file_path
stringlengths
21
207
content
stringlengths
5
1.02M
size
int64
5
1.02M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.27
0.93
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/__init__.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import traceback try: from .extension import RLExtension, get_instance # import omniisaacgymenvs.tests except Exception as e: pass # print(e) # print(traceback.format_exc())
1,753
Python
46.405404
80
0.775242
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/envs/vec_env_rlgames_mt.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import torch from omni.isaac.gym.vec_env import TaskStopException, VecEnvMT from .vec_env_rlgames import VecEnvRLGames # VecEnv Wrapper for RL training class VecEnvRLGamesMT(VecEnvRLGames, VecEnvMT): def _parse_data(self, data): self._obs = data["obs"] self._rew = data["rew"].to(self._task.rl_device) self._states = torch.clamp(data["states"], -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device) self._resets = data["reset"].to(self._task.rl_device) self._extras = data["extras"] def step(self, actions): if self._stop: raise TaskStopException() if self._task.randomize_actions: actions = self._task._dr_randomizer.apply_actions_randomization( actions=actions, reset_buf=self._task.reset_buf ) actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device) self.send_actions(actions) data = self.get_data() if self._task.randomize_observations: self._obs = self._task._dr_randomizer.apply_observations_randomization( observations=self._obs.to(self._task.rl_device), reset_buf=self._task.reset_buf ) self._obs = torch.clamp(self._obs, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device) obs_dict = {} obs_dict["obs"] = self._obs obs_dict["states"] = self._states return obs_dict, self._rew, self._resets, self._extras
3,109
Python
42.194444
118
0.705693
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/envs/vec_env_rlgames.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from datetime import datetime import numpy as np import torch from omni.isaac.gym.vec_env import VecEnvBase # VecEnv Wrapper for RL training class VecEnvRLGames(VecEnvBase): def _process_data(self): self._obs = torch.clamp(self._obs, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device) self._rew = self._rew.to(self._task.rl_device) self._states = torch.clamp(self._states, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device) self._resets = self._resets.to(self._task.rl_device) self._extras = self._extras def set_task(self, task, backend="numpy", sim_params=None, init_sim=True, rendering_dt=1.0 / 60.0) -> None: super().set_task(task, backend, sim_params, init_sim, rendering_dt) self.num_states = self._task.num_states self.state_space = self._task.state_space def step(self, actions): # only enable rendering when we are recording, or if the task already has it enabled to_render = self._render if self._record: if not hasattr(self, "step_count"): self.step_count = 0 if self.step_count % self._task.cfg["recording_interval"] == 0: self.is_recording = True self.record_length = 0 if self.is_recording: self.record_length += 1 if self.record_length > self._task.cfg["recording_length"]: self.is_recording = False if self.is_recording: to_render = True else: if (self._task.cfg["headless"] and not self._task.enable_cameras and not self._task.cfg["enable_livestream"]): to_render = False self.step_count += 1 if self._task.randomize_actions: actions = self._task._dr_randomizer.apply_actions_randomization( actions=actions, reset_buf=self._task.reset_buf ) actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device) self._task.pre_physics_step(actions) if (self.sim_frame_count + self._task.control_frequency_inv) % self._task.rendering_interval == 0: for _ in range(self._task.control_frequency_inv - 1): self._world.step(render=False) self.sim_frame_count += 1 self._world.step(render=to_render) self.sim_frame_count += 1 else: for _ in range(self._task.control_frequency_inv): self._world.step(render=False) self.sim_frame_count += 1 self._obs, self._rew, self._resets, self._extras = self._task.post_physics_step() if self._task.randomize_observations: self._obs = self._task._dr_randomizer.apply_observations_randomization( observations=self._obs.to(device=self._task.rl_device), reset_buf=self._task.reset_buf ) self._states = self._task.get_states() self._process_data() obs_dict = {"obs": self._obs, "states": self._states} return obs_dict, self._rew, self._resets, self._extras def reset(self, seed=None, options=None): """Resets the task and applies default zero actions to recompute observations and states.""" now = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print(f"[{now}] Running RL reset") self._task.reset() actions = torch.zeros((self.num_envs, self._task.num_actions), device=self._task.rl_device) obs_dict, _, _, _ = self.step(actions) return obs_dict
5,196
Python
43.801724
126
0.65127
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/allegro_hand.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.allegro_hand import AllegroHand from omniisaacgymenvs.robots.articulations.views.allegro_hand_view import AllegroHandView from omniisaacgymenvs.tasks.shared.in_hand_manipulation import InHandManipulationTask class AllegroHandTask(InHandManipulationTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) InHandManipulationTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self.object_type = self._task_cfg["env"]["objectType"] assert self.object_type in ["block"] self.obs_type = self._task_cfg["env"]["observationType"] if not (self.obs_type in ["full_no_vel", "full"]): raise Exception("Unknown type of observations!\nobservationType should be one of: [full_no_vel, full]") print("Obs type:", self.obs_type) self.num_obs_dict = { "full_no_vel": 50, "full": 72, } self.object_scale = torch.tensor([1.0, 1.0, 1.0]) self._num_observations = self.num_obs_dict[self.obs_type] self._num_actions = 16 self._num_states = 0 InHandManipulationTask.update_config(self) def get_starting_positions(self): self.hand_start_translation = torch.tensor([0.0, 0.0, 0.5], device=self.device) self.hand_start_orientation = torch.tensor([0.257551, 0.283045, 0.683330, -0.621782], device=self.device) self.pose_dy, self.pose_dz = -0.2, 0.06 def get_hand(self): allegro_hand = AllegroHand( prim_path=self.default_zero_env_path + "/allegro_hand", name="allegro_hand", translation=self.hand_start_translation, orientation=self.hand_start_orientation, ) self._sim_config.apply_articulation_settings( "allegro_hand", get_prim_at_path(allegro_hand.prim_path), self._sim_config.parse_actor_config("allegro_hand"), ) allegro_hand_prim = self._stage.GetPrimAtPath(allegro_hand.prim_path) allegro_hand.set_allegro_hand_properties(stage=self._stage, allegro_hand_prim=allegro_hand_prim) allegro_hand.set_motor_control_mode( stage=self._stage, allegro_hand_path=self.default_zero_env_path + "/allegro_hand" ) def get_hand_view(self, scene): return AllegroHandView(prim_paths_expr="/World/envs/.*/allegro_hand", name="allegro_hand_view") def get_observations(self): self.get_object_goal_observations() self.hand_dof_pos = self._hands.get_joint_positions(clone=False) self.hand_dof_vel = self._hands.get_joint_velocities(clone=False) if self.obs_type == "full_no_vel": self.compute_full_observations(True) elif self.obs_type == "full": self.compute_full_observations() else: print("Unkown observations type!") observations = {self._hands.name: {"obs_buf": self.obs_buf}} return observations def compute_full_observations(self, no_vel=False): if no_vel: self.obs_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.obs_buf[:, 16:19] = self.object_pos self.obs_buf[:, 19:23] = self.object_rot self.obs_buf[:, 23:26] = self.goal_pos self.obs_buf[:, 26:30] = self.goal_rot self.obs_buf[:, 30:34] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 34:50] = self.actions else: self.obs_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.obs_buf[:, self.num_hand_dofs : 2 * self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel self.obs_buf[:, 32:35] = self.object_pos self.obs_buf[:, 35:39] = self.object_rot self.obs_buf[:, 39:42] = self.object_linvel self.obs_buf[:, 42:45] = self.vel_obs_scale * self.object_angvel self.obs_buf[:, 45:48] = self.goal_pos self.obs_buf[:, 48:52] = self.goal_rot self.obs_buf[:, 52:56] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 56:72] = self.actions
6,329
Python
42.655172
115
0.658872
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/ball_balance.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims import RigidPrim, RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.maths import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.balance_bot import BalanceBot from pxr import PhysxSchema class BallBalanceTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._num_observations = 12 + 12 self._num_actions = 3 self.anchored = False RLTask.__init__(self, name, env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._dt = self._task_cfg["sim"]["dt"] self._table_position = torch.tensor([0, 0, 0.56]) self._ball_position = torch.tensor([0.0, 0.0, 1.0]) self._ball_radius = 0.1 self._action_speed_scale = self._task_cfg["env"]["actionSpeedScale"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] def set_up_scene(self, scene) -> None: self.get_balance_table() self.add_ball() super().set_up_scene(scene, replicate_physics=False) self.set_up_table_anchors() self._balance_bots = ArticulationView( prim_paths_expr="/World/envs/.*/BalanceBot/tray", name="balance_bot_view", reset_xform_properties=False ) scene.add(self._balance_bots) self._balls = RigidPrimView( prim_paths_expr="/World/envs/.*/Ball/ball", name="ball_view", reset_xform_properties=False ) scene.add(self._balls) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("balance_bot_view"): scene.remove_object("balance_bot_view", registry_only=True) if scene.object_exists("ball_view"): scene.remove_object("ball_view", registry_only=True) self._balance_bots = ArticulationView( prim_paths_expr="/World/envs/.*/BalanceBot/tray", name="balance_bot_view", reset_xform_properties=False ) scene.add(self._balance_bots) self._balls = RigidPrimView( prim_paths_expr="/World/envs/.*/Ball/ball", name="ball_view", reset_xform_properties=False ) scene.add(self._balls) def get_balance_table(self): balance_table = BalanceBot( prim_path=self.default_zero_env_path + "/BalanceBot", name="BalanceBot", translation=self._table_position ) self._sim_config.apply_articulation_settings( "table", get_prim_at_path(balance_table.prim_path), self._sim_config.parse_actor_config("table") ) def add_ball(self): ball = DynamicSphere( prim_path=self.default_zero_env_path + "/Ball/ball", translation=self._ball_position, name="ball_0", radius=self._ball_radius, color=torch.tensor([0.9, 0.6, 0.2]), ) self._sim_config.apply_articulation_settings( "ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball") ) def set_up_table_anchors(self): from pxr import Gf height = 0.08 stage = get_current_stage() for i in range(self._num_envs): base_path = f"{self.default_base_env_path}/env_{i}/BalanceBot" for j, leg_offset in enumerate([(0.4, 0, height), (-0.2, 0.34641, 0), (-0.2, -0.34641, 0)]): # fix the legs to ground leg_path = f"{base_path}/lower_leg{j}" ground_joint_path = leg_path + "_ground" env_pos = stage.GetPrimAtPath(f"{self.default_base_env_path}/env_{i}").GetAttribute("xformOp:translate").Get() anchor_pos = env_pos + Gf.Vec3d(*leg_offset) self.fix_to_ground(stage, ground_joint_path, leg_path, anchor_pos) def fix_to_ground(self, stage, joint_path, prim_path, anchor_pos): from pxr import UsdPhysics, Gf # D6 fixed joint d6FixedJoint = UsdPhysics.Joint.Define(stage, joint_path) d6FixedJoint.CreateBody0Rel().SetTargets(["/World/defaultGroundPlane"]) d6FixedJoint.CreateBody1Rel().SetTargets([prim_path]) d6FixedJoint.CreateLocalPos0Attr().Set(anchor_pos) d6FixedJoint.CreateLocalRot0Attr().Set(Gf.Quatf(1.0, Gf.Vec3f(0, 0, 0))) d6FixedJoint.CreateLocalPos1Attr().Set(Gf.Vec3f(0, 0, 0.18)) d6FixedJoint.CreateLocalRot1Attr().Set(Gf.Quatf(1.0, Gf.Vec3f(0, 0, 0))) # lock all DOF (lock - low is greater than high) d6Prim = stage.GetPrimAtPath(joint_path) limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transX") limitAPI.CreateLowAttr(1.0) limitAPI.CreateHighAttr(-1.0) limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transY") limitAPI.CreateLowAttr(1.0) limitAPI.CreateHighAttr(-1.0) limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transZ") limitAPI.CreateLowAttr(1.0) limitAPI.CreateHighAttr(-1.0) def get_observations(self) -> dict: ball_positions, ball_orientations = self._balls.get_world_poses(clone=False) ball_positions = ball_positions[:, 0:3] - self._env_pos ball_velocities = self._balls.get_velocities(clone=False) ball_linvels = ball_velocities[:, 0:3] ball_angvels = ball_velocities[:, 3:6] dof_pos = self._balance_bots.get_joint_positions(clone=False) dof_vel = self._balance_bots.get_joint_velocities(clone=False) sensor_force_torques = self._balance_bots.get_measured_joint_forces(joint_indices=self._sensor_indices) # (num_envs, num_sensors, 6) self.obs_buf[..., 0:3] = dof_pos[..., self.actuated_dof_indices] self.obs_buf[..., 3:6] = dof_vel[..., self.actuated_dof_indices] self.obs_buf[..., 6:9] = ball_positions self.obs_buf[..., 9:12] = ball_linvels self.obs_buf[..., 12:15] = sensor_force_torques[..., 0] / 20.0 self.obs_buf[..., 15:18] = sensor_force_torques[..., 3] / 20.0 self.obs_buf[..., 18:21] = sensor_force_torques[..., 4] / 20.0 self.obs_buf[..., 21:24] = sensor_force_torques[..., 5] / 20.0 self.ball_positions = ball_positions self.ball_linvels = ball_linvels observations = {"ball_balance": {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self.world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) # update position targets from actions self.dof_position_targets[..., self.actuated_dof_indices] += ( self._dt * self._action_speed_scale * actions.to(self.device) ) self.dof_position_targets[:] = tensor_clamp( self.dof_position_targets, self.bbot_dof_lower_limits, self.bbot_dof_upper_limits ) # reset position targets for reset envs self.dof_position_targets[reset_env_ids] = 0 self._balance_bots.set_joint_position_targets(self.dof_position_targets) # .clone()) def reset_idx(self, env_ids): num_resets = len(env_ids) env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) min_d = 0.001 # min horizontal dist from origin max_d = 0.4 # max horizontal dist from origin min_height = 1.0 max_height = 2.0 min_horizontal_speed = 0 max_horizontal_speed = 2 dists = torch_rand_float(min_d, max_d, (num_resets, 1), self._device) dirs = torch_random_dir_2((num_resets, 1), self._device) hpos = dists * dirs speedscales = (dists - min_d) / (max_d - min_d) hspeeds = torch_rand_float(min_horizontal_speed, max_horizontal_speed, (num_resets, 1), self._device) hvels = -speedscales * hspeeds * dirs vspeeds = -torch_rand_float(5.0, 5.0, (num_resets, 1), self._device).squeeze() ball_pos = self.initial_ball_pos.clone() ball_rot = self.initial_ball_rot.clone() # position ball_pos[env_ids_64, 0:2] += hpos[..., 0:2] ball_pos[env_ids_64, 2] += torch_rand_float(min_height, max_height, (num_resets, 1), self._device).squeeze() # rotation ball_rot[env_ids_64, 0] = 1 ball_rot[env_ids_64, 1:] = 0 ball_velocities = self.initial_ball_velocities.clone() # linear ball_velocities[env_ids_64, 0:2] = hvels[..., 0:2] ball_velocities[env_ids_64, 2] = vspeeds # angular ball_velocities[env_ids_64, 3:6] = 0 # reset root state for bbots and balls in selected envs self._balls.set_world_poses(ball_pos[env_ids_64], ball_rot[env_ids_64], indices=env_ids_32) self._balls.set_velocities(ball_velocities[env_ids_64], indices=env_ids_32) # reset root pose and velocity self._balance_bots.set_world_poses( self.initial_bot_pos[env_ids_64].clone(), self.initial_bot_rot[env_ids_64].clone(), indices=env_ids_32 ) self._balance_bots.set_velocities(self.initial_bot_velocities[env_ids_64].clone(), indices=env_ids_32) # reset DOF states for bbots in selected envs self._balance_bots.set_joint_positions(self.initial_dof_positions[env_ids_64].clone(), indices=env_ids_32) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): dof_limits = self._balance_bots.get_dof_limits() self.bbot_dof_lower_limits, self.bbot_dof_upper_limits = torch.t(dof_limits[0].to(device=self._device)) self.initial_dof_positions = self._balance_bots.get_joint_positions() self.initial_bot_pos, self.initial_bot_rot = self._balance_bots.get_world_poses() # self.initial_bot_pos[..., 2] = 0.559 # tray_height self.initial_bot_velocities = self._balance_bots.get_velocities() self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses() self.initial_ball_velocities = self._balls.get_velocities() self.dof_position_targets = torch.zeros( (self.num_envs, self._balance_bots.num_dof), dtype=torch.float32, device=self._device, requires_grad=False ) actuated_joints = ["lower_leg0", "lower_leg1", "lower_leg2"] self.actuated_dof_indices = torch.tensor( [self._balance_bots._dof_indices[j] for j in actuated_joints], device=self._device, dtype=torch.long ) force_links = ["upper_leg0", "upper_leg1", "upper_leg2"] self._sensor_indices = torch.tensor( [self._balance_bots._body_indices[j] for j in force_links], device=self._device, dtype=torch.long ) def calculate_metrics(self) -> None: ball_dist = torch.sqrt( self.ball_positions[..., 0] * self.ball_positions[..., 0] + (self.ball_positions[..., 2] - 0.7) * (self.ball_positions[..., 2] - 0.7) + (self.ball_positions[..., 1]) * self.ball_positions[..., 1] ) ball_speed = torch.sqrt( self.ball_linvels[..., 0] * self.ball_linvels[..., 0] + self.ball_linvels[..., 1] * self.ball_linvels[..., 1] + self.ball_linvels[..., 2] * self.ball_linvels[..., 2] ) pos_reward = 1.0 / (1.0 + ball_dist) speed_reward = 1.0 / (1.0 + ball_speed) self.rew_buf[:] = pos_reward * speed_reward def is_done(self) -> None: reset = torch.where( self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf ) reset = torch.where( self.ball_positions[..., 2] < self._ball_radius * 1.5, torch.ones_like(self.reset_buf), reset ) self.reset_buf[:] = reset
13,952
Python
44.15534
140
0.630447
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/cartpole_camera.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from gym import spaces import numpy as np import torch import omni.usd from pxr import UsdGeom from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.tasks.cartpole import CartpoleTask from omniisaacgymenvs.robots.articulations.cartpole import Cartpole class CartpoleCameraTask(CartpoleTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._max_episode_length = 500 self._num_observations = self.camera_width * self.camera_height * 3 self._num_actions = 1 # use multi-dimensional observation for camera RGB self.observation_space = spaces.Box( np.ones((self.camera_width, self.camera_height, 3), dtype=np.float32) * -np.Inf, np.ones((self.camera_width, self.camera_height, 3), dtype=np.float32) * np.Inf) RLTask.__init__(self, name, env) def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._cartpole_positions = torch.tensor([0.0, 0.0, 2.0]) self._reset_dist = self._task_cfg["env"]["resetDist"] self._max_push_effort = self._task_cfg["env"]["maxEffort"] self.camera_type = self._task_cfg["env"].get("cameraType", 'rgb') self.camera_width = self._task_cfg["env"]["cameraWidth"] self.camera_height = self._task_cfg["env"]["cameraHeight"] self.camera_channels = 3 self._export_images = self._task_cfg["env"]["exportImages"] def cleanup(self) -> None: # initialize remaining buffers RLTask.cleanup(self) # override observation buffer for camera data self.obs_buf = torch.zeros( (self.num_envs, self.camera_width, self.camera_height, 3), device=self.device, dtype=torch.float) def add_camera(self) -> None: stage = get_current_stage() camera_path = f"/World/envs/env_0/Camera" camera_xform = stage.DefinePrim(f'{camera_path}_Xform', 'Xform') # set up transforms for parent and camera prims position = (-4.2, 0.0, 3.0) rotation = (0, -6.1155, -180) UsdGeom.Xformable(camera_xform).AddTranslateOp() UsdGeom.Xformable(camera_xform).AddRotateXYZOp() camera_xform.GetAttribute('xformOp:translate').Set(position) camera_xform.GetAttribute('xformOp:rotateXYZ').Set(rotation) camera = stage.DefinePrim(f'{camera_path}_Xform/Camera', 'Camera') UsdGeom.Xformable(camera).AddRotateXYZOp() camera.GetAttribute("xformOp:rotateXYZ").Set((90, 0, 90)) # set camera properties camera.GetAttribute('focalLength').Set(24) camera.GetAttribute('focusDistance').Set(400) # hide other environments in the background camera.GetAttribute("clippingRange").Set((0.01, 20.0)) def set_up_scene(self, scene) -> None: self.get_cartpole() self.add_camera() RLTask.set_up_scene(self, scene) # start replicator to capture image data self.rep.orchestrator._orchestrator._is_started = True # set up cameras self.render_products = [] env_pos = self._env_pos.cpu() camera_paths = [f"/World/envs/env_{i}/Camera_Xform/Camera" for i in range(self._num_envs)] for i in range(self._num_envs): render_product = self.rep.create.render_product(camera_paths[i], resolution=(self.camera_width, self.camera_height)) self.render_products.append(render_product) # initialize pytorch writer for vectorized collection self.pytorch_listener = self.PytorchListener() self.pytorch_writer = self.rep.WriterRegistry.get("PytorchWriter") self.pytorch_writer.initialize(listener=self.pytorch_listener, device="cuda") self.pytorch_writer.attach(self.render_products) self._cartpoles = ArticulationView( prim_paths_expr="/World/envs/.*/Cartpole", name="cartpole_view", reset_xform_properties=False ) scene.add(self._cartpoles) return def get_observations(self) -> dict: dof_pos = self._cartpoles.get_joint_positions(clone=False) dof_vel = self._cartpoles.get_joint_velocities(clone=False) self.cart_pos = dof_pos[:, self._cart_dof_idx] self.cart_vel = dof_vel[:, self._cart_dof_idx] self.pole_pos = dof_pos[:, self._pole_dof_idx] self.pole_vel = dof_vel[:, self._pole_dof_idx] # retrieve RGB data from all render products images = self.pytorch_listener.get_rgb_data() if images is not None: if self._export_images: from torchvision.utils import save_image, make_grid img = images/255 save_image(make_grid(img, nrows = 2), 'cartpole_export.png') self.obs_buf = torch.swapaxes(images, 1, 3).clone().float()/255.0 else: print("Image tensor is NONE!") return self.obs_buf
6,899
Python
42.396226
128
0.674301
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/anymal_terrain.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.rotations import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.anymal import Anymal from omniisaacgymenvs.robots.articulations.views.anymal_view import AnymalView from omniisaacgymenvs.tasks.utils.anymal_terrain_generator import * from omniisaacgymenvs.utils.terrain_utils.terrain_utils import * from pxr import UsdLux, UsdPhysics class AnymalTerrainTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.height_samples = None self.custom_origins = False self.init_done = False self._env_spacing = 0.0 self._num_observations = 188 self._num_actions = 12 self.update_config(sim_config) RLTask.__init__(self, name, env) self.height_points = self.init_height_points() self.measured_heights = None # joint positions offsets self.default_dof_pos = torch.zeros( (self.num_envs, 12), dtype=torch.float, device=self.device, requires_grad=False ) # reward episode sums torch_zeros = lambda: torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) self.episode_sums = { "lin_vel_xy": torch_zeros(), "lin_vel_z": torch_zeros(), "ang_vel_z": torch_zeros(), "ang_vel_xy": torch_zeros(), "orient": torch_zeros(), "torques": torch_zeros(), "joint_acc": torch_zeros(), "base_height": torch_zeros(), "air_time": torch_zeros(), "collision": torch_zeros(), "stumble": torch_zeros(), "action_rate": torch_zeros(), "hip": torch_zeros(), } return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # normalization self.lin_vel_scale = self._task_cfg["env"]["learn"]["linearVelocityScale"] self.ang_vel_scale = self._task_cfg["env"]["learn"]["angularVelocityScale"] self.dof_pos_scale = self._task_cfg["env"]["learn"]["dofPositionScale"] self.dof_vel_scale = self._task_cfg["env"]["learn"]["dofVelocityScale"] self.height_meas_scale = self._task_cfg["env"]["learn"]["heightMeasurementScale"] self.action_scale = self._task_cfg["env"]["control"]["actionScale"] # reward scales self.rew_scales = {} self.rew_scales["termination"] = self._task_cfg["env"]["learn"]["terminalReward"] self.rew_scales["lin_vel_xy"] = self._task_cfg["env"]["learn"]["linearVelocityXYRewardScale"] self.rew_scales["lin_vel_z"] = self._task_cfg["env"]["learn"]["linearVelocityZRewardScale"] self.rew_scales["ang_vel_z"] = self._task_cfg["env"]["learn"]["angularVelocityZRewardScale"] self.rew_scales["ang_vel_xy"] = self._task_cfg["env"]["learn"]["angularVelocityXYRewardScale"] self.rew_scales["orient"] = self._task_cfg["env"]["learn"]["orientationRewardScale"] self.rew_scales["torque"] = self._task_cfg["env"]["learn"]["torqueRewardScale"] self.rew_scales["joint_acc"] = self._task_cfg["env"]["learn"]["jointAccRewardScale"] self.rew_scales["base_height"] = self._task_cfg["env"]["learn"]["baseHeightRewardScale"] self.rew_scales["action_rate"] = self._task_cfg["env"]["learn"]["actionRateRewardScale"] self.rew_scales["hip"] = self._task_cfg["env"]["learn"]["hipRewardScale"] self.rew_scales["fallen_over"] = self._task_cfg["env"]["learn"]["fallenOverRewardScale"] # command ranges self.command_x_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_x"] self.command_y_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_y"] self.command_yaw_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["yaw"] # base init state pos = self._task_cfg["env"]["baseInitState"]["pos"] rot = self._task_cfg["env"]["baseInitState"]["rot"] v_lin = self._task_cfg["env"]["baseInitState"]["vLinear"] v_ang = self._task_cfg["env"]["baseInitState"]["vAngular"] self.base_init_state = pos + rot + v_lin + v_ang # default joint positions self.named_default_joint_angles = self._task_cfg["env"]["defaultJointAngles"] # other self.decimation = self._task_cfg["env"]["control"]["decimation"] self.dt = self.decimation * self._task_cfg["sim"]["dt"] self.max_episode_length_s = self._task_cfg["env"]["learn"]["episodeLength_s"] self.max_episode_length = int(self.max_episode_length_s / self.dt + 0.5) self.push_interval = int(self._task_cfg["env"]["learn"]["pushInterval_s"] / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] self.curriculum = self._task_cfg["env"]["terrain"]["curriculum"] self.base_threshold = 0.2 self.knee_threshold = 0.1 for key in self.rew_scales.keys(): self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._task_cfg["sim"]["default_physics_material"]["static_friction"] = self._task_cfg["env"]["terrain"][ "staticFriction" ] self._task_cfg["sim"]["default_physics_material"]["dynamic_friction"] = self._task_cfg["env"]["terrain"][ "dynamicFriction" ] self._task_cfg["sim"]["default_physics_material"]["restitution"] = self._task_cfg["env"]["terrain"][ "restitution" ] self._task_cfg["sim"]["add_ground_plane"] = False def _get_noise_scale_vec(self, cfg): noise_vec = torch.zeros_like(self.obs_buf[0]) self.add_noise = self._task_cfg["env"]["learn"]["addNoise"] noise_level = self._task_cfg["env"]["learn"]["noiseLevel"] noise_vec[:3] = self._task_cfg["env"]["learn"]["linearVelocityNoise"] * noise_level * self.lin_vel_scale noise_vec[3:6] = self._task_cfg["env"]["learn"]["angularVelocityNoise"] * noise_level * self.ang_vel_scale noise_vec[6:9] = self._task_cfg["env"]["learn"]["gravityNoise"] * noise_level noise_vec[9:12] = 0.0 # commands noise_vec[12:24] = self._task_cfg["env"]["learn"]["dofPositionNoise"] * noise_level * self.dof_pos_scale noise_vec[24:36] = self._task_cfg["env"]["learn"]["dofVelocityNoise"] * noise_level * self.dof_vel_scale noise_vec[36:176] = ( self._task_cfg["env"]["learn"]["heightMeasurementNoise"] * noise_level * self.height_meas_scale ) noise_vec[176:188] = 0.0 # previous actions return noise_vec def init_height_points(self): # 1mx1.6m rectangle (without center line) y = 0.1 * torch.tensor( [-5, -4, -3, -2, -1, 1, 2, 3, 4, 5], device=self.device, requires_grad=False ) # 10-50cm on each side x = 0.1 * torch.tensor( [-8, -7, -6, -5, -4, -3, -2, 2, 3, 4, 5, 6, 7, 8], device=self.device, requires_grad=False ) # 20-80cm on each side grid_x, grid_y = torch.meshgrid(x, y, indexing='ij') self.num_height_points = grid_x.numel() points = torch.zeros(self.num_envs, self.num_height_points, 3, device=self.device, requires_grad=False) points[:, :, 0] = grid_x.flatten() points[:, :, 1] = grid_y.flatten() return points def _create_trimesh(self, create_mesh=True): self.terrain = Terrain(self._task_cfg["env"]["terrain"], num_robots=self.num_envs) vertices = self.terrain.vertices triangles = self.terrain.triangles position = torch.tensor([-self.terrain.border_size, -self.terrain.border_size, 0.0]) if create_mesh: add_terrain_to_stage(stage=self._stage, vertices=vertices, triangles=triangles, position=position) self.height_samples = ( torch.tensor(self.terrain.heightsamples).view(self.terrain.tot_rows, self.terrain.tot_cols).to(self.device) ) def set_up_scene(self, scene) -> None: self._stage = get_current_stage() self.get_terrain() self.get_anymal() super().set_up_scene(scene, collision_filter_global_paths=["/World/terrain"]) self._anymals = AnymalView( prim_paths_expr="/World/envs/.*/anymal", name="anymal_view", track_contact_forces=True ) scene.add(self._anymals) scene.add(self._anymals._knees) scene.add(self._anymals._base) def initialize_views(self, scene): # initialize terrain variables even if we do not need to re-create the terrain mesh self.get_terrain(create_mesh=False) super().initialize_views(scene) if scene.object_exists("anymal_view"): scene.remove_object("anymal_view", registry_only=True) if scene.object_exists("knees_view"): scene.remove_object("knees_view", registry_only=True) if scene.object_exists("base_view"): scene.remove_object("base_view", registry_only=True) self._anymals = AnymalView( prim_paths_expr="/World/envs/.*/anymal", name="anymal_view", track_contact_forces=True ) scene.add(self._anymals) scene.add(self._anymals._knees) scene.add(self._anymals._base) def get_terrain(self, create_mesh=True): self.env_origins = torch.zeros((self.num_envs, 3), device=self.device, requires_grad=False) if not self.curriculum: self._task_cfg["env"]["terrain"]["maxInitMapLevel"] = self._task_cfg["env"]["terrain"]["numLevels"] - 1 self.terrain_levels = torch.randint( 0, self._task_cfg["env"]["terrain"]["maxInitMapLevel"] + 1, (self.num_envs,), device=self.device ) self.terrain_types = torch.randint( 0, self._task_cfg["env"]["terrain"]["numTerrains"], (self.num_envs,), device=self.device ) self._create_trimesh(create_mesh=create_mesh) self.terrain_origins = torch.from_numpy(self.terrain.env_origins).to(self.device).to(torch.float) def get_anymal(self): anymal_translation = torch.tensor([0.0, 0.0, 0.66]) anymal_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0]) anymal = Anymal( prim_path=self.default_zero_env_path + "/anymal", name="anymal", translation=anymal_translation, orientation=anymal_orientation, ) self._sim_config.apply_articulation_settings( "anymal", get_prim_at_path(anymal.prim_path), self._sim_config.parse_actor_config("anymal") ) anymal.set_anymal_properties(self._stage, anymal.prim) anymal.prepare_contacts(self._stage, anymal.prim) self.dof_names = anymal.dof_names for i in range(self.num_actions): name = self.dof_names[i] angle = self.named_default_joint_angles[name] self.default_dof_pos[:, i] = angle def post_reset(self): self.base_init_state = torch.tensor( self.base_init_state, dtype=torch.float, device=self.device, requires_grad=False ) self.timeout_buf = torch.zeros(self.num_envs, device=self.device, dtype=torch.long) # initialize some data used later on self.up_axis_idx = 2 self.common_step_counter = 0 self.extras = {} self.noise_scale_vec = self._get_noise_scale_vec(self._task_cfg) self.commands = torch.zeros( self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False ) # x vel, y vel, yaw vel, heading self.commands_scale = torch.tensor( [self.lin_vel_scale, self.lin_vel_scale, self.ang_vel_scale], device=self.device, requires_grad=False, ) self.gravity_vec = torch.tensor( get_axis_params(-1.0, self.up_axis_idx), dtype=torch.float, device=self.device ).repeat((self.num_envs, 1)) self.forward_vec = torch.tensor([1.0, 0.0, 0.0], dtype=torch.float, device=self.device).repeat( (self.num_envs, 1) ) self.torques = torch.zeros( self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False ) self.actions = torch.zeros( self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False ) self.last_actions = torch.zeros( self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False ) self.feet_air_time = torch.zeros(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False) self.last_dof_vel = torch.zeros((self.num_envs, 12), dtype=torch.float, device=self.device, requires_grad=False) for i in range(self.num_envs): self.env_origins[i] = self.terrain_origins[self.terrain_levels[i], self.terrain_types[i]] self.num_dof = self._anymals.num_dof self.dof_pos = torch.zeros((self.num_envs, self.num_dof), dtype=torch.float, device=self.device) self.dof_vel = torch.zeros((self.num_envs, self.num_dof), dtype=torch.float, device=self.device) self.base_pos = torch.zeros((self.num_envs, 3), dtype=torch.float, device=self.device) self.base_quat = torch.zeros((self.num_envs, 4), dtype=torch.float, device=self.device) self.base_velocities = torch.zeros((self.num_envs, 6), dtype=torch.float, device=self.device) self.knee_pos = torch.zeros((self.num_envs * 4, 3), dtype=torch.float, device=self.device) self.knee_quat = torch.zeros((self.num_envs * 4, 4), dtype=torch.float, device=self.device) indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) self.init_done = True def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) positions_offset = torch_rand_float(0.5, 1.5, (len(env_ids), self.num_dof), device=self.device) velocities = torch_rand_float(-0.1, 0.1, (len(env_ids), self.num_dof), device=self.device) self.dof_pos[env_ids] = self.default_dof_pos[env_ids] * positions_offset self.dof_vel[env_ids] = velocities self.update_terrain_level(env_ids) self.base_pos[env_ids] = self.base_init_state[0:3] self.base_pos[env_ids, 0:3] += self.env_origins[env_ids] self.base_pos[env_ids, 0:2] += torch_rand_float(-0.5, 0.5, (len(env_ids), 2), device=self.device) self.base_quat[env_ids] = self.base_init_state[3:7] self.base_velocities[env_ids] = self.base_init_state[7:] self._anymals.set_world_poses( positions=self.base_pos[env_ids].clone(), orientations=self.base_quat[env_ids].clone(), indices=indices ) self._anymals.set_velocities(velocities=self.base_velocities[env_ids].clone(), indices=indices) self._anymals.set_joint_positions(positions=self.dof_pos[env_ids].clone(), indices=indices) self._anymals.set_joint_velocities(velocities=self.dof_vel[env_ids].clone(), indices=indices) self.commands[env_ids, 0] = torch_rand_float( self.command_x_range[0], self.command_x_range[1], (len(env_ids), 1), device=self.device ).squeeze() self.commands[env_ids, 1] = torch_rand_float( self.command_y_range[0], self.command_y_range[1], (len(env_ids), 1), device=self.device ).squeeze() self.commands[env_ids, 3] = torch_rand_float( self.command_yaw_range[0], self.command_yaw_range[1], (len(env_ids), 1), device=self.device ).squeeze() self.commands[env_ids] *= (torch.norm(self.commands[env_ids, :2], dim=1) > 0.25).unsqueeze( 1 ) # set small commands to zero self.last_actions[env_ids] = 0.0 self.last_dof_vel[env_ids] = 0.0 self.feet_air_time[env_ids] = 0.0 self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 1 # fill extras self.extras["episode"] = {} for key in self.episode_sums.keys(): self.extras["episode"]["rew_" + key] = ( torch.mean(self.episode_sums[key][env_ids]) / self.max_episode_length_s ) self.episode_sums[key][env_ids] = 0.0 self.extras["episode"]["terrain_level"] = torch.mean(self.terrain_levels.float()) def update_terrain_level(self, env_ids): if not self.init_done or not self.curriculum: # do not change on initial reset return root_pos, _ = self._anymals.get_world_poses(clone=False) distance = torch.norm(root_pos[env_ids, :2] - self.env_origins[env_ids, :2], dim=1) self.terrain_levels[env_ids] -= 1 * ( distance < torch.norm(self.commands[env_ids, :2]) * self.max_episode_length_s * 0.25 ) self.terrain_levels[env_ids] += 1 * (distance > self.terrain.env_length / 2) self.terrain_levels[env_ids] = torch.clip(self.terrain_levels[env_ids], 0) % self.terrain.env_rows self.env_origins[env_ids] = self.terrain_origins[self.terrain_levels[env_ids], self.terrain_types[env_ids]] def refresh_dof_state_tensors(self): self.dof_pos = self._anymals.get_joint_positions(clone=False) self.dof_vel = self._anymals.get_joint_velocities(clone=False) def refresh_body_state_tensors(self): self.base_pos, self.base_quat = self._anymals.get_world_poses(clone=False) self.base_velocities = self._anymals.get_velocities(clone=False) self.knee_pos, self.knee_quat = self._anymals._knees.get_world_poses(clone=False) def pre_physics_step(self, actions): if not self.world.is_playing(): return self.actions = actions.clone().to(self.device) for i in range(self.decimation): if self.world.is_playing(): torques = torch.clip( self.Kp * (self.action_scale * self.actions + self.default_dof_pos - self.dof_pos) - self.Kd * self.dof_vel, -80.0, 80.0, ) self._anymals.set_joint_efforts(torques) self.torques = torques SimulationContext.step(self.world, render=False) self.refresh_dof_state_tensors() def post_physics_step(self): self.progress_buf[:] += 1 if self.world.is_playing(): self.refresh_dof_state_tensors() self.refresh_body_state_tensors() self.common_step_counter += 1 if self.common_step_counter % self.push_interval == 0: self.push_robots() # prepare quantities self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 0:3]) self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 3:6]) self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec) forward = quat_apply(self.base_quat, self.forward_vec) heading = torch.atan2(forward[:, 1], forward[:, 0]) self.commands[:, 2] = torch.clip(0.5 * wrap_to_pi(self.commands[:, 3] - heading), -1.0, 1.0) self.check_termination() self.get_states() self.calculate_metrics() env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(env_ids) > 0: self.reset_idx(env_ids) self.get_observations() if self.add_noise: self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec self.last_actions[:] = self.actions[:] self.last_dof_vel[:] = self.dof_vel[:] return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def push_robots(self): self.base_velocities[:, 0:2] = torch_rand_float( -1.0, 1.0, (self.num_envs, 2), device=self.device ) # lin vel x/y self._anymals.set_velocities(self.base_velocities) def check_termination(self): self.timeout_buf = torch.where( self.progress_buf >= self.max_episode_length - 1, torch.ones_like(self.timeout_buf), torch.zeros_like(self.timeout_buf), ) knee_contact = ( torch.norm(self._anymals._knees.get_net_contact_forces(clone=False).view(self._num_envs, 4, 3), dim=-1) > 1.0 ) self.has_fallen = (torch.norm(self._anymals._base.get_net_contact_forces(clone=False), dim=1) > 1.0) | ( torch.sum(knee_contact, dim=-1) > 1.0 ) self.reset_buf = self.has_fallen.clone() self.reset_buf = torch.where(self.timeout_buf.bool(), torch.ones_like(self.reset_buf), self.reset_buf) def calculate_metrics(self): # velocity tracking reward lin_vel_error = torch.sum(torch.square(self.commands[:, :2] - self.base_lin_vel[:, :2]), dim=1) ang_vel_error = torch.square(self.commands[:, 2] - self.base_ang_vel[:, 2]) rew_lin_vel_xy = torch.exp(-lin_vel_error / 0.25) * self.rew_scales["lin_vel_xy"] rew_ang_vel_z = torch.exp(-ang_vel_error / 0.25) * self.rew_scales["ang_vel_z"] # other base velocity penalties rew_lin_vel_z = torch.square(self.base_lin_vel[:, 2]) * self.rew_scales["lin_vel_z"] rew_ang_vel_xy = torch.sum(torch.square(self.base_ang_vel[:, :2]), dim=1) * self.rew_scales["ang_vel_xy"] # orientation penalty rew_orient = torch.sum(torch.square(self.projected_gravity[:, :2]), dim=1) * self.rew_scales["orient"] # base height penalty rew_base_height = torch.square(self.base_pos[:, 2] - 0.52) * self.rew_scales["base_height"] # torque penalty rew_torque = torch.sum(torch.square(self.torques), dim=1) * self.rew_scales["torque"] # joint acc penalty rew_joint_acc = torch.sum(torch.square(self.last_dof_vel - self.dof_vel), dim=1) * self.rew_scales["joint_acc"] # fallen over penalty rew_fallen_over = self.has_fallen * self.rew_scales["fallen_over"] # action rate penalty rew_action_rate = ( torch.sum(torch.square(self.last_actions - self.actions), dim=1) * self.rew_scales["action_rate"] ) # cosmetic penalty for hip motion rew_hip = ( torch.sum(torch.abs(self.dof_pos[:, 0:4] - self.default_dof_pos[:, 0:4]), dim=1) * self.rew_scales["hip"] ) # total reward self.rew_buf = ( rew_lin_vel_xy + rew_ang_vel_z + rew_lin_vel_z + rew_ang_vel_xy + rew_orient + rew_base_height + rew_torque + rew_joint_acc + rew_action_rate + rew_hip + rew_fallen_over ) self.rew_buf = torch.clip(self.rew_buf, min=0.0, max=None) # add termination reward self.rew_buf += self.rew_scales["termination"] * self.reset_buf * ~self.timeout_buf # log episode reward sums self.episode_sums["lin_vel_xy"] += rew_lin_vel_xy self.episode_sums["ang_vel_z"] += rew_ang_vel_z self.episode_sums["lin_vel_z"] += rew_lin_vel_z self.episode_sums["ang_vel_xy"] += rew_ang_vel_xy self.episode_sums["orient"] += rew_orient self.episode_sums["torques"] += rew_torque self.episode_sums["joint_acc"] += rew_joint_acc self.episode_sums["action_rate"] += rew_action_rate self.episode_sums["base_height"] += rew_base_height self.episode_sums["hip"] += rew_hip def get_observations(self): self.measured_heights = self.get_heights() heights = ( torch.clip(self.base_pos[:, 2].unsqueeze(1) - 0.5 - self.measured_heights, -1, 1.0) * self.height_meas_scale ) self.obs_buf = torch.cat( ( self.base_lin_vel * self.lin_vel_scale, self.base_ang_vel * self.ang_vel_scale, self.projected_gravity, self.commands[:, :3] * self.commands_scale, self.dof_pos * self.dof_pos_scale, self.dof_vel * self.dof_vel_scale, heights, self.actions, ), dim=-1, ) def get_ground_heights_below_knees(self): points = self.knee_pos.reshape(self.num_envs, 4, 3) points += self.terrain.border_size points = (points / self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0] - 2) py = torch.clip(py, 0, self.height_samples.shape[1] - 2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px + 1, py + 1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale def get_ground_heights_below_base(self): points = self.base_pos.reshape(self.num_envs, 1, 3) points += self.terrain.border_size points = (points / self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0] - 2) py = torch.clip(py, 0, self.height_samples.shape[1] - 2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px + 1, py + 1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale def get_heights(self, env_ids=None): if env_ids: points = quat_apply_yaw( self.base_quat[env_ids].repeat(1, self.num_height_points), self.height_points[env_ids] ) + (self.base_pos[env_ids, 0:3]).unsqueeze(1) else: points = quat_apply_yaw(self.base_quat.repeat(1, self.num_height_points), self.height_points) + ( self.base_pos[:, 0:3] ).unsqueeze(1) points += self.terrain.border_size points = (points / self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0] - 2) py = torch.clip(py, 0, self.height_samples.shape[1] - 2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px + 1, py + 1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale @torch.jit.script def quat_apply_yaw(quat, vec): quat_yaw = quat.clone().view(-1, 4) quat_yaw[:, 1:3] = 0.0 quat_yaw = normalize(quat_yaw) return quat_apply(quat_yaw, vec) @torch.jit.script def wrap_to_pi(angles): angles %= 2 * np.pi angles -= 2 * np.pi * (angles > np.pi) return angles def get_axis_params(value, axis_idx, x_value=0.0, dtype=float, n_dims=3): """construct arguments to `Vec` according to axis index.""" zs = np.zeros((n_dims,)) assert axis_idx < n_dims, "the axis dim should be within the vector dimensions" zs[axis_idx] = 1.0 params = np.where(zs == 1.0, value, zs) params[0] = x_value return list(params.astype(dtype))
29,313
Python
45.530159
120
0.609218
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/shadow_hand.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.shadow_hand import ShadowHand from omniisaacgymenvs.robots.articulations.views.shadow_hand_view import ShadowHandView from omniisaacgymenvs.tasks.shared.in_hand_manipulation import InHandManipulationTask class ShadowHandTask(InHandManipulationTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) InHandManipulationTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self.object_type = self._task_cfg["env"]["objectType"] assert self.object_type in ["block"] self.obs_type = self._task_cfg["env"]["observationType"] if not (self.obs_type in ["openai", "full_no_vel", "full", "full_state"]): raise Exception( "Unknown type of observations!\nobservationType should be one of: [openai, full_no_vel, full, full_state]" ) print("Obs type:", self.obs_type) self.num_obs_dict = { "openai": 42, "full_no_vel": 77, "full": 157, "full_state": 187, } self.asymmetric_obs = self._task_cfg["env"]["asymmetric_observations"] self.use_vel_obs = False self.fingertip_obs = True self.fingertips = [ "robot0:ffdistal", "robot0:mfdistal", "robot0:rfdistal", "robot0:lfdistal", "robot0:thdistal", ] self.num_fingertips = len(self.fingertips) self.object_scale = torch.tensor([1.0, 1.0, 1.0]) self.force_torque_obs_scale = 10.0 num_states = 0 if self.asymmetric_obs: num_states = 187 self._num_observations = self.num_obs_dict[self.obs_type] self._num_actions = 20 self._num_states = num_states InHandManipulationTask.update_config(self) def get_starting_positions(self): self.hand_start_translation = torch.tensor([0.0, 0.0, 0.5], device=self.device) self.hand_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.pose_dy, self.pose_dz = -0.39, 0.10 def get_hand(self): shadow_hand = ShadowHand( prim_path=self.default_zero_env_path + "/shadow_hand", name="shadow_hand", translation=self.hand_start_translation, orientation=self.hand_start_orientation, ) self._sim_config.apply_articulation_settings( "shadow_hand", get_prim_at_path(shadow_hand.prim_path), self._sim_config.parse_actor_config("shadow_hand"), ) shadow_hand.set_shadow_hand_properties(stage=self._stage, shadow_hand_prim=shadow_hand.prim) shadow_hand.set_motor_control_mode(stage=self._stage, shadow_hand_path=shadow_hand.prim_path) def get_hand_view(self, scene): hand_view = ShadowHandView(prim_paths_expr="/World/envs/.*/shadow_hand", name="shadow_hand_view") scene.add(hand_view._fingers) return hand_view def get_observations(self): self.get_object_goal_observations() self.fingertip_pos, self.fingertip_rot = self._hands._fingers.get_world_poses(clone=False) self.fingertip_pos -= self._env_pos.repeat((1, self.num_fingertips)).reshape( self.num_envs * self.num_fingertips, 3 ) self.fingertip_velocities = self._hands._fingers.get_velocities(clone=False) self.hand_dof_pos = self._hands.get_joint_positions(clone=False) self.hand_dof_vel = self._hands.get_joint_velocities(clone=False) if self.obs_type == "full_state" or self.asymmetric_obs: self.vec_sensor_tensor = self._hands.get_measured_joint_forces( joint_indices=self._hands._sensor_indices ).view(self._num_envs, -1) if self.obs_type == "openai": self.compute_fingertip_observations(True) elif self.obs_type == "full_no_vel": self.compute_full_observations(True) elif self.obs_type == "full": self.compute_full_observations() elif self.obs_type == "full_state": self.compute_full_state(False) else: print("Unkown observations type!") if self.asymmetric_obs: self.compute_full_state(True) observations = {self._hands.name: {"obs_buf": self.obs_buf}} return observations def compute_fingertip_observations(self, no_vel=False): if no_vel: # Per https://arxiv.org/pdf/1808.00177.pdf Table 2 # Fingertip positions # Object Position, but not orientation # Relative target orientation # 3*self.num_fingertips = 15 self.obs_buf[:, 0:15] = self.fingertip_pos.reshape(self.num_envs, 15) self.obs_buf[:, 15:18] = self.object_pos self.obs_buf[:, 18:22] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 22:42] = self.actions else: # 13*self.num_fingertips = 65 self.obs_buf[:, 0:65] = self.fingertip_state.reshape(self.num_envs, 65) self.obs_buf[:, 0:15] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips) self.obs_buf[:, 15:35] = self.fingertip_rot.reshape(self.num_envs, 4 * self.num_fingertips) self.obs_buf[:, 35:65] = self.fingertip_velocities.reshape(self.num_envs, 6 * self.num_fingertips) self.obs_buf[:, 65:68] = self.object_pos self.obs_buf[:, 68:72] = self.object_rot self.obs_buf[:, 72:75] = self.object_linvel self.obs_buf[:, 75:78] = self.vel_obs_scale * self.object_angvel self.obs_buf[:, 78:81] = self.goal_pos self.obs_buf[:, 81:85] = self.goal_rot self.obs_buf[:, 85:89] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 89:109] = self.actions def compute_full_observations(self, no_vel=False): if no_vel: self.obs_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.obs_buf[:, 24:37] = self.object_pos self.obs_buf[:, 27:31] = self.object_rot self.obs_buf[:, 31:34] = self.goal_pos self.obs_buf[:, 34:38] = self.goal_rot self.obs_buf[:, 38:42] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 42:57] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips) self.obs_buf[:, 57:77] = self.actions else: self.obs_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.obs_buf[:, self.num_hand_dofs : 2 * self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel self.obs_buf[:, 48:51] = self.object_pos self.obs_buf[:, 51:55] = self.object_rot self.obs_buf[:, 55:58] = self.object_linvel self.obs_buf[:, 58:61] = self.vel_obs_scale * self.object_angvel self.obs_buf[:, 61:64] = self.goal_pos self.obs_buf[:, 64:68] = self.goal_rot self.obs_buf[:, 68:72] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) # (7+6)*self.num_fingertips = 65 self.obs_buf[:, 72:87] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips) self.obs_buf[:, 87:107] = self.fingertip_rot.reshape(self.num_envs, 4 * self.num_fingertips) self.obs_buf[:, 107:137] = self.fingertip_velocities.reshape(self.num_envs, 6 * self.num_fingertips) self.obs_buf[:, 137:157] = self.actions def compute_full_state(self, asymm_obs=False): if asymm_obs: self.states_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.states_buf[:, self.num_hand_dofs : 2 * self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel # self.states_buf[:, 2*self.num_hand_dofs:3*self.num_hand_dofs] = self.force_torque_obs_scale * self.dof_force_tensor obj_obs_start = 2 * self.num_hand_dofs # 48 self.states_buf[:, obj_obs_start : obj_obs_start + 3] = self.object_pos self.states_buf[:, obj_obs_start + 3 : obj_obs_start + 7] = self.object_rot self.states_buf[:, obj_obs_start + 7 : obj_obs_start + 10] = self.object_linvel self.states_buf[:, obj_obs_start + 10 : obj_obs_start + 13] = self.vel_obs_scale * self.object_angvel goal_obs_start = obj_obs_start + 13 # 61 self.states_buf[:, goal_obs_start : goal_obs_start + 3] = self.goal_pos self.states_buf[:, goal_obs_start + 3 : goal_obs_start + 7] = self.goal_rot self.states_buf[:, goal_obs_start + 7 : goal_obs_start + 11] = quat_mul( self.object_rot, quat_conjugate(self.goal_rot) ) # fingertip observations, state(pose and vel) + force-torque sensors num_ft_states = 13 * self.num_fingertips # 65 num_ft_force_torques = 6 * self.num_fingertips # 30 fingertip_obs_start = goal_obs_start + 11 # 72 self.states_buf[ :, fingertip_obs_start : fingertip_obs_start + 3 * self.num_fingertips ] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips) self.states_buf[ :, fingertip_obs_start + 3 * self.num_fingertips : fingertip_obs_start + 7 * self.num_fingertips ] = self.fingertip_rot.reshape(self.num_envs, 4 * self.num_fingertips) self.states_buf[ :, fingertip_obs_start + 7 * self.num_fingertips : fingertip_obs_start + 13 * self.num_fingertips ] = self.fingertip_velocities.reshape(self.num_envs, 6 * self.num_fingertips) self.states_buf[ :, fingertip_obs_start + num_ft_states : fingertip_obs_start + num_ft_states + num_ft_force_torques ] = (self.force_torque_obs_scale * self.vec_sensor_tensor) # obs_end = 72 + 65 + 30 = 167 # obs_total = obs_end + num_actions = 187 obs_end = fingertip_obs_start + num_ft_states + num_ft_force_torques self.states_buf[:, obs_end : obs_end + self.num_actions] = self.actions else: self.obs_buf[:, 0 : self.num_hand_dofs] = unscale( self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits ) self.obs_buf[:, self.num_hand_dofs : 2 * self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel self.obs_buf[:, 2 * self.num_hand_dofs : 3 * self.num_hand_dofs] = ( self.force_torque_obs_scale * self.dof_force_tensor ) obj_obs_start = 3 * self.num_hand_dofs # 48 self.obs_buf[:, obj_obs_start : obj_obs_start + 3] = self.object_pos self.obs_buf[:, obj_obs_start + 3 : obj_obs_start + 7] = self.object_rot self.obs_buf[:, obj_obs_start + 7 : obj_obs_start + 10] = self.object_linvel self.obs_buf[:, obj_obs_start + 10 : obj_obs_start + 13] = self.vel_obs_scale * self.object_angvel goal_obs_start = obj_obs_start + 13 # 61 self.obs_buf[:, goal_obs_start : goal_obs_start + 3] = self.goal_pos self.obs_buf[:, goal_obs_start + 3 : goal_obs_start + 7] = self.goal_rot self.obs_buf[:, goal_obs_start + 7 : goal_obs_start + 11] = quat_mul( self.object_rot, quat_conjugate(self.goal_rot) ) # fingertip observations, state(pose and vel) + force-torque sensors num_ft_states = 13 * self.num_fingertips # 65 num_ft_force_torques = 6 * self.num_fingertips # 30 fingertip_obs_start = goal_obs_start + 11 # 72 self.obs_buf[ :, fingertip_obs_start : fingertip_obs_start + 3 * self.num_fingertips ] = self.fingertip_pos.reshape(self.num_envs, 3 * self.num_fingertips) self.obs_buf[ :, fingertip_obs_start + 3 * self.num_fingertips : fingertip_obs_start + 7 * self.num_fingertips ] = self.fingertip_rot.reshape(self.num_envs, 4 * self.num_fingertips) self.obs_buf[ :, fingertip_obs_start + 7 * self.num_fingertips : fingertip_obs_start + 13 * self.num_fingertips ] = self.fingertip_velocities.reshape(self.num_envs, 6 * self.num_fingertips) self.obs_buf[ :, fingertip_obs_start + num_ft_states : fingertip_obs_start + num_ft_states + num_ft_force_torques ] = (self.force_torque_obs_scale * self.vec_sensor_tensor) # obs_end = 96 + 65 + 30 = 167 # obs_total = obs_end + num_actions = 187 obs_end = fingertip_obs_start + num_ft_states + num_ft_force_torques self.obs_buf[:, obs_end : obs_end + self.num_actions] = self.actions
15,107
Python
48.211726
129
0.609188
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/franka_cabinet.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import math import numpy as np import torch from omni.isaac.cloner import Cloner from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.prims import RigidPrim, RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.utils.torch.transformations import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.cabinet import Cabinet from omniisaacgymenvs.robots.articulations.franka import Franka from omniisaacgymenvs.robots.articulations.views.cabinet_view import CabinetView from omniisaacgymenvs.robots.articulations.views.franka_view import FrankaView from pxr import Usd, UsdGeom class FrankaCabinetTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self.distX_offset = 0.04 self.dt = 1 / 60.0 self._num_observations = 23 self._num_actions = 9 RLTask.__init__(self, name, env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.action_scale = self._task_cfg["env"]["actionScale"] self.start_position_noise = self._task_cfg["env"]["startPositionNoise"] self.start_rotation_noise = self._task_cfg["env"]["startRotationNoise"] self.num_props = self._task_cfg["env"]["numProps"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.dist_reward_scale = self._task_cfg["env"]["distRewardScale"] self.rot_reward_scale = self._task_cfg["env"]["rotRewardScale"] self.around_handle_reward_scale = self._task_cfg["env"]["aroundHandleRewardScale"] self.open_reward_scale = self._task_cfg["env"]["openRewardScale"] self.finger_dist_reward_scale = self._task_cfg["env"]["fingerDistRewardScale"] self.action_penalty_scale = self._task_cfg["env"]["actionPenaltyScale"] self.finger_close_reward_scale = self._task_cfg["env"]["fingerCloseRewardScale"] def set_up_scene(self, scene) -> None: self.get_franka() self.get_cabinet() if self.num_props > 0: self.get_props() super().set_up_scene(scene, filter_collisions=False) self._frankas = FrankaView(prim_paths_expr="/World/envs/.*/franka", name="franka_view") self._cabinets = CabinetView(prim_paths_expr="/World/envs/.*/cabinet", name="cabinet_view") scene.add(self._frankas) scene.add(self._frankas._hands) scene.add(self._frankas._lfingers) scene.add(self._frankas._rfingers) scene.add(self._cabinets) scene.add(self._cabinets._drawers) if self.num_props > 0: self._props = RigidPrimView( prim_paths_expr="/World/envs/.*/prop/.*", name="prop_view", reset_xform_properties=False ) scene.add(self._props) self.init_data() return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("franka_view"): scene.remove_object("franka_view", registry_only=True) if scene.object_exists("hands_view"): scene.remove_object("hands_view", registry_only=True) if scene.object_exists("lfingers_view"): scene.remove_object("lfingers_view", registry_only=True) if scene.object_exists("rfingers_view"): scene.remove_object("rfingers_view", registry_only=True) if scene.object_exists("cabinet_view"): scene.remove_object("cabinet_view", registry_only=True) if scene.object_exists("drawers_view"): scene.remove_object("drawers_view", registry_only=True) if scene.object_exists("prop_view"): scene.remove_object("prop_view", registry_only=True) self._frankas = FrankaView(prim_paths_expr="/World/envs/.*/franka", name="franka_view") self._cabinets = CabinetView(prim_paths_expr="/World/envs/.*/cabinet", name="cabinet_view") scene.add(self._frankas) scene.add(self._frankas._hands) scene.add(self._frankas._lfingers) scene.add(self._frankas._rfingers) scene.add(self._cabinets) scene.add(self._cabinets._drawers) if self.num_props > 0: self._props = RigidPrimView( prim_paths_expr="/World/envs/.*/prop/.*", name="prop_view", reset_xform_properties=False ) scene.add(self._props) self.init_data() def get_franka(self): franka = Franka(prim_path=self.default_zero_env_path + "/franka", name="franka") self._sim_config.apply_articulation_settings( "franka", get_prim_at_path(franka.prim_path), self._sim_config.parse_actor_config("franka") ) def get_cabinet(self): cabinet = Cabinet(self.default_zero_env_path + "/cabinet", name="cabinet") self._sim_config.apply_articulation_settings( "cabinet", get_prim_at_path(cabinet.prim_path), self._sim_config.parse_actor_config("cabinet") ) def get_props(self): prop_cloner = Cloner() drawer_pos = torch.tensor([0.0515, 0.0, 0.7172]) prop_color = torch.tensor([0.2, 0.4, 0.6]) props_per_row = int(math.ceil(math.sqrt(self.num_props))) prop_size = 0.08 prop_spacing = 0.09 xmin = -0.5 * prop_spacing * (props_per_row - 1) zmin = -0.5 * prop_spacing * (props_per_row - 1) prop_count = 0 prop_pos = [] for j in range(props_per_row): prop_up = zmin + j * prop_spacing for k in range(props_per_row): if prop_count >= self.num_props: break propx = xmin + k * prop_spacing prop_pos.append([propx, prop_up, 0.0]) prop_count += 1 prop = DynamicCuboid( prim_path=self.default_zero_env_path + "/prop/prop_0", name="prop", color=prop_color, size=prop_size, density=100.0, ) self._sim_config.apply_articulation_settings( "prop", get_prim_at_path(prop.prim_path), self._sim_config.parse_actor_config("prop") ) prop_paths = [f"{self.default_zero_env_path}/prop/prop_{j}" for j in range(self.num_props)] prop_cloner.clone( source_prim_path=self.default_zero_env_path + "/prop/prop_0", prim_paths=prop_paths, positions=np.array(prop_pos) + drawer_pos.numpy(), replicate_physics=False, ) def init_data(self) -> None: def get_env_local_pose(env_pos, xformable, device): """Compute pose in env-local coordinates""" world_transform = xformable.ComputeLocalToWorldTransform(0) world_pos = world_transform.ExtractTranslation() world_quat = world_transform.ExtractRotationQuat() px = world_pos[0] - env_pos[0] py = world_pos[1] - env_pos[1] pz = world_pos[2] - env_pos[2] qx = world_quat.imaginary[0] qy = world_quat.imaginary[1] qz = world_quat.imaginary[2] qw = world_quat.real return torch.tensor([px, py, pz, qw, qx, qy, qz], device=device, dtype=torch.float) stage = get_current_stage() hand_pose = get_env_local_pose( self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/franka/panda_link7")), self._device, ) lfinger_pose = get_env_local_pose( self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/franka/panda_leftfinger")), self._device, ) rfinger_pose = get_env_local_pose( self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/franka/panda_rightfinger")), self._device, ) finger_pose = torch.zeros(7, device=self._device) finger_pose[0:3] = (lfinger_pose[0:3] + rfinger_pose[0:3]) / 2.0 finger_pose[3:7] = lfinger_pose[3:7] hand_pose_inv_rot, hand_pose_inv_pos = tf_inverse(hand_pose[3:7], hand_pose[0:3]) grasp_pose_axis = 1 franka_local_grasp_pose_rot, franka_local_pose_pos = tf_combine( hand_pose_inv_rot, hand_pose_inv_pos, finger_pose[3:7], finger_pose[0:3] ) franka_local_pose_pos += torch.tensor([0, 0.04, 0], device=self._device) self.franka_local_grasp_pos = franka_local_pose_pos.repeat((self._num_envs, 1)) self.franka_local_grasp_rot = franka_local_grasp_pose_rot.repeat((self._num_envs, 1)) drawer_local_grasp_pose = torch.tensor([0.3, 0.01, 0.0, 1.0, 0.0, 0.0, 0.0], device=self._device) self.drawer_local_grasp_pos = drawer_local_grasp_pose[0:3].repeat((self._num_envs, 1)) self.drawer_local_grasp_rot = drawer_local_grasp_pose[3:7].repeat((self._num_envs, 1)) self.gripper_forward_axis = torch.tensor([0, 0, 1], device=self._device, dtype=torch.float).repeat( (self._num_envs, 1) ) self.drawer_inward_axis = torch.tensor([-1, 0, 0], device=self._device, dtype=torch.float).repeat( (self._num_envs, 1) ) self.gripper_up_axis = torch.tensor([0, 1, 0], device=self._device, dtype=torch.float).repeat( (self._num_envs, 1) ) self.drawer_up_axis = torch.tensor([0, 0, 1], device=self._device, dtype=torch.float).repeat( (self._num_envs, 1) ) self.franka_default_dof_pos = torch.tensor( [1.157, -1.066, -0.155, -2.239, -1.841, 1.003, 0.469, 0.035, 0.035], device=self._device ) self.actions = torch.zeros((self._num_envs, self.num_actions), device=self._device) def get_observations(self) -> dict: hand_pos, hand_rot = self._frankas._hands.get_world_poses(clone=False) drawer_pos, drawer_rot = self._cabinets._drawers.get_world_poses(clone=False) franka_dof_pos = self._frankas.get_joint_positions(clone=False) franka_dof_vel = self._frankas.get_joint_velocities(clone=False) self.cabinet_dof_pos = self._cabinets.get_joint_positions(clone=False) self.cabinet_dof_vel = self._cabinets.get_joint_velocities(clone=False) self.franka_dof_pos = franka_dof_pos ( self.franka_grasp_rot, self.franka_grasp_pos, self.drawer_grasp_rot, self.drawer_grasp_pos, ) = self.compute_grasp_transforms( hand_rot, hand_pos, self.franka_local_grasp_rot, self.franka_local_grasp_pos, drawer_rot, drawer_pos, self.drawer_local_grasp_rot, self.drawer_local_grasp_pos, ) self.franka_lfinger_pos, self.franka_lfinger_rot = self._frankas._lfingers.get_world_poses(clone=False) self.franka_rfinger_pos, self.franka_rfinger_rot = self._frankas._lfingers.get_world_poses(clone=False) dof_pos_scaled = ( 2.0 * (franka_dof_pos - self.franka_dof_lower_limits) / (self.franka_dof_upper_limits - self.franka_dof_lower_limits) - 1.0 ) to_target = self.drawer_grasp_pos - self.franka_grasp_pos self.obs_buf = torch.cat( ( dof_pos_scaled, franka_dof_vel * self.dof_vel_scale, to_target, self.cabinet_dof_pos[:, 3].unsqueeze(-1), self.cabinet_dof_vel[:, 3].unsqueeze(-1), ), dim=-1, ) observations = {self._frankas.name: {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self.world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) targets = self.franka_dof_targets + self.franka_dof_speed_scales * self.dt * self.actions * self.action_scale self.franka_dof_targets[:] = tensor_clamp(targets, self.franka_dof_lower_limits, self.franka_dof_upper_limits) env_ids_int32 = torch.arange(self._frankas.count, dtype=torch.int32, device=self._device) self._frankas.set_joint_position_targets(self.franka_dof_targets, indices=env_ids_int32) def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) num_indices = len(indices) # reset franka pos = tensor_clamp( self.franka_default_dof_pos.unsqueeze(0) + 0.25 * (torch.rand((len(env_ids), self.num_franka_dofs), device=self._device) - 0.5), self.franka_dof_lower_limits, self.franka_dof_upper_limits, ) dof_pos = torch.zeros((num_indices, self._frankas.num_dof), device=self._device) dof_vel = torch.zeros((num_indices, self._frankas.num_dof), device=self._device) dof_pos[:, :] = pos self.franka_dof_targets[env_ids, :] = pos self.franka_dof_pos[env_ids, :] = pos # reset cabinet self._cabinets.set_joint_positions( torch.zeros_like(self._cabinets.get_joint_positions(clone=False)[env_ids]), indices=indices ) self._cabinets.set_joint_velocities( torch.zeros_like(self._cabinets.get_joint_velocities(clone=False)[env_ids]), indices=indices ) # reset props if self.num_props > 0: self._props.set_world_poses( self.default_prop_pos[self.prop_indices[env_ids].flatten()], self.default_prop_rot[self.prop_indices[env_ids].flatten()], self.prop_indices[env_ids].flatten().to(torch.int32), ) self._frankas.set_joint_position_targets(self.franka_dof_targets[env_ids], indices=indices) self._frankas.set_joint_positions(dof_pos, indices=indices) self._frankas.set_joint_velocities(dof_vel, indices=indices) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): self.num_franka_dofs = self._frankas.num_dof self.franka_dof_pos = torch.zeros((self.num_envs, self.num_franka_dofs), device=self._device) dof_limits = self._frankas.get_dof_limits() self.franka_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device) self.franka_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device) self.franka_dof_speed_scales = torch.ones_like(self.franka_dof_lower_limits) self.franka_dof_speed_scales[self._frankas.gripper_indices] = 0.1 self.franka_dof_targets = torch.zeros( (self._num_envs, self.num_franka_dofs), dtype=torch.float, device=self._device ) if self.num_props > 0: self.default_prop_pos, self.default_prop_rot = self._props.get_world_poses() self.prop_indices = torch.arange(self._num_envs * self.num_props, device=self._device).view( self._num_envs, self.num_props ) # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: self.rew_buf[:] = self.compute_franka_reward( self.reset_buf, self.progress_buf, self.actions, self.cabinet_dof_pos, self.franka_grasp_pos, self.drawer_grasp_pos, self.franka_grasp_rot, self.drawer_grasp_rot, self.franka_lfinger_pos, self.franka_rfinger_pos, self.gripper_forward_axis, self.drawer_inward_axis, self.gripper_up_axis, self.drawer_up_axis, self._num_envs, self.dist_reward_scale, self.rot_reward_scale, self.around_handle_reward_scale, self.open_reward_scale, self.finger_dist_reward_scale, self.action_penalty_scale, self.distX_offset, self._max_episode_length, self.franka_dof_pos, self.finger_close_reward_scale, ) def is_done(self) -> None: # reset if drawer is open or max length reached self.reset_buf = torch.where(self.cabinet_dof_pos[:, 3] > 0.39, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where( self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf ) def compute_grasp_transforms( self, hand_rot, hand_pos, franka_local_grasp_rot, franka_local_grasp_pos, drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos, ): global_franka_rot, global_franka_pos = tf_combine( hand_rot, hand_pos, franka_local_grasp_rot, franka_local_grasp_pos ) global_drawer_rot, global_drawer_pos = tf_combine( drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos ) return global_franka_rot, global_franka_pos, global_drawer_rot, global_drawer_pos def compute_franka_reward( self, reset_buf, progress_buf, actions, cabinet_dof_pos, franka_grasp_pos, drawer_grasp_pos, franka_grasp_rot, drawer_grasp_rot, franka_lfinger_pos, franka_rfinger_pos, gripper_forward_axis, drawer_inward_axis, gripper_up_axis, drawer_up_axis, num_envs, dist_reward_scale, rot_reward_scale, around_handle_reward_scale, open_reward_scale, finger_dist_reward_scale, action_penalty_scale, distX_offset, max_episode_length, joint_positions, finger_close_reward_scale, ): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, int, float, float, float, float, float, float, float, float, Tensor) -> Tuple[Tensor, Tensor] # distance from hand to the drawer d = torch.norm(franka_grasp_pos - drawer_grasp_pos, p=2, dim=-1) dist_reward = 1.0 / (1.0 + d**2) dist_reward *= dist_reward dist_reward = torch.where(d <= 0.02, dist_reward * 2, dist_reward) axis1 = tf_vector(franka_grasp_rot, gripper_forward_axis) axis2 = tf_vector(drawer_grasp_rot, drawer_inward_axis) axis3 = tf_vector(franka_grasp_rot, gripper_up_axis) axis4 = tf_vector(drawer_grasp_rot, drawer_up_axis) dot1 = ( torch.bmm(axis1.view(num_envs, 1, 3), axis2.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) ) # alignment of forward axis for gripper dot2 = ( torch.bmm(axis3.view(num_envs, 1, 3), axis4.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) ) # alignment of up axis for gripper # reward for matching the orientation of the hand to the drawer (fingers wrapped) rot_reward = 0.5 * (torch.sign(dot1) * dot1**2 + torch.sign(dot2) * dot2**2) # bonus if left finger is above the drawer handle and right below around_handle_reward = torch.zeros_like(rot_reward) around_handle_reward = torch.where( franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where( franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], around_handle_reward + 0.5, around_handle_reward ), around_handle_reward, ) # reward for distance of each finger from the drawer finger_dist_reward = torch.zeros_like(rot_reward) lfinger_dist = torch.abs(franka_lfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) rfinger_dist = torch.abs(franka_rfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) finger_dist_reward = torch.where( franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where( franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], (0.04 - lfinger_dist) + (0.04 - rfinger_dist), finger_dist_reward, ), finger_dist_reward, ) finger_close_reward = torch.zeros_like(rot_reward) finger_close_reward = torch.where( d <= 0.03, (0.04 - joint_positions[:, 7]) + (0.04 - joint_positions[:, 8]), finger_close_reward ) # regularization on the actions (summed for each environment) action_penalty = torch.sum(actions**2, dim=-1) # how far the cabinet has been opened out open_reward = cabinet_dof_pos[:, 3] * around_handle_reward + cabinet_dof_pos[:, 3] # drawer_top_joint rewards = ( dist_reward_scale * dist_reward + rot_reward_scale * rot_reward + around_handle_reward_scale * around_handle_reward + open_reward_scale * open_reward + finger_dist_reward_scale * finger_dist_reward - action_penalty_scale * action_penalty + finger_close_reward * finger_close_reward_scale ) # bonus for opening drawer properly rewards = torch.where(cabinet_dof_pos[:, 3] > 0.01, rewards + 0.5, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.2, rewards + around_handle_reward, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.39, rewards + (2.0 * around_handle_reward), rewards) # # prevent bad style in opening drawer # rewards = torch.where(franka_lfinger_pos[:, 0] < drawer_grasp_pos[:, 0] - distX_offset, # torch.ones_like(rewards) * -1, rewards) # rewards = torch.where(franka_rfinger_pos[:, 0] < drawer_grasp_pos[:, 0] - distX_offset, # torch.ones_like(rewards) * -1, rewards) return rewards
22,933
Python
41.313653
222
0.599922
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/crazyflie.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import torch from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.crazyflie import Crazyflie from omniisaacgymenvs.robots.articulations.views.crazyflie_view import CrazyflieView EPS = 1e-6 # small constant to avoid divisions by 0 and log(0) class CrazyflieTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._num_observations = 18 self._num_actions = 4 self._crazyflie_position = torch.tensor([0, 0, 1.0]) self._ball_position = torch.tensor([0, 0, 1.0]) RLTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] self.dt = self._task_cfg["sim"]["dt"] # parameters for the crazyflie self.arm_length = 0.05 # parameters for the controller self.motor_damp_time_up = 0.15 self.motor_damp_time_down = 0.15 # I use the multiplier 4, since 4*T ~ time for a step response to finish, where # T is a time constant of the first-order filter self.motor_tau_up = 4 * self.dt / (self.motor_damp_time_up + EPS) self.motor_tau_down = 4 * self.dt / (self.motor_damp_time_down + EPS) # thrust max self.mass = 0.028 self.thrust_to_weight = 1.9 self.motor_assymetry = np.array([1.0, 1.0, 1.0, 1.0]) # re-normalizing to sum-up to 4 self.motor_assymetry = self.motor_assymetry * 4.0 / np.sum(self.motor_assymetry) self.grav_z = -1.0 * self._task_cfg["sim"]["gravity"][2] def set_up_scene(self, scene) -> None: self.get_crazyflie() self.get_target() RLTask.set_up_scene(self, scene) self._copters = CrazyflieView(prim_paths_expr="/World/envs/.*/Crazyflie", name="crazyflie_view") self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball", name="ball_view") scene.add(self._copters) scene.add(self._balls) for i in range(4): scene.add(self._copters.physics_rotors[i]) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("crazyflie_view"): scene.remove_object("crazyflie_view", registry_only=True) if scene.object_exists("ball_view"): scene.remove_object("ball_view", registry_only=True) for i in range(1, 5): scene.remove_object(f"m{i}_prop_view", registry_only=True) self._copters = CrazyflieView(prim_paths_expr="/World/envs/.*/Crazyflie", name="crazyflie_view") self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball", name="ball_view") scene.add(self._copters) scene.add(self._balls) for i in range(4): scene.add(self._copters.physics_rotors[i]) def get_crazyflie(self): copter = Crazyflie( prim_path=self.default_zero_env_path + "/Crazyflie", name="crazyflie", translation=self._crazyflie_position ) self._sim_config.apply_articulation_settings( "crazyflie", get_prim_at_path(copter.prim_path), self._sim_config.parse_actor_config("crazyflie") ) def get_target(self): radius = 0.2 color = torch.tensor([1, 0, 0]) ball = DynamicSphere( prim_path=self.default_zero_env_path + "/ball", translation=self._ball_position, name="target_0", radius=radius, color=color, ) self._sim_config.apply_articulation_settings( "ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball") ) ball.set_collision_enabled(False) def get_observations(self) -> dict: self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False) self.root_velocities = self._copters.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot rot_x = quat_axis(root_quats, 0) rot_y = quat_axis(root_quats, 1) rot_z = quat_axis(root_quats, 2) root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = self.target_positions - root_positions self.obs_buf[..., 3:6] = rot_x self.obs_buf[..., 6:9] = rot_y self.obs_buf[..., 9:12] = rot_z self.obs_buf[..., 12:15] = root_linvels self.obs_buf[..., 15:18] = root_angvels observations = {self._copters.name: {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self.world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero(as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) actions = actions.clone().to(self._device) self.actions = actions # clamp to [-1.0, 1.0] thrust_cmds = torch.clamp(actions, min=-1.0, max=1.0) # scale to [0.0, 1.0] thrust_cmds = (thrust_cmds + 1.0) / 2.0 # filtering the thruster and adding noise motor_tau = self.motor_tau_up * torch.ones((self._num_envs, 4), dtype=torch.float32, device=self._device) motor_tau[thrust_cmds < self.thrust_cmds_damp] = self.motor_tau_down motor_tau[motor_tau > 1.0] = 1.0 # Since NN commands thrusts we need to convert to rot vel and back thrust_rot = thrust_cmds**0.5 self.thrust_rot_damp = motor_tau * (thrust_rot - self.thrust_rot_damp) + self.thrust_rot_damp self.thrust_cmds_damp = self.thrust_rot_damp**2 ## Adding noise thrust_noise = 0.01 * torch.randn(4, dtype=torch.float32, device=self._device) thrust_noise = thrust_cmds * thrust_noise self.thrust_cmds_damp = torch.clamp(self.thrust_cmds_damp + thrust_noise, min=0.0, max=1.0) thrusts = self.thrust_max * self.thrust_cmds_damp # thrusts given rotation root_quats = self.root_rot rot_x = quat_axis(root_quats, 0) rot_y = quat_axis(root_quats, 1) rot_z = quat_axis(root_quats, 2) rot_matrix = torch.cat((rot_x, rot_y, rot_z), 1).reshape(-1, 3, 3) force_x = torch.zeros(self._num_envs, 4, dtype=torch.float32, device=self._device) force_y = torch.zeros(self._num_envs, 4, dtype=torch.float32, device=self._device) force_xy = torch.cat((force_x, force_y), 1).reshape(-1, 4, 2) thrusts = thrusts.reshape(-1, 4, 1) thrusts = torch.cat((force_xy, thrusts), 2) thrusts_0 = thrusts[:, 0] thrusts_0 = thrusts_0[:, :, None] thrusts_1 = thrusts[:, 1] thrusts_1 = thrusts_1[:, :, None] thrusts_2 = thrusts[:, 2] thrusts_2 = thrusts_2[:, :, None] thrusts_3 = thrusts[:, 3] thrusts_3 = thrusts_3[:, :, None] mod_thrusts_0 = torch.matmul(rot_matrix, thrusts_0) mod_thrusts_1 = torch.matmul(rot_matrix, thrusts_1) mod_thrusts_2 = torch.matmul(rot_matrix, thrusts_2) mod_thrusts_3 = torch.matmul(rot_matrix, thrusts_3) self.thrusts[:, 0] = torch.squeeze(mod_thrusts_0) self.thrusts[:, 1] = torch.squeeze(mod_thrusts_1) self.thrusts[:, 2] = torch.squeeze(mod_thrusts_2) self.thrusts[:, 3] = torch.squeeze(mod_thrusts_3) # clear actions for reset envs self.thrusts[reset_env_ids] = 0 # spin spinning rotors prop_rot = self.thrust_cmds_damp * self.prop_max_rot self.dof_vel[:, 0] = prop_rot[:, 0] self.dof_vel[:, 1] = -1.0 * prop_rot[:, 1] self.dof_vel[:, 2] = prop_rot[:, 2] self.dof_vel[:, 3] = -1.0 * prop_rot[:, 3] self._copters.set_joint_velocities(self.dof_vel) # apply actions for i in range(4): self._copters.physics_rotors[i].apply_forces(self.thrusts[:, i], indices=self.all_indices) def post_reset(self): thrust_max = self.grav_z * self.mass * self.thrust_to_weight * self.motor_assymetry / 4.0 self.thrusts = torch.zeros((self._num_envs, 4, 3), dtype=torch.float32, device=self._device) self.thrust_cmds_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device) self.thrust_rot_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device) self.thrust_max = torch.tensor(thrust_max, device=self._device, dtype=torch.float32) self.motor_linearity = 1.0 self.prop_max_rot = 433.3 self.target_positions = torch.zeros((self._num_envs, 3), device=self._device, dtype=torch.float32) self.target_positions[:, 2] = 1 self.actions = torch.zeros((self._num_envs, 4), device=self._device, dtype=torch.float32) self.all_indices = torch.arange(self._num_envs, dtype=torch.int32, device=self._device) # Extra info self.extras = {} torch_zeros = lambda: torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) self.episode_sums = { "rew_pos": torch_zeros(), "rew_orient": torch_zeros(), "rew_effort": torch_zeros(), "rew_spin": torch_zeros(), "raw_dist": torch_zeros(), "raw_orient": torch_zeros(), "raw_effort": torch_zeros(), "raw_spin": torch_zeros(), } self.root_pos, self.root_rot = self._copters.get_world_poses() self.root_velocities = self._copters.get_velocities() self.dof_pos = self._copters.get_joint_positions() self.dof_vel = self._copters.get_joint_velocities() self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses(clone=False) self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # control parameters self.thrusts = torch.zeros((self._num_envs, 4, 3), dtype=torch.float32, device=self._device) self.thrust_cmds_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device) self.thrust_rot_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device) self.set_targets(self.all_indices) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (0, 0) and z in (2) self.target_positions[envs_long, 0:2] = torch.zeros((num_sets, 2), device=self._device) self.target_positions[envs_long, 2] = torch.ones(num_sets, device=self._device) * 2.0 # shift the target up so it visually aligns better ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long] ball_pos[:, 2] += 0.0 self._balls.set_world_poses(ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids) def reset_idx(self, env_ids): num_resets = len(env_ids) self.dof_pos[env_ids, :] = torch_rand_float(-0.0, 0.0, (num_resets, self._copters.num_dof), device=self._device) self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.0, 0.0, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.0, 0.0, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float(-0.0, 0.0, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._copters.set_joint_positions(self.dof_pos[env_ids], indices=env_ids) self._copters.set_joint_velocities(self.dof_vel[env_ids], indices=env_ids) self._copters.set_world_poses(root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._copters.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.thrust_cmds_damp[env_ids] = 0 self.thrust_rot_damp[env_ids] = 0 # fill extras self.extras["episode"] = {} for key in self.episode_sums.keys(): self.extras["episode"][key] = torch.mean(self.episode_sums[key][env_ids]) / self._max_episode_length self.episode_sums[key][env_ids] = 0.0 def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_angvels = self.root_velocities[:, 3:] # pos reward target_dist = torch.sqrt(torch.square(self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + target_dist) self.target_dist = target_dist self.root_positions = root_positions # orient reward ups = quat_axis(root_quats, 2) self.orient_z = ups[..., 2] up_reward = torch.clamp(ups[..., 2], min=0.0, max=1.0) # effort reward effort = torch.square(self.actions).sum(-1) effort_reward = 0.05 * torch.exp(-0.5 * effort) # spin reward spin = torch.square(root_angvels).sum(-1) spin_reward = 0.01 * torch.exp(-1.0 * spin) # combined reward self.rew_buf[:] = pos_reward + pos_reward * (up_reward + spin_reward) - effort_reward # log episode reward sums self.episode_sums["rew_pos"] += pos_reward self.episode_sums["rew_orient"] += up_reward self.episode_sums["rew_effort"] += effort_reward self.episode_sums["rew_spin"] += spin_reward # log raw info self.episode_sums["raw_dist"] += target_dist self.episode_sums["raw_orient"] += ups[..., 2] self.episode_sums["raw_effort"] += effort self.episode_sums["raw_spin"] += spin def is_done(self) -> None: # resets due to misbehavior ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 5.0, ones, die) # z >= 0.5 & z <= 5.0 & up > 0 die = torch.where(self.root_positions[..., 2] < 0.5, ones, die) die = torch.where(self.root_positions[..., 2] > 5.0, ones, die) die = torch.where(self.orient_z < 0.0, ones, die) # resets due to episode length self.reset_buf[:] = torch.where(self.progress_buf >= self._max_episode_length - 1, ones, die)
16,824
Python
41.487374
120
0.619413
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/humanoid.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.maths import tensor_clamp, torch_rand_float, unscale from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.humanoid import Humanoid from omniisaacgymenvs.tasks.shared.locomotion import LocomotionTask from pxr import PhysxSchema class HumanoidLocomotionTask(LocomotionTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._num_observations = 87 self._num_actions = 21 self._humanoid_positions = torch.tensor([0, 0, 1.34]) LocomotionTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config LocomotionTask.update_config(self) def set_up_scene(self, scene) -> None: self.get_humanoid() RLTask.set_up_scene(self, scene) self._humanoids = ArticulationView( prim_paths_expr="/World/envs/.*/Humanoid/torso", name="humanoid_view", reset_xform_properties=False ) scene.add(self._humanoids) return def initialize_views(self, scene): RLTask.initialize_views(self, scene) if scene.object_exists("humanoid_view"): scene.remove_object("humanoid_view", registry_only=True) self._humanoids = ArticulationView( prim_paths_expr="/World/envs/.*/Humanoid/torso", name="humanoid_view", reset_xform_properties=False ) scene.add(self._humanoids) def get_humanoid(self): humanoid = Humanoid( prim_path=self.default_zero_env_path + "/Humanoid", name="Humanoid", translation=self._humanoid_positions ) self._sim_config.apply_articulation_settings( "Humanoid", get_prim_at_path(humanoid.prim_path), self._sim_config.parse_actor_config("Humanoid") ) def get_robot(self): return self._humanoids def post_reset(self): self.joint_gears = torch.tensor( [ 67.5000, # lower_waist 67.5000, # lower_waist 67.5000, # right_upper_arm 67.5000, # right_upper_arm 67.5000, # left_upper_arm 67.5000, # left_upper_arm 67.5000, # pelvis 45.0000, # right_lower_arm 45.0000, # left_lower_arm 45.0000, # right_thigh: x 135.0000, # right_thigh: y 45.0000, # right_thigh: z 45.0000, # left_thigh: x 135.0000, # left_thigh: y 45.0000, # left_thigh: z 90.0000, # right_knee 90.0000, # left_knee 22.5, # right_foot 22.5, # right_foot 22.5, # left_foot 22.5, # left_foot ], device=self._device, ) self.max_motor_effort = torch.max(self.joint_gears) self.motor_effort_ratio = self.joint_gears / self.max_motor_effort dof_limits = self._humanoids.get_dof_limits() self.dof_limits_lower = dof_limits[0, :, 0].to(self._device) self.dof_limits_upper = dof_limits[0, :, 1].to(self._device) force_links = ["left_foot", "right_foot"] self._sensor_indices = torch.tensor( [self._humanoids._body_indices[j] for j in force_links], device=self._device, dtype=torch.long ) LocomotionTask.post_reset(self) def get_dof_at_limit_cost(self): return get_dof_at_limit_cost(self.obs_buf, self.motor_effort_ratio, self.joints_at_limit_cost_scale) @torch.jit.script def get_dof_at_limit_cost(obs_buf, motor_effort_ratio, joints_at_limit_cost_scale): # type: (Tensor, Tensor, float) -> Tensor scaled_cost = joints_at_limit_cost_scale * (torch.abs(obs_buf[:, 12:33]) - 0.98) / 0.02 dof_at_limit_cost = torch.sum( (torch.abs(obs_buf[:, 12:33]) > 0.98) * scaled_cost * motor_effort_ratio.unsqueeze(0), dim=-1 ) return dof_at_limit_cost
5,980
Python
41.119718
117
0.651003
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/franka_deformable.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.franka import Franka from omniisaacgymenvs.robots.articulations.views.franka_view import FrankaView from omni.isaac.core.prims import RigidPrim, RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage, add_reference_to_stage from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.torch.transformations import * from omni.isaac.core.utils.torch.rotations import * import omni.isaac.core.utils.deformable_mesh_utils as deformableMeshUtils from omni.isaac.core.materials.deformable_material import DeformableMaterial from omni.isaac.core.prims.soft.deformable_prim import DeformablePrim from omni.isaac.core.prims.soft.deformable_prim_view import DeformablePrimView from omni.physx.scripts import deformableUtils, physicsUtils import numpy as np import torch import math from pxr import Usd, UsdGeom, Gf, UsdPhysics, PhysxSchema class FrankaDeformableTask(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self.update_config(sim_config) self.dt = 1/60. self._num_observations = 39 self._num_actions = 9 RLTask.__init__(self, name, env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.action_scale = self._task_cfg["env"]["actionScale"] def set_up_scene(self, scene) -> None: self.stage = get_current_stage() self.assets_root_path = get_assets_root_path() if self.assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self.get_franka() self.get_beaker() self.get_deformable_tube() super().set_up_scene(scene=scene, replicate_physics=False) self._frankas = FrankaView(prim_paths_expr="/World/envs/.*/franka", name="franka_view") self.deformableView = DeformablePrimView( prim_paths_expr="/World/envs/.*/deformableTube/tube/mesh", name="deformabletube_view" ) scene.add(self.deformableView) scene.add(self._frankas) scene.add(self._frankas._hands) scene.add(self._frankas._lfingers) scene.add(self._frankas._rfingers) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("franka_view"): scene.remove_object("franka_view", registry_only=True) if scene.object_exists("hands_view"): scene.remove_object("hands_view", registry_only=True) if scene.object_exists("lfingers_view"): scene.remove_object("lfingers_view", registry_only=True) if scene.object_exists("rfingers_view"): scene.remove_object("rfingers_view", registry_only=True) if scene.object_exists("deformabletube_view"): scene.remove_object("deformabletube_view", registry_only=True) self._frankas = FrankaView( prim_paths_expr="/World/envs/.*/franka", name="franka_view" ) self.deformableView = DeformablePrimView( prim_paths_expr="/World/envs/.*/deformableTube/tube/mesh", name="deformabletube_view" ) scene.add(self._frankas) scene.add(self._frankas._hands) scene.add(self._frankas._lfingers) scene.add(self._frankas._rfingers) scene.add(self.deformableView) def get_franka(self): franka = Franka( prim_path=self.default_zero_env_path + "/franka", name="franka", orientation=torch.tensor([1.0, 0.0, 0.0, 0.0]), translation=torch.tensor([0.0, 0.0, 0.0]), ) self._sim_config.apply_articulation_settings( "franka", get_prim_at_path(franka.prim_path), self._sim_config.parse_actor_config("franka") ) franka.set_franka_properties(stage=self.stage, prim=franka.prim) def get_beaker(self): _usd_path = self.assets_root_path + "/Isaac/Props/Beaker/beaker_500ml.usd" mesh_path = self.default_zero_env_path + "/beaker" add_reference_to_stage(_usd_path, mesh_path) beaker = RigidPrim( prim_path=mesh_path+"/beaker", name="beaker", position=torch.tensor([0.5, 0.2, 0.095]), ) self._sim_config.apply_articulation_settings("beaker", beaker.prim, self._sim_config.parse_actor_config("beaker")) def get_deformable_tube(self): _usd_path = self.assets_root_path + "/Isaac/Props/DeformableTube/tube.usd" mesh_path = self.default_zero_env_path + "/deformableTube/tube" add_reference_to_stage(_usd_path, mesh_path) skin_mesh = get_prim_at_path(mesh_path) physicsUtils.setup_transform_as_scale_orient_translate(skin_mesh) physicsUtils.set_or_add_translate_op(skin_mesh, (0.6, 0.0, 0.005)) physicsUtils.set_or_add_orient_op(skin_mesh, Gf.Rotation(Gf.Vec3d([0, 0, 1]), 90).GetQuat()) def get_observations(self) -> dict: franka_dof_pos = self._frankas.get_joint_positions(clone=False) franka_dof_vel = self._frankas.get_joint_velocities(clone=False) self.franka_dof_pos = franka_dof_pos dof_pos_scaled = ( 2.0 * (franka_dof_pos - self.franka_dof_lower_limits) / (self.franka_dof_upper_limits - self.franka_dof_lower_limits) - 1.0 ) self.lfinger_pos, _ = self._frankas._lfingers.get_world_poses(clone=False) self.rfinger_pos, _ = self._frankas._rfingers.get_world_poses(clone=False) self.gripper_site_pos = (self.lfinger_pos + self.rfinger_pos)/2 - self._env_pos tube_positions = self.deformableView.get_simulation_mesh_nodal_positions(clone=False) tube_velocities = self.deformableView.get_simulation_mesh_nodal_velocities(clone=False) self.tube_front_positions = tube_positions[:, 200, :] - self._env_pos self.tube_front_velocities = tube_velocities[:, 200, :] self.tube_back_positions = tube_positions[:, -1, :] - self._env_pos self.tube_back_velocities = tube_velocities[:, -1, :] front_to_gripper = self.tube_front_positions - self.gripper_site_pos to_front_goal = self.front_goal_pos - self.tube_front_positions to_back_goal = self.back_goal_pos - self.tube_back_positions self.obs_buf = torch.cat( ( dof_pos_scaled, franka_dof_vel * self.dof_vel_scale, front_to_gripper, to_front_goal, to_back_goal, self.tube_front_positions, self.tube_front_velocities, self.tube_back_positions, self.tube_back_velocities, ), dim=-1, ) observations = { self._frankas.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self.world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) targets = self.franka_dof_targets + self.franka_dof_speed_scales * self.dt * self.actions * self.action_scale self.franka_dof_targets[:] = tensor_clamp(targets, self.franka_dof_lower_limits, self.franka_dof_upper_limits) self.franka_dof_targets[:, -1] = self.franka_dof_targets[:, -2] env_ids_int32 = torch.arange(self._frankas.count, dtype=torch.int32, device=self._device) self._frankas.set_joint_position_targets(self.franka_dof_targets, indices=env_ids_int32) def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) num_indices = len(indices) pos = self.franka_default_dof_pos dof_pos = torch.zeros((num_indices, self._frankas.num_dof), device=self._device) dof_vel = torch.zeros((num_indices, self._frankas.num_dof), device=self._device) dof_pos[:, :] = pos self.franka_dof_targets[env_ids, :] = pos self.franka_dof_pos[env_ids, :] = pos self._frankas.set_joint_position_targets(self.franka_dof_targets[env_ids], indices=indices) self._frankas.set_joint_positions(dof_pos, indices=indices) self._frankas.set_joint_velocities(dof_vel, indices=indices) self.deformableView.set_simulation_mesh_nodal_positions(self.initial_tube_positions[env_ids], indices) self.deformableView.set_simulation_mesh_nodal_velocities(self.initial_tube_velocities[env_ids], indices) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): self.franka_default_dof_pos = torch.tensor( [0.00, 0.63, 0.00, -2.15, 0.00, 2.76, 0.75, 0.02, 0.02], device=self._device ) self.actions = torch.zeros((self._num_envs, self.num_actions), device=self._device) self.front_goal_pos = torch.tensor([0.36, 0.0, 0.23], device=self._device).repeat((self._num_envs, 1)) self.back_goal_pos = torch.tensor([0.5, 0.2, 0.0], device=self._device).repeat((self._num_envs, 1)) self.goal_hand_rot = torch.tensor([0.0, 1.0, 0.0, 0.0], device=self._device).repeat((self.num_envs, 1)) self.lfinger_pos, _ = self._frankas._lfingers.get_world_poses(clone=False) self.rfinger_pos, _ = self._frankas._rfingers.get_world_poses(clone=False) self.gripper_site_pos = (self.lfinger_pos + self.rfinger_pos)/2 - self._env_pos self.initial_tube_positions = self.deformableView.get_simulation_mesh_nodal_positions() self.initial_tube_velocities = self.deformableView.get_simulation_mesh_nodal_velocities() self.tube_front_positions = self.initial_tube_positions[:, 0, :] - self._env_pos self.tube_front_velocities = self.initial_tube_velocities[:, 0, :] self.tube_back_positions = self.initial_tube_positions[:, -1, :] - self._env_pos self.tube_back_velocities = self.initial_tube_velocities[:, -1, :] self.num_franka_dofs = self._frankas.num_dof self.franka_dof_pos = torch.zeros((self.num_envs, self.num_franka_dofs), device=self._device) dof_limits = self._frankas.get_dof_limits() self.franka_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device) self.franka_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device) self.franka_dof_speed_scales = torch.ones_like(self.franka_dof_lower_limits) self.franka_dof_speed_scales[self._frankas.gripper_indices] = 0.1 self.franka_dof_targets = torch.zeros( (self._num_envs, self.num_franka_dofs), dtype=torch.float, device=self._device ) # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: goal_distance_error = torch.norm(self.tube_back_positions[:, 0:2] - self.back_goal_pos[:, 0:2], p = 2, dim = -1) goal_dist_reward = 1.0 / (5*goal_distance_error + .025) current_z_level = self.tube_back_positions[:, 2:3] z_lift_level = torch.where( goal_distance_error < 0.07, torch.zeros_like(current_z_level), torch.ones_like(current_z_level)*0.18 ) front_lift_error = torch.norm(current_z_level - z_lift_level, p = 2, dim = -1) front_lift_reward = 1.0 / (5*front_lift_error + .025) rewards = goal_dist_reward + 4*front_lift_reward self.rew_buf[:] = rewards def is_done(self) -> None: self.reset_buf = torch.where(self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.tube_front_positions[:, 0] < 0, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.tube_front_positions[:, 0] > 1.0, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.tube_front_positions[:, 1] < -1.0, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.tube_front_positions[:, 1] > 1.0, torch.ones_like(self.reset_buf), self.reset_buf)
13,316
Python
42.805921
136
0.641108
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/ant.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.maths import tensor_clamp, torch_rand_float, unscale from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.ant import Ant from omniisaacgymenvs.tasks.shared.locomotion import LocomotionTask from pxr import PhysxSchema class AntLocomotionTask(LocomotionTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) LocomotionTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_observations = 60 self._num_actions = 8 self._ant_positions = torch.tensor([0, 0, 0.5]) LocomotionTask.update_config(self) def set_up_scene(self, scene) -> None: self.get_ant() RLTask.set_up_scene(self, scene) self._ants = ArticulationView( prim_paths_expr="/World/envs/.*/Ant/torso", name="ant_view", reset_xform_properties=False ) scene.add(self._ants) return def initialize_views(self, scene): RLTask.initialize_views(self, scene) if scene.object_exists("ant_view"): scene.remove_object("ant_view", registry_only=True) self._ants = ArticulationView( prim_paths_expr="/World/envs/.*/Ant/torso", name="ant_view", reset_xform_properties=False ) scene.add(self._ants) def get_ant(self): ant = Ant(prim_path=self.default_zero_env_path + "/Ant", name="Ant", translation=self._ant_positions) self._sim_config.apply_articulation_settings( "Ant", get_prim_at_path(ant.prim_path), self._sim_config.parse_actor_config("Ant") ) def get_robot(self): return self._ants def post_reset(self): self.joint_gears = torch.tensor([15, 15, 15, 15, 15, 15, 15, 15], dtype=torch.float32, device=self._device) dof_limits = self._ants.get_dof_limits() self.dof_limits_lower = dof_limits[0, :, 0].to(self._device) self.dof_limits_upper = dof_limits[0, :, 1].to(self._device) self.motor_effort_ratio = torch.ones_like(self.joint_gears, device=self._device) force_links = ["front_left_foot", "front_right_foot", "left_back_foot", "right_back_foot"] self._sensor_indices = torch.tensor( [self._ants._body_indices[j] for j in force_links], device=self._device, dtype=torch.long ) LocomotionTask.post_reset(self) def get_dof_at_limit_cost(self): return get_dof_at_limit_cost(self.obs_buf, self._ants.num_dof) @torch.jit.script def get_dof_at_limit_cost(obs_buf, num_dof): # type: (Tensor, int) -> Tensor return torch.sum(obs_buf[:, 12 : 12 + num_dof] > 0.99, dim=-1)
4,691
Python
41.654545
115
0.69708
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/cartpole.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.cartpole import Cartpole class CartpoleTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._max_episode_length = 500 self._num_observations = 4 self._num_actions = 1 RLTask.__init__(self, name, env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._cartpole_positions = torch.tensor([0.0, 0.0, 2.0]) self._reset_dist = self._task_cfg["env"]["resetDist"] self._max_push_effort = self._task_cfg["env"]["maxEffort"] def set_up_scene(self, scene) -> None: self.get_cartpole() super().set_up_scene(scene) self._cartpoles = ArticulationView( prim_paths_expr="/World/envs/.*/Cartpole", name="cartpole_view", reset_xform_properties=False ) scene.add(self._cartpoles) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("cartpole_view"): scene.remove_object("cartpole_view", registry_only=True) self._cartpoles = ArticulationView( prim_paths_expr="/World/envs/.*/Cartpole", name="cartpole_view", reset_xform_properties=False ) scene.add(self._cartpoles) def get_cartpole(self): cartpole = Cartpole( prim_path=self.default_zero_env_path + "/Cartpole", name="Cartpole", translation=self._cartpole_positions ) # applies articulation settings from the task configuration yaml file self._sim_config.apply_articulation_settings( "Cartpole", get_prim_at_path(cartpole.prim_path), self._sim_config.parse_actor_config("Cartpole") ) def get_observations(self) -> dict: dof_pos = self._cartpoles.get_joint_positions(clone=False) dof_vel = self._cartpoles.get_joint_velocities(clone=False) self.cart_pos = dof_pos[:, self._cart_dof_idx] self.cart_vel = dof_vel[:, self._cart_dof_idx] self.pole_pos = dof_pos[:, self._pole_dof_idx] self.pole_vel = dof_vel[:, self._pole_dof_idx] self.obs_buf[:, 0] = self.cart_pos self.obs_buf[:, 1] = self.cart_vel self.obs_buf[:, 2] = self.pole_pos self.obs_buf[:, 3] = self.pole_vel observations = {self._cartpoles.name: {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self.world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) actions = actions.to(self._device) forces = torch.zeros((self._cartpoles.count, self._cartpoles.num_dof), dtype=torch.float32, device=self._device) forces[:, self._cart_dof_idx] = self._max_push_effort * actions[:, 0] indices = torch.arange(self._cartpoles.count, dtype=torch.int32, device=self._device) self._cartpoles.set_joint_efforts(forces, indices=indices) def reset_idx(self, env_ids): num_resets = len(env_ids) # randomize DOF positions dof_pos = torch.zeros((num_resets, self._cartpoles.num_dof), device=self._device) dof_pos[:, self._cart_dof_idx] = 1.0 * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) dof_pos[:, self._pole_dof_idx] = 0.125 * math.pi * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) # randomize DOF velocities dof_vel = torch.zeros((num_resets, self._cartpoles.num_dof), device=self._device) dof_vel[:, self._cart_dof_idx] = 0.5 * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) dof_vel[:, self._pole_dof_idx] = 0.25 * math.pi * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) # apply resets indices = env_ids.to(dtype=torch.int32) self._cartpoles.set_joint_positions(dof_pos, indices=indices) self._cartpoles.set_joint_velocities(dof_vel, indices=indices) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): self._cart_dof_idx = self._cartpoles.get_dof_index("cartJoint") self._pole_dof_idx = self._cartpoles.get_dof_index("poleJoint") # randomize all envs indices = torch.arange(self._cartpoles.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: reward = 1.0 - self.pole_pos * self.pole_pos - 0.01 * torch.abs(self.cart_vel) - 0.005 * torch.abs(self.pole_vel) reward = torch.where(torch.abs(self.cart_pos) > self._reset_dist, torch.ones_like(reward) * -2.0, reward) reward = torch.where(torch.abs(self.pole_pos) > np.pi / 2, torch.ones_like(reward) * -2.0, reward) self.rew_buf[:] = reward def is_done(self) -> None: resets = torch.where(torch.abs(self.cart_pos) > self._reset_dist, 1, 0) resets = torch.where(torch.abs(self.pole_pos) > math.pi / 2, 1, resets) resets = torch.where(self.progress_buf >= self._max_episode_length, 1, resets) self.reset_buf[:] = resets
7,250
Python
42.945454
121
0.65931
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/quadcopter.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.quadcopter import Quadcopter from omniisaacgymenvs.robots.articulations.views.quadcopter_view import QuadcopterView class QuadcopterTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._num_observations = 21 self._num_actions = 12 self._copter_position = torch.tensor([0, 0, 1.0]) RLTask.__init__(self, name=name, env=env) max_thrust = 2.0 self.thrust_lower_limits = -max_thrust * torch.ones(4, device=self._device, dtype=torch.float32) self.thrust_upper_limits = max_thrust * torch.ones(4, device=self._device, dtype=torch.float32) self.all_indices = torch.arange(self._num_envs, dtype=torch.int32, device=self._device) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] self.dt = self._task_cfg["sim"]["dt"] def set_up_scene(self, scene) -> None: self.get_copter() self.get_target() RLTask.set_up_scene(self, scene) self._copters = QuadcopterView(prim_paths_expr="/World/envs/.*/Quadcopter", name="quadcopter_view") self._balls = RigidPrimView( prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False ) self._balls._non_root_link = True # do not set states for kinematics scene.add(self._copters) scene.add(self._copters.rotors) scene.add(self._balls) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("quadcopter_view"): scene.remove_object("quadcopter_view", registry_only=True) if scene.object_exists("rotors_view"): scene.remove_object("rotors_view", registry_only=True) if scene.object_exists("targets_view"): scene.remove_object("targets_view", registry_only=True) self._copters = QuadcopterView(prim_paths_expr="/World/envs/.*/Quadcopter", name="quadcopter_view") self._balls = RigidPrimView( prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False ) scene.add(self._copters) scene.add(self._copters.rotors) scene.add(self._balls) def get_copter(self): copter = Quadcopter( prim_path=self.default_zero_env_path + "/Quadcopter", name="quadcopter", translation=self._copter_position ) self._sim_config.apply_articulation_settings( "copter", get_prim_at_path(copter.prim_path), self._sim_config.parse_actor_config("copter") ) def get_target(self): radius = 0.05 color = torch.tensor([1, 0, 0]) ball = DynamicSphere( prim_path=self.default_zero_env_path + "/ball", name="target_0", radius=radius, color=color, ) self._sim_config.apply_articulation_settings( "ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball") ) ball.set_collision_enabled(False) def get_observations(self) -> dict: self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False) self.root_velocities = self._copters.get_velocities(clone=False) self.dof_pos = self._copters.get_joint_positions(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 3:7] = root_quats self.obs_buf[..., 7:10] = root_linvels / 2 self.obs_buf[..., 10:13] = root_angvels / math.pi self.obs_buf[..., 13:21] = self.dof_pos observations = {self._copters.name: {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self.world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) actions = actions.clone().to(self._device) dof_action_speed_scale = 8 * math.pi self.dof_position_targets += self.dt * dof_action_speed_scale * actions[:, 0:8] self.dof_position_targets[:] = tensor_clamp( self.dof_position_targets, self.dof_lower_limits, self.dof_upper_limits ) thrust_action_speed_scale = 100 self.thrusts += self.dt * thrust_action_speed_scale * actions[:, 8:12] self.thrusts[:] = tensor_clamp(self.thrusts, self.thrust_lower_limits, self.thrust_upper_limits) self.forces[:, 0, 2] = self.thrusts[:, 0] self.forces[:, 1, 2] = self.thrusts[:, 1] self.forces[:, 2, 2] = self.thrusts[:, 2] self.forces[:, 3, 2] = self.thrusts[:, 3] # clear actions for reset envs self.thrusts[reset_env_ids] = 0.0 self.forces[reset_env_ids] = 0.0 self.dof_position_targets[reset_env_ids] = self.dof_pos[reset_env_ids] # apply actions self._copters.set_joint_position_targets(self.dof_position_targets) self._copters.rotors.apply_forces(self.forces, is_global=False) def post_reset(self): # control tensors self.dof_position_targets = torch.zeros( (self._num_envs, self._copters.num_dof), dtype=torch.float32, device=self._device, requires_grad=False ) self.thrusts = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device, requires_grad=False) self.forces = torch.zeros( (self._num_envs, self._copters.rotors.count // self._num_envs, 3), dtype=torch.float32, device=self._device, requires_grad=False, ) self.target_positions = torch.zeros((self._num_envs, 3), device=self._device) self.target_positions[:, 2] = 1.0 self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False) self.root_velocities = self._copters.get_velocities(clone=False) self.dof_pos = self._copters.get_joint_positions(clone=False) self.dof_vel = self._copters.get_joint_velocities(clone=False) self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() dof_limits = self._copters.get_dof_limits() self.dof_lower_limits = dof_limits[0][:, 0].to(device=self._device) self.dof_upper_limits = dof_limits[0][:, 1].to(device=self._device) def reset_idx(self, env_ids): num_resets = len(env_ids) self.dof_pos[env_ids, :] = torch_rand_float(-0.2, 0.2, (num_resets, self._copters.num_dof), device=self._device) self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-1.5, 1.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-1.5, 1.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float(-0.2, 1.5, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._copters.set_joint_positions(self.dof_pos[env_ids], indices=env_ids) self._copters.set_joint_velocities(self.dof_vel[env_ids], indices=env_ids) self._copters.set_world_poses(root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._copters.set_velocities(root_velocities[env_ids], indices=env_ids) self._balls.set_world_poses(positions=self.target_positions[:, 0:3] + self._env_pos) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_angvels = self.root_velocities[:, 3:] # distance to target target_dist = torch.sqrt(torch.square(self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + 3 * target_dist * target_dist) # 2 self.target_dist = target_dist self.root_positions = root_positions # uprightness ups = quat_axis(root_quats, 2) tiltage = torch.abs(1 - ups[..., 2]) up_reward = 1.0 / (1.0 + 10 * tiltage * tiltage) # spinning spinnage = torch.abs(root_angvels[..., 2]) spinnage_reward = 1.0 / (1.0 + 0.001 * spinnage * spinnage) rew = pos_reward + pos_reward * (up_reward + spinnage_reward + spinnage * spinnage * (-1 / 400)) rew = torch.clip(rew, 0.0, None) self.rew_buf[:] = rew def is_done(self) -> None: # resets due to misbehavior ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 3.0, ones, die) die = torch.where(self.root_positions[..., 2] < 0.3, ones, die) # resets due to episode length self.reset_buf[:] = torch.where(self.progress_buf >= self._max_episode_length - 1, ones, die)
11,492
Python
42.866412
120
0.640707
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/ingenuity.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.robots.articulations.ingenuity import Ingenuity from omniisaacgymenvs.robots.articulations.views.ingenuity_view import IngenuityView from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omniisaacgymenvs.tasks.base.rl_task import RLTask import numpy as np import torch import math class IngenuityTask(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self.update_config(sim_config) self.thrust_limit = 2000 self.thrust_lateral_component = 0.2 self._num_observations = 13 self._num_actions = 6 self._ingenuity_position = torch.tensor([0, 0, 1.0]) self._ball_position = torch.tensor([0, 0, 1.0]) RLTask.__init__(self, name=name, env=env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] self.dt = self._task_cfg["sim"]["dt"] def set_up_scene(self, scene) -> None: self.get_ingenuity() self.get_target() RLTask.set_up_scene(self, scene) self._copters = IngenuityView(prim_paths_expr="/World/envs/.*/Ingenuity", name="ingenuity_view") self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False) self._balls._non_root_link = True # do not set states for kinematics scene.add(self._copters) scene.add(self._balls) for i in range(2): scene.add(self._copters.physics_rotors[i]) scene.add(self._copters.visual_rotors[i]) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("ingenuity_view"): scene.remove_object("ingenuity_view", registry_only=True) for i in range(2): if scene.object_exists(f"physics_rotor_{i}_view"): scene.remove_object(f"physics_rotor_{i}_view", registry_only=True) if scene.object_exists(f"visual_rotor_{i}_view"): scene.remove_object(f"visual_rotor_{i}_view", registry_only=True) if scene.object_exists("targets_view"): scene.remove_object("targets_view", registry_only=True) self._copters = IngenuityView(prim_paths_expr="/World/envs/.*/Ingenuity", name="ingenuity_view") self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False) scene.add(self._copters) scene.add(self._balls) for i in range(2): scene.add(self._copters.physics_rotors[i]) scene.add(self._copters.visual_rotors[i]) def get_ingenuity(self): copter = Ingenuity(prim_path=self.default_zero_env_path + "/Ingenuity", name="ingenuity", translation=self._ingenuity_position) self._sim_config.apply_articulation_settings("ingenuity", get_prim_at_path(copter.prim_path), self._sim_config.parse_actor_config("ingenuity")) def get_target(self): radius = 0.1 color = torch.tensor([1, 0, 0]) ball = DynamicSphere( prim_path=self.default_zero_env_path + "/ball", translation=self._ball_position, name="target_0", radius=radius, color=color, ) self._sim_config.apply_articulation_settings("ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball")) ball.set_collision_enabled(False) def get_observations(self) -> dict: self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False) self.root_velocities = self._copters.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 3:7] = root_quats self.obs_buf[..., 7:10] = root_linvels / 2 self.obs_buf[..., 10:13] = root_angvels / math.pi observations = { self._copters.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self.world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero(as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) actions = actions.clone().to(self._device) vertical_thrust_prop_0 = torch.clamp(actions[:, 2] * self.thrust_limit, -self.thrust_limit, self.thrust_limit) vertical_thrust_prop_1 = torch.clamp(actions[:, 5] * self.thrust_limit, -self.thrust_limit, self.thrust_limit) lateral_fraction_prop_0 = torch.clamp( actions[:, 0:2] * self.thrust_lateral_component, -self.thrust_lateral_component, self.thrust_lateral_component, ) lateral_fraction_prop_1 = torch.clamp( actions[:, 3:5] * self.thrust_lateral_component, -self.thrust_lateral_component, self.thrust_lateral_component, ) self.thrusts[:, 0, 2] = self.dt * vertical_thrust_prop_0 self.thrusts[:, 0, 0:2] = self.thrusts[:, 0, 2, None] * lateral_fraction_prop_0 self.thrusts[:, 1, 2] = self.dt * vertical_thrust_prop_1 self.thrusts[:, 1, 0:2] = self.thrusts[:, 1, 2, None] * lateral_fraction_prop_1 # clear actions for reset envs self.thrusts[reset_env_ids] = 0 # spin spinning rotors self.dof_vel[:, self.spinning_indices[0]] = 50 self.dof_vel[:, self.spinning_indices[1]] = -50 self._copters.set_joint_velocities(self.dof_vel) # apply actions for i in range(2): self._copters.physics_rotors[i].apply_forces(self.thrusts[:, i], indices=self.all_indices) def post_reset(self): self.spinning_indices = torch.tensor([1, 3], device=self._device) self.all_indices = torch.arange(self._num_envs, dtype=torch.int32, device=self._device) self.target_positions = torch.zeros((self._num_envs, 3), device=self._device, dtype=torch.float32) self.target_positions[:, 2] = 1 self.root_pos, self.root_rot = self._copters.get_world_poses() self.root_velocities = self._copters.get_velocities() self.dof_pos = self._copters.get_joint_positions() self.dof_vel = self._copters.get_joint_velocities() self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses() self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # control tensors self.thrusts = torch.zeros((self._num_envs, 2, 3), dtype=torch.float32, device=self._device) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (-1, 1) and z in (1, 2) self.target_positions[envs_long, 0:2] = torch.rand((num_sets, 2), device=self._device) * 2 - 1 self.target_positions[envs_long, 2] = torch.rand(num_sets, device=self._device) + 1 # shift the target up so it visually aligns better ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long] ball_pos[:, 2] += 0.4 self._balls.set_world_poses(ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids) def reset_idx(self, env_ids): num_resets = len(env_ids) self.dof_pos[env_ids, 1] = torch_rand_float(-0.2, 0.2, (num_resets, 1), device=self._device).squeeze() self.dof_pos[env_ids, 3] = torch_rand_float(-0.2, 0.2, (num_resets, 1), device=self._device).squeeze() self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._copters.set_joint_positions(self.dof_pos[env_ids], indices=env_ids) self._copters.set_joint_velocities(self.dof_vel[env_ids], indices=env_ids) self._copters.set_world_poses(root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._copters.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_angvels = self.root_velocities[:, 3:] # distance to target target_dist = torch.sqrt(torch.square(self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + 2.5 * target_dist * target_dist) self.target_dist = target_dist self.root_positions = root_positions # uprightness ups = quat_axis(root_quats, 2) tiltage = torch.abs(1 - ups[..., 2]) up_reward = 1.0 / (1.0 + 30 * tiltage * tiltage) # spinning spinnage = torch.abs(root_angvels[..., 2]) spinnage_reward = 1.0 / (1.0 + 10 * spinnage * spinnage) # combined reward # uprightness and spinning only matter when close to the target self.rew_buf[:] = pos_reward + pos_reward * (up_reward + spinnage_reward) def is_done(self) -> None: # resets due to misbehavior ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 20.0, ones, die) die = torch.where(self.root_positions[..., 2] < 0.5, ones, die) # resets due to episode length self.reset_buf[:] = torch.where(self.progress_buf >= self._max_episode_length - 1, ones, die)
12,385
Python
42.921986
151
0.635204
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/anymal.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.anymal import Anymal from omniisaacgymenvs.robots.articulations.views.anymal_view import AnymalView from omniisaacgymenvs.tasks.utils.usd_utils import set_drive class AnymalTask(RLTask): def __init__(self, name, sim_config, env, offset=None) -> None: self.update_config(sim_config) self._num_observations = 48 self._num_actions = 12 RLTask.__init__(self, name, env) return def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # normalization self.lin_vel_scale = self._task_cfg["env"]["learn"]["linearVelocityScale"] self.ang_vel_scale = self._task_cfg["env"]["learn"]["angularVelocityScale"] self.dof_pos_scale = self._task_cfg["env"]["learn"]["dofPositionScale"] self.dof_vel_scale = self._task_cfg["env"]["learn"]["dofVelocityScale"] self.action_scale = self._task_cfg["env"]["control"]["actionScale"] # reward scales self.rew_scales = {} self.rew_scales["lin_vel_xy"] = self._task_cfg["env"]["learn"]["linearVelocityXYRewardScale"] self.rew_scales["ang_vel_z"] = self._task_cfg["env"]["learn"]["angularVelocityZRewardScale"] self.rew_scales["lin_vel_z"] = self._task_cfg["env"]["learn"]["linearVelocityZRewardScale"] self.rew_scales["joint_acc"] = self._task_cfg["env"]["learn"]["jointAccRewardScale"] self.rew_scales["action_rate"] = self._task_cfg["env"]["learn"]["actionRateRewardScale"] self.rew_scales["cosmetic"] = self._task_cfg["env"]["learn"]["cosmeticRewardScale"] # command ranges self.command_x_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_x"] self.command_y_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_y"] self.command_yaw_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["yaw"] # base init state pos = self._task_cfg["env"]["baseInitState"]["pos"] rot = self._task_cfg["env"]["baseInitState"]["rot"] v_lin = self._task_cfg["env"]["baseInitState"]["vLinear"] v_ang = self._task_cfg["env"]["baseInitState"]["vAngular"] state = pos + rot + v_lin + v_ang self.base_init_state = state # default joint positions self.named_default_joint_angles = self._task_cfg["env"]["defaultJointAngles"] # other self.dt = 1 / 60 self.max_episode_length_s = self._task_cfg["env"]["learn"]["episodeLength_s"] self.max_episode_length = int(self.max_episode_length_s / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] for key in self.rew_scales.keys(): self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._anymal_translation = torch.tensor([0.0, 0.0, 0.62]) self._env_spacing = self._task_cfg["env"]["envSpacing"] def set_up_scene(self, scene) -> None: self.get_anymal() super().set_up_scene(scene) self._anymals = AnymalView(prim_paths_expr="/World/envs/.*/anymal", name="anymalview") scene.add(self._anymals) scene.add(self._anymals._knees) scene.add(self._anymals._base) return def initialize_views(self, scene): super().initialize_views(scene) if scene.object_exists("anymalview"): scene.remove_object("anymalview", registry_only=True) if scene.object_exists("knees_view"): scene.remove_object("knees_view", registry_only=True) if scene.object_exists("base_view"): scene.remove_object("base_view", registry_only=True) self._anymals = AnymalView(prim_paths_expr="/World/envs/.*/anymal", name="anymalview") scene.add(self._anymals) scene.add(self._anymals._knees) scene.add(self._anymals._base) def get_anymal(self): anymal = Anymal( prim_path=self.default_zero_env_path + "/anymal", name="Anymal", translation=self._anymal_translation ) self._sim_config.apply_articulation_settings( "Anymal", get_prim_at_path(anymal.prim_path), self._sim_config.parse_actor_config("Anymal") ) # Configure joint properties joint_paths = [] for quadrant in ["LF", "LH", "RF", "RH"]: for component, abbrev in [("HIP", "H"), ("THIGH", "K")]: joint_paths.append(f"{quadrant}_{component}/{quadrant}_{abbrev}FE") joint_paths.append(f"base/{quadrant}_HAA") for joint_path in joint_paths: set_drive(f"{anymal.prim_path}/{joint_path}", "angular", "position", 0, 400, 40, 1000) def get_observations(self) -> dict: torso_position, torso_rotation = self._anymals.get_world_poses(clone=False) root_velocities = self._anymals.get_velocities(clone=False) dof_pos = self._anymals.get_joint_positions(clone=False) dof_vel = self._anymals.get_joint_velocities(clone=False) velocity = root_velocities[:, 0:3] ang_velocity = root_velocities[:, 3:6] base_lin_vel = quat_rotate_inverse(torso_rotation, velocity) * self.lin_vel_scale base_ang_vel = quat_rotate_inverse(torso_rotation, ang_velocity) * self.ang_vel_scale projected_gravity = quat_rotate(torso_rotation, self.gravity_vec) dof_pos_scaled = (dof_pos - self.default_dof_pos) * self.dof_pos_scale commands_scaled = self.commands * torch.tensor( [self.lin_vel_scale, self.lin_vel_scale, self.ang_vel_scale], requires_grad=False, device=self.commands.device, ) obs = torch.cat( ( base_lin_vel, base_ang_vel, projected_gravity, commands_scaled, dof_pos_scaled, dof_vel * self.dof_vel_scale, self.actions, ), dim=-1, ) self.obs_buf[:] = obs observations = {self._anymals.name: {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self.world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) indices = torch.arange(self._anymals.count, dtype=torch.int32, device=self._device) self.actions[:] = actions.clone().to(self._device) current_targets = self.current_targets + self.action_scale * self.actions * self.dt self.current_targets[:] = tensor_clamp( current_targets, self.anymal_dof_lower_limits, self.anymal_dof_upper_limits ) self._anymals.set_joint_position_targets(self.current_targets, indices) def reset_idx(self, env_ids): num_resets = len(env_ids) # randomize DOF velocities velocities = torch_rand_float(-0.1, 0.1, (num_resets, self._anymals.num_dof), device=self._device) dof_pos = self.default_dof_pos[env_ids] dof_vel = velocities self.current_targets[env_ids] = dof_pos[:] root_vel = torch.zeros((num_resets, 6), device=self._device) # apply resets indices = env_ids.to(dtype=torch.int32) self._anymals.set_joint_positions(dof_pos, indices) self._anymals.set_joint_velocities(dof_vel, indices) self._anymals.set_world_poses( self.initial_root_pos[env_ids].clone(), self.initial_root_rot[env_ids].clone(), indices ) self._anymals.set_velocities(root_vel, indices) self.commands_x[env_ids] = torch_rand_float( self.command_x_range[0], self.command_x_range[1], (num_resets, 1), device=self._device ).squeeze() self.commands_y[env_ids] = torch_rand_float( self.command_y_range[0], self.command_y_range[1], (num_resets, 1), device=self._device ).squeeze() self.commands_yaw[env_ids] = torch_rand_float( self.command_yaw_range[0], self.command_yaw_range[1], (num_resets, 1), device=self._device ).squeeze() # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.last_actions[env_ids] = 0.0 self.last_dof_vel[env_ids] = 0.0 def post_reset(self): self.default_dof_pos = torch.zeros( (self.num_envs, 12), dtype=torch.float, device=self.device, requires_grad=False ) dof_names = self._anymals.dof_names for i in range(self.num_actions): name = dof_names[i] angle = self.named_default_joint_angles[name] self.default_dof_pos[:, i] = angle self.initial_root_pos, self.initial_root_rot = self._anymals.get_world_poses() self.current_targets = self.default_dof_pos.clone() dof_limits = self._anymals.get_dof_limits() self.anymal_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device) self.anymal_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device) self.commands = torch.zeros(self._num_envs, 3, dtype=torch.float, device=self._device, requires_grad=False) self.commands_y = self.commands.view(self._num_envs, 3)[..., 1] self.commands_x = self.commands.view(self._num_envs, 3)[..., 0] self.commands_yaw = self.commands.view(self._num_envs, 3)[..., 2] # initialize some data used later on self.extras = {} self.gravity_vec = torch.tensor([0.0, 0.0, -1.0], device=self._device).repeat((self._num_envs, 1)) self.actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False ) self.last_dof_vel = torch.zeros( (self._num_envs, 12), dtype=torch.float, device=self._device, requires_grad=False ) self.last_actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False ) self.time_out_buf = torch.zeros_like(self.reset_buf) # randomize all envs indices = torch.arange(self._anymals.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: torso_position, torso_rotation = self._anymals.get_world_poses(clone=False) root_velocities = self._anymals.get_velocities(clone=False) dof_pos = self._anymals.get_joint_positions(clone=False) dof_vel = self._anymals.get_joint_velocities(clone=False) velocity = root_velocities[:, 0:3] ang_velocity = root_velocities[:, 3:6] base_lin_vel = quat_rotate_inverse(torso_rotation, velocity) base_ang_vel = quat_rotate_inverse(torso_rotation, ang_velocity) # velocity tracking reward lin_vel_error = torch.sum(torch.square(self.commands[:, :2] - base_lin_vel[:, :2]), dim=1) ang_vel_error = torch.square(self.commands[:, 2] - base_ang_vel[:, 2]) rew_lin_vel_xy = torch.exp(-lin_vel_error / 0.25) * self.rew_scales["lin_vel_xy"] rew_ang_vel_z = torch.exp(-ang_vel_error / 0.25) * self.rew_scales["ang_vel_z"] rew_lin_vel_z = torch.square(base_lin_vel[:, 2]) * self.rew_scales["lin_vel_z"] rew_joint_acc = torch.sum(torch.square(self.last_dof_vel - dof_vel), dim=1) * self.rew_scales["joint_acc"] rew_action_rate = ( torch.sum(torch.square(self.last_actions - self.actions), dim=1) * self.rew_scales["action_rate"] ) rew_cosmetic = ( torch.sum(torch.abs(dof_pos[:, 0:4] - self.default_dof_pos[:, 0:4]), dim=1) * self.rew_scales["cosmetic"] ) total_reward = rew_lin_vel_xy + rew_ang_vel_z + rew_joint_acc + rew_action_rate + rew_cosmetic + rew_lin_vel_z total_reward = torch.clip(total_reward, 0.0, None) self.last_actions[:] = self.actions[:] self.last_dof_vel[:] = dof_vel[:] self.fallen_over = self._anymals.is_base_below_threshold(threshold=0.51, ground_heights=0.0) total_reward[torch.nonzero(self.fallen_over)] = -1 self.rew_buf[:] = total_reward.detach() def is_done(self) -> None: # reset agents time_out = self.progress_buf >= self.max_episode_length - 1 self.reset_buf[:] = time_out | self.fallen_over
14,344
Python
44.539682
118
0.630996
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/warp/humanoid.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.warp.shared.locomotion import LocomotionTask from omniisaacgymenvs.robots.articulations.humanoid import Humanoid from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omniisaacgymenvs.tasks.base.rl_task import RLTaskWarp import numpy as np import torch import warp as wp import math class HumanoidLocomotionTask(LocomotionTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_observations = 87 self._num_actions = 21 self._humanoid_positions = torch.tensor([0, 0, 1.34]) LocomotionTask.__init__(self, name=name, env=env) return def set_up_scene(self, scene) -> None: self.get_humanoid() RLTaskWarp.set_up_scene(self, scene) self._humanoids = ArticulationView(prim_paths_expr="/World/envs/.*/Humanoid/torso", name="humanoid_view", reset_xform_properties=False) scene.add(self._humanoids) return def get_humanoid(self): humanoid = Humanoid(prim_path=self.default_zero_env_path + "/Humanoid", name="Humanoid", translation=self._humanoid_positions) self._sim_config.apply_articulation_settings("Humanoid", get_prim_at_path(humanoid.prim_path), self._sim_config.parse_actor_config("Humanoid")) def get_robot(self): return self._humanoids def post_reset(self): self.joint_gears = wp.array( [ 67.5000, # lower_waist 67.5000, # lower_waist 67.5000, # right_upper_arm 67.5000, # right_upper_arm 67.5000, # left_upper_arm 67.5000, # left_upper_arm 67.5000, # pelvis 45.0000, # right_lower_arm 45.0000, # left_lower_arm 45.0000, # right_thigh: x 135.0000, # right_thigh: y 45.0000, # right_thigh: z 45.0000, # left_thigh: x 135.0000, # left_thigh: y 45.0000, # left_thigh: z 90.0000, # right_knee 90.0000, # left_knee 22.5, # right_foot 22.5, # right_foot 22.5, # left_foot 22.5, # left_foot ], device=self._device, dtype=wp.float32 ) self.max_motor_effort = 135.0 self.motor_effort_ratio = wp.zeros(self._humanoids._num_dof, dtype=wp.float32, device=self._device) wp.launch(compute_effort_ratio, dim=self._humanoids._num_dof, inputs=[self.motor_effort_ratio, self.joint_gears, self.max_motor_effort], device=self._device) dof_limits = self._humanoids.get_dof_limits().to(self._device) self.dof_limits_lower = wp.zeros(self._humanoids._num_dof, dtype=wp.float32, device=self._device) self.dof_limits_upper = wp.zeros(self._humanoids._num_dof, dtype=wp.float32, device=self._device) wp.launch(parse_dof_limits, dim=self._humanoids._num_dof, inputs=[self.dof_limits_lower, self.dof_limits_upper, dof_limits], device=self._device) self.dof_at_limit_cost = wp.zeros(self._num_envs, dtype=wp.float32, device=self._device) force_links = ["left_foot", "right_foot"] self._sensor_indices = wp.array([self._humanoids._body_indices[j] for j in force_links], device=self._device, dtype=wp.int32) LocomotionTask.post_reset(self) def get_dof_at_limit_cost(self): wp.launch(get_dof_at_limit_cost, dim=(self._num_envs, self._humanoids._num_dof), inputs=[self.dof_at_limit_cost, self.obs_buf, self.motor_effort_ratio, self.joints_at_limit_cost_scale], device=self._device) return self.dof_at_limit_cost @wp.kernel def compute_effort_ratio(motor_effort_ratio: wp.array(dtype=wp.float32), joint_gears: wp.array(dtype=wp.float32), max_motor_effort: float): tid = wp.tid() motor_effort_ratio[tid] = joint_gears[tid] / max_motor_effort @wp.kernel def parse_dof_limits(dof_limits_lower: wp.array(dtype=wp.float32), dof_limits_upper: wp.array(dtype=wp.float32), dof_limits: wp.array(dtype=wp.float32, ndim=3)): tid = wp.tid() dof_limits_lower[tid] = dof_limits[0, tid, 0] dof_limits_upper[tid] = dof_limits[0, tid, 1] @wp.kernel def get_dof_at_limit_cost(dof_at_limit_cost: wp.array(dtype=wp.float32), obs_buf: wp.array(dtype=wp.float32, ndim=2), motor_effort_ratio: wp.array(dtype=wp.float32), joints_at_limit_cost_scale: float): i, j = wp.tid() dof_i = j + 12 scaled_cost = joints_at_limit_cost_scale * (wp.abs(obs_buf[i, dof_i]) - 0.98) / 0.02 cost = 0.0 if wp.abs(obs_buf[i, dof_i]) > 0.98: cost = scaled_cost * motor_effort_ratio[j] dof_at_limit_cost[i] = cost
6,707
Python
42.558441
143
0.640376
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/warp/ant.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.robots.articulations.ant import Ant from omniisaacgymenvs.tasks.warp.shared.locomotion import LocomotionTask from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omni.isaac.core.utils.torch.maths import torch_rand_float, tensor_clamp, unscale from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omniisaacgymenvs.tasks.base.rl_task import RLTaskWarp import numpy as np import torch import warp as wp class AntLocomotionTask(LocomotionTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_observations = 60 self._num_actions = 8 self._ant_positions = wp.array([0, 0, 0.5], dtype=wp.float32, device="cpu") LocomotionTask.__init__(self, name=name, env=env) return def set_up_scene(self, scene) -> None: self.get_ant() RLTaskWarp.set_up_scene(self, scene) self._ants = ArticulationView(prim_paths_expr="/World/envs/.*/Ant/torso", name="ant_view", reset_xform_properties=False) scene.add(self._ants) return def get_ant(self): ant = Ant(prim_path=self.default_zero_env_path + "/Ant", name="Ant", translation=self._ant_positions) self._sim_config.apply_articulation_settings("Ant", get_prim_at_path(ant.prim_path), self._sim_config.parse_actor_config("Ant")) def get_robot(self): return self._ants def post_reset(self): self.joint_gears = wp.array([15, 15, 15, 15, 15, 15, 15, 15], dtype=wp.float32, device=self._device) dof_limits = self._ants.get_dof_limits().to(self._device) self.dof_limits_lower = wp.zeros(self._ants._num_dof, dtype=wp.float32, device=self._device) self.dof_limits_upper = wp.zeros(self._ants._num_dof, dtype=wp.float32, device=self._device) wp.launch(parse_dof_limits, dim=self._ants._num_dof, inputs=[self.dof_limits_lower, self.dof_limits_upper, dof_limits], device=self._device) self.motor_effort_ratio = wp.array([1, 1, 1, 1, 1, 1, 1, 1], dtype=wp.float32, device=self._device) self.dof_at_limit_cost = wp.zeros(self._num_envs, dtype=wp.float32, device=self._device) force_links = ["front_left_foot", "front_right_foot", "left_back_foot", "right_back_foot"] self._sensor_indices = wp.array([self._ants._body_indices[j] for j in force_links], device=self._device, dtype=wp.int32) LocomotionTask.post_reset(self) def get_dof_at_limit_cost(self): wp.launch(get_dof_at_limit_cost, dim=(self._num_envs, self._ants._num_dof), inputs=[self.dof_at_limit_cost, self.obs_buf, self.motor_effort_ratio], device=self._device) return self.dof_at_limit_cost @wp.kernel def get_dof_at_limit_cost(dof_at_limit_cost: wp.array(dtype=wp.float32), obs_buf: wp.array(dtype=wp.float32, ndim=2), motor_effort_ratio: wp.array(dtype=wp.float32)): i, j = wp.tid() dof_i = j + 12 cost = 0.0 if wp.abs(obs_buf[i, dof_i]) > 0.99: cost = 1.0 dof_at_limit_cost[i] = cost @wp.kernel def parse_dof_limits(dof_limits_lower: wp.array(dtype=wp.float32), dof_limits_upper: wp.array(dtype=wp.float32), dof_limits: wp.array(dtype=wp.float32, ndim=3)): tid = wp.tid() dof_limits_lower[tid] = dof_limits[0, tid, 0] dof_limits_upper[tid] = dof_limits[0, tid, 1]
5,242
Python
44.991228
136
0.685616
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/warp/cartpole.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.robots.articulations.cartpole import Cartpole from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path import omni.isaac.core.utils.warp as warp_utils from omniisaacgymenvs.tasks.base.rl_task import RLTaskWarp import numpy as np import torch import warp as wp import math class CartpoleTask(RLTaskWarp): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._cartpole_positions = wp.array([0.0, 0.0, 2.0], dtype=wp.float32) self._reset_dist = self._task_cfg["env"]["resetDist"] self._max_push_effort = self._task_cfg["env"]["maxEffort"] self._max_episode_length = 500 self._num_observations = 4 self._num_actions = 1 RLTaskWarp.__init__(self, name, env) return def set_up_scene(self, scene) -> None: self.get_cartpole() super().set_up_scene(scene) self._cartpoles = ArticulationView(prim_paths_expr="/World/envs/.*/Cartpole", name="cartpole_view", reset_xform_properties=False) scene.add(self._cartpoles) return def get_cartpole(self): cartpole = Cartpole(prim_path=self.default_zero_env_path + "/Cartpole", name="Cartpole", translation=self._cartpole_positions) # applies articulation settings from the task configuration yaml file self._sim_config.apply_articulation_settings("Cartpole", get_prim_at_path(cartpole.prim_path), self._sim_config.parse_actor_config("Cartpole")) def get_observations(self) -> dict: dof_pos = self._cartpoles.get_joint_positions(clone=False) dof_vel = self._cartpoles.get_joint_velocities(clone=False) wp.launch(get_observations, dim=self._num_envs, inputs=[self.obs_buf, dof_pos, dof_vel, self._cart_dof_idx, self._pole_dof_idx], device=self._device) observations = { self._cartpoles.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: self.reset_idx() actions_wp = wp.from_torch(actions) forces = wp.zeros((self._cartpoles.count, self._cartpoles.num_dof), dtype=wp.float32, device=self._device) wp.launch(compute_forces, dim=self._num_envs, inputs=[forces, actions_wp, self._cart_dof_idx, self._max_push_effort], device=self._device) self._cartpoles.set_joint_efforts(forces) def reset_idx(self): reset_env_ids = wp.to_torch(self.reset_buf).nonzero(as_tuple=False).squeeze(-1) num_resets = len(reset_env_ids) indices = wp.from_torch(reset_env_ids.to(dtype=torch.int32), dtype=wp.int32) if num_resets > 0: wp.launch(reset_idx, num_resets, inputs=[self.dof_pos, self.dof_vel, indices, self.reset_buf, self.progress_buf, self._cart_dof_idx, self._pole_dof_idx, self._rand_seed], device=self._device) # apply resets self._cartpoles.set_joint_positions(self.dof_pos[indices], indices=indices) self._cartpoles.set_joint_velocities(self.dof_vel[indices], indices=indices) def post_reset(self): self._cart_dof_idx = self._cartpoles.get_dof_index("cartJoint") self._pole_dof_idx = self._cartpoles.get_dof_index("poleJoint") self.dof_pos = wp.zeros((self._num_envs, self._cartpoles.num_dof), device=self._device, dtype=wp.float32) self.dof_vel = wp.zeros((self._num_envs, self._cartpoles.num_dof), device=self._device, dtype=wp.float32) # randomize all envs self.reset_idx() def calculate_metrics(self) -> None: wp.launch(calculate_metrics, dim=self._num_envs, inputs=[self.obs_buf, self.rew_buf, self._reset_dist], device=self._device) def is_done(self) -> None: wp.launch(is_done, dim=self._num_envs, inputs=[self.obs_buf, self.reset_buf, self.progress_buf, self._reset_dist, self._max_episode_length], device=self._device) @wp.kernel def reset_idx(dof_pos: wp.array(dtype=wp.float32, ndim=2), dof_vel: wp.array(dtype=wp.float32, ndim=2), indices: wp.array(dtype=wp.int32), reset_buf: wp.array(dtype=wp.int32), progress_buf: wp.array(dtype=wp.int32), cart_dof_idx: int, pole_dof_idx: int, rand_seed: int): i = wp.tid() idx = indices[i] rand_state = wp.rand_init(rand_seed, i) # randomize DOF positions dof_pos[idx, cart_dof_idx] = 1.0 * (1.0 - 2.0 * wp.randf(rand_state)) dof_pos[idx, pole_dof_idx] = 0.125 * warp_utils.PI * (1.0 - 2.0 * wp.randf(rand_state)) # randomize DOF velocities dof_vel[idx, cart_dof_idx] = 0.5 * (1.0 - 2.0 * wp.randf(rand_state)) dof_vel[idx, pole_dof_idx] = 0.25 * warp_utils.PI * (1.0 - 2.0 * wp.randf(rand_state)) # bookkeeping progress_buf[idx] = 0 reset_buf[idx] = 0 @wp.kernel def compute_forces(forces: wp.array(dtype=wp.float32, ndim=2), actions: wp.array(dtype=wp.float32, ndim=2), cart_dof_idx: int, max_push_effort: float): i = wp.tid() forces[i, cart_dof_idx] = max_push_effort * actions[i, 0] @wp.kernel def get_observations(obs_buf: wp.array(dtype=wp.float32, ndim=2), dof_pos: wp.indexedarray(dtype=wp.float32, ndim=2), dof_vel: wp.indexedarray(dtype=wp.float32, ndim=2), cart_dof_idx: int, pole_dof_idx: int): i = wp.tid() obs_buf[i, 0] = dof_pos[i, cart_dof_idx] obs_buf[i, 1] = dof_vel[i, cart_dof_idx] obs_buf[i, 2] = dof_pos[i, pole_dof_idx] obs_buf[i, 3] = dof_vel[i, pole_dof_idx] @wp.kernel def calculate_metrics(obs_buf: wp.array(dtype=wp.float32, ndim=2), rew_buf: wp.array(dtype=wp.float32), reset_dist: float): i = wp.tid() cart_pos = obs_buf[i, 0] cart_vel = obs_buf[i, 1] pole_angle = obs_buf[i, 2] pole_vel = obs_buf[i, 3] rew_buf[i] = 1.0 - pole_angle * pole_angle - 0.01 * wp.abs(cart_vel) - 0.005 * wp.abs(pole_vel) if wp.abs(cart_pos) > reset_dist or wp.abs(pole_angle) > warp_utils.PI / 2.0: rew_buf[i] = -2.0 @wp.kernel def is_done(obs_buf: wp.array(dtype=wp.float32, ndim=2), reset_buf: wp.array(dtype=wp.int32), progress_buf: wp.array(dtype=wp.int32), reset_dist: float, max_episode_length: int): i = wp.tid() cart_pos = obs_buf[i, 0] pole_pos = obs_buf[i, 2] if wp.abs(cart_pos) > reset_dist or wp.abs(pole_pos) > warp_utils.PI / 2.0 or progress_buf[i] > max_episode_length: reset_buf[i] = 1 else: reset_buf[i] = 0
8,665
Python
38.390909
154
0.635661
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/warp/shared/locomotion.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import abstractmethod from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path import omni.isaac.core.utils.warp as warp_utils from omniisaacgymenvs.tasks.base.rl_task import RLTaskWarp import numpy as np import torch import warp as wp class LocomotionTask(RLTaskWarp): def __init__( self, name, env, offset=None ) -> None: self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.angular_velocity_scale = self._task_cfg["env"]["angularVelocityScale"] self.contact_force_scale = self._task_cfg["env"]["contactForceScale"] self.power_scale = self._task_cfg["env"]["powerScale"] self.heading_weight = self._task_cfg["env"]["headingWeight"] self.up_weight = self._task_cfg["env"]["upWeight"] self.actions_cost_scale = self._task_cfg["env"]["actionsCost"] self.energy_cost_scale = self._task_cfg["env"]["energyCost"] self.joints_at_limit_cost_scale = self._task_cfg["env"]["jointsAtLimitCost"] self.death_cost = self._task_cfg["env"]["deathCost"] self.termination_height = self._task_cfg["env"]["terminationHeight"] self.alive_reward_scale = self._task_cfg["env"]["alive_reward_scale"] self._num_sensors = 2 RLTaskWarp.__init__(self, name, env) return @abstractmethod def set_up_scene(self, scene) -> None: pass @abstractmethod def get_robot(self): pass def get_observations(self) -> dict: torso_position, torso_rotation = self._robots.get_world_poses(clone=False) velocities = self._robots.get_velocities(clone=False) dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) # force sensors attached to the feet sensor_force_torques = self._robots.get_measured_joint_forces() wp.launch(get_observations, dim=self._num_envs, inputs=[self.obs_buf, torso_position, torso_rotation, self._env_pos, velocities, dof_pos, dof_vel, self.prev_potentials, self.potentials, self.dt, self.target, self.basis_vec0, self.basis_vec1, self.dof_limits_lower, self.dof_limits_upper, self.dof_vel_scale, sensor_force_torques, self.contact_force_scale, self.actions, self.angular_velocity_scale, self._robots._num_dof, self._num_sensors, self._sensor_indices], device=self._device ) observations = { self._robots.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: self.reset_idx() actions_wp = wp.from_torch(actions) self.actions = actions_wp wp.launch(compute_forces, dim=(self._num_envs, self._robots._num_dof), inputs=[self.forces, self.actions, self.joint_gears, self.power_scale], device=self._device) # applies joint torques self._robots.set_joint_efforts(self.forces) def reset_idx(self): reset_env_ids = wp.to_torch(self.reset_buf).nonzero(as_tuple=False).squeeze(-1) num_resets = len(reset_env_ids) indices = wp.from_torch(reset_env_ids.to(dtype=torch.int32), dtype=wp.int32) if num_resets > 0: wp.launch(reset_dofs, dim=(num_resets, self._robots._num_dof), inputs=[self.dof_pos, self.dof_vel, self.initial_dof_pos, self.dof_limits_lower, self.dof_limits_upper, indices, self._rand_seed], device=self._device) wp.launch(reset_idx, dim=num_resets, inputs=[self.root_pos, self.root_rot, self.initial_root_pos, self.initial_root_rot, self._env_pos, self.target, self.prev_potentials, self.potentials, self.dt, self.reset_buf, self.progress_buf, indices, self._rand_seed], device=self._device) # apply resets self._robots.set_joint_positions(self.dof_pos[indices], indices=indices) self._robots.set_joint_velocities(self.dof_vel[indices], indices=indices) self._robots.set_world_poses(self.root_pos[indices], self.root_rot[indices], indices=indices) self._robots.set_velocities(self.root_vel[indices], indices=indices) def post_reset(self): self._robots = self.get_robot() self.initial_root_pos, self.initial_root_rot = self._robots.get_world_poses() self.initial_dof_pos = self._robots.get_joint_positions() # initialize some data used later on self.basis_vec0 = wp.vec3(1, 0, 0) self.basis_vec1 = wp.vec3(0, 0, 1) self.target = wp.vec3(1000, 0, 0) self.dt = 1.0 / 60.0 # initialize potentials self.potentials = wp.zeros(self._num_envs, dtype=wp.float32, device=self._device) self.prev_potentials = wp.zeros(self._num_envs, dtype=wp.float32, device=self._device) wp.launch(init_potentials, dim=self._num_envs, inputs=[self.potentials, self.prev_potentials, self.dt], device=self._device) self.actions = wp.zeros((self.num_envs, self.num_actions), device=self._device, dtype=wp.float32) self.forces = wp.zeros((self._num_envs, self._robots._num_dof), dtype=wp.float32, device=self._device) self.dof_pos = wp.zeros((self.num_envs, self._robots._num_dof), device=self._device, dtype=wp.float32) self.dof_vel = wp.zeros((self.num_envs, self._robots._num_dof), device=self._device, dtype=wp.float32) self.root_pos = wp.zeros((self.num_envs, 3), device=self._device, dtype=wp.float32) self.root_rot = wp.zeros((self.num_envs, 4), device=self._device, dtype=wp.float32) self.root_vel = wp.zeros((self.num_envs, 6), device=self._device, dtype=wp.float32) # randomize all env self.reset_idx() def calculate_metrics(self) -> None: dof_at_limit_cost = self.get_dof_at_limit_cost() wp.launch(calculate_metrics, dim=self._num_envs, inputs=[self.rew_buf, self.obs_buf, self.actions, self.up_weight, self.heading_weight, self.potentials, self.prev_potentials, self.actions_cost_scale, self.energy_cost_scale, self.termination_height, self.death_cost, self._robots.num_dof, dof_at_limit_cost, self.alive_reward_scale, self.motor_effort_ratio], device=self._device ) def is_done(self) -> None: wp.launch(is_done, dim=self._num_envs, inputs=[self.obs_buf, self.termination_height, self.reset_buf, self.progress_buf, self._max_episode_length], device=self._device ) ##################################################################### ###==========================warp kernels=========================### ##################################################################### @wp.kernel def init_potentials(potentials: wp.array(dtype=wp.float32), prev_potentials: wp.array(dtype=wp.float32), dt: float): i = wp.tid() potentials[i] = -1000.0 / dt prev_potentials[i] = -1000.0 / dt @wp.kernel def reset_idx(root_pos: wp.array(dtype=wp.float32, ndim=2), root_rot: wp.array(dtype=wp.float32, ndim=2), initial_root_pos: wp.indexedarray(dtype=wp.float32, ndim=2), initial_root_rot: wp.indexedarray(dtype=wp.float32, ndim=2), env_pos: wp.array(dtype=wp.float32, ndim=2), target: wp.vec3, prev_potentials: wp.array(dtype=wp.float32), potentials: wp.array(dtype=wp.float32), dt: float, reset_buf: wp.array(dtype=wp.int32), progress_buf: wp.array(dtype=wp.int32), indices: wp.array(dtype=wp.int32), rand_seed: int): i = wp.tid() idx = indices[i] # reset root states for j in range(3): root_pos[idx, j] = initial_root_pos[idx, j] for j in range(4): root_rot[idx, j] = initial_root_rot[idx, j] # reset potentials to_target = target - wp.vec3(initial_root_pos[idx, 0] - env_pos[idx, 0], initial_root_pos[idx, 1] - env_pos[idx, 1], target[2]) prev_potentials[idx] = -wp.length(to_target) / dt potentials[idx] = -wp.length(to_target) / dt temp = potentials[idx] - prev_potentials[idx] # bookkeeping reset_buf[idx] = 0 progress_buf[idx] = 0 @wp.kernel def reset_dofs(dof_pos: wp.array(dtype=wp.float32, ndim=2), dof_vel: wp.array(dtype=wp.float32, ndim=2), initial_dof_pos: wp.indexedarray(dtype=wp.float32, ndim=2), dof_limits_lower: wp.array(dtype=wp.float32), dof_limits_upper: wp.array(dtype=wp.float32), indices: wp.array(dtype=wp.int32), rand_seed: int): i, j = wp.tid() idx = indices[i] rand_state = wp.rand_init(rand_seed, i * j + j) # randomize DOF positions and velocities dof_pos[idx, j] = wp.clamp(wp.randf(rand_state, -0.2, 0.2) + initial_dof_pos[idx, j], dof_limits_lower[j], dof_limits_upper[j]) dof_vel[idx, j] = wp.randf(rand_state, -0.1, 0.1) @wp.kernel def compute_forces(forces: wp.array(dtype=wp.float32, ndim=2), actions: wp.array(dtype=wp.float32, ndim=2), joint_gears: wp.array(dtype=wp.float32), power_scale: float): i, j = wp.tid() forces[i, j] = actions[i, j] * joint_gears[j] * power_scale @wp.func def get_euler_xyz(q: wp.quat): qx = 0 qy = 1 qz = 2 qw = 3 # roll (x-axis rotation) sinr_cosp = 2.0 * (q[qw] * q[qx] + q[qy] * q[qz]) cosr_cosp = q[qw] * q[qw] - q[qx] * q[qx] - q[qy] * q[qy] + q[qz] * q[qz] roll = wp.atan2(sinr_cosp, cosr_cosp) # pitch (y-axis rotation) sinp = 2.0 * (q[qw] * q[qy] - q[qz] * q[qx]) if wp.abs(sinp) >= 1: pitch = warp_utils.PI / 2.0 * (wp.abs(sinp)/sinp) else: pitch = wp.asin(sinp) # yaw (z-axis rotation) siny_cosp = 2.0 * (q[qw] * q[qz] + q[qx] * q[qy]) cosy_cosp = q[qw] * q[qw] + q[qx] * q[qx] - q[qy] * q[qy] - q[qz] * q[qz] yaw = wp.atan2(siny_cosp, cosy_cosp) rpy = wp.vec3(roll % (2.0 * warp_utils.PI), pitch % (2.0 * warp_utils.PI), yaw % (2.0 * warp_utils.PI)) return rpy @wp.func def compute_up_vec(torso_rotation: wp.quat, vec1: wp.vec3): up_vec = wp.quat_rotate(torso_rotation, vec1) return up_vec @wp.func def compute_heading_vec(torso_rotation: wp.quat, vec0: wp.vec3): heading_vec = wp.quat_rotate(torso_rotation, vec0) return heading_vec @wp.func def unscale(x:float, lower:float, upper:float): return (2.0 * x - upper - lower) / (upper - lower) @wp.func def normalize_angle(x: float): return wp.atan2(wp.sin(x), wp.cos(x)) @wp.kernel def get_observations( obs_buf: wp.array(dtype=wp.float32, ndim=2), torso_pos: wp.indexedarray(dtype=wp.float32, ndim=2), torso_rot: wp.indexedarray(dtype=wp.float32, ndim=2), env_pos: wp.array(dtype=wp.float32, ndim=2), velocity: wp.indexedarray(dtype=wp.float32, ndim=2), dof_pos: wp.indexedarray(dtype=wp.float32, ndim=2), dof_vel: wp.indexedarray(dtype=wp.float32, ndim=2), prev_potentials: wp.array(dtype=wp.float32), potentials: wp.array(dtype=wp.float32), dt: float, target: wp.vec3, basis_vec0: wp.vec3, basis_vec1: wp.vec3, dof_limits_lower: wp.array(dtype=wp.float32), dof_limits_upper: wp.array(dtype=wp.float32), dof_vel_scale: float, sensor_force_torques: wp.indexedarray(dtype=wp.float32, ndim=3), contact_force_scale: float, actions: wp.array(dtype=wp.float32, ndim=2), angular_velocity_scale: float, num_dofs: int, num_sensors: int, sensor_indices: wp.array(dtype=wp.int32) ): i = wp.tid() torso_position_x = torso_pos[i, 0] - env_pos[i, 0] torso_position_y = torso_pos[i, 1] - env_pos[i, 1] torso_position_z = torso_pos[i, 2] - env_pos[i, 2] to_target = target - wp.vec3(torso_position_x, torso_position_y, target[2]) prev_potentials[i] = potentials[i] potentials[i] = -wp.length(to_target) / dt temp = potentials[i] - prev_potentials[i] torso_quat = wp.quat(torso_rot[i, 1], torso_rot[i, 2], torso_rot[i, 3], torso_rot[i, 0]) up_vec = compute_up_vec(torso_quat, basis_vec1) up_proj = up_vec[2] heading_vec = compute_heading_vec(torso_quat, basis_vec0) target_dir = wp.normalize(to_target) heading_proj = wp.dot(heading_vec, target_dir) lin_velocity = wp.vec3(velocity[i, 0], velocity[i, 1], velocity[i, 2]) ang_velocity = wp.vec3(velocity[i, 3], velocity[i, 4], velocity[i, 5]) rpy = get_euler_xyz(torso_quat) vel_loc = wp.quat_rotate_inv(torso_quat, lin_velocity) angvel_loc = wp.quat_rotate_inv(torso_quat, ang_velocity) walk_target_angle = wp.atan2(target[2] - torso_position_z, target[0] - torso_position_x) angle_to_target = walk_target_angle - rpy[2] # yaw # obs_buf shapes: 1, 3, 3, 1, 1, 1, 1, 1, num_dofs, num_dofs, num_sensors * 6, num_dofs obs_offset = 0 obs_buf[i, 0] = torso_position_z obs_offset = obs_offset + 1 for j in range(3): obs_buf[i, j+obs_offset] = vel_loc[j] obs_offset = obs_offset + 3 for j in range(3): obs_buf[i, j+obs_offset] = angvel_loc[j] * angular_velocity_scale obs_offset = obs_offset + 3 obs_buf[i, obs_offset+0] = normalize_angle(rpy[2]) obs_buf[i, obs_offset+1] = normalize_angle(rpy[0]) obs_buf[i, obs_offset+2] = normalize_angle(angle_to_target) obs_buf[i, obs_offset+3] = up_proj obs_buf[i, obs_offset+4] = heading_proj obs_offset = obs_offset + 5 for j in range(num_dofs): obs_buf[i, obs_offset+j] = unscale(dof_pos[i, j], dof_limits_lower[j], dof_limits_upper[j]) obs_offset = obs_offset + num_dofs for j in range(num_dofs): obs_buf[i, obs_offset+j] = dof_vel[i, j] * dof_vel_scale obs_offset = obs_offset + num_dofs for j in range(num_sensors): sensor_idx = sensor_indices[j] for k in range(6): obs_buf[i, obs_offset+j*6+k] = sensor_force_torques[i, sensor_idx, k] * contact_force_scale obs_offset = obs_offset + (num_sensors * 6) for j in range(num_dofs): obs_buf[i, obs_offset+j] = actions[i, j] @wp.kernel def is_done( obs_buf: wp.array(dtype=wp.float32, ndim=2), termination_height: float, reset_buf: wp.array(dtype=wp.int32), progress_buf: wp.array(dtype=wp.int32), max_episode_length: int ): i = wp.tid() if obs_buf[i, 0] < termination_height or progress_buf[i] >= max_episode_length - 1: reset_buf[i] = 1 else: reset_buf[i] = 0 @wp.kernel def calculate_metrics( rew_buf: wp.array(dtype=wp.float32), obs_buf: wp.array(dtype=wp.float32, ndim=2), actions: wp.array(dtype=wp.float32, ndim=2), up_weight: float, heading_weight: float, potentials: wp.array(dtype=wp.float32), prev_potentials: wp.array(dtype=wp.float32), actions_cost_scale: float, energy_cost_scale: float, termination_height: float, death_cost: float, num_dof: int, dof_at_limit_cost: wp.array(dtype=wp.float32), alive_reward_scale: float, motor_effort_ratio: wp.array(dtype=wp.float32) ): i = wp.tid() # heading reward if obs_buf[i, 11] > 0.8: heading_reward = heading_weight else: heading_reward = heading_weight * obs_buf[i, 11] / 0.8 # aligning up axis of robot and environment up_reward = 0.0 if obs_buf[i, 10] > 0.93: up_reward = up_weight # energy penalty for movement actions_cost = float(0.0) electricity_cost = float(0.0) for j in range(num_dof): actions_cost = actions_cost + (actions[i, j] * actions[i, j]) electricity_cost = electricity_cost + (wp.abs(actions[i, j] * obs_buf[i, 12+num_dof+j]) * motor_effort_ratio[j]) # reward for duration of staying alive progress_reward = potentials[i] - prev_potentials[i] total_reward = ( progress_reward + alive_reward_scale + up_reward + heading_reward - actions_cost_scale * actions_cost - energy_cost_scale * electricity_cost - dof_at_limit_cost[i] ) # adjust reward for fallen agents if obs_buf[i, 0] < termination_height: total_reward = death_cost rew_buf[i] = total_reward
18,233
Python
39.52
147
0.624198
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/base/rl_task.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import asyncio from abc import abstractmethod import numpy as np import omni.isaac.core.utils.warp.tensor as wp_utils import omni.kit import omni.usd import torch import warp as wp from gym import spaces from omni.isaac.cloner import GridCloner from omni.isaac.core.tasks import BaseTask from omni.isaac.core.utils.prims import define_prim from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.gym.tasks.rl_task import RLTaskInterface from omniisaacgymenvs.utils.domain_randomization.randomize import Randomizer from pxr import Gf, UsdGeom, UsdLux class RLTask(RLTaskInterface): """This class provides a PyTorch RL-specific interface for setting up RL tasks. It includes utilities for setting up RL task related parameters, cloning environments, and data collection for RL algorithms. """ def __init__(self, name, env, offset=None) -> None: """Initializes RL parameters, cloner object, and buffers. Args: name (str): name of the task. env (VecEnvBase): an instance of the environment wrapper class to register task. offset (Optional[np.ndarray], optional): offset applied to all assets of the task. Defaults to None. """ BaseTask.__init__(self, name=name, offset=offset) self._rand_seed = self._cfg["seed"] # optimization flags for pytorch JIT torch._C._jit_set_nvfuser_enabled(False) self.test = self._cfg["test"] self._device = self._cfg["sim_device"] # set up randomizer for DR self._dr_randomizer = Randomizer(self._cfg, self._task_cfg) if self._dr_randomizer.randomize: import omni.replicator.isaac as dr self.dr = dr # set up replicator for camera data collection self.enable_cameras = self._task_cfg["sim"].get("enable_cameras", False) if self.enable_cameras: from omni.replicator.isaac.scripts.writers.pytorch_writer import PytorchWriter from omni.replicator.isaac.scripts.writers.pytorch_listener import PytorchListener import omni.replicator.core as rep self.rep = rep self.PytorchWriter = PytorchWriter self.PytorchListener = PytorchListener print("Task Device:", self._device) self.randomize_actions = False self.randomize_observations = False self.clip_obs = self._task_cfg["env"].get("clipObservations", np.Inf) self.clip_actions = self._task_cfg["env"].get("clipActions", np.Inf) self.rl_device = self._cfg.get("rl_device", "cuda:0") self.control_frequency_inv = self._task_cfg["env"].get("controlFrequencyInv", 1) self.rendering_interval = self._task_cfg.get("renderingInterval", 1) # parse default viewport camera position and lookat target and resolution (width, height) self.camera_position = [10, 10, 3] self.camera_target = [0, 0, 0] self.viewport_camera_width = 1280 self.viewport_camera_height = 720 if "viewport" in self._task_cfg: self.camera_position = self._task_cfg["viewport"].get("camera_position", self.camera_position) self.camera_target = self._task_cfg["viewport"].get("camera_target", self.camera_target) self.viewport_camera_width = self._task_cfg["viewport"].get("viewport_camera_width", self.viewport_camera_width) self.viewport_camera_height = self._task_cfg["viewport"].get("viewport_camera_height", self.viewport_camera_height) print("RL device: ", self.rl_device) self._env = env self.is_extension = False if not hasattr(self, "_num_agents"): self._num_agents = 1 # used for multi-agent environments if not hasattr(self, "_num_states"): self._num_states = 0 # initialize data spaces (defaults to gym.Box) if not hasattr(self, "action_space"): self.action_space = spaces.Box( np.ones(self.num_actions, dtype=np.float32) * -1.0, np.ones(self.num_actions, dtype=np.float32) * 1.0 ) if not hasattr(self, "observation_space"): self.observation_space = spaces.Box( np.ones(self.num_observations, dtype=np.float32) * -np.Inf, np.ones(self.num_observations, dtype=np.float32) * np.Inf, ) if not hasattr(self, "state_space"): self.state_space = spaces.Box( np.ones(self.num_states, dtype=np.float32) * -np.Inf, np.ones(self.num_states, dtype=np.float32) * np.Inf, ) self.cleanup() def cleanup(self) -> None: """Prepares torch buffers for RL data collection.""" # prepare tensors self.obs_buf = torch.zeros((self._num_envs, self.num_observations), device=self._device, dtype=torch.float) self.states_buf = torch.zeros((self._num_envs, self.num_states), device=self._device, dtype=torch.float) self.rew_buf = torch.zeros(self._num_envs, device=self._device, dtype=torch.float) self.reset_buf = torch.ones(self._num_envs, device=self._device, dtype=torch.long) self.progress_buf = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.extras = {} def set_up_scene( self, scene, replicate_physics=True, collision_filter_global_paths=[], filter_collisions=True, copy_from_source=False ) -> None: """Clones environments based on value provided in task config and applies collision filters to mask collisions across environments. Args: scene (Scene): Scene to add objects to. replicate_physics (bool): Clone physics using PhysX API for better performance. collision_filter_global_paths (list): Prim paths of global objects that should not have collision masked. filter_collisions (bool): Mask off collision between environments. copy_from_source (bool): Copy from source prim when cloning instead of inheriting. """ super().set_up_scene(scene) self._cloner = GridCloner(spacing=self._env_spacing) self._cloner.define_base_env(self.default_base_env_path) stage = omni.usd.get_context().get_stage() UsdGeom.Xform.Define(stage, self.default_zero_env_path) if self._task_cfg["sim"].get("add_ground_plane", True): self._ground_plane_path = "/World/defaultGroundPlane" collision_filter_global_paths.append(self._ground_plane_path) scene.add_default_ground_plane(prim_path=self._ground_plane_path) prim_paths = self._cloner.generate_paths("/World/envs/env", self._num_envs) self._env_pos = self._cloner.clone( source_prim_path="/World/envs/env_0", prim_paths=prim_paths, replicate_physics=replicate_physics, copy_from_source=copy_from_source ) self._env_pos = torch.tensor(np.array(self._env_pos), device=self._device, dtype=torch.float) if filter_collisions: self._cloner.filter_collisions( self._env.world.get_physics_context().prim_path, "/World/collisions", prim_paths, collision_filter_global_paths, ) if self._env.render_enabled: self.set_initial_camera_params(camera_position=self.camera_position, camera_target=self.camera_target) if self._task_cfg["sim"].get("add_distant_light", True): self._create_distant_light() # initialize capturer for viewport recording # this has to be called after initializing replicator for DR if self._cfg.get("enable_recording", False) and not self._dr_randomizer.randomize: self._env.create_viewport_render_product(resolution=(self.viewport_camera_width, self.viewport_camera_height)) def set_initial_camera_params(self, camera_position, camera_target): from omni.kit.viewport.utility import get_viewport_from_window_name from omni.kit.viewport.utility.camera_state import ViewportCameraState viewport_api_2 = get_viewport_from_window_name("Viewport") viewport_api_2.set_active_camera("/OmniverseKit_Persp") camera_state = ViewportCameraState("/OmniverseKit_Persp", viewport_api_2) camera_state.set_position_world(Gf.Vec3d(camera_position[0], camera_position[1], camera_position[2]), True) camera_state.set_target_world(Gf.Vec3d(camera_target[0], camera_target[1], camera_target[2]), True) def _create_distant_light(self, prim_path="/World/defaultDistantLight", intensity=5000): stage = get_current_stage() light = UsdLux.DistantLight.Define(stage, prim_path) light.CreateIntensityAttr().Set(intensity) def initialize_views(self, scene): """Optionally implemented by individual task classes to initialize views used in the task. This API is required for the extension workflow, where tasks are expected to train on a pre-defined stage. Args: scene (Scene): Scene to remove existing views and initialize/add new views. """ self._cloner = GridCloner(spacing=self._env_spacing) pos, _ = self._cloner.get_clone_transforms(self._num_envs) self._env_pos = torch.tensor(np.array(pos), device=self._device, dtype=torch.float) if self._env.render_enabled: # initialize capturer for viewport recording if self._cfg.get("enable_recording", False) and not self._dr_randomizer.randomize: self._env.create_viewport_render_product(resolution=(self.viewport_camera_width, self.viewport_camera_height)) @property def default_base_env_path(self): """Retrieves default path to the parent of all env prims. Returns: default_base_env_path(str): Defaults to "/World/envs". """ return "/World/envs" @property def default_zero_env_path(self): """Retrieves default path to the first env prim (index 0). Returns: default_zero_env_path(str): Defaults to "/World/envs/env_0". """ return f"{self.default_base_env_path}/env_0" def reset(self): """Flags all environments for reset.""" self.reset_buf = torch.ones_like(self.reset_buf) def post_physics_step(self): """Processes RL required computations for observations, states, rewards, resets, and extras. Also maintains progress buffer for tracking step count per environment. Returns: obs_buf(torch.Tensor): Tensor of observation data. rew_buf(torch.Tensor): Tensor of rewards data. reset_buf(torch.Tensor): Tensor of resets/dones data. extras(dict): Dictionary of extras data. """ self.progress_buf[:] += 1 if self._env.world.is_playing(): self.get_observations() self.get_states() self.calculate_metrics() self.is_done() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras @property def world(self): """Retrieves the World object for simulation. Returns: world(World): Simulation World. """ return self._env.world @property def cfg(self): """Retrieves the main config. Returns: cfg(dict): Main config dictionary. """ return self._cfg def set_is_extension(self, is_extension): self.is_extension = is_extension class RLTaskWarp(RLTask): def cleanup(self) -> None: """Prepares torch buffers for RL data collection.""" # prepare tensors self.obs_buf = wp.zeros((self._num_envs, self.num_observations), device=self._device, dtype=wp.float32) self.states_buf = wp.zeros((self._num_envs, self.num_states), device=self._device, dtype=wp.float32) self.rew_buf = wp.zeros(self._num_envs, device=self._device, dtype=wp.float32) self.reset_buf = wp_utils.ones(self._num_envs, device=self._device, dtype=wp.int32) self.progress_buf = wp.zeros(self._num_envs, device=self._device, dtype=wp.int32) self.zero_states_buf_torch = torch.zeros( (self._num_envs, self.num_states), device=self._device, dtype=torch.float32 ) self.extras = {} def reset(self): """Flags all environments for reset.""" wp.launch(reset_progress, dim=self._num_envs, inputs=[self.progress_buf], device=self._device) def post_physics_step(self): """Processes RL required computations for observations, states, rewards, resets, and extras. Also maintains progress buffer for tracking step count per environment. Returns: obs_buf(torch.Tensor): Tensor of observation data. rew_buf(torch.Tensor): Tensor of rewards data. reset_buf(torch.Tensor): Tensor of resets/dones data. extras(dict): Dictionary of extras data. """ wp.launch(increment_progress, dim=self._num_envs, inputs=[self.progress_buf], device=self._device) if self._env.world.is_playing(): self.get_observations() self.get_states() self.calculate_metrics() self.is_done() self.get_extras() obs_buf_torch = wp.to_torch(self.obs_buf) rew_buf_torch = wp.to_torch(self.rew_buf) reset_buf_torch = wp.to_torch(self.reset_buf) return obs_buf_torch, rew_buf_torch, reset_buf_torch, self.extras def get_states(self): """API for retrieving states buffer, used for asymmetric AC training. Returns: states_buf(torch.Tensor): States buffer. """ if self.num_states > 0: return wp.to_torch(self.states_buf) else: return self.zero_states_buf_torch def set_up_scene(self, scene) -> None: """Clones environments based on value provided in task config and applies collision filters to mask collisions across environments. Args: scene (Scene): Scene to add objects to. """ super().set_up_scene(scene) self._env_pos = wp.from_torch(self._env_pos) @wp.kernel def increment_progress(progress_buf: wp.array(dtype=wp.int32)): i = wp.tid() progress_buf[i] = progress_buf[i] + 1 @wp.kernel def reset_progress(progress_buf: wp.array(dtype=wp.int32)): i = wp.tid() progress_buf[i] = 1
16,184
Python
42.16
143
0.653856
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_base.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: base class. Inherits Gym's RLTask class and abstract base class. Inherited by environment classes. Not directly executed. Configuration defined in FactoryBase.yaml. Asset info defined in factory_asset_info_franka_table.yaml. """ import carb import hydra import math import numpy as np import torch from omni.isaac.core.objects import FixedCuboid from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.factory_franka import FactoryFranka from pxr import PhysxSchema, UsdPhysics import omniisaacgymenvs.tasks.factory.factory_control as fc from omniisaacgymenvs.tasks.factory.factory_schema_class_base import FactoryABCBase from omniisaacgymenvs.tasks.factory.factory_schema_config_base import ( FactorySchemaConfigBase, ) class FactoryBase(RLTask, FactoryABCBase): def __init__(self, name, sim_config, env) -> None: """Initialize instance variables. Initialize RLTask superclass.""" # Set instance variables from base YAML self._get_base_yaml_params() self._env_spacing = self.cfg_base.env.env_spacing # Set instance variables from task and train YAMLs self._sim_config = sim_config self._cfg = sim_config.config # CL args, task config, and train config self._task_cfg = sim_config.task_config # just task config self._num_envs = sim_config.task_config["env"]["numEnvs"] self._num_observations = sim_config.task_config["env"]["numObservations"] self._num_actions = sim_config.task_config["env"]["numActions"] super().__init__(name, env) def _get_base_yaml_params(self): """Initialize instance variables from YAML files.""" cs = hydra.core.config_store.ConfigStore.instance() cs.store(name="factory_schema_config_base", node=FactorySchemaConfigBase) config_path = ( "task/FactoryBase.yaml" # relative to Gym's Hydra search path (cfg dir) ) self.cfg_base = hydra.compose(config_name=config_path) self.cfg_base = self.cfg_base["task"] # strip superfluous nesting asset_info_path = "../tasks/factory/yaml/factory_asset_info_franka_table.yaml" # relative to Gym's Hydra search path (cfg dir) self.asset_info_franka_table = hydra.compose(config_name=asset_info_path) self.asset_info_franka_table = self.asset_info_franka_table[""][""][""][ "tasks" ]["factory"][ "yaml" ] # strip superfluous nesting def import_franka_assets(self, add_to_stage=True): """Set Franka and table asset options. Import assets.""" self._stage = get_current_stage() if add_to_stage: franka_translation = np.array([self.cfg_base.env.franka_depth, 0.0, 0.0]) franka_orientation = np.array([0.0, 0.0, 0.0, 1.0]) franka = FactoryFranka( prim_path=self.default_zero_env_path + "/franka", name="franka", translation=franka_translation, orientation=franka_orientation, ) self._sim_config.apply_articulation_settings( "franka", get_prim_at_path(franka.prim_path), self._sim_config.parse_actor_config("franka"), ) for link_prim in franka.prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): rb = PhysxSchema.PhysxRigidBodyAPI.Get( self._stage, link_prim.GetPrimPath() ) rb.GetDisableGravityAttr().Set(True) rb.GetRetainAccelerationsAttr().Set(False) if self.cfg_base.sim.add_damping: rb.GetLinearDampingAttr().Set( 1.0 ) # default = 0.0; increased to improve stability rb.GetMaxLinearVelocityAttr().Set( 1.0 ) # default = 1000.0; reduced to prevent CUDA errors rb.GetAngularDampingAttr().Set( 5.0 ) # default = 0.5; increased to improve stability rb.GetMaxAngularVelocityAttr().Set( 2 / math.pi * 180 ) # default = 64.0; reduced to prevent CUDA errors else: rb.GetLinearDampingAttr().Set(0.0) rb.GetMaxLinearVelocityAttr().Set(1000.0) rb.GetAngularDampingAttr().Set(0.5) rb.GetMaxAngularVelocityAttr().Set(64 / math.pi * 180) table_translation = np.array( [0.0, 0.0, self.cfg_base.env.table_height * 0.5] ) table_orientation = np.array([1.0, 0.0, 0.0, 0.0]) table = FixedCuboid( prim_path=self.default_zero_env_path + "/table", name="table", translation=table_translation, orientation=table_orientation, scale=np.array( [ self.asset_info_franka_table.table_depth, self.asset_info_franka_table.table_width, self.cfg_base.env.table_height, ] ), size=1.0, color=np.array([0, 0, 0]), ) self.parse_controller_spec(add_to_stage=add_to_stage) def acquire_base_tensors(self): """Acquire tensors.""" self.num_dofs = 9 self.env_pos = self._env_pos self.dof_pos = torch.zeros((self.num_envs, self.num_dofs), device=self.device) self.dof_vel = torch.zeros((self.num_envs, self.num_dofs), device=self.device) self.dof_torque = torch.zeros( (self.num_envs, self.num_dofs), device=self.device ) self.fingertip_contact_wrench = torch.zeros( (self.num_envs, 6), device=self.device ) self.ctrl_target_fingertip_midpoint_pos = torch.zeros( (self.num_envs, 3), device=self.device ) self.ctrl_target_fingertip_midpoint_quat = torch.zeros( (self.num_envs, 4), device=self.device ) self.ctrl_target_dof_pos = torch.zeros( (self.num_envs, self.num_dofs), device=self.device ) self.ctrl_target_gripper_dof_pos = torch.zeros( (self.num_envs, 2), device=self.device ) self.ctrl_target_fingertip_contact_wrench = torch.zeros( (self.num_envs, 6), device=self.device ) self.prev_actions = torch.zeros( (self.num_envs, self.num_actions), device=self.device ) def refresh_base_tensors(self): """Refresh tensors.""" if not self.world.is_playing(): return self.dof_pos = self.frankas.get_joint_positions(clone=False) self.dof_vel = self.frankas.get_joint_velocities(clone=False) # Jacobian shape: [4, 11, 6, 9] (root has no Jacobian) self.franka_jacobian = self.frankas.get_jacobians() self.franka_mass_matrix = self.frankas.get_mass_matrices(clone=False) self.arm_dof_pos = self.dof_pos[:, 0:7] self.arm_mass_matrix = self.franka_mass_matrix[ :, 0:7, 0:7 ] # for Franka arm (not gripper) self.hand_pos, self.hand_quat = self.frankas._hands.get_world_poses(clone=False) self.hand_pos -= self.env_pos hand_velocities = self.frankas._hands.get_velocities(clone=False) self.hand_linvel = hand_velocities[:, 0:3] self.hand_angvel = hand_velocities[:, 3:6] ( self.left_finger_pos, self.left_finger_quat, ) = self.frankas._lfingers.get_world_poses(clone=False) self.left_finger_pos -= self.env_pos left_finger_velocities = self.frankas._lfingers.get_velocities(clone=False) self.left_finger_linvel = left_finger_velocities[:, 0:3] self.left_finger_angvel = left_finger_velocities[:, 3:6] self.left_finger_jacobian = self.franka_jacobian[:, 8, 0:6, 0:7] left_finger_forces = self.frankas._lfingers.get_net_contact_forces(clone=False) self.left_finger_force = left_finger_forces[:, 0:3] ( self.right_finger_pos, self.right_finger_quat, ) = self.frankas._rfingers.get_world_poses(clone=False) self.right_finger_pos -= self.env_pos right_finger_velocities = self.frankas._rfingers.get_velocities(clone=False) self.right_finger_linvel = right_finger_velocities[:, 0:3] self.right_finger_angvel = right_finger_velocities[:, 3:6] self.right_finger_jacobian = self.franka_jacobian[:, 9, 0:6, 0:7] right_finger_forces = self.frankas._rfingers.get_net_contact_forces(clone=False) self.right_finger_force = right_finger_forces[:, 0:3] self.gripper_dof_pos = self.dof_pos[:, 7:9] ( self.fingertip_centered_pos, self.fingertip_centered_quat, ) = self.frankas._fingertip_centered.get_world_poses(clone=False) self.fingertip_centered_pos -= self.env_pos fingertip_centered_velocities = self.frankas._fingertip_centered.get_velocities( clone=False ) self.fingertip_centered_linvel = fingertip_centered_velocities[:, 0:3] self.fingertip_centered_angvel = fingertip_centered_velocities[:, 3:6] self.fingertip_centered_jacobian = self.franka_jacobian[:, 10, 0:6, 0:7] self.finger_midpoint_pos = (self.left_finger_pos + self.right_finger_pos) / 2 self.fingertip_midpoint_pos = fc.translate_along_local_z( pos=self.finger_midpoint_pos, quat=self.hand_quat, offset=self.asset_info_franka_table.franka_finger_length, device=self.device, ) self.fingertip_midpoint_quat = self.fingertip_centered_quat # always equal # TODO: Add relative velocity term (see https://dynamicsmotioncontrol487379916.files.wordpress.com/2020/11/21-me258pointmovingrigidbody.pdf) self.fingertip_midpoint_linvel = self.fingertip_centered_linvel + torch.cross( self.fingertip_centered_angvel, (self.fingertip_midpoint_pos - self.fingertip_centered_pos), dim=1, ) # From sum of angular velocities (https://physics.stackexchange.com/questions/547698/understanding-addition-of-angular-velocity), # angular velocity of midpoint w.r.t. world is equal to sum of # angular velocity of midpoint w.r.t. hand and angular velocity of hand w.r.t. world. # Midpoint is in sliding contact (i.e., linear relative motion) with hand; angular velocity of midpoint w.r.t. hand is zero. # Thus, angular velocity of midpoint w.r.t. world is equal to angular velocity of hand w.r.t. world. self.fingertip_midpoint_angvel = self.fingertip_centered_angvel # always equal self.fingertip_midpoint_jacobian = ( self.left_finger_jacobian + self.right_finger_jacobian ) * 0.5 def parse_controller_spec(self, add_to_stage): """Parse controller specification into lower-level controller configuration.""" cfg_ctrl_keys = { "num_envs", "jacobian_type", "gripper_prop_gains", "gripper_deriv_gains", "motor_ctrl_mode", "gain_space", "ik_method", "joint_prop_gains", "joint_deriv_gains", "do_motion_ctrl", "task_prop_gains", "task_deriv_gains", "do_inertial_comp", "motion_ctrl_axes", "do_force_ctrl", "force_ctrl_method", "wrench_prop_gains", "force_ctrl_axes", } self.cfg_ctrl = {cfg_ctrl_key: None for cfg_ctrl_key in cfg_ctrl_keys} self.cfg_ctrl["num_envs"] = self.num_envs self.cfg_ctrl["jacobian_type"] = self.cfg_task.ctrl.all.jacobian_type self.cfg_ctrl["gripper_prop_gains"] = torch.tensor( self.cfg_task.ctrl.all.gripper_prop_gains, device=self.device ).repeat((self.num_envs, 1)) self.cfg_ctrl["gripper_deriv_gains"] = torch.tensor( self.cfg_task.ctrl.all.gripper_deriv_gains, device=self.device ).repeat((self.num_envs, 1)) ctrl_type = self.cfg_task.ctrl.ctrl_type if ctrl_type == "gym_default": self.cfg_ctrl["motor_ctrl_mode"] = "gym" self.cfg_ctrl["gain_space"] = "joint" self.cfg_ctrl["ik_method"] = self.cfg_task.ctrl.gym_default.ik_method self.cfg_ctrl["joint_prop_gains"] = torch.tensor( self.cfg_task.ctrl.gym_default.joint_prop_gains, device=self.device ).repeat((self.num_envs, 1)) self.cfg_ctrl["joint_deriv_gains"] = torch.tensor( self.cfg_task.ctrl.gym_default.joint_deriv_gains, device=self.device ).repeat((self.num_envs, 1)) self.cfg_ctrl["gripper_prop_gains"] = torch.tensor( self.cfg_task.ctrl.gym_default.gripper_prop_gains, device=self.device ).repeat((self.num_envs, 1)) self.cfg_ctrl["gripper_deriv_gains"] = torch.tensor( self.cfg_task.ctrl.gym_default.gripper_deriv_gains, device=self.device ).repeat((self.num_envs, 1)) elif ctrl_type == "joint_space_ik": self.cfg_ctrl["motor_ctrl_mode"] = "manual" self.cfg_ctrl["gain_space"] = "joint" self.cfg_ctrl["ik_method"] = self.cfg_task.ctrl.joint_space_ik.ik_method self.cfg_ctrl["joint_prop_gains"] = torch.tensor( self.cfg_task.ctrl.joint_space_ik.joint_prop_gains, device=self.device ).repeat((self.num_envs, 1)) self.cfg_ctrl["joint_deriv_gains"] = torch.tensor( self.cfg_task.ctrl.joint_space_ik.joint_deriv_gains, device=self.device ).repeat((self.num_envs, 1)) self.cfg_ctrl["do_inertial_comp"] = False elif ctrl_type == "joint_space_id": self.cfg_ctrl["motor_ctrl_mode"] = "manual" self.cfg_ctrl["gain_space"] = "joint" self.cfg_ctrl["ik_method"] = self.cfg_task.ctrl.joint_space_id.ik_method self.cfg_ctrl["joint_prop_gains"] = torch.tensor( self.cfg_task.ctrl.joint_space_id.joint_prop_gains, device=self.device ).repeat((self.num_envs, 1)) self.cfg_ctrl["joint_deriv_gains"] = torch.tensor( self.cfg_task.ctrl.joint_space_id.joint_deriv_gains, device=self.device ).repeat((self.num_envs, 1)) self.cfg_ctrl["do_inertial_comp"] = True elif ctrl_type == "task_space_impedance": self.cfg_ctrl["motor_ctrl_mode"] = "manual" self.cfg_ctrl["gain_space"] = "task" self.cfg_ctrl["do_motion_ctrl"] = True self.cfg_ctrl["task_prop_gains"] = torch.tensor( self.cfg_task.ctrl.task_space_impedance.task_prop_gains, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["task_deriv_gains"] = torch.tensor( self.cfg_task.ctrl.task_space_impedance.task_deriv_gains, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["do_inertial_comp"] = False self.cfg_ctrl["motion_ctrl_axes"] = torch.tensor( self.cfg_task.ctrl.task_space_impedance.motion_ctrl_axes, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["do_force_ctrl"] = False elif ctrl_type == "operational_space_motion": self.cfg_ctrl["motor_ctrl_mode"] = "manual" self.cfg_ctrl["gain_space"] = "task" self.cfg_ctrl["do_motion_ctrl"] = True self.cfg_ctrl["task_prop_gains"] = torch.tensor( self.cfg_task.ctrl.operational_space_motion.task_prop_gains, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["task_deriv_gains"] = torch.tensor( self.cfg_task.ctrl.operational_space_motion.task_deriv_gains, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["do_inertial_comp"] = True self.cfg_ctrl["motion_ctrl_axes"] = torch.tensor( self.cfg_task.ctrl.operational_space_motion.motion_ctrl_axes, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["do_force_ctrl"] = False elif ctrl_type == "open_loop_force": self.cfg_ctrl["motor_ctrl_mode"] = "manual" self.cfg_ctrl["gain_space"] = "task" self.cfg_ctrl["do_motion_ctrl"] = False self.cfg_ctrl["do_force_ctrl"] = True self.cfg_ctrl["force_ctrl_method"] = "open" self.cfg_ctrl["force_ctrl_axes"] = torch.tensor( self.cfg_task.ctrl.open_loop_force.force_ctrl_axes, device=self.device ).repeat((self.num_envs, 1)) elif ctrl_type == "closed_loop_force": self.cfg_ctrl["motor_ctrl_mode"] = "manual" self.cfg_ctrl["gain_space"] = "task" self.cfg_ctrl["do_motion_ctrl"] = False self.cfg_ctrl["do_force_ctrl"] = True self.cfg_ctrl["force_ctrl_method"] = "closed" self.cfg_ctrl["wrench_prop_gains"] = torch.tensor( self.cfg_task.ctrl.closed_loop_force.wrench_prop_gains, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["force_ctrl_axes"] = torch.tensor( self.cfg_task.ctrl.closed_loop_force.force_ctrl_axes, device=self.device ).repeat((self.num_envs, 1)) elif ctrl_type == "hybrid_force_motion": self.cfg_ctrl["motor_ctrl_mode"] = "manual" self.cfg_ctrl["gain_space"] = "task" self.cfg_ctrl["do_motion_ctrl"] = True self.cfg_ctrl["task_prop_gains"] = torch.tensor( self.cfg_task.ctrl.hybrid_force_motion.task_prop_gains, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["task_deriv_gains"] = torch.tensor( self.cfg_task.ctrl.hybrid_force_motion.task_deriv_gains, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["do_inertial_comp"] = True self.cfg_ctrl["motion_ctrl_axes"] = torch.tensor( self.cfg_task.ctrl.hybrid_force_motion.motion_ctrl_axes, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["do_force_ctrl"] = True self.cfg_ctrl["force_ctrl_method"] = "closed" self.cfg_ctrl["wrench_prop_gains"] = torch.tensor( self.cfg_task.ctrl.hybrid_force_motion.wrench_prop_gains, device=self.device, ).repeat((self.num_envs, 1)) self.cfg_ctrl["force_ctrl_axes"] = torch.tensor( self.cfg_task.ctrl.hybrid_force_motion.force_ctrl_axes, device=self.device, ).repeat((self.num_envs, 1)) if add_to_stage: if self.cfg_ctrl["motor_ctrl_mode"] == "gym": for i in range(7): joint_prim = self._stage.GetPrimAtPath( self.default_zero_env_path + f"/franka/panda_link{i}/panda_joint{i+1}" ) drive = UsdPhysics.DriveAPI.Apply(joint_prim, "angular") drive.GetStiffnessAttr().Set( self.cfg_ctrl["joint_prop_gains"][0, i].item() * np.pi / 180 ) drive.GetDampingAttr().Set( self.cfg_ctrl["joint_deriv_gains"][0, i].item() * np.pi / 180 ) for i in range(2): joint_prim = self._stage.GetPrimAtPath( self.default_zero_env_path + f"/franka/panda_hand/panda_finger_joint{i+1}" ) drive = UsdPhysics.DriveAPI.Apply(joint_prim, "linear") drive.GetStiffnessAttr().Set( self.cfg_ctrl["gripper_deriv_gains"][0, i].item() ) drive.GetDampingAttr().Set( self.cfg_ctrl["gripper_deriv_gains"][0, i].item() ) elif self.cfg_ctrl["motor_ctrl_mode"] == "manual": for i in range(7): joint_prim = self._stage.GetPrimAtPath( self.default_zero_env_path + f"/franka/panda_link{i}/panda_joint{i+1}" ) joint_prim.RemoveAPI(UsdPhysics.DriveAPI, "angular") drive = UsdPhysics.DriveAPI.Apply(joint_prim, "None") drive.GetStiffnessAttr().Set(0.0) drive.GetDampingAttr().Set(0.0) for i in range(2): joint_prim = self._stage.GetPrimAtPath( self.default_zero_env_path + f"/franka/panda_hand/panda_finger_joint{i+1}" ) joint_prim.RemoveAPI(UsdPhysics.DriveAPI, "linear") drive = UsdPhysics.DriveAPI.Apply(joint_prim, "None") drive.GetStiffnessAttr().Set(0.0) drive.GetDampingAttr().Set(0.0) def generate_ctrl_signals(self): """Get Jacobian. Set Franka DOF position targets or DOF torques.""" # Get desired Jacobian if self.cfg_ctrl["jacobian_type"] == "geometric": self.fingertip_midpoint_jacobian_tf = self.fingertip_midpoint_jacobian elif self.cfg_ctrl["jacobian_type"] == "analytic": self.fingertip_midpoint_jacobian_tf = fc.get_analytic_jacobian( fingertip_quat=self.fingertip_quat, fingertip_jacobian=self.fingertip_midpoint_jacobian, num_envs=self.num_envs, device=self.device, ) # Set PD joint pos target or joint torque if self.cfg_ctrl["motor_ctrl_mode"] == "gym": self._set_dof_pos_target() elif self.cfg_ctrl["motor_ctrl_mode"] == "manual": self._set_dof_torque() def _set_dof_pos_target(self): """Set Franka DOF position target to move fingertips towards target pose.""" self.ctrl_target_dof_pos = fc.compute_dof_pos_target( cfg_ctrl=self.cfg_ctrl, arm_dof_pos=self.arm_dof_pos, fingertip_midpoint_pos=self.fingertip_midpoint_pos, fingertip_midpoint_quat=self.fingertip_midpoint_quat, jacobian=self.fingertip_midpoint_jacobian_tf, ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat, ctrl_target_gripper_dof_pos=self.ctrl_target_gripper_dof_pos, device=self.device, ) self.frankas.set_joint_position_targets(positions=self.ctrl_target_dof_pos) def _set_dof_torque(self): """Set Franka DOF torque to move fingertips towards target pose.""" self.dof_torque = fc.compute_dof_torque( cfg_ctrl=self.cfg_ctrl, dof_pos=self.dof_pos, dof_vel=self.dof_vel, fingertip_midpoint_pos=self.fingertip_midpoint_pos, fingertip_midpoint_quat=self.fingertip_midpoint_quat, fingertip_midpoint_linvel=self.fingertip_midpoint_linvel, fingertip_midpoint_angvel=self.fingertip_midpoint_angvel, left_finger_force=self.left_finger_force, right_finger_force=self.right_finger_force, jacobian=self.fingertip_midpoint_jacobian_tf, arm_mass_matrix=self.arm_mass_matrix, ctrl_target_gripper_dof_pos=self.ctrl_target_gripper_dof_pos, ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat, ctrl_target_fingertip_contact_wrench=self.ctrl_target_fingertip_contact_wrench, device=self.device, ) self.frankas.set_joint_efforts(efforts=self.dof_torque) def enable_gravity(self, gravity_mag): """Enable gravity.""" gravity = [0.0, 0.0, -gravity_mag] self.world._physics_sim_view.set_gravity( carb.Float3(gravity[0], gravity[1], gravity[2]) ) def disable_gravity(self): """Disable gravity.""" gravity = [0.0, 0.0, 0.0] self.world._physics_sim_view.set_gravity( carb.Float3(gravity[0], gravity[1], gravity[2]) )
26,820
Python
45.88986
148
0.588479
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_schema_config_task.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: schema for task class configurations. Used by Hydra. Defines template for task class YAML files. Not enforced. """ from __future__ import annotations from dataclasses import dataclass @dataclass class Sim: use_gpu_pipeline: bool # use GPU pipeline dt: float # timestep size gravity: list[float] # gravity vector @dataclass class Env: numObservations: int # number of observations per env; camel case required by VecTask numActions: int # number of actions per env; camel case required by VecTask numEnvs: int # number of envs; camel case required by VecTask @dataclass class Randomize: franka_arm_initial_dof_pos: list[float] # initial Franka arm DOF position (7) @dataclass class RL: pos_action_scale: list[ float ] # scale on pos displacement targets (3), to convert [-1, 1] to +- x m rot_action_scale: list[ float ] # scale on rot displacement targets (3), to convert [-1, 1] to +- x rad force_action_scale: list[ float ] # scale on force targets (3), to convert [-1, 1] to +- x N torque_action_scale: list[ float ] # scale on torque targets (3), to convert [-1, 1] to +- x Nm clamp_rot: bool # clamp small values of rotation actions to zero clamp_rot_thresh: float # smallest acceptable value max_episode_length: int # max number of timesteps in each episode @dataclass class All: jacobian_type: str # map between joint space and task space via geometric or analytic Jacobian {geometric, analytic} gripper_prop_gains: list[ float ] # proportional gains on left and right Franka gripper finger DOF position (2) gripper_deriv_gains: list[ float ] # derivative gains on left and right Franka gripper finger DOF position (2) @dataclass class GymDefault: joint_prop_gains: list[int] # proportional gains on Franka arm DOF position (7) joint_deriv_gains: list[int] # derivative gains on Franka arm DOF position (7) @dataclass class JointSpaceIK: ik_method: str # use Jacobian pseudoinverse, Jacobian transpose, damped least squares or adaptive SVD {pinv, trans, dls, svd} joint_prop_gains: list[int] joint_deriv_gains: list[int] @dataclass class JointSpaceID: ik_method: str joint_prop_gains: list[int] joint_deriv_gains: list[int] @dataclass class TaskSpaceImpedance: motion_ctrl_axes: list[bool] # axes for which to enable motion control {0, 1} (6) task_prop_gains: list[float] # proportional gains on Franka fingertip pose (6) task_deriv_gains: list[float] # derivative gains on Franka fingertip pose (6) @dataclass class OperationalSpaceMotion: motion_ctrl_axes: list[bool] task_prop_gains: list[float] task_deriv_gains: list[float] @dataclass class OpenLoopForce: force_ctrl_axes: list[bool] # axes for which to enable force control {0, 1} (6) @dataclass class ClosedLoopForce: force_ctrl_axes: list[bool] wrench_prop_gains: list[float] # proportional gains on Franka finger force (6) @dataclass class HybridForceMotion: motion_ctrl_axes: list[bool] task_prop_gains: list[float] task_deriv_gains: list[float] force_ctrl_axes: list[bool] wrench_prop_gains: list[float] @dataclass class Ctrl: ctrl_type: str # {gym_default, # joint_space_ik, # joint_space_id, # task_space_impedance, # operational_space_motion, # open_loop_force, # closed_loop_force, # hybrid_force_motion} gym_default: GymDefault joint_space_ik: JointSpaceIK joint_space_id: JointSpaceID task_space_impedance: TaskSpaceImpedance operational_space_motion: OperationalSpaceMotion open_loop_force: OpenLoopForce closed_loop_force: ClosedLoopForce hybrid_force_motion: HybridForceMotion @dataclass class FactorySchemaConfigTask: name: str physics_engine: str sim: Sim env: Env rl: RL ctrl: Ctrl
5,517
Python
30.895954
130
0.719413
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_place.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: Class for nut-bolt place task. Inherits nut-bolt environment class and abstract task class (not enforced). Can be executed with PYTHON_PATH omniisaacgymenvs/scripts/rlgames_train.py task=FactoryTaskNutBoltPlace """ import asyncio import hydra import math import omegaconf import torch from typing import Tuple import omni.kit from omni.isaac.core.simulation_context import SimulationContext import omni.isaac.core.utils.torch as torch_utils from omni.isaac.core.utils.torch.transformations import tf_combine import omniisaacgymenvs.tasks.factory.factory_control as fc from omniisaacgymenvs.tasks.factory.factory_env_nut_bolt import FactoryEnvNutBolt from omniisaacgymenvs.tasks.factory.factory_schema_class_task import FactoryABCTask from omniisaacgymenvs.tasks.factory.factory_schema_config_task import ( FactorySchemaConfigTask, ) class FactoryTaskNutBoltPlace(FactoryEnvNutBolt, FactoryABCTask): def __init__(self, name, sim_config, env, offset=None) -> None: """Initialize environment superclass. Initialize instance variables.""" super().__init__(name, sim_config, env) self._get_task_yaml_params() def _get_task_yaml_params(self) -> None: """Initialize instance variables from YAML files.""" cs = hydra.core.config_store.ConfigStore.instance() cs.store(name="factory_schema_config_task", node=FactorySchemaConfigTask) self.cfg_task = omegaconf.OmegaConf.create(self._task_cfg) self.max_episode_length = ( self.cfg_task.rl.max_episode_length ) # required instance var for VecTask asset_info_path = "../tasks/factory/yaml/factory_asset_info_nut_bolt.yaml" # relative to Gym's Hydra search path (cfg dir) self.asset_info_nut_bolt = hydra.compose(config_name=asset_info_path) self.asset_info_nut_bolt = self.asset_info_nut_bolt[""][""][""]["tasks"][ "factory" ][ "yaml" ] # strip superfluous nesting ppo_path = "train/FactoryTaskNutBoltPlacePPO.yaml" # relative to Gym's Hydra search path (cfg dir) self.cfg_ppo = hydra.compose(config_name=ppo_path) self.cfg_ppo = self.cfg_ppo["train"] # strip superfluous nesting def post_reset(self) -> None: """Reset the world. Called only once, before simulation begins.""" if self.cfg_task.sim.disable_gravity: self.disable_gravity() self.acquire_base_tensors() self._acquire_task_tensors() self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() # Reset all envs indices = torch.arange(self.num_envs, dtype=torch.int64, device=self.device) asyncio.ensure_future( self.reset_idx_async(indices, randomize_gripper_pose=False) ) def _acquire_task_tensors(self) -> None: """Acquire tensors.""" # Nut-bolt tensors self.nut_base_pos_local = self.bolt_head_heights * torch.tensor( [0.0, 0.0, 1.0], device=self.device ).repeat((self.num_envs, 1)) bolt_heights = self.bolt_head_heights + self.bolt_shank_lengths self.bolt_tip_pos_local = bolt_heights * torch.tensor( [0.0, 0.0, 1.0], device=self.device ).repeat((self.num_envs, 1)) # Keypoint tensors self.keypoint_offsets = ( self._get_keypoint_offsets(self.cfg_task.rl.num_keypoints) * self.cfg_task.rl.keypoint_scale ) self.keypoints_nut = torch.zeros( (self.num_envs, self.cfg_task.rl.num_keypoints, 3), dtype=torch.float32, device=self.device, ) self.keypoints_bolt = torch.zeros_like(self.keypoints_nut, device=self.device) self.identity_quat = ( torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) .unsqueeze(0) .repeat(self.num_envs, 1) ) self.actions = torch.zeros( (self.num_envs, self.num_actions), device=self.device ) def pre_physics_step(self, actions) -> None: """Reset environments. Apply actions from policy. Simulation step called after this method.""" if not self.world.is_playing(): return env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: self.reset_idx(env_ids, randomize_gripper_pose=True) self.actions = actions.clone().to( self.device ) # shape = (num_envs, num_actions); values = [-1, 1] self._apply_actions_as_ctrl_targets( actions=self.actions, ctrl_target_gripper_dof_pos=0.0, do_scale=True ) async def pre_physics_step_async(self, actions) -> None: """Reset environments. Apply actions from policy. Simulation step called after this method.""" if not self.world.is_playing(): return env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: await self.reset_idx_async(env_ids, randomize_gripper_pose=True) self.actions = actions.clone().to( self.device ) # shape = (num_envs, num_actions); values = [-1, 1] self._apply_actions_as_ctrl_targets( actions=self.actions, ctrl_target_gripper_dof_pos=0.0, do_scale=True, ) def reset_idx(self, env_ids, randomize_gripper_pose) -> None: """Reset specified environments.""" self._reset_franka(env_ids) self._reset_object(env_ids) # Close gripper onto nut self.disable_gravity() # to prevent nut from falling self._close_gripper(sim_steps=self.cfg_task.env.num_gripper_close_sim_steps) self.enable_gravity(gravity_mag=self.cfg_task.sim.gravity_mag) if randomize_gripper_pose: self._randomize_gripper_pose( env_ids, sim_steps=self.cfg_task.env.num_gripper_move_sim_steps ) self._reset_buffers(env_ids) async def reset_idx_async(self, env_ids, randomize_gripper_pose) -> None: """Reset specified environments.""" self._reset_franka(env_ids) self._reset_object(env_ids) # Close gripper onto nut self.disable_gravity() # to prevent nut from falling await self._close_gripper_async( sim_steps=self.cfg_task.env.num_gripper_close_sim_steps ) self.enable_gravity(gravity_mag=self.cfg_task.sim.gravity_mag) if randomize_gripper_pose: await self._randomize_gripper_pose_async( env_ids, sim_steps=self.cfg_task.env.num_gripper_move_sim_steps ) self._reset_buffers(env_ids) def _reset_franka(self, env_ids) -> None: """Reset DOF states and DOF targets of Franka.""" self.dof_pos[env_ids] = torch.cat( ( torch.tensor( self.cfg_task.randomize.franka_arm_initial_dof_pos, device=self.device, ).repeat((len(env_ids), 1)), (self.nut_widths_max * 0.5) * 1.1, # buffer on gripper DOF pos to prevent initial contact (self.nut_widths_max * 0.5) * 1.1, ), # buffer on gripper DOF pos to prevent initial contact dim=-1, ) # shape = (num_envs, num_dofs) self.dof_vel[env_ids] = 0.0 # shape = (num_envs, num_dofs) self.ctrl_target_dof_pos[env_ids] = self.dof_pos[env_ids] indices = env_ids.to(dtype=torch.int32) self.frankas.set_joint_positions(self.dof_pos[env_ids], indices=indices) self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices) def _reset_object(self, env_ids) -> None: """Reset root states of nut and bolt.""" # Randomize root state of nut within gripper self.nut_pos[env_ids, 0] = 0.0 self.nut_pos[env_ids, 1] = 0.0 fingertip_midpoint_pos_reset = 0.58781 # self.fingertip_midpoint_pos at reset nut_base_pos_local = self.bolt_head_heights.squeeze(-1) self.nut_pos[env_ids, 2] = fingertip_midpoint_pos_reset - nut_base_pos_local nut_noise_pos_in_gripper = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] nut_noise_pos_in_gripper = nut_noise_pos_in_gripper @ torch.diag( torch.tensor( self.cfg_task.randomize.nut_noise_pos_in_gripper, device=self.device ) ) self.nut_pos[env_ids, :] += nut_noise_pos_in_gripper[env_ids] nut_rot_euler = torch.tensor( [0.0, 0.0, math.pi * 0.5], device=self.device ).repeat(len(env_ids), 1) nut_noise_rot_in_gripper = 2 * ( torch.rand(self.num_envs, dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] nut_noise_rot_in_gripper *= self.cfg_task.randomize.nut_noise_rot_in_gripper nut_rot_euler[:, 2] += nut_noise_rot_in_gripper nut_rot_quat = torch_utils.quat_from_euler_xyz( nut_rot_euler[:, 0], nut_rot_euler[:, 1], nut_rot_euler[:, 2] ) self.nut_quat[env_ids, :] = nut_rot_quat self.nut_linvel[env_ids, :] = 0.0 self.nut_angvel[env_ids, :] = 0.0 indices = env_ids.to(dtype=torch.int32) self.nuts.set_world_poses( self.nut_pos[env_ids] + self.env_pos[env_ids], self.nut_quat[env_ids], indices, ) self.nuts.set_velocities( torch.cat((self.nut_linvel[env_ids], self.nut_angvel[env_ids]), dim=1), indices, ) # Randomize root state of bolt bolt_noise_xy = 2 * ( torch.rand((self.num_envs, 2), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] bolt_noise_xy = bolt_noise_xy @ torch.diag( torch.tensor( self.cfg_task.randomize.bolt_pos_xy_noise, dtype=torch.float32, device=self.device, ) ) self.bolt_pos[env_ids, 0] = ( self.cfg_task.randomize.bolt_pos_xy_initial[0] + bolt_noise_xy[env_ids, 0] ) self.bolt_pos[env_ids, 1] = ( self.cfg_task.randomize.bolt_pos_xy_initial[1] + bolt_noise_xy[env_ids, 1] ) self.bolt_pos[env_ids, 2] = self.cfg_base.env.table_height self.bolt_quat[env_ids, :] = torch.tensor( [1.0, 0.0, 0.0, 0.0], dtype=torch.float32, device=self.device ).repeat(len(env_ids), 1) indices = env_ids.to(dtype=torch.int32) self.bolts.set_world_poses( self.bolt_pos[env_ids] + self.env_pos[env_ids], self.bolt_quat[env_ids], indices, ) def _reset_buffers(self, env_ids) -> None: """Reset buffers.""" self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def _apply_actions_as_ctrl_targets( self, actions, ctrl_target_gripper_dof_pos, do_scale ) -> None: """Apply actions from policy as position/rotation/force/torque targets.""" # Interpret actions as target pos displacements and set pos target pos_actions = actions[:, 0:3] if do_scale: pos_actions = pos_actions @ torch.diag( torch.tensor(self.cfg_task.rl.pos_action_scale, device=self.device) ) self.ctrl_target_fingertip_midpoint_pos = ( self.fingertip_midpoint_pos + pos_actions ) # Interpret actions as target rot (axis-angle) displacements rot_actions = actions[:, 3:6] if do_scale: rot_actions = rot_actions @ torch.diag( torch.tensor(self.cfg_task.rl.rot_action_scale, device=self.device) ) # Convert to quat and set rot target angle = torch.norm(rot_actions, p=2, dim=-1) axis = rot_actions / angle.unsqueeze(-1) rot_actions_quat = torch_utils.quat_from_angle_axis(angle, axis) if self.cfg_task.rl.clamp_rot: rot_actions_quat = torch.where( angle.unsqueeze(-1).repeat(1, 4) > self.cfg_task.rl.clamp_rot_thresh, rot_actions_quat, torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device).repeat( self.num_envs, 1 ), ) self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_mul( rot_actions_quat, self.fingertip_midpoint_quat ) if self.cfg_ctrl["do_force_ctrl"]: # Interpret actions as target forces and target torques force_actions = actions[:, 6:9] if do_scale: force_actions = force_actions @ torch.diag( torch.tensor( self.cfg_task.rl.force_action_scale, device=self.device ) ) torque_actions = actions[:, 9:12] if do_scale: torque_actions = torque_actions @ torch.diag( torch.tensor( self.cfg_task.rl.torque_action_scale, device=self.device ) ) self.ctrl_target_fingertip_contact_wrench = torch.cat( (force_actions, torque_actions), dim=-1 ) self.ctrl_target_gripper_dof_pos = ctrl_target_gripper_dof_pos self.generate_ctrl_signals() def post_physics_step( self, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """Step buffers. Refresh tensors. Compute observations and reward. Reset environments.""" self.progress_buf[:] += 1 if self.world.is_playing(): self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() self.get_observations() self.calculate_metrics() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def _refresh_task_tensors(self) -> None: """Refresh tensors.""" # Compute pos of keypoints on gripper, nut, and bolt in world frame for idx, keypoint_offset in enumerate(self.keypoint_offsets): self.keypoints_nut[:, idx] = tf_combine( self.nut_quat, self.nut_pos, self.identity_quat, (keypoint_offset + self.nut_base_pos_local), )[1] self.keypoints_bolt[:, idx] = tf_combine( self.bolt_quat, self.bolt_pos, self.identity_quat, (keypoint_offset + self.bolt_tip_pos_local), )[1] def get_observations(self) -> dict: """Compute observations.""" # Shallow copies of tensors obs_tensors = [ self.fingertip_midpoint_pos, self.fingertip_midpoint_quat, self.fingertip_midpoint_linvel, self.fingertip_midpoint_angvel, self.nut_pos, self.nut_quat, self.bolt_pos, self.bolt_quat, ] if self.cfg_task.rl.add_obs_bolt_tip_pos: obs_tensors += [self.bolt_tip_pos_local] self.obs_buf = torch.cat( obs_tensors, dim=-1 ) # shape = (num_envs, num_observations) observations = {self.frankas.name: {"obs_buf": self.obs_buf}} return observations def calculate_metrics(self) -> None: """Update reset and reward buffers.""" self._update_reset_buf() self._update_rew_buf() def _update_reset_buf(self) -> None: """Assign environments for reset if successful or failed.""" # If max episode length has been reached self.reset_buf[:] = torch.where( self.progress_buf[:] >= self.max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf, ) def _update_rew_buf(self) -> None: """Compute reward at current timestep.""" keypoint_reward = -self._get_keypoint_dist() action_penalty = ( torch.norm(self.actions, p=2, dim=-1) * self.cfg_task.rl.action_penalty_scale ) self.rew_buf[:] = ( keypoint_reward * self.cfg_task.rl.keypoint_reward_scale - action_penalty * self.cfg_task.rl.action_penalty_scale ) # In this policy, episode length is constant across all envs is_last_step = self.progress_buf[0] == self.max_episode_length - 1 if is_last_step: # Check if nut is close enough to bolt is_nut_close_to_bolt = self._check_nut_close_to_bolt() self.rew_buf[:] += is_nut_close_to_bolt * self.cfg_task.rl.success_bonus self.extras["successes"] = torch.mean(is_nut_close_to_bolt.float()) def _get_keypoint_offsets(self, num_keypoints) -> torch.Tensor: """Get uniformly-spaced keypoints along a line of unit length, centered at 0.""" keypoint_offsets = torch.zeros((num_keypoints, 3), device=self.device) keypoint_offsets[:, -1] = ( torch.linspace(0.0, 1.0, num_keypoints, device=self.device) - 0.5 ) return keypoint_offsets def _get_keypoint_dist(self) -> torch.Tensor: """Get keypoint distance between nut and bolt.""" keypoint_dist = torch.sum( torch.norm(self.keypoints_bolt - self.keypoints_nut, p=2, dim=-1), dim=-1 ) return keypoint_dist def _randomize_gripper_pose(self, env_ids, sim_steps) -> None: """Move gripper to random pose.""" # Step once to update PhysX with new joint positions and velocities from reset_franka() SimulationContext.step(self.world, render=True) # Set target pos above table self.ctrl_target_fingertip_midpoint_pos = torch.tensor( [0.0, 0.0, self.cfg_base.env.table_height], device=self.device ) + torch.tensor( self.cfg_task.randomize.fingertip_midpoint_pos_initial, device=self.device ) self.ctrl_target_fingertip_midpoint_pos = ( self.ctrl_target_fingertip_midpoint_pos.unsqueeze(0).repeat( self.num_envs, 1 ) ) fingertip_midpoint_pos_noise = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] fingertip_midpoint_pos_noise = fingertip_midpoint_pos_noise @ torch.diag( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_pos_noise, device=self.device ) ) self.ctrl_target_fingertip_midpoint_pos += fingertip_midpoint_pos_noise # Set target rot ctrl_target_fingertip_midpoint_euler = ( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_rot_initial, device=self.device, ) .unsqueeze(0) .repeat(self.num_envs, 1) ) fingertip_midpoint_rot_noise = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] fingertip_midpoint_rot_noise = fingertip_midpoint_rot_noise @ torch.diag( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_rot_noise, device=self.device ) ) ctrl_target_fingertip_midpoint_euler += fingertip_midpoint_rot_noise self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_from_euler_xyz( ctrl_target_fingertip_midpoint_euler[:, 0], ctrl_target_fingertip_midpoint_euler[:, 1], ctrl_target_fingertip_midpoint_euler[:, 2], ) # Step sim and render for _ in range(sim_steps): self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() pos_error, axis_angle_error = fc.get_pose_error( fingertip_midpoint_pos=self.fingertip_midpoint_pos, fingertip_midpoint_quat=self.fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat, jacobian_type=self.cfg_ctrl["jacobian_type"], rot_error_type="axis_angle", ) delta_hand_pose = torch.cat((pos_error, axis_angle_error), dim=-1) actions = torch.zeros( (self.num_envs, self.cfg_task.env.numActions), device=self.device ) actions[:, :6] = delta_hand_pose self._apply_actions_as_ctrl_targets( actions=actions, ctrl_target_gripper_dof_pos=0.0, do_scale=False, ) SimulationContext.step(self.world, render=True) self.dof_vel[env_ids, :] = torch.zeros_like(self.dof_vel[env_ids]) indices = env_ids.to(dtype=torch.int32) self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices) # Step once to update PhysX with new joint velocities SimulationContext.step(self.world, render=True) async def _randomize_gripper_pose_async(self, env_ids, sim_steps) -> None: """Move gripper to random pose.""" # Step once to update PhysX with new joint positions and velocities from reset_franka() self.world.physics_sim_view.flush() await omni.kit.app.get_app().next_update_async() # Set target pos above table self.ctrl_target_fingertip_midpoint_pos = torch.tensor( [0.0, 0.0, self.cfg_base.env.table_height], device=self.device ) + torch.tensor( self.cfg_task.randomize.fingertip_midpoint_pos_initial, device=self.device ) self.ctrl_target_fingertip_midpoint_pos = ( self.ctrl_target_fingertip_midpoint_pos.unsqueeze(0).repeat( self.num_envs, 1 ) ) fingertip_midpoint_pos_noise = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] fingertip_midpoint_pos_noise = fingertip_midpoint_pos_noise @ torch.diag( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_pos_noise, device=self.device ) ) self.ctrl_target_fingertip_midpoint_pos += fingertip_midpoint_pos_noise # Set target rot ctrl_target_fingertip_midpoint_euler = ( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_rot_initial, device=self.device, ) .unsqueeze(0) .repeat(self.num_envs, 1) ) fingertip_midpoint_rot_noise = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] fingertip_midpoint_rot_noise = fingertip_midpoint_rot_noise @ torch.diag( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_rot_noise, device=self.device ) ) ctrl_target_fingertip_midpoint_euler += fingertip_midpoint_rot_noise self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_from_euler_xyz( ctrl_target_fingertip_midpoint_euler[:, 0], ctrl_target_fingertip_midpoint_euler[:, 1], ctrl_target_fingertip_midpoint_euler[:, 2], ) # Step sim and render for _ in range(sim_steps): self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() pos_error, axis_angle_error = fc.get_pose_error( fingertip_midpoint_pos=self.fingertip_midpoint_pos, fingertip_midpoint_quat=self.fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat, jacobian_type=self.cfg_ctrl["jacobian_type"], rot_error_type="axis_angle", ) delta_hand_pose = torch.cat((pos_error, axis_angle_error), dim=-1) actions = torch.zeros( (self.num_envs, self.cfg_task.env.numActions), device=self.device ) actions[:, :6] = delta_hand_pose self._apply_actions_as_ctrl_targets( actions=actions, ctrl_target_gripper_dof_pos=0.0, do_scale=False, ) self.world.physics_sim_view.flush() await omni.kit.app.get_app().next_update_async() self.dof_vel[env_ids, :] = torch.zeros_like(self.dof_vel[env_ids]) indices = env_ids.to(dtype=torch.int32) self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices) # Step once to update PhysX with new joint velocities self.world.physics_sim_view.flush() await omni.kit.app.get_app().next_update_async() def _close_gripper(self, sim_steps) -> None: """Fully close gripper using controller. Called outside RL loop (i.e., after last step of episode).""" self._move_gripper_to_dof_pos(gripper_dof_pos=0.0, sim_steps=sim_steps) def _move_gripper_to_dof_pos(self, gripper_dof_pos, sim_steps) -> None: """Move gripper fingers to specified DOF position using controller.""" delta_hand_pose = torch.zeros( (self.num_envs, 6), device=self.device ) # No hand motion # Step sim for _ in range(sim_steps): self._apply_actions_as_ctrl_targets( delta_hand_pose, gripper_dof_pos, do_scale=False ) SimulationContext.step(self.world, render=True) async def _close_gripper_async(self, sim_steps) -> None: """Fully close gripper using controller. Called outside RL loop (i.e., after last step of episode).""" await self._move_gripper_to_dof_pos_async( gripper_dof_pos=0.0, sim_steps=sim_steps ) async def _move_gripper_to_dof_pos_async( self, gripper_dof_pos, sim_steps ) -> None: """Move gripper fingers to specified DOF position using controller.""" delta_hand_pose = torch.zeros( (self.num_envs, 6), device=self.device ) # No hand motion # Step sim for _ in range(sim_steps): self._apply_actions_as_ctrl_targets( delta_hand_pose, gripper_dof_pos, do_scale=False ) self.world.physics_sim_view.flush() await omni.kit.app.get_app().next_update_async() def _check_nut_close_to_bolt(self) -> torch.Tensor: """Check if nut is close to bolt.""" keypoint_dist = torch.norm( self.keypoints_bolt - self.keypoints_nut, p=2, dim=-1 ) is_nut_close_to_bolt = torch.where( torch.sum(keypoint_dist, dim=-1) < self.cfg_task.rl.close_error_thresh, torch.ones_like(self.progress_buf), torch.zeros_like(self.progress_buf), ) return is_nut_close_to_bolt
28,968
Python
37.780455
131
0.594518
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_schema_config_env.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: schema for environment class configurations. Used by Hydra. Defines template for environment class YAML files. """ from dataclasses import dataclass @dataclass class Sim: disable_franka_collisions: bool # disable collisions between Franka and objects @dataclass class Env: env_name: str # name of scene @dataclass class FactorySchemaConfigEnv: sim: Sim env: Env
1,960
Python
36.711538
84
0.776531
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_schema_class_task.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: abstract base class for task classes. Inherits ABC class. Inherited by task classes. Defines template for task classes. """ from abc import ABC, abstractmethod class FactoryABCTask(ABC): @abstractmethod def __init__(self): """Initialize instance variables. Initialize environment superclass.""" pass @abstractmethod def _get_task_yaml_params(self): """Initialize instance variables from YAML files.""" pass @abstractmethod def _acquire_task_tensors(self): """Acquire tensors.""" pass @abstractmethod def _refresh_task_tensors(self): """Refresh tensors.""" pass @abstractmethod def pre_physics_step(self): """Reset environments. Apply actions from policy as controller targets. Simulation step called after this method.""" pass @abstractmethod def post_physics_step(self): """Step buffers. Refresh tensors. Compute observations and reward.""" pass @abstractmethod def get_observations(self): """Compute observations.""" pass @abstractmethod def calculate_metrics(self): """Detect successes and failures. Update reward and reset buffers.""" pass @abstractmethod def _update_rew_buf(self): """Compute reward at current timestep.""" pass @abstractmethod def _update_reset_buf(self): """Assign environments for reset if successful or failed.""" pass @abstractmethod def reset_idx(self): """Reset specified environments.""" pass @abstractmethod def _reset_franka(self): """Reset DOF states and DOF targets of Franka.""" pass @abstractmethod def _reset_object(self): """Reset root state of object.""" pass @abstractmethod def _reset_buffers(self): """Reset buffers.""" pass
3,492
Python
31.342592
124
0.69559
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_schema_class_env.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: abstract base class for environment classes. Inherits ABC class. Inherited by environment classes. Defines template for environment classes. """ from abc import ABC, abstractmethod class FactoryABCEnv(ABC): @abstractmethod def __init__(self): """Initialize instance variables. Initialize base superclass. Acquire tensors.""" pass @abstractmethod def _get_env_yaml_params(self): """Initialize instance variables from YAML files.""" pass @abstractmethod def set_up_scene(self): """Set env options. Import assets. Create actors.""" pass @abstractmethod def _import_env_assets(self): """Set asset options. Import assets.""" pass @abstractmethod def refresh_env_tensors(self): """Refresh tensors.""" # NOTE: Tensor refresh functions should be called once per step, before setters. pass
2,489
Python
37.906249
95
0.73644
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_screw.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: Class for nut-bolt screw task. Inherits nut-bolt environment class and abstract task class (not enforced). Can be executed with PYTHON_PATH omniisaacgymenvs/scripts/rlgames_train.py task=FactoryTaskNutBoltScrew """ import hydra import math import omegaconf import torch from typing import Tuple import omni.isaac.core.utils.torch as torch_utils import omniisaacgymenvs.tasks.factory.factory_control as fc from omniisaacgymenvs.tasks.factory.factory_env_nut_bolt import FactoryEnvNutBolt from omniisaacgymenvs.tasks.factory.factory_schema_class_task import FactoryABCTask from omniisaacgymenvs.tasks.factory.factory_schema_config_task import ( FactorySchemaConfigTask, ) class FactoryTaskNutBoltScrew(FactoryEnvNutBolt, FactoryABCTask): def __init__(self, name, sim_config, env, offset=None) -> None: """Initialize environment superclass. Initialize instance variables.""" super().__init__(name, sim_config, env) self._get_task_yaml_params() def _get_task_yaml_params(self) -> None: """Initialize instance variables from YAML files.""" cs = hydra.core.config_store.ConfigStore.instance() cs.store(name="factory_schema_config_task", node=FactorySchemaConfigTask) self.cfg_task = omegaconf.OmegaConf.create(self._task_cfg) self.max_episode_length = ( self.cfg_task.rl.max_episode_length ) # required instance var for VecTask asset_info_path = "../tasks/factory/yaml/factory_asset_info_nut_bolt.yaml" # relative to Gym's Hydra search path (cfg dir) self.asset_info_nut_bolt = hydra.compose(config_name=asset_info_path) self.asset_info_nut_bolt = self.asset_info_nut_bolt[""][""][""]["tasks"][ "factory" ][ "yaml" ] # strip superfluous nesting ppo_path = "train/FactoryTaskNutBoltScrewPPO.yaml" # relative to Gym's Hydra search path (cfg dir) self.cfg_ppo = hydra.compose(config_name=ppo_path) self.cfg_ppo = self.cfg_ppo["train"] # strip superfluous nesting def post_reset(self) -> None: """Reset the world. Called only once, before simulation begins.""" if self.cfg_task.sim.disable_gravity: self.disable_gravity() self.acquire_base_tensors() self._acquire_task_tensors() self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() # Reset all envs indices = torch.arange(self.num_envs, dtype=torch.int64, device=self.device) self.reset_idx(indices) def _acquire_task_tensors(self) -> None: """Acquire tensors.""" target_heights = ( self.cfg_base.env.table_height + self.bolt_head_heights + self.nut_heights * 0.5 ) self.target_pos = target_heights * torch.tensor( [0.0, 0.0, 1.0], device=self.device ).repeat((self.num_envs, 1)) self.identity_quat = ( torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) .unsqueeze(0) .repeat(self.num_envs, 1) ) self.actions = torch.zeros( (self.num_envs, self.num_actions), device=self.device ) def pre_physics_step(self, actions) -> None: """Reset environments. Apply actions from policy. Simulation step called after this method.""" if not self.world.is_playing(): return env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: self.reset_idx(env_ids) self.actions = actions.clone().to( self.device ) # shape = (num_envs, num_actions); values = [-1, 1] self._apply_actions_as_ctrl_targets( actions=self.actions, ctrl_target_gripper_dof_pos=0.0, do_scale=True ) def reset_idx(self, env_ids) -> None: """Reset specified environments.""" self._reset_franka(env_ids) self._reset_object(env_ids) self._reset_buffers(env_ids) def _reset_franka(self, env_ids) -> None: """Reset DOF states and DOF targets of Franka.""" self.dof_pos[env_ids] = torch.cat( ( torch.tensor( self.cfg_task.randomize.franka_arm_initial_dof_pos, device=self.device, ).repeat((len(env_ids), 1)), (self.nut_widths_max[env_ids] * 0.5) * 1.1, # buffer on gripper DOF pos to prevent initial contact (self.nut_widths_max[env_ids] * 0.5) * 1.1, ), # buffer on gripper DOF pos to prevent initial contact dim=-1, ) # shape = (num_envs, num_dofs) self.dof_vel[env_ids] = 0.0 # shape = (num_envs, num_dofs) self.ctrl_target_dof_pos[env_ids] = self.dof_pos[env_ids] indices = env_ids.to(dtype=torch.int32) self.frankas.set_joint_positions(self.dof_pos[env_ids], indices=indices) self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices) def _reset_object(self, env_ids) -> None: """Reset root state of nut.""" nut_pos = self.cfg_base.env.table_height + self.bolt_shank_lengths[env_ids] self.nut_pos[env_ids, :] = nut_pos * torch.tensor( [0.0, 0.0, 1.0], device=self.device ).repeat(len(env_ids), 1) nut_rot = ( self.cfg_task.randomize.nut_rot_initial * torch.ones((len(env_ids), 1), device=self.device) * math.pi / 180.0 ) self.nut_quat[env_ids, :] = torch.cat( ( torch.cos(nut_rot * 0.5), torch.zeros((len(env_ids), 1), device=self.device), torch.zeros((len(env_ids), 1), device=self.device), torch.sin(nut_rot * 0.5), ), dim=-1, ) self.nut_linvel[env_ids, :] = 0.0 self.nut_angvel[env_ids, :] = 0.0 indices = env_ids.to(dtype=torch.int32) self.nuts.set_world_poses( self.nut_pos[env_ids] + self.env_pos[env_ids], self.nut_quat[env_ids], indices, ) self.nuts.set_velocities( torch.cat((self.nut_linvel[env_ids], self.nut_angvel[env_ids]), dim=1), indices, ) def _reset_buffers(self, env_ids) -> None: """Reset buffers.""" self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def _apply_actions_as_ctrl_targets( self, actions, ctrl_target_gripper_dof_pos, do_scale ) -> None: """Apply actions from policy as position/rotation/force/torque targets.""" # Interpret actions as target pos displacements and set pos target pos_actions = actions[:, 0:3] if self.cfg_task.rl.unidirectional_pos: pos_actions[:, 2] = -(pos_actions[:, 2] + 1.0) * 0.5 # [-1, 0] if do_scale: pos_actions = pos_actions @ torch.diag( torch.tensor(self.cfg_task.rl.pos_action_scale, device=self.device) ) self.ctrl_target_fingertip_midpoint_pos = ( self.fingertip_midpoint_pos + pos_actions ) # Interpret actions as target rot (axis-angle) displacements rot_actions = actions[:, 3:6] if self.cfg_task.rl.unidirectional_rot: rot_actions[:, 2] = -(rot_actions[:, 2] + 1.0) * 0.5 # [-1, 0] if do_scale: rot_actions = rot_actions @ torch.diag( torch.tensor(self.cfg_task.rl.rot_action_scale, device=self.device) ) # Convert to quat and set rot target angle = torch.norm(rot_actions, p=2, dim=-1) axis = rot_actions / angle.unsqueeze(-1) rot_actions_quat = torch_utils.quat_from_angle_axis(angle, axis) if self.cfg_task.rl.clamp_rot: rot_actions_quat = torch.where( angle.unsqueeze(-1).repeat(1, 4) > self.cfg_task.rl.clamp_rot_thresh, rot_actions_quat, torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device).repeat( self.num_envs, 1 ), ) self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_mul( rot_actions_quat, self.fingertip_midpoint_quat ) if self.cfg_ctrl["do_force_ctrl"]: # Interpret actions as target forces and target torques force_actions = actions[:, 6:9] if self.cfg_task.rl.unidirectional_force: force_actions[:, 2] = -(force_actions[:, 2] + 1.0) * 0.5 # [-1, 0] if do_scale: force_actions = force_actions @ torch.diag( torch.tensor( self.cfg_task.rl.force_action_scale, device=self.device ) ) torque_actions = actions[:, 9:12] if do_scale: torque_actions = torque_actions @ torch.diag( torch.tensor( self.cfg_task.rl.torque_action_scale, device=self.device ) ) self.ctrl_target_fingertip_contact_wrench = torch.cat( (force_actions, torque_actions), dim=-1 ) self.ctrl_target_gripper_dof_pos = ctrl_target_gripper_dof_pos self.generate_ctrl_signals() def post_physics_step( self, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """Step buffers. Refresh tensors. Compute observations and reward. Reset environments.""" self.progress_buf[:] += 1 if self.world.is_playing(): self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() self.get_observations() self.calculate_metrics() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def _refresh_task_tensors(self) -> None: """Refresh tensors.""" self.fingerpad_midpoint_pos = fc.translate_along_local_z( pos=self.finger_midpoint_pos, quat=self.hand_quat, offset=self.asset_info_franka_table.franka_finger_length - self.asset_info_franka_table.franka_fingerpad_length * 0.5, device=self.device, ) self.finger_nut_keypoint_dist = self._get_keypoint_dist(body="finger_nut") self.nut_keypoint_dist = self._get_keypoint_dist(body="nut") self.nut_dist_to_target = torch.norm( self.target_pos - self.nut_com_pos, p=2, dim=-1 ) # distance between nut COM and target self.nut_dist_to_fingerpads = torch.norm( self.fingerpad_midpoint_pos - self.nut_com_pos, p=2, dim=-1 ) # distance between nut COM and midpoint between centers of fingerpads self.was_success = torch.zeros_like(self.progress_buf, dtype=torch.bool) def get_observations(self) -> dict: """Compute observations.""" # Shallow copies of tensors obs_tensors = [ self.fingertip_midpoint_pos, self.fingertip_midpoint_quat, self.fingertip_midpoint_linvel, self.fingertip_midpoint_angvel, self.nut_com_pos, self.nut_com_quat, self.nut_com_linvel, self.nut_com_angvel, ] if self.cfg_task.rl.add_obs_finger_force: obs_tensors += [self.left_finger_force, self.right_finger_force] else: obs_tensors += [ torch.zeros_like(self.left_finger_force), torch.zeros_like(self.right_finger_force), ] self.obs_buf = torch.cat( obs_tensors, dim=-1 ) # shape = (num_envs, num_observations) observations = {self.frankas.name: {"obs_buf": self.obs_buf}} return observations def calculate_metrics(self) -> None: """Update reset and reward buffers.""" # Get successful and failed envs at current timestep curr_successes = self._get_curr_successes() curr_failures = self._get_curr_failures(curr_successes) self._update_reset_buf(curr_successes, curr_failures) self._update_rew_buf(curr_successes) if torch.any(self.is_expired): self.extras["successes"] = torch.mean(curr_successes.float()) def _update_reset_buf(self, curr_successes, curr_failures) -> None: """Assign environments for reset if successful or failed.""" self.reset_buf[:] = self.is_expired def _update_rew_buf(self, curr_successes) -> None: """Compute reward at current timestep.""" keypoint_reward = -(self.nut_keypoint_dist + self.finger_nut_keypoint_dist) action_penalty = torch.norm(self.actions, p=2, dim=-1) self.rew_buf[:] = ( keypoint_reward * self.cfg_task.rl.keypoint_reward_scale - action_penalty * self.cfg_task.rl.action_penalty_scale + curr_successes * self.cfg_task.rl.success_bonus ) def _get_keypoint_dist(self, body) -> torch.Tensor: """Get keypoint distance.""" axis_length = ( self.asset_info_franka_table.franka_hand_length + self.asset_info_franka_table.franka_finger_length ) if body == "finger" or body == "nut": # Keypoint distance between finger/nut and target if body == "finger": self.keypoint1 = self.fingertip_midpoint_pos self.keypoint2 = fc.translate_along_local_z( pos=self.keypoint1, quat=self.fingertip_midpoint_quat, offset=-axis_length, device=self.device, ) elif body == "nut": self.keypoint1 = self.nut_com_pos self.keypoint2 = fc.translate_along_local_z( pos=self.nut_com_pos, quat=self.nut_com_quat, offset=axis_length, device=self.device, ) self.keypoint1_targ = self.target_pos self.keypoint2_targ = self.keypoint1_targ + torch.tensor( [0.0, 0.0, axis_length], device=self.device ) elif body == "finger_nut": # Keypoint distance between finger and nut self.keypoint1 = self.fingerpad_midpoint_pos self.keypoint2 = fc.translate_along_local_z( pos=self.keypoint1, quat=self.fingertip_midpoint_quat, offset=-axis_length, device=self.device, ) self.keypoint1_targ = self.nut_com_pos self.keypoint2_targ = fc.translate_along_local_z( pos=self.nut_com_pos, quat=self.nut_com_quat, offset=axis_length, device=self.device, ) self.keypoint3 = self.keypoint1 + (self.keypoint2 - self.keypoint1) * 1.0 / 3.0 self.keypoint4 = self.keypoint1 + (self.keypoint2 - self.keypoint1) * 2.0 / 3.0 self.keypoint3_targ = ( self.keypoint1_targ + (self.keypoint2_targ - self.keypoint1_targ) * 1.0 / 3.0 ) self.keypoint4_targ = ( self.keypoint1_targ + (self.keypoint2_targ - self.keypoint1_targ) * 2.0 / 3.0 ) keypoint_dist = ( torch.norm(self.keypoint1_targ - self.keypoint1, p=2, dim=-1) + torch.norm(self.keypoint2_targ - self.keypoint2, p=2, dim=-1) + torch.norm(self.keypoint3_targ - self.keypoint3, p=2, dim=-1) + torch.norm(self.keypoint4_targ - self.keypoint4, p=2, dim=-1) ) return keypoint_dist def _get_curr_successes(self) -> torch.Tensor: """Get success mask at current timestep.""" curr_successes = torch.zeros( (self.num_envs,), dtype=torch.bool, device=self.device ) # If nut is close enough to target pos is_close = torch.where( self.nut_dist_to_target < self.thread_pitches.squeeze(-1) * 5, torch.ones_like(curr_successes), torch.zeros_like(curr_successes), ) curr_successes = torch.logical_or(curr_successes, is_close) return curr_successes def _get_curr_failures(self, curr_successes) -> torch.Tensor: """Get failure mask at current timestep.""" curr_failures = torch.zeros( (self.num_envs,), dtype=torch.bool, device=self.device ) # If max episode length has been reached self.is_expired = torch.where( self.progress_buf[:] >= self.cfg_task.rl.max_episode_length, torch.ones_like(curr_failures), curr_failures, ) # If nut is too far from target pos self.is_far = torch.where( self.nut_dist_to_target > self.cfg_task.rl.far_error_thresh, torch.ones_like(curr_failures), curr_failures, ) # If nut has slipped (distance-based definition) self.is_slipped = torch.where( self.nut_dist_to_fingerpads > self.asset_info_franka_table.franka_fingerpad_length * 0.5 + self.nut_heights.squeeze(-1) * 0.5, torch.ones_like(curr_failures), curr_failures, ) self.is_slipped = torch.logical_and( self.is_slipped, torch.logical_not(curr_successes) ) # ignore slip if successful # If nut has fallen (i.e., if nut XY pos has drifted from center of bolt and nut Z pos has drifted below top of bolt) self.is_fallen = torch.logical_and( torch.norm(self.nut_com_pos[:, 0:2], p=2, dim=-1) > self.bolt_widths.squeeze(-1) * 0.5, self.nut_com_pos[:, 2] < self.cfg_base.env.table_height + self.bolt_head_heights.squeeze(-1) + self.bolt_shank_lengths.squeeze(-1) + self.nut_heights.squeeze(-1) * 0.5, ) curr_failures = torch.logical_or(curr_failures, self.is_expired) curr_failures = torch.logical_or(curr_failures, self.is_far) curr_failures = torch.logical_or(curr_failures, self.is_slipped) curr_failures = torch.logical_or(curr_failures, self.is_fallen) return curr_failures
20,027
Python
37.367816
131
0.589105
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_pick.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: Class for nut-bolt pick task. Inherits nut-bolt environment class and abstract task class (not enforced). Can be executed with PYTHON_PATH omniisaacgymenvs/scripts/rlgames_train.py task=FactoryTaskNutBoltPick """ import asyncio import hydra import omegaconf import torch import omni.kit from omni.isaac.core.simulation_context import SimulationContext from omni.isaac.core.utils.torch.transformations import tf_combine from typing import Tuple import omni.isaac.core.utils.torch as torch_utils import omniisaacgymenvs.tasks.factory.factory_control as fc from omniisaacgymenvs.tasks.factory.factory_env_nut_bolt import FactoryEnvNutBolt from omniisaacgymenvs.tasks.factory.factory_schema_class_task import FactoryABCTask from omniisaacgymenvs.tasks.factory.factory_schema_config_task import ( FactorySchemaConfigTask, ) class FactoryTaskNutBoltPick(FactoryEnvNutBolt, FactoryABCTask): def __init__(self, name, sim_config, env, offset=None) -> None: """Initialize environment superclass. Initialize instance variables.""" super().__init__(name, sim_config, env) self._get_task_yaml_params() def _get_task_yaml_params(self) -> None: """Initialize instance variables from YAML files.""" cs = hydra.core.config_store.ConfigStore.instance() cs.store(name="factory_schema_config_task", node=FactorySchemaConfigTask) self.cfg_task = omegaconf.OmegaConf.create(self._task_cfg) self.max_episode_length = ( self.cfg_task.rl.max_episode_length ) # required instance var for VecTask asset_info_path = "../tasks/factory/yaml/factory_asset_info_nut_bolt.yaml" # relative to Gym's Hydra search path (cfg dir) self.asset_info_nut_bolt = hydra.compose(config_name=asset_info_path) self.asset_info_nut_bolt = self.asset_info_nut_bolt[""][""][""]["tasks"][ "factory" ][ "yaml" ] # strip superfluous nesting ppo_path = "train/FactoryTaskNutBoltPickPPO.yaml" # relative to Gym's Hydra search path (cfg dir) self.cfg_ppo = hydra.compose(config_name=ppo_path) self.cfg_ppo = self.cfg_ppo["train"] # strip superfluous nesting def post_reset(self) -> None: """Reset the world. Called only once, before simulation begins.""" if self.cfg_task.sim.disable_gravity: self.disable_gravity() self.acquire_base_tensors() self._acquire_task_tensors() self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() # Reset all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) asyncio.ensure_future( self.reset_idx_async(indices, randomize_gripper_pose=False) ) def _acquire_task_tensors(self) -> None: """Acquire tensors.""" # Grasp pose tensors nut_grasp_heights = self.bolt_head_heights + self.nut_heights * 0.5 # nut COM self.nut_grasp_pos_local = nut_grasp_heights * torch.tensor( [0.0, 0.0, 1.0], device=self.device ).repeat((self.num_envs, 1)) self.nut_grasp_quat_local = ( torch.tensor([0.0, 0.0, 1.0, 0.0], device=self.device) .unsqueeze(0) .repeat(self.num_envs, 1) ) # Keypoint tensors self.keypoint_offsets = ( self._get_keypoint_offsets(self.cfg_task.rl.num_keypoints) * self.cfg_task.rl.keypoint_scale ) self.keypoints_gripper = torch.zeros( (self.num_envs, self.cfg_task.rl.num_keypoints, 3), dtype=torch.float32, device=self.device, ) self.keypoints_nut = torch.zeros_like( self.keypoints_gripper, device=self.device ) self.identity_quat = ( torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) .unsqueeze(0) .repeat(self.num_envs, 1) ) self.actions = torch.zeros( (self.num_envs, self.num_actions), device=self.device ) def pre_physics_step(self, actions) -> None: """Reset environments. Apply actions from policy. Simulation step called after this method.""" if not self.world.is_playing(): return env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: self.reset_idx(env_ids, randomize_gripper_pose=True) self.actions = actions.clone().to( self.device ) # shape = (num_envs, num_actions); values = [-1, 1] self._apply_actions_as_ctrl_targets( actions=self.actions, ctrl_target_gripper_dof_pos=self.asset_info_franka_table.franka_gripper_width_max, do_scale=True, ) async def pre_physics_step_async(self, actions) -> None: """Reset environments. Apply actions from policy. Simulation step called after this method.""" if not self.world.is_playing(): return env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(env_ids) > 0: await self.reset_idx_async(env_ids, randomize_gripper_pose=True) self.actions = actions.clone().to( self.device ) # shape = (num_envs, num_actions); values = [-1, 1] self._apply_actions_as_ctrl_targets( actions=self.actions, ctrl_target_gripper_dof_pos=self.asset_info_franka_table.franka_gripper_width_max, do_scale=True, ) def reset_idx(self, env_ids, randomize_gripper_pose) -> None: """Reset specified environments.""" self._reset_franka(env_ids) self._reset_object(env_ids) if randomize_gripper_pose: self._randomize_gripper_pose( env_ids, sim_steps=self.cfg_task.env.num_gripper_move_sim_steps ) self._reset_buffers(env_ids) async def reset_idx_async(self, env_ids, randomize_gripper_pose) -> None: """Reset specified environments.""" self._reset_franka(env_ids) self._reset_object(env_ids) if randomize_gripper_pose: await self._randomize_gripper_pose_async( env_ids, sim_steps=self.cfg_task.env.num_gripper_move_sim_steps ) self._reset_buffers(env_ids) def _reset_franka(self, env_ids) -> None: """Reset DOF states and DOF targets of Franka.""" self.dof_pos[env_ids] = torch.cat( ( torch.tensor( self.cfg_task.randomize.franka_arm_initial_dof_pos, device=self.device, ), torch.tensor( [self.asset_info_franka_table.franka_gripper_width_max], device=self.device, ), torch.tensor( [self.asset_info_franka_table.franka_gripper_width_max], device=self.device, ), ), dim=-1, ) # shape = (num_envs, num_dofs) self.dof_vel[env_ids] = 0.0 # shape = (num_envs, num_dofs) self.ctrl_target_dof_pos[env_ids] = self.dof_pos[env_ids] indices = env_ids.to(dtype=torch.int32) self.frankas.set_joint_positions(self.dof_pos[env_ids], indices=indices) self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices) def _reset_object(self, env_ids) -> None: """Reset root states of nut and bolt.""" # Randomize root state of nut nut_noise_xy = 2 * ( torch.rand((self.num_envs, 2), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] nut_noise_xy = nut_noise_xy @ torch.diag( torch.tensor(self.cfg_task.randomize.nut_pos_xy_noise, device=self.device) ) self.nut_pos[env_ids, 0] = ( self.cfg_task.randomize.nut_pos_xy_initial[0] + nut_noise_xy[env_ids, 0] ) self.nut_pos[env_ids, 1] = ( self.cfg_task.randomize.nut_pos_xy_initial[1] + nut_noise_xy[env_ids, 1] ) self.nut_pos[ env_ids, 2 ] = self.cfg_base.env.table_height - self.bolt_head_heights.squeeze(-1) self.nut_quat[env_ids, :] = torch.tensor( [1.0, 0.0, 0.0, 0.0], dtype=torch.float32, device=self.device ).repeat(len(env_ids), 1) self.nut_linvel[env_ids, :] = 0.0 self.nut_angvel[env_ids, :] = 0.0 indices = env_ids.to(dtype=torch.int32) self.nuts.set_world_poses( self.nut_pos[env_ids] + self.env_pos[env_ids], self.nut_quat[env_ids], indices, ) self.nuts.set_velocities( torch.cat((self.nut_linvel[env_ids], self.nut_angvel[env_ids]), dim=1), indices, ) # Randomize root state of bolt bolt_noise_xy = 2 * ( torch.rand((self.num_envs, 2), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] bolt_noise_xy = bolt_noise_xy @ torch.diag( torch.tensor(self.cfg_task.randomize.bolt_pos_xy_noise, device=self.device) ) self.bolt_pos[env_ids, 0] = ( self.cfg_task.randomize.bolt_pos_xy_initial[0] + bolt_noise_xy[env_ids, 0] ) self.bolt_pos[env_ids, 1] = ( self.cfg_task.randomize.bolt_pos_xy_initial[1] + bolt_noise_xy[env_ids, 1] ) self.bolt_pos[env_ids, 2] = self.cfg_base.env.table_height self.bolt_quat[env_ids, :] = torch.tensor( [1.0, 0.0, 0.0, 0.0], dtype=torch.float32, device=self.device ).repeat(len(env_ids), 1) indices = env_ids.to(dtype=torch.int32) self.bolts.set_world_poses( self.bolt_pos[env_ids] + self.env_pos[env_ids], self.bolt_quat[env_ids], indices, ) def _reset_buffers(self, env_ids) -> None: """Reset buffers.""" self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def _apply_actions_as_ctrl_targets( self, actions, ctrl_target_gripper_dof_pos, do_scale ) -> None: """Apply actions from policy as position/rotation/force/torque targets.""" # Interpret actions as target pos displacements and set pos target pos_actions = actions[:, 0:3] if do_scale: pos_actions = pos_actions @ torch.diag( torch.tensor(self.cfg_task.rl.pos_action_scale, device=self.device) ) self.ctrl_target_fingertip_midpoint_pos = ( self.fingertip_midpoint_pos + pos_actions ) # Interpret actions as target rot (axis-angle) displacements rot_actions = actions[:, 3:6] if do_scale: rot_actions = rot_actions @ torch.diag( torch.tensor(self.cfg_task.rl.rot_action_scale, device=self.device) ) # Convert to quat and set rot target angle = torch.norm(rot_actions, p=2, dim=-1) axis = rot_actions / angle.unsqueeze(-1) rot_actions_quat = torch_utils.quat_from_angle_axis(angle, axis) if self.cfg_task.rl.clamp_rot: rot_actions_quat = torch.where( angle.unsqueeze(-1).repeat(1, 4) > self.cfg_task.rl.clamp_rot_thresh, rot_actions_quat, torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device).repeat( self.num_envs, 1 ), ) self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_mul( rot_actions_quat, self.fingertip_midpoint_quat ) if self.cfg_ctrl["do_force_ctrl"]: # Interpret actions as target forces and target torques force_actions = actions[:, 6:9] if do_scale: force_actions = force_actions @ torch.diag( torch.tensor( self.cfg_task.rl.force_action_scale, device=self.device ) ) torque_actions = actions[:, 9:12] if do_scale: torque_actions = torque_actions @ torch.diag( torch.tensor( self.cfg_task.rl.torque_action_scale, device=self.device ) ) self.ctrl_target_fingertip_contact_wrench = torch.cat( (force_actions, torque_actions), dim=-1 ) self.ctrl_target_gripper_dof_pos = ctrl_target_gripper_dof_pos self.generate_ctrl_signals() def post_physics_step( self, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """Step buffers. Refresh tensors. Compute observations and reward. Reset environments.""" self.progress_buf[:] += 1 if self.world.is_playing(): # In this policy, episode length is constant is_last_step = self.progress_buf[0] == self.max_episode_length - 1 if is_last_step: # At this point, robot has executed RL policy. Now close gripper and lift (open-loop) if self.cfg_task.env.close_and_lift: self._close_gripper( sim_steps=self.cfg_task.env.num_gripper_close_sim_steps ) self._lift_gripper( franka_gripper_width=0.0, lift_distance=0.3, sim_steps=self.cfg_task.env.num_gripper_lift_sim_steps, ) self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() self.get_observations() self.get_states() self.calculate_metrics() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras async def post_physics_step_async(self): """Step buffers. Refresh tensors. Compute observations and reward. Reset environments.""" self.progress_buf[:] += 1 if self.world.is_playing(): # In this policy, episode length is constant is_last_step = self.progress_buf[0] == self.max_episode_length - 1 if self.cfg_task.env.close_and_lift: # At this point, robot has executed RL policy. Now close gripper and lift (open-loop) if is_last_step: await self._close_gripper_async( sim_steps=self.cfg_task.env.num_gripper_close_sim_steps ) await self._lift_gripper_async( sim_steps=self.cfg_task.env.num_gripper_lift_sim_steps ) self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() self.get_observations() self.get_states() self.calculate_metrics() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def _refresh_task_tensors(self): """Refresh tensors.""" # Compute pose of nut grasping frame self.nut_grasp_quat, self.nut_grasp_pos = tf_combine( self.nut_quat, self.nut_pos, self.nut_grasp_quat_local, self.nut_grasp_pos_local, ) # Compute pos of keypoints on gripper and nut in world frame for idx, keypoint_offset in enumerate(self.keypoint_offsets): self.keypoints_gripper[:, idx] = tf_combine( self.fingertip_midpoint_quat, self.fingertip_midpoint_pos, self.identity_quat, keypoint_offset.repeat(self.num_envs, 1), )[1] self.keypoints_nut[:, idx] = tf_combine( self.nut_grasp_quat, self.nut_grasp_pos, self.identity_quat, keypoint_offset.repeat(self.num_envs, 1), )[1] def get_observations(self) -> dict: """Compute observations.""" # Shallow copies of tensors obs_tensors = [ self.fingertip_midpoint_pos, self.fingertip_midpoint_quat, self.fingertip_midpoint_linvel, self.fingertip_midpoint_angvel, self.nut_grasp_pos, self.nut_grasp_quat, ] self.obs_buf = torch.cat( obs_tensors, dim=-1 ) # shape = (num_envs, num_observations) observations = {self.frankas.name: {"obs_buf": self.obs_buf}} return observations def calculate_metrics(self) -> None: """Update reward and reset buffers.""" self._update_reset_buf() self._update_rew_buf() def _update_reset_buf(self) -> None: """Assign environments for reset if successful or failed.""" # If max episode length has been reached self.reset_buf[:] = torch.where( self.progress_buf[:] >= self.max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf, ) def _update_rew_buf(self) -> None: """Compute reward at current timestep.""" keypoint_reward = -self._get_keypoint_dist() action_penalty = ( torch.norm(self.actions, p=2, dim=-1) * self.cfg_task.rl.action_penalty_scale ) self.rew_buf[:] = ( keypoint_reward * self.cfg_task.rl.keypoint_reward_scale - action_penalty * self.cfg_task.rl.action_penalty_scale ) # In this policy, episode length is constant across all envs is_last_step = self.progress_buf[0] == self.max_episode_length - 1 if is_last_step: # Check if nut is picked up and above table lift_success = self._check_lift_success(height_multiple=3.0) self.rew_buf[:] += lift_success * self.cfg_task.rl.success_bonus self.extras["successes"] = torch.mean(lift_success.float()) def _get_keypoint_offsets(self, num_keypoints) -> torch.Tensor: """Get uniformly-spaced keypoints along a line of unit length, centered at 0.""" keypoint_offsets = torch.zeros((num_keypoints, 3), device=self.device) keypoint_offsets[:, -1] = ( torch.linspace(0.0, 1.0, num_keypoints, device=self.device) - 0.5 ) return keypoint_offsets def _get_keypoint_dist(self) -> torch.Tensor: """Get keypoint distance.""" keypoint_dist = torch.sum( torch.norm(self.keypoints_nut - self.keypoints_gripper, p=2, dim=-1), dim=-1 ) return keypoint_dist def _close_gripper(self, sim_steps=20) -> None: """Fully close gripper using controller. Called outside RL loop (i.e., after last step of episode).""" self._move_gripper_to_dof_pos(gripper_dof_pos=0.0, sim_steps=sim_steps) def _move_gripper_to_dof_pos(self, gripper_dof_pos, sim_steps=20) -> None: """Move gripper fingers to specified DOF position using controller.""" delta_hand_pose = torch.zeros( (self.num_envs, 6), device=self.device ) # No hand motion self._apply_actions_as_ctrl_targets( delta_hand_pose, gripper_dof_pos, do_scale=False ) # Step sim for _ in range(sim_steps): SimulationContext.step(self.world, render=True) def _lift_gripper( self, franka_gripper_width=0.0, lift_distance=0.3, sim_steps=20 ) -> None: """Lift gripper by specified distance. Called outside RL loop (i.e., after last step of episode).""" delta_hand_pose = torch.zeros([self.num_envs, 6], device=self.device) delta_hand_pose[:, 2] = lift_distance # Step sim for _ in range(sim_steps): self._apply_actions_as_ctrl_targets( delta_hand_pose, franka_gripper_width, do_scale=False ) SimulationContext.step(self.world, render=True) async def _close_gripper_async(self, sim_steps=20) -> None: """Fully close gripper using controller. Called outside RL loop (i.e., after last step of episode).""" await self._move_gripper_to_dof_pos_async( gripper_dof_pos=0.0, sim_steps=sim_steps ) async def _move_gripper_to_dof_pos_async( self, gripper_dof_pos, sim_steps=20 ) -> None: """Move gripper fingers to specified DOF position using controller.""" delta_hand_pose = torch.zeros( (self.num_envs, self.cfg_task.env.numActions), device=self.device ) # No hand motion self._apply_actions_as_ctrl_targets( delta_hand_pose, gripper_dof_pos, do_scale=False ) # Step sim for _ in range(sim_steps): self.world.physics_sim_view.flush() await omni.kit.app.get_app().next_update_async() async def _lift_gripper_async( self, franka_gripper_width=0.0, lift_distance=0.3, sim_steps=20 ) -> None: """Lift gripper by specified distance. Called outside RL loop (i.e., after last step of episode).""" delta_hand_pose = torch.zeros([self.num_envs, 6], device=self.device) delta_hand_pose[:, 2] = lift_distance # Step sim for _ in range(sim_steps): self._apply_actions_as_ctrl_targets( delta_hand_pose, franka_gripper_width, do_scale=False ) self.world.physics_sim_view.flush() await omni.kit.app.get_app().next_update_async() def _check_lift_success(self, height_multiple) -> torch.Tensor: """Check if nut is above table by more than specified multiple times height of nut.""" lift_success = torch.where( self.nut_pos[:, 2] > self.cfg_base.env.table_height + self.nut_heights.squeeze(-1) * height_multiple, torch.ones((self.num_envs,), device=self.device), torch.zeros((self.num_envs,), device=self.device), ) return lift_success def _randomize_gripper_pose(self, env_ids, sim_steps) -> None: """Move gripper to random pose.""" # step once to update physx with the newly set joint positions from reset_franka() SimulationContext.step(self.world, render=True) # Set target pos above table self.ctrl_target_fingertip_midpoint_pos = torch.tensor( [0.0, 0.0, self.cfg_base.env.table_height], device=self.device ) + torch.tensor( self.cfg_task.randomize.fingertip_midpoint_pos_initial, device=self.device ) self.ctrl_target_fingertip_midpoint_pos = ( self.ctrl_target_fingertip_midpoint_pos.unsqueeze(0).repeat( self.num_envs, 1 ) ) fingertip_midpoint_pos_noise = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] fingertip_midpoint_pos_noise = fingertip_midpoint_pos_noise @ torch.diag( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_pos_noise, device=self.device ) ) self.ctrl_target_fingertip_midpoint_pos += fingertip_midpoint_pos_noise # Set target rot ctrl_target_fingertip_midpoint_euler = ( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_rot_initial, device=self.device, ) .unsqueeze(0) .repeat(self.num_envs, 1) ) fingertip_midpoint_rot_noise = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] fingertip_midpoint_rot_noise = fingertip_midpoint_rot_noise @ torch.diag( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_rot_noise, device=self.device ) ) ctrl_target_fingertip_midpoint_euler += fingertip_midpoint_rot_noise self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_from_euler_xyz( ctrl_target_fingertip_midpoint_euler[:, 0], ctrl_target_fingertip_midpoint_euler[:, 1], ctrl_target_fingertip_midpoint_euler[:, 2], ) # Step sim and render for _ in range(sim_steps): if not self.world.is_playing(): return self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() pos_error, axis_angle_error = fc.get_pose_error( fingertip_midpoint_pos=self.fingertip_midpoint_pos, fingertip_midpoint_quat=self.fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat, jacobian_type=self.cfg_ctrl["jacobian_type"], rot_error_type="axis_angle", ) delta_hand_pose = torch.cat((pos_error, axis_angle_error), dim=-1) actions = torch.zeros( (self.num_envs, self.cfg_task.env.numActions), device=self.device ) actions[:, :6] = delta_hand_pose self._apply_actions_as_ctrl_targets( actions=actions, ctrl_target_gripper_dof_pos=self.asset_info_franka_table.franka_gripper_width_max, do_scale=False, ) SimulationContext.step(self.world, render=True) self.dof_vel[env_ids, :] = torch.zeros_like(self.dof_vel[env_ids]) indices = env_ids.to(dtype=torch.int32) self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices) # step once to update physx with the newly set joint velocities SimulationContext.step(self.world, render=True) async def _randomize_gripper_pose_async(self, env_ids, sim_steps) -> None: """Move gripper to random pose.""" # step once to update physx with the newly set joint positions from reset_franka() await omni.kit.app.get_app().next_update_async() # Set target pos above table self.ctrl_target_fingertip_midpoint_pos = torch.tensor( [0.0, 0.0, self.cfg_base.env.table_height], device=self.device ) + torch.tensor( self.cfg_task.randomize.fingertip_midpoint_pos_initial, device=self.device ) self.ctrl_target_fingertip_midpoint_pos = ( self.ctrl_target_fingertip_midpoint_pos.unsqueeze(0).repeat( self.num_envs, 1 ) ) fingertip_midpoint_pos_noise = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] fingertip_midpoint_pos_noise = fingertip_midpoint_pos_noise @ torch.diag( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_pos_noise, device=self.device ) ) self.ctrl_target_fingertip_midpoint_pos += fingertip_midpoint_pos_noise # Set target rot ctrl_target_fingertip_midpoint_euler = ( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_rot_initial, device=self.device, ) .unsqueeze(0) .repeat(self.num_envs, 1) ) fingertip_midpoint_rot_noise = 2 * ( torch.rand((self.num_envs, 3), dtype=torch.float32, device=self.device) - 0.5 ) # [-1, 1] fingertip_midpoint_rot_noise = fingertip_midpoint_rot_noise @ torch.diag( torch.tensor( self.cfg_task.randomize.fingertip_midpoint_rot_noise, device=self.device ) ) ctrl_target_fingertip_midpoint_euler += fingertip_midpoint_rot_noise self.ctrl_target_fingertip_midpoint_quat = torch_utils.quat_from_euler_xyz( ctrl_target_fingertip_midpoint_euler[:, 0], ctrl_target_fingertip_midpoint_euler[:, 1], ctrl_target_fingertip_midpoint_euler[:, 2], ) # Step sim and render for _ in range(sim_steps): self.refresh_base_tensors() self.refresh_env_tensors() self._refresh_task_tensors() pos_error, axis_angle_error = fc.get_pose_error( fingertip_midpoint_pos=self.fingertip_midpoint_pos, fingertip_midpoint_quat=self.fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos=self.ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=self.ctrl_target_fingertip_midpoint_quat, jacobian_type=self.cfg_ctrl["jacobian_type"], rot_error_type="axis_angle", ) delta_hand_pose = torch.cat((pos_error, axis_angle_error), dim=-1) actions = torch.zeros( (self.num_envs, self.cfg_task.env.numActions), device=self.device ) actions[:, :6] = delta_hand_pose self._apply_actions_as_ctrl_targets( actions=actions, ctrl_target_gripper_dof_pos=self.asset_info_franka_table.franka_gripper_width_max, do_scale=False, ) self.world.physics_sim_view.flush() await omni.kit.app.get_app().next_update_async() self.dof_vel[env_ids, :] = torch.zeros_like(self.dof_vel[env_ids]) indices = env_ids.to(dtype=torch.int32) self.frankas.set_joint_velocities(self.dof_vel[env_ids], indices=indices) # step once to update physx with the newly set joint velocities self.world.physics_sim_view.flush() await omni.kit.app.get_app().next_update_async()
31,484
Python
37.822441
131
0.589506
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_schema_class_base.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: abstract base class for base class. Inherits ABC class. Inherited by base class. Defines template for base class. """ from abc import ABC, abstractmethod class FactoryABCBase(ABC): @abstractmethod def __init__(self): """Initialize instance variables. Initialize VecTask superclass.""" pass @abstractmethod def _get_base_yaml_params(self): """Initialize instance variables from YAML files.""" pass @abstractmethod def import_franka_assets(self): """Set Franka and table asset options. Import assets.""" pass @abstractmethod def refresh_base_tensors(self): """Refresh tensors.""" # NOTE: Tensor refresh functions should be called once per step, before setters. pass @abstractmethod def parse_controller_spec(self): """Parse controller specification into lower-level controller configuration.""" pass @abstractmethod def generate_ctrl_signals(self): """Get Jacobian. Set Franka DOF position targets or DOF torques.""" pass @abstractmethod def enable_gravity(self): """Enable gravity.""" pass @abstractmethod def disable_gravity(self): """Disable gravity.""" pass
2,843
Python
35
88
0.721069
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_schema_config_base.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: schema for base class configuration. Used by Hydra. Defines template for base class YAML file. """ from dataclasses import dataclass @dataclass class Mode: export_scene: bool # export scene to USD export_states: bool # export states to NPY @dataclass class Sim: dt: float # timestep size (default = 1.0 / 60.0) num_substeps: int # number of substeps (default = 2) num_pos_iters: int # number of position iterations for PhysX TGS solver (default = 4) num_vel_iters: int # number of velocity iterations for PhysX TGS solver (default = 1) gravity_mag: float # magnitude of gravitational acceleration add_damping: bool # add damping to stabilize gripper-object interactions @dataclass class Env: env_spacing: float # lateral offset between envs franka_depth: float # depth offset of Franka base relative to env origin table_height: float # height of table franka_friction: float # coefficient of friction associated with Franka table_friction: float # coefficient of friction associated with table @dataclass class FactorySchemaConfigBase: mode: Mode sim: Sim env: Env
2,724
Python
39.073529
90
0.757342
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_env_nut_bolt.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: class for nut-bolt env. Inherits base class and abstract environment class. Inherited by nut-bolt task classes. Not directly executed. Configuration defined in FactoryEnvNutBolt.yaml. Asset info defined in factory_asset_info_nut_bolt.yaml. """ import hydra import numpy as np import torch from omni.isaac.core.prims import RigidPrimView, XFormPrim from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omniisaacgymenvs.tasks.base.rl_task import RLTask from omni.physx.scripts import physicsUtils, utils from omniisaacgymenvs.robots.articulations.views.factory_franka_view import ( FactoryFrankaView, ) import omniisaacgymenvs.tasks.factory.factory_control as fc from omniisaacgymenvs.tasks.factory.factory_base import FactoryBase from omniisaacgymenvs.tasks.factory.factory_schema_class_env import FactoryABCEnv from omniisaacgymenvs.tasks.factory.factory_schema_config_env import ( FactorySchemaConfigEnv, ) class FactoryEnvNutBolt(FactoryBase, FactoryABCEnv): def __init__(self, name, sim_config, env) -> None: """Initialize base superclass. Initialize instance variables.""" super().__init__(name, sim_config, env) self._get_env_yaml_params() def _get_env_yaml_params(self): """Initialize instance variables from YAML files.""" cs = hydra.core.config_store.ConfigStore.instance() cs.store(name="factory_schema_config_env", node=FactorySchemaConfigEnv) config_path = ( "task/FactoryEnvNutBolt.yaml" # relative to Hydra search path (cfg dir) ) self.cfg_env = hydra.compose(config_name=config_path) self.cfg_env = self.cfg_env["task"] # strip superfluous nesting asset_info_path = "../tasks/factory/yaml/factory_asset_info_nut_bolt.yaml" self.asset_info_nut_bolt = hydra.compose(config_name=asset_info_path) self.asset_info_nut_bolt = self.asset_info_nut_bolt[""][""][""]["tasks"][ "factory" ][ "yaml" ] # strip superfluous nesting def update_config(self, sim_config): self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._num_observations = self._task_cfg["env"]["numObservations"] self._num_actions = self._task_cfg["env"]["numActions"] self._env_spacing = self.cfg_base["env"]["env_spacing"] self._get_env_yaml_params() def set_up_scene(self, scene) -> None: """Import assets. Add to scene.""" # Increase buffer size to prevent overflow for Place and Screw tasks physxSceneAPI = self.world.get_physics_context()._physx_scene_api physxSceneAPI.CreateGpuCollisionStackSizeAttr().Set(256 * 1024 * 1024) self.import_franka_assets(add_to_stage=True) self.create_nut_bolt_material() RLTask.set_up_scene(self, scene, replicate_physics=False) self._import_env_assets(add_to_stage=True) self.frankas = FactoryFrankaView( prim_paths_expr="/World/envs/.*/franka", name="frankas_view" ) self.nuts = RigidPrimView( prim_paths_expr="/World/envs/.*/nut/factory_nut.*", name="nuts_view", track_contact_forces=True, ) self.bolts = RigidPrimView( prim_paths_expr="/World/envs/.*/bolt/factory_bolt.*", name="bolts_view", track_contact_forces=True, ) scene.add(self.nuts) scene.add(self.bolts) scene.add(self.frankas) scene.add(self.frankas._hands) scene.add(self.frankas._lfingers) scene.add(self.frankas._rfingers) scene.add(self.frankas._fingertip_centered) return def initialize_views(self, scene) -> None: """Initialize views for extension workflow.""" super().initialize_views(scene) self.import_franka_assets(add_to_stage=False) self._import_env_assets(add_to_stage=False) if scene.object_exists("frankas_view"): scene.remove_object("frankas_view", registry_only=True) if scene.object_exists("nuts_view"): scene.remove_object("nuts_view", registry_only=True) if scene.object_exists("bolts_view"): scene.remove_object("bolts_view", registry_only=True) if scene.object_exists("hands_view"): scene.remove_object("hands_view", registry_only=True) if scene.object_exists("lfingers_view"): scene.remove_object("lfingers_view", registry_only=True) if scene.object_exists("rfingers_view"): scene.remove_object("rfingers_view", registry_only=True) if scene.object_exists("fingertips_view"): scene.remove_object("fingertips_view", registry_only=True) self.frankas = FactoryFrankaView( prim_paths_expr="/World/envs/.*/franka", name="frankas_view" ) self.nuts = RigidPrimView( prim_paths_expr="/World/envs/.*/nut/factory_nut.*", name="nuts_view" ) self.bolts = RigidPrimView( prim_paths_expr="/World/envs/.*/bolt/factory_bolt.*", name="bolts_view" ) scene.add(self.nuts) scene.add(self.bolts) scene.add(self.frankas) scene.add(self.frankas._hands) scene.add(self.frankas._lfingers) scene.add(self.frankas._rfingers) scene.add(self.frankas._fingertip_centered) def create_nut_bolt_material(self): """Define nut and bolt material.""" self.nutboltPhysicsMaterialPath = "/World/Physics_Materials/NutBoltMaterial" utils.addRigidBodyMaterial( self._stage, self.nutboltPhysicsMaterialPath, density=self.cfg_env.env.nut_bolt_density, staticFriction=self.cfg_env.env.nut_bolt_friction, dynamicFriction=self.cfg_env.env.nut_bolt_friction, restitution=0.0, ) def _import_env_assets(self, add_to_stage=True): """Set nut and bolt asset options. Import assets.""" self.nut_heights = [] self.nut_widths_max = [] self.bolt_widths = [] self.bolt_head_heights = [] self.bolt_shank_lengths = [] self.thread_pitches = [] assets_root_path = get_assets_root_path() for i in range(0, self._num_envs): j = np.random.randint(0, len(self.cfg_env.env.desired_subassemblies)) subassembly = self.cfg_env.env.desired_subassemblies[j] components = list(self.asset_info_nut_bolt[subassembly]) nut_translation = torch.tensor( [ 0.0, self.cfg_env.env.nut_lateral_offset, self.cfg_base.env.table_height, ], device=self._device, ) nut_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) nut_height = self.asset_info_nut_bolt[subassembly][components[0]]["height"] nut_width_max = self.asset_info_nut_bolt[subassembly][components[0]][ "width_max" ] self.nut_heights.append(nut_height) self.nut_widths_max.append(nut_width_max) nut_file = ( assets_root_path + self.asset_info_nut_bolt[subassembly][components[0]]["usd_path"] ) if add_to_stage: add_reference_to_stage(nut_file, f"/World/envs/env_{i}" + "/nut") XFormPrim( prim_path=f"/World/envs/env_{i}" + "/nut", translation=nut_translation, orientation=nut_orientation, ) self._stage.GetPrimAtPath( f"/World/envs/env_{i}" + f"/nut/factory_{components[0]}/collisions" ).SetInstanceable( False ) # This is required to be able to edit physics material physicsUtils.add_physics_material_to_prim( self._stage, self._stage.GetPrimAtPath( f"/World/envs/env_{i}" + f"/nut/factory_{components[0]}/collisions/mesh_0" ), self.nutboltPhysicsMaterialPath, ) # applies articulation settings from the task configuration yaml file self._sim_config.apply_articulation_settings( "nut", self._stage.GetPrimAtPath(f"/World/envs/env_{i}" + "/nut"), self._sim_config.parse_actor_config("nut"), ) bolt_translation = torch.tensor( [0.0, 0.0, self.cfg_base.env.table_height], device=self._device ) bolt_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self._device) bolt_width = self.asset_info_nut_bolt[subassembly][components[1]]["width"] bolt_head_height = self.asset_info_nut_bolt[subassembly][components[1]][ "head_height" ] bolt_shank_length = self.asset_info_nut_bolt[subassembly][components[1]][ "shank_length" ] self.bolt_widths.append(bolt_width) self.bolt_head_heights.append(bolt_head_height) self.bolt_shank_lengths.append(bolt_shank_length) if add_to_stage: bolt_file = ( assets_root_path + self.asset_info_nut_bolt[subassembly][components[1]]["usd_path"] ) add_reference_to_stage(bolt_file, f"/World/envs/env_{i}" + "/bolt") XFormPrim( prim_path=f"/World/envs/env_{i}" + "/bolt", translation=bolt_translation, orientation=bolt_orientation, ) self._stage.GetPrimAtPath( f"/World/envs/env_{i}" + f"/bolt/factory_{components[1]}/collisions" ).SetInstanceable( False ) # This is required to be able to edit physics material physicsUtils.add_physics_material_to_prim( self._stage, self._stage.GetPrimAtPath( f"/World/envs/env_{i}" + f"/bolt/factory_{components[1]}/collisions/mesh_0" ), self.nutboltPhysicsMaterialPath, ) # applies articulation settings from the task configuration yaml file self._sim_config.apply_articulation_settings( "bolt", self._stage.GetPrimAtPath(f"/World/envs/env_{i}" + "/bolt"), self._sim_config.parse_actor_config("bolt"), ) thread_pitch = self.asset_info_nut_bolt[subassembly]["thread_pitch"] self.thread_pitches.append(thread_pitch) # For computing body COM pos self.nut_heights = torch.tensor( self.nut_heights, device=self._device ).unsqueeze(-1) self.bolt_head_heights = torch.tensor( self.bolt_head_heights, device=self._device ).unsqueeze(-1) # For setting initial state self.nut_widths_max = torch.tensor( self.nut_widths_max, device=self._device ).unsqueeze(-1) self.bolt_shank_lengths = torch.tensor( self.bolt_shank_lengths, device=self._device ).unsqueeze(-1) # For defining success or failure self.bolt_widths = torch.tensor( self.bolt_widths, device=self._device ).unsqueeze(-1) self.thread_pitches = torch.tensor( self.thread_pitches, device=self._device ).unsqueeze(-1) def refresh_env_tensors(self): """Refresh tensors.""" # Nut tensors self.nut_pos, self.nut_quat = self.nuts.get_world_poses(clone=False) self.nut_pos -= self.env_pos self.nut_com_pos = fc.translate_along_local_z( pos=self.nut_pos, quat=self.nut_quat, offset=self.bolt_head_heights + self.nut_heights * 0.5, device=self.device, ) self.nut_com_quat = self.nut_quat # always equal nut_velocities = self.nuts.get_velocities(clone=False) self.nut_linvel = nut_velocities[:, 0:3] self.nut_angvel = nut_velocities[:, 3:6] self.nut_com_linvel = self.nut_linvel + torch.cross( self.nut_angvel, (self.nut_com_pos - self.nut_pos), dim=1 ) self.nut_com_angvel = self.nut_angvel # always equal self.nut_force = self.nuts.get_net_contact_forces(clone=False) # Bolt tensors self.bolt_pos, self.bolt_quat = self.bolts.get_world_poses(clone=False) self.bolt_pos -= self.env_pos self.bolt_force = self.bolts.get_net_contact_forces(clone=False)
14,703
Python
39.284931
110
0.603414
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/factory_control.py
# Copyright (c) 2018-2023, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Factory: control module. Imported by base, environment, and task classes. Not directly executed. """ import math import omni.isaac.core.utils.torch as torch_utils import torch def compute_dof_pos_target( cfg_ctrl, arm_dof_pos, fingertip_midpoint_pos, fingertip_midpoint_quat, jacobian, ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat, ctrl_target_gripper_dof_pos, device, ): """Compute Franka DOF position target to move fingertips towards target pose.""" ctrl_target_dof_pos = torch.zeros((cfg_ctrl["num_envs"], 9), device=device) pos_error, axis_angle_error = get_pose_error( fingertip_midpoint_pos=fingertip_midpoint_pos, fingertip_midpoint_quat=fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos=ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=ctrl_target_fingertip_midpoint_quat, jacobian_type=cfg_ctrl["jacobian_type"], rot_error_type="axis_angle", ) delta_fingertip_pose = torch.cat((pos_error, axis_angle_error), dim=1) delta_arm_dof_pos = _get_delta_dof_pos( delta_pose=delta_fingertip_pose, ik_method=cfg_ctrl["ik_method"], jacobian=jacobian, device=device, ) ctrl_target_dof_pos[:, 0:7] = arm_dof_pos + delta_arm_dof_pos ctrl_target_dof_pos[:, 7:9] = ctrl_target_gripper_dof_pos # gripper finger joints return ctrl_target_dof_pos def compute_dof_torque( cfg_ctrl, dof_pos, dof_vel, fingertip_midpoint_pos, fingertip_midpoint_quat, fingertip_midpoint_linvel, fingertip_midpoint_angvel, left_finger_force, right_finger_force, jacobian, arm_mass_matrix, ctrl_target_gripper_dof_pos, ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat, ctrl_target_fingertip_contact_wrench, device, ): """Compute Franka DOF torque to move fingertips towards target pose.""" # References: # 1) https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2018/RD_HS2018script.pdf # 2) Modern Robotics dof_torque = torch.zeros((cfg_ctrl["num_envs"], 9), device=device) if cfg_ctrl["gain_space"] == "joint": pos_error, axis_angle_error = get_pose_error( fingertip_midpoint_pos=fingertip_midpoint_pos, fingertip_midpoint_quat=fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos=ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=ctrl_target_fingertip_midpoint_quat, jacobian_type=cfg_ctrl["jacobian_type"], rot_error_type="axis_angle", ) delta_fingertip_pose = torch.cat((pos_error, axis_angle_error), dim=1) # Set tau = k_p * joint_pos_error - k_d * joint_vel_error (ETH eq. 3.72) delta_arm_dof_pos = _get_delta_dof_pos( delta_pose=delta_fingertip_pose, ik_method=cfg_ctrl["ik_method"], jacobian=jacobian, device=device, ) dof_torque[:, 0:7] = cfg_ctrl[ "joint_prop_gains" ] * delta_arm_dof_pos + cfg_ctrl["joint_deriv_gains"] * (0.0 - dof_vel[:, 0:7]) if cfg_ctrl["do_inertial_comp"]: # Set tau = M * tau, where M is the joint-space mass matrix arm_mass_matrix_joint = arm_mass_matrix dof_torque[:, 0:7] = ( arm_mass_matrix_joint @ dof_torque[:, 0:7].unsqueeze(-1) ).squeeze(-1) elif cfg_ctrl["gain_space"] == "task": task_wrench = torch.zeros((cfg_ctrl["num_envs"], 6), device=device) if cfg_ctrl["do_motion_ctrl"]: pos_error, axis_angle_error = get_pose_error( fingertip_midpoint_pos=fingertip_midpoint_pos, fingertip_midpoint_quat=fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos=ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat=ctrl_target_fingertip_midpoint_quat, jacobian_type=cfg_ctrl["jacobian_type"], rot_error_type="axis_angle", ) delta_fingertip_pose = torch.cat((pos_error, axis_angle_error), dim=1) # Set tau = k_p * task_pos_error - k_d * task_vel_error (building towards eq. 3.96-3.98) task_wrench_motion = _apply_task_space_gains( delta_fingertip_pose=delta_fingertip_pose, fingertip_midpoint_linvel=fingertip_midpoint_linvel, fingertip_midpoint_angvel=fingertip_midpoint_angvel, task_prop_gains=cfg_ctrl["task_prop_gains"], task_deriv_gains=cfg_ctrl["task_deriv_gains"], ) if cfg_ctrl["do_inertial_comp"]: # Set tau = Lambda * tau, where Lambda is the task-space mass matrix jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2) arm_mass_matrix_task = torch.inverse( jacobian @ torch.inverse(arm_mass_matrix) @ jacobian_T ) # ETH eq. 3.86; geometric Jacobian is assumed task_wrench_motion = ( arm_mass_matrix_task @ task_wrench_motion.unsqueeze(-1) ).squeeze(-1) task_wrench = ( task_wrench + cfg_ctrl["motion_ctrl_axes"] * task_wrench_motion ) if cfg_ctrl["do_force_ctrl"]: # Set tau = tau + F_t, where F_t is the target contact wrench task_wrench_force = torch.zeros((cfg_ctrl["num_envs"], 6), device=device) task_wrench_force = ( task_wrench_force + ctrl_target_fingertip_contact_wrench ) # open-loop force control (building towards ETH eq. 3.96-3.98) if cfg_ctrl["force_ctrl_method"] == "closed": force_error, torque_error = _get_wrench_error( left_finger_force=left_finger_force, right_finger_force=right_finger_force, ctrl_target_fingertip_contact_wrench=ctrl_target_fingertip_contact_wrench, num_envs=cfg_ctrl["num_envs"], device=device, ) # Set tau = tau + k_p * contact_wrench_error task_wrench_force = task_wrench_force + cfg_ctrl[ "wrench_prop_gains" ] * torch.cat( (force_error, torque_error), dim=1 ) # part of Modern Robotics eq. 11.61 task_wrench = ( task_wrench + torch.tensor(cfg_ctrl["force_ctrl_axes"], device=device).unsqueeze(0) * task_wrench_force ) # Set tau = J^T * tau, i.e., map tau into joint space as desired jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2) dof_torque[:, 0:7] = (jacobian_T @ task_wrench.unsqueeze(-1)).squeeze(-1) dof_torque[:, 7:9] = cfg_ctrl["gripper_prop_gains"] * ( ctrl_target_gripper_dof_pos - dof_pos[:, 7:9] ) + cfg_ctrl["gripper_deriv_gains"] * ( 0.0 - dof_vel[:, 7:9] ) # gripper finger joints dof_torque = torch.clamp(dof_torque, min=-100.0, max=100.0) return dof_torque def get_pose_error( fingertip_midpoint_pos, fingertip_midpoint_quat, ctrl_target_fingertip_midpoint_pos, ctrl_target_fingertip_midpoint_quat, jacobian_type, rot_error_type, ): """Compute task-space error between target Franka fingertip pose and current pose.""" # Reference: https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2018/RD_HS2018script.pdf # Compute pos error pos_error = ctrl_target_fingertip_midpoint_pos - fingertip_midpoint_pos # Compute rot error if ( jacobian_type == "geometric" ): # See example 2.9.8; note use of J_g and transformation between rotation vectors # Compute quat error (i.e., difference quat) # Reference: https://personal.utdallas.edu/~sxb027100/dock/quat.html fingertip_midpoint_quat_norm = torch_utils.quat_mul( fingertip_midpoint_quat, torch_utils.quat_conjugate(fingertip_midpoint_quat) )[ :, 0 ] # scalar component fingertip_midpoint_quat_inv = torch_utils.quat_conjugate( fingertip_midpoint_quat ) / fingertip_midpoint_quat_norm.unsqueeze(-1) quat_error = torch_utils.quat_mul( ctrl_target_fingertip_midpoint_quat, fingertip_midpoint_quat_inv ) # Convert to axis-angle error axis_angle_error = axis_angle_from_quat(quat_error) elif ( jacobian_type == "analytic" ): # See example 2.9.7; note use of J_a and difference of rotation vectors # Compute axis-angle error axis_angle_error = axis_angle_from_quat( ctrl_target_fingertip_midpoint_quat ) - axis_angle_from_quat(fingertip_midpoint_quat) if rot_error_type == "quat": return pos_error, quat_error elif rot_error_type == "axis_angle": return pos_error, axis_angle_error def _get_wrench_error( left_finger_force, right_finger_force, ctrl_target_fingertip_contact_wrench, num_envs, device, ): """Compute task-space error between target Franka fingertip contact wrench and current wrench.""" fingertip_contact_wrench = torch.zeros((num_envs, 6), device=device) fingertip_contact_wrench[:, 0:3] = ( left_finger_force + right_finger_force ) # net contact force on fingers # Cols 3 to 6 are all zeros, as we do not have enough information force_error = ctrl_target_fingertip_contact_wrench[:, 0:3] - ( -fingertip_contact_wrench[:, 0:3] ) torque_error = ctrl_target_fingertip_contact_wrench[:, 3:6] - ( -fingertip_contact_wrench[:, 3:6] ) return force_error, torque_error def _get_delta_dof_pos(delta_pose, ik_method, jacobian, device): """Get delta Franka DOF position from delta pose using specified IK method.""" # References: # 1) https://www.cs.cmu.edu/~15464-s13/lectures/lecture6/iksurvey.pdf # 2) https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2018/RD_HS2018script.pdf (p. 47) if ik_method == "pinv": # Jacobian pseudoinverse k_val = 1.0 jacobian_pinv = torch.linalg.pinv(jacobian) delta_dof_pos = k_val * jacobian_pinv @ delta_pose.unsqueeze(-1) delta_dof_pos = delta_dof_pos.squeeze(-1) elif ik_method == "trans": # Jacobian transpose k_val = 1.0 jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2) delta_dof_pos = k_val * jacobian_T @ delta_pose.unsqueeze(-1) delta_dof_pos = delta_dof_pos.squeeze(-1) elif ik_method == "dls": # damped least squares (Levenberg-Marquardt) lambda_val = 0.1 jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2) lambda_matrix = (lambda_val**2) * torch.eye( n=jacobian.shape[1], device=device ) delta_dof_pos = ( jacobian_T @ torch.inverse(jacobian @ jacobian_T + lambda_matrix) @ delta_pose.unsqueeze(-1) ) delta_dof_pos = delta_dof_pos.squeeze(-1) elif ik_method == "svd": # adaptive SVD k_val = 1.0 U, S, Vh = torch.linalg.svd(jacobian) S_inv = 1.0 / S min_singular_value = 1.0e-5 S_inv = torch.where(S > min_singular_value, S_inv, torch.zeros_like(S_inv)) jacobian_pinv = ( torch.transpose(Vh, dim0=1, dim1=2)[:, :, :6] @ torch.diag_embed(S_inv) @ torch.transpose(U, dim0=1, dim1=2) ) delta_dof_pos = k_val * jacobian_pinv @ delta_pose.unsqueeze(-1) delta_dof_pos = delta_dof_pos.squeeze(-1) return delta_dof_pos def _apply_task_space_gains( delta_fingertip_pose, fingertip_midpoint_linvel, fingertip_midpoint_angvel, task_prop_gains, task_deriv_gains, ): """Interpret PD gains as task-space gains. Apply to task-space error.""" task_wrench = torch.zeros_like(delta_fingertip_pose) # Apply gains to lin error components lin_error = delta_fingertip_pose[:, 0:3] task_wrench[:, 0:3] = task_prop_gains[:, 0:3] * lin_error + task_deriv_gains[ :, 0:3 ] * (0.0 - fingertip_midpoint_linvel) # Apply gains to rot error components rot_error = delta_fingertip_pose[:, 3:6] task_wrench[:, 3:6] = task_prop_gains[:, 3:6] * rot_error + task_deriv_gains[ :, 3:6 ] * (0.0 - fingertip_midpoint_angvel) return task_wrench def get_analytic_jacobian(fingertip_quat, fingertip_jacobian, num_envs, device): """Convert geometric Jacobian to analytic Jacobian.""" # Reference: https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2018/RD_HS2018script.pdf # NOTE: Gym returns world-space geometric Jacobians by default batch = num_envs # Overview: # x = [x_p; x_r] # From eq. 2.189 and 2.192, x_dot = J_a @ q_dot = (E_inv @ J_g) @ q_dot # From eq. 2.191, E = block(E_p, E_r); thus, E_inv = block(E_p_inv, E_r_inv) # Eq. 2.12 gives an expression for E_p_inv # Eq. 2.107 gives an expression for E_r_inv # Compute E_inv_top (i.e., [E_p_inv, 0]) I = torch.eye(3, device=device) E_p_inv = I.repeat((batch, 1)).reshape(batch, 3, 3) E_inv_top = torch.cat((E_p_inv, torch.zeros((batch, 3, 3), device=device)), dim=2) # Compute E_inv_bottom (i.e., [0, E_r_inv]) fingertip_axis_angle = axis_angle_from_quat(fingertip_quat) fingertip_axis_angle_cross = get_skew_symm_matrix( fingertip_axis_angle, device=device ) fingertip_angle = torch.linalg.vector_norm(fingertip_axis_angle, dim=1) factor_1 = 1 / (fingertip_angle**2) factor_2 = 1 - fingertip_angle * 0.5 * torch.sin(fingertip_angle) / ( 1 - torch.cos(fingertip_angle) ) factor_3 = factor_1 * factor_2 E_r_inv = ( I - 1 * 0.5 * fingertip_axis_angle_cross + (fingertip_axis_angle_cross @ fingertip_axis_angle_cross) * factor_3.unsqueeze(-1).repeat((1, 3 * 3)).reshape((batch, 3, 3)) ) E_inv_bottom = torch.cat( (torch.zeros((batch, 3, 3), device=device), E_r_inv), dim=2 ) E_inv = torch.cat( (E_inv_top.reshape((batch, 3 * 6)), E_inv_bottom.reshape((batch, 3 * 6))), dim=1 ).reshape((batch, 6, 6)) J_a = E_inv @ fingertip_jacobian return J_a def get_skew_symm_matrix(vec, device): """Convert vector to skew-symmetric matrix.""" # Reference: https://en.wikipedia.org/wiki/Cross_product#Conversion_to_matrix_multiplication batch = vec.shape[0] I = torch.eye(3, device=device) skew_symm = torch.transpose( torch.cross( vec.repeat((1, 3)).reshape((batch * 3, 3)), I.repeat((batch, 1)) ).reshape(batch, 3, 3), dim0=1, dim1=2, ) return skew_symm def translate_along_local_z(pos, quat, offset, device): """Translate global body position along local Z-axis and express in global coordinates.""" num_vecs = pos.shape[0] offset_vec = offset * torch.tensor([0.0, 0.0, 1.0], device=device).repeat( (num_vecs, 1) ) _, translated_pos = torch_utils.tf_combine( q1=quat, t1=pos, q2=torch.tensor([1.0, 0.0, 0.0, 0.0], device=device).repeat((num_vecs, 1)), t2=offset_vec, ) return translated_pos def axis_angle_from_euler(euler): """Convert tensor of Euler angles to tensor of axis-angles.""" quat = torch_utils.quat_from_euler_xyz( roll=euler[:, 0], pitch=euler[:, 1], yaw=euler[:, 2] ) quat = quat * torch.sign(quat[:, 0]).unsqueeze(-1) # smaller rotation axis_angle = axis_angle_from_quat(quat) return axis_angle def axis_angle_from_quat(quat, eps=1.0e-6): """Convert tensor of quaternions to tensor of axis-angles.""" # Reference: https://github.com/facebookresearch/pytorch3d/blob/bee31c48d3d36a8ea268f9835663c52ff4a476ec/pytorch3d/transforms/rotation_conversions.py#L516-L544 mag = torch.linalg.norm(quat[:, 1:4], dim=1) half_angle = torch.atan2(mag, quat[:, 0]) angle = 2.0 * half_angle sin_half_angle_over_angle = torch.where( torch.abs(angle) > eps, torch.sin(half_angle) / angle, 1 / 2 - angle**2.0 / 48 ) axis_angle = quat[:, 1:4] / sin_half_angle_over_angle.unsqueeze(-1) return axis_angle def axis_angle_from_quat_naive(quat): """Convert tensor of quaternions to tensor of axis-angles.""" # Reference: https://en.wikipedia.org/wiki/quats_and_spatial_rotation#Recovering_the_axis-angle_representation # NOTE: Susceptible to undesirable behavior due to divide-by-zero mag = torch.linalg.vector_norm(quat[:, 1:4], dim=1) # zero when quat = [1, 0, 0, 0] axis = quat[:, 1:4] / mag.unsqueeze(-1) angle = 2.0 * torch.atan2(mag, quat[:, 0]) axis_angle = axis * angle.unsqueeze(-1) return axis_angle def get_rand_quat(num_quats, device): """Generate tensor of random quaternions.""" # Reference: http://planning.cs.uiuc.edu/node198.html u = torch.rand((num_quats, 3), device=device) quat = torch.zeros((num_quats, 4), device=device) quat[:, 0] = torch.sqrt(u[:, 0]) * torch.cos(2 * math.pi * u[:, 2]) quat[:, 1] = torch.sqrt(1 - u[:, 0]) * torch.sin(2 * math.pi * u[:, 1]) quat[:, 2] = torch.sqrt(1 - u[:, 0]) * torch.cos(2 * math.pi * u[:, 1]) quat[:, 3] = torch.sqrt(u[:, 0]) * torch.sin(2 * math.pi * u[:, 2]) return quat def get_nonrand_quat(num_quats, rot_perturbation, device): """Generate tensor of non-random quaternions by composing random Euler rotations.""" quat = torch_utils.quat_from_euler_xyz( torch.rand((num_quats, 1), device=device).squeeze() * rot_perturbation * 2.0 - rot_perturbation, torch.rand((num_quats, 1), device=device).squeeze() * rot_perturbation * 2.0 - rot_perturbation, torch.rand((num_quats, 1), device=device).squeeze() * rot_perturbation * 2.0 - rot_perturbation, ) return quat
19,859
Python
37.864971
163
0.627574
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/yaml/factory_asset_info_nut_bolt.yaml
nut_bolt_m4: nut: usd_path: '/Isaac/Props/Factory/factory_nut_m4_tight/factory_nut_m4_tight.usd' width_min: 0.007 # distance from flat surface to flat surface width_max: 0.0080829 # distance from edge to edge height: 0.0032 # height of nut flat_length: 0.00404145 # length of flat surface bolt: usd_path: '/Isaac/Props/Factory/factory_bolt_m4_tight/factory_bolt_m4_tight.usd' width: 0.004 # major diameter of bolt head_height: 0.004 # height of bolt head shank_length: 0.016 # length of bolt shank thread_pitch: 0.0007 # distance between threads nut_bolt_m8: nut: usd_path: '/Isaac/Props/Factory/factory_nut_m8_tight/factory_nut_m8_tight.usd' width_min: 0.013 width_max: 0.01501111 height: 0.0065 flat_length: 0.00750555 bolt: usd_path: '/Isaac/Props/Factory/factory_bolt_m8_tight/factory_bolt_m8_tight.usd' width: 0.008 head_height: 0.008 shank_length: 0.018 thread_pitch: 0.00125 nut_bolt_m12: nut: usd_path: '/Isaac/Props/Factory/factory_nut_m12_tight/factory_nut_m12_tight.usd' width_min: 0.019 width_max: 0.02193931 height: 0.010 flat_length: 0.01096966 bolt: usd_path: '/Isaac/Props/Factory/factory_bolt_m12_tight/factory_bolt_m12_tight.usd' width: 0.012 head_height: 0.012 shank_length: 0.020 thread_pitch: 0.00175 nut_bolt_m16: nut: usd_path: '/Isaac/Props/Factory/factory_nut_m16_tight/factory_nut_m16_tight.usd' width_min: 0.024 width_max: 0.02771281 height: 0.013 flat_length: 0.01385641 bolt: usd_path: '/Isaac/Props/Factory/factory_bolt_m16_tight/factory_bolt_m16_tight.usd' width: 0.016 head_height: 0.016 shank_length: 0.025 thread_pitch: 0.002 nut_bolt_m20: nut: usd_path: '/Isaac/Props/Factory/factory_nut_m20_tight/factory_nut_m20_tight.usd' width_min: 0.030 width_max: 0.03464102 height: 0.016 flat_length: 0.01732051 bolt: usd_path: '/Isaac/Props/Factory/factory_bolt_m20_tight/factory_bolt_m20_tight.usd' width: 0.020 head_height: 0.020 shank_length: 0.045 thread_pitch: 0.0025
2,331
YAML
32.314285
90
0.617332
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/factory/yaml/factory_asset_info_franka_table.yaml
franka_hand_length: 0.0584 # distance from origin of hand to origin of finger franka_finger_length: 0.053671 # distance from origin of finger to bottom of fingerpad franka_fingerpad_length: 0.017608 # distance from top of inner surface of fingerpad to bottom of inner surface of fingerpad franka_gripper_width_max: 0.080 # maximum opening width of gripper table_depth: 0.6 # depth of table table_width: 1.0 # width of table
431
YAML
52.999993
124
0.772622
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/utils/anymal_terrain_generator.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import torch from omniisaacgymenvs.utils.terrain_utils.terrain_utils import * # terrain generator class Terrain: def __init__(self, cfg, num_robots) -> None: self.horizontal_scale = 0.1 self.vertical_scale = 0.005 self.border_size = 20 self.num_per_env = 2 self.env_length = cfg["mapLength"] self.env_width = cfg["mapWidth"] self.proportions = [np.sum(cfg["terrainProportions"][: i + 1]) for i in range(len(cfg["terrainProportions"]))] self.env_rows = cfg["numLevels"] self.env_cols = cfg["numTerrains"] self.num_maps = self.env_rows * self.env_cols self.num_per_env = int(num_robots / self.num_maps) self.env_origins = np.zeros((self.env_rows, self.env_cols, 3)) self.width_per_env_pixels = int(self.env_width / self.horizontal_scale) self.length_per_env_pixels = int(self.env_length / self.horizontal_scale) self.border = int(self.border_size / self.horizontal_scale) self.tot_cols = int(self.env_cols * self.width_per_env_pixels) + 2 * self.border self.tot_rows = int(self.env_rows * self.length_per_env_pixels) + 2 * self.border self.height_field_raw = np.zeros((self.tot_rows, self.tot_cols), dtype=np.int16) if cfg["curriculum"]: self.curiculum(num_robots, num_terrains=self.env_cols, num_levels=self.env_rows) else: self.randomized_terrain() self.heightsamples = self.height_field_raw self.vertices, self.triangles = convert_heightfield_to_trimesh( self.height_field_raw, self.horizontal_scale, self.vertical_scale, cfg["slopeTreshold"] ) def randomized_terrain(self): for k in range(self.num_maps): # Env coordinates in the world (i, j) = np.unravel_index(k, (self.env_rows, self.env_cols)) # Heightfield coordinate system from now on start_x = self.border + i * self.length_per_env_pixels end_x = self.border + (i + 1) * self.length_per_env_pixels start_y = self.border + j * self.width_per_env_pixels end_y = self.border + (j + 1) * self.width_per_env_pixels terrain = SubTerrain( "terrain", width=self.width_per_env_pixels, length=self.width_per_env_pixels, vertical_scale=self.vertical_scale, horizontal_scale=self.horizontal_scale, ) choice = np.random.uniform(0, 1) if choice < 0.1: if np.random.choice([0, 1]): pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3])) random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.05, downsampled_scale=0.2) else: pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3])) elif choice < 0.6: # step_height = np.random.choice([-0.18, -0.15, -0.1, -0.05, 0.05, 0.1, 0.15, 0.18]) step_height = np.random.choice([-0.15, 0.15]) pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.0) elif choice < 1.0: discrete_obstacles_terrain(terrain, 0.15, 1.0, 2.0, 40, platform_size=3.0) self.height_field_raw[start_x:end_x, start_y:end_y] = terrain.height_field_raw env_origin_x = (i + 0.5) * self.env_length env_origin_y = (j + 0.5) * self.env_width x1 = int((self.env_length / 2.0 - 1) / self.horizontal_scale) x2 = int((self.env_length / 2.0 + 1) / self.horizontal_scale) y1 = int((self.env_width / 2.0 - 1) / self.horizontal_scale) y2 = int((self.env_width / 2.0 + 1) / self.horizontal_scale) env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2]) * self.vertical_scale self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z] def curiculum(self, num_robots, num_terrains, num_levels): num_robots_per_map = int(num_robots / num_terrains) left_over = num_robots % num_terrains idx = 0 for j in range(num_terrains): for i in range(num_levels): terrain = SubTerrain( "terrain", width=self.width_per_env_pixels, length=self.width_per_env_pixels, vertical_scale=self.vertical_scale, horizontal_scale=self.horizontal_scale, ) difficulty = i / num_levels choice = j / num_terrains slope = difficulty * 0.4 step_height = 0.05 + 0.175 * difficulty discrete_obstacles_height = 0.025 + difficulty * 0.15 stepping_stones_size = 2 - 1.8 * difficulty if choice < self.proportions[0]: if choice < 0.05: slope *= -1 pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.0) elif choice < self.proportions[1]: if choice < 0.15: slope *= -1 pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.0) random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.025, downsampled_scale=0.2) elif choice < self.proportions[3]: if choice < self.proportions[2]: step_height *= -1 pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.0) elif choice < self.proportions[4]: discrete_obstacles_terrain(terrain, discrete_obstacles_height, 1.0, 2.0, 40, platform_size=3.0) else: stepping_stones_terrain( terrain, stone_size=stepping_stones_size, stone_distance=0.1, max_height=0.0, platform_size=3.0 ) # Heightfield coordinate system start_x = self.border + i * self.length_per_env_pixels end_x = self.border + (i + 1) * self.length_per_env_pixels start_y = self.border + j * self.width_per_env_pixels end_y = self.border + (j + 1) * self.width_per_env_pixels self.height_field_raw[start_x:end_x, start_y:end_y] = terrain.height_field_raw robots_in_map = num_robots_per_map if j < left_over: robots_in_map += 1 env_origin_x = (i + 0.5) * self.env_length env_origin_y = (j + 0.5) * self.env_width x1 = int((self.env_length / 2.0 - 1) / self.horizontal_scale) x2 = int((self.env_length / 2.0 + 1) / self.horizontal_scale) y1 = int((self.env_width / 2.0 - 1) / self.horizontal_scale) y2 = int((self.env_width / 2.0 + 1) / self.horizontal_scale) env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2]) * self.vertical_scale self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z]
8,852
Python
50.47093
119
0.591618
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/utils/usd_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from pxr import UsdLux, UsdPhysics def set_drive_type(prim_path, drive_type): joint_prim = get_prim_at_path(prim_path) # set drive type ("angular" or "linear") drive = UsdPhysics.DriveAPI.Apply(joint_prim, drive_type) return drive def set_drive_target_position(drive, target_value): if not drive.GetTargetPositionAttr(): drive.CreateTargetPositionAttr(target_value) else: drive.GetTargetPositionAttr().Set(target_value) def set_drive_target_velocity(drive, target_value): if not drive.GetTargetVelocityAttr(): drive.CreateTargetVelocityAttr(target_value) else: drive.GetTargetVelocityAttr().Set(target_value) def set_drive_stiffness(drive, stiffness): if not drive.GetStiffnessAttr(): drive.CreateStiffnessAttr(stiffness) else: drive.GetStiffnessAttr().Set(stiffness) def set_drive_damping(drive, damping): if not drive.GetDampingAttr(): drive.CreateDampingAttr(damping) else: drive.GetDampingAttr().Set(damping) def set_drive_max_force(drive, max_force): if not drive.GetMaxForceAttr(): drive.CreateMaxForceAttr(max_force) else: drive.GetMaxForceAttr().Set(max_force) def set_drive(prim_path, drive_type, target_type, target_value, stiffness, damping, max_force) -> None: drive = set_drive_type(prim_path, drive_type) # set target type ("position" or "velocity") if target_type == "position": set_drive_target_position(drive, target_value) elif target_type == "velocity": set_drive_target_velocity(drive, target_value) set_drive_stiffness(drive, stiffness) set_drive_damping(drive, damping) set_drive_max_force(drive, max_force)
3,403
Python
36.406593
103
0.740229
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/shared/in_hand_manipulation.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math from abc import abstractmethod import numpy as np import torch from omni.isaac.core.prims import RigidPrimView, XFormPrim from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage from omni.isaac.core.utils.torch import * from omniisaacgymenvs.tasks.base.rl_task import RLTask class InHandManipulationTask(RLTask): def __init__(self, name, env, offset=None) -> None: InHandManipulationTask.update_config(self) RLTask.__init__(self, name, env) self.x_unit_tensor = torch.tensor([1, 0, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.y_unit_tensor = torch.tensor([0, 1, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.z_unit_tensor = torch.tensor([0, 0, 1], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.reset_goal_buf = self.reset_buf.clone() self.successes = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) self.consecutive_successes = torch.zeros(1, dtype=torch.float, device=self.device) self.randomization_buf = torch.zeros(self.num_envs, dtype=torch.long, device=self.device) self.av_factor = torch.tensor(self.av_factor, dtype=torch.float, device=self.device) self.total_successes = 0 self.total_resets = 0 def update_config(self): self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self.dist_reward_scale = self._task_cfg["env"]["distRewardScale"] self.rot_reward_scale = self._task_cfg["env"]["rotRewardScale"] self.action_penalty_scale = self._task_cfg["env"]["actionPenaltyScale"] self.success_tolerance = self._task_cfg["env"]["successTolerance"] self.reach_goal_bonus = self._task_cfg["env"]["reachGoalBonus"] self.fall_dist = self._task_cfg["env"]["fallDistance"] self.fall_penalty = self._task_cfg["env"]["fallPenalty"] self.rot_eps = self._task_cfg["env"]["rotEps"] self.vel_obs_scale = self._task_cfg["env"]["velObsScale"] self.reset_position_noise = self._task_cfg["env"]["resetPositionNoise"] self.reset_rotation_noise = self._task_cfg["env"]["resetRotationNoise"] self.reset_dof_pos_noise = self._task_cfg["env"]["resetDofPosRandomInterval"] self.reset_dof_vel_noise = self._task_cfg["env"]["resetDofVelRandomInterval"] self.hand_dof_speed_scale = self._task_cfg["env"]["dofSpeedScale"] self.use_relative_control = self._task_cfg["env"]["useRelativeControl"] self.act_moving_average = self._task_cfg["env"]["actionsMovingAverage"] self.max_episode_length = self._task_cfg["env"]["episodeLength"] self.reset_time = self._task_cfg["env"].get("resetTime", -1.0) self.print_success_stat = self._task_cfg["env"]["printNumSuccesses"] self.max_consecutive_successes = self._task_cfg["env"]["maxConsecutiveSuccesses"] self.av_factor = self._task_cfg["env"].get("averFactor", 0.1) self.dt = 1.0 / 60 control_freq_inv = self._task_cfg["env"].get("controlFrequencyInv", 1) if self.reset_time > 0.0: self.max_episode_length = int(round(self.reset_time / (control_freq_inv * self.dt))) print("Reset time: ", self.reset_time) print("New episode length: ", self.max_episode_length) def set_up_scene(self, scene) -> None: self._stage = get_current_stage() self._assets_root_path = get_assets_root_path() self.get_starting_positions() self.get_hand() self.object_start_translation = self.hand_start_translation.clone() self.object_start_translation[1] += self.pose_dy self.object_start_translation[2] += self.pose_dz self.object_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.goal_displacement_tensor = torch.tensor([-0.2, -0.06, 0.12], device=self.device) self.goal_start_translation = self.object_start_translation + self.goal_displacement_tensor self.goal_start_translation[2] -= 0.04 self.goal_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.get_object(self.hand_start_translation, self.pose_dy, self.pose_dz) self.get_goal() super().set_up_scene(scene, filter_collisions=False) self._hands = self.get_hand_view(scene) scene.add(self._hands) self._objects = RigidPrimView( prim_paths_expr="/World/envs/env_.*/object/object", name="object_view", reset_xform_properties=False, masses=torch.tensor([0.07087] * self._num_envs, device=self.device), ) scene.add(self._objects) self._goals = RigidPrimView( prim_paths_expr="/World/envs/env_.*/goal/object", name="goal_view", reset_xform_properties=False ) self._goals._non_root_link = True # hack to ignore kinematics scene.add(self._goals) if self._dr_randomizer.randomize: self._dr_randomizer.apply_on_startup_domain_randomization(self) def initialize_views(self, scene): RLTask.initialize_views(self, scene) if scene.object_exists("shadow_hand_view"): scene.remove_object("shadow_hand_view", registry_only=True) if scene.object_exists("finger_view"): scene.remove_object("finger_view", registry_only=True) if scene.object_exists("allegro_hand_view"): scene.remove_object("allegro_hand_view", registry_only=True) if scene.object_exists("goal_view"): scene.remove_object("goal_view", registry_only=True) if scene.object_exists("object_view"): scene.remove_object("object_view", registry_only=True) self.get_starting_positions() self.object_start_translation = self.hand_start_translation.clone() self.object_start_translation[1] += self.pose_dy self.object_start_translation[2] += self.pose_dz self.object_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.goal_displacement_tensor = torch.tensor([-0.2, -0.06, 0.12], device=self.device) self.goal_start_translation = self.object_start_translation + self.goal_displacement_tensor self.goal_start_translation[2] -= 0.04 self.goal_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self._hands = self.get_hand_view(scene) scene.add(self._hands) self._objects = RigidPrimView( prim_paths_expr="/World/envs/env_.*/object/object", name="object_view", reset_xform_properties=False, masses=torch.tensor([0.07087] * self._num_envs, device=self.device), ) scene.add(self._objects) self._goals = RigidPrimView( prim_paths_expr="/World/envs/env_.*/goal/object", name="goal_view", reset_xform_properties=False ) self._goals._non_root_link = True # hack to ignore kinematics scene.add(self._goals) if self._dr_randomizer.randomize: self._dr_randomizer.apply_on_startup_domain_randomization(self) @abstractmethod def get_hand(self): pass @abstractmethod def get_hand_view(self): pass @abstractmethod def get_observations(self): pass def get_object(self, hand_start_translation, pose_dy, pose_dz): self.object_usd_path = f"{self._assets_root_path}/Isaac/Props/Blocks/block_instanceable.usd" add_reference_to_stage(self.object_usd_path, self.default_zero_env_path + "/object") obj = XFormPrim( prim_path=self.default_zero_env_path + "/object/object", name="object", translation=self.object_start_translation, orientation=self.object_start_orientation, scale=self.object_scale, ) self._sim_config.apply_articulation_settings( "object", get_prim_at_path(obj.prim_path), self._sim_config.parse_actor_config("object") ) def get_goal(self): add_reference_to_stage(self.object_usd_path, self.default_zero_env_path + "/goal") goal = XFormPrim( prim_path=self.default_zero_env_path + "/goal", name="goal", translation=self.goal_start_translation, orientation=self.goal_start_orientation, scale=self.object_scale, ) self._sim_config.apply_articulation_settings( "goal", get_prim_at_path(goal.prim_path), self._sim_config.parse_actor_config("goal_object") ) def post_reset(self): self.num_hand_dofs = self._hands.num_dof self.actuated_dof_indices = self._hands.actuated_dof_indices self.hand_dof_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.prev_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.cur_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) dof_limits = self._hands.get_dof_limits() self.hand_dof_lower_limits, self.hand_dof_upper_limits = torch.t(dof_limits[0].to(self.device)) self.hand_dof_default_pos = torch.zeros(self.num_hand_dofs, dtype=torch.float, device=self.device) self.hand_dof_default_vel = torch.zeros(self.num_hand_dofs, dtype=torch.float, device=self.device) self.object_init_pos, self.object_init_rot = self._objects.get_world_poses() self.object_init_pos -= self._env_pos self.object_init_velocities = torch.zeros_like( self._objects.get_velocities(), dtype=torch.float, device=self.device ) self.goal_pos = self.object_init_pos.clone() self.goal_pos[:, 2] -= 0.04 self.goal_rot = self.object_init_rot.clone() self.goal_init_pos = self.goal_pos.clone() self.goal_init_rot = self.goal_rot.clone() # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) if self._dr_randomizer.randomize: self._dr_randomizer.set_up_domain_randomization(self) def get_object_goal_observations(self): self.object_pos, self.object_rot = self._objects.get_world_poses(clone=False) self.object_pos -= self._env_pos self.object_velocities = self._objects.get_velocities(clone=False) self.object_linvel = self.object_velocities[:, 0:3] self.object_angvel = self.object_velocities[:, 3:6] def calculate_metrics(self): ( self.rew_buf[:], self.reset_buf[:], self.reset_goal_buf[:], self.progress_buf[:], self.successes[:], self.consecutive_successes[:], ) = compute_hand_reward( self.rew_buf, self.reset_buf, self.reset_goal_buf, self.progress_buf, self.successes, self.consecutive_successes, self.max_episode_length, self.object_pos, self.object_rot, self.goal_pos, self.goal_rot, self.dist_reward_scale, self.rot_reward_scale, self.rot_eps, self.actions, self.action_penalty_scale, self.success_tolerance, self.reach_goal_bonus, self.fall_dist, self.fall_penalty, self.max_consecutive_successes, self.av_factor, ) self.extras["consecutive_successes"] = self.consecutive_successes.mean() self.randomization_buf += 1 if self.print_success_stat: self.total_resets = self.total_resets + self.reset_buf.sum() direct_average_successes = self.total_successes + self.successes.sum() self.total_successes = self.total_successes + (self.successes * self.reset_buf).sum() # The direct average shows the overall result more quickly, but slightly undershoots long term policy performance. print( "Direct average consecutive successes = {:.1f}".format( direct_average_successes / (self.total_resets + self.num_envs) ) ) if self.total_resets > 0: print( "Post-Reset average consecutive successes = {:.1f}".format(self.total_successes / self.total_resets) ) def pre_physics_step(self, actions): if not self.world.is_playing(): return env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) goal_env_ids = self.reset_goal_buf.nonzero(as_tuple=False).squeeze(-1) reset_buf = self.reset_buf.clone() # if only goals need reset, then call set API if len(goal_env_ids) > 0 and len(env_ids) == 0: self.reset_target_pose(goal_env_ids) elif len(goal_env_ids) > 0: self.reset_target_pose(goal_env_ids) if len(env_ids) > 0: self.reset_idx(env_ids) self.actions = actions.clone().to(self.device) if self.use_relative_control: targets = ( self.prev_targets[:, self.actuated_dof_indices] + self.hand_dof_speed_scale * self.dt * self.actions ) self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp( targets, self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices], ) else: self.cur_targets[:, self.actuated_dof_indices] = scale( self.actions, self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices], ) self.cur_targets[:, self.actuated_dof_indices] = ( self.act_moving_average * self.cur_targets[:, self.actuated_dof_indices] + (1.0 - self.act_moving_average) * self.prev_targets[:, self.actuated_dof_indices] ) self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp( self.cur_targets[:, self.actuated_dof_indices], self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices], ) self.prev_targets[:, self.actuated_dof_indices] = self.cur_targets[:, self.actuated_dof_indices] self._hands.set_joint_position_targets( self.cur_targets[:, self.actuated_dof_indices], indices=None, joint_indices=self.actuated_dof_indices ) if self._dr_randomizer.randomize: rand_envs = torch.where( self.randomization_buf >= self._dr_randomizer.min_frequency, torch.ones_like(self.randomization_buf), torch.zeros_like(self.randomization_buf), ) rand_env_ids = torch.nonzero(torch.logical_and(rand_envs, reset_buf)) self.dr.physics_view.step_randomization(rand_env_ids) self.randomization_buf[rand_env_ids] = 0 def is_done(self): pass def reset_target_pose(self, env_ids): # reset goal indices = env_ids.to(dtype=torch.int32) rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), 4), device=self.device) new_rot = randomize_rotation( rand_floats[:, 0], rand_floats[:, 1], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids] ) self.goal_pos[env_ids] = self.goal_init_pos[env_ids, 0:3] self.goal_rot[env_ids] = new_rot goal_pos, goal_rot = self.goal_pos.clone(), self.goal_rot.clone() goal_pos[env_ids] = ( self.goal_pos[env_ids] + self.goal_displacement_tensor + self._env_pos[env_ids] ) # add world env pos self._goals.set_world_poses(goal_pos[env_ids], goal_rot[env_ids], indices) self.reset_goal_buf[env_ids] = 0 def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), self.num_hand_dofs * 2 + 5), device=self.device) self.reset_target_pose(env_ids) # reset object new_object_pos = ( self.object_init_pos[env_ids] + self.reset_position_noise * rand_floats[:, 0:3] + self._env_pos[env_ids] ) # add world env pos new_object_rot = randomize_rotation( rand_floats[:, 3], rand_floats[:, 4], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids] ) object_velocities = torch.zeros_like(self.object_init_velocities, dtype=torch.float, device=self.device) self._objects.set_velocities(object_velocities[env_ids], indices) self._objects.set_world_poses(new_object_pos, new_object_rot, indices) # reset hand delta_max = self.hand_dof_upper_limits - self.hand_dof_default_pos delta_min = self.hand_dof_lower_limits - self.hand_dof_default_pos rand_delta = delta_min + (delta_max - delta_min) * 0.5 * (rand_floats[:, 5 : 5 + self.num_hand_dofs] + 1.0) pos = self.hand_dof_default_pos + self.reset_dof_pos_noise * rand_delta dof_pos = torch.zeros((self.num_envs, self.num_hand_dofs), device=self.device) dof_pos[env_ids, :] = pos dof_vel = torch.zeros((self.num_envs, self.num_hand_dofs), device=self.device) dof_vel[env_ids, :] = ( self.hand_dof_default_vel + self.reset_dof_vel_noise * rand_floats[:, 5 + self.num_hand_dofs : 5 + self.num_hand_dofs * 2] ) self.prev_targets[env_ids, : self.num_hand_dofs] = pos self.cur_targets[env_ids, : self.num_hand_dofs] = pos self.hand_dof_targets[env_ids, :] = pos self._hands.set_joint_position_targets(self.hand_dof_targets[env_ids], indices) self._hands.set_joint_positions(dof_pos[env_ids], indices) self._hands.set_joint_velocities(dof_vel[env_ids], indices) self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 0 self.successes[env_ids] = 0 ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def randomize_rotation(rand0, rand1, x_unit_tensor, y_unit_tensor): return quat_mul( quat_from_angle_axis(rand0 * np.pi, x_unit_tensor), quat_from_angle_axis(rand1 * np.pi, y_unit_tensor) ) @torch.jit.script def compute_hand_reward( rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes, max_episode_length: float, object_pos, object_rot, target_pos, target_rot, dist_reward_scale: float, rot_reward_scale: float, rot_eps: float, actions, action_penalty_scale: float, success_tolerance: float, reach_goal_bonus: float, fall_dist: float, fall_penalty: float, max_consecutive_successes: int, av_factor: float, ): goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1) # Orientation alignment for the cube in hand and goal cube quat_diff = quat_mul(object_rot, quat_conjugate(target_rot)) rot_dist = 2.0 * torch.asin( torch.clamp(torch.norm(quat_diff[:, 1:4], p=2, dim=-1), max=1.0) ) # changed quat convention dist_rew = goal_dist * dist_reward_scale rot_rew = 1.0 / (torch.abs(rot_dist) + rot_eps) * rot_reward_scale action_penalty = torch.sum(actions**2, dim=-1) # Total reward is: position distance + orientation alignment + action regularization + success bonus + fall penalty reward = dist_rew + rot_rew + action_penalty * action_penalty_scale # Find out which envs hit the goal and update successes count goal_resets = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.ones_like(reset_goal_buf), reset_goal_buf) successes = successes + goal_resets # Success bonus: orientation is within `success_tolerance` of goal orientation reward = torch.where(goal_resets == 1, reward + reach_goal_bonus, reward) # Fall penalty: distance to the goal is larger than a threashold reward = torch.where(goal_dist >= fall_dist, reward + fall_penalty, reward) # Check env termination conditions, including maximum success number resets = torch.where(goal_dist >= fall_dist, torch.ones_like(reset_buf), reset_buf) if max_consecutive_successes > 0: # Reset progress buffer on goal envs if max_consecutive_successes > 0 progress_buf = torch.where( torch.abs(rot_dist) <= success_tolerance, torch.zeros_like(progress_buf), progress_buf ) resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets) resets = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(resets), resets) # Apply penalty for not reaching the goal if max_consecutive_successes > 0: reward = torch.where(progress_buf >= max_episode_length - 1, reward + 0.5 * fall_penalty, reward) num_resets = torch.sum(resets) finished_cons_successes = torch.sum(successes * resets.float()) cons_successes = torch.where( num_resets > 0, av_factor * finished_cons_successes / num_resets + (1.0 - av_factor) * consecutive_successes, consecutive_successes, ) return reward, resets, goal_resets, progress_buf, successes, cons_successes
23,466
Python
43.110902
126
0.630657
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tasks/shared/locomotion.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math from abc import abstractmethod import numpy as np import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.maths import tensor_clamp, torch_rand_float, unscale from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omniisaacgymenvs.tasks.base.rl_task import RLTask class LocomotionTask(RLTask): def __init__(self, name, env, offset=None) -> None: LocomotionTask.update_config(self) RLTask.__init__(self, name, env) return def update_config(self): self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.angular_velocity_scale = self._task_cfg["env"]["angularVelocityScale"] self.contact_force_scale = self._task_cfg["env"]["contactForceScale"] self.power_scale = self._task_cfg["env"]["powerScale"] self.heading_weight = self._task_cfg["env"]["headingWeight"] self.up_weight = self._task_cfg["env"]["upWeight"] self.actions_cost_scale = self._task_cfg["env"]["actionsCost"] self.energy_cost_scale = self._task_cfg["env"]["energyCost"] self.joints_at_limit_cost_scale = self._task_cfg["env"]["jointsAtLimitCost"] self.death_cost = self._task_cfg["env"]["deathCost"] self.termination_height = self._task_cfg["env"]["terminationHeight"] self.alive_reward_scale = self._task_cfg["env"]["alive_reward_scale"] @abstractmethod def set_up_scene(self, scene) -> None: pass @abstractmethod def get_robot(self): pass def get_observations(self) -> dict: torso_position, torso_rotation = self._robots.get_world_poses(clone=False) velocities = self._robots.get_velocities(clone=False) velocity = velocities[:, 0:3] ang_velocity = velocities[:, 3:6] dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) # force sensors attached to the feet sensor_force_torques = self._robots.get_measured_joint_forces(joint_indices=self._sensor_indices) ( self.obs_buf[:], self.potentials[:], self.prev_potentials[:], self.up_vec[:], self.heading_vec[:], ) = get_observations( torso_position, torso_rotation, velocity, ang_velocity, dof_pos, dof_vel, self.targets, self.potentials, self.dt, self.inv_start_rot, self.basis_vec0, self.basis_vec1, self.dof_limits_lower, self.dof_limits_upper, self.dof_vel_scale, sensor_force_torques, self._num_envs, self.contact_force_scale, self.actions, self.angular_velocity_scale, ) observations = {self._robots.name: {"obs_buf": self.obs_buf}} return observations def pre_physics_step(self, actions) -> None: if not self.world.is_playing(): return reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) forces = self.actions * self.joint_gears * self.power_scale indices = torch.arange(self._robots.count, dtype=torch.int32, device=self._device) # applies joint torques self._robots.set_joint_efforts(forces, indices=indices) def reset_idx(self, env_ids): num_resets = len(env_ids) # randomize DOF positions and velocities dof_pos = torch_rand_float(-0.2, 0.2, (num_resets, self._robots.num_dof), device=self._device) dof_pos[:] = tensor_clamp(self.initial_dof_pos[env_ids] + dof_pos, self.dof_limits_lower, self.dof_limits_upper) dof_vel = torch_rand_float(-0.1, 0.1, (num_resets, self._robots.num_dof), device=self._device) root_pos, root_rot = self.initial_root_pos[env_ids], self.initial_root_rot[env_ids] root_vel = torch.zeros((num_resets, 6), device=self._device) # apply resets self._robots.set_joint_positions(dof_pos, indices=env_ids) self._robots.set_joint_velocities(dof_vel, indices=env_ids) self._robots.set_world_poses(root_pos, root_rot, indices=env_ids) self._robots.set_velocities(root_vel, indices=env_ids) to_target = self.targets[env_ids] - self.initial_root_pos[env_ids] to_target[:, 2] = 0.0 self.prev_potentials[env_ids] = -torch.norm(to_target, p=2, dim=-1) / self.dt self.potentials[env_ids] = self.prev_potentials[env_ids].clone() # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 num_resets = len(env_ids) def post_reset(self): self._robots = self.get_robot() self.initial_root_pos, self.initial_root_rot = self._robots.get_world_poses() self.initial_dof_pos = self._robots.get_joint_positions() # initialize some data used later on self.start_rotation = torch.tensor([1, 0, 0, 0], device=self._device, dtype=torch.float32) self.up_vec = torch.tensor([0, 0, 1], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.heading_vec = torch.tensor([1, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.inv_start_rot = quat_conjugate(self.start_rotation).repeat((self.num_envs, 1)) self.basis_vec0 = self.heading_vec.clone() self.basis_vec1 = self.up_vec.clone() self.targets = torch.tensor([1000, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.target_dirs = torch.tensor([1, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.dt = 1.0 / 60.0 self.potentials = torch.tensor([-1000.0 / self.dt], dtype=torch.float32, device=self._device).repeat( self.num_envs ) self.prev_potentials = self.potentials.clone() self.actions = torch.zeros((self.num_envs, self.num_actions), device=self._device) # randomize all envs indices = torch.arange(self._robots.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: self.rew_buf[:] = calculate_metrics( self.obs_buf, self.actions, self.up_weight, self.heading_weight, self.potentials, self.prev_potentials, self.actions_cost_scale, self.energy_cost_scale, self.termination_height, self.death_cost, self._robots.num_dof, self.get_dof_at_limit_cost(), self.alive_reward_scale, self.motor_effort_ratio, ) def is_done(self) -> None: self.reset_buf[:] = is_done( self.obs_buf, self.termination_height, self.reset_buf, self.progress_buf, self._max_episode_length ) ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def normalize_angle(x): return torch.atan2(torch.sin(x), torch.cos(x)) @torch.jit.script def get_observations( torso_position, torso_rotation, velocity, ang_velocity, dof_pos, dof_vel, targets, potentials, dt, inv_start_rot, basis_vec0, basis_vec1, dof_limits_lower, dof_limits_upper, dof_vel_scale, sensor_force_torques, num_envs, contact_force_scale, actions, angular_velocity_scale, ): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, float, Tensor, Tensor, Tensor, Tensor, Tensor, float, Tensor, int, float, Tensor, float) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor] to_target = targets - torso_position to_target[:, 2] = 0.0 prev_potentials = potentials.clone() potentials = -torch.norm(to_target, p=2, dim=-1) / dt torso_quat, up_proj, heading_proj, up_vec, heading_vec = compute_heading_and_up( torso_rotation, inv_start_rot, to_target, basis_vec0, basis_vec1, 2 ) vel_loc, angvel_loc, roll, pitch, yaw, angle_to_target = compute_rot( torso_quat, velocity, ang_velocity, targets, torso_position ) dof_pos_scaled = unscale(dof_pos, dof_limits_lower, dof_limits_upper) # obs_buf shapes: 1, 3, 3, 1, 1, 1, 1, 1, num_dofs, num_dofs, num_sensors * 6, num_dofs obs = torch.cat( ( torso_position[:, 2].view(-1, 1), vel_loc, angvel_loc * angular_velocity_scale, normalize_angle(yaw).unsqueeze(-1), normalize_angle(roll).unsqueeze(-1), normalize_angle(angle_to_target).unsqueeze(-1), up_proj.unsqueeze(-1), heading_proj.unsqueeze(-1), dof_pos_scaled, dof_vel * dof_vel_scale, sensor_force_torques.reshape(num_envs, -1) * contact_force_scale, actions, ), dim=-1, ) return obs, potentials, prev_potentials, up_vec, heading_vec @torch.jit.script def is_done(obs_buf, termination_height, reset_buf, progress_buf, max_episode_length): # type: (Tensor, float, Tensor, Tensor, float) -> Tensor reset = torch.where(obs_buf[:, 0] < termination_height, torch.ones_like(reset_buf), reset_buf) reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf), reset) return reset @torch.jit.script def calculate_metrics( obs_buf, actions, up_weight, heading_weight, potentials, prev_potentials, actions_cost_scale, energy_cost_scale, termination_height, death_cost, num_dof, dof_at_limit_cost, alive_reward_scale, motor_effort_ratio, ): # type: (Tensor, Tensor, float, float, Tensor, Tensor, float, float, float, float, int, Tensor, float, Tensor) -> Tensor heading_weight_tensor = torch.ones_like(obs_buf[:, 11]) * heading_weight heading_reward = torch.where(obs_buf[:, 11] > 0.8, heading_weight_tensor, heading_weight * obs_buf[:, 11] / 0.8) # aligning up axis of robot and environment up_reward = torch.zeros_like(heading_reward) up_reward = torch.where(obs_buf[:, 10] > 0.93, up_reward + up_weight, up_reward) # energy penalty for movement actions_cost = torch.sum(actions**2, dim=-1) electricity_cost = torch.sum( torch.abs(actions * obs_buf[:, 12 + num_dof : 12 + num_dof * 2]) * motor_effort_ratio.unsqueeze(0), dim=-1 ) # reward for duration of staying alive alive_reward = torch.ones_like(potentials) * alive_reward_scale progress_reward = potentials - prev_potentials total_reward = ( progress_reward + alive_reward + up_reward + heading_reward - actions_cost_scale * actions_cost - energy_cost_scale * electricity_cost - dof_at_limit_cost ) # adjust reward for fallen agents total_reward = torch.where( obs_buf[:, 0] < termination_height, torch.ones_like(total_reward) * death_cost, total_reward ) return total_reward
13,243
Python
37.277457
214
0.628861
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/config.yaml
# Task name - used to pick the class to load task_name: ${task.name} # experiment name. defaults to name of training config experiment: '' # if set to positive integer, overrides the default number of environments num_envs: '' # seed - set to -1 to choose random seed seed: 42 # set to True for deterministic performance torch_deterministic: False # set the maximum number of learning iterations to train for. overrides default per-environment setting max_iterations: '' ## Device config physics_engine: 'physx' # whether to use cpu or gpu pipeline pipeline: 'gpu' # whether to use cpu or gpu physx sim_device: 'gpu' # used for gpu simulation only - device id for running sim and task if pipeline=gpu device_id: 0 # device to run RL rl_device: 'cuda:0' # multi-GPU training multi_gpu: False ## PhysX arguments num_threads: 4 # Number of worker threads used by PhysX - for CPU PhysX only. solver_type: 1 # 0: pgs, 1: tgs # RLGames Arguments # test - if set, run policy in inference mode (requires setting checkpoint to load) test: False # used to set checkpoint path checkpoint: '' # evaluate checkpoint evaluation: False # disables rendering headless: False # enables native livestream enable_livestream: False # timeout for MT script mt_timeout: 300 # enables viewport recording enable_recording: False # interval between video recordings (in steps) recording_interval: 2000 # length of the recorded video (in steps) recording_length: 100 # fps for writing recorded video recording_fps: 30 # directory to save recordings in recording_dir: '' wandb_activate: False wandb_group: '' wandb_name: ${train.params.config.name} wandb_entity: '' wandb_project: 'omniisaacgymenvs' # path to a kit app file kit_app: '' # Warp warp: False # set default task and default training config based on task defaults: - _self_ - task: Cartpole - train: ${task}PPO - override hydra/job_logging: disabled # set the directory where the output files get saved hydra: output_subdir: null run: dir: .
2,007
YAML
22.348837
103
0.744893
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/CartpoleCamera.yaml
defaults: - Cartpole - _self_ name: CartpoleCamera env: numEnvs: ${resolve_default:32,${...num_envs}} envSpacing: 20.0 cameraWidth: 240 cameraHeight: 160 exportImages: False sim: rendering_dt: 0.0166 # 1/60 # set to True if you use camera sensors in the environment enable_cameras: True add_ground_plane: False add_distant_light: True
363
YAML
16.333333
60
0.69697
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/FrankaDeformable.yaml
# used to create the object name: FrankaDeformable physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:1024,${...num_envs}} # 2048#4096 envSpacing: 3.0 episodeLength: 100 # 150 #350 #500 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 # 60 Hz startPositionNoise: 0.0 startRotationNoise: 0.0 numProps: 4 aggregateMode: 3 actionScale: 7.5 dofVelocityScale: 0.1 distRewardScale: 2.0 rotRewardScale: 0.5 aroundHandleRewardScale: 10.0 openRewardScale: 7.5 fingerDistRewardScale: 100.0 actionPenaltyScale: 0.01 fingerCloseRewardScale: 10.0 sim: dt: 0.016 # 1/60s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 8 # 12 solver_velocity_iteration_count: 0 # 1 contact_offset: 0.02 #0.005 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 524288 #20965884 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 4194304 #2097152 #16777216 #8388608 #2097152 #1048576 gpu_max_particle_contacts: 1048576 #2097152 #1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 franka: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 beaker: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 cube: # -1 to use default values override_usd_defaults: False make_kinematic: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 # # per-shape # contact_offset: 0.02 # rest_offset: 0.001
3,418
YAML
25.92126
85
0.691925
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/FrankaCabinet.yaml
# used to create the object name: FrankaCabinet physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 3.0 episodeLength: 500 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 # 60 Hz startPositionNoise: 0.0 startRotationNoise: 0.0 numProps: 4 aggregateMode: 3 actionScale: 7.5 dofVelocityScale: 0.1 distRewardScale: 2.0 rotRewardScale: 0.5 aroundHandleRewardScale: 10.0 openRewardScale: 7.5 fingerDistRewardScale: 100.0 actionPenaltyScale: 0.01 fingerCloseRewardScale: 10.0 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 contact_offset: 0.005 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 524288 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 franka: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 cabinet: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.0 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 prop: # -1 to use default values override_usd_defaults: False make_kinematic: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: 100 max_depenetration_velocity: 1000.0 # per-shape contact_offset: 0.005 rest_offset: 0.0
3,287
YAML
25.304
71
0.695467
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/Ant.yaml
# used to create the object name: Ant physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: # numEnvs: ${...num_envs} numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5 episodeLength: 1000 enableDebugVis: False clipActions: 1.0 powerScale: 0.5 controlFrequencyInv: 2 # 60 Hz # reward parameters headingWeight: 0.5 upWeight: 0.1 # cost parameters actionsCost: 0.005 energyCost: 0.05 dofVelocityScale: 0.2 angularVelocityScale: 1.0 contactForceScale: 0.1 jointsAtLimitCost: 0.1 deathCost: -2.0 terminationHeight: 0.31 alive_reward_scale: 0.5 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 10.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 8192 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 Ant: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 10.0
2,370
YAML
24.771739
71
0.690717
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/AnymalTerrain.yaml
name: AnymalTerrain physics_engine: ${..physics_engine} env: numEnvs: ${resolve_default:2048,${...num_envs}} numObservations: 188 numActions: 12 envSpacing: 3. # [m] terrain: staticFriction: 1.0 # [-] dynamicFriction: 1.0 # [-] restitution: 0. # [-] # rough terrain only: curriculum: true maxInitMapLevel: 0 mapLength: 8. mapWidth: 8. numLevels: 10 numTerrains: 20 # terrain types: [smooth slope, rough slope, stairs up, stairs down, discrete] terrainProportions: [0.1, 0.1, 0.35, 0.25, 0.2] # tri mesh only: slopeTreshold: 0.5 baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [1.0, 0.0, 0.0, 0.0] # w,x,y,z [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] randomCommandVelocityRanges: # train linear_x: [-1., 1.] # min max [m/s] linear_y: [-1., 1.] # min max [m/s] yaw: [-3.14, 3.14] # min max [rad/s] control: # PD Drive parameters: stiffness: 80.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] # action scale: target angle = actionScale * action + defaultAngle actionScale: 0.5 # decimation: Number of control action updates @ sim DT per policy DT decimation: 4 defaultJointAngles: # = target angles when action = 0.0 LF_HAA: 0.03 # [rad] LH_HAA: 0.03 # [rad] RF_HAA: -0.03 # [rad] RH_HAA: -0.03 # [rad] LF_HFE: 0.4 # [rad] LH_HFE: -0.4 # [rad] RF_HFE: 0.4 # [rad] RH_HFE: -0.4 # [rad] LF_KFE: -0.8 # [rad] LH_KFE: 0.8 # [rad] RF_KFE: -0.8 # [rad] RH_KFE: 0.8 # [rad] learn: # rewards terminalReward: 0.0 linearVelocityXYRewardScale: 1.0 linearVelocityZRewardScale: -4.0 angularVelocityXYRewardScale: -0.05 angularVelocityZRewardScale: 0.5 orientationRewardScale: -0. torqueRewardScale: -0.00002 jointAccRewardScale: -0.0005 baseHeightRewardScale: -0.0 actionRateRewardScale: -0.01 fallenOverRewardScale: -1.0 # cosmetics hipRewardScale: -0. #25 # normalization linearVelocityScale: 2.0 angularVelocityScale: 0.25 dofPositionScale: 1.0 dofVelocityScale: 0.05 heightMeasurementScale: 5.0 # noise addNoise: true noiseLevel: 1.0 # scales other values dofPositionNoise: 0.01 dofVelocityNoise: 1.5 linearVelocityNoise: 0.1 angularVelocityNoise: 0.2 gravityNoise: 0.05 heightMeasurementNoise: 0.06 #randomization pushInterval_s: 15 # episode length in seconds episodeLength_s: 20 sim: dt: 0.005 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: False add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: True # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 163840 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 134217728 gpu_temp_buffer_capacity: 33554432 gpu_max_num_partitions: 8 anymal: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: False # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0
4,346
YAML
25.345454
82
0.633916
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/BallBalance.yaml
# used to create the object name: BallBalance physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 2.0 maxEpisodeLength: 600 actionSpeedScale: 20 clipObservations: 5.0 clipActions: 1.0 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 262144 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 262144 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 table: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 ball: # -1 to use default values override_usd_defaults: False make_kinematic: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: 200 max_depenetration_velocity: 1000.0
2,458
YAML
25.728261
71
0.690806
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/FactoryBase.yaml
# See schema in factory_schema_config_base.py for descriptions of parameters. defaults: - _self_ - /factory_schema_config_base sim: add_damping: True disable_contact_processing: False env: env_spacing: 1.5 franka_depth: 0.5 table_height: 0.4 franka_friction: 1.0 table_friction: 0.3
309
YAML
16.222221
77
0.699029
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/Humanoid.yaml
# used to create the object name: Humanoid physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: # numEnvs: ${...num_envs} numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5 episodeLength: 1000 enableDebugVis: False clipActions: 1.0 powerScale: 1.0 controlFrequencyInv: 2 # 60 Hz # reward parameters headingWeight: 0.5 upWeight: 0.1 # cost parameters actionsCost: 0.01 energyCost: 0.05 dofVelocityScale: 0.1 angularVelocityScale: 0.25 contactForceScale: 0.01 jointsAtLimitCost: 0.25 deathCost: -1.0 terminationHeight: 0.8 alive_reward_scale: 2.0 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 10.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 8192 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 Humanoid: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 10.0
2,335
YAML
24.670329
71
0.693362
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/AllegroHand.yaml
# used to create the object name: AllegroHand physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:8192,${...num_envs}} envSpacing: 0.75 episodeLength: 600 clipObservations: 5.0 clipActions: 1.0 useRelativeControl: False dofSpeedScale: 20.0 actionsMovingAverage: 1.0 controlFrequencyInv: 4 # 30 Hz startPositionNoise: 0.01 startRotationNoise: 0.0 resetPositionNoise: 0.01 resetRotationNoise: 0.0 resetDofPosRandomInterval: 0.2 resetDofVelRandomInterval: 0.0 # reward -> dictionary distRewardScale: -10.0 rotRewardScale: 1.0 rotEps: 0.1 actionPenaltyScale: -0.0002 reachGoalBonus: 250 fallDistance: 0.24 fallPenalty: 0.0 velObsScale: 0.2 objectType: "block" observationType: "full" # can be "full_no_vel", "full" successTolerance: 0.1 printNumSuccesses: False maxConsecutiveSuccesses: 0 sim: dt: 0.0083 # 1/120 s add_ground_plane: True add_distant_light: False use_gpu_pipeline: ${eq:${...pipeline},"gpu"} use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: # per-scene use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU worker_thread_count: ${....num_threads} solver_type: ${....solver_type} # 0: PGS, 1: TGS bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 819200 gpu_found_lost_aggregate_pairs_capacity: 819200 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 allegro_hand: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: False # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.0005 # per-body density: -1 max_depenetration_velocity: 1000.0 object: # -1 to use default values override_usd_defaults: False make_kinematic: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.0025 # per-body density: 400.0 max_depenetration_velocity: 1000.0 goal_object: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.000 stabilization_threshold: 0.0025 # per-body density: -1 max_depenetration_velocity: 1000.0
3,360
YAML
25.464567
71
0.69881
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/HumanoidSAC.yaml
# used to create the object defaults: - Humanoid - _self_ # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:64,${...num_envs}}
168
YAML
20.124997
52
0.678571
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/Ingenuity.yaml
# used to create the object name: Ingenuity physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 2.5 maxEpisodeLength: 2000 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -3.721] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False disable_contact_processing: False physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1000.0 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: False # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 ingenuity: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 ball: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0
2,351
YAML
27
71
0.693322
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/Quadcopter.yaml
# used to create the object name: Quadcopter physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 1.25 maxEpisodeLength: 500 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 8192 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 copter: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 ball: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0
2,452
YAML
25.663043
71
0.690457
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/Crazyflie.yaml
# used to create the object name: Crazyflie physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 2.5 maxEpisodeLength: 700 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False disable_contact_processing: False physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1000.0 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: False # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 crazyflie: # -1 to use default values override_usd_defaults: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 ball: # -1 to use default values override_usd_defaults: False make_kinematic: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0
2,350
YAML
26.658823
71
0.692766
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/FactoryEnvNutBolt.yaml
# See schema in factory_schema_config_env.py for descriptions of common parameters. defaults: - _self_ - /factory_schema_config_env sim: disable_franka_collisions: False disable_nut_collisions: False disable_bolt_collisions: False disable_contact_processing: False env: env_name: 'FactoryEnvNutBolt' desired_subassemblies: ['nut_bolt_m16', 'nut_bolt_m16'] nut_lateral_offset: 0.1 # Y-axis offset of nut before initial reset to prevent initial interpenetration with bolt nut_bolt_density: 7850.0 nut_bolt_friction: 0.3 # Subassembly options: # {nut_bolt_m4, nut_bolt_m8, nut_bolt_m12, nut_bolt_m16, nut_bolt_m20}
643
YAML
28.272726
116
0.73717
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/AntSAC.yaml
# used to create the object defaults: - Ant - _self_ # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:64,${...num_envs}}
163
YAML
19.499998
52
0.668712
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/Cartpole.yaml
# used to create the object name: Cartpole physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:512,${...num_envs}} envSpacing: 4.0 resetDist: 3.0 maxEffort: 400.0 clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 # 60 Hz sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 1024 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1024 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 Cartpole: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0 # per-shape contact_offset: 0.02 rest_offset: 0.001
2,124
YAML
26.243589
71
0.686911
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/Anymal.yaml
# used to create the object name: Anymal physics_engine: ${..physics_engine} env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 4. # [m] clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] randomCommandVelocityRanges: linear_x: [-2., 2.] # min max [m/s] linear_y: [-1., 1.] # min max [m/s] yaw: [-1., 1.] # min max [rad/s] control: # PD Drive parameters: stiffness: 85.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] actionScale: 13.5 defaultJointAngles: # = target angles when action = 0.0 LF_HAA: 0.03 # [rad] LH_HAA: 0.03 # [rad] RF_HAA: -0.03 # [rad] RH_HAA: -0.03 # [rad] LF_HFE: 0.4 # [rad] LH_HFE: -0.4 # [rad] RF_HFE: 0.4 # [rad] RH_HFE: -0.4 # [rad] LF_KFE: -0.8 # [rad] LH_KFE: 0.8 # [rad] RF_KFE: -0.8 # [rad] RH_KFE: 0.8 # [rad] learn: # rewards linearVelocityXYRewardScale: 1.0 angularVelocityZRewardScale: 0.5 linearVelocityZRewardScale: -0.03 jointAccRewardScale: -0.0003 actionRateRewardScale: -0.006 cosmeticRewardScale: -0.06 # normalization linearVelocityScale: 2.0 angularVelocityScale: 0.25 dofPositionScale: 1.0 dofVelocityScale: 0.05 # episode length in seconds episodeLength_s: 50 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: False use_fabric: True enable_scene_query_support: False disable_contact_processing: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 1 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 163840 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 134217728 gpu_temp_buffer_capacity: 33554432 gpu_max_num_partitions: 8 Anymal: # -1 to use default values override_usd_defaults: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0
3,270
YAML
24.960317
71
0.626911
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/task/ShadowHandOpenAI_LSTM.yaml
# specifies what the config is when running `ShadowHandOpenAI` in LSTM mode defaults: - ShadowHandOpenAI_FF - _self_ env: numEnvs: ${resolve_default:8192,${...num_envs}}
178
YAML
18.888887
75
0.707865
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/ShadowHandOpenAI_FFPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [400, 400, 200, 100] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:ShadowHandOpenAI_FF,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 4 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 central_value_config: minibatch_size: 32864 mini_epochs: 4 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True mlp: units: [512, 512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None player: deterministic: True games_num: 100000 print_stats: True
2,215
YAML
20.940594
66
0.577427
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/AnymalTerrainPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0. # std = 1. fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None # rnn: # name: lstm # units: 128 # layers: 1 # before_mlp: True # concat_input: True # layer_norm: False load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:AnymalTerrain,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False # True normalize_input: True normalize_value: True normalize_advantage: True value_bootstrap: True clip_actions: False num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 gamma: 0.99 tau: 0.95 e_clip: 0.2 entropy_coef: 0.001 learning_rate: 3.e-4 # overwritten by adaptive lr_schedule lr_schedule: adaptive kl_threshold: 0.008 # target kl for adaptive lr truncate_grads: True grad_norm: 1. horizon_length: 48 minibatch_size: 16384 mini_epochs: 5 critic_coef: 2 clip_value: True seq_length: 4 # only for rnn bounds_loss_coef: 0. max_epochs: ${resolve_default:2000,${....max_iterations}} save_best_after: 100 score_to_win: 20000 save_frequency: 50 print_stats: True
1,928
YAML
21.694117
101
0.592842
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/HumanoidPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [400, 200, 100] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Humanoid,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 100 save_frequency: 100 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 32 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,639
YAML
21.465753
101
0.594875
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/CrazyfliePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 256, 128] activation: tanh d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Crazyflie,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,614
YAML
21.430555
101
0.593556
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/ShadowHandPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:ShadowHand,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 player: deterministic: True games_num: 100000 print_stats: True
1,703
YAML
20.56962
62
0.589548
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/HumanoidSAC.yaml
params: seed: ${...seed} algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [512, 256] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:HumanoidSAC,${....experiment}} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} normalize_input: True reward_shaper: scale_value: 1.0 max_epochs: ${resolve_default:50000,${....max_iterations}} num_steps_per_episode: 8 save_best_after: 100 save_frequency: 1000 gamma: 0.99 init_alpha: 1.0 alpha_lr: 0.005 actor_lr: 0.0005 critic_lr: 0.0005 critic_tau: 0.005 batch_size: 4096 learnable_temperature: true num_seed_steps: 5 num_warmup_steps: 10 replay_buffer_size: 1000000 num_actors: ${....task.env.numEnvs}
1,165
YAML
21.423077
101
0.603433
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/ShadowHandOpenAI_LSTMPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512] activation: relu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 1024 layers: 1 before_mlp: True layer_norm: True load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:ShadowHandOpenAI_LSTM,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.998 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 4 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 central_value_config: minibatch_size: 32768 mini_epochs: 4 learning_rate: 1e-4 kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True mlp: units: [512] activation: relu d2rl: False initializer: name: default regularizer: name: None rnn: name: lstm units: 1024 layers: 1 before_mlp: True layer_norm: True zero_rnn_on_done: False player: deterministic: True games_num: 100000 print_stats: True
2,402
YAML
20.265487
68
0.562448
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/IngenuityPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Ingenuity,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-3 lr_schedule: adaptive kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:400,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,612
YAML
21.402777
101
0.593052
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/QuadcopterPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Quadcopter,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-3 lr_schedule: adaptive kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,613
YAML
21.416666
101
0.593304
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/FactoryTaskNutBoltScrewPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:FactoryTaskNutBoltScrew,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: fixed schedule_type: standard kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:400,${....max_iterations}} save_best_after: 50 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 512 minibatch_size: 512 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,597
YAML
20.594594
70
0.594865
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/BallBalancePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [128, 64, 32] activation: elu initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:BallBalance,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:250,${....max_iterations}} save_best_after: 50 save_frequency: 100 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,593
YAML
21.450704
101
0.593848
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/FrankaDeformablePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FrankaDeformable,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 100000000 max_epochs: ${resolve_default:6000,${....max_iterations}} save_best_after: 500 save_frequency: 500 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 #2048 #4096 #8192 #16384 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,665
YAML
22.138889
101
0.600601
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/FactoryTaskNutBoltPlacePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:FactoryTaskNutBoltPlace,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: fixed schedule_type: standard kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:400,${....max_iterations}} save_best_after: 50 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 128 minibatch_size: 512 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,597
YAML
20.594594
70
0.594865
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/CartpoleCameraPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True cnn: type: conv2d activation: relu initializer: name: default regularizer: name: None convs: - filters: 32 kernel_size: 8 strides: 4 padding: 0 - filters: 64 kernel_size: 4 strides: 2 padding: 0 - filters: 64 kernel_size: 3 strides: 1 padding: 0 mlp: units: [512] activation: elu initializer: name: default # rnn: # name: lstm # units: 128 # layers: 1 # before_mlp: False # concat_input: True # layer_norm: True load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:CartpoleCamera,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: False normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 #0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:500,${....max_iterations}} save_best_after: 50 save_frequency: 10 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 256 minibatch_size: 512 #1024 mini_epochs: 4 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
2,124
YAML
21.135416
101
0.556026
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/AntPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Ant,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive schedule_type: legacy kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:500,${....max_iterations}} save_best_after: 100 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 4 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,657
YAML
21.405405
101
0.594448
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/FrankaCabinetPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:FrankaCabinet,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 100000000 max_epochs: ${resolve_default:1500,${....max_iterations}} save_best_after: 200 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,636
YAML
21.736111
101
0.598411
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/AntSAC.yaml
params: seed: ${...seed} algo: name: sac model: name: soft_actor_critic network: name: soft_actor_critic separate: True space: continuous: mlp: units: [512, 256] activation: relu initializer: name: default log_std_bounds: [-5, 2] load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:AntSAC,${....experiment}} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: ${....multi_gpu} normalize_input: True reward_shaper: scale_value: 1.0 max_epochs: ${resolve_default:20000,${....max_iterations}} num_steps_per_episode: 8 save_best_after: 100 save_frequency: 1000 gamma: 0.99 init_alpha: 1.0 alpha_lr: 0.005 actor_lr: 0.0005 critic_lr: 0.0005 critic_tau: 0.005 batch_size: 4096 learnable_temperature: true num_seed_steps: 5 num_warmup_steps: 10 replay_buffer_size: 1000000 num_actors: ${....task.env.numEnvs}
1,160
YAML
21.326923
101
0.601724
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/AllegroHandPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:AllegroHand,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.02 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001 player: deterministic: True games_num: 100000 print_stats: True
1,694
YAML
20.455696
62
0.590909
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/AnymalPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0. # std = 1. fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Anymal,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 e_clip: 0.2 entropy_coef: 0.0 learning_rate: 3.e-4 # overwritten by adaptive lr_schedule lr_schedule: adaptive kl_threshold: 0.008 # target kl for adaptive lr truncate_grads: True grad_norm: 1. horizon_length: 24 minibatch_size: 32768 mini_epochs: 5 critic_coef: 2 clip_value: True seq_length: 4 # only for rnn bounds_loss_coef: 0.001 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 200 score_to_win: 20000 save_frequency: 50 print_stats: True
1,744
YAML
21.960526
101
0.600917
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/CartpolePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [32, 32] activation: elu initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Cartpole,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: ${....multi_gpu} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.1 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 3e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:100,${....max_iterations}} save_best_after: 50 save_frequency: 25 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 8192 mini_epochs: 8 critic_coef: 4 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,583
YAML
21.628571
101
0.593178
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/cfg/train/FactoryTaskNutBoltPickPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 128, 64] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:FactoryTaskNutBoltPick,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: fixed schedule_type: standard kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:200,${....max_iterations}} save_best_after: 50 save_frequency: 100 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: False e_clip: 0.2 horizon_length: 128 minibatch_size: 512 mini_epochs: 8 critic_coef: 2 clip_value: True seq_length: 4 bounds_loss_coef: 0.0001
1,596
YAML
20.581081
69
0.594612
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/scripts/rlgames_demo.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import datetime import os import gym import hydra import torch from omegaconf import DictConfig import omniisaacgymenvs from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from omniisaacgymenvs.scripts.rlgames_train import RLGTrainer from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path from omniisaacgymenvs.utils.demo_util import initialize_demo from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict class RLGDemo(RLGTrainer): def __init__(self, cfg, cfg_dict): RLGTrainer.__init__(self, cfg, cfg_dict) self.cfg.test = True @hydra.main(version_base=None, config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") headless = cfg.headless env = VecEnvRLGames(headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream) # parse experiment directory module_path = os.path.abspath(os.path.join(os.path.dirname(omniisaacgymenvs.__file__))) experiment_dir = os.path.join(module_path, "runs", cfg.train.params.config.name) # use gym RecordVideo wrapper for viewport recording if cfg.enable_recording: if cfg.recording_dir == '': videos_dir = os.path.join(experiment_dir, "videos") else: videos_dir = cfg.recording_dir video_interval = lambda step: step % cfg.recording_interval == 0 video_length = cfg.recording_length env.is_vector_env = True if env.metadata is None: env.metadata = {"render_modes": ["rgb_array"], "render_fps": cfg.recording_fps} else: env.metadata["render_modes"] = ["rgb_array"] env.metadata["render_fps"] = cfg.recording_fps env = gym.wrappers.RecordVideo( env, video_folder=videos_dir, step_trigger=video_interval, video_length=video_length ) # ensure checkpoints can be specified as relative paths if cfg.checkpoint: cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint) if cfg.checkpoint is None: quit() cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_demo(cfg_dict, env) if cfg.wandb_activate: # Make sure to install WandB if you actually use this. import wandb run_name = f"{cfg.wandb_name}_{time_str}" wandb.init( project=cfg.wandb_project, group=cfg.wandb_group, entity=cfg.wandb_entity, config=cfg_dict, sync_tensorboard=True, id=run_name, resume="allow", monitor_gym=True, ) rlg_trainer = RLGDemo(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) rlg_trainer.run(module_path, experiment_dir) env.close() if cfg.wandb_activate: wandb.finish() if __name__ == "__main__": parse_hydra_configs()
4,814
Python
37.52
109
0.701703
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/scripts/rlgames_train.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import datetime import os import gym import hydra import torch from omegaconf import DictConfig import omniisaacgymenvs from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path, get_experience from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv from omniisaacgymenvs.utils.task_util import initialize_task from rl_games.common import env_configurations, vecenv from rl_games.torch_runner import Runner class RLGTrainer: def __init__(self, cfg, cfg_dict): self.cfg = cfg self.cfg_dict = cfg_dict def launch_rlg_hydra(self, env): # `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally. # We use the helper function here to specify the environment config. self.cfg_dict["task"]["test"] = self.cfg.test # register the rl-games adapter to use inside the runner vecenv.register("RLGPU", lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs)) env_configurations.register("rlgpu", {"vecenv_type": "RLGPU", "env_creator": lambda **kwargs: env}) self.rlg_config_dict = omegaconf_to_dict(self.cfg.train) def run(self, module_path, experiment_dir): self.rlg_config_dict["params"]["config"]["train_dir"] = os.path.join(module_path, "runs") # create runner and set the settings runner = Runner(RLGPUAlgoObserver()) runner.load(self.rlg_config_dict) runner.reset() # dump config dict os.makedirs(experiment_dir, exist_ok=True) with open(os.path.join(experiment_dir, "config.yaml"), "w") as f: f.write(OmegaConf.to_yaml(self.cfg)) runner.run( {"train": not self.cfg.test, "play": self.cfg.test, "checkpoint": self.cfg.checkpoint, "sigma": None} ) @hydra.main(version_base=None, config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") headless = cfg.headless # local rank (GPU id) in a current multi-gpu mode local_rank = int(os.getenv("LOCAL_RANK", "0")) # global rank (GPU id) in multi-gpu multi-node mode global_rank = int(os.getenv("RANK", "0")) if cfg.multi_gpu: cfg.device_id = local_rank cfg.rl_device = f'cuda:{local_rank}' enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras # select kit app file experience = get_experience(headless, cfg.enable_livestream, enable_viewport, cfg.enable_recording, cfg.kit_app) env = VecEnvRLGames( headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport or cfg.enable_recording, experience=experience ) # parse experiment directory module_path = os.path.abspath(os.path.join(os.path.dirname(omniisaacgymenvs.__file__))) experiment_dir = os.path.join(module_path, "runs", cfg.train.params.config.name) # use gym RecordVideo wrapper for viewport recording if cfg.enable_recording: if cfg.recording_dir == '': videos_dir = os.path.join(experiment_dir, "videos") else: videos_dir = cfg.recording_dir video_interval = lambda step: step % cfg.recording_interval == 0 video_length = cfg.recording_length env.is_vector_env = True if env.metadata is None: env.metadata = {"render_modes": ["rgb_array"], "render_fps": cfg.recording_fps} else: env.metadata["render_modes"] = ["rgb_array"] env.metadata["render_fps"] = cfg.recording_fps env = gym.wrappers.RecordVideo( env, video_folder=videos_dir, step_trigger=video_interval, video_length=video_length ) # ensure checkpoints can be specified as relative paths if cfg.checkpoint: cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint) if cfg.checkpoint is None: quit() cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = cfg.seed + global_rank if cfg.seed != -1 else cfg.seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_task(cfg_dict, env) if cfg.wandb_activate and global_rank == 0: # Make sure to install WandB if you actually use this. import wandb run_name = f"{cfg.wandb_name}_{time_str}" wandb.init( project=cfg.wandb_project, group=cfg.wandb_group, entity=cfg.wandb_entity, config=cfg_dict, sync_tensorboard=True, name=run_name, resume="allow", ) torch.cuda.set_device(local_rank) rlg_trainer = RLGTrainer(cfg, cfg_dict) rlg_trainer.launch_rlg_hydra(env) rlg_trainer.run(module_path, experiment_dir) env.close() if cfg.wandb_activate and global_rank == 0: wandb.finish() if __name__ == "__main__": parse_hydra_configs()
7,007
Python
39.045714
119
0.687455
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/scripts/random_policy.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import gym import hydra from omegaconf import DictConfig import os import time import numpy as np import torch import omniisaacgymenvs from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from omniisaacgymenvs.utils.config_utils.path_utils import get_experience from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.task_util import initialize_task @hydra.main(version_base=None, config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) headless = cfg.headless render = not headless enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras # select kit app file experience = get_experience(headless, cfg.enable_livestream, enable_viewport, cfg.enable_recording, cfg.kit_app) env = VecEnvRLGames( headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport or cfg.enable_recording, experience=experience ) # parse experiment directory module_path = os.path.abspath(os.path.join(os.path.dirname(omniisaacgymenvs.__file__))) experiment_dir = os.path.join(module_path, "runs", cfg.train.params.config.name) # use gym RecordVideo wrapper for viewport recording if cfg.enable_recording: if cfg.recording_dir == '': videos_dir = os.path.join(experiment_dir, "videos") else: videos_dir = cfg.recording_dir video_interval = lambda step: step % cfg.recording_interval == 0 video_length = cfg.recording_length env.is_vector_env = True if env.metadata is None: env.metadata = {"render_modes": ["rgb_array"], "render_fps": cfg.recording_fps} else: env.metadata["render_modes"] = ["rgb_array"] env.metadata["render_fps"] = cfg.recording_fps env = gym.wrappers.RecordVideo( env, video_folder=videos_dir, step_trigger=video_interval, video_length=video_length ) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_task(cfg_dict, env) num_frames = 0 first_frame = True prev_time = time.time() while env.simulation_app.is_running(): if env.world.is_playing(): if first_frame: env.reset() prev_time = time.time() first_frame = False # get upper and lower bounds of action space, sample actions randomly on this interval action_high = env.action_space.high[0] action_low = env.action_space.low[0] actions = (action_high - action_low) * torch.rand(env.num_envs, env.action_space.shape[0], device=task.rl_device) - action_high if time.time() - prev_time >= 1: print("FPS:", num_frames, "FPS * num_envs:", env.num_envs * num_frames) num_frames = 0 prev_time = time.time() else: num_frames += 1 env.step(actions) else: env.world.step(render=render) env.simulation_app.close() if __name__ == "__main__": parse_hydra_configs()
5,069
Python
38.92126
139
0.688301
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/demos/anymal_terrain.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.anymal_terrain import AnymalTerrainTask, wrap_to_pi from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.utils.torch.transformations import tf_combine import numpy as np import torch import math import omni import carb from omni.kit.viewport.utility.camera_state import ViewportCameraState from omni.kit.viewport.utility import get_viewport_from_window_name from pxr import Sdf class AnymalTerrainDemo(AnymalTerrainTask): def __init__( self, name, sim_config, env, offset=None ) -> None: max_num_envs = 128 if sim_config.task_config["env"]["numEnvs"] >= max_num_envs: print(f"num_envs reduced to {max_num_envs} for this demo.") sim_config.task_config["env"]["numEnvs"] = max_num_envs sim_config.task_config["env"]["learn"]["episodeLength_s"] = 120 AnymalTerrainTask.__init__(self, name, sim_config, env) self.add_noise = False self.knee_threshold = 0.05 self.create_camera() self._current_command = [0.0, 0.0, 0.0, 0.0] self.set_up_keyboard() self._prim_selection = omni.usd.get_context().get_selection() self._selected_id = None self._previous_selected_id = None return def create_camera(self): stage = omni.usd.get_context().get_stage() self.view_port = get_viewport_from_window_name("Viewport") # Create camera self.camera_path = "/World/Camera" self.perspective_path = "/OmniverseKit_Persp" camera_prim = stage.DefinePrim(self.camera_path, "Camera") camera_prim.GetAttribute("focalLength").Set(8.5) coi_prop = camera_prim.GetProperty("omni:kit:centerOfInterest") if not coi_prop or not coi_prop.IsValid(): camera_prim.CreateAttribute( "omni:kit:centerOfInterest", Sdf.ValueTypeNames.Vector3d, True, Sdf.VariabilityUniform ).Set(Gf.Vec3d(0, 0, -10)) self.view_port.set_active_camera(self.perspective_path) def set_up_keyboard(self): self._input = carb.input.acquire_input_interface() self._keyboard = omni.appwindow.get_default_app_window().get_keyboard() self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._on_keyboard_event) T = 1 R = 1 self._key_to_control = { "UP": [T, 0.0, 0.0, 0.0], "DOWN": [-T, 0.0, 0.0, 0.0], "LEFT": [0.0, T, 0.0, 0.0], "RIGHT": [0.0, -T, 0.0, 0.0], "Z": [0.0, 0.0, R, 0.0], "X": [0.0, 0.0, -R, 0.0], } def _on_keyboard_event(self, event, *args, **kwargs): if event.type == carb.input.KeyboardEventType.KEY_PRESS: if event.input.name in self._key_to_control: self._current_command = self._key_to_control[event.input.name] elif event.input.name == "ESCAPE": self._prim_selection.clear_selected_prim_paths() elif event.input.name == "C": if self._selected_id is not None: if self.view_port.get_active_camera() == self.camera_path: self.view_port.set_active_camera(self.perspective_path) else: self.view_port.set_active_camera(self.camera_path) elif event.type == carb.input.KeyboardEventType.KEY_RELEASE: self._current_command = [0.0, 0.0, 0.0, 0.0] def update_selected_object(self): self._previous_selected_id = self._selected_id selected_prim_paths = self._prim_selection.get_selected_prim_paths() if len(selected_prim_paths) == 0: self._selected_id = None self.view_port.set_active_camera(self.perspective_path) elif len(selected_prim_paths) > 1: print("Multiple prims are selected. Please only select one!") else: prim_splitted_path = selected_prim_paths[0].split("/") if len(prim_splitted_path) >= 4 and prim_splitted_path[3][0:4] == "env_": self._selected_id = int(prim_splitted_path[3][4:]) if self._previous_selected_id != self._selected_id: self.view_port.set_active_camera(self.camera_path) self._update_camera() else: print("The selected prim was not an Anymal") if self._previous_selected_id is not None and self._previous_selected_id != self._selected_id: self.commands[self._previous_selected_id, 0] = np.random.uniform(self.command_x_range[0], self.command_x_range[1]) self.commands[self._previous_selected_id, 1] = np.random.uniform(self.command_y_range[0], self.command_y_range[1]) self.commands[self._previous_selected_id, 2] = 0.0 def _update_camera(self): base_pos = self.base_pos[self._selected_id, :].clone() base_quat = self.base_quat[self._selected_id, :].clone() camera_local_transform = torch.tensor([-1.8, 0.0, 0.6], device=self.device) camera_pos = quat_apply(base_quat, camera_local_transform) + base_pos camera_state = ViewportCameraState(self.camera_path, self.view_port) eye = Gf.Vec3d(camera_pos[0].item(), camera_pos[1].item(), camera_pos[2].item()) target = Gf.Vec3d(base_pos[0].item(), base_pos[1].item(), base_pos[2].item()+0.6) camera_state.set_position_world(eye, True) camera_state.set_target_world(target, True) def post_physics_step(self): self.progress_buf[:] += 1 self.refresh_dof_state_tensors() self.refresh_body_state_tensors() self.update_selected_object() self.common_step_counter += 1 if self.common_step_counter % self.push_interval == 0: self.push_robots() # prepare quantities self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 0:3]) self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 3:6]) self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec) forward = quat_apply(self.base_quat, self.forward_vec) heading = torch.atan2(forward[:, 1], forward[:, 0]) self.commands[:, 2] = torch.clip(0.5*wrap_to_pi(self.commands[:, 3] - heading), -1., 1.) self.check_termination() if self._selected_id is not None: self.commands[self._selected_id, :] = torch.tensor(self._current_command, device=self.device) self.timeout_buf[self._selected_id] = 0 self.reset_buf[self._selected_id] = 0 self.get_states() env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(env_ids) > 0: self.reset_idx(env_ids) self.get_observations() if self.add_noise: self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec self.last_actions[:] = self.actions[:] self.last_dof_vel[:] = self.dof_vel[:] return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
8,841
Python
44.577319
126
0.636127
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tests/__init__.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from .runner import *
1,580
Python
53.51724
80
0.783544
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/tests/runner.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio from datetime import date import sys import unittest import weakref import omni.kit.test from omni.kit.test import AsyncTestSuite from omni.kit.test.async_unittest import AsyncTextTestRunner import omni.ui as ui from omni.isaac.ui.menu import make_menu_item_description from omni.isaac.ui.ui_utils import btn_builder from omni.kit.menu.utils import MenuItemDescription, add_menu_items import omni.timeline import omni.usd from omniisaacgymenvs import RLExtension, get_instance class GymRLTests(omni.kit.test.AsyncTestCase): def __init__(self, *args, **kwargs): super(GymRLTests, self).__init__(*args, **kwargs) self.ext = get_instance() async def _train(self, task, load=True, experiment=None, max_iterations=None): task_idx = self.ext._task_list.index(task) self.ext._task_dropdown.get_item_value_model().set_value(task_idx) if load: self.ext._on_load_world() while True: _, files_loaded, total_files = omni.usd.get_context().get_stage_loading_status() if files_loaded or total_files: await omni.kit.app.get_app().next_update_async() else: break for _ in range(100): await omni.kit.app.get_app().next_update_async() self.ext._render_dropdown.get_item_value_model().set_value(2) overrides = None if experiment is not None: overrides = [f"experiment={experiment}"] if max_iterations is not None: if overrides is None: overrides = [f"max_iterations={max_iterations}"] else: overrides += [f"max_iterations={max_iterations}"] await self.ext._on_train_async(overrides=overrides) async def test_train(self): date_str = date.today() tasks = self.ext._task_list for task in tasks: await self._train(task, load=True, experiment=f"{task}_{date_str}") async def test_train_determinism(self): date_str = date.today() tasks = self.ext._task_list for task in tasks: for i in range(3): await self._train(task, load=(i==0), experiment=f"{task}_{date_str}_{i}", max_iterations=100) class TestRunner(): def __init__(self): self._build_ui() def _build_ui(self): menu_items = [make_menu_item_description("RL Examples Tests", "RL Examples Tests", lambda a=weakref.proxy(self): a._menu_callback())] add_menu_items(menu_items, "Isaac Examples") self._window = omni.ui.Window( "RL Examples Tests", width=250, height=0, visible=True, dockPreference=ui.DockPreference.LEFT_BOTTOM ) with self._window.frame: main_stack = ui.VStack(spacing=5, height=0) with main_stack: dict = { "label": "Run Tests", "type": "button", "text": "Run Tests", "tooltip": "Run all tests", "on_clicked_fn": self._run_tests, } btn_builder(**dict) def _menu_callback(self): self._window.visible = not self._window.visible def _run_tests(self): loader = unittest.TestLoader() loader.SuiteClass = AsyncTestSuite test_suite = AsyncTestSuite() test_suite.addTests(loader.loadTestsFromTestCase(GymRLTests)) test_runner = AsyncTextTestRunner(verbosity=2, stream=sys.stdout) async def single_run(): await test_runner.run(test_suite) print("=======================================") print(f"Running Tests") print("=======================================") asyncio.ensure_future(single_run()) TestRunner()
4,254
Python
35.059322
141
0.607428
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/demo_util.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. def initialize_demo(config, env, init_sim=True): from omniisaacgymenvs.demos.anymal_terrain import AnymalTerrainDemo # Mappings from strings to environments task_map = { "AnymalTerrain": AnymalTerrainDemo, } from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig sim_config = SimConfig(config) cfg = sim_config.config task = task_map[cfg["task_name"]]( name=cfg["task_name"], sim_config=sim_config, env=env ) env.set_task(task=task, sim_params=sim_config.get_physics_params(), backend="torch", init_sim=init_sim) return task
2,167
Python
44.166666
107
0.757268
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/task_util.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. def import_tasks(): from omniisaacgymenvs.tasks.allegro_hand import AllegroHandTask from omniisaacgymenvs.tasks.ant import AntLocomotionTask from omniisaacgymenvs.tasks.anymal import AnymalTask from omniisaacgymenvs.tasks.anymal_terrain import AnymalTerrainTask from omniisaacgymenvs.tasks.ball_balance import BallBalanceTask from omniisaacgymenvs.tasks.cartpole import CartpoleTask from omniisaacgymenvs.tasks.cartpole_camera import CartpoleCameraTask from omniisaacgymenvs.tasks.crazyflie import CrazyflieTask from omniisaacgymenvs.tasks.factory.factory_task_nut_bolt_pick import FactoryTaskNutBoltPick from omniisaacgymenvs.tasks.factory.factory_task_nut_bolt_place import FactoryTaskNutBoltPlace from omniisaacgymenvs.tasks.factory.factory_task_nut_bolt_screw import FactoryTaskNutBoltScrew from omniisaacgymenvs.tasks.franka_cabinet import FrankaCabinetTask from omniisaacgymenvs.tasks.franka_deformable import FrankaDeformableTask from omniisaacgymenvs.tasks.humanoid import HumanoidLocomotionTask from omniisaacgymenvs.tasks.ingenuity import IngenuityTask from omniisaacgymenvs.tasks.quadcopter import QuadcopterTask from omniisaacgymenvs.tasks.shadow_hand import ShadowHandTask from omniisaacgymenvs.tasks.warp.ant import AntLocomotionTask as AntLocomotionTaskWarp from omniisaacgymenvs.tasks.warp.cartpole import CartpoleTask as CartpoleTaskWarp from omniisaacgymenvs.tasks.warp.humanoid import HumanoidLocomotionTask as HumanoidLocomotionTaskWarp # Mappings from strings to environments task_map = { "AllegroHand": AllegroHandTask, "Ant": AntLocomotionTask, "Anymal": AnymalTask, "AnymalTerrain": AnymalTerrainTask, "BallBalance": BallBalanceTask, "Cartpole": CartpoleTask, "CartpoleCamera": CartpoleCameraTask, "FactoryTaskNutBoltPick": FactoryTaskNutBoltPick, "FactoryTaskNutBoltPlace": FactoryTaskNutBoltPlace, "FactoryTaskNutBoltScrew": FactoryTaskNutBoltScrew, "FrankaCabinet": FrankaCabinetTask, "FrankaDeformable": FrankaDeformableTask, "Humanoid": HumanoidLocomotionTask, "Ingenuity": IngenuityTask, "Quadcopter": QuadcopterTask, "Crazyflie": CrazyflieTask, "ShadowHand": ShadowHandTask, "ShadowHandOpenAI_FF": ShadowHandTask, "ShadowHandOpenAI_LSTM": ShadowHandTask, } task_map_warp = { "Cartpole": CartpoleTaskWarp, "Ant":AntLocomotionTaskWarp, "Humanoid": HumanoidLocomotionTaskWarp } return task_map, task_map_warp def initialize_task(config, env, init_sim=True): from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig sim_config = SimConfig(config) task_map, task_map_warp = import_tasks() cfg = sim_config.config if cfg["warp"]: task_map = task_map_warp task = task_map[cfg["task_name"]]( name=cfg["task_name"], sim_config=sim_config, env=env ) backend = "warp" if cfg["warp"] else "torch" rendering_dt = sim_config.get_physics_params()["rendering_dt"] env.set_task( task=task, sim_params=sim_config.get_physics_params(), backend=backend, init_sim=init_sim, rendering_dt=rendering_dt, ) return task
4,894
Python
42.705357
105
0.752554
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/domain_randomization/randomize.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy import numpy as np import torch import omni from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.utils.extensions import enable_extension class Randomizer: def __init__(self, main_config, task_config): self._cfg = task_config self._config = main_config self.randomize = False dr_config = self._cfg.get("domain_randomization", None) self.distributions = dict() self.active_domain_randomizations = dict() self._observations_dr_params = None self._actions_dr_params = None if dr_config is not None: randomize = dr_config.get("randomize", False) randomization_params = dr_config.get("randomization_params", None) if randomize and randomization_params is not None: self.randomize = True self.min_frequency = dr_config.get("min_frequency", 1) # import DR extensions enable_extension("omni.replicator.isaac") import omni.replicator.core as rep import omni.replicator.isaac as dr self.rep = rep self.dr = dr def apply_on_startup_domain_randomization(self, task): if self.randomize: torch.manual_seed(self._config["seed"]) randomization_params = self._cfg["domain_randomization"]["randomization_params"] for opt in randomization_params.keys(): if opt == "rigid_prim_views": if randomization_params["rigid_prim_views"] is not None: for view_name in randomization_params["rigid_prim_views"].keys(): if randomization_params["rigid_prim_views"][view_name] is not None: for attribute, params in randomization_params["rigid_prim_views"][view_name].items(): params = randomization_params["rigid_prim_views"][view_name][attribute] if attribute in ["scale", "mass", "density"] and params is not None: if "on_startup" in params.keys(): if not set( ("operation", "distribution", "distribution_parameters") ).issubset(params["on_startup"]): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} " + "on_startup are provided: operation, distribution, distribution_parameters." ) view = task.world.scene._scene_registry.rigid_prim_views[view_name] if attribute == "scale": self.randomize_scale_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"][ "distribution_parameters" ], operation=params["on_startup"]["operation"], sync_dim_noise=True, ) elif attribute == "mass": self.randomize_mass_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"][ "distribution_parameters" ], operation=params["on_startup"]["operation"], ) elif attribute == "density": self.randomize_density_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"][ "distribution_parameters" ], operation=params["on_startup"]["operation"], ) if opt == "articulation_views": if randomization_params["articulation_views"] is not None: for view_name in randomization_params["articulation_views"].keys(): if randomization_params["articulation_views"][view_name] is not None: for attribute, params in randomization_params["articulation_views"][view_name].items(): params = randomization_params["articulation_views"][view_name][attribute] if attribute in ["scale"] and params is not None: if "on_startup" in params.keys(): if not set( ("operation", "distribution", "distribution_parameters") ).issubset(params["on_startup"]): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} " + "on_startup are provided: operation, distribution, distribution_parameters." ) view = task.world.scene._scene_registry.articulated_views[view_name] if attribute == "scale": self.randomize_scale_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"][ "distribution_parameters" ], operation=params["on_startup"]["operation"], sync_dim_noise=True, ) else: dr_config = self._cfg.get("domain_randomization", None) if dr_config is None: raise ValueError("No domain randomization parameters are specified in the task yaml config file") randomize = dr_config.get("randomize", False) randomization_params = dr_config.get("randomization_params", None) if randomize == False or randomization_params is None: print("On Startup Domain randomization will not be applied.") def set_up_domain_randomization(self, task): if self.randomize: randomization_params = self._cfg["domain_randomization"]["randomization_params"] self.rep.set_global_seed(self._config["seed"]) with self.dr.trigger.on_rl_frame(num_envs=self._cfg["env"]["numEnvs"]): for opt in randomization_params.keys(): if opt == "observations": self._set_up_observations_randomization(task) elif opt == "actions": self._set_up_actions_randomization(task) elif opt == "simulation": if randomization_params["simulation"] is not None: self.distributions["simulation"] = dict() self.dr.physics_view.register_simulation_context(task.world) for attribute, params in randomization_params["simulation"].items(): self._set_up_simulation_randomization(attribute, params) elif opt == "rigid_prim_views": if randomization_params["rigid_prim_views"] is not None: self.distributions["rigid_prim_views"] = dict() for view_name in randomization_params["rigid_prim_views"].keys(): if randomization_params["rigid_prim_views"][view_name] is not None: self.distributions["rigid_prim_views"][view_name] = dict() self.dr.physics_view.register_rigid_prim_view( rigid_prim_view=task.world.scene._scene_registry.rigid_prim_views[ view_name ], ) for attribute, params in randomization_params["rigid_prim_views"][ view_name ].items(): if attribute not in ["scale", "density"]: self._set_up_rigid_prim_view_randomization(view_name, attribute, params) elif opt == "articulation_views": if randomization_params["articulation_views"] is not None: self.distributions["articulation_views"] = dict() for view_name in randomization_params["articulation_views"].keys(): if randomization_params["articulation_views"][view_name] is not None: self.distributions["articulation_views"][view_name] = dict() self.dr.physics_view.register_articulation_view( articulation_view=task.world.scene._scene_registry.articulated_views[ view_name ], ) for attribute, params in randomization_params["articulation_views"][ view_name ].items(): if attribute not in ["scale"]: self._set_up_articulation_view_randomization(view_name, attribute, params) self.rep.orchestrator.run() if self._config.get("enable_recording", False): # we need to deal with initializing render product here because it has to be initialized after orchestrator.run. # otherwise, replicator will stop the simulation task._env.create_viewport_render_product(resolution=(task.viewport_camera_width, task.viewport_camera_height)) if not task.is_extension: task.world.render() else: dr_config = self._cfg.get("domain_randomization", None) if dr_config is None: raise ValueError("No domain randomization parameters are specified in the task yaml config file") randomize = dr_config.get("randomize", False) randomization_params = dr_config.get("randomization_params", None) if randomize == False or randomization_params is None: print("Domain randomization will not be applied.") def _set_up_observations_randomization(self, task): task.randomize_observations = True self._observations_dr_params = self._cfg["domain_randomization"]["randomization_params"]["observations"] if self._observations_dr_params is None: raise ValueError(f"Observations randomization parameters are not provided.") if "on_reset" in self._observations_dr_params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset( self._observations_dr_params["on_reset"].keys() ): raise ValueError( f"Please ensure the following observations on_reset randomization parameters are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("observations", "on_reset")] = np.array( self._observations_dr_params["on_reset"]["distribution_parameters"] ) if "on_interval" in self._observations_dr_params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( self._observations_dr_params["on_interval"].keys() ): raise ValueError( f"Please ensure the following observations on_interval randomization parameters are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("observations", "on_interval")] = np.array( self._observations_dr_params["on_interval"]["distribution_parameters"] ) self._observations_counter_buffer = torch.zeros( (self._cfg["env"]["numEnvs"]), dtype=torch.int, device=self._config["rl_device"] ) self._observations_correlated_noise = torch.zeros( (self._cfg["env"]["numEnvs"], task.num_observations), device=self._config["rl_device"] ) def _set_up_actions_randomization(self, task): task.randomize_actions = True self._actions_dr_params = self._cfg["domain_randomization"]["randomization_params"]["actions"] if self._actions_dr_params is None: raise ValueError(f"Actions randomization parameters are not provided.") if "on_reset" in self._actions_dr_params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset( self._actions_dr_params["on_reset"].keys() ): raise ValueError( f"Please ensure the following actions on_reset randomization parameters are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("actions", "on_reset")] = np.array( self._actions_dr_params["on_reset"]["distribution_parameters"] ) if "on_interval" in self._actions_dr_params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( self._actions_dr_params["on_interval"].keys() ): raise ValueError( f"Please ensure the following actions on_interval randomization parameters are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("actions", "on_interval")] = np.array( self._actions_dr_params["on_interval"]["distribution_parameters"] ) self._actions_counter_buffer = torch.zeros( (self._cfg["env"]["numEnvs"]), dtype=torch.int, device=self._config["rl_device"] ) self._actions_correlated_noise = torch.zeros( (self._cfg["env"]["numEnvs"], task.num_actions), device=self._config["rl_device"] ) def apply_observations_randomization(self, observations, reset_buf): env_ids = reset_buf.nonzero(as_tuple=False).squeeze(-1) self._observations_counter_buffer[env_ids] = 0 self._observations_counter_buffer += 1 if "on_reset" in self._observations_dr_params.keys(): observations[:] = self._apply_correlated_noise( buffer_type="observations", buffer=observations, reset_ids=env_ids, operation=self._observations_dr_params["on_reset"]["operation"], distribution=self._observations_dr_params["on_reset"]["distribution"], distribution_parameters=self._observations_dr_params["on_reset"]["distribution_parameters"], ) if "on_interval" in self._observations_dr_params.keys(): randomize_ids = ( (self._observations_counter_buffer >= self._observations_dr_params["on_interval"]["frequency_interval"]) .nonzero(as_tuple=False) .squeeze(-1) ) self._observations_counter_buffer[randomize_ids] = 0 observations[:] = self._apply_uncorrelated_noise( buffer=observations, randomize_ids=randomize_ids, operation=self._observations_dr_params["on_interval"]["operation"], distribution=self._observations_dr_params["on_interval"]["distribution"], distribution_parameters=self._observations_dr_params["on_interval"]["distribution_parameters"], ) return observations def apply_actions_randomization(self, actions, reset_buf): env_ids = reset_buf.nonzero(as_tuple=False).squeeze(-1) self._actions_counter_buffer[env_ids] = 0 self._actions_counter_buffer += 1 if "on_reset" in self._actions_dr_params.keys(): actions[:] = self._apply_correlated_noise( buffer_type="actions", buffer=actions, reset_ids=env_ids, operation=self._actions_dr_params["on_reset"]["operation"], distribution=self._actions_dr_params["on_reset"]["distribution"], distribution_parameters=self._actions_dr_params["on_reset"]["distribution_parameters"], ) if "on_interval" in self._actions_dr_params.keys(): randomize_ids = ( (self._actions_counter_buffer >= self._actions_dr_params["on_interval"]["frequency_interval"]) .nonzero(as_tuple=False) .squeeze(-1) ) self._actions_counter_buffer[randomize_ids] = 0 actions[:] = self._apply_uncorrelated_noise( buffer=actions, randomize_ids=randomize_ids, operation=self._actions_dr_params["on_interval"]["operation"], distribution=self._actions_dr_params["on_interval"]["distribution"], distribution_parameters=self._actions_dr_params["on_interval"]["distribution_parameters"], ) return actions def _apply_uncorrelated_noise(self, buffer, randomize_ids, operation, distribution, distribution_parameters): if distribution == "gaussian" or distribution == "normal": noise = torch.normal( mean=distribution_parameters[0], std=distribution_parameters[1], size=(len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"], ) elif distribution == "uniform": noise = (distribution_parameters[1] - distribution_parameters[0]) * torch.rand( (len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"] ) + distribution_parameters[0] elif distribution == "loguniform" or distribution == "log_uniform": noise = torch.exp( (np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand((len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"]) + np.log(distribution_parameters[0]) ) else: print(f"The specified {distribution} distribution is not supported.") if operation == "additive": buffer[randomize_ids] += noise elif operation == "scaling": buffer[randomize_ids] *= noise else: print(f"The specified {operation} operation type is not supported.") return buffer def _apply_correlated_noise(self, buffer_type, buffer, reset_ids, operation, distribution, distribution_parameters): if buffer_type == "observations": correlated_noise_buffer = self._observations_correlated_noise elif buffer_type == "actions": correlated_noise_buffer = self._actions_correlated_noise if len(reset_ids) > 0: if distribution == "gaussian" or distribution == "normal": correlated_noise_buffer[reset_ids] = torch.normal( mean=distribution_parameters[0], std=distribution_parameters[1], size=(len(reset_ids), buffer.shape[1]), device=self._config["rl_device"], ) elif distribution == "uniform": correlated_noise_buffer[reset_ids] = ( distribution_parameters[1] - distribution_parameters[0] ) * torch.rand( (len(reset_ids), buffer.shape[1]), device=self._config["rl_device"] ) + distribution_parameters[ 0 ] elif distribution == "loguniform" or distribution == "log_uniform": correlated_noise_buffer[reset_ids] = torch.exp( (np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand((len(reset_ids), buffer.shape[1]), device=self._config["rl_device"]) + np.log(distribution_parameters[0]) ) else: print(f"The specified {distribution} distribution is not supported.") if operation == "additive": buffer += correlated_noise_buffer elif operation == "scaling": buffer *= correlated_noise_buffer else: print(f"The specified {operation} operation type is not supported.") return buffer def _set_up_simulation_randomization(self, attribute, params): if params is None: raise ValueError(f"Randomization parameters for simulation {attribute} is not provided.") if attribute in self.dr.SIMULATION_CONTEXT_ATTRIBUTES: self.distributions["simulation"][attribute] = dict() if "on_reset" in params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset(params["on_reset"]): raise ValueError( f"Please ensure the following randomization parameters for simulation {attribute} on_reset are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("simulation", attribute, "on_reset")] = np.array( params["on_reset"]["distribution_parameters"] ) kwargs = {"operation": params["on_reset"]["operation"]} self.distributions["simulation"][attribute]["on_reset"] = self._generate_distribution( dimension=self.dr.physics_view._simulation_context_initial_values[attribute].shape[0], view_name="simulation", attribute=attribute, params=params["on_reset"], ) kwargs[attribute] = self.distributions["simulation"][attribute]["on_reset"] with self.dr.gate.on_env_reset(): self.dr.physics_view.randomize_simulation_context(**kwargs) if "on_interval" in params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( params["on_interval"] ): raise ValueError( f"Please ensure the following randomization parameters for simulation {attribute} on_interval are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("simulation", attribute, "on_interval")] = np.array( params["on_interval"]["distribution_parameters"] ) kwargs = {"operation": params["on_interval"]["operation"]} self.distributions["simulation"][attribute]["on_interval"] = self._generate_distribution( dimension=self.dr.physics_view._simulation_context_initial_values[attribute].shape[0], view_name="simulation", attribute=attribute, params=params["on_interval"], ) kwargs[attribute] = self.distributions["simulation"][attribute]["on_interval"] with self.dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]): self.dr.physics_view.randomize_simulation_context(**kwargs) def _set_up_rigid_prim_view_randomization(self, view_name, attribute, params): if params is None: raise ValueError(f"Randomization parameters for rigid prim view {view_name} {attribute} is not provided.") if attribute in self.dr.RIGID_PRIM_ATTRIBUTES: self.distributions["rigid_prim_views"][view_name][attribute] = dict() if "on_reset" in params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset(params["on_reset"]): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} on_reset are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("rigid_prim_views", view_name, attribute, "on_reset")] = np.array( params["on_reset"]["distribution_parameters"] ) kwargs = {"view_name": view_name, "operation": params["on_reset"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_reset"].keys(): kwargs["num_buckets"] = params["on_reset"]["num_buckets"] self.distributions["rigid_prim_views"][view_name][attribute]["on_reset"] = self._generate_distribution( dimension=self.dr.physics_view._rigid_prim_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_reset"], ) kwargs[attribute] = self.distributions["rigid_prim_views"][view_name][attribute]["on_reset"] with self.dr.gate.on_env_reset(): self.dr.physics_view.randomize_rigid_prim_view(**kwargs) if "on_interval" in params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( params["on_interval"] ): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} on_interval are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("rigid_prim_views", view_name, attribute, "on_interval")] = np.array( params["on_interval"]["distribution_parameters"] ) kwargs = {"view_name": view_name, "operation": params["on_interval"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_interval"].keys(): kwargs["num_buckets"] = params["on_interval"]["num_buckets"] self.distributions["rigid_prim_views"][view_name][attribute][ "on_interval" ] = self._generate_distribution( dimension=self.dr.physics_view._rigid_prim_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_interval"], ) kwargs[attribute] = self.distributions["rigid_prim_views"][view_name][attribute]["on_interval"] with self.dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]): self.dr.physics_view.randomize_rigid_prim_view(**kwargs) else: raise ValueError(f"The attribute {attribute} for {view_name} is invalid for domain randomization.") def _set_up_articulation_view_randomization(self, view_name, attribute, params): if params is None: raise ValueError(f"Randomization parameters for articulation view {view_name} {attribute} is not provided.") if attribute in self.dr.ARTICULATION_ATTRIBUTES: self.distributions["articulation_views"][view_name][attribute] = dict() if "on_reset" in params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset(params["on_reset"]): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} on_reset are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("articulation_views", view_name, attribute, "on_reset")] = np.array( params["on_reset"]["distribution_parameters"] ) kwargs = {"view_name": view_name, "operation": params["on_reset"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_reset"].keys(): kwargs["num_buckets"] = params["on_reset"]["num_buckets"] self.distributions["articulation_views"][view_name][attribute][ "on_reset" ] = self._generate_distribution( dimension=self.dr.physics_view._articulation_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_reset"], ) kwargs[attribute] = self.distributions["articulation_views"][view_name][attribute]["on_reset"] with self.dr.gate.on_env_reset(): self.dr.physics_view.randomize_articulation_view(**kwargs) if "on_interval" in params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( params["on_interval"] ): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} on_interval are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[ ("articulation_views", view_name, attribute, "on_interval") ] = np.array(params["on_interval"]["distribution_parameters"]) kwargs = {"view_name": view_name, "operation": params["on_interval"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_interval"].keys(): kwargs["num_buckets"] = params["on_interval"]["num_buckets"] self.distributions["articulation_views"][view_name][attribute][ "on_interval" ] = self._generate_distribution( dimension=self.dr.physics_view._articulation_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_interval"], ) kwargs[attribute] = self.distributions["articulation_views"][view_name][attribute]["on_interval"] with self.dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]): self.dr.physics_view.randomize_articulation_view(**kwargs) else: raise ValueError(f"The attribute {attribute} for {view_name} is invalid for domain randomization.") def _generate_distribution(self, view_name, attribute, dimension, params): dist_params = self._sanitize_distribution_parameters(attribute, dimension, params["distribution_parameters"]) if params["distribution"] == "uniform": return self.rep.distribution.uniform(tuple(dist_params[0]), tuple(dist_params[1])) elif params["distribution"] == "gaussian" or params["distribution"] == "normal": return self.rep.distribution.normal(tuple(dist_params[0]), tuple(dist_params[1])) elif params["distribution"] == "loguniform" or params["distribution"] == "log_uniform": return self.rep.distribution.log_uniform(tuple(dist_params[0]), tuple(dist_params[1])) else: raise ValueError( f"The provided distribution for {view_name} {attribute} is not supported. " + "Options: uniform, gaussian/normal, loguniform/log_uniform" ) def _sanitize_distribution_parameters(self, attribute, dimension, params): distribution_parameters = np.array(params) if distribution_parameters.shape == (2,): # if the user does not provide a set of parameters for each dimension dist_params = [[distribution_parameters[0]] * dimension, [distribution_parameters[1]] * dimension] elif distribution_parameters.shape == (2, dimension): # if the user provides a set of parameters for each dimension in the format [[...], [...]] dist_params = distribution_parameters.tolist() elif attribute in ["material_properties", "body_inertias"] and distribution_parameters.shape == (2, 3): # if the user only provides the parameters for one body in the articulation, assume the same parameters for all other links dist_params = [ [distribution_parameters[0]] * (dimension // 3), [distribution_parameters[1]] * (dimension // 3), ] else: raise ValueError( f"The provided distribution_parameters for {view_name} {attribute} is invalid due to incorrect dimensions." ) return dist_params def set_dr_distribution_parameters(self, distribution_parameters, *distribution_path): if distribution_path not in self.active_domain_randomizations.keys(): raise ValueError( f"Cannot find a valid domain randomization distribution using the path {distribution_path}." ) if distribution_path[0] == "observations": if len(distribution_parameters) == 2: self._observations_dr_params[distribution_path[1]]["distribution_parameters"] = distribution_parameters else: raise ValueError( f"Please provide distribution_parameters for observations {distribution_path[1]} " + "in the form of [dist_param_1, dist_param_2]" ) elif distribution_path[0] == "actions": if len(distribution_parameters) == 2: self._actions_dr_params[distribution_path[1]]["distribution_parameters"] = distribution_parameters else: raise ValueError( f"Please provide distribution_parameters for actions {distribution_path[1]} " + "in the form of [dist_param_1, dist_param_2]" ) else: replicator_distribution = self.distributions[distribution_path[0]][distribution_path[1]][ distribution_path[2] ] if distribution_path[0] == "rigid_prim_views" or distribution_path[0] == "articulation_views": replicator_distribution = replicator_distribution[distribution_path[3]] if ( replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleUniform" or replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleLogUniform" ): dimension = len(self.dr.utils.get_distribution_params(replicator_distribution, ["lower"])[0]) dist_params = self._sanitize_distribution_parameters( distribution_path[-2], dimension, distribution_parameters ) self.dr.utils.set_distribution_params( replicator_distribution, {"lower": dist_params[0], "upper": dist_params[1]} ) elif replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleNormal": dimension = len(self.dr.utils.get_distribution_params(replicator_distribution, ["mean"])[0]) dist_params = self._sanitize_distribution_parameters( distribution_path[-2], dimension, distribution_parameters ) self.dr.utils.set_distribution_params( replicator_distribution, {"mean": dist_params[0], "std": dist_params[1]} ) def get_dr_distribution_parameters(self, *distribution_path): if distribution_path not in self.active_domain_randomizations.keys(): raise ValueError( f"Cannot find a valid domain randomization distribution using the path {distribution_path}." ) if distribution_path[0] == "observations": return self._observations_dr_params[distribution_path[1]]["distribution_parameters"] elif distribution_path[0] == "actions": return self._actions_dr_params[distribution_path[1]]["distribution_parameters"] else: replicator_distribution = self.distributions[distribution_path[0]][distribution_path[1]][ distribution_path[2] ] if distribution_path[0] == "rigid_prim_views" or distribution_path[0] == "articulation_views": replicator_distribution = replicator_distribution[distribution_path[3]] if ( replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleUniform" or replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleLogUniform" ): return self.dr.utils.get_distribution_params(replicator_distribution, ["lower", "upper"]) elif replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleNormal": return self.dr.utils.get_distribution_params(replicator_distribution, ["mean", "std"]) def get_initial_dr_distribution_parameters(self, *distribution_path): if distribution_path not in self.active_domain_randomizations.keys(): raise ValueError( f"Cannot find a valid domain randomization distribution using the path {distribution_path}." ) return self.active_domain_randomizations[distribution_path].copy() def _generate_noise(self, distribution, distribution_parameters, size, device): if distribution == "gaussian" or distribution == "normal": noise = torch.normal( mean=distribution_parameters[0], std=distribution_parameters[1], size=size, device=device ) elif distribution == "uniform": noise = (distribution_parameters[1] - distribution_parameters[0]) * torch.rand( size, device=device ) + distribution_parameters[0] elif distribution == "loguniform" or distribution == "log_uniform": noise = torch.exp( (np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand(size, device=device) + np.log(distribution_parameters[0]) ) else: print(f"The specified {distribution} distribution is not supported.") return noise def randomize_scale_on_startup(self, view, distribution, distribution_parameters, operation, sync_dim_noise=True): scales = view.get_local_scales() if sync_dim_noise: dist_params = np.asarray( self._sanitize_distribution_parameters(attribute="scale", dimension=1, params=distribution_parameters) ) noise = ( self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device).repeat(3, 1).T ) else: dist_params = np.asarray( self._sanitize_distribution_parameters(attribute="scale", dimension=3, params=distribution_parameters) ) noise = torch.zeros((view.count, 3), device=view._device) for i in range(3): noise[:, i] = self._generate_noise(distribution, dist_params[:, i], (view.count,), view._device) if operation == "additive": scales += noise elif operation == "scaling": scales *= noise elif operation == "direct": scales = noise else: print(f"The specified {operation} operation type is not supported.") view.set_local_scales(scales=scales) def randomize_mass_on_startup(self, view, distribution, distribution_parameters, operation): if isinstance(view, omni.isaac.core.prims.RigidPrimView) or isinstance(view, RigidPrimView): masses = view.get_masses() dist_params = np.asarray( self._sanitize_distribution_parameters( attribute=f"{view.name} mass", dimension=1, params=distribution_parameters ) ) noise = self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device) set_masses = view.set_masses if operation == "additive": masses += noise elif operation == "scaling": masses *= noise elif operation == "direct": masses = noise else: print(f"The specified {operation} operation type is not supported.") set_masses(masses) def randomize_density_on_startup(self, view, distribution, distribution_parameters, operation): if isinstance(view, omni.isaac.core.prims.RigidPrimView) or isinstance(view, RigidPrimView): densities = view.get_densities() dist_params = np.asarray( self._sanitize_distribution_parameters( attribute=f"{view.name} density", dimension=1, params=distribution_parameters ) ) noise = self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device) set_densities = view.set_densities if operation == "additive": densities += noise elif operation == "scaling": densities *= noise elif operation == "direct": densities = noise else: print(f"The specified {operation} operation type is not supported.") set_densities(densities)
46,049
Python
58.650259
136
0.55593
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/rlgames/rlgames_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Callable import numpy as np import torch from rl_games.algos_torch import torch_ext from rl_games.common import env_configurations, vecenv from rl_games.common.algo_observer import AlgoObserver class RLGPUAlgoObserver(AlgoObserver): """Allows us to log stats from the env along with the algorithm running stats.""" def __init__(self): pass def after_init(self, algo): self.algo = algo self.mean_scores = torch_ext.AverageMeter(1, self.algo.games_to_track).to(self.algo.ppo_device) self.ep_infos = [] self.direct_info = {} self.writer = self.algo.writer def process_infos(self, infos, done_indices): assert isinstance(infos, dict), "RLGPUAlgoObserver expects dict info" if isinstance(infos, dict): if "episode" in infos: self.ep_infos.append(infos["episode"]) if len(infos) > 0 and isinstance(infos, dict): # allow direct logging from env self.direct_info = {} for k, v in infos.items(): # only log scalars if ( isinstance(v, float) or isinstance(v, int) or (isinstance(v, torch.Tensor) and len(v.shape) == 0) ): self.direct_info[k] = v def after_clear_stats(self): self.mean_scores.clear() def after_print_stats(self, frame, epoch_num, total_time): if self.ep_infos: for key in self.ep_infos[0]: infotensor = torch.tensor([], device=self.algo.device) for ep_info in self.ep_infos: # handle scalar and zero dimensional tensor infos if not isinstance(ep_info[key], torch.Tensor): ep_info[key] = torch.Tensor([ep_info[key]]) if len(ep_info[key].shape) == 0: ep_info[key] = ep_info[key].unsqueeze(0) infotensor = torch.cat((infotensor, ep_info[key].to(self.algo.device))) value = torch.mean(infotensor) self.writer.add_scalar("Episode/" + key, value, epoch_num) self.ep_infos.clear() for k, v in self.direct_info.items(): self.writer.add_scalar(f"{k}/frame", v, frame) self.writer.add_scalar(f"{k}/iter", v, epoch_num) self.writer.add_scalar(f"{k}/time", v, total_time) if self.mean_scores.current_size > 0: mean_scores = self.mean_scores.get_mean() self.writer.add_scalar("scores/mean", mean_scores, frame) self.writer.add_scalar("scores/iter", mean_scores, epoch_num) self.writer.add_scalar("scores/time", mean_scores, total_time) class RLGPUEnv(vecenv.IVecEnv): def __init__(self, config_name, num_actors, **kwargs): self.env = env_configurations.configurations[config_name]["env_creator"](**kwargs) def step(self, action): return self.env.step(action) def reset(self): return self.env.reset() def get_number_of_agents(self): return self.env.get_number_of_agents() def get_env_info(self): info = {} info["action_space"] = self.env.action_space info["observation_space"] = self.env.observation_space if self.env.num_states > 0: info["state_space"] = self.env.state_space print(info["action_space"], info["observation_space"], info["state_space"]) else: print(info["action_space"], info["observation_space"]) return info
5,201
Python
40.951613
103
0.636801
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/rlgames/rlgames_train_mt.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy import datetime import os import queue import threading import traceback import hydra from omegaconf import DictConfig from omni.isaac.gym.vec_env.vec_env_mt import TrainerMT import omniisaacgymenvs from omniisaacgymenvs.envs.vec_env_rlgames_mt import VecEnvRLGamesMT from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv from omniisaacgymenvs.utils.task_util import initialize_task from rl_games.common import env_configurations, vecenv from rl_games.torch_runner import Runner class RLGTrainer: def __init__(self, cfg, cfg_dict): self.cfg = cfg self.cfg_dict = cfg_dict # ensure checkpoints can be specified as relative paths self._bad_checkpoint = False if self.cfg.checkpoint: self.cfg.checkpoint = retrieve_checkpoint_path(self.cfg.checkpoint) if not self.cfg.checkpoint: self._bad_checkpoint = True def launch_rlg_hydra(self, env): # `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally. # We use the helper function here to specify the environment config. self.cfg_dict["task"]["test"] = self.cfg.test # register the rl-games adapter to use inside the runner vecenv.register("RLGPU", lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs)) env_configurations.register("rlgpu", {"vecenv_type": "RLGPU", "env_creator": lambda **kwargs: env}) self.rlg_config_dict = omegaconf_to_dict(self.cfg.train) def run(self): # create runner and set the settings runner = Runner(RLGPUAlgoObserver()) # add evaluation parameters if self.cfg.evaluation: player_config = self.rlg_config_dict["params"]["config"].get("player", {}) player_config["evaluation"] = True player_config["update_checkpoint_freq"] = 100 player_config["dir_to_monitor"] = os.path.dirname(self.cfg.checkpoint) self.rlg_config_dict["params"]["config"]["player"] = player_config module_path = os.path.abspath(os.path.join(os.path.dirname(omniisaacgymenvs.__file__))) self.rlg_config_dict["params"]["config"]["train_dir"] = os.path.join(module_path, "runs") # load config runner.load(copy.deepcopy(self.rlg_config_dict)) runner.reset() # dump config dict experiment_dir = os.path.join(module_path, "runs", self.cfg.train.params.config.name) os.makedirs(experiment_dir, exist_ok=True) with open(os.path.join(experiment_dir, "config.yaml"), "w") as f: f.write(OmegaConf.to_yaml(self.cfg)) time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") if self.cfg.wandb_activate: # Make sure to install WandB if you actually use this. import wandb run_name = f"{self.cfg.wandb_name}_{time_str}" wandb.init( project=self.cfg.wandb_project, group=self.cfg.wandb_group, entity=self.cfg.wandb_entity, config=self.cfg_dict, sync_tensorboard=True, id=run_name, resume="allow", monitor_gym=True, ) runner.run( {"train": not self.cfg.test, "play": self.cfg.test, "checkpoint": self.cfg.checkpoint, "sigma": None} ) if self.cfg.wandb_activate: wandb.finish() class Trainer(TrainerMT): def __init__(self, trainer, env): self.ppo_thread = None self.action_queue = None self.data_queue = None self.trainer = trainer self.is_running = False self.env = env self.create_task() self.run() def create_task(self): self.trainer.launch_rlg_hydra(self.env) # task = initialize_task(self.trainer.cfg_dict, self.env, init_sim=False) self.task = self.env.task def run(self): self.is_running = True self.action_queue = queue.Queue(1) self.data_queue = queue.Queue(1) if "mt_timeout" in self.trainer.cfg_dict: self.env.initialize(self.action_queue, self.data_queue, self.trainer.cfg_dict["mt_timeout"]) else: self.env.initialize(self.action_queue, self.data_queue) self.ppo_thread = PPOTrainer(self.env, self.task, self.trainer) self.ppo_thread.daemon = True self.ppo_thread.start() def stop(self): self.env.stop = True self.env.clear_queues() if self.action_queue: self.action_queue.join() if self.data_queue: self.data_queue.join() if self.ppo_thread: self.ppo_thread.join() self.action_queue = None self.data_queue = None self.ppo_thread = None self.is_running = False class PPOTrainer(threading.Thread): def __init__(self, env, task, trainer): super().__init__() self.env = env self.task = task self.trainer = trainer def run(self): from omni.isaac.gym.vec_env import TaskStopException print("starting ppo...") try: self.trainer.run() # trainer finished - send stop signal to main thread self.env.should_run = False self.env.send_actions(None, block=False) except TaskStopException: print("Task Stopped!") self.env.should_run = False self.env.send_actions(None, block=False) except Exception as e: # an error occurred on the RL side - signal stop to main thread print(traceback.format_exc()) self.env.should_run = False self.env.send_actions(None, block=False)
7,633
Python
37.17
119
0.654395
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/config_utils/sim_config.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy import carb import numpy as np import omni.usd import torch from omni.isaac.core.utils.extensions import enable_extension from omniisaacgymenvs.utils.config_utils.default_scene_params import * class SimConfig: def __init__(self, config: dict = None): if config is None: config = dict() self._config = config self._cfg = config.get("task", dict()) self._parse_config() if self._config["test"] == True: self._sim_params["enable_scene_query_support"] = True if ( self._config["headless"] == True and not self._sim_params["enable_cameras"] and not self._config["enable_livestream"] and not self._config.get("enable_recording", False) ): self._sim_params["use_fabric"] = False self._sim_params["enable_viewport"] = False else: self._sim_params["enable_viewport"] = True enable_extension("omni.kit.viewport.bundle") if self._sim_params["enable_cameras"] or self._config.get("enable_recording", False): enable_extension("omni.replicator.isaac") self._sim_params["warp"] = self._config["warp"] self._sim_params["sim_device"] = self._config["sim_device"] self._adjust_dt() if self._sim_params["disable_contact_processing"]: carb.settings.get_settings().set_bool("/physics/disableContactProcessing", True) carb.settings.get_settings().set_bool("/physics/physxDispatcher", True) # Force the background grid off all the time for RL tasks, to avoid the grid showing up in any RL camera task carb.settings.get_settings().set("/app/viewport/grid/enabled", False) # Disable framerate limiting which might cause rendering slowdowns carb.settings.get_settings().set("/app/runLoops/main/rateLimitEnabled", False) import omni.ui # Dock floating UIs this might not be needed anymore as extensions dock themselves # Method for docking a particular window to a location def dock_window(space, name, location, ratio=0.5): window = omni.ui.Workspace.get_window(name) if window and space: window.dock_in(space, location, ratio=ratio) return window # Acquire the main docking station main_dockspace = omni.ui.Workspace.get_window("DockSpace") dock_window(main_dockspace, "Content", omni.ui.DockPosition.BOTTOM, 0.3) window = omni.ui.Workspace.get_window("Content") if window: window.visible = False window = omni.ui.Workspace.get_window("Simulation Settings") if window: window.visible = False # workaround for asset root search hang carb.settings.get_settings().set_string( "/persistent/isaac/asset_root/default", "http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2023.1.1", ) carb.settings.get_settings().set_string( "/persistent/isaac/asset_root/nvidia", "http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2023.1.1", ) # make sure the correct USD update flags are set if self._sim_params["use_fabric"]: carb.settings.get_settings().set_bool("/physics/updateToUsd", False) carb.settings.get_settings().set_bool("/physics/updateParticlesToUsd", False) carb.settings.get_settings().set_bool("/physics/updateVelocitiesToUsd", False) carb.settings.get_settings().set_bool("/physics/updateForceSensorsToUsd", False) carb.settings.get_settings().set_bool("/physics/outputVelocitiesLocalSpace", False) carb.settings.get_settings().set_bool("/physics/fabricUpdateTransformations", True) carb.settings.get_settings().set_bool("/physics/fabricUpdateVelocities", False) carb.settings.get_settings().set_bool("/physics/fabricUpdateForceSensors", False) carb.settings.get_settings().set_bool("/physics/fabricUpdateJointStates", False) def _parse_config(self): # general sim parameter self._sim_params = copy.deepcopy(default_sim_params) self._default_physics_material = copy.deepcopy(default_physics_material) sim_cfg = self._cfg.get("sim", None) if sim_cfg is not None: for opt in sim_cfg.keys(): if opt in self._sim_params: if opt == "default_physics_material": for material_opt in sim_cfg[opt]: self._default_physics_material[material_opt] = sim_cfg[opt][material_opt] else: self._sim_params[opt] = sim_cfg[opt] else: print("Sim params does not have attribute: ", opt) self._sim_params["default_physics_material"] = self._default_physics_material # physx parameters self._physx_params = copy.deepcopy(default_physx_params) if sim_cfg is not None and "physx" in sim_cfg: for opt in sim_cfg["physx"].keys(): if opt in self._physx_params: self._physx_params[opt] = sim_cfg["physx"][opt] else: print("Physx sim params does not have attribute: ", opt) self._sanitize_device() def _sanitize_device(self): if self._sim_params["use_gpu_pipeline"]: self._physx_params["use_gpu"] = True # device should be in sync with pipeline if self._sim_params["use_gpu_pipeline"]: self._config["sim_device"] = f"cuda:{self._config['device_id']}" else: self._config["sim_device"] = "cpu" # also write to physics params for setting sim device self._physx_params["sim_device"] = self._config["sim_device"] print("Pipeline: ", "GPU" if self._sim_params["use_gpu_pipeline"] else "CPU") print("Pipeline Device: ", self._config["sim_device"]) print("Sim Device: ", "GPU" if self._physx_params["use_gpu"] else "CPU") def parse_actor_config(self, actor_name): actor_params = copy.deepcopy(default_actor_options) if "sim" in self._cfg and actor_name in self._cfg["sim"]: actor_cfg = self._cfg["sim"][actor_name] for opt in actor_cfg.keys(): if actor_cfg[opt] != -1 and opt in actor_params: actor_params[opt] = actor_cfg[opt] elif opt not in actor_params: print("Actor params does not have attribute: ", opt) return actor_params def _get_actor_config_value(self, actor_name, attribute_name, attribute=None): actor_params = self.parse_actor_config(actor_name) if attribute is not None: if attribute_name not in actor_params: return attribute.Get() if actor_params[attribute_name] != -1: return actor_params[attribute_name] elif actor_params["override_usd_defaults"] and not attribute.IsAuthored(): return self._physx_params[attribute_name] else: if actor_params[attribute_name] != -1: return actor_params[attribute_name] def _adjust_dt(self): # re-evaluate rendering dt to simulate physics substeps physics_dt = self.sim_params["dt"] rendering_dt = self.sim_params["rendering_dt"] # by default, rendering dt = physics dt if rendering_dt <= 0: rendering_dt = physics_dt self.task_config["renderingInterval"] = max(round((1/physics_dt) / (1/rendering_dt)), 1) # we always set rendering dt to be the same as physics dt, stepping is taken care of in VecEnvRLGames self.sim_params["rendering_dt"] = physics_dt @property def sim_params(self): return self._sim_params @property def config(self): return self._config @property def task_config(self): return self._cfg @property def physx_params(self): return self._physx_params def get_physics_params(self): return {**self.sim_params, **self.physx_params} def _get_physx_collision_api(self, prim): from pxr import PhysxSchema, UsdPhysics physx_collision_api = PhysxSchema.PhysxCollisionAPI(prim) if not physx_collision_api: physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(prim) return physx_collision_api def _get_physx_rigid_body_api(self, prim): from pxr import PhysxSchema, UsdPhysics physx_rb_api = PhysxSchema.PhysxRigidBodyAPI(prim) if not physx_rb_api: physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Apply(prim) return physx_rb_api def _get_physx_articulation_api(self, prim): from pxr import PhysxSchema, UsdPhysics arti_api = PhysxSchema.PhysxArticulationAPI(prim) if not arti_api: arti_api = PhysxSchema.PhysxArticulationAPI.Apply(prim) return arti_api def set_contact_offset(self, name, prim, value=None): physx_collision_api = self._get_physx_collision_api(prim) contact_offset = physx_collision_api.GetContactOffsetAttr() # if not contact_offset: # contact_offset = physx_collision_api.CreateContactOffsetAttr() if value is None: value = self._get_actor_config_value(name, "contact_offset", contact_offset) if value != -1: contact_offset.Set(value) def set_rest_offset(self, name, prim, value=None): physx_collision_api = self._get_physx_collision_api(prim) rest_offset = physx_collision_api.GetRestOffsetAttr() # if not rest_offset: # rest_offset = physx_collision_api.CreateRestOffsetAttr() if value is None: value = self._get_actor_config_value(name, "rest_offset", rest_offset) if value != -1: rest_offset.Set(value) def set_position_iteration(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) solver_position_iteration_count = physx_rb_api.GetSolverPositionIterationCountAttr() if value is None: value = self._get_actor_config_value( name, "solver_position_iteration_count", solver_position_iteration_count ) if value != -1: solver_position_iteration_count.Set(value) def set_velocity_iteration(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) solver_velocity_iteration_count = physx_rb_api.GetSolverVelocityIterationCountAttr() if value is None: value = self._get_actor_config_value( name, "solver_velocity_iteration_count", solver_velocity_iteration_count ) if value != -1: solver_velocity_iteration_count.Set(value) def set_max_depenetration_velocity(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) max_depenetration_velocity = physx_rb_api.GetMaxDepenetrationVelocityAttr() if value is None: value = self._get_actor_config_value(name, "max_depenetration_velocity", max_depenetration_velocity) if value != -1: max_depenetration_velocity.Set(value) def set_sleep_threshold(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) sleep_threshold = physx_rb_api.GetSleepThresholdAttr() if value is None: value = self._get_actor_config_value(name, "sleep_threshold", sleep_threshold) if value != -1: sleep_threshold.Set(value) def set_stabilization_threshold(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) stabilization_threshold = physx_rb_api.GetStabilizationThresholdAttr() if value is None: value = self._get_actor_config_value(name, "stabilization_threshold", stabilization_threshold) if value != -1: stabilization_threshold.Set(value) def set_gyroscopic_forces(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) enable_gyroscopic_forces = physx_rb_api.GetEnableGyroscopicForcesAttr() if value is None: value = self._get_actor_config_value(name, "enable_gyroscopic_forces", enable_gyroscopic_forces) if value != -1: enable_gyroscopic_forces.Set(value) def set_density(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) density = physx_rb_api.GetDensityAttr() if value is None: value = self._get_actor_config_value(name, "density", density) if value != -1: density.Set(value) # auto-compute mass self.set_mass(prim, 0.0) def set_mass(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) mass = physx_rb_api.GetMassAttr() if value is None: value = self._get_actor_config_value(name, "mass", mass) if value != -1: mass.Set(value) def retain_acceleration(self, prim): # retain accelerations if running with more than one substep physx_rb_api = self._get_physx_rigid_body_api(prim) if self._sim_params["substeps"] > 1: physx_rb_api.GetRetainAccelerationsAttr().Set(True) def make_kinematic(self, name, prim, cfg, value=None): # make rigid body kinematic (fixed base and no collision) from pxr import PhysxSchema, UsdPhysics stage = omni.usd.get_context().get_stage() if value is None: value = self._get_actor_config_value(name, "make_kinematic") if value == True: # parse through all children prims prims = [prim] while len(prims) > 0: cur_prim = prims.pop(0) rb = UsdPhysics.RigidBodyAPI.Get(stage, cur_prim.GetPath()) if rb: rb.CreateKinematicEnabledAttr().Set(True) children_prims = cur_prim.GetPrim().GetChildren() prims = prims + children_prims def set_articulation_position_iteration(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) solver_position_iteration_count = arti_api.GetSolverPositionIterationCountAttr() if value is None: value = self._get_actor_config_value( name, "solver_position_iteration_count", solver_position_iteration_count ) if value != -1: solver_position_iteration_count.Set(value) def set_articulation_velocity_iteration(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) solver_velocity_iteration_count = arti_api.GetSolverVelocityIterationCountAttr() if value is None: value = self._get_actor_config_value( name, "solver_velocity_iteration_count", solver_velocity_iteration_count ) if value != -1: solver_velocity_iteration_count.Set(value) def set_articulation_sleep_threshold(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) sleep_threshold = arti_api.GetSleepThresholdAttr() if value is None: value = self._get_actor_config_value(name, "sleep_threshold", sleep_threshold) if value != -1: sleep_threshold.Set(value) def set_articulation_stabilization_threshold(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) stabilization_threshold = arti_api.GetStabilizationThresholdAttr() if value is None: value = self._get_actor_config_value(name, "stabilization_threshold", stabilization_threshold) if value != -1: stabilization_threshold.Set(value) def apply_rigid_body_settings(self, name, prim, cfg, is_articulation): from pxr import PhysxSchema, UsdPhysics stage = omni.usd.get_context().get_stage() rb_api = UsdPhysics.RigidBodyAPI.Get(stage, prim.GetPath()) physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Get(stage, prim.GetPath()) if not physx_rb_api: physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Apply(prim) # if it's a body in an articulation, it's handled at articulation root if not is_articulation: self.make_kinematic(name, prim, cfg, cfg["make_kinematic"]) self.set_position_iteration(name, prim, cfg["solver_position_iteration_count"]) self.set_velocity_iteration(name, prim, cfg["solver_velocity_iteration_count"]) self.set_max_depenetration_velocity(name, prim, cfg["max_depenetration_velocity"]) self.set_sleep_threshold(name, prim, cfg["sleep_threshold"]) self.set_stabilization_threshold(name, prim, cfg["stabilization_threshold"]) self.set_gyroscopic_forces(name, prim, cfg["enable_gyroscopic_forces"]) # density and mass mass_api = UsdPhysics.MassAPI.Get(stage, prim.GetPath()) if mass_api is None: mass_api = UsdPhysics.MassAPI.Apply(prim) mass_attr = mass_api.GetMassAttr() density_attr = mass_api.GetDensityAttr() if not mass_attr: mass_attr = mass_api.CreateMassAttr() if not density_attr: density_attr = mass_api.CreateDensityAttr() if cfg["density"] != -1: density_attr.Set(cfg["density"]) mass_attr.Set(0.0) # mass is to be computed elif cfg["override_usd_defaults"] and not density_attr.IsAuthored() and not mass_attr.IsAuthored(): density_attr.Set(self._physx_params["density"]) self.retain_acceleration(prim) def apply_rigid_shape_settings(self, name, prim, cfg): from pxr import PhysxSchema, UsdPhysics stage = omni.usd.get_context().get_stage() # collision APIs collision_api = UsdPhysics.CollisionAPI(prim) if not collision_api: collision_api = UsdPhysics.CollisionAPI.Apply(prim) physx_collision_api = PhysxSchema.PhysxCollisionAPI(prim) if not physx_collision_api: physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(prim) self.set_contact_offset(name, prim, cfg["contact_offset"]) self.set_rest_offset(name, prim, cfg["rest_offset"]) def apply_articulation_settings(self, name, prim, cfg): from pxr import PhysxSchema, UsdPhysics stage = omni.usd.get_context().get_stage() is_articulation = False # check if is articulation prims = [prim] while len(prims) > 0: prim_tmp = prims.pop(0) articulation_api = UsdPhysics.ArticulationRootAPI.Get(stage, prim_tmp.GetPath()) physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Get(stage, prim_tmp.GetPath()) if articulation_api or physx_articulation_api: is_articulation = True children_prims = prim_tmp.GetPrim().GetChildren() prims = prims + children_prims # parse through all children prims prims = [prim] while len(prims) > 0: cur_prim = prims.pop(0) rb = UsdPhysics.RigidBodyAPI.Get(stage, cur_prim.GetPath()) collision_body = UsdPhysics.CollisionAPI.Get(stage, cur_prim.GetPath()) articulation = UsdPhysics.ArticulationRootAPI.Get(stage, cur_prim.GetPath()) if rb: self.apply_rigid_body_settings(name, cur_prim, cfg, is_articulation) if collision_body: self.apply_rigid_shape_settings(name, cur_prim, cfg) if articulation: articulation_api = UsdPhysics.ArticulationRootAPI.Get(stage, cur_prim.GetPath()) physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Get(stage, cur_prim.GetPath()) # enable self collisions enable_self_collisions = physx_articulation_api.GetEnabledSelfCollisionsAttr() if cfg["enable_self_collisions"] != -1: enable_self_collisions.Set(cfg["enable_self_collisions"]) self.set_articulation_position_iteration(name, cur_prim, cfg["solver_position_iteration_count"]) self.set_articulation_velocity_iteration(name, cur_prim, cfg["solver_velocity_iteration_count"]) self.set_articulation_sleep_threshold(name, cur_prim, cfg["sleep_threshold"]) self.set_articulation_stabilization_threshold(name, cur_prim, cfg["stabilization_threshold"]) children_prims = cur_prim.GetPrim().GetChildren() prims = prims + children_prims
22,563
Python
43.769841
117
0.634446
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/config_utils/default_scene_params.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. default_physx_params = { ### Per-scene settings "use_gpu": False, "worker_thread_count": 4, "solver_type": 1, # 0: PGS, 1:TGS "bounce_threshold_velocity": 0.2, "friction_offset_threshold": 0.04, # A threshold of contact separation distance used to decide if a contact # point will experience friction forces. "friction_correlation_distance": 0.025, # Contact points can be merged into a single friction anchor if the # distance between the contacts is smaller than correlation distance. # disabling these can be useful for debugging "enable_sleeping": True, "enable_stabilization": True, # GPU buffers "gpu_max_rigid_contact_count": 512 * 1024, "gpu_max_rigid_patch_count": 80 * 1024, "gpu_found_lost_pairs_capacity": 1024, "gpu_found_lost_aggregate_pairs_capacity": 1024, "gpu_total_aggregate_pairs_capacity": 1024, "gpu_max_soft_body_contacts": 1024 * 1024, "gpu_max_particle_contacts": 1024 * 1024, "gpu_heap_capacity": 64 * 1024 * 1024, "gpu_temp_buffer_capacity": 16 * 1024 * 1024, "gpu_max_num_partitions": 8, "gpu_collision_stack_size": 64 * 1024 * 1024, ### Per-actor settings ( can override in actor_options ) "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "sleep_threshold": 0.0, # Mass-normalized kinetic energy threshold below which an actor may go to sleep. # Allowed range [0, max_float). "stabilization_threshold": 0.0, # Mass-normalized kinetic energy threshold below which an actor may # participate in stabilization. Allowed range [0, max_float). ### Per-body settings ( can override in actor_options ) "enable_gyroscopic_forces": False, "density": 1000.0, # density to be used for bodies that do not specify mass or density "max_depenetration_velocity": 100.0, ### Per-shape settings ( can override in actor_options ) "contact_offset": 0.02, "rest_offset": 0.001, } default_physics_material = {"static_friction": 1.0, "dynamic_friction": 1.0, "restitution": 0.0} default_sim_params = { "gravity": [0.0, 0.0, -9.81], "dt": 1.0 / 60.0, "rendering_dt": -1.0, # we don't want to override this if it's set from cfg "substeps": 1, "use_gpu_pipeline": True, "add_ground_plane": True, "add_distant_light": True, "use_fabric": True, "enable_scene_query_support": False, "enable_cameras": False, "disable_contact_processing": False, "default_physics_material": default_physics_material, } default_actor_options = { # -1 means use authored value from USD or default values from default_sim_params if not explicitly authored in USD. # If an attribute value is not explicitly authored in USD, add one with the value given here, # which overrides the USD default. "override_usd_defaults": False, "make_kinematic": -1, "enable_self_collisions": -1, "enable_gyroscopic_forces": -1, "solver_position_iteration_count": -1, "solver_velocity_iteration_count": -1, "sleep_threshold": -1, "stabilization_threshold": -1, "max_depenetration_velocity": -1, "density": -1, "mass": -1, "contact_offset": -1, "rest_offset": -1, }
4,783
Python
44.132075
119
0.703951
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/config_utils/path_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import carb from hydra.utils import to_absolute_path def is_valid_local_file(path): return os.path.isfile(path) def is_valid_ov_file(path): import omni.client result, entry = omni.client.stat(path) return result == omni.client.Result.OK def download_ov_file(source_path, target_path): import omni.client result = omni.client.copy(source_path, target_path) if result == omni.client.Result.OK: return True return False def break_ov_path(path): import omni.client return omni.client.break_url(path) def retrieve_checkpoint_path(path): # check if it's a local path if is_valid_local_file(path): return to_absolute_path(path) # check if it's an OV path elif is_valid_ov_file(path): ov_path = break_ov_path(path) file_name = os.path.basename(ov_path.path) target_path = f"checkpoints/{file_name}" copy_to_local = download_ov_file(path, target_path) return to_absolute_path(target_path) else: carb.log_error(f"Invalid checkpoint path: {path}. Does the file exist?") return None def get_experience(headless, enable_livestream, enable_viewport, enable_recording, kit_app): if kit_app == '': if enable_viewport: import omniisaacgymenvs experience = os.path.abspath(os.path.join(os.path.dirname(omniisaacgymenvs.__file__), '../apps/omni.isaac.sim.python.gym.camera.kit')) else: experience = f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.gym.kit' if headless and not enable_livestream and not enable_recording: experience = f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.gym.headless.kit' else: experience = kit_app return experience
3,346
Python
35.780219
146
0.715481
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/hydra_cfg/hydra_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import hydra from omegaconf import DictConfig, OmegaConf ## OmegaConf & Hydra Config # Resolvers used in hydra configs (see https://omegaconf.readthedocs.io/en/2.1_branch/usage.html#resolvers) if not OmegaConf.has_resolver("eq"): OmegaConf.register_new_resolver("eq", lambda x, y: x.lower() == y.lower()) if not OmegaConf.has_resolver("contains"): OmegaConf.register_new_resolver("contains", lambda x, y: x.lower() in y.lower()) if not OmegaConf.has_resolver("if"): OmegaConf.register_new_resolver("if", lambda pred, a, b: a if pred else b) # allows us to resolve default arguments which are copied in multiple places in the config. used primarily for # num_ensv if not OmegaConf.has_resolver("resolve_default"): OmegaConf.register_new_resolver("resolve_default", lambda default, arg: default if arg == "" else arg)
2,394
Python
51.065216
110
0.767753
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/hydra_cfg/reformat.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Dict from omegaconf import DictConfig, OmegaConf def omegaconf_to_dict(d: DictConfig) -> Dict: """Converts an omegaconf DictConfig to a python Dict, respecting variable interpolation.""" ret = {} for k, v in d.items(): if isinstance(v, DictConfig): ret[k] = omegaconf_to_dict(v) else: ret[k] = v return ret def print_dict(val, nesting: int = -4, start: bool = True): """Outputs a nested dictionory.""" if type(val) == dict: if not start: print("") nesting += 4 for k in val: print(nesting * " ", end="") print(k, end=": ") print_dict(val[k], nesting, start=False) else: print(val)
2,313
Python
38.896551
95
0.707739
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/terrain_utils/terrain_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from math import sqrt import numpy as np from numpy.random import choice from omni.isaac.core.prims import XFormPrim from pxr import Gf, PhysxSchema, Sdf, UsdPhysics from scipy import interpolate def random_uniform_terrain( terrain, min_height, max_height, step=1, downsampled_scale=None, ): """ Generate a uniform noise terrain Parameters terrain (SubTerrain): the terrain min_height (float): the minimum height of the terrain [meters] max_height (float): the maximum height of the terrain [meters] step (float): minimum height change between two points [meters] downsampled_scale (float): distance between two randomly sampled points ( musty be larger or equal to terrain.horizontal_scale) """ if downsampled_scale is None: downsampled_scale = terrain.horizontal_scale # switch parameters to discrete units min_height = int(min_height / terrain.vertical_scale) max_height = int(max_height / terrain.vertical_scale) step = int(step / terrain.vertical_scale) heights_range = np.arange(min_height, max_height + step, step) height_field_downsampled = np.random.choice( heights_range, ( int(terrain.width * terrain.horizontal_scale / downsampled_scale), int(terrain.length * terrain.horizontal_scale / downsampled_scale), ), ) x = np.linspace(0, terrain.width * terrain.horizontal_scale, height_field_downsampled.shape[0]) y = np.linspace(0, terrain.length * terrain.horizontal_scale, height_field_downsampled.shape[1]) f = interpolate.RectBivariateSpline(y, x, height_field_downsampled) x_upsampled = np.linspace(0, terrain.width * terrain.horizontal_scale, terrain.width) y_upsampled = np.linspace(0, terrain.length * terrain.horizontal_scale, terrain.length) z_upsampled = np.rint(f(y_upsampled, x_upsampled)) terrain.height_field_raw += z_upsampled.astype(np.int16) return terrain def sloped_terrain(terrain, slope=1): """ Generate a sloped terrain Parameters: terrain (SubTerrain): the terrain slope (int): positive or negative slope Returns: terrain (SubTerrain): update terrain """ x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) xx, yy = np.meshgrid(x, y, sparse=True) xx = xx.reshape(terrain.width, 1) max_height = int(slope * (terrain.horizontal_scale / terrain.vertical_scale) * terrain.width) terrain.height_field_raw[:, np.arange(terrain.length)] += (max_height * xx / terrain.width).astype( terrain.height_field_raw.dtype ) return terrain def pyramid_sloped_terrain(terrain, slope=1, platform_size=1.0): """ Generate a sloped terrain Parameters: terrain (terrain): the terrain slope (int): positive or negative slope platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) center_x = int(terrain.width / 2) center_y = int(terrain.length / 2) xx, yy = np.meshgrid(x, y, sparse=True) xx = (center_x - np.abs(center_x - xx)) / center_x yy = (center_y - np.abs(center_y - yy)) / center_y xx = xx.reshape(terrain.width, 1) yy = yy.reshape(1, terrain.length) max_height = int(slope * (terrain.horizontal_scale / terrain.vertical_scale) * (terrain.width / 2)) terrain.height_field_raw += (max_height * xx * yy).astype(terrain.height_field_raw.dtype) platform_size = int(platform_size / terrain.horizontal_scale / 2) x1 = terrain.width // 2 - platform_size x2 = terrain.width // 2 + platform_size y1 = terrain.length // 2 - platform_size y2 = terrain.length // 2 + platform_size min_h = min(terrain.height_field_raw[x1, y1], 0) max_h = max(terrain.height_field_raw[x1, y1], 0) terrain.height_field_raw = np.clip(terrain.height_field_raw, min_h, max_h) return terrain def discrete_obstacles_terrain(terrain, max_height, min_size, max_size, num_rects, platform_size=1.0): """ Generate a terrain with gaps Parameters: terrain (terrain): the terrain max_height (float): maximum height of the obstacles (range=[-max, -max/2, max/2, max]) [meters] min_size (float): minimum size of a rectangle obstacle [meters] max_size (float): maximum size of a rectangle obstacle [meters] num_rects (int): number of randomly generated obstacles platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units max_height = int(max_height / terrain.vertical_scale) min_size = int(min_size / terrain.horizontal_scale) max_size = int(max_size / terrain.horizontal_scale) platform_size = int(platform_size / terrain.horizontal_scale) (i, j) = terrain.height_field_raw.shape height_range = [-max_height, -max_height // 2, max_height // 2, max_height] width_range = range(min_size, max_size, 4) length_range = range(min_size, max_size, 4) for _ in range(num_rects): width = np.random.choice(width_range) length = np.random.choice(length_range) start_i = np.random.choice(range(0, i - width, 4)) start_j = np.random.choice(range(0, j - length, 4)) terrain.height_field_raw[start_i : start_i + width, start_j : start_j + length] = np.random.choice(height_range) x1 = (terrain.width - platform_size) // 2 x2 = (terrain.width + platform_size) // 2 y1 = (terrain.length - platform_size) // 2 y2 = (terrain.length + platform_size) // 2 terrain.height_field_raw[x1:x2, y1:y2] = 0 return terrain def wave_terrain(terrain, num_waves=1, amplitude=1.0): """ Generate a wavy terrain Parameters: terrain (terrain): the terrain num_waves (int): number of sine waves across the terrain length Returns: terrain (SubTerrain): update terrain """ amplitude = int(0.5 * amplitude / terrain.vertical_scale) if num_waves > 0: div = terrain.length / (num_waves * np.pi * 2) x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) xx, yy = np.meshgrid(x, y, sparse=True) xx = xx.reshape(terrain.width, 1) yy = yy.reshape(1, terrain.length) terrain.height_field_raw += (amplitude * np.cos(yy / div) + amplitude * np.sin(xx / div)).astype( terrain.height_field_raw.dtype ) return terrain def stairs_terrain(terrain, step_width, step_height): """ Generate a stairs Parameters: terrain (terrain): the terrain step_width (float): the width of the step [meters] step_height (float): the height of the step [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units step_width = int(step_width / terrain.horizontal_scale) step_height = int(step_height / terrain.vertical_scale) num_steps = terrain.width // step_width height = step_height for i in range(num_steps): terrain.height_field_raw[i * step_width : (i + 1) * step_width, :] += height height += step_height return terrain def pyramid_stairs_terrain(terrain, step_width, step_height, platform_size=1.0): """ Generate stairs Parameters: terrain (terrain): the terrain step_width (float): the width of the step [meters] step_height (float): the step_height [meters] platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units step_width = int(step_width / terrain.horizontal_scale) step_height = int(step_height / terrain.vertical_scale) platform_size = int(platform_size / terrain.horizontal_scale) height = 0 start_x = 0 stop_x = terrain.width start_y = 0 stop_y = terrain.length while (stop_x - start_x) > platform_size and (stop_y - start_y) > platform_size: start_x += step_width stop_x -= step_width start_y += step_width stop_y -= step_width height += step_height terrain.height_field_raw[start_x:stop_x, start_y:stop_y] = height return terrain def stepping_stones_terrain(terrain, stone_size, stone_distance, max_height, platform_size=1.0, depth=-10): """ Generate a stepping stones terrain Parameters: terrain (terrain): the terrain stone_size (float): horizontal size of the stepping stones [meters] stone_distance (float): distance between stones (i.e size of the holes) [meters] max_height (float): maximum height of the stones (positive and negative) [meters] platform_size (float): size of the flat platform at the center of the terrain [meters] depth (float): depth of the holes (default=-10.) [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units stone_size = int(stone_size / terrain.horizontal_scale) stone_distance = int(stone_distance / terrain.horizontal_scale) max_height = int(max_height / terrain.vertical_scale) platform_size = int(platform_size / terrain.horizontal_scale) height_range = np.arange(-max_height - 1, max_height, step=1) start_x = 0 start_y = 0 terrain.height_field_raw[:, :] = int(depth / terrain.vertical_scale) if terrain.length >= terrain.width: while start_y < terrain.length: stop_y = min(terrain.length, start_y + stone_size) start_x = np.random.randint(0, stone_size) # fill first hole stop_x = max(0, start_x - stone_distance) terrain.height_field_raw[0:stop_x, start_y:stop_y] = np.random.choice(height_range) # fill row while start_x < terrain.width: stop_x = min(terrain.width, start_x + stone_size) terrain.height_field_raw[start_x:stop_x, start_y:stop_y] = np.random.choice(height_range) start_x += stone_size + stone_distance start_y += stone_size + stone_distance elif terrain.width > terrain.length: while start_x < terrain.width: stop_x = min(terrain.width, start_x + stone_size) start_y = np.random.randint(0, stone_size) # fill first hole stop_y = max(0, start_y - stone_distance) terrain.height_field_raw[start_x:stop_x, 0:stop_y] = np.random.choice(height_range) # fill column while start_y < terrain.length: stop_y = min(terrain.length, start_y + stone_size) terrain.height_field_raw[start_x:stop_x, start_y:stop_y] = np.random.choice(height_range) start_y += stone_size + stone_distance start_x += stone_size + stone_distance x1 = (terrain.width - platform_size) // 2 x2 = (terrain.width + platform_size) // 2 y1 = (terrain.length - platform_size) // 2 y2 = (terrain.length + platform_size) // 2 terrain.height_field_raw[x1:x2, y1:y2] = 0 return terrain def convert_heightfield_to_trimesh(height_field_raw, horizontal_scale, vertical_scale, slope_threshold=None): """ Convert a heightfield array to a triangle mesh represented by vertices and triangles. Optionally, corrects vertical surfaces above the provide slope threshold: If (y2-y1)/(x2-x1) > slope_threshold -> Move A to A' (set x1 = x2). Do this for all directions. B(x2,y2) /| / | / | (x1,y1)A---A'(x2',y1) Parameters: height_field_raw (np.array): input heightfield horizontal_scale (float): horizontal scale of the heightfield [meters] vertical_scale (float): vertical scale of the heightfield [meters] slope_threshold (float): the slope threshold above which surfaces are made vertical. If None no correction is applied (default: None) Returns: vertices (np.array(float)): array of shape (num_vertices, 3). Each row represents the location of each vertex [meters] triangles (np.array(int)): array of shape (num_triangles, 3). Each row represents the indices of the 3 vertices connected by this triangle. """ hf = height_field_raw num_rows = hf.shape[0] num_cols = hf.shape[1] y = np.linspace(0, (num_cols - 1) * horizontal_scale, num_cols) x = np.linspace(0, (num_rows - 1) * horizontal_scale, num_rows) yy, xx = np.meshgrid(y, x) if slope_threshold is not None: slope_threshold *= horizontal_scale / vertical_scale move_x = np.zeros((num_rows, num_cols)) move_y = np.zeros((num_rows, num_cols)) move_corners = np.zeros((num_rows, num_cols)) move_x[: num_rows - 1, :] += hf[1:num_rows, :] - hf[: num_rows - 1, :] > slope_threshold move_x[1:num_rows, :] -= hf[: num_rows - 1, :] - hf[1:num_rows, :] > slope_threshold move_y[:, : num_cols - 1] += hf[:, 1:num_cols] - hf[:, : num_cols - 1] > slope_threshold move_y[:, 1:num_cols] -= hf[:, : num_cols - 1] - hf[:, 1:num_cols] > slope_threshold move_corners[: num_rows - 1, : num_cols - 1] += ( hf[1:num_rows, 1:num_cols] - hf[: num_rows - 1, : num_cols - 1] > slope_threshold ) move_corners[1:num_rows, 1:num_cols] -= ( hf[: num_rows - 1, : num_cols - 1] - hf[1:num_rows, 1:num_cols] > slope_threshold ) xx += (move_x + move_corners * (move_x == 0)) * horizontal_scale yy += (move_y + move_corners * (move_y == 0)) * horizontal_scale # create triangle mesh vertices and triangles from the heightfield grid vertices = np.zeros((num_rows * num_cols, 3), dtype=np.float32) vertices[:, 0] = xx.flatten() vertices[:, 1] = yy.flatten() vertices[:, 2] = hf.flatten() * vertical_scale triangles = -np.ones((2 * (num_rows - 1) * (num_cols - 1), 3), dtype=np.uint32) for i in range(num_rows - 1): ind0 = np.arange(0, num_cols - 1) + i * num_cols ind1 = ind0 + 1 ind2 = ind0 + num_cols ind3 = ind2 + 1 start = 2 * i * (num_cols - 1) stop = start + 2 * (num_cols - 1) triangles[start:stop:2, 0] = ind0 triangles[start:stop:2, 1] = ind3 triangles[start:stop:2, 2] = ind1 triangles[start + 1 : stop : 2, 0] = ind0 triangles[start + 1 : stop : 2, 1] = ind2 triangles[start + 1 : stop : 2, 2] = ind3 return vertices, triangles def add_terrain_to_stage(stage, vertices, triangles, position=None, orientation=None): num_faces = triangles.shape[0] terrain_mesh = stage.DefinePrim("/World/terrain", "Mesh") terrain_mesh.GetAttribute("points").Set(vertices) terrain_mesh.GetAttribute("faceVertexIndices").Set(triangles.flatten()) terrain_mesh.GetAttribute("faceVertexCounts").Set(np.asarray([3] * num_faces)) terrain = XFormPrim(prim_path="/World/terrain", name="terrain", position=position, orientation=orientation) UsdPhysics.CollisionAPI.Apply(terrain.prim) # collision_api = UsdPhysics.MeshCollisionAPI.Apply(terrain.prim) # collision_api.CreateApproximationAttr().Set("meshSimplification") physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(terrain.prim) physx_collision_api.GetContactOffsetAttr().Set(0.02) physx_collision_api.GetRestOffsetAttr().Set(0.00) class SubTerrain: def __init__(self, terrain_name="terrain", width=256, length=256, vertical_scale=1.0, horizontal_scale=1.0): self.terrain_name = terrain_name self.vertical_scale = vertical_scale self.horizontal_scale = horizontal_scale self.width = width self.length = length self.height_field_raw = np.zeros((self.width, self.length), dtype=np.int16)
17,645
Python
41.215311
147
0.649306
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/terrain_utils/create_terrain_demo.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os, sys SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(SCRIPT_DIR) import omni from omni.isaac.kit import SimulationApp import numpy as np import torch simulation_app = SimulationApp({"headless": False}) from abc import abstractmethod from omni.isaac.core.tasks import BaseTask from omni.isaac.core.prims import RigidPrimView, RigidPrim, XFormPrim from omni.isaac.core import World from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import define_prim, get_prim_at_path from omni.isaac.core.utils.nucleus import find_nucleus_server from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage from omni.isaac.core.materials import PreviewSurface from omni.isaac.cloner import GridCloner from pxr import UsdPhysics, UsdLux, UsdShade, Sdf, Gf, UsdGeom, PhysxSchema from terrain_utils import * class TerrainCreation(BaseTask): def __init__(self, name, num_envs, num_per_row, env_spacing, config=None, offset=None,) -> None: BaseTask.__init__(self, name=name, offset=offset) self._num_envs = num_envs self._num_per_row = num_per_row self._env_spacing = env_spacing self._device = "cpu" self._cloner = GridCloner(self._env_spacing, self._num_per_row) self._cloner.define_base_env(self.default_base_env_path) define_prim(self.default_zero_env_path) @property def default_base_env_path(self): return "/World/envs" @property def default_zero_env_path(self): return f"{self.default_base_env_path}/env_0" def set_up_scene(self, scene) -> None: self._stage = get_current_stage() distantLight = UsdLux.DistantLight.Define(self._stage, Sdf.Path("/World/DistantLight")) distantLight.CreateIntensityAttr(2000) self.get_terrain() self.get_ball() super().set_up_scene(scene) prim_paths = self._cloner.generate_paths("/World/envs/env", self._num_envs) print(f"cloning {self._num_envs} environments...") self._env_pos = self._cloner.clone( source_prim_path="/World/envs/env_0", prim_paths=prim_paths ) return def get_terrain(self): # create all available terrain types num_terains = 8 terrain_width = 12. terrain_length = 12. horizontal_scale = 0.25 # [m] vertical_scale = 0.005 # [m] num_rows = int(terrain_width/horizontal_scale) num_cols = int(terrain_length/horizontal_scale) heightfield = np.zeros((num_terains*num_rows, num_cols), dtype=np.int16) def new_sub_terrain(): return SubTerrain(width=num_rows, length=num_cols, vertical_scale=vertical_scale, horizontal_scale=horizontal_scale) heightfield[0:num_rows, :] = random_uniform_terrain(new_sub_terrain(), min_height=-0.2, max_height=0.2, step=0.2, downsampled_scale=0.5).height_field_raw heightfield[num_rows:2*num_rows, :] = sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw heightfield[2*num_rows:3*num_rows, :] = pyramid_sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw heightfield[3*num_rows:4*num_rows, :] = discrete_obstacles_terrain(new_sub_terrain(), max_height=0.5, min_size=1., max_size=5., num_rects=20).height_field_raw heightfield[4*num_rows:5*num_rows, :] = wave_terrain(new_sub_terrain(), num_waves=2., amplitude=1.).height_field_raw heightfield[5*num_rows:6*num_rows, :] = stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw heightfield[6*num_rows:7*num_rows, :] = pyramid_stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw heightfield[7*num_rows:8*num_rows, :] = stepping_stones_terrain(new_sub_terrain(), stone_size=1., stone_distance=1., max_height=0.5, platform_size=0.).height_field_raw vertices, triangles = convert_heightfield_to_trimesh(heightfield, horizontal_scale=horizontal_scale, vertical_scale=vertical_scale, slope_threshold=1.5) position = np.array([-6.0, 48.0, 0]) orientation = np.array([0.70711, 0.0, 0.0, -0.70711]) add_terrain_to_stage(stage=self._stage, vertices=vertices, triangles=triangles, position=position, orientation=orientation) def get_ball(self): ball = DynamicSphere(prim_path=self.default_zero_env_path + "/ball", name="ball", translation=np.array([0.0, 0.0, 1.0]), mass=0.5, radius=0.2,) def post_reset(self): for i in range(self._num_envs): ball_prim = self._stage.GetPrimAtPath(f"{self.default_base_env_path}/env_{i}/ball") color = 0.5 + 0.5 * np.random.random(3) visual_material = PreviewSurface(prim_path=f"{self.default_base_env_path}/env_{i}/ball/Looks/visual_material", color=color) binding_api = UsdShade.MaterialBindingAPI(ball_prim) binding_api.Bind(visual_material.material, bindingStrength=UsdShade.Tokens.strongerThanDescendants) def get_observations(self): pass def calculate_metrics(self) -> None: pass def is_done(self) -> None: pass if __name__ == "__main__": world = World( stage_units_in_meters=1.0, rendering_dt=1.0/60.0, backend="torch", device="cpu", ) num_envs = 800 num_per_row = 80 env_spacing = 0.56*2 terrain_creation_task = TerrainCreation(name="TerrainCreation", num_envs=num_envs, num_per_row=num_per_row, env_spacing=env_spacing, ) world.add_task(terrain_creation_task) world.reset() while simulation_app.is_running(): if world.is_playing(): if world.current_time_step_index == 0: world.reset(soft=True) world.step(render=True) else: world.step(render=True) simulation_app.close()
7,869
Python
43.213483
166
0.650654
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/utils/usd_utils/create_instanceable_assets.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import omni.client import omni.usd from pxr import Sdf, UsdGeom def update_reference(source_prim_path, source_reference_path, target_reference_path): stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(source_prim_path)] while len(prims) > 0: prim = prims.pop(0) prim_spec = stage.GetRootLayer().GetPrimAtPath(prim.GetPath()) reference_list = prim_spec.referenceList refs = reference_list.GetAddedOrExplicitItems() if len(refs) > 0: for ref in refs: if ref.assetPath == source_reference_path: prim.GetReferences().RemoveReference(ref) prim.GetReferences().AddReference(assetPath=target_reference_path, primPath=prim.GetPath()) prims = prims + prim.GetChildren() def create_parent_xforms(asset_usd_path, source_prim_path, save_as_path=None): """Adds a new UsdGeom.Xform prim for each Mesh/Geometry prim under source_prim_path. Moves material assignment to new parent prim if any exists on the Mesh/Geometry prim. Args: asset_usd_path (str): USD file path for asset source_prim_path (str): USD path of root prim save_as_path (str): USD file path for modified USD stage. Defaults to None, will save in same file. """ omni.usd.get_context().open_stage(asset_usd_path) stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(source_prim_path)] edits = Sdf.BatchNamespaceEdit() while len(prims) > 0: prim = prims.pop(0) print(prim) if prim.GetTypeName() in ["Mesh", "Capsule", "Sphere", "Box"]: new_xform = UsdGeom.Xform.Define(stage, str(prim.GetPath()) + "_xform") print(prim, new_xform) edits.Add(Sdf.NamespaceEdit.Reparent(prim.GetPath(), new_xform.GetPath(), 0)) continue children_prims = prim.GetChildren() prims = prims + children_prims stage.GetRootLayer().Apply(edits) if save_as_path is None: omni.usd.get_context().save_stage() else: omni.usd.get_context().save_as_stage(save_as_path) def convert_asset_instanceable(asset_usd_path, source_prim_path, save_as_path=None, create_xforms=True): """Makes all mesh/geometry prims instanceable. Can optionally add UsdGeom.Xform prim as parent for all mesh/geometry prims. Makes a copy of the asset USD file, which will be used for referencing. Updates asset file to convert all parent prims of mesh/geometry prims to reference cloned USD file. Args: asset_usd_path (str): USD file path for asset source_prim_path (str): USD path of root prim save_as_path (str): USD file path for modified USD stage. Defaults to None, will save in same file. create_xforms (bool): Whether to add new UsdGeom.Xform prims to mesh/geometry prims. """ if create_xforms: create_parent_xforms(asset_usd_path, source_prim_path, save_as_path) asset_usd_path = save_as_path instance_usd_path = ".".join(asset_usd_path.split(".")[:-1]) + "_meshes.usd" omni.client.copy(asset_usd_path, instance_usd_path) omni.usd.get_context().open_stage(asset_usd_path) stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(source_prim_path)] while len(prims) > 0: prim = prims.pop(0) if prim: if prim.GetTypeName() in ["Mesh", "Capsule", "Sphere", "Box"]: parent_prim = prim.GetParent() if parent_prim and not parent_prim.IsInstance(): parent_prim.GetReferences().AddReference( assetPath=instance_usd_path, primPath=str(parent_prim.GetPath()) ) parent_prim.SetInstanceable(True) continue children_prims = prim.GetChildren() prims = prims + children_prims if save_as_path is None: omni.usd.get_context().save_stage() else: omni.usd.get_context().save_as_stage(save_as_path)
5,627
Python
42.627907
111
0.67727
NVIDIA-Omniverse/OmniIsaacGymEnvs/omniisaacgymenvs/robots/articulations/balance_bot.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omniisaacgymenvs.tasks.utils.usd_utils import set_drive class BalanceBot(Robot): def __init__( self, prim_path: str, name: Optional[str] = "BalanceBot", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/BalanceBot/balance_bot.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=orientation, articulation_controller=None, ) for j in range(3): # set leg joint properties joint_path = f"joints/lower_leg{j}" set_drive(f"{self.prim_path}/{joint_path}", "angular", "position", 0, 400, 40, 1000)
2,996
Python
40.054794
96
0.697597