file_path
stringlengths
21
207
content
stringlengths
5
1.02M
size
int64
5
1.02M
lang
stringclasses
9 values
avg_line_length
float64
1.33
100
max_line_length
int64
4
993
alphanum_fraction
float64
0.27
0.93
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/scripts/random_policy.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import hydra import numpy as np import torch from omegaconf import DictConfig from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames from omniisaacgymenvs.utils.config_utils.path_utils import get_experience from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.task_util import initialize_task @hydra.main(version_base=None, config_name="config", config_path="../cfg") def parse_hydra_configs(cfg: DictConfig): cfg_dict = omegaconf_to_dict(cfg) print_dict(cfg_dict) headless = cfg.headless render = not headless enable_viewport = "enable_cameras" in cfg.task.sim and cfg.task.sim.enable_cameras # select kit app file experience = get_experience(headless, cfg.enable_livestream, enable_viewport, cfg.kit_app) env = VecEnvRLGames( headless=headless, sim_device=cfg.device_id, enable_livestream=cfg.enable_livestream, enable_viewport=enable_viewport, experience=experience ) # sets seed. if seed is -1 will pick a random one from omni.isaac.core.utils.torch.maths import set_seed cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic) cfg_dict["seed"] = cfg.seed task = initialize_task(cfg_dict, env) while env._simulation_app.is_running(): if env._world.is_playing(): if env._world.current_time_step_index == 0: env._world.reset(soft=True) actions = torch.tensor( np.array([env.action_space.sample() for _ in range(env.num_envs)]), device=task.rl_device ) env._task.pre_physics_step(actions) env._world.step(render=render) env.sim_frame_count += 1 env._task.post_physics_step() else: env._world.step(render=render) env._simulation_app.close() if __name__ == "__main__": parse_hydra_configs()
3,559
Python
39.91954
105
0.722113
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/demos/anymal_terrain.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.anymal_terrain import AnymalTerrainTask, wrap_to_pi from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.utils.torch.transformations import tf_combine import numpy as np import torch import math import omni import carb from omni.kit.viewport.utility.camera_state import ViewportCameraState from omni.kit.viewport.utility import get_viewport_from_window_name from pxr import Sdf class AnymalTerrainDemo(AnymalTerrainTask): def __init__( self, name, sim_config, env, offset=None ) -> None: max_num_envs = 128 if sim_config.task_config["env"]["numEnvs"] >= max_num_envs: print(f"num_envs reduced to {max_num_envs} for this demo.") sim_config.task_config["env"]["numEnvs"] = max_num_envs sim_config.task_config["env"]["learn"]["episodeLength_s"] = 120 AnymalTerrainTask.__init__(self, name, sim_config, env) self.add_noise = False self.knee_threshold = 0.05 self.create_camera() self._current_command = [0.0, 0.0, 0.0, 0.0] self.set_up_keyboard() self._prim_selection = omni.usd.get_context().get_selection() self._selected_id = None self._previous_selected_id = None return def create_camera(self): stage = omni.usd.get_context().get_stage() self.view_port = get_viewport_from_window_name("Viewport") # Create camera self.camera_path = "/World/Camera" self.perspective_path = "/OmniverseKit_Persp" camera_prim = stage.DefinePrim(self.camera_path, "Camera") camera_prim.GetAttribute("focalLength").Set(8.5) coi_prop = camera_prim.GetProperty("omni:kit:centerOfInterest") if not coi_prop or not coi_prop.IsValid(): camera_prim.CreateAttribute( "omni:kit:centerOfInterest", Sdf.ValueTypeNames.Vector3d, True, Sdf.VariabilityUniform ).Set(Gf.Vec3d(0, 0, -10)) self.view_port.set_active_camera(self.perspective_path) def set_up_keyboard(self): self._input = carb.input.acquire_input_interface() self._keyboard = omni.appwindow.get_default_app_window().get_keyboard() self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._on_keyboard_event) T = 1 R = 1 self._key_to_control = { "UP": [T, 0.0, 0.0, 0.0], "DOWN": [-T, 0.0, 0.0, 0.0], "LEFT": [0.0, T, 0.0, 0.0], "RIGHT": [0.0, -T, 0.0, 0.0], "Z": [0.0, 0.0, R, 0.0], "X": [0.0, 0.0, -R, 0.0], } def _on_keyboard_event(self, event, *args, **kwargs): if event.type == carb.input.KeyboardEventType.KEY_PRESS: if event.input.name in self._key_to_control: self._current_command = self._key_to_control[event.input.name] elif event.input.name == "ESCAPE": self._prim_selection.clear_selected_prim_paths() elif event.input.name == "C": if self._selected_id is not None: if self.view_port.get_active_camera() == self.camera_path: self.view_port.set_active_camera(self.perspective_path) else: self.view_port.set_active_camera(self.camera_path) elif event.type == carb.input.KeyboardEventType.KEY_RELEASE: self._current_command = [0.0, 0.0, 0.0, 0.0] def update_selected_object(self): self._previous_selected_id = self._selected_id selected_prim_paths = self._prim_selection.get_selected_prim_paths() if len(selected_prim_paths) == 0: self._selected_id = None self.view_port.set_active_camera(self.perspective_path) elif len(selected_prim_paths) > 1: print("Multiple prims are selected. Please only select one!") else: prim_splitted_path = selected_prim_paths[0].split("/") if len(prim_splitted_path) >= 4 and prim_splitted_path[3][0:4] == "env_": self._selected_id = int(prim_splitted_path[3][4:]) if self._previous_selected_id != self._selected_id: self.view_port.set_active_camera(self.camera_path) self._update_camera() else: print("The selected prim was not an Anymal") if self._previous_selected_id is not None and self._previous_selected_id != self._selected_id: self.commands[self._previous_selected_id, 0] = np.random.uniform(self.command_x_range[0], self.command_x_range[1]) self.commands[self._previous_selected_id, 1] = np.random.uniform(self.command_y_range[0], self.command_y_range[1]) self.commands[self._previous_selected_id, 2] = 0.0 def _update_camera(self): base_pos = self.base_pos[self._selected_id, :].clone() base_quat = self.base_quat[self._selected_id, :].clone() camera_local_transform = torch.tensor([-1.8, 0.0, 0.6], device=self.device) camera_pos = quat_apply(base_quat, camera_local_transform) + base_pos camera_state = ViewportCameraState(self.camera_path, self.view_port) eye = Gf.Vec3d(camera_pos[0].item(), camera_pos[1].item(), camera_pos[2].item()) target = Gf.Vec3d(base_pos[0].item(), base_pos[1].item(), base_pos[2].item()+0.6) camera_state.set_position_world(eye, True) camera_state.set_target_world(target, True) def post_physics_step(self): self.progress_buf[:] += 1 self.refresh_dof_state_tensors() self.refresh_body_state_tensors() self.update_selected_object() self.common_step_counter += 1 if self.common_step_counter % self.push_interval == 0: self.push_robots() # prepare quantities self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 0:3]) self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 3:6]) self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec) forward = quat_apply(self.base_quat, self.forward_vec) heading = torch.atan2(forward[:, 1], forward[:, 0]) self.commands[:, 2] = torch.clip(0.5*wrap_to_pi(self.commands[:, 3] - heading), -1., 1.) self.check_termination() if self._selected_id is not None: self.commands[self._selected_id, :] = torch.tensor(self._current_command, device=self.device) self.timeout_buf[self._selected_id] = 0 self.reset_buf[self._selected_id] = 0 self.get_states() env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(env_ids) > 0: self.reset_idx(env_ids) self.get_observations() if self.add_noise: self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec self.last_actions[:] = self.actions[:] self.last_dof_vel[:] = self.dof_vel[:] return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
8,841
Python
44.577319
126
0.636127
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/demos/dofbot_reacher.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Ref: /omniisaacgymenvs/demos/anymal_terrain.py from omniisaacgymenvs.tasks.dofbot_reacher import DofbotReacherTask from omni.isaac.core.utils.torch.rotations import * import torch import omni import carb from omni.kit.viewport.utility.camera_state import ViewportCameraState from omni.kit.viewport.utility import get_viewport_from_window_name from pxr import Sdf class DofbotReacherDemo(DofbotReacherTask): def __init__( self, name, sim_config, env, offset=None ) -> None: max_num_envs = 128 if sim_config.task_config["env"]["numEnvs"] >= max_num_envs: print(f"num_envs reduced to {max_num_envs} for this demo.") sim_config.task_config["env"]["numEnvs"] = max_num_envs DofbotReacherTask.__init__(self, name, sim_config, env) self.add_noise = False self.create_camera() self._current_command = [0.0] * 6 self.set_up_keyboard() self._prim_selection = omni.usd.get_context().get_selection() self._selected_id = None self._previous_selected_id = None return def create_camera(self): stage = omni.usd.get_context().get_stage() self.view_port = get_viewport_from_window_name("Viewport") # Create camera self.camera_path = "/World/Camera" self.perspective_path = "/OmniverseKit_Persp" camera_prim = stage.DefinePrim(self.camera_path, "Camera") camera_prim.GetAttribute("focalLength").Set(8.5) coi_prop = camera_prim.GetProperty("omni:kit:centerOfInterest") if not coi_prop or not coi_prop.IsValid(): camera_prim.CreateAttribute( "omni:kit:centerOfInterest", Sdf.ValueTypeNames.Vector3d, True, Sdf.VariabilityUniform ).Set(Gf.Vec3d(0, 0, -10)) self.view_port.set_active_camera(self.perspective_path) def set_up_keyboard(self): self._input = carb.input.acquire_input_interface() self._keyboard = omni.appwindow.get_default_app_window().get_keyboard() self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._on_keyboard_event) self._key_to_control = { # Joint 0 "Q": [-1.0, 0.0, 0.0, 0.0, 0.0, 0.0], "A": [1.0, 0.0, 0.0, 0.0, 0.0, 0.0], # Joint 1 "W": [0.0, -1.0, 0.0, 0.0, 0.0, 0.0], "S": [0.0, 1.0, 0.0, 0.0, 0.0, 0.0], # Joint 2 "E": [0.0, 0.0, -1.0, 0.0, 0.0, 0.0], "D": [0.0, 0.0, 1.0, 0.0, 0.0, 0.0], # Joint 3 "R": [0.0, 0.0, 0.0, -1.0, 0.0, 0.0], "F": [0.0, 0.0, 0.0, 1.0, 0.0, 0.0], # Joint 4 "T": [0.0, 0.0, 0.0, 0.0, -1.0, 0.0], "G": [0.0, 0.0, 0.0, 0.0, 1.0, 0.0], # Joint 5 "Y": [0.0, 0.0, 0.0, 0.0, 0.0, -1.0], "H": [0.0, 0.0, 0.0, 0.0, 0.0, 1.0], } def _on_keyboard_event(self, event, *args, **kwargs): if event.type == carb.input.KeyboardEventType.KEY_PRESS: if event.input.name in self._key_to_control: self._current_command = self._key_to_control[event.input.name] elif event.input.name == "ESCAPE": self._prim_selection.clear_selected_prim_paths() elif event.input.name == "C": if self._selected_id is not None: if self.view_port.get_active_camera() == self.camera_path: self.view_port.set_active_camera(self.perspective_path) else: self.view_port.set_active_camera(self.camera_path) elif event.type == carb.input.KeyboardEventType.KEY_RELEASE: self._current_command = [0.0] * 6 def update_selected_object(self): self._previous_selected_id = self._selected_id selected_prim_paths = self._prim_selection.get_selected_prim_paths() if len(selected_prim_paths) == 0: self._selected_id = None self.view_port.set_active_camera(self.perspective_path) elif len(selected_prim_paths) > 1: print("Multiple prims are selected. Please only select one!") else: prim_splitted_path = selected_prim_paths[0].split("/") if len(prim_splitted_path) >= 4 and prim_splitted_path[3][0:4] == "env_": self._selected_id = int(prim_splitted_path[3][4:]) else: print("The selected prim was not a Dofbot") def _update_camera(self): base_pos = self.base_pos[self._selected_id, :].clone() base_quat = self.base_quat[self._selected_id, :].clone() camera_local_transform = torch.tensor([-1.8, 0.0, 0.6], device=self.device) camera_pos = quat_apply(base_quat, camera_local_transform) + base_pos camera_state = ViewportCameraState(self.camera_path, self.view_port) eye = Gf.Vec3d(camera_pos[0].item(), camera_pos[1].item(), camera_pos[2].item()) target = Gf.Vec3d(base_pos[0].item(), base_pos[1].item(), base_pos[2].item()+0.6) camera_state.set_position_world(eye, True) camera_state.set_target_world(target, True) def pre_physics_step(self, actions): if self._selected_id is not None: actions[self._selected_id, :] = torch.tensor(self._current_command, device=self.device) result = super().pre_physics_step(actions) if self._selected_id is not None: print('selected dofbot id:', self._selected_id) print('self.rew_buf[idx]:', self.rew_buf[self._selected_id]) print('self.object_pos[idx]:', self.object_pos[self._selected_id]) print('self.goal_pos[idx]:', self.goal_pos[self._selected_id]) return result def post_physics_step(self): self.progress_buf[:] += 1 self.update_selected_object() if self._selected_id is not None: self.reset_buf[self._selected_id] = 0 self.get_states() env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(env_ids) > 0: self.reset_idx(env_ids) self.get_observations() if self.add_noise: self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec # Calculate rewards self.calculate_metrics() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
8,034
Python
42.668478
110
0.615385
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tests/__init__.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from .runner import *
1,580
Python
53.51724
80
0.783544
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/tests/runner.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import asyncio from datetime import date import sys import unittest import weakref import omni.kit.test from omni.kit.test import AsyncTestSuite from omni.kit.test.async_unittest import AsyncTextTestRunner import omni.ui as ui from omni.isaac.ui.menu import make_menu_item_description from omni.isaac.ui.ui_utils import btn_builder from omni.kit.menu.utils import MenuItemDescription, add_menu_items import omni.timeline import omni.usd from omniisaacgymenvs import RLExtension, get_instance class GymRLTests(omni.kit.test.AsyncTestCase): def __init__(self, *args, **kwargs): super(GymRLTests, self).__init__(*args, **kwargs) self.ext = get_instance() async def _train(self, task, load=True, experiment=None, max_iterations=None): task_idx = self.ext._task_list.index(task) self.ext._task_dropdown.get_item_value_model().set_value(task_idx) if load: self.ext._on_load_world() while True: _, files_loaded, total_files = omni.usd.get_context().get_stage_loading_status() if files_loaded or total_files: await omni.kit.app.get_app().next_update_async() else: break for _ in range(100): await omni.kit.app.get_app().next_update_async() self.ext._render_dropdown.get_item_value_model().set_value(2) overrides = None if experiment is not None: overrides = [f"experiment={experiment}"] if max_iterations is not None: if overrides is None: overrides = [f"max_iterations={max_iterations}"] else: overrides += [f"max_iterations={max_iterations}"] await self.ext._on_train_async(overrides=overrides) async def test_train(self): date_str = date.today() tasks = self.ext._task_list for task in tasks: await self._train(task, load=True, experiment=f"{task}_{date_str}") async def test_train_determinism(self): date_str = date.today() tasks = self.ext._task_list for task in tasks: for i in range(3): await self._train(task, load=(i==0), experiment=f"{task}_{date_str}_{i}", max_iterations=100) class TestRunner(): def __init__(self): self._build_ui() def _build_ui(self): menu_items = [make_menu_item_description("RL Examples Tests", "RL Examples Tests", lambda a=weakref.proxy(self): a._menu_callback())] add_menu_items(menu_items, "Isaac Examples") self._window = omni.ui.Window( "RL Examples Tests", width=250, height=0, visible=True, dockPreference=ui.DockPreference.LEFT_BOTTOM ) with self._window.frame: main_stack = ui.VStack(spacing=5, height=0) with main_stack: dict = { "label": "Run Tests", "type": "button", "text": "Run Tests", "tooltip": "Run all tests", "on_clicked_fn": self._run_tests, } btn_builder(**dict) def _menu_callback(self): self._window.visible = not self._window.visible def _run_tests(self): loader = unittest.TestLoader() loader.SuiteClass = AsyncTestSuite test_suite = AsyncTestSuite() test_suite.addTests(loader.loadTestsFromTestCase(GymRLTests)) test_runner = AsyncTextTestRunner(verbosity=2, stream=sys.stdout) async def single_run(): await test_runner.run(test_suite) print("=======================================") print(f"Running Tests") print("=======================================") asyncio.ensure_future(single_run()) TestRunner()
4,254
Python
35.059322
141
0.607428
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/demo_util.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. def initialize_demo(config, env, init_sim=True): from omniisaacgymenvs.demos.anymal_terrain import AnymalTerrainDemo from omniisaacgymenvs.demos.dofbot_reacher import DofbotReacherDemo # Mappings from strings to environments task_map = { "AnymalTerrain": AnymalTerrainDemo, "DofbotReacher": DofbotReacherDemo, } from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig sim_config = SimConfig(config) cfg = sim_config.config task = task_map[cfg["task_name"]]( name=cfg["task_name"], sim_config=sim_config, env=env ) env.set_task(task=task, sim_params=sim_config.get_physics_params(), backend="torch", init_sim=init_sim) return task
2,322
Python
44.549019
107
0.757967
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/task_util.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. def import_tasks(): from omniisaacgymenvs.tasks.allegro_hand import AllegroHandTask from omniisaacgymenvs.tasks.ant import AntLocomotionTask from omniisaacgymenvs.tasks.anymal import AnymalTask from omniisaacgymenvs.tasks.anymal_terrain import AnymalTerrainTask from omniisaacgymenvs.tasks.ball_balance import BallBalanceTask from omniisaacgymenvs.tasks.cartpole import CartpoleTask from omniisaacgymenvs.tasks.cartpole_camera import CartpoleCameraTask from omniisaacgymenvs.tasks.crazyflie import CrazyflieTask from omniisaacgymenvs.tasks.factory.factory_task_nut_bolt_pick import FactoryTaskNutBoltPick from omniisaacgymenvs.tasks.factory.factory_task_nut_bolt_place import FactoryTaskNutBoltPlace from omniisaacgymenvs.tasks.factory.factory_task_nut_bolt_screw import FactoryTaskNutBoltScrew from omniisaacgymenvs.tasks.franka_cabinet import FrankaCabinetTask from omniisaacgymenvs.tasks.franka_deformable import FrankaDeformableTask from omniisaacgymenvs.tasks.humanoid import HumanoidLocomotionTask from omniisaacgymenvs.tasks.ingenuity import IngenuityTask from omniisaacgymenvs.tasks.quadcopter import QuadcopterTask from omniisaacgymenvs.tasks.shadow_hand import ShadowHandTask from omniisaacgymenvs.tasks.dofbot_reacher import DofbotReacherTask from omniisaacgymenvs.tasks.warp.ant import AntLocomotionTask as AntLocomotionTaskWarp from omniisaacgymenvs.tasks.warp.cartpole import CartpoleTask as CartpoleTaskWarp from omniisaacgymenvs.tasks.warp.humanoid import HumanoidLocomotionTask as HumanoidLocomotionTaskWarp # Mappings from strings to environments task_map = { "AllegroHand": AllegroHandTask, "Ant": AntLocomotionTask, "Anymal": AnymalTask, "AnymalTerrain": AnymalTerrainTask, "BallBalance": BallBalanceTask, "Cartpole": CartpoleTask, "CartpoleCamera": CartpoleCameraTask, "FactoryTaskNutBoltPick": FactoryTaskNutBoltPick, "FactoryTaskNutBoltPlace": FactoryTaskNutBoltPlace, "FactoryTaskNutBoltScrew": FactoryTaskNutBoltScrew, "FrankaCabinet": FrankaCabinetTask, "FrankaDeformable": FrankaDeformableTask, "Humanoid": HumanoidLocomotionTask, "Ingenuity": IngenuityTask, "Quadcopter": QuadcopterTask, "Crazyflie": CrazyflieTask, "ShadowHand": ShadowHandTask, "ShadowHandOpenAI_FF": ShadowHandTask, "ShadowHandOpenAI_LSTM": ShadowHandTask, "DofbotReacher": DofbotReacherTask, } task_map_warp = { "Cartpole": CartpoleTaskWarp, "Ant":AntLocomotionTaskWarp, "Humanoid": HumanoidLocomotionTaskWarp } return task_map, task_map_warp def initialize_task(config, env, init_sim=True): from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig sim_config = SimConfig(config) task_map, task_map_warp = import_tasks() cfg = sim_config.config if cfg["warp"]: task_map = task_map_warp task = task_map[cfg["task_name"]]( name=cfg["task_name"], sim_config=sim_config, env=env ) backend = "warp" if cfg["warp"] else "torch" rendering_dt = sim_config.get_physics_params()["rendering_dt"] env.set_task( task=task, sim_params=sim_config.get_physics_params(), backend=backend, init_sim=init_sim, rendering_dt=rendering_dt, ) return task
5,049
Python
42.913043
105
0.75302
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/domain_randomization/randomize.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy import numpy as np import torch from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.utils.extensions import enable_extension class Randomizer: def __init__(self, main_config, task_config): self._cfg = task_config self._config = main_config self.randomize = False dr_config = self._cfg.get("domain_randomization", None) self.distributions = dict() self.active_domain_randomizations = dict() self._observations_dr_params = None self._actions_dr_params = None if dr_config is not None: randomize = dr_config.get("randomize", False) randomization_params = dr_config.get("randomization_params", None) if randomize and randomization_params is not None: self.randomize = True self.min_frequency = dr_config.get("min_frequency", 1) # import DR extensions enable_extension("omni.replicator.isaac") import omni.replicator.core as rep import omni.replicator.isaac as dr self.rep = rep self.dr = dr def apply_on_startup_domain_randomization(self, task): if self.randomize: torch.manual_seed(self._config["seed"]) randomization_params = self._cfg["domain_randomization"]["randomization_params"] for opt in randomization_params.keys(): if opt == "rigid_prim_views": if randomization_params["rigid_prim_views"] is not None: for view_name in randomization_params["rigid_prim_views"].keys(): if randomization_params["rigid_prim_views"][view_name] is not None: for attribute, params in randomization_params["rigid_prim_views"][view_name].items(): params = randomization_params["rigid_prim_views"][view_name][attribute] if attribute in ["scale", "mass", "density"] and params is not None: if "on_startup" in params.keys(): if not set( ("operation", "distribution", "distribution_parameters") ).issubset(params["on_startup"]): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} " + "on_startup are provided: operation, distribution, distribution_parameters." ) view = task._env._world.scene._scene_registry.rigid_prim_views[view_name] if attribute == "scale": self.randomize_scale_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"][ "distribution_parameters" ], operation=params["on_startup"]["operation"], sync_dim_noise=True, ) elif attribute == "mass": self.randomize_mass_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"][ "distribution_parameters" ], operation=params["on_startup"]["operation"], ) elif attribute == "density": self.randomize_density_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"][ "distribution_parameters" ], operation=params["on_startup"]["operation"], ) if opt == "articulation_views": if randomization_params["articulation_views"] is not None: for view_name in randomization_params["articulation_views"].keys(): if randomization_params["articulation_views"][view_name] is not None: for attribute, params in randomization_params["articulation_views"][view_name].items(): params = randomization_params["articulation_views"][view_name][attribute] if attribute in ["scale"] and params is not None: if "on_startup" in params.keys(): if not set( ("operation", "distribution", "distribution_parameters") ).issubset(params["on_startup"]): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} " + "on_startup are provided: operation, distribution, distribution_parameters." ) view = task._env._world.scene._scene_registry.articulated_views[view_name] if attribute == "scale": self.randomize_scale_on_startup( view=view, distribution=params["on_startup"]["distribution"], distribution_parameters=params["on_startup"][ "distribution_parameters" ], operation=params["on_startup"]["operation"], sync_dim_noise=True, ) else: dr_config = self._cfg.get("domain_randomization", None) if dr_config is None: raise ValueError("No domain randomization parameters are specified in the task yaml config file") randomize = dr_config.get("randomize", False) randomization_params = dr_config.get("randomization_params", None) if randomize == False or randomization_params is None: print("On Startup Domain randomization will not be applied.") def set_up_domain_randomization(self, task): if self.randomize: randomization_params = self._cfg["domain_randomization"]["randomization_params"] self.rep.set_global_seed(self._config["seed"]) with self.dr.trigger.on_rl_frame(num_envs=self._cfg["env"]["numEnvs"]): for opt in randomization_params.keys(): if opt == "observations": self._set_up_observations_randomization(task) elif opt == "actions": self._set_up_actions_randomization(task) elif opt == "simulation": if randomization_params["simulation"] is not None: self.distributions["simulation"] = dict() self.dr.physics_view.register_simulation_context(task._env._world) for attribute, params in randomization_params["simulation"].items(): self._set_up_simulation_randomization(attribute, params) elif opt == "rigid_prim_views": if randomization_params["rigid_prim_views"] is not None: self.distributions["rigid_prim_views"] = dict() for view_name in randomization_params["rigid_prim_views"].keys(): if randomization_params["rigid_prim_views"][view_name] is not None: self.distributions["rigid_prim_views"][view_name] = dict() self.dr.physics_view.register_rigid_prim_view( rigid_prim_view=task._env._world.scene._scene_registry.rigid_prim_views[ view_name ], ) for attribute, params in randomization_params["rigid_prim_views"][ view_name ].items(): if attribute not in ["scale", "density"]: self._set_up_rigid_prim_view_randomization(view_name, attribute, params) elif opt == "articulation_views": if randomization_params["articulation_views"] is not None: self.distributions["articulation_views"] = dict() for view_name in randomization_params["articulation_views"].keys(): if randomization_params["articulation_views"][view_name] is not None: self.distributions["articulation_views"][view_name] = dict() self.dr.physics_view.register_articulation_view( articulation_view=task._env._world.scene._scene_registry.articulated_views[ view_name ], ) for attribute, params in randomization_params["articulation_views"][ view_name ].items(): if attribute not in ["scale"]: self._set_up_articulation_view_randomization(view_name, attribute, params) self.rep.orchestrator.run() else: dr_config = self._cfg.get("domain_randomization", None) if dr_config is None: raise ValueError("No domain randomization parameters are specified in the task yaml config file") randomize = dr_config.get("randomize", False) randomization_params = dr_config.get("randomization_params", None) if randomize == False or randomization_params is None: print("Domain randomization will not be applied.") def _set_up_observations_randomization(self, task): task.randomize_observations = True self._observations_dr_params = self._cfg["domain_randomization"]["randomization_params"]["observations"] if self._observations_dr_params is None: raise ValueError(f"Observations randomization parameters are not provided.") if "on_reset" in self._observations_dr_params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset( self._observations_dr_params["on_reset"].keys() ): raise ValueError( f"Please ensure the following observations on_reset randomization parameters are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("observations", "on_reset")] = np.array( self._observations_dr_params["on_reset"]["distribution_parameters"] ) if "on_interval" in self._observations_dr_params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( self._observations_dr_params["on_interval"].keys() ): raise ValueError( f"Please ensure the following observations on_interval randomization parameters are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("observations", "on_interval")] = np.array( self._observations_dr_params["on_interval"]["distribution_parameters"] ) self._observations_counter_buffer = torch.zeros( (self._cfg["env"]["numEnvs"]), dtype=torch.int, device=self._config["rl_device"] ) self._observations_correlated_noise = torch.zeros( (self._cfg["env"]["numEnvs"], task.num_observations), device=self._config["rl_device"] ) def _set_up_actions_randomization(self, task): task.randomize_actions = True self._actions_dr_params = self._cfg["domain_randomization"]["randomization_params"]["actions"] if self._actions_dr_params is None: raise ValueError(f"Actions randomization parameters are not provided.") if "on_reset" in self._actions_dr_params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset( self._actions_dr_params["on_reset"].keys() ): raise ValueError( f"Please ensure the following actions on_reset randomization parameters are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("actions", "on_reset")] = np.array( self._actions_dr_params["on_reset"]["distribution_parameters"] ) if "on_interval" in self._actions_dr_params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( self._actions_dr_params["on_interval"].keys() ): raise ValueError( f"Please ensure the following actions on_interval randomization parameters are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("actions", "on_interval")] = np.array( self._actions_dr_params["on_interval"]["distribution_parameters"] ) self._actions_counter_buffer = torch.zeros( (self._cfg["env"]["numEnvs"]), dtype=torch.int, device=self._config["rl_device"] ) self._actions_correlated_noise = torch.zeros( (self._cfg["env"]["numEnvs"], task.num_actions), device=self._config["rl_device"] ) def apply_observations_randomization(self, observations, reset_buf): env_ids = reset_buf.nonzero(as_tuple=False).squeeze(-1) self._observations_counter_buffer[env_ids] = 0 self._observations_counter_buffer += 1 if "on_reset" in self._observations_dr_params.keys(): observations[:] = self._apply_correlated_noise( buffer_type="observations", buffer=observations, reset_ids=env_ids, operation=self._observations_dr_params["on_reset"]["operation"], distribution=self._observations_dr_params["on_reset"]["distribution"], distribution_parameters=self._observations_dr_params["on_reset"]["distribution_parameters"], ) if "on_interval" in self._observations_dr_params.keys(): randomize_ids = ( (self._observations_counter_buffer >= self._observations_dr_params["on_interval"]["frequency_interval"]) .nonzero(as_tuple=False) .squeeze(-1) ) self._observations_counter_buffer[randomize_ids] = 0 observations[:] = self._apply_uncorrelated_noise( buffer=observations, randomize_ids=randomize_ids, operation=self._observations_dr_params["on_interval"]["operation"], distribution=self._observations_dr_params["on_interval"]["distribution"], distribution_parameters=self._observations_dr_params["on_interval"]["distribution_parameters"], ) return observations def apply_actions_randomization(self, actions, reset_buf): env_ids = reset_buf.nonzero(as_tuple=False).squeeze(-1) self._actions_counter_buffer[env_ids] = 0 self._actions_counter_buffer += 1 if "on_reset" in self._actions_dr_params.keys(): actions[:] = self._apply_correlated_noise( buffer_type="actions", buffer=actions, reset_ids=env_ids, operation=self._actions_dr_params["on_reset"]["operation"], distribution=self._actions_dr_params["on_reset"]["distribution"], distribution_parameters=self._actions_dr_params["on_reset"]["distribution_parameters"], ) if "on_interval" in self._actions_dr_params.keys(): randomize_ids = ( (self._actions_counter_buffer >= self._actions_dr_params["on_interval"]["frequency_interval"]) .nonzero(as_tuple=False) .squeeze(-1) ) self._actions_counter_buffer[randomize_ids] = 0 actions[:] = self._apply_uncorrelated_noise( buffer=actions, randomize_ids=randomize_ids, operation=self._actions_dr_params["on_interval"]["operation"], distribution=self._actions_dr_params["on_interval"]["distribution"], distribution_parameters=self._actions_dr_params["on_interval"]["distribution_parameters"], ) return actions def _apply_uncorrelated_noise(self, buffer, randomize_ids, operation, distribution, distribution_parameters): if distribution == "gaussian" or distribution == "normal": noise = torch.normal( mean=distribution_parameters[0], std=distribution_parameters[1], size=(len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"], ) elif distribution == "uniform": noise = (distribution_parameters[1] - distribution_parameters[0]) * torch.rand( (len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"] ) + distribution_parameters[0] elif distribution == "loguniform" or distribution == "log_uniform": noise = torch.exp( (np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand((len(randomize_ids), buffer.shape[1]), device=self._config["rl_device"]) + np.log(distribution_parameters[0]) ) else: print(f"The specified {distribution} distribution is not supported.") if operation == "additive": buffer[randomize_ids] += noise elif operation == "scaling": buffer[randomize_ids] *= noise else: print(f"The specified {operation} operation type is not supported.") return buffer def _apply_correlated_noise(self, buffer_type, buffer, reset_ids, operation, distribution, distribution_parameters): if buffer_type == "observations": correlated_noise_buffer = self._observations_correlated_noise elif buffer_type == "actions": correlated_noise_buffer = self._actions_correlated_noise if len(reset_ids) > 0: if distribution == "gaussian" or distribution == "normal": correlated_noise_buffer[reset_ids] = torch.normal( mean=distribution_parameters[0], std=distribution_parameters[1], size=(len(reset_ids), buffer.shape[1]), device=self._config["rl_device"], ) elif distribution == "uniform": correlated_noise_buffer[reset_ids] = ( distribution_parameters[1] - distribution_parameters[0] ) * torch.rand( (len(reset_ids), buffer.shape[1]), device=self._config["rl_device"] ) + distribution_parameters[ 0 ] elif distribution == "loguniform" or distribution == "log_uniform": correlated_noise_buffer[reset_ids] = torch.exp( (np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand((len(reset_ids), buffer.shape[1]), device=self._config["rl_device"]) + np.log(distribution_parameters[0]) ) else: print(f"The specified {distribution} distribution is not supported.") if operation == "additive": buffer += correlated_noise_buffer elif operation == "scaling": buffer *= correlated_noise_buffer else: print(f"The specified {operation} operation type is not supported.") return buffer def _set_up_simulation_randomization(self, attribute, params): if params is None: raise ValueError(f"Randomization parameters for simulation {attribute} is not provided.") if attribute in self.dr.SIMULATION_CONTEXT_ATTRIBUTES: self.distributions["simulation"][attribute] = dict() if "on_reset" in params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset(params["on_reset"]): raise ValueError( f"Please ensure the following randomization parameters for simulation {attribute} on_reset are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("simulation", attribute, "on_reset")] = np.array( params["on_reset"]["distribution_parameters"] ) kwargs = {"operation": params["on_reset"]["operation"]} self.distributions["simulation"][attribute]["on_reset"] = self._generate_distribution( dimension=self.dr.physics_view._simulation_context_initial_values[attribute].shape[0], view_name="simulation", attribute=attribute, params=params["on_reset"], ) kwargs[attribute] = self.distributions["simulation"][attribute]["on_reset"] with self.dr.gate.on_env_reset(): self.dr.physics_view.randomize_simulation_context(**kwargs) if "on_interval" in params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( params["on_interval"] ): raise ValueError( f"Please ensure the following randomization parameters for simulation {attribute} on_interval are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("simulation", attribute, "on_interval")] = np.array( params["on_interval"]["distribution_parameters"] ) kwargs = {"operation": params["on_interval"]["operation"]} self.distributions["simulation"][attribute]["on_interval"] = self._generate_distribution( dimension=self.dr.physics_view._simulation_context_initial_values[attribute].shape[0], view_name="simulation", attribute=attribute, params=params["on_interval"], ) kwargs[attribute] = self.distributions["simulation"][attribute]["on_interval"] with self.dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]): self.dr.physics_view.randomize_simulation_context(**kwargs) def _set_up_rigid_prim_view_randomization(self, view_name, attribute, params): if params is None: raise ValueError(f"Randomization parameters for rigid prim view {view_name} {attribute} is not provided.") if attribute in self.dr.RIGID_PRIM_ATTRIBUTES: self.distributions["rigid_prim_views"][view_name][attribute] = dict() if "on_reset" in params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset(params["on_reset"]): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} on_reset are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("rigid_prim_views", view_name, attribute, "on_reset")] = np.array( params["on_reset"]["distribution_parameters"] ) kwargs = {"view_name": view_name, "operation": params["on_reset"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_reset"].keys(): kwargs["num_buckets"] = params["on_reset"]["num_buckets"] self.distributions["rigid_prim_views"][view_name][attribute]["on_reset"] = self._generate_distribution( dimension=self.dr.physics_view._rigid_prim_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_reset"], ) kwargs[attribute] = self.distributions["rigid_prim_views"][view_name][attribute]["on_reset"] with self.dr.gate.on_env_reset(): self.dr.physics_view.randomize_rigid_prim_view(**kwargs) if "on_interval" in params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( params["on_interval"] ): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} on_interval are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("rigid_prim_views", view_name, attribute, "on_interval")] = np.array( params["on_interval"]["distribution_parameters"] ) kwargs = {"view_name": view_name, "operation": params["on_interval"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_interval"].keys(): kwargs["num_buckets"] = params["on_interval"]["num_buckets"] self.distributions["rigid_prim_views"][view_name][attribute][ "on_interval" ] = self._generate_distribution( dimension=self.dr.physics_view._rigid_prim_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_interval"], ) kwargs[attribute] = self.distributions["rigid_prim_views"][view_name][attribute]["on_interval"] with self.dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]): self.dr.physics_view.randomize_rigid_prim_view(**kwargs) else: raise ValueError(f"The attribute {attribute} for {view_name} is invalid for domain randomization.") def _set_up_articulation_view_randomization(self, view_name, attribute, params): if params is None: raise ValueError(f"Randomization parameters for articulation view {view_name} {attribute} is not provided.") if attribute in self.dr.ARTICULATION_ATTRIBUTES: self.distributions["articulation_views"][view_name][attribute] = dict() if "on_reset" in params.keys(): if not set(("operation", "distribution", "distribution_parameters")).issubset(params["on_reset"]): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} on_reset are provided: " + "operation, distribution, distribution_parameters." ) self.active_domain_randomizations[("articulation_views", view_name, attribute, "on_reset")] = np.array( params["on_reset"]["distribution_parameters"] ) kwargs = {"view_name": view_name, "operation": params["on_reset"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_reset"].keys(): kwargs["num_buckets"] = params["on_reset"]["num_buckets"] self.distributions["articulation_views"][view_name][attribute][ "on_reset" ] = self._generate_distribution( dimension=self.dr.physics_view._articulation_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_reset"], ) kwargs[attribute] = self.distributions["articulation_views"][view_name][attribute]["on_reset"] with self.dr.gate.on_env_reset(): self.dr.physics_view.randomize_articulation_view(**kwargs) if "on_interval" in params.keys(): if not set(("frequency_interval", "operation", "distribution", "distribution_parameters")).issubset( params["on_interval"] ): raise ValueError( f"Please ensure the following randomization parameters for {view_name} {attribute} on_interval are provided: " + "frequency_interval, operation, distribution, distribution_parameters." ) self.active_domain_randomizations[ ("articulation_views", view_name, attribute, "on_interval") ] = np.array(params["on_interval"]["distribution_parameters"]) kwargs = {"view_name": view_name, "operation": params["on_interval"]["operation"]} if attribute == "material_properties" and "num_buckets" in params["on_interval"].keys(): kwargs["num_buckets"] = params["on_interval"]["num_buckets"] self.distributions["articulation_views"][view_name][attribute][ "on_interval" ] = self._generate_distribution( dimension=self.dr.physics_view._articulation_views_initial_values[view_name][attribute].shape[1], view_name=view_name, attribute=attribute, params=params["on_interval"], ) kwargs[attribute] = self.distributions["articulation_views"][view_name][attribute]["on_interval"] with self.dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]): self.dr.physics_view.randomize_articulation_view(**kwargs) else: raise ValueError(f"The attribute {attribute} for {view_name} is invalid for domain randomization.") def _generate_distribution(self, view_name, attribute, dimension, params): dist_params = self._sanitize_distribution_parameters(attribute, dimension, params["distribution_parameters"]) if params["distribution"] == "uniform": return self.rep.distribution.uniform(tuple(dist_params[0]), tuple(dist_params[1])) elif params["distribution"] == "gaussian" or params["distribution"] == "normal": return self.rep.distribution.normal(tuple(dist_params[0]), tuple(dist_params[1])) elif params["distribution"] == "loguniform" or params["distribution"] == "log_uniform": return self.rep.distribution.log_uniform(tuple(dist_params[0]), tuple(dist_params[1])) else: raise ValueError( f"The provided distribution for {view_name} {attribute} is not supported. " + "Options: uniform, gaussian/normal, loguniform/log_uniform" ) def _sanitize_distribution_parameters(self, attribute, dimension, params): distribution_parameters = np.array(params) if distribution_parameters.shape == (2,): # if the user does not provide a set of parameters for each dimension dist_params = [[distribution_parameters[0]] * dimension, [distribution_parameters[1]] * dimension] elif distribution_parameters.shape == (2, dimension): # if the user provides a set of parameters for each dimension in the format [[...], [...]] dist_params = distribution_parameters.tolist() elif attribute in ["material_properties", "body_inertias"] and distribution_parameters.shape == (2, 3): # if the user only provides the parameters for one body in the articulation, assume the same parameters for all other links dist_params = [ [distribution_parameters[0]] * (dimension // 3), [distribution_parameters[1]] * (dimension // 3), ] else: raise ValueError( f"The provided distribution_parameters for {view_name} {attribute} is invalid due to incorrect dimensions." ) return dist_params def set_dr_distribution_parameters(self, distribution_parameters, *distribution_path): if distribution_path not in self.active_domain_randomizations.keys(): raise ValueError( f"Cannot find a valid domain randomization distribution using the path {distribution_path}." ) if distribution_path[0] == "observations": if len(distribution_parameters) == 2: self._observations_dr_params[distribution_path[1]]["distribution_parameters"] = distribution_parameters else: raise ValueError( f"Please provide distribution_parameters for observations {distribution_path[1]} " + "in the form of [dist_param_1, dist_param_2]" ) elif distribution_path[0] == "actions": if len(distribution_parameters) == 2: self._actions_dr_params[distribution_path[1]]["distribution_parameters"] = distribution_parameters else: raise ValueError( f"Please provide distribution_parameters for actions {distribution_path[1]} " + "in the form of [dist_param_1, dist_param_2]" ) else: replicator_distribution = self.distributions[distribution_path[0]][distribution_path[1]][ distribution_path[2] ] if distribution_path[0] == "rigid_prim_views" or distribution_path[0] == "articulation_views": replicator_distribution = replicator_distribution[distribution_path[3]] if ( replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleUniform" or replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleLogUniform" ): dimension = len(self.dr.utils.get_distribution_params(replicator_distribution, ["lower"])[0]) dist_params = self._sanitize_distribution_parameters( distribution_path[-2], dimension, distribution_parameters ) self.dr.utils.set_distribution_params( replicator_distribution, {"lower": dist_params[0], "upper": dist_params[1]} ) elif replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleNormal": dimension = len(self.dr.utils.get_distribution_params(replicator_distribution, ["mean"])[0]) dist_params = self._sanitize_distribution_parameters( distribution_path[-2], dimension, distribution_parameters ) self.dr.utils.set_distribution_params( replicator_distribution, {"mean": dist_params[0], "std": dist_params[1]} ) def get_dr_distribution_parameters(self, *distribution_path): if distribution_path not in self.active_domain_randomizations.keys(): raise ValueError( f"Cannot find a valid domain randomization distribution using the path {distribution_path}." ) if distribution_path[0] == "observations": return self._observations_dr_params[distribution_path[1]]["distribution_parameters"] elif distribution_path[0] == "actions": return self._actions_dr_params[distribution_path[1]]["distribution_parameters"] else: replicator_distribution = self.distributions[distribution_path[0]][distribution_path[1]][ distribution_path[2] ] if distribution_path[0] == "rigid_prim_views" or distribution_path[0] == "articulation_views": replicator_distribution = replicator_distribution[distribution_path[3]] if ( replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleUniform" or replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleLogUniform" ): return self.dr.utils.get_distribution_params(replicator_distribution, ["lower", "upper"]) elif replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleNormal": return self.dr.utils.get_distribution_params(replicator_distribution, ["mean", "std"]) def get_initial_dr_distribution_parameters(self, *distribution_path): if distribution_path not in self.active_domain_randomizations.keys(): raise ValueError( f"Cannot find a valid domain randomization distribution using the path {distribution_path}." ) return self.active_domain_randomizations[distribution_path].copy() def _generate_noise(self, distribution, distribution_parameters, size, device): if distribution == "gaussian" or distribution == "normal": noise = torch.normal( mean=distribution_parameters[0], std=distribution_parameters[1], size=size, device=device ) elif distribution == "uniform": noise = (distribution_parameters[1] - distribution_parameters[0]) * torch.rand( size, device=device ) + distribution_parameters[0] elif distribution == "loguniform" or distribution == "log_uniform": noise = torch.exp( (np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand(size, device=device) + np.log(distribution_parameters[0]) ) else: print(f"The specified {distribution} distribution is not supported.") return noise def randomize_scale_on_startup(self, view, distribution, distribution_parameters, operation, sync_dim_noise=True): scales = view.get_local_scales() if sync_dim_noise: dist_params = np.asarray( self._sanitize_distribution_parameters(attribute="scale", dimension=1, params=distribution_parameters) ) noise = ( self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device).repeat(3, 1).T ) else: dist_params = np.asarray( self._sanitize_distribution_parameters(attribute="scale", dimension=3, params=distribution_parameters) ) noise = torch.zeros((view.count, 3), device=view._device) for i in range(3): noise[:, i] = self._generate_noise(distribution, dist_params[:, i], (view.count,), view._device) if operation == "additive": scales += noise elif operation == "scaling": scales *= noise elif operation == "direct": scales = noise else: print(f"The specified {operation} operation type is not supported.") view.set_local_scales(scales=scales) def randomize_mass_on_startup(self, view, distribution, distribution_parameters, operation): if isinstance(view, omni.isaac.core.prims.RigidPrimView) or isinstance(view, RigidPrimView): masses = view.get_masses() dist_params = np.asarray( self._sanitize_distribution_parameters( attribute=f"{view.name} mass", dimension=1, params=distribution_parameters ) ) noise = self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device) set_masses = view.set_masses if operation == "additive": masses += noise elif operation == "scaling": masses *= noise elif operation == "direct": masses = noise else: print(f"The specified {operation} operation type is not supported.") set_masses(masses) def randomize_density_on_startup(self, view, distribution, distribution_parameters, operation): if isinstance(view, omni.isaac.core.prims.RigidPrimView) or isinstance(view, RigidPrimView): densities = view.get_densities() dist_params = np.asarray( self._sanitize_distribution_parameters( attribute=f"{view.name} density", dimension=1, params=distribution_parameters ) ) noise = self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device) set_densities = view.set_densities if operation == "additive": densities += noise elif operation == "scaling": densities *= noise elif operation == "direct": densities = noise else: print(f"The specified {operation} operation type is not supported.") set_densities(densities)
45,603
Python
58.691099
136
0.555051
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/rlgames/rlgames_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Callable import numpy as np import torch from rl_games.algos_torch import torch_ext from rl_games.common import env_configurations, vecenv from rl_games.common.algo_observer import AlgoObserver class RLGPUAlgoObserver(AlgoObserver): """Allows us to log stats from the env along with the algorithm running stats.""" def __init__(self): pass def after_init(self, algo): self.algo = algo self.mean_scores = torch_ext.AverageMeter(1, self.algo.games_to_track).to(self.algo.ppo_device) self.ep_infos = [] self.direct_info = {} self.writer = self.algo.writer def process_infos(self, infos, done_indices): assert isinstance(infos, dict), "RLGPUAlgoObserver expects dict info" if isinstance(infos, dict): if "episode" in infos: self.ep_infos.append(infos["episode"]) if len(infos) > 0 and isinstance(infos, dict): # allow direct logging from env self.direct_info = {} for k, v in infos.items(): # only log scalars if ( isinstance(v, float) or isinstance(v, int) or (isinstance(v, torch.Tensor) and len(v.shape) == 0) ): self.direct_info[k] = v def after_clear_stats(self): self.mean_scores.clear() def after_print_stats(self, frame, epoch_num, total_time): if self.ep_infos: for key in self.ep_infos[0]: infotensor = torch.tensor([], device=self.algo.device) for ep_info in self.ep_infos: # handle scalar and zero dimensional tensor infos if not isinstance(ep_info[key], torch.Tensor): ep_info[key] = torch.Tensor([ep_info[key]]) if len(ep_info[key].shape) == 0: ep_info[key] = ep_info[key].unsqueeze(0) infotensor = torch.cat((infotensor, ep_info[key].to(self.algo.device))) value = torch.mean(infotensor) self.writer.add_scalar("Episode/" + key, value, epoch_num) self.ep_infos.clear() for k, v in self.direct_info.items(): self.writer.add_scalar(f"{k}/frame", v, frame) self.writer.add_scalar(f"{k}/iter", v, epoch_num) self.writer.add_scalar(f"{k}/time", v, total_time) if self.mean_scores.current_size > 0: mean_scores = self.mean_scores.get_mean() self.writer.add_scalar("scores/mean", mean_scores, frame) self.writer.add_scalar("scores/iter", mean_scores, epoch_num) self.writer.add_scalar("scores/time", mean_scores, total_time) class RLGPUEnv(vecenv.IVecEnv): def __init__(self, config_name, num_actors, **kwargs): self.env = env_configurations.configurations[config_name]["env_creator"](**kwargs) def step(self, action): return self.env.step(action) def reset(self): return self.env.reset() def get_number_of_agents(self): return self.env.get_number_of_agents() def get_env_info(self): info = {} info["action_space"] = self.env.action_space info["observation_space"] = self.env.observation_space if self.env.num_states > 0: info["state_space"] = self.env.state_space print(info["action_space"], info["observation_space"], info["state_space"]) else: print(info["action_space"], info["observation_space"]) return info
5,201
Python
40.951613
103
0.636801
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/rlgames/rlgames_train_mt.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy import datetime import os import queue import threading import traceback import hydra from omegaconf import DictConfig from omni.isaac.gym.vec_env.vec_env_mt import TrainerMT from omniisaacgymenvs.envs.vec_env_rlgames_mt import VecEnvRLGamesMT from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import * from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv from omniisaacgymenvs.utils.task_util import initialize_task from rl_games.common import env_configurations, vecenv from rl_games.torch_runner import Runner class RLGTrainer: def __init__(self, cfg, cfg_dict): self.cfg = cfg self.cfg_dict = cfg_dict # ensure checkpoints can be specified as relative paths self._bad_checkpoint = False if self.cfg.checkpoint: self.cfg.checkpoint = retrieve_checkpoint_path(self.cfg.checkpoint) if not self.cfg.checkpoint: self._bad_checkpoint = True def launch_rlg_hydra(self, env): # `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally. # We use the helper function here to specify the environment config. self.cfg_dict["task"]["test"] = self.cfg.test # register the rl-games adapter to use inside the runner vecenv.register("RLGPU", lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs)) env_configurations.register("rlgpu", {"vecenv_type": "RLGPU", "env_creator": lambda **kwargs: env}) self.rlg_config_dict = omegaconf_to_dict(self.cfg.train) def run(self): # create runner and set the settings runner = Runner(RLGPUAlgoObserver()) # add evaluation parameters if self.cfg.evaluation: player_config = self.rlg_config_dict["params"]["config"].get("player", {}) player_config["evaluation"] = True player_config["update_checkpoint_freq"] = 100 player_config["dir_to_monitor"] = os.path.dirname(self.cfg.checkpoint) self.rlg_config_dict["params"]["config"]["player"] = player_config # load config runner.load(copy.deepcopy(self.rlg_config_dict)) runner.reset() # dump config dict experiment_dir = os.path.join("runs", self.cfg.train.params.config.name) os.makedirs(experiment_dir, exist_ok=True) with open(os.path.join(experiment_dir, "config.yaml"), "w") as f: f.write(OmegaConf.to_yaml(self.cfg)) time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") if self.cfg.wandb_activate: # Make sure to install WandB if you actually use this. import wandb run_name = f"{self.cfg.wandb_name}_{time_str}" wandb.init( project=self.cfg.wandb_project, group=self.cfg.wandb_group, entity=self.cfg.wandb_entity, config=self.cfg_dict, sync_tensorboard=True, id=run_name, resume="allow", monitor_gym=True, ) runner.run( {"train": not self.cfg.test, "play": self.cfg.test, "checkpoint": self.cfg.checkpoint, "sigma": None} ) if self.cfg.wandb_activate: wandb.finish() class Trainer(TrainerMT): def __init__(self, trainer, env): self.ppo_thread = None self.action_queue = None self.data_queue = None self.trainer = trainer self.is_running = False self.env = env self.create_task() self.run() def create_task(self): self.trainer.launch_rlg_hydra(self.env) # task = initialize_task(self.trainer.cfg_dict, self.env, init_sim=False) self.task = self.env._task def run(self): self.is_running = True self.action_queue = queue.Queue(1) self.data_queue = queue.Queue(1) if "mt_timeout" in self.trainer.cfg_dict: self.env.initialize(self.action_queue, self.data_queue, self.trainer.cfg_dict["mt_timeout"]) else: self.env.initialize(self.action_queue, self.data_queue) self.ppo_thread = PPOTrainer(self.env, self.task, self.trainer) self.ppo_thread.daemon = True self.ppo_thread.start() def stop(self): self.env.stop = True self.env.clear_queues() if self.action_queue: self.action_queue.join() if self.data_queue: self.data_queue.join() if self.ppo_thread: self.ppo_thread.join() self.action_queue = None self.data_queue = None self.ppo_thread = None self.is_running = False class PPOTrainer(threading.Thread): def __init__(self, env, task, trainer): super().__init__() self.env = env self.task = task self.trainer = trainer def run(self): from omni.isaac.gym.vec_env import TaskStopException print("starting ppo...") try: self.trainer.run() # trainer finished - send stop signal to main thread self.env.should_run = False self.env.send_actions(None, block=False) except TaskStopException: print("Task Stopped!") self.env.should_run = False self.env.send_actions(None, block=False) except Exception as e: # an error occurred on the RL side - signal stop to main thread print(traceback.format_exc()) self.env.should_run = False self.env.send_actions(None, block=False)
7,402
Python
36.770408
119
0.653337
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/config_utils/sim_config.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy import carb import numpy as np import omni.usd import torch from omni.isaac.core.utils.extensions import enable_extension from omniisaacgymenvs.utils.config_utils.default_scene_params import * class SimConfig: def __init__(self, config: dict = None): if config is None: config = dict() self._config = config self._cfg = config.get("task", dict()) self._parse_config() if self._config["test"] == True: self._sim_params["enable_scene_query_support"] = True if ( self._config["headless"] == True and not self._sim_params["enable_cameras"] and not self._config["enable_livestream"] ): self._sim_params["use_fabric"] = False self._sim_params["enable_viewport"] = False else: self._sim_params["enable_viewport"] = True enable_extension("omni.kit.viewport.bundle") if self._sim_params["enable_cameras"]: enable_extension("omni.replicator.isaac") self._sim_params["warp"] = self._config["warp"] self._sim_params["sim_device"] = self._config["sim_device"] self._adjust_dt() if self._sim_params["disable_contact_processing"]: carb.settings.get_settings().set_bool("/physics/disableContactProcessing", True) carb.settings.get_settings().set_bool("/physics/physxDispatcher", True) # Force the background grid off all the time for RL tasks, to avoid the grid showing up in any RL camera task carb.settings.get_settings().set("/app/viewport/grid/enabled", False) # Disable framerate limiting which might cause rendering slowdowns carb.settings.get_settings().set("/app/runLoops/main/rateLimitEnabled", False) import omni.ui # Dock floating UIs this might not be needed anymore as extensions dock themselves # Method for docking a particular window to a location def dock_window(space, name, location, ratio=0.5): window = omni.ui.Workspace.get_window(name) if window and space: window.dock_in(space, location, ratio=ratio) return window # Acquire the main docking station main_dockspace = omni.ui.Workspace.get_window("DockSpace") dock_window(main_dockspace, "Content", omni.ui.DockPosition.BOTTOM, 0.3) window = omni.ui.Workspace.get_window("Content") if window: window.visible = False def _parse_config(self): # general sim parameter self._sim_params = copy.deepcopy(default_sim_params) self._default_physics_material = copy.deepcopy(default_physics_material) sim_cfg = self._cfg.get("sim", None) if sim_cfg is not None: for opt in sim_cfg.keys(): if opt in self._sim_params: if opt == "default_physics_material": for material_opt in sim_cfg[opt]: self._default_physics_material[material_opt] = sim_cfg[opt][material_opt] else: self._sim_params[opt] = sim_cfg[opt] else: print("Sim params does not have attribute: ", opt) self._sim_params["default_physics_material"] = self._default_physics_material # physx parameters self._physx_params = copy.deepcopy(default_physx_params) if sim_cfg is not None and "physx" in sim_cfg: for opt in sim_cfg["physx"].keys(): if opt in self._physx_params: self._physx_params[opt] = sim_cfg["physx"][opt] else: print("Physx sim params does not have attribute: ", opt) self._sanitize_device() def _sanitize_device(self): if self._sim_params["use_gpu_pipeline"]: self._physx_params["use_gpu"] = True # device should be in sync with pipeline if self._sim_params["use_gpu_pipeline"]: self._config["sim_device"] = f"cuda:{self._config['device_id']}" else: self._config["sim_device"] = "cpu" # also write to physics params for setting sim device self._physx_params["sim_device"] = self._config["sim_device"] print("Pipeline: ", "GPU" if self._sim_params["use_gpu_pipeline"] else "CPU") print("Pipeline Device: ", self._config["sim_device"]) print("Sim Device: ", "GPU" if self._physx_params["use_gpu"] else "CPU") def parse_actor_config(self, actor_name): actor_params = copy.deepcopy(default_actor_options) if "sim" in self._cfg and actor_name in self._cfg["sim"]: actor_cfg = self._cfg["sim"][actor_name] for opt in actor_cfg.keys(): if actor_cfg[opt] != -1 and opt in actor_params: actor_params[opt] = actor_cfg[opt] elif opt not in actor_params: print("Actor params does not have attribute: ", opt) return actor_params def _get_actor_config_value(self, actor_name, attribute_name, attribute=None): actor_params = self.parse_actor_config(actor_name) if attribute is not None: if attribute_name not in actor_params: return attribute.Get() if actor_params[attribute_name] != -1: return actor_params[attribute_name] elif actor_params["override_usd_defaults"] and not attribute.IsAuthored(): return self._physx_params[attribute_name] else: if actor_params[attribute_name] != -1: return actor_params[attribute_name] def _adjust_dt(self): # re-evaluate rendering dt to simulate physics substeps physics_dt = self.sim_params["dt"] rendering_dt = self.sim_params["rendering_dt"] # by default, rendering dt = physics dt if rendering_dt <= 0: rendering_dt = physics_dt self.task_config["renderingInterval"] = max(round((1/physics_dt) / (1/rendering_dt)), 1) # we always set rendering dt to be the same as physics dt, stepping is taken care of in VecEnvRLGames self.sim_params["rendering_dt"] = physics_dt @property def sim_params(self): return self._sim_params @property def config(self): return self._config @property def task_config(self): return self._cfg @property def physx_params(self): return self._physx_params def get_physics_params(self): return {**self.sim_params, **self.physx_params} def _get_physx_collision_api(self, prim): from pxr import PhysxSchema, UsdPhysics physx_collision_api = PhysxSchema.PhysxCollisionAPI(prim) if not physx_collision_api: physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(prim) return physx_collision_api def _get_physx_rigid_body_api(self, prim): from pxr import PhysxSchema, UsdPhysics physx_rb_api = PhysxSchema.PhysxRigidBodyAPI(prim) if not physx_rb_api: physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Apply(prim) return physx_rb_api def _get_physx_articulation_api(self, prim): from pxr import PhysxSchema, UsdPhysics arti_api = PhysxSchema.PhysxArticulationAPI(prim) if not arti_api: arti_api = PhysxSchema.PhysxArticulationAPI.Apply(prim) return arti_api def set_contact_offset(self, name, prim, value=None): physx_collision_api = self._get_physx_collision_api(prim) contact_offset = physx_collision_api.GetContactOffsetAttr() # if not contact_offset: # contact_offset = physx_collision_api.CreateContactOffsetAttr() if value is None: value = self._get_actor_config_value(name, "contact_offset", contact_offset) if value != -1: contact_offset.Set(value) def set_rest_offset(self, name, prim, value=None): physx_collision_api = self._get_physx_collision_api(prim) rest_offset = physx_collision_api.GetRestOffsetAttr() # if not rest_offset: # rest_offset = physx_collision_api.CreateRestOffsetAttr() if value is None: value = self._get_actor_config_value(name, "rest_offset", rest_offset) if value != -1: rest_offset.Set(value) def set_position_iteration(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) solver_position_iteration_count = physx_rb_api.GetSolverPositionIterationCountAttr() if value is None: value = self._get_actor_config_value( name, "solver_position_iteration_count", solver_position_iteration_count ) if value != -1: solver_position_iteration_count.Set(value) def set_velocity_iteration(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) solver_velocity_iteration_count = physx_rb_api.GetSolverVelocityIterationCountAttr() if value is None: value = self._get_actor_config_value( name, "solver_velocity_iteration_count", solver_velocity_iteration_count ) if value != -1: solver_velocity_iteration_count.Set(value) def set_max_depenetration_velocity(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) max_depenetration_velocity = physx_rb_api.GetMaxDepenetrationVelocityAttr() if value is None: value = self._get_actor_config_value(name, "max_depenetration_velocity", max_depenetration_velocity) if value != -1: max_depenetration_velocity.Set(value) def set_sleep_threshold(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) sleep_threshold = physx_rb_api.GetSleepThresholdAttr() if value is None: value = self._get_actor_config_value(name, "sleep_threshold", sleep_threshold) if value != -1: sleep_threshold.Set(value) def set_stabilization_threshold(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) stabilization_threshold = physx_rb_api.GetStabilizationThresholdAttr() if value is None: value = self._get_actor_config_value(name, "stabilization_threshold", stabilization_threshold) if value != -1: stabilization_threshold.Set(value) def set_gyroscopic_forces(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) enable_gyroscopic_forces = physx_rb_api.GetEnableGyroscopicForcesAttr() if value is None: value = self._get_actor_config_value(name, "enable_gyroscopic_forces", enable_gyroscopic_forces) if value != -1: enable_gyroscopic_forces.Set(value) def set_density(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) density = physx_rb_api.GetDensityAttr() if value is None: value = self._get_actor_config_value(name, "density", density) if value != -1: density.Set(value) # auto-compute mass self.set_mass(prim, 0.0) def set_mass(self, name, prim, value=None): physx_rb_api = self._get_physx_rigid_body_api(prim) mass = physx_rb_api.GetMassAttr() if value is None: value = self._get_actor_config_value(name, "mass", mass) if value != -1: mass.Set(value) def retain_acceleration(self, prim): # retain accelerations if running with more than one substep physx_rb_api = self._get_physx_rigid_body_api(prim) if self._sim_params["substeps"] > 1: physx_rb_api.GetRetainAccelerationsAttr().Set(True) def make_kinematic(self, name, prim, cfg, value=None): # make rigid body kinematic (fixed base and no collision) from pxr import PhysxSchema, UsdPhysics stage = omni.usd.get_context().get_stage() if value is None: value = self._get_actor_config_value(name, "make_kinematic") if value == True: # parse through all children prims prims = [prim] while len(prims) > 0: cur_prim = prims.pop(0) rb = UsdPhysics.RigidBodyAPI.Get(stage, cur_prim.GetPath()) if rb: rb.CreateKinematicEnabledAttr().Set(True) children_prims = cur_prim.GetPrim().GetChildren() prims = prims + children_prims def set_articulation_position_iteration(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) solver_position_iteration_count = arti_api.GetSolverPositionIterationCountAttr() if value is None: value = self._get_actor_config_value( name, "solver_position_iteration_count", solver_position_iteration_count ) if value != -1: solver_position_iteration_count.Set(value) def set_articulation_velocity_iteration(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) solver_velocity_iteration_count = arti_api.GetSolverVelocityIterationCountAttr() if value is None: value = self._get_actor_config_value( name, "solver_velocity_iteration_count", solver_position_iteration_count ) if value != -1: solver_velocity_iteration_count.Set(value) def set_articulation_sleep_threshold(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) sleep_threshold = arti_api.GetSleepThresholdAttr() if value is None: value = self._get_actor_config_value(name, "sleep_threshold", sleep_threshold) if value != -1: sleep_threshold.Set(value) def set_articulation_stabilization_threshold(self, name, prim, value=None): arti_api = self._get_physx_articulation_api(prim) stabilization_threshold = arti_api.GetStabilizationThresholdAttr() if value is None: value = self._get_actor_config_value(name, "stabilization_threshold", stabilization_threshold) if value != -1: stabilization_threshold.Set(value) def apply_rigid_body_settings(self, name, prim, cfg, is_articulation): from pxr import PhysxSchema, UsdPhysics stage = omni.usd.get_context().get_stage() rb_api = UsdPhysics.RigidBodyAPI.Get(stage, prim.GetPath()) physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Get(stage, prim.GetPath()) if not physx_rb_api: physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Apply(prim) # if it's a body in an articulation, it's handled at articulation root if not is_articulation: self.make_kinematic(name, prim, cfg, cfg["make_kinematic"]) self.set_position_iteration(name, prim, cfg["solver_position_iteration_count"]) self.set_velocity_iteration(name, prim, cfg["solver_velocity_iteration_count"]) self.set_max_depenetration_velocity(name, prim, cfg["max_depenetration_velocity"]) self.set_sleep_threshold(name, prim, cfg["sleep_threshold"]) self.set_stabilization_threshold(name, prim, cfg["stabilization_threshold"]) self.set_gyroscopic_forces(name, prim, cfg["enable_gyroscopic_forces"]) # density and mass mass_api = UsdPhysics.MassAPI.Get(stage, prim.GetPath()) if mass_api is None: mass_api = UsdPhysics.MassAPI.Apply(prim) mass_attr = mass_api.GetMassAttr() density_attr = mass_api.GetDensityAttr() if not mass_attr: mass_attr = mass_api.CreateMassAttr() if not density_attr: density_attr = mass_api.CreateDensityAttr() if cfg["density"] != -1: density_attr.Set(cfg["density"]) mass_attr.Set(0.0) # mass is to be computed elif cfg["override_usd_defaults"] and not density_attr.IsAuthored() and not mass_attr.IsAuthored(): density_attr.Set(self._physx_params["density"]) self.retain_acceleration(prim) def apply_rigid_shape_settings(self, name, prim, cfg): from pxr import PhysxSchema, UsdPhysics stage = omni.usd.get_context().get_stage() # collision APIs collision_api = UsdPhysics.CollisionAPI(prim) if not collision_api: collision_api = UsdPhysics.CollisionAPI.Apply(prim) physx_collision_api = PhysxSchema.PhysxCollisionAPI(prim) if not physx_collision_api: physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(prim) self.set_contact_offset(name, prim, cfg["contact_offset"]) self.set_rest_offset(name, prim, cfg["rest_offset"]) def apply_articulation_settings(self, name, prim, cfg): from pxr import PhysxSchema, UsdPhysics stage = omni.usd.get_context().get_stage() is_articulation = False # check if is articulation prims = [prim] while len(prims) > 0: prim_tmp = prims.pop(0) articulation_api = UsdPhysics.ArticulationRootAPI.Get(stage, prim_tmp.GetPath()) physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Get(stage, prim_tmp.GetPath()) if articulation_api or physx_articulation_api: is_articulation = True children_prims = prim_tmp.GetPrim().GetChildren() prims = prims + children_prims # parse through all children prims prims = [prim] while len(prims) > 0: cur_prim = prims.pop(0) rb = UsdPhysics.RigidBodyAPI.Get(stage, cur_prim.GetPath()) collision_body = UsdPhysics.CollisionAPI.Get(stage, cur_prim.GetPath()) articulation = UsdPhysics.ArticulationRootAPI.Get(stage, cur_prim.GetPath()) if rb: self.apply_rigid_body_settings(name, cur_prim, cfg, is_articulation) if collision_body: self.apply_rigid_shape_settings(name, cur_prim, cfg) if articulation: articulation_api = UsdPhysics.ArticulationRootAPI.Get(stage, cur_prim.GetPath()) physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Get(stage, cur_prim.GetPath()) # enable self collisions enable_self_collisions = physx_articulation_api.GetEnabledSelfCollisionsAttr() if cfg["enable_self_collisions"] != -1: enable_self_collisions.Set(cfg["enable_self_collisions"]) self.set_articulation_position_iteration(name, cur_prim, cfg["solver_position_iteration_count"]) self.set_articulation_velocity_iteration(name, cur_prim, cfg["solver_velocity_iteration_count"]) self.set_articulation_sleep_threshold(name, cur_prim, cfg["sleep_threshold"]) self.set_articulation_stabilization_threshold(name, cur_prim, cfg["stabilization_threshold"]) children_prims = cur_prim.GetPrim().GetChildren() prims = prims + children_prims
20,932
Python
42.792887
117
0.632429
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/config_utils/default_scene_params.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. default_physx_params = { ### Per-scene settings "use_gpu": False, "worker_thread_count": 4, "solver_type": 1, # 0: PGS, 1:TGS "bounce_threshold_velocity": 0.2, "friction_offset_threshold": 0.04, # A threshold of contact separation distance used to decide if a contact # point will experience friction forces. "friction_correlation_distance": 0.025, # Contact points can be merged into a single friction anchor if the # distance between the contacts is smaller than correlation distance. # disabling these can be useful for debugging "enable_sleeping": True, "enable_stabilization": True, # GPU buffers "gpu_max_rigid_contact_count": 512 * 1024, "gpu_max_rigid_patch_count": 80 * 1024, "gpu_found_lost_pairs_capacity": 1024, "gpu_found_lost_aggregate_pairs_capacity": 1024, "gpu_total_aggregate_pairs_capacity": 1024, "gpu_max_soft_body_contacts": 1024 * 1024, "gpu_max_particle_contacts": 1024 * 1024, "gpu_heap_capacity": 64 * 1024 * 1024, "gpu_temp_buffer_capacity": 16 * 1024 * 1024, "gpu_max_num_partitions": 8, "gpu_collision_stack_size": 64 * 1024 * 1024, ### Per-actor settings ( can override in actor_options ) "solver_position_iteration_count": 4, "solver_velocity_iteration_count": 1, "sleep_threshold": 0.0, # Mass-normalized kinetic energy threshold below which an actor may go to sleep. # Allowed range [0, max_float). "stabilization_threshold": 0.0, # Mass-normalized kinetic energy threshold below which an actor may # participate in stabilization. Allowed range [0, max_float). ### Per-body settings ( can override in actor_options ) "enable_gyroscopic_forces": False, "density": 1000.0, # density to be used for bodies that do not specify mass or density "max_depenetration_velocity": 100.0, ### Per-shape settings ( can override in actor_options ) "contact_offset": 0.02, "rest_offset": 0.001, } default_physics_material = {"static_friction": 1.0, "dynamic_friction": 1.0, "restitution": 0.0} default_sim_params = { "gravity": [0.0, 0.0, -9.81], "dt": 1.0 / 60.0, "rendering_dt": -1.0, # we don't want to override this if it's set from cfg "substeps": 1, "use_gpu_pipeline": True, "add_ground_plane": True, "add_distant_light": True, "use_fabric": True, "enable_scene_query_support": False, "enable_cameras": False, "disable_contact_processing": False, "default_physics_material": default_physics_material, } default_actor_options = { # -1 means use authored value from USD or default values from default_sim_params if not explicitly authored in USD. # If an attribute value is not explicitly authored in USD, add one with the value given here, # which overrides the USD default. "override_usd_defaults": False, "make_kinematic": -1, "enable_self_collisions": -1, "enable_gyroscopic_forces": -1, "solver_position_iteration_count": -1, "solver_velocity_iteration_count": -1, "sleep_threshold": -1, "stabilization_threshold": -1, "max_depenetration_velocity": -1, "density": -1, "mass": -1, "contact_offset": -1, "rest_offset": -1, }
4,783
Python
44.132075
119
0.703951
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/config_utils/path_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import carb from hydra.utils import to_absolute_path def is_valid_local_file(path): return os.path.isfile(path) def is_valid_ov_file(path): import omni.client result, entry = omni.client.stat(path) return result == omni.client.Result.OK def download_ov_file(source_path, target_path): import omni.client result = omni.client.copy(source_path, target_path) if result == omni.client.Result.OK: return True return False def break_ov_path(path): import omni.client return omni.client.break_url(path) def retrieve_checkpoint_path(path): # check if it's a local path if is_valid_local_file(path): return to_absolute_path(path) # check if it's an OV path elif is_valid_ov_file(path): ov_path = break_ov_path(path) file_name = os.path.basename(ov_path.path) target_path = f"checkpoints/{file_name}" copy_to_local = download_ov_file(path, target_path) return to_absolute_path(target_path) else: carb.log_error(f"Invalid checkpoint path: {path}. Does the file exist?") return None def get_experience(headless, enable_livestream, enable_viewport, kit_app): if kit_app == '': if enable_viewport: experience = os.path.abspath(os.path.join('../apps', 'omni.isaac.sim.python.gym.camera.kit')) else: experience = f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.gym.kit' if headless and not enable_livestream: experience = f'{os.environ["EXP_PATH"]}/omni.isaac.sim.python.gym.headless.kit' else: experience = kit_app return experience
3,226
Python
34.855555
105
0.713887
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/hydra_cfg/hydra_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import hydra from omegaconf import DictConfig, OmegaConf ## OmegaConf & Hydra Config # Resolvers used in hydra configs (see https://omegaconf.readthedocs.io/en/2.1_branch/usage.html#resolvers) if not OmegaConf.has_resolver("eq"): OmegaConf.register_new_resolver("eq", lambda x, y: x.lower() == y.lower()) if not OmegaConf.has_resolver("contains"): OmegaConf.register_new_resolver("contains", lambda x, y: x.lower() in y.lower()) if not OmegaConf.has_resolver("if"): OmegaConf.register_new_resolver("if", lambda pred, a, b: a if pred else b) # allows us to resolve default arguments which are copied in multiple places in the config. used primarily for # num_ensv if not OmegaConf.has_resolver("resolve_default"): OmegaConf.register_new_resolver("resolve_default", lambda default, arg: default if arg == "" else arg)
2,394
Python
51.065216
110
0.767753
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/hydra_cfg/reformat.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Dict from omegaconf import DictConfig, OmegaConf def omegaconf_to_dict(d: DictConfig) -> Dict: """Converts an omegaconf DictConfig to a python Dict, respecting variable interpolation.""" ret = {} for k, v in d.items(): if isinstance(v, DictConfig): ret[k] = omegaconf_to_dict(v) else: ret[k] = v return ret def print_dict(val, nesting: int = -4, start: bool = True): """Outputs a nested dictionory.""" if type(val) == dict: if not start: print("") nesting += 4 for k in val: print(nesting * " ", end="") print(k, end=": ") print_dict(val[k], nesting, start=False) else: print(val)
2,313
Python
38.896551
95
0.707739
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/terrain_utils/terrain_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from math import sqrt import numpy as np from numpy.random import choice from omni.isaac.core.prims import XFormPrim from pxr import Gf, PhysxSchema, Sdf, UsdPhysics from scipy import interpolate def random_uniform_terrain( terrain, min_height, max_height, step=1, downsampled_scale=None, ): """ Generate a uniform noise terrain Parameters terrain (SubTerrain): the terrain min_height (float): the minimum height of the terrain [meters] max_height (float): the maximum height of the terrain [meters] step (float): minimum height change between two points [meters] downsampled_scale (float): distance between two randomly sampled points ( musty be larger or equal to terrain.horizontal_scale) """ if downsampled_scale is None: downsampled_scale = terrain.horizontal_scale # switch parameters to discrete units min_height = int(min_height / terrain.vertical_scale) max_height = int(max_height / terrain.vertical_scale) step = int(step / terrain.vertical_scale) heights_range = np.arange(min_height, max_height + step, step) height_field_downsampled = np.random.choice( heights_range, ( int(terrain.width * terrain.horizontal_scale / downsampled_scale), int(terrain.length * terrain.horizontal_scale / downsampled_scale), ), ) x = np.linspace(0, terrain.width * terrain.horizontal_scale, height_field_downsampled.shape[0]) y = np.linspace(0, terrain.length * terrain.horizontal_scale, height_field_downsampled.shape[1]) f = interpolate.RectBivariateSpline(y, x, height_field_downsampled) x_upsampled = np.linspace(0, terrain.width * terrain.horizontal_scale, terrain.width) y_upsampled = np.linspace(0, terrain.length * terrain.horizontal_scale, terrain.length) z_upsampled = np.rint(f(y_upsampled, x_upsampled)) terrain.height_field_raw += z_upsampled.astype(np.int16) return terrain def sloped_terrain(terrain, slope=1): """ Generate a sloped terrain Parameters: terrain (SubTerrain): the terrain slope (int): positive or negative slope Returns: terrain (SubTerrain): update terrain """ x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) xx, yy = np.meshgrid(x, y, sparse=True) xx = xx.reshape(terrain.width, 1) max_height = int(slope * (terrain.horizontal_scale / terrain.vertical_scale) * terrain.width) terrain.height_field_raw[:, np.arange(terrain.length)] += (max_height * xx / terrain.width).astype( terrain.height_field_raw.dtype ) return terrain def pyramid_sloped_terrain(terrain, slope=1, platform_size=1.0): """ Generate a sloped terrain Parameters: terrain (terrain): the terrain slope (int): positive or negative slope platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) center_x = int(terrain.width / 2) center_y = int(terrain.length / 2) xx, yy = np.meshgrid(x, y, sparse=True) xx = (center_x - np.abs(center_x - xx)) / center_x yy = (center_y - np.abs(center_y - yy)) / center_y xx = xx.reshape(terrain.width, 1) yy = yy.reshape(1, terrain.length) max_height = int(slope * (terrain.horizontal_scale / terrain.vertical_scale) * (terrain.width / 2)) terrain.height_field_raw += (max_height * xx * yy).astype(terrain.height_field_raw.dtype) platform_size = int(platform_size / terrain.horizontal_scale / 2) x1 = terrain.width // 2 - platform_size x2 = terrain.width // 2 + platform_size y1 = terrain.length // 2 - platform_size y2 = terrain.length // 2 + platform_size min_h = min(terrain.height_field_raw[x1, y1], 0) max_h = max(terrain.height_field_raw[x1, y1], 0) terrain.height_field_raw = np.clip(terrain.height_field_raw, min_h, max_h) return terrain def discrete_obstacles_terrain(terrain, max_height, min_size, max_size, num_rects, platform_size=1.0): """ Generate a terrain with gaps Parameters: terrain (terrain): the terrain max_height (float): maximum height of the obstacles (range=[-max, -max/2, max/2, max]) [meters] min_size (float): minimum size of a rectangle obstacle [meters] max_size (float): maximum size of a rectangle obstacle [meters] num_rects (int): number of randomly generated obstacles platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units max_height = int(max_height / terrain.vertical_scale) min_size = int(min_size / terrain.horizontal_scale) max_size = int(max_size / terrain.horizontal_scale) platform_size = int(platform_size / terrain.horizontal_scale) (i, j) = terrain.height_field_raw.shape height_range = [-max_height, -max_height // 2, max_height // 2, max_height] width_range = range(min_size, max_size, 4) length_range = range(min_size, max_size, 4) for _ in range(num_rects): width = np.random.choice(width_range) length = np.random.choice(length_range) start_i = np.random.choice(range(0, i - width, 4)) start_j = np.random.choice(range(0, j - length, 4)) terrain.height_field_raw[start_i : start_i + width, start_j : start_j + length] = np.random.choice(height_range) x1 = (terrain.width - platform_size) // 2 x2 = (terrain.width + platform_size) // 2 y1 = (terrain.length - platform_size) // 2 y2 = (terrain.length + platform_size) // 2 terrain.height_field_raw[x1:x2, y1:y2] = 0 return terrain def wave_terrain(terrain, num_waves=1, amplitude=1.0): """ Generate a wavy terrain Parameters: terrain (terrain): the terrain num_waves (int): number of sine waves across the terrain length Returns: terrain (SubTerrain): update terrain """ amplitude = int(0.5 * amplitude / terrain.vertical_scale) if num_waves > 0: div = terrain.length / (num_waves * np.pi * 2) x = np.arange(0, terrain.width) y = np.arange(0, terrain.length) xx, yy = np.meshgrid(x, y, sparse=True) xx = xx.reshape(terrain.width, 1) yy = yy.reshape(1, terrain.length) terrain.height_field_raw += (amplitude * np.cos(yy / div) + amplitude * np.sin(xx / div)).astype( terrain.height_field_raw.dtype ) return terrain def stairs_terrain(terrain, step_width, step_height): """ Generate a stairs Parameters: terrain (terrain): the terrain step_width (float): the width of the step [meters] step_height (float): the height of the step [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units step_width = int(step_width / terrain.horizontal_scale) step_height = int(step_height / terrain.vertical_scale) num_steps = terrain.width // step_width height = step_height for i in range(num_steps): terrain.height_field_raw[i * step_width : (i + 1) * step_width, :] += height height += step_height return terrain def pyramid_stairs_terrain(terrain, step_width, step_height, platform_size=1.0): """ Generate stairs Parameters: terrain (terrain): the terrain step_width (float): the width of the step [meters] step_height (float): the step_height [meters] platform_size (float): size of the flat platform at the center of the terrain [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units step_width = int(step_width / terrain.horizontal_scale) step_height = int(step_height / terrain.vertical_scale) platform_size = int(platform_size / terrain.horizontal_scale) height = 0 start_x = 0 stop_x = terrain.width start_y = 0 stop_y = terrain.length while (stop_x - start_x) > platform_size and (stop_y - start_y) > platform_size: start_x += step_width stop_x -= step_width start_y += step_width stop_y -= step_width height += step_height terrain.height_field_raw[start_x:stop_x, start_y:stop_y] = height return terrain def stepping_stones_terrain(terrain, stone_size, stone_distance, max_height, platform_size=1.0, depth=-10): """ Generate a stepping stones terrain Parameters: terrain (terrain): the terrain stone_size (float): horizontal size of the stepping stones [meters] stone_distance (float): distance between stones (i.e size of the holes) [meters] max_height (float): maximum height of the stones (positive and negative) [meters] platform_size (float): size of the flat platform at the center of the terrain [meters] depth (float): depth of the holes (default=-10.) [meters] Returns: terrain (SubTerrain): update terrain """ # switch parameters to discrete units stone_size = int(stone_size / terrain.horizontal_scale) stone_distance = int(stone_distance / terrain.horizontal_scale) max_height = int(max_height / terrain.vertical_scale) platform_size = int(platform_size / terrain.horizontal_scale) height_range = np.arange(-max_height - 1, max_height, step=1) start_x = 0 start_y = 0 terrain.height_field_raw[:, :] = int(depth / terrain.vertical_scale) if terrain.length >= terrain.width: while start_y < terrain.length: stop_y = min(terrain.length, start_y + stone_size) start_x = np.random.randint(0, stone_size) # fill first hole stop_x = max(0, start_x - stone_distance) terrain.height_field_raw[0:stop_x, start_y:stop_y] = np.random.choice(height_range) # fill row while start_x < terrain.width: stop_x = min(terrain.width, start_x + stone_size) terrain.height_field_raw[start_x:stop_x, start_y:stop_y] = np.random.choice(height_range) start_x += stone_size + stone_distance start_y += stone_size + stone_distance elif terrain.width > terrain.length: while start_x < terrain.width: stop_x = min(terrain.width, start_x + stone_size) start_y = np.random.randint(0, stone_size) # fill first hole stop_y = max(0, start_y - stone_distance) terrain.height_field_raw[start_x:stop_x, 0:stop_y] = np.random.choice(height_range) # fill column while start_y < terrain.length: stop_y = min(terrain.length, start_y + stone_size) terrain.height_field_raw[start_x:stop_x, start_y:stop_y] = np.random.choice(height_range) start_y += stone_size + stone_distance start_x += stone_size + stone_distance x1 = (terrain.width - platform_size) // 2 x2 = (terrain.width + platform_size) // 2 y1 = (terrain.length - platform_size) // 2 y2 = (terrain.length + platform_size) // 2 terrain.height_field_raw[x1:x2, y1:y2] = 0 return terrain def convert_heightfield_to_trimesh(height_field_raw, horizontal_scale, vertical_scale, slope_threshold=None): """ Convert a heightfield array to a triangle mesh represented by vertices and triangles. Optionally, corrects vertical surfaces above the provide slope threshold: If (y2-y1)/(x2-x1) > slope_threshold -> Move A to A' (set x1 = x2). Do this for all directions. B(x2,y2) /| / | / | (x1,y1)A---A'(x2',y1) Parameters: height_field_raw (np.array): input heightfield horizontal_scale (float): horizontal scale of the heightfield [meters] vertical_scale (float): vertical scale of the heightfield [meters] slope_threshold (float): the slope threshold above which surfaces are made vertical. If None no correction is applied (default: None) Returns: vertices (np.array(float)): array of shape (num_vertices, 3). Each row represents the location of each vertex [meters] triangles (np.array(int)): array of shape (num_triangles, 3). Each row represents the indices of the 3 vertices connected by this triangle. """ hf = height_field_raw num_rows = hf.shape[0] num_cols = hf.shape[1] y = np.linspace(0, (num_cols - 1) * horizontal_scale, num_cols) x = np.linspace(0, (num_rows - 1) * horizontal_scale, num_rows) yy, xx = np.meshgrid(y, x) if slope_threshold is not None: slope_threshold *= horizontal_scale / vertical_scale move_x = np.zeros((num_rows, num_cols)) move_y = np.zeros((num_rows, num_cols)) move_corners = np.zeros((num_rows, num_cols)) move_x[: num_rows - 1, :] += hf[1:num_rows, :] - hf[: num_rows - 1, :] > slope_threshold move_x[1:num_rows, :] -= hf[: num_rows - 1, :] - hf[1:num_rows, :] > slope_threshold move_y[:, : num_cols - 1] += hf[:, 1:num_cols] - hf[:, : num_cols - 1] > slope_threshold move_y[:, 1:num_cols] -= hf[:, : num_cols - 1] - hf[:, 1:num_cols] > slope_threshold move_corners[: num_rows - 1, : num_cols - 1] += ( hf[1:num_rows, 1:num_cols] - hf[: num_rows - 1, : num_cols - 1] > slope_threshold ) move_corners[1:num_rows, 1:num_cols] -= ( hf[: num_rows - 1, : num_cols - 1] - hf[1:num_rows, 1:num_cols] > slope_threshold ) xx += (move_x + move_corners * (move_x == 0)) * horizontal_scale yy += (move_y + move_corners * (move_y == 0)) * horizontal_scale # create triangle mesh vertices and triangles from the heightfield grid vertices = np.zeros((num_rows * num_cols, 3), dtype=np.float32) vertices[:, 0] = xx.flatten() vertices[:, 1] = yy.flatten() vertices[:, 2] = hf.flatten() * vertical_scale triangles = -np.ones((2 * (num_rows - 1) * (num_cols - 1), 3), dtype=np.uint32) for i in range(num_rows - 1): ind0 = np.arange(0, num_cols - 1) + i * num_cols ind1 = ind0 + 1 ind2 = ind0 + num_cols ind3 = ind2 + 1 start = 2 * i * (num_cols - 1) stop = start + 2 * (num_cols - 1) triangles[start:stop:2, 0] = ind0 triangles[start:stop:2, 1] = ind3 triangles[start:stop:2, 2] = ind1 triangles[start + 1 : stop : 2, 0] = ind0 triangles[start + 1 : stop : 2, 1] = ind2 triangles[start + 1 : stop : 2, 2] = ind3 return vertices, triangles def add_terrain_to_stage(stage, vertices, triangles, position=None, orientation=None): num_faces = triangles.shape[0] terrain_mesh = stage.DefinePrim("/World/terrain", "Mesh") terrain_mesh.GetAttribute("points").Set(vertices) terrain_mesh.GetAttribute("faceVertexIndices").Set(triangles.flatten()) terrain_mesh.GetAttribute("faceVertexCounts").Set(np.asarray([3] * num_faces)) terrain = XFormPrim(prim_path="/World/terrain", name="terrain", position=position, orientation=orientation) UsdPhysics.CollisionAPI.Apply(terrain.prim) # collision_api = UsdPhysics.MeshCollisionAPI.Apply(terrain.prim) # collision_api.CreateApproximationAttr().Set("meshSimplification") physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(terrain.prim) physx_collision_api.GetContactOffsetAttr().Set(0.02) physx_collision_api.GetRestOffsetAttr().Set(0.00) class SubTerrain: def __init__(self, terrain_name="terrain", width=256, length=256, vertical_scale=1.0, horizontal_scale=1.0): self.terrain_name = terrain_name self.vertical_scale = vertical_scale self.horizontal_scale = horizontal_scale self.width = width self.length = length self.height_field_raw = np.zeros((self.width, self.length), dtype=np.int16)
17,645
Python
41.215311
147
0.649306
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/terrain_utils/create_terrain_demo.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os, sys SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(SCRIPT_DIR) import omni from omni.isaac.kit import SimulationApp import numpy as np import torch simulation_app = SimulationApp({"headless": False}) from abc import abstractmethod from omni.isaac.core.tasks import BaseTask from omni.isaac.core.prims import RigidPrimView, RigidPrim, XFormPrim from omni.isaac.core import World from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.utils.prims import define_prim, get_prim_at_path from omni.isaac.core.utils.nucleus import find_nucleus_server from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage from omni.isaac.core.materials import PreviewSurface from omni.isaac.cloner import GridCloner from pxr import UsdPhysics, UsdLux, UsdShade, Sdf, Gf, UsdGeom, PhysxSchema from terrain_utils import * class TerrainCreation(BaseTask): def __init__(self, name, num_envs, num_per_row, env_spacing, config=None, offset=None,) -> None: BaseTask.__init__(self, name=name, offset=offset) self._num_envs = num_envs self._num_per_row = num_per_row self._env_spacing = env_spacing self._device = "cpu" self._cloner = GridCloner(self._env_spacing, self._num_per_row) self._cloner.define_base_env(self.default_base_env_path) define_prim(self.default_zero_env_path) @property def default_base_env_path(self): return "/World/envs" @property def default_zero_env_path(self): return f"{self.default_base_env_path}/env_0" def set_up_scene(self, scene) -> None: self._stage = get_current_stage() distantLight = UsdLux.DistantLight.Define(self._stage, Sdf.Path("/World/DistantLight")) distantLight.CreateIntensityAttr(2000) self.get_terrain() self.get_ball() super().set_up_scene(scene) prim_paths = self._cloner.generate_paths("/World/envs/env", self._num_envs) print(f"cloning {self._num_envs} environments...") self._env_pos = self._cloner.clone( source_prim_path="/World/envs/env_0", prim_paths=prim_paths ) return def get_terrain(self): # create all available terrain types num_terains = 8 terrain_width = 12. terrain_length = 12. horizontal_scale = 0.25 # [m] vertical_scale = 0.005 # [m] num_rows = int(terrain_width/horizontal_scale) num_cols = int(terrain_length/horizontal_scale) heightfield = np.zeros((num_terains*num_rows, num_cols), dtype=np.int16) def new_sub_terrain(): return SubTerrain(width=num_rows, length=num_cols, vertical_scale=vertical_scale, horizontal_scale=horizontal_scale) heightfield[0:num_rows, :] = random_uniform_terrain(new_sub_terrain(), min_height=-0.2, max_height=0.2, step=0.2, downsampled_scale=0.5).height_field_raw heightfield[num_rows:2*num_rows, :] = sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw heightfield[2*num_rows:3*num_rows, :] = pyramid_sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw heightfield[3*num_rows:4*num_rows, :] = discrete_obstacles_terrain(new_sub_terrain(), max_height=0.5, min_size=1., max_size=5., num_rects=20).height_field_raw heightfield[4*num_rows:5*num_rows, :] = wave_terrain(new_sub_terrain(), num_waves=2., amplitude=1.).height_field_raw heightfield[5*num_rows:6*num_rows, :] = stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw heightfield[6*num_rows:7*num_rows, :] = pyramid_stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw heightfield[7*num_rows:8*num_rows, :] = stepping_stones_terrain(new_sub_terrain(), stone_size=1., stone_distance=1., max_height=0.5, platform_size=0.).height_field_raw vertices, triangles = convert_heightfield_to_trimesh(heightfield, horizontal_scale=horizontal_scale, vertical_scale=vertical_scale, slope_threshold=1.5) position = np.array([-6.0, 48.0, 0]) orientation = np.array([0.70711, 0.0, 0.0, -0.70711]) add_terrain_to_stage(stage=self._stage, vertices=vertices, triangles=triangles, position=position, orientation=orientation) def get_ball(self): ball = DynamicSphere(prim_path=self.default_zero_env_path + "/ball", name="ball", translation=np.array([0.0, 0.0, 1.0]), mass=0.5, radius=0.2,) def post_reset(self): for i in range(self._num_envs): ball_prim = self._stage.GetPrimAtPath(f"{self.default_base_env_path}/env_{i}/ball") color = 0.5 + 0.5 * np.random.random(3) visual_material = PreviewSurface(prim_path=f"{self.default_base_env_path}/env_{i}/ball/Looks/visual_material", color=color) binding_api = UsdShade.MaterialBindingAPI(ball_prim) binding_api.Bind(visual_material.material, bindingStrength=UsdShade.Tokens.strongerThanDescendants) def get_observations(self): pass def calculate_metrics(self) -> None: pass def is_done(self) -> None: pass if __name__ == "__main__": world = World( stage_units_in_meters=1.0, rendering_dt=1.0/60.0, backend="torch", device="cpu", ) num_envs = 800 num_per_row = 80 env_spacing = 0.56*2 terrain_creation_task = TerrainCreation(name="TerrainCreation", num_envs=num_envs, num_per_row=num_per_row, env_spacing=env_spacing, ) world.add_task(terrain_creation_task) world.reset() while simulation_app.is_running(): if world.is_playing(): if world.current_time_step_index == 0: world.reset(soft=True) world.step(render=True) else: world.step(render=True) simulation_app.close()
7,869
Python
43.213483
166
0.650654
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/usd_utils/create_instanceable_assets.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import omni.client import omni.usd from pxr import Sdf, UsdGeom def update_reference(source_prim_path, source_reference_path, target_reference_path): stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(source_prim_path)] while len(prims) > 0: prim = prims.pop(0) prim_spec = stage.GetRootLayer().GetPrimAtPath(prim.GetPath()) reference_list = prim_spec.referenceList refs = reference_list.GetAddedOrExplicitItems() if len(refs) > 0: for ref in refs: if ref.assetPath == source_reference_path: prim.GetReferences().RemoveReference(ref) prim.GetReferences().AddReference(assetPath=target_reference_path, primPath=prim.GetPath()) prims = prims + prim.GetChildren() def create_parent_xforms(asset_usd_path, source_prim_path, save_as_path=None): """Adds a new UsdGeom.Xform prim for each Mesh/Geometry prim under source_prim_path. Moves material assignment to new parent prim if any exists on the Mesh/Geometry prim. Args: asset_usd_path (str): USD file path for asset source_prim_path (str): USD path of root prim save_as_path (str): USD file path for modified USD stage. Defaults to None, will save in same file. """ omni.usd.get_context().open_stage(asset_usd_path) stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(source_prim_path)] edits = Sdf.BatchNamespaceEdit() while len(prims) > 0: prim = prims.pop(0) print(prim) if prim.GetTypeName() in ["Mesh", "Capsule", "Sphere", "Box"]: new_xform = UsdGeom.Xform.Define(stage, str(prim.GetPath()) + "_xform") print(prim, new_xform) edits.Add(Sdf.NamespaceEdit.Reparent(prim.GetPath(), new_xform.GetPath(), 0)) continue children_prims = prim.GetChildren() prims = prims + children_prims stage.GetRootLayer().Apply(edits) if save_as_path is None: omni.usd.get_context().save_stage() else: omni.usd.get_context().save_as_stage(save_as_path) def convert_asset_instanceable(asset_usd_path, source_prim_path, save_as_path=None, create_xforms=True): """Makes all mesh/geometry prims instanceable. Can optionally add UsdGeom.Xform prim as parent for all mesh/geometry prims. Makes a copy of the asset USD file, which will be used for referencing. Updates asset file to convert all parent prims of mesh/geometry prims to reference cloned USD file. Args: asset_usd_path (str): USD file path for asset source_prim_path (str): USD path of root prim save_as_path (str): USD file path for modified USD stage. Defaults to None, will save in same file. create_xforms (bool): Whether to add new UsdGeom.Xform prims to mesh/geometry prims. """ if create_xforms: create_parent_xforms(asset_usd_path, source_prim_path, save_as_path) asset_usd_path = save_as_path instance_usd_path = ".".join(asset_usd_path.split(".")[:-1]) + "_meshes.usd" omni.client.copy(asset_usd_path, instance_usd_path) omni.usd.get_context().open_stage(asset_usd_path) stage = omni.usd.get_context().get_stage() prims = [stage.GetPrimAtPath(source_prim_path)] while len(prims) > 0: prim = prims.pop(0) if prim: if prim.GetTypeName() in ["Mesh", "Capsule", "Sphere", "Box"]: parent_prim = prim.GetParent() if parent_prim and not parent_prim.IsInstance(): parent_prim.GetReferences().AddReference( assetPath=instance_usd_path, primPath=str(parent_prim.GetPath()) ) parent_prim.SetInstanceable(True) continue children_prims = prim.GetChildren() prims = prims + children_prims if save_as_path is None: omni.usd.get_context().save_stage() else: omni.usd.get_context().save_as_stage(save_as_path)
5,627
Python
42.627907
111
0.67727
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/usd_utils/create_instanceable_dofbot.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import omni.usd import omni.client from pxr import UsdGeom, Sdf, UsdPhysics, UsdShade # Note: this script should be executed in Isaac Sim `Script Editor` window def create_dofbot(asset_usd_path, dofbot_usd_path): # Duplicate dofbot.usd file omni.client.copy(asset_usd_path, dofbot_usd_path) def create_dofbot_mesh(asset_usd_path, dofbot_mesh_usd_path): # Create dofbot_mesh.usd file omni.client.copy(asset_usd_path, dofbot_mesh_usd_path) omni.usd.get_context().open_stage(dofbot_mesh_usd_path) stage = omni.usd.get_context().get_stage() edits = Sdf.BatchNamespaceEdit() # Reparent joints in link5 for d in ['Left', 'Right']: # Reparent finger 03 joint new_parent_path = f'/arm/link5/Finger_{d}_03' old_parent_path = f'{new_parent_path}/Finger_{d}_03' joint_path = f'{old_parent_path}/Finger_{d}_03_RevoluteJoint' edits.Add(Sdf.NamespaceEdit.Reparent(joint_path, new_parent_path, 0)) # Reparent finger 02 joint new_parent_path = f'/arm/link5/Finger_{d}_02' old_parent_path = f'{new_parent_path}/Finger_{d}_02' joint_path = f'{old_parent_path}/Finger_{d}_02_RevoluteJoint' edits.Add(Sdf.NamespaceEdit.Reparent(joint_path, new_parent_path, 0)) # Create parent Xforms # Joint 1 & 2 & 3 reparent_tasks = [ # base_link ['/arm/base_link/visuals', 'visuals_xform'], ['/arm/base_link/PCB_01', 'visuals_xform'], ['/arm/base_link/Base01_01', 'visuals_xform'], ['/arm/base_link/Antennas_01', 'visuals_xform'], ['/arm/base_link/collisions', 'collisions_xform'], # link1 ['/arm/link1/visuals', 'visuals_xform'], ['/arm/link1/collisions', 'collisions_xform'], # link2 ['/arm/link2/visuals', 'visuals_xform'], ['/arm/link2/collisions', 'collisions_xform'], # link3 ['/arm/link3/visuals', 'visuals_xform'], ['/arm/link3/collisions', 'collisions_xform'], # link4 ['/arm/link4/Wrist_Lift', 'geoms_xform'], ['/arm/link4/Camera', 'geoms_xform'], # link5 ['/arm/link5/Wrist_Twist/Wrist_Twist', 'geoms_xform'], ['/arm/link5/Finger_Left_01/Finger_Left_01', 'geoms_xform'], ['/arm/link5/Finger_Right_01/Finger_Right_01', 'geoms_xform'], ['/arm/link5/Finger_Left_03/Finger_Left_03', 'geoms_xform'], ['/arm/link5/Finger_Right_03/Finger_Right_03', 'geoms_xform'], ['/arm/link5/Finger_Left_02/Finger_Left_02', 'geoms_xform'], ['/arm/link5/Finger_Right_02/Finger_Right_02', 'geoms_xform'], ] # [prim_path, parent_xform_name] for task in reparent_tasks: prim_path, parent_xform_name = task old_parent_path = '/'.join(prim_path.split('/')[:-1]) new_parent_path = f'{old_parent_path}/{parent_xform_name}' UsdGeom.Xform.Define(stage, new_parent_path) edits.Add(Sdf.NamespaceEdit.Reparent(prim_path, new_parent_path, -1)) # Delete redundant materials edits.Add(Sdf.NamespaceEdit.Remove('/arm/link5/Looks')) stage.GetRootLayer().Apply(edits) # Fix link5 joints for d in ['Left', 'Right']: # finger 01 revolute joints joint_path = f'/arm/link5/Finger_{d}_01/Finger_{d}_01_RevoluteJoint' joint = UsdPhysics.Joint.Get(stage, joint_path) joint.GetBody1Rel().SetTargets(['/arm/link5/Wrist_Twist/geoms_xform/Wrist_Twist']) # finger 03 revolute joints joint_path = f'/arm/link5/Finger_{d}_03/Finger_{d}_03_RevoluteJoint' joint = UsdPhysics.Joint.Get(stage, joint_path) joint.GetBody0Rel().SetTargets([f'/arm/link5/Finger_{d}_03']) joint.GetBody1Rel().SetTargets([f'/arm/link5/Finger_{d}_01/geoms_xform/Finger_{d}_01']) # finger 02 spherical joints joint_path = f'/arm/link5/Finger_{d}_02/Finger_{d}_02_SphericalJoint' joint = UsdPhysics.Joint.Get(stage, joint_path) joint.GetBody0Rel().SetTargets([f'/arm/link5/Finger_{d}_03/geoms_xform/Finger_{d}_03']) joint.GetBody1Rel().SetTargets([f'/arm/link5/Finger_{d}_02/geoms_xform/Finger_{d}_02']) # finger 02 revolute joints joint_path = f'/arm/link5/Finger_{d}_02/Finger_{d}_02_RevoluteJoint' joint = UsdPhysics.Joint.Get(stage, joint_path) joint.GetBody0Rel().SetTargets([f'/arm/link5/Finger_{d}_02/geoms_xform/Finger_{d}_02']) joint.GetBody1Rel().SetTargets(['/arm/link5/Wrist_Twist/geoms_xform/Wrist_Twist']) for prim in stage.Traverse(): if prim.GetTypeName() == 'Xform': # Copy Looks folder into visuals_xform and geoms_xform path = str(prim.GetPath()) if path.endswith('visuals_xform') or path.endswith('geoms_xform'): omni.usd.duplicate_prim(stage, '/arm/Looks', f'{path}/Looks') ref = stage.GetPrimAtPath(f'{path}/Looks').GetReferences() ref.ClearReferences() ref.AddReference('./dofbot_materials.usd') pass elif prim.GetTypeName() == 'GeomSubset': # Bind GeomSubset to local materials path = str(prim.GetPath()) parent_xform_path = path.split('/') while parent_xform_path[-1] != 'visuals_xform' and parent_xform_path[-1] != 'geoms_xform': parent_xform_path.pop() parent_xform_path = '/'.join(parent_xform_path) name = path.split('/')[-1] material = UsdShade.Material.Get(stage, f'{parent_xform_path}/Looks/{name}') UsdShade.MaterialBindingAPI(prim).Bind(material) # , UsdShade.Tokens.strongerThanDescendants) edits = Sdf.BatchNamespaceEdit() edits.Add(Sdf.NamespaceEdit.Remove('/arm/Looks')) stage.GetRootLayer().Apply(edits) # Save to file omni.usd.get_context().save_stage() def create_dofbot_materials(asset_usd_path, dofbot_materials_usd_path): # Create dofbot_materials.usd file omni.client.copy(asset_usd_path, dofbot_materials_usd_path) omni.usd.get_context().open_stage(dofbot_materials_usd_path) stage = omni.usd.get_context().get_stage() edits = Sdf.BatchNamespaceEdit() # Extract Looks folder edits.Add(Sdf.NamespaceEdit.Reparent('/arm/Looks', '/', 0)) # Remove everything else edits.Add(Sdf.NamespaceEdit.Remove('/World')) edits.Add(Sdf.NamespaceEdit.Remove('/arm')) # Apply & save to file stage.GetRootLayer().Apply(edits) prim = stage.GetPrimAtPath('/Looks') stage.SetDefaultPrim(prim) omni.usd.get_context().save_stage() def create_dofbot_instanceable(dofbot_mesh_usd_path, dofbot_instanceable_usd_path): omni.client.copy(dofbot_mesh_usd_path, dofbot_instanceable_usd_path) omni.usd.get_context().open_stage(dofbot_instanceable_usd_path) stage = omni.usd.get_context().get_stage() # Set up references and instanceables for prim in stage.Traverse(): if prim.GetTypeName() != 'Xform': continue # Add reference to visuals_xform, collisions_xform, geoms_xform, and make them instanceable path = str(prim.GetPath()) if path.endswith('visuals_xform') or path.endswith('collisions_xform') or path.endswith('geoms_xform'): ref = prim.GetReferences() ref.ClearReferences() ref.AddReference('./dofbot_mesh.usd', path) prim.SetInstanceable(True) # Save to file omni.usd.get_context().save_stage() def create_block_indicator(): for suffix in ['', '_instanceable']: asset_usd_path = f'omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Props/Blocks/block{suffix}.usd' block_usd_path = f'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Props/Blocks/block{suffix}.usd' omni.client.copy(asset_usd_path, block_usd_path) omni.usd.get_context().open_stage(block_usd_path) stage = omni.usd.get_context().get_stage() edits = Sdf.BatchNamespaceEdit() edits.Add(Sdf.NamespaceEdit.Remove('/object/object/collisions')) stage.GetRootLayer().Apply(edits) omni.usd.get_context().save_stage() if __name__ == '__main__': asset_usd_path = 'omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot.usd' dofbot_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot.usd' dofbot_materials_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot_materials.usd' dofbot_mesh_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot_mesh.usd' dofbot_instanceable_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot_instanceable.usd' create_dofbot(asset_usd_path, dofbot_usd_path) create_dofbot_materials(asset_usd_path, dofbot_materials_usd_path) create_dofbot_mesh(asset_usd_path, dofbot_mesh_usd_path) create_dofbot_instanceable(dofbot_mesh_usd_path, dofbot_instanceable_usd_path) create_block_indicator() print("Done!")
10,636
Python
49.174528
133
0.668578
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/utils/usd_utils/create_instanceable_dofbot_from_urdf.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Ref: https://docs.omniverse.nvidia.com/isaacsim/latest/advanced_tutorials/tutorial_advanced_import_urdf.html#importing-urdf-using-python import os import omni.kit.commands import omni.usd from omni.importer.urdf import _urdf from omni.isaac.core.utils.extensions import get_extension_path_from_name from pxr import Sdf, UsdGeom def create_dofbot_from_urdf(urdf_path, usd_path, mesh_usd_path, instanceable_usd_path): # Set the settings in the import config import_config = _urdf.ImportConfig() import_config.merge_fixed_joints = False import_config.convex_decomp = False import_config.import_inertia_tensor = False import_config.fix_base = True import_config.make_default_prim = True import_config.self_collision = False import_config.create_physics_scene = True # The two values below follows the Dofbot USD file provided by NVIDIA # Joint 5 should be damping = 10, stiffness = 1000, but we ignore it for now import_config.default_drive_strength = 1048.0 import_config.default_position_drive_damping = 53.0 import_config.default_drive_type = _urdf.UrdfJointTargetType.JOINT_DRIVE_POSITION import_config.distance_scale = 1 import_config.density = 0.0 # Finally import the robot & save it as USD result, prim_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config, dest_path=usd_path, ) import_config.make_instanceable=True import_config.instanceable_usd_path=mesh_usd_path # Finally import the robot & save it as instanceable USD result, prim_path = omni.kit.commands.execute( "URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config, dest_path=instanceable_usd_path, ) def create_block_indicator(): for suffix in ['', '_instanceable']: asset_usd_path = f'omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Props/Blocks/block{suffix}.usd' block_usd_path = f'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Props/Blocks/block{suffix}.usd' omni.client.copy(asset_usd_path, block_usd_path) omni.usd.get_context().open_stage(block_usd_path) stage = omni.usd.get_context().get_stage() edits = Sdf.BatchNamespaceEdit() edits.Add(Sdf.NamespaceEdit.Remove('/object/object/collisions')) stage.GetRootLayer().Apply(edits) omni.usd.get_context().save_stage() if __name__ == '__main__': dofbot_urdf_path = f'{os.path.expanduser("~")}/OmniIsaacGymEnvs-DofbotReacher/thirdparty/dofbot_info/urdf/dofbot.urdf' dofbot_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot_urdf.usd' dofbot_mesh_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot_urdf_instanceable_meshes.usd' dofbot_instanceable_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2023.1.0/Isaac/Robots/Dofbot/dofbot_urdf_instanceable.usd' create_dofbot_from_urdf(dofbot_urdf_path, dofbot_usd_path, dofbot_mesh_usd_path, dofbot_instanceable_usd_path) create_block_indicator() print("Done!")
4,749
Python
51.197802
138
0.744999
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/balance_bot.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omniisaacgymenvs.tasks.utils.usd_utils import set_drive class BalanceBot(Robot): def __init__( self, prim_path: str, name: Optional[str] = "BalanceBot", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/BalanceBot/balance_bot.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=orientation, articulation_controller=None, ) for j in range(3): # set leg joint properties joint_path = f"joints/lower_leg{j}" set_drive(f"{self.prim_path}/{joint_path}", "angular", "position", 0, 400, 40, 1000)
2,996
Python
40.054794
96
0.697597
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/allegro_hand.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import carb import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from pxr import Gf, PhysxSchema, Sdf, Usd, UsdGeom, UsdPhysics class AllegroHand(Robot): def __init__( self, prim_path: str, name: Optional[str] = "allegro_hand", usd_path: Optional[str] = None, translation: Optional[torch.tensor] = None, orientation: Optional[torch.tensor] = None, ) -> None: self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/AllegroHand/allegro_hand_instanceable.usd" self._position = torch.tensor([0.0, 0.0, 0.5]) if translation is None else translation self._orientation = ( torch.tensor([0.257551, 0.283045, 0.683330, -0.621782]) if orientation is None else orientation ) add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=self._position, orientation=self._orientation, articulation_controller=None, ) def set_allegro_hand_properties(self, stage, allegro_hand_prim): for link_prim in allegro_hand_prim.GetChildren(): if not ( link_prim == stage.GetPrimAtPath("/allegro/Looks") or link_prim == stage.GetPrimAtPath("/allegro/root_joint") ): rb = PhysxSchema.PhysxRigidBodyAPI.Apply(link_prim) rb.GetDisableGravityAttr().Set(True) rb.GetRetainAccelerationsAttr().Set(False) rb.GetEnableGyroscopicForcesAttr().Set(False) rb.GetAngularDampingAttr().Set(0.01) rb.GetMaxLinearVelocityAttr().Set(1000) rb.GetMaxAngularVelocityAttr().Set(64 / np.pi * 180) rb.GetMaxDepenetrationVelocityAttr().Set(1000) rb.GetMaxContactImpulseAttr().Set(1e32) def set_motor_control_mode(self, stage, allegro_hand_path): prim = stage.GetPrimAtPath(allegro_hand_path) self._set_joint_properties(stage, prim) def _set_joint_properties(self, stage, prim): if prim.HasAPI(UsdPhysics.DriveAPI): drive = UsdPhysics.DriveAPI.Apply(prim, "angular") drive.GetStiffnessAttr().Set(3 * np.pi / 180) drive.GetDampingAttr().Set(0.1 * np.pi / 180) drive.GetMaxForceAttr().Set(0.5) revolute_joint = PhysxSchema.PhysxJointAPI.Get(stage, prim.GetPath()) revolute_joint.GetJointFrictionAttr().Set(0.01) for child_prim in prim.GetChildren(): self._set_joint_properties(stage, child_prim)
4,627
Python
43.5
107
0.673655
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/shadow_hand.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import carb import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from omniisaacgymenvs.tasks.utils.usd_utils import set_drive from pxr import Gf, PhysxSchema, Sdf, Usd, UsdGeom, UsdPhysics class ShadowHand(Robot): def __init__( self, prim_path: str, name: Optional[str] = "shadow_hand", usd_path: Optional[str] = None, translation: Optional[torch.tensor] = None, orientation: Optional[torch.tensor] = None, ) -> None: self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/ShadowHand/shadow_hand_instanceable.usd" self._position = torch.tensor([0.0, 0.0, 0.5]) if translation is None else translation self._orientation = torch.tensor([1.0, 0.0, 0.0, 0.0]) if orientation is None else orientation add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=self._position, orientation=self._orientation, articulation_controller=None, ) def set_shadow_hand_properties(self, stage, shadow_hand_prim): for link_prim in shadow_hand_prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.GetDisableGravityAttr().Set(True) rb.GetRetainAccelerationsAttr().Set(True) def set_motor_control_mode(self, stage, shadow_hand_path): joints_config = { "robot0_WRJ1": {"stiffness": 5, "damping": 0.5, "max_force": 4.785}, "robot0_WRJ0": {"stiffness": 5, "damping": 0.5, "max_force": 2.175}, "robot0_FFJ3": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_FFJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_FFJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.7245}, "robot0_MFJ3": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_MFJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_MFJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.7245}, "robot0_RFJ3": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_RFJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_RFJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.7245}, "robot0_LFJ4": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_LFJ3": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_LFJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.9}, "robot0_LFJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.7245}, "robot0_THJ4": {"stiffness": 1, "damping": 0.1, "max_force": 2.3722}, "robot0_THJ3": {"stiffness": 1, "damping": 0.1, "max_force": 1.45}, "robot0_THJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.99}, "robot0_THJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.99}, "robot0_THJ0": {"stiffness": 1, "damping": 0.1, "max_force": 0.81}, } for joint_name, config in joints_config.items(): set_drive( f"{self.prim_path}/joints/{joint_name}", "angular", "position", 0.0, config["stiffness"] * np.pi / 180, config["damping"] * np.pi / 180, config["max_force"], )
5,517
Python
46.982608
103
0.623527
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/crazyflie.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import carb import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Crazyflie(Robot): def __init__( self, prim_path: str, name: Optional[str] = "crazyflie", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, scale: Optional[np.array] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/Crazyflie/cf2x.usd" add_reference_to_stage(self._usd_path, prim_path) scale = torch.tensor([5, 5, 5]) super().__init__(prim_path=prim_path, name=name, translation=translation, orientation=orientation, scale=scale)
2,720
Python
40.861538
119
0.718015
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/cabinet.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from typing import Optional import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Cabinet(Robot): def __init__( self, prim_path: str, name: Optional[str] = "cabinet", usd_path: Optional[str] = None, translation: Optional[torch.tensor] = None, orientation: Optional[torch.tensor] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Props/Sektion_Cabinet/sektion_cabinet_instanceable.usd" add_reference_to_stage(self._usd_path, prim_path) self._position = torch.tensor([0.0, 0.0, 0.4]) if translation is None else translation self._orientation = torch.tensor([0.1, 0.0, 0.0, 0.0]) if orientation is None else orientation super().__init__( prim_path=prim_path, name=name, translation=self._position, orientation=self._orientation, articulation_controller=None, )
1,819
Python
35.399999
111
0.660803
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/humanoid.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import carb import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Humanoid(Robot): def __init__( self, prim_path: str, name: Optional[str] = "Humanoid", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/Humanoid/humanoid_instanceable.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=orientation, articulation_controller=None, )
2,716
Python
38.955882
98
0.71134
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/franka.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import math from typing import Optional import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import add_reference_to_stage from omniisaacgymenvs.tasks.utils.usd_utils import set_drive from pxr import PhysxSchema class Franka(Robot): def __init__( self, prim_path: str, name: Optional[str] = "franka", usd_path: Optional[str] = None, translation: Optional[torch.tensor] = None, orientation: Optional[torch.tensor] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name self._position = torch.tensor([1.0, 0.0, 0.0]) if translation is None else translation self._orientation = torch.tensor([0.0, 0.0, 0.0, 1.0]) if orientation is None else orientation if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/Franka/franka_instanceable.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=self._position, orientation=self._orientation, articulation_controller=None, ) dof_paths = [ "panda_link0/panda_joint1", "panda_link1/panda_joint2", "panda_link2/panda_joint3", "panda_link3/panda_joint4", "panda_link4/panda_joint5", "panda_link5/panda_joint6", "panda_link6/panda_joint7", "panda_hand/panda_finger_joint1", "panda_hand/panda_finger_joint2", ] drive_type = ["angular"] * 7 + ["linear"] * 2 default_dof_pos = [math.degrees(x) for x in [0.0, -1.0, 0.0, -2.2, 0.0, 2.4, 0.8]] + [0.02, 0.02] stiffness = [400 * np.pi / 180] * 7 + [10000] * 2 damping = [80 * np.pi / 180] * 7 + [100] * 2 max_force = [87, 87, 87, 87, 12, 12, 12, 200, 200] max_velocity = [math.degrees(x) for x in [2.175, 2.175, 2.175, 2.175, 2.61, 2.61, 2.61]] + [0.2, 0.2] for i, dof in enumerate(dof_paths): set_drive( prim_path=f"{self.prim_path}/{dof}", drive_type=drive_type[i], target_type="position", target_value=default_dof_pos[i], stiffness=stiffness[i], damping=damping[i], max_force=max_force[i], ) PhysxSchema.PhysxJointAPI(get_prim_at_path(f"{self.prim_path}/{dof}")).CreateMaxJointVelocityAttr().Set( max_velocity[i] ) def set_franka_properties(self, stage, prim): for link_prim in prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.GetDisableGravityAttr().Set(True)
3,653
Python
37.0625
116
0.599781
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/ant.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import carb import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Ant(Robot): def __init__( self, prim_path: str, name: Optional[str] = "Ant", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/Ant/ant_instanceable.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=orientation, articulation_controller=None, )
2,696
Python
38.661764
88
0.709199
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/cartpole.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import carb import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Cartpole(Robot): def __init__( self, prim_path: str, name: Optional[str] = "Cartpole", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/Cartpole/cartpole.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=orientation, articulation_controller=None, )
2,703
Python
38.764705
85
0.710322
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/factory_franka.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # import math from typing import Optional import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import add_reference_to_stage from omniisaacgymenvs.tasks.utils.usd_utils import set_drive from pxr import PhysxSchema class FactoryFranka(Robot): def __init__( self, prim_path: str, name: Optional[str] = "franka", usd_path: Optional[str] = None, translation: Optional[torch.tensor] = None, orientation: Optional[torch.tensor] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name self._position = torch.tensor([1.0, 0.0, 0.0]) if translation is None else translation self._orientation = torch.tensor([0.0, 0.0, 0.0, 1.0]) if orientation is None else orientation if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/FactoryFranka/factory_franka.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=self._position, orientation=self._orientation, articulation_controller=None, ) dof_paths = [ "panda_link0/panda_joint1", "panda_link1/panda_joint2", "panda_link2/panda_joint3", "panda_link3/panda_joint4", "panda_link4/panda_joint5", "panda_link5/panda_joint6", "panda_link6/panda_joint7", "panda_hand/panda_finger_joint1", "panda_hand/panda_finger_joint2", ] drive_type = ["angular"] * 7 + ["linear"] * 2 default_dof_pos = [math.degrees(x) for x in [0.0, -1.0, 0.0, -2.2, 0.0, 2.4, 0.8]] + [0.02, 0.02] stiffness = [40 * np.pi / 180] * 7 + [500] * 2 damping = [80 * np.pi / 180] * 7 + [20] * 2 max_force = [87, 87, 87, 87, 12, 12, 12, 200, 200] max_velocity = [math.degrees(x) for x in [2.175, 2.175, 2.175, 2.175, 2.61, 2.61, 2.61]] + [0.2, 0.2] for i, dof in enumerate(dof_paths): set_drive( prim_path=f"{self.prim_path}/{dof}", drive_type=drive_type[i], target_type="position", target_value=default_dof_pos[i], stiffness=stiffness[i], damping=damping[i], max_force=max_force[i], ) PhysxSchema.PhysxJointAPI(get_prim_at_path(f"{self.prim_path}/{dof}")).CreateMaxJointVelocityAttr().Set( max_velocity[i] )
3,356
Python
36.719101
116
0.596544
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/quadcopter.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Quadcopter(Robot): def __init__( self, prim_path: str, name: Optional[str] = "Quadcopter", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = assets_root_path + "/Isaac/Robots/Quadcopter/quadcopter.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, position=translation, orientation=orientation, articulation_controller=None, )
2,719
Python
39.597014
89
0.706878
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/dofbot.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Ref: /omniisaacgymenvs/robots/articulations/shadow_hand.py from typing import Optional import carb import numpy as np import torch from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Dofbot(Robot): def __init__( self, prim_path: str, name: Optional[str] = "Dofbot", usd_path: Optional[str] = None, translation: Optional[torch.tensor] = None, orientation: Optional[torch.tensor] = None, ) -> None: self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._position = torch.tensor([0.0, 0.0, 0.0]) if translation is None else translation self._orientation = torch.tensor([1.0, 0.0, 0.0, 0.0]) if orientation is None else orientation add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=self._position, orientation=self._orientation, articulation_controller=None, )
2,926
Python
39.09589
102
0.710526
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/ingenuity.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage class Ingenuity(Robot): def __init__( self, prim_path: str, name: Optional[str] = "ingenuity", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, scale: Optional[np.array] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find Isaac Sim assets folder") self._usd_path = ( assets_root_path + "/Isaac/Robots/Ingenuity/ingenuity.usd" ) add_reference_to_stage(self._usd_path, prim_path) scale = torch.tensor([0.01, 0.01, 0.01]) super().__init__(prim_path=prim_path, name=name, translation=translation, orientation=orientation, scale=scale)
2,802
Python
40.83582
119
0.711991
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/anymal.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.robots.robot import Robot from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.stage import add_reference_to_stage from pxr import PhysxSchema class Anymal(Robot): def __init__( self, prim_path: str, name: Optional[str] = "Anymal", usd_path: Optional[str] = None, translation: Optional[np.ndarray] = None, orientation: Optional[np.ndarray] = None, ) -> None: """[summary]""" self._usd_path = usd_path self._name = name if self._usd_path is None: assets_root_path = get_assets_root_path() if assets_root_path is None: carb.log_error("Could not find nucleus server with /Isaac folder") self._usd_path = assets_root_path + "/Isaac/Robots/ANYbotics/anymal_instanceable.usd" add_reference_to_stage(self._usd_path, prim_path) super().__init__( prim_path=prim_path, name=name, translation=translation, orientation=orientation, articulation_controller=None, ) self._dof_names = [ "LF_HAA", "LH_HAA", "RF_HAA", "RH_HAA", "LF_HFE", "LH_HFE", "RF_HFE", "RH_HFE", "LF_KFE", "LH_KFE", "RF_KFE", "RH_KFE", ] @property def dof_names(self): return self._dof_names def set_anymal_properties(self, stage, prim): for link_prim in prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.GetDisableGravityAttr().Set(False) rb.GetRetainAccelerationsAttr().Set(False) rb.GetLinearDampingAttr().Set(0.0) rb.GetMaxLinearVelocityAttr().Set(1000.0) rb.GetAngularDampingAttr().Set(0.0) rb.GetMaxAngularVelocityAttr().Set(64 / np.pi * 180) def prepare_contacts(self, stage, prim): for link_prim in prim.GetChildren(): if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI): if "_HIP" not in str(link_prim.GetPrimPath()): rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath()) rb.CreateSleepThresholdAttr().Set(0) cr_api = PhysxSchema.PhysxContactReportAPI.Apply(link_prim) cr_api.CreateThresholdAttr().Set(0)
4,273
Python
38.943925
97
0.648022
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/views/cabinet_view.py
from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class CabinetView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "CabinetView", ) -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._drawers = RigidPrimView( prim_paths_expr="/World/envs/.*/cabinet/drawer_top", name="drawers_view", reset_xform_properties=False )
586
Python
28.349999
114
0.653584
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/views/shadow_hand_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class ShadowHandView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "ShadowHandView", ) -> None: super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._fingers = RigidPrimView( prim_paths_expr="/World/envs/.*/shadow_hand/robot0.*distal", name="finger_view", reset_xform_properties=False, ) @property def actuated_dof_indices(self): return self._actuated_dof_indices def initialize(self, physics_sim_view): super().initialize(physics_sim_view) self.actuated_joint_names = [ "robot0_WRJ1", "robot0_WRJ0", "robot0_FFJ3", "robot0_FFJ2", "robot0_FFJ1", "robot0_MFJ3", "robot0_MFJ2", "robot0_MFJ1", "robot0_RFJ3", "robot0_RFJ2", "robot0_RFJ1", "robot0_LFJ4", "robot0_LFJ3", "robot0_LFJ2", "robot0_LFJ1", "robot0_THJ4", "robot0_THJ3", "robot0_THJ2", "robot0_THJ1", "robot0_THJ0", ] self._actuated_dof_indices = list() for joint_name in self.actuated_joint_names: self._actuated_dof_indices.append(self.get_dof_index(joint_name)) self._actuated_dof_indices.sort() limit_stiffness = torch.tensor([30.0] * self.num_fixed_tendons, device=self._device) damping = torch.tensor([0.1] * self.num_fixed_tendons, device=self._device) self.set_fixed_tendon_properties(dampings=damping, limit_stiffnesses=limit_stiffness) fingertips = ["robot0_ffdistal", "robot0_mfdistal", "robot0_rfdistal", "robot0_lfdistal", "robot0_thdistal"] self._sensor_indices = torch.tensor([self._body_indices[j] for j in fingertips], device=self._device, dtype=torch.long)
3,681
Python
38.591397
127
0.669383
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/views/franka_view.py
from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class FrankaView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "FrankaView", ) -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._hands = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_link7", name="hands_view", reset_xform_properties=False ) self._lfingers = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_leftfinger", name="lfingers_view", reset_xform_properties=False ) self._rfingers = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_rightfinger", name="rfingers_view", reset_xform_properties=False, ) def initialize(self, physics_sim_view): super().initialize(physics_sim_view) self._gripper_indices = [self.get_dof_index("panda_finger_joint1"), self.get_dof_index("panda_finger_joint2")] @property def gripper_indices(self): return self._gripper_indices
1,241
Python
32.567567
120
0.637389
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/views/dofbot_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Ref: /omniisaacgymenvs/robots/articulations/views/shadow_hand_view.py from typing import Optional import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class DofbotView(ArticulationView): def __init__( self, prim_paths_expr: str, end_effector_prim_paths_expr: str, name: Optional[str] = "DofbotView", ) -> None: super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) # Use RigidPrimView instead of XFormPrimView, since the XForm is not updated when running self._end_effectors = RigidPrimView( prim_paths_expr=end_effector_prim_paths_expr, name="end_effector_view", reset_xform_properties=False ) def initialize(self, physics_sim_view): super().initialize(physics_sim_view)
2,503
Python
42.172413
98
0.744307
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/views/factory_franka_view.py
from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class FactoryFrankaView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "FactoryFrankaView", ) -> None: """Initialize articulation view.""" super().__init__( prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False ) self._hands = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_hand", name="hands_view", reset_xform_properties=False, ) self._lfingers = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_leftfinger", name="lfingers_view", reset_xform_properties=False, track_contact_forces=True, ) self._rfingers = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_rightfinger", name="rfingers_view", reset_xform_properties=False, track_contact_forces=True, ) self._fingertip_centered = RigidPrimView( prim_paths_expr="/World/envs/.*/franka/panda_fingertip_centered", name="fingertips_view", reset_xform_properties=False, ) def initialize(self, physics_sim_view): """Initialize physics simulation view.""" super().initialize(physics_sim_view)
1,488
Python
31.369565
84
0.598118
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/views/anymal_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class AnymalView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "AnymalView", track_contact_forces=False, prepare_contact_sensors=False, ) -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._knees = RigidPrimView( prim_paths_expr="/World/envs/.*/anymal/.*_THIGH", name="knees_view", reset_xform_properties=False, track_contact_forces=track_contact_forces, prepare_contact_sensors=prepare_contact_sensors, ) self._base = RigidPrimView( prim_paths_expr="/World/envs/.*/anymal/base", name="base_view", reset_xform_properties=False, track_contact_forces=track_contact_forces, prepare_contact_sensors=prepare_contact_sensors, ) def get_knee_transforms(self): return self._knees.get_world_poses() def is_knee_below_threshold(self, threshold, ground_heights=None): knee_pos, _ = self._knees.get_world_poses() knee_heights = knee_pos.view((-1, 4, 3))[:, :, 2] if ground_heights is not None: knee_heights -= ground_heights return ( (knee_heights[:, 0] < threshold) | (knee_heights[:, 1] < threshold) | (knee_heights[:, 2] < threshold) | (knee_heights[:, 3] < threshold) ) def is_base_below_threshold(self, threshold, ground_heights): base_pos, _ = self.get_world_poses() base_heights = base_pos[:, 2] base_heights -= ground_heights return base_heights[:] < threshold
3,433
Python
41.395061
98
0.678415
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/views/quadcopter_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class QuadcopterView(ArticulationView): def __init__(self, prim_paths_expr: str, name: Optional[str] = "QuadcopterView") -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self.rotors = RigidPrimView( prim_paths_expr=f"/World/envs/.*/Quadcopter/rotor[0-3]", name="rotors_view", reset_xform_properties=False )
2,121
Python
47.227272
117
0.759547
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/views/allegro_hand_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional import torch from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class AllegroHandView(ArticulationView): def __init__( self, prim_paths_expr: str, name: Optional[str] = "AllegroHandView", ) -> None: super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self._actuated_dof_indices = list() @property def actuated_dof_indices(self): return self._actuated_dof_indices def initialize(self, physics_sim_view): super().initialize(physics_sim_view) self._actuated_dof_indices = [i for i in range(self.num_dof)]
2,275
Python
41.148147
98
0.74989
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/views/crazyflie_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class CrazyflieView(ArticulationView): def __init__(self, prim_paths_expr: str, name: Optional[str] = "CrazyflieView") -> None: """[summary]""" super().__init__( prim_paths_expr=prim_paths_expr, name=name, ) self.physics_rotors = [ RigidPrimView(prim_paths_expr=f"/World/envs/.*/Crazyflie/m{i}_prop", name=f"m{i}_prop_view") for i in range(1, 5) ]
2,140
Python
42.693877
104
0.737383
j3soon/OmniIsaacGymEnvs-DofbotReacher/omniisaacgymenvs/robots/articulations/views/ingenuity_view.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from typing import Optional from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.prims import RigidPrimView class IngenuityView(ArticulationView): def __init__(self, prim_paths_expr: str, name: Optional[str] = "IngenuityView") -> None: """[summary]""" super().__init__(prim_paths_expr=prim_paths_expr, name=name, reset_xform_properties=False) self.physics_rotors = [ RigidPrimView( prim_paths_expr=f"/World/envs/.*/Ingenuity/rotor_physics_{i}", name=f"physics_rotor_{i}_view", reset_xform_properties=False, ) for i in range(2) ] self.visual_rotors = [ RigidPrimView( prim_paths_expr=f"/World/envs/.*/Ingenuity/rotor_visual_{i}", name=f"visual_rotor_{i}_view", reset_xform_properties=False, ) for i in range(2) ]
2,524
Python
42.534482
98
0.70206
j3soon/OmniIsaacGymEnvs-DofbotReacher/docs/domain_randomization.md
Domain Randomization ==================== Overview -------- We sometimes need our reinforcement learning agents to be robust to different physics than they are trained with, such as when attempting a sim2real policy transfer. Using domain randomization (DR), we repeatedly randomize the simulation dynamics during training in order to learn a good policy under a wide range of physical parameters. OmniverseIsaacGymEnvs supports "on the fly" domain randomization, allowing dynamics to be changed without requiring reloading of assets. This allows us to efficiently apply domain randomizations without common overheads like re-parsing asset files. The OmniverseIsaacGymEnvs DR framework utilizes the `omni.replicator.isaac` extension in its backend to perform "on the fly" randomization. Users can add domain randomization by either directly using methods provided in `omni.replicator.isaac` in python, or specifying DR settings in the task configuration `yaml` file. The following sections will focus on setting up DR using the `yaml` file interface. For more detailed documentations regarding methods provided in the `omni.replicator.isaac` extension, please visit [here](https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.replicator.isaac/docs/index.html). Domain Randomization Options ------------------------------- We will first explain what can be randomized in the scene and the sampling distributions. There are five main parameter groups that support randomization. They are: - `observations`: Add noise directly to the agent observations - `actions`: Add noise directly to the agent actions - `simulation`: Add noise to physical parameters defined for the entire scene, such as `gravity` - `rigid_prim_views`: Add noise to properties belonging to rigid prims, such as `material_properties`. - `articulation_views`: Add noise to properties belonging to articulations, such as `stiffness` of joints. For each parameter you wish to randomize, you can specify two ways that determine when the randomization is applied: - `on_reset`: Adds correlated noise to a parameter of an environment when that environment gets reset. This correlated noise will remain with an environment until that environemnt gets reset again, which will then set a new correlated noise. To trigger `on_reset`, the indices for the environemnts that need to be reset must be passed in to `omni.replicator.isaac.physics_view.step_randomization(reset_inds)`. - `on_interval`: Adds uncorrelated noise to a parameter at a frequency specified by `frequency_interval`. If a parameter also has `on_reset` randomization, the `on_interval` noise is combined with the noise applied at `on_reset`. - `on_startup`: Applies randomization once prior to the start of the simulation. Only available to rigid prim scale, mass, density and articulation scale parameters. For `on_reset`, `on_interval`, and `on_startup`, you can specify the following settings: - `distribution`: The distribution to generate a sample `x` from. The available distributions are listed below. Note that parameters `a` and `b` are defined by the `distribution_parameters` setting. - `uniform`: `x ~ unif(a, b)` - `loguniform`: `x ~ exp(unif(log(a), log(b)))` - `gaussian`: `x ~ normal(a, b)` - `distribution_parameters`: The parameters to the distribution. - For observations and actions, this setting is specified as a tuple `[a, b]` of real values. - For simulation and view parameters, this setting is specified as a nested tuple in the form of `[[a_1, a_2, ..., a_n], [[b_1, b_2, ..., b_n]]`, where the `n` is the dimension of the parameter (*i.e.* `n` is 3 for position). It can also be specified as a tuple in the form of `[a, b]`, which will be broadcasted to the correct dimensions. - For `uniform` and `loguniform` distributions, `a` and `b` are the lower and upper bounds. - For `gaussian`, `a` is the distribution mean and `b` is the variance. - `operation`: Defines how the generated sample `x` will be applied to the original simulation parameter. The options are `additive`, `scaling`, `direct`. - `additive`:, add the sample to the original value. - `scaling`: multiply the original value by the sample. - `direct`: directly sets the sample as the parameter value. - `frequency_interval`: Specifies the number of steps to apply randomization. - Only used with `on_interval`. - Steps of each environemnt are incremented with each `omni.replicator.isaac.physics_view.step_randomization(reset_inds)` call and reset if the environment index is in `reset_inds`. - `num_buckets`: Only used for `material_properties` randomization - Physx only allows 64000 unique physics materials in the scene at once. If more than 64000 materials are needed, increase `num_buckets` to allow materials to be shared between prims. YAML Interface -------------- Now that we know what options are available for domain randomization, let's put it all together in the YAML config. In your `omniverseisaacgymenvs/cfg/task` yaml file, you can specify your domain randomization parameters under the `domain_randomization` key. First, we turn on domain randomization by setting `randomize` to `True`: ```yaml domain_randomization: randomize: True randomization_params: ... ``` This can also be set as a command line argument at launch time with `task.domain_randomization.randomize=True`. Next, we will define our parameters under the `randomization_params` keys. Here you can see how we used the previous settings to define some randomization parameters for a ShadowHand cube manipulation task: ```yaml randomization_params: randomization_params: observations: on_reset: operation: "additive" distribution: "gaussian" distribution_parameters: [0, .0001] on_interval: frequency_interval: 1 operation: "additive" distribution: "gaussian" distribution_parameters: [0, .002] actions: on_reset: operation: "additive" distribution: "gaussian" distribution_parameters: [0, 0.015] on_interval: frequency_interval: 1 operation: "additive" distribution: "gaussian" distribution_parameters: [0., 0.05] simulation: gravity: on_reset: operation: "additive" distribution: "gaussian" distribution_parameters: [[0.0, 0.0, 0.0], [0.0, 0.0, 0.4]] rigid_prim_views: object_view: material_properties: on_reset: num_buckets: 250 operation: "scaling" distribution: "uniform" distribution_parameters: [[0.7, 1, 1], [1.3, 1, 1]] articulation_views: shadow_hand_view: stiffness: on_reset: operation: "scaling" distribution: "uniform" distribution_parameters: [0.75, 1.5] ``` Note how we structured `rigid_prim_views` and `articulation_views`. When creating a `RigidPrimView` or `ArticulationView` in the task python file, you have the option to pass in `name` as an argument. **To use domain randomization, the name of the `RigidPrimView` or `ArticulationView` must match the name provided in the randomization `yaml` file.** In the example above, `object_view` is the name of a `RigidPrimView` and `shadow_hand_view` is the name of the `ArticulationView`. The exact parameters that can be randomized are listed below: **simulation**: - gravity (dim=3): The gravity vector of the entire scene. **rigid\_prim\_views**: - position (dim=3): The position of the rigid prim. In meters. - orientation (dim=3): The orientation of the rigid prim, specified with euler angles. In radians. - linear_velocity (dim=3): The linear velocity of the rigid prim. In m/s. **CPU pipeline only** - angular_velocity (dim=3): The angular velocity of the rigid prim. In rad/s. **CPU pipeline only** - velocity (dim=6): The linear + angular velocity of the rigid prim. - force (dim=3): Apply a force to the rigid prim. In N. - mass (dim=1): Mass of the rigid prim. In kg. **CPU pipeline only during runtime**. - inertia (dim=3): The diagonal values of the inertia matrix. **CPU pipeline only** - material_properties (dim=3): Static friction, Dynamic friction, and Restitution. - contact_offset (dim=1): A small distance from the surface of the collision geometry at which contacts start being generated. - rest_offset (dim=1): A small distance from the surface of the collision geometry at which the effective contact with the shape takes place. - scale (dim=1): The scale of the rigid prim. `on_startup` only. - density (dim=1): Density of the rigid prim. `on_startup` only. **articulation\_views**: - position (dim=3): The position of the articulation root. In meters. - orientation (dim=3): The orientation of the articulation root, specified with euler angles. In radians. - linear_velocity (dim=3): The linear velocity of the articulation root. In m/s. **CPU pipeline only** - angular_velocity (dim=3): The angular velocity of the articulation root. In rad/s. **CPU pipeline only** - velocity (dim=6): The linear + angular velocity of the articulation root. - stiffness (dim=num_dof): The stiffness of the joints. - damping (dim=num_dof): The damping of the joints - joint_friction (dim=num_dof): The friction coefficient of the joints. - joint_positions (dim=num_dof): The joint positions. In radians or meters. - joint_velocities (dim=num_dof): The joint velocities. In rad/s or m/s. - lower_dof_limits (dim=num_dof): The lower limit of the joints. In radians or meters. - upper_dof_limits (dim=num_dof): The upper limit of the joints. In radians or meters. - max_efforts (dim=num_dof): The maximum force or torque that the joints can exert. In N or Nm. - joint_armatures (dim=num_dof): A value added to the diagonal of the joint-space inertia matrix. Physically, it corresponds to the rotating part of a motor - joint_max_velocities (dim=num_dof): The maximum velocity allowed on the joints. In rad/s or m/s. - joint_efforts (dim=num_dof): Applies a force or a torque on the joints. In N or Nm. - body_masses (dim=num_bodies): The mass of each body in the articulation. In kg. **CPU pipeline only** - body_inertias (dim=num_bodies×3): The diagonal values of the inertia matrix of each body. **CPU pipeline only** - material_properties (dim=num_bodies×3): The static friction, dynamic friction, and restitution of each body in the articulation, specified in the following order: [body_1_static_friciton, body_1_dynamic_friciton, body_1_restitution, body_1_static_friciton, body_2_dynamic_friciton, body_2_restitution, ... ] - tendon_stiffnesses (dim=num_tendons): The stiffness of the fixed tendons in the articulation. - tendon_dampings (dim=num_tendons): The damping of the fixed tendons in the articulation. - tendon_limit_stiffnesses (dim=num_tendons): The limit stiffness of the fixed tendons in the articulation. - tendon_lower_limits (dim=num_tendons): The lower limits of the fixed tendons in the articulation. - tendon_upper_limits (dim=num_tendons): The upper limits of the fixed tendons in the articulation. - tendon_rest_lengths (dim=num_tendons): The rest lengths of the fixed tendons in the articulation. - tendon_offsets (dim=num_tendons): The offsets of the fixed tendons in the articulation. - scale (dim=1): The scale of the articulation. `on_startup` only. Applying Domain Randomization ------------------------------ To parse the domain randomization configurations in the task `yaml` file and set up the DR pipeline, it is necessary to call `self._randomizer.set_up_domain_randomization(self)`, where `self._randomizer` is the `Randomizer` object created in RLTask's `__init__`. It is worth noting that the names of the views provided under `rigid_prim_views` or `articulation_views` in the task `yaml` file must match the names passed into `RigidPrimView` or `ArticulationView` objects in the python task file. In addition, all `RigidPrimView` and `ArticulationView` that would have domain randomizaiton applied must be added to the scene in the task's `set_up_scene()` via `scene.add()`. To trigger `on_startup` randomizations, call `self._randomizer.apply_on_startup_domain_randomization(self)` in `set_up_scene()` after all views are added to the scene. Note that `on_startup` randomizations are only availble to rigid prim scale, mass, density and articulation scale parameters since these parameters cannot be randomized after the simulation begins on GPU pipeline. Therefore, randomizations must be applied to these parameters in `set_up_scene()` prior to the start of the simulation. To trigger `on_reset` and `on_interval` randomizations, it is required to step the interal counter of the DR pipeline in `pre_physics_step()`: ```python if self._randomizer.randomize: omni.replicator.isaac.physics_view.step_randomization(reset_inds) ``` `reset_inds` is a list of indices of the environments that need to be reset. For those environments, it will trigger the randomizations defined with `on_reset`. All other environments will follow randomizations defined with `on_interval`. Randomization Scheduling ---------------------------- We provide methods to modify distribution parameters defined in the `yaml` file during training, which allows custom DR scheduling. There are three methods from the `Randomizer` class that are relevant to DR scheduling: - `get_initial_dr_distribution_parameters`: returns a numpy array of the initial parameters (as defined in the `yaml` file) of a specified distribution - `get_dr_distribution_parameters`: returns a numpy array of the current parameters of a specified distribution - `set_dr_distribution_parameters`: sets new parameters to a specified distribution Using the DR configuration example defined above, we can get the current parameters and set new parameters to gravity randomization and shadow hand joint stiffness randomization as follows: ```python current_gravity_dr_params = self._randomizer.get_dr_distribution_parameters( "simulation", "gravity", "on_reset", ) self._randomizer.set_dr_distribution_parameters( [[0.0, 0.0, 0.0], [0.0, 0.0, 0.5]], "simulation", "gravity", "on_reset", ) current_joint_stiffness_dr_params = self._randomizer.get_dr_distribution_parameters( "articulation_views", "shadow_hand_view", "stiffness", "on_reset", ) self._randomizer.set_dr_distribution_parameters( [0.7, 1.55], "articulation_views", "shadow_hand_view", "stiffness", "on_reset", ) ``` The following is an example of using these methods to perform linear scheduling of gaussian noise that is added to observations and actions in the above shadow hand example. The following method linearly adds more noise to observations and actions every epoch up until the `schedule_epoch`. This method can be added to the Task python class and be called in `pre_physics_step()`. ```python def apply_observations_actions_noise_linear_scheduling(self, schedule_epoch=100): current_epoch = self._env.sim_frame_count // self._cfg["task"]["env"]["controlFrequencyInv"] // self._cfg["train"]["params"]["config"]["horizon_length"] if current_epoch <= schedule_epoch: if (self._env.sim_frame_count // self._cfg["task"]["env"]["controlFrequencyInv"]) % self._cfg["train"]["params"]["config"]["horizon_length"] == 0: for distribution_path in [("observations", "on_reset"), ("observations", "on_interval"), ("actions", "on_reset"), ("actions", "on_interval")]: scheduled_params = self._randomizer.get_initial_dr_distribution_parameters(*distribution_path) scheduled_params[1] = (1/schedule_epoch) * current_epoch * scheduled_params[1] self._randomizer.set_dr_distribution_parameters(scheduled_params, *distribution_path) ```
16,889
Markdown
51.453416
156
0.68814
j3soon/OmniIsaacGymEnvs-DofbotReacher/docs/instanceable_assets.md
## A Note on Instanceable USD Assets The following section presents a method that modifies existing USD assets which allows Isaac Sim to load significantly more environments. This is currently an experimental method and has thus not been completely integrated into the framework. As a result, this section is reserved for power users who wish to maxmimize the performance of the Isaac Sim RL framework. ### Motivation One common issue in Isaac Sim that occurs when we try to increase the number of environments `numEnvs` is running out of RAM. This occurs because the Isaac Sim RL framework uses `omni.isaac.cloner` to duplicate environments. As a result, there are `numEnvs` number of identical copies of the visual and collision meshes in the scene, which consumes lots of memory. However, only one copy of the meshes are needed on stage since prims in all other environments could merely reference that one copy, thus reducing the amount of memory used for loading environments. To enable this functionality, USD assets need to be modified to be `instanceable`. ### Creating Instanceable Assets Assets can now be directly imported as Instanceable assets through the URDF and MJCF importers provided in Isaac Sim. By selecting this option, imported assets will be split into two separate USD files that follow the above hierarchy definition. Any mesh data will be written to an USD stage to be referenced by the main USD stage, which contains the main robot definition. To use the Instanceable option in the importers, first check the `Create Instanceable Asset` option. Then, specify a file path to indicate the location for saving the mesh data in the `Instanceable USD Path` textbox. This will default to `./instanceable_meshes.usd`, which will generate a file `instanceable_meshes.usd` that is saved to the current directory. Once the asset is imported with these options enabled, you will see the robot definition in the stage - we will refer to this stage as the master stage. If we expand the robot hierarchy in the Stage, we will notice that the parent prims that have mesh decendants have been marked as Instanceable and they reference a prim in our `Instanceable USD Path` USD file. We are also no longer able to modify attributes of descendant meshes. To add the instanced asset into a new stage, we will simply need to add the master USD file. ### Converting Existing Assets We provide the utility function `convert_asset_instanceable`, which creates an instanceable version of a given USD asset in `/omniisaacgymenvs/utils/usd_utils/create_instanceable_assets.py`. To run this function, launch Isaac Sim and open the script editor via `Window -> Script Editor`. Enter the following script and press `Run (Ctrl + Enter)`: ```bash from omniisaacgymenvs.utils.usd_utils.create_instanceable_assets import convert_asset_instanceable convert_asset_instanceable( asset_usd_path=ASSET_USD_PATH, source_prim_path=SOURCE_PRIM_PATH, save_as_path=SAVE_AS_PATH ) ``` Note that `ASSET_USD_PATH` is the file path to the USD asset (*e.g.* robot_asset.usd). `SOURCE_PRIM_PATH` is the USD path of the root prim of the asset on stage. `SAVE_AS_PATH` is the file path of the generated instanceable version of the asset (*e.g.* robot_asset_instanceable.usd). Assuming that `SAVE_AS_PATH` is `OUTPUT_NAME.usd`, the above script will generate two files: `OUTPUT_NAME.usd` and `OUTPUT_NAME_meshes.usd`. `OUTPUT_NAME.usd` is the instanceable version of the asset that can be imported to stage and used by `omni.isaac.cloner` to create numerous duplicates without consuming much memory. `OUTPUT_NAME_meshes.usd` contains all the visual and collision meshes that `OUTPUT_NAME.usd` references. It is worth noting that any [USD Relationships](https://graphics.pixar.com/usd/dev/api/class_usd_relationship.html) on the referenced meshes are removed in `OUTPUT_NAME.usd`. This is because those USD Relationships originally have targets set to prims in `OUTPUT_NAME_meshes.usd` and hence cannot be accessed from `OUTPUT_NAME.usd`. Common examples of USD Relationships that could exist on the meshes are visual materials, physics materials, and filtered collision pairs. Therefore, it is recommanded to set these USD Relationships on the meshes' parent Xforms instead of the meshes themselves. In a case where we would like to update the main USD file where the instanceable USD file is being referenced from, we also provide a utility method to update all references in the stage that matches a source reference path to a new USD file path. ```bash from omniisaacgymenvs.utils.usd_utils.create_instanceable_assets import update_reference update_reference( source_prim_path=SOURCE_PRIM_PATH, source_reference_path=SOURCE_REFERENCE_PATH, target_reference_path=TARGET_REFERENCE_PATH ) ``` ### Limitations USD requires a specific structure in the asset tree definition in order for the instanceable flag to take action. To mark any mesh or primitive geometry prim in the asset as instanceable, the mesh prim requires a parent Xform prim to be present, which will be used to add a reference to a master USD file containing definition of the mesh prim. For example, the following definition: ``` World |_ Robot |_ Collisions |_ Sphere |_ Box ``` would have to be modified to: ``` World |_ Robot |_ Collisions |_ Sphere_Xform | |_ Sphere |_ Box_Xform |_ Box ``` Any references that exist on the original `Sphere` and `Box` prims would have to be moved to `Sphere_Xform` and `Box_Xform` prims. To help with the process of creating new parent prims, we provide a utility method `create_parent_xforms()` in `omniisaacgymenvs/utils/usd_utils/create_instanceable_assets.py` to automatically insert a new Xform prim as a parent of every mesh prim in the stage. This method can be run on an existing non-instanced USD file for an asset from the script editor: ```bash from omniisaacgymenvs.utils.usd_utils.create_instanceable_assets import create_parent_xforms create_parent_xforms( asset_usd_path=ASSET_USD_PATH, source_prim_path=SOURCE_PRIM_PATH, save_as_path=SAVE_AS_PATH ) ``` This method can also be run as part of `convert_asset_instanceable()` method, by passing in the argument `create_xforms=True`. It is also worth noting that once an instanced asset is added to the stage, we can no longer modify USD attributes on the instanceable prims. For example, to modify attributes of collision meshes that are set as instanceable, we have to first modify the attributes on the corresponding prims in the master prim which our instanced asset references from. Then, we can allow the instanced asset to pick up the updated values from the master prim.
6,846
Markdown
56.058333
444
0.76804
j3soon/OmniIsaacGymEnvs-DofbotReacher/docs/reproducibility.md
Reproducibility and Determinism =============================== Seeds ----- To achieve deterministic behavior on multiple training runs, a seed value can be set in the training config file for each task. This will potentially allow for individual runs of the same task to be deterministic when executed on the same machine and system setup. Alternatively, a seed can also be set via command line argument `seed=<seed>` to override any settings in config files. If no seed is specified in either config files or command line arguments, we default to generating a random seed. In this case, individual runs of the same task should not be expected to be deterministic. For convenience, we also support setting `seed=-1` to generate a random seed, which will override any seed values set in config files. By default, we have explicitly set all seed values in config files to be 42. PyTorch Deterministic Training ------------------------------ We also include a `torch_deterministic` argument for use when running RL training. Enabling this flag (by passing `torch_deterministic=True`) will apply additional settings to PyTorch that can force the usage of deterministic algorithms in PyTorch, but may also negatively impact runtime performance. For more details regarding PyTorch reproducibility, refer to <https://pytorch.org/docs/stable/notes/randomness.html>. If both `torch_deterministic=True` and `seed=-1` are set, the seed value will be fixed to 42. Runtime Simulation Changes / Domain Randomization ------------------------------------------------- Note that using a fixed seed value will only **potentially** allow for deterministic behavior. Due to GPU work scheduling, it is possible that runtime changes to simulation parameters can alter the order in which operations take place, as environment updates can happen while the GPU is doing other work. Because of the nature of floating point numeric storage, any alteration of execution ordering can cause small changes in the least significant bits of output data, leading to divergent execution over the simulation of thousands of environments and simulation frames. As an example of this, runtime domain randomization of object scales is known to cause both determinancy and simulation issues when running on the GPU due to the way those parameters are passed from CPU to GPU in lower level APIs. Therefore, this is only supported at setup time before starting simulation, which is specified by the `on_startup` condition for Domain Randomization. At this time, we do not believe that other domain randomizations offered by this framework cause issues with deterministic execution when running GPU simulation, but directly manipulating other simulation parameters outside of the omni.isaac.core View APIs may induce similar issues. Also due to floating point precision, states across different environments in the simulation may be non-deterministic when the same set of actions are applied to the same initial states. This occurs as environments are placed further apart from the world origin at (0, 0, 0). As actors get placed at different origins in the world, floating point errors may build up and result in slight variance in results even when starting from the same initial states. One possible workaround for this issue is to place all actors/environments at the world origin at (0, 0, 0) and filter out collisions between the environments. Note that this may induce a performance degradation of around 15-50%, depending on the complexity of actors and environment. Another known cause of non-determinism is from resetting actors into contact states. If actors within a scene is reset to a state where contacts are registered between actors, the simulation may not be able to produce deterministic results. This is because contacts are not recorded and will be re-computed from scratch for each reset scenario where actors come into contact, which cannot guarantee deterministic behavior across different computations.
4,017
Markdown
53.297297
96
0.787155
j3soon/OmniIsaacGymEnvs-DofbotReacher/docs/training_with_camera.md
## Reinforcement Learning with Vision in the Loop Some reinforcement learning tasks can benefit from having image data in the pipeline by collecting sensor data from cameras to use as observations. However, high fidelity rendering can be expensive when scaled up towards thousands of environments during training. Although Isaac Sim does not currently have the capability to scale towards thousands of environments, we are continually working on improvements to reach the goal. As a starting point, we are providing a simple example showcasing a proof-of-concept for reinforcement learning with vision in the loop. ### CartpoleCamera [cartpole_camera.py](../omniisaacgymenvs/tasks/cartpole_camera.py) As an example showcasing the possiblity of reinforcmenet learning with vision in the loop, we provide a variation of the Cartpole task, which uses RGB image data as observations. This example can be launched with command line argument `task=CartpoleCamera`. Config files used for this task are: - **Task config**: [CartpoleCamera.yaml](../omniisaacgymenvs/cfg/task/CartpoleCamera.yaml) - **rl_games training config**: [CartpoleCameraPPO.yaml](../omniisaacgymenvs/cfg/train/CartpoleCameraPPO.yaml) ### Working with Cameras We have provided an individual app file `apps/omni.isaac.sim.python.gym.camera.kit`, designed specifically towards vision-based RL tasks. This app file provides necessary settings to enable multiple cameras to be rendered each frame. Additional settings are also applied to increase performance when rendering cameras across multiple environments. In addition, the following settings can be added to the app file to increase performance at a cost of accuracy. By setting these flags to `false`, data collected from the cameras may have a 1 to 2 frame delay. ``` app.renderer.waitIdle=false app.hydraEngine.waitIdle=false ``` We can also render in white-mode by adding the following line: ``` rtx.debugMaterialType=0 ``` ### Config Settings In order for rendering to occur during training, tasks using camera rendering must have the `enable_cameras` flag set to `True` in the task config file. By default, the `omni.isaac.sim.python.gym.camera.kit` app file will be used automatically when `enable_cameras` is set to `True`. This flag is located in the task config file, under the `sim` section. In addition, the `rendering_dt` parameter can be used to specify the rendering frequency desired. Similar to `dt` for physics simulation frequency, the `rendering_dt` specifies the amount of time in `s` between each rendering step. The `rendering_dt` should be larger or equal to the physics `dt`, and be a multiple of physics `dt`. Note that specifying the `controlFrequencyInv` flag will reduce the control frequency in terms of the physics simulation frequency. For example, assume control frequency is 30hz, physics simulation frequency is 120 hz, and rendering frequency is 10hz. In the task config file, we can set `dt: 1/120`, `controlFrequencyInv: 4`, such that control is applied every 4 physics steps, and `rendering_dt: 1/10`. In this case, render data will only be updated once every 12 physics steps. Note that both `dt` and `rendering_dt` parameters are under the `sim` section of the config file, while `controlFrequencyInv` is under the `env` section. ### Environment Setup To set up a task for vision-based RL, we will first need to add a camera to each environment in the scene and wrap it in a Replicator `render_product` to use the vectorized rendering API available in Replicator. This can be done with the following code in `set_up_scene`: ```python self.render_products = [] env_pos = self._env_pos.cpu() for i in range(self._num_envs): camera = self.rep.create.camera( position=(-4.2 + env_pos[i][0], env_pos[i][1], 3.0), look_at=(env_pos[i][0], env_pos[i][1], 2.55)) render_product = self.rep.create.render_product(camera, resolution=(self.camera_width, self.camera_height)) self.render_products.append(render_product) ``` Next, we need to initialize Replicator and the PytorchListener, which will be used to collect rendered data. ```python # start replicator to capture image data self.rep.orchestrator._orchestrator._is_started = True # initialize pytorch writer for vectorized collection self.pytorch_listener = self.PytorchListener() self.pytorch_writer = self.rep.WriterRegistry.get("PytorchWriter") self.pytorch_writer.initialize(listener=self.pytorch_listener, device="cuda") self.pytorch_writer.attach(self.render_products) ``` Then, we can simply collect rendered data from each environment using a single API call: ```python # retrieve RGB data from all render products images = self.pytorch_listener.get_rgb_data() ```
4,728
Markdown
58.860759
502
0.777496
j3soon/OmniIsaacGymEnvs-DofbotReacher/docs/rl_examples.md
## Reinforcement Learning Examples We introduce the following reinforcement learning examples that are implemented using Isaac Sim's RL framework. Pre-trained checkpoints can be found on the Nucleus server. To set up localhost, please refer to the [Isaac Sim installation guide](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_workstation.html). *Note: All commands should be executed from `omniisaacgymenvs/omniisaacgymenvs`.* - [Reinforcement Learning Examples](#reinforcement-learning-examples) - [Cartpole cartpole.py](#cartpole-cartpolepy) - [Ant ant.py](#ant-antpy) - [Humanoid humanoid.py](#humanoid-humanoidpy) - [Shadow Hand Object Manipulation shadow_hand.py](#shadow-hand-object-manipulation-shadow_handpy) - [OpenAI Variant](#openai-variant) - [LSTM Training Variant](#lstm-training-variant) - [Allegro Hand Object Manipulation allegro_hand.py](#allegro-hand-object-manipulation-allegro_handpy) - [ANYmal anymal.py](#anymal-anymalpy) - [Anymal Rough Terrain anymal_terrain.py](#anymal-rough-terrain-anymal_terrainpy) - [NASA Ingenuity Helicopter ingenuity.py](#nasa-ingenuity-helicopter-ingenuitypy) - [Quadcopter quadcopter.py](#quadcopter-quadcopterpy) - [Crazyflie crazyflie.py](#crazyflie-crazyfliepy) - [Ball Balance ball_balance.py](#ball-balance-ball_balancepy) - [Franka Cabinet franka_cabinet.py](#franka-cabinet-franka_cabinetpy) - [Franka Deformable franka_deformable.py](#franka-deformablepy) - [Factory: Fast Contact for Robotic Assembly](#factory-fast-contact-for-robotic-assembly) ### Cartpole [cartpole.py](../omniisaacgymenvs/tasks/cartpole.py) Cartpole is a simple example that demonstrates getting and setting usage of DOF states using `ArticulationView` from `omni.isaac.core`. The goal of this task is to move a cart horizontally such that the pole, which is connected to the cart via a revolute joint, stays upright. Joint positions and joint velocities are retrieved using `get_joint_positions` and `get_joint_velocities` respectively, which are required in computing observations. Actions are applied onto the cartpoles via `set_joint_efforts`. Cartpoles are reset by using `set_joint_positions` and `set_joint_velocities`. Training can be launched with command line argument `task=Cartpole`. Training using the Warp backend can be launched with `task=Cartpole warp=True`. Running inference with pre-trained model can be launched with command line argument `task=Cartpole test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/cartpole.pth` Config files used for this task are: - **Task config**: [Cartpole.yaml](../omniisaacgymenvs/cfg/task/Cartpole.yaml) - **rl_games training config**: [CartpolePPO.yaml](../omniisaacgymenvs/cfg/train/CartpolePPO.yaml) #### CartpoleCamera [cartpole_camera.py](../omniisaacgymenvs/tasks/cartpole_camera.py) A variation of the Cartpole task showcases the usage of RGB image data as observations. This example can be launched with command line argument `task=CartpoleCamera`. Note that to use camera data as observations, `enable_cameras` must be set to `True` in the task config file. In addition, the example must be run with the `omni.isaac.sim.python.gym.camera.kit` app file provided under `apps`, which applies necessary settings to enable camera training. By default, this app file will be used automatically when `enable_cameras` is set to `True`. Config files used for this task are: - **Task config**: [CartpoleCamera.yaml](../omniisaacgymenvs/cfg/task/CartpoleCamera.yaml) - **rl_games training config**: [CartpoleCameraPPO.yaml](../omniisaacgymenvs/cfg/train/CartpoleCameraPPO.yaml) For more details on training with camera data, please visit [here](training_with_camera.md). <img src="https://user-images.githubusercontent.com/34286328/171454189-6afafbff-bb61-4aac-b518-24646007cb9f.gif" width="300" height="150"/> ### Ant [ant.py](../omniisaacgymenvs/tasks/ant.py) Ant is an example of a simple locomotion task. The goal of this task is to train quadruped robots (ants) to run forward as fast as possible. This example inherets from [LocomotionTask](../omniisaacgymenvs/tasks/shared/locomotion.py), which is a shared class between this example and the humanoid example; this simplifies implementations for both environemnts since they compute rewards, observations, and resets in a similar manner. This framework allows us to easily switch between robots used in the task. The Ant task includes more examples of utilizing `ArticulationView` from `omni.isaac.core`, which provides various functions to get and set both DOF states and articulation root states in a tensorized fashion across all of the actors in the environment. `get_world_poses`, `get_linear_velocities`, and `get_angular_velocities`, can be used to determine whether the ants have been moving towards the desired direction and whether they have fallen or flipped over. Actions are applied onto the ants via `set_joint_efforts`, which moves the ants by setting torques to the DOFs. Note that the previously used force sensors and `get_force_sensor_forces` API are now deprecated. Force sensors can now be retrieved directly using `get_measured_joint_forces` from `ArticulationView`. Training with PPO can be launched with command line argument `task=Ant`. Training with SAC with command line arguments `task=AntSAC train=AntSAC`. Training using the Warp backend can be launched with `task=Ant warp=True`. Running inference with pre-trained model can be launched with command line argument `task=Ant test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/ant.pth` Config files used for this task are: - **PPO task config**: [Ant.yaml](../omniisaacgymenvs/cfg/task/Ant.yaml) - **rl_games PPO training config**: [AntPPO.yaml](../omniisaacgymenvs/cfg/train/AntPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/171454182-0be1b830-bceb-4cfd-93fb-e1eb8871ec68.gif" width="300" height="150"/> ### Humanoid [humanoid.py](../omniisaacgymenvs/tasks/humanoid.py) Humanoid is another environment that uses [LocomotionTask](../omniisaacgymenvs/tasks/shared/locomotion.py). It is conceptually very similar to the Ant example, where the goal for the humanoid is to run forward as fast as possible. Training can be launched with command line argument `task=Humanoid`. Training with SAC with command line arguments `task=HumanoidSAC train=HumanoidSAC`. Training using the Warp backend can be launched with `task=Humanoid warp=True`. Running inference with pre-trained model can be launched with command line argument `task=Humanoid test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/humanoid.pth` Config files used for this task are: - **PPO task config**: [Humanoid.yaml](../omniisaacgymenvs/cfg/task/Humanoid.yaml) - **rl_games PPO training config**: [HumanoidPPO.yaml](../omniisaacgymenvs/cfg/train/HumanoidPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/171454193-e027885d-1510-4ef4-b838-06b37f70c1c7.gif" width="300" height="150"/> ### Shadow Hand Object Manipulation [shadow_hand.py](../omniisaacgymenvs/tasks/shadow_hand.py) The Shadow Hand task is an example of a challenging dexterity manipulation task with complex contact dynamics. It resembles OpenAI's [Learning Dexterity](https://openai.com/blog/learning-dexterity/) project and [Robotics Shadow Hand](https://github.com/openai/gym/tree/v0.21.0/gym/envs/robotics) training environments. The goal of this task is to orient the object in the robot hand to match a random target orientation, which is visually displayed by a goal object in the scene. This example inherets from [InHandManipulationTask](../omniisaacgymenvs/tasks/shared/in_hand_manipulation.py), which is a shared class between this example and the Allegro Hand example. The idea of this shared [InHandManipulationTask](../omniisaacgymenvs/tasks/shared/in_hand_manipulation.py) class is similar to that of the [LocomotionTask](../omniisaacgymenvs/tasks/shared/locomotion.py); since the Shadow Hand example and the Allegro Hand example only differ by the robot hand used in the task, using this shared class simplifies implementation across the two. In this example, motion of the hand is controlled using position targets with `set_joint_position_targets`. The object and the goal object are reset using `set_world_poses`; their states are retrieved via `get_world_poses` for computing observations. It is worth noting that the Shadow Hand model in this example also demonstrates the use of tendons, which are imported using the `omni.isaac.mjcf` extension. Training can be launched with command line argument `task=ShadowHand`. Training with Domain Randomization can be launched with command line argument `task.domain_randomization.randomize=True`. For best training results with DR, use `num_envs=16384`. Running inference with pre-trained model can be launched with command line argument `task=ShadowHand test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/shadow_hand.pth` Config files used for this task are: - **Task config**: [ShadowHand.yaml](../omniisaacgymenvs/cfg/task/ShadowHand.yaml) - **rl_games training config**: [ShadowHandPPO.yaml](../omniisaacgymenvs/cfg/train/ShadowHandPPO.yaml) #### OpenAI Variant In addition to the basic version of this task, there is an additional variant matching OpenAI's [Learning Dexterity](https://openai.com/blog/learning-dexterity/) project. This variant uses the **openai** observations in the policy network, but asymmetric observations of the **full_state** in the value network. This can be launched with command line argument `task=ShadowHandOpenAI_FF`. Running inference with pre-trained model can be launched with command line argument `task=ShadowHandOpenAI_FF test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/shadow_hand_openai_ff.pth` Config files used for this are: - **Task config**: [ShadowHandOpenAI_FF.yaml](../omniisaacgymenvs/cfg/task/ShadowHandOpenAI_FF.yaml) - **rl_games training config**: [ShadowHandOpenAI_FFPPO.yaml](../omniisaacgymenvs/cfg/train/ShadowHandOpenAI_FFPPO.yaml). #### LSTM Training Variant This variant uses LSTM policy and value networks instead of feed forward networks, and also asymmetric LSTM critic designed for the OpenAI variant of the task. This can be launched with command line argument `task=ShadowHandOpenAI_LSTM`. Running inference with pre-trained model can be launched with command line argument `task=ShadowHandOpenAI_LSTM test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/shadow_hand_openai_lstm.pth` Config files used for this are: - **Task config**: [ShadowHandOpenAI_LSTM.yaml](../omniisaacgymenvs/cfg/task/ShadowHandOpenAI_LSTM.yaml) - **rl_games training config**: [ShadowHandOpenAI_LSTMPPO.yaml](../omniisaacgymenvs/cfg/train/ShadowHandOpenAI_LSTMPPO.yaml). <img src="https://user-images.githubusercontent.com/34286328/171454160-8cb6739d-162a-4c84-922d-cda04382633f.gif" width="300" height="150"/> ### Allegro Hand Object Manipulation [allegro_hand.py](../omniisaacgymenvs/tasks/allegro_hand.py) This example performs the same object orientation task as the Shadow Hand example, but using the Allegro hand instead of the Shadow hand. Training can be launched with command line argument `task=AllegroHand`. Running inference with pre-trained model can be launched with command line argument `task=AllegroHand test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/allegro_hand.pth` Config files used for this task are: - **Task config**: [AllegroHand.yaml](../omniisaacgymenvs/cfg/task/Allegro.yaml) - **rl_games training config**: [AllegroHandPPO.yaml](../omniisaacgymenvs/cfg/train/AllegroHandPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/171454176-ce08f6d0-3087-4ecc-9273-7d30d8f73f6d.gif" width="300" height="150"/> ### ANYmal [anymal.py](../omniisaacgymenvs/tasks/anymal.py) This example trains a model of the ANYmal quadruped robot from ANYbotics to follow randomly chosen x, y, and yaw target velocities. Training can be launched with command line argument `task=Anymal`. Running inference with pre-trained model can be launched with command line argument `task=Anymal test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/anymal.pth` Config files used for this task are: - **Task config**: [Anymal.yaml](../omniisaacgymenvs/cfg/task/Anymal.yaml) - **rl_games training config**: [AnymalPPO.yaml](../omniisaacgymenvs/cfg/train/AnymalPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/184168200-152567a8-3354-4947-9ae0-9443a56fee4c.gif" width="300" height="150"/> ### Anymal Rough Terrain [anymal_terrain.py](../omniisaacgymenvs/tasks/anymal_terrain.py) A more complex version of the above Anymal environment that supports traversing various forms of rough terrain. Training can be launched with command line argument `task=AnymalTerrain`. Running inference with pre-trained model can be launched with command line argument `task=AnymalTerrain test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/anymal_terrain.pth` - **Task config**: [AnymalTerrain.yaml](../omniisaacgymenvs/cfg/task/AnymalTerrain.yaml) - **rl_games training config**: [AnymalTerrainPPO.yaml](../omniisaacgymenvs/cfg/train/AnymalTerrainPPO.yaml) **Note** during test time use the last weights generated, rather than the usual best weights. Due to curriculum training, the reward goes down as the task gets more challenging, so the best weights do not typically correspond to the best outcome. **Note** if you use the ANYmal rough terrain environment in your work, please ensure you cite the following work: ``` @misc{rudin2021learning, title={Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning}, author={Nikita Rudin and David Hoeller and Philipp Reist and Marco Hutter}, year={2021}, journal = {arXiv preprint arXiv:2109.11978} ``` **Note** The OmniIsaacGymEnvs implementation slightly differs from the implementation used in the paper above, which also uses a different RL library and PPO implementation. The original implementation is made available [here](https://github.com/leggedrobotics/legged_gym). Results reported in the Isaac Gym technical paper are based on that repository, not this one. <img src="https://user-images.githubusercontent.com/34286328/184170040-3f76f761-e748-452e-b8c8-3cc1c7c8cb98.gif" width="300" height="150"/> ### NASA Ingenuity Helicopter [ingenuity.py](../omniisaacgymenvs/tasks/ingenuity.py) This example trains a simplified model of NASA's Ingenuity helicopter to navigate to a moving target. It showcases the use of velocity tensors and applying force vectors to rigid bodies. Note that we are applying force directly to the chassis, rather than simulating aerodynamics. This example also demonstrates using different values for gravitational forces. Ingenuity Helicopter visual 3D Model courtesy of NASA: https://mars.nasa.gov/resources/25043/mars-ingenuity-helicopter-3d-model/. Training can be launched with command line argument `task=Ingenuity`. Running inference with pre-trained model can be launched with command line argument `task=Ingenuity test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/ingenuity.pth` Config files used for this task are: - **Task config**: [Ingenuity.yaml](../omniisaacgymenvs/cfg/task/Ingenuity.yaml) - **rl_games training config**: [IngenuityPPO.yaml](../omniisaacgymenvs/cfg/train/IngenuityPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/184176312-df7d2727-f043-46e3-b537-48a583d321b9.gif" width="300" height="150"/> ### Quadcopter [quadcopter.py](../omniisaacgymenvs/tasks/quadcopter.py) This example trains a very simple quadcopter model to reach and hover near a fixed position. Lift is achieved by applying thrust forces to the "rotor" bodies, which are modeled as flat cylinders. In addition to thrust, the pitch and roll of each rotor is controlled using DOF position targets. Training can be launched with command line argument `task=Quadcopter`. Running inference with pre-trained model can be launched with command line argument `task=Quadcopter test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/quadcopter.pth` Config files used for this task are: - **Task config**: [Quadcopter.yaml](../omniisaacgymenvs/cfg/task/Quadcopter.yaml) - **rl_games training config**: [QuadcopterPPO.yaml](../omniisaacgymenvs/cfg/train/QuadcopterPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/184178817-9c4b6b3c-c8a2-41fb-94be-cfc8ece51d5d.gif" width="300" height="150"/> ### Crazyflie [crazyflie.py](../omniisaacgymenvs/tasks/crazyflie.py) This example trains the Crazyflie drone model to hover near a fixed position. It is achieved by applying thrust forces to the four rotors. Training can be launched with command line argument `task=Crazyflie`. Running inference with pre-trained model can be launched with command line argument `task=Crazyflie test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/crazyflie.pth` Config files used for this task are: - **Task config**: [Crazyflie.yaml](../omniisaacgymenvs/cfg/task/Crazyflie.yaml) - **rl_games training config**: [CrazyfliePPO.yaml](../omniisaacgymenvs/cfg/train/CrazyfliePPO.yaml) <img src="https://user-images.githubusercontent.com/6352136/185715165-b430a0c7-948b-4dce-b3bb-7832be714c37.gif" width="300" height="150"/> ### Ball Balance [ball_balance.py](../omniisaacgymenvs/tasks/ball_balance.py) This example trains balancing tables to balance a ball on the table top. This is a great example to showcase the use of force and torque sensors, as well as DOF states for the table and root states for the ball. In this example, the three-legged table has a force sensor attached to each leg. We use the force sensor APIs to collect force and torque data on the legs, which guide position target outputs produced by the policy. Training can be launched with command line argument `task=BallBalance`. Running inference with pre-trained model can be launched with command line argument `task=BallBalance test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/ball_balance.pth` Config files used for this task are: - **Task config**: [BallBalance.yaml](../omniisaacgymenvs/cfg/task/BallBalance.yaml) - **rl_games training config**: [BallBalancePPO.yaml](../omniisaacgymenvs/cfg/train/BallBalancePPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/184172037-cdad9ee8-f705-466f-bbde-3caa6c7dea37.gif" width="300" height="150"/> ### Franka Cabinet [franka_cabinet.py](../omniisaacgymenvs/tasks/franka_cabinet.py) This Franka example demonstrates interaction between Franka arm and cabinet, as well as setting states of objects inside the drawer. It also showcases control of the Franka arm using position targets. In this example, we use DOF state tensors to retrieve the state of the Franka arm, as well as the state of the drawer on the cabinet. Actions are applied as position targets to the Franka arm DOFs. Training can be launched with command line argument `task=FrankaCabinet`. Running inference with pre-trained model can be launched with command line argument `task=FrankaCabinet test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/franka_cabinet.pth` Config files used for this task are: - **Task config**: [FrankaCabinet.yaml](../omniisaacgymenvs/cfg/task/FrankaCabinet.yaml) - **rl_games training config**: [FrankaCabinetPPO.yaml](../omniisaacgymenvs/cfg/train/FrankaCabinetPPO.yaml) <img src="https://user-images.githubusercontent.com/34286328/184174894-03767aa0-936c-4bfe-bbe9-a6865f539bb4.gif" width="300" height="150"/> ### Franka Deformable [franka_deformable.py](../omniisaacgymenvs/tasks/franka_deformable.py) This Franka example demonstrates interaction between Franka arm and a deformable tube. It demonstrates the manipulation of deformable objects, using nodal positions and velocities of the simulation mesh as observations. Training can be launched with command line argument `task=FrankaDeformable`. Running inference with pre-trained model can be launched with command line argument `task=FrankaDeformable test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/franka_deformable.pth` Config files used for this task are: - **Task config**: [FrankaDeformable.yaml](../omniisaacgymenvs/cfg/task/FrankaDeformable.yaml) - **rl_games training config**: [FrankaCabinetFrankaDeformable.yaml](../omniisaacgymenvs/cfg/train/FrankaDeformablePPO.yaml) ### Factory: Fast Contact for Robotic Assembly We provide a set of Factory example tasks, [**FactoryTaskNutBoltPick**](../omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_pick.py), [**FactoryTaskNutBoltPlace**](../omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_place.py), and [**FactoryTaskNutBoltScrew**](../omniisaacgymenvs/tasks/factory/factory_task_nut_bolt_screw.py), `FactoryTaskNutBoltPick` can be executed with `python train.py task=FactoryTaskNutBoltPick`. This task trains policy for the Pick task, a simplified version of the corresponding task in the Factory paper. The policy may take ~1 hour to achieve high success rates on a modern GPU. - The general configuration file for the above task is [FactoryTaskNutBoltPick.yaml](../omniisaacgymenvs/cfg/task/FactoryTaskNutBoltPick.yaml). - The training configuration file for the above task is [FactoryTaskNutBoltPickPPO.yaml](../omniisaacgymenvs/cfg/train/FactoryTaskNutBoltPickPPO.yaml). Running inference with pre-trained model can be launched with command line argument `task=FactoryTaskNutBoltPick test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/factory_task_nut_bolt_pick.pth` `FactoryTaskNutBoltPlace` can be executed with `python train.py task=FactoryTaskNutBoltPlace`. This task trains policy for the Place task. - The general configuration file for the above task is [FactoryTaskNutBoltPlace.yaml](../omniisaacgymenvs/cfg/task/FactoryTaskNutBoltPlace.yaml). - The training configuration file for the above task is [FactoryTaskNutBoltPlacePPO.yaml](../omniisaacgymenvs/cfg/train/FactoryTaskNutBoltPlacePPO.yaml). Running inference with pre-trained model can be launched with command line argument `task=FactoryTaskNutBoltPlace test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/factory_task_nut_bolt_place.pth` `FactoryTaskNutBoltScrew` can be executed with `python train.py task=FactoryTaskNutBoltScrew`. This task trains policy for the Screw task. - The general configuration file for the above task is [FactoryTaskNutBoltScrew.yaml](../omniisaacgymenvs/cfg/task/FactoryTaskNutBoltScrew.yaml). - The training configuration file for the above task is [FactoryTaskNutBoltScrewPPO.yaml](../omniisaacgymenvs/cfg/train/FactoryTaskNutBoltScrewPPO.yaml). Running inference with pre-trained model can be launched with command line argument `task=FactoryTaskNutBoltScrew test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2023.1.0/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/factory_task_nut_bolt_screw.pth` If you use the Factory simulation methods (e.g., SDF collisions, contact reduction) or Factory learning tools (e.g., assets, environments, or controllers) in your work, please cite the following paper: ``` @inproceedings{ narang2022factory, author = {Yashraj Narang and Kier Storey and Iretiayo Akinola and Miles Macklin and Philipp Reist and Lukasz Wawrzyniak and Yunrong Guo and Adam Moravanszky and Gavriel State and Michelle Lu and Ankur Handa and Dieter Fox}, title = {Factory: Fast contact for robotic assembly}, booktitle = {Robotics: Science and Systems}, year = {2022} } ``` Also note that our original formulations of SDF collisions and contact reduction were developed by [Macklin, et al.](https://dl.acm.org/doi/abs/10.1145/3384538) and [Moravanszky and Terdiman](https://scholar.google.com/scholar?q=Game+Programming+Gems+4%2C+chapter+Fast+Contact+Reduction+for+Dynamics+Simulation), respectively. <img src="https://user-images.githubusercontent.com/6352136/205978286-fa2ae714-a3cb-4acd-9f5f-a467338a8bb3.gif"/>
25,126
Markdown
63.927648
347
0.792725
j3soon/OmniIsaacGymEnvs-DofbotReacher/docs/release_notes.md
Release Notes ============= 2023.1.0a - October 20, 2023 ---------------------------- Fixes ----- - Fix extension loading error in camera app file 2023.1.0 - October 18, 2023 --------------------------- Additions --------- - Add support for Warp backend task implementation - Add Warp-based RL examples: Cartpole, Ant, Humanoid - Add new Factory environments for place and screw: FactoryTaskNutBoltPlace and FactoryTaskNutBoltScrew - Add new camera-based Cartpole example: CartpoleCamera - Add new deformable environment showing Franka picking up a deformable tube: FrankaDeformable - Add support for running OIGE as an extension in Isaac Sim - Add options to filter collisions between environments and specify global collision filter paths to `RLTask.set_to_scene()` - Add multinode training support - Add dockerfile with OIGE - Add option to select kit app file from command line argument `kit_app` - Add `rendering_dt` parameter to the task config file for setting rendering dt. Defaults to the same value as the physics dt. Changes ------- - `use_flatcache` flag has been renamed to `use_fabric` - Update hydra-core version to 1.3.2, omegaconf version to 2.3.0 - Update rlgames to version 1.6.1. - The `get_force_sensor_forces` API for articulations is now deprecated and replaced with `get_measured_joint_forces` - Remove unnecessary cloning of buffers in VecEnv classes - Only enable omni.replicator.isaac when domain randomization or cameras are enabled - The multi-threaded launch script `rlgames_train_mt.py` has been re-designed to support the extension workflow. This script can no longer be used to launch a training run from python. Please use `rlgames_train.py` instead. - Restructures for environments to support the new extension-based workflow - Add async workflow to factory pick environment to support extension-based workflow - Update docker scripts with cache directories Fixes ----- - Fix errors related to setting velocities to kinematic markers in Ingenuity and Quadcopter environments - Fix contact-related issues with quadruped assets - Fix errors in physics APIs when returning empty tensors - Fix orientation correctness issues when using some assets with omni.isaac.core. Additional orientations applied to accommodate for the error are no longer required (i.e. ShadowHand) - Updated the deprecated config name `seq_len` used with RNN networks to `seq_length` 2022.2.1 - March 16, 2023 ------------------------- Additions --------- - Add FactoryTaskNutBoltPick example - Add Ant and Humanoid SAC training examples - Add multi-GPU support for training - Add utility scripts for launching Isaac Sim docker with OIGE - Add support for livestream through the Omniverse Streaming Client Changes ------- - Change rigid body fixed_base option to make_kinematic, avoiding creation of unnecessary articulations - Update ShadowHand, Ingenuity, Quadcopter and Crazyflie marker objects to use kinematics - Update ShadowHand GPU buffer parameters - Disable PyTorch nvFuser for better performance - Enable viewport and replicator extensions dynamically to maintain order of extension startup - Separate app files for headless environments with rendering (requires Isaac Sim update) - Update rl-games to v1.6.0 Fixes ----- - Fix material property randomization at run-time, including friction and restitution (requires Isaac Sim update) - Fix a bug in contact reporting API where incorrect values were being reported (requires Isaac Sim update) - Enable render flag in Isaac Sim when enable_cameras is set to True - Add root pose and velocity reset to BallBalance environment 2.0.0 - December 15, 2022 ------------------------- Additions --------- - Update to Viewport 2.0 - Allow for runtime mass randomization on GPU pipeline - Add runtime mass randomization to ShadowHand environments - Introduce `disable_contact_processing` simulation parameter for faster contact processing - Use physics replication for cloning by default for faster load time Changes ------- - Update AnymalTerrain environment to use contact forces - Update Quadcopter example to apply local forces - Update training parameters for ShadowHandOpenAI_FF environment - Rename rlgames_play.py to rlgames_demo.py Fixes ----- - Remove fix_base option from articulation configs - Fix in_hand_manipulation random joint position sampling on reset - Fix mass and density randomization in MT training script - Fix actions/observations noise randomization in MT training script - Fix random seed when domain randomization is enabled - Check whether simulation is running before executing pre_physics_step logic 1.1.0 - August 22, 2022 ----------------------- Additions --------- - Additional examples: Anymal, AnymalTerrain, BallBalance, Crazyflie, FrankaCabinet, Ingenuity, Quadcopter - Add OpenAI variantions for Feed-Forward and LSTM networks for ShadowHand - Add domain randomization framework `using omni.replicator.isaac` - Add AnymalTerrain interactable demo - Automatically disable `omni.kit.window.viewport` and `omni.physx.flatcache` extensions in headless mode to improve start-up load time - Introduce `reset_xform_properties` flag for initializing Views of cloned environments to reduce load time - Add WandB support - Update RL-Games version to 1.5.2 Fixes ----- - Correctly sets simulation device for GPU simulation - Fix omni.client import order - Fix episode length reset condition for ShadowHand and AllegroHand 1.0.0 - June 03, 2022 ---------------------- - Initial release for RL examples with Isaac Sim - Examples provided: AllegroHand, Ant, Cartpole, Humanoid, ShadowHand
5,592
Markdown
41.371212
223
0.768777
j3soon/OmniIsaacGymEnvs-DofbotReacher/docs/CHANGELOG.md
# Changelog ## [0.0.0] - 2023-07-13 ### Added - UI for launching RL trasks
76
Markdown
11.833331
28
0.618421
j3soon/OmniIsaacGymEnvs-DofbotReacher/docs/transfering_policies_from_isaac_gym.md
## Transfering Policies from Isaac Gym Preview Releases This section delineates some of the differences between the standalone [Isaac Gym Preview Releases](https://developer.nvidia.com/isaac-gym) and Isaac Sim reinforcement learning extensions, in hopes of facilitating the process of transferring policies trained in the standalone preview releases to Isaac Sim. ### Isaac Sim RL Extensions Unlike the monolithic standalone Isaac Gym Preview Releases, Omniverse is a highly modular system, with functionality split between various [Extensions](https://docs.omniverse.nvidia.com/extensions/latest/index.html). The APIs used by typical robotics RL systems are split between a handful of extensions in Isaac Sim. These include `omni.isaac.core`, which provides tensorized access to physics simulation state as well as a task management framework, the `omni.isaac.cloner` extension for creating many copies of your environments, and the `omni.isaac.gym` extension for interfacing with external RL training libraries. For naming clarity, we'll refer collectively to the extensions used for RL within Isaac Sim as the **Isaac Sim RL extensions**, in contrast with the older **Isaac Gym Preview Releases**. ### Quaternion Convention The Isaac Sim RL extensions use various classes and methods in `omni.isaac.core`, which adopts `wxyz` as the quaternion convention. However, the quaternion convention used in Isaac Gym Preview Releases is `xyzw`. Therefore, if a policy trained in one of the Isaac Gym Preview Releases takes in quaternions as part of its observations, remember to switch all quaternions to use the `xyzw` convention in the observation buffer `self.obs_buf`. Similarly, please ensure all quaternions are in `wxyz` before passing them in any of the utility functions in `omni.isaac.core`. ### Assets Isaac Sim provides [URDF](https://docs.omniverse.nvidia.com/isaacsim/latest/advanced_tutorials/tutorial_advanced_import_urdf.html) and [MJCF](https://docs.omniverse.nvidia.com/isaacsim/latest/advanced_tutorials/tutorial_advanced_import_mjcf.html) importers for translating URDF and MJCF assets into USD format. Any robot or object assets must be in .usd, .usda, or .usdc format for Isaac Sim and Omniverse. For more details on working with USD, please see https://docs.omniverse.nvidia.com/isaacsim/latest/reference_glossary.html#usd. Importer tools are also available for other common geometry file formats, such as .obj, .fbx, and more. Please see [Asset Importer](https://docs.omniverse.nvidia.com/extensions/latest/ext_asset-importer.html) for more details. ### Joint Order Isaac Sim's `ArticulationView` in `omni.isaac.core` assumes a breadth-first ordering for the joints in a given kinematic tree. Specifically, for the following kinematic tree, the method `ArticulationView.get_joint_positions` returns a tensor of shape `(number of articulations in the view, number of joints in the articulation)`. Along the second dimension of this tensor, the values represent the articulation's joint positions in the following order: `[Joint 1, Joint 2, Joint 4, Joint 3, Joint 5]`. On the other hand, the Isaac Gym Preview Releases assume a depth-first ordering for the joints in the kinematic tree; In the example below, the joint orders would be the following: `[Joint 1, Joint 2, Joint 3, Joint 4, Joint 5]`. <img src="./media/KinematicTree.png" height="300"/> With this in mind, it is important to change the joint order to depth-first in the observation buffer before feeding it into an existing policy trained in one of the Isaac Gym Preview Releases. Similarly, you would also need to change the joint order in the output (the action buffer) of the Isaac Gym Preview Release trained policy to breadth-first before applying joint actions to articulations via methods in `ArticulationView`. ### Physics Parameters One factor that could dictate the success of policy transfer from Isaac Gym Preview Releases to Isaac Sim is to ensure the physics parameters used in both simulations are identical or very similar. In general, the `sim` parameters specified in the task configuration `yaml` file overwrite the corresponding parameters in the USD asset. However, there are additional parameters in the USD asset that are not included in the task configuration `yaml` file. These additional parameters may sometimes impact the performance of Isaac Gym Preview Release trained policies and hence need modifications in the USD asset itself to match the values set in Isaac Gym Preview Releases. For instance, the following parameters in the `RigidBodyAPI` could be modified in the USD asset to yield better policy transfer performance: | RigidBodyAPI Parameter | Default Value in Isaac Sim | Default Value in Isaac Gym Preview Releases | |:----------------------:|:--------------------------:|:--------------------------:| | Linear Damping | 0.00 | 0.00 | | Angular Damping | 0.05 | 0.00 | | Max Linear Velocity | inf | 1000 | | Max Angular Velocity | 5729.58008 (deg/s) | 64 (rad/s) | | Max Contact Impulse | inf | 1e32 | <img src="./media/RigidBodyAPI.png" width="500"/> Parameters in the `JointAPI` as well as the `DriveAPI` could be altered as well. Note that the Isaac Sim UI assumes the unit of angle to be degrees. It is particularly worth noting that the `Damping` and `Stiffness` paramters in the `DriveAPI` have the unit of `1/deg` in the Isaac Sim UI but `1/rad` in Isaac Gym Preview Releases. | Joint Parameter | Default Value in Isaac Sim | Default Value in Isaac Gym Preview Releases | |:----------------------:|:--------------------------:|:--------------------------:| | Maximum Joint Velocity | 1000000.0 (deg) | 100.0 (rad) | <img src="./media/JointAPI.png" width="500"/> ### Differences in APIs APIs for accessing physics states in Isaac Sim require the creation of an ArticulationView or RigidPrimView object. Multiple view objects can be initialized for different articulations or bodies in the scene by defining a regex expression that matches the paths of the desired objects. This approach eliminates the need of retrieving body handles to slice states for specific bodies in the scene. We have also removed `acquire` and `refresh` APIs in Isaac Sim. Physics states can be directly applied or retrieved by using `set`/`get` APIs defined for the views. New APIs provided in Isaac Sim no longer require explicit wrapping and un-wrapping of underlying buffers. APIs can now work with tensors directly for reading and writing data. Most APIs in Isaac Sim also provide the option to specify an `indices` parameter, which can be used when reading or writing data for a subset of environments. Note that when setting states with the `indices` parameter, the shape of the states buffer should match with the dimension of the `indices` list. Note some naming differences between APIs in Isaac Gym Preview Release and Isaac Sim. Most `dof` related APIs have been named to `joint` in Isaac Sim. `root_states` is now separated into different APIs for `world_poses` and `velocities`. Similary, `dof_states` are retrieved individually in Isaac Sim as `joint_positions` and `joint_velocities`. APIs in Isaac Sim also no longer follow the explicit `_tensors` or `_tensor_indexed` suffixes in naming. Indexed versions of APIs now happen implicitly through the optional `indices` parameter. ### Task Configuration Files There are a few modifications that need to be made to an existing Isaac Gym Preview Release task `yaml` file in order for it to be compatible with the Isaac Sim RL extensions. #### Frequencies of Physics Simulation and RL Policy The way in which physics simulation frequency and RL policy frequency are specified is different between Isaac Gym Preview Releases and Isaac Sim, dictated by the following three parameters: `dt`, `substeps`, and `controlFrequencyInv`. - `dt`: The simulation time difference between each simulation step. - `substeps`: The number of physics steps within one simulation step. *i.e.* if `dt: 1/60` and `substeps: 4`, physics is simulated at 240 hz. - `controlFrequencyInv`: The control decimation of the RL policy, which is the number of simulation steps between RL actions. *i.e.* if `dt: 1/60` and `controlFrequencyInv: 2`, RL policy is running at 30 hz. In Isaac Gym Preview Releases, all three of the above parameters are used to specify the frequencies of physics simulation and RL policy. However, Isaac Sim only uses `controlFrequencyInv` and `dt` as `substeps` is always fixed at `1`. Note that despite only using two parameters, Isaac Sim can still achieve the same substeps definition as Isaac Gym. For example, if in an Isaac Gym Preview Release policy, we set `substeps: 2`, `dt: 1/60` and `controlFrequencyInv: 1`, we can achieve the equivalent in Isaac Sim by setting `controlFrequencyInv: 2` and `dt: 1/120`. In the Isaac Sim RL extensions, `dt` is specified in the task configuration `yaml` file under `sim`, whereas `controlFrequencyInv` is a parameter under `env`. #### Physx Parameters Parameters under `physx` in the task configuration `yaml` file remain mostly unchanged. In Isaac Gym Preview Releases, `use_gpu` is frequently set to `${contains:"cuda",${....sim_device}}`. For Isaac Sim, please ensure this is changed to `${eq:${....sim_device},"gpu"}`. In Isaac Gym Preview Releases, GPU buffer sizes are specified using the following two parameters: `default_buffer_size_multiplier` and `max_gpu_contact_pairs`. With the Isaac Sim RL extensions, these two parameters are no longer used; instead, the various GPU buffer sizes can be set explicitly. For instance, in the [Humanoid task configuration file](../omniisaacgymenvs/cfg/task/Humanoid.yaml), GPU buffer sizes are specified as follows: ```yaml gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 8192 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 ``` Please refer to the [Troubleshooting](./troubleshoot.md#simulation) documentation should you encounter errors related to GPU buffer sizes. #### Articulation Parameters The articulation parameters of each actor can now be individually specified tn the Isaac Sim task configuration `yaml` file. The following is an example template for setting these parameters: ```yaml ARTICULATION_NAME: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: True enable_gyroscopic_forces: True # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 10.0 ``` These articulation parameters can be parsed using the `parse_actor_config` method in the [SimConfig](../omniisaacgymenvs/utils/config_utils/sim_config.py) class, which can then be applied to a prim in simulation via the `apply_articulation_settings` method. A concrete example of this is the following code snippet from the [HumanoidTask](../omniisaacgymenvs/tasks/humanoid.py#L75): ```python self._sim_config.apply_articulation_settings("Humanoid", get_prim_at_path(humanoid.prim_path), self._sim_config.parse_actor_config("Humanoid")) ``` #### Additional Simulation Parameters - `use_fabric`: Setting this paramter to `True` enables [PhysX Fabric](https://docs.omniverse.nvidia.com/prod_extensions/prod_extensions/ext_physics.html#flatcache), which offers a significant increase in simulation speed. However, this parameter must be set to `False` if soft-body simulation is required because `PhysX Fabric` curently only supports rigid-body simulation. - `enable_scene_query_support`: Setting this paramter to `True` allows the user to interact with prims in the scene. Keeping this setting to `False` during training improves simulation speed. Note that this parameter is always set to `True` if in test/inference mode to enable user interaction with trained models. ### Training Configuration Files The Omniverse Isaac Gym RL Environments are trained using a third-party highly-optimized RL library, [rl_games](https://github.com/Denys88/rl_games), which is also used to train the Isaac Gym Preview Release examples in [IsaacGymEnvs](https://github.com/NVIDIA-Omniverse/IsaacGymEnvs). Therefore, the rl_games training configuration `yaml` files in Isaac Sim are compatible with those from IsaacGymEnvs. However, please add the following lines under `config` in the training configuration `yaml` files (*i.e.* line 41-42 in [HumanoidPPO.yaml](../omniisaacgymenvs/cfg/train/HumanoidPPO.yaml#L41)) to ensure RL training runs on the intended device. ```yaml device: ${....rl_device} device_name: ${....rl_device} ```
13,250
Markdown
55.387234
252
0.749585
j3soon/OmniIsaacGymEnvs-DofbotReacher/docs/framework.md
## RL Framework ### Overview Our RL examples are built on top of Isaac Sim's RL framework provided in `omni.isaac.gym`. Tasks are implemented following `omni.isaac.core`'s Task structure. PPO training is performed using the [rl_games](https://github.com/Denys88/rl_games) library, but we provide the flexibility to use other RL libraries for training. For a list of examples provided, refer to the [RL List of Examples](rl_examples.md) ### Class Definition The RL ecosystem can be viewed as three main pieces: the Task, the RL policy, and the Environment wrapper that provides an interface for communication between the task and the RL policy. #### Task The Task class is where main task logic is implemented, such as computing observations and rewards. This is where we can collect states of actors in the scene and apply controls or actions to our actors. For convenience, we provide a base Task class, `RLTask`, which inherits from the `BaseTask` class in `omni.isaac.core`. This class is responsible for dealing with common configuration parsing, buffer initialization, and environment creation. Note that some config parameters and buffers in this class are specific to the rl_games library, and it is not necessary to inherit new tasks from `RLTask`. A few key methods in `RLTask` include: * `__init__(self, name: str, env: VecEnvBase, offset: np.ndarray = None)` - Parses config values common to all tasks and initializes action/observation spaces if not defined in the child class. Defines a GridCloner by default and creates a base USD scope for holding all environment prims. Can be called from child class. * `set_up_scene(self, scene: Scene, replicate_physics=True, collision_filter_global_paths=[], filter_collisions=True)` - Adds ground plane and creates clones of environment 0 based on values specifid in config. Can be called from child class `set_up_scene()`. * `pre_physics_step(self, actions: torch.Tensor)` - Takes in actions buffer from RL policy. Can be overriden by child class to process actions. * `post_physics_step(self)` - Controls flow of RL data processing by triggering APIs to compute observations, retrieve states, compute rewards, resets, and extras. Will return observation, reward, reset, and extras buffers. #### Environment Wrappers As part of the RL framework in Isaac Sim, we have introduced environment wrapper classes in `omni.isaac.gym` for RL policies to communicate with simulation in Isaac Sim. This class provides a vectorized interface for common RL APIs used by `gym.Env` and can be easily extended towards RL libraries that require additional APIs. We show an example of this extension process in this repository, where we extend `VecEnvBase` as provided in `omni.isaac.gym` to include additional APIs required by the rl_games library. Commonly used APIs provided by the base wrapper class `VecEnvBase` include: * `render(self, mode: str = "human")` - renders the current frame * `close(self)` - closes the simulator * `seed(self, seed: int = -1)` - sets a seed. Use `-1` for a random seed. * `step(self, actions: Union[np.ndarray, torch.Tensor])` - triggers task `pre_physics_step` with actions, steps simulation and renderer, computes observations, rewards, dones, and returns state buffers * `reset(self)` - triggers task `reset()`, steps simulation, and re-computes observations ##### Multi-Threaded Environment Wrapper for Extension Workflows `VecEnvBase` is a simple interface that’s designed to provide commonly used `gym.Env` APIs required by RL libraries. Users can create an instance of this class, attach your task to the interface, and provide your wrapper instance to the RL policy. Since the RL algorithm maintains the main loop of execution, interaction with the UI and environments in the scene can be limited and may interfere with the training loop. We also provide another environment wrapper class called `VecEnvMT`, which is designed to isolate the RL policy in a new thread, separate from the main simulation and rendering thread. This class provides the same set of interface as `VecEnvBase`, but also provides threaded queues for sending and receiving actions and states between the RL policy and the task. In order to use this wrapper interface, users have to implement a `TrainerMT` class, which should implement a `run()` method that initiates the RL loop on a new thread. We show an example of this in OmniIsaacGymEnvs under `omniisaacgymenvs/utils/rlgames/rlgames_train_mt.py`. The setup for using `VecEnvMT` is more involved compared to the single-threaded `VecEnvBase` interface, but will allow users to have more control over starting and stopping the training loop through interaction with the UI. Note that `VecEnvMT` has a timeout variable, which defaults to 90 seconds. If either the RL thread waiting for physics state exceeds the timeout amount or the simulation thread waiting for RL actions exceeds the timeout amount, the threaded queues will throw an exception and terminate training. For larger scenes that require longer simulation or training time, try increasing the timeout variable in `VecEnvMT` to prevent unnecessary timeouts. This can be done by passing in a `timeout` argument when calling `VecEnvMT.initialize()`. This wrapper is currently only supported with the [extension workflow](extension_workflow.md). ### Creating New Examples For simplicity, we will focus on using the single-threaded `VecEnvBase` interface in this tutorial. To run any example, first make sure an instance of `VecEnvBase` or descendant of `VecEnvBase` is initialized. This will be required as an argumet to our new Task. For example: ``` python env = VecEnvBase(headless=False) ``` The headless parameter indicates whether a viewer should be created for visualizing results. Then, create our task class, extending it from `RLTask`: ```python class MyNewTask(RLTask): def __init__( self, name: str, # name of the Task sim_config: SimConfig, # SimConfig instance for parsing cfg env: VecEnvBase, # env instance of VecEnvBase or inherited class offset=None # transform offset in World ) -> None: # parse configurations, set task-specific members ... self._num_observations = 4 self._num_actions = 1 # call parent class’s __init__ RLTask.__init__(self, name, env) ``` The `__init__` method should take 4 arguments: * `name`: a string for the name of the task (required by BaseTask) * `sim_config`: an instance of `SimConfig` used for config parsing, can be `None`. This object is created in `omniisaacgymenvs/utils/task_utils.py`. * `env`: an instance of `VecEnvBase` or an inherited class of `VecEnvBase` * `offset`: any offset required to place the `Task` in `World` (required by `BaseTask`) In the `__init__` method of `MyNewTask`, we can populate any task-specific parameters, such as dimension of observations and actions, and retrieve data from config dictionaries. Make sure to make a call to `RLTask`’s `__init__` at the end of the method to perform additional data initialization. Next, we can implement the methods required by the RL framework. These methods follow APIs defined in `omni.isaac.core` `BaseTask` class. Below is an example of a simple implementation for each method. ```python def set_up_scene(self, scene: Scene) -> None: # implement environment setup here add_prim_to_stage(my_robot) # add a robot actor to the stage super().set_up_scene(scene) # pass scene to parent class - this method in RLTask also uses GridCloner to clone the robot and adds a ground plane if desired self._my_robots = ArticulationView(...) # create a view of robots scene.add(self._my_robots) # add view to scene for initialization def post_reset(self): # implement any logic required for simulation on-start here pass def pre_physics_step(self, actions: torch.Tensor) -> None: # implement logic to be performed before physics steps self.perform_reset() self.apply_action(actions) def get_observations(self) -> dict: # implement logic to retrieve observation states self.obs_buf = self.compute_observations() def calculate_metrics(self) -> None: # implement logic to compute rewards self.rew_buf = self.compute_rewards() def is_done(self) -> None: # implement logic to update dones/reset buffer self.reset_buf = self.compute_resets() ``` To launch the new example from one of our training scripts, add `MyNewTask` to `omniisaacgymenvs/utils/task_util.py`. In `initialize_task()`, add an import to the `MyNewTask` class and add an instance to the `task_map` dictionary to register it into the command line parsing. To use the Hydra config parsing system, also add a task and train config files into `omniisaacgymenvs/cfg`. The config files should be named `cfg/task/MyNewTask.yaml` and `cfg/train/MyNewTaskPPO.yaml`. Finally, we can launch `MyNewTask` with: ```bash PYTHON_PATH random_policy.py task=MyNewTask ``` ### Using a New RL Library In this repository, we provide an example of extending Isaac Sim's environment wrapper classes to work with the rl_games library, which can be found at `omniisaacgymenvs/envs/vec_env_rlgames.py` and `omniisaacgymenvs/envs/vec_env_rlgames_mt.py`. The first script, `omniisaacgymenvs/envs/vec_env_rlgames.py`, extends from `VecEnvBase`. ```python from omni.isaac.gym.vec_env import VecEnvBase class VecEnvRLGames(VecEnvBase): ``` One of the features in rl_games is the support for asymmetrical actor-critic policies, which requires a `states` buffer in addition to the `observations` buffer. Thus, we have overriden a few of the class in `VecEnvBase` to incorporate this requirement. ```python def set_task( self, task, backend="numpy", sim_params=None, init_sim=True ) -> None: super().set_task(task, backend, sim_params, init_sim) # class VecEnvBase's set_task to register task to the environment instance # special variables required by rl_games self.num_states = self._task.num_states self.state_space = self._task.state_space def step(self, actions): # we clamp the actions so that values are within a defined range actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device).clone() # pass actions buffer to task for processing self._task.pre_physics_step(actions) # allow users to specify the control frequency through config for _ in range(self._task.control_frequency_inv): self._world.step(render=self._render) self.sim_frame_count += 1 # compute new buffers self._obs, self._rew, self._resets, self._extras = self._task.post_physics_step() self._states = self._task.get_states() # special buffer required by rl_games # return buffers in format required by rl_games obs_dict = {"obs": self._obs, "states": self._states} return obs_dict, self._rew, self._resets, self._extras ``` Similarly, we also have a multi-threaded version of the rl_games environment wrapper implementation, `omniisaacgymenvs/envs/vec_env_rlgames_mt.py`. This class extends from `VecEnvMT` and `VecEnvRLGames`: ```python from omni.isaac.gym.vec_env import VecEnvMT from .vec_env_rlgames import VecEnvRLGames class VecEnvRLGamesMT(VecEnvRLGames, VecEnvMT): ``` In this class, we also have a special method `_parse_data(self, data)`, which is required to be implemented to parse dictionary values passed through queues. Since multiple buffers of data are required by the RL policy, we concatenate all of the buffers in a single dictionary, and send that to the queue to be received by the RL thread. ```python def _parse_data(self, data): self._obs = torch.clamp(data["obs"], -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._rew = data["rew"].to(self._task.rl_device).clone() self._states = torch.clamp(data["states"], -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._resets = data["reset"].to(self._task.rl_device).clone() self._extras = data["extras"].copy() ``` ### API Limitations #### omni.isaac.core Setter APIs Setter APIs in omni.isaac.core for ArticulationView, RigidPrimView, and RigidContactView should only be called once per simulation step for each view instance per API. This means that for use cases where multiple calls to the same setter API from the same view instance is required, users will need to cache the states to be set for intermmediate calls, and make only one call to the setter API prior to stepping physics with the complete buffer containing all cached states. If multiple calls to the same setter API from the same view object are made within the simulation step, subsequent calls will override the states that have been set by prior calls to the same API, voiding the previous calls to the API. The API can be called again once a simulation step is made. For example, the below code will override states. ```python my_view.set_world_poses(positions=[[0, 0, 1]], orientations=[[1, 0, 0, 0]], indices=[0]) # this call will void the previous call my_view.set_world_poses(positions=[[0, 1, 1]], orientations=[[1, 0, 0, 0]], indices=[1]) my_world.step() ``` Instead, the below code should be used. ```python my_view.set_world_poses(positions=[[0, 0, 1], [0, 1, 1]], orientations=[[1, 0, 0, 0], [1, 0, 0, 0]], indices=[0, 1]) my_world.step() ``` #### omni.isaac.core Getter APIs Getter APIs for cloth simulation may return stale states when used with the GPU pipeline. This is because the physics simulation requires a simulation step to occur in order to refresh the GPU buffers with new states. Therefore, when a getter API is called after a setter API before a simulation step, the states returned from the getter API may not reflect the values that were set using the setter API. For example: ```python my_view.set_world_positions(positions=[[0, 0, 1]], indices=[0]) # Values may be stale when called before step positions = my_view.get_world_positions() # positions may not match [[0, 0, 1]] my_world.step() # Values will be updated when called after step positions = my_view.get_world_positions() # positions will reflect the new states ``` #### Performing Resets When resetting the states of actors, impulses generated by previous target or effort controls will continue to be carried over from the previous states in simulation. Therefore, depending on the time step, the masses of the objects, and the magnitude of the impulses, the difference between the desired reset state and the observed first state after reset can be large. To eliminate this issue, users should also reset any position/velocity targets or effort controllers to the reset state or zero state when resetting actor states. For setting joint positions and velocities using the omni.isaac.core ArticulationView APIs, position targets and velocity targets will automatically be set to the same states as joint positions and velocities. #### Massless Links It may be helpful in some scenarios to introduce dummy bodies into articulations for retrieving transformations at certain locations of the articulation. Although it is possible to introduce rigid bodies with no mass and colliders APIs and attach them to the articulation with fixed joints, this can sometimes cause physics instabilities in simulation. To prevent instabilities from occurring, it is recommended to add a dummy geometry to the rigid body and include both Mass and Collision APIs. The mass of the geometry can be set to a very small value, such as 0.0001, to avoid modifying physical behaviors of the articulation. Similarly, we can also disable collision on the Collision API of the geometry to preserve contact behavior of the articulation.
15,846
Markdown
58.575188
862
0.754007
j3soon/OmniIsaacGymEnvs-DofbotReacher/docs/README.md
# Usage To enable this extension, go to the Extension Manager menu and enable omniisaacgymenvs extension
105
Markdown
34.333322
96
0.828571
j3soon/OmniIsaacGymEnvs-DofbotReacher/docs/index.rst
RL Examples [omniisaacgymenvs] ######################################################
86
reStructuredText
27.999991
54
0.302326
j3soon/nvidia-isaac-summary/README.md
# NVIDIA Isaac Summary A list of NVIDIA Isaac components. [[link](https://developer.nvidia.com/isaac)] - (Omniverse) Isaac Sim [[link](https://developer.nvidia.com/isaac-sim)][[docs](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html)][[ngc](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/isaac-sim)][[dli](https://courses.nvidia.com/courses/course-v1:DLI+T-OV-01+V1/)][[dli](https://courses.nvidia.com/courses/course-v1:DLI+S-OV-03+V1/)][[youtube](https://youtu.be/pxPFr58gHmQ?list=PL3jK4xNnlCVf1SzxjCm7ZxDBNl9QYyV8X)] a robotics simulation toolkit based on Omniverse. > a scalable robotics simulation application and synthetic data-generation tool that powers photorealistic, physically accurate virtual environments. > > -- [NVIDIA Isaac Sim](https://developer.nvidia.com/isaac-sim) Before starting, please make sure your hardware and software meet the [system requirements](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/requirements.html#system-requirements). Technically, Isaac Sim is an app built upon Omniverse Kit, which is a SDK for building apps upon the Omniverse platform. The simulation is accelerated by PhysX, while the scene is rendered through RTX rendering. Isaac Sim can be downloaded through [Omniverse Launcher](https://www.nvidia.com/en-us/omniverse/download/) here: - [Linux](https://install.launcher.omniverse.nvidia.com/installers/omniverse-launcher-linux.AppImage) - [Windows](https://install.launcher.omniverse.nvidia.com/installers/omniverse-launcher-win.exe) The required assets are accessed through [Omniverse Nucleus](https://docs.omniverse.nvidia.com/nucleus/latest/index.html), which requires setting up a (local) Nucleus account. In addition, installing [Omniverse Cache](https://docs.omniverse.nvidia.com/prod_utilities/prod_utilities/cache/overview.html) can speed up the access to Nucleus. - Isaac Sim Unity3D [[docs](https://docs.nvidia.com/isaac/archive/2020.1/doc/simulation/unity3d.html)] Unity3D support has been deprecated ([source](https://forums.developer.nvidia.com/t/no-isaac-sim-unity3d-to-download/212951)). The term `Isaac Sim` now refer to the Omniverse-based version. > allows you to use Unity3D as the simulation environment for Isaac robotics. > > -- [NVIDIA Isaac SDK](https://docs.nvidia.com/isaac/archive/2020.1/doc/simulation/unity3d.html) - ROS & ROS 2 Bridges [[docs](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_ros_turtlebot.html)][[docs](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_ros2_turtlebot.html)] > tools to facilitate integration with ROS systems. > > -- [NVIDIA Isaac Sim](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_ros_turtlebot.html) - Isaac Cortex [[docs](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_cortex_1_overview.html)] A behavior programming tool. > enables programming task awareness and adaptive decision making into robots, and easily switching between simulation and reality. > > -- [NVIDIA Isaac Cortex](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s42693/) (slightly rephrased) - Isaac Core API [[docs](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_core_hello_world.html#isaac-sim-app-tutorial-core-hello-world)] A Python abstraction API (for Pixar USD API). > a set of APIs that are designed to be used in robotics applications, APIs that abstract away the complexity of USD APIs and merge multiple steps into one for frequently performed tasks. > > -- [NVIDIA Isaac Core API](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_core_hello_world.html#isaac-sim-app-tutorial-core-hello-world) - Isaac Sim Assets [[docs](https://docs.omniverse.nvidia.com/isaacsim/latest/features/environment_setup/assets/usd_assets_overview.html)] A collection of USD assets including environments, robots, sensors, props, and other featured assets. - other features such as [OmniGraph](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_gui_omnigraph.html), [Importers](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/manual_isaac_extensions.html#asset-conversion-extensions), [etc.](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/manual_isaac_extensions.html) - (Omniverse) Isaac Gym [[docs](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_gym_isaac_gym.html)][[github](https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs)] a light-weight repository based on Isaac Sim that provides a variety of GPU-accelerated reinforcement learning environments and algorithms. The repository is named as Omniverse Isaac Gym Environments (OIGE), and is released under the BSD 3-Clause License ([source](https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs/blob/main/LICENSE.txt)). > an interface for performing reinforcement learning training and inferencing in Isaac Sim. > > -- [NVIDIA Isaac Gym](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_gym_isaac_gym.html) - Isaac Gym (Preview Release) [[link](https://developer.nvidia.com/isaac-gym)][[github](https://github.com/NVIDIA-Omniverse/IsaacGymEnvs)][[arxiv](https://arxiv.org/abs/2108.10470)][[site](https://sites.google.com/view/isaacgym-nvidia)][[youtube](https://youtu.be/nleDq-oJjGk?list=PLq2Xfjf6QzkrgDkQdtEzlnXeUAbTPEXNH)] the predecessor of (Omniverse) Isaac Gym that does not base on Isaac Sim (and Omniverse). The repository is named as Isaac Gym Environments (IGE), and is released under the BSD 3-Clause License ([source](https://github.com/NVIDIA-Omniverse/IsaacGymEnvs/blob/main/LICENSE.txt)). The documentation is provided in an offline form that can be accessed after download. > NVIDIA’s physics simulation environment for reinforcement learning research. > > -- [NVIDIA Isaac Gym](https://developer.nvidia.com/isaac-gym) The term `Isaac Gym` is ambiguous when viewed from a technical perspective. It's better to specify whether the mentioned Isaac Gym is based on Isaac Sim, or the preview version that does not base on Isaac Sim. > Until Omniverse Isaac Gym functionality is feature complete, this standalone Isaac Gym Preview release will remain available. > > -- [NVIDIA Isaac Gym](https://developer.nvidia.com/isaac-gym) The latest release of Isaac Gym (Preview Release) is Preview 4, and will not be further updated. - Isaac Orbit [[docs](https://isaac-orbit.github.io/orbit/)][[docs](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/ext_omni_isaac_orbit.html)][[arxiv](https://arxiv.org/abs/2301.04195)][[site](https://isaac-orbit.github.io/)][[github](https://github.com/NVIDIA-Omniverse/Orbit)] a general repository based on Isaac Sim that features a number of GPU-accelerated simulation environments, a variety of motion generators, integrations with several reinforcement learning libraries, utilities for imitation learning, etc. Released under the BSD 3-Clause License ([source](https://github.com/NVIDIA-Omniverse/Orbit/blob/main/LICENSE)). > a unified and modular framework for robot learning powered by NVIDIA Isaac Sim. > > -- [NVIDIA Isaac Orbit](https://arxiv.org/abs/2301.04195) Omniverse Isaac Gym is a light-weight framework focusing on reinforcement learning tasks, while Isaac Orbit is a more general and modular framework that focuses on robotics applications. ([source](https://nvidia.slack.com/archives/C01TGK0GSJG/p1675192628308169?thread_ts=1674981564.933639&cid=C01TGK0GSJG)) - Isaac Robot Operating System (ROS) [[link](https://developer.nvidia.com/isaac-ros)][[github](https://github.com/NVIDIA-ISAAC-ROS)][[docs](https://nvidia-isaac-ros.github.io/getting_started/index.html)] a collection of GPU-accelerated ROS2 packages (i.e., Isaac GEMs). > a collection of hardware-accelerated packages that make it easier for ROS developers to build high-performance solutions on NVIDIA hardware. > > -- [Isaac ROS](https://developer.nvidia.com/isaac-ros) The term `Isaac ROS` refer to the packages for ROS 2, instead of Isaac SDK. Isaac ROS should not be confused with the `ROS & ROS 2 Bridges` in Isaac Sim, or the `ROS Bridge` in Isaac SDK. The packages (i.e., Isaac GEMs) are named as `Isaac ROS <Package_Name>`. Unfortunately, ambiguous terms such as `Isaac Elbrus` still exist ([source](https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_visual_slam)). Since the Elbrus package exist in both Isaac ROS and Isaac SDK, Elbrus should be refered to as `Isaac ROS Elbrus` for preciseness. Before starting, please make sure your PC/Jetson hardware and software meet the [system requirements](https://nvidia-isaac-ros.github.io/getting_started/index.html#system-requirements). After checking the requirements, I suggest you start from the Nvblox tutorial below. - (Isaac ROS) Nvblox [[github](https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_nvblox)] > processes depth and pose to reconstruct a 3D scene in real-time and outputs a 2D costmap for Nav2. The costmap is used in planning during navigation as a vision-based solution to avoid obstacles. > > -- [Isaac ROS Nvblox](https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_nvblox) You can quickly experience the power of Isaac ROS by simply following the [the quick start guide](https://nvidia-isaac-ros.github.io/repositories_and_packages/isaac_ros_nvblox/isaac_ros_nvblox/index.html#quickstart) of Nvblox. - (Isaac ROS) NVIDIA Isaac for Transport for ROS (NITROS) [[github](https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_nitros)] > the NVIDIA implementation of type adaption and negotiation for ROS2 that eliminates software/CPU overhead and improves performance of hardware acceleration. > > -- [Isaac ROS](https://developer.nvidia.com/isaac-ros) (slightly rephrased) - [etc.](https://nvidia-isaac-ros.github.io/repositories_and_packages/index.html) - Isaac SDK [[docs](https://docs.nvidia.com/isaac/archive/2021.1/doc/index.html)] a toolkit for deploying GPU-accelerated algorithms on physical robots. > a toolkit that includes building blocks and tools that accelerate robot developments that require the increased perception and navigation features enabled by AI. > > -- [NVIDIA Isaac SDK](https://developer.nvidia.com/isaac-sdk) Personally, I suggest using Isaac ROS instead of Isaac SDK for simplicity. Since researchers/engineers working on robotics tend to be more familiar with the [Robot Operating System (ROS)](https://www.ros.org/) than the `bazel` command used in Isaac SDK. The Isaac GEMs and Isaac Applications included in Isaac SDK are also available in Isaac ROS. > Isaac includes Isaac GEMs for both NVIDIA’s Isaac SDK Engine and ROS2. Isaac ROS has been more recently updated to contribute hardware acceleration to the growing ROS ecosystem. You can choose whichever one is more suitable for your project. > > -- [NVIDIA Forum Moderator](https://forums.developer.nvidia.com/t/is-isaac-depreciated/224402) (slightly rephrased) The latest release of Isaac SDK is 2021.1, since the future roadmap of Isaac SDK is still under development ([source](https://forums.developer.nvidia.com/t/isaac-sdk-next-release/217841/2), [source](https://forums.developer.nvidia.com/t/is-isaac-depreciated/224402), [source](https://forums.developer.nvidia.com/t/isaac-sdk-is-dead/226267/2), [source](https://nvidia.slack.com/archives/CHG4MCWNQ/p1661260234425319?thread_ts=1658787137.725279&cid=CHG4MCWNQ)). - Isaac GEMs > a collection of high-performance algorithms, also called GEMs, to accelerate the development of challenging robotics applications. > > -- [NVIDIA Isaac SDK](https://docs.nvidia.com/isaac/archive/2021.1/doc/overview.html#isaac-gems) - Isaac Applications > provides various sample applications, which highlight features of Isaac SDK Engine or focus on the functionality of a particular Isaac SDK GEM. > > -- [NVIDIA Isaac SDK](https://docs.nvidia.com/isaac/archive/2021.1/doc/overview.html#isaac-applications) - Isaac (Robotics) Engine > a feature-rich framework for building modular robotics applications. > > -- [NVIDIA Isaac SDK](https://docs.nvidia.com/isaac/archive/2021.1/doc/overview.html#isaac-engine) - Isaac Perceptor [[link](https://developer.nvidia.com/isaac/perceptor)] Formerly _Isaac for AMRs_ and _Isaac AMR_. > a collection of hardware-accelerated packages for visual AI, tailored for Autonomous Mobile Robot (AMR) to perceive, localize, and operate robustly in unstructured environments. Robotics software developers can now easily access turnkey AI-based perception capabilities, ensuring reliable operations and obstacle detection in complex scenarios. > > -- [NVIDIA Isaac Perceptor](https://developer.nvidia.com/isaac/perceptor) - Isaac Nova Orin [[link](https://developer.nvidia.com/isaac/nova-orin)] a reference architecture for AMRs based on NVIDIA Jetson AGX Orin. > a state-of-the-art compute and sensor reference architecture to accelerate AMR development and deployment. It features up to two Jetson AGX Orin computers and a full sensor suite for next-gen AMRs that enable surround vision-based perception with lidar-based solutions. > > -- [NVIDIA Isaac Nova Orin](https://developer.nvidia.com/isaac/nova-orin) - Nova Carter [[link](https://robotics.segway.com/nova-carter/)] [[spec](https://docs.nvidia.com/isaac/doc/novacarter.html)] a reference design robot based on the Isaac Nova Orin architecture. > a reference design robot that uses the Nova Orin compute and sensor architecture. It’s a complete robotics development platform that accelerates the development and deployment of next-generation Autonomous Mobile Robots (AMRs). You can learn more about it from our partner, Segway Robotics > > -- [NVIDIA Isaac Nova Orin](https://developer.nvidia.com/isaac/nova-orin) - Isaac Manipulator [[link](https://developer.nvidia.com/isaac/manipulator)] > a collection of foundation models and modular GPU-accelerated libraries that help build scalable and repeatable workflows for dynamic manipulation tasks by accelerating AI model training and task (re)programming. It’s revolutionizing how robotics software developers can leverage customized software components for specific tasks such as machine tending, assembly tasks, etc., enabling manipulation arms to seamlessly perceive and interact with their surroundings. > > -- [NVIDIA Isaac Manipulator](https://developer.nvidia.com/isaac/manipulator) - Isaac Lab [[link](https://developer.nvidia.com/isaac-sim#isaac-lab)] > a lightweight reference application built on the Isaac Sim platform specifically optimized for robot learning and is pivotal for robot foundation model training. Isaac Lab optimizes for reinforcement, imitation, and transfer learning, and is capable of training all types of robot embodiments including the Project GR00T foundation model for humanoids. > > -- [NVIDIA Isaac Lab](https://developer.nvidia.com/isaac-sim#isaac-lab) - OSMO [[link](https://developer.nvidia.com/osmo)] > a cloud-native workflow orchestration platform that lets you easily scale your workloads across distributed environments—from on-premises to private and public cloud. It provides a single pane of glass for scheduling complex multi-stage and multi-container heterogeneous computing workflows. > > -- [NVIDIA OSMO](https://developer.nvidia.com/osmo) - Project GR00T [[link](https://developer.nvidia.com/project-GR00T)] > a general-purpose foundation model that promises to transform humanoid robot learning in simulation and the real world. Trained in NVIDIA GPU-accelerated simulation, GR00T enables humanoid embodiments to learn from a handful of human demonstrations with imitation learning and NVIDIA Isaac Lab for reinforcement learning, as well as generating robot movements from video data. The GR00T model takes multimodal instructions and past interactions as input and produces the actions for the robot to execute. > > -- [NVIDIA Project GR00T](https://developer.nvidia.com/project-GR00T) - cuOpt [[link](https://developer.nvidia.com/cuopt-logistics-optimization)][[docs](https://docs.nvidia.com/cuopt/index.html)][[ngc](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/cuopt/containers/cuopt)][[dli](https://courses.nvidia.com/courses/course-v1:DLI+T-FX-05+V1/)][[github](https://github.com/NVIDIA/cuOpt-Resources)] a GPU-accelerated solver for [vehicle routing problem](https://en.wikipedia.org/wiki/Vehicle_routing_problem). Formerly _ReOpt_. > a GPU-accelerated logistics solver that uses heuristics and optimizations to calculate complex vehicle routing problem variants with a wide range of constraints. > > -- [NVIDIA cuOpt](https://courses.nvidia.com/courses/course-v1:DLI+T-FX-05+V1/) - cuOpt for Isaac Sim [[docs](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/logistics_tutorial_cuopt.html)][[github](https://github.com/NVIDIA/cuOpt-Resources/tree/branch-22.12/cuopt-isaacsim)] > a reference for the use of NVIDIA cuOpt to solve routing optimization problems in simulation. > > -- [NVIDIA Isaac Sim](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/logistics_tutorial_cuopt.html) - (Omniverse) Replicator [[link](https://developer.nvidia.com/nvidia-omniverse-platform/replicator)][[docs](https://docs.omniverse.nvidia.com/prod_extensions/prod_extensions/ext_replicator.html)][[blog](https://developer.nvidia.com/blog/build-custom-synthetic-data-generation-pipelines-with-omniverse-replicator/)] a synthetic data generation (SDG) toolkit based on Omniverse. > an advanced, extensible SDK to generate physically accurate 3D synthetic data, and easily build custom synthetic data generation (SDG) tools to accelerate the training and accuracy of perception networks. > > -- [NVIDIA Replicator](https://developer.nvidia.com/nvidia-omniverse-platform/replicator) - Isaac Sim Replicator [[docs](https://docs.omniverse.nvidia.com/isaacsim/latest/replicator_tutorials/index.html)] > a collection of extensions, python APIs, workflows, and tools such as Replicator Composer that enable a variety of synthetic data generation tasks. > > -- [NVIDIA Isaac Sim](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/manual_replicator.html) - (Omniverse) Replicator Insight [[link](https://developer.nvidia.com/nvidia-omniverse/replicator-insight-eap)] > an app that enables developers to quickly view, navigate, and inspect their synthetically generated renders. > > -- [NVIDIA Replicator Insight](https://developer.nvidia.com/nvidia-omniverse/replicator-insight-eap) - Omniverse Cloud [[link](https://www.nvidia.com/en-us/omniverse/cloud/)] > a platform of APIs, SDKs, and services available within a full-stack cloud environment for enterprise developers to easily integrate Universal Scene Description (OpenUSD) and RTX rendering technologies into their 3D industrial digitalization applications. > > -- [NVIDIA Omniverse Cloud](https://www.nvidia.com/en-us/omniverse/cloud/) Please [open an issue](https://github.com/j3soon/nvidia-isaac-summary/issues) if you have spotted any errors. I have documented some bug fixes and workarounds for Isaac in the [j3soon/isaac-extended](https://github.com/j3soon/isaac-extended) repository. I recommend also checking out that repository for reference. Last updated on 2024/04/10.
19,540
Markdown
97.691919
508
0.770317
j3soon/isaac-extended/README.md
# Isaac Extended Some examples, notes, and patches not yet included in the latest Isaac release. The description of each Isaac components can be found in the [j3soon/nvidia-isaac-summary](https://github.com/j3soon/nvidia-isaac-summary) repo. ## Set up ```sh git clone https://github.com/j3soon/isaac-extended.git cd isaac-extended ``` The following will assume you have cloned the directory and `cd` into it: ## Isaac Sim ### Conda issue on Linux Reference: <https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_python.html#advanced-running-with-anaconda> Bug reports: - [#3752249](https://github.com/j3soon/nvbugs/blob/master/3752249.md) Solutions: - Isaac Sim 2022.1.1 ```sh export ISAAC_SIM="$HOME/.local/share/ov/pkg/isaac_sim-2022.1.1" cp $ISAAC_SIM/setup_python_env.sh $ISAAC_SIM/setup_python_env.sh.bak cp ./isaac_sim-2022.1.1-patch/linux/setup_python_env.sh $ISAAC_SIM/setup_python_env.sh ``` - Isaac Sim 2022.2.0 ```sh export ISAAC_SIM="$HOME/.local/share/ov/pkg/isaac_sim-2022.2.0" cp $ISAAC_SIM/setup_python_env.sh $ISAAC_SIM/setup_python_env.sh.bak cp ./isaac_sim-2022.2.0-patch/linux/setup_python_env.sh $ISAAC_SIM/setup_python_env.sh ``` - Isaac Sim 2022.2.1 ```sh export ISAAC_SIM="$HOME/.local/share/ov/pkg/isaac_sim-2022.2.1" cp $ISAAC_SIM/setup_python_env.sh $ISAAC_SIM/setup_python_env.sh.bak cp ./isaac_sim-2022.2.1-patch/linux/setup_python_env.sh $ISAAC_SIM/setup_python_env.sh ``` - Isaac Sim 2023.1.0 ```sh export ISAAC_SIM="$HOME/.local/share/ov/pkg/isaac_sim-2023.1.0" cp $ISAAC_SIM/setup_python_env.sh $ISAAC_SIM/setup_python_env.sh.bak cp ./isaac_sim-2023.1.0-patch/linux/setup_python_env.sh $ISAAC_SIM/setup_python_env.sh ``` ### Conda issue on Windows Bug reports: - [#3837533](https://github.com/j3soon/nvbugs/blob/master/3837533.md) - [#3837573](https://github.com/j3soon/nvbugs/blob/master/3837573.md) - [#3837658](https://github.com/j3soon/nvbugs/blob/master/3837658.md) Solutions: - Isaac Sim 2022.1.1 ```sh set ISAAC_SIM="%LOCALAPPDATA%\ov\pkg\isaac_sim-2022.1.1" copy .\isaac_sim-2022.1.1-patch\windows\setup_conda_env.bat %ISAAC_SIM%\setup_conda_env.bat ``` and make sure to run the following after activating the conda environment: ```sh call setup_conda_env.bat ``` - If you need a patch for other Isaac Sim versions, please [open an issue](https://github.com/j3soon/isaac-extended/issues). - For other package version issues, please refer to the bug reports. ### Docker Container issue Bug reports: - [#4063971](https://github.com/j3soon/nvbugs/blob/master/4063971.md) Solution: - Run the following command immediately after starting a `nvcr.io/nvidia/isaac-sim:2022.2.1` container: ```sh rm /etc/vulkan/icd.d/nvidia_icd.json ``` ### Docker Container with Display Reference: <https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_container.html> The original docker command is: ```sh docker run --name isaac-sim --entrypoint bash -it --gpus all -e "ACCEPT_EULA=Y" --rm --network=host \ -e "PRIVACY_CONSENT=Y" \ -v ~/docker/isaac-sim/cache/kit:/isaac-sim/kit/cache:rw \ -v ~/docker/isaac-sim/cache/ov:/root/.cache/ov:rw \ -v ~/docker/isaac-sim/cache/pip:/root/.cache/pip:rw \ -v ~/docker/isaac-sim/cache/glcache:/root/.cache/nvidia/GLCache:rw \ -v ~/docker/isaac-sim/cache/computecache:/root/.nv/ComputeCache:rw \ -v ~/docker/isaac-sim/logs:/root/.nvidia-omniverse/logs:rw \ -v ~/docker/isaac-sim/data:/root/.local/share/ov/data:rw \ -v ~/docker/isaac-sim/documents:/root/Documents:rw \ nvcr.io/nvidia/isaac-sim:2023.1.1 ``` The modified docker command with display is: ```sh xhost +local:docker docker run --name isaac-sim --entrypoint bash -it --gpus all -e "ACCEPT_EULA=Y" --rm --network=host \ -e "PRIVACY_CONSENT=Y" \ -v ~/docker/isaac-sim/cache/kit:/isaac-sim/kit/cache:rw \ -v ~/docker/isaac-sim/cache/ov:/root/.cache/ov:rw \ -v ~/docker/isaac-sim/cache/pip:/root/.cache/pip:rw \ -v ~/docker/isaac-sim/cache/glcache:/root/.cache/nvidia/GLCache:rw \ -v ~/docker/isaac-sim/cache/computecache:/root/.nv/ComputeCache:rw \ -v ~/docker/isaac-sim/logs:/root/.nvidia-omniverse/logs:rw \ -v ~/docker/isaac-sim/data:/root/.local/share/ov/data:rw \ -v ~/docker/isaac-sim/documents:/root/Documents:rw \ -v $(pwd):/workspace \ -v /tmp/.X11-unix:/tmp/.X11-unix \ -e DISPLAY=$DISPLAY \ nvcr.io/nvidia/isaac-sim:2023.1.1 ``` and run `/isaac-sim/runapp.sh` inside the container to start Isaac Sim. ### Running on Omniverse Farm Please refer to <https://github.com/j3soon/omni-farm-isaac>. ### Minors Bug reports: - [#4035662](https://github.com/j3soon/nvbugs/blob/master/4035662.md) ## Nucleus ### Installation Many users often forget to install Nucleus before running Isaac Sim examples. Please follow [the official installation instructions](https://docs.omniverse.nvidia.com/nucleus/latest/workstation/installation.html#install-using-omniverse-launcher) carefully. Or follow our installation guide below: 1. Open Omniverse Launcher, go to the `Nucleus` tab, and click `Add Local Nucleus Service`. ![](./docs/images/nucleus/01-nucleus-not-installed.png) 2. Use the default `DATA PATH` and click `NEXT`. ![](./docs/images/nucleus/02-nucleus-add-service.png) 3. Create a local admin account for Nucleus by filling out the form and click `COMPLETE SETUP`. ![](./docs/images/nucleus/03-nucleus-create-admin-account.png) 4. Wait for the installation to finish. ![](./docs/images/nucleus/04-nucleus-installing.png) 5. Confirm that `Local Nucleus Service` is displayed instead of the original `Add Local Nucleus Service`, indicating that the installation is successful. ![](./docs/images/nucleus/05-nucleus-installed.png) 6. Launch Isaac Sim and click `Content > Omniverse > localhost` in the bottom tab. ![](./docs/images/nucleus/06-isaac-sim.png) 7. You should see a hint to login from your web browser. ![](./docs/images/nucleus/07-isaac-sim-login-required.png) 8. A new tab should be opened in your web browser. Login with the account you created in step 3. ![](./docs/images/nucleus/08-web-login.png) If you have trouble logging in, simply create a new account by clicking `Create Account`. ![](./docs/images/nucleus/09-web-create-user.png) 9. After logging in, you should see the following page. You can close the tab now. ![](./docs/images/nucleus/10-web-logged-in.png) 10. Go back to Isaac Sim and click `Content > Omniverse > localhost` again. You should see the built-in folders (`Library`, `NVIDIA`, `Projects`, `Users`). ![](./docs/images/nucleus/11-isaac-sim-nucleus.png) ### Troubleshooting In some cases, Nucleus may not be running properly. You can check the status of the Nucleus process by visiting the `Settings` page of Nucleus: 1. Go to the Nucleus tab and click `Settings`. ![](./docs/images/nucleus-troubleshooting/02-nucleus-settings.png) 2. A new tab should be opened in your web browser. Visit the `Apps` tab and make sure that all Apps are currently running. If not, click `Restart all` to start them. If your disk is almost full, you may want to visit the `Cache` tab and clear the cache. ![](./docs/images/nucleus-troubleshooting/03-nucleus-web-settings.png) 3. Open Isaac Sim and click `Content > Omniverse > localhost`, Nucleus may ask you to login. After that, you should see the built-in folders (`Library`, `NVIDIA`, `Projects`, `Users`). ![](./docs/images/nucleus/11-isaac-sim-nucleus.png) 4. As a side note, you may also need to re-login to the Omniverse Launcher after some time. ![](./docs/images/nucleus-troubleshooting/01-omniverse-launcher-login.png) ## Isaac ROS ### isaac_ros_common issue Bug reports: - [#4113333](https://github.com/j3soon/nvbugs/blob/master/4113333.md) Solution: - Change repo remote to <https://github.com/j3soon/isaac_ros_common> and reset to remote HEAD. ### Jetson Board Setup - Make sure to flash the supported Jetpack version: <https://github.com/NVIDIA-ISAAC-ROS/.github/blob/main/profile/hardware-setup.md>. - A large enough MicroSD Card seem to be able to replace the NVMe SSD card mentioned here: <https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_common/blob/main/docs/dev-env-setup_jetson.md>.
8,259
Markdown
34.913043
253
0.722848
j3soon/OmniIsaacGymEnvs-UR10Reacher/setup.py
"""Installation script for the 'isaacgymenvs' python package.""" from __future__ import absolute_import from __future__ import print_function from __future__ import division from setuptools import setup, find_packages import os # Minimum dependencies required prior to installation INSTALL_REQUIRES = [ "protobuf==3.20.1", "omegaconf==2.1.1", "hydra-core==1.1.1", "redis==3.5.3", # needed by Ray on Windows "rl-games==1.5.2" ] # Installation operation setup( name="omniisaacgymenvs", author="NVIDIA", version="1.1.0", description="RL environments for robot learning in NVIDIA Isaac Sim.", keywords=["robotics", "rl"], include_package_data=True, install_requires=INSTALL_REQUIRES, packages=find_packages("."), classifiers=["Natural Language :: English", "Programming Language :: Python :: 3.7, 3.8"], zip_safe=False, ) # EOF
890
Python
24.457142
94
0.678652
j3soon/OmniIsaacGymEnvs-UR10Reacher/README.md
# UR10 Reacher Reinforcement Learning Sim2Real Environment for Omniverse Isaac Gym/Sim This repository adds a UR10Reacher environment based on [OmniIsaacGymEnvs](https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs) (commit [d0eaf2e](https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs/tree/d0eaf2e7f1e1e901d62e780392ca77843c08eb2c)), and includes Sim2Real code to control a real-world [UR10](https://www.universal-robots.com/products/ur10-robot/) with the policy learned by reinforcement learning in Omniverse Isaac Gym/Sim. We target Isaac Sim 2022.1.1 and tested the RL code on Windows 10 and Ubuntu 18.04. The Sim2Real code is tested on Linux and a real UR5 CB3 (since we don't have access to a real UR10). This repo is compatible with [OmniIsaacGymEnvs-DofbotReacher](https://github.com/j3soon/OmniIsaacGymEnvs-DofbotReacher). ## Preview ![](docs/media/UR10Reacher-Vectorized.gif) ![](docs/media/UR10Reacher-Sim2Real.gif) ## Installation Prerequisites: - Before starting, please make sure your hardware and software meet the [system requirements](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/requirements.html#system-requirements). - [Install Omniverse Isaac Sim 2022.1.1](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_workstation.html) (Must setup Cache and Nucleus) - You may try out newer versions of Isaac Sim along with [their corresponding patch](https://github.com/j3soon/isaac-extended#conda-issue-on-linux), but it is not guaranteed to work. - Double check that Nucleus is correctly installed by [following these steps](https://github.com/j3soon/isaac-extended#nucleus). - Your computer & GPU should be able to run the Cartpole example in [OmniIsaacGymEnvs](https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs) - (Optional) [Set up a UR3/UR5/UR10](https://www.universal-robots.com/products/) in the real world Make sure to install Isaac Sim in the default directory and clone this repository to the home directory. Otherwise, you will encounter issues if you didn't modify the commands below accordingly. We will use Anaconda to manage our virtual environment: 1. Clone this repository: - Linux ```sh cd ~ git clone https://github.com/j3soon/OmniIsaacGymEnvs-UR10Reacher.git ``` - Windows ```sh cd %USERPROFILE% git clone https://github.com/j3soon/OmniIsaacGymEnvs-UR10Reacher.git ``` 2. Generate [instanceable](https://docs.omniverse.nvidia.com/isaacsim/latest/isaac_gym_tutorials/tutorial_gym_instanceable_assets.html) UR10 assets for training: [Launch the Script Editor](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_gui_interactive_scripting.html#script-editor) in Isaac Sim. Copy the content in `omniisaacgymenvs/utils/usd_utils/create_instanceable_ur10.py` and execute it inside the Script Editor window. Wait until you see the text `Done!`. 3. (Optional) [Install ROS Melodic for Ubuntu](https://wiki.ros.org/melodic/Installation/Ubuntu) and [Set up a catkin workspace for UR10](https://github.com/UniversalRobots/Universal_Robots_ROS_Driver/blob/master/README.md). Please change all `catkin_ws` in the commands to `ur_ws`, and make sure you can control the robot with `rqt-joint-trajectory-controller`. ROS support is not tested on Windows. 4. [Download and Install Anaconda](https://www.anaconda.com/products/distribution#Downloads). ```sh # For 64-bit Linux (x86_64/x64/amd64/intel64) wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh bash Anaconda3-2022.10-Linux-x86_64.sh ``` For Windows users, make sure to use `Anaconda Prompt` instead of `Anaconda Powershell Prompt`, `Command Prompt`, or `Powershell` for the following commands. 5. Patch Isaac Sim 2022.1.1 - Linux ```sh export ISAAC_SIM="$HOME/.local/share/ov/pkg/isaac_sim-2022.1.1" cp $ISAAC_SIM/setup_python_env.sh $ISAAC_SIM/setup_python_env.sh.bak cp ~/OmniIsaacGymEnvs-UR10Reacher/isaac_sim-2022.1.1-patch/setup_python_env.sh $ISAAC_SIM/setup_python_env.sh ``` - Windows ```sh set ISAAC_SIM="%LOCALAPPDATA%\ov\pkg\isaac_sim-2022.1.1" copy %USERPROFILE%\OmniIsaacGymEnvs-UR10Reacher\isaac_sim-2022.1.1-patch\windows\setup_conda_env.bat %ISAAC_SIM%\setup_conda_env.bat ``` 6. [Set up conda environment for Isaac Sim](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_python.html#advanced-running-with-anaconda) - Linux ```sh # conda remove --name isaac-sim --all export ISAAC_SIM="$HOME/.local/share/ov/pkg/isaac_sim-2022.1.1" cd $ISAAC_SIM conda env create -f environment.yml conda activate isaac-sim cd ~/OmniIsaacGymEnvs-UR10Reacher pip install -e . # Below is optional pip install pyyaml rospkg ``` - Windows ```sh # conda remove --name isaac-sim --all set ISAAC_SIM="%LOCALAPPDATA%\ov\pkg\isaac_sim-2022.1.1" cd %ISAAC_SIM% conda env create -f environment.yml conda activate isaac-sim :: Fix incorrect importlib-metadata version (isaac-sim 2022.1.1) pip install importlib-metadata==4.11.4 cd %USERPROFILE%\OmniIsaacGymEnvs-UR10Reacher pip install -e . :: Fix incorrect torch version (isaac-sim 2022.1.1) conda install -y pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 -c pytorch ``` 7. Activate conda & ROS environment - Linux ```sh export ISAAC_SIM="$HOME/.local/share/ov/pkg/isaac_sim-2022.1.1" cd $ISAAC_SIM conda activate isaac-sim source setup_conda_env.sh # Below are optional cd ~/ur_ws source devel/setup.bash # or setup.zsh if you're using zsh ``` - Windows ```sh set ISAAC_SIM="%LOCALAPPDATA%\ov\pkg\isaac_sim-2022.1.1" cd %ISAAC_SIM% conda activate isaac-sim call setup_conda_env.bat ``` Please note that you should execute the commands in Step 7 for every new shell. For Windows users, replace `~` to `%USERPROFILE%` for all the following commands. ## Dummy Policy This is a sample to make sure you have setup the environment correctly. You should see a single UR10 in Isaac Sim. ```sh cd ~/OmniIsaacGymEnvs-UR10Reacher python omniisaacgymenvs/scripts/dummy_ur10_policy.py task=UR10Reacher test=True num_envs=1 ``` ## Training You can launch the training in `headless` mode as follows: ```sh cd ~/OmniIsaacGymEnvs-UR10Reacher python omniisaacgymenvs/scripts/rlgames_train.py task=UR10Reacher headless=True ``` The number of environments is set to 512 by default. If your GPU has small memory, you can decrease the number of environments by changing the arguments `num_envs` as below: ```sh cd ~/OmniIsaacGymEnvs-UR10Reacher python omniisaacgymenvs/scripts/rlgames_train.py task=UR10Reacher headless=True num_envs=512 ``` You can also skip training by downloading the pre-trained model checkpoint by: ```sh cd ~/OmniIsaacGymEnvs-UR10Reacher wget https://github.com/j3soon/OmniIsaacGymEnvs-UR10Reacher/releases/download/v1.0.0/runs.zip unzip runs.zip # For Sim2Real only, requires editing config file as mentioned in the Sim2Real section wget https://github.com/j3soon/OmniIsaacGymEnvs-UR10Reacher/releases/download/v1.0.0/runs_safety.zip unzip runs_safety.zip ``` The learning curve of the pre-trained model (normal vs. safety): ![](docs/media/UR10Reacher-Learning-Curve.png) ![](docs/media/UR10Reacher-Learning-Curve-Safety.png) ## Testing Make sure you have model checkpoints at `~/OmniIsaacGymEnvs-UR10Reacher/runs`, you can check it with the following command: ```sh ls ~/OmniIsaacGymEnvs-UR10Reacher/runs/UR10Reacher/nn/ ``` You can visualize the learned policy by the following command: ```sh cd ~/OmniIsaacGymEnvs-UR10Reacher python omniisaacgymenvs/scripts/rlgames_train.py task=UR10Reacher test=True num_envs=512 checkpoint=./runs/UR10Reacher/nn/UR10Reacher.pth ``` Likewise, you can decrease the number of environments by modifying the parameter `num_envs=512`. ## Sim2Real It is important to make sure that you know how to safely control your robot by reading the manual. For additional safety, please add the following configurations: 1. Set `General Limits` to `Very restricted` ![](docs/media/UR5-Safety-Very-Restricted.jpeg) 2. Set `Joint Limits` according to your robot mounting point and the environment. ![](docs/media/UR5-Safety-Joint-Limits.jpeg) 3. Set `Boundaries` according to the robot's environment. ![](docs/media/UR5-Safety-Boundaries.jpeg) Play with the robot and make sure it won't hit anything under the current configuration. If anything goes wrong, press the red `EMERGENCY-STOP` button. In the following, we'll assume you have the same mounting direction and workspace as the preview GIF. If you have a different setup, you need to modify the code. Please [open an issue](https://github.com/j3soon/OmniIsaacGymEnvs-UR10Reacher/issues) if you need more information on where to modify. We'll use ROS to control the real-world robot. Run the following command in a Terminal: (Replace `192.168.50.50` to your robot's IP address) ```sh roslaunch ur_robot_driver ur5_bringup.launch robot_ip:=192.168.50.50 headless_mode:=true ``` Edit `omniisaacgymenvs/cfg/task/UR10Reacher.yaml`. Set `sim2real.enabled` and `safety.enabled` to `True`: ```yaml sim2real: enabled: True fail_quietely: False verbose: False safety: # Reduce joint limits during both training & testing enabled: True ``` Now you can control the real-world UR10 in real-time by the following command: ```sh cd ~/OmniIsaacGymEnvs-UR10Reacher python omniisaacgymenvs/scripts/rlgames_train.py task=UR10Reacher test=True num_envs=1 checkpoint=./runs/UR10Reacher/nn/UR10Reacher.pth # or if you want to use the pre-trained checkpoint python omniisaacgymenvs/scripts/rlgames_train.py task=UR10Reacher test=True num_envs=1 checkpoint=./runs_safety/UR10Reacher/nn/UR10Reacher.pth ``` ## Demo We provide an interactable demo based on the `UR10Reacher` RL example. In this demo, you can click on any of the UR10 in the scene to manually control the robot with your keyboard as follows: - `Q`/`A`: Control Joint 0. - `W`/`S`: Control Joint 1. - `E`/`D`: Control Joint 2. - `R`/`F`: Control Joint 3. - `T`/`G`: Control Joint 4. - `Y`/`H`: Control Joint 5. - `ESC`: Unselect a selected UR10 and yields manual control Launch this demo with the following command. Note that this demo limits the maximum number of UR10 in the scene to 128. ```sh cd ~/OmniIsaacGymEnvs-UR10Reacher python omniisaacgymenvs/scripts/rlgames_play.py task=UR10Reacher num_envs=64 ``` ## Running in Docker If you have a [NVIDIA Enterprise subscription](https://docs.omniverse.nvidia.com/prod_nucleus/prod_nucleus/enterprise/installation/planning.html), you can run all services with Docker Compose. For users without a subscription, you can pull the [Isaac Docker image](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/isaac-sim), but should still install Omniverse Nucleus beforehand. (only Isaac itself is dockerized) Follow [this tutorial](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_container.html#isaac-sim-setup-remote-headless-container) to generate your NGC API Key, and make sure you can access Isaac with Omniverse Streaming Client, WebRTC, or WebSocket. After that, exit the Docker container. Please note that you should generate instanceable assets beforehand as mentioned in the [Installation](#installation) section. We will now set up the environment inside Docker: 1. Launch an Isaac Container: ```sh docker run --name isaac-sim --entrypoint bash -it --gpus all -e "ACCEPT_EULA=Y" --rm --network=host \ -v ~/docker/isaac-sim/cache/ov:/root/.cache/ov:rw \ -v ~/docker/isaac-sim/cache/pip:/root/.cache/pip:rw \ -v ~/docker/isaac-sim/cache/glcache:/root/.cache/nvidia/GLCache:rw \ -v ~/docker/isaac-sim/cache/computecache:/root/.nv/ComputeCache:rw \ -v ~/docker/isaac-sim/logs:/root/.nvidia-omniverse/logs:rw \ -v ~/docker/isaac-sim/config:/root/.nvidia-omniverse/config:rw \ -v ~/docker/isaac-sim/data:/root/.local/share/ov/data:rw \ -v ~/docker/isaac-sim/documents:/root/Documents:rw \ nvcr.io/nvidia/isaac-sim:2022.1.1 ``` 2. Install common tools: ```sh apt update && apt install -y git wget vim ``` 3. Clone this repository: ```sh cd ~ git clone https://github.com/j3soon/OmniIsaacGymEnvs-UR10Reacher.git ``` 4. [Download and Install Anaconda](https://www.anaconda.com/products/distribution#Downloads). ```sh # For 64-bit (x86_64/x64/amd64/intel64) wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh bash Anaconda3-2022.10-Linux-x86_64.sh -b -p $HOME/anaconda3 ``` 5. Patch Isaac Sim 2022.1.1 ```sh export ISAAC_SIM="/isaac-sim" cp $ISAAC_SIM/setup_python_env.sh $ISAAC_SIM/setup_python_env.sh.bak cp ~/OmniIsaacGymEnvs-UR10Reacher/isaac_sim-2022.1.1-patch/setup_python_env.sh $ISAAC_SIM/setup_python_env.sh ``` 6. [Set up conda environment for Isaac Sim](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/install_python.html#advanced-running-with-anaconda) ```sh source ~/anaconda3/etc/profile.d/conda.sh # conda remove --name isaac-sim --all export ISAAC_SIM="/isaac-sim" cd $ISAAC_SIM conda env create -f environment.yml conda activate isaac-sim cd ~/OmniIsaacGymEnvs-UR10Reacher pip install -e . ``` 7. Activate conda environment ```sh source ~/anaconda3/etc/profile.d/conda.sh export ISAAC_SIM="/isaac-sim" cd $ISAAC_SIM conda activate isaac-sim source setup_conda_env.sh ./vulkan_check.sh ``` We can now train a RL policy in this container: ```sh cd ~/OmniIsaacGymEnvs-UR10Reacher python omniisaacgymenvs/scripts/rlgames_train.py task=UR10Reacher headless=True num_envs=512 ``` Make sure to copy the learned weights to a mounted volume before exiting the container, otherwise it will be deleted: ```sh # In container cp -r ~/OmniIsaacGymEnvs-UR10Reacher/runs ~/Documents/runs # In host ls ~/docker/isaac-sim/documents/ ``` You can watch the training progress with: ```sh docker ps # Observe Container ID docker exec -it <CONTAINER_ID> /bin/bash conda activate isaac-sim cd ~/OmniIsaacGymEnvs-UR10Reacher tensorboard --logdir=./runs ``` Currently we do not support running commands that requires visualization (Testing, Sim2Real, etc.) in Docker. Since I haven't figured out how to make Vulkan render a Isaac window inside a container yet. Alternatively, it may be possible to add `headless=True` and view them in Omniverse Streaming Client, WebRTC, or WebSocket, but I haven't tested this by myself. ## Acknowledgement This project has been made possible through the support of [ElsaLab][elsalab] and [NVIDIA AI Technology Center (NVAITC)][nvaitc]. I would also like to express my gratitude to [@tony2guo](https://github.com/tony2guo) for his invaluable assistance in guiding me through the setup process of the real-world UR10. For a complete list of contributors to the code of this repository, please visit the [contributor list](https://github.com/j3soon/OmniIsaacGymEnvs-UR10Reacher/graphs/contributors). [![](docs/media/logos/elsalab.png)][elsalab] [![](docs/media/logos/nvaitc.png)][nvaitc] [elsalab]: https://github.com/elsa-lab [nvaitc]: https://github.com/NVAITC Disclaimer: this is not an official NVIDIA product. > **Note**: below are the original README of [OmniIsaacGymEnvs](https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs). # Omniverse Isaac Gym Reinforcement Learning Environments for Isaac Sim ### About this repository This repository contains Reinforcement Learning examples that can be run with the latest release of [Isaac Sim](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html). RL examples are trained using PPO from [rl_games](https://github.com/Denys88/rl_games) library and examples are built on top of Isaac Sim's `omni.isaac.core` and `omni.isaac.gym` frameworks. <img src="https://user-images.githubusercontent.com/34286328/171454189-6afafbff-bb61-4aac-b518-24646007cb9f.gif" width="300" height="150"/>&emsp;<img src="https://user-images.githubusercontent.com/34286328/184172037-cdad9ee8-f705-466f-bbde-3caa6c7dea37.gif" width="300" height="150"/> <img src="https://user-images.githubusercontent.com/34286328/171454182-0be1b830-bceb-4cfd-93fb-e1eb8871ec68.gif" width="300" height="150"/>&emsp;<img src="https://user-images.githubusercontent.com/34286328/171454193-e027885d-1510-4ef4-b838-06b37f70c1c7.gif" width="300" height="150"/> <img src="https://user-images.githubusercontent.com/34286328/184174894-03767aa0-936c-4bfe-bbe9-a6865f539bb4.gif" width="300" height="150"/>&emsp;<img src="https://user-images.githubusercontent.com/34286328/184168200-152567a8-3354-4947-9ae0-9443a56fee4c.gif" width="300" height="150"/> <img src="https://user-images.githubusercontent.com/34286328/184176312-df7d2727-f043-46e3-b537-48a583d321b9.gif" width="300" height="150"/>&emsp;<img src="https://user-images.githubusercontent.com/34286328/184178817-9c4b6b3c-c8a2-41fb-94be-cfc8ece51d5d.gif" width="300" height="150"/> <img src="https://user-images.githubusercontent.com/34286328/171454160-8cb6739d-162a-4c84-922d-cda04382633f.gif" width="300" height="150"/>&emsp;<img src="https://user-images.githubusercontent.com/34286328/171454176-ce08f6d0-3087-4ecc-9273-7d30d8f73f6d.gif" width="300" height="150"/> <img src="https://user-images.githubusercontent.com/34286328/184170040-3f76f761-e748-452e-b8c8-3cc1c7c8cb98.gif" width="614" height="307"/> ### Installation Follow the Isaac Sim [documentation](https://docs.omniverse.nvidia.com/isaacsim/latest/install_workstation.html) to install the latest Isaac Sim release. *Examples in this repository rely on features from the most recent Isaac Sim release. Please make sure to update any existing Isaac Sim build to the latest release version, 2022.1.1, to ensure examples work as expected.* Once installed, this repository can be used as a python module, `omniisaacgymenvs`, with the python executable provided in Isaac Sim. To install `omniisaacgymenvs`, first clone this repository: ```bash git clone https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs.git ``` Once cloned, locate the [python executable in Isaac Sim](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/install_python.html). By default, this should be `python.sh`. We will refer to this path as `PYTHON_PATH`. To set a `PYTHON_PATH` variable in the terminal that links to the python executable, we can run a command that resembles the following. Make sure to update the paths to your local path. ``` For Linux: alias PYTHON_PATH=~/.local/share/ov/pkg/isaac_sim-*/python.sh For Windows: doskey PYTHON_PATH=C:\Users\user\AppData\Local\ov\pkg\isaac_sim-*\python.bat $* ``` Install `omniisaacgymenvs` as a python module for `PYTHON_PATH`: ```bash PYTHON_PATH -m pip install -e . ``` ### Running the examples *Note: All commands should be executed from `omniisaacgymenvs/omniisaacgymenvs`.* To train your first policy, run: ```bash PYTHON_PATH scripts/rlgames_train.py task=Cartpole ``` You should see an Isaac Sim window pop up. Once Isaac Sim initialization completes, the Cartpole scene will be constructed and simulation will start running automatically. The process will terminate once training finishes. Here's another example - Ant locomotion - using the multi-threaded training script: ```bash PYTHON_PATH scripts/rlgames_train_mt.py task=Ant ``` Note that by default, we show a Viewport window with rendering, which slows down training. You can choose to close the Viewport window during training for better performance. The Viewport window can be re-enabled by selecting `Window > Viewport` from the top menu bar. To achieve maximum performance, you can launch training in `headless` mode as follows: ```bash PYTHON_PATH scripts/rlgames_train.py task=Ant headless=True ``` #### A Note on the Startup Time of the Simulation Some of the examples could take a few minutes to load because the startup time scales based on the number of environments. The startup time will continually be optimized in future releases. ### Loading trained models // Checkpoints Checkpoints are saved in the folder `runs/EXPERIMENT_NAME/nn` where `EXPERIMENT_NAME` defaults to the task name, but can also be overridden via the `experiment` argument. To load a trained checkpoint and continue training, use the `checkpoint` argument: ```bash PYTHON_PATH scripts/rlgames_train.py task=Ant checkpoint=runs/Ant/nn/Ant.pth ``` To load a trained checkpoint and only perform inference (no training), pass `test=True` as an argument, along with the checkpoint name. To avoid rendering overhead, you may also want to run with fewer environments using `num_envs=64`: ```bash PYTHON_PATH scripts/rlgames_train.py task=Ant checkpoint=runs/Ant/nn/Ant.pth test=True num_envs=64 ``` Note that if there are special characters such as `[` or `=` in the checkpoint names, you will need to escape them and put quotes around the string. For example, `checkpoint="runs/Ant/nn/last_Antep\=501rew\[5981.31\].pth"` We provide pre-trained checkpoints on the [Nucleus](https://docs.omniverse.nvidia.com/nucleus/latest/index.html) server under `Assets/Isaac/2022.1/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints`. Run the following command to launch inference with pre-trained checkpoint: Localhost (To set up localhost, please refer to the [Isaac Sim installation guide](https://docs.omniverse.nvidia.com/isaacsim/latest/install_workstation.html)): ```bash PYTHON_PATH scripts/rlgames_train.py task=Ant checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/ant.pth test=True num_envs=64 ``` Production server: ```bash PYTHON_PATH scripts/rlgames_train.py task=Ant checkpoint=http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2022.1/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/ant.pth test=True num_envs=64 ``` When running with a pre-trained checkpoint for the first time, we will automatically download the checkpoint file to `omniisaacgymenvs/checkpoints`. For subsequent runs, we will re-use the file that has already been downloaded, and will not overwrite existing checkpoints with the same name in the `checkpoints` folder. ## Training Scripts All scripts provided in `omniisaacgymenvs/scripts` can be launched directly with `PYTHON_PATH`. To test out a task without RL in the loop, run the random policy script with: ```bash PYTHON_PATH scripts/random_policy.py task=Cartpole ``` This script will sample random actions from the action space and apply these actions to your task without running any RL policies. Simulation should start automatically after launching the script, and will run indefinitely until terminated. To run a simple form of PPO from `rl_games`, use the single-threaded training script: ```bash PYTHON_PATH scripts/rlgames_train.py task=Cartpole ``` This script creates an instance of the PPO runner in `rl_games` and automatically launches training and simulation. Once training completes (the total number of iterations have been reached), the script will exit. If running inference with `test=True checkpoint=<path/to/checkpoint>`, the script will run indefinitely until terminated. Note that this script will have limitations on interaction with the UI. Lastly, we provide a multi-threaded training script that executes the RL policy on a separate thread than the main thread used for simulation and rendering: ```bash PYTHON_PATH scripts/rlgames_train_mt.py task=Cartpole ``` This script uses the same RL Games PPO policy as the above, but runs the RL loop on a new thread. Communication between the RL thread and the main thread happens on threaded Queues. Simulation will start automatically, but the script will **not** exit when training terminates, except when running in headless mode. Simulation will stop when training completes or can be stopped by clicking on the Stop button in the UI. Training can be launched again by clicking on the Play button. Similarly, if running inference with `test=True checkpoint=<path/to/checkpoint>`, simulation will run until the Stop button is clicked, or the script will run indefinitely until the process is terminated. ### Configuration and command line arguments We use [Hydra](https://hydra.cc/docs/intro/) to manage the config. Common arguments for the training scripts are: * `task=TASK` - Selects which task to use. Any of `AllegroHand`, `Ant`, `Anymal`, `AnymalTerrain`, `BallBalance`, `Cartpole`, `Crazyflie`, `FrankaCabinet`, `Humanoid`, `Ingenuity`, `Quadcopter`, `ShadowHand`, `ShadowHandOpenAI_FF`, `ShadowHandOpenAI_LSTM` (these correspond to the config for each environment in the folder `omniisaacgymenvs/cfg/task`) * `train=TRAIN` - Selects which training config to use. Will automatically default to the correct config for the environment (ie. `<TASK>PPO`). * `num_envs=NUM_ENVS` - Selects the number of environments to use (overriding the default number of environments set in the task config). * `seed=SEED` - Sets a seed value for randomization, and overrides the default seed in the task config * `pipeline=PIPELINE` - Which API pipeline to use. Defaults to `gpu`, can also set to `cpu`. When using the `gpu` pipeline, all data stays on the GPU. When using the `cpu` pipeline, simulation can run on either CPU or GPU, depending on the `sim_device` setting, but a copy of the data is always made on the CPU at every step. * `sim_device=SIM_DEVICE` - Device used for physics simulation. Set to `gpu` (default) to use GPU and to `cpu` for CPU. * `device_id=DEVICE_ID` - Device ID for GPU to use for simulation and task. Defaults to `0`. This parameter will only be used if simulation runs on GPU. * `rl_device=RL_DEVICE` - Which device / ID to use for the RL algorithm. Defaults to `cuda:0`, and follows PyTorch-like device syntax. * `test=TEST`- If set to `True`, only runs inference on the policy and does not do any training. * `checkpoint=CHECKPOINT_PATH` - Path to the checkpoint to load for training or testing. * `headless=HEADLESS` - Whether to run in headless mode. * `experiment=EXPERIMENT` - Sets the name of the experiment. * `max_iterations=MAX_ITERATIONS` - Sets how many iterations to run for. Reasonable defaults are provided for the provided environments. Hydra also allows setting variables inside config files directly as command line arguments. As an example, to set the minibatch size for a rl_games training run, you can use `train.params.config.minibatch_size=64`. Similarly, variables in task configs can also be set. For example, `task.env.episodeLength=100`. #### Hydra Notes Default values for each of these are found in the `omniisaacgymenvs/cfg/config.yaml` file. The way that the `task` and `train` portions of the config works are through the use of config groups. You can learn more about how these work [here](https://hydra.cc/docs/tutorials/structured_config/config_groups/) The actual configs for `task` are in `omniisaacgymenvs/cfg/task/<TASK>.yaml` and for `train` in `omniisaacgymenvs/cfg/train/<TASK>PPO.yaml`. In some places in the config you will find other variables referenced (for example, `num_actors: ${....task.env.numEnvs}`). Each `.` represents going one level up in the config hierarchy. This is documented fully [here](https://omegaconf.readthedocs.io/en/latest/usage.html#variable-interpolation). ### Tensorboard Tensorboard can be launched during training via the following command: ```bash PYTHON_PATH -m tensorboard.main --logdir runs/EXPERIMENT_NAME/summaries ``` ## WandB support You can run (WandB)[https://wandb.ai/] with OmniIsaacGymEnvs by setting `wandb_activate=True` flag from the command line. You can set the group, name, entity, and project for the run by setting the `wandb_group`, `wandb_name`, `wandb_entity` and `wandb_project` arguments. Make sure you have WandB installed in the Isaac Sim Python executable with `PYTHON_PATH -m pip install wandb` before activating. ## Tasks Source code for tasks can be found in `omniisaacgymenvs/tasks`. Each task follows the frameworks provided in `omni.isaac.core` and `omni.isaac.gym` in Isaac Sim. Refer to [docs/framework.md](docs/framework.md) for how to create your own tasks. Full details on each of the tasks available can be found in the [RL examples documentation](docs/rl_examples.md). ## Demo We provide an interactable demo based on the `AnymalTerrain` RL example. In this demo, you can click on any of the ANYmals in the scene to go into third-person mode and manually control the robot with your keyboard as follows: - `Up Arrow`: Forward linear velocity command - `Down Arrow`: Backward linear velocity command - `Left Arrow`: Leftward linear velocity command - `Right Arrow`: Rightward linear velocity command - `Z`: Counterclockwise yaw angular velocity command - `X`: Clockwise yaw angular velocity command - `C`: Toggles camera view between third-person and scene view while maintaining manual control - `ESC`: Unselect a selected ANYmal and yields manual control Launch this demo with the following command. Note that this demo limits the maximum number of ANYmals in the scene to 128. ``` PYTHON_PATH scripts/rlgames_play.py task=AnymalTerrain num_envs=64 checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/anymal_terrain.pth ``` <img src="https://user-images.githubusercontent.com/34286328/184688654-6e7899b2-5847-4184-8944-2a96b129b1ff.gif" width="600" height="300"/> ## A note about Force Sensors Force sensors are supported in Isaac Sim and OIGE via the `ArticulationView` class. Sensor readings can be retrieved using `get_force_sensor_forces()` API, as shown in the Ant/Humanoid Locomotion task, as well as in the Ball Balance task. Please note that there is currently a known bug regarding force sensors in Omniverse Physics. Transforms of force sensors (i.e. their local poses) are set in the actor space of the Articulation instead of the body space, which is the expected behaviour. We will be fixing this in the coming release.
30,124
Markdown
50.672384
688
0.763478
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/envs/vec_env_rlgames_mt.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omni.isaac.gym.vec_env import VecEnvMT from omni.isaac.gym.vec_env import TaskStopException from .vec_env_rlgames import VecEnvRLGames import torch import numpy as np # VecEnv Wrapper for RL training class VecEnvRLGamesMT(VecEnvRLGames, VecEnvMT): def _parse_data(self, data): self._obs = data["obs"].to(self._task.rl_device).clone() self._rew = data["rew"].to(self._task.rl_device).clone() self._states = torch.clamp(data["states"], -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._resets = data["reset"].to(self._task.rl_device).clone() self._extras = data["extras"].copy() def step(self, actions): if self._stop: raise TaskStopException() actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).clone() if self._task.randomize_actions: actions = self._task._dr_randomizer.apply_actions_randomization(actions=actions, reset_buf=self._task.reset_buf) self.send_actions(actions) data = self.get_data() if self._task.randomize_observations: self._obs = self._task._dr_randomizer.apply_observations_randomization(observations=self._obs, reset_buf=self._task.reset_buf) self._obs = torch.clamp(self._obs, -self._task.clip_obs, self._task.clip_obs) obs_dict = {} obs_dict["obs"] = self._obs obs_dict["states"] = self._states return obs_dict, self._rew, self._resets, self._extras
3,101
Python
42.69014
138
0.714931
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/envs/vec_env_rlgames.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omni.isaac.gym.vec_env import VecEnvBase import torch import numpy as np from datetime import datetime # VecEnv Wrapper for RL training class VecEnvRLGames(VecEnvBase): def _process_data(self): self._obs = torch.clamp(self._obs, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._rew = self._rew.to(self._task.rl_device).clone() self._states = torch.clamp(self._states, -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone() self._resets = self._resets.to(self._task.rl_device).clone() self._extras = self._extras.copy() def set_task( self, task, backend="numpy", sim_params=None, init_sim=True ) -> None: super().set_task(task, backend, sim_params, init_sim) self.num_states = self._task.num_states self.state_space = self._task.state_space def step(self, actions): actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device).clone() if self._task.randomize_actions: actions = self._task._dr_randomizer.apply_actions_randomization(actions=actions, reset_buf=self._task.reset_buf) self._task.pre_physics_step(actions) for _ in range(self._task.control_frequency_inv): self._world.step(render=self._render) self.sim_frame_count += 1 self._obs, self._rew, self._resets, self._extras = self._task.post_physics_step() if self._task.randomize_observations: self._obs = self._task._dr_randomizer.apply_observations_randomization(observations=self._obs, reset_buf=self._task.reset_buf) self._states = self._task.get_states() self._process_data() obs_dict = {"obs": self._obs, "states": self._states} return obs_dict, self._rew, self._resets, self._extras def reset(self): """ Resets the task and applies default zero actions to recompute observations and states. """ now = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print(f"[{now}] Running RL reset") self._task.reset() actions = torch.zeros((self.num_envs, self._task.num_actions), device=self._task.device) obs_dict, _, _, _ = self.step(actions) return obs_dict
3,881
Python
42.133333
138
0.69312
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/allegro_hand.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.tasks.shared.in_hand_manipulation import InHandManipulationTask from omniisaacgymenvs.robots.articulations.allegro_hand import AllegroHand from omniisaacgymenvs.robots.articulations.views.allegro_hand_view import AllegroHandView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch import * import numpy as np import torch import math class AllegroHandTask(InHandManipulationTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self.object_type = self._task_cfg["env"]["objectType"] assert self.object_type in ["block"] self.obs_type = self._task_cfg["env"]["observationType"] if not (self.obs_type in ["full_no_vel", "full"]): raise Exception( "Unknown type of observations!\nobservationType should be one of: [full_no_vel, full]") print("Obs type:", self.obs_type) self.num_obs_dict = { "full_no_vel": 50, "full": 72, } self.object_scale = torch.tensor([1.0, 1.0, 1.0]) self._num_observations = self.num_obs_dict[self.obs_type] self._num_actions = 16 self._num_states = 0 InHandManipulationTask.__init__(self, name=name, env=env) return def get_hand(self): hand_start_translation = torch.tensor([0.0, 0.0, 0.5], device=self.device) hand_start_orientation = torch.tensor([0.257551, 0.283045, 0.683330, -0.621782], device=self.device) allegro_hand = AllegroHand( prim_path=self.default_zero_env_path + "/allegro_hand", name="allegro_hand", translation=hand_start_translation, orientation=hand_start_orientation, ) self._sim_config.apply_articulation_settings( "allegro_hand", get_prim_at_path(allegro_hand.prim_path), self._sim_config.parse_actor_config("allegro_hand") ) allegro_hand_prim = self._stage.GetPrimAtPath(allegro_hand.prim_path) allegro_hand.set_allegro_hand_properties(stage=self._stage, allegro_hand_prim=allegro_hand_prim) allegro_hand.set_motor_control_mode(stage=self._stage, allegro_hand_path=self.default_zero_env_path + "/allegro_hand") pose_dy, pose_dz = -0.2, 0.06 return hand_start_translation, pose_dy, pose_dz def get_hand_view(self, scene): return AllegroHandView(prim_paths_expr="/World/envs/.*/allegro_hand", name="allegro_hand_view") def get_observations(self): self.get_object_goal_observations() self.hand_dof_pos = self._hands.get_joint_positions() self.hand_dof_vel = self._hands.get_joint_velocities() if self.obs_type == "full_no_vel": self.compute_full_observations(True) elif self.obs_type == "full": self.compute_full_observations() else: print("Unkown observations type!") observations = { self._hands.name: { "obs_buf": self.obs_buf } } return observations def compute_full_observations(self, no_vel=False): if no_vel: self.obs_buf[:, 0:self.num_hand_dofs] = unscale(self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits) self.obs_buf[:, 16:19] = self.object_pos self.obs_buf[:, 19:23] = self.object_rot self.obs_buf[:, 23:26] = self.goal_pos self.obs_buf[:, 26:30] = self.goal_rot self.obs_buf[:, 30:34] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 34:50] = self.actions else: self.obs_buf[:, 0:self.num_hand_dofs] = unscale(self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits) self.obs_buf[:, self.num_hand_dofs:2*self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel self.obs_buf[:, 32:35] = self.object_pos self.obs_buf[:, 35:39] = self.object_rot self.obs_buf[:, 39:42] = self.object_linvel self.obs_buf[:, 42:45] = self.vel_obs_scale * self.object_angvel self.obs_buf[:, 45:48] = self.goal_pos self.obs_buf[:, 48:52] = self.goal_rot self.obs_buf[:, 52:56] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 56:72] = self.actions
6,255
Python
41.27027
126
0.646843
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/ball_balance.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.balance_bot import BalanceBot from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.prims import RigidPrimView, RigidPrim from omni.isaac.core.utils.torch.maths import * from omni.isaac.core.objects import DynamicSphere import numpy as np import torch import math from pxr import PhysxSchema class BallBalanceTask(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._dt = self._task_cfg["sim"]["dt"] self._table_position = torch.tensor([0, 0, 0.62]) self._ball_position = torch.tensor([0.0, 0.0, 1.0]) self._ball_radius = 0.1 self._action_speed_scale = self._task_cfg["env"]["actionSpeedScale"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] self._num_observations = 12 + 12 self._num_actions = 3 self.anchored = False RLTask.__init__(self, name, env) return def set_up_scene(self, scene) -> None: self.get_balance_table() self.add_ball() super().set_up_scene(scene) self._balance_bots = ArticulationView(prim_paths_expr="/World/envs/.*/BalanceBot", name="balance_bot_view", reset_xform_properties=False) scene.add(self._balance_bots) self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/Ball/ball", name="ball_view", reset_xform_properties=False) scene.add(self._balls) return def get_balance_table(self): balance_table = BalanceBot(prim_path=self.default_zero_env_path + "/BalanceBot", name="BalanceBot", translation=self._table_position) self._sim_config.apply_articulation_settings("table", get_prim_at_path(balance_table.prim_path), self._sim_config.parse_actor_config("table")) def add_ball(self): ball = DynamicSphere( prim_path=self.default_zero_env_path + "/Ball/ball", translation=self._ball_position, name="ball_0", radius=self._ball_radius, color=torch.tensor([0.9, 0.6, 0.2]), ) self._sim_config.apply_articulation_settings("ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball")) def set_up_table_anchors(self): from pxr import Gf height = 0.08 stage = get_current_stage() for i in range(self._num_envs): base_path = f"{self.default_base_env_path}/env_{i}/BalanceBot" for j, leg_offset in enumerate([(0.4, 0, height), (-0.2, 0.34641, height), (-0.2, -0.34641, height)]): # fix the legs to ground leg_path = f"{base_path}/lower_leg{j}" ground_joint_path = leg_path + "_ground" env_pos = stage.GetPrimAtPath(f"{self.default_base_env_path}/env_{i}").GetAttribute("xformOp:translate").Get() anchor_pos = env_pos + Gf.Vec3d(*leg_offset) self.fix_to_ground(stage, ground_joint_path, leg_path, anchor_pos) def fix_to_ground(self, stage, joint_path, prim_path, anchor_pos): from pxr import UsdPhysics, Gf # D6 fixed joint d6FixedJoint = UsdPhysics.Joint.Define(stage, joint_path) d6FixedJoint.CreateBody0Rel().SetTargets(["/World/defaultGroundPlane"]) d6FixedJoint.CreateBody1Rel().SetTargets([prim_path]) d6FixedJoint.CreateLocalPos0Attr().Set(anchor_pos) d6FixedJoint.CreateLocalRot0Attr().Set(Gf.Quatf(1.0, Gf.Vec3f(0, 0, 0))) d6FixedJoint.CreateLocalPos1Attr().Set(Gf.Vec3f(0, 0, 0.18)) d6FixedJoint.CreateLocalRot1Attr().Set(Gf.Quatf(1.0, Gf.Vec3f(0, 0, 0))) # lock all DOF (lock - low is greater than high) d6Prim = stage.GetPrimAtPath(joint_path) limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transX") limitAPI.CreateLowAttr(1.0) limitAPI.CreateHighAttr(-1.0) limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transY") limitAPI.CreateLowAttr(1.0) limitAPI.CreateHighAttr(-1.0) limitAPI = UsdPhysics.LimitAPI.Apply(d6Prim, "transZ") limitAPI.CreateLowAttr(1.0) limitAPI.CreateHighAttr(-1.0) def get_observations(self) -> dict: ball_positions, ball_orientations = self._balls.get_world_poses(clone=False) ball_positions = ball_positions[:, 0:3] - self._env_pos ball_velocities = self._balls.get_velocities(clone=False) ball_linvels = ball_velocities[:, 0:3] ball_angvels = ball_velocities[:, 3:6] dof_pos = self._balance_bots.get_joint_positions(clone=False) dof_vel = self._balance_bots.get_joint_velocities(clone=False) sensor_force_torques = self._balance_bots._physics_view.get_force_sensor_forces() # (num_envs, num_sensors, 6) self.obs_buf[..., 0:3] = dof_pos[..., self.actuated_dof_indices] self.obs_buf[..., 3:6] = dof_vel[..., self.actuated_dof_indices] self.obs_buf[..., 6:9] = ball_positions self.obs_buf[..., 9:12] = ball_linvels self.obs_buf[..., 12:15] = sensor_force_torques[..., 0] / 20.0 self.obs_buf[..., 15:18] = sensor_force_torques[..., 3] / 20.0 self.obs_buf[..., 18:21] = sensor_force_torques[..., 4] / 20.0 self.obs_buf[..., 21:24] = sensor_force_torques[..., 5] / 20.0 self.ball_positions = ball_positions self.ball_linvels = ball_linvels observations = { "ball_balance": { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: if not self.anchored: # Adding extra joints after ArticulationView is initialized self.set_up_table_anchors() self.anchored = True reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) # update position targets from actions self.dof_position_targets[..., self.actuated_dof_indices] += self._dt * self._action_speed_scale * actions.to(self.device) self.dof_position_targets[:] = tensor_clamp( self.dof_position_targets, self.bbot_dof_lower_limits, self.bbot_dof_upper_limits ) # reset position targets for reset envs self.dof_position_targets[reset_env_ids] = 0 self._balance_bots.set_joint_position_targets(self.dof_position_targets) #.clone()) def reset_idx(self, env_ids): num_resets = len(env_ids) env_ids_32 = env_ids.type(torch.int32) env_ids_64 = env_ids.type(torch.int64) min_d = 0.001 # min horizontal dist from origin max_d = 0.5 # max horizontal dist from origin min_height = 1.0 max_height = 2.0 min_horizontal_speed = 0 max_horizontal_speed = 2 dists = torch_rand_float(min_d, max_d, (num_resets, 1), self._device) dirs = torch_random_dir_2((num_resets, 1), self._device) hpos = dists * dirs speedscales = (dists - min_d) / (max_d - min_d) hspeeds = torch_rand_float(min_horizontal_speed, max_horizontal_speed, (num_resets, 1), self._device) hvels = -speedscales * hspeeds * dirs vspeeds = -torch_rand_float(5.0, 5.0, (num_resets, 1), self._device).squeeze() ball_pos = self.initial_ball_pos.clone() ball_rot = self.initial_ball_rot.clone() # position ball_pos[env_ids_64, 0:2] += hpos[..., 0:2] ball_pos[env_ids_64, 2] += torch_rand_float(min_height, max_height, (num_resets, 1), self._device).squeeze() # rotation ball_rot[env_ids_64, 0] = 1 ball_rot[env_ids_64, 1:] = 0 ball_velocities = self.initial_ball_velocities.clone() # linear ball_velocities[env_ids_64, 0:2] = hvels[..., 0:2] ball_velocities[env_ids_64, 2] = vspeeds # angular ball_velocities[env_ids_64, 3:6] = 0 # reset root state for bbots and balls in selected envs self._balance_bots.set_world_poses(self.initial_bot_pos[env_ids_64], self.initial_bot_rot[env_ids_64].clone(), indices=env_ids_32) self._balls.set_world_poses(ball_pos[env_ids_64], ball_rot[env_ids_64], indices=env_ids_32) self._balls.set_velocities(ball_velocities[env_ids_64], indices=env_ids_32) # reset DOF states for bbots in selected envs self._balance_bots.set_joint_positions(self.initial_dof_positions.clone()[env_ids_64], indices=env_ids_32) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): dof_limits = self._balance_bots.get_dof_limits() self.bbot_dof_lower_limits, self.bbot_dof_upper_limits = torch.t(dof_limits[0].to(device=self._device)) self.initial_dof_positions = self._balance_bots.get_joint_positions(clone=False) self.initial_bot_pos, self.initial_bot_rot = self._balance_bots.get_world_poses(clone=False) self.initial_bot_pos[..., 2] = 0.559 # tray_height self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses(clone=False) self.initial_ball_velocities = self._balls.get_velocities().clone() self.dof_position_targets = torch.zeros( (self.num_envs, self._balance_bots.num_dof), dtype=torch.float32, device=self._device, requires_grad=False ) self.actuated_dof_indices = torch.LongTensor([3, 4, 5]).to(self._device) def calculate_metrics(self) -> None: ball_dist = torch.sqrt( self.ball_positions[..., 0] * self.ball_positions[..., 0] + (self.ball_positions[..., 2] - 0.7) * (self.ball_positions[..., 2] - 0.7) + (self.ball_positions[..., 1]) * self.ball_positions[..., 1] ) ball_speed = torch.sqrt( self.ball_linvels[..., 0] * self.ball_linvels[..., 0] + self.ball_linvels[..., 1] * self.ball_linvels[..., 1] + self.ball_linvels[..., 2] * self.ball_linvels[..., 2] ) pos_reward = 1.0 / (1.0 + ball_dist) speed_reward = 1.0 / (1.0 + ball_speed) self.rew_buf[:] = pos_reward * speed_reward def is_done(self) -> None: reset = torch.where( self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf ) reset = torch.where(self.ball_positions[..., 2] < self._ball_radius * 1.5, torch.ones_like(self.reset_buf), reset) self.reset_buf[:] = reset
12,548
Python
44.303249
150
0.634523
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/anymal_terrain.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.anymal import Anymal from omniisaacgymenvs.robots.articulations.views.anymal_view import AnymalView from omniisaacgymenvs.tasks.utils.anymal_terrain_generator import * from omniisaacgymenvs.utils.terrain_utils.terrain_utils import * from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.simulation_context import SimulationContext import numpy as np import torch import math from pxr import UsdPhysics, UsdLux class AnymalTerrainTask(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self.height_samples = None self.custom_origins = False self.init_done = False # normalization self.lin_vel_scale = self._task_cfg["env"]["learn"]["linearVelocityScale"] self.ang_vel_scale = self._task_cfg["env"]["learn"]["angularVelocityScale"] self.dof_pos_scale = self._task_cfg["env"]["learn"]["dofPositionScale"] self.dof_vel_scale = self._task_cfg["env"]["learn"]["dofVelocityScale"] self.height_meas_scale = self._task_cfg["env"]["learn"]["heightMeasurementScale"] self.action_scale = self._task_cfg["env"]["control"]["actionScale"] # reward scales self.rew_scales = {} self.rew_scales["termination"] = self._task_cfg["env"]["learn"]["terminalReward"] self.rew_scales["lin_vel_xy"] = self._task_cfg["env"]["learn"]["linearVelocityXYRewardScale"] self.rew_scales["lin_vel_z"] = self._task_cfg["env"]["learn"]["linearVelocityZRewardScale"] self.rew_scales["ang_vel_z"] = self._task_cfg["env"]["learn"]["angularVelocityZRewardScale"] self.rew_scales["ang_vel_xy"] = self._task_cfg["env"]["learn"]["angularVelocityXYRewardScale"] self.rew_scales["orient"] = self._task_cfg["env"]["learn"]["orientationRewardScale"] self.rew_scales["torque"] = self._task_cfg["env"]["learn"]["torqueRewardScale"] self.rew_scales["joint_acc"] = self._task_cfg["env"]["learn"]["jointAccRewardScale"] self.rew_scales["base_height"] = self._task_cfg["env"]["learn"]["baseHeightRewardScale"] self.rew_scales["action_rate"] = self._task_cfg["env"]["learn"]["actionRateRewardScale"] self.rew_scales["hip"] = self._task_cfg["env"]["learn"]["hipRewardScale"] self.rew_scales["fallen_over"] = self._task_cfg["env"]["learn"]["fallenOverRewardScale"] #command ranges self.command_x_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_x"] self.command_y_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_y"] self.command_yaw_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["yaw"] # base init state pos = self._task_cfg["env"]["baseInitState"]["pos"] rot = self._task_cfg["env"]["baseInitState"]["rot"] v_lin = self._task_cfg["env"]["baseInitState"]["vLinear"] v_ang = self._task_cfg["env"]["baseInitState"]["vAngular"] self.base_init_state = pos + rot + v_lin + v_ang # default joint positions self.named_default_joint_angles = self._task_cfg["env"]["defaultJointAngles"] # other self.decimation = self._task_cfg["env"]["control"]["decimation"] self.dt = self.decimation * self._task_cfg["sim"]["dt"] self.max_episode_length_s = self._task_cfg["env"]["learn"]["episodeLength_s"] self.max_episode_length = int(self.max_episode_length_s/ self.dt + 0.5) self.push_interval = int(self._task_cfg["env"]["learn"]["pushInterval_s"] / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] self.curriculum = self._task_cfg["env"]["terrain"]["curriculum"] self.base_threshold = 0.2 self.knee_threshold = 0.1 for key in self.rew_scales.keys(): self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._num_observations = 188 self._num_actions = 12 self._task_cfg["sim"]["default_physics_material"]["static_friction"] = self._task_cfg["env"]["terrain"]["staticFriction"] self._task_cfg["sim"]["default_physics_material"]["dynamic_friction"] = self._task_cfg["env"]["terrain"]["dynamicFriction"] self._task_cfg["sim"]["default_physics_material"]["restitution"] = self._task_cfg["env"]["terrain"]["restitution"] self._task_cfg["sim"]["add_ground_plane"] = False self._env_spacing = 0.0 RLTask.__init__(self, name, env) self.timeout_buf = torch.zeros(self.num_envs, device=self.device, dtype=torch.long) # initialize some data used later on self.up_axis_idx = 2 self.common_step_counter = 0 self.extras = {} self.noise_scale_vec = self._get_noise_scale_vec(self._task_cfg) self.commands = torch.zeros(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False) # x vel, y vel, yaw vel, heading self.commands_scale = torch.tensor([self.lin_vel_scale, self.lin_vel_scale, self.ang_vel_scale], device=self.device, requires_grad=False,) self.gravity_vec = torch.tensor(get_axis_params(-1., self.up_axis_idx), dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.forward_vec = torch.tensor([1., 0., 0.], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.torques = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False) self.actions = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False) self.last_actions = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False) self.feet_air_time = torch.zeros(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False) self.last_dof_vel = torch.zeros((self.num_envs, 12), dtype=torch.float, device=self.device, requires_grad=False) self.height_points = self.init_height_points() self.measured_heights = None # joint positions offsets self.default_dof_pos = torch.zeros((self.num_envs, 12), dtype=torch.float, device=self.device, requires_grad=False) # reward episode sums torch_zeros = lambda : torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) self.episode_sums = {"lin_vel_xy": torch_zeros(), "lin_vel_z": torch_zeros(), "ang_vel_z": torch_zeros(), "ang_vel_xy": torch_zeros(), "orient": torch_zeros(), "torques": torch_zeros(), "joint_acc": torch_zeros(), "base_height": torch_zeros(), "air_time": torch_zeros(), "collision": torch_zeros(), "stumble": torch_zeros(), "action_rate": torch_zeros(), "hip": torch_zeros()} return def _get_noise_scale_vec(self, cfg): noise_vec = torch.zeros_like(self.obs_buf[0]) self.add_noise = self._task_cfg["env"]["learn"]["addNoise"] noise_level = self._task_cfg["env"]["learn"]["noiseLevel"] noise_vec[:3] = self._task_cfg["env"]["learn"]["linearVelocityNoise"] * noise_level * self.lin_vel_scale noise_vec[3:6] = self._task_cfg["env"]["learn"]["angularVelocityNoise"] * noise_level * self.ang_vel_scale noise_vec[6:9] = self._task_cfg["env"]["learn"]["gravityNoise"] * noise_level noise_vec[9:12] = 0. # commands noise_vec[12:24] = self._task_cfg["env"]["learn"]["dofPositionNoise"] * noise_level * self.dof_pos_scale noise_vec[24:36] = self._task_cfg["env"]["learn"]["dofVelocityNoise"] * noise_level * self.dof_vel_scale noise_vec[36:176] = self._task_cfg["env"]["learn"]["heightMeasurementNoise"] * noise_level * self.height_meas_scale noise_vec[176:188] = 0. # previous actions return noise_vec def init_height_points(self): # 1mx1.6m rectangle (without center line) y = 0.1 * torch.tensor([-5, -4, -3, -2, -1, 1, 2, 3, 4, 5], device=self.device, requires_grad=False) # 10-50cm on each side x = 0.1 * torch.tensor([-8, -7, -6, -5, -4, -3, -2, 2, 3, 4, 5, 6, 7, 8], device=self.device, requires_grad=False) # 20-80cm on each side grid_x, grid_y = torch.meshgrid(x, y) self.num_height_points = grid_x.numel() points = torch.zeros(self.num_envs, self.num_height_points, 3, device=self.device, requires_grad=False) points[:, :, 0] = grid_x.flatten() points[:, :, 1] = grid_y.flatten() return points def _create_trimesh(self): self.terrain = Terrain(self._task_cfg["env"]["terrain"], num_robots=self.num_envs) vertices = self.terrain.vertices triangles = self.terrain.triangles position = torch.tensor([-self.terrain.border_size , -self.terrain.border_size , 0.0]) add_terrain_to_stage(stage=self._stage, vertices=vertices, triangles=triangles, position=position) self.height_samples = torch.tensor(self.terrain.heightsamples).view(self.terrain.tot_rows, self.terrain.tot_cols).to(self.device) def set_up_scene(self, scene) -> None: self._stage = get_current_stage() self.get_terrain() self.get_anymal() super().set_up_scene(scene) self._anymals = AnymalView(prim_paths_expr="/World/envs/.*/anymal", name="anymal_view") scene.add(self._anymals) scene.add(self._anymals._knees) scene.add(self._anymals._base) return def get_terrain(self): self.env_origins = torch.zeros((self.num_envs, 3), device=self.device, requires_grad=False) if not self.curriculum: self._task_cfg["env"]["terrain"]["maxInitMapLevel"] = self._task_cfg["env"]["terrain"]["numLevels"] - 1 self.terrain_levels = torch.randint(0, self._task_cfg["env"]["terrain"]["maxInitMapLevel"]+1, (self.num_envs,), device=self.device) self.terrain_types = torch.randint(0, self._task_cfg["env"]["terrain"]["numTerrains"], (self.num_envs,), device=self.device) self._create_trimesh() self.terrain_origins = torch.from_numpy(self.terrain.env_origins).to(self.device).to(torch.float) def get_anymal(self): self.base_init_state = torch.tensor(self.base_init_state, dtype=torch.float, device=self.device, requires_grad=False) anymal_translation = torch.tensor([0.0, 0.0, 0.66]) anymal_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0]) anymal = Anymal(prim_path=self.default_zero_env_path + "/anymal", name="anymal", translation=anymal_translation, orientation=anymal_orientation,) self._sim_config.apply_articulation_settings("anymal", get_prim_at_path(anymal.prim_path), self._sim_config.parse_actor_config("anymal")) anymal.set_anymal_properties(self._stage, anymal.prim) self.dof_names = anymal.dof_names for i in range(self.num_actions): name = self.dof_names[i] angle = self.named_default_joint_angles[name] self.default_dof_pos[:, i] = angle def post_reset(self): for i in range(self.num_envs): self.env_origins[i] = self.terrain_origins[self.terrain_levels[i], self.terrain_types[i]] self.num_dof = self._anymals.num_dof self.dof_pos = torch.zeros((self.num_envs, self.num_dof), dtype=torch.float, device=self.device) self.dof_vel = torch.zeros((self.num_envs, self.num_dof), dtype=torch.float, device=self.device) self.base_pos = torch.zeros((self.num_envs, 3), dtype=torch.float, device=self.device) self.base_quat = torch.zeros((self.num_envs, 4), dtype=torch.float, device=self.device) self.base_velocities = torch.zeros((self.num_envs, 6), dtype=torch.float, device=self.device) self.knee_pos = torch.zeros((self.num_envs*4, 3), dtype=torch.float, device=self.device) self.knee_quat = torch.zeros((self.num_envs*4, 4), dtype=torch.float, device=self.device) indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) self.init_done = True def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) positions_offset = torch_rand_float(0.5, 1.5, (len(env_ids), self.num_dof), device=self.device) velocities = torch_rand_float(-0.1, 0.1, (len(env_ids), self.num_dof), device=self.device) self.dof_pos[env_ids] = self.default_dof_pos[env_ids] * positions_offset self.dof_vel[env_ids] = velocities self.update_terrain_level(env_ids) self.base_pos[env_ids] = self.base_init_state[0:3] self.base_pos[env_ids, 0:3] += self.env_origins[env_ids] self.base_pos[env_ids, 0:2] += torch_rand_float(-0.5, 0.5, (len(env_ids), 2), device=self.device) self.base_quat[env_ids] = self.base_init_state[3:7] self.base_velocities[env_ids] = self.base_init_state[7:] self._anymals.set_world_poses(positions=self.base_pos[env_ids].clone(), orientations=self.base_quat[env_ids].clone(), indices=indices) self._anymals.set_velocities(velocities=self.base_velocities[env_ids].clone(), indices=indices) self._anymals.set_joint_positions(positions=self.dof_pos[env_ids].clone(), indices=indices) self._anymals.set_joint_velocities(velocities=self.dof_vel[env_ids].clone(), indices=indices) self.commands[env_ids, 0] = torch_rand_float(self.command_x_range[0], self.command_x_range[1], (len(env_ids), 1), device=self.device).squeeze() self.commands[env_ids, 1] = torch_rand_float(self.command_y_range[0], self.command_y_range[1], (len(env_ids), 1), device=self.device).squeeze() self.commands[env_ids, 3] = torch_rand_float(self.command_yaw_range[0], self.command_yaw_range[1], (len(env_ids), 1), device=self.device).squeeze() self.commands[env_ids] *= (torch.norm(self.commands[env_ids, :2], dim=1) > 0.25).unsqueeze(1) # set small commands to zero self.last_actions[env_ids] = 0. self.last_dof_vel[env_ids] = 0. self.feet_air_time[env_ids] = 0. self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 1 # fill extras self.extras["episode"] = {} for key in self.episode_sums.keys(): self.extras["episode"]['rew_' + key] = torch.mean(self.episode_sums[key][env_ids]) / self.max_episode_length_s self.episode_sums[key][env_ids] = 0. self.extras["episode"]["terrain_level"] = torch.mean(self.terrain_levels.float()) def update_terrain_level(self, env_ids): if not self.init_done or not self.curriculum: # do not change on initial reset return root_pos, _ = self._anymals.get_world_poses(clone=False) distance = torch.norm(root_pos[env_ids, :2] - self.env_origins[env_ids, :2], dim=1) self.terrain_levels[env_ids] -= 1 * (distance < torch.norm(self.commands[env_ids, :2])*self.max_episode_length_s*0.25) self.terrain_levels[env_ids] += 1 * (distance > self.terrain.env_length / 2) self.terrain_levels[env_ids] = torch.clip(self.terrain_levels[env_ids], 0) % self.terrain.env_rows self.env_origins[env_ids] = self.terrain_origins[self.terrain_levels[env_ids], self.terrain_types[env_ids]] def refresh_dof_state_tensors(self): self.dof_pos = self._anymals.get_joint_positions(clone=False) self.dof_vel = self._anymals.get_joint_velocities(clone=False) def refresh_body_state_tensors(self): self.base_pos, self.base_quat = self._anymals.get_world_poses(clone=False) self.base_velocities = self._anymals.get_velocities(clone=False) self.knee_pos, self.knee_quat = self._anymals._knees.get_world_poses(clone=False) def pre_physics_step(self, actions): self.actions = actions.clone().to(self.device) for i in range(self.decimation): torques = torch.clip(self.Kp*(self.action_scale*self.actions + self.default_dof_pos - self.dof_pos) - self.Kd*self.dof_vel, -80., 80.) self._anymals.set_joint_efforts(torques) self.torques = torques SimulationContext.step(self._env._world, render=False) self.refresh_dof_state_tensors() def post_physics_step(self): self.progress_buf[:] += 1 if self._env._world.is_playing(): self.refresh_dof_state_tensors() self.refresh_body_state_tensors() self.common_step_counter += 1 if self.common_step_counter % self.push_interval == 0: self.push_robots() # prepare quantities self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 0:3]) self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 3:6]) self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec) forward = quat_apply(self.base_quat, self.forward_vec) heading = torch.atan2(forward[:, 1], forward[:, 0]) self.commands[:, 2] = torch.clip(0.5*wrap_to_pi(self.commands[:, 3] - heading), -1., 1.) self.check_termination() self.get_states() self.calculate_metrics() env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() if len(env_ids) > 0: self.reset_idx(env_ids) self.get_observations() if self.add_noise: self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec self.last_actions[:] = self.actions[:] self.last_dof_vel[:] = self.dof_vel[:] return self.obs_buf, self.rew_buf, self.reset_buf, self.extras def push_robots(self): self.base_velocities[:, 0:2] = torch_rand_float(-1., 1., (self.num_envs, 2), device=self.device) # lin vel x/y self._anymals.set_velocities(self.base_velocities) def check_termination(self): self.timeout_buf = torch.where(self.progress_buf >= self.max_episode_length - 1, torch.ones_like(self.timeout_buf), torch.zeros_like(self.timeout_buf)) ground_heights_below_base = self.get_ground_heights_below_base().squeeze() self.has_base_fallen = self._anymals.is_base_below_threshold(threshold=self.base_threshold, ground_heights=ground_heights_below_base) ground_heights_below_knees = self.get_ground_heights_below_knees() self.has_knees_fallen = self._anymals.is_knee_below_threshold(threshold=self.knee_threshold, ground_heights=ground_heights_below_knees) self.has_fallen = self.has_base_fallen | self.has_knees_fallen self.reset_buf = self.has_fallen.clone() self.reset_buf = torch.where(self.timeout_buf.bool(), torch.ones_like(self.reset_buf), self.reset_buf) def calculate_metrics(self): # velocity tracking reward lin_vel_error = torch.sum(torch.square(self.commands[:, :2] - self.base_lin_vel[:, :2]), dim=1) ang_vel_error = torch.square(self.commands[:, 2] - self.base_ang_vel[:, 2]) rew_lin_vel_xy = torch.exp(-lin_vel_error/0.25) * self.rew_scales["lin_vel_xy"] rew_ang_vel_z = torch.exp(-ang_vel_error/0.25) * self.rew_scales["ang_vel_z"] # other base velocity penalties rew_lin_vel_z = torch.square(self.base_lin_vel[:, 2]) * self.rew_scales["lin_vel_z"] rew_ang_vel_xy = torch.sum(torch.square(self.base_ang_vel[:, :2]), dim=1) * self.rew_scales["ang_vel_xy"] # orientation penalty rew_orient = torch.sum(torch.square(self.projected_gravity[:, :2]), dim=1) * self.rew_scales["orient"] # base height penalty rew_base_height = torch.square(self.base_pos[:, 2] - 0.52) * self.rew_scales["base_height"] # torque penalty rew_torque = torch.sum(torch.square(self.torques), dim=1) * self.rew_scales["torque"] # joint acc penalty rew_joint_acc = torch.sum(torch.square(self.last_dof_vel - self.dof_vel), dim=1) * self.rew_scales["joint_acc"] # fallen over penalty rew_fallen_over = self.has_fallen * self.rew_scales["fallen_over"] # action rate penalty rew_action_rate = torch.sum(torch.square(self.last_actions - self.actions), dim=1) * self.rew_scales["action_rate"] # cosmetic penalty for hip motion rew_hip = torch.sum(torch.abs(self.dof_pos[:, 0:4] - self.default_dof_pos[:, 0:4]), dim=1)* self.rew_scales["hip"] # total reward self.rew_buf = rew_lin_vel_xy + rew_ang_vel_z + rew_lin_vel_z + rew_ang_vel_xy + rew_orient + rew_base_height + \ rew_torque + rew_joint_acc + rew_action_rate + rew_hip + rew_fallen_over self.rew_buf = torch.clip(self.rew_buf, min=0., max=None) # add termination reward self.rew_buf += self.rew_scales["termination"] * self.reset_buf * ~self.timeout_buf # log episode reward sums self.episode_sums["lin_vel_xy"] += rew_lin_vel_xy self.episode_sums["ang_vel_z"] += rew_ang_vel_z self.episode_sums["lin_vel_z"] += rew_lin_vel_z self.episode_sums["ang_vel_xy"] += rew_ang_vel_xy self.episode_sums["orient"] += rew_orient self.episode_sums["torques"] += rew_torque self.episode_sums["joint_acc"] += rew_joint_acc self.episode_sums["action_rate"] += rew_action_rate self.episode_sums["base_height"] += rew_base_height self.episode_sums["hip"] += rew_hip def get_observations(self): self.measured_heights = self.get_heights() heights = torch.clip(self.base_pos[:, 2].unsqueeze(1) - 0.5 - self.measured_heights, -1, 1.) * self.height_meas_scale self.obs_buf = torch.cat(( self.base_lin_vel * self.lin_vel_scale, self.base_ang_vel * self.ang_vel_scale, self.projected_gravity, self.commands[:, :3] * self.commands_scale, self.dof_pos * self.dof_pos_scale, self.dof_vel * self.dof_vel_scale, heights, self.actions ),dim=-1) def get_ground_heights_below_knees(self): points = self.knee_pos.reshape(self.num_envs, 4, 3) points += self.terrain.border_size points = (points/self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0]-2) py = torch.clip(py, 0, self.height_samples.shape[1]-2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px+1, py+1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale def get_ground_heights_below_base(self): points = self.base_pos.reshape(self.num_envs, 1, 3) points += self.terrain.border_size points = (points/self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0]-2) py = torch.clip(py, 0, self.height_samples.shape[1]-2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px+1, py+1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale def get_heights(self, env_ids=None): if env_ids: points = quat_apply_yaw(self.base_quat[env_ids].repeat(1, self.num_height_points), self.height_points[env_ids]) + (self.base_pos[env_ids, 0:3]).unsqueeze(1) else: points = quat_apply_yaw(self.base_quat.repeat(1, self.num_height_points), self.height_points) + (self.base_pos[:, 0:3]).unsqueeze(1) points += self.terrain.border_size points = (points/self.terrain.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0]-2) py = torch.clip(py, 0, self.height_samples.shape[1]-2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px+1, py+1] heights = torch.min(heights1, heights2) return heights.view(self.num_envs, -1) * self.terrain.vertical_scale @torch.jit.script def quat_apply_yaw(quat, vec): quat_yaw = quat.clone().view(-1, 4) quat_yaw[:, 1:3] = 0. quat_yaw = normalize(quat_yaw) return quat_apply(quat_yaw, vec) @torch.jit.script def wrap_to_pi(angles): angles %= 2*np.pi angles -= 2*np.pi * (angles > np.pi) return angles def get_axis_params(value, axis_idx, x_value=0., dtype=np.float, n_dims=3): """construct arguments to `Vec` according to axis index. """ zs = np.zeros((n_dims,)) assert axis_idx < n_dims, "the axis dim should be within the vector dimensions" zs[axis_idx] = 1. params = np.where(zs == 1., value, zs) params[0] = x_value return list(params.astype(dtype))
27,490
Python
53.22288
168
0.627974
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/shadow_hand.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.tasks.shared.in_hand_manipulation import InHandManipulationTask from omniisaacgymenvs.robots.articulations.shadow_hand import ShadowHand from omniisaacgymenvs.robots.articulations.views.shadow_hand_view import ShadowHandView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch import * import numpy as np import torch import math class ShadowHandTask(InHandManipulationTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self.object_type = self._task_cfg["env"]["objectType"] assert self.object_type in ["block"] self.obs_type = self._task_cfg["env"]["observationType"] if not (self.obs_type in ["openai", "full_no_vel", "full", "full_state"]): raise Exception( "Unknown type of observations!\nobservationType should be one of: [openai, full_no_vel, full, full_state]") print("Obs type:", self.obs_type) self.num_obs_dict = { "openai": 42, "full_no_vel": 77, "full": 157, "full_state": 187, } self.asymmetric_obs = self._task_cfg["env"]["asymmetric_observations"] self.use_vel_obs = False self.fingertip_obs = True self.fingertips = ["robot0:ffdistal", "robot0:mfdistal", "robot0:rfdistal", "robot0:lfdistal", "robot0:thdistal"] self.num_fingertips = len(self.fingertips) self.object_scale = torch.tensor([1.0, 1.0, 1.0]) self.force_torque_obs_scale = 10.0 num_states = 0 if self.asymmetric_obs: num_states = 187 self._num_observations = self.num_obs_dict[self.obs_type] self._num_actions = 20 self._num_states = num_states InHandManipulationTask.__init__(self, name=name, env=env) return def get_hand(self): hand_start_translation = torch.tensor([0.0, 0.0, 0.5], device=self.device) hand_start_orientation = torch.tensor([0.0, 0.0, -0.70711, 0.70711], device=self.device) shadow_hand = ShadowHand( prim_path=self.default_zero_env_path + "/shadow_hand", name="shadow_hand", translation=hand_start_translation, orientation=hand_start_orientation, ) self._sim_config.apply_articulation_settings( "shadow_hand", get_prim_at_path(shadow_hand.prim_path), self._sim_config.parse_actor_config("shadow_hand"), ) shadow_hand.set_shadow_hand_properties(stage=self._stage, shadow_hand_prim=shadow_hand.prim) shadow_hand.set_motor_control_mode(stage=self._stage, shadow_hand_path=shadow_hand.prim_path) pose_dy, pose_dz = -0.39, 0.10 return hand_start_translation, pose_dy, pose_dz def get_hand_view(self, scene): hand_view = ShadowHandView(prim_paths_expr="/World/envs/.*/shadow_hand", name="shadow_hand_view") scene.add(hand_view._fingers) return hand_view def get_observations(self): self.get_object_goal_observations() self.fingertip_pos, self.fingertip_rot = self._hands._fingers.get_world_poses() self.fingertip_pos -= self._env_pos.repeat((1, self.num_fingertips)).reshape(self.num_envs * self.num_fingertips, 3) self.fingertip_velocities = self._hands._fingers.get_velocities() self.hand_dof_pos = self._hands.get_joint_positions() self.hand_dof_vel = self._hands.get_joint_velocities() if self.obs_type == "full_state" or self.asymmetric_obs: self.vec_sensor_tensor = self._hands._physics_view.get_force_sensor_forces().reshape(self.num_envs, 6*self.num_fingertips) if self.obs_type == "openai": self.compute_fingertip_observations(True) elif self.obs_type == "full_no_vel": self.compute_full_observations(True) elif self.obs_type == "full": self.compute_full_observations() elif self.obs_type == "full_state": self.compute_full_state(False) else: print("Unkown observations type!") if self.asymmetric_obs: self.compute_full_state(True) observations = { self._hands.name: { "obs_buf": self.obs_buf } } return observations def compute_fingertip_observations(self, no_vel=False): if no_vel: # Per https://arxiv.org/pdf/1808.00177.pdf Table 2 # Fingertip positions # Object Position, but not orientation # Relative target orientation # 3*self.num_fingertips = 15 self.obs_buf[:, 0:15] = self.fingertip_pos.reshape(self.num_envs, 15) self.obs_buf[:, 15:18] = self.object_pos self.obs_buf[:, 18:22] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 22:42] = self.actions else: # 13*self.num_fingertips = 65 self.obs_buf[:, 0:65] = self.fingertip_state.reshape(self.num_envs, 65) self.obs_buf[:, 0:15] = self.fingertip_pos.reshape(self.num_envs, 3*self.num_fingertips) self.obs_buf[:, 15:35] = self.fingertip_rot.reshape(self.num_envs, 4*self.num_fingertips) self.obs_buf[:, 35:65] = self.fingertip_velocities.reshape(self.num_envs, 6*self.num_fingertips) self.obs_buf[:, 65:68] = self.object_pos self.obs_buf[:, 68:72] = self.object_rot self.obs_buf[:, 72:75] = self.object_linvel self.obs_buf[:, 75:78] = self.vel_obs_scale * self.object_angvel self.obs_buf[:, 78:81] = self.goal_pos self.obs_buf[:, 81:85] = self.goal_rot self.obs_buf[:, 85:89] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 89:109] = self.actions def compute_full_observations(self, no_vel=False): if no_vel: self.obs_buf[:, 0:self.num_hand_dofs] = unscale(self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits) self.obs_buf[:, 24:37] = self.object_pos self.obs_buf[:, 27:31] = self.object_rot self.obs_buf[:, 31:34] = self.goal_pos self.obs_buf[:, 34:38] = self.goal_rot self.obs_buf[:, 38:42] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, 42:57] = self.fingertip_pos.reshape(self.num_envs, 3*self.num_fingertips) self.obs_buf[:, 57:77] = self.actions else: self.obs_buf[:, 0:self.num_hand_dofs] = unscale(self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits) self.obs_buf[:, self.num_hand_dofs:2*self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel self.obs_buf[:, 48:51] = self.object_pos self.obs_buf[:, 51:55] = self.object_rot self.obs_buf[:, 55:58] = self.object_linvel self.obs_buf[:, 58:61] = self.vel_obs_scale * self.object_angvel self.obs_buf[:, 61:64] = self.goal_pos self.obs_buf[:, 64:68] = self.goal_rot self.obs_buf[:, 68:72] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) # (7+6)*self.num_fingertips = 65 self.obs_buf[:, 72:87] = self.fingertip_pos.reshape(self.num_envs, 3*self.num_fingertips) self.obs_buf[:, 87:107] = self.fingertip_rot.reshape(self.num_envs, 4*self.num_fingertips) self.obs_buf[:, 107:137] = self.fingertip_velocities.reshape(self.num_envs, 6*self.num_fingertips) self.obs_buf[:, 137:157] = self.actions def compute_full_state(self, asymm_obs=False): if asymm_obs: self.states_buf[:, 0:self.num_hand_dofs] = unscale(self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits) self.states_buf[:, self.num_hand_dofs:2*self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel # self.states_buf[:, 2*self.num_hand_dofs:3*self.num_hand_dofs] = self.force_torque_obs_scale * self.dof_force_tensor obj_obs_start = 2*self.num_hand_dofs # 48 self.states_buf[:, obj_obs_start:obj_obs_start + 3] = self.object_pos self.states_buf[:, obj_obs_start + 3:obj_obs_start + 7] = self.object_rot self.states_buf[:, obj_obs_start + 7:obj_obs_start + 10] = self.object_linvel self.states_buf[:, obj_obs_start + 10:obj_obs_start + 13] = self.vel_obs_scale * self.object_angvel goal_obs_start = obj_obs_start + 13 # 61 self.states_buf[:, goal_obs_start:goal_obs_start + 3] = self.goal_pos self.states_buf[:, goal_obs_start + 3:goal_obs_start + 7] = self.goal_rot self.states_buf[:, goal_obs_start + 7:goal_obs_start + 11] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) # fingertip observations, state(pose and vel) + force-torque sensors num_ft_states = 13 * self.num_fingertips # 65 num_ft_force_torques = 6 * self.num_fingertips # 30 fingertip_obs_start = goal_obs_start + 11 # 72 self.states_buf[:, fingertip_obs_start:fingertip_obs_start + 3*self.num_fingertips] = self.fingertip_pos.reshape(self.num_envs, 3*self.num_fingertips) self.states_buf[:, fingertip_obs_start + 3*self.num_fingertips:fingertip_obs_start + 7*self.num_fingertips] = self.fingertip_rot.reshape(self.num_envs, 4*self.num_fingertips) self.states_buf[:, fingertip_obs_start + 7*self.num_fingertips:fingertip_obs_start + 13*self.num_fingertips] = self.fingertip_velocities.reshape(self.num_envs, 6*self.num_fingertips) self.states_buf[:, fingertip_obs_start + num_ft_states:fingertip_obs_start + num_ft_states + num_ft_force_torques] = self.force_torque_obs_scale * self.vec_sensor_tensor # obs_end = 72 + 65 + 30 = 167 # obs_total = obs_end + num_actions = 187 obs_end = fingertip_obs_start + num_ft_states + num_ft_force_torques self.states_buf[:, obs_end:obs_end + self.num_actions] = self.actions else: self.obs_buf[:, 0:self.num_hand_dofs] = unscale(self.hand_dof_pos, self.hand_dof_lower_limits, self.hand_dof_upper_limits) self.obs_buf[:, self.num_hand_dofs:2*self.num_hand_dofs] = self.vel_obs_scale * self.hand_dof_vel self.obs_buf[:, 2*self.num_hand_dofs:3*self.num_hand_dofs] = self.force_torque_obs_scale * self.dof_force_tensor obj_obs_start = 3*self.num_hand_dofs # 48 self.obs_buf[:, obj_obs_start:obj_obs_start + 3] = self.object_pos self.obs_buf[:, obj_obs_start + 3:obj_obs_start + 7] = self.object_rot self.obs_buf[:, obj_obs_start + 7:obj_obs_start + 10] = self.object_linvel self.obs_buf[:, obj_obs_start + 10:obj_obs_start + 13] = self.vel_obs_scale * self.object_angvel goal_obs_start = obj_obs_start + 13 # 61 self.obs_buf[:, goal_obs_start:goal_obs_start + 3] = self.goal_pos self.obs_buf[:, goal_obs_start + 3:goal_obs_start + 7] = self.goal_rot self.obs_buf[:, goal_obs_start + 7:goal_obs_start + 11] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) # fingertip observations, state(pose and vel) + force-torque sensors num_ft_states = 13 * self.num_fingertips # 65 num_ft_force_torques = 6 * self.num_fingertips # 30 fingertip_obs_start = goal_obs_start + 11 # 72 self.obs_buf[:, fingertip_obs_start:fingertip_obs_start + 3*self.num_fingertips] = self.fingertip_pos.reshape(self.num_envs, 3*self.num_fingertips) self.obs_buf[:, fingertip_obs_start + 3*self.num_fingertips:fingertip_obs_start + 7*self.num_fingertips] = self.fingertip_rot.reshape(self.num_envs, 4*self.num_fingertips) self.obs_buf[:, fingertip_obs_start + 7*self.num_fingertips:fingertip_obs_start + 13*self.num_fingertips] = self.fingertip_velocities.reshape(self.num_envs, 6*self.num_fingertips) self.obs_buf[:, fingertip_obs_start + num_ft_states:fingertip_obs_start + num_ft_states + num_ft_force_torques] = self.force_torque_obs_scale * self.vec_sensor_tensor # obs_end = 96 + 65 + 30 = 167 # obs_total = obs_end + num_actions = 187 obs_end = fingertip_obs_start + num_ft_states + num_ft_force_torques self.obs_buf[:, obs_end:obs_end + self.num_actions] = self.actions
14,430
Python
50.355872
194
0.627997
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/franka_cabinet.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.franka import Franka from omniisaacgymenvs.robots.articulations.cabinet import Cabinet from omniisaacgymenvs.robots.articulations.views.franka_view import FrankaView from omniisaacgymenvs.robots.articulations.views.cabinet_view import CabinetView from omni.isaac.core.objects import DynamicCuboid from omni.isaac.core.prims import RigidPrim, RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from omni.isaac.core.utils.torch.transformations import * from omni.isaac.cloner import Cloner import numpy as np import torch import math from pxr import Usd, UsdGeom class FrankaCabinetTask(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.action_scale = self._task_cfg["env"]["actionScale"] self.start_position_noise = self._task_cfg["env"]["startPositionNoise"] self.start_rotation_noise = self._task_cfg["env"]["startRotationNoise"] self.num_props = self._task_cfg["env"]["numProps"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.dist_reward_scale = self._task_cfg["env"]["distRewardScale"] self.rot_reward_scale = self._task_cfg["env"]["rotRewardScale"] self.around_handle_reward_scale = self._task_cfg["env"]["aroundHandleRewardScale"] self.open_reward_scale = self._task_cfg["env"]["openRewardScale"] self.finger_dist_reward_scale = self._task_cfg["env"]["fingerDistRewardScale"] self.action_penalty_scale = self._task_cfg["env"]["actionPenaltyScale"] self.finger_close_reward_scale = self._task_cfg["env"]["fingerCloseRewardScale"] self.distX_offset = 0.04 self.dt = 1/60. self._num_observations = 23 self._num_actions = 9 RLTask.__init__(self, name, env) return def set_up_scene(self, scene) -> None: self.get_franka() self.get_cabinet() if self.num_props > 0: self.get_props() super().set_up_scene(scene) self._frankas = FrankaView(prim_paths_expr="/World/envs/.*/franka", name="franka_view") self._cabinets = CabinetView(prim_paths_expr="/World/envs/.*/cabinet", name="cabinet_view") scene.add(self._frankas) scene.add(self._frankas._hands) scene.add(self._frankas._lfingers) scene.add(self._frankas._rfingers) scene.add(self._cabinets) scene.add(self._cabinets._drawers) if self.num_props > 0: self._props = RigidPrimView(prim_paths_expr="/World/envs/.*/prop/.*", name="prop_view", reset_xform_properties=False) scene.add(self._props) self.init_data() return def get_franka(self): franka = Franka(prim_path=self.default_zero_env_path + "/franka", name="franka") self._sim_config.apply_articulation_settings("franka", get_prim_at_path(franka.prim_path), self._sim_config.parse_actor_config("franka")) def get_cabinet(self): cabinet = Cabinet(self.default_zero_env_path + "/cabinet", name="cabinet") self._sim_config.apply_articulation_settings("cabinet", get_prim_at_path(cabinet.prim_path), self._sim_config.parse_actor_config("cabinet")) def get_props(self): prop_cloner = Cloner() drawer_pos = torch.tensor([0.0515, 0.0, 0.7172]) prop_color = torch.tensor([0.2, 0.4, 0.6]) props_per_row = int(math.ceil(math.sqrt(self.num_props))) prop_size = 0.08 prop_spacing = 0.09 xmin = -0.5 * prop_spacing * (props_per_row - 1) zmin = -0.5 * prop_spacing * (props_per_row - 1) prop_count = 0 prop_pos = [] for j in range(props_per_row): prop_up = zmin + j * prop_spacing for k in range(props_per_row): if prop_count >= self.num_props: break propx = xmin + k * prop_spacing prop_pos.append([propx, prop_up, 0.0]) prop_count += 1 prop = DynamicCuboid( prim_path=self.default_zero_env_path + "/prop/prop_0", name="prop", color=prop_color, size=prop_size, density=100.0 ) self._sim_config.apply_articulation_settings("prop", get_prim_at_path(prop.prim_path), self._sim_config.parse_actor_config("prop")) prop_paths = [f"{self.default_zero_env_path}/prop/prop_{j}" for j in range(self.num_props)] prop_cloner.clone( source_prim_path=self.default_zero_env_path + "/prop/prop_0", prim_paths=prop_paths, positions=np.array(prop_pos)+drawer_pos.numpy() ) def init_data(self) -> None: def get_env_local_pose(env_pos, xformable, device): """Compute pose in env-local coordinates""" world_transform = xformable.ComputeLocalToWorldTransform(0) world_pos = world_transform.ExtractTranslation() world_quat = world_transform.ExtractRotationQuat() px = world_pos[0] - env_pos[0] py = world_pos[1] - env_pos[1] pz = world_pos[2] - env_pos[2] qx = world_quat.imaginary[0] qy = world_quat.imaginary[1] qz = world_quat.imaginary[2] qw = world_quat.real return torch.tensor([px, py, pz, qw, qx, qy, qz], device=device, dtype=torch.float) stage = get_current_stage() hand_pose = get_env_local_pose(self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/franka/panda_link7")), self._device) lfinger_pose = get_env_local_pose( self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/franka/panda_leftfinger")), self._device ) rfinger_pose = get_env_local_pose( self._env_pos[0], UsdGeom.Xformable(stage.GetPrimAtPath("/World/envs/env_0/franka/panda_rightfinger")), self._device ) finger_pose = torch.zeros(7, device=self._device) finger_pose[0:3] = (lfinger_pose[0:3] + rfinger_pose[0:3]) / 2.0 finger_pose[3:7] = lfinger_pose[3:7] hand_pose_inv_rot, hand_pose_inv_pos = (tf_inverse(hand_pose[3:7], hand_pose[0:3])) grasp_pose_axis = 1 franka_local_grasp_pose_rot, franka_local_pose_pos = tf_combine(hand_pose_inv_rot, hand_pose_inv_pos, finger_pose[3:7], finger_pose[0:3]) franka_local_pose_pos += torch.tensor([0, 0.04, 0], device=self._device) self.franka_local_grasp_pos = franka_local_pose_pos.repeat((self._num_envs, 1)) self.franka_local_grasp_rot = franka_local_grasp_pose_rot.repeat((self._num_envs, 1)) drawer_local_grasp_pose = torch.tensor([0.3, 0.01, 0.0, 1.0, 0.0, 0.0, 0.0], device=self._device) self.drawer_local_grasp_pos = drawer_local_grasp_pose[0:3].repeat((self._num_envs, 1)) self.drawer_local_grasp_rot = drawer_local_grasp_pose[3:7].repeat((self._num_envs, 1)) self.gripper_forward_axis = torch.tensor([0, 0, 1], device=self._device, dtype=torch.float).repeat((self._num_envs, 1)) self.drawer_inward_axis = torch.tensor([-1, 0, 0], device=self._device, dtype=torch.float).repeat((self._num_envs, 1)) self.gripper_up_axis = torch.tensor([0, 1, 0], device=self._device, dtype=torch.float).repeat((self._num_envs, 1)) self.drawer_up_axis = torch.tensor([0, 0, 1], device=self._device, dtype=torch.float).repeat((self._num_envs, 1)) self.franka_default_dof_pos = torch.tensor( [1.157, -1.066, -0.155, -2.239, -1.841, 1.003, 0.469, 0.035, 0.035], device=self._device ) self.actions = torch.zeros((self._num_envs, self.num_actions), device=self._device) def get_observations(self) -> dict: hand_pos, hand_rot = self._frankas._hands.get_world_poses(clone=False) drawer_pos, drawer_rot = self._cabinets._drawers.get_world_poses(clone=False) franka_dof_pos = self._frankas.get_joint_positions(clone=False) franka_dof_vel = self._frankas.get_joint_velocities(clone=False) self.cabinet_dof_pos = self._cabinets.get_joint_positions(clone=False) self.cabinet_dof_vel = self._cabinets.get_joint_velocities(clone=False) self.franka_dof_pos = franka_dof_pos self.franka_grasp_rot, self.franka_grasp_pos, self.drawer_grasp_rot, self.drawer_grasp_pos = self.compute_grasp_transforms( hand_rot, hand_pos, self.franka_local_grasp_rot, self.franka_local_grasp_pos, drawer_rot, drawer_pos, self.drawer_local_grasp_rot, self.drawer_local_grasp_pos, ) self.franka_lfinger_pos, self.franka_lfinger_rot = self._frankas._lfingers.get_world_poses(clone=False) self.franka_rfinger_pos, self.franka_rfinger_rot = self._frankas._lfingers.get_world_poses(clone=False) dof_pos_scaled = ( 2.0 * (franka_dof_pos - self.franka_dof_lower_limits) / (self.franka_dof_upper_limits - self.franka_dof_lower_limits) - 1.0 ) to_target = self.drawer_grasp_pos - self.franka_grasp_pos self.obs_buf = torch.cat( ( dof_pos_scaled, franka_dof_vel * self.dof_vel_scale, to_target, self.cabinet_dof_pos[:, 3].unsqueeze(-1), self.cabinet_dof_vel[:, 3].unsqueeze(-1), ), dim=-1, ) observations = { self._frankas.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) targets = self.franka_dof_targets + self.franka_dof_speed_scales * self.dt * self.actions * self.action_scale self.franka_dof_targets[:] = torch.clamp(targets, self.franka_dof_lower_limits, self.franka_dof_upper_limits) env_ids_int32 = torch.arange(self._frankas.count, dtype=torch.int32, device=self._device) self._frankas.set_joint_position_targets(self.franka_dof_targets, indices=env_ids_int32) def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) num_indices = len(indices) # reset franka pos = torch.clamp( self.franka_default_dof_pos.unsqueeze(0) + 0.25 * (torch.rand((len(env_ids), self.num_franka_dofs), device=self._device) - 0.5), self.franka_dof_lower_limits, self.franka_dof_upper_limits, ) dof_pos = torch.zeros((num_indices, self._frankas.num_dof), device=self._device) dof_vel = torch.zeros((num_indices, self._frankas.num_dof), device=self._device) dof_pos[:, :] = pos self.franka_dof_targets[env_ids, :] = pos self.franka_dof_pos[env_ids, :] = pos # reset cabinet self._cabinets.set_joint_positions(torch.zeros_like(self._cabinets.get_joint_positions(clone=False)[env_ids]), indices=indices) self._cabinets.set_joint_velocities(torch.zeros_like(self._cabinets.get_joint_velocities(clone=False)[env_ids]), indices=indices) # reset props if self.num_props > 0: self._props.set_world_poses( self.default_prop_pos[self.prop_indices[env_ids].flatten()], self.default_prop_rot[self.prop_indices[env_ids].flatten()], self.prop_indices[env_ids].flatten().to(torch.int32) ) self._frankas.set_joint_position_targets(self.franka_dof_targets[env_ids], indices=indices) self._frankas.set_joint_positions(dof_pos, indices=indices) self._frankas.set_joint_velocities(dof_vel, indices=indices) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): self.num_franka_dofs = self._frankas.num_dof self.franka_dof_pos = torch.zeros((self.num_envs, self.num_franka_dofs), device=self._device) dof_limits = self._frankas.get_dof_limits() self.franka_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device) self.franka_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device) self.franka_dof_speed_scales = torch.ones_like(self.franka_dof_lower_limits) self.franka_dof_speed_scales[self._frankas.gripper_indices] = 0.1 self.franka_dof_targets = torch.zeros( (self._num_envs, self.num_franka_dofs), dtype=torch.float, device=self._device ) if self.num_props > 0: self.default_prop_pos, self.default_prop_rot = self._props.get_world_poses() self.prop_indices = torch.arange(self._num_envs * self.num_props, device=self._device).view( self._num_envs, self.num_props ) # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: self.rew_buf[:] = self.compute_franka_reward( self.reset_buf, self.progress_buf, self.actions, self.cabinet_dof_pos, self.franka_grasp_pos, self.drawer_grasp_pos, self.franka_grasp_rot, self.drawer_grasp_rot, self.franka_lfinger_pos, self.franka_rfinger_pos, self.gripper_forward_axis, self.drawer_inward_axis, self.gripper_up_axis, self.drawer_up_axis, self._num_envs, self.dist_reward_scale, self.rot_reward_scale, self.around_handle_reward_scale, self.open_reward_scale, self.finger_dist_reward_scale, self.action_penalty_scale, self.distX_offset, self._max_episode_length, self.franka_dof_pos, self.finger_close_reward_scale, ) def is_done(self) -> None: # reset if drawer is open or max length reached self.reset_buf = torch.where(self.cabinet_dof_pos[:, 3] > 0.39, torch.ones_like(self.reset_buf), self.reset_buf) self.reset_buf = torch.where(self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf) def compute_grasp_transforms( self, hand_rot, hand_pos, franka_local_grasp_rot, franka_local_grasp_pos, drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos, ): global_franka_rot, global_franka_pos = tf_combine( hand_rot, hand_pos, franka_local_grasp_rot, franka_local_grasp_pos ) global_drawer_rot, global_drawer_pos = tf_combine( drawer_rot, drawer_pos, drawer_local_grasp_rot, drawer_local_grasp_pos ) return global_franka_rot, global_franka_pos, global_drawer_rot, global_drawer_pos def compute_franka_reward( self, reset_buf, progress_buf, actions, cabinet_dof_pos, franka_grasp_pos, drawer_grasp_pos, franka_grasp_rot, drawer_grasp_rot, franka_lfinger_pos, franka_rfinger_pos, gripper_forward_axis, drawer_inward_axis, gripper_up_axis, drawer_up_axis, num_envs, dist_reward_scale, rot_reward_scale, around_handle_reward_scale, open_reward_scale, finger_dist_reward_scale, action_penalty_scale, distX_offset, max_episode_length, joint_positions, finger_close_reward_scale ): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, int, float, float, float, float, float, float, float, float, Tensor) -> Tuple[Tensor, Tensor] # distance from hand to the drawer d = torch.norm(franka_grasp_pos - drawer_grasp_pos, p=2, dim=-1) dist_reward = 1.0 / (1.0 + d ** 2) dist_reward *= dist_reward dist_reward = torch.where(d <= 0.02, dist_reward * 2, dist_reward) axis1 = tf_vector(franka_grasp_rot, gripper_forward_axis) axis2 = tf_vector(drawer_grasp_rot, drawer_inward_axis) axis3 = tf_vector(franka_grasp_rot, gripper_up_axis) axis4 = tf_vector(drawer_grasp_rot, drawer_up_axis) dot1 = torch.bmm(axis1.view(num_envs, 1, 3), axis2.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) # alignment of forward axis for gripper dot2 = torch.bmm(axis3.view(num_envs, 1, 3), axis4.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) # alignment of up axis for gripper # reward for matching the orientation of the hand to the drawer (fingers wrapped) rot_reward = 0.5 * (torch.sign(dot1) * dot1 ** 2 + torch.sign(dot2) * dot2 ** 2) # bonus if left finger is above the drawer handle and right below around_handle_reward = torch.zeros_like(rot_reward) around_handle_reward = torch.where(franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where(franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], around_handle_reward + 0.5, around_handle_reward), around_handle_reward) # reward for distance of each finger from the drawer finger_dist_reward = torch.zeros_like(rot_reward) lfinger_dist = torch.abs(franka_lfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) rfinger_dist = torch.abs(franka_rfinger_pos[:, 2] - drawer_grasp_pos[:, 2]) finger_dist_reward = torch.where(franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2], torch.where(franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2], (0.04 - lfinger_dist) + (0.04 - rfinger_dist), finger_dist_reward), finger_dist_reward) finger_close_reward = torch.zeros_like(rot_reward) finger_close_reward = torch.where(d <=0.03, (0.04 - joint_positions[:, 7]) + (0.04 - joint_positions[:, 8]), finger_close_reward) # regularization on the actions (summed for each environment) action_penalty = torch.sum(actions ** 2, dim=-1) # how far the cabinet has been opened out open_reward = cabinet_dof_pos[:, 3] * around_handle_reward + cabinet_dof_pos[:, 3] # drawer_top_joint rewards = dist_reward_scale * dist_reward + rot_reward_scale * rot_reward \ + around_handle_reward_scale * around_handle_reward + open_reward_scale * open_reward \ + finger_dist_reward_scale * finger_dist_reward - action_penalty_scale * action_penalty + finger_close_reward * finger_close_reward_scale # bonus for opening drawer properly rewards = torch.where(cabinet_dof_pos[:, 3] > 0.01, rewards + 0.5, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.2, rewards + around_handle_reward, rewards) rewards = torch.where(cabinet_dof_pos[:, 3] > 0.39, rewards + (2.0 * around_handle_reward), rewards) # # prevent bad style in opening drawer # rewards = torch.where(franka_lfinger_pos[:, 0] < drawer_grasp_pos[:, 0] - distX_offset, # torch.ones_like(rewards) * -1, rewards) # rewards = torch.where(franka_rfinger_pos[:, 0] < drawer_grasp_pos[:, 0] - distX_offset, # torch.ones_like(rewards) * -1, rewards) return rewards
20,308
Python
47.586124
222
0.621627
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/crazyflie.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.crazyflie import Crazyflie from omniisaacgymenvs.robots.articulations.views.crazyflie_view import CrazyflieView from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path import numpy as np import torch EPS = 1e-6 # small constant to avoid divisions by 0 and log(0) class CrazyflieTask(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] self.dt = self._task_cfg["sim"]["dt"] self._num_observations = 18 self._num_actions = 4 self._crazyflie_position = torch.tensor([0, 0, 1.0]) self._ball_position = torch.tensor([0, 0, 1.0]) RLTask.__init__(self, name=name, env=env) # parameters for the crazyflie self.arm_length = 0.05 # parameters for the controller self.motor_damp_time_up = 0.15 self.motor_damp_time_down = 0.15 # I use the multiplier 4, since 4*T ~ time for a step response to finish, where # T is a time constant of the first-order filter self.motor_tau_up = 4 * self.dt / (self.motor_damp_time_up + EPS) self.motor_tau_down = 4 * self.dt / (self.motor_damp_time_down + EPS) self.thrusts = torch.zeros((self._num_envs, 4, 3), dtype=torch.float32, device=self._device) self.thrust_cmds_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device) self.thrust_rot_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device) # thrust max self.mass = 0.028 self.thrust_to_weight = 1.9 self.motor_assymetry = np.array([1.0, 1.0, 1.0, 1.0]) # re-normalizing to sum-up to 4 self.motor_assymetry = self.motor_assymetry * 4. / np.sum(self.motor_assymetry) self.grav_z = -1.0 * self._task_cfg["sim"]["gravity"][2] thrust_max = self.grav_z * self.mass * self.thrust_to_weight * self.motor_assymetry / 4.0 self.thrust_max = torch.tensor(thrust_max, device=self._device, dtype=torch.float32) self.motor_linearity = 1.0 self.prop_max_rot = 433.3 self.target_positions = torch.zeros((self._num_envs, 3), device=self._device, dtype=torch.float32) self.target_positions[:, 2] = 1 self.actions = torch.zeros((self._num_envs, 4), device=self._device, dtype=torch.float32) self.all_indices = torch.arange(self._num_envs, dtype=torch.int32, device=self._device) # Extra info self.extras = {} torch_zeros = lambda: torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) self.episode_sums = {"rew_pos": torch_zeros(), "rew_orient": torch_zeros(), "rew_effort": torch_zeros(), "rew_spin": torch_zeros(), "raw_dist": torch_zeros(), "raw_orient": torch_zeros(), "raw_effort": torch_zeros(), "raw_spin": torch_zeros()} return def set_up_scene(self, scene) -> None: self.get_crazyflie() self.get_target() RLTask.set_up_scene(self, scene) self._copters = CrazyflieView(prim_paths_expr="/World/envs/.*/Crazyflie", name="crazyflie_view") self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball") scene.add(self._copters) scene.add(self._balls) for i in range(4): scene.add(self._copters.physics_rotors[i]) return def get_crazyflie(self): copter = Crazyflie(prim_path=self.default_zero_env_path + "/Crazyflie", name="crazyflie", translation=self._crazyflie_position) self._sim_config.apply_articulation_settings("crazyflie", get_prim_at_path(copter.prim_path), self._sim_config.parse_actor_config("crazyflie")) def get_target(self): radius = 0.2 color = torch.tensor([1, 0, 0]) ball = DynamicSphere( prim_path=self.default_zero_env_path + "/ball", translation=self._ball_position, name="target_0", radius=radius, color=color) self._sim_config.apply_articulation_settings("ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball")) ball.set_collision_enabled(False) def get_observations(self) -> dict: self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False) self.root_velocities = self._copters.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot rot_x = quat_axis(root_quats, 0) rot_y = quat_axis(root_quats, 1) rot_z = quat_axis(root_quats, 2) root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = self.target_positions - root_positions self.obs_buf[..., 3:6] = rot_x self.obs_buf[..., 6:9] = rot_y self.obs_buf[..., 9:12] = rot_z self.obs_buf[..., 12:15] = root_linvels self.obs_buf[..., 15:18] = root_angvels observations = { self._copters.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero(as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) actions = actions.clone().to(self._device) self.actions = actions # clamp to [-1.0, 1.0] thrust_cmds = torch.clamp(actions, min=-1.0, max=1.0) # scale to [0.0, 1.0] thrust_cmds = (thrust_cmds + 1.0) / 2.0 # filtering the thruster and adding noise motor_tau = self.motor_tau_up * torch.ones((self._num_envs, 4), dtype=torch.float32, device=self._device) motor_tau[thrust_cmds < self.thrust_cmds_damp] = self.motor_tau_down motor_tau[motor_tau > 1.0] = 1.0 # Since NN commands thrusts we need to convert to rot vel and back thrust_rot = thrust_cmds ** 0.5 self.thrust_rot_damp = motor_tau * (thrust_rot - self.thrust_rot_damp) + self.thrust_rot_damp self.thrust_cmds_damp = self.thrust_rot_damp ** 2 ## Adding noise thrust_noise = 0.01 * torch.randn(4, dtype=torch.float32, device=self._device) thrust_noise = thrust_cmds * thrust_noise self.thrust_cmds_damp = torch.clamp(self.thrust_cmds_damp + thrust_noise, min=0.0, max=1.0) thrusts = self.thrust_max * self.thrust_cmds_damp # thrusts given rotation root_quats = self.root_rot rot_x = quat_axis(root_quats, 0) rot_y = quat_axis(root_quats, 1) rot_z = quat_axis(root_quats, 2) rot_matrix = torch.cat((rot_x, rot_y, rot_z), 1).reshape(-1, 3, 3) force_x = torch.zeros(self._num_envs, 4, dtype=torch.float32, device=self._device) force_y = torch.zeros(self._num_envs, 4, dtype=torch.float32, device=self._device) force_xy = torch.cat((force_x, force_y), 1).reshape(-1, 4, 2) thrusts = thrusts.reshape(-1, 4, 1) thrusts = torch.cat((force_xy, thrusts), 2) thrusts_0 = thrusts[:, 0] thrusts_0 = thrusts_0[:, :, None] thrusts_1 = thrusts[:, 1] thrusts_1 = thrusts_1[:, :, None] thrusts_2 = thrusts[:, 2] thrusts_2 = thrusts_2[:, :, None] thrusts_3 = thrusts[:, 3] thrusts_3 = thrusts_3[:, :, None] mod_thrusts_0 = torch.matmul(rot_matrix, thrusts_0) mod_thrusts_1 = torch.matmul(rot_matrix, thrusts_1) mod_thrusts_2 = torch.matmul(rot_matrix, thrusts_2) mod_thrusts_3 = torch.matmul(rot_matrix, thrusts_3) self.thrusts[:, 0] = torch.squeeze(mod_thrusts_0) self.thrusts[:, 1] = torch.squeeze(mod_thrusts_1) self.thrusts[:, 2] = torch.squeeze(mod_thrusts_2) self.thrusts[:, 3] = torch.squeeze(mod_thrusts_3) # clear actions for reset envs self.thrusts[reset_env_ids] = 0 # spin spinning rotors prop_rot = self.thrust_cmds_damp * self.prop_max_rot self.dof_vel[:, 0] = prop_rot[:, 0] self.dof_vel[:, 1] = -1.0 * prop_rot[:, 1] self.dof_vel[:, 2] = prop_rot[:, 2] self.dof_vel[:, 3] = -1.0 * prop_rot[:, 3] self._copters.set_joint_velocities(self.dof_vel, indices=self.all_indices) # apply actions for i in range(4): self._copters.physics_rotors[i].apply_forces(self.thrusts[:, i], indices=self.all_indices) def post_reset(self): self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False) self.root_velocities = self._copters.get_velocities(clone=False) self.dof_pos = self._copters.get_joint_positions(clone=False) self.dof_vel = self._copters.get_joint_velocities(clone=False) self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses(clone=False) self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # control parameters self.thrusts = torch.zeros((self._num_envs, 4, 3), dtype=torch.float32, device=self._device) self.thrust_cmds_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device) self.thrust_rot_damp = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device) self.set_targets(self.all_indices) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (0, 0) and z in (2) self.target_positions[envs_long, 0:2] = torch.zeros((num_sets, 2), device=self._device) self.target_positions[envs_long, 2] = torch.ones(num_sets, device=self._device) * 2.0 # shift the target up so it visually aligns better ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long] ball_pos[:, 2] += 0.0 self._balls.set_world_poses(ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids) def reset_idx(self, env_ids): num_resets = len(env_ids) self.dof_pos[env_ids, :] = torch_rand_float(-0.0, 0.0, (num_resets, self._copters.num_dof), device=self._device) self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.0, 0.0, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.0, 0.0, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float(-0.0, 0.0, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._copters.set_joint_positions(self.dof_pos[env_ids], indices=env_ids) self._copters.set_joint_velocities(self.dof_vel[env_ids], indices=env_ids) self._copters.set_world_poses(root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._copters.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.thrust_cmds_damp[env_ids] = 0 self.thrust_rot_damp[env_ids] = 0 # fill extras self.extras["episode"] = {} for key in self.episode_sums.keys(): self.extras["episode"][key] = torch.mean( self.episode_sums[key][env_ids]) / self._max_episode_length self.episode_sums[key][env_ids] = 0. def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_angvels = self.root_velocities[:, 3:] # pos reward target_dist = torch.sqrt(torch.square(self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + target_dist) self.target_dist = target_dist self.root_positions = root_positions # orient reward ups = quat_axis(root_quats, 2) self.orient_z = ups[..., 2] up_reward = torch.clamp(ups[..., 2], min=0.0, max=1.0) # effort reward effort = torch.square(self.actions).sum(-1) effort_reward = 0.05 * torch.exp(-0.5 * effort) # spin reward spin = torch.square(root_angvels).sum(-1) spin_reward = 0.01 * torch.exp(-1.0 * spin) # combined reward self.rew_buf[:] = pos_reward + pos_reward * (up_reward + spin_reward) - effort_reward # log episode reward sums self.episode_sums["rew_pos"] += pos_reward self.episode_sums["rew_orient"] += up_reward self.episode_sums["rew_effort"] += effort_reward self.episode_sums["rew_spin"] += spin_reward # log raw info self.episode_sums["raw_dist"] += target_dist self.episode_sums["raw_orient"] += ups[..., 2] self.episode_sums["raw_effort"] += effort self.episode_sums["raw_spin"] += spin def is_done(self) -> None: # resets due to misbehavior ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 5.0, ones, die) # z >= 0.5 & z <= 5.0 & up > 0 die = torch.where(self.root_positions[..., 2] < 0.5, ones, die) die = torch.where(self.root_positions[..., 2] > 5.0, ones, die) die = torch.where(self.orient_z < 0.0, ones, die) # resets due to episode length self.reset_buf[:] = torch.where(self.progress_buf >= self._max_episode_length - 1, ones, die)
16,158
Python
41.635884
120
0.613814
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/humanoid.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.shared.locomotion import LocomotionTask from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.humanoid import Humanoid from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omni.isaac.core.utils.torch.maths import torch_rand_float, tensor_clamp, unscale from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path import numpy as np import torch import math from pxr import PhysxSchema class HumanoidLocomotionTask(LocomotionTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_observations = 87 self._num_actions = 21 self._humanoid_positions = torch.tensor([0, 0, 1.34]) LocomotionTask.__init__(self, name=name, env=env) return def set_up_scene(self, scene) -> None: self.get_humanoid() RLTask.set_up_scene(self, scene) self._humanoids = ArticulationView(prim_paths_expr="/World/envs/.*/Humanoid/torso", name="humanoid_view", reset_xform_properties=False) scene.add(self._humanoids) return def get_humanoid(self): humanoid = Humanoid(prim_path=self.default_zero_env_path + "/Humanoid", name="Humanoid", translation=self._humanoid_positions) self._sim_config.apply_articulation_settings("Humanoid", get_prim_at_path(humanoid.prim_path), self._sim_config.parse_actor_config("Humanoid")) def get_robot(self): return self._humanoids def post_reset(self): self.joint_gears = torch.tensor( [ 67.5000, # lower_waist 67.5000, # lower_waist 67.5000, # right_upper_arm 67.5000, # right_upper_arm 67.5000, # left_upper_arm 67.5000, # left_upper_arm 67.5000, # pelvis 45.0000, # right_lower_arm 45.0000, # left_lower_arm 45.0000, # right_thigh: x 135.0000, # right_thigh: y 45.0000, # right_thigh: z 45.0000, # left_thigh: x 135.0000, # left_thigh: y 45.0000, # left_thigh: z 90.0000, # right_knee 90.0000, # left_knee 22.5, # right_foot 22.5, # right_foot 22.5, # left_foot 22.5, # left_foot ], device=self._device, ) self.max_motor_effort = torch.max(self.joint_gears) self.motor_effort_ratio = self.joint_gears / self.max_motor_effort dof_limits = self._humanoids.get_dof_limits() self.dof_limits_lower = dof_limits[0, :, 0].to(self._device) self.dof_limits_upper = dof_limits[0, :, 1].to(self._device) LocomotionTask.post_reset(self) def get_dof_at_limit_cost(self): return get_dof_at_limit_cost(self.obs_buf, self.motor_effort_ratio, self.joints_at_limit_cost_scale) @torch.jit.script def get_dof_at_limit_cost(obs_buf, motor_effort_ratio, joints_at_limit_cost_scale): # type: (Tensor, Tensor, float) -> Tensor scaled_cost = joints_at_limit_cost_scale * (torch.abs(obs_buf[:, 12:33]) - 0.98) / 0.02 dof_at_limit_cost = torch.sum( (torch.abs(obs_buf[:, 12:33]) > 0.98) * scaled_cost * motor_effort_ratio.unsqueeze(0), dim=-1 ) return dof_at_limit_cost
5,214
Python
39.742187
143
0.656885
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/ant.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.robots.articulations.ant import Ant from omniisaacgymenvs.tasks.shared.locomotion import LocomotionTask from omniisaacgymenvs.tasks.base.rl_task import RLTask from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omni.isaac.core.utils.torch.maths import torch_rand_float, tensor_clamp, unscale from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path from pxr import PhysxSchema import numpy as np import torch import math class AntLocomotionTask(LocomotionTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_observations = 60 self._num_actions = 8 self._ant_positions = torch.tensor([0, 0, 0.5]) LocomotionTask.__init__(self, name=name, env=env) return def set_up_scene(self, scene) -> None: self.get_ant() RLTask.set_up_scene(self, scene) self._ants = ArticulationView(prim_paths_expr="/World/envs/.*/Ant/torso", name="ant_view", reset_xform_properties=False) scene.add(self._ants) return def get_ant(self): ant = Ant(prim_path=self.default_zero_env_path + "/Ant", name="Ant", translation=self._ant_positions) self._sim_config.apply_articulation_settings("Ant", get_prim_at_path(ant.prim_path), self._sim_config.parse_actor_config("Ant")) def get_robot(self): return self._ants def post_reset(self): self.joint_gears = torch.tensor([15, 15, 15, 15, 15, 15, 15, 15], dtype=torch.float32, device=self._device) dof_limits = self._ants.get_dof_limits() self.dof_limits_lower = dof_limits[0, :, 0].to(self._device) self.dof_limits_upper = dof_limits[0, :, 1].to(self._device) self.motor_effort_ratio = torch.ones_like(self.joint_gears, device=self._device) LocomotionTask.post_reset(self) def get_dof_at_limit_cost(self): return get_dof_at_limit_cost(self.obs_buf, self._ants.num_dof) @torch.jit.script def get_dof_at_limit_cost(obs_buf, num_dof): # type: (Tensor, int) -> Tensor return torch.sum(obs_buf[:, 12:12+num_dof] > 0.99, dim=-1)
3,939
Python
40.473684
136
0.711348
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/cartpole.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.cartpole import Cartpole from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path import numpy as np import torch import math class CartpoleTask(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._cartpole_positions = torch.tensor([0.0, 0.0, 2.0]) self._reset_dist = self._task_cfg["env"]["resetDist"] self._max_push_effort = self._task_cfg["env"]["maxEffort"] self._max_episode_length = 500 self._num_observations = 4 self._num_actions = 1 RLTask.__init__(self, name, env) return def set_up_scene(self, scene) -> None: self.get_cartpole() super().set_up_scene(scene) self._cartpoles = ArticulationView(prim_paths_expr="/World/envs/.*/Cartpole", name="cartpole_view", reset_xform_properties=False) scene.add(self._cartpoles) return def get_cartpole(self): cartpole = Cartpole(prim_path=self.default_zero_env_path + "/Cartpole", name="Cartpole", translation=self._cartpole_positions) # applies articulation settings from the task configuration yaml file self._sim_config.apply_articulation_settings("Cartpole", get_prim_at_path(cartpole.prim_path), self._sim_config.parse_actor_config("Cartpole")) def get_observations(self) -> dict: dof_pos = self._cartpoles.get_joint_positions(clone=False) dof_vel = self._cartpoles.get_joint_velocities(clone=False) cart_pos = dof_pos[:, self._cart_dof_idx] cart_vel = dof_vel[:, self._cart_dof_idx] pole_pos = dof_pos[:, self._pole_dof_idx] pole_vel = dof_vel[:, self._pole_dof_idx] self.obs_buf[:, 0] = cart_pos self.obs_buf[:, 1] = cart_vel self.obs_buf[:, 2] = pole_pos self.obs_buf[:, 3] = pole_vel observations = { self._cartpoles.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) actions = actions.to(self._device) forces = torch.zeros((self._cartpoles.count, self._cartpoles.num_dof), dtype=torch.float32, device=self._device) forces[:, self._cart_dof_idx] = self._max_push_effort * actions[:, 0] indices = torch.arange(self._cartpoles.count, dtype=torch.int32, device=self._device) self._cartpoles.set_joint_efforts(forces, indices=indices) def reset_idx(self, env_ids): num_resets = len(env_ids) # randomize DOF positions dof_pos = torch.zeros((num_resets, self._cartpoles.num_dof), device=self._device) dof_pos[:, self._cart_dof_idx] = 1.0 * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) dof_pos[:, self._pole_dof_idx] = 0.125 * math.pi * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) # randomize DOF velocities dof_vel = torch.zeros((num_resets, self._cartpoles.num_dof), device=self._device) dof_vel[:, self._cart_dof_idx] = 0.5 * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) dof_vel[:, self._pole_dof_idx] = 0.25 * math.pi * (1.0 - 2.0 * torch.rand(num_resets, device=self._device)) # apply resets indices = env_ids.to(dtype=torch.int32) self._cartpoles.set_joint_positions(dof_pos, indices=indices) self._cartpoles.set_joint_velocities(dof_vel, indices=indices) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def post_reset(self): self._cart_dof_idx = self._cartpoles.get_dof_index("cartJoint") self._pole_dof_idx = self._cartpoles.get_dof_index("poleJoint") # randomize all envs indices = torch.arange(self._cartpoles.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: cart_pos = self.obs_buf[:, 0] cart_vel = self.obs_buf[:, 1] pole_angle = self.obs_buf[:, 2] pole_vel = self.obs_buf[:, 3] reward = 1.0 - pole_angle * pole_angle - 0.01 * torch.abs(cart_vel) - 0.005 * torch.abs(pole_vel) reward = torch.where(torch.abs(cart_pos) > self._reset_dist, torch.ones_like(reward) * -2.0, reward) reward = torch.where(torch.abs(pole_angle) > np.pi / 2, torch.ones_like(reward) * -2.0, reward) self.rew_buf[:] = reward def is_done(self) -> None: cart_pos = self.obs_buf[:, 0] pole_pos = self.obs_buf[:, 2] resets = torch.where(torch.abs(cart_pos) > self._reset_dist, 1, 0) resets = torch.where(torch.abs(pole_pos) > math.pi / 2, 1, resets) resets = torch.where(self.progress_buf >= self._max_episode_length, 1, resets) self.reset_buf[:] = resets
6,907
Python
41.380368
151
0.651658
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/ur10_reacher.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.sim2real.ur10 import RealWorldUR10 from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig from omniisaacgymenvs.tasks.shared.reacher import ReacherTask from omniisaacgymenvs.robots.articulations.views.ur10_view import UR10View from omniisaacgymenvs.robots.articulations.ur10 import UR10 from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch import * from omni.isaac.gym.vec_env import VecEnvBase import numpy as np import torch import math class UR10ReacherTask(ReacherTask): def __init__( self, name: str, sim_config: SimConfig, env: VecEnvBase, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self.obs_type = self._task_cfg["env"]["observationType"] if not (self.obs_type in ["full"]): raise Exception( "Unknown type of observations!\nobservationType should be one of: [full]") print("Obs type:", self.obs_type) self.num_obs_dict = { "full": 29, # 6: UR10 joints position (action space) # 6: UR10 joints velocity # 3: goal position # 4: goal rotation # 4: goal relative rotation # 6: previous action } self.object_scale = torch.tensor([1.0] * 3) self.goal_scale = torch.tensor([2.0] * 3) self._num_observations = self.num_obs_dict[self.obs_type] self._num_actions = 6 self._num_states = 0 pi = math.pi if self._task_cfg['safety']['enabled']: # Depends on your real robot setup self._dof_limits = torch.tensor([[ [np.deg2rad(-135), np.deg2rad(135)], [np.deg2rad(-180), np.deg2rad(-60)], [np.deg2rad(0), np.deg2rad(180)], [np.deg2rad(-180), np.deg2rad(0)], [np.deg2rad(-180), np.deg2rad(0)], [np.deg2rad(-180), np.deg2rad(180)], ]], dtype=torch.float32, device=self._cfg["sim_device"]) else: # For actions self._dof_limits = torch.tensor([[ [-2*pi, 2*pi], # [-2*pi, 2*pi], [-pi + pi/8, 0 - pi/8], # [-2*pi, 2*pi], [-pi + pi/8, pi - pi/8], # [-2*pi, 2*pi], [-pi, 0], # [-2*pi, 2*pi], [-pi, pi], # [-2*pi, 2*pi], [-2*pi, 2*pi], # [-2*pi, 2*pi], ]], dtype=torch.float32, device=self._cfg["sim_device"]) # The last action space cannot be [0, 0] # It will introduce the following error: # ValueError: Expected parameter loc (Tensor of shape (2048, 6)) of distribution Normal(loc: torch.Size([2048, 6]), scale: torch.Size([2048, 6])) to satisfy the constraint Real(), but found invalid values ReacherTask.__init__(self, name=name, env=env) # Setup Sim2Real sim2real_config = self._task_cfg['sim2real'] if sim2real_config['enabled'] and self.test and self.num_envs == 1: self.act_moving_average /= 5 # Reduce moving speed self.real_world_ur10 = RealWorldUR10( sim2real_config['fail_quietely'], sim2real_config['verbose'] ) return def get_num_dof(self): return self._arms.num_dof def get_arm(self): ur10 = UR10(prim_path=self.default_zero_env_path + "/ur10", name="UR10") self._sim_config.apply_articulation_settings( "ur10", get_prim_at_path(ur10.prim_path), self._sim_config.parse_actor_config("ur10"), ) def get_arm_view(self, scene): arm_view = UR10View(prim_paths_expr="/World/envs/.*/ur10", name="ur10_view") scene.add(arm_view._end_effectors) return arm_view def get_object_displacement_tensor(self): return torch.tensor([0.0, 0.05, 0.0], device=self.device).repeat((self.num_envs, 1)) def get_observations(self): self.arm_dof_pos = self._arms.get_joint_positions() self.arm_dof_vel = self._arms.get_joint_velocities() if self.obs_type == "full_no_vel": self.compute_full_observations(True) elif self.obs_type == "full": self.compute_full_observations() else: print("Unkown observations type!") observations = { self._arms.name: { "obs_buf": self.obs_buf } } return observations def get_reset_target_new_pos(self, n_reset_envs): # Randomly generate goal positions, although the resulting goal may still not be reachable. new_pos = torch_rand_float(-1, 1, (n_reset_envs, 3), device=self.device) if self._task_cfg['sim2real']['enabled'] and self.test and self.num_envs == 1: # Depends on your real robot setup new_pos[:, 0] = torch.abs(new_pos[:, 0] * 0.1) + 0.35 new_pos[:, 1] = torch.abs(new_pos[:, 1] * 0.1) + 0.35 new_pos[:, 2] = torch.abs(new_pos[:, 2] * 0.5) + 0.3 else: new_pos[:, 0] = new_pos[:, 0] * 0.4 + 0.5 * torch.sign(new_pos[:, 0]) new_pos[:, 1] = new_pos[:, 1] * 0.4 + 0.5 * torch.sign(new_pos[:, 1]) new_pos[:, 2] = torch.abs(new_pos[:, 2] * 0.8) + 0.1 if self._task_cfg['safety']['enabled']: new_pos[:, 0] = torch.abs(new_pos[:, 0]) / 1.25 new_pos[:, 1] = torch.abs(new_pos[:, 1]) / 1.25 return new_pos def compute_full_observations(self, no_vel=False): if no_vel: raise NotImplementedError() else: # There are many redundant information for the simple Reacher task, but we'll keep them for now. self.obs_buf[:, 0:self.num_arm_dofs] = unscale(self.arm_dof_pos[:, :self.num_arm_dofs], self.arm_dof_lower_limits, self.arm_dof_upper_limits) self.obs_buf[:, self.num_arm_dofs:2*self.num_arm_dofs] = self.vel_obs_scale * self.arm_dof_vel[:, :self.num_arm_dofs] base = 2 * self.num_arm_dofs self.obs_buf[:, base+0:base+3] = self.goal_pos self.obs_buf[:, base+3:base+7] = self.goal_rot self.obs_buf[:, base+7:base+11] = quat_mul(self.object_rot, quat_conjugate(self.goal_rot)) self.obs_buf[:, base+11:base+17] = self.actions def send_joint_pos(self, joint_pos): self.real_world_ur10.send_joint_pos(joint_pos)
8,205
Python
42.882353
216
0.599878
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/quadcopter.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.quadcopter import Quadcopter from omniisaacgymenvs.robots.articulations.views.quadcopter_view import QuadcopterView from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims import RigidPrimView import numpy as np import torch import math class QuadcopterTask(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] self.dt = self._task_cfg["sim"]["dt"] self._num_observations = 21 self._num_actions = 12 self._copter_position = torch.tensor([0, 0, 1.0]) RLTask.__init__(self, name=name, env=env) max_thrust = 2.0 self.thrust_lower_limits = -max_thrust * torch.ones(4, device=self._device, dtype=torch.float32) self.thrust_upper_limits = max_thrust * torch.ones(4, device=self._device, dtype=torch.float32) self.all_indices = torch.arange(self._num_envs, dtype=torch.int32, device=self._device) return def set_up_scene(self, scene) -> None: self.get_copter() self.get_target() RLTask.set_up_scene(self, scene) self._copters = QuadcopterView(prim_paths_expr="/World/envs/.*/Quadcopter", name="quadcopter_view") self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False) scene.add(self._copters) scene.add(self._copters.rotors) scene.add(self._balls) return def get_copter(self): copter = Quadcopter(prim_path=self.default_zero_env_path + "/Quadcopter", name="quadcopter", translation=self._copter_position) self._sim_config.apply_articulation_settings("copter", get_prim_at_path(copter.prim_path), self._sim_config.parse_actor_config("copter")) def get_target(self): radius = 0.05 color = torch.tensor([1, 0, 0]) ball = DynamicSphere( prim_path=self.default_zero_env_path + "/ball", name="target_0", radius=radius, color=color, ) self._sim_config.apply_articulation_settings("ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball")) ball.set_collision_enabled(False) def get_observations(self) -> dict: self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False) self.root_velocities = self._copters.get_velocities(clone=False) self.dof_pos = self._copters.get_joint_positions(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 3:7] = root_quats self.obs_buf[..., 7:10] = root_linvels / 2 self.obs_buf[..., 10:13] = root_angvels / math.pi self.obs_buf[..., 13:21] = self.dof_pos observations = { self._copters.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) actions = actions.clone().to(self._device) dof_action_speed_scale = 8 * math.pi self.dof_position_targets += self.dt * dof_action_speed_scale * actions[:, 0:8] self.dof_position_targets[:] = tensor_clamp(self.dof_position_targets, self.dof_lower_limits, self.dof_upper_limits) thrust_action_speed_scale = 100 self.thrusts += self.dt * thrust_action_speed_scale * actions[:, 8:12] self.thrusts[:] = tensor_clamp(self.thrusts, self.thrust_lower_limits, self.thrust_upper_limits) self.forces[:, 0, 2] = self.thrusts[:, 0] self.forces[:, 1, 2] = self.thrusts[:, 1] self.forces[:, 2, 2] = self.thrusts[:, 2] self.forces[:, 3, 2] = self.thrusts[:, 3] # clear actions for reset envs self.thrusts[reset_env_ids] = 0.0 self.forces[reset_env_ids] = 0.0 self.dof_position_targets[reset_env_ids] = self.dof_pos[reset_env_ids] _, rotors_quat = self._copters.rotors.get_world_poses(clone=False) rotors_quat = rotors_quat.reshape(self._num_envs, 4, 4) for i in range(4): self.forces_world_frame[:, i, :] = quat_apply(rotors_quat[:, i, :], self.forces[:, i, :]) # apply actions self._copters.set_joint_position_targets(self.dof_position_targets) self._copters.rotors.apply_forces(self.forces_world_frame) def post_reset(self): # control tensors self.dof_position_targets = torch.zeros((self._num_envs, self._copters.num_dof), dtype=torch.float32, device=self._device, requires_grad=False) self.thrusts = torch.zeros((self._num_envs, 4), dtype=torch.float32, device=self._device, requires_grad=False) self.forces = torch.zeros((self._num_envs, self._copters.rotors.count // self._num_envs, 3), dtype=torch.float32, device=self._device, requires_grad=False) self.forces_world_frame = torch.zeros((self._num_envs, self._copters.rotors.count // self._num_envs, 3), dtype=torch.float32, device=self._device, requires_grad=False) self.target_positions = torch.zeros((self._num_envs, 3), device=self._device) self.target_positions[:, 2] = 1.0 self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False) self.root_velocities = self._copters.get_velocities(clone=False) self.dof_pos = self._copters.get_joint_positions(clone=False) self.dof_vel = self._copters.get_joint_velocities(clone=False) self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() dof_limits = self._copters.get_dof_limits() self.dof_lower_limits = torch.tensor(dof_limits[0][:, 0], device=self._device) self.dof_upper_limits = torch.tensor(dof_limits[0][:, 1], device=self._device) def reset_idx(self, env_ids): num_resets = len(env_ids) self.dof_pos[env_ids, :] = torch_rand_float(-0.2, 0.2, (num_resets, self._copters.num_dof), device=self._device) self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-1.5, 1.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-1.5, 1.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float(-0.2, 1.5, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._copters.set_joint_positions(self.dof_pos[env_ids], indices=env_ids) self._copters.set_joint_velocities(self.dof_vel[env_ids], indices=env_ids) self._copters.set_world_poses(root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._copters.set_velocities(root_velocities[env_ids], indices=env_ids) self._balls.set_world_poses(positions=self.target_positions[:, 0:3] + self._env_pos) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_angvels = self.root_velocities[:, 3:] # distance to target target_dist = torch.sqrt(torch.square(self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + 3*target_dist * target_dist) # 2 self.target_dist = target_dist self.root_positions = root_positions # uprightness ups = quat_axis(root_quats, 2) tiltage = torch.abs(1 - ups[..., 2]) up_reward = 1.0 / (1.0 + 10 * tiltage * tiltage) # spinning spinnage = torch.abs(root_angvels[..., 2]) spinnage_reward = 1.0 / (1.0 + 0.001 * spinnage * spinnage) rew = pos_reward + pos_reward * (up_reward + spinnage_reward + spinnage * spinnage * (-1/400)) rew = torch.clip(rew, 0.0, None) self.rew_buf[:] = rew def is_done(self) -> None: # resets due to misbehavior ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 3.0, ones, die) die = torch.where(self.root_positions[..., 2] < 0.3, ones, die) # resets due to episode length self.reset_buf[:] = torch.where(self.progress_buf >= self._max_episode_length - 1, ones, die)
10,862
Python
44.2625
175
0.646474
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/ingenuity.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.ingenuity import Ingenuity from omniisaacgymenvs.robots.articulations.views.ingenuity_view import IngenuityView from omni.isaac.core.utils.torch.rotations import * from omni.isaac.core.objects import DynamicSphere from omni.isaac.core.prims import RigidPrimView from omni.isaac.core.utils.prims import get_prim_at_path import numpy as np import torch import math class IngenuityTask(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["maxEpisodeLength"] self.thrust_limit = 2000 self.thrust_lateral_component = 0.2 self.dt = self._task_cfg["sim"]["dt"] self._num_observations = 13 self._num_actions = 6 self._ingenuity_position = torch.tensor([0, 0, 1.0]) self._ball_position = torch.tensor([0, 0, 1.0]) RLTask.__init__(self, name=name, env=env) self.force_indices = torch.tensor([0, 2], device=self._device) self.spinning_indices = torch.tensor([1, 3], device=self._device) self.target_positions = torch.zeros((self._num_envs, 3), device=self._device, dtype=torch.float32) self.target_positions[:, 2] = 1 self.all_indices = torch.arange(self._num_envs, dtype=torch.int32, device=self._device) return def set_up_scene(self, scene) -> None: self.get_ingenuity() self.get_target() RLTask.set_up_scene(self, scene) self._copters = IngenuityView(prim_paths_expr="/World/envs/.*/Ingenuity", name="ingenuity_view") self._balls = RigidPrimView(prim_paths_expr="/World/envs/.*/ball", name="targets_view", reset_xform_properties=False) scene.add(self._copters) scene.add(self._balls) for i in range(2): scene.add(self._copters.physics_rotors[i]) scene.add(self._copters.visual_rotors[i]) return def get_ingenuity(self): copter = Ingenuity(prim_path=self.default_zero_env_path + "/Ingenuity", name="ingenuity", translation=self._ingenuity_position) self._sim_config.apply_articulation_settings("ingenuity", get_prim_at_path(copter.prim_path), self._sim_config.parse_actor_config("ingenuity")) def get_target(self): radius = 0.1 color = torch.tensor([1, 0, 0]) ball = DynamicSphere( prim_path=self.default_zero_env_path + "/ball", translation=self._ball_position, name="target_0", radius=radius, color=color, ) self._sim_config.apply_articulation_settings("ball", get_prim_at_path(ball.prim_path), self._sim_config.parse_actor_config("ball")) ball.set_collision_enabled(False) def get_observations(self) -> dict: self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False) self.root_velocities = self._copters.get_velocities(clone=False) root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_linvels = self.root_velocities[:, :3] root_angvels = self.root_velocities[:, 3:] self.obs_buf[..., 0:3] = (self.target_positions - root_positions) / 3 self.obs_buf[..., 3:7] = root_quats self.obs_buf[..., 7:10] = root_linvels / 2 self.obs_buf[..., 10:13] = root_angvels / math.pi observations = { self._copters.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) set_target_ids = (self.progress_buf % 500 == 0).nonzero(as_tuple=False).squeeze(-1) if len(set_target_ids) > 0: self.set_targets(set_target_ids) actions = actions.clone().to(self._device) vertical_thrust_prop_0 = torch.clamp(actions[:, 2] * self.thrust_limit, -self.thrust_limit, self.thrust_limit) vertical_thrust_prop_1 = torch.clamp(actions[:, 5] * self.thrust_limit, -self.thrust_limit, self.thrust_limit) lateral_fraction_prop_0 = torch.clamp( actions[:, 0:2] * self.thrust_lateral_component, -self.thrust_lateral_component, self.thrust_lateral_component, ) lateral_fraction_prop_1 = torch.clamp( actions[:, 3:5] * self.thrust_lateral_component, -self.thrust_lateral_component, self.thrust_lateral_component, ) self.thrusts[:, 0, 2] = self.dt * vertical_thrust_prop_0 self.thrusts[:, 0, 0:2] = self.thrusts[:, 0, 2, None] * lateral_fraction_prop_0 self.thrusts[:, 1, 2] = self.dt * vertical_thrust_prop_1 self.thrusts[:, 1, 0:2] = self.thrusts[:, 1, 2, None] * lateral_fraction_prop_1 # clear actions for reset envs self.thrusts[reset_env_ids] = 0 # spin spinning rotors self.dof_vel[:, self.spinning_indices[0]] = 50 self.dof_vel[:, self.spinning_indices[1]] = -50 self._copters.set_joint_velocities(self.dof_vel, indices=self.all_indices) # apply actions for i in range(2): self._copters.physics_rotors[i].apply_forces(self.thrusts[:, i], indices=self.all_indices) def post_reset(self): self.root_pos, self.root_rot = self._copters.get_world_poses(clone=False) self.root_velocities = self._copters.get_velocities(clone=False) self.dof_pos = self._copters.get_joint_positions(clone=False) self.dof_vel = self._copters.get_joint_velocities(clone=False) self.initial_ball_pos, self.initial_ball_rot = self._balls.get_world_poses() self.initial_root_pos, self.initial_root_rot = self.root_pos.clone(), self.root_rot.clone() # control tensors self.thrusts = torch.zeros((self._num_envs, 2, 3), dtype=torch.float32, device=self._device) def set_targets(self, env_ids): num_sets = len(env_ids) envs_long = env_ids.long() # set target position randomly with x, y in (-1, 1) and z in (1, 2) self.target_positions[envs_long, 0:2] = torch.rand((num_sets, 2), device=self._device) * 2 - 1 self.target_positions[envs_long, 2] = torch.rand(num_sets, device=self._device) + 1 # shift the target up so it visually aligns better ball_pos = self.target_positions[envs_long] + self._env_pos[envs_long] ball_pos[:, 2] += 0.4 self._balls.set_world_poses(ball_pos[:, 0:3], self.initial_ball_rot[envs_long].clone(), indices=env_ids) def reset_idx(self, env_ids): num_resets = len(env_ids) self.dof_pos[env_ids, :] = torch_rand_float(-0.2, 0.2, (num_resets, self._copters.num_dof), device=self._device) self.dof_vel[env_ids, :] = 0 root_pos = self.initial_root_pos.clone() root_pos[env_ids, 0] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 1] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_pos[env_ids, 2] += torch_rand_float(-0.5, 0.5, (num_resets, 1), device=self._device).view(-1) root_velocities = self.root_velocities.clone() root_velocities[env_ids] = 0 # apply resets self._copters.set_joint_positions(self.dof_pos[env_ids], indices=env_ids) self._copters.set_joint_velocities(self.dof_vel[env_ids], indices=env_ids) self._copters.set_world_poses(root_pos[env_ids], self.initial_root_rot[env_ids].clone(), indices=env_ids) self._copters.set_velocities(root_velocities[env_ids], indices=env_ids) # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 def calculate_metrics(self) -> None: root_positions = self.root_pos - self._env_pos root_quats = self.root_rot root_angvels = self.root_velocities[:, 3:] # distance to target target_dist = torch.sqrt(torch.square(self.target_positions - root_positions).sum(-1)) pos_reward = 1.0 / (1.0 + 2.5 * target_dist * target_dist) self.target_dist = target_dist self.root_positions = root_positions # uprightness ups = quat_axis(root_quats, 2) tiltage = torch.abs(1 - ups[..., 2]) up_reward = 1.0 / (1.0 + 30 * tiltage * tiltage) # spinning spinnage = torch.abs(root_angvels[..., 2]) spinnage_reward = 1.0 / (1.0 + 10 * spinnage * spinnage) # combined reward # uprightness and spinning only matter when close to the target self.rew_buf[:] = pos_reward + pos_reward * (up_reward + spinnage_reward) def is_done(self) -> None: # resets due to misbehavior ones = torch.ones_like(self.reset_buf) die = torch.zeros_like(self.reset_buf) die = torch.where(self.target_dist > 20.0, ones, die) die = torch.where(self.root_positions[..., 2] < 0.5, ones, die) # resets due to episode length self.reset_buf[:] = torch.where(self.progress_buf >= self._max_episode_length - 1, ones, die)
11,136
Python
42.33463
151
0.639098
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/anymal.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omniisaacgymenvs.tasks.base.rl_task import RLTask from omniisaacgymenvs.robots.articulations.anymal import Anymal from omniisaacgymenvs.robots.articulations.views.anymal_view import AnymalView from omniisaacgymenvs.tasks.utils.usd_utils import set_drive from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.torch.rotations import * import numpy as np import torch import math class AnymalTask(RLTask): def __init__( self, name, sim_config, env, offset=None ) -> None: self._sim_config = sim_config self._cfg = sim_config.config self._task_cfg = sim_config.task_config # normalization self.lin_vel_scale = self._task_cfg["env"]["learn"]["linearVelocityScale"] self.ang_vel_scale = self._task_cfg["env"]["learn"]["angularVelocityScale"] self.dof_pos_scale = self._task_cfg["env"]["learn"]["dofPositionScale"] self.dof_vel_scale = self._task_cfg["env"]["learn"]["dofVelocityScale"] self.action_scale = self._task_cfg["env"]["control"]["actionScale"] # reward scales self.rew_scales = {} self.rew_scales["lin_vel_xy"] = self._task_cfg["env"]["learn"]["linearVelocityXYRewardScale"] self.rew_scales["ang_vel_z"] = self._task_cfg["env"]["learn"]["angularVelocityZRewardScale"] self.rew_scales["lin_vel_z"] = self._task_cfg["env"]["learn"]["linearVelocityZRewardScale"] self.rew_scales["joint_acc"] = self._task_cfg["env"]["learn"]["jointAccRewardScale"] self.rew_scales["action_rate"] = self._task_cfg["env"]["learn"]["actionRateRewardScale"] self.rew_scales["cosmetic"] = self._task_cfg["env"]["learn"]["cosmeticRewardScale"] # command ranges self.command_x_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_x"] self.command_y_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["linear_y"] self.command_yaw_range = self._task_cfg["env"]["randomCommandVelocityRanges"]["yaw"] # base init state pos = self._task_cfg["env"]["baseInitState"]["pos"] rot = self._task_cfg["env"]["baseInitState"]["rot"] v_lin = self._task_cfg["env"]["baseInitState"]["vLinear"] v_ang = self._task_cfg["env"]["baseInitState"]["vAngular"] state = pos + rot + v_lin + v_ang self.base_init_state = state # default joint positions self.named_default_joint_angles = self._task_cfg["env"]["defaultJointAngles"] # other self.dt = 1 / 60 self.max_episode_length_s = self._task_cfg["env"]["learn"]["episodeLength_s"] self.max_episode_length = int(self.max_episode_length_s / self.dt + 0.5) self.Kp = self._task_cfg["env"]["control"]["stiffness"] self.Kd = self._task_cfg["env"]["control"]["damping"] for key in self.rew_scales.keys(): self.rew_scales[key] *= self.dt self._num_envs = self._task_cfg["env"]["numEnvs"] self._anymal_translation = torch.tensor([0.0, 0.0, 0.62]) self._env_spacing = self._task_cfg["env"]["envSpacing"] self._num_observations = 48 self._num_actions = 12 RLTask.__init__(self, name, env) return def set_up_scene(self, scene) -> None: self.get_anymal() super().set_up_scene(scene) self._anymals = AnymalView(prim_paths_expr="/World/envs/.*/anymal", name="anymalview") scene.add(self._anymals) scene.add(self._anymals._knees) scene.add(self._anymals._base) return def get_anymal(self): anymal = Anymal(prim_path=self.default_zero_env_path + "/anymal", name="Anymal", translation=self._anymal_translation) self._sim_config.apply_articulation_settings("Anymal", get_prim_at_path(anymal.prim_path), self._sim_config.parse_actor_config("Anymal")) # Configure joint properties joint_paths = [] for quadrant in ["LF", "LH", "RF", "RH"]: for component, abbrev in [("HIP", "H"), ("THIGH", "K")]: joint_paths.append(f"{quadrant}_{component}/{quadrant}_{abbrev}FE") joint_paths.append(f"base/{quadrant}_HAA") for joint_path in joint_paths: set_drive(f"{anymal.prim_path}/{joint_path}", "angular", "position", 0, 400, 40, 1000) self.default_dof_pos = torch.zeros((self.num_envs, 12), dtype=torch.float, device=self.device, requires_grad=False) dof_names = anymal.dof_names for i in range(self.num_actions): name = dof_names[i] angle = self.named_default_joint_angles[name] self.default_dof_pos[:, i] = angle def get_observations(self) -> dict: torso_position, torso_rotation = self._anymals.get_world_poses(clone=False) root_velocities = self._anymals.get_velocities(clone=False) dof_pos = self._anymals.get_joint_positions(clone=False) dof_vel = self._anymals.get_joint_velocities(clone=False) velocity = root_velocities[:, 0:3] ang_velocity = root_velocities[:, 3:6] base_lin_vel = quat_rotate_inverse(torso_rotation, velocity) * self.lin_vel_scale base_ang_vel = quat_rotate_inverse(torso_rotation, ang_velocity) * self.ang_vel_scale projected_gravity = quat_rotate(torso_rotation, self.gravity_vec) dof_pos_scaled = (dof_pos - self.default_dof_pos) * self.dof_pos_scale commands_scaled = self.commands * torch.tensor( [self.lin_vel_scale, self.lin_vel_scale, self.ang_vel_scale], requires_grad=False, device=self.commands.device, ) obs = torch.cat( ( base_lin_vel, base_ang_vel, projected_gravity, commands_scaled, dof_pos_scaled, dof_vel * self.dof_vel_scale, self.actions, ), dim=-1, ) self.obs_buf[:] = obs observations = { self._anymals.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) indices = torch.arange(self._anymals.count, dtype=torch.int32, device=self._device) self.actions[:] = actions.clone().to(self._device) current_targets = self.current_targets + self.action_scale * self.actions * self.dt self.current_targets[:] = torch.clamp(current_targets, self.anymal_dof_lower_limits, self.anymal_dof_upper_limits) self._anymals.set_joint_position_targets(self.current_targets, indices) def reset_idx(self, env_ids): num_resets = len(env_ids) # randomize DOF velocities velocities = torch_rand_float(-0.1, 0.1, (num_resets, self._anymals.num_dof), device=self._device) dof_pos = self.default_dof_pos[env_ids] dof_vel = velocities self.current_targets[env_ids] = dof_pos[:] root_vel = torch.zeros((num_resets, 6), device=self._device) # apply resets indices = env_ids.to(dtype=torch.int32) self._anymals.set_joint_positions(dof_pos, indices) self._anymals.set_joint_velocities(dof_vel, indices) self._anymals.set_world_poses(self.initial_root_pos[env_ids].clone(), self.initial_root_rot[env_ids].clone(), indices) self._anymals.set_velocities(root_vel, indices) self.commands_x[env_ids] = torch_rand_float( self.command_x_range[0], self.command_x_range[1], (num_resets, 1), device=self._device ).squeeze() self.commands_y[env_ids] = torch_rand_float( self.command_y_range[0], self.command_y_range[1], (num_resets, 1), device=self._device ).squeeze() self.commands_yaw[env_ids] = torch_rand_float( self.command_yaw_range[0], self.command_yaw_range[1], (num_resets, 1), device=self._device ).squeeze() # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 self.last_actions[env_ids] = 0. self.last_dof_vel[env_ids] = 0. def post_reset(self): self.initial_root_pos, self.initial_root_rot = self._anymals.get_world_poses() self.current_targets = self.default_dof_pos.clone() dof_limits = self._anymals.get_dof_limits() self.anymal_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device) self.anymal_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device) self.commands = torch.zeros(self._num_envs, 3, dtype=torch.float, device=self._device, requires_grad=False) self.commands_y = self.commands.view(self._num_envs, 3)[..., 1] self.commands_x = self.commands.view(self._num_envs, 3)[..., 0] self.commands_yaw = self.commands.view(self._num_envs, 3)[..., 2] # initialize some data used later on self.extras = {} self.gravity_vec = torch.tensor([0.0, 0.0, -1.0], device=self._device).repeat( (self._num_envs, 1) ) self.actions = torch.zeros( self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False ) self.last_dof_vel = torch.zeros((self._num_envs, 12), dtype=torch.float, device=self._device, requires_grad=False) self.last_actions = torch.zeros(self._num_envs, self.num_actions, dtype=torch.float, device=self._device, requires_grad=False) self.time_out_buf = torch.zeros_like(self.reset_buf) # randomize all envs indices = torch.arange(self._anymals.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: torso_position, torso_rotation = self._anymals.get_world_poses(clone=False) root_velocities = self._anymals.get_velocities(clone=False) dof_pos = self._anymals.get_joint_positions(clone=False) dof_vel = self._anymals.get_joint_velocities(clone=False) velocity = root_velocities[:, 0:3] ang_velocity = root_velocities[:, 3:6] base_lin_vel = quat_rotate_inverse(torso_rotation, velocity) base_ang_vel = quat_rotate_inverse(torso_rotation, ang_velocity) # velocity tracking reward lin_vel_error = torch.sum(torch.square(self.commands[:, :2] - base_lin_vel[:, :2]), dim=1) ang_vel_error = torch.square(self.commands[:, 2] - base_ang_vel[:, 2]) rew_lin_vel_xy = torch.exp(-lin_vel_error / 0.25) * self.rew_scales["lin_vel_xy"] rew_ang_vel_z = torch.exp(-ang_vel_error / 0.25) * self.rew_scales["ang_vel_z"] rew_lin_vel_z = torch.square(base_lin_vel[:, 2]) * self.rew_scales["lin_vel_z"] rew_joint_acc = torch.sum(torch.square(self.last_dof_vel - dof_vel), dim=1) * self.rew_scales["joint_acc"] rew_action_rate = torch.sum(torch.square(self.last_actions - self.actions), dim=1) * self.rew_scales["action_rate"] rew_cosmetic = torch.sum(torch.abs(dof_pos[:, 0:4] - self.default_dof_pos[:, 0:4]), dim=1) * self.rew_scales["cosmetic"] total_reward = rew_lin_vel_xy + rew_ang_vel_z + rew_joint_acc + rew_action_rate + rew_cosmetic + rew_lin_vel_z total_reward = torch.clip(total_reward, 0.0, None) self.last_actions[:] = self.actions[:] self.last_dof_vel[:] = dof_vel[:] self.fallen_over = self._anymals.is_base_below_threshold(threshold=0.51, ground_heights=0.0) total_reward[torch.nonzero(self.fallen_over)] = -1 self.rew_buf[:] = total_reward.detach() def is_done(self) -> None: # reset agents time_out = self.progress_buf >= self.max_episode_length - 1 self.reset_buf[:] = time_out | self.fallen_over
13,495
Python
45.061433
145
0.63505
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/base/rl_task.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import abstractmethod import numpy as np import torch from gym import spaces from omni.isaac.core.tasks import BaseTask from omni.isaac.core.utils.types import ArticulationAction from omni.isaac.core.utils.prims import define_prim from omni.isaac.cloner import GridCloner from omniisaacgymenvs.tasks.utils.usd_utils import create_distant_light from omniisaacgymenvs.utils.domain_randomization.randomize import Randomizer import omni.kit class RLTask(BaseTask): """ This class provides a PyTorch RL-specific interface for setting up RL tasks. It includes utilities for setting up RL task related parameters, cloning environments, and data collection for RL algorithms. """ def __init__(self, name, env, offset=None) -> None: """ Initializes RL parameters, cloner object, and buffers. Args: name (str): name of the task. env (VecEnvBase): an instance of the environment wrapper class to register task. offset (Optional[np.ndarray], optional): offset applied to all assets of the task. Defaults to None. """ super().__init__(name=name, offset=offset) self.test = self._cfg["test"] self._device = self._cfg["sim_device"] self._dr_randomizer = Randomizer(self._sim_config) print("Task Device:", self._device) self.randomize_actions = False self.randomize_observations = False self.clip_obs = self._cfg["task"]["env"].get("clipObservations", np.Inf) self.clip_actions = self._cfg["task"]["env"].get("clipActions", np.Inf) self.rl_device = self._cfg.get("rl_device", "cuda:0") self.control_frequency_inv = self._cfg["task"]["env"].get("controlFrequencyInv", 1) print("RL device: ", self.rl_device) self._env = env if not hasattr(self, "_num_agents"): self._num_agents = 1 # used for multi-agent environments if not hasattr(self, "_num_states"): self._num_states = 0 # initialize data spaces (defaults to gym.Box) if not hasattr(self, "action_space"): self.action_space = spaces.Box(np.ones(self.num_actions) * -1.0, np.ones(self.num_actions) * 1.0) if not hasattr(self, "observation_space"): self.observation_space = spaces.Box(np.ones(self.num_observations) * -np.Inf, np.ones(self.num_observations) * np.Inf) if not hasattr(self, "state_space"): self.state_space = spaces.Box(np.ones(self.num_states) * -np.Inf, np.ones(self.num_states) * np.Inf) self._cloner = GridCloner(spacing=self._env_spacing) self._cloner.define_base_env(self.default_base_env_path) define_prim(self.default_zero_env_path) self.cleanup() def cleanup(self) -> None: """ Prepares torch buffers for RL data collection.""" # prepare tensors self.obs_buf = torch.zeros((self._num_envs, self.num_observations), device=self._device, dtype=torch.float) self.states_buf = torch.zeros((self._num_envs, self.num_states), device=self._device, dtype=torch.float) self.rew_buf = torch.zeros(self._num_envs, device=self._device, dtype=torch.float) self.reset_buf = torch.ones(self._num_envs, device=self._device, dtype=torch.long) self.progress_buf = torch.zeros(self._num_envs, device=self._device, dtype=torch.long) self.extras = {} def set_up_scene(self, scene) -> None: """ Clones environments based on value provided in task config and applies collision filters to mask collisions across environments. Args: scene (Scene): Scene to add objects to. """ super().set_up_scene(scene) collision_filter_global_paths = list() if self._sim_config.task_config["sim"].get("add_ground_plane", True): self._ground_plane_path = "/World/defaultGroundPlane" collision_filter_global_paths.append(self._ground_plane_path) scene.add_default_ground_plane(prim_path=self._ground_plane_path) prim_paths = self._cloner.generate_paths("/World/envs/env", self._num_envs) self._env_pos = self._cloner.clone(source_prim_path="/World/envs/env_0", prim_paths=prim_paths) self._env_pos = torch.tensor(np.array(self._env_pos), device=self._device, dtype=torch.float) self._cloner.filter_collisions( self._env._world.get_physics_context().prim_path, "/World/collisions", prim_paths, collision_filter_global_paths) self.set_initial_camera_params(camera_position=[10, 10, 3], camera_target=[0, 0, 0]) if self._sim_config.task_config["sim"].get("add_distant_light", True): create_distant_light() def set_initial_camera_params(self, camera_position=[10, 10, 3], camera_target=[0, 0, 0]): if self._env._render: viewport = omni.kit.viewport_legacy.get_default_viewport_window() viewport.set_camera_position("/OmniverseKit_Persp", camera_position[0], camera_position[1], camera_position[2], True) viewport.set_camera_target("/OmniverseKit_Persp", camera_target[0], camera_target[1], camera_target[2], True) @property def default_base_env_path(self): """ Retrieves default path to the parent of all env prims. Returns: default_base_env_path(str): Defaults to "/World/envs". """ return "/World/envs" @property def default_zero_env_path(self): """ Retrieves default path to the first env prim (index 0). Returns: default_zero_env_path(str): Defaults to "/World/envs/env_0". """ return f"{self.default_base_env_path}/env_0" @property def num_envs(self): """ Retrieves number of environments for task. Returns: num_envs(int): Number of environments. """ return self._num_envs @property def num_actions(self): """ Retrieves dimension of actions. Returns: num_actions(int): Dimension of actions. """ return self._num_actions @property def num_observations(self): """ Retrieves dimension of observations. Returns: num_observations(int): Dimension of observations. """ return self._num_observations @property def num_states(self): """ Retrieves dimesion of states. Returns: num_states(int): Dimension of states. """ return self._num_states @property def num_agents(self): """ Retrieves number of agents for multi-agent environments. Returns: num_agents(int): Dimension of states. """ return self._num_agents def get_states(self): """ API for retrieving states buffer, used for asymmetric AC training. Returns: states_buf(torch.Tensor): States buffer. """ return self.states_buf def get_extras(self): """ API for retrieving extras data for RL. Returns: extras(dict): Dictionary containing extras data. """ return self.extras def reset(self): """ Flags all environments for reset. """ self.reset_buf = torch.ones_like(self.reset_buf) def pre_physics_step(self, actions): """ Optionally implemented by individual task classes to process actions. Args: actions (torch.Tensor): Actions generated by RL policy. """ pass def post_physics_step(self): """ Processes RL required computations for observations, states, rewards, resets, and extras. Also maintains progress buffer for tracking step count per environment. Returns: obs_buf(torch.Tensor): Tensor of observation data. rew_buf(torch.Tensor): Tensor of rewards data. reset_buf(torch.Tensor): Tensor of resets/dones data. extras(dict): Dictionary of extras data. """ self.progress_buf[:] += 1 if self._env._world.is_playing(): self.get_observations() self.get_states() self.calculate_metrics() self.is_done() self.get_extras() return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
9,915
Python
38.349206
130
0.649723
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/utils/anymal_terrain_generator.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import torch import math from omniisaacgymenvs.utils.terrain_utils.terrain_utils import * # terrain generator class Terrain: def __init__(self, cfg, num_robots) -> None: self.horizontal_scale = 0.1 self.vertical_scale = 0.005 self.border_size = 20 self.num_per_env = 2 self.env_length = cfg["mapLength"] self.env_width = cfg["mapWidth"] self.proportions = [np.sum(cfg["terrainProportions"][:i+1]) for i in range(len(cfg["terrainProportions"]))] self.env_rows = cfg["numLevels"] self.env_cols = cfg["numTerrains"] self.num_maps = self.env_rows * self.env_cols self.num_per_env = int(num_robots / self.num_maps) self.env_origins = np.zeros((self.env_rows, self.env_cols, 3)) self.width_per_env_pixels = int(self.env_width / self.horizontal_scale) self.length_per_env_pixels = int(self.env_length / self.horizontal_scale) self.border = int(self.border_size/self.horizontal_scale) self.tot_cols = int(self.env_cols * self.width_per_env_pixels) + 2 * self.border self.tot_rows = int(self.env_rows * self.length_per_env_pixels) + 2 * self.border self.height_field_raw = np.zeros((self.tot_rows , self.tot_cols), dtype=np.int16) if cfg["curriculum"]: self.curiculum(num_robots, num_terrains=self.env_cols, num_levels=self.env_rows) else: self.randomized_terrain() self.heightsamples = self.height_field_raw self.vertices, self.triangles = convert_heightfield_to_trimesh(self.height_field_raw, self.horizontal_scale, self.vertical_scale, cfg["slopeTreshold"]) def randomized_terrain(self): for k in range(self.num_maps): # Env coordinates in the world (i, j) = np.unravel_index(k, (self.env_rows, self.env_cols)) # Heightfield coordinate system from now on start_x = self.border + i * self.length_per_env_pixels end_x = self.border + (i + 1) * self.length_per_env_pixels start_y = self.border + j * self.width_per_env_pixels end_y = self.border + (j + 1) * self.width_per_env_pixels terrain = SubTerrain("terrain", width=self.width_per_env_pixels, length=self.width_per_env_pixels, vertical_scale=self.vertical_scale, horizontal_scale=self.horizontal_scale) choice = np.random.uniform(0, 1) if choice < 0.1: if np.random.choice([0, 1]): pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3])) random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.05, downsampled_scale=0.2) else: pyramid_sloped_terrain(terrain, np.random.choice([-0.3, -0.2, 0, 0.2, 0.3])) elif choice < 0.6: # step_height = np.random.choice([-0.18, -0.15, -0.1, -0.05, 0.05, 0.1, 0.15, 0.18]) step_height = np.random.choice([-0.15, 0.15]) pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.) elif choice < 1.: discrete_obstacles_terrain(terrain, 0.15, 1., 2., 40, platform_size=3.) self.height_field_raw[start_x: end_x, start_y:end_y] = terrain.height_field_raw env_origin_x = (i + 0.5) * self.env_length env_origin_y = (j + 0.5) * self.env_width x1 = int((self.env_length/2. - 1) / self.horizontal_scale) x2 = int((self.env_length/2. + 1) / self.horizontal_scale) y1 = int((self.env_width/2. - 1) / self.horizontal_scale) y2 = int((self.env_width/2. + 1) / self.horizontal_scale) env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2])*self.vertical_scale self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z] def curiculum(self, num_robots, num_terrains, num_levels): num_robots_per_map = int(num_robots / num_terrains) left_over = num_robots % num_terrains idx = 0 for j in range(num_terrains): for i in range(num_levels): terrain = SubTerrain("terrain", width=self.width_per_env_pixels, length=self.width_per_env_pixels, vertical_scale=self.vertical_scale, horizontal_scale=self.horizontal_scale) difficulty = i / num_levels choice = j / num_terrains slope = difficulty * 0.4 step_height = 0.05 + 0.175 * difficulty discrete_obstacles_height = 0.025 + difficulty * 0.15 stepping_stones_size = 2 - 1.8 * difficulty if choice < self.proportions[0]: if choice < 0.05: slope *= -1 pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.) elif choice < self.proportions[1]: if choice < 0.15: slope *= -1 pyramid_sloped_terrain(terrain, slope=slope, platform_size=3.) random_uniform_terrain(terrain, min_height=-0.1, max_height=0.1, step=0.025, downsampled_scale=0.2) elif choice < self.proportions[3]: if choice<self.proportions[2]: step_height *= -1 pyramid_stairs_terrain(terrain, step_width=0.31, step_height=step_height, platform_size=3.) elif choice < self.proportions[4]: discrete_obstacles_terrain(terrain, discrete_obstacles_height, 1., 2., 40, platform_size=3.) else: stepping_stones_terrain(terrain, stone_size=stepping_stones_size, stone_distance=0.1, max_height=0., platform_size=3.) # Heightfield coordinate system start_x = self.border + i * self.length_per_env_pixels end_x = self.border + (i + 1) * self.length_per_env_pixels start_y = self.border + j * self.width_per_env_pixels end_y = self.border + (j + 1) * self.width_per_env_pixels self.height_field_raw[start_x: end_x, start_y:end_y] = terrain.height_field_raw robots_in_map = num_robots_per_map if j < left_over: robots_in_map +=1 env_origin_x = (i + 0.5) * self.env_length env_origin_y = (j + 0.5) * self.env_width x1 = int((self.env_length/2. - 1) / self.horizontal_scale) x2 = int((self.env_length/2. + 1) / self.horizontal_scale) y1 = int((self.env_width/2. - 1) / self.horizontal_scale) y2 = int((self.env_width/2. + 1) / self.horizontal_scale) env_origin_z = np.max(terrain.height_field_raw[x1:x2, y1:y2])*self.vertical_scale self.env_origins[i, j] = [env_origin_x, env_origin_y, env_origin_z]
8,795
Python
52.634146
159
0.593064
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/utils/usd_utils.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage from pxr import UsdPhysics, UsdLux def set_drive_type(prim_path, drive_type): joint_prim = get_prim_at_path(prim_path) # set drive type ("angular" or "linear") drive = UsdPhysics.DriveAPI.Apply(joint_prim, drive_type) return drive def set_drive_target_position(drive, target_value): if not drive.GetTargetPositionAttr(): drive.CreateTargetPositionAttr(target_value) else: drive.GetTargetPositionAttr().Set(target_value) def set_drive_target_velocity(drive, target_value): if not drive.GetTargetVelocityAttr(): drive.CreateTargetVelocityAttr(target_value) else: drive.GetTargetVelocityAttr().Set(target_value) def set_drive_stiffness(drive, stiffness): if not drive.GetStiffnessAttr(): drive.CreateStiffnessAttr(stiffness) else: drive.GetStiffnessAttr().Set(stiffness) def set_drive_damping(drive, damping): if not drive.GetDampingAttr(): drive.CreateDampingAttr(damping) else: drive.GetDampingAttr().Set(damping) def set_drive_max_force(drive, max_force): if not drive.GetMaxForceAttr(): drive.CreateMaxForceAttr(max_force) else: drive.GetMaxForceAttr().Set(max_force) def set_drive(prim_path, drive_type, target_type, target_value, stiffness, damping, max_force) -> None: drive = set_drive_type(prim_path, drive_type) # set target type ("position" or "velocity") if target_type == "position": set_drive_target_position(drive, target_value) elif target_type == "velocity": set_drive_target_velocity(drive, target_value) set_drive_stiffness(drive, stiffness) set_drive_damping(drive, damping) set_drive_max_force(drive, max_force) def create_distant_light(prim_path="/World/defaultDistantLight", intensity=5000): stage = get_current_stage() light = UsdLux.DistantLight.Define(stage, prim_path) light.GetPrim().GetAttribute("intensity").Set(intensity)
3,628
Python
40.238636
103
0.742007
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/shared/reacher.py
# Copyright (c) 2018-2022, NVIDIA Corporation # Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import abstractmethod from omniisaacgymenvs.tasks.base.rl_task import RLTask from omni.isaac.core.prims import RigidPrimView, XFormPrim from omni.isaac.core.scenes.scene import Scene from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage, add_reference_to_stage from omni.isaac.core.utils.torch import * # `scale` maps [-1, 1] to [L, U]; `unscale` maps [L, U] to [-1, 1] from omni.isaac.core.utils.torch import scale, unscale from omni.isaac.gym.vec_env import VecEnvBase import numpy as np import torch class ReacherTask(RLTask): def __init__( self, name: str, env: VecEnvBase, offset=None ) -> None: """[summary] """ self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self.dist_reward_scale = self._task_cfg["env"]["distRewardScale"] self.rot_reward_scale = self._task_cfg["env"]["rotRewardScale"] self.action_penalty_scale = self._task_cfg["env"]["actionPenaltyScale"] self.success_tolerance = self._task_cfg["env"]["successTolerance"] self.reach_goal_bonus = self._task_cfg["env"]["reachGoalBonus"] self.rot_eps = self._task_cfg["env"]["rotEps"] self.vel_obs_scale = self._task_cfg["env"]["velObsScale"] self.reset_position_noise = self._task_cfg["env"]["resetPositionNoise"] self.reset_rotation_noise = self._task_cfg["env"]["resetRotationNoise"] self.reset_dof_pos_noise = self._task_cfg["env"]["resetDofPosRandomInterval"] self.reset_dof_vel_noise = self._task_cfg["env"]["resetDofVelRandomInterval"] self.arm_dof_speed_scale = self._task_cfg["env"]["dofSpeedScale"] self.use_relative_control = self._task_cfg["env"]["useRelativeControl"] self.act_moving_average = self._task_cfg["env"]["actionsMovingAverage"] self.max_episode_length = self._task_cfg["env"]["episodeLength"] self.reset_time = self._task_cfg["env"].get("resetTime", -1.0) self.print_success_stat = self._task_cfg["env"]["printNumSuccesses"] self.max_consecutive_successes = self._task_cfg["env"]["maxConsecutiveSuccesses"] self.av_factor = self._task_cfg["env"].get("averFactor", 0.1) self.dt = 1.0 / 60 control_freq_inv = self._task_cfg["env"].get("controlFrequencyInv", 1) if self.reset_time > 0.0: self.max_episode_length = int(round(self.reset_time/(control_freq_inv * self.dt))) print("Reset time: ", self.reset_time) print("New episode length: ", self.max_episode_length) RLTask.__init__(self, name, env) self.x_unit_tensor = torch.tensor([1, 0, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.y_unit_tensor = torch.tensor([0, 1, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.z_unit_tensor = torch.tensor([0, 0, 1], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) # Indicates which environments should be reset self.reset_goal_buf = self.reset_buf.clone() self.successes = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) self.consecutive_successes = torch.zeros(1, dtype=torch.float, device=self.device) self.av_factor = torch.tensor(self.av_factor, dtype=torch.float, device=self.device) self.total_successes = 0 self.total_resets = 0 return def set_up_scene(self, scene: Scene) -> None: self._stage = get_current_stage() self._assets_root_path = 'omniverse://localhost/Projects/J3soon/Isaac/2022.1' self.get_arm() self.get_object() self.get_goal() super().set_up_scene(scene) self._arms = self.get_arm_view(scene) scene.add(self._arms) self._objects = RigidPrimView( prim_paths_expr="/World/envs/env_.*/object/object", name="object_view", reset_xform_properties=False, ) scene.add(self._objects) self._goals = RigidPrimView( prim_paths_expr="/World/envs/env_.*/goal/object", name="goal_view", reset_xform_properties=False, ) scene.add(self._goals) @abstractmethod def get_num_dof(self): pass @abstractmethod def get_arm(self): pass @abstractmethod def get_arm_view(self): pass @abstractmethod def get_observations(self): pass @abstractmethod def get_reset_target_new_pos(self, n_reset_envs): pass @abstractmethod def send_joint_pos(self, joint_pos): pass def get_object(self): self.object_start_translation = torch.tensor([0.0, 0.0, 0.0], device=self.device) self.object_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.object_usd_path = f"{self._assets_root_path}/Isaac/Props/Blocks/block_instanceable.usd" add_reference_to_stage(self.object_usd_path, self.default_zero_env_path + "/object") obj = XFormPrim( prim_path=self.default_zero_env_path + "/object/object", name="object", translation=self.object_start_translation, orientation=self.object_start_orientation, scale=self.object_scale ) self._sim_config.apply_articulation_settings("object", get_prim_at_path(obj.prim_path), self._sim_config.parse_actor_config("object")) def get_goal(self): self.goal_displacement_tensor = torch.tensor([0.0, 0.0, 0.0], device=self.device) self.goal_start_translation = torch.tensor([0.0, 0.0, 0.0], device=self.device) + self.goal_displacement_tensor self.goal_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.goal_usd_path = f"{self._assets_root_path}/Isaac/Props/Blocks/block_instanceable.usd" add_reference_to_stage(self.goal_usd_path, self.default_zero_env_path + "/goal") goal = XFormPrim( prim_path=self.default_zero_env_path + "/goal/object", name="goal", translation=self.goal_start_translation, orientation=self.goal_start_orientation, scale=self.goal_scale ) self._sim_config.apply_articulation_settings("goal", get_prim_at_path(goal.prim_path), self._sim_config.parse_actor_config("goal_object")) def post_reset(self): self.num_arm_dofs = self.get_num_dof() self.actuated_dof_indices = torch.arange(self.num_arm_dofs, dtype=torch.long, device=self.device) self.arm_dof_targets = torch.zeros((self.num_envs, self._arms.num_dof), dtype=torch.float, device=self.device) self.prev_targets = torch.zeros((self.num_envs, self.num_arm_dofs), dtype=torch.float, device=self.device) self.cur_targets = torch.zeros((self.num_envs, self.num_arm_dofs), dtype=torch.float, device=self.device) dof_limits = self._dof_limits self.arm_dof_lower_limits, self.arm_dof_upper_limits = torch.t(dof_limits[0].to(self.device)) self.arm_dof_default_pos = torch.zeros(self.num_arm_dofs, dtype=torch.float, device=self.device) self.arm_dof_default_vel = torch.zeros(self.num_arm_dofs, dtype=torch.float, device=self.device) self.end_effectors_init_pos, self.end_effectors_init_rot = self._arms._end_effectors.get_world_poses() self.goal_pos, self.goal_rot = self._goals.get_world_poses() self.goal_pos -= self._env_pos # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self): self.fall_dist = 0 self.fall_penalty = 0 self.rew_buf[:], self.reset_buf[:], self.reset_goal_buf[:], self.progress_buf[:], self.successes[:], self.consecutive_successes[:] = compute_arm_reward( self.rew_buf, self.reset_buf, self.reset_goal_buf, self.progress_buf, self.successes, self.consecutive_successes, self.max_episode_length, self.object_pos, self.object_rot, self.goal_pos, self.goal_rot, self.dist_reward_scale, self.rot_reward_scale, self.rot_eps, self.actions, self.action_penalty_scale, self.success_tolerance, self.reach_goal_bonus, self.fall_dist, self.fall_penalty, self.max_consecutive_successes, self.av_factor, ) self.extras['consecutive_successes'] = self.consecutive_successes.mean() if self.print_success_stat: self.total_resets = self.total_resets + self.reset_buf.sum() direct_average_successes = self.total_successes + self.successes.sum() self.total_successes = self.total_successes + (self.successes * self.reset_buf).sum() # The direct average shows the overall result more quickly, but slightly undershoots long term policy performance. print("Direct average consecutive successes = {:.1f}".format(direct_average_successes/(self.total_resets + self.num_envs))) if self.total_resets > 0: print("Post-Reset average consecutive successes = {:.1f}".format(self.total_successes/self.total_resets)) def pre_physics_step(self, actions): env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) goal_env_ids = self.reset_goal_buf.nonzero(as_tuple=False).squeeze(-1) end_effectors_pos, end_effectors_rot = self._arms._end_effectors.get_world_poses() # Reverse the default rotation and rotate the displacement tensor according to the current rotation self.object_pos = end_effectors_pos + quat_rotate(end_effectors_rot, quat_rotate_inverse(self.end_effectors_init_rot, self.get_object_displacement_tensor())) self.object_pos -= self._env_pos # subtract world env pos self.object_rot = end_effectors_rot object_pos = self.object_pos + self._env_pos object_rot = self.object_rot self._objects.set_world_poses(object_pos, object_rot) # if only goals need reset, then call set API if len(goal_env_ids) > 0 and len(env_ids) == 0: self.reset_target_pose(goal_env_ids) elif len(goal_env_ids) > 0: self.reset_target_pose(goal_env_ids) if len(env_ids) > 0: self.reset_idx(env_ids) self.actions = actions.clone().to(self.device) # Reacher tasks don't require gripper actions, disable it. self.actions[:, 5] = 0.0 if self.use_relative_control: targets = self.prev_targets[:, self.actuated_dof_indices] + self.arm_dof_speed_scale * self.dt * self.actions self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp(targets, self.arm_dof_lower_limits[self.actuated_dof_indices], self.arm_dof_upper_limits[self.actuated_dof_indices]) else: self.cur_targets[:, self.actuated_dof_indices] = scale(self.actions, self.arm_dof_lower_limits[self.actuated_dof_indices], self.arm_dof_upper_limits[self.actuated_dof_indices]) self.cur_targets[:, self.actuated_dof_indices] = self.act_moving_average * self.cur_targets[:, self.actuated_dof_indices] + \ (1.0 - self.act_moving_average) * self.prev_targets[:, self.actuated_dof_indices] self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp(self.cur_targets[:, self.actuated_dof_indices], self.arm_dof_lower_limits[self.actuated_dof_indices], self.arm_dof_upper_limits[self.actuated_dof_indices]) self.prev_targets[:, self.actuated_dof_indices] = self.cur_targets[:, self.actuated_dof_indices] self._arms.set_joint_position_targets( self.cur_targets[:, self.actuated_dof_indices], indices=None, joint_indices=self.actuated_dof_indices ) if self._task_cfg['sim2real']['enabled'] and self.test and self.num_envs == 1: # Only retrieve the 0-th joint position even when multiple envs are used cur_joint_pos = self._arms.get_joint_positions(indices=[0], joint_indices=self.actuated_dof_indices) # Send the current joint positions to the real robot joint_pos = cur_joint_pos[0] if torch.any(joint_pos < self.arm_dof_lower_limits) or torch.any(joint_pos > self.arm_dof_upper_limits): print("get_joint_positions out of bound, send_joint_pos skipped") else: self.send_joint_pos(joint_pos) def is_done(self): pass def reset_target_pose(self, env_ids): # reset goal indices = env_ids.to(dtype=torch.int32) rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), 4), device=self.device) new_pos = self.get_reset_target_new_pos(len(env_ids)) new_rot = randomize_rotation(rand_floats[:, 0], rand_floats[:, 1], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids]) self.goal_pos[env_ids] = new_pos self.goal_rot[env_ids] = new_rot goal_pos, goal_rot = self.goal_pos.clone(), self.goal_rot.clone() goal_pos[env_ids] = self.goal_pos[env_ids] + self._env_pos[env_ids] # add world env pos self._goals.set_world_poses(goal_pos[env_ids], goal_rot[env_ids], indices) self.reset_goal_buf[env_ids] = 0 def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), self.num_arm_dofs * 2 + 5), device=self.device) self.reset_target_pose(env_ids) # reset arm delta_max = self.arm_dof_upper_limits - self.arm_dof_default_pos delta_min = self.arm_dof_lower_limits - self.arm_dof_default_pos rand_delta = delta_min + (delta_max - delta_min) * (rand_floats[:, 5:5+self.num_arm_dofs] + 1.0) * 0.5 pos = self.arm_dof_default_pos + self.reset_dof_pos_noise * rand_delta dof_pos = torch.zeros((self.num_envs, self._arms.num_dof), device=self.device) dof_pos[env_ids, :self.num_arm_dofs] = pos dof_vel = torch.zeros((self.num_envs, self._arms.num_dof), device=self.device) dof_vel[env_ids, :self.num_arm_dofs] = self.arm_dof_default_vel + \ self.reset_dof_vel_noise * rand_floats[:, 5+self.num_arm_dofs:5+self.num_arm_dofs*2] self.prev_targets[env_ids, :self.num_arm_dofs] = pos self.cur_targets[env_ids, :self.num_arm_dofs] = pos self.arm_dof_targets[env_ids, :self.num_arm_dofs] = pos self._arms.set_joint_position_targets(self.arm_dof_targets[env_ids], indices) # set_joint_positions doesn't seem to apply immediately. self._arms.set_joint_positions(dof_pos[env_ids], indices) self._arms.set_joint_velocities(dof_vel[env_ids], indices) self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 0 self.successes[env_ids] = 0 ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def randomize_rotation(rand0, rand1, x_unit_tensor, y_unit_tensor): return quat_mul(quat_from_angle_axis(rand0 * np.pi, x_unit_tensor), quat_from_angle_axis(rand1 * np.pi, y_unit_tensor)) @torch.jit.script def compute_arm_reward( rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes, max_episode_length: float, object_pos, object_rot, target_pos, target_rot, dist_reward_scale: float, rot_reward_scale: float, rot_eps: float, actions, action_penalty_scale: float, success_tolerance: float, reach_goal_bonus: float, fall_dist: float, fall_penalty: float, max_consecutive_successes: int, av_factor: float ): goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1) # Orientation alignment for the cube in hand and goal cube quat_diff = quat_mul(object_rot, quat_conjugate(target_rot)) rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 1:4], p=2, dim=-1), max=1.0)) # changed quat convention dist_rew = goal_dist * dist_reward_scale rot_rew = 1.0/(torch.abs(rot_dist) + rot_eps) * rot_reward_scale action_penalty = torch.sum(actions ** 2, dim=-1) # Total reward is: position distance + orientation alignment + action regularization + success bonus + fall penalty reward = dist_rew + action_penalty * action_penalty_scale # Find out which envs hit the goal and update successes count goal_resets = torch.where(torch.abs(goal_dist) <= success_tolerance, torch.ones_like(reset_goal_buf), reset_goal_buf) successes = successes + goal_resets # Success bonus: orientation is within `success_tolerance` of goal orientation reward = torch.where(goal_resets == 1, reward + reach_goal_bonus, reward) resets = reset_buf if max_consecutive_successes > 0: # Reset progress buffer on goal envs if max_consecutive_successes > 0 progress_buf = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.zeros_like(progress_buf), progress_buf) resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets) resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets) num_resets = torch.sum(resets) finished_cons_successes = torch.sum(successes * resets.float()) cons_successes = torch.where(num_resets > 0, av_factor*finished_cons_successes/num_resets + (1.0 - av_factor)*consecutive_successes, consecutive_successes) return reward, resets, goal_resets, progress_buf, successes, cons_successes
19,342
Python
48.853093
165
0.655723
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/shared/in_hand_manipulation.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import abstractmethod from omniisaacgymenvs.tasks.base.rl_task import RLTask from omni.isaac.core.prims import RigidPrimView, XFormPrim from omni.isaac.core.utils.nucleus import get_assets_root_path from omni.isaac.core.utils.prims import get_prim_at_path from omni.isaac.core.utils.stage import get_current_stage, add_reference_to_stage from omni.isaac.core.utils.torch import * import numpy as np import torch import math import omni.replicator.isaac as dr class InHandManipulationTask(RLTask): def __init__( self, name, env, offset=None ) -> None: """[summary] """ self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self.dist_reward_scale = self._task_cfg["env"]["distRewardScale"] self.rot_reward_scale = self._task_cfg["env"]["rotRewardScale"] self.action_penalty_scale = self._task_cfg["env"]["actionPenaltyScale"] self.success_tolerance = self._task_cfg["env"]["successTolerance"] self.reach_goal_bonus = self._task_cfg["env"]["reachGoalBonus"] self.fall_dist = self._task_cfg["env"]["fallDistance"] self.fall_penalty = self._task_cfg["env"]["fallPenalty"] self.rot_eps = self._task_cfg["env"]["rotEps"] self.vel_obs_scale = self._task_cfg["env"]["velObsScale"] self.reset_position_noise = self._task_cfg["env"]["resetPositionNoise"] self.reset_rotation_noise = self._task_cfg["env"]["resetRotationNoise"] self.reset_dof_pos_noise = self._task_cfg["env"]["resetDofPosRandomInterval"] self.reset_dof_vel_noise = self._task_cfg["env"]["resetDofVelRandomInterval"] self.hand_dof_speed_scale = self._task_cfg["env"]["dofSpeedScale"] self.use_relative_control = self._task_cfg["env"]["useRelativeControl"] self.act_moving_average = self._task_cfg["env"]["actionsMovingAverage"] self.max_episode_length = self._task_cfg["env"]["episodeLength"] self.reset_time = self._task_cfg["env"].get("resetTime", -1.0) self.print_success_stat = self._task_cfg["env"]["printNumSuccesses"] self.max_consecutive_successes = self._task_cfg["env"]["maxConsecutiveSuccesses"] self.av_factor = self._task_cfg["env"].get("averFactor", 0.1) self.dt = 1.0 / 60 control_freq_inv = self._task_cfg["env"].get("controlFrequencyInv", 1) if self.reset_time > 0.0: self.max_episode_length = int(round(self.reset_time/(control_freq_inv * self.dt))) print("Reset time: ", self.reset_time) print("New episode length: ", self.max_episode_length) RLTask.__init__(self, name, env) self.x_unit_tensor = torch.tensor([1, 0, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.y_unit_tensor = torch.tensor([0, 1, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.z_unit_tensor = torch.tensor([0, 0, 1], dtype=torch.float, device=self.device).repeat((self.num_envs, 1)) self.reset_goal_buf = self.reset_buf.clone() self.successes = torch.zeros(self.num_envs, dtype=torch.float, device=self.device) self.consecutive_successes = torch.zeros(1, dtype=torch.float, device=self.device) self.randomization_buf = torch.zeros(self.num_envs, dtype=torch.long, device=self.device) self.av_factor = torch.tensor(self.av_factor, dtype=torch.float, device=self.device) self.total_successes = 0 self.total_resets = 0 return def set_up_scene(self, scene) -> None: self._stage = get_current_stage() self._assets_root_path = get_assets_root_path() hand_start_translation, pose_dy, pose_dz = self.get_hand() self.get_object(hand_start_translation, pose_dy, pose_dz) self.get_goal() super().set_up_scene(scene) self._hands = self.get_hand_view(scene) scene.add(self._hands) self._objects = RigidPrimView( prim_paths_expr="/World/envs/env_.*/object/object", name="object_view", reset_xform_properties=False, masses=torch.tensor([0.07087]*self._num_envs, device=self.device), ) scene.add(self._objects) self._goals = RigidPrimView( prim_paths_expr="/World/envs/env_.*/goal/object", name="goal_view", reset_xform_properties=False ) scene.add(self._goals) if self._dr_randomizer.randomize: self._dr_randomizer.apply_on_startup_domain_randomization(self) @abstractmethod def get_hand(self): pass @abstractmethod def get_hand_view(self): pass @abstractmethod def get_observations(self): pass def get_object(self, hand_start_translation, pose_dy, pose_dz): self.object_start_translation = hand_start_translation.clone() self.object_start_translation[1] += pose_dy self.object_start_translation[2] += pose_dz self.object_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) self.object_usd_path = f"{self._assets_root_path}/Isaac/Props/Blocks/block_instanceable.usd" add_reference_to_stage(self.object_usd_path, self.default_zero_env_path + "/object") obj = XFormPrim( prim_path=self.default_zero_env_path + "/object/object", name="object", translation=self.object_start_translation, orientation=self.object_start_orientation, scale=self.object_scale, ) self._sim_config.apply_articulation_settings("object", get_prim_at_path(obj.prim_path), self._sim_config.parse_actor_config("object")) def get_goal(self): self.goal_displacement_tensor = torch.tensor([-0.2, -0.06, 0.12], device=self.device) self.goal_start_translation = self.object_start_translation + self.goal_displacement_tensor self.goal_start_translation[2] -= 0.04 self.goal_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device) add_reference_to_stage(self.object_usd_path, self.default_zero_env_path + "/goal") goal = XFormPrim( prim_path=self.default_zero_env_path + "/goal", name="goal", translation=self.goal_start_translation, orientation=self.goal_start_orientation, scale=self.object_scale ) self._sim_config.apply_articulation_settings("goal", get_prim_at_path(goal.prim_path), self._sim_config.parse_actor_config("goal_object")) def post_reset(self): self.num_hand_dofs = self._hands.num_dof self.actuated_dof_indices = self._hands.actuated_dof_indices self.hand_dof_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.prev_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) self.cur_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device) dof_limits = self._hands.get_dof_limits() self.hand_dof_lower_limits, self.hand_dof_upper_limits = torch.t(dof_limits[0].to(self.device)) self.hand_dof_default_pos = torch.zeros(self.num_hand_dofs, dtype=torch.float, device=self.device) self.hand_dof_default_vel = torch.zeros(self.num_hand_dofs, dtype=torch.float, device=self.device) self.object_init_pos, self.object_init_rot = self._objects.get_world_poses() self.object_init_pos -= self._env_pos self.object_init_velocities = torch.zeros_like(self._objects.get_velocities(), dtype=torch.float, device=self.device) self.goal_pos = self.object_init_pos.clone() self.goal_pos[:, 2] -= 0.04 self.goal_rot = self.object_init_rot.clone() self.goal_init_pos = self.goal_pos.clone() self.goal_init_rot = self.goal_rot.clone() # randomize all envs indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device) self.reset_idx(indices) if self._dr_randomizer.randomize: self._dr_randomizer.set_up_domain_randomization(self) def get_object_goal_observations(self): self.object_pos, self.object_rot = self._objects.get_world_poses(clone=False) self.object_pos -= self._env_pos self.object_velocities = self._objects.get_velocities(clone=False) self.object_linvel = self.object_velocities[:, 0:3] self.object_angvel = self.object_velocities[:, 3:6] def calculate_metrics(self): self.rew_buf[:], self.reset_buf[:], self.reset_goal_buf[:], self.progress_buf[:], self.successes[:], self.consecutive_successes[:] = compute_hand_reward( self.rew_buf, self.reset_buf, self.reset_goal_buf, self.progress_buf, self.successes, self.consecutive_successes, self.max_episode_length, self.object_pos, self.object_rot, self.goal_pos, self.goal_rot, self.dist_reward_scale, self.rot_reward_scale, self.rot_eps, self.actions, self.action_penalty_scale, self.success_tolerance, self.reach_goal_bonus, self.fall_dist, self.fall_penalty, self.max_consecutive_successes, self.av_factor, ) self.extras['consecutive_successes'] = self.consecutive_successes.mean() self.randomization_buf += 1 if self.print_success_stat: self.total_resets = self.total_resets + self.reset_buf.sum() direct_average_successes = self.total_successes + self.successes.sum() self.total_successes = self.total_successes + (self.successes * self.reset_buf).sum() # The direct average shows the overall result more quickly, but slightly undershoots long term policy performance. print("Direct average consecutive successes = {:.1f}".format(direct_average_successes/(self.total_resets + self.num_envs))) if self.total_resets > 0: print("Post-Reset average consecutive successes = {:.1f}".format(self.total_successes/self.total_resets)) def pre_physics_step(self, actions): env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) goal_env_ids = self.reset_goal_buf.nonzero(as_tuple=False).squeeze(-1) reset_buf = self.reset_buf.clone() # if only goals need reset, then call set API if len(goal_env_ids) > 0 and len(env_ids) == 0: self.reset_target_pose(goal_env_ids) elif len(goal_env_ids) > 0: self.reset_target_pose(goal_env_ids) if len(env_ids) > 0: self.reset_idx(env_ids) self.actions = actions.clone().to(self.device) if self.use_relative_control: targets = self.prev_targets[:, self.actuated_dof_indices] + self.hand_dof_speed_scale * self.dt * self.actions self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp(targets, self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices]) else: self.cur_targets[:, self.actuated_dof_indices] = scale(self.actions, self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices]) self.cur_targets[:, self.actuated_dof_indices] = self.act_moving_average * self.cur_targets[:, self.actuated_dof_indices] + \ (1.0 - self.act_moving_average) * self.prev_targets[:, self.actuated_dof_indices] self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp(self.cur_targets[:, self.actuated_dof_indices], self.hand_dof_lower_limits[self.actuated_dof_indices], self.hand_dof_upper_limits[self.actuated_dof_indices]) self.prev_targets[:, self.actuated_dof_indices] = self.cur_targets[:, self.actuated_dof_indices] self._hands.set_joint_position_targets( self.cur_targets[:, self.actuated_dof_indices], indices=None, joint_indices=self.actuated_dof_indices ) if self._dr_randomizer.randomize: rand_envs = torch.where(self.randomization_buf >= self._dr_randomizer.min_frequency, torch.ones_like(self.randomization_buf), torch.zeros_like(self.randomization_buf)) rand_env_ids = torch.nonzero(torch.logical_and(rand_envs, reset_buf)) dr.physics_view.step_randomization(rand_env_ids) self.randomization_buf[rand_env_ids] = 0 def is_done(self): pass def reset_target_pose(self, env_ids): # reset goal indices = env_ids.to(dtype=torch.int32) rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), 4), device=self.device) new_rot = randomize_rotation(rand_floats[:, 0], rand_floats[:, 1], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids]) self.goal_pos[env_ids] = self.goal_init_pos[env_ids, 0:3] self.goal_rot[env_ids] = new_rot goal_pos, goal_rot = self.goal_pos.clone(), self.goal_rot.clone() goal_pos[env_ids] = self.goal_pos[env_ids] + self.goal_displacement_tensor + self._env_pos[env_ids] # add world env pos self._goals.set_world_poses(goal_pos[env_ids], goal_rot[env_ids], indices) self.reset_goal_buf[env_ids] = 0 def reset_idx(self, env_ids): indices = env_ids.to(dtype=torch.int32) rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), self.num_hand_dofs * 2 + 5), device=self.device) self.reset_target_pose(env_ids) # reset object new_object_pos = self.object_init_pos[env_ids] + \ self.reset_position_noise * rand_floats[:, 0:3] + self._env_pos[env_ids] # add world env pos new_object_rot = randomize_rotation(rand_floats[:, 3], rand_floats[:, 4], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids]) object_velocities = torch.zeros_like(self.object_init_velocities, dtype=torch.float, device=self.device) self._objects.set_velocities(object_velocities[env_ids], indices) self._objects.set_world_poses(new_object_pos, new_object_rot, indices) # reset hand delta_max = self.hand_dof_upper_limits - self.hand_dof_default_pos delta_min = self.hand_dof_lower_limits - self.hand_dof_default_pos rand_delta = delta_min + (delta_max - delta_min) * rand_floats[:, 5:5+self.num_hand_dofs] pos = self.hand_dof_default_pos + self.reset_dof_pos_noise * rand_delta dof_pos = torch.zeros((self.num_envs, self.num_hand_dofs), device=self.device) dof_pos[env_ids, :] = pos dof_vel = torch.zeros((self.num_envs, self.num_hand_dofs), device=self.device) dof_vel[env_ids, :] = self.hand_dof_default_vel + \ self.reset_dof_vel_noise * rand_floats[:, 5+self.num_hand_dofs:5+self.num_hand_dofs*2] self.prev_targets[env_ids, :self.num_hand_dofs] = pos self.cur_targets[env_ids, :self.num_hand_dofs] = pos self.hand_dof_targets[env_ids, :] = pos self._hands.set_joint_position_targets(self.hand_dof_targets[env_ids], indices) self._hands.set_joint_positions(dof_pos[env_ids], indices) self._hands.set_joint_velocities(dof_vel[env_ids], indices) self.progress_buf[env_ids] = 0 self.reset_buf[env_ids] = 0 self.successes[env_ids] = 0 ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def randomize_rotation(rand0, rand1, x_unit_tensor, y_unit_tensor): return quat_mul(quat_from_angle_axis(rand0 * np.pi, x_unit_tensor), quat_from_angle_axis(rand1 * np.pi, y_unit_tensor)) @torch.jit.script def compute_hand_reward( rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes, max_episode_length: float, object_pos, object_rot, target_pos, target_rot, dist_reward_scale: float, rot_reward_scale: float, rot_eps: float, actions, action_penalty_scale: float, success_tolerance: float, reach_goal_bonus: float, fall_dist: float, fall_penalty: float, max_consecutive_successes: int, av_factor: float ): goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1) # Orientation alignment for the cube in hand and goal cube quat_diff = quat_mul(object_rot, quat_conjugate(target_rot)) rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 1:4], p=2, dim=-1), max=1.0)) # changed quat convention dist_rew = goal_dist * dist_reward_scale rot_rew = 1.0/(torch.abs(rot_dist) + rot_eps) * rot_reward_scale action_penalty = torch.sum(actions ** 2, dim=-1) # Total reward is: position distance + orientation alignment + action regularization + success bonus + fall penalty reward = dist_rew + rot_rew + action_penalty * action_penalty_scale # Find out which envs hit the goal and update successes count goal_resets = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.ones_like(reset_goal_buf), reset_goal_buf) successes = successes + goal_resets # Success bonus: orientation is within `success_tolerance` of goal orientation reward = torch.where(goal_resets == 1, reward + reach_goal_bonus, reward) # Fall penalty: distance to the goal is larger than a threashold reward = torch.where(goal_dist >= fall_dist, reward + fall_penalty, reward) # Check env termination conditions, including maximum success number resets = torch.where(goal_dist >= fall_dist, torch.ones_like(reset_buf), reset_buf) if max_consecutive_successes > 0: # Reset progress buffer on goal envs if max_consecutive_successes > 0 progress_buf = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.zeros_like(progress_buf), progress_buf) resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets) resets = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(resets), resets) # Apply penalty for not reaching the goal if max_consecutive_successes > 0: reward = torch.where(progress_buf >= max_episode_length - 1, reward + 0.5 * fall_penalty, reward) num_resets = torch.sum(resets) finished_cons_successes = torch.sum(successes * resets.float()) cons_successes = torch.where(num_resets > 0, av_factor*finished_cons_successes/num_resets + (1.0 - av_factor)*consecutive_successes, consecutive_successes) return reward, resets, goal_resets, progress_buf, successes, cons_successes
20,302
Python
49.007389
179
0.657226
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/tasks/shared/locomotion.py
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from abc import abstractmethod from omniisaacgymenvs.tasks.base.rl_task import RLTask from omni.isaac.core.utils.torch.rotations import compute_heading_and_up, compute_rot, quat_conjugate from omni.isaac.core.utils.torch.maths import torch_rand_float, tensor_clamp, unscale from omni.isaac.core.articulations import ArticulationView from omni.isaac.core.utils.prims import get_prim_at_path import numpy as np import torch import math class LocomotionTask(RLTask): def __init__( self, name, env, offset=None ) -> None: self._num_envs = self._task_cfg["env"]["numEnvs"] self._env_spacing = self._task_cfg["env"]["envSpacing"] self._max_episode_length = self._task_cfg["env"]["episodeLength"] self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"] self.angular_velocity_scale = self._task_cfg["env"]["angularVelocityScale"] self.contact_force_scale = self._task_cfg["env"]["contactForceScale"] self.power_scale = self._task_cfg["env"]["powerScale"] self.heading_weight = self._task_cfg["env"]["headingWeight"] self.up_weight = self._task_cfg["env"]["upWeight"] self.actions_cost_scale = self._task_cfg["env"]["actionsCost"] self.energy_cost_scale = self._task_cfg["env"]["energyCost"] self.joints_at_limit_cost_scale = self._task_cfg["env"]["jointsAtLimitCost"] self.death_cost = self._task_cfg["env"]["deathCost"] self.termination_height = self._task_cfg["env"]["terminationHeight"] self.alive_reward_scale = self._task_cfg["env"]["alive_reward_scale"] RLTask.__init__(self, name, env) return @abstractmethod def set_up_scene(self, scene) -> None: pass @abstractmethod def get_robot(self): pass def get_observations(self) -> dict: torso_position, torso_rotation = self._robots.get_world_poses(clone=False) velocities = self._robots.get_velocities(clone=False) velocity = velocities[:, 0:3] ang_velocity = velocities[:, 3:6] dof_pos = self._robots.get_joint_positions(clone=False) dof_vel = self._robots.get_joint_velocities(clone=False) # force sensors attached to the feet sensor_force_torques = self._robots._physics_view.get_force_sensor_forces() # (num_envs, num_sensors, 6) self.obs_buf[:], self.potentials[:], self.prev_potentials[:], self.up_vec[:], self.heading_vec[:] = get_observations( torso_position, torso_rotation, velocity, ang_velocity, dof_pos, dof_vel, self.targets, self.potentials, self.dt, self.inv_start_rot, self.basis_vec0, self.basis_vec1, self.dof_limits_lower, self.dof_limits_upper, self.dof_vel_scale, sensor_force_torques, self._num_envs, self.contact_force_scale, self.actions, self.angular_velocity_scale ) observations = { self._robots.name: { "obs_buf": self.obs_buf } } return observations def pre_physics_step(self, actions) -> None: reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1) if len(reset_env_ids) > 0: self.reset_idx(reset_env_ids) self.actions = actions.clone().to(self._device) forces = self.actions * self.joint_gears * self.power_scale indices = torch.arange(self._robots.count, dtype=torch.int32, device=self._device) # applies joint torques self._robots.set_joint_efforts(forces, indices=indices) def reset_idx(self, env_ids): num_resets = len(env_ids) # randomize DOF positions and velocities dof_pos = torch_rand_float(-0.2, 0.2, (num_resets, self._robots.num_dof), device=self._device) dof_pos[:] = tensor_clamp( self.initial_dof_pos[env_ids] + dof_pos, self.dof_limits_lower, self.dof_limits_upper ) dof_vel = torch_rand_float(-0.1, 0.1, (num_resets, self._robots.num_dof), device=self._device) root_pos, root_rot = self.initial_root_pos[env_ids], self.initial_root_rot[env_ids] root_vel = torch.zeros((num_resets, 6), device=self._device) # apply resets self._robots.set_joint_positions(dof_pos, indices=env_ids) self._robots.set_joint_velocities(dof_vel, indices=env_ids) self._robots.set_world_poses(root_pos, root_rot, indices=env_ids) self._robots.set_velocities(root_vel, indices=env_ids) to_target = self.targets[env_ids] - self.initial_root_pos[env_ids] to_target[:, 2] = 0.0 self.prev_potentials[env_ids] = -torch.norm(to_target, p=2, dim=-1) / self.dt self.potentials[env_ids] = self.prev_potentials[env_ids].clone() # bookkeeping self.reset_buf[env_ids] = 0 self.progress_buf[env_ids] = 0 num_resets = len(env_ids) def post_reset(self): self._robots = self.get_robot() self.initial_root_pos, self.initial_root_rot = self._robots.get_world_poses() self.initial_dof_pos = self._robots.get_joint_positions() # initialize some data used later on self.start_rotation = torch.tensor([1, 0, 0, 0], device=self._device, dtype=torch.float32) self.up_vec = torch.tensor([0, 0, 1], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.heading_vec = torch.tensor([1, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.inv_start_rot = quat_conjugate(self.start_rotation).repeat((self.num_envs, 1)) self.basis_vec0 = self.heading_vec.clone() self.basis_vec1 = self.up_vec.clone() self.targets = torch.tensor([1000, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.target_dirs = torch.tensor([1, 0, 0], dtype=torch.float32, device=self._device).repeat((self.num_envs, 1)) self.dt = 1.0 / 60.0 self.potentials = torch.tensor([-1000.0 / self.dt], dtype=torch.float32, device=self._device).repeat(self.num_envs) self.prev_potentials = self.potentials.clone() self.actions = torch.zeros((self.num_envs, self.num_actions), device=self._device) # randomize all envs indices = torch.arange(self._robots.count, dtype=torch.int64, device=self._device) self.reset_idx(indices) def calculate_metrics(self) -> None: self.rew_buf[:] = calculate_metrics( self.obs_buf, self.actions, self.up_weight, self.heading_weight, self.potentials, self.prev_potentials, self.actions_cost_scale, self.energy_cost_scale, self.termination_height, self.death_cost, self._robots.num_dof, self.get_dof_at_limit_cost(), self.alive_reward_scale, self.motor_effort_ratio ) def is_done(self) -> None: self.reset_buf[:] = is_done( self.obs_buf, self.termination_height, self.reset_buf, self.progress_buf, self._max_episode_length ) ##################################################################### ###=========================jit functions=========================### ##################################################################### @torch.jit.script def normalize_angle(x): return torch.atan2(torch.sin(x), torch.cos(x)) @torch.jit.script def get_observations( torso_position, torso_rotation, velocity, ang_velocity, dof_pos, dof_vel, targets, potentials, dt, inv_start_rot, basis_vec0, basis_vec1, dof_limits_lower, dof_limits_upper, dof_vel_scale, sensor_force_torques, num_envs, contact_force_scale, actions, angular_velocity_scale ): # type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, float, Tensor, Tensor, Tensor, Tensor, Tensor, float, Tensor, int, float, Tensor, float) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor] to_target = targets - torso_position to_target[:, 2] = 0.0 prev_potentials = potentials.clone() potentials = -torch.norm(to_target, p=2, dim=-1) / dt torso_quat, up_proj, heading_proj, up_vec, heading_vec = compute_heading_and_up( torso_rotation, inv_start_rot, to_target, basis_vec0, basis_vec1, 2 ) vel_loc, angvel_loc, roll, pitch, yaw, angle_to_target = compute_rot( torso_quat, velocity, ang_velocity, targets, torso_position ) dof_pos_scaled = unscale(dof_pos, dof_limits_lower, dof_limits_upper) # obs_buf shapes: 1, 3, 3, 1, 1, 1, 1, 1, num_dofs, num_dofs, num_sensors * 6, num_dofs obs = torch.cat( ( torso_position[:, 2].view(-1, 1), vel_loc, angvel_loc * angular_velocity_scale, normalize_angle(yaw).unsqueeze(-1), normalize_angle(roll).unsqueeze(-1), normalize_angle(angle_to_target).unsqueeze(-1), up_proj.unsqueeze(-1), heading_proj.unsqueeze(-1), dof_pos_scaled, dof_vel * dof_vel_scale, sensor_force_torques.reshape(num_envs, -1) * contact_force_scale, actions, ), dim=-1, ) return obs, potentials, prev_potentials, up_vec, heading_vec @torch.jit.script def is_done( obs_buf, termination_height, reset_buf, progress_buf, max_episode_length ): # type: (Tensor, float, Tensor, Tensor, float) -> Tensor reset = torch.where(obs_buf[:, 0] < termination_height, torch.ones_like(reset_buf), reset_buf) reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf), reset) return reset @torch.jit.script def calculate_metrics( obs_buf, actions, up_weight, heading_weight, potentials, prev_potentials, actions_cost_scale, energy_cost_scale, termination_height, death_cost, num_dof, dof_at_limit_cost, alive_reward_scale, motor_effort_ratio ): # type: (Tensor, Tensor, float, float, Tensor, Tensor, float, float, float, float, int, Tensor, float, Tensor) -> Tensor heading_weight_tensor = torch.ones_like(obs_buf[:, 11]) * heading_weight heading_reward = torch.where( obs_buf[:, 11] > 0.8, heading_weight_tensor, heading_weight * obs_buf[:, 11] / 0.8 ) # aligning up axis of robot and environment up_reward = torch.zeros_like(heading_reward) up_reward = torch.where(obs_buf[:, 10] > 0.93, up_reward + up_weight, up_reward) # energy penalty for movement actions_cost = torch.sum(actions ** 2, dim=-1) electricity_cost = torch.sum(torch.abs(actions * obs_buf[:, 12+num_dof:12+num_dof*2])* motor_effort_ratio.unsqueeze(0), dim=-1) # reward for duration of staying alive alive_reward = torch.ones_like(potentials) * alive_reward_scale progress_reward = potentials - prev_potentials total_reward = ( progress_reward + alive_reward + up_reward + heading_reward - actions_cost_scale * actions_cost - energy_cost_scale * electricity_cost - dof_at_limit_cost ) # adjust reward for fallen agents total_reward = torch.where( obs_buf[:, 0] < termination_height, torch.ones_like(total_reward) * death_cost, total_reward ) return total_reward
12,809
Python
38.906542
214
0.643922
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/sim2real/ur10.py
# Copyright (c) 2022-2023, Johnson Sun # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import asyncio import math import numpy as np try: import rospy # Ref: https://github.com/ros-controls/ros_controllers/blob/melodic-devel/rqt_joint_trajectory_controller/src/rqt_joint_trajectory_controller/joint_trajectory_controller.py from control_msgs.msg import JointTrajectoryControllerState from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint except ImportError: rospy = None class RealWorldUR10(): # Defined in ur10.usd sim_dof_angle_limits = [ (-360, 360, False), (-360, 360, False), (-360, 360, False), (-360, 360, False), (-360, 360, False), (-360, 360, False), ] # _sim_dof_limits[:,2] == True indicates inversed joint angle compared to real # Ref: https://github.com/ros-industrial/universal_robot/issues/112 pi = math.pi servo_angle_limits = [ (-2*pi, 2*pi), (-2*pi, 2*pi), (-2*pi, 2*pi), (-2*pi, 2*pi), (-2*pi, 2*pi), (-2*pi, 2*pi), ] # ROS-related strings state_topic = '/scaled_pos_joint_traj_controller/state' cmd_topic = '/scaled_pos_joint_traj_controller/command' joint_names = [ 'elbow_joint', 'shoulder_lift_joint', 'shoulder_pan_joint', 'wrist_1_joint', 'wrist_2_joint', 'wrist_3_joint' ] # Joint name mapping to simulation action index joint_name_to_idx = { 'elbow_joint': 2, 'shoulder_lift_joint': 1, 'shoulder_pan_joint': 0, 'wrist_1_joint': 3, 'wrist_2_joint': 4, 'wrist_3_joint': 5 } def __init__(self, fail_quietely=False, verbose=False) -> None: print("Connecting to real-world UR10") self.fail_quietely = fail_quietely self.verbose = verbose self.pub_freq = 10 # Hz # Not really sure if current_pos and target_pos require mutex here. self.current_pos = None self.target_pos = None if rospy is None: if not self.fail_quietely: raise ValueError("ROS is not installed!") print("ROS is not installed!") return try: rospy.init_node("custom_controller", anonymous=True, disable_signals=True, log_level=rospy.ERROR) except rospy.exceptions.ROSException as e: print("Node has already been initialized, do nothing") if self.verbose: print("Receiving real-world UR10 joint angles...") print("If you didn't see any outputs, you may have set up UR5 or ROS incorrectly.") self.sub = rospy.Subscriber( self.state_topic, JointTrajectoryControllerState, self.sub_callback, queue_size=1 ) self.pub = rospy.Publisher( self.cmd_topic, JointTrajectory, queue_size=1 ) # self.min_traj_dur = 5.0 / self.pub_freq # Minimum trajectory duration self.min_traj_dur = 0 # Minimum trajectory duration # For catching exceptions in asyncio def custom_exception_handler(loop, context): print(context) # Ref: https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.set_exception_handler asyncio.get_event_loop().set_exception_handler(custom_exception_handler) # Ref: https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_ros_custom_message.html asyncio.ensure_future(self.pub_task()) def sub_callback(self, msg): # msg has type: JointTrajectoryControllerState actual_pos = {} for i in range(len(msg.joint_names)): joint_name = msg.joint_names[i] joint_pos = msg.actual.positions[i] actual_pos[joint_name] = joint_pos self.current_pos = actual_pos if self.verbose: print(f'(sub) {actual_pos}') async def pub_task(self): while not rospy.is_shutdown(): await asyncio.sleep(1.0 / self.pub_freq) if self.current_pos is None: # Not ready (recieved UR state) yet continue if self.target_pos is None: # No command yet continue # Construct message dur = [] # move duration of each joints traj = JointTrajectory() traj.joint_names = self.joint_names point = JointTrajectoryPoint() moving_average = 1 for name in traj.joint_names: pos = self.current_pos[name] cmd = pos * (1-moving_average) + self.target_pos[self.joint_name_to_idx[name]] * moving_average max_vel = 3.15 # from ur5.urdf (or ur5.urdf.xacro) duration = abs(cmd - pos) / max_vel # time = distance / velocity dur.append(max(duration, self.min_traj_dur)) point.positions.append(cmd) point.time_from_start = rospy.Duration(max(dur)) traj.points.append(point) self.pub.publish(traj) print(f'(pub) {point.positions}') def send_joint_pos(self, joint_pos): if len(joint_pos) != 6: raise Exception("The length of UR10 joint_pos is {}, but should be 6!".format(len(joint_pos))) # Convert Sim angles to Real angles target_pos = [0] * 6 for i, pos in enumerate(joint_pos): if i == 5: # Ignore the gripper joints for Reacher task continue # Map [L, U] to [A, B] L, U, inversed = self.sim_dof_angle_limits[i] A, B = self.servo_angle_limits[i] angle = np.rad2deg(float(pos)) if not L <= angle <= U: print("The {}-th simulation joint angle ({}) is out of range! Should be in [{}, {}]".format(i, angle, L, U)) angle = np.clip(angle, L, U) target_pos[i] = (angle - L) * ((B-A)/(U-L)) + A # Map [L, U] to [A, B] if inversed: target_pos[i] = (B-A) - (target_pos[i] - A) + A # Map [A, B] to [B, A] if not A <= target_pos[i] <= B: raise Exception("(Should Not Happen) The {}-th real world joint angle ({}) is out of range! hould be in [{}, {}]".format(i, target_pos[i], A, B)) self.target_pos = target_pos if __name__ == "__main__": print("Make sure you are running `roslaunch ur_robot_driver`.") print("If the machine running Isaac is not the ROS master node, " + \ "make sure you have set the environment variables: " + \ "`ROS_MASTER_URI` and `ROS_HOSTNAME`/`ROS_IP` correctly.") ur10 = RealWorldUR10(verbose=True) rospy.spin()
8,268
Python
41.405128
176
0.608128
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/config.yaml
# Task name - used to pick the class to load task_name: ${task.name} # experiment name. defaults to name of training config experiment: '' # if set to positive integer, overrides the default number of environments num_envs: '' # seed - set to -1 to choose random seed seed: 42 # set to True for deterministic performance torch_deterministic: False # set the maximum number of learning iterations to train for. overrides default per-environment setting max_iterations: '' ## Device config physics_engine: 'physx' # whether to use cpu or gpu pipeline pipeline: 'gpu' # whether to use cpu or gpu physx sim_device: 'gpu' # used for gpu simulation only - device id for running sim and task if pipeline=gpu device_id: 0 # device to run RL rl_device: 'cuda:0' ## PhysX arguments num_threads: 4 # Number of worker threads per scene used by PhysX - for CPU PhysX only. solver_type: 1 # 0: pgs, 1: tgs # RLGames Arguments # test - if set, run policy in inference mode (requires setting checkpoint to load) test: False # used to set checkpoint path checkpoint: '' # disables rendering headless: False wandb_activate: False wandb_group: '' wandb_name: ${train.params.config.name} wandb_entity: '' wandb_project: 'omniisaacgymenvs' # set default task and default training config based on task defaults: - task: Cartpole - train: ${task}PPO - hydra/job_logging: disabled # set the directory where the output files get saved hydra: output_subdir: null run: dir: .
1,475
YAML
23.6
103
0.738305
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/task/FrankaCabinet.yaml
# used to create the object name: FrankaCabinet physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 3.0 episodeLength: 500 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 # 60 Hz startPositionNoise: 0.0 startRotationNoise: 0.0 numProps: 4 aggregateMode: 3 actionScale: 7.5 dofVelocityScale: 0.1 distRewardScale: 2.0 rotRewardScale: 0.5 aroundHandleRewardScale: 10.0 openRewardScale: 7.5 fingerDistRewardScale: 100.0 actionPenaltyScale: 0.01 fingerCloseRewardScale: 10.0 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 contact_offset: 0.005 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 524288 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 franka: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 # per-shape contact_offset: 0.005 rest_offset: 0.0 cabinet: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.0 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 # per-shape contact_offset: 0.005 rest_offset: 0.0 prop: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 12 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: 100 max_depenetration_velocity: 1000.0 # per-shape contact_offset: 0.005 rest_offset: 0.0
3,393
YAML
24.908397
71
0.689066
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/task/Ant.yaml
# used to create the object name: Ant physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: # numEnvs: ${...num_envs} numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5 episodeLength: 1000 enableDebugVis: False clipActions: 1.0 powerScale: 0.5 controlFrequencyInv: 2 # 60 Hz # reward parameters headingWeight: 0.5 upWeight: 0.1 # cost parameters actionsCost: 0.005 energyCost: 0.05 dofVelocityScale: 0.2 angularVelocityScale: 1.0 contactForceScale: 0.1 jointsAtLimitCost: 0.1 deathCost: -2.0 terminationHeight: 0.31 alive_reward_scale: 0.5 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 10.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 8192 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 Ant: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 10.0
2,358
YAML
24.641304
71
0.688719
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/task/AnymalTerrain.yaml
name: AnymalTerrain physics_engine: ${..physics_engine} env: numEnvs: ${resolve_default:2048,${...num_envs}} numObservations: 188 numActions: 12 envSpacing: 3. # [m] terrain: staticFriction: 1.0 # [-] dynamicFriction: 1.0 # [-] restitution: 0. # [-] # rough terrain only: curriculum: true maxInitMapLevel: 0 mapLength: 8. mapWidth: 8. numLevels: 10 numTerrains: 20 # terrain types: [smooth slope, rough slope, stairs up, stairs down, discrete] terrainProportions: [0.1, 0.1, 0.35, 0.25, 0.2] # tri mesh only: slopeTreshold: 0.5 baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [1.0, 0.0, 0.0, 0.0] # w,x,y,z [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] randomCommandVelocityRanges: # train linear_x: [-1., 1.] # min max [m/s] linear_y: [-1., 1.] # min max [m/s] yaw: [-3.14, 3.14] # min max [rad/s] control: # PD Drive parameters: stiffness: 80.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] # action scale: target angle = actionScale * action + defaultAngle actionScale: 0.5 # decimation: Number of control action updates @ sim DT per policy DT decimation: 4 defaultJointAngles: # = target angles when action = 0.0 LF_HAA: 0.03 # [rad] LH_HAA: 0.03 # [rad] RF_HAA: -0.03 # [rad] RH_HAA: -0.03 # [rad] LF_HFE: 0.4 # [rad] LH_HFE: -0.4 # [rad] RF_HFE: 0.4 # [rad] RH_HFE: -0.4 # [rad] LF_KFE: -0.8 # [rad] LH_KFE: 0.8 # [rad] RF_KFE: -0.8 # [rad] RH_KFE: 0.8 # [rad] learn: # rewards terminalReward: 0.0 linearVelocityXYRewardScale: 1.0 linearVelocityZRewardScale: -4.0 angularVelocityXYRewardScale: -0.05 angularVelocityZRewardScale: 0.5 orientationRewardScale: -0. torqueRewardScale: -0.00002 jointAccRewardScale: -0.0005 baseHeightRewardScale: -0.0 actionRateRewardScale: -0.01 fallenOverRewardScale: -1.0 # cosmetics hipRewardScale: -0. #25 # normalization linearVelocityScale: 2.0 angularVelocityScale: 0.25 dofPositionScale: 1.0 dofVelocityScale: 0.05 heightMeasurementScale: 5.0 # noise addNoise: true noiseLevel: 1.0 # scales other values dofPositionNoise: 0.01 dofVelocityNoise: 1.5 linearVelocityNoise: 0.1 angularVelocityNoise: 0.2 gravityNoise: 0.05 heightMeasurementNoise: 0.06 #randomization pushInterval_s: 15 # episode length in seconds episodeLength_s: 20 sim: dt: 0.005 up_axis: "z" use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: False use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 163840 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 134217728 gpu_temp_buffer_capacity: 33554432 gpu_max_num_partitions: 8 anymal: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: True enable_gyroscopic_forces: False # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0
4,323
YAML
25.365854
82
0.631737
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/task/BallBalance.yaml
# used to create the object name: BallBalance physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 2.0 maxEpisodeLength: 500 actionSpeedScale: 20 clipObservations: 5.0 clipActions: 1.0 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 8192 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 table: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 ball: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: 200 max_depenetration_velocity: 1000.0
2,438
YAML
25.510869
71
0.687859
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/task/Humanoid.yaml
# used to create the object name: Humanoid physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: # numEnvs: ${...num_envs} numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 5 episodeLength: 1000 enableDebugVis: False clipActions: 1.0 powerScale: 1.0 controlFrequencyInv: 2 # 60 Hz # reward parameters headingWeight: 0.5 upWeight: 0.1 # cost parameters actionsCost: 0.01 energyCost: 0.05 dofVelocityScale: 0.1 angularVelocityScale: 0.25 contactForceScale: 0.01 jointsAtLimitCost: 0.25 deathCost: -1.0 terminationHeight: 0.8 alive_reward_scale: 2.0 sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 10.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 8192 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 Humanoid: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 10.0
2,323
YAML
24.538461
71
0.691347
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/task/AllegroHand.yaml
# used to create the object name: AllegroHand physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:8192,${...num_envs}} envSpacing: 0.75 episodeLength: 600 clipObservations: 5.0 clipActions: 1.0 useRelativeControl: False dofSpeedScale: 20.0 actionsMovingAverage: 1.0 controlFrequencyInv: 4 # 30 Hz startPositionNoise: 0.01 startRotationNoise: 0.0 resetPositionNoise: 0.01 resetRotationNoise: 0.0 resetDofPosRandomInterval: 0.2 resetDofVelRandomInterval: 0.0 # reward -> dictionary distRewardScale: -10.0 rotRewardScale: 1.0 rotEps: 0.1 actionPenaltyScale: -0.0002 reachGoalBonus: 250 fallDistance: 0.24 fallPenalty: 0.0 velObsScale: 0.2 objectType: "block" observationType: "full" # can be "full_no_vel", "full" successTolerance: 0.1 printNumSuccesses: False maxConsecutiveSuccesses: 0 sim: dt: 0.0083 # 1/120 s add_ground_plane: True add_distant_light: True use_gpu_pipeline: ${eq:${...pipeline},"gpu"} use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False default_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: # per-scene use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU worker_thread_count: ${....num_threads} solver_type: ${....solver_type} # 0: PGS, 1: TGS bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 allegro_hand: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: True enable_gyroscopic_forces: False # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.0005 # per-body density: -1 max_depenetration_velocity: 1000.0 object: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.0025 # per-body density: 400.0 max_depenetration_velocity: 1000.0 goal_object: # -1 to use default values override_usd_defaults: False fixed_base: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.000 stabilization_threshold: 0.0025 # per-body density: -1 max_depenetration_velocity: 1000.0
3,338
YAML
25.291338
71
0.696525
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/task/Ingenuity.yaml
# used to create the object name: Ingenuity physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 2.5 maxEpisodeLength: 2000 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -3.721] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1000.0 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: False # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 ingenuity: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 ball: # -1 to use default values override_usd_defaults: False fixed_base: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0
2,335
YAML
26.809523
71
0.690792
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/task/Quadcopter.yaml
# used to create the object name: Quadcopter physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 1.25 maxEpisodeLength: 500 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 1000.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 8192 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 8192 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 copter: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0
2,019
YAML
25.933333
71
0.690441
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/task/Crazyflie.yaml
# used to create the object name: Crazyflie physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 2.5 maxEpisodeLength: 700 enableDebugVis: False clipObservations: 5.0 clipActions: 1.0 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False physx: num_threads: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 max_depenetration_velocity: 1000.0 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: False # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 crazyflie: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: True enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0 ball: # -1 to use default values override_usd_defaults: False fixed_base: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 6 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 1000.0
2,334
YAML
26.470588
71
0.690231
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/task/UR10Reacher.yaml
# used to create the object name: UR10Reacher physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:512,${...num_envs}} envSpacing: 3 episodeLength: 600 clipObservations: 5.0 clipActions: 1.0 useRelativeControl: False dofSpeedScale: 20.0 actionsMovingAverage: 0.1 controlFrequencyInv: 2 # 60 Hz startPositionNoise: 0.01 startRotationNoise: 0.0 resetPositionNoise: 0.01 resetRotationNoise: 0.0 resetDofPosRandomInterval: 0.2 resetDofVelRandomInterval: 0.0 # Random forces applied to the object forceScale: 0.0 forceProbRange: [0.001, 0.1] forceDecay: 0.99 forceDecayInterval: 0.08 # reward -> dictionary distRewardScale: -2.0 rotRewardScale: 1.0 rotEps: 0.1 actionPenaltyScale: -0.0002 reachGoalBonus: 250 velObsScale: 0.2 observationType: "full" # can only be "full" successTolerance: 0.1 printNumSuccesses: False maxConsecutiveSuccesses: 0 sim: dt: 0.0083 # 1/120 s add_ground_plane: True add_distant_light: True use_gpu_pipeline: ${eq:${...pipeline},"gpu"} use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False default_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: # per-scene use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU worker_thread_count: ${....num_threads} solver_type: ${....solver_type} # 0: PGS, 1: TGS bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 33554432 gpu_found_lost_pairs_capacity: 19771 gpu_found_lost_aggregate_pairs_capacity: 524288 gpu_total_aggregate_pairs_capacity: 1048576 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 33554432 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 ur10: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False object: # -1 to use default values override_usd_defaults: False fixed_base: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.000 stabilization_threshold: 0.0025 # per-body density: -1 max_depenetration_velocity: 1000.0 goal_object: # -1 to use default values override_usd_defaults: False fixed_base: True enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 8 solver_velocity_iteration_count: 0 sleep_threshold: 0.000 stabilization_threshold: 0.0025 # per-body density: -1 max_depenetration_velocity: 1000.0 sim2real: enabled: False fail_quietely: False verbose: False safety: # Reduce joint limits during both training & testing enabled: False
3,240
YAML
24.722222
71
0.700617
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/task/Cartpole.yaml
# used to create the object name: Cartpole physics_engine: ${..physics_engine} # if given, will override the device setting in gym. env: numEnvs: ${resolve_default:512,${...num_envs}} envSpacing: 4.0 resetDist: 3.0 maxEffort: 400.0 clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 # 60 Hz sim: dt: 0.0083 # 1/120 s use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True add_distant_light: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 contact_offset: 0.02 rest_offset: 0.001 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 81920 gpu_found_lost_pairs_capacity: 1024 gpu_found_lost_aggregate_pairs_capacity: 262144 gpu_total_aggregate_pairs_capacity: 1024 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 67108864 gpu_temp_buffer_capacity: 16777216 gpu_max_num_partitions: 8 Cartpole: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 0 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0 # per-shape contact_offset: 0.02 rest_offset: 0.001
2,112
YAML
26.089743
71
0.684659
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/task/Anymal.yaml
# used to create the object name: Anymal physics_engine: ${..physics_engine} env: numEnvs: ${resolve_default:4096,${...num_envs}} envSpacing: 4. # [m] clipObservations: 5.0 clipActions: 1.0 controlFrequencyInv: 2 baseInitState: pos: [0.0, 0.0, 0.62] # x,y,z [m] rot: [0.0, 0.0, 0.0, 1.0] # x,y,z,w [quat] vLinear: [0.0, 0.0, 0.0] # x,y,z [m/s] vAngular: [0.0, 0.0, 0.0] # x,y,z [rad/s] randomCommandVelocityRanges: linear_x: [-2., 2.] # min max [m/s] linear_y: [-1., 1.] # min max [m/s] yaw: [-1., 1.] # min max [rad/s] control: # PD Drive parameters: stiffness: 85.0 # [N*m/rad] damping: 2.0 # [N*m*s/rad] actionScale: 13.5 defaultJointAngles: # = target angles when action = 0.0 LF_HAA: 0.03 # [rad] LH_HAA: 0.03 # [rad] RF_HAA: -0.03 # [rad] RH_HAA: -0.03 # [rad] LF_HFE: 0.4 # [rad] LH_HFE: -0.4 # [rad] RF_HFE: 0.4 # [rad] RH_HFE: -0.4 # [rad] LF_KFE: -0.8 # [rad] LH_KFE: 0.8 # [rad] RF_KFE: -0.8 # [rad] RH_KFE: 0.8 # [rad] learn: # rewards linearVelocityXYRewardScale: 1.0 angularVelocityZRewardScale: 0.5 linearVelocityZRewardScale: -0.03 jointAccRewardScale: -0.0003 actionRateRewardScale: -0.006 cosmeticRewardScale: -0.06 # normalization linearVelocityScale: 2.0 angularVelocityScale: 0.25 dofPositionScale: 1.0 dofVelocityScale: 0.05 # episode length in seconds episodeLength_s: 50 sim: dt: 0.01 use_gpu_pipeline: ${eq:${...pipeline},"gpu"} gravity: [0.0, 0.0, -9.81] add_ground_plane: True use_flatcache: True enable_scene_query_support: False # set to True if you use camera sensors in the environment enable_cameras: False default_physics_material: static_friction: 1.0 dynamic_friction: 1.0 restitution: 0.0 physx: worker_thread_count: ${....num_threads} solver_type: ${....solver_type} use_gpu: ${eq:${....sim_device},"gpu"} # set to False to run on CPU solver_position_iteration_count: 4 solver_velocity_iteration_count: 1 contact_offset: 0.02 rest_offset: 0.0 bounce_threshold_velocity: 0.2 friction_offset_threshold: 0.04 friction_correlation_distance: 0.025 enable_sleeping: True enable_stabilization: True max_depenetration_velocity: 100.0 # GPU buffers gpu_max_rigid_contact_count: 524288 gpu_max_rigid_patch_count: 163840 gpu_found_lost_pairs_capacity: 4194304 gpu_found_lost_aggregate_pairs_capacity: 33554432 gpu_total_aggregate_pairs_capacity: 4194304 gpu_max_soft_body_contacts: 1048576 gpu_max_particle_contacts: 1048576 gpu_heap_capacity: 134217728 gpu_temp_buffer_capacity: 33554432 gpu_max_num_partitions: 8 Anymal: # -1 to use default values override_usd_defaults: False fixed_base: False enable_self_collisions: False enable_gyroscopic_forces: True # also in stage params # per-actor solver_position_iteration_count: 4 solver_velocity_iteration_count: 1 sleep_threshold: 0.005 stabilization_threshold: 0.001 # per-body density: -1 max_depenetration_velocity: 100.0 # per-shape contact_offset: 0.02 rest_offset: 0.0
3,293
YAML
24.937008
71
0.623747
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/task/ShadowHandOpenAI_LSTM.yaml
# specifies what the config is when running `ShadowHandOpenAI` in LSTM mode defaults: - ShadowHandOpenAI_FF - _self_ env: numEnvs: ${resolve_default:8192,${...num_envs}}
178
YAML
18.888887
75
0.707865
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/train/ShadowHandOpenAI_FFPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [400, 400, 200, 100] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:ShadowHandOpenAI_FF,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 8 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001 central_value_config: minibatch_size: 8192 mini_epochs: 8 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 clip_value: True normalize_input: True truncate_grads: True network: name: actor_critic central_value: True mlp: units: [512, 512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None player: deterministic: True games_num: 100000 print_stats: True
2,199
YAML
20.782178
66
0.57799
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/train/AnymalTerrainPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: True space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0. # std = 1. fixed_sigma: True mlp: units: [512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None # rnn: # name: lstm # units: 128 # layers: 1 # before_mlp: True # concat_input: True # layer_norm: False load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:AnymalTerrain,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu ppo: True mixed_precision: False # True normalize_input: True normalize_value: True normalize_advantage: True value_bootstrap: True clip_actions: False num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 1.0 gamma: 0.99 tau: 0.95 e_clip: 0.2 entropy_coef: 0.001 learning_rate: 3.e-4 # overwritten by adaptive lr_schedule lr_schedule: adaptive kl_threshold: 0.008 # target kl for adaptive lr truncate_grads: True grad_norm: 1. horizon_length: 48 minibatch_size: 16384 mini_epochs: 5 critic_coef: 2 clip_value: True seq_len: 4 # only for rnn bounds_loss_coef: 0. max_epochs: ${resolve_default:2000,${....max_iterations}} save_best_after: 100 score_to_win: 20000 save_frequency: 50 print_stats: True
1,893
YAML
21.547619
101
0.593767
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/train/HumanoidPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [400, 200, 100] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Humanoid,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} multi_gpu: False ppo: True mixed_precision: True normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive kl_threshold: 0.008 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 100 save_frequency: 100 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 32 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,625
YAML
21.273972
101
0.596308
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/train/CrazyfliePPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [256, 256, 128] activation: tanh d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint load_path: ${...checkpoint} # path to the checkpoint to load config: name: ${resolve_default:Crazyflie,${....experiment}} full_experiment_name: ${.name} env_name: rlgpu device: ${....rl_device} device_name: ${....rl_device} ppo: True mixed_precision: False normalize_input: True normalize_value: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 1e-4 lr_schedule: adaptive kl_threshold: 0.016 score_to_win: 20000 max_epochs: ${resolve_default:1000,${....max_iterations}} save_best_after: 50 save_frequency: 50 grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 16384 mini_epochs: 8 critic_coef: 2 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001
1,579
YAML
21.253521
101
0.59468
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/train/ShadowHandPPO.yaml
params: seed: ${...seed} algo: name: a2c_continuous model: name: continuous_a2c_logstd network: name: actor_critic separate: False space: continuous: mu_activation: None sigma_activation: None mu_init: name: default sigma_init: name: const_initializer val: 0 fixed_sigma: True mlp: units: [512, 512, 256, 128] activation: elu d2rl: False initializer: name: default regularizer: name: None load_checkpoint: ${if:${...checkpoint},True,False} load_path: ${...checkpoint} config: name: ${resolve_default:ShadowHand,${....experiment}} full_experiment_name: ${.name} device: ${....rl_device} device_name: ${....rl_device} env_name: rlgpu multi_gpu: False ppo: True mixed_precision: False normalize_input: True normalize_value: True value_bootstrap: True num_actors: ${....task.env.numEnvs} reward_shaper: scale_value: 0.01 normalize_advantage: True gamma: 0.99 tau: 0.95 learning_rate: 5e-4 lr_schedule: adaptive schedule_type: standard kl_threshold: 0.016 score_to_win: 100000 max_epochs: ${resolve_default:10000,${....max_iterations}} save_best_after: 100 save_frequency: 200 print_stats: True grad_norm: 1.0 entropy_coef: 0.0 truncate_grads: True e_clip: 0.2 horizon_length: 16 minibatch_size: 32768 mini_epochs: 5 critic_coef: 4 clip_value: True seq_len: 4 bounds_loss_coef: 0.0001 player: deterministic: True games_num: 100000 print_stats: True
1,689
YAML
20.392405
62
0.590882