == 1.0, value, zs)
params[0] = x_value
return list(params.astype(dtype))
| 29,313 | Python | 45.530159 | 120 | 0.609218 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/shadow_hand.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import numpy as np
import torch
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.torch import *
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.robots.articulations.shadow_hand import ShadowHand
from omniisaacgymenvs.robots.articulations.views.shadow_hand_view import ShadowHandView
from omniisaacgymenvs.tasks.shared.in_hand_manipulation import InHandManipulationTask
class ShadowHandTask(InHandManipulationTask):
def __init__(self, name, sim_config, env, offset=None) -> None:
self.update_config(sim_config)
InHandManipulationTask.__init__(self, name=name, env=env)
return
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self.object_type = self._task_cfg["env"]["objectType"]
assert self.object_type in ["block"]
self.obs_type = self._task_cfg["env"]["observationType"]
if not (self.obs_type in ["openai", "full_no_vel", "full", "full_state"]):
raise Exception(
"Unknown type of observations!\nobservationType should be one of: [openai, full_no_vel, full, full_state]"
)
print("Obs type:", self.obs_type)
self.num_obs_dict = {
"openai": 42,
"full_no_vel": 77,
"full": 157,
"full_state": 187,
}
self.asymmetric_obs = self._task_cfg["env"]["asymmetric_observations"]
self.use_vel_obs = False
self.fingertip_obs = True
self.fingertips = [
"robot0:ffdistal",
"robot0:mfdistal",
"robot0:rfdistal",
"robot0:lfdistal",
"robot0:thdistal",
]
self.num_fingertips = len(self.fingertips)
self.object_scale = torch.tensor([1.0, 1.0, 1.0])
self.force_torque_obs_scale = 10.0
num_states = 0
if self.asymmetric_obs:
num_states = 187
self._num_observations = self.num_obs_dict[self.obs_type]
self._num_actions = 20
self._num_states = num_states
InHandManipulationTask.update_config(self)
def get_starting_positions(self):
self.hand_start_translation = torch.tensor([0.0, 0.0, 0.5], device=self.device)
self.hand_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device)
self.pose_dy, self.pose_dz = -0.39, 0.10
def get_hand(self):
shadow_hand = ShadowHand(
prim_path=self.default_zero_env_path + "/shadow_hand",
name="shadow_hand",
translation=self.hand_start_translation,
orientation=self.hand_start_orientation,
)
self._sim_config.apply_articulation_settings(
"shadow_hand",
get_prim_at_path(shadow_hand.prim_path),
self._sim_config.parse_actor_config("shadow_hand"),
)
shadow_hand.set_shadow_hand_properties(stage=self._stage, shadow_hand_prim=shadow_hand.prim)
shadow_hand.set_motor_control_mode(stage=self._stage, shadow_hand_path=shadow_hand.prim_path)
def get_hand_view(self, scene):
hand_view = ShadowHandView(prim_paths_expr="/World/envs/.*/shadow_hand", name="shadow_hand_view")
scene.add(hand_view._fingers)
return hand_view
def get_observations(self):
self.get_object_goal_observations()
self.fingertip_pos, self.fingertip_rot = self._hands._fingers.get_world_poses(clone=False)
self.fingertip_pos -= self._env_pos.repeat((1, self.num_fingertips)).reshape(
self.num_envs * self.num_fingertips, 3
)
self.fingertip_velocities = self._hands._fingers.get_velocities(clone=False)
self.hand_dof_pos = self._hands.get_joint_positions(clone=False)
self.hand_dof_vel = self._hands.get_joint_velocities(clone=False)
if self.obs_type == "full_state" or self.asymmetric_obs:
self.vec_sensor_tensor = self._hands.get_measured_joint_forces(
joint_indices=self._hands._sensor_indices
).view(self._num_envs, -1)
if self.obs_type == "openai":
self.compute_fingertip_observations(True)
elif self.obs_type == "full_no_vel":
self.compute_full_observations(True)
elif self.obs_type == "full":
self.compute_full_observations()
elif self.obs_type == "full_state":
self.compute_full_state(False)
else:
print("Unkown observations type!")
if self.asymmetric_obs:
self.compute_full_state(True)
observations = {self._hands.name: {"obs_buf": self.obs_buf}}
return observations
def compute_fingertip_observations(self, no_vel=False):
if no_vel:
# Per https://arxiv.org/pdf/1808.00177.pdf Table 2
# Fingertip positions
# Object Position, but not orientation
# Relative target orientation
# 3*self.num_fingertips = 15
self.obs_buf[:, 0:15] = self.fingertip_pos.reshape(self.num_envs, 15)
self.obs_buf[:, 15:18] = self.object_pos
self.obs_buf[:, 18:22] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot))
self.obs_buf[:, 22:42] = self.actions
else:
# 13*self.num_fingertips = 65
self.obs_buf[:, 0:65] = self.fingertip_state.reshape(self.num_envs, 65)
self.obs_buf[:, 0:15] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips)
self.obs_buf[:, 15:35] = self.fingertip_rot.reshape(self.num_envs, 4 * self.num_fingertips)
self.obs_buf[:, 35:65] = self.fingertip_velocities.reshape(self.num_envs, 6 * self.num_fingertips)
self.obs_buf[:, 65:68] = self.object_pos
self.obs_buf[:, 68:72] = self.object_rot
self.obs_buf[:, 72:75] = self.object_linvel
self.obs_buf[:, 75:78] = self.vel_obs_scale * self.object_angvel
self.obs_buf[:, 78:81] = self.goal_pos
self.obs_buf[:, 81:85] = self.goal_rot
self.obs_buf[:, 85:89] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot))
self.obs_buf[:, 89:109] = self.actions
def compute_full_observations(self, no_vel=False):
if no_vel:
self.obs_buf[:, 0 : self.num_hand_dofs] = unscale(
self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits
)
self.obs_buf[:, 24:37] = self.object_pos
self.obs_buf[:, 27:31] = self.object_rot
self.obs_buf[:, 31:34] = self.goal_pos
self.obs_buf[:, 34:38] = self.goal_rot
self.obs_buf[:, 38:42] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot))
self.obs_buf[:, 42:57] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips)
self.obs_buf[:, 57:77] = self.actions
else:
self.obs_buf[:, 0 : self.num_hand_dofs] = unscale(
self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits
)
self.obs_buf[:, self.num_hand_dofs : 2 * self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel
self.obs_buf[:, 48:51] = self.object_pos
self.obs_buf[:, 51:55] = self.object_rot
self.obs_buf[:, 55:58] = self.object_linvel
self.obs_buf[:, 58:61] = self.vel_obs_scale * self.object_angvel
self.obs_buf[:, 61:64] = self.goal_pos
self.obs_buf[:, 64:68] = self.goal_rot
self.obs_buf[:, 68:72] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot))
# (7+6)*self.num_fingertips = 65
self.obs_buf[:, 72:87] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips)
self.obs_buf[:, 87:107] = self.fingertip_rot.reshape(self.num_envs, 4 * self.num_fingertips)
self.obs_buf[:, 107:137] = self.fingertip_velocities.reshape(self.num_envs, 6 * self.num_fingertips)
self.obs_buf[:, 137:157] = self.actions
def compute_full_state(self, asymm_obs=False):
if asymm_obs:
self.states_buf[:, 0 : self.num_hand_dofs] = unscale(
self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits
)
self.states_buf[:, self.num_hand_dofs : 2 * self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel
# self.states_buf[:, 2*self.num_hand_dofs:3*self.num_hand_dofs] = self.force_torque_obs_scale * self.dof_force_tensor
obj_obs_start = 2 * self.num_hand_dofs # 48
self.states_buf[:, obj_obs_start : obj_obs_start + 3] = self.object_pos
self.states_buf[:, obj_obs_start + 3 : obj_obs_start + 7] = self.object_rot
self.states_buf[:, obj_obs_start + 7 : obj_obs_start + 10] = self.object_linvel
self.states_buf[:, obj_obs_start + 10 : obj_obs_start + 13] = self.vel_obs_scale * self.object_angvel
goal_obs_start = obj_obs_start + 13 # 61
self.states_buf[:, goal_obs_start : goal_obs_start + 3] = self.goal_pos
self.states_buf[:, goal_obs_start + 3 : goal_obs_start + 7] = self.goal_rot
self.states_buf[:, goal_obs_start + 7 : goal_obs_start + 11] = quat_mul(
self.object_rot, quat_conjugate(self.goal_rot)
)
# fingertip observations, state(pose and vel) + force-torque sensors
num_ft_states = 13 * self.num_fingertips # 65
num_ft_force_torques = 6 * self.num_fingertips # 30
fingertip_obs_start = goal_obs_start + 11 # 72
self.states_buf[
:, fingertip_obs_start : fingertip_obs_start + 3 * self.num_fingertips
] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips)
self.states_buf[
:, fingertip_obs_start + 3 * self.num_fingertips : fingertip_obs_start + 7 * self.num_fingertips
] = self.fingertip_rot.reshape(self.num_envs, 4 * self.num_fingertips)
self.states_buf[
:, fingertip_obs_start + 7 * self.num_fingertips : fingertip_obs_start + 13 * self.num_fingertips
] = self.fingertip_velocities.reshape(self.num_envs, 6 * self.num_fingertips)
self.states_buf[
:, fingertip_obs_start + num_ft_states : fingertip_obs_start + num_ft_states + num_ft_force_torques
] = (self.force_torque_obs_scale * self.vec_sensor_tensor)
# obs_end = 72 + 65 + 30 = 167
# obs_total = obs_end + num_actions = 187
obs_end = fingertip_obs_start + num_ft_states + num_ft_force_torques
self.states_buf[:, obs_end : obs_end + self.num_actions] = self.actions
else:
self.obs_buf[:, 0 : self.num_hand_dofs] = unscale(
self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits
)
self.obs_buf[:, self.num_hand_dofs : 2 * self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel
self.obs_buf[:, 2 * self.num_hand_dofs : 3 * self.num_hand_dofs] = (
self.force_torque_obs_scale * self.dof_force_tensor
)
obj_obs_start = 3 * self.num_hand_dofs # 48
self.obs_buf[:, obj_obs_start : obj_obs_start + 3] = self.object_pos
self.obs_buf[:, obj_obs_start + 3 : obj_obs_start + 7] = self.object_rot
self.obs_buf[:, obj_obs_start + 7 : obj_obs_start + 10] = self.object_linvel
self.obs_buf[:, obj_obs_start + 10 : obj_obs_start + 13] = self.vel_obs_scale * self.object_angvel
goal_obs_start = obj_obs_start + 13 # 61
self.obs_buf[:, goal_obs_start : goal_obs_start + 3] = self.goal_pos
self.obs_buf[:, goal_obs_start + 3 : goal_obs_start + 7] = self.goal_rot
self.obs_buf[:, goal_obs_start + 7 : goal_obs_start + 11] = quat_mul(
self.object_rot, quat_conjugate(self.goal_rot)
)
# fingertip observations, state(pose and vel) + force-torque sensors
num_ft_states = 13 * self.num_fingertips # 65
num_ft_force_torques = 6 * self.num_fingertips # 30
fingertip_obs_start = goal_obs_start + 11 # 72
self.obs_buf[
:, fingertip_obs_start : fingertip_obs_start + 3 * self.num_fingertips
] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips)
self.obs_buf[
:, fingertip_obs_start + 3 * self.num_fingertips : fingertip_obs_start + 7 * self.num_fingertips
] = self.fingertip_rot.reshape(self.num_envs, 4 * self.num_fingertips)
self.obs_buf[
:, fingertip_obs_start + 7 * self.num_fingertips : fingertip_obs_start + 13 * self.num_fingertips
] = self.fingertip_velocities.reshape(self.num_envs, 6 * self.num_fingertips)
self.obs_buf[
:, fingertip_obs_start + num_ft_states : fingertip_obs_start + num_ft_states + num_ft_force_torques
] = (self.force_torque_obs_scale * self.vec_sensor_tensor)
# obs_end = 96 + 65 + 30 = 167
# obs_total = obs_end + num_actions = 187
obs_end = fingertip_obs_start + num_ft_states + num_ft_force_torques
self.obs_buf[:, obs_end : obs_end + self.num_actions] = self.actions
| 15,107 | Python | 48.211726 | 129 | 0.609188 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/franka_cabinet.py | # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import math
import numpy as np
import torch
from omni.isaac.cloner import Cloner
from omni.isaac.core.objects import DynamicCuboid
from omni.isaac.core.prims import RigidPrim, RigidPrimView
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import get_current_stage
from omni.isaac.core.utils.torch.rotations import *
from omni.isaac.core.utils.torch.transformations import *
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.robots.articulations.cabinet import Cabinet
from omniisaacgymenvs.robots.articulations.franka import Franka
from omniisaacgymenvs.robots.articulations.views.cabinet_view import CabinetView
from omniisaacgymenvs.robots.articulations.views.franka_view import FrankaView
from pxr import Usd, UsdGeom
class FrankaCabinetTask(RLTask):
def __init__(self, name, sim_config, env, offset=None) -> None:
self.update_config(sim_config)
self.distX_offset = 0.04
self.dt = 1 / 60.0
self._num_observations = 23
self._num_actions = 9
RLTask.__init__(self, name, env)
return
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._env_spacing = self._task_cfg["env"]["envSpacing"]
self._max_episode_length = self._task_cfg["env"]["episodeLength"]
self.action_scale = self._task_cfg["env"]["actionScale"]
self.start_position_noise = self._task_cfg["env"]["startPositionNoise"]
self.start_rotation_noise = self._task_cfg["env"]["startRotationNoise"]
self.num_props = self._task_cfg["env"]["numProps"]
self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"]
self.dist_reward_scale = self._task_cfg["env"]["distRewardScale"]
self.rot_reward_scale = self._task_cfg["env"]["rotRewardScale"]
self.around_handle_reward_scale = self._task_cfg["env"]["aroundHandleRewardScale"]
self.open_reward_scale = self._task_cfg["env"]["openRewardScale"]
self.finger_dist_reward_scale = self._task_cfg["env"]["fingerDistRewardScale"]
self.action_penalty_scale = self._task_cfg["env"]["actionPenaltyScale"]
self.finger_close_reward_scale = self._task_cfg["env"]["fingerCloseRewardScale"]
def set_up_scene(self, scene) -> None:
self.get_franka()
self.get_cabinet()
if self.num_props > 0:
self.get_props()
super().set_up_scene(scene, filter_collisions=False)
self._frankas = FrankaView(prim_paths_expr="/World/envs/.*/franka", name="franka_view")
self._cabinets = CabinetView(prim_paths_expr="/World/envs/.*/cabinet", name="cabinet_view")
scene.add(self._frankas)
scene.add(self._frankas._hands)
scene.add(self._frankas._lfingers)
scene.add(self._frankas._rfingers)
scene.add(self._cabinets)
scene.add(self._cabinets._drawers)
if self.num_props > 0:
self._props = RigidPrimView(
prim_paths_expr="/World/envs/.*/prop/.*", name="prop_view", reset_xform_properties=False
)
scene.add(self._props)
self.init_data()
return
def initialize_views(self, scene):
super().initialize_views(scene)
if scene.object_exists("franka_view"):
scene.remove_object("franka_view", registry_only=True)
if scene.object_exists("hands_view"):
scene.remove_object("hands_view", registry_only=True)
if scene.object_exists("lfingers_view"):
scene.remove_object("lfingers_view", registry_only=True)
if scene.object_exists("rfingers_view"):
scene.remove_object("rfingers_view", registry_only=True)
if scene.object_exists("cabinet_view"):
scene.remove_object("cabinet_view", registry_only=True)
if scene.object_exists("drawers_view"):
scene.remove_object("drawers_view", registry_only=True)
if scene.object_exists("prop_view"):
scene.remove_object("prop_view", registry_only=True)
self._frankas = FrankaView(prim_paths_expr="/World/envs/.*/franka", name="franka_view")
self._cabinets = CabinetView(prim_paths_expr="/World/envs/.*/cabinet", name="cabinet_view")
scene.add(self._frankas)
scene.add(self._frankas._hands)
scene.add(self._frankas._lfingers)
scene.add(self._frankas._rfingers)
scene.add(self._cabinets)
scene.add(self._cabinets._drawers)
if self.num_props > 0:
self._props = RigidPrimView(
prim_paths_expr="/World/envs/.*/prop/.*", name="prop_view", reset_xform_properties=False
)
scene.add(self._props)
self.init_data()
def get_franka(self):
franka = Franka(prim_path=self.default_zero_env_path + "/franka", name="franka")
self._sim_config.apply_articulation_settings(
"franka", get_prim_at_path(franka.prim_path), self._sim_config.parse_actor_config("franka")
)
def get_cabinet(self):
cabinet = Cabinet(self.default_zero_env_path + "/cabinet", name="cabinet")
self._sim_config.apply_articulation_settings(
"cabinet", get_prim_at_path(cabinet.prim_path), self._sim_config.parse_actor_config("cabinet")
)
def get_props(self):
prop_cloner = Cloner()
drawer_pos = torch.tensor([0.0515, 0.0, 0.7172])
prop_color = torch.tensor([0.2, 0.4, 0.6])
props_per_row = int(math.ceil(math.sqrt(self.num_props)))
prop_size = 0.08
prop_spacing = 0.09
xmin = -0.5 * prop_spacing * (props_per_row - 1)
zmin = -0.5 * prop_spacing * (props_per_row - 1)
prop_count = 0
prop_pos = []
for j in range(props_per_row):
prop_up = zmin + j * prop_spacing
for k in range(props_per_row):
if prop_count >= self.num_props:
break
propx = xmin + k * prop_spacing
prop_pos.append([propx, prop_up, 0.0])
prop_count += 1
prop = DynamicCuboid(
prim_path=self.default_zero_env_path + "/prop/prop_0",
name="prop",
color=prop_color,
size=prop_size,
density=100.0,
)
self._sim_config.apply_articulation_settings(
"prop", get_prim_at_path(prop.prim_path), self._sim_config.parse_actor_config("prop")
)
prop_paths = [f"{self.default_zero_env_path}/prop/prop_{j}" for j in range(self.num_props)]
prop_cloner.clone(
source_prim_path=self.default_zero_env_path + "/prop/prop_0",
prim_paths=prop_paths,
positions=np.array(prop_pos) + drawer_pos.numpy(),
replicate_physics=False,
)
def init_data(self) -> None:
def get_env_local_pose(env_pos, xformable, device):
"""Compute pose in env-local coordinates"""
world_transform = xformable.ComputeLocalToWorldTransform(0)
world_pos = world_transform.ExtractTranslation()
world_quat = world_transform.ExtractRotationQuat()
px = world_pos[0] - env_pos[0]
py = world_pos[1] - env_pos[1]
pz = world_pos[2] - env_pos[2]
qx = world_quat.imaginary[0]
qy = world_quat.imaginary[1]
qz = world_quat.imaginary[2]
qw = world_quat.real
return torch.tensor([px, py, pz, qw, qx, qy, qz], device=device, dtype=torch.float)
stage = get_current_stage()
hand_pose = get_env_local_pose(
self._env_pos[0],
UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/franka/panda_link7")),
self._device,
)
lfinger_pose = get_env_local_pose(
self._env_pos[0],
UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/franka/panda_leftfinger")),
self._device,
)
rfinger_pose = get_env_local_pose(
self._env_pos[0],
UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/franka/panda_rightfinger")),
self._device,
)
finger_pose = torch.zeros(7, device=self._device)
finger_pose[0:3] = (lfinger_pose[0:3] + rfinger_pose[0:3]) / 2.0
finger_pose[3:7] = lfinger_pose[3:7]
hand_pose_inv_rot, hand_pose_inv_pos = tf_inverse(hand_pose[3:7], hand_pose[0:3])
grasp_pose_axis = 1
franka_local_grasp_pose_rot, franka_local_pose_pos = tf_combine(
hand_pose_inv_rot, hand_pose_inv_pos, finger_pose[3:7], finger_pose[0:3]
)
franka_local_pose_pos += torch.tensor([0, 0.04, 0], device=self._device)
self.franka_local_grasp_pos = franka_local_pose_pos.repeat((self._num_envs, 1))
self.franka_local_grasp_rot = franka_local_grasp_pose_rot.repeat((self._num_envs, 1))
drawer_local_grasp_pose = torch.tensor([0.3, 0.01, 0.0, 1.0, 0.0, 0.0, 0.0], device=self._device)
self.drawer_local_grasp_pos = drawer_local_grasp_pose[0:3].repeat((self._num_envs, 1))
self.drawer_local_grasp_rot = drawer_local_grasp_pose[3:7].repeat((self._num_envs, 1))
self.gripper_forward_axis = torch.tensor([0, 0, 1], device=self._device, dtype=torch.float).repeat(
(self._num_envs, 1)
)
self.drawer_inward_axis = torch.tensor([-1, 0, 0], device=self._device, dtype=torch.float).repeat(
(self._num_envs, 1)
)
self.gripper_up_axis = torch.tensor([0, 1, 0], device=self._device, dtype=torch.float).repeat(
(self._num_envs, 1)
)
self.drawer_up_axis = torch.tensor([0, 0, 1], device=self._device, dtype=torch.float).repeat(
(self._num_envs, 1)
)
self.franka_default_dof_pos = torch.tensor(
[1.157, -1.066, -0.155, -2.239, -1.841, 1.003, 0.469, 0.035, 0.035], device=self._device
)
self.actions = torch.zeros((self._num_envs, self.num_actions), device=self._device)
def get_observations(self) -> dict:
hand_pos, hand_rot = self._frankas._hands.get_world_poses(clone=False)
drawer_pos, drawer_rot = self._cabinets._drawers.get_world_poses(clone=False)
franka_dof_pos = self._frankas.get_joint_positions(clone=False)
franka_dof_vel = self._frankas.get_joint_velocities(clone=False)
self.cabinet_dof_pos = self._cabinets.get_joint_positions(clone=False)
self.cabinet_dof_vel = self._cabinets.get_joint_velocities(clone=False)
self.franka_dof_pos = franka_dof_pos
(
self.franka_grasp_rot,
self.franka_grasp_pos,
self.drawer_grasp_rot,
self.drawer_grasp_pos,
) = self.compute_grasp_transforms(
hand_rot,
hand_pos,
self.franka_local_grasp_rot,
self.franka_local_grasp_pos,
drawer_rot,
drawer_pos,
self.drawer_local_grasp_rot,
self.drawer_local_grasp_pos,
)
self.franka_lfinger_pos, self.franka_lfinger_rot = self._frankas._lfingers.get_world_poses(clone=False)
self.franka_rfinger_pos, self.franka_rfinger_rot = self._frankas._lfingers.get_world_poses(clone=False)
dof_pos_scaled = (
2.0
* (franka_dof_pos - self.franka_dof_lower_limits)
/ (self.franka_dof_upper_limits - self.franka_dof_lower_limits)
- 1.0
)
to_target = self.drawer_grasp_pos - self.franka_grasp_pos
self.obs_buf = torch.cat(
(
dof_pos_scaled,
franka_dof_vel * self.dof_vel_scale,
to_target,
self.cabinet_dof_pos[:, 3].unsqueeze(-1),
self.cabinet_dof_vel[:, 3].unsqueeze(-1),
),
dim=-1,
)
observations = {self._frankas.name: {"obs_buf": self.obs_buf}}
return observations
def pre_physics_step(self, actions) -> None:
if not self.world.is_playing():
return
reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(reset_env_ids) > 0:
self.reset_idx(reset_env_ids)
self.actions = actions.clone().to(self._device)
targets = self.franka_dof_targets + self.franka_dof_speed_scales * self.dt * self.actions * self.action_scale
self.franka_dof_targets[:] = tensor_clamp(targets, self.franka_dof_lower_limits, self.franka_dof_upper_limits)
env_ids_int32 = torch.arange(self._frankas.count, dtype=torch.int32, device=self._device)
self._frankas.set_joint_position_targets(self.franka_dof_targets, indices=env_ids_int32)
def reset_idx(self, env_ids):
indices = env_ids.to(dtype=torch.int32)
num_indices = len(indices)
# reset franka
pos = tensor_clamp(
self.franka_default_dof_pos.unsqueeze(0)
+ 0.25 * (torch.rand((len(env_ids), self.num_franka_dofs), device=self._device) - 0.5),
self.franka_dof_lower_limits,
self.franka_dof_upper_limits,
)
dof_pos = torch.zeros((num_indices, self._frankas.num_dof), device=self._device)
dof_vel = torch.zeros((num_indices, self._frankas.num_dof), device=self._device)
dof_pos[:, :] = pos
self.franka_dof_targets[env_ids, :] = pos
self.franka_dof_pos[env_ids, :] = pos
# reset cabinet
self._cabinets.set_joint_positions(
torch.zeros_like(self._cabinets.get_joint_positions(clone=False)[env_ids]), indices=indices
)
self._cabinets.set_joint_velocities(
torch.zeros_like(self._cabinets.get_joint_velocities(clone=False)[env_ids]), indices=indices
)
# reset props
if self.num_props > 0:
self._props.set_world_poses(
self.default_prop_pos[self.prop_indices[env_ids].flatten()],
self.default_prop_rot[self.prop_indices[env_ids].flatten()],
self.prop_indices[env_ids].flatten().to(torch.int32),
)
self._frankas.set_joint_position_targets(self.franka_dof_targets[env_ids], indices=indices)
self._frankas.set_joint_positions(dof_pos, indices=indices)
self._frankas.set_joint_velocities(dof_vel, indices=indices)
# bookkeeping
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
def post_reset(self):
self.num_franka_dofs = self._frankas.num_dof
self.franka_dof_pos = torch.zeros((self.num_envs, self.num_franka_dofs), device=self._device)
dof_limits = self._frankas.get_dof_limits()
self.franka_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device)
self.franka_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device)
self.franka_dof_speed_scales = torch.ones_like(self.franka_dof_lower_limits)
self.franka_dof_speed_scales[self._frankas.gripper_indices] = 0.1
self.franka_dof_targets = torch.zeros(
(self._num_envs, self.num_franka_dofs), dtype=torch.float, device=self._device
)
if self.num_props > 0:
self.default_prop_pos, self.default_prop_rot = self._props.get_world_poses()
self.prop_indices = torch.arange(self._num_envs * self.num_props, device=self._device).view(
self._num_envs, self.num_props
)
# randomize all envs
indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device)
self.reset_idx(indices)
def calculate_metrics(self) -> None:
self.rew_buf[:] = self.compute_franka_reward(
self.reset_buf,
self.progress_buf,
self.actions,
self.cabinet_dof_pos,
self.franka_grasp_pos,
self.drawer_grasp_pos,
self.franka_grasp_rot,
self.drawer_grasp_rot,
self.franka_lfinger_pos,
self.franka_rfinger_pos,
self.gripper_forward_axis,
self.drawer_inward_axis,
self.gripper_up_axis,
self.drawer_up_axis,
self._num_envs,
self.dist_reward_scale,
self.rot_reward_scale,
self.around_handle_reward_scale,
self.open_reward_scale,
self.finger_dist_reward_scale,
self.action_penalty_scale,
self.distX_offset,
self._max_episode_length,
self.franka_dof_pos,
self.finger_close_reward_scale,
)
def is_done(self) -> None:
# reset if drawer is open or max length reached
self.reset_buf = torch.where(self.cabinet_dof_pos[:, 3] > 0.39, torch.ones_like(self.reset_buf), self.reset_buf)
self.reset_buf = torch.where(
self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf
)
def compute_grasp_transforms(
self,
hand_rot,
hand_pos,
franka_local_grasp_rot,
franka_local_grasp_pos,
drawer_rot,
drawer_pos,
drawer_local_grasp_rot,
drawer_local_grasp_pos,
):
global_franka_rot, global_franka_pos = tf_combine(
hand_rot, hand_pos, franka_local_grasp_rot, franka_local_grasp_pos
)
global_drawer_rot, global_drawer_pos = tf_combine(
drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos
)
return global_franka_rot, global_franka_pos, global_drawer_rot, global_drawer_pos
def compute_franka_reward(
self,
reset_buf,
progress_buf,
actions,
cabinet_dof_pos,
franka_grasp_pos,
drawer_grasp_pos,
franka_grasp_rot,
drawer_grasp_rot,
franka_lfinger_pos,
franka_rfinger_pos,
gripper_forward_axis,
drawer_inward_axis,
gripper_up_axis,
drawer_up_axis,
num_envs,
dist_reward_scale,
rot_reward_scale,
around_handle_reward_scale,
open_reward_scale,
finger_dist_reward_scale,
action_penalty_scale,
distX_offset,
max_episode_length,
joint_positions,
finger_close_reward_scale,
):
# type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, int, float, float, float, float, float, float, float, float, Tensor) -> Tuple[Tensor, Tensor]
# distance from hand to the drawer
d = torch.norm(franka_grasp_pos - drawer_grasp_pos, p=2, dim=-1)
dist_reward = 1.0 / (1.0 + d**2)
dist_reward *= dist_reward
dist_reward = torch.where(d <= 0.02, dist_reward * 2, dist_reward)
axis1 = tf_vector(franka_grasp_rot, gripper_forward_axis)
axis2 = tf_vector(drawer_grasp_rot, drawer_inward_axis)
axis3 = tf_vector(franka_grasp_rot, gripper_up_axis)
axis4 = tf_vector(drawer_grasp_rot, drawer_up_axis)
dot1 = (
torch.bmm(axis1.view(num_envs, 1, 3), axis2.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1)
) # alignment of forward axis for gripper
dot2 = (
torch.bmm(axis3.view(num_envs, 1, 3), axis4.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1)
) # alignment of up axis for gripper
# reward for matching the orientation of the hand to the drawer (fingers wrapped)
rot_reward = 0.5 * (torch.sign(dot1) * dot1**2 + torch.sign(dot2) * dot2**2)
# bonus if left finger is above the drawer handle and right below
around_handle_reward = torch.zeros_like(rot_reward)
around_handle_reward = torch.where(
franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2],
torch.where(
franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], around_handle_reward + 0.5, around_handle_reward
),
around_handle_reward,
)
# reward for distance of each finger from the drawer
finger_dist_reward = torch.zeros_like(rot_reward)
lfinger_dist = torch.abs(franka_lfinger_pos[:, 2] - drawer_grasp_pos[:, 2])
rfinger_dist = torch.abs(franka_rfinger_pos[:, 2] - drawer_grasp_pos[:, 2])
finger_dist_reward = torch.where(
franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2],
torch.where(
franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2],
(0.04 - lfinger_dist) + (0.04 - rfinger_dist),
finger_dist_reward,
),
finger_dist_reward,
)
finger_close_reward = torch.zeros_like(rot_reward)
finger_close_reward = torch.where(
d <= 0.03, (0.04 - joint_positions[:, 7]) + (0.04 - joint_positions[:, 8]), finger_close_reward
)
# regularization on the actions (summed for each environment)
action_penalty = torch.sum(actions**2, dim=-1)
# how far the cabinet has been opened out
open_reward = cabinet_dof_pos[:, 3] * around_handle_reward + cabinet_dof_pos[:, 3] # drawer_top_joint
rewards = (
dist_reward_scale * dist_reward
+ rot_reward_scale * rot_reward
+ around_handle_reward_scale * around_handle_reward
+ open_reward_scale * open_reward
+ finger_dist_reward_scale * finger_dist_reward
- action_penalty_scale * action_penalty
+ finger_close_reward * finger_close_reward_scale
)
# bonus for opening drawer properly
rewards = torch.where(cabinet_dof_pos[:, 3] > 0.01, rewards + 0.5, rewards)
rewards = torch.where(cabinet_dof_pos[:, 3] > 0.2, rewards + around_handle_reward, rewards)
rewards = torch.where(cabinet_dof_pos[:, 3] > 0.39, rewards + (2.0 * around_handle_reward), rewards)
# # prevent bad style in opening drawer
# rewards = torch.where(franka_lfinger_pos[:, 0] < drawer_grasp_pos[:, 0] - distX_offset,
# torch.ones_like(rewards) * -1, rewards)
# rewards = torch.where(franka_rfinger_pos[:, 0] < drawer_grasp_pos[:, 0] - distX_offset,
# torch.ones_like(rewards) * -1, rewards)
return rewards
| 22,933 | Python | 41.313653 | 222 | 0.599922 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/crazyflie.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
import torch
from omni.isaac.core.objects import DynamicSphere
from omni.isaac.core.prims import RigidPrimView
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.torch.rotations import *
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.robots.articulations.crazyflie import Crazyflie
from omniisaacgymenvs.robots.articulations.views.crazyflie_view import CrazyflieView
EPS = 1e-6 # small constant to avoid divisions by 0 and log(0)
class CrazyflieTask(RLTask):
def __init__(self, name, sim_config, env, offset=None) -> None:
self.update_config(sim_config)
self._num_observations = 18
self._num_actions = 4
self._crazyflie_position = torch.tensor([0, 0, 1.0])
self._ball_position = torch.tensor([0, 0, 1.0])
RLTask.__init__(self, name=name, env=env)
return
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._env_spacing = self._task_cfg["env"]["envSpacing"]
self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"]
self.dt = self._task_cfg["sim"]["dt"]
# parameters for the crazyflie
self.arm_length = 0.05
# parameters for the controller
self.motor_damp_time_up = 0.15
self.motor_damp_time_down = 0.15
# I use the multiplier 4, since 4*T ~ time for a step response to finish, where
# T is a time constant of the first-order filter
self.motor_tau_up = 4 * self.dt / (self.motor_damp_time_up + EPS)
self.motor_tau_down = 4 * self.dt / (self.motor_damp_time_down + EPS)
# thrust max
self.mass = 0.028
self.thrust_to_weight = 1.9
self.motor_assymetry = np.array([1.0, 1.0, 1.0, 1.0])
# re-normalizing to sum-up to 4
self.motor_assymetry = self.motor_assymetry * 4.0 / np.sum(self.motor_assymetry)
self.grav_z = -1.0 * self._task_cfg["sim"]["gravity"][2]
def set_up_scene(self, scene) -> None:
self.get_crazyflie()
self.get_target()
RLTask.set_up_scene(self, scene)
self._copters = CrazyflieView(prim_paths_expr="/World/envs/.*/Crazyflie", name="crazyflie_view")
self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball", name="ball_view")
scene.add(self._copters)
scene.add(self._balls)
for i in range(4):
scene.add(self._copters.physics_rotors[i])
return
def initialize_views(self, scene):
super().initialize_views(scene)
if scene.object_exists("crazyflie_view"):
scene.remove_object("crazyflie_view", registry_only=True)
if scene.object_exists("ball_view"):
scene.remove_object("ball_view", registry_only=True)
for i in range(1, 5):
scene.remove_object(f"m{i}_prop_view", registry_only=True)
self._copters = CrazyflieView(prim_paths_expr="/World/envs/.*/Crazyflie", name="crazyflie_view")
self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball", name="ball_view")
scene.add(self._copters)
scene.add(self._balls)
for i in range(4):
scene.add(self._copters.physics_rotors[i])
def get_crazyflie(self):
copter = Crazyflie(
prim_path=self.default_zero_env_path + "/Crazyflie", name="crazyflie", translation=self._crazyflie_position
)
self._sim_config.apply_articulation_settings(
"crazyflie", get_prim_at_path(copter.prim_path), self._sim_config.parse_actor_config("crazyflie")
)
def get_target(self):
radius = 0.2
color = torch.tensor([1, 0, 0])
ball = DynamicSphere(
prim_path=self.default_zero_env_path + "/ball",
translation=self._ball_position,
name="target_0",
radius=radius,
color=color,
)
self._sim_config.apply_articulation_settings(
"ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball")
)
ball.set_collision_enabled(False)
def get_observations(self) -> dict:
self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False)
self.root_velocities = self._copters.get_velocities(clone=False)
root_positions = self.root_pos - self._env_pos
root_quats = self.root_rot
rot_x = quat_axis(root_quats, 0)
rot_y = quat_axis(root_quats, 1)
rot_z = quat_axis(root_quats, 2)
root_linvels = self.root_velocities[:, :3]
root_angvels = self.root_velocities[:, 3:]
self.obs_buf[..., 0:3] = self.target_positions - root_positions
self.obs_buf[..., 3:6] = rot_x
self.obs_buf[..., 6:9] = rot_y
self.obs_buf[..., 9:12] = rot_z
self.obs_buf[..., 12:15] = root_linvels
self.obs_buf[..., 15:18] = root_angvels
observations = {self._copters.name: {"obs_buf": self.obs_buf}}
return observations
def pre_physics_step(self, actions) -> None:
if not self.world.is_playing():
return
reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(reset_env_ids) > 0:
self.reset_idx(reset_env_ids)
set_target_ids = (self.progress_buf % 500 == 0).nonzero(as_tuple=False).squeeze(-1)
if len(set_target_ids) > 0:
self.set_targets(set_target_ids)
actions = actions.clone().to(self._device)
self.actions = actions
# clamp to [-1.0, 1.0]
thrust_cmds = torch.clamp(actions, min=-1.0, max=1.0)
# scale to [0.0, 1.0]
thrust_cmds = (thrust_cmds + 1.0) / 2.0
# filtering the thruster and adding noise
motor_tau = self.motor_tau_up * torch.ones((self._num_envs, 4), dtype=torch.float32, device=self._device)
motor_tau[thrust_cmds < self.thrust_cmds_damp] = self.motor_tau_down
motor_tau[motor_tau > 1.0] = 1.0
# Since NN commands thrusts we need to convert to rot vel and back
thrust_rot = thrust_cmds**0.5
self.thrust_rot_damp = motor_tau * (thrust_rot - self.thrust_rot_damp) + self.thrust_rot_damp
self.thrust_cmds_damp = self.thrust_rot_damp**2
## Adding noise
thrust_noise = 0.01 * torch.randn(4, dtype=torch.float32, device=self._device)
thrust_noise = thrust_cmds * thrust_noise
self.thrust_cmds_damp = torch.clamp(self.thrust_cmds_damp + thrust_noise, min=0.0, max=1.0)
thrusts = self.thrust_max * self.thrust_cmds_damp
# thrusts given rotation
root_quats = self.root_rot
rot_x = quat_axis(root_quats, 0)
rot_y = quat_axis(root_quats, 1)
rot_z = quat_axis(root_quats, 2)
rot_matrix = torch.cat((rot_x, rot_y, rot_z), 1).reshape(-1, 3, 3)
force_x = torch.zeros(self._num_envs, 4, dtype=torch.float32, device=self._device)
force_y = torch.zeros(self._num_envs, 4, dtype=torch.float32, device=self._device)
force_xy = torch.cat((force_x, force_y), 1).reshape(-1, 4, 2)
thrusts = thrusts.reshape(-1, 4, 1)
thrusts = torch.cat((force_xy, thrusts), 2)
thrusts_0 = thrusts[:, 0]
thrusts_0 = thrusts_0[:, :, None]
thrusts_1 = thrusts[:, 1]
thrusts_1 = thrusts_1[:, :, None]
thrusts_2 = thrusts[:, 2]
thrusts_2 = thrusts_2[:, :, None]
thrusts_3 = thrusts[:, 3]
thrusts_3 = thrusts_3[:, :, None]
mod_thrusts_0 = torch.matmul(rot_matrix, thrusts_0)
mod_thrusts_1 = torch.matmul(rot_matrix, thrusts_1)
mod_thrusts_2 = torch.matmul(rot_matrix, thrusts_2)
mod_thrusts_3 = torch.matmul(rot_matrix, thrusts_3)
self.thrusts[:, 0] = torch.squeeze(mod_thrusts_0)
self.thrusts[:, 1] = torch.squeeze(mod_thrusts_1)
self.thrusts[:, 2] = torch.squeeze(mod_thrusts_2)
self.thrusts[:, 3] = torch.squeeze(mod_thrusts_3)
# clear actions for reset envs
self.thrusts[reset_env_ids] = 0
# spin spinning rotors
prop_rot = self.thrust_cmds_damp * self.prop_max_rot
self.dof_vel[:, 0] = prop_rot[:, 0]
self.dof_vel[:, 1] = -1.0 * prop_rot[:, 1]
self.dof_vel[:, 2] = prop_rot[:, 2]
self.dof_vel[:, 3] = -1.0 * prop_rot[:, 3]
self._copters.set_joint_velocities(self.dof_vel)
# apply actions
for i in range(4):
self._copters.physics_rotors[i].apply_forces(self.thrusts[:, i], indices=self.all_indices)
def post_reset(self):
thrust_max = self.grav_z * self.mass * self.thrust_to_weight * self.motor_assymetry / 4.0
self.thrusts = torch.zeros((self._num_envs, 4, 3), dtype=torch.float32, device=self._device)
self.thrust_cmds_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device)
self.thrust_rot_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device)
self.thrust_max = torch.tensor(thrust_max, device=self._device, dtype=torch.float32)
self.motor_linearity = 1.0
self.prop_max_rot = 433.3
self.target_positions = torch.zeros((self._num_envs, 3), device=self._device, dtype=torch.float32)
self.target_positions[:, 2] = 1
self.actions = torch.zeros((self._num_envs, 4), device=self._device, dtype=torch.float32)
self.all_indices = torch.arange(self._num_envs, dtype=torch.int32, device=self._device)
# Extra info
self.extras = {}
torch_zeros = lambda: torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False)
self.episode_sums = {
"rew_pos": torch_zeros(),
"rew_orient": torch_zeros(),
"rew_effort": torch_zeros(),
"rew_spin": torch_zeros(),
"raw_dist": torch_zeros(),
"raw_orient": torch_zeros(),
"raw_effort": torch_zeros(),
"raw_spin": torch_zeros(),
}
self.root_pos, self.root_rot = self._copters.get_world_poses()
self.root_velocities = self._copters.get_velocities()
self.dof_pos = self._copters.get_joint_positions()
self.dof_vel = self._copters.get_joint_velocities()
self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses(clone=False)
self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone()
# control parameters
self.thrusts = torch.zeros((self._num_envs, 4, 3), dtype=torch.float32, device=self._device)
self.thrust_cmds_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device)
self.thrust_rot_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device)
self.set_targets(self.all_indices)
def set_targets(self, env_ids):
num_sets = len(env_ids)
envs_long = env_ids.long()
# set target position randomly with x, y in (0, 0) and z in (2)
self.target_positions[envs_long, 0:2] = torch.zeros((num_sets, 2), device=self._device)
self.target_positions[envs_long, 2] = torch.ones(num_sets, device=self._device) * 2.0
# shift the target up so it visually aligns better
ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long]
ball_pos[:, 2] += 0.0
self._balls.set_world_poses(ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids)
def reset_idx(self, env_ids):
num_resets = len(env_ids)
self.dof_pos[env_ids, :] = torch_rand_float(-0.0, 0.0, (num_resets, self._copters.num_dof), device=self._device)
self.dof_vel[env_ids, :] = 0
root_pos = self.initial_root_pos.clone()
root_pos[env_ids, 0] += torch_rand_float(-0.0, 0.0, (num_resets, 1), device=self._device).view(-1)
root_pos[env_ids, 1] += torch_rand_float(-0.0, 0.0, (num_resets, 1), device=self._device).view(-1)
root_pos[env_ids, 2] += torch_rand_float(-0.0, 0.0, (num_resets, 1), device=self._device).view(-1)
root_velocities = self.root_velocities.clone()
root_velocities[env_ids] = 0
# apply resets
self._copters.set_joint_positions(self.dof_pos[env_ids], indices=env_ids)
self._copters.set_joint_velocities(self.dof_vel[env_ids], indices=env_ids)
self._copters.set_world_poses(root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids)
self._copters.set_velocities(root_velocities[env_ids], indices=env_ids)
# bookkeeping
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
self.thrust_cmds_damp[env_ids] = 0
self.thrust_rot_damp[env_ids] = 0
# fill extras
self.extras["episode"] = {}
for key in self.episode_sums.keys():
self.extras["episode"][key] = torch.mean(self.episode_sums[key][env_ids]) / self._max_episode_length
self.episode_sums[key][env_ids] = 0.0
def calculate_metrics(self) -> None:
root_positions = self.root_pos - self._env_pos
root_quats = self.root_rot
root_angvels = self.root_velocities[:, 3:]
# pos reward
target_dist = torch.sqrt(torch.square(self.target_positions - root_positions).sum(-1))
pos_reward = 1.0 / (1.0 + target_dist)
self.target_dist = target_dist
self.root_positions = root_positions
# orient reward
ups = quat_axis(root_quats, 2)
self.orient_z = ups[..., 2]
up_reward = torch.clamp(ups[..., 2], min=0.0, max=1.0)
# effort reward
effort = torch.square(self.actions).sum(-1)
effort_reward = 0.05 * torch.exp(-0.5 * effort)
# spin reward
spin = torch.square(root_angvels).sum(-1)
spin_reward = 0.01 * torch.exp(-1.0 * spin)
# combined reward
self.rew_buf[:] = pos_reward + pos_reward * (up_reward + spin_reward) - effort_reward
# log episode reward sums
self.episode_sums["rew_pos"] += pos_reward
self.episode_sums["rew_orient"] += up_reward
self.episode_sums["rew_effort"] += effort_reward
self.episode_sums["rew_spin"] += spin_reward
# log raw info
self.episode_sums["raw_dist"] += target_dist
self.episode_sums["raw_orient"] += ups[..., 2]
self.episode_sums["raw_effort"] += effort
self.episode_sums["raw_spin"] += spin
def is_done(self) -> None:
# resets due to misbehavior
ones = torch.ones_like(self.reset_buf)
die = torch.zeros_like(self.reset_buf)
die = torch.where(self.target_dist > 5.0, ones, die)
# z >= 0.5 & z <= 5.0 & up > 0
die = torch.where(self.root_positions[..., 2] < 0.5, ones, die)
die = torch.where(self.root_positions[..., 2] > 5.0, ones, die)
die = torch.where(self.orient_z < 0.0, ones, die)
# resets due to episode length
self.reset_buf[:] = torch.where(self.progress_buf >= self._max_episode_length - 1, ones, die)
| 16,824 | Python | 41.487374 | 120 | 0.619413 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/humanoid.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import numpy as np
import torch
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.torch.maths import tensor_clamp, torch_rand_float, unscale
from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.robots.articulations.humanoid import Humanoid
from omniisaacgymenvs.tasks.shared.locomotion import LocomotionTask
from pxr import PhysxSchema
class HumanoidLocomotionTask(LocomotionTask):
def __init__(self, name, sim_config, env, offset=None) -> None:
self.update_config(sim_config)
self._num_observations = 87
self._num_actions = 21
self._humanoid_positions = torch.tensor([0, 0, 1.34])
LocomotionTask.__init__(self, name=name, env=env)
return
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
LocomotionTask.update_config(self)
def set_up_scene(self, scene) -> None:
self.get_humanoid()
RLTask.set_up_scene(self, scene)
self._humanoids = ArticulationView(
prim_paths_expr="/World/envs/.*/Humanoid/torso", name="humanoid_view", reset_xform_properties=False
)
scene.add(self._humanoids)
return
def initialize_views(self, scene):
RLTask.initialize_views(self, scene)
if scene.object_exists("humanoid_view"):
scene.remove_object("humanoid_view", registry_only=True)
self._humanoids = ArticulationView(
prim_paths_expr="/World/envs/.*/Humanoid/torso", name="humanoid_view", reset_xform_properties=False
)
scene.add(self._humanoids)
def get_humanoid(self):
humanoid = Humanoid(
prim_path=self.default_zero_env_path + "/Humanoid", name="Humanoid", translation=self._humanoid_positions
)
self._sim_config.apply_articulation_settings(
"Humanoid", get_prim_at_path(humanoid.prim_path), self._sim_config.parse_actor_config("Humanoid")
)
def get_robot(self):
return self._humanoids
def post_reset(self):
self.joint_gears = torch.tensor(
[
67.5000, # lower_waist
67.5000, # lower_waist
67.5000, # right_upper_arm
67.5000, # right_upper_arm
67.5000, # left_upper_arm
67.5000, # left_upper_arm
67.5000, # pelvis
45.0000, # right_lower_arm
45.0000, # left_lower_arm
45.0000, # right_thigh: x
135.0000, # right_thigh: y
45.0000, # right_thigh: z
45.0000, # left_thigh: x
135.0000, # left_thigh: y
45.0000, # left_thigh: z
90.0000, # right_knee
90.0000, # left_knee
22.5, # right_foot
22.5, # right_foot
22.5, # left_foot
22.5, # left_foot
],
device=self._device,
)
self.max_motor_effort = torch.max(self.joint_gears)
self.motor_effort_ratio = self.joint_gears / self.max_motor_effort
dof_limits = self._humanoids.get_dof_limits()
self.dof_limits_lower = dof_limits[0, :, 0].to(self._device)
self.dof_limits_upper = dof_limits[0, :, 1].to(self._device)
force_links = ["left_foot", "right_foot"]
self._sensor_indices = torch.tensor(
[self._humanoids._body_indices[j] for j in force_links], device=self._device, dtype=torch.long
)
LocomotionTask.post_reset(self)
def get_dof_at_limit_cost(self):
return get_dof_at_limit_cost(self.obs_buf, self.motor_effort_ratio, self.joints_at_limit_cost_scale)
@torch.jit.script
def get_dof_at_limit_cost(obs_buf, motor_effort_ratio, joints_at_limit_cost_scale):
# type: (Tensor, Tensor, float) -> Tensor
scaled_cost = joints_at_limit_cost_scale * (torch.abs(obs_buf[:, 12:33]) - 0.98) / 0.02
dof_at_limit_cost = torch.sum(
(torch.abs(obs_buf[:, 12:33]) > 0.98) * scaled_cost * motor_effort_ratio.unsqueeze(0), dim=-1
)
return dof_at_limit_cost
| 5,980 | Python | 41.119718 | 117 | 0.651003 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/franka_deformable.py | # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.robots.articulations.franka import Franka
from omniisaacgymenvs.robots.articulations.views.franka_view import FrankaView
from omni.isaac.core.prims import RigidPrim, RigidPrimView
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import get_current_stage, add_reference_to_stage
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.torch.transformations import *
from omni.isaac.core.utils.torch.rotations import *
import omni.isaac.core.utils.deformable_mesh_utils as deformableMeshUtils
from omni.isaac.core.materials.deformable_material import DeformableMaterial
from omni.isaac.core.prims.soft.deformable_prim import DeformablePrim
from omni.isaac.core.prims.soft.deformable_prim_view import DeformablePrimView
from omni.physx.scripts import deformableUtils, physicsUtils
import numpy as np
import torch
import math
from pxr import Usd, UsdGeom, Gf, UsdPhysics, PhysxSchema
class FrankaDeformableTask(RLTask):
def __init__(
self,
name,
sim_config,
env,
offset=None
) -> None:
self.update_config(sim_config)
self.dt = 1/60.
self._num_observations = 39
self._num_actions = 9
RLTask.__init__(self, name, env)
return
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._env_spacing = self._task_cfg["env"]["envSpacing"]
self._max_episode_length = self._task_cfg["env"]["episodeLength"]
self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"]
self.action_scale = self._task_cfg["env"]["actionScale"]
def set_up_scene(self, scene) -> None:
self.stage = get_current_stage()
self.assets_root_path = get_assets_root_path()
if self.assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets folder")
self.get_franka()
self.get_beaker()
self.get_deformable_tube()
super().set_up_scene(scene=scene, replicate_physics=False)
self._frankas = FrankaView(prim_paths_expr="/World/envs/.*/franka", name="franka_view")
self.deformableView = DeformablePrimView(
prim_paths_expr="/World/envs/.*/deformableTube/tube/mesh", name="deformabletube_view"
)
scene.add(self.deformableView)
scene.add(self._frankas)
scene.add(self._frankas._hands)
scene.add(self._frankas._lfingers)
scene.add(self._frankas._rfingers)
return
def initialize_views(self, scene):
super().initialize_views(scene)
if scene.object_exists("franka_view"):
scene.remove_object("franka_view", registry_only=True)
if scene.object_exists("hands_view"):
scene.remove_object("hands_view", registry_only=True)
if scene.object_exists("lfingers_view"):
scene.remove_object("lfingers_view", registry_only=True)
if scene.object_exists("rfingers_view"):
scene.remove_object("rfingers_view", registry_only=True)
if scene.object_exists("deformabletube_view"):
scene.remove_object("deformabletube_view", registry_only=True)
self._frankas = FrankaView(
prim_paths_expr="/World/envs/.*/franka", name="franka_view"
)
self.deformableView = DeformablePrimView(
prim_paths_expr="/World/envs/.*/deformableTube/tube/mesh", name="deformabletube_view"
)
scene.add(self._frankas)
scene.add(self._frankas._hands)
scene.add(self._frankas._lfingers)
scene.add(self._frankas._rfingers)
scene.add(self.deformableView)
def get_franka(self):
franka = Franka(
prim_path=self.default_zero_env_path + "/franka",
name="franka",
orientation=torch.tensor([1.0, 0.0, 0.0, 0.0]),
translation=torch.tensor([0.0, 0.0, 0.0]),
)
self._sim_config.apply_articulation_settings(
"franka", get_prim_at_path(franka.prim_path), self._sim_config.parse_actor_config("franka")
)
franka.set_franka_properties(stage=self.stage, prim=franka.prim)
def get_beaker(self):
_usd_path = self.assets_root_path + "/Isaac/Props/Beaker/beaker_500ml.usd"
mesh_path = self.default_zero_env_path + "/beaker"
add_reference_to_stage(_usd_path, mesh_path)
beaker = RigidPrim(
prim_path=mesh_path+"/beaker",
name="beaker",
position=torch.tensor([0.5, 0.2, 0.095]),
)
self._sim_config.apply_articulation_settings("beaker", beaker.prim, self._sim_config.parse_actor_config("beaker"))
def get_deformable_tube(self):
_usd_path = self.assets_root_path + "/Isaac/Props/DeformableTube/tube.usd"
mesh_path = self.default_zero_env_path + "/deformableTube/tube"
add_reference_to_stage(_usd_path, mesh_path)
skin_mesh = get_prim_at_path(mesh_path)
physicsUtils.setup_transform_as_scale_orient_translate(skin_mesh)
physicsUtils.set_or_add_translate_op(skin_mesh, (0.6, 0.0, 0.005))
physicsUtils.set_or_add_orient_op(skin_mesh, Gf.Rotation(Gf.Vec3d([0, 0, 1]), 90).GetQuat())
def get_observations(self) -> dict:
franka_dof_pos = self._frankas.get_joint_positions(clone=False)
franka_dof_vel = self._frankas.get_joint_velocities(clone=False)
self.franka_dof_pos = franka_dof_pos
dof_pos_scaled = (
2.0 * (franka_dof_pos - self.franka_dof_lower_limits)
/ (self.franka_dof_upper_limits - self.franka_dof_lower_limits)
- 1.0
)
self.lfinger_pos, _ = self._frankas._lfingers.get_world_poses(clone=False)
self.rfinger_pos, _ = self._frankas._rfingers.get_world_poses(clone=False)
self.gripper_site_pos = (self.lfinger_pos + self.rfinger_pos)/2 - self._env_pos
tube_positions = self.deformableView.get_simulation_mesh_nodal_positions(clone=False)
tube_velocities = self.deformableView.get_simulation_mesh_nodal_velocities(clone=False)
self.tube_front_positions = tube_positions[:, 200, :] - self._env_pos
self.tube_front_velocities = tube_velocities[:, 200, :]
self.tube_back_positions = tube_positions[:, -1, :] - self._env_pos
self.tube_back_velocities = tube_velocities[:, -1, :]
front_to_gripper = self.tube_front_positions - self.gripper_site_pos
to_front_goal = self.front_goal_pos - self.tube_front_positions
to_back_goal = self.back_goal_pos - self.tube_back_positions
self.obs_buf = torch.cat(
(
dof_pos_scaled,
franka_dof_vel * self.dof_vel_scale,
front_to_gripper,
to_front_goal,
to_back_goal,
self.tube_front_positions,
self.tube_front_velocities,
self.tube_back_positions,
self.tube_back_velocities,
),
dim=-1,
)
observations = {
self._frankas.name: {
"obs_buf": self.obs_buf
}
}
return observations
def pre_physics_step(self, actions) -> None:
if not self.world.is_playing():
return
reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(reset_env_ids) > 0:
self.reset_idx(reset_env_ids)
self.actions = actions.clone().to(self._device)
targets = self.franka_dof_targets + self.franka_dof_speed_scales * self.dt * self.actions * self.action_scale
self.franka_dof_targets[:] = tensor_clamp(targets, self.franka_dof_lower_limits, self.franka_dof_upper_limits)
self.franka_dof_targets[:, -1] = self.franka_dof_targets[:, -2]
env_ids_int32 = torch.arange(self._frankas.count, dtype=torch.int32, device=self._device)
self._frankas.set_joint_position_targets(self.franka_dof_targets, indices=env_ids_int32)
def reset_idx(self, env_ids):
indices = env_ids.to(dtype=torch.int32)
num_indices = len(indices)
pos = self.franka_default_dof_pos
dof_pos = torch.zeros((num_indices, self._frankas.num_dof), device=self._device)
dof_vel = torch.zeros((num_indices, self._frankas.num_dof), device=self._device)
dof_pos[:, :] = pos
self.franka_dof_targets[env_ids, :] = pos
self.franka_dof_pos[env_ids, :] = pos
self._frankas.set_joint_position_targets(self.franka_dof_targets[env_ids], indices=indices)
self._frankas.set_joint_positions(dof_pos, indices=indices)
self._frankas.set_joint_velocities(dof_vel, indices=indices)
self.deformableView.set_simulation_mesh_nodal_positions(self.initial_tube_positions[env_ids], indices)
self.deformableView.set_simulation_mesh_nodal_velocities(self.initial_tube_velocities[env_ids], indices)
# bookkeeping
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
def post_reset(self):
self.franka_default_dof_pos = torch.tensor(
[0.00, 0.63, 0.00, -2.15, 0.00, 2.76, 0.75, 0.02, 0.02], device=self._device
)
self.actions = torch.zeros((self._num_envs, self.num_actions), device=self._device)
self.front_goal_pos = torch.tensor([0.36, 0.0, 0.23], device=self._device).repeat((self._num_envs, 1))
self.back_goal_pos = torch.tensor([0.5, 0.2, 0.0], device=self._device).repeat((self._num_envs, 1))
self.goal_hand_rot = torch.tensor([0.0, 1.0, 0.0, 0.0], device=self._device).repeat((self.num_envs, 1))
self.lfinger_pos, _ = self._frankas._lfingers.get_world_poses(clone=False)
self.rfinger_pos, _ = self._frankas._rfingers.get_world_poses(clone=False)
self.gripper_site_pos = (self.lfinger_pos + self.rfinger_pos)/2 - self._env_pos
self.initial_tube_positions = self.deformableView.get_simulation_mesh_nodal_positions()
self.initial_tube_velocities = self.deformableView.get_simulation_mesh_nodal_velocities()
self.tube_front_positions = self.initial_tube_positions[:, 0, :] - self._env_pos
self.tube_front_velocities = self.initial_tube_velocities[:, 0, :]
self.tube_back_positions = self.initial_tube_positions[:, -1, :] - self._env_pos
self.tube_back_velocities = self.initial_tube_velocities[:, -1, :]
self.num_franka_dofs = self._frankas.num_dof
self.franka_dof_pos = torch.zeros((self.num_envs, self.num_franka_dofs), device=self._device)
dof_limits = self._frankas.get_dof_limits()
self.franka_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device)
self.franka_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device)
self.franka_dof_speed_scales = torch.ones_like(self.franka_dof_lower_limits)
self.franka_dof_speed_scales[self._frankas.gripper_indices] = 0.1
self.franka_dof_targets = torch.zeros(
(self._num_envs, self.num_franka_dofs), dtype=torch.float, device=self._device
)
# randomize all envs
indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device)
self.reset_idx(indices)
def calculate_metrics(self) -> None:
goal_distance_error = torch.norm(self.tube_back_positions[:, 0:2] - self.back_goal_pos[:, 0:2], p = 2, dim = -1)
goal_dist_reward = 1.0 / (5*goal_distance_error + .025)
current_z_level = self.tube_back_positions[:, 2:3]
z_lift_level = torch.where(
goal_distance_error < 0.07, torch.zeros_like(current_z_level), torch.ones_like(current_z_level)*0.18
)
front_lift_error = torch.norm(current_z_level - z_lift_level, p = 2, dim = -1)
front_lift_reward = 1.0 / (5*front_lift_error + .025)
rewards = goal_dist_reward + 4*front_lift_reward
self.rew_buf[:] = rewards
def is_done(self) -> None:
self.reset_buf = torch.where(self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf)
self.reset_buf = torch.where(self.tube_front_positions[:, 0] < 0, torch.ones_like(self.reset_buf), self.reset_buf)
self.reset_buf = torch.where(self.tube_front_positions[:, 0] > 1.0, torch.ones_like(self.reset_buf), self.reset_buf)
self.reset_buf = torch.where(self.tube_front_positions[:, 1] < -1.0, torch.ones_like(self.reset_buf), self.reset_buf)
self.reset_buf = torch.where(self.tube_front_positions[:, 1] > 1.0, torch.ones_like(self.reset_buf), self.reset_buf)
| 13,316 | Python | 42.805921 | 136 | 0.641108 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/ant.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import numpy as np
import torch
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.torch.maths import tensor_clamp, torch_rand_float, unscale
from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.robots.articulations.ant import Ant
from omniisaacgymenvs.tasks.shared.locomotion import LocomotionTask
from pxr import PhysxSchema
class AntLocomotionTask(LocomotionTask):
def __init__(self, name, sim_config, env, offset=None) -> None:
self.update_config(sim_config)
LocomotionTask.__init__(self, name=name, env=env)
return
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self._num_observations = 60
self._num_actions = 8
self._ant_positions = torch.tensor([0, 0, 0.5])
LocomotionTask.update_config(self)
def set_up_scene(self, scene) -> None:
self.get_ant()
RLTask.set_up_scene(self, scene)
self._ants = ArticulationView(
prim_paths_expr="/World/envs/.*/Ant/torso", name="ant_view", reset_xform_properties=False
)
scene.add(self._ants)
return
def initialize_views(self, scene):
RLTask.initialize_views(self, scene)
if scene.object_exists("ant_view"):
scene.remove_object("ant_view", registry_only=True)
self._ants = ArticulationView(
prim_paths_expr="/World/envs/.*/Ant/torso", name="ant_view", reset_xform_properties=False
)
scene.add(self._ants)
def get_ant(self):
ant = Ant(prim_path=self.default_zero_env_path + "/Ant", name="Ant", translation=self._ant_positions)
self._sim_config.apply_articulation_settings(
"Ant", get_prim_at_path(ant.prim_path), self._sim_config.parse_actor_config("Ant")
)
def get_robot(self):
return self._ants
def post_reset(self):
self.joint_gears = torch.tensor([15, 15, 15, 15, 15, 15, 15, 15], dtype=torch.float32, device=self._device)
dof_limits = self._ants.get_dof_limits()
self.dof_limits_lower = dof_limits[0, :, 0].to(self._device)
self.dof_limits_upper = dof_limits[0, :, 1].to(self._device)
self.motor_effort_ratio = torch.ones_like(self.joint_gears, device=self._device)
force_links = ["front_left_foot", "front_right_foot", "left_back_foot", "right_back_foot"]
self._sensor_indices = torch.tensor(
[self._ants._body_indices[j] for j in force_links], device=self._device, dtype=torch.long
)
LocomotionTask.post_reset(self)
def get_dof_at_limit_cost(self):
return get_dof_at_limit_cost(self.obs_buf, self._ants.num_dof)
@torch.jit.script
def get_dof_at_limit_cost(obs_buf, num_dof):
# type: (Tensor, int) -> Tensor
return torch.sum(obs_buf[:, 12 : 12 + num_dof] > 0.99, dim=-1)
| 4,691 | Python | 41.654545 | 115 | 0.69708 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/cartpole.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import numpy as np
import torch
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.utils.prims import get_prim_at_path
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.robots.articulations.cartpole import Cartpole
class CartpoleTask(RLTask):
def __init__(self, name, sim_config, env, offset=None) -> None:
self.update_config(sim_config)
self._max_episode_length = 500
self._num_observations = 4
self._num_actions = 1
RLTask.__init__(self, name, env)
return
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._env_spacing = self._task_cfg["env"]["envSpacing"]
self._cartpole_positions = torch.tensor([0.0, 0.0, 2.0])
self._reset_dist = self._task_cfg["env"]["resetDist"]
self._max_push_effort = self._task_cfg["env"]["maxEffort"]
def set_up_scene(self, scene) -> None:
self.get_cartpole()
super().set_up_scene(scene)
self._cartpoles = ArticulationView(
prim_paths_expr="/World/envs/.*/Cartpole", name="cartpole_view", reset_xform_properties=False
)
scene.add(self._cartpoles)
return
def initialize_views(self, scene):
super().initialize_views(scene)
if scene.object_exists("cartpole_view"):
scene.remove_object("cartpole_view", registry_only=True)
self._cartpoles = ArticulationView(
prim_paths_expr="/World/envs/.*/Cartpole", name="cartpole_view", reset_xform_properties=False
)
scene.add(self._cartpoles)
def get_cartpole(self):
cartpole = Cartpole(
prim_path=self.default_zero_env_path + "/Cartpole", name="Cartpole", translation=self._cartpole_positions
)
# applies articulation settings from the task configuration yaml file
self._sim_config.apply_articulation_settings(
"Cartpole", get_prim_at_path(cartpole.prim_path), self._sim_config.parse_actor_config("Cartpole")
)
def get_observations(self) -> dict:
dof_pos = self._cartpoles.get_joint_positions(clone=False)
dof_vel = self._cartpoles.get_joint_velocities(clone=False)
self.cart_pos = dof_pos[:, self._cart_dof_idx]
self.cart_vel = dof_vel[:, self._cart_dof_idx]
self.pole_pos = dof_pos[:, self._pole_dof_idx]
self.pole_vel = dof_vel[:, self._pole_dof_idx]
self.obs_buf[:, 0] = self.cart_pos
self.obs_buf[:, 1] = self.cart_vel
self.obs_buf[:, 2] = self.pole_pos
self.obs_buf[:, 3] = self.pole_vel
observations = {self._cartpoles.name: {"obs_buf": self.obs_buf}}
return observations
def pre_physics_step(self, actions) -> None:
if not self.world.is_playing():
return
reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(reset_env_ids) > 0:
self.reset_idx(reset_env_ids)
actions = actions.to(self._device)
forces = torch.zeros((self._cartpoles.count, self._cartpoles.num_dof), dtype=torch.float32, device=self._device)
forces[:, self._cart_dof_idx] = self._max_push_effort * actions[:, 0]
indices = torch.arange(self._cartpoles.count, dtype=torch.int32, device=self._device)
self._cartpoles.set_joint_efforts(forces, indices=indices)
def reset_idx(self, env_ids):
num_resets = len(env_ids)
# randomize DOF positions
dof_pos = torch.zeros((num_resets, self._cartpoles.num_dof), device=self._device)
dof_pos[:, self._cart_dof_idx] = 1.0 * (1.0 - 2.0 * torch.rand(num_resets, device=self._device))
dof_pos[:, self._pole_dof_idx] = 0.125 * math.pi * (1.0 - 2.0 * torch.rand(num_resets, device=self._device))
# randomize DOF velocities
dof_vel = torch.zeros((num_resets, self._cartpoles.num_dof), device=self._device)
dof_vel[:, self._cart_dof_idx] = 0.5 * (1.0 - 2.0 * torch.rand(num_resets, device=self._device))
dof_vel[:, self._pole_dof_idx] = 0.25 * math.pi * (1.0 - 2.0 * torch.rand(num_resets, device=self._device))
# apply resets
indices = env_ids.to(dtype=torch.int32)
self._cartpoles.set_joint_positions(dof_pos, indices=indices)
self._cartpoles.set_joint_velocities(dof_vel, indices=indices)
# bookkeeping
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
def post_reset(self):
self._cart_dof_idx = self._cartpoles.get_dof_index("cartJoint")
self._pole_dof_idx = self._cartpoles.get_dof_index("poleJoint")
# randomize all envs
indices = torch.arange(self._cartpoles.count, dtype=torch.int64, device=self._device)
self.reset_idx(indices)
def calculate_metrics(self) -> None:
reward = 1.0 - self.pole_pos * self.pole_pos - 0.01 * torch.abs(self.cart_vel) - 0.005 * torch.abs(self.pole_vel)
reward = torch.where(torch.abs(self.cart_pos) > self._reset_dist, torch.ones_like(reward) * -2.0, reward)
reward = torch.where(torch.abs(self.pole_pos) > np.pi / 2, torch.ones_like(reward) * -2.0, reward)
self.rew_buf[:] = reward
def is_done(self) -> None:
resets = torch.where(torch.abs(self.cart_pos) > self._reset_dist, 1, 0)
resets = torch.where(torch.abs(self.pole_pos) > math.pi / 2, 1, resets)
resets = torch.where(self.progress_buf >= self._max_episode_length, 1, resets)
self.reset_buf[:] = resets
| 7,250 | Python | 42.945454 | 121 | 0.65931 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/quadcopter.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import numpy as np
import torch
from omni.isaac.core.objects import DynamicSphere
from omni.isaac.core.prims import RigidPrimView
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.torch.rotations import *
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.robots.articulations.quadcopter import Quadcopter
from omniisaacgymenvs.robots.articulations.views.quadcopter_view import QuadcopterView
class QuadcopterTask(RLTask):
def __init__(self, name, sim_config, env, offset=None) -> None:
self.update_config(sim_config)
self._num_observations = 21
self._num_actions = 12
self._copter_position = torch.tensor([0, 0, 1.0])
RLTask.__init__(self, name=name, env=env)
max_thrust = 2.0
self.thrust_lower_limits = -max_thrust * torch.ones(4, device=self._device, dtype=torch.float32)
self.thrust_upper_limits = max_thrust * torch.ones(4, device=self._device, dtype=torch.float32)
self.all_indices = torch.arange(self._num_envs, dtype=torch.int32, device=self._device)
return
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._env_spacing = self._task_cfg["env"]["envSpacing"]
self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"]
self.dt = self._task_cfg["sim"]["dt"]
def set_up_scene(self, scene) -> None:
self.get_copter()
self.get_target()
RLTask.set_up_scene(self, scene)
self._copters = QuadcopterView(prim_paths_expr="/World/envs/.*/Quadcopter", name="quadcopter_view")
self._balls = RigidPrimView(
prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False
)
self._balls._non_root_link = True # do not set states for kinematics
scene.add(self._copters)
scene.add(self._copters.rotors)
scene.add(self._balls)
return
def initialize_views(self, scene):
super().initialize_views(scene)
if scene.object_exists("quadcopter_view"):
scene.remove_object("quadcopter_view", registry_only=True)
if scene.object_exists("rotors_view"):
scene.remove_object("rotors_view", registry_only=True)
if scene.object_exists("targets_view"):
scene.remove_object("targets_view", registry_only=True)
self._copters = QuadcopterView(prim_paths_expr="/World/envs/.*/Quadcopter", name="quadcopter_view")
self._balls = RigidPrimView(
prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False
)
scene.add(self._copters)
scene.add(self._copters.rotors)
scene.add(self._balls)
def get_copter(self):
copter = Quadcopter(
prim_path=self.default_zero_env_path + "/Quadcopter", name="quadcopter", translation=self._copter_position
)
self._sim_config.apply_articulation_settings(
"copter", get_prim_at_path(copter.prim_path), self._sim_config.parse_actor_config("copter")
)
def get_target(self):
radius = 0.05
color = torch.tensor([1, 0, 0])
ball = DynamicSphere(
prim_path=self.default_zero_env_path + "/ball",
name="target_0",
radius=radius,
color=color,
)
self._sim_config.apply_articulation_settings(
"ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball")
)
ball.set_collision_enabled(False)
def get_observations(self) -> dict:
self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False)
self.root_velocities = self._copters.get_velocities(clone=False)
self.dof_pos = self._copters.get_joint_positions(clone=False)
root_positions = self.root_pos - self._env_pos
root_quats = self.root_rot
root_linvels = self.root_velocities[:, :3]
root_angvels = self.root_velocities[:, 3:]
self.obs_buf[..., 0:3] = (self.target_positions - root_positions) / 3
self.obs_buf[..., 3:7] = root_quats
self.obs_buf[..., 7:10] = root_linvels / 2
self.obs_buf[..., 10:13] = root_angvels / math.pi
self.obs_buf[..., 13:21] = self.dof_pos
observations = {self._copters.name: {"obs_buf": self.obs_buf}}
return observations
def pre_physics_step(self, actions) -> None:
if not self.world.is_playing():
return
reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(reset_env_ids) > 0:
self.reset_idx(reset_env_ids)
actions = actions.clone().to(self._device)
dof_action_speed_scale = 8 * math.pi
self.dof_position_targets += self.dt * dof_action_speed_scale * actions[:, 0:8]
self.dof_position_targets[:] = tensor_clamp(
self.dof_position_targets, self.dof_lower_limits, self.dof_upper_limits
)
thrust_action_speed_scale = 100
self.thrusts += self.dt * thrust_action_speed_scale * actions[:, 8:12]
self.thrusts[:] = tensor_clamp(self.thrusts, self.thrust_lower_limits, self.thrust_upper_limits)
self.forces[:, 0, 2] = self.thrusts[:, 0]
self.forces[:, 1, 2] = self.thrusts[:, 1]
self.forces[:, 2, 2] = self.thrusts[:, 2]
self.forces[:, 3, 2] = self.thrusts[:, 3]
# clear actions for reset envs
self.thrusts[reset_env_ids] = 0.0
self.forces[reset_env_ids] = 0.0
self.dof_position_targets[reset_env_ids] = self.dof_pos[reset_env_ids]
# apply actions
self._copters.set_joint_position_targets(self.dof_position_targets)
self._copters.rotors.apply_forces(self.forces, is_global=False)
def post_reset(self):
# control tensors
self.dof_position_targets = torch.zeros(
(self._num_envs, self._copters.num_dof), dtype=torch.float32, device=self._device, requires_grad=False
)
self.thrusts = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device, requires_grad=False)
self.forces = torch.zeros(
(self._num_envs, self._copters.rotors.count // self._num_envs, 3),
dtype=torch.float32,
device=self._device,
requires_grad=False,
)
self.target_positions = torch.zeros((self._num_envs, 3), device=self._device)
self.target_positions[:, 2] = 1.0
self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False)
self.root_velocities = self._copters.get_velocities(clone=False)
self.dof_pos = self._copters.get_joint_positions(clone=False)
self.dof_vel = self._copters.get_joint_velocities(clone=False)
self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone()
dof_limits = self._copters.get_dof_limits()
self.dof_lower_limits = dof_limits[0][:, 0].to(device=self._device)
self.dof_upper_limits = dof_limits[0][:, 1].to(device=self._device)
def reset_idx(self, env_ids):
num_resets = len(env_ids)
self.dof_pos[env_ids, :] = torch_rand_float(-0.2, 0.2, (num_resets, self._copters.num_dof), device=self._device)
self.dof_vel[env_ids, :] = 0
root_pos = self.initial_root_pos.clone()
root_pos[env_ids, 0] += torch_rand_float(-1.5, 1.5, (num_resets, 1), device=self._device).view(-1)
root_pos[env_ids, 1] += torch_rand_float(-1.5, 1.5, (num_resets, 1), device=self._device).view(-1)
root_pos[env_ids, 2] += torch_rand_float(-0.2, 1.5, (num_resets, 1), device=self._device).view(-1)
root_velocities = self.root_velocities.clone()
root_velocities[env_ids] = 0
# apply resets
self._copters.set_joint_positions(self.dof_pos[env_ids], indices=env_ids)
self._copters.set_joint_velocities(self.dof_vel[env_ids], indices=env_ids)
self._copters.set_world_poses(root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids)
self._copters.set_velocities(root_velocities[env_ids], indices=env_ids)
self._balls.set_world_poses(positions=self.target_positions[:, 0:3] + self._env_pos)
# bookkeeping
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
def calculate_metrics(self) -> None:
root_positions = self.root_pos - self._env_pos
root_quats = self.root_rot
root_angvels = self.root_velocities[:, 3:]
# distance to target
target_dist = torch.sqrt(torch.square(self.target_positions - root_positions).sum(-1))
pos_reward = 1.0 / (1.0 + 3 * target_dist * target_dist) # 2
self.target_dist = target_dist
self.root_positions = root_positions
# uprightness
ups = quat_axis(root_quats, 2)
tiltage = torch.abs(1 - ups[..., 2])
up_reward = 1.0 / (1.0 + 10 * tiltage * tiltage)
# spinning
spinnage = torch.abs(root_angvels[..., 2])
spinnage_reward = 1.0 / (1.0 + 0.001 * spinnage * spinnage)
rew = pos_reward + pos_reward * (up_reward + spinnage_reward + spinnage * spinnage * (-1 / 400))
rew = torch.clip(rew, 0.0, None)
self.rew_buf[:] = rew
def is_done(self) -> None:
# resets due to misbehavior
ones = torch.ones_like(self.reset_buf)
die = torch.zeros_like(self.reset_buf)
die = torch.where(self.target_dist > 3.0, ones, die)
die = torch.where(self.root_positions[..., 2] < 0.3, ones, die)
# resets due to episode length
self.reset_buf[:] = torch.where(self.progress_buf >= self._max_episode_length - 1, ones, die)
| 11,492 | Python | 42.866412 | 120 | 0.640707 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/ingenuity.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from omniisaacgymenvs.robots.articulations.ingenuity import Ingenuity
from omniisaacgymenvs.robots.articulations.views.ingenuity_view import IngenuityView
from omni.isaac.core.utils.torch.rotations import *
from omni.isaac.core.objects import DynamicSphere
from omni.isaac.core.prims import RigidPrimView
from omni.isaac.core.utils.prims import get_prim_at_path
from omniisaacgymenvs.tasks.base.rl_task import RLTask
import numpy as np
import torch
import math
class IngenuityTask(RLTask):
def __init__(
self,
name,
sim_config,
env,
offset=None
) -> None:
self.update_config(sim_config)
self.thrust_limit = 2000
self.thrust_lateral_component = 0.2
self._num_observations = 13
self._num_actions = 6
self._ingenuity_position = torch.tensor([0, 0, 1.0])
self._ball_position = torch.tensor([0, 0, 1.0])
RLTask.__init__(self, name=name, env=env)
return
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._env_spacing = self._task_cfg["env"]["envSpacing"]
self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"]
self.dt = self._task_cfg["sim"]["dt"]
def set_up_scene(self, scene) -> None:
self.get_ingenuity()
self.get_target()
RLTask.set_up_scene(self, scene)
self._copters = IngenuityView(prim_paths_expr="/World/envs/.*/Ingenuity", name="ingenuity_view")
self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False)
self._balls._non_root_link = True # do not set states for kinematics
scene.add(self._copters)
scene.add(self._balls)
for i in range(2):
scene.add(self._copters.physics_rotors[i])
scene.add(self._copters.visual_rotors[i])
return
def initialize_views(self, scene):
super().initialize_views(scene)
if scene.object_exists("ingenuity_view"):
scene.remove_object("ingenuity_view", registry_only=True)
for i in range(2):
if scene.object_exists(f"physics_rotor_{i}_view"):
scene.remove_object(f"physics_rotor_{i}_view", registry_only=True)
if scene.object_exists(f"visual_rotor_{i}_view"):
scene.remove_object(f"visual_rotor_{i}_view", registry_only=True)
if scene.object_exists("targets_view"):
scene.remove_object("targets_view", registry_only=True)
self._copters = IngenuityView(prim_paths_expr="/World/envs/.*/Ingenuity", name="ingenuity_view")
self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False)
scene.add(self._copters)
scene.add(self._balls)
for i in range(2):
scene.add(self._copters.physics_rotors[i])
scene.add(self._copters.visual_rotors[i])
def get_ingenuity(self):
copter = Ingenuity(prim_path=self.default_zero_env_path + "/Ingenuity", name="ingenuity", translation=self._ingenuity_position)
self._sim_config.apply_articulation_settings("ingenuity", get_prim_at_path(copter.prim_path), self._sim_config.parse_actor_config("ingenuity"))
def get_target(self):
radius = 0.1
color = torch.tensor([1, 0, 0])
ball = DynamicSphere(
prim_path=self.default_zero_env_path + "/ball",
translation=self._ball_position,
name="target_0",
radius=radius,
color=color,
)
self._sim_config.apply_articulation_settings("ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball"))
ball.set_collision_enabled(False)
def get_observations(self) -> dict:
self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False)
self.root_velocities = self._copters.get_velocities(clone=False)
root_positions = self.root_pos - self._env_pos
root_quats = self.root_rot
root_linvels = self.root_velocities[:, :3]
root_angvels = self.root_velocities[:, 3:]
self.obs_buf[..., 0:3] = (self.target_positions - root_positions) / 3
self.obs_buf[..., 3:7] = root_quats
self.obs_buf[..., 7:10] = root_linvels / 2
self.obs_buf[..., 10:13] = root_angvels / math.pi
observations = {
self._copters.name: {
"obs_buf": self.obs_buf
}
}
return observations
def pre_physics_step(self, actions) -> None:
if not self.world.is_playing():
return
reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(reset_env_ids) > 0:
self.reset_idx(reset_env_ids)
set_target_ids = (self.progress_buf % 500 == 0).nonzero(as_tuple=False).squeeze(-1)
if len(set_target_ids) > 0:
self.set_targets(set_target_ids)
actions = actions.clone().to(self._device)
vertical_thrust_prop_0 = torch.clamp(actions[:, 2] * self.thrust_limit, -self.thrust_limit, self.thrust_limit)
vertical_thrust_prop_1 = torch.clamp(actions[:, 5] * self.thrust_limit, -self.thrust_limit, self.thrust_limit)
lateral_fraction_prop_0 = torch.clamp(
actions[:, 0:2] * self.thrust_lateral_component,
-self.thrust_lateral_component,
self.thrust_lateral_component,
)
lateral_fraction_prop_1 = torch.clamp(
actions[:, 3:5] * self.thrust_lateral_component,
-self.thrust_lateral_component,
self.thrust_lateral_component,
)
self.thrusts[:, 0, 2] = self.dt * vertical_thrust_prop_0
self.thrusts[:, 0, 0:2] = self.thrusts[:, 0, 2, None] * lateral_fraction_prop_0
self.thrusts[:, 1, 2] = self.dt * vertical_thrust_prop_1
self.thrusts[:, 1, 0:2] = self.thrusts[:, 1, 2, None] * lateral_fraction_prop_1
# clear actions for reset envs
self.thrusts[reset_env_ids] = 0
# spin spinning rotors
self.dof_vel[:, self.spinning_indices[0]] = 50
self.dof_vel[:, self.spinning_indices[1]] = -50
self._copters.set_joint_velocities(self.dof_vel)
# apply actions
for i in range(2):
self._copters.physics_rotors[i].apply_forces(self.thrusts[:, i], indices=self.all_indices)
def post_reset(self):
self.spinning_indices = torch.tensor([1, 3], device=self._device)
self.all_indices = torch.arange(self._num_envs, dtype=torch.int32, device=self._device)
self.target_positions = torch.zeros((self._num_envs, 3), device=self._device, dtype=torch.float32)
self.target_positions[:, 2] = 1
self.root_pos, self.root_rot = self._copters.get_world_poses()
self.root_velocities = self._copters.get_velocities()
self.dof_pos = self._copters.get_joint_positions()
self.dof_vel = self._copters.get_joint_velocities()
self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses()
self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone()
# control tensors
self.thrusts = torch.zeros((self._num_envs, 2, 3), dtype=torch.float32, device=self._device)
def set_targets(self, env_ids):
num_sets = len(env_ids)
envs_long = env_ids.long()
# set target position randomly with x, y in (-1, 1) and z in (1, 2)
self.target_positions[envs_long, 0:2] = torch.rand((num_sets, 2), device=self._device) * 2 - 1
self.target_positions[envs_long, 2] = torch.rand(num_sets, device=self._device) + 1
# shift the target up so it visually aligns better
ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long]
ball_pos[:, 2] += 0.4
self._balls.set_world_poses(ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids)
def reset_idx(self, env_ids):
num_resets = len(env_ids)
self.dof_pos[env_ids, 1] = torch_rand_float(-0.2, 0.2, (num_resets, 1), device=self._device).squeeze()
self.dof_pos[env_ids, 3] = torch_rand_float(-0.2, 0.2, (num_resets, 1), device=self._device).squeeze()
self.dof_vel[env_ids, :] = 0
root_pos = self.initial_root_pos.clone()
root_pos[env_ids, 0] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1)
root_pos[env_ids, 1] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1)
root_pos[env_ids, 2] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1)
root_velocities = self.root_velocities.clone()
root_velocities[env_ids] = 0
# apply resets
self._copters.set_joint_positions(self.dof_pos[env_ids], indices=env_ids)
self._copters.set_joint_velocities(self.dof_vel[env_ids], indices=env_ids)
self._copters.set_world_poses(root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids)
self._copters.set_velocities(root_velocities[env_ids], indices=env_ids)
# bookkeeping
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
def calculate_metrics(self) -> None:
root_positions = self.root_pos - self._env_pos
root_quats = self.root_rot
root_angvels = self.root_velocities[:, 3:]
# distance to target
target_dist = torch.sqrt(torch.square(self.target_positions - root_positions).sum(-1))
pos_reward = 1.0 / (1.0 + 2.5 * target_dist * target_dist)
self.target_dist = target_dist
self.root_positions = root_positions
# uprightness
ups = quat_axis(root_quats, 2)
tiltage = torch.abs(1 - ups[..., 2])
up_reward = 1.0 / (1.0 + 30 * tiltage * tiltage)
# spinning
spinnage = torch.abs(root_angvels[..., 2])
spinnage_reward = 1.0 / (1.0 + 10 * spinnage * spinnage)
# combined reward
# uprightness and spinning only matter when close to the target
self.rew_buf[:] = pos_reward + pos_reward * (up_reward + spinnage_reward)
def is_done(self) -> None:
# resets due to misbehavior
ones = torch.ones_like(self.reset_buf)
die = torch.zeros_like(self.reset_buf)
die = torch.where(self.target_dist > 20.0, ones, die)
die = torch.where(self.root_positions[..., 2] < 0.5, ones, die)
# resets due to episode length
self.reset_buf[:] = torch.where(self.progress_buf >= self._max_episode_length - 1, ones, die)
| 12,385 | Python | 42.921986 | 151 | 0.635204 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/anymal.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import numpy as np
import torch
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.torch.rotations import *
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.robots.articulations.anymal import Anymal
from omniisaacgymenvs.robots.articulations.views.anymal_view import AnymalView
from omniisaacgymenvs.tasks.utils.usd_utils import set_drive
class AnymalTask(RLTask):
def __init__(self, name, sim_config, env, offset=None) -> None:
self.update_config(sim_config)
self._num_observations = 48
self._num_actions = 12
RLTask.__init__(self, name, env)
return
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
# normalization
self.lin_vel_scale = self._task_cfg["env"]["learn"]["linearVelocityScale"]
self.ang_vel_scale = self._task_cfg["env"]["learn"]["angularVelocityScale"]
self.dof_pos_scale = self._task_cfg["env"]["learn"]["dofPositionScale"]
self.dof_vel_scale = self._task_cfg["env"]["learn"]["dofVelocityScale"]
self.action_scale = self._task_cfg["env"]["control"]["actionScale"]
# reward scales
self.rew_scales = {}
self.rew_scales["lin_vel_xy"] = self._task_cfg["env"]["learn"]["linearVelocityXYRewardScale"]
self.rew_scales["ang_vel_z"] = self._task_cfg["env"]["learn"]["angularVelocityZRewardScale"]
self.rew_scales["lin_vel_z"] = self._task_cfg["env"]["learn"]["linearVelocityZRewardScale"]
self.rew_scales["joint_acc"] = self._task_cfg["env"]["learn"]["jointAccRewardScale"]
self.rew_scales["action_rate"] = self._task_cfg["env"]["learn"]["actionRateRewardScale"]
self.rew_scales["cosmetic"] = self._task_cfg["env"]["learn"]["cosmeticRewardScale"]
# command ranges
self.command_x_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_x"]
self.command_y_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_y"]
self.command_yaw_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["yaw"]
# base init state
pos = self._task_cfg["env"]["baseInitState"]["pos"]
rot = self._task_cfg["env"]["baseInitState"]["rot"]
v_lin = self._task_cfg["env"]["baseInitState"]["vLinear"]
v_ang = self._task_cfg["env"]["baseInitState"]["vAngular"]
state = pos + rot + v_lin + v_ang
self.base_init_state = state
# default joint positions
self.named_default_joint_angles = self._task_cfg["env"]["defaultJointAngles"]
# other
self.dt = 1 / 60
self.max_episode_length_s = self._task_cfg["env"]["learn"]["episodeLength_s"]
self.max_episode_length = int(self.max_episode_length_s / self.dt + 0.5)
self.Kp = self._task_cfg["env"]["control"]["stiffness"]
self.Kd = self._task_cfg["env"]["control"]["damping"]
for key in self.rew_scales.keys():
self.rew_scales[key] *= self.dt
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._anymal_translation = torch.tensor([0.0, 0.0, 0.62])
self._env_spacing = self._task_cfg["env"]["envSpacing"]
def set_up_scene(self, scene) -> None:
self.get_anymal()
super().set_up_scene(scene)
self._anymals = AnymalView(prim_paths_expr="/World/envs/.*/anymal", name="anymalview")
scene.add(self._anymals)
scene.add(self._anymals._knees)
scene.add(self._anymals._base)
return
def initialize_views(self, scene):
super().initialize_views(scene)
if scene.object_exists("anymalview"):
scene.remove_object("anymalview", registry_only=True)
if scene.object_exists("knees_view"):
scene.remove_object("knees_view", registry_only=True)
if scene.object_exists("base_view"):
scene.remove_object("base_view", registry_only=True)
self._anymals = AnymalView(prim_paths_expr="/World/envs/.*/anymal", name="anymalview")
scene.add(self._anymals)
scene.add(self._anymals._knees)
scene.add(self._anymals._base)
def get_anymal(self):
anymal = Anymal(
prim_path=self.default_zero_env_path + "/anymal", name="Anymal", translation=self._anymal_translation
)
self._sim_config.apply_articulation_settings(
"Anymal", get_prim_at_path(anymal.prim_path), self._sim_config.parse_actor_config("Anymal")
)
# Configure joint properties
joint_paths = []
for quadrant in ["LF", "LH", "RF", "RH"]:
for component, abbrev in [("HIP", "H"), ("THIGH", "K")]:
joint_paths.append(f"{quadrant}_{component}/{quadrant}_{abbrev}FE")
joint_paths.append(f"base/{quadrant}_HAA")
for joint_path in joint_paths:
set_drive(f"{anymal.prim_path}/{joint_path}", "angular", "position", 0, 400, 40, 1000)
def get_observations(self) -> dict:
torso_position, torso_rotation = self._anymals.get_world_poses(clone=False)
root_velocities = self._anymals.get_velocities(clone=False)
dof_pos = self._anymals.get_joint_positions(clone=False)
dof_vel = self._anymals.get_joint_velocities(clone=False)
velocity = root_velocities[:, 0:3]
ang_velocity = root_velocities[:, 3:6]
base_lin_vel = quat_rotate_inverse(torso_rotation, velocity) * self.lin_vel_scale
base_ang_vel = quat_rotate_inverse(torso_rotation, ang_velocity) * self.ang_vel_scale
projected_gravity = quat_rotate(torso_rotation, self.gravity_vec)
dof_pos_scaled = (dof_pos - self.default_dof_pos) * self.dof_pos_scale
commands_scaled = self.commands * torch.tensor(
[self.lin_vel_scale, self.lin_vel_scale, self.ang_vel_scale],
requires_grad=False,
device=self.commands.device,
)
obs = torch.cat(
(
base_lin_vel,
base_ang_vel,
projected_gravity,
commands_scaled,
dof_pos_scaled,
dof_vel * self.dof_vel_scale,
self.actions,
),
dim=-1,
)
self.obs_buf[:] = obs
observations = {self._anymals.name: {"obs_buf": self.obs_buf}}
return observations
def pre_physics_step(self, actions) -> None:
if not self.world.is_playing():
return
reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(reset_env_ids) > 0:
self.reset_idx(reset_env_ids)
indices = torch.arange(self._anymals.count, dtype=torch.int32, device=self._device)
self.actions[:] = actions.clone().to(self._device)
current_targets = self.current_targets + self.action_scale * self.actions * self.dt
self.current_targets[:] = tensor_clamp(
current_targets, self.anymal_dof_lower_limits, self.anymal_dof_upper_limits
)
self._anymals.set_joint_position_targets(self.current_targets, indices)
def reset_idx(self, env_ids):
num_resets = len(env_ids)
# randomize DOF velocities
velocities = torch_rand_float(-0.1, 0.1, (num_resets, self._anymals.num_dof), device=self._device)
dof_pos = self.default_dof_pos[env_ids]
dof_vel = velocities
self.current_targets[env_ids] = dof_pos[:]
root_vel = torch.zeros((num_resets, 6), device=self._device)
# apply resets
indices = env_ids.to(dtype=torch.int32)
self._anymals.set_joint_positions(dof_pos, indices)
self._anymals.set_joint_velocities(dof_vel, indices)
self._anymals.set_world_poses(
self.initial_root_pos[env_ids].clone(), self.initial_root_rot[env_ids].clone(), indices
)
self._anymals.set_velocities(root_vel, indices)
self.commands_x[env_ids] = torch_rand_float(
self.command_x_range[0], self.command_x_range[1], (num_resets, 1), device=self._device
).squeeze()
self.commands_y[env_ids] = torch_rand_float(
self.command_y_range[0], self.command_y_range[1], (num_resets, 1), device=self._device
).squeeze()
self.commands_yaw[env_ids] = torch_rand_float(
self.command_yaw_range[0], self.command_yaw_range[1], (num_resets, 1), device=self._device
).squeeze()
# bookkeeping
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
self.last_actions[env_ids] = 0.0
self.last_dof_vel[env_ids] = 0.0
def post_reset(self):
self.default_dof_pos = torch.zeros(
(self.num_envs, 12), dtype=torch.float, device=self.device, requires_grad=False
)
dof_names = self._anymals.dof_names
for i in range(self.num_actions):
name = dof_names[i]
angle = self.named_default_joint_angles[name]
self.default_dof_pos[:, i] = angle
self.initial_root_pos, self.initial_root_rot = self._anymals.get_world_poses()
self.current_targets = self.default_dof_pos.clone()
dof_limits = self._anymals.get_dof_limits()
self.anymal_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device)
self.anymal_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device)
self.commands = torch.zeros(self._num_envs, 3, dtype=torch.float, device=self._device, requires_grad=False)
self.commands_y = self.commands.view(self._num_envs, 3)[..., 1]
self.commands_x = self.commands.view(self._num_envs, 3)[..., 0]
self.commands_yaw = self.commands.view(self._num_envs, 3)[..., 2]
# initialize some data used later on
self.extras = {}
self.gravity_vec = torch.tensor([0.0, 0.0, -1.0], device=self._device).repeat((self._num_envs, 1))
self.actions = torch.zeros(
self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False
)
self.last_dof_vel = torch.zeros(
(self._num_envs, 12), dtype=torch.float, device=self._device, requires_grad=False
)
self.last_actions = torch.zeros(
self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False
)
self.time_out_buf = torch.zeros_like(self.reset_buf)
# randomize all envs
indices = torch.arange(self._anymals.count, dtype=torch.int64, device=self._device)
self.reset_idx(indices)
def calculate_metrics(self) -> None:
torso_position, torso_rotation = self._anymals.get_world_poses(clone=False)
root_velocities = self._anymals.get_velocities(clone=False)
dof_pos = self._anymals.get_joint_positions(clone=False)
dof_vel = self._anymals.get_joint_velocities(clone=False)
velocity = root_velocities[:, 0:3]
ang_velocity = root_velocities[:, 3:6]
base_lin_vel = quat_rotate_inverse(torso_rotation, velocity)
base_ang_vel = quat_rotate_inverse(torso_rotation, ang_velocity)
# velocity tracking reward
lin_vel_error = torch.sum(torch.square(self.commands[:, :2] - base_lin_vel[:, :2]), dim=1)
ang_vel_error = torch.square(self.commands[:, 2] - base_ang_vel[:, 2])
rew_lin_vel_xy = torch.exp(-lin_vel_error / 0.25) * self.rew_scales["lin_vel_xy"]
rew_ang_vel_z = torch.exp(-ang_vel_error / 0.25) * self.rew_scales["ang_vel_z"]
rew_lin_vel_z = torch.square(base_lin_vel[:, 2]) * self.rew_scales["lin_vel_z"]
rew_joint_acc = torch.sum(torch.square(self.last_dof_vel - dof_vel), dim=1) * self.rew_scales["joint_acc"]
rew_action_rate = (
torch.sum(torch.square(self.last_actions - self.actions), dim=1) * self.rew_scales["action_rate"]
)
rew_cosmetic = (
torch.sum(torch.abs(dof_pos[:, 0:4] - self.default_dof_pos[:, 0:4]), dim=1) * self.rew_scales["cosmetic"]
)
total_reward = rew_lin_vel_xy + rew_ang_vel_z + rew_joint_acc + rew_action_rate + rew_cosmetic + rew_lin_vel_z
total_reward = torch.clip(total_reward, 0.0, None)
self.last_actions[:] = self.actions[:]
self.last_dof_vel[:] = dof_vel[:]
self.fallen_over = self._anymals.is_base_below_threshold(threshold=0.51, ground_heights=0.0)
total_reward[torch.nonzero(self.fallen_over)] = -1
self.rew_buf[:] = total_reward.detach()
def is_done(self) -> None:
# reset agents
time_out = self.progress_buf >= self.max_episode_length - 1
self.reset_buf[:] = time_out | self.fallen_over
| 14,344 | Python | 44.539682 | 118 | 0.630996 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/warp/humanoid.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from omniisaacgymenvs.tasks.warp.shared.locomotion import LocomotionTask
from omniisaacgymenvs.robots.articulations.humanoid import Humanoid
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.utils.prims import get_prim_at_path
from omniisaacgymenvs.tasks.base.rl_task import RLTaskWarp
import numpy as np
import torch
import warp as wp
import math
class HumanoidLocomotionTask(LocomotionTask):
def __init__(
self,
name,
sim_config,
env,
offset=None
) -> None:
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self._num_observations = 87
self._num_actions = 21
self._humanoid_positions = torch.tensor([0, 0, 1.34])
LocomotionTask.__init__(self, name=name, env=env)
return
def set_up_scene(self, scene) -> None:
self.get_humanoid()
RLTaskWarp.set_up_scene(self, scene)
self._humanoids = ArticulationView(prim_paths_expr="/World/envs/.*/Humanoid/torso", name="humanoid_view", reset_xform_properties=False)
scene.add(self._humanoids)
return
def get_humanoid(self):
humanoid = Humanoid(prim_path=self.default_zero_env_path + "/Humanoid", name="Humanoid", translation=self._humanoid_positions)
self._sim_config.apply_articulation_settings("Humanoid", get_prim_at_path(humanoid.prim_path),
self._sim_config.parse_actor_config("Humanoid"))
def get_robot(self):
return self._humanoids
def post_reset(self):
self.joint_gears = wp.array(
[
67.5000, # lower_waist
67.5000, # lower_waist
67.5000, # right_upper_arm
67.5000, # right_upper_arm
67.5000, # left_upper_arm
67.5000, # left_upper_arm
67.5000, # pelvis
45.0000, # right_lower_arm
45.0000, # left_lower_arm
45.0000, # right_thigh: x
135.0000, # right_thigh: y
45.0000, # right_thigh: z
45.0000, # left_thigh: x
135.0000, # left_thigh: y
45.0000, # left_thigh: z
90.0000, # right_knee
90.0000, # left_knee
22.5, # right_foot
22.5, # right_foot
22.5, # left_foot
22.5, # left_foot
],
device=self._device,
dtype=wp.float32
)
self.max_motor_effort = 135.0
self.motor_effort_ratio = wp.zeros(self._humanoids._num_dof, dtype=wp.float32, device=self._device)
wp.launch(compute_effort_ratio, dim=self._humanoids._num_dof,
inputs=[self.motor_effort_ratio, self.joint_gears, self.max_motor_effort], device=self._device)
dof_limits = self._humanoids.get_dof_limits().to(self._device)
self.dof_limits_lower = wp.zeros(self._humanoids._num_dof, dtype=wp.float32, device=self._device)
self.dof_limits_upper = wp.zeros(self._humanoids._num_dof, dtype=wp.float32, device=self._device)
wp.launch(parse_dof_limits, dim=self._humanoids._num_dof,
inputs=[self.dof_limits_lower, self.dof_limits_upper, dof_limits], device=self._device)
self.dof_at_limit_cost = wp.zeros(self._num_envs, dtype=wp.float32, device=self._device)
force_links = ["left_foot", "right_foot"]
self._sensor_indices = wp.array([self._humanoids._body_indices[j] for j in force_links], device=self._device, dtype=wp.int32)
LocomotionTask.post_reset(self)
def get_dof_at_limit_cost(self):
wp.launch(get_dof_at_limit_cost, dim=(self._num_envs, self._humanoids._num_dof),
inputs=[self.dof_at_limit_cost, self.obs_buf, self.motor_effort_ratio, self.joints_at_limit_cost_scale], device=self._device)
return self.dof_at_limit_cost
@wp.kernel
def compute_effort_ratio(motor_effort_ratio: wp.array(dtype=wp.float32),
joint_gears: wp.array(dtype=wp.float32),
max_motor_effort: float):
tid = wp.tid()
motor_effort_ratio[tid] = joint_gears[tid] / max_motor_effort
@wp.kernel
def parse_dof_limits(dof_limits_lower: wp.array(dtype=wp.float32),
dof_limits_upper: wp.array(dtype=wp.float32),
dof_limits: wp.array(dtype=wp.float32, ndim=3)):
tid = wp.tid()
dof_limits_lower[tid] = dof_limits[0, tid, 0]
dof_limits_upper[tid] = dof_limits[0, tid, 1]
@wp.kernel
def get_dof_at_limit_cost(dof_at_limit_cost: wp.array(dtype=wp.float32),
obs_buf: wp.array(dtype=wp.float32, ndim=2),
motor_effort_ratio: wp.array(dtype=wp.float32),
joints_at_limit_cost_scale: float):
i, j = wp.tid()
dof_i = j + 12
scaled_cost = joints_at_limit_cost_scale * (wp.abs(obs_buf[i, dof_i]) - 0.98) / 0.02
cost = 0.0
if wp.abs(obs_buf[i, dof_i]) > 0.98:
cost = scaled_cost * motor_effort_ratio[j]
dof_at_limit_cost[i] = cost
| 6,707 | Python | 42.558441 | 143 | 0.640376 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/warp/ant.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from omniisaacgymenvs.robots.articulations.ant import Ant
from omniisaacgymenvs.tasks.warp.shared.locomotion import LocomotionTask
from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate
from omni.isaac.core.utils.torch.maths import torch_rand_float, tensor_clamp, unscale
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.utils.prims import get_prim_at_path
from omniisaacgymenvs.tasks.base.rl_task import RLTaskWarp
import numpy as np
import torch
import warp as wp
class AntLocomotionTask(LocomotionTask):
def __init__(
self,
name,
sim_config,
env,
offset=None
) -> None:
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self._num_observations = 60
self._num_actions = 8
self._ant_positions = wp.array([0, 0, 0.5], dtype=wp.float32, device="cpu")
LocomotionTask.__init__(self, name=name, env=env)
return
def set_up_scene(self, scene) -> None:
self.get_ant()
RLTaskWarp.set_up_scene(self, scene)
self._ants = ArticulationView(prim_paths_expr="/World/envs/.*/Ant/torso", name="ant_view", reset_xform_properties=False)
scene.add(self._ants)
return
def get_ant(self):
ant = Ant(prim_path=self.default_zero_env_path + "/Ant", name="Ant", translation=self._ant_positions)
self._sim_config.apply_articulation_settings("Ant", get_prim_at_path(ant.prim_path), self._sim_config.parse_actor_config("Ant"))
def get_robot(self):
return self._ants
def post_reset(self):
self.joint_gears = wp.array([15, 15, 15, 15, 15, 15, 15, 15], dtype=wp.float32, device=self._device)
dof_limits = self._ants.get_dof_limits().to(self._device)
self.dof_limits_lower = wp.zeros(self._ants._num_dof, dtype=wp.float32, device=self._device)
self.dof_limits_upper = wp.zeros(self._ants._num_dof, dtype=wp.float32, device=self._device)
wp.launch(parse_dof_limits, dim=self._ants._num_dof,
inputs=[self.dof_limits_lower, self.dof_limits_upper, dof_limits], device=self._device)
self.motor_effort_ratio = wp.array([1, 1, 1, 1, 1, 1, 1, 1], dtype=wp.float32, device=self._device)
self.dof_at_limit_cost = wp.zeros(self._num_envs, dtype=wp.float32, device=self._device)
force_links = ["front_left_foot", "front_right_foot", "left_back_foot", "right_back_foot"]
self._sensor_indices = wp.array([self._ants._body_indices[j] for j in force_links], device=self._device, dtype=wp.int32)
LocomotionTask.post_reset(self)
def get_dof_at_limit_cost(self):
wp.launch(get_dof_at_limit_cost, dim=(self._num_envs, self._ants._num_dof),
inputs=[self.dof_at_limit_cost, self.obs_buf, self.motor_effort_ratio], device=self._device)
return self.dof_at_limit_cost
@wp.kernel
def get_dof_at_limit_cost(dof_at_limit_cost: wp.array(dtype=wp.float32),
obs_buf: wp.array(dtype=wp.float32, ndim=2),
motor_effort_ratio: wp.array(dtype=wp.float32)):
i, j = wp.tid()
dof_i = j + 12
cost = 0.0
if wp.abs(obs_buf[i, dof_i]) > 0.99:
cost = 1.0
dof_at_limit_cost[i] = cost
@wp.kernel
def parse_dof_limits(dof_limits_lower: wp.array(dtype=wp.float32),
dof_limits_upper: wp.array(dtype=wp.float32),
dof_limits: wp.array(dtype=wp.float32, ndim=3)):
tid = wp.tid()
dof_limits_lower[tid] = dof_limits[0, tid, 0]
dof_limits_upper[tid] = dof_limits[0, tid, 1] | 5,242 | Python | 44.991228 | 136 | 0.685616 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/warp/cartpole.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from omniisaacgymenvs.robots.articulations.cartpole import Cartpole
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.utils.prims import get_prim_at_path
import omni.isaac.core.utils.warp as warp_utils
from omniisaacgymenvs.tasks.base.rl_task import RLTaskWarp
import numpy as np
import torch
import warp as wp
import math
class CartpoleTask(RLTaskWarp):
def __init__(
self,
name,
sim_config,
env,
offset=None
) -> None:
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._env_spacing = self._task_cfg["env"]["envSpacing"]
self._cartpole_positions = wp.array([0.0, 0.0, 2.0], dtype=wp.float32)
self._reset_dist = self._task_cfg["env"]["resetDist"]
self._max_push_effort = self._task_cfg["env"]["maxEffort"]
self._max_episode_length = 500
self._num_observations = 4
self._num_actions = 1
RLTaskWarp.__init__(self, name, env)
return
def set_up_scene(self, scene) -> None:
self.get_cartpole()
super().set_up_scene(scene)
self._cartpoles = ArticulationView(prim_paths_expr="/World/envs/.*/Cartpole", name="cartpole_view", reset_xform_properties=False)
scene.add(self._cartpoles)
return
def get_cartpole(self):
cartpole = Cartpole(prim_path=self.default_zero_env_path + "/Cartpole", name="Cartpole", translation=self._cartpole_positions)
# applies articulation settings from the task configuration yaml file
self._sim_config.apply_articulation_settings("Cartpole", get_prim_at_path(cartpole.prim_path), self._sim_config.parse_actor_config("Cartpole"))
def get_observations(self) -> dict:
dof_pos = self._cartpoles.get_joint_positions(clone=False)
dof_vel = self._cartpoles.get_joint_velocities(clone=False)
wp.launch(get_observations, dim=self._num_envs,
inputs=[self.obs_buf, dof_pos, dof_vel, self._cart_dof_idx, self._pole_dof_idx], device=self._device)
observations = {
self._cartpoles.name: {
"obs_buf": self.obs_buf
}
}
return observations
def pre_physics_step(self, actions) -> None:
self.reset_idx()
actions_wp = wp.from_torch(actions)
forces = wp.zeros((self._cartpoles.count, self._cartpoles.num_dof), dtype=wp.float32, device=self._device)
wp.launch(compute_forces, dim=self._num_envs,
inputs=[forces, actions_wp, self._cart_dof_idx, self._max_push_effort], device=self._device)
self._cartpoles.set_joint_efforts(forces)
def reset_idx(self):
reset_env_ids = wp.to_torch(self.reset_buf).nonzero(as_tuple=False).squeeze(-1)
num_resets = len(reset_env_ids)
indices = wp.from_torch(reset_env_ids.to(dtype=torch.int32), dtype=wp.int32)
if num_resets > 0:
wp.launch(reset_idx, num_resets,
inputs=[self.dof_pos, self.dof_vel, indices, self.reset_buf, self.progress_buf, self._cart_dof_idx, self._pole_dof_idx, self._rand_seed],
device=self._device)
# apply resets
self._cartpoles.set_joint_positions(self.dof_pos[indices], indices=indices)
self._cartpoles.set_joint_velocities(self.dof_vel[indices], indices=indices)
def post_reset(self):
self._cart_dof_idx = self._cartpoles.get_dof_index("cartJoint")
self._pole_dof_idx = self._cartpoles.get_dof_index("poleJoint")
self.dof_pos = wp.zeros((self._num_envs, self._cartpoles.num_dof), device=self._device, dtype=wp.float32)
self.dof_vel = wp.zeros((self._num_envs, self._cartpoles.num_dof), device=self._device, dtype=wp.float32)
# randomize all envs
self.reset_idx()
def calculate_metrics(self) -> None:
wp.launch(calculate_metrics, dim=self._num_envs,
inputs=[self.obs_buf, self.rew_buf, self._reset_dist], device=self._device)
def is_done(self) -> None:
wp.launch(is_done, dim=self._num_envs,
inputs=[self.obs_buf, self.reset_buf, self.progress_buf, self._reset_dist, self._max_episode_length],
device=self._device)
@wp.kernel
def reset_idx(dof_pos: wp.array(dtype=wp.float32, ndim=2),
dof_vel: wp.array(dtype=wp.float32, ndim=2),
indices: wp.array(dtype=wp.int32),
reset_buf: wp.array(dtype=wp.int32),
progress_buf: wp.array(dtype=wp.int32),
cart_dof_idx: int,
pole_dof_idx: int,
rand_seed: int):
i = wp.tid()
idx = indices[i]
rand_state = wp.rand_init(rand_seed, i)
# randomize DOF positions
dof_pos[idx, cart_dof_idx] = 1.0 * (1.0 - 2.0 * wp.randf(rand_state))
dof_pos[idx, pole_dof_idx] = 0.125 * warp_utils.PI * (1.0 - 2.0 * wp.randf(rand_state))
# randomize DOF velocities
dof_vel[idx, cart_dof_idx] = 0.5 * (1.0 - 2.0 * wp.randf(rand_state))
dof_vel[idx, pole_dof_idx] = 0.25 * warp_utils.PI * (1.0 - 2.0 * wp.randf(rand_state))
# bookkeeping
progress_buf[idx] = 0
reset_buf[idx] = 0
@wp.kernel
def compute_forces(forces: wp.array(dtype=wp.float32, ndim=2),
actions: wp.array(dtype=wp.float32, ndim=2),
cart_dof_idx: int,
max_push_effort: float):
i = wp.tid()
forces[i, cart_dof_idx] = max_push_effort * actions[i, 0]
@wp.kernel
def get_observations(obs_buf: wp.array(dtype=wp.float32, ndim=2),
dof_pos: wp.indexedarray(dtype=wp.float32, ndim=2),
dof_vel: wp.indexedarray(dtype=wp.float32, ndim=2),
cart_dof_idx: int,
pole_dof_idx: int):
i = wp.tid()
obs_buf[i, 0] = dof_pos[i, cart_dof_idx]
obs_buf[i, 1] = dof_vel[i, cart_dof_idx]
obs_buf[i, 2] = dof_pos[i, pole_dof_idx]
obs_buf[i, 3] = dof_vel[i, pole_dof_idx]
@wp.kernel
def calculate_metrics(obs_buf: wp.array(dtype=wp.float32, ndim=2),
rew_buf: wp.array(dtype=wp.float32),
reset_dist: float):
i = wp.tid()
cart_pos = obs_buf[i, 0]
cart_vel = obs_buf[i, 1]
pole_angle = obs_buf[i, 2]
pole_vel = obs_buf[i, 3]
rew_buf[i] = 1.0 - pole_angle * pole_angle - 0.01 * wp.abs(cart_vel) - 0.005 * wp.abs(pole_vel)
if wp.abs(cart_pos) > reset_dist or wp.abs(pole_angle) > warp_utils.PI / 2.0:
rew_buf[i] = -2.0
@wp.kernel
def is_done(obs_buf: wp.array(dtype=wp.float32, ndim=2),
reset_buf: wp.array(dtype=wp.int32),
progress_buf: wp.array(dtype=wp.int32),
reset_dist: float,
max_episode_length: int):
i = wp.tid()
cart_pos = obs_buf[i, 0]
pole_pos = obs_buf[i, 2]
if wp.abs(cart_pos) > reset_dist or wp.abs(pole_pos) > warp_utils.PI / 2.0 or progress_buf[i] > max_episode_length:
reset_buf[i] = 1
else:
reset_buf[i] = 0
| 8,665 | Python | 38.390909 | 154 | 0.635661 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/warp/shared/locomotion.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from abc import abstractmethod
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.utils.prims import get_prim_at_path
import omni.isaac.core.utils.warp as warp_utils
from omniisaacgymenvs.tasks.base.rl_task import RLTaskWarp
import numpy as np
import torch
import warp as wp
class LocomotionTask(RLTaskWarp):
def __init__(
self,
name,
env,
offset=None
) -> None:
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._env_spacing = self._task_cfg["env"]["envSpacing"]
self._max_episode_length = self._task_cfg["env"]["episodeLength"]
self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"]
self.angular_velocity_scale = self._task_cfg["env"]["angularVelocityScale"]
self.contact_force_scale = self._task_cfg["env"]["contactForceScale"]
self.power_scale = self._task_cfg["env"]["powerScale"]
self.heading_weight = self._task_cfg["env"]["headingWeight"]
self.up_weight = self._task_cfg["env"]["upWeight"]
self.actions_cost_scale = self._task_cfg["env"]["actionsCost"]
self.energy_cost_scale = self._task_cfg["env"]["energyCost"]
self.joints_at_limit_cost_scale = self._task_cfg["env"]["jointsAtLimitCost"]
self.death_cost = self._task_cfg["env"]["deathCost"]
self.termination_height = self._task_cfg["env"]["terminationHeight"]
self.alive_reward_scale = self._task_cfg["env"]["alive_reward_scale"]
self._num_sensors = 2
RLTaskWarp.__init__(self, name, env)
return
@abstractmethod
def set_up_scene(self, scene) -> None:
pass
@abstractmethod
def get_robot(self):
pass
def get_observations(self) -> dict:
torso_position, torso_rotation = self._robots.get_world_poses(clone=False)
velocities = self._robots.get_velocities(clone=False)
dof_pos = self._robots.get_joint_positions(clone=False)
dof_vel = self._robots.get_joint_velocities(clone=False)
# force sensors attached to the feet
sensor_force_torques = self._robots.get_measured_joint_forces()
wp.launch(get_observations, dim=self._num_envs,
inputs=[self.obs_buf, torso_position, torso_rotation, self._env_pos, velocities, dof_pos, dof_vel,
self.prev_potentials, self.potentials, self.dt, self.target,
self.basis_vec0, self.basis_vec1, self.dof_limits_lower, self.dof_limits_upper, self.dof_vel_scale,
sensor_force_torques, self.contact_force_scale, self.actions, self.angular_velocity_scale,
self._robots._num_dof, self._num_sensors, self._sensor_indices], device=self._device
)
observations = {
self._robots.name: {
"obs_buf": self.obs_buf
}
}
return observations
def pre_physics_step(self, actions) -> None:
self.reset_idx()
actions_wp = wp.from_torch(actions)
self.actions = actions_wp
wp.launch(compute_forces, dim=(self._num_envs, self._robots._num_dof),
inputs=[self.forces, self.actions, self.joint_gears, self.power_scale], device=self._device)
# applies joint torques
self._robots.set_joint_efforts(self.forces)
def reset_idx(self):
reset_env_ids = wp.to_torch(self.reset_buf).nonzero(as_tuple=False).squeeze(-1)
num_resets = len(reset_env_ids)
indices = wp.from_torch(reset_env_ids.to(dtype=torch.int32), dtype=wp.int32)
if num_resets > 0:
wp.launch(reset_dofs, dim=(num_resets, self._robots._num_dof),
inputs=[self.dof_pos, self.dof_vel, self.initial_dof_pos, self.dof_limits_lower, self.dof_limits_upper, indices, self._rand_seed],
device=self._device)
wp.launch(reset_idx, dim=num_resets,
inputs=[self.root_pos, self.root_rot, self.initial_root_pos, self.initial_root_rot, self._env_pos,
self.target, self.prev_potentials, self.potentials, self.dt,
self.reset_buf, self.progress_buf, indices, self._rand_seed],
device=self._device)
# apply resets
self._robots.set_joint_positions(self.dof_pos[indices], indices=indices)
self._robots.set_joint_velocities(self.dof_vel[indices], indices=indices)
self._robots.set_world_poses(self.root_pos[indices], self.root_rot[indices], indices=indices)
self._robots.set_velocities(self.root_vel[indices], indices=indices)
def post_reset(self):
self._robots = self.get_robot()
self.initial_root_pos, self.initial_root_rot = self._robots.get_world_poses()
self.initial_dof_pos = self._robots.get_joint_positions()
# initialize some data used later on
self.basis_vec0 = wp.vec3(1, 0, 0)
self.basis_vec1 = wp.vec3(0, 0, 1)
self.target = wp.vec3(1000, 0, 0)
self.dt = 1.0 / 60.0
# initialize potentials
self.potentials = wp.zeros(self._num_envs, dtype=wp.float32, device=self._device)
self.prev_potentials = wp.zeros(self._num_envs, dtype=wp.float32, device=self._device)
wp.launch(init_potentials, dim=self._num_envs,
inputs=[self.potentials, self.prev_potentials, self.dt], device=self._device)
self.actions = wp.zeros((self.num_envs, self.num_actions), device=self._device, dtype=wp.float32)
self.forces = wp.zeros((self._num_envs, self._robots._num_dof), dtype=wp.float32, device=self._device)
self.dof_pos = wp.zeros((self.num_envs, self._robots._num_dof), device=self._device, dtype=wp.float32)
self.dof_vel = wp.zeros((self.num_envs, self._robots._num_dof), device=self._device, dtype=wp.float32)
self.root_pos = wp.zeros((self.num_envs, 3), device=self._device, dtype=wp.float32)
self.root_rot = wp.zeros((self.num_envs, 4), device=self._device, dtype=wp.float32)
self.root_vel = wp.zeros((self.num_envs, 6), device=self._device, dtype=wp.float32)
# randomize all env
self.reset_idx()
def calculate_metrics(self) -> None:
dof_at_limit_cost = self.get_dof_at_limit_cost()
wp.launch(calculate_metrics, dim=self._num_envs,
inputs=[self.rew_buf, self.obs_buf, self.actions, self.up_weight, self.heading_weight, self.potentials, self.prev_potentials,
self.actions_cost_scale, self.energy_cost_scale, self.termination_height,
self.death_cost, self._robots.num_dof, dof_at_limit_cost, self.alive_reward_scale, self.motor_effort_ratio],
device=self._device
)
def is_done(self) -> None:
wp.launch(is_done, dim=self._num_envs,
inputs=[self.obs_buf, self.termination_height, self.reset_buf, self.progress_buf, self._max_episode_length],
device=self._device
)
#####################################################################
###==========================warp kernels=========================###
#####################################################################
@wp.kernel
def init_potentials(potentials: wp.array(dtype=wp.float32),
prev_potentials: wp.array(dtype=wp.float32),
dt: float):
i = wp.tid()
potentials[i] = -1000.0 / dt
prev_potentials[i] = -1000.0 / dt
@wp.kernel
def reset_idx(root_pos: wp.array(dtype=wp.float32, ndim=2),
root_rot: wp.array(dtype=wp.float32, ndim=2),
initial_root_pos: wp.indexedarray(dtype=wp.float32, ndim=2),
initial_root_rot: wp.indexedarray(dtype=wp.float32, ndim=2),
env_pos: wp.array(dtype=wp.float32, ndim=2),
target: wp.vec3,
prev_potentials: wp.array(dtype=wp.float32),
potentials: wp.array(dtype=wp.float32),
dt: float,
reset_buf: wp.array(dtype=wp.int32),
progress_buf: wp.array(dtype=wp.int32),
indices: wp.array(dtype=wp.int32),
rand_seed: int):
i = wp.tid()
idx = indices[i]
# reset root states
for j in range(3):
root_pos[idx, j] = initial_root_pos[idx, j]
for j in range(4):
root_rot[idx, j] = initial_root_rot[idx, j]
# reset potentials
to_target = target - wp.vec3(initial_root_pos[idx, 0] - env_pos[idx, 0], initial_root_pos[idx, 1] - env_pos[idx, 1], target[2])
prev_potentials[idx] = -wp.length(to_target) / dt
potentials[idx] = -wp.length(to_target) / dt
temp = potentials[idx] - prev_potentials[idx]
# bookkeeping
reset_buf[idx] = 0
progress_buf[idx] = 0
@wp.kernel
def reset_dofs(dof_pos: wp.array(dtype=wp.float32, ndim=2),
dof_vel: wp.array(dtype=wp.float32, ndim=2),
initial_dof_pos: wp.indexedarray(dtype=wp.float32, ndim=2),
dof_limits_lower: wp.array(dtype=wp.float32),
dof_limits_upper: wp.array(dtype=wp.float32),
indices: wp.array(dtype=wp.int32),
rand_seed: int):
i, j = wp.tid()
idx = indices[i]
rand_state = wp.rand_init(rand_seed, i * j + j)
# randomize DOF positions and velocities
dof_pos[idx, j] = wp.clamp(wp.randf(rand_state, -0.2, 0.2) + initial_dof_pos[idx, j], dof_limits_lower[j], dof_limits_upper[j])
dof_vel[idx, j] = wp.randf(rand_state, -0.1, 0.1)
@wp.kernel
def compute_forces(forces: wp.array(dtype=wp.float32, ndim=2),
actions: wp.array(dtype=wp.float32, ndim=2),
joint_gears: wp.array(dtype=wp.float32),
power_scale: float):
i, j = wp.tid()
forces[i, j] = actions[i, j] * joint_gears[j] * power_scale
@wp.func
def get_euler_xyz(q: wp.quat):
qx = 0
qy = 1
qz = 2
qw = 3
# roll (x-axis rotation)
sinr_cosp = 2.0 * (q[qw] * q[qx] + q[qy] * q[qz])
cosr_cosp = q[qw] * q[qw] - q[qx] * q[qx] - q[qy] * q[qy] + q[qz] * q[qz]
roll = wp.atan2(sinr_cosp, cosr_cosp)
# pitch (y-axis rotation)
sinp = 2.0 * (q[qw] * q[qy] - q[qz] * q[qx])
if wp.abs(sinp) >= 1:
pitch = warp_utils.PI / 2.0 * (wp.abs(sinp)/sinp)
else:
pitch = wp.asin(sinp)
# yaw (z-axis rotation)
siny_cosp = 2.0 * (q[qw] * q[qz] + q[qx] * q[qy])
cosy_cosp = q[qw] * q[qw] + q[qx] * q[qx] - q[qy] * q[qy] - q[qz] * q[qz]
yaw = wp.atan2(siny_cosp, cosy_cosp)
rpy = wp.vec3(roll % (2.0 * warp_utils.PI), pitch % (2.0 * warp_utils.PI), yaw % (2.0 * warp_utils.PI))
return rpy
@wp.func
def compute_up_vec(torso_rotation: wp.quat, vec1: wp.vec3):
up_vec = wp.quat_rotate(torso_rotation, vec1)
return up_vec
@wp.func
def compute_heading_vec(torso_rotation: wp.quat, vec0: wp.vec3):
heading_vec = wp.quat_rotate(torso_rotation, vec0)
return heading_vec
@wp.func
def unscale(x:float, lower:float, upper:float):
return (2.0 * x - upper - lower) / (upper - lower)
@wp.func
def normalize_angle(x: float):
return wp.atan2(wp.sin(x), wp.cos(x))
@wp.kernel
def get_observations(
obs_buf: wp.array(dtype=wp.float32, ndim=2),
torso_pos: wp.indexedarray(dtype=wp.float32, ndim=2),
torso_rot: wp.indexedarray(dtype=wp.float32, ndim=2),
env_pos: wp.array(dtype=wp.float32, ndim=2),
velocity: wp.indexedarray(dtype=wp.float32, ndim=2),
dof_pos: wp.indexedarray(dtype=wp.float32, ndim=2),
dof_vel: wp.indexedarray(dtype=wp.float32, ndim=2),
prev_potentials: wp.array(dtype=wp.float32),
potentials: wp.array(dtype=wp.float32),
dt: float,
target: wp.vec3,
basis_vec0: wp.vec3,
basis_vec1: wp.vec3,
dof_limits_lower: wp.array(dtype=wp.float32),
dof_limits_upper: wp.array(dtype=wp.float32),
dof_vel_scale: float,
sensor_force_torques: wp.indexedarray(dtype=wp.float32, ndim=3),
contact_force_scale: float,
actions: wp.array(dtype=wp.float32, ndim=2),
angular_velocity_scale: float,
num_dofs: int,
num_sensors: int,
sensor_indices: wp.array(dtype=wp.int32)
):
i = wp.tid()
torso_position_x = torso_pos[i, 0] - env_pos[i, 0]
torso_position_y = torso_pos[i, 1] - env_pos[i, 1]
torso_position_z = torso_pos[i, 2] - env_pos[i, 2]
to_target = target - wp.vec3(torso_position_x, torso_position_y, target[2])
prev_potentials[i] = potentials[i]
potentials[i] = -wp.length(to_target) / dt
temp = potentials[i] - prev_potentials[i]
torso_quat = wp.quat(torso_rot[i, 1], torso_rot[i, 2], torso_rot[i, 3], torso_rot[i, 0])
up_vec = compute_up_vec(torso_quat, basis_vec1)
up_proj = up_vec[2]
heading_vec = compute_heading_vec(torso_quat, basis_vec0)
target_dir = wp.normalize(to_target)
heading_proj = wp.dot(heading_vec, target_dir)
lin_velocity = wp.vec3(velocity[i, 0], velocity[i, 1], velocity[i, 2])
ang_velocity = wp.vec3(velocity[i, 3], velocity[i, 4], velocity[i, 5])
rpy = get_euler_xyz(torso_quat)
vel_loc = wp.quat_rotate_inv(torso_quat, lin_velocity)
angvel_loc = wp.quat_rotate_inv(torso_quat, ang_velocity)
walk_target_angle = wp.atan2(target[2] - torso_position_z, target[0] - torso_position_x)
angle_to_target = walk_target_angle - rpy[2] # yaw
# obs_buf shapes: 1, 3, 3, 1, 1, 1, 1, 1, num_dofs, num_dofs, num_sensors * 6, num_dofs
obs_offset = 0
obs_buf[i, 0] = torso_position_z
obs_offset = obs_offset + 1
for j in range(3):
obs_buf[i, j+obs_offset] = vel_loc[j]
obs_offset = obs_offset + 3
for j in range(3):
obs_buf[i, j+obs_offset] = angvel_loc[j] * angular_velocity_scale
obs_offset = obs_offset + 3
obs_buf[i, obs_offset+0] = normalize_angle(rpy[2])
obs_buf[i, obs_offset+1] = normalize_angle(rpy[0])
obs_buf[i, obs_offset+2] = normalize_angle(angle_to_target)
obs_buf[i, obs_offset+3] = up_proj
obs_buf[i, obs_offset+4] = heading_proj
obs_offset = obs_offset + 5
for j in range(num_dofs):
obs_buf[i, obs_offset+j] = unscale(dof_pos[i, j], dof_limits_lower[j], dof_limits_upper[j])
obs_offset = obs_offset + num_dofs
for j in range(num_dofs):
obs_buf[i, obs_offset+j] = dof_vel[i, j] * dof_vel_scale
obs_offset = obs_offset + num_dofs
for j in range(num_sensors):
sensor_idx = sensor_indices[j]
for k in range(6):
obs_buf[i, obs_offset+j*6+k] = sensor_force_torques[i, sensor_idx, k] * contact_force_scale
obs_offset = obs_offset + (num_sensors * 6)
for j in range(num_dofs):
obs_buf[i, obs_offset+j] = actions[i, j]
@wp.kernel
def is_done(
obs_buf: wp.array(dtype=wp.float32, ndim=2),
termination_height: float,
reset_buf: wp.array(dtype=wp.int32),
progress_buf: wp.array(dtype=wp.int32),
max_episode_length: int
):
i = wp.tid()
if obs_buf[i, 0] < termination_height or progress_buf[i] >= max_episode_length - 1:
reset_buf[i] = 1
else:
reset_buf[i] = 0
@wp.kernel
def calculate_metrics(
rew_buf: wp.array(dtype=wp.float32),
obs_buf: wp.array(dtype=wp.float32, ndim=2),
actions: wp.array(dtype=wp.float32, ndim=2),
up_weight: float,
heading_weight: float,
potentials: wp.array(dtype=wp.float32),
prev_potentials: wp.array(dtype=wp.float32),
actions_cost_scale: float,
energy_cost_scale: float,
termination_height: float,
death_cost: float,
num_dof: int,
dof_at_limit_cost: wp.array(dtype=wp.float32),
alive_reward_scale: float,
motor_effort_ratio: wp.array(dtype=wp.float32)
):
i = wp.tid()
# heading reward
if obs_buf[i, 11] > 0.8:
heading_reward = heading_weight
else:
heading_reward = heading_weight * obs_buf[i, 11] / 0.8
# aligning up axis of robot and environment
up_reward = 0.0
if obs_buf[i, 10] > 0.93:
up_reward = up_weight
# energy penalty for movement
actions_cost = float(0.0)
electricity_cost = float(0.0)
for j in range(num_dof):
actions_cost = actions_cost + (actions[i, j] * actions[i, j])
electricity_cost = electricity_cost + (wp.abs(actions[i, j] * obs_buf[i, 12+num_dof+j]) * motor_effort_ratio[j])
# reward for duration of staying alive
progress_reward = potentials[i] - prev_potentials[i]
total_reward = (
progress_reward
+ alive_reward_scale
+ up_reward
+ heading_reward
- actions_cost_scale * actions_cost
- energy_cost_scale * electricity_cost
- dof_at_limit_cost[i]
)
# adjust reward for fallen agents
if obs_buf[i, 0] < termination_height:
total_reward = death_cost
rew_buf[i] = total_reward
| 18,233 | Python | 39.52 | 147 | 0.624198 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/base/rl_task.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import asyncio
from abc import abstractmethod
import numpy as np
import omni.isaac.core.utils.warp.tensor as wp_utils
import omni.kit
import omni.usd
import torch
import warp as wp
from gym import spaces
from omni.isaac.cloner import GridCloner
from omni.isaac.core.tasks import BaseTask
from omni.isaac.core.utils.prims import define_prim
from omni.isaac.core.utils.stage import get_current_stage
from omni.isaac.core.utils.types import ArticulationAction
from omni.isaac.gym.tasks.rl_task import RLTaskInterface
from omniisaacgymenvs.utils.domain_randomization.randomize import Randomizer
from pxr import Gf, UsdGeom, UsdLux
class RLTask(RLTaskInterface):
"""This class provides a PyTorch RL-specific interface for setting up RL tasks.
It includes utilities for setting up RL task related parameters,
cloning environments, and data collection for RL algorithms.
"""
def __init__(self, name, env, offset=None) -> None:
"""Initializes RL parameters, cloner object, and buffers.
Args:
name (str): name of the task.
env (VecEnvBase): an instance of the environment wrapper class to register task.
offset (Optional[np.ndarray], optional): offset applied to all assets of the task. Defaults to None.
"""
BaseTask.__init__(self, name=name, offset=offset)
self._rand_seed = self._cfg["seed"]
# optimization flags for pytorch JIT
torch._C._jit_set_nvfuser_enabled(False)
self.test = self._cfg["test"]
self._device = self._cfg["sim_device"]
# set up randomizer for DR
self._dr_randomizer = Randomizer(self._cfg, self._task_cfg)
if self._dr_randomizer.randomize:
import omni.replicator.isaac as dr
self.dr = dr
# set up replicator for camera data collection
self.enable_cameras = self._task_cfg["sim"].get("enable_cameras", False)
if self.enable_cameras:
from omni.replicator.isaac.scripts.writers.pytorch_writer import PytorchWriter
from omni.replicator.isaac.scripts.writers.pytorch_listener import PytorchListener
import omni.replicator.core as rep
self.rep = rep
self.PytorchWriter = PytorchWriter
self.PytorchListener = PytorchListener
print("Task Device:", self._device)
self.randomize_actions = False
self.randomize_observations = False
self.clip_obs = self._task_cfg["env"].get("clipObservations", np.Inf)
self.clip_actions = self._task_cfg["env"].get("clipActions", np.Inf)
self.rl_device = self._cfg.get("rl_device", "cuda:0")
self.control_frequency_inv = self._task_cfg["env"].get("controlFrequencyInv", 1)
self.rendering_interval = self._task_cfg.get("renderingInterval", 1)
# parse default viewport camera position and lookat target and resolution (width, height)
self.camera_position = [10, 10, 3]
self.camera_target = [0, 0, 0]
self.viewport_camera_width = 1280
self.viewport_camera_height = 720
if "viewport" in self._task_cfg:
self.camera_position = self._task_cfg["viewport"].get("camera_position", self.camera_position)
self.camera_target = self._task_cfg["viewport"].get("camera_target", self.camera_target)
self.viewport_camera_width = self._task_cfg["viewport"].get("viewport_camera_width", self.viewport_camera_width)
self.viewport_camera_height = self._task_cfg["viewport"].get("viewport_camera_height", self.viewport_camera_height)
print("RL device: ", self.rl_device)
self._env = env
self.is_extension = False
if not hasattr(self, "_num_agents"):
self._num_agents = 1 # used for multi-agent environments
if not hasattr(self, "_num_states"):
self._num_states = 0
# initialize data spaces (defaults to gym.Box)
if not hasattr(self, "action_space"):
self.action_space = spaces.Box(
np.ones(self.num_actions, dtype=np.float32) * -1.0, np.ones(self.num_actions, dtype=np.float32) * 1.0
)
if not hasattr(self, "observation_space"):
self.observation_space = spaces.Box(
np.ones(self.num_observations, dtype=np.float32) * -np.Inf,
np.ones(self.num_observations, dtype=np.float32) * np.Inf,
)
if not hasattr(self, "state_space"):
self.state_space = spaces.Box(
np.ones(self.num_states, dtype=np.float32) * -np.Inf,
np.ones(self.num_states, dtype=np.float32) * np.Inf,
)
self.cleanup()
def cleanup(self) -> None:
"""Prepares torch buffers for RL data collection."""
# prepare tensors
self.obs_buf = torch.zeros((self._num_envs, self.num_observations), device=self._device, dtype=torch.float)
self.states_buf = torch.zeros((self._num_envs, self.num_states), device=self._device, dtype=torch.float)
self.rew_buf = torch.zeros(self._num_envs, device=self._device, dtype=torch.float)
self.reset_buf = torch.ones(self._num_envs, device=self._device, dtype=torch.long)
self.progress_buf = torch.zeros(self._num_envs, device=self._device, dtype=torch.long)
self.extras = {}
def set_up_scene(
self, scene, replicate_physics=True, collision_filter_global_paths=[], filter_collisions=True, copy_from_source=False
) -> None:
"""Clones environments based on value provided in task config and applies collision filters to mask
collisions across environments.
Args:
scene (Scene): Scene to add objects to.
replicate_physics (bool): Clone physics using PhysX API for better performance.
collision_filter_global_paths (list): Prim paths of global objects that should not have collision masked.
filter_collisions (bool): Mask off collision between environments.
copy_from_source (bool): Copy from source prim when cloning instead of inheriting.
"""
super().set_up_scene(scene)
self._cloner = GridCloner(spacing=self._env_spacing)
self._cloner.define_base_env(self.default_base_env_path)
stage = omni.usd.get_context().get_stage()
UsdGeom.Xform.Define(stage, self.default_zero_env_path)
if self._task_cfg["sim"].get("add_ground_plane", True):
self._ground_plane_path = "/World/defaultGroundPlane"
collision_filter_global_paths.append(self._ground_plane_path)
scene.add_default_ground_plane(prim_path=self._ground_plane_path)
prim_paths = self._cloner.generate_paths("/World/envs/env", self._num_envs)
self._env_pos = self._cloner.clone(
source_prim_path="/World/envs/env_0", prim_paths=prim_paths, replicate_physics=replicate_physics, copy_from_source=copy_from_source
)
self._env_pos = torch.tensor(np.array(self._env_pos), device=self._device, dtype=torch.float)
if filter_collisions:
self._cloner.filter_collisions(
self._env.world.get_physics_context().prim_path,
"/World/collisions",
prim_paths,
collision_filter_global_paths,
)
if self._env.render_enabled:
self.set_initial_camera_params(camera_position=self.camera_position, camera_target=self.camera_target)
if self._task_cfg["sim"].get("add_distant_light", True):
self._create_distant_light()
# initialize capturer for viewport recording
# this has to be called after initializing replicator for DR
if self._cfg.get("enable_recording", False) and not self._dr_randomizer.randomize:
self._env.create_viewport_render_product(resolution=(self.viewport_camera_width, self.viewport_camera_height))
def set_initial_camera_params(self, camera_position, camera_target):
from omni.kit.viewport.utility import get_viewport_from_window_name
from omni.kit.viewport.utility.camera_state import ViewportCameraState
viewport_api_2 = get_viewport_from_window_name("Viewport")
viewport_api_2.set_active_camera("/OmniverseKit_Persp")
camera_state = ViewportCameraState("/OmniverseKit_Persp", viewport_api_2)
camera_state.set_position_world(Gf.Vec3d(camera_position[0], camera_position[1], camera_position[2]), True)
camera_state.set_target_world(Gf.Vec3d(camera_target[0], camera_target[1], camera_target[2]), True)
def _create_distant_light(self, prim_path="/World/defaultDistantLight", intensity=5000):
stage = get_current_stage()
light = UsdLux.DistantLight.Define(stage, prim_path)
light.CreateIntensityAttr().Set(intensity)
def initialize_views(self, scene):
"""Optionally implemented by individual task classes to initialize views used in the task.
This API is required for the extension workflow, where tasks are expected to train on a pre-defined stage.
Args:
scene (Scene): Scene to remove existing views and initialize/add new views.
"""
self._cloner = GridCloner(spacing=self._env_spacing)
pos, _ = self._cloner.get_clone_transforms(self._num_envs)
self._env_pos = torch.tensor(np.array(pos), device=self._device, dtype=torch.float)
if self._env.render_enabled:
# initialize capturer for viewport recording
if self._cfg.get("enable_recording", False) and not self._dr_randomizer.randomize:
self._env.create_viewport_render_product(resolution=(self.viewport_camera_width, self.viewport_camera_height))
@property
def default_base_env_path(self):
"""Retrieves default path to the parent of all env prims.
Returns:
default_base_env_path(str): Defaults to "/World/envs".
"""
return "/World/envs"
@property
def default_zero_env_path(self):
"""Retrieves default path to the first env prim (index 0).
Returns:
default_zero_env_path(str): Defaults to "/World/envs/env_0".
"""
return f"{self.default_base_env_path}/env_0"
def reset(self):
"""Flags all environments for reset."""
self.reset_buf = torch.ones_like(self.reset_buf)
def post_physics_step(self):
"""Processes RL required computations for observations, states, rewards, resets, and extras.
Also maintains progress buffer for tracking step count per environment.
Returns:
obs_buf(torch.Tensor): Tensor of observation data.
rew_buf(torch.Tensor): Tensor of rewards data.
reset_buf(torch.Tensor): Tensor of resets/dones data.
extras(dict): Dictionary of extras data.
"""
self.progress_buf[:] += 1
if self._env.world.is_playing():
self.get_observations()
self.get_states()
self.calculate_metrics()
self.is_done()
self.get_extras()
return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
@property
def world(self):
"""Retrieves the World object for simulation.
Returns:
world(World): Simulation World.
"""
return self._env.world
@property
def cfg(self):
"""Retrieves the main config.
Returns:
cfg(dict): Main config dictionary.
"""
return self._cfg
def set_is_extension(self, is_extension):
self.is_extension = is_extension
class RLTaskWarp(RLTask):
def cleanup(self) -> None:
"""Prepares torch buffers for RL data collection."""
# prepare tensors
self.obs_buf = wp.zeros((self._num_envs, self.num_observations), device=self._device, dtype=wp.float32)
self.states_buf = wp.zeros((self._num_envs, self.num_states), device=self._device, dtype=wp.float32)
self.rew_buf = wp.zeros(self._num_envs, device=self._device, dtype=wp.float32)
self.reset_buf = wp_utils.ones(self._num_envs, device=self._device, dtype=wp.int32)
self.progress_buf = wp.zeros(self._num_envs, device=self._device, dtype=wp.int32)
self.zero_states_buf_torch = torch.zeros(
(self._num_envs, self.num_states), device=self._device, dtype=torch.float32
)
self.extras = {}
def reset(self):
"""Flags all environments for reset."""
wp.launch(reset_progress, dim=self._num_envs, inputs=[self.progress_buf], device=self._device)
def post_physics_step(self):
"""Processes RL required computations for observations, states, rewards, resets, and extras.
Also maintains progress buffer for tracking step count per environment.
Returns:
obs_buf(torch.Tensor): Tensor of observation data.
rew_buf(torch.Tensor): Tensor of rewards data.
reset_buf(torch.Tensor): Tensor of resets/dones data.
extras(dict): Dictionary of extras data.
"""
wp.launch(increment_progress, dim=self._num_envs, inputs=[self.progress_buf], device=self._device)
if self._env.world.is_playing():
self.get_observations()
self.get_states()
self.calculate_metrics()
self.is_done()
self.get_extras()
obs_buf_torch = wp.to_torch(self.obs_buf)
rew_buf_torch = wp.to_torch(self.rew_buf)
reset_buf_torch = wp.to_torch(self.reset_buf)
return obs_buf_torch, rew_buf_torch, reset_buf_torch, self.extras
def get_states(self):
"""API for retrieving states buffer, used for asymmetric AC training.
Returns:
states_buf(torch.Tensor): States buffer.
"""
if self.num_states > 0:
return wp.to_torch(self.states_buf)
else:
return self.zero_states_buf_torch
def set_up_scene(self, scene) -> None:
"""Clones environments based on value provided in task config and applies collision filters to mask
collisions across environments.
Args:
scene (Scene): Scene to add objects to.
"""
super().set_up_scene(scene)
self._env_pos = wp.from_torch(self._env_pos)
@wp.kernel
def increment_progress(progress_buf: wp.array(dtype=wp.int32)):
i = wp.tid()
progress_buf[i] = progress_buf[i] + 1
@wp.kernel
def reset_progress(progress_buf: wp.array(dtype=wp.int32)):
i = wp.tid()
progress_buf[i] = 1
| 16,184 | Python | 42.16 | 143 | 0.653856 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_base.py | # Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Factory: base class.
Inherits Gym's RLTask class and abstract base class. Inherited by environment classes. Not directly executed.
Configuration defined in FactoryBase.yaml. Asset info defined in factory_asset_info_franka_table.yaml.
"""
import carb
import hydra
import math
import numpy as np
import torch
from omni.isaac.core.objects import FixedCuboid
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import get_current_stage
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.robots.articulations.factory_franka import FactoryFranka
from pxr import PhysxSchema, UsdPhysics
import omniisaacgymenvs.tasks.factory.factory_control as fc
from omniisaacgymenvs.tasks.factory.factory_schema_class_base import FactoryABCBase
from omniisaacgymenvs.tasks.factory.factory_schema_config_base import (
FactorySchemaConfigBase,
)
class FactoryBase(RLTask, FactoryABCBase):
def __init__(self, name, sim_config, env) -> None:
"""Initialize instance variables. Initialize RLTask superclass."""
# Set instance variables from base YAML
self._get_base_yaml_params()
self._env_spacing = self.cfg_base.env.env_spacing
# Set instance variables from task and train YAMLs
self._sim_config = sim_config
self._cfg = sim_config.config # CL args, task config, and train config
self._task_cfg = sim_config.task_config # just task config
self._num_envs = sim_config.task_config["env"]["numEnvs"]
self._num_observations = sim_config.task_config["env"]["numObservations"]
self._num_actions = sim_config.task_config["env"]["numActions"]
super().__init__(name, env)
def _get_base_yaml_params(self):
"""Initialize instance variables from YAML files."""
cs = hydra.core.config_store.ConfigStore.instance()
cs.store(name="factory_schema_config_base", node=FactorySchemaConfigBase)
config_path = (
"task/FactoryBase.yaml" # relative to Gym's Hydra search path (cfg dir)
)
self.cfg_base = hydra.compose(config_name=config_path)
self.cfg_base = self.cfg_base["task"] # strip superfluous nesting
asset_info_path = "../tasks/factory/yaml/factory_asset_info_franka_table.yaml" # relative to Gym's Hydra search path (cfg dir)
self.asset_info_franka_table = hydra.compose(config_name=asset_info_path)
self.asset_info_franka_table = self.asset_info_franka_table[""][""][""][
"tasks"
]["factory"][
"yaml"
] # strip superfluous nesting
def import_franka_assets(self, add_to_stage=True):
"""Set Franka and table asset options. Import assets."""
self._stage = get_current_stage()
if add_to_stage:
franka_translation = np.array([self.cfg_base.env.franka_depth, 0.0, 0.0])
franka_orientation = np.array([0.0, 0.0, 0.0, 1.0])
franka = FactoryFranka(
prim_path=self.default_zero_env_path + "/franka",
name="franka",
translation=franka_translation,
orientation=franka_orientation,
)
self._sim_config.apply_articulation_settings(
"franka",
get_prim_at_path(franka.prim_path),
self._sim_config.parse_actor_config("franka"),
)
for link_prim in franka.prim.GetChildren():
if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI):
rb = PhysxSchema.PhysxRigidBodyAPI.Get(
self._stage, link_prim.GetPrimPath()
)
rb.GetDisableGravityAttr().Set(True)
rb.GetRetainAccelerationsAttr().Set(False)
if self.cfg_base.sim.add_damping:
rb.GetLinearDampingAttr().Set(
1.0
) # default = 0.0; increased to improve stability
rb.GetMaxLinearVelocityAttr().Set(
1.0
) # default = 1000.0; reduced to prevent CUDA errors
rb.GetAngularDampingAttr().Set(
5.0
) # default = 0.5; increased to improve stability
rb.GetMaxAngularVelocityAttr().Set(
2 / math.pi * 180
) # default = 64.0; reduced to prevent CUDA errors
else:
rb.GetLinearDampingAttr().Set(0.0)
rb.GetMaxLinearVelocityAttr().Set(1000.0)
rb.GetAngularDampingAttr().Set(0.5)
rb.GetMaxAngularVelocityAttr().Set(64 / math.pi * 180)
table_translation = np.array(
[0.0, 0.0, self.cfg_base.env.table_height * 0.5]
)
table_orientation = np.array([1.0, 0.0, 0.0, 0.0])
table = FixedCuboid(
prim_path=self.default_zero_env_path + "/table",
name="table",
translation=table_translation,
orientation=table_orientation,
scale=np.array(
[
self.asset_info_franka_table.table_depth,
self.asset_info_franka_table.table_width,
self.cfg_base.env.table_height,
]
),
size=1.0,
color=np.array([0, 0, 0]),
)
self.parse_controller_spec(add_to_stage=add_to_stage)
def acquire_base_tensors(self):
"""Acquire tensors."""
self.num_dofs = 9
self.env_pos = self._env_pos
self.dof_pos = torch.zeros((self.num_envs, self.num_dofs), device=self.device)
self.dof_vel = torch.zeros((self.num_envs, self.num_dofs), device=self.device)
self.dof_torque = torch.zeros(
(self.num_envs, self.num_dofs), device=self.device
)
self.fingertip_contact_wrench = torch.zeros(
(self.num_envs, 6), device=self.device
)
self.ctrl_target_fingertip_midpoint_pos = torch.zeros(
(self.num_envs, 3), device=self.device
)
self.ctrl_target_fingertip_midpoint_quat = torch.zeros(
(self.num_envs, 4), device=self.device
)
self.ctrl_target_dof_pos = torch.zeros(
(self.num_envs, self.num_dofs), device=self.device
)
self.ctrl_target_gripper_dof_pos = torch.zeros(
(self.num_envs, 2), device=self.device
)
self.ctrl_target_fingertip_contact_wrench = torch.zeros(
(self.num_envs, 6), device=self.device
)
self.prev_actions = torch.zeros(
(self.num_envs, self.num_actions), device=self.device
)
def refresh_base_tensors(self):
"""Refresh tensors."""
if not self.world.is_playing():
return
self.dof_pos = self.frankas.get_joint_positions(clone=False)
self.dof_vel = self.frankas.get_joint_velocities(clone=False)
# Jacobian shape: [4, 11, 6, 9] (root has no Jacobian)
self.franka_jacobian = self.frankas.get_jacobians()
self.franka_mass_matrix = self.frankas.get_mass_matrices(clone=False)
self.arm_dof_pos = self.dof_pos[:, 0:7]
self.arm_mass_matrix = self.franka_mass_matrix[
:, 0:7, 0:7
] # for Franka arm (not gripper)
self.hand_pos, self.hand_quat = self.frankas._hands.get_world_poses(clone=False)
self.hand_pos -= self.env_pos
hand_velocities = self.frankas._hands.get_velocities(clone=False)
self.hand_linvel = hand_velocities[:, 0:3]
self.hand_angvel = hand_velocities[:, 3:6]
(
self.left_finger_pos,
self.left_finger_quat,
) = self.frankas._lfingers.get_world_poses(clone=False)
self.left_finger_pos -= self.env_pos
left_finger_velocities = self.frankas._lfingers.get_velocities(clone=False)
self.left_finger_linvel = left_finger_velocities[:, 0:3]
self.left_finger_angvel = left_finger_velocities[:, 3:6]
self.left_finger_jacobian = self.franka_jacobian[:, 8, 0:6, 0:7]
left_finger_forces = self.frankas._lfingers.get_net_contact_forces(clone=False)
self.left_finger_force = left_finger_forces[:, 0:3]
(
self.right_finger_pos,
self.right_finger_quat,
) = self.frankas._rfingers.get_world_poses(clone=False)
self.right_finger_pos -= self.env_pos
right_finger_velocities = self.frankas._rfingers.get_velocities(clone=False)
self.right_finger_linvel = right_finger_velocities[:, 0:3]
self.right_finger_angvel = right_finger_velocities[:, 3:6]
self.right_finger_jacobian = self.franka_jacobian[:, 9, 0:6, 0:7]
right_finger_forces = self.frankas._rfingers.get_net_contact_forces(clone=False)
self.right_finger_force = right_finger_forces[:, 0:3]
self.gripper_dof_pos = self.dof_pos[:, 7:9]
(
self.fingertip_centered_pos,
self.fingertip_centered_quat,
) = self.frankas._fingertip_centered.get_world_poses(clone=False)
self.fingertip_centered_pos -= self.env_pos
fingertip_centered_velocities = self.frankas._fingertip_centered.get_velocities(
clone=False
)
self.fingertip_centered_linvel = fingertip_centered_velocities[:, 0:3]
self.fingertip_centered_angvel = fingertip_centered_velocities[:, 3:6]
self.fingertip_centered_jacobian = self.franka_jacobian[:, 10, 0:6, 0:7]
self.finger_midpoint_pos = (self.left_finger_pos + self.right_finger_pos) / 2
self.fingertip_midpoint_pos = fc.translate_along_local_z(
pos=self.finger_midpoint_pos,
quat=self.hand_quat,
offset=self.asset_info_franka_table.franka_finger_length,
device=self.device,
)
self.fingertip_midpoint_quat = self.fingertip_centered_quat # always equal
# TODO: Add relative velocity term (see https://dynamicsmotioncontrol487379916.files.wordpress.com/2020/11/21-me258pointmovingrigidbody.pdf)
self.fingertip_midpoint_linvel = self.fingertip_centered_linvel + torch.cross(
self.fingertip_centered_angvel,
(self.fingertip_midpoint_pos - self.fingertip_centered_pos),
dim=1,
)
# From sum of angular velocities (https://physics.stackexchange.com/questions/547698/understanding-addition-of-angular-velocity),
# angular velocity of midpoint w.r.t. world is equal to sum of
# angular velocity of midpoint w.r.t. hand and angular velocity of hand w.r.t. world.
# Midpoint is in sliding contact (i.e., linear relative motion) with hand; angular velocity of midpoint w.r.t. hand is zero.
# Thus, angular velocity of midpoint w.r.t. world is equal to angular velocity of hand w.r.t. world.
self.fingertip_midpoint_angvel = self.fingertip_centered_angvel # always equal
self.fingertip_midpoint_jacobian = (
self.left_finger_jacobian + self.right_finger_jacobian
) * 0.5
def parse_controller_spec(self, add_to_stage):
"""Parse controller specification into lower-level controller configuration."""
cfg_ctrl_keys = {
"num_envs",
"jacobian_type",
"gripper_prop_gains",
"gripper_deriv_gains",
"motor_ctrl_mode",
"gain_space",
"ik_method",
"joint_prop_gains",
"joint_deriv_gains",
"do_motion_ctrl",
"task_prop_gains",
"task_deriv_gains",
"do_inertial_comp",
"motion_ctrl_axes",
"do_force_ctrl",
"force_ctrl_method",
"wrench_prop_gains",
"force_ctrl_axes",
}
self.cfg_ctrl = {cfg_ctrl_key: None for cfg_ctrl_key in cfg_ctrl_keys}
self.cfg_ctrl["num_envs"] = self.num_envs
self.cfg_ctrl["jacobian_type"] = self.cfg_task.ctrl.all.jacobian_type
self.cfg_ctrl["gripper_prop_gains"] = torch.tensor(
self.cfg_task.ctrl.all.gripper_prop_gains, device=self.device
).repeat((self.num_envs, 1))
self.cfg_ctrl["gripper_deriv_gains"] = torch.tensor(
self.cfg_task.ctrl.all.gripper_deriv_gains, device=self.device
).repeat((self.num_envs, 1))
ctrl_type = self.cfg_task.ctrl.ctrl_type
if ctrl_type == "gym_default":
self.cfg_ctrl["motor_ctrl_mode"] = "gym"
self.cfg_ctrl["gain_space"] = "joint"
self.cfg_ctrl["ik_method"] = self.cfg_task.ctrl.gym_default.ik_method
self.cfg_ctrl["joint_prop_gains"] = torch.tensor(
self.cfg_task.ctrl.gym_default.joint_prop_gains, device=self.device
).repeat((self.num_envs, 1))
self.cfg_ctrl["joint_deriv_gains"] = torch.tensor(
self.cfg_task.ctrl.gym_default.joint_deriv_gains, device=self.device
).repeat((self.num_envs, 1))
self.cfg_ctrl["gripper_prop_gains"] = torch.tensor(
self.cfg_task.ctrl.gym_default.gripper_prop_gains, device=self.device
).repeat((self.num_envs, 1))
self.cfg_ctrl["gripper_deriv_gains"] = torch.tensor(
self.cfg_task.ctrl.gym_default.gripper_deriv_gains, device=self.device
).repeat((self.num_envs, 1))
elif ctrl_type == "joint_space_ik":
self.cfg_ctrl["motor_ctrl_mode"] = "manual"
self.cfg_ctrl["gain_space"] = "joint"
self.cfg_ctrl["ik_method"] = self.cfg_task.ctrl.joint_space_ik.ik_method
self.cfg_ctrl["joint_prop_gains"] = torch.tensor(
self.cfg_task.ctrl.joint_space_ik.joint_prop_gains, device=self.device
).repeat((self.num_envs, 1))
self.cfg_ctrl["joint_deriv_gains"] = torch.tensor(
self.cfg_task.ctrl.joint_space_ik.joint_deriv_gains, device=self.device
).repeat((self.num_envs, 1))
self.cfg_ctrl["do_inertial_comp"] = False
elif ctrl_type == "joint_space_id":
self.cfg_ctrl["motor_ctrl_mode"] = "manual"
self.cfg_ctrl["gain_space"] = "joint"
self.cfg_ctrl["ik_method"] = self.cfg_task.ctrl.joint_space_id.ik_method
self.cfg_ctrl["joint_prop_gains"] = torch.tensor(
self.cfg_task.ctrl.joint_space_id.joint_prop_gains, device=self.device
).repeat((self.num_envs, 1))
self.cfg_ctrl["joint_deriv_gains"] = torch.tensor(
self.cfg_task.ctrl.joint_space_id.joint_deriv_gains, device=self.device
).repeat((self.num_envs, 1))
self.cfg_ctrl["do_inertial_comp"] = True
elif ctrl_type == "task_space_impedance":
self.cfg_ctrl["motor_ctrl_mode"] = "manual"
self.cfg_ctrl["gain_space"] = "task"
self.cfg_ctrl["do_motion_ctrl"] = True
self.cfg_ctrl["task_prop_gains"] = torch.tensor(
self.cfg_task.ctrl.task_space_impedance.task_prop_gains,
device=self.device,
).repeat((self.num_envs, 1))
self.cfg_ctrl["task_deriv_gains"] = torch.tensor(
self.cfg_task.ctrl.task_space_impedance.task_deriv_gains,
device=self.device,
).repeat((self.num_envs, 1))
self.cfg_ctrl["do_inertial_comp"] = False
self.cfg_ctrl["motion_ctrl_axes"] = torch.tensor(
self.cfg_task.ctrl.task_space_impedance.motion_ctrl_axes,
device=self.device,
).repeat((self.num_envs, 1))
self.cfg_ctrl["do_force_ctrl"] = False
elif ctrl_type == "operational_space_motion":
self.cfg_ctrl["motor_ctrl_mode"] = "manual"
self.cfg_ctrl["gain_space"] = "task"
self.cfg_ctrl["do_motion_ctrl"] = True
self.cfg_ctrl["task_prop_gains"] = torch.tensor(
self.cfg_task.ctrl.operational_space_motion.task_prop_gains,
device=self.device,
).repeat((self.num_envs, 1))
self.cfg_ctrl["task_deriv_gains"] = torch.tensor(
self.cfg_task.ctrl.operational_space_motion.task_deriv_gains,
device=self.device,
).repeat((self.num_envs, 1))
self.cfg_ctrl["do_inertial_comp"] = True
self.cfg_ctrl["motion_ctrl_axes"] = torch.tensor(
self.cfg_task.ctrl.operational_space_motion.motion_ctrl_axes,
device=self.device,
).repeat((self.num_envs, 1))
self.cfg_ctrl["do_force_ctrl"] = False
elif ctrl_type == "open_loop_force":
self.cfg_ctrl["motor_ctrl_mode"] = "manual"
self.cfg_ctrl["gain_space"] = "task"
self.cfg_ctrl["do_motion_ctrl"] = False
self.cfg_ctrl["do_force_ctrl"] = True
self.cfg_ctrl["force_ctrl_method"] = "open"
self.cfg_ctrl["force_ctrl_axes"] = torch.tensor(
self.cfg_task.ctrl.open_loop_force.force_ctrl_axes, device=self.device
).repeat((self.num_envs, 1))
elif ctrl_type == "closed_loop_force":
self.cfg_ctrl["motor_ctrl_mode"] = "manual"
self.cfg_ctrl["gain_space"] = "task"
self.cfg_ctrl["do_motion_ctrl"] = False
self.cfg_ctrl["do_force_ctrl"] = True
self.cfg_ctrl["force_ctrl_method"] = "closed"
self.cfg_ctrl["wrench_prop_gains"] = torch.tensor(
self.cfg_task.ctrl.closed_loop_force.wrench_prop_gains,
device=self.device,
).repeat((self.num_envs, 1))
self.cfg_ctrl["force_ctrl_axes"] = torch.tensor(
self.cfg_task.ctrl.closed_loop_force.force_ctrl_axes, device=self.device
).repeat((self.num_envs, 1))
elif ctrl_type == "hybrid_force_motion":
self.cfg_ctrl["motor_ctrl_mode"] = "manual"
self.cfg_ctrl["gain_space"] = "task"
self.cfg_ctrl["do_motion_ctrl"] = True
self.cfg_ctrl["task_prop_gains"] = torch.tensor(
self.cfg_task.ctrl.hybrid_force_motion.task_prop_gains,
device=self.device,
).repeat((self.num_envs, 1))
self.cfg_ctrl["task_deriv_gains"] = torch.tensor(
self.cfg_task.ctrl.hybrid_force_motion.task_deriv_gains,
device=self.device,
).repeat((self.num_envs, 1))
self.cfg_ctrl["do_inertial_comp"] = True
self.cfg_ctrl["motion_ctrl_axes"] = torch.tensor(
self.cfg_task.ctrl.hybrid_force_motion.motion_ctrl_axes,
device=self.device,
).repeat((self.num_envs, 1))
self.cfg_ctrl["do_force_ctrl"] = True
self.cfg_ctrl["force_ctrl_method"] = "closed"
self.cfg_ctrl["wrench_prop_gains"] = torch.tensor(
self.cfg_task.ctrl.hybrid_force_motion.wrench_prop_gains,
device=self.device,
).repeat((self.num_envs, 1))
self.cfg_ctrl["force_ctrl_axes"] = torch.tensor(
self.cfg_task.ctrl.hybrid_force_motion.force_ctrl_axes,
device=self.device,
).repeat((self.num_envs, 1))
if add_to_stage:
if self.cfg_ctrl["motor_ctrl_mode"] == "gym":
for i in range(7):
joint_prim = self._stage.GetPrimAtPath(
self.default_zero_env_path
+ f"/franka/panda_link{i}/panda_joint{i+1}"
)
drive = UsdPhysics.DriveAPI.Apply(joint_prim, "angular")
drive.GetStiffnessAttr().Set(
self.cfg_ctrl["joint_prop_gains"][0, i].item() * np.pi / 180
)
drive.GetDampingAttr().Set(
self.cfg_ctrl["joint_deriv_gains"][0, i].item() * np.pi / 180
)
for i in range(2):
joint_prim = self._stage.GetPrimAtPath(
self.default_zero_env_path
+ f"/franka/panda_hand/panda_finger_joint{i+1}"
)
drive = UsdPhysics.DriveAPI.Apply(joint_prim, "linear")
drive.GetStiffnessAttr().Set(
self.cfg_ctrl["gripper_deriv_gains"][0, i].item()
)
drive.GetDampingAttr().Set(
self.cfg_ctrl["gripper_deriv_gains"][0, i].item()
)
elif self.cfg_ctrl["motor_ctrl_mode"] == "manual":
for i in range(7):
joint_prim = self._stage.GetPrimAtPath(
self.default_zero_env_path
+ f"/franka/panda_link{i}/panda_joint{i+1}"
)
joint_prim.RemoveAPI(UsdPhysics.DriveAPI, "angular")
drive = UsdPhysics.DriveAPI.Apply(joint_prim, "None")
drive.GetStiffnessAttr().Set(0.0)
drive.GetDampingAttr().Set(0.0)
for i in range(2):
joint_prim = self._stage.GetPrimAtPath(
self.default_zero_env_path
+ f"/franka/panda_hand/panda_finger_joint{i+1}"
)
joint_prim.RemoveAPI(UsdPhysics.DriveAPI, "linear")
drive = UsdPhysics.DriveAPI.Apply(joint_prim, "None")
drive.GetStiffnessAttr().Set(0.0)
drive.GetDampingAttr().Set(0.0)
def generate_ctrl_signals(self):
"""Get Jacobian. Set Franka DOF position targets or DOF torques."""
# Get desired Jacobian
if self.cfg_ctrl["jacobian_type"] == "geometric":
self.fingertip_midpoint_jacobian_tf = self.fingertip_midpoint_jacobian
elif self.cfg_ctrl["jacobian_type"] == "analytic":
self.fingertip_midpoint_jacobian_tf = fc.get_analytic_jacobian(
fingertip_quat=self.fingertip_quat,
fingertip_jacobian=self.fingertip_midpoint_jacobian,
num_envs=self.num_envs,
device=self.device,
)
# Set PD joint pos target or joint torque
if self.cfg_ctrl["motor_ctrl_mode"] == "gym":
self._set_dof_pos_target()
elif self.cfg_ctrl["motor_ctrl_mode"] == "manual":
self._set_dof_torque()
def _set_dof_pos_target(self):
"""Set Franka DOF position target to move fingertips towards target pose."""
self.ctrl_target_dof_pos = fc.compute_dof_pos_target(
cfg_ctrl=self.cfg_ctrl,
arm_dof_pos=self.arm_dof_pos,
fingertip_midpoint_pos=self.fingertip_midpoint_pos,
fingertip_midpoint_quat=self.fingertip_midpoint_quat,
jacobian=self.fingertip_midpoint_jacobian_tf,
ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat,
ctrl_target_gripper_dof_pos=self.ctrl_target_gripper_dof_pos,
device=self.device,
)
self.frankas.set_joint_position_targets(positions=self.ctrl_target_dof_pos)
def _set_dof_torque(self):
"""Set Franka DOF torque to move fingertips towards target pose."""
self.dof_torque = fc.compute_dof_torque(
cfg_ctrl=self.cfg_ctrl,
dof_pos=self.dof_pos,
dof_vel=self.dof_vel,
fingertip_midpoint_pos=self.fingertip_midpoint_pos,
fingertip_midpoint_quat=self.fingertip_midpoint_quat,
fingertip_midpoint_linvel=self.fingertip_midpoint_linvel,
fingertip_midpoint_angvel=self.fingertip_midpoint_angvel,
left_finger_force=self.left_finger_force,
right_finger_force=self.right_finger_force,
jacobian=self.fingertip_midpoint_jacobian_tf,
arm_mass_matrix=self.arm_mass_matrix,
ctrl_target_gripper_dof_pos=self.ctrl_target_gripper_dof_pos,
ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat,
ctrl_target_fingertip_contact_wrench=self.ctrl_target_fingertip_contact_wrench,
device=self.device,
)
self.frankas.set_joint_efforts(efforts=self.dof_torque)
def enable_gravity(self, gravity_mag):
"""Enable gravity."""
gravity = [0.0, 0.0, -gravity_mag]
self.world._physics_sim_view.set_gravity(
carb.Float3(gravity[0], gravity[1], gravity[2])
)
def disable_gravity(self):
"""Disable gravity."""
gravity = [0.0, 0.0, 0.0]
self.world._physics_sim_view.set_gravity(
carb.Float3(gravity[0], gravity[1], gravity[2])
)
| 26,820 | Python | 45.88986 | 148 | 0.588479 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_schema_config_task.py | # Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Factory: schema for task class configurations.
Used by Hydra. Defines template for task class YAML files. Not enforced.
"""
from __future__ import annotations
from dataclasses import dataclass
@dataclass
class Sim:
use_gpu_pipeline: bool # use GPU pipeline
dt: float # timestep size
gravity: list[float] # gravity vector
@dataclass
class Env:
numObservations: int # number of observations per env; camel case required by VecTask
numActions: int # number of actions per env; camel case required by VecTask
numEnvs: int # number of envs; camel case required by VecTask
@dataclass
class Randomize:
franka_arm_initial_dof_pos: list[float] # initial Franka arm DOF position (7)
@dataclass
class RL:
pos_action_scale: list[
float
] # scale on pos displacement targets (3), to convert [-1, 1] to +- x m
rot_action_scale: list[
float
] # scale on rot displacement targets (3), to convert [-1, 1] to +- x rad
force_action_scale: list[
float
] # scale on force targets (3), to convert [-1, 1] to +- x N
torque_action_scale: list[
float
] # scale on torque targets (3), to convert [-1, 1] to +- x Nm
clamp_rot: bool # clamp small values of rotation actions to zero
clamp_rot_thresh: float # smallest acceptable value
max_episode_length: int # max number of timesteps in each episode
@dataclass
class All:
jacobian_type: str # map between joint space and task space via geometric or analytic Jacobian {geometric, analytic}
gripper_prop_gains: list[
float
] # proportional gains on left and right Franka gripper finger DOF position (2)
gripper_deriv_gains: list[
float
] # derivative gains on left and right Franka gripper finger DOF position (2)
@dataclass
class GymDefault:
joint_prop_gains: list[int] # proportional gains on Franka arm DOF position (7)
joint_deriv_gains: list[int] # derivative gains on Franka arm DOF position (7)
@dataclass
class JointSpaceIK:
ik_method: str # use Jacobian pseudoinverse, Jacobian transpose, damped least squares or adaptive SVD {pinv, trans, dls, svd}
joint_prop_gains: list[int]
joint_deriv_gains: list[int]
@dataclass
class JointSpaceID:
ik_method: str
joint_prop_gains: list[int]
joint_deriv_gains: list[int]
@dataclass
class TaskSpaceImpedance:
motion_ctrl_axes: list[bool] # axes for which to enable motion control {0, 1} (6)
task_prop_gains: list[float] # proportional gains on Franka fingertip pose (6)
task_deriv_gains: list[float] # derivative gains on Franka fingertip pose (6)
@dataclass
class OperationalSpaceMotion:
motion_ctrl_axes: list[bool]
task_prop_gains: list[float]
task_deriv_gains: list[float]
@dataclass
class OpenLoopForce:
force_ctrl_axes: list[bool] # axes for which to enable force control {0, 1} (6)
@dataclass
class ClosedLoopForce:
force_ctrl_axes: list[bool]
wrench_prop_gains: list[float] # proportional gains on Franka finger force (6)
@dataclass
class HybridForceMotion:
motion_ctrl_axes: list[bool]
task_prop_gains: list[float]
task_deriv_gains: list[float]
force_ctrl_axes: list[bool]
wrench_prop_gains: list[float]
@dataclass
class Ctrl:
ctrl_type: str # {gym_default,
# joint_space_ik,
# joint_space_id,
# task_space_impedance,
# operational_space_motion,
# open_loop_force,
# closed_loop_force,
# hybrid_force_motion}
gym_default: GymDefault
joint_space_ik: JointSpaceIK
joint_space_id: JointSpaceID
task_space_impedance: TaskSpaceImpedance
operational_space_motion: OperationalSpaceMotion
open_loop_force: OpenLoopForce
closed_loop_force: ClosedLoopForce
hybrid_force_motion: HybridForceMotion
@dataclass
class FactorySchemaConfigTask:
name: str
physics_engine: str
sim: Sim
env: Env
rl: RL
ctrl: Ctrl
| 5,517 | Python | 30.895954 | 130 | 0.719413 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_place.py | # Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Factory: Class for nut-bolt place task.
Inherits nut-bolt environment class and abstract task class (not enforced). Can be executed with
PYTHON_PATH omniisaacgymenvs/scripts/rlgames_train.py task=FactoryTaskNutBoltPlace
"""
import asyncio
import hydra
import math
import omegaconf
import torch
from typing import Tuple
import omni.kit
from omni.isaac.core.simulation_context import SimulationContext
import omni.isaac.core.utils.torch as torch_utils
from omni.isaac.core.utils.torch.transformations import tf_combine
import omniisaacgymenvs.tasks.factory.factory_control as fc
from omniisaacgymenvs.tasks.factory.factory_env_nut_bolt import FactoryEnvNutBolt
from omniisaacgymenvs.tasks.factory.factory_schema_class_task import FactoryABCTask
from omniisaacgymenvs.tasks.factory.factory_schema_config_task import (
FactorySchemaConfigTask,
)
class FactoryTaskNutBoltPlace(FactoryEnvNutBolt, FactoryABCTask):
def __init__(self, name, sim_config, env, offset=None) -> None:
"""Initialize environment superclass. Initialize instance variables."""
super().__init__(name, sim_config, env)
self._get_task_yaml_params()
def _get_task_yaml_params(self) -> None:
"""Initialize instance variables from YAML files."""
cs = hydra.core.config_store.ConfigStore.instance()
cs.store(name="factory_schema_config_task", node=FactorySchemaConfigTask)
self.cfg_task = omegaconf.OmegaConf.create(self._task_cfg)
self.max_episode_length = (
self.cfg_task.rl.max_episode_length
) # required instance var for VecTask
asset_info_path = "../tasks/factory/yaml/factory_asset_info_nut_bolt.yaml" # relative to Gym's Hydra search path (cfg dir)
self.asset_info_nut_bolt = hydra.compose(config_name=asset_info_path)
self.asset_info_nut_bolt = self.asset_info_nut_bolt[""][""][""]["tasks"][
"factory"
][
"yaml"
] # strip superfluous nesting
ppo_path = "train/FactoryTaskNutBoltPlacePPO.yaml" # relative to Gym's Hydra search path (cfg dir)
self.cfg_ppo = hydra.compose(config_name=ppo_path)
self.cfg_ppo = self.cfg_ppo["train"] # strip superfluous nesting
def post_reset(self) -> None:
"""Reset the world. Called only once, before simulation begins."""
if self.cfg_task.sim.disable_gravity:
self.disable_gravity()
self.acquire_base_tensors()
self._acquire_task_tensors()
self.refresh_base_tensors()
self.refresh_env_tensors()
self._refresh_task_tensors()
# Reset all envs
indices = torch.arange(self.num_envs, dtype=torch.int64, device=self.device)
asyncio.ensure_future(
self.reset_idx_async(indices, randomize_gripper_pose=False)
)
def _acquire_task_tensors(self) -> None:
"""Acquire tensors."""
# Nut-bolt tensors
self.nut_base_pos_local = self.bolt_head_heights * torch.tensor(
[0.0, 0.0, 1.0], device=self.device
).repeat((self.num_envs, 1))
bolt_heights = self.bolt_head_heights + self.bolt_shank_lengths
self.bolt_tip_pos_local = bolt_heights * torch.tensor(
[0.0, 0.0, 1.0], device=self.device
).repeat((self.num_envs, 1))
# Keypoint tensors
self.keypoint_offsets = (
self._get_keypoint_offsets(self.cfg_task.rl.num_keypoints)
* self.cfg_task.rl.keypoint_scale
)
self.keypoints_nut = torch.zeros(
(self.num_envs, self.cfg_task.rl.num_keypoints, 3),
dtype=torch.float32,
device=self.device,
)
self.keypoints_bolt = torch.zeros_like(self.keypoints_nut, device=self.device)
self.identity_quat = (
torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device)
.unsqueeze(0)
.repeat(self.num_envs, 1)
)
self.actions = torch.zeros(
(self.num_envs, self.num_actions), device=self.device
)
def pre_physics_step(self, actions) -> None:
"""Reset environments. Apply actions from policy. Simulation step called after this method."""
if not self.world.is_playing():
return
env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(env_ids) > 0:
self.reset_idx(env_ids, randomize_gripper_pose=True)
self.actions = actions.clone().to(
self.device
) # shape = (num_envs, num_actions); values = [-1, 1]
self._apply_actions_as_ctrl_targets(
actions=self.actions, ctrl_target_gripper_dof_pos=0.0, do_scale=True
)
async def pre_physics_step_async(self, actions) -> None:
"""Reset environments. Apply actions from policy. Simulation step called after this method."""
if not self.world.is_playing():
return
env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(env_ids) > 0:
await self.reset_idx_async(env_ids, randomize_gripper_pose=True)
self.actions = actions.clone().to(
self.device
) # shape = (num_envs, num_actions); values = [-1, 1]
self._apply_actions_as_ctrl_targets(
actions=self.actions,
ctrl_target_gripper_dof_pos=0.0,
do_scale=True,
)
def reset_idx(self, env_ids, randomize_gripper_pose) -> None:
"""Reset specified environments."""
self._reset_franka(env_ids)
self._reset_object(env_ids)
# Close gripper onto nut
self.disable_gravity() # to prevent nut from falling
self._close_gripper(sim_steps=self.cfg_task.env.num_gripper_close_sim_steps)
self.enable_gravity(gravity_mag=self.cfg_task.sim.gravity_mag)
if randomize_gripper_pose:
self._randomize_gripper_pose(
env_ids, sim_steps=self.cfg_task.env.num_gripper_move_sim_steps
)
self._reset_buffers(env_ids)
async def reset_idx_async(self, env_ids, randomize_gripper_pose) -> None:
"""Reset specified environments."""
self._reset_franka(env_ids)
self._reset_object(env_ids)
# Close gripper onto nut
self.disable_gravity() # to prevent nut from falling
await self._close_gripper_async(
sim_steps=self.cfg_task.env.num_gripper_close_sim_steps
)
self.enable_gravity(gravity_mag=self.cfg_task.sim.gravity_mag)
if randomize_gripper_pose:
await self._randomize_gripper_pose_async(
env_ids, sim_steps=self.cfg_task.env.num_gripper_move_sim_steps
)
self._reset_buffers(env_ids)
def _reset_franka(self, env_ids) -> None:
"""Reset DOF states and DOF targets of Franka."""
self.dof_pos[env_ids] = torch.cat(
(
torch.tensor(
self.cfg_task.randomize.franka_arm_initial_dof_pos,
device=self.device,
).repeat((len(env_ids), 1)),
(self.nut_widths_max * 0.5)
* 1.1, # buffer on gripper DOF pos to prevent initial contact
(self.nut_widths_max * 0.5) * 1.1,
), # buffer on gripper DOF pos to prevent initial contact
dim=-1,
) # shape = (num_envs, num_dofs)
self.dof_vel[env_ids] = 0.0 # shape = (num_envs, num_dofs)
self.ctrl_target_dof_pos[env_ids] = self.dof_pos[env_ids]
indices = env_ids.to(dtype=torch.int32)
self.frankas.set_joint_positions(self.dof_pos[env_ids], indices=indices)
self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices)
def _reset_object(self, env_ids) -> None:
"""Reset root states of nut and bolt."""
# Randomize root state of nut within gripper
self.nut_pos[env_ids, 0] = 0.0
self.nut_pos[env_ids, 1] = 0.0
fingertip_midpoint_pos_reset = 0.58781 # self.fingertip_midpoint_pos at reset
nut_base_pos_local = self.bolt_head_heights.squeeze(-1)
self.nut_pos[env_ids, 2] = fingertip_midpoint_pos_reset - nut_base_pos_local
nut_noise_pos_in_gripper = 2 * (
torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device)
- 0.5
) # [-1, 1]
nut_noise_pos_in_gripper = nut_noise_pos_in_gripper @ torch.diag(
torch.tensor(
self.cfg_task.randomize.nut_noise_pos_in_gripper, device=self.device
)
)
self.nut_pos[env_ids, :] += nut_noise_pos_in_gripper[env_ids]
nut_rot_euler = torch.tensor(
[0.0, 0.0, math.pi * 0.5], device=self.device
).repeat(len(env_ids), 1)
nut_noise_rot_in_gripper = 2 * (
torch.rand(self.num_envs, dtype=torch.float32, device=self.device) - 0.5
) # [-1, 1]
nut_noise_rot_in_gripper *= self.cfg_task.randomize.nut_noise_rot_in_gripper
nut_rot_euler[:, 2] += nut_noise_rot_in_gripper
nut_rot_quat = torch_utils.quat_from_euler_xyz(
nut_rot_euler[:, 0], nut_rot_euler[:, 1], nut_rot_euler[:, 2]
)
self.nut_quat[env_ids, :] = nut_rot_quat
self.nut_linvel[env_ids, :] = 0.0
self.nut_angvel[env_ids, :] = 0.0
indices = env_ids.to(dtype=torch.int32)
self.nuts.set_world_poses(
self.nut_pos[env_ids] + self.env_pos[env_ids],
self.nut_quat[env_ids],
indices,
)
self.nuts.set_velocities(
torch.cat((self.nut_linvel[env_ids], self.nut_angvel[env_ids]), dim=1),
indices,
)
# Randomize root state of bolt
bolt_noise_xy = 2 * (
torch.rand((self.num_envs, 2), dtype=torch.float32, device=self.device)
- 0.5
) # [-1, 1]
bolt_noise_xy = bolt_noise_xy @ torch.diag(
torch.tensor(
self.cfg_task.randomize.bolt_pos_xy_noise,
dtype=torch.float32,
device=self.device,
)
)
self.bolt_pos[env_ids, 0] = (
self.cfg_task.randomize.bolt_pos_xy_initial[0] + bolt_noise_xy[env_ids, 0]
)
self.bolt_pos[env_ids, 1] = (
self.cfg_task.randomize.bolt_pos_xy_initial[1] + bolt_noise_xy[env_ids, 1]
)
self.bolt_pos[env_ids, 2] = self.cfg_base.env.table_height
self.bolt_quat[env_ids, :] = torch.tensor(
[1.0, 0.0, 0.0, 0.0], dtype=torch.float32, device=self.device
).repeat(len(env_ids), 1)
indices = env_ids.to(dtype=torch.int32)
self.bolts.set_world_poses(
self.bolt_pos[env_ids] + self.env_pos[env_ids],
self.bolt_quat[env_ids],
indices,
)
def _reset_buffers(self, env_ids) -> None:
"""Reset buffers."""
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
def _apply_actions_as_ctrl_targets(
self, actions, ctrl_target_gripper_dof_pos, do_scale
) -> None:
"""Apply actions from policy as position/rotation/force/torque targets."""
# Interpret actions as target pos displacements and set pos target
pos_actions = actions[:, 0:3]
if do_scale:
pos_actions = pos_actions @ torch.diag(
torch.tensor(self.cfg_task.rl.pos_action_scale, device=self.device)
)
self.ctrl_target_fingertip_midpoint_pos = (
self.fingertip_midpoint_pos + pos_actions
)
# Interpret actions as target rot (axis-angle) displacements
rot_actions = actions[:, 3:6]
if do_scale:
rot_actions = rot_actions @ torch.diag(
torch.tensor(self.cfg_task.rl.rot_action_scale, device=self.device)
)
# Convert to quat and set rot target
angle = torch.norm(rot_actions, p=2, dim=-1)
axis = rot_actions / angle.unsqueeze(-1)
rot_actions_quat = torch_utils.quat_from_angle_axis(angle, axis)
if self.cfg_task.rl.clamp_rot:
rot_actions_quat = torch.where(
angle.unsqueeze(-1).repeat(1, 4) > self.cfg_task.rl.clamp_rot_thresh,
rot_actions_quat,
torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device).repeat(
self.num_envs, 1
),
)
self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_mul(
rot_actions_quat, self.fingertip_midpoint_quat
)
if self.cfg_ctrl["do_force_ctrl"]:
# Interpret actions as target forces and target torques
force_actions = actions[:, 6:9]
if do_scale:
force_actions = force_actions @ torch.diag(
torch.tensor(
self.cfg_task.rl.force_action_scale, device=self.device
)
)
torque_actions = actions[:, 9:12]
if do_scale:
torque_actions = torque_actions @ torch.diag(
torch.tensor(
self.cfg_task.rl.torque_action_scale, device=self.device
)
)
self.ctrl_target_fingertip_contact_wrench = torch.cat(
(force_actions, torque_actions), dim=-1
)
self.ctrl_target_gripper_dof_pos = ctrl_target_gripper_dof_pos
self.generate_ctrl_signals()
def post_physics_step(
self,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Step buffers. Refresh tensors. Compute observations and reward. Reset environments."""
self.progress_buf[:] += 1
if self.world.is_playing():
self.refresh_base_tensors()
self.refresh_env_tensors()
self._refresh_task_tensors()
self.get_observations()
self.calculate_metrics()
self.get_extras()
return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
def _refresh_task_tensors(self) -> None:
"""Refresh tensors."""
# Compute pos of keypoints on gripper, nut, and bolt in world frame
for idx, keypoint_offset in enumerate(self.keypoint_offsets):
self.keypoints_nut[:, idx] = tf_combine(
self.nut_quat,
self.nut_pos,
self.identity_quat,
(keypoint_offset + self.nut_base_pos_local),
)[1]
self.keypoints_bolt[:, idx] = tf_combine(
self.bolt_quat,
self.bolt_pos,
self.identity_quat,
(keypoint_offset + self.bolt_tip_pos_local),
)[1]
def get_observations(self) -> dict:
"""Compute observations."""
# Shallow copies of tensors
obs_tensors = [
self.fingertip_midpoint_pos,
self.fingertip_midpoint_quat,
self.fingertip_midpoint_linvel,
self.fingertip_midpoint_angvel,
self.nut_pos,
self.nut_quat,
self.bolt_pos,
self.bolt_quat,
]
if self.cfg_task.rl.add_obs_bolt_tip_pos:
obs_tensors += [self.bolt_tip_pos_local]
self.obs_buf = torch.cat(
obs_tensors, dim=-1
) # shape = (num_envs, num_observations)
observations = {self.frankas.name: {"obs_buf": self.obs_buf}}
return observations
def calculate_metrics(self) -> None:
"""Update reset and reward buffers."""
self._update_reset_buf()
self._update_rew_buf()
def _update_reset_buf(self) -> None:
"""Assign environments for reset if successful or failed."""
# If max episode length has been reached
self.reset_buf[:] = torch.where(
self.progress_buf[:] >= self.max_episode_length - 1,
torch.ones_like(self.reset_buf),
self.reset_buf,
)
def _update_rew_buf(self) -> None:
"""Compute reward at current timestep."""
keypoint_reward = -self._get_keypoint_dist()
action_penalty = (
torch.norm(self.actions, p=2, dim=-1)
* self.cfg_task.rl.action_penalty_scale
)
self.rew_buf[:] = (
keypoint_reward * self.cfg_task.rl.keypoint_reward_scale
- action_penalty * self.cfg_task.rl.action_penalty_scale
)
# In this policy, episode length is constant across all envs
is_last_step = self.progress_buf[0] == self.max_episode_length - 1
if is_last_step:
# Check if nut is close enough to bolt
is_nut_close_to_bolt = self._check_nut_close_to_bolt()
self.rew_buf[:] += is_nut_close_to_bolt * self.cfg_task.rl.success_bonus
self.extras["successes"] = torch.mean(is_nut_close_to_bolt.float())
def _get_keypoint_offsets(self, num_keypoints) -> torch.Tensor:
"""Get uniformly-spaced keypoints along a line of unit length, centered at 0."""
keypoint_offsets = torch.zeros((num_keypoints, 3), device=self.device)
keypoint_offsets[:, -1] = (
torch.linspace(0.0, 1.0, num_keypoints, device=self.device) - 0.5
)
return keypoint_offsets
def _get_keypoint_dist(self) -> torch.Tensor:
"""Get keypoint distance between nut and bolt."""
keypoint_dist = torch.sum(
torch.norm(self.keypoints_bolt - self.keypoints_nut, p=2, dim=-1), dim=-1
)
return keypoint_dist
def _randomize_gripper_pose(self, env_ids, sim_steps) -> None:
"""Move gripper to random pose."""
# Step once to update PhysX with new joint positions and velocities from reset_franka()
SimulationContext.step(self.world, render=True)
# Set target pos above table
self.ctrl_target_fingertip_midpoint_pos = torch.tensor(
[0.0, 0.0, self.cfg_base.env.table_height], device=self.device
) + torch.tensor(
self.cfg_task.randomize.fingertip_midpoint_pos_initial, device=self.device
)
self.ctrl_target_fingertip_midpoint_pos = (
self.ctrl_target_fingertip_midpoint_pos.unsqueeze(0).repeat(
self.num_envs, 1
)
)
fingertip_midpoint_pos_noise = 2 * (
torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device)
- 0.5
) # [-1, 1]
fingertip_midpoint_pos_noise = fingertip_midpoint_pos_noise @ torch.diag(
torch.tensor(
self.cfg_task.randomize.fingertip_midpoint_pos_noise, device=self.device
)
)
self.ctrl_target_fingertip_midpoint_pos += fingertip_midpoint_pos_noise
# Set target rot
ctrl_target_fingertip_midpoint_euler = (
torch.tensor(
self.cfg_task.randomize.fingertip_midpoint_rot_initial,
device=self.device,
)
.unsqueeze(0)
.repeat(self.num_envs, 1)
)
fingertip_midpoint_rot_noise = 2 * (
torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device)
- 0.5
) # [-1, 1]
fingertip_midpoint_rot_noise = fingertip_midpoint_rot_noise @ torch.diag(
torch.tensor(
self.cfg_task.randomize.fingertip_midpoint_rot_noise, device=self.device
)
)
ctrl_target_fingertip_midpoint_euler += fingertip_midpoint_rot_noise
self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_from_euler_xyz(
ctrl_target_fingertip_midpoint_euler[:, 0],
ctrl_target_fingertip_midpoint_euler[:, 1],
ctrl_target_fingertip_midpoint_euler[:, 2],
)
# Step sim and render
for _ in range(sim_steps):
self.refresh_base_tensors()
self.refresh_env_tensors()
self._refresh_task_tensors()
pos_error, axis_angle_error = fc.get_pose_error(
fingertip_midpoint_pos=self.fingertip_midpoint_pos,
fingertip_midpoint_quat=self.fingertip_midpoint_quat,
ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat,
jacobian_type=self.cfg_ctrl["jacobian_type"],
rot_error_type="axis_angle",
)
delta_hand_pose = torch.cat((pos_error, axis_angle_error), dim=-1)
actions = torch.zeros(
(self.num_envs, self.cfg_task.env.numActions), device=self.device
)
actions[:, :6] = delta_hand_pose
self._apply_actions_as_ctrl_targets(
actions=actions,
ctrl_target_gripper_dof_pos=0.0,
do_scale=False,
)
SimulationContext.step(self.world, render=True)
self.dof_vel[env_ids, :] = torch.zeros_like(self.dof_vel[env_ids])
indices = env_ids.to(dtype=torch.int32)
self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices)
# Step once to update PhysX with new joint velocities
SimulationContext.step(self.world, render=True)
async def _randomize_gripper_pose_async(self, env_ids, sim_steps) -> None:
"""Move gripper to random pose."""
# Step once to update PhysX with new joint positions and velocities from reset_franka()
self.world.physics_sim_view.flush()
await omni.kit.app.get_app().next_update_async()
# Set target pos above table
self.ctrl_target_fingertip_midpoint_pos = torch.tensor(
[0.0, 0.0, self.cfg_base.env.table_height], device=self.device
) + torch.tensor(
self.cfg_task.randomize.fingertip_midpoint_pos_initial, device=self.device
)
self.ctrl_target_fingertip_midpoint_pos = (
self.ctrl_target_fingertip_midpoint_pos.unsqueeze(0).repeat(
self.num_envs, 1
)
)
fingertip_midpoint_pos_noise = 2 * (
torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device)
- 0.5
) # [-1, 1]
fingertip_midpoint_pos_noise = fingertip_midpoint_pos_noise @ torch.diag(
torch.tensor(
self.cfg_task.randomize.fingertip_midpoint_pos_noise, device=self.device
)
)
self.ctrl_target_fingertip_midpoint_pos += fingertip_midpoint_pos_noise
# Set target rot
ctrl_target_fingertip_midpoint_euler = (
torch.tensor(
self.cfg_task.randomize.fingertip_midpoint_rot_initial,
device=self.device,
)
.unsqueeze(0)
.repeat(self.num_envs, 1)
)
fingertip_midpoint_rot_noise = 2 * (
torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device)
- 0.5
) # [-1, 1]
fingertip_midpoint_rot_noise = fingertip_midpoint_rot_noise @ torch.diag(
torch.tensor(
self.cfg_task.randomize.fingertip_midpoint_rot_noise, device=self.device
)
)
ctrl_target_fingertip_midpoint_euler += fingertip_midpoint_rot_noise
self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_from_euler_xyz(
ctrl_target_fingertip_midpoint_euler[:, 0],
ctrl_target_fingertip_midpoint_euler[:, 1],
ctrl_target_fingertip_midpoint_euler[:, 2],
)
# Step sim and render
for _ in range(sim_steps):
self.refresh_base_tensors()
self.refresh_env_tensors()
self._refresh_task_tensors()
pos_error, axis_angle_error = fc.get_pose_error(
fingertip_midpoint_pos=self.fingertip_midpoint_pos,
fingertip_midpoint_quat=self.fingertip_midpoint_quat,
ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat,
jacobian_type=self.cfg_ctrl["jacobian_type"],
rot_error_type="axis_angle",
)
delta_hand_pose = torch.cat((pos_error, axis_angle_error), dim=-1)
actions = torch.zeros(
(self.num_envs, self.cfg_task.env.numActions), device=self.device
)
actions[:, :6] = delta_hand_pose
self._apply_actions_as_ctrl_targets(
actions=actions,
ctrl_target_gripper_dof_pos=0.0,
do_scale=False,
)
self.world.physics_sim_view.flush()
await omni.kit.app.get_app().next_update_async()
self.dof_vel[env_ids, :] = torch.zeros_like(self.dof_vel[env_ids])
indices = env_ids.to(dtype=torch.int32)
self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices)
# Step once to update PhysX with new joint velocities
self.world.physics_sim_view.flush()
await omni.kit.app.get_app().next_update_async()
def _close_gripper(self, sim_steps) -> None:
"""Fully close gripper using controller. Called outside RL loop (i.e., after last step of episode)."""
self._move_gripper_to_dof_pos(gripper_dof_pos=0.0, sim_steps=sim_steps)
def _move_gripper_to_dof_pos(self, gripper_dof_pos, sim_steps) -> None:
"""Move gripper fingers to specified DOF position using controller."""
delta_hand_pose = torch.zeros(
(self.num_envs, 6), device=self.device
) # No hand motion
# Step sim
for _ in range(sim_steps):
self._apply_actions_as_ctrl_targets(
delta_hand_pose, gripper_dof_pos, do_scale=False
)
SimulationContext.step(self.world, render=True)
async def _close_gripper_async(self, sim_steps) -> None:
"""Fully close gripper using controller. Called outside RL loop (i.e., after last step of episode)."""
await self._move_gripper_to_dof_pos_async(
gripper_dof_pos=0.0, sim_steps=sim_steps
)
async def _move_gripper_to_dof_pos_async(
self, gripper_dof_pos, sim_steps
) -> None:
"""Move gripper fingers to specified DOF position using controller."""
delta_hand_pose = torch.zeros(
(self.num_envs, 6), device=self.device
) # No hand motion
# Step sim
for _ in range(sim_steps):
self._apply_actions_as_ctrl_targets(
delta_hand_pose, gripper_dof_pos, do_scale=False
)
self.world.physics_sim_view.flush()
await omni.kit.app.get_app().next_update_async()
def _check_nut_close_to_bolt(self) -> torch.Tensor:
"""Check if nut is close to bolt."""
keypoint_dist = torch.norm(
self.keypoints_bolt - self.keypoints_nut, p=2, dim=-1
)
is_nut_close_to_bolt = torch.where(
torch.sum(keypoint_dist, dim=-1) < self.cfg_task.rl.close_error_thresh,
torch.ones_like(self.progress_buf),
torch.zeros_like(self.progress_buf),
)
return is_nut_close_to_bolt
| 28,968 | Python | 37.780455 | 131 | 0.594518 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_schema_config_env.py | # Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Factory: schema for environment class configurations.
Used by Hydra. Defines template for environment class YAML files.
"""
from dataclasses import dataclass
@dataclass
class Sim:
disable_franka_collisions: bool # disable collisions between Franka and objects
@dataclass
class Env:
env_name: str # name of scene
@dataclass
class FactorySchemaConfigEnv:
sim: Sim
env: Env
| 1,960 | Python | 36.711538 | 84 | 0.776531 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_schema_class_task.py | # Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Factory: abstract base class for task classes.
Inherits ABC class. Inherited by task classes. Defines template for task classes.
"""
from abc import ABC, abstractmethod
class FactoryABCTask(ABC):
@abstractmethod
def __init__(self):
"""Initialize instance variables. Initialize environment superclass."""
pass
@abstractmethod
def _get_task_yaml_params(self):
"""Initialize instance variables from YAML files."""
pass
@abstractmethod
def _acquire_task_tensors(self):
"""Acquire tensors."""
pass
@abstractmethod
def _refresh_task_tensors(self):
"""Refresh tensors."""
pass
@abstractmethod
def pre_physics_step(self):
"""Reset environments. Apply actions from policy as controller targets. Simulation step called after this method."""
pass
@abstractmethod
def post_physics_step(self):
"""Step buffers. Refresh tensors. Compute observations and reward."""
pass
@abstractmethod
def get_observations(self):
"""Compute observations."""
pass
@abstractmethod
def calculate_metrics(self):
"""Detect successes and failures. Update reward and reset buffers."""
pass
@abstractmethod
def _update_rew_buf(self):
"""Compute reward at current timestep."""
pass
@abstractmethod
def _update_reset_buf(self):
"""Assign environments for reset if successful or failed."""
pass
@abstractmethod
def reset_idx(self):
"""Reset specified environments."""
pass
@abstractmethod
def _reset_franka(self):
"""Reset DOF states and DOF targets of Franka."""
pass
@abstractmethod
def _reset_object(self):
"""Reset root state of object."""
pass
@abstractmethod
def _reset_buffers(self):
"""Reset buffers."""
pass
| 3,492 | Python | 31.342592 | 124 | 0.69559 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_schema_class_env.py | # Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Factory: abstract base class for environment classes.
Inherits ABC class. Inherited by environment classes. Defines template for environment classes.
"""
from abc import ABC, abstractmethod
class FactoryABCEnv(ABC):
@abstractmethod
def __init__(self):
"""Initialize instance variables. Initialize base superclass. Acquire tensors."""
pass
@abstractmethod
def _get_env_yaml_params(self):
"""Initialize instance variables from YAML files."""
pass
@abstractmethod
def set_up_scene(self):
"""Set env options. Import assets. Create actors."""
pass
@abstractmethod
def _import_env_assets(self):
"""Set asset options. Import assets."""
pass
@abstractmethod
def refresh_env_tensors(self):
"""Refresh tensors."""
# NOTE: Tensor refresh functions should be called once per step, before setters.
pass
| 2,489 | Python | 37.906249 | 95 | 0.73644 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_screw.py | # Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Factory: Class for nut-bolt screw task.
Inherits nut-bolt environment class and abstract task class (not enforced). Can be executed with
PYTHON_PATH omniisaacgymenvs/scripts/rlgames_train.py task=FactoryTaskNutBoltScrew
"""
import hydra
import math
import omegaconf
import torch
from typing import Tuple
import omni.isaac.core.utils.torch as torch_utils
import omniisaacgymenvs.tasks.factory.factory_control as fc
from omniisaacgymenvs.tasks.factory.factory_env_nut_bolt import FactoryEnvNutBolt
from omniisaacgymenvs.tasks.factory.factory_schema_class_task import FactoryABCTask
from omniisaacgymenvs.tasks.factory.factory_schema_config_task import (
FactorySchemaConfigTask,
)
class FactoryTaskNutBoltScrew(FactoryEnvNutBolt, FactoryABCTask):
def __init__(self, name, sim_config, env, offset=None) -> None:
"""Initialize environment superclass. Initialize instance variables."""
super().__init__(name, sim_config, env)
self._get_task_yaml_params()
def _get_task_yaml_params(self) -> None:
"""Initialize instance variables from YAML files."""
cs = hydra.core.config_store.ConfigStore.instance()
cs.store(name="factory_schema_config_task", node=FactorySchemaConfigTask)
self.cfg_task = omegaconf.OmegaConf.create(self._task_cfg)
self.max_episode_length = (
self.cfg_task.rl.max_episode_length
) # required instance var for VecTask
asset_info_path = "../tasks/factory/yaml/factory_asset_info_nut_bolt.yaml" # relative to Gym's Hydra search path (cfg dir)
self.asset_info_nut_bolt = hydra.compose(config_name=asset_info_path)
self.asset_info_nut_bolt = self.asset_info_nut_bolt[""][""][""]["tasks"][
"factory"
][
"yaml"
] # strip superfluous nesting
ppo_path = "train/FactoryTaskNutBoltScrewPPO.yaml" # relative to Gym's Hydra search path (cfg dir)
self.cfg_ppo = hydra.compose(config_name=ppo_path)
self.cfg_ppo = self.cfg_ppo["train"] # strip superfluous nesting
def post_reset(self) -> None:
"""Reset the world. Called only once, before simulation begins."""
if self.cfg_task.sim.disable_gravity:
self.disable_gravity()
self.acquire_base_tensors()
self._acquire_task_tensors()
self.refresh_base_tensors()
self.refresh_env_tensors()
self._refresh_task_tensors()
# Reset all envs
indices = torch.arange(self.num_envs, dtype=torch.int64, device=self.device)
self.reset_idx(indices)
def _acquire_task_tensors(self) -> None:
"""Acquire tensors."""
target_heights = (
self.cfg_base.env.table_height
+ self.bolt_head_heights
+ self.nut_heights * 0.5
)
self.target_pos = target_heights * torch.tensor(
[0.0, 0.0, 1.0], device=self.device
).repeat((self.num_envs, 1))
self.identity_quat = (
torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device)
.unsqueeze(0)
.repeat(self.num_envs, 1)
)
self.actions = torch.zeros(
(self.num_envs, self.num_actions), device=self.device
)
def pre_physics_step(self, actions) -> None:
"""Reset environments. Apply actions from policy. Simulation step called after this method."""
if not self.world.is_playing():
return
env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(env_ids) > 0:
self.reset_idx(env_ids)
self.actions = actions.clone().to(
self.device
) # shape = (num_envs, num_actions); values = [-1, 1]
self._apply_actions_as_ctrl_targets(
actions=self.actions, ctrl_target_gripper_dof_pos=0.0, do_scale=True
)
def reset_idx(self, env_ids) -> None:
"""Reset specified environments."""
self._reset_franka(env_ids)
self._reset_object(env_ids)
self._reset_buffers(env_ids)
def _reset_franka(self, env_ids) -> None:
"""Reset DOF states and DOF targets of Franka."""
self.dof_pos[env_ids] = torch.cat(
(
torch.tensor(
self.cfg_task.randomize.franka_arm_initial_dof_pos,
device=self.device,
).repeat((len(env_ids), 1)),
(self.nut_widths_max[env_ids] * 0.5)
* 1.1, # buffer on gripper DOF pos to prevent initial contact
(self.nut_widths_max[env_ids] * 0.5) * 1.1,
), # buffer on gripper DOF pos to prevent initial contact
dim=-1,
) # shape = (num_envs, num_dofs)
self.dof_vel[env_ids] = 0.0 # shape = (num_envs, num_dofs)
self.ctrl_target_dof_pos[env_ids] = self.dof_pos[env_ids]
indices = env_ids.to(dtype=torch.int32)
self.frankas.set_joint_positions(self.dof_pos[env_ids], indices=indices)
self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices)
def _reset_object(self, env_ids) -> None:
"""Reset root state of nut."""
nut_pos = self.cfg_base.env.table_height + self.bolt_shank_lengths[env_ids]
self.nut_pos[env_ids, :] = nut_pos * torch.tensor(
[0.0, 0.0, 1.0], device=self.device
).repeat(len(env_ids), 1)
nut_rot = (
self.cfg_task.randomize.nut_rot_initial
* torch.ones((len(env_ids), 1), device=self.device)
* math.pi
/ 180.0
)
self.nut_quat[env_ids, :] = torch.cat(
(
torch.cos(nut_rot * 0.5),
torch.zeros((len(env_ids), 1), device=self.device),
torch.zeros((len(env_ids), 1), device=self.device),
torch.sin(nut_rot * 0.5),
),
dim=-1,
)
self.nut_linvel[env_ids, :] = 0.0
self.nut_angvel[env_ids, :] = 0.0
indices = env_ids.to(dtype=torch.int32)
self.nuts.set_world_poses(
self.nut_pos[env_ids] + self.env_pos[env_ids],
self.nut_quat[env_ids],
indices,
)
self.nuts.set_velocities(
torch.cat((self.nut_linvel[env_ids], self.nut_angvel[env_ids]), dim=1),
indices,
)
def _reset_buffers(self, env_ids) -> None:
"""Reset buffers."""
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
def _apply_actions_as_ctrl_targets(
self, actions, ctrl_target_gripper_dof_pos, do_scale
) -> None:
"""Apply actions from policy as position/rotation/force/torque targets."""
# Interpret actions as target pos displacements and set pos target
pos_actions = actions[:, 0:3]
if self.cfg_task.rl.unidirectional_pos:
pos_actions[:, 2] = -(pos_actions[:, 2] + 1.0) * 0.5 # [-1, 0]
if do_scale:
pos_actions = pos_actions @ torch.diag(
torch.tensor(self.cfg_task.rl.pos_action_scale, device=self.device)
)
self.ctrl_target_fingertip_midpoint_pos = (
self.fingertip_midpoint_pos + pos_actions
)
# Interpret actions as target rot (axis-angle) displacements
rot_actions = actions[:, 3:6]
if self.cfg_task.rl.unidirectional_rot:
rot_actions[:, 2] = -(rot_actions[:, 2] + 1.0) * 0.5 # [-1, 0]
if do_scale:
rot_actions = rot_actions @ torch.diag(
torch.tensor(self.cfg_task.rl.rot_action_scale, device=self.device)
)
# Convert to quat and set rot target
angle = torch.norm(rot_actions, p=2, dim=-1)
axis = rot_actions / angle.unsqueeze(-1)
rot_actions_quat = torch_utils.quat_from_angle_axis(angle, axis)
if self.cfg_task.rl.clamp_rot:
rot_actions_quat = torch.where(
angle.unsqueeze(-1).repeat(1, 4) > self.cfg_task.rl.clamp_rot_thresh,
rot_actions_quat,
torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device).repeat(
self.num_envs, 1
),
)
self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_mul(
rot_actions_quat, self.fingertip_midpoint_quat
)
if self.cfg_ctrl["do_force_ctrl"]:
# Interpret actions as target forces and target torques
force_actions = actions[:, 6:9]
if self.cfg_task.rl.unidirectional_force:
force_actions[:, 2] = -(force_actions[:, 2] + 1.0) * 0.5 # [-1, 0]
if do_scale:
force_actions = force_actions @ torch.diag(
torch.tensor(
self.cfg_task.rl.force_action_scale, device=self.device
)
)
torque_actions = actions[:, 9:12]
if do_scale:
torque_actions = torque_actions @ torch.diag(
torch.tensor(
self.cfg_task.rl.torque_action_scale, device=self.device
)
)
self.ctrl_target_fingertip_contact_wrench = torch.cat(
(force_actions, torque_actions), dim=-1
)
self.ctrl_target_gripper_dof_pos = ctrl_target_gripper_dof_pos
self.generate_ctrl_signals()
def post_physics_step(
self,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Step buffers. Refresh tensors. Compute observations and reward. Reset environments."""
self.progress_buf[:] += 1
if self.world.is_playing():
self.refresh_base_tensors()
self.refresh_env_tensors()
self._refresh_task_tensors()
self.get_observations()
self.calculate_metrics()
self.get_extras()
return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
def _refresh_task_tensors(self) -> None:
"""Refresh tensors."""
self.fingerpad_midpoint_pos = fc.translate_along_local_z(
pos=self.finger_midpoint_pos,
quat=self.hand_quat,
offset=self.asset_info_franka_table.franka_finger_length
- self.asset_info_franka_table.franka_fingerpad_length * 0.5,
device=self.device,
)
self.finger_nut_keypoint_dist = self._get_keypoint_dist(body="finger_nut")
self.nut_keypoint_dist = self._get_keypoint_dist(body="nut")
self.nut_dist_to_target = torch.norm(
self.target_pos - self.nut_com_pos, p=2, dim=-1
) # distance between nut COM and target
self.nut_dist_to_fingerpads = torch.norm(
self.fingerpad_midpoint_pos - self.nut_com_pos, p=2, dim=-1
) # distance between nut COM and midpoint between centers of fingerpads
self.was_success = torch.zeros_like(self.progress_buf, dtype=torch.bool)
def get_observations(self) -> dict:
"""Compute observations."""
# Shallow copies of tensors
obs_tensors = [
self.fingertip_midpoint_pos,
self.fingertip_midpoint_quat,
self.fingertip_midpoint_linvel,
self.fingertip_midpoint_angvel,
self.nut_com_pos,
self.nut_com_quat,
self.nut_com_linvel,
self.nut_com_angvel,
]
if self.cfg_task.rl.add_obs_finger_force:
obs_tensors += [self.left_finger_force, self.right_finger_force]
else:
obs_tensors += [
torch.zeros_like(self.left_finger_force),
torch.zeros_like(self.right_finger_force),
]
self.obs_buf = torch.cat(
obs_tensors, dim=-1
) # shape = (num_envs, num_observations)
observations = {self.frankas.name: {"obs_buf": self.obs_buf}}
return observations
def calculate_metrics(self) -> None:
"""Update reset and reward buffers."""
# Get successful and failed envs at current timestep
curr_successes = self._get_curr_successes()
curr_failures = self._get_curr_failures(curr_successes)
self._update_reset_buf(curr_successes, curr_failures)
self._update_rew_buf(curr_successes)
if torch.any(self.is_expired):
self.extras["successes"] = torch.mean(curr_successes.float())
def _update_reset_buf(self, curr_successes, curr_failures) -> None:
"""Assign environments for reset if successful or failed."""
self.reset_buf[:] = self.is_expired
def _update_rew_buf(self, curr_successes) -> None:
"""Compute reward at current timestep."""
keypoint_reward = -(self.nut_keypoint_dist + self.finger_nut_keypoint_dist)
action_penalty = torch.norm(self.actions, p=2, dim=-1)
self.rew_buf[:] = (
keypoint_reward * self.cfg_task.rl.keypoint_reward_scale
- action_penalty * self.cfg_task.rl.action_penalty_scale
+ curr_successes * self.cfg_task.rl.success_bonus
)
def _get_keypoint_dist(self, body) -> torch.Tensor:
"""Get keypoint distance."""
axis_length = (
self.asset_info_franka_table.franka_hand_length
+ self.asset_info_franka_table.franka_finger_length
)
if body == "finger" or body == "nut":
# Keypoint distance between finger/nut and target
if body == "finger":
self.keypoint1 = self.fingertip_midpoint_pos
self.keypoint2 = fc.translate_along_local_z(
pos=self.keypoint1,
quat=self.fingertip_midpoint_quat,
offset=-axis_length,
device=self.device,
)
elif body == "nut":
self.keypoint1 = self.nut_com_pos
self.keypoint2 = fc.translate_along_local_z(
pos=self.nut_com_pos,
quat=self.nut_com_quat,
offset=axis_length,
device=self.device,
)
self.keypoint1_targ = self.target_pos
self.keypoint2_targ = self.keypoint1_targ + torch.tensor(
[0.0, 0.0, axis_length], device=self.device
)
elif body == "finger_nut":
# Keypoint distance between finger and nut
self.keypoint1 = self.fingerpad_midpoint_pos
self.keypoint2 = fc.translate_along_local_z(
pos=self.keypoint1,
quat=self.fingertip_midpoint_quat,
offset=-axis_length,
device=self.device,
)
self.keypoint1_targ = self.nut_com_pos
self.keypoint2_targ = fc.translate_along_local_z(
pos=self.nut_com_pos,
quat=self.nut_com_quat,
offset=axis_length,
device=self.device,
)
self.keypoint3 = self.keypoint1 + (self.keypoint2 - self.keypoint1) * 1.0 / 3.0
self.keypoint4 = self.keypoint1 + (self.keypoint2 - self.keypoint1) * 2.0 / 3.0
self.keypoint3_targ = (
self.keypoint1_targ
+ (self.keypoint2_targ - self.keypoint1_targ) * 1.0 / 3.0
)
self.keypoint4_targ = (
self.keypoint1_targ
+ (self.keypoint2_targ - self.keypoint1_targ) * 2.0 / 3.0
)
keypoint_dist = (
torch.norm(self.keypoint1_targ - self.keypoint1, p=2, dim=-1)
+ torch.norm(self.keypoint2_targ - self.keypoint2, p=2, dim=-1)
+ torch.norm(self.keypoint3_targ - self.keypoint3, p=2, dim=-1)
+ torch.norm(self.keypoint4_targ - self.keypoint4, p=2, dim=-1)
)
return keypoint_dist
def _get_curr_successes(self) -> torch.Tensor:
"""Get success mask at current timestep."""
curr_successes = torch.zeros(
(self.num_envs,), dtype=torch.bool, device=self.device
)
# If nut is close enough to target pos
is_close = torch.where(
self.nut_dist_to_target < self.thread_pitches.squeeze(-1) * 5,
torch.ones_like(curr_successes),
torch.zeros_like(curr_successes),
)
curr_successes = torch.logical_or(curr_successes, is_close)
return curr_successes
def _get_curr_failures(self, curr_successes) -> torch.Tensor:
"""Get failure mask at current timestep."""
curr_failures = torch.zeros(
(self.num_envs,), dtype=torch.bool, device=self.device
)
# If max episode length has been reached
self.is_expired = torch.where(
self.progress_buf[:] >= self.cfg_task.rl.max_episode_length,
torch.ones_like(curr_failures),
curr_failures,
)
# If nut is too far from target pos
self.is_far = torch.where(
self.nut_dist_to_target > self.cfg_task.rl.far_error_thresh,
torch.ones_like(curr_failures),
curr_failures,
)
# If nut has slipped (distance-based definition)
self.is_slipped = torch.where(
self.nut_dist_to_fingerpads
> self.asset_info_franka_table.franka_fingerpad_length * 0.5
+ self.nut_heights.squeeze(-1) * 0.5,
torch.ones_like(curr_failures),
curr_failures,
)
self.is_slipped = torch.logical_and(
self.is_slipped, torch.logical_not(curr_successes)
) # ignore slip if successful
# If nut has fallen (i.e., if nut XY pos has drifted from center of bolt and nut Z pos has drifted below top of bolt)
self.is_fallen = torch.logical_and(
torch.norm(self.nut_com_pos[:, 0:2], p=2, dim=-1)
> self.bolt_widths.squeeze(-1) * 0.5,
self.nut_com_pos[:, 2]
< self.cfg_base.env.table_height
+ self.bolt_head_heights.squeeze(-1)
+ self.bolt_shank_lengths.squeeze(-1)
+ self.nut_heights.squeeze(-1) * 0.5,
)
curr_failures = torch.logical_or(curr_failures, self.is_expired)
curr_failures = torch.logical_or(curr_failures, self.is_far)
curr_failures = torch.logical_or(curr_failures, self.is_slipped)
curr_failures = torch.logical_or(curr_failures, self.is_fallen)
return curr_failures
| 20,027 | Python | 37.367816 | 131 | 0.589105 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_pick.py | # Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Factory: Class for nut-bolt pick task.
Inherits nut-bolt environment class and abstract task class (not enforced). Can be executed with
PYTHON_PATH omniisaacgymenvs/scripts/rlgames_train.py task=FactoryTaskNutBoltPick
"""
import asyncio
import hydra
import omegaconf
import torch
import omni.kit
from omni.isaac.core.simulation_context import SimulationContext
from omni.isaac.core.utils.torch.transformations import tf_combine
from typing import Tuple
import omni.isaac.core.utils.torch as torch_utils
import omniisaacgymenvs.tasks.factory.factory_control as fc
from omniisaacgymenvs.tasks.factory.factory_env_nut_bolt import FactoryEnvNutBolt
from omniisaacgymenvs.tasks.factory.factory_schema_class_task import FactoryABCTask
from omniisaacgymenvs.tasks.factory.factory_schema_config_task import (
FactorySchemaConfigTask,
)
class FactoryTaskNutBoltPick(FactoryEnvNutBolt, FactoryABCTask):
def __init__(self, name, sim_config, env, offset=None) -> None:
"""Initialize environment superclass. Initialize instance variables."""
super().__init__(name, sim_config, env)
self._get_task_yaml_params()
def _get_task_yaml_params(self) -> None:
"""Initialize instance variables from YAML files."""
cs = hydra.core.config_store.ConfigStore.instance()
cs.store(name="factory_schema_config_task", node=FactorySchemaConfigTask)
self.cfg_task = omegaconf.OmegaConf.create(self._task_cfg)
self.max_episode_length = (
self.cfg_task.rl.max_episode_length
) # required instance var for VecTask
asset_info_path = "../tasks/factory/yaml/factory_asset_info_nut_bolt.yaml" # relative to Gym's Hydra search path (cfg dir)
self.asset_info_nut_bolt = hydra.compose(config_name=asset_info_path)
self.asset_info_nut_bolt = self.asset_info_nut_bolt[""][""][""]["tasks"][
"factory"
][
"yaml"
] # strip superfluous nesting
ppo_path = "train/FactoryTaskNutBoltPickPPO.yaml" # relative to Gym's Hydra search path (cfg dir)
self.cfg_ppo = hydra.compose(config_name=ppo_path)
self.cfg_ppo = self.cfg_ppo["train"] # strip superfluous nesting
def post_reset(self) -> None:
"""Reset the world. Called only once, before simulation begins."""
if self.cfg_task.sim.disable_gravity:
self.disable_gravity()
self.acquire_base_tensors()
self._acquire_task_tensors()
self.refresh_base_tensors()
self.refresh_env_tensors()
self._refresh_task_tensors()
# Reset all envs
indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device)
asyncio.ensure_future(
self.reset_idx_async(indices, randomize_gripper_pose=False)
)
def _acquire_task_tensors(self) -> None:
"""Acquire tensors."""
# Grasp pose tensors
nut_grasp_heights = self.bolt_head_heights + self.nut_heights * 0.5 # nut COM
self.nut_grasp_pos_local = nut_grasp_heights * torch.tensor(
[0.0, 0.0, 1.0], device=self.device
).repeat((self.num_envs, 1))
self.nut_grasp_quat_local = (
torch.tensor([0.0, 0.0, 1.0, 0.0], device=self.device)
.unsqueeze(0)
.repeat(self.num_envs, 1)
)
# Keypoint tensors
self.keypoint_offsets = (
self._get_keypoint_offsets(self.cfg_task.rl.num_keypoints)
* self.cfg_task.rl.keypoint_scale
)
self.keypoints_gripper = torch.zeros(
(self.num_envs, self.cfg_task.rl.num_keypoints, 3),
dtype=torch.float32,
device=self.device,
)
self.keypoints_nut = torch.zeros_like(
self.keypoints_gripper, device=self.device
)
self.identity_quat = (
torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device)
.unsqueeze(0)
.repeat(self.num_envs, 1)
)
self.actions = torch.zeros(
(self.num_envs, self.num_actions), device=self.device
)
def pre_physics_step(self, actions) -> None:
"""Reset environments. Apply actions from policy. Simulation step called after this method."""
if not self.world.is_playing():
return
env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(env_ids) > 0:
self.reset_idx(env_ids, randomize_gripper_pose=True)
self.actions = actions.clone().to(
self.device
) # shape = (num_envs, num_actions); values = [-1, 1]
self._apply_actions_as_ctrl_targets(
actions=self.actions,
ctrl_target_gripper_dof_pos=self.asset_info_franka_table.franka_gripper_width_max,
do_scale=True,
)
async def pre_physics_step_async(self, actions) -> None:
"""Reset environments. Apply actions from policy. Simulation step called after this method."""
if not self.world.is_playing():
return
env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(env_ids) > 0:
await self.reset_idx_async(env_ids, randomize_gripper_pose=True)
self.actions = actions.clone().to(
self.device
) # shape = (num_envs, num_actions); values = [-1, 1]
self._apply_actions_as_ctrl_targets(
actions=self.actions,
ctrl_target_gripper_dof_pos=self.asset_info_franka_table.franka_gripper_width_max,
do_scale=True,
)
def reset_idx(self, env_ids, randomize_gripper_pose) -> None:
"""Reset specified environments."""
self._reset_franka(env_ids)
self._reset_object(env_ids)
if randomize_gripper_pose:
self._randomize_gripper_pose(
env_ids, sim_steps=self.cfg_task.env.num_gripper_move_sim_steps
)
self._reset_buffers(env_ids)
async def reset_idx_async(self, env_ids, randomize_gripper_pose) -> None:
"""Reset specified environments."""
self._reset_franka(env_ids)
self._reset_object(env_ids)
if randomize_gripper_pose:
await self._randomize_gripper_pose_async(
env_ids, sim_steps=self.cfg_task.env.num_gripper_move_sim_steps
)
self._reset_buffers(env_ids)
def _reset_franka(self, env_ids) -> None:
"""Reset DOF states and DOF targets of Franka."""
self.dof_pos[env_ids] = torch.cat(
(
torch.tensor(
self.cfg_task.randomize.franka_arm_initial_dof_pos,
device=self.device,
),
torch.tensor(
[self.asset_info_franka_table.franka_gripper_width_max],
device=self.device,
),
torch.tensor(
[self.asset_info_franka_table.franka_gripper_width_max],
device=self.device,
),
),
dim=-1,
) # shape = (num_envs, num_dofs)
self.dof_vel[env_ids] = 0.0 # shape = (num_envs, num_dofs)
self.ctrl_target_dof_pos[env_ids] = self.dof_pos[env_ids]
indices = env_ids.to(dtype=torch.int32)
self.frankas.set_joint_positions(self.dof_pos[env_ids], indices=indices)
self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices)
def _reset_object(self, env_ids) -> None:
"""Reset root states of nut and bolt."""
# Randomize root state of nut
nut_noise_xy = 2 * (
torch.rand((self.num_envs, 2), dtype=torch.float32, device=self.device)
- 0.5
) # [-1, 1]
nut_noise_xy = nut_noise_xy @ torch.diag(
torch.tensor(self.cfg_task.randomize.nut_pos_xy_noise, device=self.device)
)
self.nut_pos[env_ids, 0] = (
self.cfg_task.randomize.nut_pos_xy_initial[0] + nut_noise_xy[env_ids, 0]
)
self.nut_pos[env_ids, 1] = (
self.cfg_task.randomize.nut_pos_xy_initial[1] + nut_noise_xy[env_ids, 1]
)
self.nut_pos[
env_ids, 2
] = self.cfg_base.env.table_height - self.bolt_head_heights.squeeze(-1)
self.nut_quat[env_ids, :] = torch.tensor(
[1.0, 0.0, 0.0, 0.0], dtype=torch.float32, device=self.device
).repeat(len(env_ids), 1)
self.nut_linvel[env_ids, :] = 0.0
self.nut_angvel[env_ids, :] = 0.0
indices = env_ids.to(dtype=torch.int32)
self.nuts.set_world_poses(
self.nut_pos[env_ids] + self.env_pos[env_ids],
self.nut_quat[env_ids],
indices,
)
self.nuts.set_velocities(
torch.cat((self.nut_linvel[env_ids], self.nut_angvel[env_ids]), dim=1),
indices,
)
# Randomize root state of bolt
bolt_noise_xy = 2 * (
torch.rand((self.num_envs, 2), dtype=torch.float32, device=self.device)
- 0.5
) # [-1, 1]
bolt_noise_xy = bolt_noise_xy @ torch.diag(
torch.tensor(self.cfg_task.randomize.bolt_pos_xy_noise, device=self.device)
)
self.bolt_pos[env_ids, 0] = (
self.cfg_task.randomize.bolt_pos_xy_initial[0] + bolt_noise_xy[env_ids, 0]
)
self.bolt_pos[env_ids, 1] = (
self.cfg_task.randomize.bolt_pos_xy_initial[1] + bolt_noise_xy[env_ids, 1]
)
self.bolt_pos[env_ids, 2] = self.cfg_base.env.table_height
self.bolt_quat[env_ids, :] = torch.tensor(
[1.0, 0.0, 0.0, 0.0], dtype=torch.float32, device=self.device
).repeat(len(env_ids), 1)
indices = env_ids.to(dtype=torch.int32)
self.bolts.set_world_poses(
self.bolt_pos[env_ids] + self.env_pos[env_ids],
self.bolt_quat[env_ids],
indices,
)
def _reset_buffers(self, env_ids) -> None:
"""Reset buffers."""
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
def _apply_actions_as_ctrl_targets(
self, actions, ctrl_target_gripper_dof_pos, do_scale
) -> None:
"""Apply actions from policy as position/rotation/force/torque targets."""
# Interpret actions as target pos displacements and set pos target
pos_actions = actions[:, 0:3]
if do_scale:
pos_actions = pos_actions @ torch.diag(
torch.tensor(self.cfg_task.rl.pos_action_scale, device=self.device)
)
self.ctrl_target_fingertip_midpoint_pos = (
self.fingertip_midpoint_pos + pos_actions
)
# Interpret actions as target rot (axis-angle) displacements
rot_actions = actions[:, 3:6]
if do_scale:
rot_actions = rot_actions @ torch.diag(
torch.tensor(self.cfg_task.rl.rot_action_scale, device=self.device)
)
# Convert to quat and set rot target
angle = torch.norm(rot_actions, p=2, dim=-1)
axis = rot_actions / angle.unsqueeze(-1)
rot_actions_quat = torch_utils.quat_from_angle_axis(angle, axis)
if self.cfg_task.rl.clamp_rot:
rot_actions_quat = torch.where(
angle.unsqueeze(-1).repeat(1, 4) > self.cfg_task.rl.clamp_rot_thresh,
rot_actions_quat,
torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device).repeat(
self.num_envs, 1
),
)
self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_mul(
rot_actions_quat, self.fingertip_midpoint_quat
)
if self.cfg_ctrl["do_force_ctrl"]:
# Interpret actions as target forces and target torques
force_actions = actions[:, 6:9]
if do_scale:
force_actions = force_actions @ torch.diag(
torch.tensor(
self.cfg_task.rl.force_action_scale, device=self.device
)
)
torque_actions = actions[:, 9:12]
if do_scale:
torque_actions = torque_actions @ torch.diag(
torch.tensor(
self.cfg_task.rl.torque_action_scale, device=self.device
)
)
self.ctrl_target_fingertip_contact_wrench = torch.cat(
(force_actions, torque_actions), dim=-1
)
self.ctrl_target_gripper_dof_pos = ctrl_target_gripper_dof_pos
self.generate_ctrl_signals()
def post_physics_step(
self,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Step buffers. Refresh tensors. Compute observations and reward. Reset environments."""
self.progress_buf[:] += 1
if self.world.is_playing():
# In this policy, episode length is constant
is_last_step = self.progress_buf[0] == self.max_episode_length - 1
if is_last_step:
# At this point, robot has executed RL policy. Now close gripper and lift (open-loop)
if self.cfg_task.env.close_and_lift:
self._close_gripper(
sim_steps=self.cfg_task.env.num_gripper_close_sim_steps
)
self._lift_gripper(
franka_gripper_width=0.0,
lift_distance=0.3,
sim_steps=self.cfg_task.env.num_gripper_lift_sim_steps,
)
self.refresh_base_tensors()
self.refresh_env_tensors()
self._refresh_task_tensors()
self.get_observations()
self.get_states()
self.calculate_metrics()
self.get_extras()
return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
async def post_physics_step_async(self):
"""Step buffers. Refresh tensors. Compute observations and reward. Reset environments."""
self.progress_buf[:] += 1
if self.world.is_playing():
# In this policy, episode length is constant
is_last_step = self.progress_buf[0] == self.max_episode_length - 1
if self.cfg_task.env.close_and_lift:
# At this point, robot has executed RL policy. Now close gripper and lift (open-loop)
if is_last_step:
await self._close_gripper_async(
sim_steps=self.cfg_task.env.num_gripper_close_sim_steps
)
await self._lift_gripper_async(
sim_steps=self.cfg_task.env.num_gripper_lift_sim_steps
)
self.refresh_base_tensors()
self.refresh_env_tensors()
self._refresh_task_tensors()
self.get_observations()
self.get_states()
self.calculate_metrics()
self.get_extras()
return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
def _refresh_task_tensors(self):
"""Refresh tensors."""
# Compute pose of nut grasping frame
self.nut_grasp_quat, self.nut_grasp_pos = tf_combine(
self.nut_quat,
self.nut_pos,
self.nut_grasp_quat_local,
self.nut_grasp_pos_local,
)
# Compute pos of keypoints on gripper and nut in world frame
for idx, keypoint_offset in enumerate(self.keypoint_offsets):
self.keypoints_gripper[:, idx] = tf_combine(
self.fingertip_midpoint_quat,
self.fingertip_midpoint_pos,
self.identity_quat,
keypoint_offset.repeat(self.num_envs, 1),
)[1]
self.keypoints_nut[:, idx] = tf_combine(
self.nut_grasp_quat,
self.nut_grasp_pos,
self.identity_quat,
keypoint_offset.repeat(self.num_envs, 1),
)[1]
def get_observations(self) -> dict:
"""Compute observations."""
# Shallow copies of tensors
obs_tensors = [
self.fingertip_midpoint_pos,
self.fingertip_midpoint_quat,
self.fingertip_midpoint_linvel,
self.fingertip_midpoint_angvel,
self.nut_grasp_pos,
self.nut_grasp_quat,
]
self.obs_buf = torch.cat(
obs_tensors, dim=-1
) # shape = (num_envs, num_observations)
observations = {self.frankas.name: {"obs_buf": self.obs_buf}}
return observations
def calculate_metrics(self) -> None:
"""Update reward and reset buffers."""
self._update_reset_buf()
self._update_rew_buf()
def _update_reset_buf(self) -> None:
"""Assign environments for reset if successful or failed."""
# If max episode length has been reached
self.reset_buf[:] = torch.where(
self.progress_buf[:] >= self.max_episode_length - 1,
torch.ones_like(self.reset_buf),
self.reset_buf,
)
def _update_rew_buf(self) -> None:
"""Compute reward at current timestep."""
keypoint_reward = -self._get_keypoint_dist()
action_penalty = (
torch.norm(self.actions, p=2, dim=-1)
* self.cfg_task.rl.action_penalty_scale
)
self.rew_buf[:] = (
keypoint_reward * self.cfg_task.rl.keypoint_reward_scale
- action_penalty * self.cfg_task.rl.action_penalty_scale
)
# In this policy, episode length is constant across all envs
is_last_step = self.progress_buf[0] == self.max_episode_length - 1
if is_last_step:
# Check if nut is picked up and above table
lift_success = self._check_lift_success(height_multiple=3.0)
self.rew_buf[:] += lift_success * self.cfg_task.rl.success_bonus
self.extras["successes"] = torch.mean(lift_success.float())
def _get_keypoint_offsets(self, num_keypoints) -> torch.Tensor:
"""Get uniformly-spaced keypoints along a line of unit length, centered at 0."""
keypoint_offsets = torch.zeros((num_keypoints, 3), device=self.device)
keypoint_offsets[:, -1] = (
torch.linspace(0.0, 1.0, num_keypoints, device=self.device) - 0.5
)
return keypoint_offsets
def _get_keypoint_dist(self) -> torch.Tensor:
"""Get keypoint distance."""
keypoint_dist = torch.sum(
torch.norm(self.keypoints_nut - self.keypoints_gripper, p=2, dim=-1), dim=-1
)
return keypoint_dist
def _close_gripper(self, sim_steps=20) -> None:
"""Fully close gripper using controller. Called outside RL loop (i.e., after last step of episode)."""
self._move_gripper_to_dof_pos(gripper_dof_pos=0.0, sim_steps=sim_steps)
def _move_gripper_to_dof_pos(self, gripper_dof_pos, sim_steps=20) -> None:
"""Move gripper fingers to specified DOF position using controller."""
delta_hand_pose = torch.zeros(
(self.num_envs, 6), device=self.device
) # No hand motion
self._apply_actions_as_ctrl_targets(
delta_hand_pose, gripper_dof_pos, do_scale=False
)
# Step sim
for _ in range(sim_steps):
SimulationContext.step(self.world, render=True)
def _lift_gripper(
self, franka_gripper_width=0.0, lift_distance=0.3, sim_steps=20
) -> None:
"""Lift gripper by specified distance. Called outside RL loop (i.e., after last step of episode)."""
delta_hand_pose = torch.zeros([self.num_envs, 6], device=self.device)
delta_hand_pose[:, 2] = lift_distance
# Step sim
for _ in range(sim_steps):
self._apply_actions_as_ctrl_targets(
delta_hand_pose, franka_gripper_width, do_scale=False
)
SimulationContext.step(self.world, render=True)
async def _close_gripper_async(self, sim_steps=20) -> None:
"""Fully close gripper using controller. Called outside RL loop (i.e., after last step of episode)."""
await self._move_gripper_to_dof_pos_async(
gripper_dof_pos=0.0, sim_steps=sim_steps
)
async def _move_gripper_to_dof_pos_async(
self, gripper_dof_pos, sim_steps=20
) -> None:
"""Move gripper fingers to specified DOF position using controller."""
delta_hand_pose = torch.zeros(
(self.num_envs, self.cfg_task.env.numActions), device=self.device
) # No hand motion
self._apply_actions_as_ctrl_targets(
delta_hand_pose, gripper_dof_pos, do_scale=False
)
# Step sim
for _ in range(sim_steps):
self.world.physics_sim_view.flush()
await omni.kit.app.get_app().next_update_async()
async def _lift_gripper_async(
self, franka_gripper_width=0.0, lift_distance=0.3, sim_steps=20
) -> None:
"""Lift gripper by specified distance. Called outside RL loop (i.e., after last step of episode)."""
delta_hand_pose = torch.zeros([self.num_envs, 6], device=self.device)
delta_hand_pose[:, 2] = lift_distance
# Step sim
for _ in range(sim_steps):
self._apply_actions_as_ctrl_targets(
delta_hand_pose, franka_gripper_width, do_scale=False
)
self.world.physics_sim_view.flush()
await omni.kit.app.get_app().next_update_async()
def _check_lift_success(self, height_multiple) -> torch.Tensor:
"""Check if nut is above table by more than specified multiple times height of nut."""
lift_success = torch.where(
self.nut_pos[:, 2]
> self.cfg_base.env.table_height
+ self.nut_heights.squeeze(-1) * height_multiple,
torch.ones((self.num_envs,), device=self.device),
torch.zeros((self.num_envs,), device=self.device),
)
return lift_success
def _randomize_gripper_pose(self, env_ids, sim_steps) -> None:
"""Move gripper to random pose."""
# step once to update physx with the newly set joint positions from reset_franka()
SimulationContext.step(self.world, render=True)
# Set target pos above table
self.ctrl_target_fingertip_midpoint_pos = torch.tensor(
[0.0, 0.0, self.cfg_base.env.table_height], device=self.device
) + torch.tensor(
self.cfg_task.randomize.fingertip_midpoint_pos_initial, device=self.device
)
self.ctrl_target_fingertip_midpoint_pos = (
self.ctrl_target_fingertip_midpoint_pos.unsqueeze(0).repeat(
self.num_envs, 1
)
)
fingertip_midpoint_pos_noise = 2 * (
torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device)
- 0.5
) # [-1, 1]
fingertip_midpoint_pos_noise = fingertip_midpoint_pos_noise @ torch.diag(
torch.tensor(
self.cfg_task.randomize.fingertip_midpoint_pos_noise, device=self.device
)
)
self.ctrl_target_fingertip_midpoint_pos += fingertip_midpoint_pos_noise
# Set target rot
ctrl_target_fingertip_midpoint_euler = (
torch.tensor(
self.cfg_task.randomize.fingertip_midpoint_rot_initial,
device=self.device,
)
.unsqueeze(0)
.repeat(self.num_envs, 1)
)
fingertip_midpoint_rot_noise = 2 * (
torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device)
- 0.5
) # [-1, 1]
fingertip_midpoint_rot_noise = fingertip_midpoint_rot_noise @ torch.diag(
torch.tensor(
self.cfg_task.randomize.fingertip_midpoint_rot_noise, device=self.device
)
)
ctrl_target_fingertip_midpoint_euler += fingertip_midpoint_rot_noise
self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_from_euler_xyz(
ctrl_target_fingertip_midpoint_euler[:, 0],
ctrl_target_fingertip_midpoint_euler[:, 1],
ctrl_target_fingertip_midpoint_euler[:, 2],
)
# Step sim and render
for _ in range(sim_steps):
if not self.world.is_playing():
return
self.refresh_base_tensors()
self.refresh_env_tensors()
self._refresh_task_tensors()
pos_error, axis_angle_error = fc.get_pose_error(
fingertip_midpoint_pos=self.fingertip_midpoint_pos,
fingertip_midpoint_quat=self.fingertip_midpoint_quat,
ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat,
jacobian_type=self.cfg_ctrl["jacobian_type"],
rot_error_type="axis_angle",
)
delta_hand_pose = torch.cat((pos_error, axis_angle_error), dim=-1)
actions = torch.zeros(
(self.num_envs, self.cfg_task.env.numActions), device=self.device
)
actions[:, :6] = delta_hand_pose
self._apply_actions_as_ctrl_targets(
actions=actions,
ctrl_target_gripper_dof_pos=self.asset_info_franka_table.franka_gripper_width_max,
do_scale=False,
)
SimulationContext.step(self.world, render=True)
self.dof_vel[env_ids, :] = torch.zeros_like(self.dof_vel[env_ids])
indices = env_ids.to(dtype=torch.int32)
self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices)
# step once to update physx with the newly set joint velocities
SimulationContext.step(self.world, render=True)
async def _randomize_gripper_pose_async(self, env_ids, sim_steps) -> None:
"""Move gripper to random pose."""
# step once to update physx with the newly set joint positions from reset_franka()
await omni.kit.app.get_app().next_update_async()
# Set target pos above table
self.ctrl_target_fingertip_midpoint_pos = torch.tensor(
[0.0, 0.0, self.cfg_base.env.table_height], device=self.device
) + torch.tensor(
self.cfg_task.randomize.fingertip_midpoint_pos_initial, device=self.device
)
self.ctrl_target_fingertip_midpoint_pos = (
self.ctrl_target_fingertip_midpoint_pos.unsqueeze(0).repeat(
self.num_envs, 1
)
)
fingertip_midpoint_pos_noise = 2 * (
torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device)
- 0.5
) # [-1, 1]
fingertip_midpoint_pos_noise = fingertip_midpoint_pos_noise @ torch.diag(
torch.tensor(
self.cfg_task.randomize.fingertip_midpoint_pos_noise, device=self.device
)
)
self.ctrl_target_fingertip_midpoint_pos += fingertip_midpoint_pos_noise
# Set target rot
ctrl_target_fingertip_midpoint_euler = (
torch.tensor(
self.cfg_task.randomize.fingertip_midpoint_rot_initial,
device=self.device,
)
.unsqueeze(0)
.repeat(self.num_envs, 1)
)
fingertip_midpoint_rot_noise = 2 * (
torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device)
- 0.5
) # [-1, 1]
fingertip_midpoint_rot_noise = fingertip_midpoint_rot_noise @ torch.diag(
torch.tensor(
self.cfg_task.randomize.fingertip_midpoint_rot_noise, device=self.device
)
)
ctrl_target_fingertip_midpoint_euler += fingertip_midpoint_rot_noise
self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_from_euler_xyz(
ctrl_target_fingertip_midpoint_euler[:, 0],
ctrl_target_fingertip_midpoint_euler[:, 1],
ctrl_target_fingertip_midpoint_euler[:, 2],
)
# Step sim and render
for _ in range(sim_steps):
self.refresh_base_tensors()
self.refresh_env_tensors()
self._refresh_task_tensors()
pos_error, axis_angle_error = fc.get_pose_error(
fingertip_midpoint_pos=self.fingertip_midpoint_pos,
fingertip_midpoint_quat=self.fingertip_midpoint_quat,
ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat,
jacobian_type=self.cfg_ctrl["jacobian_type"],
rot_error_type="axis_angle",
)
delta_hand_pose = torch.cat((pos_error, axis_angle_error), dim=-1)
actions = torch.zeros(
(self.num_envs, self.cfg_task.env.numActions), device=self.device
)
actions[:, :6] = delta_hand_pose
self._apply_actions_as_ctrl_targets(
actions=actions,
ctrl_target_gripper_dof_pos=self.asset_info_franka_table.franka_gripper_width_max,
do_scale=False,
)
self.world.physics_sim_view.flush()
await omni.kit.app.get_app().next_update_async()
self.dof_vel[env_ids, :] = torch.zeros_like(self.dof_vel[env_ids])
indices = env_ids.to(dtype=torch.int32)
self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices)
# step once to update physx with the newly set joint velocities
self.world.physics_sim_view.flush()
await omni.kit.app.get_app().next_update_async()
| 31,484 | Python | 37.822441 | 131 | 0.589506 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_schema_class_base.py | # Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Factory: abstract base class for base class.
Inherits ABC class. Inherited by base class. Defines template for base class.
"""
from abc import ABC, abstractmethod
class FactoryABCBase(ABC):
@abstractmethod
def __init__(self):
"""Initialize instance variables. Initialize VecTask superclass."""
pass
@abstractmethod
def _get_base_yaml_params(self):
"""Initialize instance variables from YAML files."""
pass
@abstractmethod
def import_franka_assets(self):
"""Set Franka and table asset options. Import assets."""
pass
@abstractmethod
def refresh_base_tensors(self):
"""Refresh tensors."""
# NOTE: Tensor refresh functions should be called once per step, before setters.
pass
@abstractmethod
def parse_controller_spec(self):
"""Parse controller specification into lower-level controller configuration."""
pass
@abstractmethod
def generate_ctrl_signals(self):
"""Get Jacobian. Set Franka DOF position targets or DOF torques."""
pass
@abstractmethod
def enable_gravity(self):
"""Enable gravity."""
pass
@abstractmethod
def disable_gravity(self):
"""Disable gravity."""
pass
| 2,843 | Python | 35 | 88 | 0.721069 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_schema_config_base.py | # Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Factory: schema for base class configuration.
Used by Hydra. Defines template for base class YAML file.
"""
from dataclasses import dataclass
@dataclass
class Mode:
export_scene: bool # export scene to USD
export_states: bool # export states to NPY
@dataclass
class Sim:
dt: float # timestep size (default = 1.0 / 60.0)
num_substeps: int # number of substeps (default = 2)
num_pos_iters: int # number of position iterations for PhysX TGS solver (default = 4)
num_vel_iters: int # number of velocity iterations for PhysX TGS solver (default = 1)
gravity_mag: float # magnitude of gravitational acceleration
add_damping: bool # add damping to stabilize gripper-object interactions
@dataclass
class Env:
env_spacing: float # lateral offset between envs
franka_depth: float # depth offset of Franka base relative to env origin
table_height: float # height of table
franka_friction: float # coefficient of friction associated with Franka
table_friction: float # coefficient of friction associated with table
@dataclass
class FactorySchemaConfigBase:
mode: Mode
sim: Sim
env: Env
| 2,724 | Python | 39.073529 | 90 | 0.757342 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_env_nut_bolt.py | # Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Factory: class for nut-bolt env.
Inherits base class and abstract environment class. Inherited by nut-bolt task classes. Not directly executed.
Configuration defined in FactoryEnvNutBolt.yaml. Asset info defined in factory_asset_info_nut_bolt.yaml.
"""
import hydra
import numpy as np
import torch
from omni.isaac.core.prims import RigidPrimView, XFormPrim
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omni.physx.scripts import physicsUtils, utils
from omniisaacgymenvs.robots.articulations.views.factory_franka_view import (
FactoryFrankaView,
)
import omniisaacgymenvs.tasks.factory.factory_control as fc
from omniisaacgymenvs.tasks.factory.factory_base import FactoryBase
from omniisaacgymenvs.tasks.factory.factory_schema_class_env import FactoryABCEnv
from omniisaacgymenvs.tasks.factory.factory_schema_config_env import (
FactorySchemaConfigEnv,
)
class FactoryEnvNutBolt(FactoryBase, FactoryABCEnv):
def __init__(self, name, sim_config, env) -> None:
"""Initialize base superclass. Initialize instance variables."""
super().__init__(name, sim_config, env)
self._get_env_yaml_params()
def _get_env_yaml_params(self):
"""Initialize instance variables from YAML files."""
cs = hydra.core.config_store.ConfigStore.instance()
cs.store(name="factory_schema_config_env", node=FactorySchemaConfigEnv)
config_path = (
"task/FactoryEnvNutBolt.yaml" # relative to Hydra search path (cfg dir)
)
self.cfg_env = hydra.compose(config_name=config_path)
self.cfg_env = self.cfg_env["task"] # strip superfluous nesting
asset_info_path = "../tasks/factory/yaml/factory_asset_info_nut_bolt.yaml"
self.asset_info_nut_bolt = hydra.compose(config_name=asset_info_path)
self.asset_info_nut_bolt = self.asset_info_nut_bolt[""][""][""]["tasks"][
"factory"
][
"yaml"
] # strip superfluous nesting
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._num_observations = self._task_cfg["env"]["numObservations"]
self._num_actions = self._task_cfg["env"]["numActions"]
self._env_spacing = self.cfg_base["env"]["env_spacing"]
self._get_env_yaml_params()
def set_up_scene(self, scene) -> None:
"""Import assets. Add to scene."""
# Increase buffer size to prevent overflow for Place and Screw tasks
physxSceneAPI = self.world.get_physics_context()._physx_scene_api
physxSceneAPI.CreateGpuCollisionStackSizeAttr().Set(256 * 1024 * 1024)
self.import_franka_assets(add_to_stage=True)
self.create_nut_bolt_material()
RLTask.set_up_scene(self, scene, replicate_physics=False)
self._import_env_assets(add_to_stage=True)
self.frankas = FactoryFrankaView(
prim_paths_expr="/World/envs/.*/franka", name="frankas_view"
)
self.nuts = RigidPrimView(
prim_paths_expr="/World/envs/.*/nut/factory_nut.*",
name="nuts_view",
track_contact_forces=True,
)
self.bolts = RigidPrimView(
prim_paths_expr="/World/envs/.*/bolt/factory_bolt.*",
name="bolts_view",
track_contact_forces=True,
)
scene.add(self.nuts)
scene.add(self.bolts)
scene.add(self.frankas)
scene.add(self.frankas._hands)
scene.add(self.frankas._lfingers)
scene.add(self.frankas._rfingers)
scene.add(self.frankas._fingertip_centered)
return
def initialize_views(self, scene) -> None:
"""Initialize views for extension workflow."""
super().initialize_views(scene)
self.import_franka_assets(add_to_stage=False)
self._import_env_assets(add_to_stage=False)
if scene.object_exists("frankas_view"):
scene.remove_object("frankas_view", registry_only=True)
if scene.object_exists("nuts_view"):
scene.remove_object("nuts_view", registry_only=True)
if scene.object_exists("bolts_view"):
scene.remove_object("bolts_view", registry_only=True)
if scene.object_exists("hands_view"):
scene.remove_object("hands_view", registry_only=True)
if scene.object_exists("lfingers_view"):
scene.remove_object("lfingers_view", registry_only=True)
if scene.object_exists("rfingers_view"):
scene.remove_object("rfingers_view", registry_only=True)
if scene.object_exists("fingertips_view"):
scene.remove_object("fingertips_view", registry_only=True)
self.frankas = FactoryFrankaView(
prim_paths_expr="/World/envs/.*/franka", name="frankas_view"
)
self.nuts = RigidPrimView(
prim_paths_expr="/World/envs/.*/nut/factory_nut.*", name="nuts_view"
)
self.bolts = RigidPrimView(
prim_paths_expr="/World/envs/.*/bolt/factory_bolt.*", name="bolts_view"
)
scene.add(self.nuts)
scene.add(self.bolts)
scene.add(self.frankas)
scene.add(self.frankas._hands)
scene.add(self.frankas._lfingers)
scene.add(self.frankas._rfingers)
scene.add(self.frankas._fingertip_centered)
def create_nut_bolt_material(self):
"""Define nut and bolt material."""
self.nutboltPhysicsMaterialPath = "/World/Physics_Materials/NutBoltMaterial"
utils.addRigidBodyMaterial(
self._stage,
self.nutboltPhysicsMaterialPath,
density=self.cfg_env.env.nut_bolt_density,
staticFriction=self.cfg_env.env.nut_bolt_friction,
dynamicFriction=self.cfg_env.env.nut_bolt_friction,
restitution=0.0,
)
def _import_env_assets(self, add_to_stage=True):
"""Set nut and bolt asset options. Import assets."""
self.nut_heights = []
self.nut_widths_max = []
self.bolt_widths = []
self.bolt_head_heights = []
self.bolt_shank_lengths = []
self.thread_pitches = []
assets_root_path = get_assets_root_path()
for i in range(0, self._num_envs):
j = np.random.randint(0, len(self.cfg_env.env.desired_subassemblies))
subassembly = self.cfg_env.env.desired_subassemblies[j]
components = list(self.asset_info_nut_bolt[subassembly])
nut_translation = torch.tensor(
[
0.0,
self.cfg_env.env.nut_lateral_offset,
self.cfg_base.env.table_height,
],
device=self._device,
)
nut_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device)
nut_height = self.asset_info_nut_bolt[subassembly][components[0]]["height"]
nut_width_max = self.asset_info_nut_bolt[subassembly][components[0]][
"width_max"
]
self.nut_heights.append(nut_height)
self.nut_widths_max.append(nut_width_max)
nut_file = (
assets_root_path
+ self.asset_info_nut_bolt[subassembly][components[0]]["usd_path"]
)
if add_to_stage:
add_reference_to_stage(nut_file, f"/World/envs/env_{i}" + "/nut")
XFormPrim(
prim_path=f"/World/envs/env_{i}" + "/nut",
translation=nut_translation,
orientation=nut_orientation,
)
self._stage.GetPrimAtPath(
f"/World/envs/env_{i}" + f"/nut/factory_{components[0]}/collisions"
).SetInstanceable(
False
) # This is required to be able to edit physics material
physicsUtils.add_physics_material_to_prim(
self._stage,
self._stage.GetPrimAtPath(
f"/World/envs/env_{i}"
+ f"/nut/factory_{components[0]}/collisions/mesh_0"
),
self.nutboltPhysicsMaterialPath,
)
# applies articulation settings from the task configuration yaml file
self._sim_config.apply_articulation_settings(
"nut",
self._stage.GetPrimAtPath(f"/World/envs/env_{i}" + "/nut"),
self._sim_config.parse_actor_config("nut"),
)
bolt_translation = torch.tensor(
[0.0, 0.0, self.cfg_base.env.table_height], device=self._device
)
bolt_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device)
bolt_width = self.asset_info_nut_bolt[subassembly][components[1]]["width"]
bolt_head_height = self.asset_info_nut_bolt[subassembly][components[1]][
"head_height"
]
bolt_shank_length = self.asset_info_nut_bolt[subassembly][components[1]][
"shank_length"
]
self.bolt_widths.append(bolt_width)
self.bolt_head_heights.append(bolt_head_height)
self.bolt_shank_lengths.append(bolt_shank_length)
if add_to_stage:
bolt_file = (
assets_root_path
+ self.asset_info_nut_bolt[subassembly][components[1]]["usd_path"]
)
add_reference_to_stage(bolt_file, f"/World/envs/env_{i}" + "/bolt")
XFormPrim(
prim_path=f"/World/envs/env_{i}" + "/bolt",
translation=bolt_translation,
orientation=bolt_orientation,
)
self._stage.GetPrimAtPath(
f"/World/envs/env_{i}" + f"/bolt/factory_{components[1]}/collisions"
).SetInstanceable(
False
) # This is required to be able to edit physics material
physicsUtils.add_physics_material_to_prim(
self._stage,
self._stage.GetPrimAtPath(
f"/World/envs/env_{i}"
+ f"/bolt/factory_{components[1]}/collisions/mesh_0"
),
self.nutboltPhysicsMaterialPath,
)
# applies articulation settings from the task configuration yaml file
self._sim_config.apply_articulation_settings(
"bolt",
self._stage.GetPrimAtPath(f"/World/envs/env_{i}" + "/bolt"),
self._sim_config.parse_actor_config("bolt"),
)
thread_pitch = self.asset_info_nut_bolt[subassembly]["thread_pitch"]
self.thread_pitches.append(thread_pitch)
# For computing body COM pos
self.nut_heights = torch.tensor(
self.nut_heights, device=self._device
).unsqueeze(-1)
self.bolt_head_heights = torch.tensor(
self.bolt_head_heights, device=self._device
).unsqueeze(-1)
# For setting initial state
self.nut_widths_max = torch.tensor(
self.nut_widths_max, device=self._device
).unsqueeze(-1)
self.bolt_shank_lengths = torch.tensor(
self.bolt_shank_lengths, device=self._device
).unsqueeze(-1)
# For defining success or failure
self.bolt_widths = torch.tensor(
self.bolt_widths, device=self._device
).unsqueeze(-1)
self.thread_pitches = torch.tensor(
self.thread_pitches, device=self._device
).unsqueeze(-1)
def refresh_env_tensors(self):
"""Refresh tensors."""
# Nut tensors
self.nut_pos, self.nut_quat = self.nuts.get_world_poses(clone=False)
self.nut_pos -= self.env_pos
self.nut_com_pos = fc.translate_along_local_z(
pos=self.nut_pos,
quat=self.nut_quat,
offset=self.bolt_head_heights + self.nut_heights * 0.5,
device=self.device,
)
self.nut_com_quat = self.nut_quat # always equal
nut_velocities = self.nuts.get_velocities(clone=False)
self.nut_linvel = nut_velocities[:, 0:3]
self.nut_angvel = nut_velocities[:, 3:6]
self.nut_com_linvel = self.nut_linvel + torch.cross(
self.nut_angvel, (self.nut_com_pos - self.nut_pos), dim=1
)
self.nut_com_angvel = self.nut_angvel # always equal
self.nut_force = self.nuts.get_net_contact_forces(clone=False)
# Bolt tensors
self.bolt_pos, self.bolt_quat = self.bolts.get_world_poses(clone=False)
self.bolt_pos -= self.env_pos
self.bolt_force = self.bolts.get_net_contact_forces(clone=False)
| 14,703 | Python | 39.284931 | 110 | 0.603414 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_control.py | # Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Factory: control module.
Imported by base, environment, and task classes. Not directly executed.
"""
import math
import omni.isaac.core.utils.torch as torch_utils
import torch
def compute_dof_pos_target(
cfg_ctrl,
arm_dof_pos,
fingertip_midpoint_pos,
fingertip_midpoint_quat,
jacobian,
ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat,
ctrl_target_gripper_dof_pos,
device,
):
"""Compute Franka DOF position target to move fingertips towards target pose."""
ctrl_target_dof_pos = torch.zeros((cfg_ctrl["num_envs"], 9), device=device)
pos_error, axis_angle_error = get_pose_error(
fingertip_midpoint_pos=fingertip_midpoint_pos,
fingertip_midpoint_quat=fingertip_midpoint_quat,
ctrl_target_fingertip_midpoint_pos=ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat=ctrl_target_fingertip_midpoint_quat,
jacobian_type=cfg_ctrl["jacobian_type"],
rot_error_type="axis_angle",
)
delta_fingertip_pose = torch.cat((pos_error, axis_angle_error), dim=1)
delta_arm_dof_pos = _get_delta_dof_pos(
delta_pose=delta_fingertip_pose,
ik_method=cfg_ctrl["ik_method"],
jacobian=jacobian,
device=device,
)
ctrl_target_dof_pos[:, 0:7] = arm_dof_pos + delta_arm_dof_pos
ctrl_target_dof_pos[:, 7:9] = ctrl_target_gripper_dof_pos # gripper finger joints
return ctrl_target_dof_pos
def compute_dof_torque(
cfg_ctrl,
dof_pos,
dof_vel,
fingertip_midpoint_pos,
fingertip_midpoint_quat,
fingertip_midpoint_linvel,
fingertip_midpoint_angvel,
left_finger_force,
right_finger_force,
jacobian,
arm_mass_matrix,
ctrl_target_gripper_dof_pos,
ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat,
ctrl_target_fingertip_contact_wrench,
device,
):
"""Compute Franka DOF torque to move fingertips towards target pose."""
# References:
# 1) https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2018/RD_HS2018script.pdf
# 2) Modern Robotics
dof_torque = torch.zeros((cfg_ctrl["num_envs"], 9), device=device)
if cfg_ctrl["gain_space"] == "joint":
pos_error, axis_angle_error = get_pose_error(
fingertip_midpoint_pos=fingertip_midpoint_pos,
fingertip_midpoint_quat=fingertip_midpoint_quat,
ctrl_target_fingertip_midpoint_pos=ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat=ctrl_target_fingertip_midpoint_quat,
jacobian_type=cfg_ctrl["jacobian_type"],
rot_error_type="axis_angle",
)
delta_fingertip_pose = torch.cat((pos_error, axis_angle_error), dim=1)
# Set tau = k_p * joint_pos_error - k_d * joint_vel_error (ETH eq. 3.72)
delta_arm_dof_pos = _get_delta_dof_pos(
delta_pose=delta_fingertip_pose,
ik_method=cfg_ctrl["ik_method"],
jacobian=jacobian,
device=device,
)
dof_torque[:, 0:7] = cfg_ctrl[
"joint_prop_gains"
] * delta_arm_dof_pos + cfg_ctrl["joint_deriv_gains"] * (0.0 - dof_vel[:, 0:7])
if cfg_ctrl["do_inertial_comp"]:
# Set tau = M * tau, where M is the joint-space mass matrix
arm_mass_matrix_joint = arm_mass_matrix
dof_torque[:, 0:7] = (
arm_mass_matrix_joint @ dof_torque[:, 0:7].unsqueeze(-1)
).squeeze(-1)
elif cfg_ctrl["gain_space"] == "task":
task_wrench = torch.zeros((cfg_ctrl["num_envs"], 6), device=device)
if cfg_ctrl["do_motion_ctrl"]:
pos_error, axis_angle_error = get_pose_error(
fingertip_midpoint_pos=fingertip_midpoint_pos,
fingertip_midpoint_quat=fingertip_midpoint_quat,
ctrl_target_fingertip_midpoint_pos=ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat=ctrl_target_fingertip_midpoint_quat,
jacobian_type=cfg_ctrl["jacobian_type"],
rot_error_type="axis_angle",
)
delta_fingertip_pose = torch.cat((pos_error, axis_angle_error), dim=1)
# Set tau = k_p * task_pos_error - k_d * task_vel_error (building towards eq. 3.96-3.98)
task_wrench_motion = _apply_task_space_gains(
delta_fingertip_pose=delta_fingertip_pose,
fingertip_midpoint_linvel=fingertip_midpoint_linvel,
fingertip_midpoint_angvel=fingertip_midpoint_angvel,
task_prop_gains=cfg_ctrl["task_prop_gains"],
task_deriv_gains=cfg_ctrl["task_deriv_gains"],
)
if cfg_ctrl["do_inertial_comp"]:
# Set tau = Lambda * tau, where Lambda is the task-space mass matrix
jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2)
arm_mass_matrix_task = torch.inverse(
jacobian @ torch.inverse(arm_mass_matrix) @ jacobian_T
) # ETH eq. 3.86; geometric Jacobian is assumed
task_wrench_motion = (
arm_mass_matrix_task @ task_wrench_motion.unsqueeze(-1)
).squeeze(-1)
task_wrench = (
task_wrench + cfg_ctrl["motion_ctrl_axes"] * task_wrench_motion
)
if cfg_ctrl["do_force_ctrl"]:
# Set tau = tau + F_t, where F_t is the target contact wrench
task_wrench_force = torch.zeros((cfg_ctrl["num_envs"], 6), device=device)
task_wrench_force = (
task_wrench_force + ctrl_target_fingertip_contact_wrench
) # open-loop force control (building towards ETH eq. 3.96-3.98)
if cfg_ctrl["force_ctrl_method"] == "closed":
force_error, torque_error = _get_wrench_error(
left_finger_force=left_finger_force,
right_finger_force=right_finger_force,
ctrl_target_fingertip_contact_wrench=ctrl_target_fingertip_contact_wrench,
num_envs=cfg_ctrl["num_envs"],
device=device,
)
# Set tau = tau + k_p * contact_wrench_error
task_wrench_force = task_wrench_force + cfg_ctrl[
"wrench_prop_gains"
] * torch.cat(
(force_error, torque_error), dim=1
) # part of Modern Robotics eq. 11.61
task_wrench = (
task_wrench
+ torch.tensor(cfg_ctrl["force_ctrl_axes"], device=device).unsqueeze(0)
* task_wrench_force
)
# Set tau = J^T * tau, i.e., map tau into joint space as desired
jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2)
dof_torque[:, 0:7] = (jacobian_T @ task_wrench.unsqueeze(-1)).squeeze(-1)
dof_torque[:, 7:9] = cfg_ctrl["gripper_prop_gains"] * (
ctrl_target_gripper_dof_pos - dof_pos[:, 7:9]
) + cfg_ctrl["gripper_deriv_gains"] * (
0.0 - dof_vel[:, 7:9]
) # gripper finger joints
dof_torque = torch.clamp(dof_torque, min=-100.0, max=100.0)
return dof_torque
def get_pose_error(
fingertip_midpoint_pos,
fingertip_midpoint_quat,
ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat,
jacobian_type,
rot_error_type,
):
"""Compute task-space error between target Franka fingertip pose and current pose."""
# Reference: https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2018/RD_HS2018script.pdf
# Compute pos error
pos_error = ctrl_target_fingertip_midpoint_pos - fingertip_midpoint_pos
# Compute rot error
if (
jacobian_type == "geometric"
): # See example 2.9.8; note use of J_g and transformation between rotation vectors
# Compute quat error (i.e., difference quat)
# Reference: https://personal.utdallas.edu/~sxb027100/dock/quat.html
fingertip_midpoint_quat_norm = torch_utils.quat_mul(
fingertip_midpoint_quat, torch_utils.quat_conjugate(fingertip_midpoint_quat)
)[
:, 0
] # scalar component
fingertip_midpoint_quat_inv = torch_utils.quat_conjugate(
fingertip_midpoint_quat
) / fingertip_midpoint_quat_norm.unsqueeze(-1)
quat_error = torch_utils.quat_mul(
ctrl_target_fingertip_midpoint_quat, fingertip_midpoint_quat_inv
)
# Convert to axis-angle error
axis_angle_error = axis_angle_from_quat(quat_error)
elif (
jacobian_type == "analytic"
): # See example 2.9.7; note use of J_a and difference of rotation vectors
# Compute axis-angle error
axis_angle_error = axis_angle_from_quat(
ctrl_target_fingertip_midpoint_quat
) - axis_angle_from_quat(fingertip_midpoint_quat)
if rot_error_type == "quat":
return pos_error, quat_error
elif rot_error_type == "axis_angle":
return pos_error, axis_angle_error
def _get_wrench_error(
left_finger_force,
right_finger_force,
ctrl_target_fingertip_contact_wrench,
num_envs,
device,
):
"""Compute task-space error between target Franka fingertip contact wrench and current wrench."""
fingertip_contact_wrench = torch.zeros((num_envs, 6), device=device)
fingertip_contact_wrench[:, 0:3] = (
left_finger_force + right_finger_force
) # net contact force on fingers
# Cols 3 to 6 are all zeros, as we do not have enough information
force_error = ctrl_target_fingertip_contact_wrench[:, 0:3] - (
-fingertip_contact_wrench[:, 0:3]
)
torque_error = ctrl_target_fingertip_contact_wrench[:, 3:6] - (
-fingertip_contact_wrench[:, 3:6]
)
return force_error, torque_error
def _get_delta_dof_pos(delta_pose, ik_method, jacobian, device):
"""Get delta Franka DOF position from delta pose using specified IK method."""
# References:
# 1) https://www.cs.cmu.edu/~15464-s13/lectures/lecture6/iksurvey.pdf
# 2) https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2018/RD_HS2018script.pdf (p. 47)
if ik_method == "pinv": # Jacobian pseudoinverse
k_val = 1.0
jacobian_pinv = torch.linalg.pinv(jacobian)
delta_dof_pos = k_val * jacobian_pinv @ delta_pose.unsqueeze(-1)
delta_dof_pos = delta_dof_pos.squeeze(-1)
elif ik_method == "trans": # Jacobian transpose
k_val = 1.0
jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2)
delta_dof_pos = k_val * jacobian_T @ delta_pose.unsqueeze(-1)
delta_dof_pos = delta_dof_pos.squeeze(-1)
elif ik_method == "dls": # damped least squares (Levenberg-Marquardt)
lambda_val = 0.1
jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2)
lambda_matrix = (lambda_val**2) * torch.eye(
n=jacobian.shape[1], device=device
)
delta_dof_pos = (
jacobian_T
@ torch.inverse(jacobian @ jacobian_T + lambda_matrix)
@ delta_pose.unsqueeze(-1)
)
delta_dof_pos = delta_dof_pos.squeeze(-1)
elif ik_method == "svd": # adaptive SVD
k_val = 1.0
U, S, Vh = torch.linalg.svd(jacobian)
S_inv = 1.0 / S
min_singular_value = 1.0e-5
S_inv = torch.where(S > min_singular_value, S_inv, torch.zeros_like(S_inv))
jacobian_pinv = (
torch.transpose(Vh, dim0=1, dim1=2)[:, :, :6]
@ torch.diag_embed(S_inv)
@ torch.transpose(U, dim0=1, dim1=2)
)
delta_dof_pos = k_val * jacobian_pinv @ delta_pose.unsqueeze(-1)
delta_dof_pos = delta_dof_pos.squeeze(-1)
return delta_dof_pos
def _apply_task_space_gains(
delta_fingertip_pose,
fingertip_midpoint_linvel,
fingertip_midpoint_angvel,
task_prop_gains,
task_deriv_gains,
):
"""Interpret PD gains as task-space gains. Apply to task-space error."""
task_wrench = torch.zeros_like(delta_fingertip_pose)
# Apply gains to lin error components
lin_error = delta_fingertip_pose[:, 0:3]
task_wrench[:, 0:3] = task_prop_gains[:, 0:3] * lin_error + task_deriv_gains[
:, 0:3
] * (0.0 - fingertip_midpoint_linvel)
# Apply gains to rot error components
rot_error = delta_fingertip_pose[:, 3:6]
task_wrench[:, 3:6] = task_prop_gains[:, 3:6] * rot_error + task_deriv_gains[
:, 3:6
] * (0.0 - fingertip_midpoint_angvel)
return task_wrench
def get_analytic_jacobian(fingertip_quat, fingertip_jacobian, num_envs, device):
"""Convert geometric Jacobian to analytic Jacobian."""
# Reference: https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2018/RD_HS2018script.pdf
# NOTE: Gym returns world-space geometric Jacobians by default
batch = num_envs
# Overview:
# x = [x_p; x_r]
# From eq. 2.189 and 2.192, x_dot = J_a @ q_dot = (E_inv @ J_g) @ q_dot
# From eq. 2.191, E = block(E_p, E_r); thus, E_inv = block(E_p_inv, E_r_inv)
# Eq. 2.12 gives an expression for E_p_inv
# Eq. 2.107 gives an expression for E_r_inv
# Compute E_inv_top (i.e., [E_p_inv, 0])
I = torch.eye(3, device=device)
E_p_inv = I.repeat((batch, 1)).reshape(batch, 3, 3)
E_inv_top = torch.cat((E_p_inv, torch.zeros((batch, 3, 3), device=device)), dim=2)
# Compute E_inv_bottom (i.e., [0, E_r_inv])
fingertip_axis_angle = axis_angle_from_quat(fingertip_quat)
fingertip_axis_angle_cross = get_skew_symm_matrix(
fingertip_axis_angle, device=device
)
fingertip_angle = torch.linalg.vector_norm(fingertip_axis_angle, dim=1)
factor_1 = 1 / (fingertip_angle**2)
factor_2 = 1 - fingertip_angle * 0.5 * torch.sin(fingertip_angle) / (
1 - torch.cos(fingertip_angle)
)
factor_3 = factor_1 * factor_2
E_r_inv = (
I
- 1 * 0.5 * fingertip_axis_angle_cross
+ (fingertip_axis_angle_cross @ fingertip_axis_angle_cross)
* factor_3.unsqueeze(-1).repeat((1, 3 * 3)).reshape((batch, 3, 3))
)
E_inv_bottom = torch.cat(
(torch.zeros((batch, 3, 3), device=device), E_r_inv), dim=2
)
E_inv = torch.cat(
(E_inv_top.reshape((batch, 3 * 6)), E_inv_bottom.reshape((batch, 3 * 6))), dim=1
).reshape((batch, 6, 6))
J_a = E_inv @ fingertip_jacobian
return J_a
def get_skew_symm_matrix(vec, device):
"""Convert vector to skew-symmetric matrix."""
# Reference: https://en.wikipedia.org/wiki/Cross_product#Conversion_to_matrix_multiplication
batch = vec.shape[0]
I = torch.eye(3, device=device)
skew_symm = torch.transpose(
torch.cross(
vec.repeat((1, 3)).reshape((batch * 3, 3)), I.repeat((batch, 1))
).reshape(batch, 3, 3),
dim0=1,
dim1=2,
)
return skew_symm
def translate_along_local_z(pos, quat, offset, device):
"""Translate global body position along local Z-axis and express in global coordinates."""
num_vecs = pos.shape[0]
offset_vec = offset * torch.tensor([0.0, 0.0, 1.0], device=device).repeat(
(num_vecs, 1)
)
_, translated_pos = torch_utils.tf_combine(
q1=quat,
t1=pos,
q2=torch.tensor([1.0, 0.0, 0.0, 0.0], device=device).repeat((num_vecs, 1)),
t2=offset_vec,
)
return translated_pos
def axis_angle_from_euler(euler):
"""Convert tensor of Euler angles to tensor of axis-angles."""
quat = torch_utils.quat_from_euler_xyz(
roll=euler[:, 0], pitch=euler[:, 1], yaw=euler[:, 2]
)
quat = quat * torch.sign(quat[:, 0]).unsqueeze(-1) # smaller rotation
axis_angle = axis_angle_from_quat(quat)
return axis_angle
def axis_angle_from_quat(quat, eps=1.0e-6):
"""Convert tensor of quaternions to tensor of axis-angles."""
# Reference: https://github.com/facebookresearch/pytorch3d/blob/bee31c48d3d36a8ea268f9835663c52ff4a476ec/pytorch3d/transforms/rotation_conversions.py#L516-L544
mag = torch.linalg.norm(quat[:, 1:4], dim=1)
half_angle = torch.atan2(mag, quat[:, 0])
angle = 2.0 * half_angle
sin_half_angle_over_angle = torch.where(
torch.abs(angle) > eps, torch.sin(half_angle) / angle, 1 / 2 - angle**2.0 / 48
)
axis_angle = quat[:, 1:4] / sin_half_angle_over_angle.unsqueeze(-1)
return axis_angle
def axis_angle_from_quat_naive(quat):
"""Convert tensor of quaternions to tensor of axis-angles."""
# Reference: https://en.wikipedia.org/wiki/quats_and_spatial_rotation#Recovering_the_axis-angle_representation
# NOTE: Susceptible to undesirable behavior due to divide-by-zero
mag = torch.linalg.vector_norm(quat[:, 1:4], dim=1) # zero when quat = [1, 0, 0, 0]
axis = quat[:, 1:4] / mag.unsqueeze(-1)
angle = 2.0 * torch.atan2(mag, quat[:, 0])
axis_angle = axis * angle.unsqueeze(-1)
return axis_angle
def get_rand_quat(num_quats, device):
"""Generate tensor of random quaternions."""
# Reference: http://planning.cs.uiuc.edu/node198.html
u = torch.rand((num_quats, 3), device=device)
quat = torch.zeros((num_quats, 4), device=device)
quat[:, 0] = torch.sqrt(u[:, 0]) * torch.cos(2 * math.pi * u[:, 2])
quat[:, 1] = torch.sqrt(1 - u[:, 0]) * torch.sin(2 * math.pi * u[:, 1])
quat[:, 2] = torch.sqrt(1 - u[:, 0]) * torch.cos(2 * math.pi * u[:, 1])
quat[:, 3] = torch.sqrt(u[:, 0]) * torch.sin(2 * math.pi * u[:, 2])
return quat
def get_nonrand_quat(num_quats, rot_perturbation, device):
"""Generate tensor of non-random quaternions by composing random Euler rotations."""
quat = torch_utils.quat_from_euler_xyz(
torch.rand((num_quats, 1), device=device).squeeze() * rot_perturbation * 2.0
- rot_perturbation,
torch.rand((num_quats, 1), device=device).squeeze() * rot_perturbation * 2.0
- rot_perturbation,
torch.rand((num_quats, 1), device=device).squeeze() * rot_perturbation * 2.0
- rot_perturbation,
)
return quat
| 19,859 | Python | 37.864971 | 163 | 0.627574 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/yaml/factory_asset_info_nut_bolt.yaml | nut_bolt_m4:
nut:
usd_path: '/Isaac/Props/Factory/factory_nut_m4_tight/factory_nut_m4_tight.usd'
width_min: 0.007 # distance from flat surface to flat surface
width_max: 0.0080829 # distance from edge to edge
height: 0.0032 # height of nut
flat_length: 0.00404145 # length of flat surface
bolt:
usd_path: '/Isaac/Props/Factory/factory_bolt_m4_tight/factory_bolt_m4_tight.usd'
width: 0.004 # major diameter of bolt
head_height: 0.004 # height of bolt head
shank_length: 0.016 # length of bolt shank
thread_pitch: 0.0007 # distance between threads
nut_bolt_m8:
nut:
usd_path: '/Isaac/Props/Factory/factory_nut_m8_tight/factory_nut_m8_tight.usd'
width_min: 0.013
width_max: 0.01501111
height: 0.0065
flat_length: 0.00750555
bolt:
usd_path: '/Isaac/Props/Factory/factory_bolt_m8_tight/factory_bolt_m8_tight.usd'
width: 0.008
head_height: 0.008
shank_length: 0.018
thread_pitch: 0.00125
nut_bolt_m12:
nut:
usd_path: '/Isaac/Props/Factory/factory_nut_m12_tight/factory_nut_m12_tight.usd'
width_min: 0.019
width_max: 0.02193931
height: 0.010
flat_length: 0.01096966
bolt:
usd_path: '/Isaac/Props/Factory/factory_bolt_m12_tight/factory_bolt_m12_tight.usd'
width: 0.012
head_height: 0.012
shank_length: 0.020
thread_pitch: 0.00175
nut_bolt_m16:
nut:
usd_path: '/Isaac/Props/Factory/factory_nut_m16_tight/factory_nut_m16_tight.usd'
width_min: 0.024
width_max: 0.02771281
height: 0.013
flat_length: 0.01385641
bolt:
usd_path: '/Isaac/Props/Factory/factory_bolt_m16_tight/factory_bolt_m16_tight.usd'
width: 0.016
head_height: 0.016
shank_length: 0.025
thread_pitch: 0.002
nut_bolt_m20:
nut:
usd_path: '/Isaac/Props/Factory/factory_nut_m20_tight/factory_nut_m20_tight.usd'
width_min: 0.030
width_max: 0.03464102
height: 0.016
flat_length: 0.01732051
bolt:
usd_path: '/Isaac/Props/Factory/factory_bolt_m20_tight/factory_bolt_m20_tight.usd'
width: 0.020
head_height: 0.020
shank_length: 0.045
thread_pitch: 0.0025
| 2,331 | YAML | 32.314285 | 90 | 0.617332 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/yaml/factory_asset_info_franka_table.yaml | franka_hand_length: 0.0584 # distance from origin of hand to origin of finger
franka_finger_length: 0.053671 # distance from origin of finger to bottom of fingerpad
franka_fingerpad_length: 0.017608 # distance from top of inner surface of fingerpad to bottom of inner surface of fingerpad
franka_gripper_width_max: 0.080 # maximum opening width of gripper
table_depth: 0.6 # depth of table
table_width: 1.0 # width of table
| 431 | YAML | 52.999993 | 124 | 0.772622 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/utils/anymal_terrain_generator.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import numpy as np
import torch
from omniisaacgymenvs.utils.terrain_utils.terrain_utils import *
# terrain generator
class Terrain:
def __init__(self, cfg, num_robots) -> None:
self.horizontal_scale = 0.1
self.vertical_scale = 0.005
self.border_size = 20
self.num_per_env = 2
self.env_length = cfg["mapLength"]
self.env_width = cfg["mapWidth"]
self.proportions = [np.sum(cfg["terrainProportions"][: i + 1]) for i in range(len(cfg["terrainProportions"]))]
self.env_rows = cfg["numLevels"]
self.env_cols = cfg["numTerrains"]
self.num_maps = self.env_rows * self.env_cols
self.num_per_env = int(num_robots / self.num_maps)
self.env_origins = np.zeros((self.env_rows, self.env_cols, 3))
self.width_per_env_pixels = int(self.env_width / self.horizontal_scale)
self.length_per_env_pixels = int(self.env_length / self.horizontal_scale)
self.border = int(self.border_size / self.horizontal_scale)
self.tot_cols = int(self.env_cols * self.width_per_env_pixels) + 2 * self.border
self.tot_rows = int(self.env_rows * self.length_per_env_pixels) + 2 * self.border
self.height_field_raw = np.zeros((self.tot_rows, self.tot_cols), dtype=np.int16)
if cfg["curriculum"]:
self.curiculum(num_robots, num_terrains=self.env_cols, num_levels=self.env_rows)
else:
self.randomized_terrain()
self.heightsamples = self.height_field_raw
self.vertices, self.triangles = convert_heightfield_to_trimesh(
self.height_field_raw, self.horizontal_scale, self.vertical_scale, cfg["slopeTreshold"]
)
def randomized_terrain(self):
for k in range(self.num_maps):
# Env coordinates in the world
(i, j) = np.unravel_index(k, (self.env_rows, self.env_cols))
# Heightfield coordinate system from now on
start_x = self.border + i * self.length_per_env_pixels
end_x = self.border + (i + 1) * self.length_per_env_pixels
start_y = self.border + j * self.width_per_env_pixels
end_y = self.border + (j + 1) * self.width_per_env_pixels
terrain = SubTerrain(
"terrain",
width=self.width_per_env_pixels,
length=self.width_per_env_pixels,
vertical_scale=self.vertical_scale,
horizontal_scale=self.horizontal_scale,
)
choice = np.random.uniform(0, 1)
if choice < 0.1:
if np.random.choice([0, 1]):
pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3]))
random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.05, downsampled_scale=0.2)
else:
pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3]))
elif choice < 0.6:
# step_height = np.random.choice([-0.18, -0.15, -0.1, -0.05, 0.05, 0.1, 0.15, 0.18])
step_height = np.random.choice([-0.15, 0.15])
pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.0)
elif choice < 1.0:
discrete_obstacles_terrain(terrain, 0.15, 1.0, 2.0, 40, platform_size=3.0)
self.height_field_raw[start_x:end_x, start_y:end_y] = terrain.height_field_raw
env_origin_x = (i + 0.5) * self.env_length
env_origin_y = (j + 0.5) * self.env_width
x1 = int((self.env_length / 2.0 - 1) / self.horizontal_scale)
x2 = int((self.env_length / 2.0 + 1) / self.horizontal_scale)
y1 = int((self.env_width / 2.0 - 1) / self.horizontal_scale)
y2 = int((self.env_width / 2.0 + 1) / self.horizontal_scale)
env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2]) * self.vertical_scale
self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z]
def curiculum(self, num_robots, num_terrains, num_levels):
num_robots_per_map = int(num_robots / num_terrains)
left_over = num_robots % num_terrains
idx = 0
for j in range(num_terrains):
for i in range(num_levels):
terrain = SubTerrain(
"terrain",
width=self.width_per_env_pixels,
length=self.width_per_env_pixels,
vertical_scale=self.vertical_scale,
horizontal_scale=self.horizontal_scale,
)
difficulty = i / num_levels
choice = j / num_terrains
slope = difficulty * 0.4
step_height = 0.05 + 0.175 * difficulty
discrete_obstacles_height = 0.025 + difficulty * 0.15
stepping_stones_size = 2 - 1.8 * difficulty
if choice < self.proportions[0]:
if choice < 0.05:
slope *= -1
pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.0)
elif choice < self.proportions[1]:
if choice < 0.15:
slope *= -1
pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.0)
random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.025, downsampled_scale=0.2)
elif choice < self.proportions[3]:
if choice < self.proportions[2]:
step_height *= -1
pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.0)
elif choice < self.proportions[4]:
discrete_obstacles_terrain(terrain, discrete_obstacles_height, 1.0, 2.0, 40, platform_size=3.0)
else:
stepping_stones_terrain(
terrain, stone_size=stepping_stones_size, stone_distance=0.1, max_height=0.0, platform_size=3.0
)
# Heightfield coordinate system
start_x = self.border + i * self.length_per_env_pixels
end_x = self.border + (i + 1) * self.length_per_env_pixels
start_y = self.border + j * self.width_per_env_pixels
end_y = self.border + (j + 1) * self.width_per_env_pixels
self.height_field_raw[start_x:end_x, start_y:end_y] = terrain.height_field_raw
robots_in_map = num_robots_per_map
if j < left_over:
robots_in_map += 1
env_origin_x = (i + 0.5) * self.env_length
env_origin_y = (j + 0.5) * self.env_width
x1 = int((self.env_length / 2.0 - 1) / self.horizontal_scale)
x2 = int((self.env_length / 2.0 + 1) / self.horizontal_scale)
y1 = int((self.env_width / 2.0 - 1) / self.horizontal_scale)
y2 = int((self.env_width / 2.0 + 1) / self.horizontal_scale)
env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2]) * self.vertical_scale
self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z]
| 8,852 | Python | 50.47093 | 119 | 0.591618 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/utils/usd_utils.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import get_current_stage
from pxr import UsdLux, UsdPhysics
def set_drive_type(prim_path, drive_type):
joint_prim = get_prim_at_path(prim_path)
# set drive type ("angular" or "linear")
drive = UsdPhysics.DriveAPI.Apply(joint_prim, drive_type)
return drive
def set_drive_target_position(drive, target_value):
if not drive.GetTargetPositionAttr():
drive.CreateTargetPositionAttr(target_value)
else:
drive.GetTargetPositionAttr().Set(target_value)
def set_drive_target_velocity(drive, target_value):
if not drive.GetTargetVelocityAttr():
drive.CreateTargetVelocityAttr(target_value)
else:
drive.GetTargetVelocityAttr().Set(target_value)
def set_drive_stiffness(drive, stiffness):
if not drive.GetStiffnessAttr():
drive.CreateStiffnessAttr(stiffness)
else:
drive.GetStiffnessAttr().Set(stiffness)
def set_drive_damping(drive, damping):
if not drive.GetDampingAttr():
drive.CreateDampingAttr(damping)
else:
drive.GetDampingAttr().Set(damping)
def set_drive_max_force(drive, max_force):
if not drive.GetMaxForceAttr():
drive.CreateMaxForceAttr(max_force)
else:
drive.GetMaxForceAttr().Set(max_force)
def set_drive(prim_path, drive_type, target_type, target_value, stiffness, damping, max_force) -> None:
drive = set_drive_type(prim_path, drive_type)
# set target type ("position" or "velocity")
if target_type == "position":
set_drive_target_position(drive, target_value)
elif target_type == "velocity":
set_drive_target_velocity(drive, target_value)
set_drive_stiffness(drive, stiffness)
set_drive_damping(drive, damping)
set_drive_max_force(drive, max_force)
| 3,403 | Python | 36.406593 | 103 | 0.740229 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/shared/in_hand_manipulation.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
from abc import abstractmethod
import numpy as np
import torch
from omni.isaac.core.prims import RigidPrimView, XFormPrim
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage
from omni.isaac.core.utils.torch import *
from omniisaacgymenvs.tasks.base.rl_task import RLTask
class InHandManipulationTask(RLTask):
def __init__(self, name, env, offset=None) -> None:
InHandManipulationTask.update_config(self)
RLTask.__init__(self, name, env)
self.x_unit_tensor = torch.tensor([1, 0, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1))
self.y_unit_tensor = torch.tensor([0, 1, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1))
self.z_unit_tensor = torch.tensor([0, 0, 1], dtype=torch.float, device=self.device).repeat((self.num_envs, 1))
self.reset_goal_buf = self.reset_buf.clone()
self.successes = torch.zeros(self.num_envs, dtype=torch.float, device=self.device)
self.consecutive_successes = torch.zeros(1, dtype=torch.float, device=self.device)
self.randomization_buf = torch.zeros(self.num_envs, dtype=torch.long, device=self.device)
self.av_factor = torch.tensor(self.av_factor, dtype=torch.float, device=self.device)
self.total_successes = 0
self.total_resets = 0
def update_config(self):
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._env_spacing = self._task_cfg["env"]["envSpacing"]
self.dist_reward_scale = self._task_cfg["env"]["distRewardScale"]
self.rot_reward_scale = self._task_cfg["env"]["rotRewardScale"]
self.action_penalty_scale = self._task_cfg["env"]["actionPenaltyScale"]
self.success_tolerance = self._task_cfg["env"]["successTolerance"]
self.reach_goal_bonus = self._task_cfg["env"]["reachGoalBonus"]
self.fall_dist = self._task_cfg["env"]["fallDistance"]
self.fall_penalty = self._task_cfg["env"]["fallPenalty"]
self.rot_eps = self._task_cfg["env"]["rotEps"]
self.vel_obs_scale = self._task_cfg["env"]["velObsScale"]
self.reset_position_noise = self._task_cfg["env"]["resetPositionNoise"]
self.reset_rotation_noise = self._task_cfg["env"]["resetRotationNoise"]
self.reset_dof_pos_noise = self._task_cfg["env"]["resetDofPosRandomInterval"]
self.reset_dof_vel_noise = self._task_cfg["env"]["resetDofVelRandomInterval"]
self.hand_dof_speed_scale = self._task_cfg["env"]["dofSpeedScale"]
self.use_relative_control = self._task_cfg["env"]["useRelativeControl"]
self.act_moving_average = self._task_cfg["env"]["actionsMovingAverage"]
self.max_episode_length = self._task_cfg["env"]["episodeLength"]
self.reset_time = self._task_cfg["env"].get("resetTime", -1.0)
self.print_success_stat = self._task_cfg["env"]["printNumSuccesses"]
self.max_consecutive_successes = self._task_cfg["env"]["maxConsecutiveSuccesses"]
self.av_factor = self._task_cfg["env"].get("averFactor", 0.1)
self.dt = 1.0 / 60
control_freq_inv = self._task_cfg["env"].get("controlFrequencyInv", 1)
if self.reset_time > 0.0:
self.max_episode_length = int(round(self.reset_time / (control_freq_inv * self.dt)))
print("Reset time: ", self.reset_time)
print("New episode length: ", self.max_episode_length)
def set_up_scene(self, scene) -> None:
self._stage = get_current_stage()
self._assets_root_path = get_assets_root_path()
self.get_starting_positions()
self.get_hand()
self.object_start_translation = self.hand_start_translation.clone()
self.object_start_translation[1] += self.pose_dy
self.object_start_translation[2] += self.pose_dz
self.object_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device)
self.goal_displacement_tensor = torch.tensor([-0.2, -0.06, 0.12], device=self.device)
self.goal_start_translation = self.object_start_translation + self.goal_displacement_tensor
self.goal_start_translation[2] -= 0.04
self.goal_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device)
self.get_object(self.hand_start_translation, self.pose_dy, self.pose_dz)
self.get_goal()
super().set_up_scene(scene, filter_collisions=False)
self._hands = self.get_hand_view(scene)
scene.add(self._hands)
self._objects = RigidPrimView(
prim_paths_expr="/World/envs/env_.*/object/object",
name="object_view",
reset_xform_properties=False,
masses=torch.tensor([0.07087] * self._num_envs, device=self.device),
)
scene.add(self._objects)
self._goals = RigidPrimView(
prim_paths_expr="/World/envs/env_.*/goal/object", name="goal_view", reset_xform_properties=False
)
self._goals._non_root_link = True # hack to ignore kinematics
scene.add(self._goals)
if self._dr_randomizer.randomize:
self._dr_randomizer.apply_on_startup_domain_randomization(self)
def initialize_views(self, scene):
RLTask.initialize_views(self, scene)
if scene.object_exists("shadow_hand_view"):
scene.remove_object("shadow_hand_view", registry_only=True)
if scene.object_exists("finger_view"):
scene.remove_object("finger_view", registry_only=True)
if scene.object_exists("allegro_hand_view"):
scene.remove_object("allegro_hand_view", registry_only=True)
if scene.object_exists("goal_view"):
scene.remove_object("goal_view", registry_only=True)
if scene.object_exists("object_view"):
scene.remove_object("object_view", registry_only=True)
self.get_starting_positions()
self.object_start_translation = self.hand_start_translation.clone()
self.object_start_translation[1] += self.pose_dy
self.object_start_translation[2] += self.pose_dz
self.object_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device)
self.goal_displacement_tensor = torch.tensor([-0.2, -0.06, 0.12], device=self.device)
self.goal_start_translation = self.object_start_translation + self.goal_displacement_tensor
self.goal_start_translation[2] -= 0.04
self.goal_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device)
self._hands = self.get_hand_view(scene)
scene.add(self._hands)
self._objects = RigidPrimView(
prim_paths_expr="/World/envs/env_.*/object/object",
name="object_view",
reset_xform_properties=False,
masses=torch.tensor([0.07087] * self._num_envs, device=self.device),
)
scene.add(self._objects)
self._goals = RigidPrimView(
prim_paths_expr="/World/envs/env_.*/goal/object", name="goal_view", reset_xform_properties=False
)
self._goals._non_root_link = True # hack to ignore kinematics
scene.add(self._goals)
if self._dr_randomizer.randomize:
self._dr_randomizer.apply_on_startup_domain_randomization(self)
@abstractmethod
def get_hand(self):
pass
@abstractmethod
def get_hand_view(self):
pass
@abstractmethod
def get_observations(self):
pass
def get_object(self, hand_start_translation, pose_dy, pose_dz):
self.object_usd_path = f"{self._assets_root_path}/Isaac/Props/Blocks/block_instanceable.usd"
add_reference_to_stage(self.object_usd_path, self.default_zero_env_path + "/object")
obj = XFormPrim(
prim_path=self.default_zero_env_path + "/object/object",
name="object",
translation=self.object_start_translation,
orientation=self.object_start_orientation,
scale=self.object_scale,
)
self._sim_config.apply_articulation_settings(
"object", get_prim_at_path(obj.prim_path), self._sim_config.parse_actor_config("object")
)
def get_goal(self):
add_reference_to_stage(self.object_usd_path, self.default_zero_env_path + "/goal")
goal = XFormPrim(
prim_path=self.default_zero_env_path + "/goal",
name="goal",
translation=self.goal_start_translation,
orientation=self.goal_start_orientation,
scale=self.object_scale,
)
self._sim_config.apply_articulation_settings(
"goal", get_prim_at_path(goal.prim_path), self._sim_config.parse_actor_config("goal_object")
)
def post_reset(self):
self.num_hand_dofs = self._hands.num_dof
self.actuated_dof_indices = self._hands.actuated_dof_indices
self.hand_dof_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device)
self.prev_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device)
self.cur_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device)
dof_limits = self._hands.get_dof_limits()
self.hand_dof_lower_limits, self.hand_dof_upper_limits = torch.t(dof_limits[0].to(self.device))
self.hand_dof_default_pos = torch.zeros(self.num_hand_dofs, dtype=torch.float, device=self.device)
self.hand_dof_default_vel = torch.zeros(self.num_hand_dofs, dtype=torch.float, device=self.device)
self.object_init_pos, self.object_init_rot = self._objects.get_world_poses()
self.object_init_pos -= self._env_pos
self.object_init_velocities = torch.zeros_like(
self._objects.get_velocities(), dtype=torch.float, device=self.device
)
self.goal_pos = self.object_init_pos.clone()
self.goal_pos[:, 2] -= 0.04
self.goal_rot = self.object_init_rot.clone()
self.goal_init_pos = self.goal_pos.clone()
self.goal_init_rot = self.goal_rot.clone()
# randomize all envs
indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device)
self.reset_idx(indices)
if self._dr_randomizer.randomize:
self._dr_randomizer.set_up_domain_randomization(self)
def get_object_goal_observations(self):
self.object_pos, self.object_rot = self._objects.get_world_poses(clone=False)
self.object_pos -= self._env_pos
self.object_velocities = self._objects.get_velocities(clone=False)
self.object_linvel = self.object_velocities[:, 0:3]
self.object_angvel = self.object_velocities[:, 3:6]
def calculate_metrics(self):
(
self.rew_buf[:],
self.reset_buf[:],
self.reset_goal_buf[:],
self.progress_buf[:],
self.successes[:],
self.consecutive_successes[:],
) = compute_hand_reward(
self.rew_buf,
self.reset_buf,
self.reset_goal_buf,
self.progress_buf,
self.successes,
self.consecutive_successes,
self.max_episode_length,
self.object_pos,
self.object_rot,
self.goal_pos,
self.goal_rot,
self.dist_reward_scale,
self.rot_reward_scale,
self.rot_eps,
self.actions,
self.action_penalty_scale,
self.success_tolerance,
self.reach_goal_bonus,
self.fall_dist,
self.fall_penalty,
self.max_consecutive_successes,
self.av_factor,
)
self.extras["consecutive_successes"] = self.consecutive_successes.mean()
self.randomization_buf += 1
if self.print_success_stat:
self.total_resets = self.total_resets + self.reset_buf.sum()
direct_average_successes = self.total_successes + self.successes.sum()
self.total_successes = self.total_successes + (self.successes * self.reset_buf).sum()
# The direct average shows the overall result more quickly, but slightly undershoots long term policy performance.
print(
"Direct average consecutive successes = {:.1f}".format(
direct_average_successes / (self.total_resets + self.num_envs)
)
)
if self.total_resets > 0:
print(
"Post-Reset average consecutive successes = {:.1f}".format(self.total_successes / self.total_resets)
)
def pre_physics_step(self, actions):
if not self.world.is_playing():
return
env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
goal_env_ids = self.reset_goal_buf.nonzero(as_tuple=False).squeeze(-1)
reset_buf = self.reset_buf.clone()
# if only goals need reset, then call set API
if len(goal_env_ids) > 0 and len(env_ids) == 0:
self.reset_target_pose(goal_env_ids)
elif len(goal_env_ids) > 0:
self.reset_target_pose(goal_env_ids)
if len(env_ids) > 0:
self.reset_idx(env_ids)
self.actions = actions.clone().to(self.device)
if self.use_relative_control:
targets = (
self.prev_targets[:, self.actuated_dof_indices] + self.hand_dof_speed_scale * self.dt * self.actions
)
self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp(
targets,
self.hand_dof_lower_limits[self.actuated_dof_indices],
self.hand_dof_upper_limits[self.actuated_dof_indices],
)
else:
self.cur_targets[:, self.actuated_dof_indices] = scale(
self.actions,
self.hand_dof_lower_limits[self.actuated_dof_indices],
self.hand_dof_upper_limits[self.actuated_dof_indices],
)
self.cur_targets[:, self.actuated_dof_indices] = (
self.act_moving_average * self.cur_targets[:, self.actuated_dof_indices]
+ (1.0 - self.act_moving_average) * self.prev_targets[:, self.actuated_dof_indices]
)
self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp(
self.cur_targets[:, self.actuated_dof_indices],
self.hand_dof_lower_limits[self.actuated_dof_indices],
self.hand_dof_upper_limits[self.actuated_dof_indices],
)
self.prev_targets[:, self.actuated_dof_indices] = self.cur_targets[:, self.actuated_dof_indices]
self._hands.set_joint_position_targets(
self.cur_targets[:, self.actuated_dof_indices], indices=None, joint_indices=self.actuated_dof_indices
)
if self._dr_randomizer.randomize:
rand_envs = torch.where(
self.randomization_buf >= self._dr_randomizer.min_frequency,
torch.ones_like(self.randomization_buf),
torch.zeros_like(self.randomization_buf),
)
rand_env_ids = torch.nonzero(torch.logical_and(rand_envs, reset_buf))
self.dr.physics_view.step_randomization(rand_env_ids)
self.randomization_buf[rand_env_ids] = 0
def is_done(self):
pass
def reset_target_pose(self, env_ids):
# reset goal
indices = env_ids.to(dtype=torch.int32)
rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), 4), device=self.device)
new_rot = randomize_rotation(
rand_floats[:, 0], rand_floats[:, 1], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids]
)
self.goal_pos[env_ids] = self.goal_init_pos[env_ids, 0:3]
self.goal_rot[env_ids] = new_rot
goal_pos, goal_rot = self.goal_pos.clone(), self.goal_rot.clone()
goal_pos[env_ids] = (
self.goal_pos[env_ids] + self.goal_displacement_tensor + self._env_pos[env_ids]
) # add world env pos
self._goals.set_world_poses(goal_pos[env_ids], goal_rot[env_ids], indices)
self.reset_goal_buf[env_ids] = 0
def reset_idx(self, env_ids):
indices = env_ids.to(dtype=torch.int32)
rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), self.num_hand_dofs * 2 + 5), device=self.device)
self.reset_target_pose(env_ids)
# reset object
new_object_pos = (
self.object_init_pos[env_ids] + self.reset_position_noise * rand_floats[:, 0:3] + self._env_pos[env_ids]
) # add world env pos
new_object_rot = randomize_rotation(
rand_floats[:, 3], rand_floats[:, 4], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids]
)
object_velocities = torch.zeros_like(self.object_init_velocities, dtype=torch.float, device=self.device)
self._objects.set_velocities(object_velocities[env_ids], indices)
self._objects.set_world_poses(new_object_pos, new_object_rot, indices)
# reset hand
delta_max = self.hand_dof_upper_limits - self.hand_dof_default_pos
delta_min = self.hand_dof_lower_limits - self.hand_dof_default_pos
rand_delta = delta_min + (delta_max - delta_min) * 0.5 * (rand_floats[:, 5 : 5 + self.num_hand_dofs] + 1.0)
pos = self.hand_dof_default_pos + self.reset_dof_pos_noise * rand_delta
dof_pos = torch.zeros((self.num_envs, self.num_hand_dofs), device=self.device)
dof_pos[env_ids, :] = pos
dof_vel = torch.zeros((self.num_envs, self.num_hand_dofs), device=self.device)
dof_vel[env_ids, :] = (
self.hand_dof_default_vel
+ self.reset_dof_vel_noise * rand_floats[:, 5 + self.num_hand_dofs : 5 + self.num_hand_dofs * 2]
)
self.prev_targets[env_ids, : self.num_hand_dofs] = pos
self.cur_targets[env_ids, : self.num_hand_dofs] = pos
self.hand_dof_targets[env_ids, :] = pos
self._hands.set_joint_position_targets(self.hand_dof_targets[env_ids], indices)
self._hands.set_joint_positions(dof_pos[env_ids], indices)
self._hands.set_joint_velocities(dof_vel[env_ids], indices)
self.progress_buf[env_ids] = 0
self.reset_buf[env_ids] = 0
self.successes[env_ids] = 0
#####################################################################
###=========================jit functions=========================###
#####################################################################
@torch.jit.script
def randomize_rotation(rand0, rand1, x_unit_tensor, y_unit_tensor):
return quat_mul(
quat_from_angle_axis(rand0 * np.pi, x_unit_tensor), quat_from_angle_axis(rand1 * np.pi, y_unit_tensor)
)
@torch.jit.script
def compute_hand_reward(
rew_buf,
reset_buf,
reset_goal_buf,
progress_buf,
successes,
consecutive_successes,
max_episode_length: float,
object_pos,
object_rot,
target_pos,
target_rot,
dist_reward_scale: float,
rot_reward_scale: float,
rot_eps: float,
actions,
action_penalty_scale: float,
success_tolerance: float,
reach_goal_bonus: float,
fall_dist: float,
fall_penalty: float,
max_consecutive_successes: int,
av_factor: float,
):
goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1)
# Orientation alignment for the cube in hand and goal cube
quat_diff = quat_mul(object_rot, quat_conjugate(target_rot))
rot_dist = 2.0 * torch.asin(
torch.clamp(torch.norm(quat_diff[:, 1:4], p=2, dim=-1), max=1.0)
) # changed quat convention
dist_rew = goal_dist * dist_reward_scale
rot_rew = 1.0 / (torch.abs(rot_dist) + rot_eps) * rot_reward_scale
action_penalty = torch.sum(actions**2, dim=-1)
# Total reward is: position distance + orientation alignment + action regularization + success bonus + fall penalty
reward = dist_rew + rot_rew + action_penalty * action_penalty_scale
# Find out which envs hit the goal and update successes count
goal_resets = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.ones_like(reset_goal_buf), reset_goal_buf)
successes = successes + goal_resets
# Success bonus: orientation is within `success_tolerance` of goal orientation
reward = torch.where(goal_resets == 1, reward + reach_goal_bonus, reward)
# Fall penalty: distance to the goal is larger than a threashold
reward = torch.where(goal_dist >= fall_dist, reward + fall_penalty, reward)
# Check env termination conditions, including maximum success number
resets = torch.where(goal_dist >= fall_dist, torch.ones_like(reset_buf), reset_buf)
if max_consecutive_successes > 0:
# Reset progress buffer on goal envs if max_consecutive_successes > 0
progress_buf = torch.where(
torch.abs(rot_dist) <= success_tolerance, torch.zeros_like(progress_buf), progress_buf
)
resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets)
resets = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(resets), resets)
# Apply penalty for not reaching the goal
if max_consecutive_successes > 0:
reward = torch.where(progress_buf >= max_episode_length - 1, reward + 0.5 * fall_penalty, reward)
num_resets = torch.sum(resets)
finished_cons_successes = torch.sum(successes * resets.float())
cons_successes = torch.where(
num_resets > 0,
av_factor * finished_cons_successes / num_resets + (1.0 - av_factor) * consecutive_successes,
consecutive_successes,
)
return reward, resets, goal_resets, progress_buf, successes, cons_successes
| 23,466 | Python | 43.110902 | 126 | 0.630657 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/shared/locomotion.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
from abc import abstractmethod
import numpy as np
import torch
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.torch.maths import tensor_clamp, torch_rand_float, unscale
from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate
from omniisaacgymenvs.tasks.base.rl_task import RLTask
class LocomotionTask(RLTask):
def __init__(self, name, env, offset=None) -> None:
LocomotionTask.update_config(self)
RLTask.__init__(self, name, env)
return
def update_config(self):
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._env_spacing = self._task_cfg["env"]["envSpacing"]
self._max_episode_length = self._task_cfg["env"]["episodeLength"]
self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"]
self.angular_velocity_scale = self._task_cfg["env"]["angularVelocityScale"]
self.contact_force_scale = self._task_cfg["env"]["contactForceScale"]
self.power_scale = self._task_cfg["env"]["powerScale"]
self.heading_weight = self._task_cfg["env"]["headingWeight"]
self.up_weight = self._task_cfg["env"]["upWeight"]
self.actions_cost_scale = self._task_cfg["env"]["actionsCost"]
self.energy_cost_scale = self._task_cfg["env"]["energyCost"]
self.joints_at_limit_cost_scale = self._task_cfg["env"]["jointsAtLimitCost"]
self.death_cost = self._task_cfg["env"]["deathCost"]
self.termination_height = self._task_cfg["env"]["terminationHeight"]
self.alive_reward_scale = self._task_cfg["env"]["alive_reward_scale"]
@abstractmethod
def set_up_scene(self, scene) -> None:
pass
@abstractmethod
def get_robot(self):
pass
def get_observations(self) -> dict:
torso_position, torso_rotation = self._robots.get_world_poses(clone=False)
velocities = self._robots.get_velocities(clone=False)
velocity = velocities[:, 0:3]
ang_velocity = velocities[:, 3:6]
dof_pos = self._robots.get_joint_positions(clone=False)
dof_vel = self._robots.get_joint_velocities(clone=False)
# force sensors attached to the feet
sensor_force_torques = self._robots.get_measured_joint_forces(joint_indices=self._sensor_indices)
(
self.obs_buf[:],
self.potentials[:],
self.prev_potentials[:],
self.up_vec[:],
self.heading_vec[:],
) = get_observations(
torso_position,
torso_rotation,
velocity,
ang_velocity,
dof_pos,
dof_vel,
self.targets,
self.potentials,
self.dt,
self.inv_start_rot,
self.basis_vec0,
self.basis_vec1,
self.dof_limits_lower,
self.dof_limits_upper,
self.dof_vel_scale,
sensor_force_torques,
self._num_envs,
self.contact_force_scale,
self.actions,
self.angular_velocity_scale,
)
observations = {self._robots.name: {"obs_buf": self.obs_buf}}
return observations
def pre_physics_step(self, actions) -> None:
if not self.world.is_playing():
return
reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(reset_env_ids) > 0:
self.reset_idx(reset_env_ids)
self.actions = actions.clone().to(self._device)
forces = self.actions * self.joint_gears * self.power_scale
indices = torch.arange(self._robots.count, dtype=torch.int32, device=self._device)
# applies joint torques
self._robots.set_joint_efforts(forces, indices=indices)
def reset_idx(self, env_ids):
num_resets = len(env_ids)
# randomize DOF positions and velocities
dof_pos = torch_rand_float(-0.2, 0.2, (num_resets, self._robots.num_dof), device=self._device)
dof_pos[:] = tensor_clamp(self.initial_dof_pos[env_ids] + dof_pos, self.dof_limits_lower, self.dof_limits_upper)
dof_vel = torch_rand_float(-0.1, 0.1, (num_resets, self._robots.num_dof), device=self._device)
root_pos, root_rot = self.initial_root_pos[env_ids], self.initial_root_rot[env_ids]
root_vel = torch.zeros((num_resets, 6), device=self._device)
# apply resets
self._robots.set_joint_positions(dof_pos, indices=env_ids)
self._robots.set_joint_velocities(dof_vel, indices=env_ids)
self._robots.set_world_poses(root_pos, root_rot, indices=env_ids)
self._robots.set_velocities(root_vel, indices=env_ids)
to_target = self.targets[env_ids] - self.initial_root_pos[env_ids]
to_target[:, 2] = 0.0
self.prev_potentials[env_ids] = -torch.norm(to_target, p=2, dim=-1) / self.dt
self.potentials[env_ids] = self.prev_potentials[env_ids].clone()
# bookkeeping
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
num_resets = len(env_ids)
def post_reset(self):
self._robots = self.get_robot()
self.initial_root_pos, self.initial_root_rot = self._robots.get_world_poses()
self.initial_dof_pos = self._robots.get_joint_positions()
# initialize some data used later on
self.start_rotation = torch.tensor([1, 0, 0, 0], device=self._device, dtype=torch.float32)
self.up_vec = torch.tensor([0, 0, 1], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1))
self.heading_vec = torch.tensor([1, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1))
self.inv_start_rot = quat_conjugate(self.start_rotation).repeat((self.num_envs, 1))
self.basis_vec0 = self.heading_vec.clone()
self.basis_vec1 = self.up_vec.clone()
self.targets = torch.tensor([1000, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1))
self.target_dirs = torch.tensor([1, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1))
self.dt = 1.0 / 60.0
self.potentials = torch.tensor([-1000.0 / self.dt], dtype=torch.float32, device=self._device).repeat(
self.num_envs
)
self.prev_potentials = self.potentials.clone()
self.actions = torch.zeros((self.num_envs, self.num_actions), device=self._device)
# randomize all envs
indices = torch.arange(self._robots.count, dtype=torch.int64, device=self._device)
self.reset_idx(indices)
def calculate_metrics(self) -> None:
self.rew_buf[:] = calculate_metrics(
self.obs_buf,
self.actions,
self.up_weight,
self.heading_weight,
self.potentials,
self.prev_potentials,
self.actions_cost_scale,
self.energy_cost_scale,
self.termination_height,
self.death_cost,
self._robots.num_dof,
self.get_dof_at_limit_cost(),
self.alive_reward_scale,
self.motor_effort_ratio,
)
def is_done(self) -> None:
self.reset_buf[:] = is_done(
self.obs_buf, self.termination_height, self.reset_buf, self.progress_buf, self._max_episode_length
)
#####################################################################
###=========================jit functions=========================###
#####################################################################
@torch.jit.script
def normalize_angle(x):
return torch.atan2(torch.sin(x), torch.cos(x))
@torch.jit.script
def get_observations(
torso_position,
torso_rotation,
velocity,
ang_velocity,
dof_pos,
dof_vel,
targets,
potentials,
dt,
inv_start_rot,
basis_vec0,
basis_vec1,
dof_limits_lower,
dof_limits_upper,
dof_vel_scale,
sensor_force_torques,
num_envs,
contact_force_scale,
actions,
angular_velocity_scale,
):
# type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, float, Tensor, Tensor, Tensor, Tensor, Tensor, float, Tensor, int, float, Tensor, float) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]
to_target = targets - torso_position
to_target[:, 2] = 0.0
prev_potentials = potentials.clone()
potentials = -torch.norm(to_target, p=2, dim=-1) / dt
torso_quat, up_proj, heading_proj, up_vec, heading_vec = compute_heading_and_up(
torso_rotation, inv_start_rot, to_target, basis_vec0, basis_vec1, 2
)
vel_loc, angvel_loc, roll, pitch, yaw, angle_to_target = compute_rot(
torso_quat, velocity, ang_velocity, targets, torso_position
)
dof_pos_scaled = unscale(dof_pos, dof_limits_lower, dof_limits_upper)
# obs_buf shapes: 1, 3, 3, 1, 1, 1, 1, 1, num_dofs, num_dofs, num_sensors * 6, num_dofs
obs = torch.cat(
(
torso_position[:, 2].view(-1, 1),
vel_loc,
angvel_loc * angular_velocity_scale,
normalize_angle(yaw).unsqueeze(-1),
normalize_angle(roll).unsqueeze(-1),
normalize_angle(angle_to_target).unsqueeze(-1),
up_proj.unsqueeze(-1),
heading_proj.unsqueeze(-1),
dof_pos_scaled,
dof_vel * dof_vel_scale,
sensor_force_torques.reshape(num_envs, -1) * contact_force_scale,
actions,
),
dim=-1,
)
return obs, potentials, prev_potentials, up_vec, heading_vec
@torch.jit.script
def is_done(obs_buf, termination_height, reset_buf, progress_buf, max_episode_length):
# type: (Tensor, float, Tensor, Tensor, float) -> Tensor
reset = torch.where(obs_buf[:, 0] < termination_height, torch.ones_like(reset_buf), reset_buf)
reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf), reset)
return reset
@torch.jit.script
def calculate_metrics(
obs_buf,
actions,
up_weight,
heading_weight,
potentials,
prev_potentials,
actions_cost_scale,
energy_cost_scale,
termination_height,
death_cost,
num_dof,
dof_at_limit_cost,
alive_reward_scale,
motor_effort_ratio,
):
# type: (Tensor, Tensor, float, float, Tensor, Tensor, float, float, float, float, int, Tensor, float, Tensor) -> Tensor
heading_weight_tensor = torch.ones_like(obs_buf[:, 11]) * heading_weight
heading_reward = torch.where(obs_buf[:, 11] > 0.8, heading_weight_tensor, heading_weight * obs_buf[:, 11] / 0.8)
# aligning up axis of robot and environment
up_reward = torch.zeros_like(heading_reward)
up_reward = torch.where(obs_buf[:, 10] > 0.93, up_reward + up_weight, up_reward)
# energy penalty for movement
actions_cost = torch.sum(actions**2, dim=-1)
electricity_cost = torch.sum(
torch.abs(actions * obs_buf[:, 12 + num_dof : 12 + num_dof * 2]) * motor_effort_ratio.unsqueeze(0), dim=-1
)
# reward for duration of staying alive
alive_reward = torch.ones_like(potentials) * alive_reward_scale
progress_reward = potentials - prev_potentials
total_reward = (
progress_reward
+ alive_reward
+ up_reward
+ heading_reward
- actions_cost_scale * actions_cost
- energy_cost_scale * electricity_cost
- dof_at_limit_cost
)
# adjust reward for fallen agents
total_reward = torch.where(
obs_buf[:, 0] < termination_height, torch.ones_like(total_reward) * death_cost, total_reward
)
return total_reward
| 13,243 | Python | 37.277457 | 214 | 0.628861 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/config.yaml |
# Task name - used to pick the class to load
task_name: ${task.name}
# experiment name. defaults to name of training config
experiment: ''
# if set to positive integer, overrides the default number of environments
num_envs: ''
# seed - set to -1 to choose random seed
seed: 42
# set to True for deterministic performance
torch_deterministic: False
# set the maximum number of learning iterations to train for. overrides default per-environment setting
max_iterations: ''
## Device config
physics_engine: 'physx'
# whether to use cpu or gpu pipeline
pipeline: 'gpu'
# whether to use cpu or gpu physx
sim_device: 'gpu'
# used for gpu simulation only - device id for running sim and task if pipeline=gpu
device_id: 0
# device to run RL
rl_device: 'cuda:0'
# multi-GPU training
multi_gpu: False
## PhysX arguments
num_threads: 4 # Number of worker threads used by PhysX - for CPU PhysX only.
solver_type: 1 # 0: pgs, 1: tgs
# RLGames Arguments
# test - if set, run policy in inference mode (requires setting checkpoint to load)
test: False
# used to set checkpoint path
checkpoint: ''
# evaluate checkpoint
evaluation: False
# disables rendering
headless: False
# enables native livestream
enable_livestream: False
# timeout for MT script
mt_timeout: 300
# enables viewport recording
enable_recording: False
# interval between video recordings (in steps)
recording_interval: 2000
# length of the recorded video (in steps)
recording_length: 100
# fps for writing recorded video
recording_fps: 30
# directory to save recordings in
recording_dir: ''
wandb_activate: False
wandb_group: ''
wandb_name: ${train.params.config.name}
wandb_entity: ''
wandb_project: 'omniisaacgymenvs'
# path to a kit app file
kit_app: ''
# Warp
warp: False
# set default task and default training config based on task
defaults:
- _self_
- task: Cartpole
- train: ${task}PPO
- override hydra/job_logging: disabled
# set the directory where the output files get saved
hydra:
output_subdir: null
run:
dir: .
| 2,007 | YAML | 22.348837 | 103 | 0.744893 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/CartpoleCamera.yaml | defaults:
- Cartpole
- _self_
name: CartpoleCamera
env:
numEnvs: ${resolve_default:32,${...num_envs}}
envSpacing: 20.0
cameraWidth: 240
cameraHeight: 160
exportImages: False
sim:
rendering_dt: 0.0166 # 1/60
# set to True if you use camera sensors in the environment
enable_cameras: True
add_ground_plane: False
add_distant_light: True
| 363 | YAML | 16.333333 | 60 | 0.69697 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/FrankaDeformable.yaml | # used to create the object
name: FrankaDeformable
physics_engine: ${..physics_engine}
# if given, will override the device setting in gym.
env:
numEnvs: ${resolve_default:1024,${...num_envs}} # 2048#4096
envSpacing: 3.0
episodeLength: 100 # 150 #350 #500
enableDebugVis: False
clipObservations: 5.0
clipActions: 1.0
controlFrequencyInv: 2 # 60 Hz
startPositionNoise: 0.0
startRotationNoise: 0.0
numProps: 4
aggregateMode: 3
actionScale: 7.5
dofVelocityScale: 0.1
distRewardScale: 2.0
rotRewardScale: 0.5
aroundHandleRewardScale: 10.0
openRewardScale: 7.5
fingerDistRewardScale: 100.0
actionPenaltyScale: 0.01
fingerCloseRewardScale: 10.0
sim:
dt: 0.016 # 1/60s
use_gpu_pipeline: ${eq:${...pipeline},"gpu"}
gravity: [0.0, 0.0, -9.81]
add_ground_plane: True
use_fabric: True
enable_scene_query_support: False
disable_contact_processing: False
# set to True if you use camera sensors in the environment
enable_cameras: False
default_physics_material:
static_friction: 1.0
dynamic_friction: 1.0
restitution: 0.0
physx:
worker_thread_count: ${....num_threads}
solver_type: ${....solver_type}
use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU
solver_position_iteration_count: 8 # 12
solver_velocity_iteration_count: 0 # 1
contact_offset: 0.02 #0.005
rest_offset: 0.001
bounce_threshold_velocity: 0.2
friction_offset_threshold: 0.04
friction_correlation_distance: 0.025
enable_sleeping: True
enable_stabilization: True
max_depenetration_velocity: 1000.0
# GPU buffers
gpu_max_rigid_contact_count: 524288
gpu_max_rigid_patch_count: 33554432
gpu_found_lost_pairs_capacity: 524288 #20965884
gpu_found_lost_aggregate_pairs_capacity: 262144
gpu_total_aggregate_pairs_capacity: 1048576
gpu_max_soft_body_contacts: 4194304 #2097152 #16777216 #8388608 #2097152 #1048576
gpu_max_particle_contacts: 1048576 #2097152 #1048576
gpu_heap_capacity: 33554432
gpu_temp_buffer_capacity: 16777216
gpu_max_num_partitions: 8
franka:
# -1 to use default values
override_usd_defaults: False
enable_self_collisions: True
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 12
solver_velocity_iteration_count: 1
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 1000.0
beaker:
# -1 to use default values
override_usd_defaults: False
make_kinematic: True
enable_self_collisions: False
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 12
solver_velocity_iteration_count: 1
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 1000.0
cube:
# -1 to use default values
override_usd_defaults: False
make_kinematic: False
enable_self_collisions: False
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 12
solver_velocity_iteration_count: 1
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 1000.0
# # per-shape
# contact_offset: 0.02
# rest_offset: 0.001
| 3,418 | YAML | 25.92126 | 85 | 0.691925 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/FrankaCabinet.yaml | # used to create the object
name: FrankaCabinet
physics_engine: ${..physics_engine}
# if given, will override the device setting in gym.
env:
numEnvs: ${resolve_default:4096,${...num_envs}}
envSpacing: 3.0
episodeLength: 500
enableDebugVis: False
clipObservations: 5.0
clipActions: 1.0
controlFrequencyInv: 2 # 60 Hz
startPositionNoise: 0.0
startRotationNoise: 0.0
numProps: 4
aggregateMode: 3
actionScale: 7.5
dofVelocityScale: 0.1
distRewardScale: 2.0
rotRewardScale: 0.5
aroundHandleRewardScale: 10.0
openRewardScale: 7.5
fingerDistRewardScale: 100.0
actionPenaltyScale: 0.01
fingerCloseRewardScale: 10.0
sim:
dt: 0.0083 # 1/120 s
use_gpu_pipeline: ${eq:${...pipeline},"gpu"}
gravity: [0.0, 0.0, -9.81]
add_ground_plane: True
add_distant_light: False
use_fabric: True
enable_scene_query_support: False
disable_contact_processing: False
# set to True if you use camera sensors in the environment
enable_cameras: False
default_physics_material:
static_friction: 1.0
dynamic_friction: 1.0
restitution: 0.0
physx:
worker_thread_count: ${....num_threads}
solver_type: ${....solver_type}
use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU
solver_position_iteration_count: 12
solver_velocity_iteration_count: 1
contact_offset: 0.005
rest_offset: 0.0
bounce_threshold_velocity: 0.2
friction_offset_threshold: 0.04
friction_correlation_distance: 0.025
enable_sleeping: True
enable_stabilization: True
max_depenetration_velocity: 1000.0
# GPU buffers
gpu_max_rigid_contact_count: 524288
gpu_max_rigid_patch_count: 33554432
gpu_found_lost_pairs_capacity: 524288
gpu_found_lost_aggregate_pairs_capacity: 262144
gpu_total_aggregate_pairs_capacity: 1048576
gpu_max_soft_body_contacts: 1048576
gpu_max_particle_contacts: 1048576
gpu_heap_capacity: 33554432
gpu_temp_buffer_capacity: 16777216
gpu_max_num_partitions: 8
franka:
# -1 to use default values
override_usd_defaults: False
enable_self_collisions: False
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 12
solver_velocity_iteration_count: 1
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 1000.0
cabinet:
# -1 to use default values
override_usd_defaults: False
enable_self_collisions: False
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 12
solver_velocity_iteration_count: 1
sleep_threshold: 0.0
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 1000.0
prop:
# -1 to use default values
override_usd_defaults: False
make_kinematic: False
enable_self_collisions: False
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 12
solver_velocity_iteration_count: 1
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: 100
max_depenetration_velocity: 1000.0
# per-shape
contact_offset: 0.005
rest_offset: 0.0
| 3,287 | YAML | 25.304 | 71 | 0.695467 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/Ant.yaml | # used to create the object
name: Ant
physics_engine: ${..physics_engine}
# if given, will override the device setting in gym.
env:
# numEnvs: ${...num_envs}
numEnvs: ${resolve_default:4096,${...num_envs}}
envSpacing: 5
episodeLength: 1000
enableDebugVis: False
clipActions: 1.0
powerScale: 0.5
controlFrequencyInv: 2 # 60 Hz
# reward parameters
headingWeight: 0.5
upWeight: 0.1
# cost parameters
actionsCost: 0.005
energyCost: 0.05
dofVelocityScale: 0.2
angularVelocityScale: 1.0
contactForceScale: 0.1
jointsAtLimitCost: 0.1
deathCost: -2.0
terminationHeight: 0.31
alive_reward_scale: 0.5
sim:
dt: 0.0083 # 1/120 s
use_gpu_pipeline: ${eq:${...pipeline},"gpu"}
gravity: [0.0, 0.0, -9.81]
add_ground_plane: True
add_distant_light: False
use_fabric: True
enable_scene_query_support: False
disable_contact_processing: False
# set to True if you use camera sensors in the environment
enable_cameras: False
default_physics_material:
static_friction: 1.0
dynamic_friction: 1.0
restitution: 0.0
physx:
worker_thread_count: ${....num_threads}
solver_type: ${....solver_type}
use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU
solver_position_iteration_count: 4
solver_velocity_iteration_count: 0
contact_offset: 0.02
rest_offset: 0.0
bounce_threshold_velocity: 0.2
friction_offset_threshold: 0.04
friction_correlation_distance: 0.025
enable_sleeping: True
enable_stabilization: True
max_depenetration_velocity: 10.0
# GPU buffers
gpu_max_rigid_contact_count: 524288
gpu_max_rigid_patch_count: 81920
gpu_found_lost_pairs_capacity: 8192
gpu_found_lost_aggregate_pairs_capacity: 262144
gpu_total_aggregate_pairs_capacity: 8192
gpu_max_soft_body_contacts: 1048576
gpu_max_particle_contacts: 1048576
gpu_heap_capacity: 67108864
gpu_temp_buffer_capacity: 16777216
gpu_max_num_partitions: 8
Ant:
# -1 to use default values
override_usd_defaults: False
enable_self_collisions: False
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 4
solver_velocity_iteration_count: 0
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 10.0 | 2,370 | YAML | 24.771739 | 71 | 0.690717 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/AnymalTerrain.yaml | name: AnymalTerrain
physics_engine: ${..physics_engine}
env:
numEnvs: ${resolve_default:2048,${...num_envs}}
numObservations: 188
numActions: 12
envSpacing: 3. # [m]
terrain:
staticFriction: 1.0 # [-]
dynamicFriction: 1.0 # [-]
restitution: 0. # [-]
# rough terrain only:
curriculum: true
maxInitMapLevel: 0
mapLength: 8.
mapWidth: 8.
numLevels: 10
numTerrains: 20
# terrain types: [smooth slope, rough slope, stairs up, stairs down, discrete]
terrainProportions: [0.1, 0.1, 0.35, 0.25, 0.2]
# tri mesh only:
slopeTreshold: 0.5
baseInitState:
pos: [0.0, 0.0, 0.62] # x,y,z [m]
rot: [1.0, 0.0, 0.0, 0.0] # w,x,y,z [quat]
vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s]
vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s]
randomCommandVelocityRanges:
# train
linear_x: [-1., 1.] # min max [m/s]
linear_y: [-1., 1.] # min max [m/s]
yaw: [-3.14, 3.14] # min max [rad/s]
control:
# PD Drive parameters:
stiffness: 80.0 # [N*m/rad]
damping: 2.0 # [N*m*s/rad]
# action scale: target angle = actionScale * action + defaultAngle
actionScale: 0.5
# decimation: Number of control action updates @ sim DT per policy DT
decimation: 4
defaultJointAngles: # = target angles when action = 0.0
LF_HAA: 0.03 # [rad]
LH_HAA: 0.03 # [rad]
RF_HAA: -0.03 # [rad]
RH_HAA: -0.03 # [rad]
LF_HFE: 0.4 # [rad]
LH_HFE: -0.4 # [rad]
RF_HFE: 0.4 # [rad]
RH_HFE: -0.4 # [rad]
LF_KFE: -0.8 # [rad]
LH_KFE: 0.8 # [rad]
RF_KFE: -0.8 # [rad]
RH_KFE: 0.8 # [rad]
learn:
# rewards
terminalReward: 0.0
linearVelocityXYRewardScale: 1.0
linearVelocityZRewardScale: -4.0
angularVelocityXYRewardScale: -0.05
angularVelocityZRewardScale: 0.5
orientationRewardScale: -0.
torqueRewardScale: -0.00002
jointAccRewardScale: -0.0005
baseHeightRewardScale: -0.0
actionRateRewardScale: -0.01
fallenOverRewardScale: -1.0
# cosmetics
hipRewardScale: -0. #25
# normalization
linearVelocityScale: 2.0
angularVelocityScale: 0.25
dofPositionScale: 1.0
dofVelocityScale: 0.05
heightMeasurementScale: 5.0
# noise
addNoise: true
noiseLevel: 1.0 # scales other values
dofPositionNoise: 0.01
dofVelocityNoise: 1.5
linearVelocityNoise: 0.1
angularVelocityNoise: 0.2
gravityNoise: 0.05
heightMeasurementNoise: 0.06
#randomization
pushInterval_s: 15
# episode length in seconds
episodeLength_s: 20
sim:
dt: 0.005
use_gpu_pipeline: ${eq:${...pipeline},"gpu"}
gravity: [0.0, 0.0, -9.81]
add_ground_plane: False
add_distant_light: False
use_fabric: True
enable_scene_query_support: False
disable_contact_processing: True
# set to True if you use camera sensors in the environment
enable_cameras: False
default_physics_material:
static_friction: 1.0
dynamic_friction: 1.0
restitution: 0.0
physx:
worker_thread_count: ${....num_threads}
solver_type: ${....solver_type}
use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU
solver_position_iteration_count: 4
solver_velocity_iteration_count: 0
contact_offset: 0.02
rest_offset: 0.0
bounce_threshold_velocity: 0.2
friction_offset_threshold: 0.04
friction_correlation_distance: 0.025
enable_sleeping: True
enable_stabilization: True
max_depenetration_velocity: 100.0
# GPU buffers
gpu_max_rigid_contact_count: 524288
gpu_max_rigid_patch_count: 163840
gpu_found_lost_pairs_capacity: 4194304
gpu_found_lost_aggregate_pairs_capacity: 33554432
gpu_total_aggregate_pairs_capacity: 4194304
gpu_max_soft_body_contacts: 1048576
gpu_max_particle_contacts: 1048576
gpu_heap_capacity: 134217728
gpu_temp_buffer_capacity: 33554432
gpu_max_num_partitions: 8
anymal:
# -1 to use default values
override_usd_defaults: False
enable_self_collisions: True
enable_gyroscopic_forces: False
# also in stage params
# per-actor
solver_position_iteration_count: 4
solver_velocity_iteration_count: 0
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 100.0
| 4,346 | YAML | 25.345454 | 82 | 0.633916 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/BallBalance.yaml | # used to create the object
name: BallBalance
physics_engine: ${..physics_engine}
# if given, will override the device setting in gym.
env:
numEnvs: ${resolve_default:4096,${...num_envs}}
envSpacing: 2.0
maxEpisodeLength: 600
actionSpeedScale: 20
clipObservations: 5.0
clipActions: 1.0
sim:
dt: 0.01
use_gpu_pipeline: ${eq:${...pipeline},"gpu"}
gravity: [0.0, 0.0, -9.81]
add_ground_plane: True
add_distant_light: False
use_fabric: True
enable_scene_query_support: False
disable_contact_processing: False
# set to True if you use camera sensors in the environment
enable_cameras: False
default_physics_material:
static_friction: 1.0
dynamic_friction: 1.0
restitution: 0.0
physx:
worker_thread_count: ${....num_threads}
solver_type: ${....solver_type}
use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU
solver_position_iteration_count: 8
solver_velocity_iteration_count: 0
contact_offset: 0.02
rest_offset: 0.001
bounce_threshold_velocity: 0.2
friction_offset_threshold: 0.04
friction_correlation_distance: 0.025
enable_sleeping: True
enable_stabilization: True
max_depenetration_velocity: 1000.0
# GPU buffers
gpu_max_rigid_contact_count: 524288
gpu_max_rigid_patch_count: 81920
gpu_found_lost_pairs_capacity: 262144
gpu_found_lost_aggregate_pairs_capacity: 262144
gpu_total_aggregate_pairs_capacity: 262144
gpu_max_soft_body_contacts: 1048576
gpu_max_particle_contacts: 1048576
gpu_heap_capacity: 67108864
gpu_temp_buffer_capacity: 16777216
gpu_max_num_partitions: 8
table:
# -1 to use default values
override_usd_defaults: False
enable_self_collisions: True
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 8
solver_velocity_iteration_count: 0
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 1000.0
ball:
# -1 to use default values
override_usd_defaults: False
make_kinematic: False
enable_self_collisions: False
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 8
solver_velocity_iteration_count: 0
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: 200
max_depenetration_velocity: 1000.0
| 2,458 | YAML | 25.728261 | 71 | 0.690806 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/FactoryBase.yaml | # See schema in factory_schema_config_base.py for descriptions of parameters.
defaults:
- _self_
- /factory_schema_config_base
sim:
add_damping: True
disable_contact_processing: False
env:
env_spacing: 1.5
franka_depth: 0.5
table_height: 0.4
franka_friction: 1.0
table_friction: 0.3
| 309 | YAML | 16.222221 | 77 | 0.699029 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/Humanoid.yaml | # used to create the object
name: Humanoid
physics_engine: ${..physics_engine}
# if given, will override the device setting in gym.
env:
# numEnvs: ${...num_envs}
numEnvs: ${resolve_default:4096,${...num_envs}}
envSpacing: 5
episodeLength: 1000
enableDebugVis: False
clipActions: 1.0
powerScale: 1.0
controlFrequencyInv: 2 # 60 Hz
# reward parameters
headingWeight: 0.5
upWeight: 0.1
# cost parameters
actionsCost: 0.01
energyCost: 0.05
dofVelocityScale: 0.1
angularVelocityScale: 0.25
contactForceScale: 0.01
jointsAtLimitCost: 0.25
deathCost: -1.0
terminationHeight: 0.8
alive_reward_scale: 2.0
sim:
dt: 0.0083 # 1/120 s
use_gpu_pipeline: ${eq:${...pipeline},"gpu"}
gravity: [0.0, 0.0, -9.81]
add_ground_plane: True
add_distant_light: False
use_fabric: True
enable_scene_query_support: False
disable_contact_processing: False
# set to True if you use camera sensors in the environment
enable_cameras: False
default_physics_material:
static_friction: 1.0
dynamic_friction: 1.0
restitution: 0.0
physx:
worker_thread_count: ${....num_threads}
solver_type: ${....solver_type}
use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU
solver_position_iteration_count: 4
solver_velocity_iteration_count: 0
bounce_threshold_velocity: 0.2
friction_offset_threshold: 0.04
friction_correlation_distance: 0.025
enable_sleeping: True
enable_stabilization: True
max_depenetration_velocity: 10.0
# GPU buffers
gpu_max_rigid_contact_count: 524288
gpu_max_rigid_patch_count: 81920
gpu_found_lost_pairs_capacity: 8192
gpu_found_lost_aggregate_pairs_capacity: 262144
gpu_total_aggregate_pairs_capacity: 8192
gpu_max_soft_body_contacts: 1048576
gpu_max_particle_contacts: 1048576
gpu_heap_capacity: 67108864
gpu_temp_buffer_capacity: 16777216
gpu_max_num_partitions: 8
Humanoid:
# -1 to use default values
override_usd_defaults: False
enable_self_collisions: True
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 4
solver_velocity_iteration_count: 0
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 10.0
| 2,335 | YAML | 24.670329 | 71 | 0.693362 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/AllegroHand.yaml | # used to create the object
name: AllegroHand
physics_engine: ${..physics_engine}
# if given, will override the device setting in gym.
env:
numEnvs: ${resolve_default:8192,${...num_envs}}
envSpacing: 0.75
episodeLength: 600
clipObservations: 5.0
clipActions: 1.0
useRelativeControl: False
dofSpeedScale: 20.0
actionsMovingAverage: 1.0
controlFrequencyInv: 4 # 30 Hz
startPositionNoise: 0.01
startRotationNoise: 0.0
resetPositionNoise: 0.01
resetRotationNoise: 0.0
resetDofPosRandomInterval: 0.2
resetDofVelRandomInterval: 0.0
# reward -> dictionary
distRewardScale: -10.0
rotRewardScale: 1.0
rotEps: 0.1
actionPenaltyScale: -0.0002
reachGoalBonus: 250
fallDistance: 0.24
fallPenalty: 0.0
velObsScale: 0.2
objectType: "block"
observationType: "full" # can be "full_no_vel", "full"
successTolerance: 0.1
printNumSuccesses: False
maxConsecutiveSuccesses: 0
sim:
dt: 0.0083 # 1/120 s
add_ground_plane: True
add_distant_light: False
use_gpu_pipeline: ${eq:${...pipeline},"gpu"}
use_fabric: True
enable_scene_query_support: False
disable_contact_processing: False
# set to True if you use camera sensors in the environment
enable_cameras: False
default_material:
static_friction: 1.0
dynamic_friction: 1.0
restitution: 0.0
physx:
# per-scene
use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU
worker_thread_count: ${....num_threads}
solver_type: ${....solver_type} # 0: PGS, 1: TGS
bounce_threshold_velocity: 0.2
friction_offset_threshold: 0.04
friction_correlation_distance: 0.025
enable_sleeping: True
enable_stabilization: True
# GPU buffers
gpu_max_rigid_contact_count: 524288
gpu_max_rigid_patch_count: 33554432
gpu_found_lost_pairs_capacity: 819200
gpu_found_lost_aggregate_pairs_capacity: 819200
gpu_total_aggregate_pairs_capacity: 1048576
gpu_max_soft_body_contacts: 1048576
gpu_max_particle_contacts: 1048576
gpu_heap_capacity: 33554432
gpu_temp_buffer_capacity: 16777216
gpu_max_num_partitions: 8
allegro_hand:
# -1 to use default values
override_usd_defaults: False
enable_self_collisions: True
enable_gyroscopic_forces: False
# also in stage params
# per-actor
solver_position_iteration_count: 8
solver_velocity_iteration_count: 0
sleep_threshold: 0.005
stabilization_threshold: 0.0005
# per-body
density: -1
max_depenetration_velocity: 1000.0
object:
# -1 to use default values
override_usd_defaults: False
make_kinematic: False
enable_self_collisions: False
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 8
solver_velocity_iteration_count: 0
sleep_threshold: 0.005
stabilization_threshold: 0.0025
# per-body
density: 400.0
max_depenetration_velocity: 1000.0
goal_object:
# -1 to use default values
override_usd_defaults: False
make_kinematic: True
enable_self_collisions: False
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 8
solver_velocity_iteration_count: 0
sleep_threshold: 0.000
stabilization_threshold: 0.0025
# per-body
density: -1
max_depenetration_velocity: 1000.0
| 3,360 | YAML | 25.464567 | 71 | 0.69881 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/HumanoidSAC.yaml | # used to create the object
defaults:
- Humanoid
- _self_
# if given, will override the device setting in gym.
env:
numEnvs: ${resolve_default:64,${...num_envs}} | 168 | YAML | 20.124997 | 52 | 0.678571 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/Ingenuity.yaml | # used to create the object
name: Ingenuity
physics_engine: ${..physics_engine}
# if given, will override the device setting in gym.
env:
numEnvs: ${resolve_default:4096,${...num_envs}}
envSpacing: 2.5
maxEpisodeLength: 2000
enableDebugVis: False
clipObservations: 5.0
clipActions: 1.0
sim:
dt: 0.01
use_gpu_pipeline: ${eq:${...pipeline},"gpu"}
gravity: [0.0, 0.0, -3.721]
add_ground_plane: True
add_distant_light: False
use_fabric: True
enable_scene_query_support: False
# set to True if you use camera sensors in the environment
enable_cameras: False
disable_contact_processing: False
physx:
num_threads: ${....num_threads}
solver_type: ${....solver_type}
use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU
solver_position_iteration_count: 6
solver_velocity_iteration_count: 0
contact_offset: 0.02
rest_offset: 0.001
bounce_threshold_velocity: 0.2
max_depenetration_velocity: 1000.0
friction_offset_threshold: 0.04
friction_correlation_distance: 0.025
enable_sleeping: True
enable_stabilization: False
# GPU buffers
gpu_max_rigid_contact_count: 524288
gpu_max_rigid_patch_count: 81920
gpu_found_lost_pairs_capacity: 4194304
gpu_found_lost_aggregate_pairs_capacity: 33554432
gpu_total_aggregate_pairs_capacity: 4194304
gpu_max_soft_body_contacts: 1048576
gpu_max_particle_contacts: 1048576
gpu_heap_capacity: 67108864
gpu_temp_buffer_capacity: 16777216
gpu_max_num_partitions: 8
ingenuity:
# -1 to use default values
override_usd_defaults: False
enable_self_collisions: True
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 6
solver_velocity_iteration_count: 0
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 1000.0
ball:
# -1 to use default values
override_usd_defaults: False
make_kinematic: True
enable_self_collisions: False
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 6
solver_velocity_iteration_count: 0
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 1000.0 | 2,351 | YAML | 27 | 71 | 0.693322 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/Quadcopter.yaml | # used to create the object
name: Quadcopter
physics_engine: ${..physics_engine}
# if given, will override the device setting in gym.
env:
numEnvs: ${resolve_default:4096,${...num_envs}}
envSpacing: 1.25
maxEpisodeLength: 500
enableDebugVis: False
clipObservations: 5.0
clipActions: 1.0
sim:
dt: 0.01
use_gpu_pipeline: ${eq:${...pipeline},"gpu"}
gravity: [0.0, 0.0, -9.81]
add_ground_plane: True
add_distant_light: False
use_fabric: True
enable_scene_query_support: False
disable_contact_processing: False
# set to True if you use camera sensors in the environment
enable_cameras: False
default_physics_material:
static_friction: 1.0
dynamic_friction: 1.0
restitution: 0.0
physx:
worker_thread_count: ${....num_threads}
solver_type: ${....solver_type}
use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU
solver_position_iteration_count: 4
solver_velocity_iteration_count: 0
contact_offset: 0.02
rest_offset: 0.001
bounce_threshold_velocity: 0.2
friction_offset_threshold: 0.04
friction_correlation_distance: 0.025
enable_sleeping: True
enable_stabilization: True
max_depenetration_velocity: 1000.0
# GPU buffers
gpu_max_rigid_contact_count: 524288
gpu_max_rigid_patch_count: 81920
gpu_found_lost_pairs_capacity: 8192
gpu_found_lost_aggregate_pairs_capacity: 262144
gpu_total_aggregate_pairs_capacity: 8192
gpu_max_soft_body_contacts: 1048576
gpu_max_particle_contacts: 1048576
gpu_heap_capacity: 67108864
gpu_temp_buffer_capacity: 16777216
gpu_max_num_partitions: 8
copter:
# -1 to use default values
override_usd_defaults: False
enable_self_collisions: True
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 4
solver_velocity_iteration_count: 0
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 1000.0
ball:
# -1 to use default values
override_usd_defaults: False
make_kinematic: True
enable_self_collisions: False
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 6
solver_velocity_iteration_count: 0
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 1000.0
| 2,452 | YAML | 25.663043 | 71 | 0.690457 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/Crazyflie.yaml | # used to create the object
name: Crazyflie
physics_engine: ${..physics_engine}
# if given, will override the device setting in gym.
env:
numEnvs: ${resolve_default:4096,${...num_envs}}
envSpacing: 2.5
maxEpisodeLength: 700
enableDebugVis: False
clipObservations: 5.0
clipActions: 1.0
sim:
dt: 0.01
use_gpu_pipeline: ${eq:${...pipeline},"gpu"}
gravity: [0.0, 0.0, -9.81]
add_ground_plane: True
add_distant_light: False
use_fabric: True
enable_scene_query_support: False
# set to True if you use camera sensors in the environment
enable_cameras: False
disable_contact_processing: False
physx:
num_threads: ${....num_threads}
solver_type: ${....solver_type}
use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU
solver_position_iteration_count: 6
solver_velocity_iteration_count: 0
contact_offset: 0.02
rest_offset: 0.001
bounce_threshold_velocity: 0.2
max_depenetration_velocity: 1000.0
friction_offset_threshold: 0.04
friction_correlation_distance: 0.025
enable_sleeping: True
enable_stabilization: False
# GPU buffers
gpu_max_rigid_contact_count: 524288
gpu_max_rigid_patch_count: 81920
gpu_found_lost_pairs_capacity: 4194304
gpu_found_lost_aggregate_pairs_capacity: 33554432
gpu_total_aggregate_pairs_capacity: 4194304
gpu_max_soft_body_contacts: 1048576
gpu_max_particle_contacts: 1048576
gpu_heap_capacity: 67108864
gpu_temp_buffer_capacity: 16777216
gpu_max_num_partitions: 8
crazyflie:
# -1 to use default values
override_usd_defaults: False
enable_self_collisions: True
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 6
solver_velocity_iteration_count: 0
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 1000.0
ball:
# -1 to use default values
override_usd_defaults: False
make_kinematic: True
enable_self_collisions: False
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 6
solver_velocity_iteration_count: 0
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 1000.0
| 2,350 | YAML | 26.658823 | 71 | 0.692766 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/FactoryEnvNutBolt.yaml | # See schema in factory_schema_config_env.py for descriptions of common parameters.
defaults:
- _self_
- /factory_schema_config_env
sim:
disable_franka_collisions: False
disable_nut_collisions: False
disable_bolt_collisions: False
disable_contact_processing: False
env:
env_name: 'FactoryEnvNutBolt'
desired_subassemblies: ['nut_bolt_m16', 'nut_bolt_m16']
nut_lateral_offset: 0.1 # Y-axis offset of nut before initial reset to prevent initial interpenetration with bolt
nut_bolt_density: 7850.0
nut_bolt_friction: 0.3
# Subassembly options:
# {nut_bolt_m4, nut_bolt_m8, nut_bolt_m12, nut_bolt_m16, nut_bolt_m20}
| 643 | YAML | 28.272726 | 116 | 0.73717 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/AntSAC.yaml | # used to create the object
defaults:
- Ant
- _self_
# if given, will override the device setting in gym.
env:
numEnvs: ${resolve_default:64,${...num_envs}} | 163 | YAML | 19.499998 | 52 | 0.668712 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/Cartpole.yaml | # used to create the object
name: Cartpole
physics_engine: ${..physics_engine}
# if given, will override the device setting in gym.
env:
numEnvs: ${resolve_default:512,${...num_envs}}
envSpacing: 4.0
resetDist: 3.0
maxEffort: 400.0
clipObservations: 5.0
clipActions: 1.0
controlFrequencyInv: 2 # 60 Hz
sim:
dt: 0.0083 # 1/120 s
use_gpu_pipeline: ${eq:${...pipeline},"gpu"}
gravity: [0.0, 0.0, -9.81]
add_ground_plane: True
add_distant_light: False
use_fabric: True
enable_scene_query_support: False
disable_contact_processing: False
# set to True if you use camera sensors in the environment
enable_cameras: False
default_physics_material:
static_friction: 1.0
dynamic_friction: 1.0
restitution: 0.0
physx:
worker_thread_count: ${....num_threads}
solver_type: ${....solver_type}
use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU
solver_position_iteration_count: 4
solver_velocity_iteration_count: 0
contact_offset: 0.02
rest_offset: 0.001
bounce_threshold_velocity: 0.2
friction_offset_threshold: 0.04
friction_correlation_distance: 0.025
enable_sleeping: True
enable_stabilization: True
max_depenetration_velocity: 100.0
# GPU buffers
gpu_max_rigid_contact_count: 524288
gpu_max_rigid_patch_count: 81920
gpu_found_lost_pairs_capacity: 1024
gpu_found_lost_aggregate_pairs_capacity: 262144
gpu_total_aggregate_pairs_capacity: 1024
gpu_max_soft_body_contacts: 1048576
gpu_max_particle_contacts: 1048576
gpu_heap_capacity: 67108864
gpu_temp_buffer_capacity: 16777216
gpu_max_num_partitions: 8
Cartpole:
# -1 to use default values
override_usd_defaults: False
enable_self_collisions: False
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 4
solver_velocity_iteration_count: 0
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 100.0
# per-shape
contact_offset: 0.02
rest_offset: 0.001 | 2,124 | YAML | 26.243589 | 71 | 0.686911 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/Anymal.yaml | # used to create the object
name: Anymal
physics_engine: ${..physics_engine}
env:
numEnvs: ${resolve_default:4096,${...num_envs}}
envSpacing: 4. # [m]
clipObservations: 5.0
clipActions: 1.0
controlFrequencyInv: 2
baseInitState:
pos: [0.0, 0.0, 0.62] # x,y,z [m]
rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat]
vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s]
vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s]
randomCommandVelocityRanges:
linear_x: [-2., 2.] # min max [m/s]
linear_y: [-1., 1.] # min max [m/s]
yaw: [-1., 1.] # min max [rad/s]
control:
# PD Drive parameters:
stiffness: 85.0 # [N*m/rad]
damping: 2.0 # [N*m*s/rad]
actionScale: 13.5
defaultJointAngles: # = target angles when action = 0.0
LF_HAA: 0.03 # [rad]
LH_HAA: 0.03 # [rad]
RF_HAA: -0.03 # [rad]
RH_HAA: -0.03 # [rad]
LF_HFE: 0.4 # [rad]
LH_HFE: -0.4 # [rad]
RF_HFE: 0.4 # [rad]
RH_HFE: -0.4 # [rad]
LF_KFE: -0.8 # [rad]
LH_KFE: 0.8 # [rad]
RF_KFE: -0.8 # [rad]
RH_KFE: 0.8 # [rad]
learn:
# rewards
linearVelocityXYRewardScale: 1.0
angularVelocityZRewardScale: 0.5
linearVelocityZRewardScale: -0.03
jointAccRewardScale: -0.0003
actionRateRewardScale: -0.006
cosmeticRewardScale: -0.06
# normalization
linearVelocityScale: 2.0
angularVelocityScale: 0.25
dofPositionScale: 1.0
dofVelocityScale: 0.05
# episode length in seconds
episodeLength_s: 50
sim:
dt: 0.01
use_gpu_pipeline: ${eq:${...pipeline},"gpu"}
gravity: [0.0, 0.0, -9.81]
add_ground_plane: True
add_distant_light: False
use_fabric: True
enable_scene_query_support: False
disable_contact_processing: False
# set to True if you use camera sensors in the environment
enable_cameras: False
default_physics_material:
static_friction: 1.0
dynamic_friction: 1.0
restitution: 0.0
physx:
worker_thread_count: ${....num_threads}
solver_type: ${....solver_type}
use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU
solver_position_iteration_count: 4
solver_velocity_iteration_count: 1
contact_offset: 0.02
rest_offset: 0.0
bounce_threshold_velocity: 0.2
friction_offset_threshold: 0.04
friction_correlation_distance: 0.025
enable_sleeping: True
enable_stabilization: True
max_depenetration_velocity: 100.0
# GPU buffers
gpu_max_rigid_contact_count: 524288
gpu_max_rigid_patch_count: 163840
gpu_found_lost_pairs_capacity: 4194304
gpu_found_lost_aggregate_pairs_capacity: 33554432
gpu_total_aggregate_pairs_capacity: 4194304
gpu_max_soft_body_contacts: 1048576
gpu_max_particle_contacts: 1048576
gpu_heap_capacity: 134217728
gpu_temp_buffer_capacity: 33554432
gpu_max_num_partitions: 8
Anymal:
# -1 to use default values
override_usd_defaults: False
enable_self_collisions: False
enable_gyroscopic_forces: True
# also in stage params
# per-actor
solver_position_iteration_count: 4
solver_velocity_iteration_count: 1
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 100.0
| 3,270 | YAML | 24.960317 | 71 | 0.626911 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/ShadowHandOpenAI_LSTM.yaml | # specifies what the config is when running `ShadowHandOpenAI` in LSTM mode
defaults:
- ShadowHandOpenAI_FF
- _self_
env:
numEnvs: ${resolve_default:8192,${...num_envs}}
| 178 | YAML | 18.888887 | 75 | 0.707865 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/ShadowHandOpenAI_FFPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [400, 400, 200, 100]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False}
load_path: ${...checkpoint}
config:
name: ${resolve_default:ShadowHandOpenAI_FF,${....experiment}}
full_experiment_name: ${.name}
device: ${....rl_device}
device_name: ${....rl_device}
env_name: rlgpu
multi_gpu: ${....multi_gpu}
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.01
normalize_advantage: True
gamma: 0.998
tau: 0.95
learning_rate: 5e-4
lr_schedule: adaptive
schedule_type: standard
kl_threshold: 0.016
score_to_win: 100000
max_epochs: ${resolve_default:10000,${....max_iterations}}
save_best_after: 100
save_frequency: 200
print_stats: True
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 16384
mini_epochs: 4
critic_coef: 4
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001
central_value_config:
minibatch_size: 32864
mini_epochs: 4
learning_rate: 5e-4
lr_schedule: adaptive
schedule_type: standard
kl_threshold: 0.016
clip_value: True
normalize_input: True
truncate_grads: True
network:
name: actor_critic
central_value: True
mlp:
units: [512, 512, 256, 128]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
player:
deterministic: True
games_num: 100000
print_stats: True
| 2,215 | YAML | 20.940594 | 66 | 0.577427 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/AnymalTerrainPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: True
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0. # std = 1.
fixed_sigma: True
mlp:
units: [512, 256, 128]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
# rnn:
# name: lstm
# units: 128
# layers: 1
# before_mlp: True
# concat_input: True
# layer_norm: False
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:AnymalTerrain,${....experiment}}
full_experiment_name: ${.name}
device: ${....rl_device}
device_name: ${....rl_device}
env_name: rlgpu
multi_gpu: ${....multi_gpu}
ppo: True
mixed_precision: False # True
normalize_input: True
normalize_value: True
normalize_advantage: True
value_bootstrap: True
clip_actions: False
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 1.0
gamma: 0.99
tau: 0.95
e_clip: 0.2
entropy_coef: 0.001
learning_rate: 3.e-4 # overwritten by adaptive lr_schedule
lr_schedule: adaptive
kl_threshold: 0.008 # target kl for adaptive lr
truncate_grads: True
grad_norm: 1.
horizon_length: 48
minibatch_size: 16384
mini_epochs: 5
critic_coef: 2
clip_value: True
seq_length: 4 # only for rnn
bounds_loss_coef: 0.
max_epochs: ${resolve_default:2000,${....max_iterations}}
save_best_after: 100
score_to_win: 20000
save_frequency: 50
print_stats: True
| 1,928 | YAML | 21.694117 | 101 | 0.592842 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/HumanoidPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [400, 200, 100]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:Humanoid,${....experiment}}
full_experiment_name: ${.name}
env_name: rlgpu
device: ${....rl_device}
device_name: ${....rl_device}
multi_gpu: ${....multi_gpu}
ppo: True
mixed_precision: True
normalize_input: True
normalize_value: True
value_bootstrap: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.01
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 5e-4
lr_schedule: adaptive
kl_threshold: 0.008
score_to_win: 20000
max_epochs: ${resolve_default:1000,${....max_iterations}}
save_best_after: 100
save_frequency: 100
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 32
minibatch_size: 32768
mini_epochs: 5
critic_coef: 4
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001
| 1,639 | YAML | 21.465753 | 101 | 0.594875 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/CrazyfliePPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [256, 256, 128]
activation: tanh
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:Crazyflie,${....experiment}}
full_experiment_name: ${.name}
env_name: rlgpu
device: ${....rl_device}
device_name: ${....rl_device}
multi_gpu: ${....multi_gpu}
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.01
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 1e-4
lr_schedule: adaptive
kl_threshold: 0.016
score_to_win: 20000
max_epochs: ${resolve_default:1000,${....max_iterations}}
save_best_after: 50
save_frequency: 50
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 16384
mini_epochs: 8
critic_coef: 2
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001
| 1,614 | YAML | 21.430555 | 101 | 0.593556 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/ShadowHandPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [512, 512, 256, 128]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False}
load_path: ${...checkpoint}
config:
name: ${resolve_default:ShadowHand,${....experiment}}
full_experiment_name: ${.name}
device: ${....rl_device}
device_name: ${....rl_device}
env_name: rlgpu
multi_gpu: ${....multi_gpu}
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
value_bootstrap: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.01
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 5e-4
lr_schedule: adaptive
schedule_type: standard
kl_threshold: 0.016
score_to_win: 100000
max_epochs: ${resolve_default:10000,${....max_iterations}}
save_best_after: 100
save_frequency: 200
print_stats: True
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 32768
mini_epochs: 5
critic_coef: 4
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001
player:
deterministic: True
games_num: 100000
print_stats: True
| 1,703 | YAML | 20.56962 | 62 | 0.589548 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/HumanoidSAC.yaml | params:
seed: ${...seed}
algo:
name: sac
model:
name: soft_actor_critic
network:
name: soft_actor_critic
separate: True
space:
continuous:
mlp:
units: [512, 256]
activation: relu
initializer:
name: default
log_std_bounds: [-5, 2]
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:HumanoidSAC,${....experiment}}
env_name: rlgpu
device: ${....rl_device}
device_name: ${....rl_device}
multi_gpu: ${....multi_gpu}
normalize_input: True
reward_shaper:
scale_value: 1.0
max_epochs: ${resolve_default:50000,${....max_iterations}}
num_steps_per_episode: 8
save_best_after: 100
save_frequency: 1000
gamma: 0.99
init_alpha: 1.0
alpha_lr: 0.005
actor_lr: 0.0005
critic_lr: 0.0005
critic_tau: 0.005
batch_size: 4096
learnable_temperature: true
num_seed_steps: 5
num_warmup_steps: 10
replay_buffer_size: 1000000
num_actors: ${....task.env.numEnvs}
| 1,165 | YAML | 21.423077 | 101 | 0.603433 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/ShadowHandOpenAI_LSTMPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [512]
activation: relu
d2rl: False
initializer:
name: default
regularizer:
name: None
rnn:
name: lstm
units: 1024
layers: 1
before_mlp: True
layer_norm: True
load_checkpoint: ${if:${...checkpoint},True,False}
load_path: ${...checkpoint}
config:
name: ${resolve_default:ShadowHandOpenAI_LSTM,${....experiment}}
full_experiment_name: ${.name}
device: ${....rl_device}
device_name: ${....rl_device}
env_name: rlgpu
multi_gpu: ${....multi_gpu}
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.01
normalize_advantage: True
gamma: 0.998
tau: 0.95
learning_rate: 1e-4
lr_schedule: adaptive
schedule_type: standard
kl_threshold: 0.016
score_to_win: 100000
max_epochs: ${resolve_default:10000,${....max_iterations}}
save_best_after: 100
save_frequency: 200
print_stats: True
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 16384
mini_epochs: 4
critic_coef: 4
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001
central_value_config:
minibatch_size: 32768
mini_epochs: 4
learning_rate: 1e-4
kl_threshold: 0.016
clip_value: True
normalize_input: True
truncate_grads: True
network:
name: actor_critic
central_value: True
mlp:
units: [512]
activation: relu
d2rl: False
initializer:
name: default
regularizer:
name: None
rnn:
name: lstm
units: 1024
layers: 1
before_mlp: True
layer_norm: True
zero_rnn_on_done: False
player:
deterministic: True
games_num: 100000
print_stats: True
| 2,402 | YAML | 20.265487 | 68 | 0.562448 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/IngenuityPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [256, 256, 128]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:Ingenuity,${....experiment}}
full_experiment_name: ${.name}
env_name: rlgpu
device: ${....rl_device}
device_name: ${....rl_device}
multi_gpu: ${....multi_gpu}
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.01
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 1e-3
lr_schedule: adaptive
kl_threshold: 0.016
score_to_win: 20000
max_epochs: ${resolve_default:400,${....max_iterations}}
save_best_after: 50
save_frequency: 50
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 16384
mini_epochs: 8
critic_coef: 2
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001
| 1,612 | YAML | 21.402777 | 101 | 0.593052 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/QuadcopterPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [256, 256, 128]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:Quadcopter,${....experiment}}
full_experiment_name: ${.name}
env_name: rlgpu
device: ${....rl_device}
device_name: ${....rl_device}
multi_gpu: ${....multi_gpu}
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.1
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 1e-3
lr_schedule: adaptive
kl_threshold: 0.016
score_to_win: 20000
max_epochs: ${resolve_default:1000,${....max_iterations}}
save_best_after: 50
save_frequency: 50
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 16384
mini_epochs: 8
critic_coef: 2
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001
| 1,613 | YAML | 21.416666 | 101 | 0.593304 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/FactoryTaskNutBoltScrewPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [256, 128, 64]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False}
load_path: ${...checkpoint}
config:
name: ${resolve_default:FactoryTaskNutBoltScrew,${....experiment}}
full_experiment_name: ${.name}
device: ${....rl_device}
device_name: ${....rl_device}
env_name: rlgpu
multi_gpu: False
ppo: True
mixed_precision: True
normalize_input: True
normalize_value: True
value_bootstrap: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 1.0
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 1e-4
lr_schedule: fixed
schedule_type: standard
kl_threshold: 0.016
score_to_win: 20000
max_epochs: ${resolve_default:400,${....max_iterations}}
save_best_after: 50
save_frequency: 100
print_stats: True
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: False
e_clip: 0.2
horizon_length: 512
minibatch_size: 512
mini_epochs: 8
critic_coef: 2
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001
| 1,597 | YAML | 20.594594 | 70 | 0.594865 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/BallBalancePPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [128, 64, 32]
activation: elu
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:BallBalance,${....experiment}}
full_experiment_name: ${.name}
env_name: rlgpu
device: ${....rl_device}
device_name: ${....rl_device}
multi_gpu: ${....multi_gpu}
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.1
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 3e-4
lr_schedule: adaptive
kl_threshold: 0.008
score_to_win: 20000
max_epochs: ${resolve_default:250,${....max_iterations}}
save_best_after: 50
save_frequency: 100
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 8192
mini_epochs: 8
critic_coef: 4
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001
| 1,593 | YAML | 21.450704 | 101 | 0.593848 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/FrankaDeformablePPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [256, 128, 64]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:FrankaDeformable,${....experiment}}
full_experiment_name: ${.name}
env_name: rlgpu
device: ${....rl_device}
device_name: ${....rl_device}
multi_gpu: ${....multi_gpu}
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.01
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 5e-4
lr_schedule: adaptive
kl_threshold: 0.008
score_to_win: 100000000
max_epochs: ${resolve_default:6000,${....max_iterations}}
save_best_after: 500
save_frequency: 500
print_stats: True
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 16384 #2048 #4096 #8192 #16384
mini_epochs: 8
critic_coef: 4
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001
| 1,665 | YAML | 22.138889 | 101 | 0.600601 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/FactoryTaskNutBoltPlacePPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [256, 128, 64]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False}
load_path: ${...checkpoint}
config:
name: ${resolve_default:FactoryTaskNutBoltPlace,${....experiment}}
full_experiment_name: ${.name}
device: ${....rl_device}
device_name: ${....rl_device}
env_name: rlgpu
multi_gpu: False
ppo: True
mixed_precision: True
normalize_input: True
normalize_value: True
value_bootstrap: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 1.0
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 1e-4
lr_schedule: fixed
schedule_type: standard
kl_threshold: 0.016
score_to_win: 20000
max_epochs: ${resolve_default:400,${....max_iterations}}
save_best_after: 50
save_frequency: 100
print_stats: True
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: False
e_clip: 0.2
horizon_length: 128
minibatch_size: 512
mini_epochs: 8
critic_coef: 2
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001
| 1,597 | YAML | 20.594594 | 70 | 0.594865 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/CartpoleCameraPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
cnn:
type: conv2d
activation: relu
initializer:
name: default
regularizer:
name: None
convs:
- filters: 32
kernel_size: 8
strides: 4
padding: 0
- filters: 64
kernel_size: 4
strides: 2
padding: 0
- filters: 64
kernel_size: 3
strides: 1
padding: 0
mlp:
units: [512]
activation: elu
initializer:
name: default
# rnn:
# name: lstm
# units: 128
# layers: 1
# before_mlp: False
# concat_input: True
# layer_norm: True
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:CartpoleCamera,${....experiment}}
full_experiment_name: ${.name}
device: ${....rl_device}
device_name: ${....rl_device}
env_name: rlgpu
multi_gpu: ${....multi_gpu}
ppo: True
mixed_precision: False
normalize_input: False
normalize_value: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 1.0 #0.1
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 1e-4
lr_schedule: adaptive
kl_threshold: 0.008
score_to_win: 20000
max_epochs: ${resolve_default:500,${....max_iterations}}
save_best_after: 50
save_frequency: 10
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 256
minibatch_size: 512 #1024
mini_epochs: 4
critic_coef: 2
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001 | 2,124 | YAML | 21.135416 | 101 | 0.556026 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/AntPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [256, 128, 64]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:Ant,${....experiment}}
full_experiment_name: ${.name}
env_name: rlgpu
device: ${....rl_device}
device_name: ${....rl_device}
multi_gpu: ${....multi_gpu}
ppo: True
mixed_precision: True
normalize_input: True
normalize_value: True
value_bootstrap: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.01
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 3e-4
lr_schedule: adaptive
schedule_type: legacy
kl_threshold: 0.008
score_to_win: 20000
max_epochs: ${resolve_default:500,${....max_iterations}}
save_best_after: 100
save_frequency: 50
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 32768
mini_epochs: 4
critic_coef: 2
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001
| 1,657 | YAML | 21.405405 | 101 | 0.594448 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/FrankaCabinetPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [256, 128, 64]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:FrankaCabinet,${....experiment}}
full_experiment_name: ${.name}
env_name: rlgpu
device: ${....rl_device}
device_name: ${....rl_device}
multi_gpu: ${....multi_gpu}
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.01
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 5e-4
lr_schedule: adaptive
kl_threshold: 0.008
score_to_win: 100000000
max_epochs: ${resolve_default:1500,${....max_iterations}}
save_best_after: 200
save_frequency: 100
print_stats: True
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 8192
mini_epochs: 8
critic_coef: 4
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001
| 1,636 | YAML | 21.736111 | 101 | 0.598411 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/AntSAC.yaml | params:
seed: ${...seed}
algo:
name: sac
model:
name: soft_actor_critic
network:
name: soft_actor_critic
separate: True
space:
continuous:
mlp:
units: [512, 256]
activation: relu
initializer:
name: default
log_std_bounds: [-5, 2]
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:AntSAC,${....experiment}}
env_name: rlgpu
device: ${....rl_device}
device_name: ${....rl_device}
multi_gpu: ${....multi_gpu}
normalize_input: True
reward_shaper:
scale_value: 1.0
max_epochs: ${resolve_default:20000,${....max_iterations}}
num_steps_per_episode: 8
save_best_after: 100
save_frequency: 1000
gamma: 0.99
init_alpha: 1.0
alpha_lr: 0.005
actor_lr: 0.0005
critic_lr: 0.0005
critic_tau: 0.005
batch_size: 4096
learnable_temperature: true
num_seed_steps: 5
num_warmup_steps: 10
replay_buffer_size: 1000000
num_actors: ${....task.env.numEnvs}
| 1,160 | YAML | 21.326923 | 101 | 0.601724 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/AllegroHandPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [512, 256, 128]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False}
load_path: ${...checkpoint}
config:
name: ${resolve_default:AllegroHand,${....experiment}}
full_experiment_name: ${.name}
device: ${....rl_device}
device_name: ${....rl_device}
env_name: rlgpu
multi_gpu: ${....multi_gpu}
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
value_bootstrap: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.01
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 5e-4
lr_schedule: adaptive
schedule_type: standard
kl_threshold: 0.02
score_to_win: 100000
max_epochs: ${resolve_default:10000,${....max_iterations}}
save_best_after: 100
save_frequency: 200
print_stats: True
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 32768
mini_epochs: 5
critic_coef: 4
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001
player:
deterministic: True
games_num: 100000
print_stats: True
| 1,694 | YAML | 20.455696 | 62 | 0.590909 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/AnymalPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0. # std = 1.
fixed_sigma: True
mlp:
units: [256, 128, 64]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:Anymal,${....experiment}}
full_experiment_name: ${.name}
device: ${....rl_device}
device_name: ${....rl_device}
env_name: rlgpu
multi_gpu: ${....multi_gpu}
ppo: True
mixed_precision: True
normalize_input: True
normalize_value: True
value_bootstrap: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 1.0
normalize_advantage: True
gamma: 0.99
tau: 0.95
e_clip: 0.2
entropy_coef: 0.0
learning_rate: 3.e-4 # overwritten by adaptive lr_schedule
lr_schedule: adaptive
kl_threshold: 0.008 # target kl for adaptive lr
truncate_grads: True
grad_norm: 1.
horizon_length: 24
minibatch_size: 32768
mini_epochs: 5
critic_coef: 2
clip_value: True
seq_length: 4 # only for rnn
bounds_loss_coef: 0.001
max_epochs: ${resolve_default:1000,${....max_iterations}}
save_best_after: 200
score_to_win: 20000
save_frequency: 50
print_stats: True
| 1,744 | YAML | 21.960526 | 101 | 0.600917 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/CartpolePPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [32, 32]
activation: elu
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:Cartpole,${....experiment}}
full_experiment_name: ${.name}
device: ${....rl_device}
device_name: ${....rl_device}
env_name: rlgpu
multi_gpu: ${....multi_gpu}
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.1
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 3e-4
lr_schedule: adaptive
kl_threshold: 0.008
score_to_win: 20000
max_epochs: ${resolve_default:100,${....max_iterations}}
save_best_after: 50
save_frequency: 25
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 8192
mini_epochs: 8
critic_coef: 4
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001 | 1,583 | YAML | 21.628571 | 101 | 0.593178 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/FactoryTaskNutBoltPickPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [256, 128, 64]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False}
load_path: ${...checkpoint}
config:
name: ${resolve_default:FactoryTaskNutBoltPick,${....experiment}}
full_experiment_name: ${.name}
device: ${....rl_device}
device_name: ${....rl_device}
env_name: rlgpu
multi_gpu: False
ppo: True
mixed_precision: True
normalize_input: True
normalize_value: True
value_bootstrap: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 1.0
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 1e-4
lr_schedule: fixed
schedule_type: standard
kl_threshold: 0.016
score_to_win: 20000
max_epochs: ${resolve_default:200,${....max_iterations}}
save_best_after: 50
save_frequency: 100
print_stats: True
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: False
e_clip: 0.2
horizon_length: 128
minibatch_size: 512
mini_epochs: 8
critic_coef: 2
clip_value: True
seq_length: 4
bounds_loss_coef: 0.0001
| 1,596 | YAML | 20.581081 | 69 | 0.594612 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/scripts/rlgames_demo.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import datetime
import os
import gym
import hydra
import torch
from omegaconf import DictConfig
import omniisaacgymenvs
from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames
from omniisaacgymenvs.scripts.rlgames_train import RLGTrainer
from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path
from omniisaacgymenvs.utils.demo_util import initialize_demo
from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import *
from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict
class RLGDemo(RLGTrainer):
def __init__(self, cfg, cfg_dict):
RLGTrainer.__init__(self, cfg, cfg_dict)
self.cfg.test = True
@hydra.main(version_base=None, config_name="config", config_path="../cfg")
def parse_hydra_configs(cfg: DictConfig):
time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
headless = cfg.headless
env = VecEnvRLGames(headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream)
# parse experiment directory
module_path = os.path.abspath(os.path.join(os.path.dirname(omniisaacgymenvs.__file__)))
experiment_dir = os.path.join(module_path, "runs", cfg.train.params.config.name)
# use gym RecordVideo wrapper for viewport recording
if cfg.enable_recording:
if cfg.recording_dir == '':
videos_dir = os.path.join(experiment_dir, "videos")
else:
videos_dir = cfg.recording_dir
video_interval = lambda step: step % cfg.recording_interval == 0
video_length = cfg.recording_length
env.is_vector_env = True
if env.metadata is None:
env.metadata = {"render_modes": ["rgb_array"], "render_fps": cfg.recording_fps}
else:
env.metadata["render_modes"] = ["rgb_array"]
env.metadata["render_fps"] = cfg.recording_fps
env = gym.wrappers.RecordVideo(
env, video_folder=videos_dir, step_trigger=video_interval, video_length=video_length
)
# ensure checkpoints can be specified as relative paths
if cfg.checkpoint:
cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint)
if cfg.checkpoint is None:
quit()
cfg_dict = omegaconf_to_dict(cfg)
print_dict(cfg_dict)
# sets seed. if seed is -1 will pick a random one
from omni.isaac.core.utils.torch.maths import set_seed
cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic)
cfg_dict["seed"] = cfg.seed
task = initialize_demo(cfg_dict, env)
if cfg.wandb_activate:
# Make sure to install WandB if you actually use this.
import wandb
run_name = f"{cfg.wandb_name}_{time_str}"
wandb.init(
project=cfg.wandb_project,
group=cfg.wandb_group,
entity=cfg.wandb_entity,
config=cfg_dict,
sync_tensorboard=True,
id=run_name,
resume="allow",
monitor_gym=True,
)
rlg_trainer = RLGDemo(cfg, cfg_dict)
rlg_trainer.launch_rlg_hydra(env)
rlg_trainer.run(module_path, experiment_dir)
env.close()
if cfg.wandb_activate:
wandb.finish()
if __name__ == "__main__":
parse_hydra_configs()
| 4,814 | Python | 37.52 | 109 | 0.701703 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/scripts/rlgames_train.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import datetime
import os
import gym
import hydra
import torch
from omegaconf import DictConfig
import omniisaacgymenvs
from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames
from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path, get_experience
from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import *
from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict
from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv
from omniisaacgymenvs.utils.task_util import initialize_task
from rl_games.common import env_configurations, vecenv
from rl_games.torch_runner import Runner
class RLGTrainer:
def __init__(self, cfg, cfg_dict):
self.cfg = cfg
self.cfg_dict = cfg_dict
def launch_rlg_hydra(self, env):
# `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally.
# We use the helper function here to specify the environment config.
self.cfg_dict["task"]["test"] = self.cfg.test
# register the rl-games adapter to use inside the runner
vecenv.register("RLGPU", lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs))
env_configurations.register("rlgpu", {"vecenv_type": "RLGPU", "env_creator": lambda **kwargs: env})
self.rlg_config_dict = omegaconf_to_dict(self.cfg.train)
def run(self, module_path, experiment_dir):
self.rlg_config_dict["params"]["config"]["train_dir"] = os.path.join(module_path, "runs")
# create runner and set the settings
runner = Runner(RLGPUAlgoObserver())
runner.load(self.rlg_config_dict)
runner.reset()
# dump config dict
os.makedirs(experiment_dir, exist_ok=True)
with open(os.path.join(experiment_dir, "config.yaml"), "w") as f:
f.write(OmegaConf.to_yaml(self.cfg))
runner.run(
{"train": not self.cfg.test, "play": self.cfg.test, "checkpoint": self.cfg.checkpoint, "sigma": None}
)
@hydra.main(version_base=None, config_name="config", config_path="../cfg")
def parse_hydra_configs(cfg: DictConfig):
time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
headless = cfg.headless
# local rank (GPU id) in a current multi-gpu mode
local_rank = int(os.getenv("LOCAL_RANK", "0"))
# global rank (GPU id) in multi-gpu multi-node mode
global_rank = int(os.getenv("RANK", "0"))
if cfg.multi_gpu:
cfg.device_id = local_rank
cfg.rl_device = f'cuda:{local_rank}'
enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras
# select kit app file
experience = get_experience(headless, cfg.enable_livestream, enable_viewport, cfg.enable_recording, cfg.kit_app)
env = VecEnvRLGames(
headless=headless,
sim_device=cfg.device_id,
enable_livestream=cfg.enable_livestream,
enable_viewport=enable_viewport or cfg.enable_recording,
experience=experience
)
# parse experiment directory
module_path = os.path.abspath(os.path.join(os.path.dirname(omniisaacgymenvs.__file__)))
experiment_dir = os.path.join(module_path, "runs", cfg.train.params.config.name)
# use gym RecordVideo wrapper for viewport recording
if cfg.enable_recording:
if cfg.recording_dir == '':
videos_dir = os.path.join(experiment_dir, "videos")
else:
videos_dir = cfg.recording_dir
video_interval = lambda step: step % cfg.recording_interval == 0
video_length = cfg.recording_length
env.is_vector_env = True
if env.metadata is None:
env.metadata = {"render_modes": ["rgb_array"], "render_fps": cfg.recording_fps}
else:
env.metadata["render_modes"] = ["rgb_array"]
env.metadata["render_fps"] = cfg.recording_fps
env = gym.wrappers.RecordVideo(
env, video_folder=videos_dir, step_trigger=video_interval, video_length=video_length
)
# ensure checkpoints can be specified as relative paths
if cfg.checkpoint:
cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint)
if cfg.checkpoint is None:
quit()
cfg_dict = omegaconf_to_dict(cfg)
print_dict(cfg_dict)
# sets seed. if seed is -1 will pick a random one
from omni.isaac.core.utils.torch.maths import set_seed
cfg.seed = cfg.seed + global_rank if cfg.seed != -1 else cfg.seed
cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic)
cfg_dict["seed"] = cfg.seed
task = initialize_task(cfg_dict, env)
if cfg.wandb_activate and global_rank == 0:
# Make sure to install WandB if you actually use this.
import wandb
run_name = f"{cfg.wandb_name}_{time_str}"
wandb.init(
project=cfg.wandb_project,
group=cfg.wandb_group,
entity=cfg.wandb_entity,
config=cfg_dict,
sync_tensorboard=True,
name=run_name,
resume="allow",
)
torch.cuda.set_device(local_rank)
rlg_trainer = RLGTrainer(cfg, cfg_dict)
rlg_trainer.launch_rlg_hydra(env)
rlg_trainer.run(module_path, experiment_dir)
env.close()
if cfg.wandb_activate and global_rank == 0:
wandb.finish()
if __name__ == "__main__":
parse_hydra_configs()
| 7,007 | Python | 39.045714 | 119 | 0.687455 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/scripts/random_policy.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import gym
import hydra
from omegaconf import DictConfig
import os
import time
import numpy as np
import torch
import omniisaacgymenvs
from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames
from omniisaacgymenvs.utils.config_utils.path_utils import get_experience
from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import *
from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict
from omniisaacgymenvs.utils.task_util import initialize_task
@hydra.main(version_base=None, config_name="config", config_path="../cfg")
def parse_hydra_configs(cfg: DictConfig):
cfg_dict = omegaconf_to_dict(cfg)
print_dict(cfg_dict)
headless = cfg.headless
render = not headless
enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras
# select kit app file
experience = get_experience(headless, cfg.enable_livestream, enable_viewport, cfg.enable_recording, cfg.kit_app)
env = VecEnvRLGames(
headless=headless,
sim_device=cfg.device_id,
enable_livestream=cfg.enable_livestream,
enable_viewport=enable_viewport or cfg.enable_recording,
experience=experience
)
# parse experiment directory
module_path = os.path.abspath(os.path.join(os.path.dirname(omniisaacgymenvs.__file__)))
experiment_dir = os.path.join(module_path, "runs", cfg.train.params.config.name)
# use gym RecordVideo wrapper for viewport recording
if cfg.enable_recording:
if cfg.recording_dir == '':
videos_dir = os.path.join(experiment_dir, "videos")
else:
videos_dir = cfg.recording_dir
video_interval = lambda step: step % cfg.recording_interval == 0
video_length = cfg.recording_length
env.is_vector_env = True
if env.metadata is None:
env.metadata = {"render_modes": ["rgb_array"], "render_fps": cfg.recording_fps}
else:
env.metadata["render_modes"] = ["rgb_array"]
env.metadata["render_fps"] = cfg.recording_fps
env = gym.wrappers.RecordVideo(
env, video_folder=videos_dir, step_trigger=video_interval, video_length=video_length
)
# sets seed. if seed is -1 will pick a random one
from omni.isaac.core.utils.torch.maths import set_seed
cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic)
cfg_dict["seed"] = cfg.seed
task = initialize_task(cfg_dict, env)
num_frames = 0
first_frame = True
prev_time = time.time()
while env.simulation_app.is_running():
if env.world.is_playing():
if first_frame:
env.reset()
prev_time = time.time()
first_frame = False
# get upper and lower bounds of action space, sample actions randomly on this interval
action_high = env.action_space.high[0]
action_low = env.action_space.low[0]
actions = (action_high - action_low) * torch.rand(env.num_envs, env.action_space.shape[0], device=task.rl_device) - action_high
if time.time() - prev_time >= 1:
print("FPS:", num_frames, "FPS * num_envs:", env.num_envs * num_frames)
num_frames = 0
prev_time = time.time()
else:
num_frames += 1
env.step(actions)
else:
env.world.step(render=render)
env.simulation_app.close()
if __name__ == "__main__":
parse_hydra_configs()
| 5,069 | Python | 38.92126 | 139 | 0.688301 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/demos/anymal_terrain.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from omniisaacgymenvs.tasks.anymal_terrain import AnymalTerrainTask, wrap_to_pi
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import get_current_stage
from omni.isaac.core.utils.torch.rotations import *
from omni.isaac.core.utils.torch.transformations import tf_combine
import numpy as np
import torch
import math
import omni
import carb
from omni.kit.viewport.utility.camera_state import ViewportCameraState
from omni.kit.viewport.utility import get_viewport_from_window_name
from pxr import Sdf
class AnymalTerrainDemo(AnymalTerrainTask):
def __init__(
self,
name,
sim_config,
env,
offset=None
) -> None:
max_num_envs = 128
if sim_config.task_config["env"]["numEnvs"] >= max_num_envs:
print(f"num_envs reduced to {max_num_envs} for this demo.")
sim_config.task_config["env"]["numEnvs"] = max_num_envs
sim_config.task_config["env"]["learn"]["episodeLength_s"] = 120
AnymalTerrainTask.__init__(self, name, sim_config, env)
self.add_noise = False
self.knee_threshold = 0.05
self.create_camera()
self._current_command = [0.0, 0.0, 0.0, 0.0]
self.set_up_keyboard()
self._prim_selection = omni.usd.get_context().get_selection()
self._selected_id = None
self._previous_selected_id = None
return
def create_camera(self):
stage = omni.usd.get_context().get_stage()
self.view_port = get_viewport_from_window_name("Viewport")
# Create camera
self.camera_path = "/World/Camera"
self.perspective_path = "/OmniverseKit_Persp"
camera_prim = stage.DefinePrim(self.camera_path, "Camera")
camera_prim.GetAttribute("focalLength").Set(8.5)
coi_prop = camera_prim.GetProperty("omni:kit:centerOfInterest")
if not coi_prop or not coi_prop.IsValid():
camera_prim.CreateAttribute(
"omni:kit:centerOfInterest", Sdf.ValueTypeNames.Vector3d, True, Sdf.VariabilityUniform
).Set(Gf.Vec3d(0, 0, -10))
self.view_port.set_active_camera(self.perspective_path)
def set_up_keyboard(self):
self._input = carb.input.acquire_input_interface()
self._keyboard = omni.appwindow.get_default_app_window().get_keyboard()
self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._on_keyboard_event)
T = 1
R = 1
self._key_to_control = {
"UP": [T, 0.0, 0.0, 0.0],
"DOWN": [-T, 0.0, 0.0, 0.0],
"LEFT": [0.0, T, 0.0, 0.0],
"RIGHT": [0.0, -T, 0.0, 0.0],
"Z": [0.0, 0.0, R, 0.0],
"X": [0.0, 0.0, -R, 0.0],
}
def _on_keyboard_event(self, event, *args, **kwargs):
if event.type == carb.input.KeyboardEventType.KEY_PRESS:
if event.input.name in self._key_to_control:
self._current_command = self._key_to_control[event.input.name]
elif event.input.name == "ESCAPE":
self._prim_selection.clear_selected_prim_paths()
elif event.input.name == "C":
if self._selected_id is not None:
if self.view_port.get_active_camera() == self.camera_path:
self.view_port.set_active_camera(self.perspective_path)
else:
self.view_port.set_active_camera(self.camera_path)
elif event.type == carb.input.KeyboardEventType.KEY_RELEASE:
self._current_command = [0.0, 0.0, 0.0, 0.0]
def update_selected_object(self):
self._previous_selected_id = self._selected_id
selected_prim_paths = self._prim_selection.get_selected_prim_paths()
if len(selected_prim_paths) == 0:
self._selected_id = None
self.view_port.set_active_camera(self.perspective_path)
elif len(selected_prim_paths) > 1:
print("Multiple prims are selected. Please only select one!")
else:
prim_splitted_path = selected_prim_paths[0].split("/")
if len(prim_splitted_path) >= 4 and prim_splitted_path[3][0:4] == "env_":
self._selected_id = int(prim_splitted_path[3][4:])
if self._previous_selected_id != self._selected_id:
self.view_port.set_active_camera(self.camera_path)
self._update_camera()
else:
print("The selected prim was not an Anymal")
if self._previous_selected_id is not None and self._previous_selected_id != self._selected_id:
self.commands[self._previous_selected_id, 0] = np.random.uniform(self.command_x_range[0], self.command_x_range[1])
self.commands[self._previous_selected_id, 1] = np.random.uniform(self.command_y_range[0], self.command_y_range[1])
self.commands[self._previous_selected_id, 2] = 0.0
def _update_camera(self):
base_pos = self.base_pos[self._selected_id, :].clone()
base_quat = self.base_quat[self._selected_id, :].clone()
camera_local_transform = torch.tensor([-1.8, 0.0, 0.6], device=self.device)
camera_pos = quat_apply(base_quat, camera_local_transform) + base_pos
camera_state = ViewportCameraState(self.camera_path, self.view_port)
eye = Gf.Vec3d(camera_pos[0].item(), camera_pos[1].item(), camera_pos[2].item())
target = Gf.Vec3d(base_pos[0].item(), base_pos[1].item(), base_pos[2].item()+0.6)
camera_state.set_position_world(eye, True)
camera_state.set_target_world(target, True)
def post_physics_step(self):
self.progress_buf[:] += 1
self.refresh_dof_state_tensors()
self.refresh_body_state_tensors()
self.update_selected_object()
self.common_step_counter += 1
if self.common_step_counter % self.push_interval == 0:
self.push_robots()
# prepare quantities
self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 0:3])
self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 3:6])
self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec)
forward = quat_apply(self.base_quat, self.forward_vec)
heading = torch.atan2(forward[:, 1], forward[:, 0])
self.commands[:, 2] = torch.clip(0.5*wrap_to_pi(self.commands[:, 3] - heading), -1., 1.)
self.check_termination()
if self._selected_id is not None:
self.commands[self._selected_id, :] = torch.tensor(self._current_command, device=self.device)
self.timeout_buf[self._selected_id] = 0
self.reset_buf[self._selected_id] = 0
self.get_states()
env_ids = self.reset_buf.nonzero(as_tuple=False).flatten()
if len(env_ids) > 0:
self.reset_idx(env_ids)
self.get_observations()
if self.add_noise:
self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec
self.last_actions[:] = self.actions[:]
self.last_dof_vel[:] = self.dof_vel[:]
return self.obs_buf, self.rew_buf, self.reset_buf, self.extras | 8,841 | Python | 44.577319 | 126 | 0.636127 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tests/__init__.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from .runner import * | 1,580 | Python | 53.51724 | 80 | 0.783544 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tests/runner.py | # Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import asyncio
from datetime import date
import sys
import unittest
import weakref
import omni.kit.test
from omni.kit.test import AsyncTestSuite
from omni.kit.test.async_unittest import AsyncTextTestRunner
import omni.ui as ui
from omni.isaac.ui.menu import make_menu_item_description
from omni.isaac.ui.ui_utils import btn_builder
from omni.kit.menu.utils import MenuItemDescription, add_menu_items
import omni.timeline
import omni.usd
from omniisaacgymenvs import RLExtension, get_instance
class GymRLTests(omni.kit.test.AsyncTestCase):
def __init__(self, *args, **kwargs):
super(GymRLTests, self).__init__(*args, **kwargs)
self.ext = get_instance()
async def _train(self, task, load=True, experiment=None, max_iterations=None):
task_idx = self.ext._task_list.index(task)
self.ext._task_dropdown.get_item_value_model().set_value(task_idx)
if load:
self.ext._on_load_world()
while True:
_, files_loaded, total_files = omni.usd.get_context().get_stage_loading_status()
if files_loaded or total_files:
await omni.kit.app.get_app().next_update_async()
else:
break
for _ in range(100):
await omni.kit.app.get_app().next_update_async()
self.ext._render_dropdown.get_item_value_model().set_value(2)
overrides = None
if experiment is not None:
overrides = [f"experiment={experiment}"]
if max_iterations is not None:
if overrides is None:
overrides = [f"max_iterations={max_iterations}"]
else:
overrides += [f"max_iterations={max_iterations}"]
await self.ext._on_train_async(overrides=overrides)
async def test_train(self):
date_str = date.today()
tasks = self.ext._task_list
for task in tasks:
await self._train(task, load=True, experiment=f"{task}_{date_str}")
async def test_train_determinism(self):
date_str = date.today()
tasks = self.ext._task_list
for task in tasks:
for i in range(3):
await self._train(task, load=(i==0), experiment=f"{task}_{date_str}_{i}", max_iterations=100)
class TestRunner():
def __init__(self):
self._build_ui()
def _build_ui(self):
menu_items = [make_menu_item_description("RL Examples Tests", "RL Examples Tests", lambda a=weakref.proxy(self): a._menu_callback())]
add_menu_items(menu_items, "Isaac Examples")
self._window = omni.ui.Window(
"RL Examples Tests", width=250, height=0, visible=True, dockPreference=ui.DockPreference.LEFT_BOTTOM
)
with self._window.frame:
main_stack = ui.VStack(spacing=5, height=0)
with main_stack:
dict = {
"label": "Run Tests",
"type": "button",
"text": "Run Tests",
"tooltip": "Run all tests",
"on_clicked_fn": self._run_tests,
}
btn_builder(**dict)
def _menu_callback(self):
self._window.visible = not self._window.visible
def _run_tests(self):
loader = unittest.TestLoader()
loader.SuiteClass = AsyncTestSuite
test_suite = AsyncTestSuite()
test_suite.addTests(loader.loadTestsFromTestCase(GymRLTests))
test_runner = AsyncTextTestRunner(verbosity=2, stream=sys.stdout)
async def single_run():
await test_runner.run(test_suite)
print("=======================================")
print(f"Running Tests")
print("=======================================")
asyncio.ensure_future(single_run())
TestRunner() | 4,254 | Python | 35.059322 | 141 | 0.607428 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/demo_util.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
def initialize_demo(config, env, init_sim=True):
from omniisaacgymenvs.demos.anymal_terrain import AnymalTerrainDemo
# Mappings from strings to environments
task_map = {
"AnymalTerrain": AnymalTerrainDemo,
}
from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig
sim_config = SimConfig(config)
cfg = sim_config.config
task = task_map[cfg["task_name"]](
name=cfg["task_name"], sim_config=sim_config, env=env
)
env.set_task(task=task, sim_params=sim_config.get_physics_params(), backend="torch", init_sim=init_sim)
return task | 2,167 | Python | 44.166666 | 107 | 0.757268 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/task_util.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
def import_tasks():
from omniisaacgymenvs.tasks.allegro_hand import AllegroHandTask
from omniisaacgymenvs.tasks.ant import AntLocomotionTask
from omniisaacgymenvs.tasks.anymal import AnymalTask
from omniisaacgymenvs.tasks.anymal_terrain import AnymalTerrainTask
from omniisaacgymenvs.tasks.ball_balance import BallBalanceTask
from omniisaacgymenvs.tasks.cartpole import CartpoleTask
from omniisaacgymenvs.tasks.cartpole_camera import CartpoleCameraTask
from omniisaacgymenvs.tasks.crazyflie import CrazyflieTask
from omniisaacgymenvs.tasks.factory.factory_task_nut_bolt_pick import FactoryTaskNutBoltPick
from omniisaacgymenvs.tasks.factory.factory_task_nut_bolt_place import FactoryTaskNutBoltPlace
from omniisaacgymenvs.tasks.factory.factory_task_nut_bolt_screw import FactoryTaskNutBoltScrew
from omniisaacgymenvs.tasks.franka_cabinet import FrankaCabinetTask
from omniisaacgymenvs.tasks.franka_deformable import FrankaDeformableTask
from omniisaacgymenvs.tasks.humanoid import HumanoidLocomotionTask
from omniisaacgymenvs.tasks.ingenuity import IngenuityTask
from omniisaacgymenvs.tasks.quadcopter import QuadcopterTask
from omniisaacgymenvs.tasks.shadow_hand import ShadowHandTask
from omniisaacgymenvs.tasks.warp.ant import AntLocomotionTask as AntLocomotionTaskWarp
from omniisaacgymenvs.tasks.warp.cartpole import CartpoleTask as CartpoleTaskWarp
from omniisaacgymenvs.tasks.warp.humanoid import HumanoidLocomotionTask as HumanoidLocomotionTaskWarp
# Mappings from strings to environments
task_map = {
"AllegroHand": AllegroHandTask,
"Ant": AntLocomotionTask,
"Anymal": AnymalTask,
"AnymalTerrain": AnymalTerrainTask,
"BallBalance": BallBalanceTask,
"Cartpole": CartpoleTask,
"CartpoleCamera": CartpoleCameraTask,
"FactoryTaskNutBoltPick": FactoryTaskNutBoltPick,
"FactoryTaskNutBoltPlace": FactoryTaskNutBoltPlace,
"FactoryTaskNutBoltScrew": FactoryTaskNutBoltScrew,
"FrankaCabinet": FrankaCabinetTask,
"FrankaDeformable": FrankaDeformableTask,
"Humanoid": HumanoidLocomotionTask,
"Ingenuity": IngenuityTask,
"Quadcopter": QuadcopterTask,
"Crazyflie": CrazyflieTask,
"ShadowHand": ShadowHandTask,
"ShadowHandOpenAI_FF": ShadowHandTask,
"ShadowHandOpenAI_LSTM": ShadowHandTask,
}
task_map_warp = {
"Cartpole": CartpoleTaskWarp,
"Ant":AntLocomotionTaskWarp,
"Humanoid": HumanoidLocomotionTaskWarp
}
return task_map, task_map_warp
def initialize_task(config, env, init_sim=True):
from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig
sim_config = SimConfig(config)
task_map, task_map_warp = import_tasks()
cfg = sim_config.config
if cfg["warp"]:
task_map = task_map_warp
task = task_map[cfg["task_name"]](
name=cfg["task_name"], sim_config=sim_config, env=env
)
backend = "warp" if cfg["warp"] else "torch"
rendering_dt = sim_config.get_physics_params()["rendering_dt"]
env.set_task(
task=task,
sim_params=sim_config.get_physics_params(),
backend=backend,
init_sim=init_sim,
rendering_dt=rendering_dt,
)
return task
| 4,894 | Python | 42.705357 | 105 | 0.752554 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/domain_randomization/randomize.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import copy
import numpy as np
import torch
import omni
from omni.isaac.core.prims import RigidPrimView
from omni.isaac.core.utils.extensions import enable_extension
class Randomizer:
def __init__(self, main_config, task_config):
self._cfg = task_config
self._config = main_config
self.randomize = False
dr_config = self._cfg.get("domain_randomization", None)
self.distributions = dict()
self.active_domain_randomizations = dict()
self._observations_dr_params = None
self._actions_dr_params = None
if dr_config is not None:
randomize = dr_config.get("randomize", False)
randomization_params = dr_config.get("randomization_params", None)
if randomize and randomization_params is not None:
self.randomize = True
self.min_frequency = dr_config.get("min_frequency", 1)
# import DR extensions
enable_extension("omni.replicator.isaac")
import omni.replicator.core as rep
import omni.replicator.isaac as dr
self.rep = rep
self.dr = dr
def apply_on_startup_domain_randomization(self, task):
if self.randomize:
torch.manual_seed(self._config["seed"])
randomization_params = self._cfg["domain_randomization"]["randomization_params"]
for opt in randomization_params.keys():
if opt == "rigid_prim_views":
if randomization_params["rigid_prim_views"] is not None:
for view_name in randomization_params["rigid_prim_views"].keys():
if randomization_params["rigid_prim_views"][view_name] is not None:
for attribute, params in randomization_params["rigid_prim_views"][view_name].items():
params = randomization_params["rigid_prim_views"][view_name][attribute]
if attribute in ["scale", "mass", "density"] and params is not None:
if "on_startup" in params.keys():
if not set(
("operation", "distribution", "distribution_parameters")
).issubset(params["on_startup"]):
raise ValueError(
f"Please ensure the following randomization parameters for {view_name} {attribute} "
+ "on_startup are provided: operation, distribution, distribution_parameters."
)
view = task.world.scene._scene_registry.rigid_prim_views[view_name]
if attribute == "scale":
self.randomize_scale_on_startup(
view=view,
distribution=params["on_startup"]["distribution"],
distribution_parameters=params["on_startup"][
"distribution_parameters"
],
operation=params["on_startup"]["operation"],
sync_dim_noise=True,
)
elif attribute == "mass":
self.randomize_mass_on_startup(
view=view,
distribution=params["on_startup"]["distribution"],
distribution_parameters=params["on_startup"][
"distribution_parameters"
],
operation=params["on_startup"]["operation"],
)
elif attribute == "density":
self.randomize_density_on_startup(
view=view,
distribution=params["on_startup"]["distribution"],
distribution_parameters=params["on_startup"][
"distribution_parameters"
],
operation=params["on_startup"]["operation"],
)
if opt == "articulation_views":
if randomization_params["articulation_views"] is not None:
for view_name in randomization_params["articulation_views"].keys():
if randomization_params["articulation_views"][view_name] is not None:
for attribute, params in randomization_params["articulation_views"][view_name].items():
params = randomization_params["articulation_views"][view_name][attribute]
if attribute in ["scale"] and params is not None:
if "on_startup" in params.keys():
if not set(
("operation", "distribution", "distribution_parameters")
).issubset(params["on_startup"]):
raise ValueError(
f"Please ensure the following randomization parameters for {view_name} {attribute} "
+ "on_startup are provided: operation, distribution, distribution_parameters."
)
view = task.world.scene._scene_registry.articulated_views[view_name]
if attribute == "scale":
self.randomize_scale_on_startup(
view=view,
distribution=params["on_startup"]["distribution"],
distribution_parameters=params["on_startup"][
"distribution_parameters"
],
operation=params["on_startup"]["operation"],
sync_dim_noise=True,
)
else:
dr_config = self._cfg.get("domain_randomization", None)
if dr_config is None:
raise ValueError("No domain randomization parameters are specified in the task yaml config file")
randomize = dr_config.get("randomize", False)
randomization_params = dr_config.get("randomization_params", None)
if randomize == False or randomization_params is None:
print("On Startup Domain randomization will not be applied.")
def set_up_domain_randomization(self, task):
if self.randomize:
randomization_params = self._cfg["domain_randomization"]["randomization_params"]
self.rep.set_global_seed(self._config["seed"])
with self.dr.trigger.on_rl_frame(num_envs=self._cfg["env"]["numEnvs"]):
for opt in randomization_params.keys():
if opt == "observations":
self._set_up_observations_randomization(task)
elif opt == "actions":
self._set_up_actions_randomization(task)
elif opt == "simulation":
if randomization_params["simulation"] is not None:
self.distributions["simulation"] = dict()
self.dr.physics_view.register_simulation_context(task.world)
for attribute, params in randomization_params["simulation"].items():
self._set_up_simulation_randomization(attribute, params)
elif opt == "rigid_prim_views":
if randomization_params["rigid_prim_views"] is not None:
self.distributions["rigid_prim_views"] = dict()
for view_name in randomization_params["rigid_prim_views"].keys():
if randomization_params["rigid_prim_views"][view_name] is not None:
self.distributions["rigid_prim_views"][view_name] = dict()
self.dr.physics_view.register_rigid_prim_view(
rigid_prim_view=task.world.scene._scene_registry.rigid_prim_views[
view_name
],
)
for attribute, params in randomization_params["rigid_prim_views"][
view_name
].items():
if attribute not in ["scale", "density"]:
self._set_up_rigid_prim_view_randomization(view_name, attribute, params)
elif opt == "articulation_views":
if randomization_params["articulation_views"] is not None:
self.distributions["articulation_views"] = dict()
for view_name in randomization_params["articulation_views"].keys():
if randomization_params["articulation_views"][view_name] is not None:
self.distributions["articulation_views"][view_name] = dict()
self.dr.physics_view.register_articulation_view(
articulation_view=task.world.scene._scene_registry.articulated_views[
view_name
],
)
for attribute, params in randomization_params["articulation_views"][
view_name
].items():
if attribute not in ["scale"]:
self._set_up_articulation_view_randomization(view_name, attribute, params)
self.rep.orchestrator.run()
if self._config.get("enable_recording", False):
# we need to deal with initializing render product here because it has to be initialized after orchestrator.run.
# otherwise, replicator will stop the simulation
task._env.create_viewport_render_product(resolution=(task.viewport_camera_width, task.viewport_camera_height))
if not task.is_extension:
task.world.render()
else:
dr_config = self._cfg.get("domain_randomization", None)
if dr_config is None:
raise ValueError("No domain randomization parameters are specified in the task yaml config file")
randomize = dr_config.get("randomize", False)
randomization_params = dr_config.get("randomization_params", None)
if randomize == False or randomization_params is None:
print("Domain randomization will not be applied.")
def _set_up_observations_randomization(self, task):
task.randomize_observations = True
self._observations_dr_params = self._cfg["domain_randomization"]["randomization_params"]["observations"]
if self._observations_dr_params is None:
raise ValueError(f"Observations randomization parameters are not provided.")
if "on_reset" in self._observations_dr_params.keys():
if not set(("operation", "distribution", "distribution_parameters")).issubset(
self._observations_dr_params["on_reset"].keys()
):
raise ValueError(
f"Please ensure the following observations on_reset randomization parameters are provided: "
+ "operation, distribution, distribution_parameters."
)
self.active_domain_randomizations[("observations", "on_reset")] = np.array(
self._observations_dr_params["on_reset"]["distribution_parameters"]
)
if "on_interval" in self._observations_dr_params.keys():
if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset(
self._observations_dr_params["on_interval"].keys()
):
raise ValueError(
f"Please ensure the following observations on_interval randomization parameters are provided: "
+ "frequency_interval, operation, distribution, distribution_parameters."
)
self.active_domain_randomizations[("observations", "on_interval")] = np.array(
self._observations_dr_params["on_interval"]["distribution_parameters"]
)
self._observations_counter_buffer = torch.zeros(
(self._cfg["env"]["numEnvs"]), dtype=torch.int, device=self._config["rl_device"]
)
self._observations_correlated_noise = torch.zeros(
(self._cfg["env"]["numEnvs"], task.num_observations), device=self._config["rl_device"]
)
def _set_up_actions_randomization(self, task):
task.randomize_actions = True
self._actions_dr_params = self._cfg["domain_randomization"]["randomization_params"]["actions"]
if self._actions_dr_params is None:
raise ValueError(f"Actions randomization parameters are not provided.")
if "on_reset" in self._actions_dr_params.keys():
if not set(("operation", "distribution", "distribution_parameters")).issubset(
self._actions_dr_params["on_reset"].keys()
):
raise ValueError(
f"Please ensure the following actions on_reset randomization parameters are provided: "
+ "operation, distribution, distribution_parameters."
)
self.active_domain_randomizations[("actions", "on_reset")] = np.array(
self._actions_dr_params["on_reset"]["distribution_parameters"]
)
if "on_interval" in self._actions_dr_params.keys():
if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset(
self._actions_dr_params["on_interval"].keys()
):
raise ValueError(
f"Please ensure the following actions on_interval randomization parameters are provided: "
+ "frequency_interval, operation, distribution, distribution_parameters."
)
self.active_domain_randomizations[("actions", "on_interval")] = np.array(
self._actions_dr_params["on_interval"]["distribution_parameters"]
)
self._actions_counter_buffer = torch.zeros(
(self._cfg["env"]["numEnvs"]), dtype=torch.int, device=self._config["rl_device"]
)
self._actions_correlated_noise = torch.zeros(
(self._cfg["env"]["numEnvs"], task.num_actions), device=self._config["rl_device"]
)
def apply_observations_randomization(self, observations, reset_buf):
env_ids = reset_buf.nonzero(as_tuple=False).squeeze(-1)
self._observations_counter_buffer[env_ids] = 0
self._observations_counter_buffer += 1
if "on_reset" in self._observations_dr_params.keys():
observations[:] = self._apply_correlated_noise(
buffer_type="observations",
buffer=observations,
reset_ids=env_ids,
operation=self._observations_dr_params["on_reset"]["operation"],
distribution=self._observations_dr_params["on_reset"]["distribution"],
distribution_parameters=self._observations_dr_params["on_reset"]["distribution_parameters"],
)
if "on_interval" in self._observations_dr_params.keys():
randomize_ids = (
(self._observations_counter_buffer >= self._observations_dr_params["on_interval"]["frequency_interval"])
.nonzero(as_tuple=False)
.squeeze(-1)
)
self._observations_counter_buffer[randomize_ids] = 0
observations[:] = self._apply_uncorrelated_noise(
buffer=observations,
randomize_ids=randomize_ids,
operation=self._observations_dr_params["on_interval"]["operation"],
distribution=self._observations_dr_params["on_interval"]["distribution"],
distribution_parameters=self._observations_dr_params["on_interval"]["distribution_parameters"],
)
return observations
def apply_actions_randomization(self, actions, reset_buf):
env_ids = reset_buf.nonzero(as_tuple=False).squeeze(-1)
self._actions_counter_buffer[env_ids] = 0
self._actions_counter_buffer += 1
if "on_reset" in self._actions_dr_params.keys():
actions[:] = self._apply_correlated_noise(
buffer_type="actions",
buffer=actions,
reset_ids=env_ids,
operation=self._actions_dr_params["on_reset"]["operation"],
distribution=self._actions_dr_params["on_reset"]["distribution"],
distribution_parameters=self._actions_dr_params["on_reset"]["distribution_parameters"],
)
if "on_interval" in self._actions_dr_params.keys():
randomize_ids = (
(self._actions_counter_buffer >= self._actions_dr_params["on_interval"]["frequency_interval"])
.nonzero(as_tuple=False)
.squeeze(-1)
)
self._actions_counter_buffer[randomize_ids] = 0
actions[:] = self._apply_uncorrelated_noise(
buffer=actions,
randomize_ids=randomize_ids,
operation=self._actions_dr_params["on_interval"]["operation"],
distribution=self._actions_dr_params["on_interval"]["distribution"],
distribution_parameters=self._actions_dr_params["on_interval"]["distribution_parameters"],
)
return actions
def _apply_uncorrelated_noise(self, buffer, randomize_ids, operation, distribution, distribution_parameters):
if distribution == "gaussian" or distribution == "normal":
noise = torch.normal(
mean=distribution_parameters[0],
std=distribution_parameters[1],
size=(len(randomize_ids), buffer.shape[1]),
device=self._config["rl_device"],
)
elif distribution == "uniform":
noise = (distribution_parameters[1] - distribution_parameters[0]) * torch.rand(
(len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"]
) + distribution_parameters[0]
elif distribution == "loguniform" or distribution == "log_uniform":
noise = torch.exp(
(np.log(distribution_parameters[1]) - np.log(distribution_parameters[0]))
* torch.rand((len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"])
+ np.log(distribution_parameters[0])
)
else:
print(f"The specified {distribution} distribution is not supported.")
if operation == "additive":
buffer[randomize_ids] += noise
elif operation == "scaling":
buffer[randomize_ids] *= noise
else:
print(f"The specified {operation} operation type is not supported.")
return buffer
def _apply_correlated_noise(self, buffer_type, buffer, reset_ids, operation, distribution, distribution_parameters):
if buffer_type == "observations":
correlated_noise_buffer = self._observations_correlated_noise
elif buffer_type == "actions":
correlated_noise_buffer = self._actions_correlated_noise
if len(reset_ids) > 0:
if distribution == "gaussian" or distribution == "normal":
correlated_noise_buffer[reset_ids] = torch.normal(
mean=distribution_parameters[0],
std=distribution_parameters[1],
size=(len(reset_ids), buffer.shape[1]),
device=self._config["rl_device"],
)
elif distribution == "uniform":
correlated_noise_buffer[reset_ids] = (
distribution_parameters[1] - distribution_parameters[0]
) * torch.rand(
(len(reset_ids), buffer.shape[1]), device=self._config["rl_device"]
) + distribution_parameters[
0
]
elif distribution == "loguniform" or distribution == "log_uniform":
correlated_noise_buffer[reset_ids] = torch.exp(
(np.log(distribution_parameters[1]) - np.log(distribution_parameters[0]))
* torch.rand((len(reset_ids), buffer.shape[1]), device=self._config["rl_device"])
+ np.log(distribution_parameters[0])
)
else:
print(f"The specified {distribution} distribution is not supported.")
if operation == "additive":
buffer += correlated_noise_buffer
elif operation == "scaling":
buffer *= correlated_noise_buffer
else:
print(f"The specified {operation} operation type is not supported.")
return buffer
def _set_up_simulation_randomization(self, attribute, params):
if params is None:
raise ValueError(f"Randomization parameters for simulation {attribute} is not provided.")
if attribute in self.dr.SIMULATION_CONTEXT_ATTRIBUTES:
self.distributions["simulation"][attribute] = dict()
if "on_reset" in params.keys():
if not set(("operation", "distribution", "distribution_parameters")).issubset(params["on_reset"]):
raise ValueError(
f"Please ensure the following randomization parameters for simulation {attribute} on_reset are provided: "
+ "operation, distribution, distribution_parameters."
)
self.active_domain_randomizations[("simulation", attribute, "on_reset")] = np.array(
params["on_reset"]["distribution_parameters"]
)
kwargs = {"operation": params["on_reset"]["operation"]}
self.distributions["simulation"][attribute]["on_reset"] = self._generate_distribution(
dimension=self.dr.physics_view._simulation_context_initial_values[attribute].shape[0],
view_name="simulation",
attribute=attribute,
params=params["on_reset"],
)
kwargs[attribute] = self.distributions["simulation"][attribute]["on_reset"]
with self.dr.gate.on_env_reset():
self.dr.physics_view.randomize_simulation_context(**kwargs)
if "on_interval" in params.keys():
if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset(
params["on_interval"]
):
raise ValueError(
f"Please ensure the following randomization parameters for simulation {attribute} on_interval are provided: "
+ "frequency_interval, operation, distribution, distribution_parameters."
)
self.active_domain_randomizations[("simulation", attribute, "on_interval")] = np.array(
params["on_interval"]["distribution_parameters"]
)
kwargs = {"operation": params["on_interval"]["operation"]}
self.distributions["simulation"][attribute]["on_interval"] = self._generate_distribution(
dimension=self.dr.physics_view._simulation_context_initial_values[attribute].shape[0],
view_name="simulation",
attribute=attribute,
params=params["on_interval"],
)
kwargs[attribute] = self.distributions["simulation"][attribute]["on_interval"]
with self.dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]):
self.dr.physics_view.randomize_simulation_context(**kwargs)
def _set_up_rigid_prim_view_randomization(self, view_name, attribute, params):
if params is None:
raise ValueError(f"Randomization parameters for rigid prim view {view_name} {attribute} is not provided.")
if attribute in self.dr.RIGID_PRIM_ATTRIBUTES:
self.distributions["rigid_prim_views"][view_name][attribute] = dict()
if "on_reset" in params.keys():
if not set(("operation", "distribution", "distribution_parameters")).issubset(params["on_reset"]):
raise ValueError(
f"Please ensure the following randomization parameters for {view_name} {attribute} on_reset are provided: "
+ "operation, distribution, distribution_parameters."
)
self.active_domain_randomizations[("rigid_prim_views", view_name, attribute, "on_reset")] = np.array(
params["on_reset"]["distribution_parameters"]
)
kwargs = {"view_name": view_name, "operation": params["on_reset"]["operation"]}
if attribute == "material_properties" and "num_buckets" in params["on_reset"].keys():
kwargs["num_buckets"] = params["on_reset"]["num_buckets"]
self.distributions["rigid_prim_views"][view_name][attribute]["on_reset"] = self._generate_distribution(
dimension=self.dr.physics_view._rigid_prim_views_initial_values[view_name][attribute].shape[1],
view_name=view_name,
attribute=attribute,
params=params["on_reset"],
)
kwargs[attribute] = self.distributions["rigid_prim_views"][view_name][attribute]["on_reset"]
with self.dr.gate.on_env_reset():
self.dr.physics_view.randomize_rigid_prim_view(**kwargs)
if "on_interval" in params.keys():
if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset(
params["on_interval"]
):
raise ValueError(
f"Please ensure the following randomization parameters for {view_name} {attribute} on_interval are provided: "
+ "frequency_interval, operation, distribution, distribution_parameters."
)
self.active_domain_randomizations[("rigid_prim_views", view_name, attribute, "on_interval")] = np.array(
params["on_interval"]["distribution_parameters"]
)
kwargs = {"view_name": view_name, "operation": params["on_interval"]["operation"]}
if attribute == "material_properties" and "num_buckets" in params["on_interval"].keys():
kwargs["num_buckets"] = params["on_interval"]["num_buckets"]
self.distributions["rigid_prim_views"][view_name][attribute][
"on_interval"
] = self._generate_distribution(
dimension=self.dr.physics_view._rigid_prim_views_initial_values[view_name][attribute].shape[1],
view_name=view_name,
attribute=attribute,
params=params["on_interval"],
)
kwargs[attribute] = self.distributions["rigid_prim_views"][view_name][attribute]["on_interval"]
with self.dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]):
self.dr.physics_view.randomize_rigid_prim_view(**kwargs)
else:
raise ValueError(f"The attribute {attribute} for {view_name} is invalid for domain randomization.")
def _set_up_articulation_view_randomization(self, view_name, attribute, params):
if params is None:
raise ValueError(f"Randomization parameters for articulation view {view_name} {attribute} is not provided.")
if attribute in self.dr.ARTICULATION_ATTRIBUTES:
self.distributions["articulation_views"][view_name][attribute] = dict()
if "on_reset" in params.keys():
if not set(("operation", "distribution", "distribution_parameters")).issubset(params["on_reset"]):
raise ValueError(
f"Please ensure the following randomization parameters for {view_name} {attribute} on_reset are provided: "
+ "operation, distribution, distribution_parameters."
)
self.active_domain_randomizations[("articulation_views", view_name, attribute, "on_reset")] = np.array(
params["on_reset"]["distribution_parameters"]
)
kwargs = {"view_name": view_name, "operation": params["on_reset"]["operation"]}
if attribute == "material_properties" and "num_buckets" in params["on_reset"].keys():
kwargs["num_buckets"] = params["on_reset"]["num_buckets"]
self.distributions["articulation_views"][view_name][attribute][
"on_reset"
] = self._generate_distribution(
dimension=self.dr.physics_view._articulation_views_initial_values[view_name][attribute].shape[1],
view_name=view_name,
attribute=attribute,
params=params["on_reset"],
)
kwargs[attribute] = self.distributions["articulation_views"][view_name][attribute]["on_reset"]
with self.dr.gate.on_env_reset():
self.dr.physics_view.randomize_articulation_view(**kwargs)
if "on_interval" in params.keys():
if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset(
params["on_interval"]
):
raise ValueError(
f"Please ensure the following randomization parameters for {view_name} {attribute} on_interval are provided: "
+ "frequency_interval, operation, distribution, distribution_parameters."
)
self.active_domain_randomizations[
("articulation_views", view_name, attribute, "on_interval")
] = np.array(params["on_interval"]["distribution_parameters"])
kwargs = {"view_name": view_name, "operation": params["on_interval"]["operation"]}
if attribute == "material_properties" and "num_buckets" in params["on_interval"].keys():
kwargs["num_buckets"] = params["on_interval"]["num_buckets"]
self.distributions["articulation_views"][view_name][attribute][
"on_interval"
] = self._generate_distribution(
dimension=self.dr.physics_view._articulation_views_initial_values[view_name][attribute].shape[1],
view_name=view_name,
attribute=attribute,
params=params["on_interval"],
)
kwargs[attribute] = self.distributions["articulation_views"][view_name][attribute]["on_interval"]
with self.dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]):
self.dr.physics_view.randomize_articulation_view(**kwargs)
else:
raise ValueError(f"The attribute {attribute} for {view_name} is invalid for domain randomization.")
def _generate_distribution(self, view_name, attribute, dimension, params):
dist_params = self._sanitize_distribution_parameters(attribute, dimension, params["distribution_parameters"])
if params["distribution"] == "uniform":
return self.rep.distribution.uniform(tuple(dist_params[0]), tuple(dist_params[1]))
elif params["distribution"] == "gaussian" or params["distribution"] == "normal":
return self.rep.distribution.normal(tuple(dist_params[0]), tuple(dist_params[1]))
elif params["distribution"] == "loguniform" or params["distribution"] == "log_uniform":
return self.rep.distribution.log_uniform(tuple(dist_params[0]), tuple(dist_params[1]))
else:
raise ValueError(
f"The provided distribution for {view_name} {attribute} is not supported. "
+ "Options: uniform, gaussian/normal, loguniform/log_uniform"
)
def _sanitize_distribution_parameters(self, attribute, dimension, params):
distribution_parameters = np.array(params)
if distribution_parameters.shape == (2,):
# if the user does not provide a set of parameters for each dimension
dist_params = [[distribution_parameters[0]] * dimension, [distribution_parameters[1]] * dimension]
elif distribution_parameters.shape == (2, dimension):
# if the user provides a set of parameters for each dimension in the format [[...], [...]]
dist_params = distribution_parameters.tolist()
elif attribute in ["material_properties", "body_inertias"] and distribution_parameters.shape == (2, 3):
# if the user only provides the parameters for one body in the articulation, assume the same parameters for all other links
dist_params = [
[distribution_parameters[0]] * (dimension // 3),
[distribution_parameters[1]] * (dimension // 3),
]
else:
raise ValueError(
f"The provided distribution_parameters for {view_name} {attribute} is invalid due to incorrect dimensions."
)
return dist_params
def set_dr_distribution_parameters(self, distribution_parameters, *distribution_path):
if distribution_path not in self.active_domain_randomizations.keys():
raise ValueError(
f"Cannot find a valid domain randomization distribution using the path {distribution_path}."
)
if distribution_path[0] == "observations":
if len(distribution_parameters) == 2:
self._observations_dr_params[distribution_path[1]]["distribution_parameters"] = distribution_parameters
else:
raise ValueError(
f"Please provide distribution_parameters for observations {distribution_path[1]} "
+ "in the form of [dist_param_1, dist_param_2]"
)
elif distribution_path[0] == "actions":
if len(distribution_parameters) == 2:
self._actions_dr_params[distribution_path[1]]["distribution_parameters"] = distribution_parameters
else:
raise ValueError(
f"Please provide distribution_parameters for actions {distribution_path[1]} "
+ "in the form of [dist_param_1, dist_param_2]"
)
else:
replicator_distribution = self.distributions[distribution_path[0]][distribution_path[1]][
distribution_path[2]
]
if distribution_path[0] == "rigid_prim_views" or distribution_path[0] == "articulation_views":
replicator_distribution = replicator_distribution[distribution_path[3]]
if (
replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleUniform"
or replicator_distribution.node.get_node_type().get_node_type()
== "omni.replicator.core.OgnSampleLogUniform"
):
dimension = len(self.dr.utils.get_distribution_params(replicator_distribution, ["lower"])[0])
dist_params = self._sanitize_distribution_parameters(
distribution_path[-2], dimension, distribution_parameters
)
self.dr.utils.set_distribution_params(
replicator_distribution, {"lower": dist_params[0], "upper": dist_params[1]}
)
elif replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleNormal":
dimension = len(self.dr.utils.get_distribution_params(replicator_distribution, ["mean"])[0])
dist_params = self._sanitize_distribution_parameters(
distribution_path[-2], dimension, distribution_parameters
)
self.dr.utils.set_distribution_params(
replicator_distribution, {"mean": dist_params[0], "std": dist_params[1]}
)
def get_dr_distribution_parameters(self, *distribution_path):
if distribution_path not in self.active_domain_randomizations.keys():
raise ValueError(
f"Cannot find a valid domain randomization distribution using the path {distribution_path}."
)
if distribution_path[0] == "observations":
return self._observations_dr_params[distribution_path[1]]["distribution_parameters"]
elif distribution_path[0] == "actions":
return self._actions_dr_params[distribution_path[1]]["distribution_parameters"]
else:
replicator_distribution = self.distributions[distribution_path[0]][distribution_path[1]][
distribution_path[2]
]
if distribution_path[0] == "rigid_prim_views" or distribution_path[0] == "articulation_views":
replicator_distribution = replicator_distribution[distribution_path[3]]
if (
replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleUniform"
or replicator_distribution.node.get_node_type().get_node_type()
== "omni.replicator.core.OgnSampleLogUniform"
):
return self.dr.utils.get_distribution_params(replicator_distribution, ["lower", "upper"])
elif replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleNormal":
return self.dr.utils.get_distribution_params(replicator_distribution, ["mean", "std"])
def get_initial_dr_distribution_parameters(self, *distribution_path):
if distribution_path not in self.active_domain_randomizations.keys():
raise ValueError(
f"Cannot find a valid domain randomization distribution using the path {distribution_path}."
)
return self.active_domain_randomizations[distribution_path].copy()
def _generate_noise(self, distribution, distribution_parameters, size, device):
if distribution == "gaussian" or distribution == "normal":
noise = torch.normal(
mean=distribution_parameters[0], std=distribution_parameters[1], size=size, device=device
)
elif distribution == "uniform":
noise = (distribution_parameters[1] - distribution_parameters[0]) * torch.rand(
size, device=device
) + distribution_parameters[0]
elif distribution == "loguniform" or distribution == "log_uniform":
noise = torch.exp(
(np.log(distribution_parameters[1]) - np.log(distribution_parameters[0]))
* torch.rand(size, device=device)
+ np.log(distribution_parameters[0])
)
else:
print(f"The specified {distribution} distribution is not supported.")
return noise
def randomize_scale_on_startup(self, view, distribution, distribution_parameters, operation, sync_dim_noise=True):
scales = view.get_local_scales()
if sync_dim_noise:
dist_params = np.asarray(
self._sanitize_distribution_parameters(attribute="scale", dimension=1, params=distribution_parameters)
)
noise = (
self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device).repeat(3, 1).T
)
else:
dist_params = np.asarray(
self._sanitize_distribution_parameters(attribute="scale", dimension=3, params=distribution_parameters)
)
noise = torch.zeros((view.count, 3), device=view._device)
for i in range(3):
noise[:, i] = self._generate_noise(distribution, dist_params[:, i], (view.count,), view._device)
if operation == "additive":
scales += noise
elif operation == "scaling":
scales *= noise
elif operation == "direct":
scales = noise
else:
print(f"The specified {operation} operation type is not supported.")
view.set_local_scales(scales=scales)
def randomize_mass_on_startup(self, view, distribution, distribution_parameters, operation):
if isinstance(view, omni.isaac.core.prims.RigidPrimView) or isinstance(view, RigidPrimView):
masses = view.get_masses()
dist_params = np.asarray(
self._sanitize_distribution_parameters(
attribute=f"{view.name} mass", dimension=1, params=distribution_parameters
)
)
noise = self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device)
set_masses = view.set_masses
if operation == "additive":
masses += noise
elif operation == "scaling":
masses *= noise
elif operation == "direct":
masses = noise
else:
print(f"The specified {operation} operation type is not supported.")
set_masses(masses)
def randomize_density_on_startup(self, view, distribution, distribution_parameters, operation):
if isinstance(view, omni.isaac.core.prims.RigidPrimView) or isinstance(view, RigidPrimView):
densities = view.get_densities()
dist_params = np.asarray(
self._sanitize_distribution_parameters(
attribute=f"{view.name} density", dimension=1, params=distribution_parameters
)
)
noise = self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device)
set_densities = view.set_densities
if operation == "additive":
densities += noise
elif operation == "scaling":
densities *= noise
elif operation == "direct":
densities = noise
else:
print(f"The specified {operation} operation type is not supported.")
set_densities(densities)
| 46,049 | Python | 58.650259 | 136 | 0.55593 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/rlgames/rlgames_utils.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Callable
import numpy as np
import torch
from rl_games.algos_torch import torch_ext
from rl_games.common import env_configurations, vecenv
from rl_games.common.algo_observer import AlgoObserver
class RLGPUAlgoObserver(AlgoObserver):
"""Allows us to log stats from the env along with the algorithm running stats."""
def __init__(self):
pass
def after_init(self, algo):
self.algo = algo
self.mean_scores = torch_ext.AverageMeter(1, self.algo.games_to_track).to(self.algo.ppo_device)
self.ep_infos = []
self.direct_info = {}
self.writer = self.algo.writer
def process_infos(self, infos, done_indices):
assert isinstance(infos, dict), "RLGPUAlgoObserver expects dict info"
if isinstance(infos, dict):
if "episode" in infos:
self.ep_infos.append(infos["episode"])
if len(infos) > 0 and isinstance(infos, dict): # allow direct logging from env
self.direct_info = {}
for k, v in infos.items():
# only log scalars
if (
isinstance(v, float)
or isinstance(v, int)
or (isinstance(v, torch.Tensor) and len(v.shape) == 0)
):
self.direct_info[k] = v
def after_clear_stats(self):
self.mean_scores.clear()
def after_print_stats(self, frame, epoch_num, total_time):
if self.ep_infos:
for key in self.ep_infos[0]:
infotensor = torch.tensor([], device=self.algo.device)
for ep_info in self.ep_infos:
# handle scalar and zero dimensional tensor infos
if not isinstance(ep_info[key], torch.Tensor):
ep_info[key] = torch.Tensor([ep_info[key]])
if len(ep_info[key].shape) == 0:
ep_info[key] = ep_info[key].unsqueeze(0)
infotensor = torch.cat((infotensor, ep_info[key].to(self.algo.device)))
value = torch.mean(infotensor)
self.writer.add_scalar("Episode/" + key, value, epoch_num)
self.ep_infos.clear()
for k, v in self.direct_info.items():
self.writer.add_scalar(f"{k}/frame", v, frame)
self.writer.add_scalar(f"{k}/iter", v, epoch_num)
self.writer.add_scalar(f"{k}/time", v, total_time)
if self.mean_scores.current_size > 0:
mean_scores = self.mean_scores.get_mean()
self.writer.add_scalar("scores/mean", mean_scores, frame)
self.writer.add_scalar("scores/iter", mean_scores, epoch_num)
self.writer.add_scalar("scores/time", mean_scores, total_time)
class RLGPUEnv(vecenv.IVecEnv):
def __init__(self, config_name, num_actors, **kwargs):
self.env = env_configurations.configurations[config_name]["env_creator"](**kwargs)
def step(self, action):
return self.env.step(action)
def reset(self):
return self.env.reset()
def get_number_of_agents(self):
return self.env.get_number_of_agents()
def get_env_info(self):
info = {}
info["action_space"] = self.env.action_space
info["observation_space"] = self.env.observation_space
if self.env.num_states > 0:
info["state_space"] = self.env.state_space
print(info["action_space"], info["observation_space"], info["state_space"])
else:
print(info["action_space"], info["observation_space"])
return info
| 5,201 | Python | 40.951613 | 103 | 0.636801 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/rlgames/rlgames_train_mt.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import copy
import datetime
import os
import queue
import threading
import traceback
import hydra
from omegaconf import DictConfig
from omni.isaac.gym.vec_env.vec_env_mt import TrainerMT
import omniisaacgymenvs
from omniisaacgymenvs.envs.vec_env_rlgames_mt import VecEnvRLGamesMT
from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path
from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import *
from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict
from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv
from omniisaacgymenvs.utils.task_util import initialize_task
from rl_games.common import env_configurations, vecenv
from rl_games.torch_runner import Runner
class RLGTrainer:
def __init__(self, cfg, cfg_dict):
self.cfg = cfg
self.cfg_dict = cfg_dict
# ensure checkpoints can be specified as relative paths
self._bad_checkpoint = False
if self.cfg.checkpoint:
self.cfg.checkpoint = retrieve_checkpoint_path(self.cfg.checkpoint)
if not self.cfg.checkpoint:
self._bad_checkpoint = True
def launch_rlg_hydra(self, env):
# `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally.
# We use the helper function here to specify the environment config.
self.cfg_dict["task"]["test"] = self.cfg.test
# register the rl-games adapter to use inside the runner
vecenv.register("RLGPU", lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs))
env_configurations.register("rlgpu", {"vecenv_type": "RLGPU", "env_creator": lambda **kwargs: env})
self.rlg_config_dict = omegaconf_to_dict(self.cfg.train)
def run(self):
# create runner and set the settings
runner = Runner(RLGPUAlgoObserver())
# add evaluation parameters
if self.cfg.evaluation:
player_config = self.rlg_config_dict["params"]["config"].get("player", {})
player_config["evaluation"] = True
player_config["update_checkpoint_freq"] = 100
player_config["dir_to_monitor"] = os.path.dirname(self.cfg.checkpoint)
self.rlg_config_dict["params"]["config"]["player"] = player_config
module_path = os.path.abspath(os.path.join(os.path.dirname(omniisaacgymenvs.__file__)))
self.rlg_config_dict["params"]["config"]["train_dir"] = os.path.join(module_path, "runs")
# load config
runner.load(copy.deepcopy(self.rlg_config_dict))
runner.reset()
# dump config dict
experiment_dir = os.path.join(module_path, "runs", self.cfg.train.params.config.name)
os.makedirs(experiment_dir, exist_ok=True)
with open(os.path.join(experiment_dir, "config.yaml"), "w") as f:
f.write(OmegaConf.to_yaml(self.cfg))
time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
if self.cfg.wandb_activate:
# Make sure to install WandB if you actually use this.
import wandb
run_name = f"{self.cfg.wandb_name}_{time_str}"
wandb.init(
project=self.cfg.wandb_project,
group=self.cfg.wandb_group,
entity=self.cfg.wandb_entity,
config=self.cfg_dict,
sync_tensorboard=True,
id=run_name,
resume="allow",
monitor_gym=True,
)
runner.run(
{"train": not self.cfg.test, "play": self.cfg.test, "checkpoint": self.cfg.checkpoint, "sigma": None}
)
if self.cfg.wandb_activate:
wandb.finish()
class Trainer(TrainerMT):
def __init__(self, trainer, env):
self.ppo_thread = None
self.action_queue = None
self.data_queue = None
self.trainer = trainer
self.is_running = False
self.env = env
self.create_task()
self.run()
def create_task(self):
self.trainer.launch_rlg_hydra(self.env)
# task = initialize_task(self.trainer.cfg_dict, self.env, init_sim=False)
self.task = self.env.task
def run(self):
self.is_running = True
self.action_queue = queue.Queue(1)
self.data_queue = queue.Queue(1)
if "mt_timeout" in self.trainer.cfg_dict:
self.env.initialize(self.action_queue, self.data_queue, self.trainer.cfg_dict["mt_timeout"])
else:
self.env.initialize(self.action_queue, self.data_queue)
self.ppo_thread = PPOTrainer(self.env, self.task, self.trainer)
self.ppo_thread.daemon = True
self.ppo_thread.start()
def stop(self):
self.env.stop = True
self.env.clear_queues()
if self.action_queue:
self.action_queue.join()
if self.data_queue:
self.data_queue.join()
if self.ppo_thread:
self.ppo_thread.join()
self.action_queue = None
self.data_queue = None
self.ppo_thread = None
self.is_running = False
class PPOTrainer(threading.Thread):
def __init__(self, env, task, trainer):
super().__init__()
self.env = env
self.task = task
self.trainer = trainer
def run(self):
from omni.isaac.gym.vec_env import TaskStopException
print("starting ppo...")
try:
self.trainer.run()
# trainer finished - send stop signal to main thread
self.env.should_run = False
self.env.send_actions(None, block=False)
except TaskStopException:
print("Task Stopped!")
self.env.should_run = False
self.env.send_actions(None, block=False)
except Exception as e:
# an error occurred on the RL side - signal stop to main thread
print(traceback.format_exc())
self.env.should_run = False
self.env.send_actions(None, block=False)
| 7,633 | Python | 37.17 | 119 | 0.654395 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/config_utils/sim_config.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import copy
import carb
import numpy as np
import omni.usd
import torch
from omni.isaac.core.utils.extensions import enable_extension
from omniisaacgymenvs.utils.config_utils.default_scene_params import *
class SimConfig:
def __init__(self, config: dict = None):
if config is None:
config = dict()
self._config = config
self._cfg = config.get("task", dict())
self._parse_config()
if self._config["test"] == True:
self._sim_params["enable_scene_query_support"] = True
if (
self._config["headless"] == True
and not self._sim_params["enable_cameras"]
and not self._config["enable_livestream"]
and not self._config.get("enable_recording", False)
):
self._sim_params["use_fabric"] = False
self._sim_params["enable_viewport"] = False
else:
self._sim_params["enable_viewport"] = True
enable_extension("omni.kit.viewport.bundle")
if self._sim_params["enable_cameras"] or self._config.get("enable_recording", False):
enable_extension("omni.replicator.isaac")
self._sim_params["warp"] = self._config["warp"]
self._sim_params["sim_device"] = self._config["sim_device"]
self._adjust_dt()
if self._sim_params["disable_contact_processing"]:
carb.settings.get_settings().set_bool("/physics/disableContactProcessing", True)
carb.settings.get_settings().set_bool("/physics/physxDispatcher", True)
# Force the background grid off all the time for RL tasks, to avoid the grid showing up in any RL camera task
carb.settings.get_settings().set("/app/viewport/grid/enabled", False)
# Disable framerate limiting which might cause rendering slowdowns
carb.settings.get_settings().set("/app/runLoops/main/rateLimitEnabled", False)
import omni.ui
# Dock floating UIs this might not be needed anymore as extensions dock themselves
# Method for docking a particular window to a location
def dock_window(space, name, location, ratio=0.5):
window = omni.ui.Workspace.get_window(name)
if window and space:
window.dock_in(space, location, ratio=ratio)
return window
# Acquire the main docking station
main_dockspace = omni.ui.Workspace.get_window("DockSpace")
dock_window(main_dockspace, "Content", omni.ui.DockPosition.BOTTOM, 0.3)
window = omni.ui.Workspace.get_window("Content")
if window:
window.visible = False
window = omni.ui.Workspace.get_window("Simulation Settings")
if window:
window.visible = False
# workaround for asset root search hang
carb.settings.get_settings().set_string(
"/persistent/isaac/asset_root/default",
"http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2023.1.1",
)
carb.settings.get_settings().set_string(
"/persistent/isaac/asset_root/nvidia",
"http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2023.1.1",
)
# make sure the correct USD update flags are set
if self._sim_params["use_fabric"]:
carb.settings.get_settings().set_bool("/physics/updateToUsd", False)
carb.settings.get_settings().set_bool("/physics/updateParticlesToUsd", False)
carb.settings.get_settings().set_bool("/physics/updateVelocitiesToUsd", False)
carb.settings.get_settings().set_bool("/physics/updateForceSensorsToUsd", False)
carb.settings.get_settings().set_bool("/physics/outputVelocitiesLocalSpace", False)
carb.settings.get_settings().set_bool("/physics/fabricUpdateTransformations", True)
carb.settings.get_settings().set_bool("/physics/fabricUpdateVelocities", False)
carb.settings.get_settings().set_bool("/physics/fabricUpdateForceSensors", False)
carb.settings.get_settings().set_bool("/physics/fabricUpdateJointStates", False)
def _parse_config(self):
# general sim parameter
self._sim_params = copy.deepcopy(default_sim_params)
self._default_physics_material = copy.deepcopy(default_physics_material)
sim_cfg = self._cfg.get("sim", None)
if sim_cfg is not None:
for opt in sim_cfg.keys():
if opt in self._sim_params:
if opt == "default_physics_material":
for material_opt in sim_cfg[opt]:
self._default_physics_material[material_opt] = sim_cfg[opt][material_opt]
else:
self._sim_params[opt] = sim_cfg[opt]
else:
print("Sim params does not have attribute: ", opt)
self._sim_params["default_physics_material"] = self._default_physics_material
# physx parameters
self._physx_params = copy.deepcopy(default_physx_params)
if sim_cfg is not None and "physx" in sim_cfg:
for opt in sim_cfg["physx"].keys():
if opt in self._physx_params:
self._physx_params[opt] = sim_cfg["physx"][opt]
else:
print("Physx sim params does not have attribute: ", opt)
self._sanitize_device()
def _sanitize_device(self):
if self._sim_params["use_gpu_pipeline"]:
self._physx_params["use_gpu"] = True
# device should be in sync with pipeline
if self._sim_params["use_gpu_pipeline"]:
self._config["sim_device"] = f"cuda:{self._config['device_id']}"
else:
self._config["sim_device"] = "cpu"
# also write to physics params for setting sim device
self._physx_params["sim_device"] = self._config["sim_device"]
print("Pipeline: ", "GPU" if self._sim_params["use_gpu_pipeline"] else "CPU")
print("Pipeline Device: ", self._config["sim_device"])
print("Sim Device: ", "GPU" if self._physx_params["use_gpu"] else "CPU")
def parse_actor_config(self, actor_name):
actor_params = copy.deepcopy(default_actor_options)
if "sim" in self._cfg and actor_name in self._cfg["sim"]:
actor_cfg = self._cfg["sim"][actor_name]
for opt in actor_cfg.keys():
if actor_cfg[opt] != -1 and opt in actor_params:
actor_params[opt] = actor_cfg[opt]
elif opt not in actor_params:
print("Actor params does not have attribute: ", opt)
return actor_params
def _get_actor_config_value(self, actor_name, attribute_name, attribute=None):
actor_params = self.parse_actor_config(actor_name)
if attribute is not None:
if attribute_name not in actor_params:
return attribute.Get()
if actor_params[attribute_name] != -1:
return actor_params[attribute_name]
elif actor_params["override_usd_defaults"] and not attribute.IsAuthored():
return self._physx_params[attribute_name]
else:
if actor_params[attribute_name] != -1:
return actor_params[attribute_name]
def _adjust_dt(self):
# re-evaluate rendering dt to simulate physics substeps
physics_dt = self.sim_params["dt"]
rendering_dt = self.sim_params["rendering_dt"]
# by default, rendering dt = physics dt
if rendering_dt <= 0:
rendering_dt = physics_dt
self.task_config["renderingInterval"] = max(round((1/physics_dt) / (1/rendering_dt)), 1)
# we always set rendering dt to be the same as physics dt, stepping is taken care of in VecEnvRLGames
self.sim_params["rendering_dt"] = physics_dt
@property
def sim_params(self):
return self._sim_params
@property
def config(self):
return self._config
@property
def task_config(self):
return self._cfg
@property
def physx_params(self):
return self._physx_params
def get_physics_params(self):
return {**self.sim_params, **self.physx_params}
def _get_physx_collision_api(self, prim):
from pxr import PhysxSchema, UsdPhysics
physx_collision_api = PhysxSchema.PhysxCollisionAPI(prim)
if not physx_collision_api:
physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(prim)
return physx_collision_api
def _get_physx_rigid_body_api(self, prim):
from pxr import PhysxSchema, UsdPhysics
physx_rb_api = PhysxSchema.PhysxRigidBodyAPI(prim)
if not physx_rb_api:
physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Apply(prim)
return physx_rb_api
def _get_physx_articulation_api(self, prim):
from pxr import PhysxSchema, UsdPhysics
arti_api = PhysxSchema.PhysxArticulationAPI(prim)
if not arti_api:
arti_api = PhysxSchema.PhysxArticulationAPI.Apply(prim)
return arti_api
def set_contact_offset(self, name, prim, value=None):
physx_collision_api = self._get_physx_collision_api(prim)
contact_offset = physx_collision_api.GetContactOffsetAttr()
# if not contact_offset:
# contact_offset = physx_collision_api.CreateContactOffsetAttr()
if value is None:
value = self._get_actor_config_value(name, "contact_offset", contact_offset)
if value != -1:
contact_offset.Set(value)
def set_rest_offset(self, name, prim, value=None):
physx_collision_api = self._get_physx_collision_api(prim)
rest_offset = physx_collision_api.GetRestOffsetAttr()
# if not rest_offset:
# rest_offset = physx_collision_api.CreateRestOffsetAttr()
if value is None:
value = self._get_actor_config_value(name, "rest_offset", rest_offset)
if value != -1:
rest_offset.Set(value)
def set_position_iteration(self, name, prim, value=None):
physx_rb_api = self._get_physx_rigid_body_api(prim)
solver_position_iteration_count = physx_rb_api.GetSolverPositionIterationCountAttr()
if value is None:
value = self._get_actor_config_value(
name, "solver_position_iteration_count", solver_position_iteration_count
)
if value != -1:
solver_position_iteration_count.Set(value)
def set_velocity_iteration(self, name, prim, value=None):
physx_rb_api = self._get_physx_rigid_body_api(prim)
solver_velocity_iteration_count = physx_rb_api.GetSolverVelocityIterationCountAttr()
if value is None:
value = self._get_actor_config_value(
name, "solver_velocity_iteration_count", solver_velocity_iteration_count
)
if value != -1:
solver_velocity_iteration_count.Set(value)
def set_max_depenetration_velocity(self, name, prim, value=None):
physx_rb_api = self._get_physx_rigid_body_api(prim)
max_depenetration_velocity = physx_rb_api.GetMaxDepenetrationVelocityAttr()
if value is None:
value = self._get_actor_config_value(name, "max_depenetration_velocity", max_depenetration_velocity)
if value != -1:
max_depenetration_velocity.Set(value)
def set_sleep_threshold(self, name, prim, value=None):
physx_rb_api = self._get_physx_rigid_body_api(prim)
sleep_threshold = physx_rb_api.GetSleepThresholdAttr()
if value is None:
value = self._get_actor_config_value(name, "sleep_threshold", sleep_threshold)
if value != -1:
sleep_threshold.Set(value)
def set_stabilization_threshold(self, name, prim, value=None):
physx_rb_api = self._get_physx_rigid_body_api(prim)
stabilization_threshold = physx_rb_api.GetStabilizationThresholdAttr()
if value is None:
value = self._get_actor_config_value(name, "stabilization_threshold", stabilization_threshold)
if value != -1:
stabilization_threshold.Set(value)
def set_gyroscopic_forces(self, name, prim, value=None):
physx_rb_api = self._get_physx_rigid_body_api(prim)
enable_gyroscopic_forces = physx_rb_api.GetEnableGyroscopicForcesAttr()
if value is None:
value = self._get_actor_config_value(name, "enable_gyroscopic_forces", enable_gyroscopic_forces)
if value != -1:
enable_gyroscopic_forces.Set(value)
def set_density(self, name, prim, value=None):
physx_rb_api = self._get_physx_rigid_body_api(prim)
density = physx_rb_api.GetDensityAttr()
if value is None:
value = self._get_actor_config_value(name, "density", density)
if value != -1:
density.Set(value)
# auto-compute mass
self.set_mass(prim, 0.0)
def set_mass(self, name, prim, value=None):
physx_rb_api = self._get_physx_rigid_body_api(prim)
mass = physx_rb_api.GetMassAttr()
if value is None:
value = self._get_actor_config_value(name, "mass", mass)
if value != -1:
mass.Set(value)
def retain_acceleration(self, prim):
# retain accelerations if running with more than one substep
physx_rb_api = self._get_physx_rigid_body_api(prim)
if self._sim_params["substeps"] > 1:
physx_rb_api.GetRetainAccelerationsAttr().Set(True)
def make_kinematic(self, name, prim, cfg, value=None):
# make rigid body kinematic (fixed base and no collision)
from pxr import PhysxSchema, UsdPhysics
stage = omni.usd.get_context().get_stage()
if value is None:
value = self._get_actor_config_value(name, "make_kinematic")
if value == True:
# parse through all children prims
prims = [prim]
while len(prims) > 0:
cur_prim = prims.pop(0)
rb = UsdPhysics.RigidBodyAPI.Get(stage, cur_prim.GetPath())
if rb:
rb.CreateKinematicEnabledAttr().Set(True)
children_prims = cur_prim.GetPrim().GetChildren()
prims = prims + children_prims
def set_articulation_position_iteration(self, name, prim, value=None):
arti_api = self._get_physx_articulation_api(prim)
solver_position_iteration_count = arti_api.GetSolverPositionIterationCountAttr()
if value is None:
value = self._get_actor_config_value(
name, "solver_position_iteration_count", solver_position_iteration_count
)
if value != -1:
solver_position_iteration_count.Set(value)
def set_articulation_velocity_iteration(self, name, prim, value=None):
arti_api = self._get_physx_articulation_api(prim)
solver_velocity_iteration_count = arti_api.GetSolverVelocityIterationCountAttr()
if value is None:
value = self._get_actor_config_value(
name, "solver_velocity_iteration_count", solver_velocity_iteration_count
)
if value != -1:
solver_velocity_iteration_count.Set(value)
def set_articulation_sleep_threshold(self, name, prim, value=None):
arti_api = self._get_physx_articulation_api(prim)
sleep_threshold = arti_api.GetSleepThresholdAttr()
if value is None:
value = self._get_actor_config_value(name, "sleep_threshold", sleep_threshold)
if value != -1:
sleep_threshold.Set(value)
def set_articulation_stabilization_threshold(self, name, prim, value=None):
arti_api = self._get_physx_articulation_api(prim)
stabilization_threshold = arti_api.GetStabilizationThresholdAttr()
if value is None:
value = self._get_actor_config_value(name, "stabilization_threshold", stabilization_threshold)
if value != -1:
stabilization_threshold.Set(value)
def apply_rigid_body_settings(self, name, prim, cfg, is_articulation):
from pxr import PhysxSchema, UsdPhysics
stage = omni.usd.get_context().get_stage()
rb_api = UsdPhysics.RigidBodyAPI.Get(stage, prim.GetPath())
physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Get(stage, prim.GetPath())
if not physx_rb_api:
physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Apply(prim)
# if it's a body in an articulation, it's handled at articulation root
if not is_articulation:
self.make_kinematic(name, prim, cfg, cfg["make_kinematic"])
self.set_position_iteration(name, prim, cfg["solver_position_iteration_count"])
self.set_velocity_iteration(name, prim, cfg["solver_velocity_iteration_count"])
self.set_max_depenetration_velocity(name, prim, cfg["max_depenetration_velocity"])
self.set_sleep_threshold(name, prim, cfg["sleep_threshold"])
self.set_stabilization_threshold(name, prim, cfg["stabilization_threshold"])
self.set_gyroscopic_forces(name, prim, cfg["enable_gyroscopic_forces"])
# density and mass
mass_api = UsdPhysics.MassAPI.Get(stage, prim.GetPath())
if mass_api is None:
mass_api = UsdPhysics.MassAPI.Apply(prim)
mass_attr = mass_api.GetMassAttr()
density_attr = mass_api.GetDensityAttr()
if not mass_attr:
mass_attr = mass_api.CreateMassAttr()
if not density_attr:
density_attr = mass_api.CreateDensityAttr()
if cfg["density"] != -1:
density_attr.Set(cfg["density"])
mass_attr.Set(0.0) # mass is to be computed
elif cfg["override_usd_defaults"] and not density_attr.IsAuthored() and not mass_attr.IsAuthored():
density_attr.Set(self._physx_params["density"])
self.retain_acceleration(prim)
def apply_rigid_shape_settings(self, name, prim, cfg):
from pxr import PhysxSchema, UsdPhysics
stage = omni.usd.get_context().get_stage()
# collision APIs
collision_api = UsdPhysics.CollisionAPI(prim)
if not collision_api:
collision_api = UsdPhysics.CollisionAPI.Apply(prim)
physx_collision_api = PhysxSchema.PhysxCollisionAPI(prim)
if not physx_collision_api:
physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(prim)
self.set_contact_offset(name, prim, cfg["contact_offset"])
self.set_rest_offset(name, prim, cfg["rest_offset"])
def apply_articulation_settings(self, name, prim, cfg):
from pxr import PhysxSchema, UsdPhysics
stage = omni.usd.get_context().get_stage()
is_articulation = False
# check if is articulation
prims = [prim]
while len(prims) > 0:
prim_tmp = prims.pop(0)
articulation_api = UsdPhysics.ArticulationRootAPI.Get(stage, prim_tmp.GetPath())
physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Get(stage, prim_tmp.GetPath())
if articulation_api or physx_articulation_api:
is_articulation = True
children_prims = prim_tmp.GetPrim().GetChildren()
prims = prims + children_prims
# parse through all children prims
prims = [prim]
while len(prims) > 0:
cur_prim = prims.pop(0)
rb = UsdPhysics.RigidBodyAPI.Get(stage, cur_prim.GetPath())
collision_body = UsdPhysics.CollisionAPI.Get(stage, cur_prim.GetPath())
articulation = UsdPhysics.ArticulationRootAPI.Get(stage, cur_prim.GetPath())
if rb:
self.apply_rigid_body_settings(name, cur_prim, cfg, is_articulation)
if collision_body:
self.apply_rigid_shape_settings(name, cur_prim, cfg)
if articulation:
articulation_api = UsdPhysics.ArticulationRootAPI.Get(stage, cur_prim.GetPath())
physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Get(stage, cur_prim.GetPath())
# enable self collisions
enable_self_collisions = physx_articulation_api.GetEnabledSelfCollisionsAttr()
if cfg["enable_self_collisions"] != -1:
enable_self_collisions.Set(cfg["enable_self_collisions"])
self.set_articulation_position_iteration(name, cur_prim, cfg["solver_position_iteration_count"])
self.set_articulation_velocity_iteration(name, cur_prim, cfg["solver_velocity_iteration_count"])
self.set_articulation_sleep_threshold(name, cur_prim, cfg["sleep_threshold"])
self.set_articulation_stabilization_threshold(name, cur_prim, cfg["stabilization_threshold"])
children_prims = cur_prim.GetPrim().GetChildren()
prims = prims + children_prims
| 22,563 | Python | 43.769841 | 117 | 0.634446 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/config_utils/default_scene_params.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
default_physx_params = {
### Per-scene settings
"use_gpu": False,
"worker_thread_count": 4,
"solver_type": 1, # 0: PGS, 1:TGS
"bounce_threshold_velocity": 0.2,
"friction_offset_threshold": 0.04, # A threshold of contact separation distance used to decide if a contact
# point will experience friction forces.
"friction_correlation_distance": 0.025, # Contact points can be merged into a single friction anchor if the
# distance between the contacts is smaller than correlation distance.
# disabling these can be useful for debugging
"enable_sleeping": True,
"enable_stabilization": True,
# GPU buffers
"gpu_max_rigid_contact_count": 512 * 1024,
"gpu_max_rigid_patch_count": 80 * 1024,
"gpu_found_lost_pairs_capacity": 1024,
"gpu_found_lost_aggregate_pairs_capacity": 1024,
"gpu_total_aggregate_pairs_capacity": 1024,
"gpu_max_soft_body_contacts": 1024 * 1024,
"gpu_max_particle_contacts": 1024 * 1024,
"gpu_heap_capacity": 64 * 1024 * 1024,
"gpu_temp_buffer_capacity": 16 * 1024 * 1024,
"gpu_max_num_partitions": 8,
"gpu_collision_stack_size": 64 * 1024 * 1024,
### Per-actor settings ( can override in actor_options )
"solver_position_iteration_count": 4,
"solver_velocity_iteration_count": 1,
"sleep_threshold": 0.0, # Mass-normalized kinetic energy threshold below which an actor may go to sleep.
# Allowed range [0, max_float).
"stabilization_threshold": 0.0, # Mass-normalized kinetic energy threshold below which an actor may
# participate in stabilization. Allowed range [0, max_float).
### Per-body settings ( can override in actor_options )
"enable_gyroscopic_forces": False,
"density": 1000.0, # density to be used for bodies that do not specify mass or density
"max_depenetration_velocity": 100.0,
### Per-shape settings ( can override in actor_options )
"contact_offset": 0.02,
"rest_offset": 0.001,
}
default_physics_material = {"static_friction": 1.0, "dynamic_friction": 1.0, "restitution": 0.0}
default_sim_params = {
"gravity": [0.0, 0.0, -9.81],
"dt": 1.0 / 60.0,
"rendering_dt": -1.0, # we don't want to override this if it's set from cfg
"substeps": 1,
"use_gpu_pipeline": True,
"add_ground_plane": True,
"add_distant_light": True,
"use_fabric": True,
"enable_scene_query_support": False,
"enable_cameras": False,
"disable_contact_processing": False,
"default_physics_material": default_physics_material,
}
default_actor_options = {
# -1 means use authored value from USD or default values from default_sim_params if not explicitly authored in USD.
# If an attribute value is not explicitly authored in USD, add one with the value given here,
# which overrides the USD default.
"override_usd_defaults": False,
"make_kinematic": -1,
"enable_self_collisions": -1,
"enable_gyroscopic_forces": -1,
"solver_position_iteration_count": -1,
"solver_velocity_iteration_count": -1,
"sleep_threshold": -1,
"stabilization_threshold": -1,
"max_depenetration_velocity": -1,
"density": -1,
"mass": -1,
"contact_offset": -1,
"rest_offset": -1,
}
| 4,783 | Python | 44.132075 | 119 | 0.703951 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/config_utils/path_utils.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
import carb
from hydra.utils import to_absolute_path
def is_valid_local_file(path):
return os.path.isfile(path)
def is_valid_ov_file(path):
import omni.client
result, entry = omni.client.stat(path)
return result == omni.client.Result.OK
def download_ov_file(source_path, target_path):
import omni.client
result = omni.client.copy(source_path, target_path)
if result == omni.client.Result.OK:
return True
return False
def break_ov_path(path):
import omni.client
return omni.client.break_url(path)
def retrieve_checkpoint_path(path):
# check if it's a local path
if is_valid_local_file(path):
return to_absolute_path(path)
# check if it's an OV path
elif is_valid_ov_file(path):
ov_path = break_ov_path(path)
file_name = os.path.basename(ov_path.path)
target_path = f"checkpoints/{file_name}"
copy_to_local = download_ov_file(path, target_path)
return to_absolute_path(target_path)
else:
carb.log_error(f"Invalid checkpoint path: {path}. Does the file exist?")
return None
def get_experience(headless, enable_livestream, enable_viewport, enable_recording, kit_app):
if kit_app == '':
if enable_viewport:
import omniisaacgymenvs
experience = os.path.abspath(os.path.join(os.path.dirname(omniisaacgymenvs.__file__), '../apps/omni.isaac.sim.python.gym.camera.kit'))
else:
experience = f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.gym.kit'
if headless and not enable_livestream and not enable_recording:
experience = f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.gym.headless.kit'
else:
experience = kit_app
return experience
| 3,346 | Python | 35.780219 | 146 | 0.715481 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/hydra_cfg/hydra_utils.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import hydra
from omegaconf import DictConfig, OmegaConf
## OmegaConf & Hydra Config
# Resolvers used in hydra configs (see https://omegaconf.readthedocs.io/en/2.1_branch/usage.html#resolvers)
if not OmegaConf.has_resolver("eq"):
OmegaConf.register_new_resolver("eq", lambda x, y: x.lower() == y.lower())
if not OmegaConf.has_resolver("contains"):
OmegaConf.register_new_resolver("contains", lambda x, y: x.lower() in y.lower())
if not OmegaConf.has_resolver("if"):
OmegaConf.register_new_resolver("if", lambda pred, a, b: a if pred else b)
# allows us to resolve default arguments which are copied in multiple places in the config. used primarily for
# num_ensv
if not OmegaConf.has_resolver("resolve_default"):
OmegaConf.register_new_resolver("resolve_default", lambda default, arg: default if arg == "" else arg)
| 2,394 | Python | 51.065216 | 110 | 0.767753 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/hydra_cfg/reformat.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Dict
from omegaconf import DictConfig, OmegaConf
def omegaconf_to_dict(d: DictConfig) -> Dict:
"""Converts an omegaconf DictConfig to a python Dict, respecting variable interpolation."""
ret = {}
for k, v in d.items():
if isinstance(v, DictConfig):
ret[k] = omegaconf_to_dict(v)
else:
ret[k] = v
return ret
def print_dict(val, nesting: int = -4, start: bool = True):
"""Outputs a nested dictionory."""
if type(val) == dict:
if not start:
print("")
nesting += 4
for k in val:
print(nesting * " ", end="")
print(k, end=": ")
print_dict(val[k], nesting, start=False)
else:
print(val)
| 2,313 | Python | 38.896551 | 95 | 0.707739 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/terrain_utils/terrain_utils.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from math import sqrt
import numpy as np
from numpy.random import choice
from omni.isaac.core.prims import XFormPrim
from pxr import Gf, PhysxSchema, Sdf, UsdPhysics
from scipy import interpolate
def random_uniform_terrain(
terrain,
min_height,
max_height,
step=1,
downsampled_scale=None,
):
"""
Generate a uniform noise terrain
Parameters
terrain (SubTerrain): the terrain
min_height (float): the minimum height of the terrain [meters]
max_height (float): the maximum height of the terrain [meters]
step (float): minimum height change between two points [meters]
downsampled_scale (float): distance between two randomly sampled points ( musty be larger or equal to terrain.horizontal_scale)
"""
if downsampled_scale is None:
downsampled_scale = terrain.horizontal_scale
# switch parameters to discrete units
min_height = int(min_height / terrain.vertical_scale)
max_height = int(max_height / terrain.vertical_scale)
step = int(step / terrain.vertical_scale)
heights_range = np.arange(min_height, max_height + step, step)
height_field_downsampled = np.random.choice(
heights_range,
(
int(terrain.width * terrain.horizontal_scale / downsampled_scale),
int(terrain.length * terrain.horizontal_scale / downsampled_scale),
),
)
x = np.linspace(0, terrain.width * terrain.horizontal_scale, height_field_downsampled.shape[0])
y = np.linspace(0, terrain.length * terrain.horizontal_scale, height_field_downsampled.shape[1])
f = interpolate.RectBivariateSpline(y, x, height_field_downsampled)
x_upsampled = np.linspace(0, terrain.width * terrain.horizontal_scale, terrain.width)
y_upsampled = np.linspace(0, terrain.length * terrain.horizontal_scale, terrain.length)
z_upsampled = np.rint(f(y_upsampled, x_upsampled))
terrain.height_field_raw += z_upsampled.astype(np.int16)
return terrain
def sloped_terrain(terrain, slope=1):
"""
Generate a sloped terrain
Parameters:
terrain (SubTerrain): the terrain
slope (int): positive or negative slope
Returns:
terrain (SubTerrain): update terrain
"""
x = np.arange(0, terrain.width)
y = np.arange(0, terrain.length)
xx, yy = np.meshgrid(x, y, sparse=True)
xx = xx.reshape(terrain.width, 1)
max_height = int(slope * (terrain.horizontal_scale / terrain.vertical_scale) * terrain.width)
terrain.height_field_raw[:, np.arange(terrain.length)] += (max_height * xx / terrain.width).astype(
terrain.height_field_raw.dtype
)
return terrain
def pyramid_sloped_terrain(terrain, slope=1, platform_size=1.0):
"""
Generate a sloped terrain
Parameters:
terrain (terrain): the terrain
slope (int): positive or negative slope
platform_size (float): size of the flat platform at the center of the terrain [meters]
Returns:
terrain (SubTerrain): update terrain
"""
x = np.arange(0, terrain.width)
y = np.arange(0, terrain.length)
center_x = int(terrain.width / 2)
center_y = int(terrain.length / 2)
xx, yy = np.meshgrid(x, y, sparse=True)
xx = (center_x - np.abs(center_x - xx)) / center_x
yy = (center_y - np.abs(center_y - yy)) / center_y
xx = xx.reshape(terrain.width, 1)
yy = yy.reshape(1, terrain.length)
max_height = int(slope * (terrain.horizontal_scale / terrain.vertical_scale) * (terrain.width / 2))
terrain.height_field_raw += (max_height * xx * yy).astype(terrain.height_field_raw.dtype)
platform_size = int(platform_size / terrain.horizontal_scale / 2)
x1 = terrain.width // 2 - platform_size
x2 = terrain.width // 2 + platform_size
y1 = terrain.length // 2 - platform_size
y2 = terrain.length // 2 + platform_size
min_h = min(terrain.height_field_raw[x1, y1], 0)
max_h = max(terrain.height_field_raw[x1, y1], 0)
terrain.height_field_raw = np.clip(terrain.height_field_raw, min_h, max_h)
return terrain
def discrete_obstacles_terrain(terrain, max_height, min_size, max_size, num_rects, platform_size=1.0):
"""
Generate a terrain with gaps
Parameters:
terrain (terrain): the terrain
max_height (float): maximum height of the obstacles (range=[-max, -max/2, max/2, max]) [meters]
min_size (float): minimum size of a rectangle obstacle [meters]
max_size (float): maximum size of a rectangle obstacle [meters]
num_rects (int): number of randomly generated obstacles
platform_size (float): size of the flat platform at the center of the terrain [meters]
Returns:
terrain (SubTerrain): update terrain
"""
# switch parameters to discrete units
max_height = int(max_height / terrain.vertical_scale)
min_size = int(min_size / terrain.horizontal_scale)
max_size = int(max_size / terrain.horizontal_scale)
platform_size = int(platform_size / terrain.horizontal_scale)
(i, j) = terrain.height_field_raw.shape
height_range = [-max_height, -max_height // 2, max_height // 2, max_height]
width_range = range(min_size, max_size, 4)
length_range = range(min_size, max_size, 4)
for _ in range(num_rects):
width = np.random.choice(width_range)
length = np.random.choice(length_range)
start_i = np.random.choice(range(0, i - width, 4))
start_j = np.random.choice(range(0, j - length, 4))
terrain.height_field_raw[start_i : start_i + width, start_j : start_j + length] = np.random.choice(height_range)
x1 = (terrain.width - platform_size) // 2
x2 = (terrain.width + platform_size) // 2
y1 = (terrain.length - platform_size) // 2
y2 = (terrain.length + platform_size) // 2
terrain.height_field_raw[x1:x2, y1:y2] = 0
return terrain
def wave_terrain(terrain, num_waves=1, amplitude=1.0):
"""
Generate a wavy terrain
Parameters:
terrain (terrain): the terrain
num_waves (int): number of sine waves across the terrain length
Returns:
terrain (SubTerrain): update terrain
"""
amplitude = int(0.5 * amplitude / terrain.vertical_scale)
if num_waves > 0:
div = terrain.length / (num_waves * np.pi * 2)
x = np.arange(0, terrain.width)
y = np.arange(0, terrain.length)
xx, yy = np.meshgrid(x, y, sparse=True)
xx = xx.reshape(terrain.width, 1)
yy = yy.reshape(1, terrain.length)
terrain.height_field_raw += (amplitude * np.cos(yy / div) + amplitude * np.sin(xx / div)).astype(
terrain.height_field_raw.dtype
)
return terrain
def stairs_terrain(terrain, step_width, step_height):
"""
Generate a stairs
Parameters:
terrain (terrain): the terrain
step_width (float): the width of the step [meters]
step_height (float): the height of the step [meters]
Returns:
terrain (SubTerrain): update terrain
"""
# switch parameters to discrete units
step_width = int(step_width / terrain.horizontal_scale)
step_height = int(step_height / terrain.vertical_scale)
num_steps = terrain.width // step_width
height = step_height
for i in range(num_steps):
terrain.height_field_raw[i * step_width : (i + 1) * step_width, :] += height
height += step_height
return terrain
def pyramid_stairs_terrain(terrain, step_width, step_height, platform_size=1.0):
"""
Generate stairs
Parameters:
terrain (terrain): the terrain
step_width (float): the width of the step [meters]
step_height (float): the step_height [meters]
platform_size (float): size of the flat platform at the center of the terrain [meters]
Returns:
terrain (SubTerrain): update terrain
"""
# switch parameters to discrete units
step_width = int(step_width / terrain.horizontal_scale)
step_height = int(step_height / terrain.vertical_scale)
platform_size = int(platform_size / terrain.horizontal_scale)
height = 0
start_x = 0
stop_x = terrain.width
start_y = 0
stop_y = terrain.length
while (stop_x - start_x) > platform_size and (stop_y - start_y) > platform_size:
start_x += step_width
stop_x -= step_width
start_y += step_width
stop_y -= step_width
height += step_height
terrain.height_field_raw[start_x:stop_x, start_y:stop_y] = height
return terrain
def stepping_stones_terrain(terrain, stone_size, stone_distance, max_height, platform_size=1.0, depth=-10):
"""
Generate a stepping stones terrain
Parameters:
terrain (terrain): the terrain
stone_size (float): horizontal size of the stepping stones [meters]
stone_distance (float): distance between stones (i.e size of the holes) [meters]
max_height (float): maximum height of the stones (positive and negative) [meters]
platform_size (float): size of the flat platform at the center of the terrain [meters]
depth (float): depth of the holes (default=-10.) [meters]
Returns:
terrain (SubTerrain): update terrain
"""
# switch parameters to discrete units
stone_size = int(stone_size / terrain.horizontal_scale)
stone_distance = int(stone_distance / terrain.horizontal_scale)
max_height = int(max_height / terrain.vertical_scale)
platform_size = int(platform_size / terrain.horizontal_scale)
height_range = np.arange(-max_height - 1, max_height, step=1)
start_x = 0
start_y = 0
terrain.height_field_raw[:, :] = int(depth / terrain.vertical_scale)
if terrain.length >= terrain.width:
while start_y < terrain.length:
stop_y = min(terrain.length, start_y + stone_size)
start_x = np.random.randint(0, stone_size)
# fill first hole
stop_x = max(0, start_x - stone_distance)
terrain.height_field_raw[0:stop_x, start_y:stop_y] = np.random.choice(height_range)
# fill row
while start_x < terrain.width:
stop_x = min(terrain.width, start_x + stone_size)
terrain.height_field_raw[start_x:stop_x, start_y:stop_y] = np.random.choice(height_range)
start_x += stone_size + stone_distance
start_y += stone_size + stone_distance
elif terrain.width > terrain.length:
while start_x < terrain.width:
stop_x = min(terrain.width, start_x + stone_size)
start_y = np.random.randint(0, stone_size)
# fill first hole
stop_y = max(0, start_y - stone_distance)
terrain.height_field_raw[start_x:stop_x, 0:stop_y] = np.random.choice(height_range)
# fill column
while start_y < terrain.length:
stop_y = min(terrain.length, start_y + stone_size)
terrain.height_field_raw[start_x:stop_x, start_y:stop_y] = np.random.choice(height_range)
start_y += stone_size + stone_distance
start_x += stone_size + stone_distance
x1 = (terrain.width - platform_size) // 2
x2 = (terrain.width + platform_size) // 2
y1 = (terrain.length - platform_size) // 2
y2 = (terrain.length + platform_size) // 2
terrain.height_field_raw[x1:x2, y1:y2] = 0
return terrain
def convert_heightfield_to_trimesh(height_field_raw, horizontal_scale, vertical_scale, slope_threshold=None):
"""
Convert a heightfield array to a triangle mesh represented by vertices and triangles.
Optionally, corrects vertical surfaces above the provide slope threshold:
If (y2-y1)/(x2-x1) > slope_threshold -> Move A to A' (set x1 = x2). Do this for all directions.
B(x2,y2)
/|
/ |
/ |
(x1,y1)A---A'(x2',y1)
Parameters:
height_field_raw (np.array): input heightfield
horizontal_scale (float): horizontal scale of the heightfield [meters]
vertical_scale (float): vertical scale of the heightfield [meters]
slope_threshold (float): the slope threshold above which surfaces are made vertical. If None no correction is applied (default: None)
Returns:
vertices (np.array(float)): array of shape (num_vertices, 3). Each row represents the location of each vertex [meters]
triangles (np.array(int)): array of shape (num_triangles, 3). Each row represents the indices of the 3 vertices connected by this triangle.
"""
hf = height_field_raw
num_rows = hf.shape[0]
num_cols = hf.shape[1]
y = np.linspace(0, (num_cols - 1) * horizontal_scale, num_cols)
x = np.linspace(0, (num_rows - 1) * horizontal_scale, num_rows)
yy, xx = np.meshgrid(y, x)
if slope_threshold is not None:
slope_threshold *= horizontal_scale / vertical_scale
move_x = np.zeros((num_rows, num_cols))
move_y = np.zeros((num_rows, num_cols))
move_corners = np.zeros((num_rows, num_cols))
move_x[: num_rows - 1, :] += hf[1:num_rows, :] - hf[: num_rows - 1, :] > slope_threshold
move_x[1:num_rows, :] -= hf[: num_rows - 1, :] - hf[1:num_rows, :] > slope_threshold
move_y[:, : num_cols - 1] += hf[:, 1:num_cols] - hf[:, : num_cols - 1] > slope_threshold
move_y[:, 1:num_cols] -= hf[:, : num_cols - 1] - hf[:, 1:num_cols] > slope_threshold
move_corners[: num_rows - 1, : num_cols - 1] += (
hf[1:num_rows, 1:num_cols] - hf[: num_rows - 1, : num_cols - 1] > slope_threshold
)
move_corners[1:num_rows, 1:num_cols] -= (
hf[: num_rows - 1, : num_cols - 1] - hf[1:num_rows, 1:num_cols] > slope_threshold
)
xx += (move_x + move_corners * (move_x == 0)) * horizontal_scale
yy += (move_y + move_corners * (move_y == 0)) * horizontal_scale
# create triangle mesh vertices and triangles from the heightfield grid
vertices = np.zeros((num_rows * num_cols, 3), dtype=np.float32)
vertices[:, 0] = xx.flatten()
vertices[:, 1] = yy.flatten()
vertices[:, 2] = hf.flatten() * vertical_scale
triangles = -np.ones((2 * (num_rows - 1) * (num_cols - 1), 3), dtype=np.uint32)
for i in range(num_rows - 1):
ind0 = np.arange(0, num_cols - 1) + i * num_cols
ind1 = ind0 + 1
ind2 = ind0 + num_cols
ind3 = ind2 + 1
start = 2 * i * (num_cols - 1)
stop = start + 2 * (num_cols - 1)
triangles[start:stop:2, 0] = ind0
triangles[start:stop:2, 1] = ind3
triangles[start:stop:2, 2] = ind1
triangles[start + 1 : stop : 2, 0] = ind0
triangles[start + 1 : stop : 2, 1] = ind2
triangles[start + 1 : stop : 2, 2] = ind3
return vertices, triangles
def add_terrain_to_stage(stage, vertices, triangles, position=None, orientation=None):
num_faces = triangles.shape[0]
terrain_mesh = stage.DefinePrim("/World/terrain", "Mesh")
terrain_mesh.GetAttribute("points").Set(vertices)
terrain_mesh.GetAttribute("faceVertexIndices").Set(triangles.flatten())
terrain_mesh.GetAttribute("faceVertexCounts").Set(np.asarray([3] * num_faces))
terrain = XFormPrim(prim_path="/World/terrain", name="terrain", position=position, orientation=orientation)
UsdPhysics.CollisionAPI.Apply(terrain.prim)
# collision_api = UsdPhysics.MeshCollisionAPI.Apply(terrain.prim)
# collision_api.CreateApproximationAttr().Set("meshSimplification")
physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(terrain.prim)
physx_collision_api.GetContactOffsetAttr().Set(0.02)
physx_collision_api.GetRestOffsetAttr().Set(0.00)
class SubTerrain:
def __init__(self, terrain_name="terrain", width=256, length=256, vertical_scale=1.0, horizontal_scale=1.0):
self.terrain_name = terrain_name
self.vertical_scale = vertical_scale
self.horizontal_scale = horizontal_scale
self.width = width
self.length = length
self.height_field_raw = np.zeros((self.width, self.length), dtype=np.int16)
| 17,645 | Python | 41.215311 | 147 | 0.649306 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/terrain_utils/create_terrain_demo.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os, sys
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(SCRIPT_DIR)
import omni
from omni.isaac.kit import SimulationApp
import numpy as np
import torch
simulation_app = SimulationApp({"headless": False})
from abc import abstractmethod
from omni.isaac.core.tasks import BaseTask
from omni.isaac.core.prims import RigidPrimView, RigidPrim, XFormPrim
from omni.isaac.core import World
from omni.isaac.core.objects import DynamicSphere
from omni.isaac.core.utils.prims import define_prim, get_prim_at_path
from omni.isaac.core.utils.nucleus import find_nucleus_server
from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage
from omni.isaac.core.materials import PreviewSurface
from omni.isaac.cloner import GridCloner
from pxr import UsdPhysics, UsdLux, UsdShade, Sdf, Gf, UsdGeom, PhysxSchema
from terrain_utils import *
class TerrainCreation(BaseTask):
def __init__(self, name, num_envs, num_per_row, env_spacing, config=None, offset=None,) -> None:
BaseTask.__init__(self, name=name, offset=offset)
self._num_envs = num_envs
self._num_per_row = num_per_row
self._env_spacing = env_spacing
self._device = "cpu"
self._cloner = GridCloner(self._env_spacing, self._num_per_row)
self._cloner.define_base_env(self.default_base_env_path)
define_prim(self.default_zero_env_path)
@property
def default_base_env_path(self):
return "/World/envs"
@property
def default_zero_env_path(self):
return f"{self.default_base_env_path}/env_0"
def set_up_scene(self, scene) -> None:
self._stage = get_current_stage()
distantLight = UsdLux.DistantLight.Define(self._stage, Sdf.Path("/World/DistantLight"))
distantLight.CreateIntensityAttr(2000)
self.get_terrain()
self.get_ball()
super().set_up_scene(scene)
prim_paths = self._cloner.generate_paths("/World/envs/env", self._num_envs)
print(f"cloning {self._num_envs} environments...")
self._env_pos = self._cloner.clone(
source_prim_path="/World/envs/env_0",
prim_paths=prim_paths
)
return
def get_terrain(self):
# create all available terrain types
num_terains = 8
terrain_width = 12.
terrain_length = 12.
horizontal_scale = 0.25 # [m]
vertical_scale = 0.005 # [m]
num_rows = int(terrain_width/horizontal_scale)
num_cols = int(terrain_length/horizontal_scale)
heightfield = np.zeros((num_terains*num_rows, num_cols), dtype=np.int16)
def new_sub_terrain():
return SubTerrain(width=num_rows, length=num_cols, vertical_scale=vertical_scale, horizontal_scale=horizontal_scale)
heightfield[0:num_rows, :] = random_uniform_terrain(new_sub_terrain(), min_height=-0.2, max_height=0.2, step=0.2, downsampled_scale=0.5).height_field_raw
heightfield[num_rows:2*num_rows, :] = sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw
heightfield[2*num_rows:3*num_rows, :] = pyramid_sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw
heightfield[3*num_rows:4*num_rows, :] = discrete_obstacles_terrain(new_sub_terrain(), max_height=0.5, min_size=1., max_size=5., num_rects=20).height_field_raw
heightfield[4*num_rows:5*num_rows, :] = wave_terrain(new_sub_terrain(), num_waves=2., amplitude=1.).height_field_raw
heightfield[5*num_rows:6*num_rows, :] = stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw
heightfield[6*num_rows:7*num_rows, :] = pyramid_stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw
heightfield[7*num_rows:8*num_rows, :] = stepping_stones_terrain(new_sub_terrain(), stone_size=1.,
stone_distance=1., max_height=0.5, platform_size=0.).height_field_raw
vertices, triangles = convert_heightfield_to_trimesh(heightfield, horizontal_scale=horizontal_scale, vertical_scale=vertical_scale, slope_threshold=1.5)
position = np.array([-6.0, 48.0, 0])
orientation = np.array([0.70711, 0.0, 0.0, -0.70711])
add_terrain_to_stage(stage=self._stage, vertices=vertices, triangles=triangles, position=position, orientation=orientation)
def get_ball(self):
ball = DynamicSphere(prim_path=self.default_zero_env_path + "/ball",
name="ball",
translation=np.array([0.0, 0.0, 1.0]),
mass=0.5,
radius=0.2,)
def post_reset(self):
for i in range(self._num_envs):
ball_prim = self._stage.GetPrimAtPath(f"{self.default_base_env_path}/env_{i}/ball")
color = 0.5 + 0.5 * np.random.random(3)
visual_material = PreviewSurface(prim_path=f"{self.default_base_env_path}/env_{i}/ball/Looks/visual_material", color=color)
binding_api = UsdShade.MaterialBindingAPI(ball_prim)
binding_api.Bind(visual_material.material, bindingStrength=UsdShade.Tokens.strongerThanDescendants)
def get_observations(self):
pass
def calculate_metrics(self) -> None:
pass
def is_done(self) -> None:
pass
if __name__ == "__main__":
world = World(
stage_units_in_meters=1.0,
rendering_dt=1.0/60.0,
backend="torch",
device="cpu",
)
num_envs = 800
num_per_row = 80
env_spacing = 0.56*2
terrain_creation_task = TerrainCreation(name="TerrainCreation",
num_envs=num_envs,
num_per_row=num_per_row,
env_spacing=env_spacing,
)
world.add_task(terrain_creation_task)
world.reset()
while simulation_app.is_running():
if world.is_playing():
if world.current_time_step_index == 0:
world.reset(soft=True)
world.step(render=True)
else:
world.step(render=True)
simulation_app.close() | 7,869 | Python | 43.213483 | 166 | 0.650654 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/usd_utils/create_instanceable_assets.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import omni.client
import omni.usd
from pxr import Sdf, UsdGeom
def update_reference(source_prim_path, source_reference_path, target_reference_path):
stage = omni.usd.get_context().get_stage()
prims = [stage.GetPrimAtPath(source_prim_path)]
while len(prims) > 0:
prim = prims.pop(0)
prim_spec = stage.GetRootLayer().GetPrimAtPath(prim.GetPath())
reference_list = prim_spec.referenceList
refs = reference_list.GetAddedOrExplicitItems()
if len(refs) > 0:
for ref in refs:
if ref.assetPath == source_reference_path:
prim.GetReferences().RemoveReference(ref)
prim.GetReferences().AddReference(assetPath=target_reference_path, primPath=prim.GetPath())
prims = prims + prim.GetChildren()
def create_parent_xforms(asset_usd_path, source_prim_path, save_as_path=None):
"""Adds a new UsdGeom.Xform prim for each Mesh/Geometry prim under source_prim_path.
Moves material assignment to new parent prim if any exists on the Mesh/Geometry prim.
Args:
asset_usd_path (str): USD file path for asset
source_prim_path (str): USD path of root prim
save_as_path (str): USD file path for modified USD stage. Defaults to None, will save in same file.
"""
omni.usd.get_context().open_stage(asset_usd_path)
stage = omni.usd.get_context().get_stage()
prims = [stage.GetPrimAtPath(source_prim_path)]
edits = Sdf.BatchNamespaceEdit()
while len(prims) > 0:
prim = prims.pop(0)
print(prim)
if prim.GetTypeName() in ["Mesh", "Capsule", "Sphere", "Box"]:
new_xform = UsdGeom.Xform.Define(stage, str(prim.GetPath()) + "_xform")
print(prim, new_xform)
edits.Add(Sdf.NamespaceEdit.Reparent(prim.GetPath(), new_xform.GetPath(), 0))
continue
children_prims = prim.GetChildren()
prims = prims + children_prims
stage.GetRootLayer().Apply(edits)
if save_as_path is None:
omni.usd.get_context().save_stage()
else:
omni.usd.get_context().save_as_stage(save_as_path)
def convert_asset_instanceable(asset_usd_path, source_prim_path, save_as_path=None, create_xforms=True):
"""Makes all mesh/geometry prims instanceable.
Can optionally add UsdGeom.Xform prim as parent for all mesh/geometry prims.
Makes a copy of the asset USD file, which will be used for referencing.
Updates asset file to convert all parent prims of mesh/geometry prims to reference cloned USD file.
Args:
asset_usd_path (str): USD file path for asset
source_prim_path (str): USD path of root prim
save_as_path (str): USD file path for modified USD stage. Defaults to None, will save in same file.
create_xforms (bool): Whether to add new UsdGeom.Xform prims to mesh/geometry prims.
"""
if create_xforms:
create_parent_xforms(asset_usd_path, source_prim_path, save_as_path)
asset_usd_path = save_as_path
instance_usd_path = ".".join(asset_usd_path.split(".")[:-1]) + "_meshes.usd"
omni.client.copy(asset_usd_path, instance_usd_path)
omni.usd.get_context().open_stage(asset_usd_path)
stage = omni.usd.get_context().get_stage()
prims = [stage.GetPrimAtPath(source_prim_path)]
while len(prims) > 0:
prim = prims.pop(0)
if prim:
if prim.GetTypeName() in ["Mesh", "Capsule", "Sphere", "Box"]:
parent_prim = prim.GetParent()
if parent_prim and not parent_prim.IsInstance():
parent_prim.GetReferences().AddReference(
assetPath=instance_usd_path, primPath=str(parent_prim.GetPath())
)
parent_prim.SetInstanceable(True)
continue
children_prims = prim.GetChildren()
prims = prims + children_prims
if save_as_path is None:
omni.usd.get_context().save_stage()
else:
omni.usd.get_context().save_as_stage(save_as_path)
| 5,627 | Python | 42.627907 | 111 | 0.67727 |
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/balance_bot.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
import numpy as np
import torch
from omni.isaac.core.robots.robot import Robot
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omniisaacgymenvs.tasks.utils.usd_utils import set_drive
class BalanceBot(Robot):
def __init__(
self,
prim_path: str,
name: Optional[str] = "BalanceBot",
usd_path: Optional[str] = None,
translation: Optional[np.ndarray] = None,
orientation: Optional[np.ndarray] = None,
) -> None:
"""[summary]"""
self._usd_path = usd_path
self._name = name
if self._usd_path is None:
assets_root_path = get_assets_root_path()
if assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets folder")
self._usd_path = assets_root_path + "/Isaac/Robots/BalanceBot/balance_bot.usd"
add_reference_to_stage(self._usd_path, prim_path)
super().__init__(
prim_path=prim_path,
name=name,
translation=translation,
orientation=orientation,
articulation_controller=None,
)
for j in range(3):
# set leg joint properties
joint_path = f"joints/lower_leg{j}"
set_drive(f"{self.prim_path}/{joint_path}", "angular", "position", 0, 400, 40, 1000)
| 2,996 | Python | 40.054794 | 96 | 0.697597 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.