file_path
stringlengths 21
207
| content
stringlengths 5
1.02M
| size
int64 5
1.02M
| lang
stringclasses 9
values | avg_line_length
float64 1.33
100
| max_line_length
int64 4
993
| alphanum_fraction
float64 0.27
0.93
|
---|---|---|---|---|---|---|
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/train/UR10ReacherPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [256, 128, 64]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False}
load_path: ${...checkpoint}
config:
name: ${resolve_default:UR10Reacher,${....experiment}}
full_experiment_name: ${.name}
device: ${....rl_device}
device_name: ${....rl_device}
env_name: rlgpu
multi_gpu: False
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
value_bootstrap: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.01
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 5e-3
lr_schedule: adaptive
schedule_type: standard
kl_threshold: 0.008
score_to_win: 100000
max_epochs: ${resolve_default:5000,${....max_iterations}}
save_best_after: 100
save_frequency: 200
print_stats: True
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 64
minibatch_size: 32768
mini_epochs: 5
critic_coef: 4
clip_value: True
seq_len: 4
bounds_loss_coef: 0.0001
player:
deterministic: True
games_num: 100000
print_stats: True
| 1,677 | YAML | 20.240506 | 61 | 0.592725 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/train/ShadowHandOpenAI_LSTMPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [512]
activation: relu
d2rl: False
initializer:
name: default
regularizer:
name: None
rnn:
name: lstm
units: 1024
layers: 1
before_mlp: True
layer_norm: True
load_checkpoint: ${if:${...checkpoint},True,False}
load_path: ${...checkpoint}
config:
name: ${resolve_default:ShadowHandOpenAI_LSTM,${....experiment}}
full_experiment_name: ${.name}
device: ${....rl_device}
device_name: ${....rl_device}
env_name: rlgpu
multi_gpu: False
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.01
normalize_advantage: True
gamma: 0.998
tau: 0.95
learning_rate: 1e-4
lr_schedule: adaptive
schedule_type: standard
kl_threshold: 0.016
score_to_win: 100000
max_epochs: ${resolve_default:10000,${....max_iterations}}
save_best_after: 100
save_frequency: 200
print_stats: True
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 16384
mini_epochs: 4
critic_coef: 4
clip_value: True
seq_len: 4
bounds_loss_coef: 0.0001
central_value_config:
minibatch_size: 32768
mini_epochs: 4
learning_rate: 1e-4
kl_threshold: 0.016
clip_value: True
normalize_input: True
truncate_grads: True
network:
name: actor_critic
central_value: True
mlp:
units: [512]
activation: relu
d2rl: False
initializer:
name: default
regularizer:
name: None
rnn:
name: lstm
units: 1024
layers: 1
before_mlp: True
layer_norm: True
player:
deterministic: True
games_num: 100000
print_stats: True
| 2,354 | YAML | 20.026786 | 68 | 0.563721 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/train/IngenuityPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [256, 256, 128]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:Ingenuity,${....experiment}}
full_experiment_name: ${.name}
env_name: rlgpu
device: ${....rl_device}
device_name: ${....rl_device}
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.01
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 1e-3
lr_schedule: adaptive
kl_threshold: 0.016
score_to_win: 20000
max_epochs: ${resolve_default:400,${....max_iterations}}
save_best_after: 50
save_frequency: 50
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 16384
mini_epochs: 8
critic_coef: 2
clip_value: True
seq_len: 4
bounds_loss_coef: 0.0001
| 1,577 | YAML | 21.225352 | 101 | 0.594166 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/train/QuadcopterPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [256, 256, 128]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:Quadcopter,${....experiment}}
full_experiment_name: ${.name}
env_name: rlgpu
device: ${....rl_device}
device_name: ${....rl_device}
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.1
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 1e-3
lr_schedule: adaptive
kl_threshold: 0.016
score_to_win: 20000
max_epochs: ${resolve_default:1000,${....max_iterations}}
save_best_after: 50
save_frequency: 50
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 16384
mini_epochs: 8
critic_coef: 2
clip_value: True
seq_len: 4
bounds_loss_coef: 0.0001
| 1,578 | YAML | 21.239436 | 101 | 0.594423 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/train/BallBalancePPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [128, 64, 32]
activation: elu
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:BallBalance,${....experiment}}
full_experiment_name: ${.name}
env_name: rlgpu
device: ${....rl_device}
device_name: ${....rl_device}
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.1
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 3e-4
lr_schedule: adaptive
kl_threshold: 0.008
score_to_win: 20000
max_epochs: ${resolve_default:250,${....max_iterations}}
save_best_after: 50
save_frequency: 100
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 8192
mini_epochs: 8
critic_coef: 4
clip_value: True
seq_len: 4
bounds_loss_coef: 0.0001
| 1,558 | YAML | 21.271428 | 101 | 0.594994 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/train/AntPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [256, 128, 64]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:Ant,${....experiment}}
full_experiment_name: ${.name}
env_name: rlgpu
device: ${....rl_device}
device_name: ${....rl_device}
multi_gpu: False
ppo: True
mixed_precision: True
normalize_input: True
normalize_value: True
value_bootstrap: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.01
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 3e-4
lr_schedule: adaptive
schedule_type: legacy
kl_threshold: 0.008
score_to_win: 20000
max_epochs: ${resolve_default:500,${....max_iterations}}
save_best_after: 100
save_frequency: 50
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 32768
mini_epochs: 4
critic_coef: 2
clip_value: True
seq_len: 4
bounds_loss_coef: 0.0001
| 1,643 | YAML | 21.216216 | 101 | 0.595861 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/train/FrankaCabinetPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [256, 128, 64]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:FrankaCabinet,${....experiment}}
full_experiment_name: ${.name}
env_name: rlgpu
device: ${....rl_device}
device_name: ${....rl_device}
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.01
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 5e-4
lr_schedule: adaptive
kl_threshold: 0.008
score_to_win: 100000000
max_epochs: ${resolve_default:1500,${....max_iterations}}
save_best_after: 200
save_frequency: 100
print_stats: True
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 8192
mini_epochs: 8
critic_coef: 4
clip_value: True
seq_len: 4
bounds_loss_coef: 0.0001
| 1,601 | YAML | 21.56338 | 101 | 0.599625 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/train/AllegroHandPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [512, 256, 128]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False}
load_path: ${...checkpoint}
config:
name: ${resolve_default:AllegroHand,${....experiment}}
full_experiment_name: ${.name}
device: ${....rl_device}
device_name: ${....rl_device}
env_name: rlgpu
multi_gpu: False
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
value_bootstrap: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.01
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 5e-3
lr_schedule: adaptive
schedule_type: standard
kl_threshold: 0.02
score_to_win: 100000
max_epochs: ${resolve_default:10000,${....max_iterations}}
save_best_after: 100
save_frequency: 200
print_stats: True
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 32768
mini_epochs: 5
critic_coef: 4
clip_value: True
seq_len: 4
bounds_loss_coef: 0.0001
player:
deterministic: True
games_num: 100000
print_stats: True
| 1,680 | YAML | 20.278481 | 62 | 0.592262 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/train/AnymalPPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0. # std = 1.
fixed_sigma: True
mlp:
units: [256, 128, 64]
activation: elu
d2rl: False
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:Anymal,${....experiment}}
full_experiment_name: ${.name}
device: ${....rl_device}
device_name: ${....rl_device}
env_name: rlgpu
ppo: True
mixed_precision: True
normalize_input: True
normalize_value: True
value_bootstrap: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 1.0
normalize_advantage: True
gamma: 0.99
tau: 0.95
e_clip: 0.2
entropy_coef: 0.0
learning_rate: 3.e-4 # overwritten by adaptive lr_schedule
lr_schedule: adaptive
kl_threshold: 0.008 # target kl for adaptive lr
truncate_grads: True
grad_norm: 1.
horizon_length: 24
minibatch_size: 32768
mini_epochs: 5
critic_coef: 2
clip_value: True
seq_len: 4 # only for rnn
bounds_loss_coef: 0.001
max_epochs: ${resolve_default:1000,${....max_iterations}}
save_best_after: 200
score_to_win: 20000
save_frequency: 50
print_stats: True
| 1,709 | YAML | 21.8 | 101 | 0.602106 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/cfg/train/CartpolePPO.yaml | params:
seed: ${...seed}
algo:
name: a2c_continuous
model:
name: continuous_a2c_logstd
network:
name: actor_critic
separate: False
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: 0
fixed_sigma: True
mlp:
units: [32, 32]
activation: elu
initializer:
name: default
regularizer:
name: None
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:Cartpole,${....experiment}}
full_experiment_name: ${.name}
device: ${....rl_device}
device_name: ${....rl_device}
env_name: rlgpu
ppo: True
mixed_precision: False
normalize_input: True
normalize_value: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 0.1
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 3e-4
lr_schedule: adaptive
kl_threshold: 0.008
score_to_win: 20000
max_epochs: ${resolve_default:100,${....max_iterations}}
save_best_after: 50
save_frequency: 25
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: True
e_clip: 0.2
horizon_length: 16
minibatch_size: 8192
mini_epochs: 8
critic_coef: 4
clip_value: True
seq_len: 4
bounds_loss_coef: 0.0001 | 1,548 | YAML | 21.449275 | 101 | 0.594315 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/scripts/rlgames_play.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import *
from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict
from omniisaacgymenvs.utils.demo_util import initialize_demo
from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path
from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames
from omniisaacgymenvs.scripts.rlgames_train import RLGTrainer
import hydra
from omegaconf import DictConfig
import datetime
import os
import torch
class RLGDemo(RLGTrainer):
def __init__(self, cfg, cfg_dict):
RLGTrainer.__init__(self, cfg, cfg_dict)
self.cfg.test = True
@hydra.main(config_name="config", config_path="../cfg")
def parse_hydra_configs(cfg: DictConfig):
time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
headless = cfg.headless
env = VecEnvRLGames(headless=headless, sim_device=cfg.device_id)
# ensure checkpoints can be specified as relative paths
if cfg.checkpoint:
cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint)
if cfg.checkpoint is None:
quit()
cfg_dict = omegaconf_to_dict(cfg)
print_dict(cfg_dict)
task = initialize_demo(cfg_dict, env)
# sets seed. if seed is -1 will pick a random one
from omni.isaac.core.utils.torch.maths import set_seed
cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic)
if cfg.wandb_activate:
# Make sure to install WandB if you actually use this.
import wandb
run_name = f"{cfg.wandb_name}_{time_str}"
wandb.init(
project=cfg.wandb_project,
group=cfg.wandb_group,
entity=cfg.wandb_entity,
config=cfg_dict,
sync_tensorboard=True,
id=run_name,
resume="allow",
monitor_gym=True,
)
rlg_trainer = RLGDemo(cfg, cfg_dict)
rlg_trainer.launch_rlg_hydra(env)
rlg_trainer.run()
env.close()
if cfg.wandb_activate:
wandb.finish()
if __name__ == '__main__':
parse_hydra_configs()
| 3,658 | Python | 35.227722 | 83 | 0.718152 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/scripts/rlgames_train.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import *
from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict
from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv
from omniisaacgymenvs.utils.task_util import initialize_task
from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path
from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames
import hydra
from omegaconf import DictConfig
from rl_games.common import env_configurations, vecenv
from rl_games.torch_runner import Runner
import datetime
import os
import torch
class RLGTrainer():
def __init__(self, cfg, cfg_dict):
self.cfg = cfg
self.cfg_dict = cfg_dict
def launch_rlg_hydra(self, env):
# `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally.
# We use the helper function here to specify the environment config.
self.cfg_dict["task"]["test"] = self.cfg.test
# register the rl-games adapter to use inside the runner
vecenv.register('RLGPU',
lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs))
env_configurations.register('rlgpu', {
'vecenv_type': 'RLGPU',
'env_creator': lambda **kwargs: env
})
self.rlg_config_dict = omegaconf_to_dict(self.cfg.train)
def run(self):
# create runner and set the settings
runner = Runner(RLGPUAlgoObserver())
runner.load(self.rlg_config_dict)
runner.reset()
# dump config dict
experiment_dir = os.path.join('runs', self.cfg.train.params.config.name)
os.makedirs(experiment_dir, exist_ok=True)
with open(os.path.join(experiment_dir, 'config.yaml'), 'w') as f:
f.write(OmegaConf.to_yaml(self.cfg))
runner.run({
'train': not self.cfg.test,
'play': self.cfg.test,
'checkpoint': self.cfg.checkpoint,
'sigma': None
})
@hydra.main(config_name="config", config_path="../cfg")
def parse_hydra_configs(cfg: DictConfig):
time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
headless = cfg.headless
env = VecEnvRLGames(headless=headless, sim_device=cfg.device_id)
# ensure checkpoints can be specified as relative paths
if cfg.checkpoint:
cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint)
if cfg.checkpoint is None:
quit()
cfg_dict = omegaconf_to_dict(cfg)
print_dict(cfg_dict)
task = initialize_task(cfg_dict, env)
# sets seed. if seed is -1 will pick a random one
from omni.isaac.core.utils.torch.maths import set_seed
cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic)
if cfg.wandb_activate:
# Make sure to install WandB if you actually use this.
import wandb
run_name = f"{cfg.wandb_name}_{time_str}"
wandb.init(
project=cfg.wandb_project,
group=cfg.wandb_group,
entity=cfg.wandb_entity,
config=cfg_dict,
sync_tensorboard=True,
id=run_name,
resume="allow",
monitor_gym=True,
)
rlg_trainer = RLGTrainer(cfg, cfg_dict)
rlg_trainer.launch_rlg_hydra(env)
rlg_trainer.run()
env.close()
if cfg.wandb_activate:
wandb.finish()
if __name__ == '__main__':
parse_hydra_configs()
| 5,092 | Python | 35.640288 | 116 | 0.688924 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/scripts/dummy_ur10_policy.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# Copyright (c) 2022-2023, Johnson Sun
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
import torch
import hydra
from omegaconf import DictConfig
from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import *
from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict
from omniisaacgymenvs.utils.task_util import initialize_task
from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames
@hydra.main(config_name="config", config_path="../cfg")
def parse_hydra_configs(cfg: DictConfig):
cfg_dict = omegaconf_to_dict(cfg)
print_dict(cfg_dict)
headless = cfg.headless
render = not headless
env = VecEnvRLGames(headless=headless)
task = initialize_task(cfg_dict, env)
while env._simulation_app.is_running():
if env._world.is_playing():
if env._world.current_time_step_index == 0:
env._world.reset(soft=True)
actions = torch.tensor(np.array([env.action_space.sample() for _ in range(env.num_envs)]), device=task.rl_device)
actions[:, 0] = 0.0
actions[:, 1] = 0.0
actions[:, 2] = 0.0
actions[:, 3] = 0.0
actions[:, 4] = 0.0
actions[:, 5] = 0.0
env._task.pre_physics_step(actions)
env._world.step(render=render)
env.sim_frame_count += 1
env._task.post_physics_step()
else:
env._world.step(render=render)
env._simulation_app.close()
if __name__ == '__main__':
parse_hydra_configs()
| 3,064 | Python | 39.328947 | 125 | 0.706266 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/scripts/random_policy.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
import torch
import hydra
from omegaconf import DictConfig
from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import *
from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict
from omniisaacgymenvs.utils.task_util import initialize_task
from omniisaacgymenvs.envs.vec_env_rlgames import VecEnvRLGames
@hydra.main(config_name="config", config_path="../cfg")
def parse_hydra_configs(cfg: DictConfig):
cfg_dict = omegaconf_to_dict(cfg)
print_dict(cfg_dict)
headless = cfg.headless
render = not headless
env = VecEnvRLGames(headless=headless, sim_device=cfg.device_id)
task = initialize_task(cfg_dict, env)
while env._simulation_app.is_running():
if env._world.is_playing():
if env._world.current_time_step_index == 0:
env._world.reset(soft=True)
actions = torch.tensor(np.array([env.action_space.sample() for _ in range(env.num_envs)]), device=task.rl_device)
env._task.pre_physics_step(actions)
env._world.step(render=render)
env.sim_frame_count += 1
env._task.post_physics_step()
else:
env._world.step(render=render)
env._simulation_app.close()
if __name__ == '__main__':
parse_hydra_configs()
| 2,859 | Python | 40.449275 | 125 | 0.733123 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/scripts/rlgames_train_mt.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from omniisaacgymenvs.utils.hydra_cfg.hydra_utils import *
from omniisaacgymenvs.utils.hydra_cfg.reformat import omegaconf_to_dict, print_dict
from omniisaacgymenvs.utils.rlgames.rlgames_utils import RLGPUAlgoObserver, RLGPUEnv
from omniisaacgymenvs.utils.task_util import initialize_task
from omniisaacgymenvs.utils.config_utils.path_utils import retrieve_checkpoint_path
from omniisaacgymenvs.envs.vec_env_rlgames_mt import VecEnvRLGamesMT
import hydra
from omegaconf import DictConfig
from rl_games.common import env_configurations, vecenv
from rl_games.torch_runner import Runner
import copy
import datetime
import os
import threading
import queue
from omni.isaac.gym.vec_env.vec_env_mt import TrainerMT
class RLGTrainer():
def __init__(self, cfg, cfg_dict):
self.cfg = cfg
self.cfg_dict = cfg_dict
def launch_rlg_hydra(self, env):
# `create_rlgpu_env` is environment construction function which is passed to RL Games and called internally.
# We use the helper function here to specify the environment config.
self.cfg_dict["task"]["test"] = self.cfg.test
# register the rl-games adapter to use inside the runner
vecenv.register('RLGPU',
lambda config_name, num_actors, **kwargs: RLGPUEnv(config_name, num_actors, **kwargs))
env_configurations.register('rlgpu', {
'vecenv_type': 'RLGPU',
'env_creator': lambda **kwargs: env
})
self.rlg_config_dict = omegaconf_to_dict(self.cfg.train)
def run(self):
# create runner and set the settings
runner = Runner(RLGPUAlgoObserver())
runner.load(copy.deepcopy(self.rlg_config_dict))
runner.reset()
# dump config dict
experiment_dir = os.path.join('runs', self.cfg.train.params.config.name)
os.makedirs(experiment_dir, exist_ok=True)
with open(os.path.join(experiment_dir, 'config.yaml'), 'w') as f:
f.write(OmegaConf.to_yaml(self.cfg))
time_str = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
if self.cfg.wandb_activate:
# Make sure to install WandB if you actually use this.
import wandb
run_name = f"{self.cfg.wandb_name}_{time_str}"
wandb.init(
project=self.cfg.wandb_project,
group=self.cfg.wandb_group,
entity=self.cfg.wandb_entity,
config=self.cfg_dict,
sync_tensorboard=True,
id=run_name,
resume="allow",
monitor_gym=True,
)
runner.run({
'train': not self.cfg.test,
'play': self.cfg.test,
'checkpoint': self.cfg.checkpoint,
'sigma': None
})
if self.cfg.wandb_activate:
wandb.finish()
class Trainer(TrainerMT):
def __init__(self, trainer, env):
self.ppo_thread = None
self.action_queue = None
self.data_queue = None
self.trainer = trainer
self.is_running = False
self.env = env
self.create_task()
self.run()
def create_task(self):
self.trainer.launch_rlg_hydra(self.env)
task = initialize_task(self.trainer.cfg_dict, self.env, init_sim=False)
self.task = task
def run(self):
self.is_running = True
self.action_queue = queue.Queue(1)
self.data_queue = queue.Queue(1)
self.env.initialize(self.action_queue, self.data_queue)
self.ppo_thread = PPOTrainer(self.env, self.task, self.trainer)
self.ppo_thread.daemon = True
self.ppo_thread.start()
def stop(self):
self.env.stop = True
self.env.clear_queues()
if self.action_queue:
self.action_queue.join()
if self.data_queue:
self.data_queue.join()
if self.ppo_thread:
self.ppo_thread.join()
self.action_queue = None
self.data_queue = None
self.ppo_thread = None
self.is_running = False
class PPOTrainer(threading.Thread):
def __init__(self, env, task, trainer):
super().__init__()
self.env = env
self.task = task
self.trainer = trainer
def run(self):
from omni.isaac.gym.vec_env import TaskStopException
print("starting ppo...")
try:
self.trainer.run()
# trainer finished - send stop signal to main thread
self.env.send_actions(None)
self.env.stop = True
except TaskStopException:
print("Task Stopped!")
@hydra.main(config_name="config", config_path="../cfg")
def parse_hydra_configs(cfg: DictConfig):
headless = cfg.headless
env = VecEnvRLGamesMT(headless=headless, sim_device=cfg.device_id)
# ensure checkpoints can be specified as relative paths
if cfg.checkpoint:
cfg.checkpoint = retrieve_checkpoint_path(cfg.checkpoint)
if cfg.checkpoint is None:
quit()
cfg_dict = omegaconf_to_dict(cfg)
print_dict(cfg_dict)
# sets seed. if seed is -1 will pick a random one
from omni.isaac.core.utils.torch.maths import set_seed
cfg.seed = set_seed(cfg.seed, torch_deterministic=cfg.torch_deterministic)
rlg_trainer = RLGTrainer(cfg, cfg_dict)
trainer = Trainer(rlg_trainer, env)
trainer.env.run(trainer)
if __name__ == '__main__':
parse_hydra_configs()
| 7,029 | Python | 33.292683 | 116 | 0.655712 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/demos/anymal_terrain.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from omniisaacgymenvs.tasks.anymal_terrain import AnymalTerrainTask, wrap_to_pi
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import get_current_stage
from omni.isaac.core.utils.torch.rotations import *
from omni.isaac.core.utils.torch.transformations import tf_combine
import numpy as np
import torch
import math
import omni
import carb
class AnymalTerrainDemo(AnymalTerrainTask):
def __init__(
self,
name,
sim_config,
env,
offset=None
) -> None:
max_num_envs = 128
if sim_config.task_config["env"]["numEnvs"] >= max_num_envs:
print(f"num_envs reduced to {max_num_envs} for this demo.")
sim_config.task_config["env"]["numEnvs"] = max_num_envs
sim_config.task_config["env"]["learn"]["episodeLength_s"] = 120
AnymalTerrainTask.__init__(self, name, sim_config, env)
self.add_noise = False
self.knee_threshold = 0.05
self.create_camera()
self._current_command = [0.0, 0.0, 0.0, 0.0]
self.set_up_keyboard()
self._prim_selection = omni.usd.get_context().get_selection()
self._selected_id = None
self._previous_selected_id = None
return
def create_camera(self):
stage = omni.usd.get_context().get_stage()
self.view_port = omni.kit.viewport_legacy.get_default_viewport_window()
# Create camera
self.camera_path = "/World/Camera"
self.perspective_path = "/OmniverseKit_Persp"
camera_prim = stage.DefinePrim(self.camera_path, "Camera")
self.view_port.set_active_camera(self.camera_path)
camera_prim.GetAttribute("focalLength").Set(8.5)
self.view_port.set_active_camera(self.perspective_path)
def set_up_keyboard(self):
self._input = carb.input.acquire_input_interface()
self._keyboard = omni.appwindow.get_default_app_window().get_keyboard()
self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._on_keyboard_event)
T = 1
R = 1
self._key_to_control = {
"UP": [T, 0.0, 0.0, 0.0],
"DOWN": [-T, 0.0, 0.0, 0.0],
"LEFT": [0.0, T, 0.0, 0.0],
"RIGHT": [0.0, -T, 0.0, 0.0],
"Z": [0.0, 0.0, R, 0.0],
"X": [0.0, 0.0, -R, 0.0],
}
def _on_keyboard_event(self, event, *args, **kwargs):
if event.type == carb.input.KeyboardEventType.KEY_PRESS:
if event.input.name in self._key_to_control:
self._current_command = self._key_to_control[event.input.name]
elif event.input.name == "ESCAPE":
self._prim_selection.clear_selected_prim_paths()
elif event.input.name == "C":
if self._selected_id is not None:
if self.view_port.get_active_camera() == self.camera_path:
self.view_port.set_active_camera(self.perspective_path)
else:
self.view_port.set_active_camera(self.camera_path)
else:
self._current_command = [0.0, 0.0, 0.0, 0.0]
def update_selected_object(self):
self._previous_selected_id = self._selected_id
selected_prim_paths = self._prim_selection.get_selected_prim_paths()
if len(selected_prim_paths) == 0:
self._selected_id = None
self.view_port.set_active_camera(self.perspective_path)
elif len(selected_prim_paths) > 1:
print("Multiple prims are selected. Please only select one!")
else:
prim_splitted_path = selected_prim_paths[0].split("/")
if len(prim_splitted_path) >= 4 and prim_splitted_path[3][0:4] == "env_":
self._selected_id = int(prim_splitted_path[3][4:])
if self._previous_selected_id != self._selected_id:
self.view_port.set_active_camera(self.camera_path)
self._update_camera()
else:
print("The selected prim was not an Anymal")
if self._previous_selected_id is not None and self._previous_selected_id != self._selected_id:
self.commands[self._previous_selected_id, 0] = np.random.uniform(self.command_x_range[0], self.command_x_range[1])
self.commands[self._previous_selected_id, 1] = np.random.uniform(self.command_y_range[0], self.command_y_range[1])
self.commands[self._previous_selected_id, 2] = 0.0
def _update_camera(self):
base_pos = self.base_pos[self._selected_id, :].clone()
base_quat = self.base_quat[self._selected_id, :].clone()
camera_local_transform = torch.tensor([-1.8, 0.0, 0.6], device=self.device)
camera_pos = quat_apply(base_quat, camera_local_transform) + base_pos
self.view_port.set_camera_position(self.camera_path, camera_pos[0], camera_pos[1], camera_pos[2], True)
self.view_port.set_camera_target(self.camera_path, base_pos[0], base_pos[1], base_pos[2]+0.6, True)
def post_physics_step(self):
self.progress_buf[:] += 1
self.refresh_dof_state_tensors()
self.refresh_body_state_tensors()
self.update_selected_object()
self.common_step_counter += 1
if self.common_step_counter % self.push_interval == 0:
self.push_robots()
# prepare quantities
self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 0:3])
self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.base_velocities[:, 3:6])
self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec)
forward = quat_apply(self.base_quat, self.forward_vec)
heading = torch.atan2(forward[:, 1], forward[:, 0])
self.commands[:, 2] = torch.clip(0.5*wrap_to_pi(self.commands[:, 3] - heading), -1., 1.)
self.check_termination()
if self._selected_id is not None:
self.commands[self._selected_id, :] = torch.tensor(self._current_command, device=self.device)
self.timeout_buf[self._selected_id] = 0
self.reset_buf[self._selected_id] = 0
self.get_states()
env_ids = self.reset_buf.nonzero(as_tuple=False).flatten()
if len(env_ids) > 0:
self.reset_idx(env_ids)
self.get_observations()
if self.add_noise:
self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec
self.last_actions[:] = self.actions[:]
self.last_dof_vel[:] = self.dof_vel[:]
return self.obs_buf, self.rew_buf, self.reset_buf, self.extras | 8,253 | Python | 44.103825 | 126 | 0.632861 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/demos/ur10_reacher.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# Copyright (c) 2022-2023, Johnson Sun
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from omniisaacgymenvs.tasks.ur10_reacher import UR10ReacherTask
from omni.isaac.core.utils.torch.rotations import *
import torch
import omni
import carb
class UR10ReacherDemo(UR10ReacherTask):
def __init__(
self,
name,
sim_config,
env,
offset=None
) -> None:
max_num_envs = 128
if sim_config.task_config["env"]["numEnvs"] >= max_num_envs:
print(f"num_envs reduced to {max_num_envs} for this demo.")
sim_config.task_config["env"]["numEnvs"] = max_num_envs
UR10ReacherTask.__init__(self, name, sim_config, env)
self.add_noise = False
self.create_camera()
self._current_command = [0.0] * 6
self.set_up_keyboard()
self._prim_selection = omni.usd.get_context().get_selection()
self._selected_id = None
self._previous_selected_id = None
return
def create_camera(self):
stage = omni.usd.get_context().get_stage()
self.view_port = omni.kit.viewport_legacy.get_default_viewport_window()
# Create camera
self.camera_path = "/World/Camera"
self.perspective_path = "/OmniverseKit_Persp"
camera_prim = stage.DefinePrim(self.camera_path, "Camera")
self.view_port.set_active_camera(self.camera_path)
camera_prim.GetAttribute("focalLength").Set(8.5)
self.view_port.set_active_camera(self.perspective_path)
def set_up_keyboard(self):
self._input = carb.input.acquire_input_interface()
self._keyboard = omni.appwindow.get_default_app_window().get_keyboard()
self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._on_keyboard_event)
self._key_to_control = {
# Joint 0
"Q": [-1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
"A": [1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
# Joint 1
"W": [0.0, -1.0, 0.0, 0.0, 0.0, 0.0],
"S": [0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
# Joint 2
"E": [0.0, 0.0, -1.0, 0.0, 0.0, 0.0],
"D": [0.0, 0.0, 1.0, 0.0, 0.0, 0.0],
# Joint 3
"R": [0.0, 0.0, 0.0, -1.0, 0.0, 0.0],
"F": [0.0, 0.0, 0.0, 1.0, 0.0, 0.0],
# Joint 4
"T": [0.0, 0.0, 0.0, 0.0, -1.0, 0.0],
"G": [0.0, 0.0, 0.0, 0.0, 1.0, 0.0],
# Joint 5
"Y": [0.0, 0.0, 0.0, 0.0, 0.0, -1.0],
"H": [0.0, 0.0, 0.0, 0.0, 0.0, 1.0],
}
def _on_keyboard_event(self, event, *args, **kwargs):
if event.type == carb.input.KeyboardEventType.KEY_PRESS:
if event.input.name in self._key_to_control:
self._current_command = self._key_to_control[event.input.name]
elif event.input.name == "ESCAPE":
self._prim_selection.clear_selected_prim_paths()
elif event.input.name == "C":
if self._selected_id is not None:
if self.view_port.get_active_camera() == self.camera_path:
self.view_port.set_active_camera(self.perspective_path)
else:
self.view_port.set_active_camera(self.camera_path)
else:
self._current_command = [0.0] * 6
def update_selected_object(self):
self._previous_selected_id = self._selected_id
selected_prim_paths = self._prim_selection.get_selected_prim_paths()
if len(selected_prim_paths) == 0:
self._selected_id = None
self.view_port.set_active_camera(self.perspective_path)
elif len(selected_prim_paths) > 1:
print("Multiple prims are selected. Please only select one!")
else:
prim_splitted_path = selected_prim_paths[0].split("/")
if len(prim_splitted_path) >= 4 and prim_splitted_path[3][0:4] == "env_":
self._selected_id = int(prim_splitted_path[3][4:])
else:
print("The selected prim was not a UR10")
def _update_camera(self):
base_pos = self.base_pos[self._selected_id, :].clone()
base_quat = self.base_quat[self._selected_id, :].clone()
camera_local_transform = torch.tensor([-1.8, 0.0, 0.6], device=self.device)
camera_pos = quat_apply(base_quat, camera_local_transform) + base_pos
self.view_port.set_camera_position(self.camera_path, camera_pos[0], camera_pos[1], camera_pos[2], True)
self.view_port.set_camera_target(self.camera_path, base_pos[0], base_pos[1], base_pos[2]+0.6, True)
def pre_physics_step(self, actions):
if self._selected_id is not None:
actions[self._selected_id, :] = torch.tensor(self._current_command, device=self.device)
result = super().pre_physics_step(actions)
if self._selected_id is not None:
print('selected ur10 id:', self._selected_id)
print('self.rew_buf[idx]:', self.rew_buf[self._selected_id])
print('self.object_pos[idx]:', self.object_pos[self._selected_id])
print('self.goal_pos[idx]:', self.goal_pos[self._selected_id])
return result
def post_physics_step(self):
self.progress_buf[:] += 1
self.update_selected_object()
if self._selected_id is not None:
self.reset_buf[self._selected_id] = 0
self.get_states()
env_ids = self.reset_buf.nonzero(as_tuple=False).flatten()
if len(env_ids) > 0:
self.reset_idx(env_ids)
self.get_observations()
if self.add_noise:
self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec
# Calculate rewards
self.calculate_metrics()
return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
| 7,383 | Python | 41.930232 | 111 | 0.608154 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/utils/demo_util.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# Copyright (c) 2022-2023, Johnson Sun
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
def initialize_demo(config, env, init_sim=True):
from omniisaacgymenvs.demos.anymal_terrain import AnymalTerrainDemo
from omniisaacgymenvs.demos.ur10_reacher import UR10ReacherDemo
# Mappings from strings to environments
task_map = {
"AnymalTerrain": AnymalTerrainDemo,
"UR10Reacher": UR10ReacherDemo,
}
from omniisaacgymenvs.utils.config_utils.sim_config import SimConfig
sim_config = SimConfig(config)
cfg = sim_config.config
task = task_map[cfg["task_name"]](
name=cfg["task_name"], sim_config=sim_config, env=env
)
env.set_task(task=task, sim_params=sim_config.get_physics_params(), backend="torch", init_sim=init_sim)
return task | 2,310 | Python | 44.313725 | 107 | 0.758442 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/utils/task_util.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# Copyright (c) 2022-2023, Johnson Sun
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
def initialize_task(config, env, init_sim=True):
from omniisaacgymenvs.tasks.allegro_hand import AllegroHandTask
from omniisaacgymenvs.tasks.ant import AntLocomotionTask
from omniisaacgymenvs.tasks.anymal import AnymalTask
from omniisaacgymenvs.tasks.anymal_terrain import AnymalTerrainTask
from omniisaacgymenvs.tasks.ball_balance import BallBalanceTask
from omniisaacgymenvs.tasks.cartpole import CartpoleTask
from omniisaacgymenvs.tasks.franka_cabinet import FrankaCabinetTask
from omniisaacgymenvs.tasks.humanoid import HumanoidLocomotionTask
from omniisaacgymenvs.tasks.ingenuity import IngenuityTask
from omniisaacgymenvs.tasks.quadcopter import QuadcopterTask
from omniisaacgymenvs.tasks.shadow_hand import ShadowHandTask
from omniisaacgymenvs.tasks.crazyflie import CrazyflieTask
from omniisaacgymenvs.tasks.ur10_reacher import UR10ReacherTask
# Mappings from strings to environments
task_map = {
"AllegroHand": AllegroHandTask,
"Ant": AntLocomotionTask,
"Anymal": AnymalTask,
"AnymalTerrain": AnymalTerrainTask,
"BallBalance": BallBalanceTask,
"Cartpole": CartpoleTask,
"FrankaCabinet": FrankaCabinetTask,
"Humanoid": HumanoidLocomotionTask,
"Ingenuity": IngenuityTask,
"Quadcopter": QuadcopterTask,
"Crazyflie": CrazyflieTask,
"ShadowHand": ShadowHandTask,
"ShadowHandOpenAI_FF": ShadowHandTask,
"ShadowHandOpenAI_LSTM": ShadowHandTask,
"UR10Reacher": UR10ReacherTask,
}
from .config_utils.sim_config import SimConfig
sim_config = SimConfig(config)
cfg = sim_config.config
task = task_map[cfg["task_name"]](
name=cfg["task_name"], sim_config=sim_config, env=env
)
env.set_task(task=task, sim_params=sim_config.get_physics_params(), backend="torch", init_sim=init_sim)
return task | 3,513 | Python | 45.853333 | 107 | 0.756618 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/utils/domain_randomization/randomize.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import copy
import omni
import omni.replicator.core as rep
import omni.replicator.isaac as dr
import numpy as np
import torch
from omni.isaac.core.prims import RigidPrimView
class Randomizer():
def __init__(self, sim_config):
self._cfg = sim_config.task_config
self._config = sim_config.config
self.randomize = False
dr_config = self._cfg.get("domain_randomization", None)
self.distributions = dict()
self.active_domain_randomizations = dict()
self._observations_dr_params = None
self._actions_dr_params = None
if dr_config is not None:
randomize = dr_config.get("randomize", False)
randomization_params = dr_config.get("randomization_params", None)
if randomize and randomization_params is not None:
self.randomize = True
self.min_frequency = dr_config.get("min_frequency", 1)
def apply_on_startup_domain_randomization(self, task):
if self.randomize:
torch.manual_seed(self._config["seed"])
randomization_params = self._cfg["domain_randomization"]["randomization_params"]
for opt in randomization_params.keys():
if opt == "rigid_prim_views":
if randomization_params["rigid_prim_views"] is not None:
for view_name in randomization_params["rigid_prim_views"].keys():
if randomization_params["rigid_prim_views"][view_name] is not None:
for attribute, params in randomization_params["rigid_prim_views"][view_name].items():
params = randomization_params["rigid_prim_views"][view_name][attribute]
if attribute in ["scale", "mass", "density"] and params is not None:
if "on_startup" in params.keys():
if not set(('operation','distribution', 'distribution_parameters')).issubset(params["on_startup"]):
raise ValueError(f"Please ensure the following randomization parameters for {view_name} {attribute} " + \
"on_startup are provided: operation, distribution, distribution_parameters.")
view = task._env._world.scene._scene_registry.rigid_prim_views[view_name]
if attribute == "scale":
self.randomize_scale_on_startup(
view=view,
distribution=params["on_startup"]["distribution"],
distribution_parameters=params["on_startup"]["distribution_parameters"],
operation=params["on_startup"]["operation"],
sync_dim_noise=True,
)
elif attribute == "mass":
self.randomize_mass_on_startup(
view=view,
distribution=params["on_startup"]["distribution"],
distribution_parameters=params["on_startup"]["distribution_parameters"],
operation=params["on_startup"]["operation"],
)
elif attribute == "density":
self.randomize_density_on_startup(
view=view,
distribution=params["on_startup"]["distribution"],
distribution_parameters=params["on_startup"]["distribution_parameters"],
operation=params["on_startup"]["operation"],
)
if opt == "articulation_views":
if randomization_params["articulation_views"] is not None:
for view_name in randomization_params["articulation_views"].keys():
if randomization_params["articulation_views"][view_name] is not None:
for attribute, params in randomization_params["articulation_views"][view_name].items():
params = randomization_params["articulation_views"][view_name][attribute]
if attribute in ["scale"] and params is not None:
if "on_startup" in params.keys():
if not set(('operation','distribution', 'distribution_parameters')).issubset(params["on_startup"]):
raise ValueError(f"Please ensure the following randomization parameters for {view_name} {attribute} " + \
"on_startup are provided: operation, distribution, distribution_parameters.")
view = task._env._world.scene._scene_registry.articulated_views[view_name]
if attribute == "scale":
self.randomize_scale_on_startup(
view=view,
distribution=params["on_startup"]["distribution"],
distribution_parameters=params["on_startup"]["distribution_parameters"],
operation=params["on_startup"]["operation"],
sync_dim_noise=True
)
else:
dr_config = self._cfg.get("domain_randomization", None)
if dr_config is None:
raise ValueError("No domain randomization parameters are specified in the task yaml config file")
randomize = dr_config.get("randomize", False)
randomization_params = dr_config.get("randomization_params", None)
if randomize == False or randomization_params is None:
print("On Startup Domain randomization will not be applied.")
def set_up_domain_randomization(self, task):
if self.randomize:
randomization_params = self._cfg["domain_randomization"]["randomization_params"]
rep.set_global_seed(self._config["seed"])
with dr.trigger.on_rl_frame(num_envs=self._cfg["env"]["numEnvs"]):
for opt in randomization_params.keys():
if opt == "observations":
self._set_up_observations_randomization(task)
elif opt == "actions":
self._set_up_actions_randomization(task)
elif opt == "simulation":
if randomization_params["simulation"] is not None:
self.distributions["simulation"] = dict()
dr.physics_view.register_simulation_context(task._env._world)
for attribute, params in randomization_params["simulation"].items():
self._set_up_simulation_randomization(attribute, params)
elif opt == "rigid_prim_views":
if randomization_params["rigid_prim_views"] is not None:
self.distributions["rigid_prim_views"] = dict()
for view_name in randomization_params["rigid_prim_views"].keys():
if randomization_params["rigid_prim_views"][view_name] is not None:
self.distributions["rigid_prim_views"][view_name] = dict()
dr.physics_view.register_rigid_prim_view(
rigid_prim_view=task._env._world.scene._scene_registry.rigid_prim_views[view_name],
)
for attribute, params in randomization_params["rigid_prim_views"][view_name].items():
if attribute not in ["scale", "density"]:
self._set_up_rigid_prim_view_randomization(view_name, attribute, params)
elif opt == "articulation_views":
if randomization_params["articulation_views"] is not None:
self.distributions["articulation_views"] = dict()
for view_name in randomization_params["articulation_views"].keys():
if randomization_params["articulation_views"][view_name] is not None:
self.distributions["articulation_views"][view_name] = dict()
dr.physics_view.register_articulation_view(
articulation_view=task._env._world.scene._scene_registry.articulated_views[view_name],
)
for attribute, params in randomization_params["articulation_views"][view_name].items():
if attribute not in ["scale"]:
self._set_up_articulation_view_randomization(view_name, attribute, params)
rep.orchestrator.run()
else:
dr_config = self._cfg.get("domain_randomization", None)
if dr_config is None:
raise ValueError("No domain randomization parameters are specified in the task yaml config file")
randomize = dr_config.get("randomize", False)
randomization_params = dr_config.get("randomization_params", None)
if randomize == False or randomization_params is None:
print("Domain randomization will not be applied.")
def _set_up_observations_randomization(self, task):
task.randomize_observations = True
self._observations_dr_params = self._cfg["domain_randomization"]["randomization_params"]["observations"]
if self._observations_dr_params is None:
raise ValueError(f"Observations randomization parameters are not provided.")
if "on_reset" in self._observations_dr_params.keys():
if not set(('operation','distribution', 'distribution_parameters')).issubset(self._observations_dr_params["on_reset"].keys()):
raise ValueError(f"Please ensure the following observations on_reset randomization parameters are provided: " + \
"operation, distribution, distribution_parameters.")
self.active_domain_randomizations[("observations", "on_reset")] = np.array(self._observations_dr_params["on_reset"]["distribution_parameters"])
if "on_interval" in self._observations_dr_params.keys():
if not set(('frequency_interval', 'operation','distribution', 'distribution_parameters')).issubset(self._observations_dr_params["on_interval"].keys()):
raise ValueError(f"Please ensure the following observations on_interval randomization parameters are provided: " + \
"frequency_interval, operation, distribution, distribution_parameters.")
self.active_domain_randomizations[("observations", "on_interval")] = np.array(self._observations_dr_params["on_interval"]["distribution_parameters"])
self._observations_counter_buffer = torch.zeros((self._cfg["env"]["numEnvs"]), dtype=torch.int, device=self._config["sim_device"])
self._observations_correlated_noise = torch.zeros((self._cfg["env"]["numEnvs"], task.num_observations), device=self._config["sim_device"])
def _set_up_actions_randomization(self, task):
task.randomize_actions = True
self._actions_dr_params = self._cfg["domain_randomization"]["randomization_params"]["actions"]
if self._actions_dr_params is None:
raise ValueError(f"Actions randomization parameters are not provided.")
if "on_reset" in self._actions_dr_params.keys():
if not set(('operation','distribution', 'distribution_parameters')).issubset(self._actions_dr_params["on_reset"].keys()):
raise ValueError(f"Please ensure the following actions on_reset randomization parameters are provided: " + \
"operation, distribution, distribution_parameters.")
self.active_domain_randomizations[("actions", "on_reset")] = np.array(self._actions_dr_params["on_reset"]["distribution_parameters"])
if "on_interval" in self._actions_dr_params.keys():
if not set(('frequency_interval', 'operation','distribution', 'distribution_parameters')).issubset(self._actions_dr_params["on_interval"].keys()):
raise ValueError(f"Please ensure the following actions on_interval randomization parameters are provided: " + \
"frequency_interval, operation, distribution, distribution_parameters.")
self.active_domain_randomizations[("actions", "on_interval")] = np.array(self._actions_dr_params["on_interval"]["distribution_parameters"])
self._actions_counter_buffer = torch.zeros((self._cfg["env"]["numEnvs"]), dtype=torch.int, device=self._config["sim_device"])
self._actions_correlated_noise = torch.zeros((self._cfg["env"]["numEnvs"], task.num_actions), device=self._config["sim_device"])
def apply_observations_randomization(self, observations, reset_buf):
env_ids = reset_buf.nonzero(as_tuple=False).squeeze(-1)
self._observations_counter_buffer[env_ids] = 0
self._observations_counter_buffer += 1
if "on_reset" in self._observations_dr_params.keys():
observations[:] = self._apply_correlated_noise(
buffer_type="observations",
buffer=observations,
reset_ids=env_ids,
operation=self._observations_dr_params["on_reset"]["operation"],
distribution=self._observations_dr_params["on_reset"]["distribution"],
distribution_parameters=self._observations_dr_params["on_reset"]["distribution_parameters"],
)
if "on_interval" in self._observations_dr_params.keys():
randomize_ids = (self._observations_counter_buffer >= self._observations_dr_params["on_interval"]["frequency_interval"]).nonzero(as_tuple=False).squeeze(-1)
self._observations_counter_buffer[randomize_ids] = 0
observations[:] = self._apply_uncorrelated_noise(
buffer=observations,
randomize_ids=randomize_ids,
operation=self._observations_dr_params["on_interval"]["operation"],
distribution=self._observations_dr_params["on_interval"]["distribution"],
distribution_parameters=self._observations_dr_params["on_interval"]["distribution_parameters"],
)
return observations
def apply_actions_randomization(self, actions, reset_buf):
env_ids = reset_buf.nonzero(as_tuple=False).squeeze(-1)
self._actions_counter_buffer[env_ids] = 0
self._actions_counter_buffer += 1
if "on_reset" in self._actions_dr_params.keys():
actions[:] = self._apply_correlated_noise(
buffer_type="actions",
buffer=actions,
reset_ids=env_ids,
operation=self._actions_dr_params["on_reset"]["operation"],
distribution=self._actions_dr_params["on_reset"]["distribution"],
distribution_parameters=self._actions_dr_params["on_reset"]["distribution_parameters"],
)
if "on_interval" in self._actions_dr_params.keys():
randomize_ids = (self._actions_counter_buffer >= self._actions_dr_params["on_interval"]["frequency_interval"]).nonzero(as_tuple=False).squeeze(-1)
self._actions_counter_buffer[randomize_ids] = 0
actions[:] = self._apply_uncorrelated_noise(
buffer=actions,
randomize_ids=randomize_ids,
operation=self._actions_dr_params["on_interval"]["operation"],
distribution=self._actions_dr_params["on_interval"]["distribution"],
distribution_parameters=self._actions_dr_params["on_interval"]["distribution_parameters"],
)
return actions
def _apply_uncorrelated_noise(self, buffer, randomize_ids, operation, distribution, distribution_parameters):
if distribution == "gaussian" or distribution == "normal":
noise = torch.normal(mean=distribution_parameters[0], std=distribution_parameters[1], size=(len(randomize_ids), buffer.shape[1]), device=self._config["sim_device"])
elif distribution == "uniform":
noise = (distribution_parameters[1] - distribution_parameters[0]) * torch.rand((len(randomize_ids), buffer.shape[1]), device=self._config["sim_device"]) + distribution_parameters[0]
elif distribution == "loguniform" or distribution == "log_uniform":
noise = torch.exp((np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand((len(randomize_ids), buffer.shape[1]), device=self._config["sim_device"]) + np.log(distribution_parameters[0]))
else:
print(f"The specified {distribution} distribution is not supported.")
if operation == "additive":
buffer[randomize_ids] += noise
elif operation == "scaling":
buffer[randomize_ids] *= noise
else:
print(f"The specified {operation} operation type is not supported.")
return buffer
def _apply_correlated_noise(self, buffer_type, buffer, reset_ids, operation, distribution, distribution_parameters):
if buffer_type == "observations":
correlated_noise_buffer = self._observations_correlated_noise
elif buffer_type == "actions":
correlated_noise_buffer = self._actions_correlated_noise
if len(reset_ids) > 0:
if distribution == "gaussian" or distribution == "normal":
correlated_noise_buffer[reset_ids] = torch.normal(mean=distribution_parameters[0], std=distribution_parameters[1], size=(len(reset_ids), buffer.shape[1]), device=self._config["sim_device"])
elif distribution == "uniform":
correlated_noise_buffer[reset_ids] = (distribution_parameters[1] - distribution_parameters[0]) * torch.rand((len(reset_ids), buffer.shape[1]), device=self._config["sim_device"]) + distribution_parameters[0]
elif distribution == "loguniform" or distribution == "log_uniform":
correlated_noise_buffer[reset_ids] = torch.exp((np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand((len(reset_ids), buffer.shape[1]), device=self._config["sim_device"]) + np.log(distribution_parameters[0]))
else:
print(f"The specified {distribution} distribution is not supported.")
if operation == "additive":
buffer += correlated_noise_buffer
elif operation == "scaling":
buffer *= correlated_noise_buffer
else:
print(f"The specified {operation} operation type is not supported.")
return buffer
def _set_up_simulation_randomization(self, attribute, params):
if params is None:
raise ValueError(f"Randomization parameters for simulation {attribute} is not provided.")
if attribute in dr.SIMULATION_CONTEXT_ATTRIBUTES:
self.distributions["simulation"][attribute] = dict()
if "on_reset" in params.keys():
if not set(('operation','distribution', 'distribution_parameters')).issubset(params["on_reset"]):
raise ValueError(f"Please ensure the following randomization parameters for simulation {attribute} on_reset are provided: " + \
"operation, distribution, distribution_parameters.")
self.active_domain_randomizations[("simulation", attribute, "on_reset")] = np.array(params["on_reset"]["distribution_parameters"])
kwargs = {"operation": params["on_reset"]["operation"]}
self.distributions["simulation"][attribute]["on_reset"] = self._generate_distribution(
dimension=dr.physics_view._simulation_context_initial_values[attribute].shape[0],
view_name="simulation",
attribute=attribute,
params=params["on_reset"],
)
kwargs[attribute] = self.distributions["simulation"][attribute]["on_reset"]
with dr.gate.on_env_reset():
dr.physics_view.randomize_simulation_context(**kwargs)
if "on_interval" in params.keys():
if not set(('frequency_interval', 'operation','distribution', 'distribution_parameters')).issubset(params["on_interval"]):
raise ValueError(f"Please ensure the following randomization parameters for simulation {attribute} on_interval are provided: " + \
"frequency_interval, operation, distribution, distribution_parameters.")
self.active_domain_randomizations[("simulation", attribute, "on_interval")] = np.array(params["on_interval"]["distribution_parameters"])
kwargs = {"operation": params["on_interval"]["operation"]}
self.distributions["simulation"][attribute]["on_interval"] = self._generate_distribution(
dimension=dr.physics_view._simulation_context_initial_values[attribute].shape[0],
view_name="simulation",
attribute=attribute,
params=params["on_interval"],
)
kwargs[attribute] = self.distributions["simulation"][attribute]["on_interval"]
with dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]):
dr.physics_view.randomize_simulation_context(**kwargs)
def _set_up_rigid_prim_view_randomization(self, view_name, attribute, params):
if params is None:
raise ValueError(f"Randomization parameters for rigid prim view {view_name} {attribute} is not provided.")
if attribute in dr.RIGID_PRIM_ATTRIBUTES:
self.distributions["rigid_prim_views"][view_name][attribute] = dict()
if "on_reset" in params.keys():
if not set(('operation','distribution', 'distribution_parameters')).issubset(params["on_reset"]):
raise ValueError(f"Please ensure the following randomization parameters for {view_name} {attribute} on_reset are provided: " + \
"operation, distribution, distribution_parameters.")
self.active_domain_randomizations[("rigid_prim_views", view_name, attribute, "on_reset")] = np.array(params["on_reset"]["distribution_parameters"])
kwargs = {"view_name": view_name, "operation": params["on_reset"]["operation"]}
if attribute == "material_properties" and "num_buckets" in params["on_reset"].keys():
kwargs["num_buckets"] = params["on_reset"]["num_buckets"]
self.distributions["rigid_prim_views"][view_name][attribute]["on_reset"] = self._generate_distribution(
dimension=dr.physics_view._rigid_prim_views_initial_values[view_name][attribute].shape[1],
view_name=view_name,
attribute=attribute,
params=params["on_reset"],
)
kwargs[attribute] = self.distributions["rigid_prim_views"][view_name][attribute]["on_reset"]
with dr.gate.on_env_reset():
dr.physics_view.randomize_rigid_prim_view(**kwargs)
if "on_interval" in params.keys():
if not set(('frequency_interval', 'operation','distribution', 'distribution_parameters')).issubset(params["on_interval"]):
raise ValueError(f"Please ensure the following randomization parameters for {view_name} {attribute} on_interval are provided: " + \
"frequency_interval, operation, distribution, distribution_parameters.")
self.active_domain_randomizations[("rigid_prim_views", view_name, attribute, "on_interval")] = np.array(params["on_interval"]["distribution_parameters"])
kwargs = {"view_name": view_name, "operation": params["on_interval"]["operation"]}
if attribute == "material_properties" and "num_buckets" in params["on_interval"].keys():
kwargs["num_buckets"] = params["on_interval"]["num_buckets"]
self.distributions["rigid_prim_views"][view_name][attribute]["on_interval"] = self._generate_distribution(
dimension=dr.physics_view._rigid_prim_views_initial_values[view_name][attribute].shape[1],
view_name=view_name,
attribute=attribute,
params=params["on_interval"],
)
kwargs[attribute] = self.distributions["rigid_prim_views"][view_name][attribute]["on_interval"]
with dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]):
dr.physics_view.randomize_rigid_prim_view(**kwargs)
else:
raise ValueError(f"The attribute {attribute} for {view_name} is invalid for domain randomization.")
def _set_up_articulation_view_randomization(self, view_name, attribute, params):
if params is None:
raise ValueError(f"Randomization parameters for articulation view {view_name} {attribute} is not provided.")
if attribute in dr.ARTICULATION_ATTRIBUTES:
self.distributions["articulation_views"][view_name][attribute] = dict()
if "on_reset" in params.keys():
if not set(('operation','distribution', 'distribution_parameters')).issubset(params["on_reset"]):
raise ValueError(f"Please ensure the following randomization parameters for {view_name} {attribute} on_reset are provided: " + \
"operation, distribution, distribution_parameters.")
self.active_domain_randomizations[("articulation_views", view_name, attribute, "on_reset")] = np.array(params["on_reset"]["distribution_parameters"])
kwargs = {"view_name": view_name, "operation": params["on_reset"]["operation"]}
if attribute == "material_properties" and "num_buckets" in params["on_reset"].keys():
kwargs["num_buckets"] = params["on_reset"]["num_buckets"]
self.distributions["articulation_views"][view_name][attribute]["on_reset"] = self._generate_distribution(
dimension=dr.physics_view._articulation_views_initial_values[view_name][attribute].shape[1],
view_name=view_name,
attribute=attribute,
params=params["on_reset"],
)
kwargs[attribute] = self.distributions["articulation_views"][view_name][attribute]["on_reset"]
with dr.gate.on_env_reset():
dr.physics_view.randomize_articulation_view(**kwargs)
if "on_interval" in params.keys():
if not set(('frequency_interval', 'operation','distribution', 'distribution_parameters')).issubset(params["on_interval"]):
raise ValueError(f"Please ensure the following randomization parameters for {view_name} {attribute} on_interval are provided: " + \
"frequency_interval, operation, distribution, distribution_parameters.")
self.active_domain_randomizations[("articulation_views", view_name, attribute, "on_interval")] = np.array(params["on_interval"]["distribution_parameters"])
kwargs = {"view_name": view_name, "operation": params["on_interval"]["operation"]}
if attribute == "material_properties" and "num_buckets" in params["on_interval"].keys():
kwargs["num_buckets"] = params["on_interval"]["num_buckets"]
self.distributions["articulation_views"][view_name][attribute]["on_interval"] = self._generate_distribution(
dimension=dr.physics_view._articulation_views_initial_values[view_name][attribute].shape[1],
view_name=view_name,
attribute=attribute,
params=params["on_interval"],
)
kwargs[attribute] = self.distributions["articulation_views"][view_name][attribute]["on_interval"]
with dr.gate.on_interval(interval=params["on_interval"]["frequency_interval"]):
dr.physics_view.randomize_articulation_view(**kwargs)
else:
raise ValueError(f"The attribute {attribute} for {view_name} is invalid for domain randomization.")
def _generate_distribution(self, view_name, attribute, dimension, params):
dist_params = self._sanitize_distribution_parameters(attribute, dimension, params["distribution_parameters"])
if params["distribution"] == "uniform":
return rep.distribution.uniform(tuple(dist_params[0]), tuple(dist_params[1]))
elif params["distribution"] == "gaussian" or params["distribution"] == "normal":
return rep.distribution.normal(tuple(dist_params[0]), tuple(dist_params[1]))
elif params["distribution"] == "loguniform" or params["distribution"] == "log_uniform":
return rep.distribution.log_uniform(tuple(dist_params[0]), tuple(dist_params[1]))
else:
raise ValueError(f"The provided distribution for {view_name} {attribute} is not supported. "
+ "Options: uniform, gaussian/normal, loguniform/log_uniform"
)
def _sanitize_distribution_parameters(self, attribute, dimension, params):
distribution_parameters = np.array(params)
if distribution_parameters.shape == (2,):
# if the user does not provide a set of parameters for each dimension
dist_params = [[distribution_parameters[0]]*dimension, [distribution_parameters[1]]*dimension]
elif distribution_parameters.shape == (2, dimension):
# if the user provides a set of parameters for each dimension in the format [[...], [...]]
dist_params = distribution_parameters.tolist()
elif attribute in ["material_properties", "body_inertias"] and distribution_parameters.shape == (2, 3):
# if the user only provides the parameters for one body in the articulation, assume the same parameters for all other links
dist_params = [[distribution_parameters[0]] * (dimension // 3), [distribution_parameters[1]] * (dimension // 3)]
else:
raise ValueError(f"The provided distribution_parameters for {view_name} {attribute} is invalid due to incorrect dimensions.")
return dist_params
def set_dr_distribution_parameters(self, distribution_parameters, *distribution_path):
if distribution_path not in self.active_domain_randomizations.keys():
raise ValueError(f"Cannot find a valid domain randomization distribution using the path {distribution_path}.")
if distribution_path[0] == "observations":
if len(distribution_parameters) == 2:
self._observations_dr_params[distribution_path[1]]["distribution_parameters"] = distribution_parameters
else:
raise ValueError(f"Please provide distribution_parameters for observations {distribution_path[1]} " +
"in the form of [dist_param_1, dist_param_2]")
elif distribution_path[0] == "actions":
if len(distribution_parameters) == 2:
self._actions_dr_params[distribution_path[1]]["distribution_parameters"] = distribution_parameters
else:
raise ValueError(f"Please provide distribution_parameters for actions {distribution_path[1]} " +
"in the form of [dist_param_1, dist_param_2]")
else:
replicator_distribution = self.distributions[distribution_path[0]][distribution_path[1]][distribution_path[2]]
if distribution_path[0] == "rigid_prim_views" or distribution_path[0] == "articulation_views":
replicator_distribution = replicator_distribution[distribution_path[3]]
if replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleUniform" \
or replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleLogUniform":
dimension = len(dr.utils.get_distribution_params(replicator_distribution, ["lower"])[0])
dist_params = self._sanitize_distribution_parameters(distribution_path[-2], dimension, distribution_parameters)
dr.utils.set_distribution_params(replicator_distribution, {"lower": dist_params[0], "upper": dist_params[1]})
elif replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleNormal":
dimension = len(dr.utils.get_distribution_params(replicator_distribution, ["mean"])[0])
dist_params = self._sanitize_distribution_parameters(distribution_path[-2], dimension, distribution_parameters)
dr.utils.set_distribution_params(replicator_distribution, {"mean": dist_params[0], "std": dist_params[1]})
def get_dr_distribution_parameters(self, *distribution_path):
if distribution_path not in self.active_domain_randomizations.keys():
raise ValueError(f"Cannot find a valid domain randomization distribution using the path {distribution_path}.")
if distribution_path[0] == "observations":
return self._observations_dr_params[distribution_path[1]]["distribution_parameters"]
elif distribution_path[0] == "actions":
return self._actions_dr_params[distribution_path[1]]["distribution_parameters"]
else:
replicator_distribution = self.distributions[distribution_path[0]][distribution_path[1]][distribution_path[2]]
if distribution_path[0] == "rigid_prim_views" or distribution_path[0] == "articulation_views":
replicator_distribution = replicator_distribution[distribution_path[3]]
if replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleUniform" \
or replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleLogUniform":
return dr.utils.get_distribution_params(replicator_distribution, ["lower", "upper"])
elif replicator_distribution.node.get_node_type().get_node_type() == "omni.replicator.core.OgnSampleNormal":
return dr.utils.get_distribution_params(replicator_distribution, ["mean", "std"])
def get_initial_dr_distribution_parameters(self, *distribution_path):
if distribution_path not in self.active_domain_randomizations.keys():
raise ValueError(f"Cannot find a valid domain randomization distribution using the path {distribution_path}.")
return self.active_domain_randomizations[distribution_path].copy()
def _generate_noise(self, distribution, distribution_parameters, size, device):
if distribution == "gaussian" or distribution == "normal":
noise = torch.normal(mean=distribution_parameters[0], std=distribution_parameters[1], size=size, device=device)
elif distribution == "uniform":
noise = (distribution_parameters[1] - distribution_parameters[0]) * torch.rand(size, device=device) + distribution_parameters[0]
elif distribution == "loguniform" or distribution == "log_uniform":
noise = torch.exp((np.log(distribution_parameters[1]) - np.log(distribution_parameters[0])) * torch.rand(size, device=device) + np.log(distribution_parameters[0]))
else:
print(f"The specified {distribution} distribution is not supported.")
return noise
def randomize_scale_on_startup(self, view, distribution, distribution_parameters, operation, sync_dim_noise=True):
scales = view.get_local_scales()
if sync_dim_noise:
dist_params = np.asarray(self._sanitize_distribution_parameters(attribute="scale", dimension=1, params=distribution_parameters))
noise = self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device).repeat(3,1).T
else:
dist_params = np.asarray(self._sanitize_distribution_parameters(attribute="scale", dimension=3, params=distribution_parameters))
noise = torch.zeros((view.count, 3), device=view._device)
for i in range(3):
noise[:, i] = self._generate_noise(distribution, dist_params[:, i], (view.count,), view._device)
if operation == "additive":
scales += noise
elif operation == "scaling":
scales *= noise
elif operation == "direct":
scales = noise
else:
print(f"The specified {operation} operation type is not supported.")
view.set_local_scales(scales=scales)
def randomize_mass_on_startup(self, view, distribution, distribution_parameters, operation):
if isinstance(view, omni.isaac.core.prims.RigidPrimView):
masses = view.get_masses()
dist_params = np.asarray(self._sanitize_distribution_parameters(attribute=f"{view.name} mass", dimension=1, params=distribution_parameters))
noise = self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device)
set_masses = view.set_masses
if operation == "additive":
masses += noise
elif operation == "scaling":
masses *= noise
elif operation == "direct":
masses = noise
else:
print(f"The specified {operation} operation type is not supported.")
set_masses(masses)
def randomize_density_on_startup(self, view, distribution, distribution_parameters, operation):
if isinstance(view, omni.isaac.core.prims.RigidPrimView):
densities = view.get_densities()
dist_params = np.asarray(self._sanitize_distribution_parameters(attribute=f"{view.name} density", dimension=1, params=distribution_parameters))
noise = self._generate_noise(distribution, dist_params.squeeze(), (view.count,), view._device)
set_densities = view.set_densities
if operation == "additive":
densities += noise
elif operation == "scaling":
densities *= noise
elif operation == "direct":
densities = noise
else:
print(f"The specified {operation} operation type is not supported.")
set_densities(densities)
| 41,504 | Python | 70.683938 | 257 | 0.602593 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/utils/rlgames/rlgames_utils.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from rl_games.common import env_configurations, vecenv
from rl_games.common.algo_observer import AlgoObserver
from rl_games.algos_torch import torch_ext
import torch
import numpy as np
from typing import Callable
class RLGPUAlgoObserver(AlgoObserver):
"""Allows us to log stats from the env along with the algorithm running stats. """
def __init__(self):
pass
def after_init(self, algo):
self.algo = algo
self.mean_scores = torch_ext.AverageMeter(1, self.algo.games_to_track).to(self.algo.ppo_device)
self.ep_infos = []
self.direct_info = {}
self.writer = self.algo.writer
def process_infos(self, infos, done_indices):
assert isinstance(infos, dict), "RLGPUAlgoObserver expects dict info"
if isinstance(infos, dict):
if 'episode' in infos:
self.ep_infos.append(infos['episode'])
if len(infos) > 0 and isinstance(infos, dict): # allow direct logging from env
self.direct_info = {}
for k, v in infos.items():
# only log scalars
if isinstance(v, float) or isinstance(v, int) or (isinstance(v, torch.Tensor) and len(v.shape) == 0):
self.direct_info[k] = v
def after_clear_stats(self):
self.mean_scores.clear()
def after_print_stats(self, frame, epoch_num, total_time):
if self.ep_infos:
for key in self.ep_infos[0]:
infotensor = torch.tensor([], device=self.algo.device)
for ep_info in self.ep_infos:
# handle scalar and zero dimensional tensor infos
if not isinstance(ep_info[key], torch.Tensor):
ep_info[key] = torch.Tensor([ep_info[key]])
if len(ep_info[key].shape) == 0:
ep_info[key] = ep_info[key].unsqueeze(0)
infotensor = torch.cat((infotensor, ep_info[key].to(self.algo.device)))
value = torch.mean(infotensor)
self.writer.add_scalar('Episode/' + key, value, epoch_num)
self.ep_infos.clear()
for k, v in self.direct_info.items():
self.writer.add_scalar(f'{k}/frame', v, frame)
self.writer.add_scalar(f'{k}/iter', v, epoch_num)
self.writer.add_scalar(f'{k}/time', v, total_time)
if self.mean_scores.current_size > 0:
mean_scores = self.mean_scores.get_mean()
self.writer.add_scalar('scores/mean', mean_scores, frame)
self.writer.add_scalar('scores/iter', mean_scores, epoch_num)
self.writer.add_scalar('scores/time', mean_scores, total_time)
class RLGPUEnv(vecenv.IVecEnv):
def __init__(self, config_name, num_actors, **kwargs):
self.env = env_configurations.configurations[config_name]['env_creator'](**kwargs)
def step(self, action):
return self.env.step(action)
def reset(self):
return self.env.reset()
def get_number_of_agents(self):
return self.env.get_number_of_agents()
def get_env_info(self):
info = {}
info['action_space'] = self.env.action_space
info['observation_space'] = self.env.observation_space
if self.env.num_states > 0:
info['state_space'] = self.env.state_space
print(info['action_space'], info['observation_space'], info['state_space'])
else:
print(info['action_space'], info['observation_space'])
return info
| 5,154 | Python | 42.319327 | 121 | 0.642608 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/utils/config_utils/sim_config.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from omniisaacgymenvs.utils.config_utils.default_scene_params import *
import copy
import omni.usd
import numpy as np
import torch
class SimConfig():
def __init__(self, config: dict = None):
if config is None:
config = dict()
self._config = config
self._cfg = config.get("task", dict())
self._parse_config()
if self._config["test"] == True:
self._sim_params["enable_scene_query_support"] = True
if self._config["headless"] == True and not self._sim_params["enable_cameras"]:
self._sim_params["use_flatcache"] = False
self._sim_params["enable_viewport"] = False
def _parse_config(self):
# general sim parameter
self._sim_params = copy.deepcopy(default_sim_params)
self._default_physics_material = copy.deepcopy(default_physics_material)
sim_cfg = self._cfg.get("sim", None)
if sim_cfg is not None:
for opt in sim_cfg.keys():
if opt in self._sim_params:
if opt == "default_physics_material":
for material_opt in sim_cfg[opt]:
self._default_physics_material[material_opt] = sim_cfg[opt][material_opt]
else:
self._sim_params[opt] = sim_cfg[opt]
else:
print("Sim params does not have attribute: ", opt)
self._sim_params["default_physics_material"] = self._default_physics_material
# physx parameters
self._physx_params = copy.deepcopy(default_physx_params)
if sim_cfg is not None and "physx" in sim_cfg:
for opt in sim_cfg["physx"].keys():
if opt in self._physx_params:
self._physx_params[opt] = sim_cfg["physx"][opt]
else:
print("Physx sim params does not have attribute: ", opt)
self._sanitize_device()
def _sanitize_device(self):
if self._sim_params["use_gpu_pipeline"]:
self._physx_params["use_gpu"] = True
# device should be in sync with pipeline
if self._sim_params["use_gpu_pipeline"]:
self._config["sim_device"] = f"cuda:{self._config['device_id']}"
else:
self._config["sim_device"] = "cpu"
# also write to physics params for setting sim device
self._physx_params["sim_device"] = self._config["sim_device"]
print("Pipeline: ", "GPU" if self._sim_params["use_gpu_pipeline"] else "CPU")
print("Pipeline Device: ", self._config["sim_device"])
print("Sim Device: ", "GPU" if self._physx_params["use_gpu"] else "CPU")
def parse_actor_config(self, actor_name):
actor_params = copy.deepcopy(default_actor_options)
if "sim" in self._cfg and actor_name in self._cfg["sim"]:
actor_cfg = self._cfg["sim"][actor_name]
for opt in actor_cfg.keys():
if actor_cfg[opt] != -1 and opt in actor_params:
actor_params[opt] = actor_cfg[opt]
elif opt not in actor_params:
print("Actor params does not have attribute: ", opt)
return actor_params
def _get_actor_config_value(self, actor_name, attribute_name, attribute=None):
actor_params = self.parse_actor_config(actor_name)
if attribute is not None:
if attribute_name not in actor_params:
return attribute.Get()
if actor_params[attribute_name] != -1:
return actor_params[attribute_name]
elif actor_params["override_usd_defaults"] and not attribute.IsAuthored():
return self._physx_params[attribute_name]
else:
if actor_params[attribute_name] != -1:
return actor_params[attribute_name]
@property
def sim_params(self):
return self._sim_params
@property
def config(self):
return self._config
@property
def task_config(self):
return self._cfg
@property
def physx_params(self):
return self._physx_params
def get_physics_params(self):
return {**self.sim_params, **self.physx_params}
def _get_physx_collision_api(self, prim):
from pxr import UsdPhysics, PhysxSchema
physx_collision_api = PhysxSchema.PhysxCollisionAPI(prim)
if not physx_collision_api:
physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(prim)
return physx_collision_api
def _get_physx_rigid_body_api(self, prim):
from pxr import UsdPhysics, PhysxSchema
physx_rb_api = PhysxSchema.PhysxRigidBodyAPI(prim)
if not physx_rb_api:
physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Apply(prim)
return physx_rb_api
def _get_physx_articulation_api(self, prim):
from pxr import UsdPhysics, PhysxSchema
arti_api = PhysxSchema.PhysxArticulationAPI(prim)
if not arti_api:
arti_api = PhysxSchema.PhysxArticulationAPI.Apply(prim)
return arti_api
def set_contact_offset(self, name, prim, value=None):
physx_collision_api = self._get_physx_collision_api(prim)
contact_offset = physx_collision_api.GetContactOffsetAttr()
# if not contact_offset:
# contact_offset = physx_collision_api.CreateContactOffsetAttr()
if value is None:
value = self._get_actor_config_value(name, "contact_offset", contact_offset)
if value != -1:
contact_offset.Set(value)
def set_rest_offset(self, name, prim, value=None):
physx_collision_api = self._get_physx_collision_api(prim)
rest_offset = physx_collision_api.GetRestOffsetAttr()
# if not rest_offset:
# rest_offset = physx_collision_api.CreateRestOffsetAttr()
if value is None:
value = self._get_actor_config_value(name, "rest_offset", rest_offset)
if value != -1:
rest_offset.Set(value)
def set_position_iteration(self, name, prim, value=None):
physx_rb_api = self._get_physx_rigid_body_api(prim)
solver_position_iteration_count = physx_rb_api.GetSolverPositionIterationCountAttr()
if value is None:
value = self._get_actor_config_value(name, "solver_position_iteration_count", solver_position_iteration_count)
if value != -1:
solver_position_iteration_count.Set(value)
def set_velocity_iteration(self, name, prim, value=None):
physx_rb_api = self._get_physx_rigid_body_api(prim)
solver_velocity_iteration_count = physx_rb_api.GetSolverVelocityIterationCountAttr()
if value is None:
value = self._get_actor_config_value(name, "solver_velocity_iteration_count", solver_position_iteration_count)
if value != -1:
solver_velocity_iteration_count.Set(value)
def set_max_depenetration_velocity(self, name, prim, value=None):
physx_rb_api = self._get_physx_rigid_body_api(prim)
max_depenetration_velocity = physx_rb_api.GetMaxDepenetrationVelocityAttr()
if value is None:
value = self._get_actor_config_value(name, "max_depenetration_velocity", max_depenetration_velocity)
if value != -1:
max_depenetration_velocity.Set(value)
def set_sleep_threshold(self, name, prim, value=None):
physx_rb_api = self._get_physx_rigid_body_api(prim)
sleep_threshold = physx_rb_api.GetSleepThresholdAttr()
if value is None:
value = self._get_actor_config_value(name, "sleep_threshold", sleep_threshold)
if value != -1:
sleep_threshold.Set(value)
def set_stabilization_threshold(self, name, prim, value=None):
physx_rb_api = self._get_physx_rigid_body_api(prim)
stabilization_threshold = physx_rb_api.GetStabilizationThresholdAttr()
if value is None:
value = self._get_actor_config_value(name, "stabilization_threshold", stabilization_threshold)
if value != -1:
stabilization_threshold.Set(value)
def set_gyroscopic_forces(self, name, prim, value=None):
physx_rb_api = self._get_physx_rigid_body_api(prim)
enable_gyroscopic_forces = physx_rb_api.GetEnableGyroscopicForcesAttr()
if value is None:
value = self._get_actor_config_value(name, "enable_gyroscopic_forces", enable_gyroscopic_forces)
if value != -1:
enable_gyroscopic_forces.Set(value)
def set_density(self, name, prim, value=None):
physx_rb_api = self._get_physx_rigid_body_api(prim)
density = physx_rb_api.GetDensityAttr()
if value is None:
value = self._get_actor_config_value(name, "density", density)
if value != -1:
density.Set(value)
# auto-compute mass
self.set_mass(prim, 0.0)
def set_mass(self, name, prim, value=None):
physx_rb_api = self._get_physx_rigid_body_api(prim)
mass = physx_rb_api.GetMassAttr()
if value is None:
value = self._get_actor_config_value(name, "mass", mass)
if value != -1:
mass.Set(value)
def retain_acceleration(self, prim):
# retain accelerations if running with more than one substep
physx_rb_api = self._get_physx_rigid_body_api(prim)
if self._sim_params["substeps"] > 1:
physx_rb_api.GetRetainAccelerationsAttr().Set(True)
def add_fixed_base(self, name, prim, cfg, value=None):
from pxr import UsdPhysics, PhysxSchema
stage = omni.usd.get_context().get_stage()
if value is None:
value = self._get_actor_config_value(name, "fixed_base")
if value:
root_joint_path = f"{prim.GetPath()}_fixedBaseRootJoint"
joint = UsdPhysics.Joint.Define(stage, root_joint_path)
joint.CreateBody1Rel().SetTargets([prim.GetPath()])
self.apply_articulation_settings(name, joint.GetPrim(), cfg, force_articulation=True)
def set_articulation_position_iteration(self, name, prim, value=None):
arti_api = self._get_physx_articulation_api(prim)
solver_position_iteration_count = arti_api.GetSolverPositionIterationCountAttr()
if value is None:
value = self._get_actor_config_value(name, "solver_position_iteration_count", solver_position_iteration_count)
if value != -1:
solver_position_iteration_count.Set(value)
def set_articulation_velocity_iteration(self, name, prim, value=None):
arti_api = self._get_physx_articulation_api(prim)
solver_velocity_iteration_count = arti_api.GetSolverVelocityIterationCountAttr()
if value is None:
value = self._get_actor_config_value(name, "solver_velocity_iteration_count", solver_position_iteration_count)
if value != -1:
solver_velocity_iteration_count.Set(value)
def set_articulation_sleep_threshold(self, name, prim, value=None):
arti_api = self._get_physx_articulation_api(prim)
sleep_threshold = arti_api.GetSleepThresholdAttr()
if value is None:
value = self._get_actor_config_value(name, "sleep_threshold", sleep_threshold)
if value != -1:
sleep_threshold.Set(value)
def set_articulation_stabilization_threshold(self, name, prim, value=None):
arti_api = self._get_physx_articulation_api(prim)
stabilization_threshold = arti_api.GetStabilizationThresholdAttr()
if value is None:
value = self._get_actor_config_value(name, "stabilization_threshold", stabilization_threshold)
if value != -1:
stabilization_threshold.Set(value)
def apply_rigid_body_settings(self, name, prim, cfg, is_articulation):
from pxr import UsdPhysics, PhysxSchema
stage = omni.usd.get_context().get_stage()
rb_api = UsdPhysics.RigidBodyAPI.Get(stage, prim.GetPath())
physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Get(stage, prim.GetPath())
if not physx_rb_api:
physx_rb_api = PhysxSchema.PhysxRigidBodyAPI.Apply(prim)
# if it's a body in an articulation, it's handled at articulation root
if not is_articulation:
self.add_fixed_base(name, prim, cfg, cfg["fixed_base"])
self.set_position_iteration(name, prim, cfg["solver_position_iteration_count"])
self.set_velocity_iteration(name, prim, cfg["solver_velocity_iteration_count"])
self.set_max_depenetration_velocity(name, prim, cfg["max_depenetration_velocity"])
self.set_sleep_threshold(name, prim, cfg["sleep_threshold"])
self.set_stabilization_threshold(name, prim, cfg["stabilization_threshold"])
self.set_gyroscopic_forces(name, prim, cfg["enable_gyroscopic_forces"])
# density and mass
mass_api = UsdPhysics.MassAPI.Get(stage, prim.GetPath())
if mass_api is None:
mass_api = UsdPhysics.MassAPI.Apply(prim)
mass_attr = mass_api.GetMassAttr()
density_attr = mass_api.GetDensityAttr()
if not mass_attr:
mass_attr = mass_api.CreateMassAttr()
if not density_attr:
density_attr = mass_api.CreateDensityAttr()
if cfg["density"] != -1:
density_attr.Set(cfg["density"])
mass_attr.Set(0.0) # mass is to be computed
elif cfg["override_usd_defaults"] and not density_attr.IsAuthored() and not mass_attr.IsAuthored():
density_attr.Set(self._physx_params["density"])
self.retain_acceleration(prim)
def apply_rigid_shape_settings(self, name, prim, cfg):
from pxr import UsdPhysics, PhysxSchema
stage = omni.usd.get_context().get_stage()
# collision APIs
collision_api = UsdPhysics.CollisionAPI(prim)
if not collision_api:
collision_api = UsdPhysics.CollisionAPI.Apply(prim)
physx_collision_api = PhysxSchema.PhysxCollisionAPI(prim)
if not physx_collision_api:
physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(prim)
self.set_contact_offset(name, prim, cfg["contact_offset"])
self.set_rest_offset(name, prim, cfg["rest_offset"])
def apply_articulation_settings(self, name, prim, cfg, force_articulation=False):
from pxr import UsdPhysics, PhysxSchema
stage = omni.usd.get_context().get_stage()
is_articulation = False
# check if is articulation
prims = [prim]
while len(prims) > 0:
prim = prims.pop(0)
articulation_api = UsdPhysics.ArticulationRootAPI.Get(stage, prim.GetPath())
physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Get(stage, prim.GetPath())
if articulation_api or physx_articulation_api:
is_articulation = True
if not is_articulation and force_articulation:
articulation_api = UsdPhysics.ArticulationRootAPI.Apply(prim)
physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Apply(prim)
# parse through all children prims
prims = [prim]
while len(prims) > 0:
prim = prims.pop(0)
rb = UsdPhysics.RigidBodyAPI(prim)
collision_body = UsdPhysics.CollisionAPI(prim)
articulation = UsdPhysics.ArticulationRootAPI(prim)
if rb:
self.apply_rigid_body_settings(name, prim, cfg, is_articulation)
if collision_body:
self.apply_rigid_shape_settings(name, prim, cfg)
if articulation:
articulation_api = UsdPhysics.ArticulationRootAPI.Get(stage, prim.GetPath())
physx_articulation_api = PhysxSchema.PhysxArticulationAPI.Get(stage, prim.GetPath())
# enable self collisions
enable_self_collisions = physx_articulation_api.GetEnabledSelfCollisionsAttr()
if cfg["enable_self_collisions"] != -1:
enable_self_collisions.Set(cfg["enable_self_collisions"])
if not force_articulation:
self.add_fixed_base(name, prim, cfg, cfg["fixed_base"])
self.set_articulation_position_iteration(name, prim, cfg["solver_position_iteration_count"])
self.set_articulation_velocity_iteration(name, prim, cfg["solver_velocity_iteration_count"])
self.set_articulation_sleep_threshold(name, prim, cfg["sleep_threshold"])
self.set_articulation_stabilization_threshold(name, prim, cfg["stabilization_threshold"])
children_prims = prim.GetPrim().GetChildren()
prims = prims + children_prims
| 18,299 | Python | 44.29703 | 122 | 0.639816 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/utils/config_utils/default_scene_params.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
default_physx_params = {
### Per-scene settings
"use_gpu": False,
"worker_thread_count": 4,
"solver_type": 1, # 0: PGS, 1:TGS
"bounce_threshold_velocity": 0.2,
"friction_offset_threshold": 0.04, # A threshold of contact separation distance used to decide if a contact
# point will experience friction forces.
"friction_correlation_distance": 0.025, # Contact points can be merged into a single friction anchor if the
# distance between the contacts is smaller than correlation distance.
# disabling these can be useful for debugging
"enable_sleeping": True,
"enable_stabilization": True,
# GPU buffers
"gpu_max_rigid_contact_count": 512 * 1024,
"gpu_max_rigid_patch_count": 80 * 1024,
"gpu_found_lost_pairs_capacity": 1024,
"gpu_found_lost_aggregate_pairs_capacity": 1024,
"gpu_total_aggregate_pairs_capacity": 1024,
"gpu_max_soft_body_contacts": 1024 * 1024,
"gpu_max_particle_contacts": 1024 * 1024,
"gpu_heap_capacity": 64 * 1024 * 1024,
"gpu_temp_buffer_capacity": 16 * 1024 * 1024,
"gpu_max_num_partitions": 8,
### Per-actor settings ( can override in actor_options )
"solver_position_iteration_count": 4,
"solver_velocity_iteration_count": 1,
"sleep_threshold": 0.0, # Mass-normalized kinetic energy threshold below which an actor may go to sleep.
# Allowed range [0, max_float).
"stabilization_threshold": 0.0, # Mass-normalized kinetic energy threshold below which an actor may
# participate in stabilization. Allowed range [0, max_float).
### Per-body settings ( can override in actor_options )
"enable_gyroscopic_forces": False,
"density": 1000.0, # density to be used for bodies that do not specify mass or density
"max_depenetration_velocity": 100.0,
### Per-shape settings ( can override in actor_options )
"contact_offset": 0.02,
"rest_offset": 0.001
}
default_physics_material = {
"static_friction": 1.0,
"dynamic_friction": 1.0,
"restitution": 0.0
}
default_sim_params = {
"gravity": [0.0, 0.0, -9.81],
"dt": 1.0 / 60.0,
"substeps": 1,
"use_gpu_pipeline": True,
"add_ground_plane": True,
"add_distant_light": True,
"use_flatcache": True,
"enable_scene_query_support": False,
"enable_cameras": False,
"default_physics_material": default_physics_material
}
default_actor_options = {
# -1 means use authored value from USD or default values from default_sim_params if not explicitly authored in USD.
# If an attribute value is not explicitly authored in USD, add one with the value given here,
# which overrides the USD default.
"override_usd_defaults": False,
"fixed_base": -1,
"enable_self_collisions": -1,
"enable_gyroscopic_forces": -1,
"solver_position_iteration_count": -1,
"solver_velocity_iteration_count": -1,
"sleep_threshold": -1,
"stabilization_threshold": -1,
"max_depenetration_velocity": -1,
"density": -1,
"mass": -1,
"contact_offset": -1,
"rest_offset": -1
}
| 4,758 | Python | 41.115044 | 119 | 0.683901 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/utils/config_utils/path_utils.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import carb
from hydra.utils import to_absolute_path
import os
def is_valid_local_file(path):
return os.path.isfile(path)
def is_valid_ov_file(path):
import omni.client
result, entry = omni.client.stat(path)
return result == omni.client.Result.OK
def download_ov_file(source_path, target_path):
import omni.client
result = omni.client.copy(source_path, target_path)
if result == omni.client.Result.OK:
return True
return False
def break_ov_path(path):
import omni.client
return omni.client.break_url(path)
def retrieve_checkpoint_path(path):
# check if it's a local path
if is_valid_local_file(path):
return to_absolute_path(path)
# check if it's an OV path
elif is_valid_ov_file(path):
ov_path = break_ov_path(path)
file_name = os.path.basename(ov_path.path)
target_path = f"checkpoints/{file_name}"
copy_to_local = download_ov_file(path, target_path)
return to_absolute_path(target_path)
else:
carb.log_error(f"Invalid checkpoint path: {path}")
return None | 2,656 | Python | 38.656716 | 80 | 0.735693 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/utils/hydra_cfg/hydra_utils.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import hydra
from omegaconf import DictConfig, OmegaConf
## OmegaConf & Hydra Config
# Resolvers used in hydra configs (see https://omegaconf.readthedocs.io/en/2.1_branch/usage.html#resolvers)
OmegaConf.register_new_resolver('eq', lambda x, y: x.lower()==y.lower())
OmegaConf.register_new_resolver('contains', lambda x, y: x.lower() in y.lower())
OmegaConf.register_new_resolver('if', lambda pred, a, b: a if pred else b)
# allows us to resolve default arguments which are copied in multiple places in the config. used primarily for
# num_ensv
OmegaConf.register_new_resolver('resolve_default', lambda default, arg: default if arg=='' else arg)
| 2,207 | Python | 51.571427 | 110 | 0.775714 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/utils/hydra_cfg/reformat.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from omegaconf import DictConfig, OmegaConf
from typing import Dict
def omegaconf_to_dict(d: DictConfig)->Dict:
"""Converts an omegaconf DictConfig to a python Dict, respecting variable interpolation."""
ret = {}
for k, v in d.items():
if isinstance(v, DictConfig):
ret[k] = omegaconf_to_dict(v)
else:
ret[k] = v
return ret
def print_dict(val, nesting: int = -4, start: bool = True):
"""Outputs a nested dictionory."""
if type(val) == dict:
if not start:
print('')
nesting += 4
for k in val:
print(nesting * ' ', end='')
print(k, end=': ')
print_dict(val[k], nesting, start=False)
else:
print(val) | 2,307 | Python | 41.74074 | 95 | 0.70958 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/utils/terrain_utils/terrain_utils.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
from numpy.random import choice
from scipy import interpolate
from math import sqrt
from omni.isaac.core.prims import XFormPrim
from pxr import UsdPhysics, Sdf, Gf, PhysxSchema
def random_uniform_terrain(terrain, min_height, max_height, step=1, downsampled_scale=None,):
"""
Generate a uniform noise terrain
Parameters
terrain (SubTerrain): the terrain
min_height (float): the minimum height of the terrain [meters]
max_height (float): the maximum height of the terrain [meters]
step (float): minimum height change between two points [meters]
downsampled_scale (float): distance between two randomly sampled points ( musty be larger or equal to terrain.horizontal_scale)
"""
if downsampled_scale is None:
downsampled_scale = terrain.horizontal_scale
# switch parameters to discrete units
min_height = int(min_height / terrain.vertical_scale)
max_height = int(max_height / terrain.vertical_scale)
step = int(step / terrain.vertical_scale)
heights_range = np.arange(min_height, max_height + step, step)
height_field_downsampled = np.random.choice(heights_range, (int(terrain.width * terrain.horizontal_scale / downsampled_scale), int(
terrain.length * terrain.horizontal_scale / downsampled_scale)))
x = np.linspace(0, terrain.width * terrain.horizontal_scale, height_field_downsampled.shape[0])
y = np.linspace(0, terrain.length * terrain.horizontal_scale, height_field_downsampled.shape[1])
f = interpolate.interp2d(y, x, height_field_downsampled, kind='linear')
x_upsampled = np.linspace(0, terrain.width * terrain.horizontal_scale, terrain.width)
y_upsampled = np.linspace(0, terrain.length * terrain.horizontal_scale, terrain.length)
z_upsampled = np.rint(f(y_upsampled, x_upsampled))
terrain.height_field_raw += z_upsampled.astype(np.int16)
return terrain
def sloped_terrain(terrain, slope=1):
"""
Generate a sloped terrain
Parameters:
terrain (SubTerrain): the terrain
slope (int): positive or negative slope
Returns:
terrain (SubTerrain): update terrain
"""
x = np.arange(0, terrain.width)
y = np.arange(0, terrain.length)
xx, yy = np.meshgrid(x, y, sparse=True)
xx = xx.reshape(terrain.width, 1)
max_height = int(slope * (terrain.horizontal_scale / terrain.vertical_scale) * terrain.width)
terrain.height_field_raw[:, np.arange(terrain.length)] += (max_height * xx / terrain.width).astype(terrain.height_field_raw.dtype)
return terrain
def pyramid_sloped_terrain(terrain, slope=1, platform_size=1.):
"""
Generate a sloped terrain
Parameters:
terrain (terrain): the terrain
slope (int): positive or negative slope
platform_size (float): size of the flat platform at the center of the terrain [meters]
Returns:
terrain (SubTerrain): update terrain
"""
x = np.arange(0, terrain.width)
y = np.arange(0, terrain.length)
center_x = int(terrain.width / 2)
center_y = int(terrain.length / 2)
xx, yy = np.meshgrid(x, y, sparse=True)
xx = (center_x - np.abs(center_x-xx)) / center_x
yy = (center_y - np.abs(center_y-yy)) / center_y
xx = xx.reshape(terrain.width, 1)
yy = yy.reshape(1, terrain.length)
max_height = int(slope * (terrain.horizontal_scale / terrain.vertical_scale) * (terrain.width / 2))
terrain.height_field_raw += (max_height * xx * yy).astype(terrain.height_field_raw.dtype)
platform_size = int(platform_size / terrain.horizontal_scale / 2)
x1 = terrain.width // 2 - platform_size
x2 = terrain.width // 2 + platform_size
y1 = terrain.length // 2 - platform_size
y2 = terrain.length // 2 + platform_size
min_h = min(terrain.height_field_raw[x1, y1], 0)
max_h = max(terrain.height_field_raw[x1, y1], 0)
terrain.height_field_raw = np.clip(terrain.height_field_raw, min_h, max_h)
return terrain
def discrete_obstacles_terrain(terrain, max_height, min_size, max_size, num_rects, platform_size=1.):
"""
Generate a terrain with gaps
Parameters:
terrain (terrain): the terrain
max_height (float): maximum height of the obstacles (range=[-max, -max/2, max/2, max]) [meters]
min_size (float): minimum size of a rectangle obstacle [meters]
max_size (float): maximum size of a rectangle obstacle [meters]
num_rects (int): number of randomly generated obstacles
platform_size (float): size of the flat platform at the center of the terrain [meters]
Returns:
terrain (SubTerrain): update terrain
"""
# switch parameters to discrete units
max_height = int(max_height / terrain.vertical_scale)
min_size = int(min_size / terrain.horizontal_scale)
max_size = int(max_size / terrain.horizontal_scale)
platform_size = int(platform_size / terrain.horizontal_scale)
(i, j) = terrain.height_field_raw.shape
height_range = [-max_height, -max_height // 2, max_height // 2, max_height]
width_range = range(min_size, max_size, 4)
length_range = range(min_size, max_size, 4)
for _ in range(num_rects):
width = np.random.choice(width_range)
length = np.random.choice(length_range)
start_i = np.random.choice(range(0, i-width, 4))
start_j = np.random.choice(range(0, j-length, 4))
terrain.height_field_raw[start_i:start_i+width, start_j:start_j+length] = np.random.choice(height_range)
x1 = (terrain.width - platform_size) // 2
x2 = (terrain.width + platform_size) // 2
y1 = (terrain.length - platform_size) // 2
y2 = (terrain.length + platform_size) // 2
terrain.height_field_raw[x1:x2, y1:y2] = 0
return terrain
def wave_terrain(terrain, num_waves=1, amplitude=1.):
"""
Generate a wavy terrain
Parameters:
terrain (terrain): the terrain
num_waves (int): number of sine waves across the terrain length
Returns:
terrain (SubTerrain): update terrain
"""
amplitude = int(0.5*amplitude / terrain.vertical_scale)
if num_waves > 0:
div = terrain.length / (num_waves * np.pi * 2)
x = np.arange(0, terrain.width)
y = np.arange(0, terrain.length)
xx, yy = np.meshgrid(x, y, sparse=True)
xx = xx.reshape(terrain.width, 1)
yy = yy.reshape(1, terrain.length)
terrain.height_field_raw += (amplitude*np.cos(yy / div) + amplitude*np.sin(xx / div)).astype(
terrain.height_field_raw.dtype)
return terrain
def stairs_terrain(terrain, step_width, step_height):
"""
Generate a stairs
Parameters:
terrain (terrain): the terrain
step_width (float): the width of the step [meters]
step_height (float): the height of the step [meters]
Returns:
terrain (SubTerrain): update terrain
"""
# switch parameters to discrete units
step_width = int(step_width / terrain.horizontal_scale)
step_height = int(step_height / terrain.vertical_scale)
num_steps = terrain.width // step_width
height = step_height
for i in range(num_steps):
terrain.height_field_raw[i * step_width: (i + 1) * step_width, :] += height
height += step_height
return terrain
def pyramid_stairs_terrain(terrain, step_width, step_height, platform_size=1.):
"""
Generate stairs
Parameters:
terrain (terrain): the terrain
step_width (float): the width of the step [meters]
step_height (float): the step_height [meters]
platform_size (float): size of the flat platform at the center of the terrain [meters]
Returns:
terrain (SubTerrain): update terrain
"""
# switch parameters to discrete units
step_width = int(step_width / terrain.horizontal_scale)
step_height = int(step_height / terrain.vertical_scale)
platform_size = int(platform_size / terrain.horizontal_scale)
height = 0
start_x = 0
stop_x = terrain.width
start_y = 0
stop_y = terrain.length
while (stop_x - start_x) > platform_size and (stop_y - start_y) > platform_size:
start_x += step_width
stop_x -= step_width
start_y += step_width
stop_y -= step_width
height += step_height
terrain.height_field_raw[start_x: stop_x, start_y: stop_y] = height
return terrain
def stepping_stones_terrain(terrain, stone_size, stone_distance, max_height, platform_size=1., depth=-10):
"""
Generate a stepping stones terrain
Parameters:
terrain (terrain): the terrain
stone_size (float): horizontal size of the stepping stones [meters]
stone_distance (float): distance between stones (i.e size of the holes) [meters]
max_height (float): maximum height of the stones (positive and negative) [meters]
platform_size (float): size of the flat platform at the center of the terrain [meters]
depth (float): depth of the holes (default=-10.) [meters]
Returns:
terrain (SubTerrain): update terrain
"""
# switch parameters to discrete units
stone_size = int(stone_size / terrain.horizontal_scale)
stone_distance = int(stone_distance / terrain.horizontal_scale)
max_height = int(max_height / terrain.vertical_scale)
platform_size = int(platform_size / terrain.horizontal_scale)
height_range = np.arange(-max_height-1, max_height, step=1)
start_x = 0
start_y = 0
terrain.height_field_raw[:, :] = int(depth / terrain.vertical_scale)
if terrain.length >= terrain.width:
while start_y < terrain.length:
stop_y = min(terrain.length, start_y + stone_size)
start_x = np.random.randint(0, stone_size)
# fill first hole
stop_x = max(0, start_x - stone_distance)
terrain.height_field_raw[0: stop_x, start_y: stop_y] = np.random.choice(height_range)
# fill row
while start_x < terrain.width:
stop_x = min(terrain.width, start_x + stone_size)
terrain.height_field_raw[start_x: stop_x, start_y: stop_y] = np.random.choice(height_range)
start_x += stone_size + stone_distance
start_y += stone_size + stone_distance
elif terrain.width > terrain.length:
while start_x < terrain.width:
stop_x = min(terrain.width, start_x + stone_size)
start_y = np.random.randint(0, stone_size)
# fill first hole
stop_y = max(0, start_y - stone_distance)
terrain.height_field_raw[start_x: stop_x, 0: stop_y] = np.random.choice(height_range)
# fill column
while start_y < terrain.length:
stop_y = min(terrain.length, start_y + stone_size)
terrain.height_field_raw[start_x: stop_x, start_y: stop_y] = np.random.choice(height_range)
start_y += stone_size + stone_distance
start_x += stone_size + stone_distance
x1 = (terrain.width - platform_size) // 2
x2 = (terrain.width + platform_size) // 2
y1 = (terrain.length - platform_size) // 2
y2 = (terrain.length + platform_size) // 2
terrain.height_field_raw[x1:x2, y1:y2] = 0
return terrain
def convert_heightfield_to_trimesh(height_field_raw, horizontal_scale, vertical_scale, slope_threshold=None):
"""
Convert a heightfield array to a triangle mesh represented by vertices and triangles.
Optionally, corrects vertical surfaces above the provide slope threshold:
If (y2-y1)/(x2-x1) > slope_threshold -> Move A to A' (set x1 = x2). Do this for all directions.
B(x2,y2)
/|
/ |
/ |
(x1,y1)A---A'(x2',y1)
Parameters:
height_field_raw (np.array): input heightfield
horizontal_scale (float): horizontal scale of the heightfield [meters]
vertical_scale (float): vertical scale of the heightfield [meters]
slope_threshold (float): the slope threshold above which surfaces are made vertical. If None no correction is applied (default: None)
Returns:
vertices (np.array(float)): array of shape (num_vertices, 3). Each row represents the location of each vertex [meters]
triangles (np.array(int)): array of shape (num_triangles, 3). Each row represents the indices of the 3 vertices connected by this triangle.
"""
hf = height_field_raw
num_rows = hf.shape[0]
num_cols = hf.shape[1]
y = np.linspace(0, (num_cols-1)*horizontal_scale, num_cols)
x = np.linspace(0, (num_rows-1)*horizontal_scale, num_rows)
yy, xx = np.meshgrid(y, x)
if slope_threshold is not None:
slope_threshold *= horizontal_scale / vertical_scale
move_x = np.zeros((num_rows, num_cols))
move_y = np.zeros((num_rows, num_cols))
move_corners = np.zeros((num_rows, num_cols))
move_x[:num_rows-1, :] += (hf[1:num_rows, :] - hf[:num_rows-1, :] > slope_threshold)
move_x[1:num_rows, :] -= (hf[:num_rows-1, :] - hf[1:num_rows, :] > slope_threshold)
move_y[:, :num_cols-1] += (hf[:, 1:num_cols] - hf[:, :num_cols-1] > slope_threshold)
move_y[:, 1:num_cols] -= (hf[:, :num_cols-1] - hf[:, 1:num_cols] > slope_threshold)
move_corners[:num_rows-1, :num_cols-1] += (hf[1:num_rows, 1:num_cols] - hf[:num_rows-1, :num_cols-1] > slope_threshold)
move_corners[1:num_rows, 1:num_cols] -= (hf[:num_rows-1, :num_cols-1] - hf[1:num_rows, 1:num_cols] > slope_threshold)
xx += (move_x + move_corners*(move_x == 0)) * horizontal_scale
yy += (move_y + move_corners*(move_y == 0)) * horizontal_scale
# create triangle mesh vertices and triangles from the heightfield grid
vertices = np.zeros((num_rows*num_cols, 3), dtype=np.float32)
vertices[:, 0] = xx.flatten()
vertices[:, 1] = yy.flatten()
vertices[:, 2] = hf.flatten() * vertical_scale
triangles = -np.ones((2*(num_rows-1)*(num_cols-1), 3), dtype=np.uint32)
for i in range(num_rows - 1):
ind0 = np.arange(0, num_cols-1) + i*num_cols
ind1 = ind0 + 1
ind2 = ind0 + num_cols
ind3 = ind2 + 1
start = 2*i*(num_cols-1)
stop = start + 2*(num_cols-1)
triangles[start:stop:2, 0] = ind0
triangles[start:stop:2, 1] = ind3
triangles[start:stop:2, 2] = ind1
triangles[start+1:stop:2, 0] = ind0
triangles[start+1:stop:2, 1] = ind2
triangles[start+1:stop:2, 2] = ind3
return vertices, triangles
def add_terrain_to_stage(stage, vertices, triangles, position=None, orientation=None):
num_faces = triangles.shape[0]
terrain_mesh = stage.DefinePrim("/World/terrain", "Mesh")
terrain_mesh.GetAttribute("points").Set(vertices)
terrain_mesh.GetAttribute("faceVertexIndices").Set(triangles.flatten())
terrain_mesh.GetAttribute("faceVertexCounts").Set(np.asarray([3]*num_faces))
terrain = XFormPrim(prim_path="/World/terrain",
name="terrain",
position=position,
orientation=orientation)
UsdPhysics.CollisionAPI.Apply(terrain.prim)
# collision_api = UsdPhysics.MeshCollisionAPI.Apply(terrain.prim)
# collision_api.CreateApproximationAttr().Set("meshSimplification")
physx_collision_api = PhysxSchema.PhysxCollisionAPI.Apply(terrain.prim)
physx_collision_api.GetContactOffsetAttr().Set(0.02)
physx_collision_api.GetRestOffsetAttr().Set(0.00)
class SubTerrain:
def __init__(self, terrain_name="terrain", width=256, length=256, vertical_scale=1.0, horizontal_scale=1.0):
self.terrain_name = terrain_name
self.vertical_scale = vertical_scale
self.horizontal_scale = horizontal_scale
self.width = width
self.length = length
self.height_field_raw = np.zeros((self.width, self.length), dtype=np.int16)
| 17,478 | Python | 42.917085 | 147 | 0.655166 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/utils/terrain_utils/create_terrain_demo.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os, sys
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(SCRIPT_DIR)
import omni
from omni.isaac.kit import SimulationApp
import numpy as np
import torch
simulation_app = SimulationApp({"headless": False})
from abc import abstractmethod
from omni.isaac.core.tasks import BaseTask
from omni.isaac.core.prims import RigidPrimView, RigidPrim, XFormPrim
from omni.isaac.core import World
from omni.isaac.core.objects import DynamicSphere
from omni.isaac.core.utils.prims import define_prim, get_prim_at_path
from omni.isaac.core.utils.nucleus import find_nucleus_server
from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage
from omni.isaac.core.materials import PreviewSurface
from omni.isaac.cloner import GridCloner
from pxr import UsdPhysics, UsdLux, UsdShade, Sdf, Gf, UsdGeom, PhysxSchema
from terrain_utils import *
class TerrainCreation(BaseTask):
def __init__(self, name, num_envs, num_per_row, env_spacing, config=None, offset=None,) -> None:
BaseTask.__init__(self, name=name, offset=offset)
self._num_envs = num_envs
self._num_per_row = num_per_row
self._env_spacing = env_spacing
self._device = "cpu"
self._cloner = GridCloner(self._env_spacing, self._num_per_row)
self._cloner.define_base_env(self.default_base_env_path)
define_prim(self.default_zero_env_path)
@property
def default_base_env_path(self):
return "/World/envs"
@property
def default_zero_env_path(self):
return f"{self.default_base_env_path}/env_0"
def set_up_scene(self, scene) -> None:
self._stage = get_current_stage()
distantLight = UsdLux.DistantLight.Define(self._stage, Sdf.Path("/World/DistantLight"))
distantLight.CreateIntensityAttr(2000)
self.get_terrain()
self.get_ball()
super().set_up_scene(scene)
prim_paths = self._cloner.generate_paths("/World/envs/env", self._num_envs)
print(f"cloning {self._num_envs} environments...")
self._env_pos = self._cloner.clone(
source_prim_path="/World/envs/env_0",
prim_paths=prim_paths
)
return
def get_terrain(self):
# create all available terrain types
num_terains = 8
terrain_width = 12.
terrain_length = 12.
horizontal_scale = 0.25 # [m]
vertical_scale = 0.005 # [m]
num_rows = int(terrain_width/horizontal_scale)
num_cols = int(terrain_length/horizontal_scale)
heightfield = np.zeros((num_terains*num_rows, num_cols), dtype=np.int16)
def new_sub_terrain():
return SubTerrain(width=num_rows, length=num_cols, vertical_scale=vertical_scale, horizontal_scale=horizontal_scale)
heightfield[0:num_rows, :] = random_uniform_terrain(new_sub_terrain(), min_height=-0.2, max_height=0.2, step=0.2, downsampled_scale=0.5).height_field_raw
heightfield[num_rows:2*num_rows, :] = sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw
heightfield[2*num_rows:3*num_rows, :] = pyramid_sloped_terrain(new_sub_terrain(), slope=-0.5).height_field_raw
heightfield[3*num_rows:4*num_rows, :] = discrete_obstacles_terrain(new_sub_terrain(), max_height=0.5, min_size=1., max_size=5., num_rects=20).height_field_raw
heightfield[4*num_rows:5*num_rows, :] = wave_terrain(new_sub_terrain(), num_waves=2., amplitude=1.).height_field_raw
heightfield[5*num_rows:6*num_rows, :] = stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw
heightfield[6*num_rows:7*num_rows, :] = pyramid_stairs_terrain(new_sub_terrain(), step_width=0.75, step_height=-0.5).height_field_raw
heightfield[7*num_rows:8*num_rows, :] = stepping_stones_terrain(new_sub_terrain(), stone_size=1.,
stone_distance=1., max_height=0.5, platform_size=0.).height_field_raw
vertices, triangles = convert_heightfield_to_trimesh(heightfield, horizontal_scale=horizontal_scale, vertical_scale=vertical_scale, slope_threshold=1.5)
position = np.array([-6.0, 48.0, 0])
orientation = np.array([0.70711, 0.0, 0.0, -0.70711])
add_terrain_to_stage(stage=self._stage, vertices=vertices, triangles=triangles, position=position, orientation=orientation)
def get_ball(self):
ball = DynamicSphere(prim_path=self.default_zero_env_path + "/ball",
name="ball",
translation=np.array([0.0, 0.0, 1.0]),
mass=0.5,
radius=0.2,)
def post_reset(self):
for i in range(self._num_envs):
ball_prim = self._stage.GetPrimAtPath(f"{self.default_base_env_path}/env_{i}/ball")
color = 0.5 + 0.5 * np.random.random(3)
visual_material = PreviewSurface(prim_path=f"{self.default_base_env_path}/env_{i}/ball/Looks/visual_material", color=color)
binding_api = UsdShade.MaterialBindingAPI(ball_prim)
binding_api.Bind(visual_material.material, bindingStrength=UsdShade.Tokens.strongerThanDescendants)
def get_observations(self):
pass
def calculate_metrics(self) -> None:
pass
def is_done(self) -> None:
pass
if __name__ == "__main__":
world = World(
stage_units_in_meters=1.0,
rendering_dt=1.0/60.0,
backend="torch",
device="cpu",
)
num_envs = 800
num_per_row = 80
env_spacing = 0.56*2
terrain_creation_task = TerrainCreation(name="TerrainCreation",
num_envs=num_envs,
num_per_row=num_per_row,
env_spacing=env_spacing,
)
world.add_task(terrain_creation_task)
world.reset()
while simulation_app.is_running():
if world.is_playing():
if world.current_time_step_index == 0:
world.reset(soft=True)
world.step(render=True)
else:
world.step(render=True)
simulation_app.close() | 7,869 | Python | 43.213483 | 166 | 0.650654 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/utils/usd_utils/create_instanceable_assets.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import omni.usd
import omni.client
from pxr import UsdGeom, Sdf
def update_reference(source_prim_path, source_reference_path, target_reference_path):
stage = omni.usd.get_context().get_stage()
prims = [stage.GetPrimAtPath(source_prim_path)]
while len(prims) > 0:
prim = prims.pop(0)
prim_spec = stage.GetRootLayer().GetPrimAtPath(prim.GetPath())
reference_list = prim_spec.referenceList
refs = reference_list.GetAddedOrExplicitItems()
if len(refs) > 0:
for ref in refs:
if ref.assetPath == source_reference_path:
prim.GetReferences().RemoveReference(ref)
prim.GetReferences().AddReference(assetPath=target_reference_path, primPath=prim.GetPath())
prims = prims + prim.GetChildren()
def create_parent_xforms(asset_usd_path, source_prim_path, save_as_path=None):
""" Adds a new UsdGeom.Xform prim for each Mesh/Geometry prim under source_prim_path.
Moves material assignment to new parent prim if any exists on the Mesh/Geometry prim.
Args:
asset_usd_path (str): USD file path for asset
source_prim_path (str): USD path of root prim
save_as_path (str): USD file path for modified USD stage. Defaults to None, will save in same file.
"""
omni.usd.get_context().open_stage(asset_usd_path)
stage = omni.usd.get_context().get_stage()
prims = [stage.GetPrimAtPath(source_prim_path)]
edits = Sdf.BatchNamespaceEdit()
while len(prims) > 0:
prim = prims.pop(0)
print(prim)
if prim.GetTypeName() in ["Mesh", "Capsule", "Sphere", "Box"]:
new_xform = UsdGeom.Xform.Define(stage, str(prim.GetPath()) + "_xform")
print(prim, new_xform)
edits.Add(Sdf.NamespaceEdit.Reparent(prim.GetPath(), new_xform.GetPath(), 0))
continue
children_prims = prim.GetChildren()
prims = prims + children_prims
stage.GetRootLayer().Apply(edits)
if save_as_path is None:
omni.usd.get_context().save_stage()
else:
omni.usd.get_context().save_as_stage(save_as_path)
def convert_asset_instanceable(asset_usd_path, source_prim_path, save_as_path=None, create_xforms=True):
""" Makes all mesh/geometry prims instanceable.
Can optionally add UsdGeom.Xform prim as parent for all mesh/geometry prims.
Makes a copy of the asset USD file, which will be used for referencing.
Updates asset file to convert all parent prims of mesh/geometry prims to reference cloned USD file.
Args:
asset_usd_path (str): USD file path for asset
source_prim_path (str): USD path of root prim
save_as_path (str): USD file path for modified USD stage. Defaults to None, will save in same file.
create_xforms (bool): Whether to add new UsdGeom.Xform prims to mesh/geometry prims.
"""
if create_xforms:
create_parent_xforms(asset_usd_path, source_prim_path, save_as_path)
asset_usd_path = save_as_path
instance_usd_path = ".".join(asset_usd_path.split(".")[:-1]) + "_meshes.usd"
omni.client.copy(asset_usd_path, instance_usd_path)
omni.usd.get_context().open_stage(asset_usd_path)
stage = omni.usd.get_context().get_stage()
prims = [stage.GetPrimAtPath(source_prim_path)]
while len(prims) > 0:
prim = prims.pop(0)
if prim:
if prim.GetTypeName() in ["Mesh", "Capsule", "Sphere", "Box"]:
parent_prim = prim.GetParent()
if parent_prim and not parent_prim.IsInstance():
parent_prim.GetReferences().AddReference(assetPath=instance_usd_path, primPath=str(parent_prim.GetPath()))
parent_prim.SetInstanceable(True)
continue
children_prims = prim.GetChildren()
prims = prims + children_prims
if save_as_path is None:
omni.usd.get_context().save_stage()
else:
omni.usd.get_context().save_as_stage(save_as_path)
| 5,639 | Python | 43.761904 | 126 | 0.675829 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/utils/usd_utils/create_instanceable_ur10.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# Copyright (c) 2022-2023, Johnson Sun
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import omni.usd
import omni.client
from pxr import UsdGeom, Sdf, UsdPhysics, UsdShade
# Note: this script should be executed in Isaac Sim `Script Editor` window
def create_ur10(asset_dir_usd_path, ur10_dir_usd_path):
# Duplicate UR10 folder
omni.client.copy(asset_dir_usd_path, ur10_dir_usd_path)
def create_ur10_mesh(asset_usd_path, ur10_mesh_usd_path):
# Create ur10_mesh.usd file
omni.client.copy(asset_usd_path, ur10_mesh_usd_path)
omni.usd.get_context().open_stage(ur10_mesh_usd_path)
stage = omni.usd.get_context().get_stage()
edits = Sdf.BatchNamespaceEdit()
# Create parent Xforms
reparent_tasks = [
# base_link
['/ur10/base_link/cylinder', 'geoms_xform'],
['/ur10/base_link/ur10_base', 'geoms_xform'],
# shoulder_link
['/ur10/shoulder_link/cylinder', 'geoms_xform'],
['/ur10/shoulder_link/cylinder_0', 'geoms_xform'],
['/ur10/shoulder_link/ur10_shoulder', 'geoms_xform'],
# upper_arm_link
['/ur10/upper_arm_link/cylinder', 'geoms_xform'],
['/ur10/upper_arm_link/cylinder_0', 'geoms_xform'],
['/ur10/upper_arm_link/cylinder_1', 'geoms_xform'],
['/ur10/upper_arm_link/ur10_upper_arm', 'geoms_xform'],
# forearm_link
['/ur10/forearm_link/cylinder', 'geoms_xform'],
['/ur10/forearm_link/cylinder_0', 'geoms_xform'],
['/ur10/forearm_link/cylinder_1', 'geoms_xform'],
['/ur10/forearm_link/ur10_forearm', 'geoms_xform'],
# wrist_1_link
['/ur10/wrist_1_link/cylinder', 'geoms_xform'],
['/ur10/wrist_1_link/cylinder_0', 'geoms_xform'],
['/ur10/wrist_1_link/ur10_wrist_1', 'geoms_xform'],
# wrist_2_link
['/ur10/wrist_2_link/cylinder', 'geoms_xform'],
['/ur10/wrist_2_link/cylinder_0', 'geoms_xform'],
['/ur10/wrist_2_link/ur10_wrist_2', 'geoms_xform'],
# wrist_3_link
['/ur10/wrist_3_link/cylinder', 'geoms_xform'],
['/ur10/wrist_3_link/ur10_wrist_3', 'geoms_xform'],
] # [prim_path, parent_xform_name]
for task in reparent_tasks:
prim_path, parent_xform_name = task
old_parent_path = '/'.join(prim_path.split('/')[:-1])
new_parent_path = f'{old_parent_path}/{parent_xform_name}'
UsdGeom.Xform.Define(stage, new_parent_path)
edits.Add(Sdf.NamespaceEdit.Reparent(prim_path, new_parent_path, -1))
stage.GetRootLayer().Apply(edits)
# Save to file
omni.usd.get_context().save_stage()
def create_ur10_instanceable(ur10_mesh_usd_path, ur10_instanceable_usd_path):
omni.client.copy(ur10_mesh_usd_path, ur10_instanceable_usd_path)
omni.usd.get_context().open_stage(ur10_instanceable_usd_path)
stage = omni.usd.get_context().get_stage()
# Set up references and instanceables
for prim in stage.Traverse():
if prim.GetTypeName() != 'Xform':
continue
# Add reference to visuals_xform, collisions_xform, geoms_xform, and make them instanceable
path = str(prim.GetPath())
if path.endswith('visuals_xform') or path.endswith('collisions_xform') or path.endswith('geoms_xform'):
ref = prim.GetReferences()
ref.ClearReferences()
ref.AddReference('./ur10_mesh.usd', path)
prim.SetInstanceable(True)
# Save to file
omni.usd.get_context().save_stage()
def create_block_indicator():
asset_usd_path = 'omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Props/Blocks/block.usd'
block_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2022.1/Isaac/Props/Blocks/block.usd'
omni.client.copy(asset_usd_path, block_usd_path)
omni.usd.get_context().open_stage(block_usd_path)
stage = omni.usd.get_context().get_stage()
edits = Sdf.BatchNamespaceEdit()
edits.Add(Sdf.NamespaceEdit.Remove('/object/object/collisions'))
stage.GetRootLayer().Apply(edits)
omni.usd.get_context().save_stage()
asset_usd_path = 'omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Props/Blocks/block_instanceable.usd'
block_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2022.1/Isaac/Props/Blocks/block_instanceable.usd'
omni.client.copy(asset_usd_path, block_usd_path)
omni.usd.get_context().open_stage(block_usd_path)
stage = omni.usd.get_context().get_stage()
edits = Sdf.BatchNamespaceEdit()
edits.Add(Sdf.NamespaceEdit.Remove('/object/object/collisions'))
stage.GetRootLayer().Apply(edits)
omni.usd.get_context().save_stage()
if __name__ == '__main__':
asset_dir_usd_path = 'omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Robots/UR10'
ur10_dir_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2022.1/Isaac/Robots/UR10'
ur10_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2022.1/Isaac/Robots/UR10/ur10.usd'
ur10_mesh_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2022.1/Isaac/Robots/UR10/ur10_mesh.usd'
ur10_instanceable_usd_path = 'omniverse://localhost/Projects/J3soon/Isaac/2022.1/Isaac/Robots/UR10/ur10_instanceable.usd'
create_ur10(asset_dir_usd_path, ur10_dir_usd_path)
create_ur10_mesh(ur10_usd_path, ur10_mesh_usd_path)
create_ur10_instanceable(ur10_mesh_usd_path, ur10_instanceable_usd_path)
create_block_indicator()
print("Done!")
| 6,907 | Python | 48.342857 | 125 | 0.691617 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/balance_bot.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
import numpy as np
import torch
from omni.isaac.core.robots.robot import Robot
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omniisaacgymenvs.tasks.utils.usd_utils import set_drive
import numpy as np
import torch
class BalanceBot(Robot):
def __init__(
self,
prim_path: str,
name: Optional[str] = "BalanceBot",
usd_path: Optional[str] = None,
translation: Optional[np.ndarray] = None,
orientation: Optional[np.ndarray] = None,
) -> None:
"""[summary]
"""
self._usd_path = usd_path
self._name = name
if self._usd_path is None:
assets_root_path = get_assets_root_path()
if assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets folder")
self._usd_path = assets_root_path + "/Isaac/Robots/BalanceBot/balance_bot.usd"
add_reference_to_stage(self._usd_path, prim_path)
super().__init__(
prim_path=prim_path,
name=name,
translation=translation,
orientation=orientation,
articulation_controller=None,
)
for j in range(3):
# set leg joint properties
joint_path = f"joints/lower_leg{j}"
set_drive(f"{self.prim_path}/{joint_path}", "angular", "position", 0, 400, 40, 1000)
| 3,045 | Python | 39.078947 | 96 | 0.69491 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/allegro_hand.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
import numpy as np
import torch
from omni.isaac.core.robots.robot import Robot
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
import carb
from pxr import Usd, UsdGeom, Sdf, Gf, PhysxSchema, UsdPhysics
class AllegroHand(Robot):
def __init__(
self,
prim_path: str,
name: Optional[str] = "allegro_hand",
usd_path: Optional[str] = None,
translation: Optional[torch.tensor] = None,
orientation: Optional[torch.tensor] = None,
) -> None:
self._usd_path = usd_path
self._name = name
if self._usd_path is None:
assets_root_path = get_assets_root_path()
if assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets folder")
self._usd_path = assets_root_path + "/Isaac/Robots/AllegroHand/allegro_hand_instanceable.usd"
self._position = torch.tensor([0.0, 0.0, 0.5]) if translation is None else translation
self._orientation = torch.tensor([0.257551, 0.283045, 0.683330, -0.621782]) if orientation is None else orientation
add_reference_to_stage(self._usd_path, prim_path)
super().__init__(
prim_path=prim_path,
name=name,
translation=self._position,
orientation=self._orientation,
articulation_controller=None,
)
def set_allegro_hand_properties(self, stage, allegro_hand_prim):
for link_prim in allegro_hand_prim.GetChildren():
if not(link_prim == stage.GetPrimAtPath("/allegro/Looks") or link_prim == stage.GetPrimAtPath("/allegro/root_joint")):
rb = PhysxSchema.PhysxRigidBodyAPI.Apply(link_prim)
rb.GetDisableGravityAttr().Set(True)
rb.GetRetainAccelerationsAttr().Set(False)
rb.GetEnableGyroscopicForcesAttr().Set(False)
rb.GetAngularDampingAttr().Set(0.01)
rb.GetMaxLinearVelocityAttr().Set(1000)
rb.GetMaxAngularVelocityAttr().Set(64/np.pi*180)
rb.GetMaxDepenetrationVelocityAttr().Set(1000)
rb.GetMaxContactImpulseAttr().Set(1e32)
def set_motor_control_mode(self, stage, allegro_hand_path):
prim = stage.GetPrimAtPath(allegro_hand_path)
self._set_joint_properties(stage, prim)
def _set_joint_properties(self, stage, prim):
if prim.HasAPI(UsdPhysics.DriveAPI):
drive = UsdPhysics.DriveAPI.Apply(prim, "angular")
drive.GetStiffnessAttr().Set(3*np.pi/180)
drive.GetDampingAttr().Set(0.1*np.pi/180)
drive.GetMaxForceAttr().Set(0.5)
revolute_joint = PhysxSchema.PhysxJointAPI.Get(stage, prim.GetPath())
revolute_joint.GetJointFrictionAttr().Set(0.01)
for child_prim in prim.GetChildren():
self._set_joint_properties(stage, child_prim) | 4,567 | Python | 45.612244 | 130 | 0.682505 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/shadow_hand.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
import numpy as np
import torch
from omni.isaac.core.robots.robot import Robot
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omniisaacgymenvs.tasks.utils.usd_utils import set_drive
import carb
from pxr import Usd, UsdGeom, Sdf, Gf, PhysxSchema, UsdPhysics
class ShadowHand(Robot):
def __init__(
self,
prim_path: str,
name: Optional[str] = "shadow_hand",
usd_path: Optional[str] = None,
translation: Optional[torch.tensor] = None,
orientation: Optional[torch.tensor] = None,
) -> None:
self._usd_path = usd_path
self._name = name
if self._usd_path is None:
assets_root_path = get_assets_root_path()
if assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets folder")
self._usd_path = assets_root_path + "/Isaac/Robots/ShadowHand/shadow_hand_instanceable.usd"
self._position = torch.tensor([0.0, 0.0, 0.5]) if translation is None else translation
self._orientation = torch.tensor([1.0, 0.0, 0.0, 0.0]) if orientation is None else orientation
add_reference_to_stage(self._usd_path, prim_path)
super().__init__(
prim_path=prim_path,
name=name,
translation=self._position,
orientation=self._orientation,
articulation_controller=None,
)
def set_shadow_hand_properties(self, stage, shadow_hand_prim):
for link_prim in shadow_hand_prim.GetChildren():
if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI):
rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath())
rb.GetDisableGravityAttr().Set(True)
rb.GetRetainAccelerationsAttr().Set(True)
def set_motor_control_mode(self, stage, shadow_hand_path):
joints_config = {
"robot0_WRJ1": {"stiffness": 5, "damping": 0.5, "max_force": 4.785},
"robot0_WRJ0": {"stiffness": 5, "damping": 0.5, "max_force": 2.175},
"robot0_FFJ3": {"stiffness": 1, "damping": 0.1, "max_force": 0.9},
"robot0_FFJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.9},
"robot0_FFJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.7245},
"robot0_MFJ3": {"stiffness": 1, "damping": 0.1, "max_force": 0.9},
"robot0_MFJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.9},
"robot0_MFJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.7245},
"robot0_RFJ3": {"stiffness": 1, "damping": 0.1, "max_force": 0.9},
"robot0_RFJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.9},
"robot0_RFJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.7245},
"robot0_LFJ4": {"stiffness": 1, "damping": 0.1, "max_force": 0.9},
"robot0_LFJ3": {"stiffness": 1, "damping": 0.1, "max_force": 0.9},
"robot0_LFJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.9},
"robot0_LFJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.7245},
"robot0_THJ4": {"stiffness": 1, "damping": 0.1, "max_force": 2.3722},
"robot0_THJ3": {"stiffness": 1, "damping": 0.1, "max_force": 1.45},
"robot0_THJ2": {"stiffness": 1, "damping": 0.1, "max_force": 0.99},
"robot0_THJ1": {"stiffness": 1, "damping": 0.1, "max_force": 0.99},
"robot0_THJ0": {"stiffness": 1, "damping": 0.1, "max_force": 0.81},
}
for joint_name, config in joints_config.items():
set_drive(
f"{self.prim_path}/joints/{joint_name}",
"angular",
"position",
0.0,
config["stiffness"]*np.pi/180,
config["damping"]*np.pi/180,
config["max_force"]
) | 5,810 | Python | 49.973684 | 103 | 0.592083 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/ur10.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# Copyright (c) 2022-2023, Johnson Sun
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
import torch
from omni.isaac.core.robots.robot import Robot
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
import carb
class UR10(Robot):
def __init__(
self,
prim_path: str,
name: Optional[str] = "UR10",
usd_path: Optional[str] = None,
translation: Optional[torch.tensor] = None,
orientation: Optional[torch.tensor] = None,
) -> None:
self._usd_path = usd_path
self._name = name
if self._usd_path is None:
assets_root_path = get_assets_root_path()
if assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets folder")
self._usd_path = "omniverse://localhost/Projects/J3soon/Isaac/2022.1/Isaac/Robots/UR10/ur10_instanceable.usd"
# Depends on your real robot setup
self._position = torch.tensor([0.0, 0.0, 0.0]) if translation is None else translation
self._orientation = torch.tensor([1.0, 0.0, 0.0, 0.0]) if orientation is None else orientation
add_reference_to_stage(self._usd_path, prim_path)
super().__init__(
prim_path=prim_path,
name=name,
translation=self._position,
orientation=self._orientation,
articulation_controller=None,
)
| 3,005 | Python | 41.338028 | 121 | 0.706822 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/crazyflie.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
from omni.isaac.core.robots.robot import Robot
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
import numpy as np
import torch
import carb
class Crazyflie(Robot):
def __init__(
self,
prim_path: str,
name: Optional[str] = "crazyflie",
usd_path: Optional[str] = None,
translation: Optional[np.ndarray] = None,
orientation: Optional[np.ndarray] = None,
scale: Optional[np.array] = None
) -> None:
"""[summary]
"""
self._usd_path = usd_path
self._name = name
if self._usd_path is None:
assets_root_path = get_assets_root_path()
if assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets folder")
self._usd_path = assets_root_path + "/Isaac/Robots/Crazyflie/cf2x.usd"
add_reference_to_stage(self._usd_path, prim_path)
scale = torch.tensor([5, 5, 5])
super().__init__(
prim_path=prim_path,
name=name,
translation=translation,
orientation=orientation,
scale=scale
)
| 2,807 | Python | 37.465753 | 82 | 0.695761 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/cabinet.py | # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from typing import Optional
from omni.isaac.core.robots.robot import Robot
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
import numpy as np
import torch
class Cabinet(Robot):
def __init__(
self,
prim_path: str,
name: Optional[str] = "cabinet",
usd_path: Optional[str] = None,
translation: Optional[torch.tensor] = None,
orientation: Optional[torch.tensor] = None,
) -> None:
"""[summary]
"""
self._usd_path = usd_path
self._name = name
if self._usd_path is None:
assets_root_path = get_assets_root_path()
if assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets folder")
self._usd_path = assets_root_path + "/Isaac/Props/Sektion_Cabinet/sektion_cabinet_instanceable.usd"
add_reference_to_stage(self._usd_path, prim_path)
self._position = torch.tensor([0.0, 0.0, 0.4]) if translation is None else translation
self._orientation = torch.tensor([0.1, 0.0, 0.0, 0.0]) if orientation is None else orientation
super().__init__(
prim_path=prim_path,
name=name,
translation=self._position,
orientation=self._orientation,
articulation_controller=None,
)
| 1,829 | Python | 34.192307 | 111 | 0.65719 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/humanoid.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
import numpy as np
import torch
from omni.isaac.core.robots.robot import Robot
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
import carb
class Humanoid(Robot):
def __init__(
self,
prim_path: str,
name: Optional[str] = "Humanoid",
usd_path: Optional[str] = None,
translation: Optional[np.ndarray] = None,
orientation: Optional[np.ndarray] = None,
) -> None:
self._usd_path = usd_path
self._name = name
if self._usd_path is None:
assets_root_path = get_assets_root_path()
if assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets folder")
self._usd_path = assets_root_path + "/Isaac/Robots/Humanoid/humanoid_instanceable.usd"
add_reference_to_stage(self._usd_path, prim_path)
super().__init__(
prim_path=prim_path,
name=name,
translation=translation,
orientation=orientation,
articulation_controller=None,
)
| 2,716 | Python | 38.955882 | 98 | 0.71134 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/franka.py | # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from typing import Optional
import math
import numpy as np
import torch
from omni.isaac.core.robots.robot import Robot
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omniisaacgymenvs.tasks.utils.usd_utils import set_drive
from omni.isaac.core.utils.prims import get_prim_at_path
from pxr import PhysxSchema
class Franka(Robot):
def __init__(
self,
prim_path: str,
name: Optional[str] = "franka",
usd_path: Optional[str] = None,
translation: Optional[torch.tensor] = None,
orientation: Optional[torch.tensor] = None,
) -> None:
"""[summary]
"""
self._usd_path = usd_path
self._name = name
self._position = torch.tensor([1.0, 0.0, 0.0]) if translation is None else translation
self._orientation = torch.tensor([0.0, 0.0, 0.0, 1.0]) if orientation is None else orientation
if self._usd_path is None:
assets_root_path = get_assets_root_path()
if assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets folder")
self._usd_path = assets_root_path + "/Isaac/Robots/Franka/franka_instanceable.usd"
add_reference_to_stage(self._usd_path, prim_path)
super().__init__(
prim_path=prim_path,
name=name,
translation=self._position,
orientation=self._orientation,
articulation_controller=None,
)
dof_paths = [
"panda_link0/panda_joint1",
"panda_link1/panda_joint2",
"panda_link2/panda_joint3",
"panda_link3/panda_joint4",
"panda_link4/panda_joint5",
"panda_link5/panda_joint6",
"panda_link6/panda_joint7",
"panda_hand/panda_finger_joint1",
"panda_hand/panda_finger_joint2"
]
drive_type = ["angular"] * 7 + ["linear"] * 2
default_dof_pos = [math.degrees(x) for x in [0.0, -1.0, 0.0, -2.2, 0.0, 2.4, 0.8]] + [0.02, 0.02]
stiffness = [400*np.pi/180] * 7 + [10000] * 2
damping = [80*np.pi/180] * 7 + [100] * 2
max_force = [87, 87, 87, 87, 12, 12, 12, 200, 200]
max_velocity = [math.degrees(x) for x in [2.175, 2.175, 2.175, 2.175, 2.61, 2.61, 2.61]] + [0.2, 0.2]
for i, dof in enumerate(dof_paths):
set_drive(
prim_path=f"{self.prim_path}/{dof}",
drive_type=drive_type[i],
target_type="position",
target_value=default_dof_pos[i],
stiffness=stiffness[i],
damping=damping[i],
max_force=max_force[i]
)
PhysxSchema.PhysxJointAPI(get_prim_at_path(f"{self.prim_path}/{dof}")).CreateMaxJointVelocityAttr().Set(max_velocity[i])
| 3,327 | Python | 37.252873 | 132 | 0.60024 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/ant.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
import numpy as np
import torch
from omni.isaac.core.robots.robot import Robot
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
import carb
class Ant(Robot):
def __init__(
self,
prim_path: str,
name: Optional[str] = "Ant",
usd_path: Optional[str] = None,
translation: Optional[np.ndarray] = None,
orientation: Optional[np.ndarray] = None,
) -> None:
self._usd_path = usd_path
self._name = name
if self._usd_path is None:
assets_root_path = get_assets_root_path()
if assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets folder")
self._usd_path = assets_root_path + "/Isaac/Robots/Ant/ant_instanceable.usd"
add_reference_to_stage(self._usd_path, prim_path)
super().__init__(
prim_path=prim_path,
name=name,
translation=translation,
orientation=orientation,
articulation_controller=None,
)
| 2,696 | Python | 38.661764 | 88 | 0.709199 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/cartpole.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
import numpy as np
import torch
from omni.isaac.core.robots.robot import Robot
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
import carb
class Cartpole(Robot):
def __init__(
self,
prim_path: str,
name: Optional[str] = "Cartpole",
usd_path: Optional[str] = None,
translation: Optional[np.ndarray] = None,
orientation: Optional[np.ndarray] = None,
) -> None:
self._usd_path = usd_path
self._name = name
if self._usd_path is None:
assets_root_path = get_assets_root_path()
if assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets folder")
self._usd_path = assets_root_path + "/Isaac/Robots/Cartpole/cartpole.usd"
add_reference_to_stage(self._usd_path, prim_path)
super().__init__(
prim_path=prim_path,
name=name,
translation=translation,
orientation=orientation,
articulation_controller=None,
)
| 2,702 | Python | 39.343283 | 85 | 0.710585 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/quadcopter.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
import numpy as np
import torch
from omni.isaac.core.robots.robot import Robot
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
import numpy as np
import torch
class Quadcopter(Robot):
def __init__(
self,
prim_path: str,
name: Optional[str] = "Quadcopter",
usd_path: Optional[str] = None,
translation: Optional[np.ndarray] = None,
orientation: Optional[np.ndarray] = None,
) -> None:
"""[summary]
"""
self._usd_path = usd_path
self._name = name
if self._usd_path is None:
assets_root_path = get_assets_root_path()
if assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets folder")
self._usd_path = assets_root_path + "/Isaac/Robots/Quadcopter/quadcopter.usd"
add_reference_to_stage(self._usd_path, prim_path)
super().__init__(
prim_path=prim_path,
name=name,
position=translation,
orientation=orientation,
articulation_controller=None,
)
| 2,768 | Python | 38.557142 | 89 | 0.703757 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/ingenuity.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
from omni.isaac.core.prims import RigidPrimView
from omni.isaac.core.robots.robot import Robot
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
import numpy as np
import torch
class Ingenuity(Robot):
def __init__(
self,
prim_path: str,
name: Optional[str] = "ingenuity",
usd_path: Optional[str] = None,
translation: Optional[np.ndarray] = None,
orientation: Optional[np.ndarray] = None,
scale: Optional[np.array] = None
) -> None:
"""[summary]
"""
self._usd_path = usd_path
self._name = name
if self._usd_path is None:
assets_root_path = get_assets_root_path()
if assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets folder")
self._usd_path = assets_root_path + "/Isaac/Robots/Ingenuity/ingenuity.usd"
add_reference_to_stage(self._usd_path, prim_path)
scale = torch.tensor([0.01, 0.01, 0.01])
super().__init__(
prim_path=prim_path,
name=name,
translation=translation,
orientation=orientation,
scale=scale
)
| 2,857 | Python | 38.150684 | 87 | 0.698285 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/anymal.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
import numpy as np
import torch
from omni.isaac.core.prims import RigidPrimView
from omni.isaac.core.robots.robot import Robot
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
import numpy as np
import torch
from pxr import PhysxSchema
class Anymal(Robot):
def __init__(
self,
prim_path: str,
name: Optional[str] = "Anymal",
usd_path: Optional[str] = None,
translation: Optional[np.ndarray] = None,
orientation: Optional[np.ndarray] = None,
) -> None:
"""[summary]
"""
self._usd_path = usd_path
self._name = name
if self._usd_path is None:
assets_root_path = get_assets_root_path()
if assets_root_path is None:
carb.log_error("Could not find nucleus server with /Isaac folder")
self._usd_path = assets_root_path + "/Isaac/Robots/ANYbotics/anymal_instanceable.usd"
add_reference_to_stage(self._usd_path, prim_path)
super().__init__(
prim_path=prim_path,
name=name,
translation=translation,
orientation=orientation,
articulation_controller=None,
)
self._dof_names = ["LF_HAA",
"LH_HAA",
"RF_HAA",
"RH_HAA",
"LF_HFE",
"LH_HFE",
"RF_HFE",
"RH_HFE",
"LF_KFE",
"LH_KFE",
"RF_KFE",
"RH_KFE"]
@property
def dof_names(self):
return self._dof_names
def set_anymal_properties(self, stage, prim):
for link_prim in prim.GetChildren():
if link_prim.HasAPI(PhysxSchema.PhysxRigidBodyAPI):
rb = PhysxSchema.PhysxRigidBodyAPI.Get(stage, link_prim.GetPrimPath())
rb.GetDisableGravityAttr().Set(False)
rb.GetRetainAccelerationsAttr().Set(False)
rb.GetLinearDampingAttr().Set(0.0)
rb.GetMaxLinearVelocityAttr().Set(1000.0)
rb.GetAngularDampingAttr().Set(0.0)
rb.GetMaxAngularVelocityAttr().Set(64/np.pi*180)
| 3,959 | Python | 39 | 97 | 0.63021 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/views/cabinet_view.py |
from typing import Optional
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.prims import RigidPrimView
class CabinetView(ArticulationView):
def __init__(
self,
prim_paths_expr: str,
name: Optional[str] = "CabinetView",
) -> None:
"""[summary]
"""
super().__init__(
prim_paths_expr=prim_paths_expr,
name=name,
reset_xform_properties=False
)
self._drawers = RigidPrimView(prim_paths_expr="/World/envs/.*/cabinet/drawer_top", name="drawers_view", reset_xform_properties=False) | 619 | Python | 25.956521 | 141 | 0.61874 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/views/shadow_hand_view.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.prims import RigidPrimView
import torch
class ShadowHandView(ArticulationView):
def __init__(
self,
prim_paths_expr: str,
name: Optional[str] = "ShadowHandView",
) -> None:
super().__init__(
prim_paths_expr=prim_paths_expr,
name=name,
reset_xform_properties=False
)
self._fingers = RigidPrimView(prim_paths_expr="/World/envs/.*/shadow_hand/robot0.*distal", name="finger_view", reset_xform_properties=False)
@property
def actuated_dof_indices(self):
return self._actuated_dof_indices
def initialize(self, physics_sim_view):
super().initialize(physics_sim_view)
self.actuated_joint_names = ['robot0_WRJ1', 'robot0_WRJ0',
'robot0_FFJ3', 'robot0_FFJ2', 'robot0_FFJ1',
'robot0_MFJ3', 'robot0_MFJ2', 'robot0_MFJ1',
'robot0_RFJ3', 'robot0_RFJ2', 'robot0_RFJ1', 'robot0_LFJ4',
'robot0_LFJ3', 'robot0_LFJ2', 'robot0_LFJ1',
'robot0_THJ4', 'robot0_THJ3', 'robot0_THJ2', 'robot0_THJ1', 'robot0_THJ0',
]
self._actuated_dof_indices = list()
for joint_name in self.actuated_joint_names:
self._actuated_dof_indices.append(self.get_dof_index(joint_name))
self._actuated_dof_indices.sort()
limit_stiffness = torch.tensor([30.0] * self.num_fixed_tendons, device=self._device)
damping = torch.tensor([0.1] * self.num_fixed_tendons, device=self._device)
self.set_fixed_tendon_properties(dampings=damping, limit_stiffnesses=limit_stiffness)
| 3,410 | Python | 45.094594 | 148 | 0.672727 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/views/franka_view.py |
from typing import Optional
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.prims import RigidPrimView
class FrankaView(ArticulationView):
def __init__(
self,
prim_paths_expr: str,
name: Optional[str] = "FrankaView",
) -> None:
"""[summary]
"""
super().__init__(
prim_paths_expr=prim_paths_expr,
name=name,
reset_xform_properties=False
)
self._hands = RigidPrimView(prim_paths_expr="/World/envs/.*/franka/panda_link7", name="hands_view", reset_xform_properties=False)
self._lfingers = RigidPrimView(prim_paths_expr="/World/envs/.*/franka/panda_leftfinger", name="lfingers_view", reset_xform_properties=False)
self._rfingers = RigidPrimView(prim_paths_expr="/World/envs/.*/franka/panda_rightfinger", name="rfingers_view", reset_xform_properties=False)
def initialize(self, physics_sim_view):
super().initialize(physics_sim_view)
self._gripper_indices = [self.get_dof_index("panda_finger_joint1"), self.get_dof_index("panda_finger_joint2")]
@property
def gripper_indices(self):
return self._gripper_indices
| 1,220 | Python | 32.916666 | 150 | 0.648361 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/views/anymal_view.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.prims import RigidPrimView
class AnymalView(ArticulationView):
def __init__(
self,
prim_paths_expr: str,
name: Optional[str] = "AnymalView",
) -> None:
"""[summary]
"""
super().__init__(
prim_paths_expr=prim_paths_expr,
name=name,
reset_xform_properties=False
)
self._knees = RigidPrimView(prim_paths_expr="/World/envs/.*/anymal/.*_SHANK", name="knees_view", reset_xform_properties=False)
self._base = RigidPrimView(prim_paths_expr="/World/envs/.*/anymal/base", name="base_view", reset_xform_properties=False)
def get_knee_transforms(self):
return self._knees.get_world_poses()
def is_knee_below_threshold(self, threshold, ground_heights=None):
knee_pos, _ = self._knees.get_world_poses()
knee_heights = knee_pos.view((-1, 4, 3))[:, :, 2]
if ground_heights is not None:
knee_heights -= ground_heights
return (knee_heights[:, 0] < threshold) | (knee_heights[:, 1] < threshold) | (knee_heights[:, 2] < threshold) | (knee_heights[:, 3] < threshold)
def is_base_below_threshold(self, threshold, ground_heights):
base_pos, _ = self.get_world_poses()
base_heights = base_pos[:, 2]
base_heights -= ground_heights
return (base_heights[:] < threshold)
| 3,029 | Python | 44.22388 | 152 | 0.701222 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/views/ur10_view.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# Copyright (c) 2022-2023, Johnson Sun
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.prims import RigidPrimView
import torch
class UR10View(ArticulationView):
def __init__(
self,
prim_paths_expr: str,
name: Optional[str] = "UR10View",
) -> None:
super().__init__(
prim_paths_expr=prim_paths_expr,
name=name,
reset_xform_properties=False
)
# Use RigidPrimView instead of XFormPrimView, since the XForm is not updated when running
self._end_effectors = RigidPrimView(prim_paths_expr="/World/envs/.*/ur10/ee_link", name="end_effector_view", reset_xform_properties=False)
def initialize(self, physics_sim_view):
super().initialize(physics_sim_view)
| 2,385 | Python | 41.607142 | 146 | 0.7413 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/views/quadcopter_view.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.prims import RigidPrimView
class QuadcopterView(ArticulationView):
def __init__(
self,
prim_paths_expr: str,
name: Optional[str] = "QuadcopterView"
) -> None:
"""[summary]
"""
super().__init__(
prim_paths_expr=prim_paths_expr,
name=name,
reset_xform_properties=False
)
self.rotors = RigidPrimView(prim_paths_expr=f"/World/envs/.*/Quadcopter/rotor[0-3]", reset_xform_properties=False) | 2,162 | Python | 43.142856 | 122 | 0.738668 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/views/allegro_hand_view.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.prims import RigidPrimView
import torch
class AllegroHandView(ArticulationView):
def __init__(
self,
prim_paths_expr: str,
name: Optional[str] = "AllegroHandView",
) -> None:
super().__init__(
prim_paths_expr=prim_paths_expr,
name=name,
reset_xform_properties=False
)
self._actuated_dof_indices = list()
@property
def actuated_dof_indices(self):
return self._actuated_dof_indices
def initialize(self, physics_sim_view):
super().initialize(physics_sim_view)
self._actuated_dof_indices = [i for i in range(self.num_dof)] | 2,320 | Python | 39.719298 | 80 | 0.735345 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/views/crazyflie_view.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.prims import RigidPrimView
class CrazyflieView(ArticulationView):
def __init__(
self,
prim_paths_expr: str,
name: Optional[str] = "CrazyflieView"
) -> None:
"""[summary]
"""
super().__init__(
prim_paths_expr=prim_paths_expr,
name=name,
)
self.physics_rotors = [RigidPrimView(prim_paths_expr=f"/World/envs/.*/Crazyflie/m{i}_prop",
name=f"m{i}_prop_view") for i in range(1, 5)]
| 2,189 | Python | 41.941176 | 99 | 0.720877 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/omniisaacgymenvs/robots/articulations/views/ingenuity_view.py | # Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Optional
from omni.isaac.core.articulations import ArticulationView
from omni.isaac.core.prims import RigidPrimView
class IngenuityView(ArticulationView):
def __init__(
self,
prim_paths_expr: str,
name: Optional[str] = "IngenuityView"
) -> None:
"""[summary]
"""
super().__init__(
prim_paths_expr=prim_paths_expr,
name=name,
reset_xform_properties=False
)
self.physics_rotors = [RigidPrimView(prim_paths_expr=f"/World/envs/.*/Ingenuity/rotor_physics_{i}", name=f"physics_rotor_{i}_view", reset_xform_properties=False) for i in range(2)]
self.visual_rotors = [RigidPrimView(prim_paths_expr=f"/World/envs/.*/Ingenuity/rotor_visual_{i}", name=f"visual_rotor_{i}_view", reset_xform_properties=False) for i in range(2)] | 2,413 | Python | 46.333332 | 188 | 0.734356 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/docs/domain_randomization.md | Domain Randomization
====================
Overview
--------
We sometimes need our reinforcement learning agents to be robust to
different physics than they are trained with, such as when attempting a
sim2real policy transfer. Using domain randomization (DR), we repeatedly
randomize the simulation dynamics during training in order to learn a
good policy under a wide range of physical parameters.
OmniverseIsaacGymEnvs supports "on the fly" domain randomization, allowing
dynamics to be changed without requiring reloading of assets. This allows
us to efficiently apply domain randomizations without common overheads like
re-parsing asset files.
The OmniverseIsaacGymEnvs DR framework utilizes the `omni.replicator.isaac`
extension in its backend to perform "on the fly" randomization. Users can
add domain randomization by either directly using methods provided in
`omni.replicator.isaac` in python, or specifying DR settings in the
task configuration `yaml` file. The following sections will focus on setting
up DR using the `yaml` file interface. For more detailed documentations
regarding methods provided in the `omni.replicator.isaac` extension, please
visit [here](https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.replicator.isaac/docs/index.html).
Domain Randomization Options
-------------------------------
We will first explain what can be randomized in the scene and the sampling
distributions. There are five main parameter groups that support randomization.
They are:
- `observations`: Add noise directly to the agent observations
- `actions`: Add noise directly to the agent actions
- `simulation`: Add noise to physical parameters defined for the entire
scene, such as `gravity`
- `rigid_prim_views`: Add noise to properties belonging to rigid prims,
such as `material_properties`.
- `articulation_views`: Add noise to properties belonging to articulations,
such as `stiffness` of joints.
For each parameter you wish to randomize, you can specify two ways that
determine when the randomization is applied:
- `on_reset`: Adds correlated noise to a parameter of an environment when
that environment gets reset. This correlated noise will remain
with an environment until that environemnt gets reset again, which
will then set a new correlated noise. To trigger `on_reset`,
the indices for the environemnts that need to be reset must be passed in
to `omni.replicator.isaac.physics_view.step_randomization(reset_inds)`.
- `on_interval`: Adds uncorrelated noise to a parameter at a frequency specified
by `frequency_interval`. If a parameter also has `on_reset` randomization,
the `on_interval` noise is combined with the noise applied at `on_reset`.
- `on_startup`: Applies randomization once prior to the start of the simulation. Only available
to rigid prim scale, mass, density and articulation scale parameters.
For `on_reset`, `on_interval`, and `on_startup`, you can specify the following settings:
- `distribution`: The distribution to generate a sample `x` from. The available distributions
are listed below. Note that parameters `a` and `b` are defined by the
`distribution_parameters` setting.
- `uniform`: `x ~ unif(a, b)`
- `loguniform`: `x ~ exp(unif(log(a), log(b)))`
- `gaussian`: `x ~ normal(a, b)`
- `distribution_parameters`: The parameters to the distribution.
- For observations and actions, this setting is specified as a tuple `[a, b]` of
real values.
- For simulation and view parameters, this setting is specified as a nested tuple
in the form of `[[a_1, a_2, ..., a_n], [[b_1, b_2, ..., b_n]]`, where the `n` is
the dimension of the parameter (*i.e.* `n` is 3 for position). It can also be
specified as a tuple in the form of `[a, b]`, which will be broadcasted to the
correct dimensions.
- For `uniform` and `loguniform` distributions, `a` and `b` are the lower and
upper bounds.
- For `gaussian`, `a` is the distribution mean and `b` is the variance.
- `operation`: Defines how the generated sample `x` will be applied to the original
simulation parameter. The options are `additive`, `scaling`, `direct`.
- `additive`:, add the sample to the original value.
- `scaling`: multiply the original value by the sample.
- `direct`: directly sets the sample as the parameter value.
- `frequency_interval`: Specifies the number of steps to apply randomization.
- Only used with `on_interval`.
- Steps of each environemnt are incremented with each
`omni.replicator.isaac.physics_view.step_randomization(reset_inds)` call and
reset if the environment index is in `reset_inds`.
- `num_buckets`: Only used for `material_properties` randomization
- Physx only allows 64000 unique physics materials in the scene at once. If more than
64000 materials are needed, increase `num_buckets` to allow materials to be shared
between prims.
YAML Interface
--------------
Now that we know what options are available for domain randomization,
let's put it all together in the YAML config. In your `omniverseisaacgymenvs/cfg/task`
yaml file, you can specify your domain randomization parameters under the
`domain_randomization` key. First, we turn on domain randomization by setting
`randomize` to `True`:
```yaml
domain_randomization:
randomize: True
randomization_params:
...
```
This can also be set as a command line argument at launch time with `task.domain_randomization.randomize=True`.
Next, we will define our parameters under the `randomization_params`
keys. Here you can see how we used the previous settings to define some
randomization parameters for a ShadowHand cube manipulation task:
```yaml
randomization_params:
randomization_params:
observations:
on_reset:
operation: "additive"
distribution: "gaussian"
distribution_parameters: [0, .0001]
on_interval:
frequency_interval: 1
operation: "additive"
distribution: "gaussian"
distribution_parameters: [0, .002]
actions:
on_reset:
operation: "additive"
distribution: "gaussian"
distribution_parameters: [0, 0.015]
on_interval:
frequency_interval: 1
operation: "additive"
distribution: "gaussian"
distribution_parameters: [0., 0.05]
simulation:
gravity:
on_reset:
operation: "additive"
distribution: "gaussian"
distribution_parameters: [[0.0, 0.0, 0.0], [0.0, 0.0, 0.4]]
rigid_prim_views:
object_view:
material_properties:
on_reset:
num_buckets: 250
operation: "scaling"
distribution: "uniform"
distribution_parameters: [[0.7, 1, 1], [1.3, 1, 1]]
articulation_views:
shadow_hand_view:
stiffness:
on_reset:
operation: "scaling"
distribution: "uniform"
distribution_parameters: [0.75, 1.5]
```
Note how we structured `rigid_prim_views` and `articulation_views`. When creating
a `RigidPrimView` or `ArticulationView` in the task python file, you have the option to
pass in `name` as an argument. **To use domain randomization, the name of the `RigidPrimView` or
`ArticulationView` must match the name provided in the randomization `yaml` file.** In the
example above, `object_view` is the name of a `RigidPrimView` and `shadow_hand_view` is the name
of the `ArticulationView`.
The exact parameters that can be randomized are listed below:
**simulation**:
- gravity (dim=3): The gravity vector of the entire scene.
**rigid\_prim\_views**:
- position (dim=3): The position of the rigid prim. In meters.
- orientation (dim=3): The orientation of the rigid prim, specified with euler angles. In radians.
- linear_velocity (dim=3): The linear velocity of the rigid prim. In m/s. **CPU pipeline only**
- angular_velocity (dim=3): The angular velocity of the rigid prim. In rad/s. **CPU pipeline only**
- velocity (dim=6): The linear + angular velocity of the rigid prim.
- force (dim=3): Apply a force to the rigid prim. In N.
- mass (dim=1): Mass of the rigid prim. In kg. **CPU pipeline only during runtime**.
- inertia (dim=3): The diagonal values of the inertia matrix. **CPU pipeline only**
- material_properties (dim=3): Static friction, Dynamic friction, and Restitution.
- contact_offset (dim=1): A small distance from the surface of the collision geometry at
which contacts start being generated.
- rest_offset (dim=1): A small distance from the surface of the collision geometry at
which the effective contact with the shape takes place.
- scale (dim=1): The scale of the rigid prim. `on_startup` only.
- density (dim=1): Density of the rigid prim. `on_startup` only.
**articulation\_views**:
- position (dim=3): The position of the articulation root. In meters.
- orientation (dim=3): The orientation of the articulation root, specified with euler angles. In radians.
- linear_velocity (dim=3): The linear velocity of the articulation root. In m/s. **CPU pipeline only**
- angular_velocity (dim=3): The angular velocity of the articulation root. In rad/s. **CPU pipeline only**
- velocity (dim=6): The linear + angular velocity of the articulation root.
- stiffness (dim=num_dof): The stiffness of the joints.
- damping (dim=num_dof): The damping of the joints
- joint_friction (dim=num_dof): The friction coefficient of the joints.
- joint_positions (dim=num_dof): The joint positions. In radians or meters.
- joint_velocities (dim=num_dof): The joint velocities. In rad/s or m/s.
- lower_dof_limits (dim=num_dof): The lower limit of the joints. In radians or meters.
- upper_dof_limits (dim=num_dof): The upper limit of the joints. In radians or meters.
- max_efforts (dim=num_dof): The maximum force or torque that the joints can exert. In N or Nm.
- joint_armatures (dim=num_dof): A value added to the diagonal of the joint-space inertia matrix.
Physically, it corresponds to the rotating part of a motor
- joint_max_velocities (dim=num_dof): The maximum velocity allowed on the joints. In rad/s or m/s.
- joint_efforts (dim=num_dof): Applies a force or a torque on the joints. In N or Nm.
- body_masses (dim=num_bodies): The mass of each body in the articulation. In kg. **CPU pipeline only**
- body_inertias (dim=num_bodies×3): The diagonal values of the inertia matrix of each body. **CPU pipeline only**
- material_properties (dim=num_bodies×3): The static friction, dynamic friction, and restitution of each body
in the articulation, specified in the following order:
[body_1_static_friciton, body_1_dynamic_friciton, body_1_restitution,
body_1_static_friciton, body_2_dynamic_friciton, body_2_restitution,
... ]
- tendon_stiffnesses (dim=num_tendons): The stiffness of the fixed tendons in the articulation.
- tendon_dampings (dim=num_tendons): The damping of the fixed tendons in the articulation.
- tendon_limit_stiffnesses (dim=num_tendons): The limit stiffness of the fixed tendons in the articulation.
- tendon_lower_limits (dim=num_tendons): The lower limits of the fixed tendons in the articulation.
- tendon_upper_limits (dim=num_tendons): The upper limits of the fixed tendons in the articulation.
- tendon_rest_lengths (dim=num_tendons): The rest lengths of the fixed tendons in the articulation.
- tendon_offsets (dim=num_tendons): The offsets of the fixed tendons in the articulation.
- scale (dim=1): The scale of the articulation. `on_startup` only.
Applying Domain Randomization
------------------------------
To parse the domain randomization configurations in the task `yaml` file and set up the DR pipeline,
it is necessary to call `self._randomizer.set_up_domain_randomization(self)`, where `self._randomizer`
is the `Randomizer` object created in RLTask's `__init__`.
It is worth noting that the names of the views provided under `rigid_prim_views` or `articulation_views`
in the task `yaml` file must match the names passed into `RigidPrimView` or `ArticulationView` objects
in the python task file. In addition, all `RigidPrimView` and `ArticulationView` that would have domain
randomizaiton applied must be added to the scene in the task's `set_up_scene()` via `scene.add()`.
To trigger `on_startup` randomizations, call `self._randomizer.apply_on_startup_domain_randomization(self)`
in `set_up_scene()` after all views are added to the scene. Note that `on_startup` randomizations
are only availble to rigid prim scale, mass, density and articulation scale parameters since these parameters
cannot be randomized after the simulation begins on GPU pipeline. Therefore, randomizations must be applied
to these parameters in `set_up_scene()` prior to the start of the simulation.
To trigger `on_reset` and `on_interval` randomizations, it is required to step the interal
counter of the DR pipeline in `pre_physics_step()`:
```python
if self._randomizer.randomize:
omni.replicator.isaac.physics_view.step_randomization(reset_inds)
```
`reset_inds` is a list of indices of the environments that need to be reset. For those environments, it will
trigger the randomizations defined with `on_reset`. All other environments will follow randomizations
defined with `on_interval`.
Randomization Scheduling
----------------------------
We provide methods to modify distribution parameters defined in the `yaml` file during training, which
allows custom DR scheduling. There are three methods from the `Randomizer` class
that are relevant to DR scheduling:
- `get_initial_dr_distribution_parameters`: returns a numpy array of the initial parameters (as defined in
the `yaml` file) of a specified distribution
- `get_dr_distribution_parameters`: returns a numpy array of the current parameters of a specified distribution
- `set_dr_distribution_parameters`: sets new parameters to a specified distribution
Using the DR configuration example defined above, we can get the current parameters and set new parameters
to gravity randomization and shadow hand joint stiffness randomization as follows:
```python
current_gravity_dr_params = self._randomizer.get_dr_distribution_parameters(
"simulation",
"gravity",
"on_reset",
)
self._randomizer.set_dr_distribution_parameters(
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.5]],
"simulation",
"gravity",
"on_reset",
)
current_joint_stiffness_dr_params = self._randomizer.get_dr_distribution_parameters(
"articulation_views",
"shadow_hand_view",
"stiffness",
"on_reset",
)
self._randomizer.set_dr_distribution_parameters(
[0.7, 1.55],
"articulation_views",
"shadow_hand_view",
"stiffness",
"on_reset",
)
```
The following is an example of using these methods to perform linear scheduling of gaussian noise
that is added to observations and actions in the above shadow hand example. The following method
linearly adds more noise to observations and actions every epoch up until the `schedule_epoch`.
This method can be added to the Task python class and be called in `pre_physics_step()`.
```python
def apply_observations_actions_noise_linear_scheduling(self, schedule_epoch=100):
current_epoch = self._env.sim_frame_count // self._cfg["task"]["env"]["controlFrequencyInv"] // self._cfg["train"]["params"]["config"]["horizon_length"]
if current_epoch <= schedule_epoch:
if (self._env.sim_frame_count // self._cfg["task"]["env"]["controlFrequencyInv"]) % self._cfg["train"]["params"]["config"]["horizon_length"] == 0:
for distribution_path in [("observations", "on_reset"), ("observations", "on_interval"), ("actions", "on_reset"), ("actions", "on_interval")]:
scheduled_params = self._randomizer.get_initial_dr_distribution_parameters(*distribution_path)
scheduled_params[1] = (1/schedule_epoch) * current_epoch * scheduled_params[1]
self._randomizer.set_dr_distribution_parameters(scheduled_params, *distribution_path)
```
| 16,889 | Markdown | 51.453416 | 156 | 0.68814 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/docs/instanceable_assets.md | ## A Note on Instanceable USD Assets
The following section presents a method that modifies existing USD assets
which allows Isaac Sim to load significantly more environments. This is currently
an experimental method and has thus not been completely integrated into the
framework. As a result, this section is reserved for power users who wish to
maxmimize the performance of the Isaac Sim RL framework.
### Motivation
One common issue in Isaac Sim that occurs when we try to increase
the number of environments `numEnvs` is running out of RAM. This occurs because
the Isaac Sim RL framework uses `omni.isaac.cloner` to duplicate environments.
As a result, there are `numEnvs` number of identical copies of the visual and
collision meshes in the scene, which consumes lots of memory. However, only one
copy of the meshes are needed on stage since prims in all other environments could
merely reference that one copy, thus reducing the amount of memory used for loading
environments. To enable this functionality, USD assets need to be modified to be
`instanceable`.
### Creating Instanceable Assets
Assets can now be directly imported as Instanceable assets through the URDF and MJCF importers provided in Isaac Sim. By selecting this option, imported assets will be split into two separate USD files that follow the above hierarchy definition. Any mesh data will be written to an USD stage to be referenced by the main USD stage, which contains the main robot definition.
To use the Instanceable option in the importers, first check the `Create Instanceable Asset` option. Then, specify a file path to indicate the location for saving the mesh data in the `Instanceable USD Path` textbox. This will default to `./instanceable_meshes.usd`, which will generate a file `instanceable_meshes.usd` that is saved to the current directory.
Once the asset is imported with these options enabled, you will see the robot definition in the stage - we will refer to this stage as the master stage. If we expand the robot hierarchy in the Stage, we will notice that the parent prims that have mesh decendants have been marked as Instanceable and they reference a prim in our `Instanceable USD Path` USD file. We are also no longer able to modify attributes of descendant meshes.
To add the instanced asset into a new stage, we will simply need to add the master USD file.
### Converting Existing Assets
We provide the utility function `convert_asset_instanceable`, which creates an instanceable
version of a given USD asset in `/omniisaacgymenvs/utils/usd_utils/create_instanceable_assets.py`.
To run this function, launch Isaac Sim and open the script editor via `Window -> Script Editor`.
Enter the following script and press `Run (Ctrl + Enter)`:
```bash
from omniisaacgymenvs.utils.usd_utils.create_instanceable_assets import convert_asset_instanceable
convert_asset_instanceable(
asset_usd_path=ASSET_USD_PATH,
source_prim_path=SOURCE_PRIM_PATH,
save_as_path=SAVE_AS_PATH
)
```
Note that `ASSET_USD_PATH` is the file path to the USD asset (*e.g.* robot_asset.usd).
`SOURCE_PRIM_PATH` is the USD path of the root prim of the asset on stage. `SAVE_AS_PATH`
is the file path of the generated instanceable version of the asset
(*e.g.* robot_asset_instanceable.usd).
Assuming that `SAVE_AS_PATH` is `OUTPUT_NAME.usd`, the above script will generate two files:
`OUTPUT_NAME.usd` and `OUTPUT_NAME_meshes.usd`. `OUTPUT_NAME.usd` is the instanceable version
of the asset that can be imported to stage and used by `omni.isaac.cloner` to create numerous
duplicates without consuming much memory. `OUTPUT_NAME_meshes.usd` contains all the visual
and collision meshes that `OUTPUT_NAME.usd` references.
It is worth noting that any [USD Relationships](https://graphics.pixar.com/usd/dev/api/class_usd_relationship.html)
on the referenced meshes are removed in `OUTPUT_NAME.usd`. This is because those USD Relationships
originally have targets set to prims in `OUTPUT_NAME_meshes.usd` and hence cannot be accessed
from `OUTPUT_NAME.usd`. Common examples of USD Relationships that could exist on the meshes are
visual materials, physics materials, and filtered collision pairs. Therefore, it is recommanded
to set these USD Relationships on the meshes' parent Xforms instead of the meshes themselves.
In a case where we would like to update the main USD file where the instanceable USD file is being referenced from, we also provide a utility method to update all references in the stage that matches a source reference path to a new USD file path.
```bash
from omniisaacgymenvs.utils.usd_utils.create_instanceable_assets import update_reference
update_reference(
source_prim_path=SOURCE_PRIM_PATH,
source_reference_path=SOURCE_REFERENCE_PATH,
target_reference_path=TARGET_REFERENCE_PATH
)
```
### Limitations
USD requires a specific structure in the asset tree definition in order for the instanceable flag to take action. To mark any mesh or primitive geometry prim in the asset as instanceable, the mesh prim requires a parent Xform prim to be present, which will be used to add a reference to a master USD file containing definition of the mesh prim.
For example, the following definition:
```
World
|_ Robot
|_ Collisions
|_ Sphere
|_ Box
```
would have to be modified to:
```
World
|_ Robot
|_ Collisions
|_ Sphere_Xform
| |_ Sphere
|_ Box_Xform
|_ Box
```
Any references that exist on the original `Sphere` and `Box` prims would have to be moved to `Sphere_Xform` and `Box_Xform` prims.
To help with the process of creating new parent prims, we provide a utility method `create_parent_xforms()` in `omniisaacgymenvs/utils/usd_utils/create_instanceable_assets.py` to automatically insert a new Xform prim as a parent of every mesh prim in the stage. This method can be run on an existing non-instanced USD file for an asset from the script editor:
```bash
from omniisaacgymenvs.utils.usd_utils.create_instanceable_assets import create_parent_xforms
create_parent_xforms(
asset_usd_path=ASSET_USD_PATH,
source_prim_path=SOURCE_PRIM_PATH,
save_as_path=SAVE_AS_PATH
)
```
This method can also be run as part of `convert_asset_instanceable()` method, by passing in the argument `create_xforms=True`.
It is also worth noting that once an instanced asset is added to the stage, we can no longer modify USD attributes on the instanceable prims. For example, to modify attributes of collision meshes that are set as instanceable, we have to first modify the attributes on the corresponding prims in the master prim which our instanced asset references from. Then, we can allow the instanced asset to pick up the updated values from the master prim. | 6,846 | Markdown | 56.058333 | 444 | 0.76804 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/docs/rl_examples.md | ## Reinforcement Learning Examples
We introduce the following reinforcement learning examples that are implemented using
Isaac Sim's RL framework.
Pre-trained checkpoints can be found on the Nucleus server. To set up localhost, please refer to the [Isaac Sim installation guide](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/install_basic.html).
*Note: All commands should be executed from `omniisaacgymenvs/omniisaacgymenvs`.*
- [Reinforcement Learning Examples](#reinforcement-learning-examples)
- [Cartpole cartpole.py](#cartpole-cartpolepy)
- [Ant ant.py](#ant-antpy)
- [Humanoid humanoid.py](#humanoid-humanoidpy)
- [Shadow Hand Object Manipulation shadow_hand.py](#shadow-hand-object-manipulation-shadow_handpy)
- [OpenAI Variant](#openai-variant)
- [LSTM Training Variant](#lstm-training-variant)
- [Allegro Hand Object Manipulation allegro_hand.py](#allegro-hand-object-manipulation-allegro_handpy)
- [ANYmal anymal.py](#anymal-anymalpy)
- [Anymal Rough Terrain anymal_terrain.py](#anymal-rough-terrain-anymal_terrainpy)
- [NASA Ingenuity Helicopter ingenuity.py](#nasa-ingenuity-helicopter-ingenuitypy)
- [Quadcopter quadcopter.py](#quadcopter-quadcopterpy)
- [Crazyflie crazyflie.py](#crazyflie-crazyfliepy)
- [Ball Balance ball_balance.py](#ball-balance-ball_balancepy)
- [Franka Cabinet franka_cabinet.py](#franka-cabinet-franka_cabinetpy)
### Cartpole [cartpole.py](../omniisaacgymenvs/tasks/cartpole.py)
Cartpole is a simple example that demonstrates getting and setting usage of DOF states using
`ArticulationView` from `omni.isaac.core`. The goal of this task is to move a cart horizontally
such that the pole, which is connected to the cart via a revolute joint, stays upright.
Joint positions and joint velocities are retrieved using `get_joint_positions` and
`get_joint_velocities` respectively, which are required in computing observations. Actions are
applied onto the cartpoles via `set_joint_efforts`. Cartpoles are reset by using `set_joint_positions`
and `set_joint_velocities`.
Training can be launched with command line argument `task=Cartpole`.
Running inference with pre-trained model can be launched with command line argument `task=Cartpole test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/cartpole.pth`
Config files used for this task are:
- **Task config**: [Cartpole.yaml](../omniisaacgymenvs/cfg/task/Cartpole.yaml)
- **rl_games training config**: [CartpolePPO.yaml](../omniisaacgymenvs/cfg/train/CartpolePPO.yaml)
<img src="https://user-images.githubusercontent.com/34286328/171454189-6afafbff-bb61-4aac-b518-24646007cb9f.gif" width="300" height="150"/>
### Ant [ant.py](../omniisaacgymenvs/tasks/ant.py)
Ant is an example of a simple locomotion task. The goal of this task is to train
quadruped robots (ants) to run forward as fast as possible. This example inherets
from [LocomotionTask](../omniisaacgymenvs/tasks/shared/locomotion.py),
which is a shared class between this example and the humanoid example; this simplifies
implementations for both environemnts since they compute rewards, observations,
and resets in a similar manner. This framework allows us to easily switch between
robots used in the task.
The Ant task includes more examples of utilizing `ArticulationView` from `omni.isaac.core`, which
provides various functions to get and set both DOF states and articulation root states
in a tensorized fashion across all of the actors in the environment. `get_world_poses`,
`get_linear_velocities`, and `get_angular_velocities`, can be used to determine whether the
ants have been moving towards the desired direction and whether they have fallen or flipped over.
Actions are applied onto the ants via `set_joint_efforts`, which moves the ants by setting
torques to the DOFs. Force sensors are also placed on each of the legs to observe contacts
with the ground plane; the sensor values can be retrieved using `get_force_sensor_forces`.
Training can be launched with command line argument `task=Ant`.
Running inference with pre-trained model can be launched with command line argument `task=Ant test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/ant.pth`
Config files used for this task are:
- **Task config**: [Ant.yaml](../omniisaacgymenvs/cfg/task/Ant.yaml)
- **rl_games training config**: [AntPPO.yaml](../omniisaacgymenvs/cfg/train/AntPPO.yaml)
<img src="https://user-images.githubusercontent.com/34286328/171454182-0be1b830-bceb-4cfd-93fb-e1eb8871ec68.gif" width="300" height="150"/>
### Humanoid [humanoid.py](../omniisaacgymenvs/tasks/humanoid.py)
Humanoid is another environment that uses
[LocomotionTask](../omniisaacgymenvs/tasks/shared/locomotion.py). It is conceptually
very similar to the Ant example, where the goal for the humanoid is to run forward
as fast as possible.
Training can be launched with command line argument `task=Humanoid`.
Running inference with pre-trained model can be launched with command line argument `task=Humanoid test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/humanoid.pth`
Config files used for this task are:
- **Task config**: [Humanoid.yaml](../omniisaacgymenvs/cfg/task/Humanoid.yaml)
- **rl_games training config**: [HumanoidPPO.yaml](../omniisaacgymenvs/cfg/train/HumanoidPPO.yaml)
<img src="https://user-images.githubusercontent.com/34286328/171454193-e027885d-1510-4ef4-b838-06b37f70c1c7.gif" width="300" height="150"/>
### Shadow Hand Object Manipulation [shadow_hand.py](../omniisaacgymenvs/tasks/shadow_hand.py)
The Shadow Hand task is an example of a challenging dexterity manipulation task with complex contact
dynamics. It resembles OpenAI's [Learning Dexterity](https://openai.com/blog/learning-dexterity/)
project and [Robotics Shadow Hand](https://github.com/openai/gym/tree/master/gym/envs/robotics)
training environments. The goal of this task is to orient the object in the robot hand to match
a random target orientation, which is visually displayed by a goal object in the scene.
This example inherets from [InHandManipulationTask](../omniisaacgymenvs/tasks/shared/in_hand_manipulation.py),
which is a shared class between this example and the Allegro Hand example. The idea of
this shared [InHandManipulationTask](../omniisaacgymenvs/tasks/shared/in_hand_manipulation.py) class
is similar to that of the [LocomotionTask](../omniisaacgymenvs/tasks/shared/locomotion.py);
since the Shadow Hand example and the Allegro Hand example only differ by the robot hand used
in the task, using this shared class simplifies implementation across the two.
In this example, motion of the hand is controlled using position targets with `set_joint_position_targets`.
The object and the goal object are reset using `set_world_poses`; their states are retrieved via
`get_world_poses` for computing observations. It is worth noting that the Shadow Hand model in
this example also demonstrates the use of tendons, which are imported using the `omni.isaac.mjcf` extension.
Training can be launched with command line argument `task=ShadowHand`.
Training with Domain Randomization can be launched with command line argument `task.domain_randomization.randomize=True`.
For best training results with DR, use `num_envs=16384`.
Running inference with pre-trained model can be launched with command line argument `task=ShadowHand test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/shadow_hand.pth`
Config files used for this task are:
- **Task config**: [ShadowHand.yaml](../omniisaacgymenvs/cfg/task/ShadowHand.yaml)
- **rl_games training config**: [ShadowHandPPO.yaml](../omniisaacgymenvs/cfg/train/ShadowHandPPO.yaml)
#### OpenAI Variant
In addition to the basic version of this task, there is an additional variant matching OpenAI's
[Learning Dexterity](https://openai.com/blog/learning-dexterity/) project. This variant uses the **openai**
observations in the policy network, but asymmetric observations of the **full_state** in the value network.
This can be launched with command line argument `task=ShadowHandOpenAI_FF`.
Config files used for this are:
- **Task config**: [ShadowHandOpenAI_FF.yaml](../omniisaacgymenvs/cfg/task/ShadowHandOpenAI_FF.yaml)
- **rl_games training config**: [ShadowHandOpenAI_FFPPO.yaml](../omniisaacgymenvs/cfg/train/ShadowHandOpenAI_FFPPO.yaml).
#### LSTM Training Variant
This variant uses LSTM policy and value networks instead of feed forward networks, and also asymmetric
LSTM critic designed for the OpenAI variant of the task. This can be launched with command line argument
`task=ShadowHandOpenAI_LSTM`.
Config files used for this are:
- **Task config**: [ShadowHandOpenAI_LSTM.yaml](../omniisaacgymenvs/cfg/task/ShadowHandOpenAI_LSTM.yaml)
- **rl_games training config**: [ShadowHandOpenAI_LSTMPPO.yaml](../omniisaacgymenvs/cfg/train/ShadowHandOpenAI_LSTMPPO.yaml).
<img src="https://user-images.githubusercontent.com/34286328/171454160-8cb6739d-162a-4c84-922d-cda04382633f.gif" width="300" height="150"/>
### Allegro Hand Object Manipulation [allegro_hand.py](../omniisaacgymenvs/tasks/allegro_hand.py)
This example performs the same object orientation task as the Shadow Hand example,
but using the Allegro hand instead of the Shadow hand.
Training can be launched with command line argument `task=AllegroHand`.
Running inference with pre-trained model can be launched with command line argument `task=AllegroHand test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/allegro_hand.pth`
Config files used for this task are:
- **Task config**: [AllegroHand.yaml](../omniisaacgymenvs/cfg/task/Allegro.yaml)
- **rl_games training config**: [AllegroHandPPO.yaml](../omniisaacgymenvs/cfg/train/AllegroHandPPO.yaml)
<img src="https://user-images.githubusercontent.com/34286328/171454176-ce08f6d0-3087-4ecc-9273-7d30d8f73f6d.gif" width="300" height="150"/>
### ANYmal [anymal.py](../omniisaacgymenvs/tasks/anymal.py)
This example trains a model of the ANYmal quadruped robot from ANYbotics
to follow randomly chosen x, y, and yaw target velocities.
Training can be launched with command line argument `task=Anymal`.
Running inference with pre-trained model can be launched with command line argument `task=Anymal test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/anymal.pth`
Config files used for this task are:
- **Task config**: [Anymal.yaml](../omniisaacgymenvs/cfg/task/Anymal.yaml)
- **rl_games training config**: [AnymalPPO.yaml](../omniisaacgymenvs/cfg/train/AnymalPPO.yaml)
<img src="https://user-images.githubusercontent.com/34286328/184168200-152567a8-3354-4947-9ae0-9443a56fee4c.gif" width="300" height="150"/>
### Anymal Rough Terrain [anymal_terrain.py](../omniisaacgymenvs/tasks/anymal_terrain.py)
A more complex version of the above Anymal environment that supports
traversing various forms of rough terrain.
Training can be launched with command line argument `task=AnymalTerrain`.
Running inference with pre-trained model can be launched with command line argument `task=AnymalTerrain test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/anymal_terrain.pth`
- **Task config**: [AnymalTerrain.yaml](../omniisaacgymenvs/cfg/task/AnymalTerrain.yaml)
- **rl_games training config**: [AnymalTerrainPPO.yaml](../omniisaacgymenvs/cfg/train/AnymalTerrainPPO.yaml)
**Note** during test time use the last weights generated, rather than the usual best weights.
Due to curriculum training, the reward goes down as the task gets more challenging, so the best weights
do not typically correspond to the best outcome.
**Note** if you use the ANYmal rough terrain environment in your work, please ensure you cite the following work:
```
@misc{rudin2021learning,
title={Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning},
author={Nikita Rudin and David Hoeller and Philipp Reist and Marco Hutter},
year={2021},
journal = {arXiv preprint arXiv:2109.11978}
```
**Note** The OmniIsaacGymEnvs implementation slightly differs from the implementation used in the paper above, which also
uses a different RL library and PPO implementation. The original implementation is made available [here](https://github.com/leggedrobotics/legged_gym). Results reported in the Isaac Gym technical paper are based on that repository, not this one.
<img src="https://user-images.githubusercontent.com/34286328/184170040-3f76f761-e748-452e-b8c8-3cc1c7c8cb98.gif" width="300" height="150"/>
### NASA Ingenuity Helicopter [ingenuity.py](../omniisaacgymenvs/tasks/ingenuity.py)
This example trains a simplified model of NASA's Ingenuity helicopter to navigate to a moving target.
It showcases the use of velocity tensors and applying force vectors to rigid bodies.
Note that we are applying force directly to the chassis, rather than simulating aerodynamics.
This example also demonstrates using different values for gravitational forces.
Ingenuity Helicopter visual 3D Model courtesy of NASA: https://mars.nasa.gov/resources/25043/mars-ingenuity-helicopter-3d-model/.
Training can be launched with command line argument `task=Ingenuity`.
Running inference with pre-trained model can be launched with command line argument `task=Ingenuity test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/ingenuity.pth`
Config files used for this task are:
- **Task config**: [Ingenuity.yaml](../omniisaacgymenvs/cfg/task/Ingenuity.yaml)
- **rl_games training config**: [IngenuityPPO.yaml](../omniisaacgymenvs/cfg/train/IngenuityPPO.yaml)
<img src="https://user-images.githubusercontent.com/34286328/184176312-df7d2727-f043-46e3-b537-48a583d321b9.gif" width="300" height="150"/>
### Quadcopter [quadcopter.py](../omniisaacgymenvs/tasks/quadcopter.py)
This example trains a very simple quadcopter model to reach and hover near a fixed position.
Lift is achieved by applying thrust forces to the "rotor" bodies, which are modeled as flat cylinders.
In addition to thrust, the pitch and roll of each rotor is controlled using DOF position targets.
Training can be launched with command line argument `task=Quadcopter`.
Running inference with pre-trained model can be launched with command line argument `task=Quadcopter test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/quadcopter.pth`
Config files used for this task are:
- **Task config**: [Quadcopter.yaml](../omniisaacgymenvs/cfg/task/Quadcopter.yaml)
- **rl_games training config**: [QuadcopterPPO.yaml](../omniisaacgymenvs/cfg/train/QuadcopterPPO.yaml)
<img src="https://user-images.githubusercontent.com/34286328/184178817-9c4b6b3c-c8a2-41fb-94be-cfc8ece51d5d.gif" width="300" height="150"/>
### Crazyflie [crazyflie.py](../omniisaacgymenvs/tasks/crazyflie.py)
This example trains the Crazyflie drone model to hover near a fixed position. It is achieved by applying thrust forces to the four rotors.
Training can be launched with command line argument `task=Crazyflie`.
Running inference with pre-trained model can be launched with command line argument `task=Crazyflie test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/crazyflie.pth`
Config files used for this task are:
- **Task config**: [Crazyflie.yaml](../omniisaacgymenvs/cfg/task/Crazyflie.yaml)
- **rl_games training config**: [CrazyfliePPO.yaml](../omniisaacgymenvs/cfg/train/CrazyfliePPO.yaml)
<img src="https://user-images.githubusercontent.com/6352136/185715165-b430a0c7-948b-4dce-b3bb-7832be714c37.gif" width="300" height="150"/>
### Ball Balance [ball_balance.py](../omniisaacgymenvs/tasks/ball_balance.py)
This example trains balancing tables to balance a ball on the table top.
This is a great example to showcase the use of force and torque sensors, as well as DOF states for the table and root states for the ball.
In this example, the three-legged table has a force sensor attached to each leg.
We use the force sensor APIs to collect force and torque data on the legs, which guide position target outputs produced by the policy.
Training can be launched with command line argument `task=BallBalance`.
Running inference with pre-trained model can be launched with command line argument `task=BallBalance test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/ball_balance.pth`
Config files used for this task are:
- **Task config**: [BallBalance.yaml](../omniisaacgymenvs/cfg/task/BallBalance.yaml)
- **rl_games training config**: [BallBalancePPO.yaml](../omniisaacgymenvs/cfg/train/BallBalancePPO.yaml)
<img src="https://user-images.githubusercontent.com/34286328/184172037-cdad9ee8-f705-466f-bbde-3caa6c7dea37.gif" width="300" height="150"/>
### Franka Cabinet [franka_cabinet.py](../omniisaacgymenvs/tasks/franka_cabinet.py)
This Franka example demonstrates interaction between Franka arm and cabinet, as well as setting states of objects inside the drawer.
It also showcases control of the Franka arm using position targets.
In this example, we use DOF state tensors to retrieve the state of the Franka arm, as well as the state of the drawer on the cabinet.
Actions are applied as position targets to the Franka arm DOFs.
Training can be launched with command line argument `task=FrankaCabinet`.
Running inference with pre-trained model can be launched with command line argument `task=FrankaCabinet test=True checkpoint=omniverse://localhost/NVIDIA/Assets/Isaac/2022.1/Isaac/Samples/OmniIsaacGymEnvs/Checkpoints/franka_cabinet.pth`
Config files used for this task are:
- **Task config**: [FrankaCabinet.yaml](../omniisaacgymenvs/cfg/task/FrankaCabinet.yaml)
- **rl_games training config**: [FrankaCabinetPPO.yaml](../omniisaacgymenvs/cfg/train/FrankaCabinetPPO.yaml)
<img src="https://user-images.githubusercontent.com/34286328/184174894-03767aa0-936c-4bfe-bbe9-a6865f539bb4.gif" width="300" height="150"/>
| 18,411 | Markdown | 58.779221 | 245 | 0.787953 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/docs/release_notes.md | Release Notes
=============
1.1.0 - August 22, 2022
-----------------------
Additions
---------
- Additional examples: Anymal, AnymalTerrain, BallBalance, Crazyflie, FrankaCabinet, Ingenuity, Quadcopter
- Add OpenAI variantions for Feed-Forward and LSTM networks for ShadowHand
- Add domain randomization framework `using omni.replicator.isaac`
- Add AnymalTerrain interactable demo
- Automatically disable `omni.kit.window.viewport` and `omni.physx.flatcache` extensions in headless mode to improve start-up load time
- Introduce `reset_xform_properties` flag for initializing Views of cloned environments to reduce load time
- Add WandB support
- Update RL-Games version to 1.5.2
Fixes
-----
- Correctly sets simulation device for GPU simulation
- Fix omni.client import order
- Fix episode length reset condition for ShadowHand and AllegroHand
1.0.0 - June 03, 2022
----------------------
- Initial release for RL examples with Isaac Sim
- Examples provided: AllegroHand, Ant, Cartpole, Humanoid, ShadowHand | 1,015 | Markdown | 35.285713 | 135 | 0.740887 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/docs/transfering_policies_from_isaac_gym.md | ## Transfering Policies from Isaac Gym Preview Releases
This section delineates some of the differences between the standalone
[Isaac Gym Preview Releases](https://developer.nvidia.com/isaac-gym) and
Isaac Sim reinforcement learning extensions, in hopes of facilitating the
process of transferring policies trained in the standalone preview releases
to Isaac Sim.
### Isaac Sim RL Extensions
Unlike the monolithic standalone Isaac Gym Preview Releases, Omniverse is
a highly modular system, with functionality split between various [Extensions](https://docs.omniverse.nvidia.com/prod_extensions/prod_extensions.html).
The APIs used by typical robotics RL systems are split between a handful of
extensions in Isaac Sim. These include `omni.isaac.core`, which provides
tensorized access to physics simulation state as well as a task management
framework, the `omni.isaac.cloner` extension for creating many copies of
your environments, and the `omni.isaac.gym` extension for interfacing with
external RL training libraries.
For naming clarity, we'll refer collectively to the extensions used for RL
within Isaac Sim as the **Isaac Sim RL extensions**, in contrast with the
older **Isaac Gym Preview Releases**.
### Quaternion Convention
The Isaac Sim RL extensions use various classes and methods in `omni.isaac.core`,
which adopts `wxyz` as the quaternion convention. However, the quaternion
convention used in Isaac Gym Preview Releases is `xyzw`. Therefore, if a policy
trained in one of the Isaac Gym Preview Releases takes in quaternions as part
of its observations, remember to switch all quaternions to use the `xyzw` convention
in the observation buffer `self.obs_buf`. Similarly, please ensure all quaternions
are in `wxyz` before passing them in any of the utility functions in `omni.isaac.core`.
### Joint Order
Isaac Sim's `ArticulationView` in `omni.isaac.core` assumes a breadth-first
ordering for the joints in a given kinematic tree. Specifically, for the following
kinematic tree, the method `ArticulationView.get_joint_positions` returns a
tensor of shape `(number of articulations in the view, number of joints in the articulation)`.
Along the second dimension of this tensor, the values represent the articulation's joint positions
in the following order: `[Joint 1, Joint 2, Joint 4, Joint 3, Joint 5]`. On the other hand,
the Isaac Gym Preview Releases assume a depth-first ordering for the joints in the kinematic
tree; In the example below, the joint orders would be the following: `[Joint 1, Joint 2, Joint 3, Joint 4, Joint 5]`.
<img src="./media/KinematicTree.png" height="300"/>
With this in mind, it is important to change the joint order to depth-first in
the observation buffer before feeding it into an existing policy trained in one of the
Isaac Gym Preview Releases. Similarly, you would also need to change the joint order
in the output (the action buffer) of the Isaac Gym Preview Release trained policy
to breadth-first before applying joint actions to articulations via methods in `ArticulationView`.
### Physics Parameters
One factor that could dictate the success of policy transfer from Isaac Gym Preview
Releases to Isaac Sim is to ensure the physics parameters used in both simulations are
identical or very similar. In general, the `sim` parameters specified in the
task configuration `yaml` file overwrite the corresponding parameters in the USD asset.
However, there are additional parameters in the USD asset that are not included
in the task configuration `yaml` file. These additional parameters may sometimes
impact the performance of Isaac Gym Preview Release trained policies and hence need
modifications in the USD asset itself to match the values set in Isaac Gym Preview Releases.
For instance, the following parameters in the `RigidBodyAPI` could be modified in the
USD asset to yield better policy transfer performance:
| RigidBodyAPI Parameter | Default Value in Isaac Sim | Default Value in Isaac Gym Preview Releases |
|:----------------------:|:--------------------------:|:--------------------------:|
| Linear Damping | 0.00 | 0.00 |
| Angular Damping | 0.05 | 0.00 |
| Max Linear Velocity | inf | 1000 |
| Max Angular Velocity | 5729.58008 (deg/s) | 64 (rad/s) |
| Max Contact Impulse | inf | 1e32 |
<img src="./media/RigidBodyAPI.png" width="500"/>
Parameters in the `JointAPI` as well as the `DriveAPI` could be altered as well. Note
that the Isaac Sim UI assumes the unit of angle to be degrees. It is particularly
worth noting that the `Damping` and `Stiffness` paramters in the `DriveAPI` have the unit
of `1/deg` in the Isaac Sim UI but `1/rad` in Isaac Gym Preview Releases.
| Joint Parameter | Default Value in Isaac Sim | Default Value in Isaac Gym Preview Releases |
|:----------------------:|:--------------------------:|:--------------------------:|
| Maximum Joint Velocity | 1000000.0 (deg) | 100.0 (rad) |
<img src="./media/JointAPI.png" width="500"/>
### Differences in APIs
APIs for accessing physics states in Isaac Sim require the creation of an ArticulationView or RigidPrimView
object. Multiple view objects can be initialized for different articulations or bodies in the scene by defining
a regex expression that matches the paths of the desired objects. This approach eliminates the need of retrieving
body handles to slice states for specific bodies in the scene.
We have also removed `acquire` and `refresh` APIs in Isaac Sim. Physics states can be directly applied or retrieved
by using `set`/`get` APIs defined for the views.
New APIs provided in Isaac Sim no longer require explicit wrapping and un-wrapping of underlying buffers.
APIs can now work with tensors directly for reading and writing data. Most APIs in Isaac Sim also provide
the option to specify an `indices` parameter, which can be used when reading or writing data for a subset
of environments. Note that when setting states with the `indices` parameter, the shape of the states buffer
should match with the dimension of the `indices` list.
Note some naming differences between APIs in Isaac Gym Preview Release and Isaac Sim. Most `dof` related APIs have been
named to `joint` in Isaac Sim. `root_states` is now separated into different APIs for `world_poses` and `velocities`.
Similary, `dof_states` are retrieved individually in Isaac Sim as `joint_positions` and `joint_velocities`.
APIs in Isaac Sim also no longer follow the explicit `_tensors` or `_tensor_indexed` suffixes in naming.
Indexed versions of APIs now happen implicitly through the optional `indices` parameter.
As part of our API improvements, we are defining a new set of contact APIs that aim to provide more useful details
on contacts and collisions. This will be a replacement of `net_contact_force` in the Isaac Gym Preview Release and
will be available in the next release of Isaac Sim. For now, Isaac Sim does not provide a tensorized API for
collecting contacts.
### Task Configuration Files
There are a few modifications that need to be made to an existing Isaac Gym Preview Release
task `yaml` file in order for it to be compatible with the Isaac Sim RL extensions.
#### Frequencies of Physics Simulation and RL Policy
The way in which physics simulation frequency and RL policy frequency are specified is different
between Isaac Gym Preview Releases and Isaac Sim, dictated by the following three
parameters: `dt`, `substeps`, and `controlFrequencyInv`.
- `dt`: The simulation time difference between each simulation step.
- `substeps`: The number of physics steps within one simulation step. *i.e.* if `dt: 1/60`
and `substeps: 4`, physics is simulated at 240 hz.
- `controlFrequencyInv`: The control decimation of the RL policy, which is the number of
simulation steps between RL actions. *i.e.* if `dt: 1/60` and `controlFrequencyInv: 2`,
RL policy is running at 30 hz.
In Isaac Gym Preview Releases, all three of the above parameters are used to specify
the frequencies of physics simulation and RL policy. However, Isaac Sim only uses `controlFrequencyInv` and `dt` as `substeps` is always fixed at `1`. Note that despite
only using two parameters, Isaac Sim can still achieve the same substeps definition
as Isaac Gym. For example, if in an Isaac Gym Preview Release policy, we set `substeps: 2`,
`dt: 1/60` and `controlFrequencyInv: 1`, we can achieve the equivalent in Isaac Sim
by setting `controlFrequencyInv: 2` and `dt: 1/120`.
In the Isaac Sim RL extensions, `dt` is specified in the task configuration `yaml` file
under `sim`, whereas `controlFrequencyInv` is a parameter under `env`.
#### Physx Parameters
Parameters under `physx` in the task configuration `yaml` file remain mostly unchanged.
In Isaac Gym Preview Releases, `use_gpu` is frequently set to
`${contains:"cuda",${....sim_device}}`. For Isaac Sim, please ensure this is changed
to `${eq:${....sim_device},"gpu"}`.
In Isaac Gym Preview Releases, GPU buffer sizes are specified using the following two parameters:
`default_buffer_size_multiplier` and `max_gpu_contact_pairs`. With the Isaac Sim RL extensions,
these two parameters are no longer used; instead, the various GPU buffer sizes can be
set explicitly.
For instance, in the [Humanoid task configuration file](../omniisaacgymenvs/cfg/task/Humanoid.yaml),
GPU buffer sizes are specified as follows:
```yaml
gpu_max_rigid_contact_count: 524288
gpu_max_rigid_patch_count: 81920
gpu_found_lost_pairs_capacity: 8192
gpu_found_lost_aggregate_pairs_capacity: 262144
gpu_total_aggregate_pairs_capacity: 8192
gpu_max_soft_body_contacts: 1048576
gpu_max_particle_contacts: 1048576
gpu_heap_capacity: 67108864
gpu_temp_buffer_capacity: 16777216
gpu_max_num_partitions: 8
```
Please refer to the [Troubleshooting](./troubleshoot.md#simulation) documentation should
you encounter errors related to GPU buffer sizes.
#### Articulation Parameters
The articulation parameters of each actor can now be individually specified tn the Isaac Sim
task configuration `yaml` file. The following is an example template for setting these parameters:
```yaml
ARTICULATION_NAME:
# -1 to use default values
override_usd_defaults: False
fixed_base: False
enable_self_collisions: True
enable_gyroscopic_forces: True
# per-actor
solver_position_iteration_count: 4
solver_velocity_iteration_count: 0
sleep_threshold: 0.005
stabilization_threshold: 0.001
# per-body
density: -1
max_depenetration_velocity: 10.0
```
These articulation parameters can be parsed using the `parse_actor_config` method in the
[SimConfig](../omniisaacgymenvs/utils/config_utils/sim_config.py) class, which can then be applied
to a prim in simulation via the `apply_articulation_settings` method. A concrete example of this
is the following code snippet from the [HumanoidTask](../omniisaacgymenvs/tasks/humanoid.py#L75):
```python
self._sim_config.apply_articulation_settings("Humanoid", get_prim_at_path(humanoid.prim_path), self._sim_config.parse_actor_config("Humanoid"))
```
#### Additional Simulation Parameters
- `use_flatcache`: Setting this paramter to `True` enables [PhysX Flatcache](https://docs.omniverse.nvidia.com/prod_extensions/prod_extensions/ext_physics.html#flatcache), which offers a significant increase in simulation speed. However, this parameter must
be set to `False` if soft-body simulation is required because `PhysX Flatcache` curently only supports rigid-body simulation.
- `enable_scene_query_support`: Setting this paramter to `True` allows the user to interact with prims in the scene. Keeping this setting to `False` during
training improves simulation speed. Note that this parameter is always set to `True` if in test/inference mode to enable user interaction with trained models.
### Training Configuration Files
The Omniverse Isaac Gym RL Environments are trained using a third-party highly-optimized RL library,
[rl_games](https://github.com/Denys88/rl_games), which is also used to train the Isaac Gym Preview Release examples
in [IsaacGymEnvs](https://github.com/NVIDIA-Omniverse/IsaacGymEnvs). Therefore, the rl_games training
configuration `yaml` files in Isaac Sim are compatible with those from IsaacGymEnvs. However, please
add the following lines under `config` in the training configuration `yaml` files (*i.e.*
line 41-42 in [HumanoidPPO.yaml](../omniisaacgymenvs/cfg/train/HumanoidPPO.yaml#L41)) to ensure
RL training runs on the intended device.
```yaml
device: ${....rl_device}
device_name: ${....rl_device}
``` | 12,853 | Markdown | 54.886956 | 258 | 0.748308 |
j3soon/OmniIsaacGymEnvs-UR10Reacher/docs/framework.md | ## RL Framework
### Overview
Our RL examples are built on top of Isaac Sim's RL framework provided in `omni.isaac.gym`. Tasks are implemented following `omni.isaac.core`'s Task structure. PPO training is performed using the [rl_games](https://github.com/Denys88/rl_games) library, but we provide the flexibility to use other RL libraries for training.
For a list of examples provided, refer to the
[RL List of Examples](rl.md)
### Class Definition
We can view the RL ecosystem as three main pieces: the Task, the RL policy, and the Environment wrapper that provides an interface for communication between the task and the RL policy.
#### Task
The Task class is where main task logic is implemented, such as computing observations and rewards. This is where we can collect states of actors in the scene and apply controls or actions to our actors.
For convenience, we provide a base Task class, `RLTask`, which inherits from the `BaseTask` class in `omni.isaac.core`. This class is responsible for dealing with common configuration parsing, buffer initialization, and environment creation. Note that some config parameters and buffers in this class are specific to the rl_games library, and it is not necessary to inherit new tasks from `RLTask`.
A few key methods in `RLTask` include:
* `__init__(self, name: str, env: VecEnvBase, offset: np.ndarray = None)` - Parses config values common to all tasks and initializes action/observation spaces if not defined in the child class. Defines a GridCloner by default and creates a base USD scope for holding all environment prims. Can be called from child class.
* `set_up_scene(self, scene: Scene)` - Adds ground plane and creates clones of environment 0 based on values specifid in config. Can be called from child class `set_up_scene()`.
* `pre_physics_step(self, actions: torch.Tensor)` - Takes in actions buffer from RL policy. Can be overriden by child class to process actions.
* `post_physics_step(self)` - Controls flow of RL data processing by triggering APIs to compute observations, retrieve states, compute rewards, resets, and extras. Will return observation, reward, reset, and extras buffers.
#### Environment Wrappers
As part of the RL framework in Isaac Sim, we have introduced environment wrapper classes in `omni.isaac.gym` for RL policies to communicate with simulation in Isaac Sim. This class provides a vectorized interface for common RL APIs used by `gym.Env` and can be easily extended towards RL libraries that require additional APIs. We show an example of this extension process in this repository, where we extend `VecEnvBase` as provided in `omni.isaac.gym` to include additional APIs required by the rl_games library.
Commonly used APIs provided by the base wrapper class `VecEnvBase` include:
* `render(self, mode: str = "human")` - renders the current frame
* `close(self)` - closes the simulator
* `seed(self, seed: int = -1)` - sets a seed. Use `-1` for a random seed.
* `step(self, actions: Union[np.ndarray, torch.Tensor])` - triggers task `pre_physics_step` with actions, steps simulation and renderer, computes observations, rewards, dones, and returns state buffers
* `reset(self)` - triggers task `reset()`, steps simulation, and re-computes observations
##### Multi-Threaded Environment Wrapper
`VecEnvBase` is a simple interface that’s designed to provide commonly used `gym.Env` APIs required by RL libraries. Users can create an instance of this class, attach your task to the interface, and provide your wrapper instance to the RL policy. Since the RL algorithm maintains the main loop of execution, interaction with the UI and environments in the scene can be limited and may interfere with the training loop.
We also provide another environment wrapper class called `VecEnvMT`, which is designed to isolate the RL policy in a new thread, separate from the main simulation and rendering thread. This class provides the same set of interface as `VecEnvBase`, but also provides threaded queues for sending and receiving actions and states between the RL policy and the task. In order to use this wrapper interface, users have to implement a `TrainerMT` class, which should implement a `run()` method that initiates the RL loop on a new thread. We show an example of this in OmniIsaacGymEnvs under `omniisaacgymenvs/scripts/rlgames_train_mt.py`. The setup for using `VecEnvMT` is more involved compared to the single-threaded `VecEnvBase` interface, but will allow users to have more control over starting and stopping the training loop through interaction with the UI.
Note that `VecEnvMT` has a timeout variable, which defaults to 30 seconds. If either the RL thread waiting for physics state exceeds the timeout amount or the simulation thread waiting for RL actions exceeds the timeout amount, the threaded queues will throw an exception and terminate training. For larger scenes that require longer simulation or training time, try increasing the timeout variable in `VecEnvMT` to prevent unnecessary timeouts. This can be done by passing in a `timeout` argument when calling `VecEnvMT.initialize()`.
### Creating New Examples
For simplicity, we will focus on using the single-threaded `VecEnvBase` interface in this tutorial.
To run any example, first make sure an instance of `VecEnvBase` or descendant of `VecEnvBase` is initialized.
This will be required as an argumet to our new Task. For example:
``` python
env = VecEnvBase(headless=False)
```
The headless parameter indicates whether a viewer should be created for visualizing results.
Then, create our task class, extending it from `RLTask`:
```python
class MyNewTask(RLTask):
def __init__(
self,
name: str, # name of the Task
sim_config: SimConfig, # SimConfig instance for parsing cfg
env: VecEnvBase, # env instance of VecEnvBase or inherited class
offset=None # transform offset in World
) -> None:
# parse configurations, set task-specific members
...
self._num_observations = 4
self._num_actions = 1
# call parent class’s __init__
RLTask.__init__(self, name, env)
```
The `__init__` method should take 4 arguments:
* `name`: a string for the name of the task (required by BaseTask)
* `sim_config`: an instance of `SimConfig` used for config parsing, can be `None`. This object is created in `omniisaacgymenvs/utils/task_utils.py`.
* `env`: an instance of `VecEnvBase` or an inherited class of `VecEnvBase`
* `offset`: any offset required to place the `Task` in `World` (required by `BaseTask`)
In the `__init__` method of `MyNewTask`, we can populate any task-specific parameters, such as dimension of observations and actions, and retrieve data from config dictionaries. Make sure to make a call to `RLTask`’s `__init__` at the end of the method to perform additional data initialization.
Next, we can implement the methods required by the RL framework. These methods follow APIs defined in `omni.isaac.core` `BaseTask` class. Below is an example of a simple implementation for each method.
```python
def set_up_scene(self, scene: Scene) -> None:
# implement environment setup here
add_prim_to_stage(my_robot) # add a robot actor to the stage
super().set_up_scene(scene) # pass scene to parent class - this method in RLTask also uses GridCloner to clone the robot and adds a ground plane if desired
self._my_robots = ArticulationView(...) # create a view of robots
scene.add(self._my_robots) # add view to scene for initialization
def post_reset(self):
# implement any logic required for simulation on-start here
pass
def pre_physics_step(self, actions: torch.Tensor) -> None:
# implement logic to be performed before physics steps
self.perform_reset()
self.apply_action(actions)
def get_observations(self) -> dict:
# implement logic to retrieve observation states
self.obs_buf = self.compute_observations()
def calculate_metrics(self) -> None:
# implement logic to compute rewards
self.rew_buf = self.compute_rewards()
def is_done(self) -> None:
# implement logic to update dones/reset buffer
self.reset_buf = self.compute_resets()
```
To launch the new example from one of our training scripts, add `MyNewTask` to `omniisaacgymenvs/utils/task_util.py`. In `initialize_task()`, add an import to the `MyNewTask` class and add an instance to the `task_map` dictionary to register it into the command line parsing.
To use the Hydra config parsing system, also add a task and train config files into `omniisaacgymenvs/cfg`. The config files should be named `cfg/task/MyNewTask.yaml` and `cfg/train/MyNewTaskPPO.yaml`.
Finally, we can launch `MyNewTask` with:
```bash
PYTHON_PATH random_policy.py task=MyNewTask
```
### Using a New RL Library
In this repository, we provide an example of extending Isaac Sim's environment wrapper classes to work with the rl_games library, which can be found at `omniisaacgymenvs/envs/vec_env_rlgames.py` and `omniisaacgymenvs/envs/vec_env_rlgames_mt.py`.
The first script, `omniisaacgymenvs/envs/vec_env_rlgames.py`, extends from `VecEnvBase`.
```python
from omni.isaac.gym.vec_env import VecEnvBase
class VecEnvRLGames(VecEnvBase):
```
One of the features in rl_games is the support for asymmetrical actor-critic policies, which requires a `states` buffer in addition to the `observations` buffer. Thus, we have overriden a few of the class in `VecEnvBase` to incorporate this requirement.
```python
def set_task(
self, task, backend="numpy", sim_params=None, init_sim=True
) -> None:
super().set_task(task, backend, sim_params, init_sim) # class VecEnvBase's set_task to register task to the environment instance
# special variables required by rl_games
self.num_states = self._task.num_states
self.state_space = self._task.state_space
def step(self, actions):
# we clamp the actions so that values are within a defined range
actions = torch.clamp(actions, -self._task.clip_actions, self._task.clip_actions).to(self._task.device).clone()
# pass actions buffer to task for processing
self._task.pre_physics_step(actions)
# allow users to specify the control frequency through config
for _ in range(self._task.control_frequency_inv):
self._world.step(render=self._render)
self.sim_frame_count += 1
# compute new buffers
self._obs, self._rew, self._resets, self._extras = self._task.post_physics_step()
self._states = self._task.get_states() # special buffer required by rl_games
# return buffers in format required by rl_games
obs_dict = {"obs": self._obs, "states": self._states}
return obs_dict, self._rew, self._resets, self._extras
```
Similarly, we also have a multi-threaded version of the rl_games environment wrapper implementation, `omniisaacgymenvs/envs/vec_env_rlgames_mt.py`. This class extends from `VecEnvMT` and `VecEnvRLGames`:
```python
from omni.isaac.gym.vec_env import VecEnvMT
from .vec_env_rlgames import VecEnvRLGames
class VecEnvRLGamesMT(VecEnvRLGames, VecEnvMT):
```
In this class, we also have a special method `_parse_data(self, data)`, which is required to be implemented to parse dictionary values passed through queues. Since multiple buffers of data are required by the RL policy, we concatenate all of the buffers in a single dictionary, and send that to the queue to be received by the RL thread.
```python
def _parse_data(self, data):
self._obs = torch.clamp(data["obs"], -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone()
self._rew = data["rew"].to(self._task.rl_device).clone()
self._states = torch.clamp(data["states"], -self._task.clip_obs, self._task.clip_obs).to(self._task.rl_device).clone()
self._resets = data["reset"].to(self._task.rl_device).clone()
self._extras = data["extras"].copy()
```
| 11,941 | Markdown | 60.241025 | 856 | 0.746169 |
timedomain-tech/Timedomain-Ai-Singer-Extension/README.md | # Abstract
Timedomain AI Singer Omniverse Extension is a convenient tool for singing synthesis on the Omniverse platform.
FEATURES:
- Create lifelike human singing voices with one click
- Choose from a rich variety of voice library
- Mix up to 10 singer voices to create your own singing
- Support utafomatix file which can be converted from almost all kinds of singing score format
<img src="./image/demo.gif">
# About
TimedomAIn is a technology company that focuses on AI. We aim to make AI meet the emotional needs of human beings and endow AI with the ability to express emotion through “Rich-Emotion” human voice synthesis technology.
# Get started
## Add extension to Omniverse
1. **[Open extension manager]** After opening Omniverse Code, go to `Menu` -> `Window` -> `Extension`
2. **[Add this extension to Omniverse]** Click the <img src="https://github.githubassets.com/images/icons/emoji/unicode/2699.png?v8" width="18"> button and add absolute extension path to `Extension Search Paths`.
Finally, you can search `timedomain.ai.singer` and enable this extension.
> **Note**:
> the extension path to add is: `<your-path-to-timedomain-ai-singer>/exts`

3. **[We also need to add some dependencies]** Click the <img src="https://github.githubassets.com/images/icons/emoji/unicode/2699.png?v8" width="18"> button and add absolute extension path to `Extension Registries`.
> **Note**:
> the extension registries to add is: `omniverse://kit-extensions.ov.nvidia.com/exts/kit/default`

## Usage
Click the file button on the right to open the directory selection window, select the directory and the path will be displayed in the box. You can also paste the directory path directly to the display box.
<img src="./image/picture_1.png">
Currently, only utafomatix files are available, and more file formats will be supported in the future.
<img src="./image/picture_2.png">
> **Note**:
> the duration of the score must within 10 minutes
> **Note**:
> only the first track of the score will be synthesised
Once you have your score chosen, you can select a singer voice or mix singer voices:
> **Note**:
> up to 10 singer voices can be used for mixing
<img src="./image/picture_5.png">
Click "add" button to add a singer voice, move the slider (from 0 to 1) to adjust the similarity between the synthesis result and the chosen singer voice
Finally, click "synthesis" button to send the request, the button will change to loading state when the request is being processed.
<img src="./image/picture_3.png">
<img src="./image/picture_4.png">
> **Note**:
> the frequency of the synthesis request is limited to 4 per minute
> **Note**:
> The synthesis time will increase according to the score duration
| 2,813 | Markdown | 37.027027 | 219 | 0.748311 |
timedomain-tech/Timedomain-Ai-Singer-Extension/tools/scripts/link_app.py | import os
import argparse
import sys
import json
import packmanapi
import urllib3
def find_omniverse_apps():
http = urllib3.PoolManager()
try:
r = http.request("GET", "http://127.0.0.1:33480/components")
except Exception as e:
print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}")
sys.exit(1)
apps = {}
for x in json.loads(r.data.decode("utf-8")):
latest = x.get("installedVersions", {}).get("latest", "")
if latest:
for s in x.get("settings", []):
if s.get("version", "") == latest:
root = s.get("launch", {}).get("root", "")
apps[x["slug"]] = (x["name"], root)
break
return apps
def create_link(src, dst):
print(f"Creating a link '{src}' -> '{dst}'")
packmanapi.link(src, dst)
APP_PRIORITIES = ["code", "create", "view"]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher")
parser.add_argument(
"--path",
help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'",
required=False,
)
parser.add_argument(
"--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False
)
args = parser.parse_args()
path = args.path
if not path:
print("Path is not specified, looking for Omniverse Apps...")
apps = find_omniverse_apps()
if len(apps) == 0:
print(
"Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers."
)
sys.exit(0)
print("\nFound following Omniverse Apps:")
for i, slug in enumerate(apps):
name, root = apps[slug]
print(f"{i}: {name} ({slug}) at: '{root}'")
if args.app:
selected_app = args.app.lower()
if selected_app not in apps:
choices = ", ".join(apps.keys())
print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}")
sys.exit(0)
else:
selected_app = next((x for x in APP_PRIORITIES if x in apps), None)
if not selected_app:
selected_app = next(iter(apps))
print(f"\nSelected app: {selected_app}")
_, path = apps[selected_app]
if not os.path.exists(path):
print(f"Provided path doesn't exist: {path}")
else:
SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__))
create_link(f"{SCRIPT_ROOT}/../../app", path)
print("Success!")
| 2,813 | Python | 32.5 | 133 | 0.562389 |
timedomain-tech/Timedomain-Ai-Singer-Extension/tools/packman/config.packman.xml | <config remotes="cloudfront">
<remote2 name="cloudfront">
<transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" />
</remote2>
</config>
| 211 | XML | 34.333328 | 123 | 0.691943 |
timedomain-tech/Timedomain-Ai-Singer-Extension/tools/packman/bootstrap/install_package.py | # Copyright 2019 NVIDIA CORPORATION
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import zipfile
import tempfile
import sys
import shutil
__author__ = "hfannar"
logging.basicConfig(level=logging.WARNING, format="%(message)s")
logger = logging.getLogger("install_package")
class TemporaryDirectory:
def __init__(self):
self.path = None
def __enter__(self):
self.path = tempfile.mkdtemp()
return self.path
def __exit__(self, type, value, traceback):
# Remove temporary data created
shutil.rmtree(self.path)
def install_package(package_src_path, package_dst_path):
with zipfile.ZipFile(
package_src_path, allowZip64=True
) as zip_file, TemporaryDirectory() as temp_dir:
zip_file.extractall(temp_dir)
# Recursively copy (temp_dir will be automatically cleaned up on exit)
try:
# Recursive copy is needed because both package name and version folder could be missing in
# target directory:
shutil.copytree(temp_dir, package_dst_path)
except OSError as exc:
logger.warning(
"Directory %s already present, packaged installation aborted" % package_dst_path
)
else:
logger.info("Package successfully installed to %s" % package_dst_path)
install_package(sys.argv[1], sys.argv[2])
| 1,888 | Python | 31.568965 | 103 | 0.68697 |
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/instance.py | from .settings import BoolSetting, CategoricalSetting, SettingItem
class InstanceManagerBase:
def __init__(self):
self._settings = SettingItem("ace")
self._setting = CategoricalSetting("ace")
self.boolSetting = BoolSetting("ace")
def shutdown(self):
self._settings = None
self._setting = None
self.boolSetting = None | 375 | Python | 27.923075 | 66 | 0.653333 |
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/utils_io.py | import os
import omni.client
A2F_SERVER_TYPE = "omniverse:"
def is_ov_path(path):
return A2F_SERVER_TYPE in path
def path_join(root, fname):
if A2F_SERVER_TYPE in root:
return f"{root}/{fname}"
else:
return os.path.normpath(os.path.join(root, fname))
def is_folder(path):
result, entry = omni.client.stat(path)
# bitewise operation, folder flags is 4
return entry.flags & omni.client.ItemFlags.CAN_HAVE_CHILDREN
def is_valid_path(path):
result, entry = omni.client.stat(path)
return result == omni.client.Result.OK
def list_folder(path):
items = []
path = path.rstrip("/")
result, entries = omni.client.list(path)
if result != omni.client.Result.OK:
return items
for en in entries:
# Skip if it is a folder
if en.flags & omni.client.ItemFlags.CAN_HAVE_CHILDREN:
continue
name = en.relative_path
items.append(name)
return items
def read_file(fpath):
result, _str, bytes_data = omni.client.read_file(fpath)
if result != omni.client.Result.OK:
raise RuntimeError("Unable to read file: {}".format(fpath))
return bytes_data
def write_file(fpath, bytes_data):
result = omni.client.write_file(fpath, bytes_data)
if result != omni.client.Result.OK:
raise RuntimeError("Unable to write file: {}".format(fpath))
| 1,378 | Python | 23.625 | 68 | 0.650218 |
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/styles.py | import os
import omni.ui as ui
from omni.ui import color as cl
ELEM_MARGIN = 4
BORDER_RADIUS = 4
VSPACING = ELEM_MARGIN * 2
RECORDER_BTN_WIDTH = 75
LABEL_WIDTH = 100
BTN_WIDTH = 40
BTN_HEIGHT = 16
WAVEFORM_HEIGHT = 22 * 2 + VSPACING + 10
ERROR_CLR = 0xCC7777FF
WARN_CLR = 0xCC77FFFF
KEYFRAME_CLR = 0xAAAA77FF
IMAGE_SIZE = 25
A2F_SERVER_TYPE = "omniverse:"
EXT_ROOT = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../../"))
DATA_PATH = os.path.join(EXT_ROOT, "icons")
PlayBtnStyle = {"image_url": DATA_PATH + "/timeline_play.svg"}
PauseBtnStyle = {"image_url": DATA_PATH + "/timeline_pause.svg"}
ComposeBtnStyle = {"image_url": DATA_PATH + "/timeline_loop.svg"}
LoadingBtnStyle = {"image_url": DATA_PATH + "/loading.gif"}
LocationBtnStyle = {"image_url": DATA_PATH + "/folder.svg"}
AUDIO_FILE_TYPES = [".ufdata"]
StringFieldStyle = {"margin_height": 0, "margin_width": ELEM_MARGIN, "border_radius": BORDER_RADIUS}
ComboBoxStyle = {"border_radius": BORDER_RADIUS + 2}
HandlePlaybackStyle = {"border_radius": 0, "background_color": 0xFFEEEE33}
HandleRecordingStyle = {"border_radius": 0, "background_color": 0xFF3333EE}
HandleStreamingStyle = {"border_radius": 0, "background_color": 0xFF33EE33}
TrackWaveformStyle = {"margin_height": 0, "margin_width": 0, "border_radius": 0}
RangeStartSpacerStyle = {"border_width": 0, "padding": 0, "border_radius": 0, "margin_width": 0}
BigLableStyle = {"font_size": 16, "color": 0xFFFFFFFF}
SmallLableStyle = {"font_size": 14, "color": 0xFF4B4B4B}
ScrollingFrameStyle = {"background_color": 0xFF323232}
MainWindowStyle = {
"Image::header_frame": {"image_url": DATA_PATH + "/head.png"},
"Line::group_line": {"color": cl("#4B4B4B"), "margin_height": 0, "padding": 0},
"Slider::float_slider": {
"background_color": cl("#FF3300"),
"secondary_color": cl("#24211F"),
"border_radius": 3,
"corner_flag": ui.CornerFlag.ALL,
"draw_mode": ui.SliderDrawMode.FILLED,
},
}
PlaybackSliderBackgroundStyle = {
"background_color": 0xFF24211F,
"margin_height": 0,
"margin_width": 0,
"border_radius": 0,
}
LargeBtnStyle = {
"border_radius": BORDER_RADIUS,
"border_width": 0,
"font_size": 14,
"padding": ELEM_MARGIN * 2,
"margin_width": ELEM_MARGIN,
"margin_height": ELEM_MARGIN,
}
FileBrowseBtnStyle = {
"image_url": DATA_PATH + "/folder.svg",
"background_color": 0xFF333333,
":hovered": {"background_color": 0xFF9E9E9E},
}
ModalBtnStyle = {
"border_radius": BORDER_RADIUS,
"border_width": 0,
"font_size": 14,
"padding": ELEM_MARGIN * 2,
"margin_width": ELEM_MARGIN,
"margin_height": ELEM_MARGIN,
}
TrashBtnStyle = {
"image_url": "${glyphs}/trash.svg",
"background_color": 0xFF333333,
":hovered": {"background_color": 0xFF9E9E9E},
":disabled": {"color": 0x60FFFFFF},
}
TrashDarkBtnStyle = {
"image_url": "${glyphs}/trash.svg",
":hovered": {"background_color": 0xFF9E9E9E},
":disabled": {"color": 0x60FFFFFF},
}
PlusBtnStyle = {
"image_url": "${glyphs}/plus.svg",
"background_color": 0xFF333333,
":hovered": {"background_color": 0xFF9E9E9E},
":disabled": {"color": 0x60FFFFFF},
}
PlusDarkBtnStyle = {
"image_url": "${glyphs}/plus.svg",
":hovered": {"background_color": 0xFF9E9E9E},
":disabled": {"color": 0x60FFFFFF},
}
PlusDarkExcitedBtnStyle = {
"image_url": "${glyphs}/plus.svg",
"color": WARN_CLR,
":hovered": {"background_color": 0xFF9E9E9E},
":disabled": {"color": 0x60FFFFFF},
}
MinusDarkBtnStyle = {
"image_url": "${omni_audio2face_common_resources}/minus.png",
":hovered": {"background_color": 0xFF9E9E9E},
":disabled": {"color": 0x60FFFFFF},
}
AngleLeftDarkBtnStyle = {
"image_url": "${glyphs}/angle_left.svg",
":hovered": {"background_color": 0xFF9E9E9E},
":disabled": {"color": 0x60FFFFFF},
}
AngleRightDarkBtnStyle = {
"image_url": "${glyphs}/angle_right.svg",
":hovered": {"background_color": 0xFF9E9E9E},
":disabled": {"color": 0x60FFFFFF},
}
FileBrowseBtnStyle = {
"image_url": "resources/glyphs/folder.svg",
"background_color": 0xFF333333,
":hovered": {"background_color": 0xFF9E9E9E},
}
RangeRectStyle = {
"background_color": 0x30BBAB58,
"padding": 0,
"margin_width": 0,
"margin_height": 0,
"border_radius": 0,
"border_color": 0x70BBAB58,
"border_width": 1,
}
RangeRectRecordingStyle = {
"background_color": 0x305858BB,
"padding": 0,
"margin_width": 0,
"margin_height": 0,
"border_radius": 0,
"border_color": 0x705858BB,
"border_width": 1,
}
RangeRectStreamingStyle = {
"background_color": 0x3058BB58,
"padding": 0,
"margin_width": 0,
"margin_height": 0,
"border_radius": 0,
"border_color": 0x7058BB58,
"border_width": 1,
}
| 4,854 | Python | 26.275281 | 100 | 0.639885 |
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/extension.py | from .styles import VSPACING, BigLableStyle, MainWindowStyle
from .ui import (
WAVEFORM_HEIGHT,
ButtonComposing,
ButtonLocation,
ButtonPlayPause,
CategoricalSettingWidgetWithReset,
PathWidgetWithReset,
FemaleEntertainerWidger,
TimecodeWidget,
TimelineWidget,
)
import omni.ext
import omni.ui as ui
import omni.client
class MyExtension(omni.ext.IExt):
def on_startup(self, ext_id):
print("[timedomain.ai.singer] MyExtension startup")
self._window = ui.Window("TIMEDOMAIN AI SINGER", width=840, height=650)
self._window.frame.set_build_fn(self.show_window)
self._window.frame.style = MainWindowStyle
def on_shutdown(self):
print("[timedomain.ai.singer] MyExtension shutdown")
self._root_path_widget = None
self._track_widget = None
self._range_widget = None
self.frame = None
self._btn_loop = None
self._timecode_widget.shutdown()
self._timecode_widget = None
self._btn_play.shutdown()
self._btn_play = None
self._timeline_widget.shutdown()
self._timeline_widget = None
self._btn_recorder = None
if self._window:
self._window.destroy()
self._window = None
def show_window(self):
with self._window.frame:
with ui.VStack(spacing=10):
self._root_path_widget = PathWidgetWithReset()
self._root_path_widget._build_content()
self._track_widget = CategoricalSettingWidgetWithReset()
self._track_widget._build_content()
with ui.VStack(height=5):
ui.Line(name="group_line", alignment=ui.Alignment.CENTER)
self.frame = FemaleEntertainerWidger()
self.frame._build_glyph()
with ui.HStack(height=0):
ui.Line(name="group_line", alignment=ui.Alignment.CENTER)
with ui.VStack(height=20):
ui.Label("Mix Your Voice Style", style=BigLableStyle)
self.frame._build_content()
self._btn_loop = ButtonComposing()
self._btn_loop._build_widget()
with ui.HStack(height=WAVEFORM_HEIGHT):
self._timeline_widget = TimelineWidget()
self._timeline_widget._build_content()
ui.Spacer(width=4)
with ui.VStack(spacing=VSPACING, width=0):
self._timecode_widget = TimecodeWidget()
self._timecode_widget._build_content()
with ui.HStack():
self._btn_play = ButtonPlayPause()
self._btn_play._build_content()
self._btn_recorder = ButtonLocation()
self._btn_recorder._build_widget()
| 2,911 | Python | 38.351351 | 79 | 0.567846 |
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/__init__.py | from .extension import *
| 25 | Python | 11.999994 | 24 | 0.76 |
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/settings.py | from typing import TypeVar
from pxr import Sdf
SettingType = TypeVar("SettingType", bound="SettingItem")
class SettingItem:
_val = None
_filename = None
_state = None
_mix_info = {
"duration": [],
"pitch": [],
"air": [],
"falsetto": [],
"tension": [],
"energy": [],
"mel": [],
}
def __init__(self, name):
self._name = name
self._init_fn = None
self._changed_fn = None
self._prim = None
self._default_val = None
self._org_default_val = None
self._initialized = False
def shutdown(self):
self._prim = None
def init(self, default_val=None, init_fn=None, changed_fn=None, prim=None):
self._init_fn = init_fn
self._changed_fn = changed_fn
self._prim = prim
self._default_val = self._check(default_val)
self._org_default_val = self._default_val
SettingItem._val = self._default_val # Required if set_val(val) will fail
if self._prim is not None and self._prim.HasAttribute(self.get_usd_attr_name()):
val = self._prim.GetAttribute(self.get_usd_attr_name()).Get()
else:
val = self._default_val
self.set_val(val, use_callback=True, use_init_fn=True)
self._initialized = True
def initialized(self):
return self._initialized
def get_name(self):
return self._name
def get_ui_name(self):
return self._name.replace("_", " ").title()
def get_usd_attr_name(self):
return f"state:setting_{self._name}"
def get_val(self):
if SettingItem._filename is not None:
SettingItem._state = False
return SettingItem._val
def get_default(self):
return self._default_val
def is_default(self):
return SettingItem._val == self._default_val
def set_val(self, val, use_callback=True, use_init_fn=False):
# val_checked = self._check(val)
# callback_fn = self._init_fn if use_init_fn else self._changed_fn
# val_prev = SettingItem._val
SettingItem._val = val
# if use_callback and callback_fn is not None:
# try:
# callback_fn(val_checked)
# except Exception as e:
# SettingItem._val = val_prev
# print(e)
# raise
# self._update_usd_prim_attr()
def set_default(self, default_val):
self._default_val = self._check(default_val)
def reset_default(self):
self._default_val = self._get_safe_default()
def reset(self):
self.set_val(self._default_val, use_callback=True, use_init_fn=False)
def get_usd_type(self):
raise NotImplementedError
def get_arr_usd_type(self):
raise NotImplementedError # Should be implemented in derived class
def to_arr_usd_data(self, arr):
raise NotImplementedError # Should be implemented in derived class
def from_arr_usd_data(self, arr, arr_len):
raise NotImplementedError # Should be implemented in derived class
def interpolate(self, val1, val2, alpha):
raise NotImplementedError # Should be implemented in derived class
def _update_usd_prim_attr(self):
if self._prim is not None and self._prim.IsValid():
if SettingItem._val is not None:
self._prim.CreateAttribute(self.get_usd_attr_name(), self.get_usd_type()).Set(SettingItem._val)
def _check(self, val):
return val
class CategoricalSetting(SettingItem):
def __init__(self, name, options=[], value=None):
self.options = options
self._value = value
super().__init__(name)
def init(self, default_val, init_fn, changed_fn, prim):
super().init(default_val, init_fn, changed_fn, prim)
def get_options(self):
if len(self._options) > 0:
SettingItem._filename = self._options[0]
return self._options
def set_options_and_keep(self, options):
self._options = options
# if SettingItem._val not in self._options:
# # log_warn(
# # f"Setting [{self.get_name()}]: Old value [{self._val}]
# # is not in the new list [{self._options}], resetting to default"
# # )
# self.reset_default()
# self.reset()
def set_options_and_reset(self, options):
self._options = options
self.reset_default()
self.reset()
def set_value(self, val):
self._value = val
SettingItem._filename = val
SettingItem._state = False
def get_value(self):
return self._value
def set_options_and_val(self, options, val):
self._options = options
self.reset_default()
self.set_value(val, use_callback=True, use_init_fn=False)
def get_index(self):
if self._value is not None:
BoolSetting._filename = self._value
return self._options.index(self._value)
else:
return None
def set_index(self, val_index):
val = self._options[val_index]
self.set_value(val)
def get_usd_type(self):
return Sdf.ValueTypeNames.String
def get_arr_usd_type(self):
return Sdf.ValueTypeNames.StringArray
def to_arr_usd_data(self, arr):
return list(arr)
def from_arr_usd_data(self, arr, arr_len):
return list(arr)
def interpolate(self, val1, val2, alpha):
return val1
def _get_safe_default(self):
if len(self._options) > 0:
return self._options[0]
else:
return None
def _check(self, val):
if val is None:
return self._get_safe_default()
if val not in self._options:
raise AttributeError(
f"Setting [{self.get_name()}]: value '{val}' is not in the list of options {self._options}"
)
return val
class BoolSetting(SettingItem):
def __init__(self, name):
super().__init__(name)
def init(self, default_val, init_fn, changed_fn, prim):
super().init(default_val, init_fn, changed_fn, prim)
def get_usd_type(self):
return Sdf.ValueTypeNames.Bool
def get_arr_usd_type(self):
return Sdf.ValueTypeNames.BoolArray
def to_arr_usd_data(self, arr):
return list(arr)
def from_arr_usd_data(self, arr, arr_len):
return list(arr)
def interpolate(self, val1, val2, alpha):
return val1
def toggle(self, use_callback=True):
pass
def get_state(self):
return SettingItem._state
def _get_safe_default(self):
return False
def _check(self, val):
if val is None:
return self._get_safe_default()
return bool(val)
| 6,831 | Python | 27.827004 | 111 | 0.580003 |
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/ui.py | import os
import pathlib
import json
import omni.kit.pipapi
from .scripts.ui import BoolSettingWidgetBase, SimpleWidget
from threading import Thread
from .styles import (
A2F_SERVER_TYPE,
AUDIO_FILE_TYPES,
BTN_HEIGHT,
BTN_WIDTH,
DATA_PATH,
EXT_ROOT,
LABEL_WIDTH,
WAVEFORM_HEIGHT,
ComboBoxStyle,
FileBrowseBtnStyle,
HandlePlaybackStyle,
HandleRecordingStyle,
HandleStreamingStyle,
BigLableStyle,
LargeBtnStyle,
LocationBtnStyle,
PauseBtnStyle,
PlayBtnStyle,
PlaybackSliderBackgroundStyle,
RangeRectRecordingStyle,
RangeRectStreamingStyle,
RangeRectStyle,
RangeStartSpacerStyle,
ScrollingFrameStyle,
SmallLableStyle,
StringFieldStyle,
TrackWaveformStyle,
)
from .instance import InstanceManagerBase
import omni.client
import omni.ui as ui
import numpy as np
import scipy.ndimage
os.environ["PATH"] += os.pathsep + os.path.join(EXT_ROOT, "dep/ffmpeg")
omni.kit.pipapi.install("pydub")
omni.kit.pipapi.install("requests")
from pydub import AudioSegment
import requests
from .requestData import GetData
class PathWidgetWithReset(InstanceManagerBase):
def __init__(self):
super().__init__()
self._lbl = None
self._field_model = None
self._field = None
self._browse_btn = None
self._browse_dialog = None
def _on_browse_selected(self, filename, dirname):
if self._field is not None:
self._settings.set_val(dirname, use_callback=True)
if self._browse_dialog is not None:
self._browse_dialog.hide()
self._field_model.set_value(self._settings.get_val())
def _on_browse_canceled(self, filename, dirname):
if self._browse_dialog is not None:
self._browse_dialog.hide()
def _on_browse(self):
if self._browse_dialog is None:
self._browse_dialog = omni.kit.window.filepicker.FilePickerDialog(
"Select Audio Directory",
allow_multi_selection=False,
apply_button_label="Select",
click_apply_handler=self._on_browse_selected,
click_cancel_handler=self._on_browse_canceled,
current_directory=str(pathlib.Path.home()),
enable_filename_input=False,
)
else:
self._browse_dialog.show()
self._browse_dialog.refresh_current_directory()
def _on_changed(self, val):
self._settings.set_val(val, use_callback=True)
self._field_model.set_value(self._settings.get_val())
def _on_begin_edit(self, *_):
pass
def _build_content(self):
with ui.VStack(height=28):
ui.Label("Import Your Score", style=BigLableStyle)
ui.Label("Support format: ufdata", style=SmallLableStyle)
with ui.HStack(height=20):
ui.Label("Score Root Path", width=LABEL_WIDTH)
value = self._settings.get_val()
self._field_model = StringFieldModel(value, self._on_changed)
self._field_model.add_begin_edit_fn(self._on_begin_edit)
self._field_model.set_value(self._settings.get_val())
self._field = ui.StringField(self._field_model, style=StringFieldStyle)
self._browse_btn = ui.Button(
width=BTN_WIDTH, image_height=BTN_HEIGHT, style=FileBrowseBtnStyle, clicked_fn=self._on_browse
)
class CategoricalSettingWidgetWithReset(InstanceManagerBase):
def __init__(self):
super().__init__()
self._lbl = None
self._combo_model = None
self._combo = None
self._update_sub = omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(self._on_update)
self._frame = None
def shutdown(self):
self._update_sub = None
self._lbl = None
if self._combo_model is not None:
self._combo_model.shutdown()
self._combo_model = None
self._combo = None
super().shutdown()
def _build_content(self):
self._frame = ui.HStack(height=20)
with self._frame:
self._lbl = ui.Label("Score Name", width=LABEL_WIDTH)
# # options: 列表数组
tracks = self._load_track_list(self.get_abs_track_root_path())
self._setting.set_options_and_keep(tracks)
options = self._setting.get_options()
cur_option = self._setting.get_index()
self._combo_model = ComboBoxMinimalModel(options, cur_option, self._on_changed)
if len(self._setting.get_options()) == 0 or self._setting.get_val() is None:
self._combo = None
ui.Label("No options")
else:
self._combo = ui.ComboBox(self._combo_model, style=ComboBoxStyle)
def _on_changed(self, val_index):
self._setting.set_index(val_index)
def _on_update(self, *_):
if self.get_abs_track_root_path():
tracks = self._load_track_list(self.get_abs_track_root_path())
if tracks != self._setting.get_options():
self._setting.set_options_and_keep(tracks)
if self._combo_model is not None:
if self._setting.get_val() is not None:
self._combo_model.set_index(self._setting.get_index())
if self._combo_model.get_options() != self._setting.get_options():
self._refresh()
def _load_track_list(self, path: str):
# path = path.replace("\\", "/")
if not self.is_folder(path):
print(f"Unable to load list of tracks from {path}")
return []
dir_files = self.list_folder(path)
return [x for x in dir_files if (os.path.splitext(x)[1] in AUDIO_FILE_TYPES)]
def is_folder(self, path):
result, entry = omni.client.stat(path)
# bitewise operation, folder flags is 4
return entry.flags & omni.client.ItemFlags.CAN_HAVE_CHILDREN
def list_folder(self, path):
items = []
# rstrip() 删除 string 字符串末尾的指定字符,默认为空白符,包括空格、换行符、回车符、制表符。
# path = path.rstrip("/")
result, entries = omni.client.list(path)
if result != omni.client.Result.OK:
return items
for en in entries:
# Skip if it is a folder
if en.flags & omni.client.ItemFlags.CAN_HAVE_CHILDREN:
continue
name = en.relative_path
items.append(name)
return items
def is_ov_path(path):
return A2F_SERVER_TYPE in path
def get_abs_track_root_path(self):
"""normpath if it is local path
for ov path not apply normpath
"""
path = self._setting.get_val()
# path = self._setting._val
# if not self.is_ov_path(path):
# if not os.path.isabs(path):
# path = os.path.abspath(os.path.join(PLAYER_DEPS_ROOT, path))
# return os.path.normpath(path).replace("\\", "/")
return path
def _changed_fn(self, model):
index = model.as_int
self._item_changed(None)
if not self._from_set_index:
if self._changed_callback_fn is not None:
self._changed_callback_fn(index)
def _build_content_wrapper(self): # Required for extra UI wrapers in intermediate dervied classes
self._build_content()
def _refresh(self):
if self._frame is not None:
self._frame.clear()
with self._frame:
self._build_content_wrapper()
class StringFieldModel(ui.AbstractValueModel):
def __init__(self, initial_value, changed_callback_fn=None):
super().__init__()
self._value = initial_value
self._changed_callback_fn = changed_callback_fn
self.add_end_edit_fn(self._end_edit_fn)
def shutdown(self):
self._changed_callback_fn = None
def get_value(self):
return self._value
def get_value_as_string(self):
return str(self._value)
def set_value(self, value):
self._value = value
self._value_changed()
def _end_edit_fn(self, model):
value = model.get_value()
if self._changed_callback_fn is not None:
self._changed_callback_fn(value)
class ComboBoxMinimalItem(ui.AbstractItem):
def __init__(self, text):
super().__init__()
self.model = ui.SimpleStringModel(text)
class ComboBoxMinimalModel(ui.AbstractItemModel):
def __init__(self, options, initial_index, changed_callback_fn=None):
super().__init__()
self._options = options
self._changed_callback_fn = changed_callback_fn
self._items = [ComboBoxMinimalItem(text) for text in self._options]
self._current_index = ui.SimpleIntModel()
if initial_index is not None:
self._current_index.as_int = initial_index
self._from_set_index = False
self._current_index.add_value_changed_fn(self._changed_fn)
def shutdown(self):
self._changed_callback_fn = None
self._current_index = None
self._items = None
def get_options(self):
return self._options
def get_item_children(self, item):
return self._items
def get_item_value_model(self, item, column_id):
if item is None:
return self._current_index
return item.model
def get_index(self):
return self._current_index.as_int
def set_index(self, index):
if index is not None:
if index >= 0 and index < len(self._items):
self._from_set_index = True
self._current_index.as_int = index
self._from_set_index = False
def _changed_fn(self, model):
index = model.as_int
self._item_changed(None)
if not self._from_set_index:
if self._changed_callback_fn is not None:
self._changed_callback_fn(index)
class FemaleEntertainerWidger(InstanceManagerBase):
list_array_name = []
list_array_id = []
list_array_float = []
list_array_avatar = []
def __init__(self):
self._btn_create_timedomain_pipeline = None
self._btn_create_audio_palyer = None
self._btn_create_a2f_core = None
self._btn_create_head_template = None
self._frame = None
self._female_entertainer_data = None
self._id = None
def shutdown(self):
self._btn_create_timedomain_pipeline = None
self._btn_create_audio_palyer = None
self._btn_create_a2f_core = None
self._btn_create_head_template = None
self._frame = None
self._female_entertainer_data = None
self._id = None
def _add_menu_item(self, *args, **kwargs):
editor_menu = omni.kit.ui.get_editor_menu()
self._menu_items.append(editor_menu.add_item(*args, **kwargs))
def _build_content(self):
if self._frame is None:
self._frame = ui.ScrollingFrame(height=ui.Percent(35), style=ScrollingFrameStyle)
self._frame.set_build_fn(self._build_fn)
self._frame.rebuild()
def _build_fn(self):
with self._frame:
with ui.VStack(spacing=5):
sliders = [self.create_ui_float_slider(i) for i in range(len(FemaleEntertainerWidger.list_array_name))]
if len(FemaleEntertainerWidger.list_array_name) > 0:
for i in range(len(FemaleEntertainerWidger.list_array_name)):
with ui.HStack(height=25):
IMAGE = FemaleEntertainerWidger.list_array_avatar[i]
ui.Image(IMAGE, width=25, height=25)
ui.Label(
f"{FemaleEntertainerWidger.list_array_name[i]}",
width=ui.Percent(8),
name="text",
)
sliders[i]()
else:
ui.Label("No Voiceseed Selected", alignment=ui.Alignment.CENTER)
def _build_glyph(self):
self._request_female_entertainer_data()
with ui.VStack(height=28):
ui.Label("Choose Your Voice Style (up to 10)", style=BigLableStyle)
ui.Label("Choose one or more voiceseeds to mix a voice", style=SmallLableStyle)
with ui.ScrollingFrame(height=ui.Percent(15)):
with ui.VGrid(column_width=200):
glyph_plus = ui.get_custom_glyph_code("${glyphs}/plus.svg")
if isinstance(self._female_entertainer_data["data"], list):
functions = [
self.create_female_entertainer_clicked(i) for i in range(len(self._female_entertainer_data["data"]))
]
for index in range(len(self._female_entertainer_data["data"])):
_name = self._female_entertainer_data["data"][index]["name_chn"]
_tooltip = self._female_entertainer_data["data"][index]["characteristic"]
with ui.HStack():
ui.Button(
f"{_name} {glyph_plus}",
style=LargeBtnStyle,
clicked_fn=functions[index],
tooltip=_tooltip
)
def _refresh(self):
if self._frame is not None:
self._frame.rebuild()
def _build_content_wrapper(self): # Required for extra UI wrapers in intermediate dervied classes
self._build_content()
def create_ui_float_slider(self, index):
def set_value(value, index):
value = round(value, 2)
FemaleEntertainerWidger.list_array_float[index] = value
def _delete_avatar():
del FemaleEntertainerWidger.list_array_name[index]
del FemaleEntertainerWidger.list_array_id[index]
del FemaleEntertainerWidger.list_array_avatar[index]
del FemaleEntertainerWidger.list_array_float[index]
self._refresh()
def _click_get_model_value():
IMAGE_DELETE = DATA_PATH + "/delete.svg"
slider = ui.FloatSlider(name="float_slider", min=0, max=1).model
slider.set_value(0.5)
FemaleEntertainerWidger.list_array_float[index] = 0.5
slider.add_value_changed_fn(lambda m: set_value(m.get_value_as_float(), index))
ui.Button(width=25, height=25, image_url=IMAGE_DELETE, clicked_fn=_delete_avatar)
return _click_get_model_value
def create_female_entertainer_clicked(self, index):
name = self._female_entertainer_data["data"][index]["name_chn"]
id = self._female_entertainer_data["data"][index]["id"]
avatar = self._female_entertainer_data["data"][index]["avatar"]
def _on_btn_create_female_entertainer_clicked():
if name not in FemaleEntertainerWidger.list_array_name:
FemaleEntertainerWidger.list_array_name.append(name)
FemaleEntertainerWidger.list_array_id.append(id)
FemaleEntertainerWidger.list_array_avatar.append(avatar)
FemaleEntertainerWidger.list_array_float.append([])
self._refresh()
return _on_btn_create_female_entertainer_clicked
def _request_female_entertainer_data(self):
self._female_entertainer_data = GetData._get_female_entertainer_data()
def _get_female_data():
_array = []
for i in range(len(FemaleEntertainerWidger.list_array_name)):
_array.append([])
_array[i] = [FemaleEntertainerWidger.list_array_id[i], FemaleEntertainerWidger.list_array_float[i]]
return _array
class ScalarSliderModel(ui.AbstractValueModel):
def __init__(self, initial_value, min_val, max_val, changed_callback_fn=None, fast_change=True):
super().__init__()
self._value = initial_value
self._min_val = min_val
self._max_val = max_val
self._changed_callback_fn = changed_callback_fn
self._fast_change = fast_change
if not self._fast_change:
self.add_end_edit_fn(self._end_edit_fn)
def shutdown(self):
self._changed_callback_fn = None
def get_value(self):
return self._value
def get_min(self):
return self._min_val
def get_max(self):
return self._max_val
def get_value_as_int(self):
return int(self._value)
def get_value_as_float(self):
return float(self._value)
def set_value(self, value):
self._value = value
self._value_changed()
if self._fast_change and self._changed_callback_fn is not None:
self._changed_callback_fn(self._value)
def set_field(self, value):
if value is not None:
self._value = value
self._value_changed()
def _end_edit_fn(self, model):
value = model.get_value()
if self._changed_callback_fn is not None:
self._changed_callback_fn(value)
class WaveformWidget(SimpleWidget):
def __init__(self, height):
super().__init__()
self._height = height
self._waveform_image_provider = None
self._waveform_image = None
self._canvas = None
self._canvas_width = 1024
self._canvas_height = WAVEFORM_HEIGHT
def shutdown(self):
self._waveform_image_provider = None
self._waveform_image = None
self._canvas = None
super().shutdown()
def update_track_waveform(self, track):
num_samples = track.get_num_samples()
width, height = self._canvas_width, self._canvas_height
ex_factor = 1
width_ex = width * ex_factor
shrink_factor = max(num_samples // width_ex, 1)
if 0:
volume = np.abs(track.data[::shrink_factor][:width_ex])
else:
if num_samples >= shrink_factor * width_ex:
volume = track.data[: shrink_factor * width_ex].reshape(width_ex, shrink_factor)
else:
tmp = np.zeros((shrink_factor * width_ex), np.float32)
tmp[:num_samples] = track.data
volume = tmp.reshape(width_ex, shrink_factor)
volume = np.abs(np.max(volume, axis=1))
# volume /= max(np.max(volume), 1e-8)
# dB logarithmic scale
if 0:
volume = np.maximum(volume, 1e-6)
volume = 20.0 * np.log10(volume / 1.0)
# [-50, 0] dB
volume = np.maximum((volume / 50.0) + 1.0, 0.0)
volume *= 0.7
canvas = np.zeros((height, width_ex, 4), dtype=np.uint8)
print("canvas.shape[1]======>", canvas.shape[1])
for x in range(canvas.shape[1]):
start = int(round((1.0 - volume[x]) * float(height) / 2))
end = int(round((1.0 + volume[x]) * float(height) / 2))
canvas[start:end, x, :] = [255, 255, 255, 130]
if start == end:
canvas[start: end + 1, x, :] = [255, 255, 255, 60]
if ex_factor > 1:
canvas = scipy.ndimage.zoom(canvas.astype(np.float32), (1, 1.0 / ex_factor, 1), order=1).astype(np.uint8)
self._canvas = canvas.flatten().tolist()
if self._waveform_image_provider is not None:
self._waveform_image_provider.set_bytes_data(self._canvas, [self._canvas_width, self._canvas_height])
def _build_content(self):
self._waveform_image_provider = ui.ByteImageProvider()
if self._canvas is not None:
self._waveform_image_provider.set_bytes_data(self._canvas, [self._canvas_width, self._canvas_height])
with ui.HStack():
self._waveform_image = ui.ImageWithProvider(
self._waveform_image_provider,
height=self._height,
style=TrackWaveformStyle,
fill_policy=ui.IwpFillPolicy.IWP_STRETCH,
)
class TimelineRangeWidget(InstanceManagerBase):
def __init__(self, height):
super().__init__()
self._height = height
self._rect_range_start = None
self._rect_range = None
def shutdown(self):
self._rect_range_start = None
self._rect_range = None
super().shutdown()
def set_rect_style(self, style):
if self._rect_range is not None:
self._rect_range.set_style(style)
def update_range_rect(self, range_start, range_end, track_len):
if self._rect_range_start is not None and self._rect_range is not None:
if track_len == 0:
start_perc = 0
rect_perc = 0
else:
start_perc = range_start / track_len * 100.0
rect_perc = (range_end - range_start) / track_len * 100.0
self._rect_range_start.width = ui.Percent(start_perc)
self._rect_range.width = ui.Percent(rect_perc)
def _build_content(self):
with ui.HStack(height=self._height):
self._rect_range_start = ui.Spacer(width=omni.ui.Percent(0), style=RangeStartSpacerStyle)
self._rect_range = ui.Rectangle(width=omni.ui.Percent(100), height=self._height, style=RangeRectStyle)
class PlaybackSliderWidget(SimpleWidget):
def __init__(self, height, on_changed_fn=None, on_changed_from_mouse_fn=None):
super().__init__()
self._height = height
self._on_changed_fn = on_changed_fn
self._on_changed_from_mouse_fn = on_changed_from_mouse_fn
self._max_value = 0.001
self._value = 0.0
self._handle_width = 1
self._pressed = False
self._mouse_catcher = None
self._slider_placer = None
self._handle = None
self._update_sub = omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(self._on_update)
def shutdown(self):
self._update_sub = None
self._on_changed_fn = None
self._on_changed_from_mouse_fn = None
self._max_value = 0.001
self._value = 0.0
self._pressed = False
self._mouse_catcher = None
self._slider_placer = None
self._handle = None
super().shutdown()
def set_value(self, value):
if self._pressed:
return # pressed mouse overrides external change of the value
self._value = value
if self._value < 0.0:
self._value = 0.0
elif self._value > self._max_value:
self._value = self._max_value
if self._on_changed_fn is not None:
self._on_changed_fn(self._value)
if self._max_value > 0:
rel_x_perc = self._value / self._max_value
self._set_slider_position(rel_x_perc)
elif self._max_value == 0:
self._set_slider_position(0)
def get_value(self):
return self._value
def set_max(self, max_value):
if max_value < 0:
raise ValueError("Playback Slider max value can't be less than zero")
self._max_value = max_value if max_value > 0 else 0.001
def set_handle_style(self, style):
if self._handle is not None:
self._handle.set_style(style)
def _set_slider_position(self, rel_x_perc):
if self._slider_placer is not None:
self._slider_placer.offset_x = ui.Percent(rel_x_perc * 100.0)
def _on_mouse_moved(self, x, y, _, btn):
if btn is True:
self._update_from_mouse(x)
def _on_mouse_pressed(self, x, y, btn, *args):
if btn == 0:
self._pressed = True
self._update_from_mouse(x)
def _on_mouse_released(self, x, y, btn, *args):
if btn == 0:
self._pressed = False
def _update_from_mouse(self, x):
if self._mouse_catcher is not None and self._slider_placer is not None:
rel_x = x - self._mouse_catcher.screen_position_x
if rel_x < 0:
rel_x = 0
elif rel_x >= self._mouse_catcher.computed_width:
rel_x = self._mouse_catcher.computed_width
rel_x_perc = rel_x / self._mouse_catcher.computed_width
self._set_slider_position(rel_x_perc)
self._value = self._max_value * rel_x_perc
if self._on_changed_fn is not None:
self._on_changed_fn(self._value)
def _build_content(self):
with ui.ZStack():
self._mouse_catcher = ui.Rectangle(
height=self._height,
style={
"background_color": 0x0,
"padding": 0,
"margin_width": 0,
"margin_height": 0,
"border_radius": 0,
"border_color": 0x0,
"border_width": 0,
},
mouse_moved_fn=self._on_mouse_moved,
mouse_pressed_fn=self._on_mouse_pressed,
mouse_released_fn=self._on_mouse_released,
)
with ui.HStack():
self._slider_placer = ui.Placer(draggable=False, stable_size=True)
with self._slider_placer:
with ui.HStack():
self._handle = ui.Rectangle(
width=self._handle_width, height=self._height, style=HandlePlaybackStyle
)
ui.Spacer()
def _on_update(self, *_):
if self._pressed:
if self._on_changed_from_mouse_fn is not None:
self._on_changed_from_mouse_fn(self._value)
class TimelineWidget(BoolSettingWidgetBase):
_frame = None
def __init__(self):
super().__init__()
self._waveform_widget = WaveformWidget(height=WAVEFORM_HEIGHT)
self._timeline_range_widget = TimelineRangeWidget(height=WAVEFORM_HEIGHT)
self._playback_slider_widget = PlaybackSliderWidget(
height=WAVEFORM_HEIGHT, on_changed_fn=None, on_changed_from_mouse_fn=self._on_changed
)
self._update_sub = omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(self._on_update)
def shutdown(self):
self._update_sub = None
self._waveform_widget.shutdown()
self._waveform_widget = None
self._timeline_range_widget.shutdown()
self._timeline_range_widget = None
self._playback_slider_widget.shutdown()
self._playback_slider_widget = None
# super().shutdown()
def set_style(self, style):
if style == "regular":
self._playback_slider_widget.set_handle_style(HandlePlaybackStyle)
self._timeline_range_widget.set_rect_style(RangeRectStyle)
elif style == "streaming":
self._playback_slider_widget.set_handle_style(HandleStreamingStyle)
self._timeline_range_widget.set_rect_style(RangeRectStreamingStyle)
elif style == "recording":
self._playback_slider_widget.set_handle_style(HandleRecordingStyle)
self._timeline_range_widget.set_rect_style(RangeRectRecordingStyle)
def update_track_waveform(self):
track = self._audio_player.get_track_ref()
self._waveform_widget.update_track_waveform(track)
def _build_content(self):
TimelineWidget._frame = ui.ZStack()
with TimelineWidget._frame:
ui.Rectangle(style=PlaybackSliderBackgroundStyle)
self._waveform_widget._build_content()
self._timeline_range_widget._build_content()
self._playback_slider_widget._build_content()
def _refresh(self):
if TimelineWidget._frame is not None:
TimelineWidget._frame.clear()
with TimelineWidget._frame:
self._build_content_wrapper()
def _build_content_wrapper(self): # Required for extra UI wrapers in intermediate dervied classes
self._build_content()
def _on_changed(self, t):
if self._track is not None:
track_len = self._track.get_length()
self._playback_slider_widget.set_max(track_len)
self._playback_slider_widget.set_value(t)
seek_sample = self._track.sec_to_sample(t)
self._audio_player.seek(seek_sample)
def _on_update(self, *_):
if self._track is not None and self._audio_player is not None:
self._pressed = False
track_len = self._track.get_length()
self._playback_slider_widget.set_max(track_len)
t = self._audio_player.get_current_time()
self._playback_slider_widget.set_value(t)
# if t == track_len and not self.boolSetting._state:
# self.boolSetting._state = True
# self._on_toggled()
class TimecodeWidget(BoolSettingWidgetBase):
def __init__(self):
super().__init__()
self.ts = None
self._timecode_lbl = None
self._timecode_tms_lbl = None
self._timecode_max_lbl = None
self._timecode_max_tms_lbl = None
self._button_play_pause = ButtonPlayPause()
self._update_sub = omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(self._on_update)
def shutdown(self):
self.ts = None
self._update_sub = None
self._timecode_lbl = None
self._timecode_tms_lbl = None
self._timecode_max_lbl = None
self._timecode_max_tms_lbl = None
# super().shutdown()
def _build_content(self):
with ui.HStack(height=22, style={"margin_width": 0}):
ui.Spacer()
self._timecode_lbl = ui.Label("0:00", width=0)
self._timecode_tms_lbl = ui.Label(".00", width=0, style={"color": 0x50FFFFFF})
ui.Label(" | ", style={"color": 0x70FFFFFF})
self._timecode_max_lbl = ui.Label("0:00", width=0)
self._timecode_max_tms_lbl = ui.Label(".00", width=0, style={"color": 0x50FFFFFF})
ui.Spacer()
def _set_timecode(self, t, m_sec_lbl, tms_lbl):
tmss = int(round(t * 100))
secs = tmss // 100
mins = secs // 60
secs_sub = secs % 60
tmss_sub = tmss % 100
m_sec_lbl.text = "{}:{:02d}".format(mins, secs_sub)
tms_lbl.text = ".{:02d}".format(tmss_sub)
if self.ts is not None and t == self.ts:
self._button_play_pause._update_from_state(is_playing=False)
else:
self.ts = t
def _on_update(self, *_):
if self._timecode_lbl is not None and self._timecode_tms_lbl is not None:
t = self._audio_player.get_current_time()
self._set_timecode(t, self._timecode_lbl, self._timecode_tms_lbl)
if self._timecode_max_lbl is not None and self._timecode_max_tms_lbl is not None and self._track is not None:
track_len = self._track.get_length()
self._set_timecode(track_len, self._timecode_max_lbl, self._timecode_max_tms_lbl)
class ButtonPlayPause(BoolSettingWidgetBase):
_btn = None
def __init__(self):
super().__init__()
def shutdown(self):
ButtonPlayPause._btn = None
super().shutdown()
def _build_widget(self):
with ui.HStack(width=BTN_WIDTH, height=30):
ButtonPlayPause._btn = ui.Button(width=BTN_WIDTH, style=PlayBtnStyle, tooltip="Play/Pause (P)")
ButtonPlayPause._btn.set_clicked_fn(self._on_toggled)
def _update_from_state(self, is_playing):
if ButtonPlayPause._btn is not None:
if is_playing is True:
ButtonPlayPause._btn.set_style(PauseBtnStyle)
else:
ButtonPlayPause._btn.set_style(PlayBtnStyle)
class ButtonComposing(BoolSettingWidgetBase):
def __init__(self):
super().__init__()
self._btn = None
self._compose_data = None
self._timeline_widget = TimelineWidget()
def shutdown(self):
self._btn = None
super().shutdown()
def _build_widget(self):
with ui.VStack():
self._btn = ui.Button('Synthesis your song', height=BTN_HEIGHT*2.5, tooltip="Synthesized Voice")
self._btn.set_clicked_fn(self._on_compound)
def _on_compound(self):
thread = Thread(target=self._request_compose_data)
thread.start()
def _update_from_state(self, is_looping):
if self._btn is not None:
self._btn.selected = is_looping
def _request_compose_data(self):
_array = FemaleEntertainerWidger._get_female_data()
path = os.path.join(self.boolSetting._val, self.boolSetting._filename)
files = {"file": open(path, "rb")}
mix_str = json.dumps(
{
"duration": _array,
"pitch": _array,
"air": _array,
"falsetto": _array,
"tension": _array,
"energy": _array,
"mel": _array,
},
)
data_dict = {"flag": 135, "is_male": 1, "mix_info": mix_str}
try:
self._btn.text = 'processing...'
res = GetData._get_compose_data(files, data_dict)
if res["code"] == 200:
r = requests.get(res["data"][-1]["audio"], stream=True)
if not os.path.exists(os.path.join(EXT_ROOT, "voice")):
os.makedirs(os.path.join(EXT_ROOT, "voice"))
memory_address_ogg = os.path.join(EXT_ROOT, "voice\\voice.ogg")
memory_address_wav = os.path.join(EXT_ROOT, "voice\\voice.wav")
with open(memory_address_ogg, "wb") as ace_music:
for chunk in r.iter_content(chunk_size=1024): # 1024 bytes
if chunk:
ace_music.write(chunk)
song = AudioSegment.from_ogg(memory_address_ogg)
song.export(memory_address_wav, format="wav")
self._load_track(memory_address_wav)
self._timeline_widget.update_track_waveform()
self._timeline_widget._refresh()
else:
print(res)
except BaseException as e:
print(e)
self._btn.text = 'Synthesis your song'
self._btn.set_style({})
class ButtonLocation(BoolSettingWidgetBase):
def __init__(self):
self._btn = None
def shutdown(self):
self._btn = None
super().shutdown()
def _build_widget(self):
with ui.HStack(width=BTN_WIDTH, height=30):
self._btn = ui.Button(width=BTN_WIDTH, style=LocationBtnStyle, tooltip="Locate the composite file")
self._btn.set_clicked_fn(self.get_location)
def get_location(self):
# memory_address为需要打开文件夹的路径
if not os.path.exists(os.path.join(EXT_ROOT, "voice")):
os.makedirs(os.path.join(EXT_ROOT, "voice"))
memory_address = os.path.join(EXT_ROOT, "voice")
os.startfile(memory_address)
def _update_from_state(self, recorder_enabled):
if self._btn is not None:
self._btn.selected = recorder_enabled
| 35,085 | Python | 36.848975 | 124 | 0.57774 |
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/scripts/ui.py | from timedomain.ai.singer.instance import InstanceManagerBase
from timedomain.ai.singer.utils_io import read_file
import omni.ui as ui
import omni.kit.ui
import omni.kit.app
import omni.kit.window.filepicker
import omni.kit.pipapi
a2f_audio = omni.audio2face.player_deps.import_a2f_audio()
class Refreshable:
def __init__(self):
self.__need_refresh = False
self.__update_sub = (
omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(self.__on_update)
)
def shutdown(self):
self.__update_sub = None
def refresh(self):
# We can't call self._refresh() directly, since it will clear the UI
# while the caller of this function could be that UI too
self.__need_refresh = True
def __on_update(self, *_):
if self.__need_refresh:
self.__need_refresh = False
self._refresh()
def _refresh(self): # Should be implemented in the derived class
raise NotImplementedError
class SimpleWidget(Refreshable):
def __init__(self):
super().__init__()
self._frame = None
def shutdown(self):
self._frame = None
super().shutdown()
def build(self):
self._frame = ui.VStack(height=0, spacing=0)
with self._frame:
self._build_content_wrapper()
def show(self):
if self._frame is not None:
self._frame.visible = True
def hide(self):
if self._frame is not None:
self._frame.visible = False
def enable(self):
if self._frame is not None:
self._frame.enabled = True
def disable(self):
if self._frame is not None:
self._frame.enabled = False
def clear(self):
if self._frame is not None:
self._frame.clear()
def _refresh(self):
if self._frame is not None:
self._frame.clear()
with self._frame:
self._build_content_wrapper()
def _build_content_wrapper(self): # Required for extra UI wrapers in intermediate dervied classes
self._build_content()
def _build_content(self): # Should be implemented in the derived class
raise NotImplementedError
class BoolSettingWidgetBase(InstanceManagerBase):
_track = None
_audio_player = a2f_audio.AudioPlayer(verbose=True)
def __init__(self):
super().__init__()
self._update_sub = omni.kit.app.get_app().get_update_event_stream().create_subscription_to_pop(self._on_update)
def shutdown(self):
self._update_sub = None
BoolSettingWidgetBase._audio_player.pause()
BoolSettingWidgetBase._audio_player = None
super().shutdown()
def _build_content(self):
self._build_widget()
if self.boolSetting._state is not None:
self._update_from_state(self.boolSetting._state)
def _on_toggled(self):
self.boolSetting._state = not self.boolSetting._state
if self.boolSetting._state:
if self.boolSetting._val is not None and self.boolSetting._filename is not None:
BoolSettingWidgetBase._audio_player.play()
self._update_from_state(True)
self.boolSetting._state = True
else:
self._update_from_state(False)
BoolSettingWidgetBase._audio_player.pause()
self.boolSetting._state = False
else:
self._update_from_state(False)
BoolSettingWidgetBase._audio_player.pause()
def _load_track(self, track_fpath):
bytes_data = read_file(track_fpath)
track = a2f_audio.read_track_from_bytes(bytes_data)
BoolSettingWidgetBase._track = track
BoolSettingWidgetBase._audio_player.set_track(track)
def _on_update(self, *_):
if self.boolSetting._state:
self.boolSetting.toggle()
def _build_widget(self): # Should be implemented in the derived class
raise NotImplementedError
def _update_from_state(self): # Should be implemented in the derived class
raise NotImplementedError | 4,136 | Python | 30.340909 | 119 | 0.617505 |
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/tests/__init__.py | from .test_hello_world import * | 31 | Python | 30.999969 | 31 | 0.774194 |
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/timedomain/ai/singer/tests/test_hello_world.py | # NOTE:
# omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests
# For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html
import omni.kit.test
# Extnsion for writing UI tests (simulate UI interaction)
import omni.kit.ui_test as ui_test
# Import extension python module we are testing with absolute import path, as if we are external user (other extension)
import timedomain.ai.singer
# Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test
class Test(omni.kit.test.AsyncTestCase):
# Before running each test
async def setUp(self):
pass
# After running each test
async def tearDown(self):
pass
# Actual test, notice it is "async" function, so "await" can be used if needed
async def test_hello_public_function(self):
result = timedomain.ai.singer.some_public_function(4)
self.assertEqual(result, 256)
async def test_window_button(self):
# Find a label in our window
label = ui_test.find("My Window//Frame/**/Label[*]")
# Find buttons in our window
add_button = ui_test.find("My Window//Frame/**/Button[*].text=='Add'")
reset_button = ui_test.find("My Window//Frame/**/Button[*].text=='Reset'")
# Click reset button
await reset_button.click()
self.assertEqual(label.widget.text, "empty")
await add_button.click()
self.assertEqual(label.widget.text, "count: 1")
await add_button.click()
self.assertEqual(label.widget.text, "count: 2")
| 1,676 | Python | 34.68085 | 142 | 0.682578 |
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/config/extension.toml | [package]
version = "1.0.0"
title = "TIMEDOMAIN AI SINGER"
description="Timedomain Ai Singer is a convenient tool for singing synthesis on the Omniverse platform."
readme = "docs/README.md"
repository = ""
authors = ["timedomAIn"]
category = "Audio"
keywords = ["timedomain", "ai", "singer"]
icon = "data/logo.png"
preview_image = "data/preview.png"
changelog = "docs/CHANGELOG.md"
[dependencies]
"omni.kit.uiapp" = {}
"omni.audio2face.player_deps" = {}
"omni.kit.window.filepicker" = {}
[python.pipapi]
# List of additional directories with pip achives to be passed into pip using ``--find-links`` arg.
# Relative paths are relative to extension root. Tokens can be used.
archiveDirs = ["path/to/pip_archive"]
# Commands passed to pip install before extension gets enabled. Can also contain flags, like `--upgrade`, `--no--index`, etc.
# Refer to: https://pip.pypa.io/en/stable/reference/pip_install/#requirements-file-format
requirements = [
"requests"
]
[[python.module]]
name = "timedomain.ai.singer"
[[test]]
dependencies = [
"omni.kit.ui_test" # UI testing extension
]
| 1,089 | TOML | 28.459459 | 125 | 0.714417 |
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/docs/CHANGELOG.md | # Changelog
All notable changes to this project will be documented in this file.
## [1.0.0]
- Initial version of Timedomain Ai Singer extension.
| 149 | Markdown | 17.749998 | 68 | 0.744966 |
timedomain-tech/Timedomain-Ai-Singer-Extension/exts/timedomain.ai.singer/docs/README.md | # Timedomain AI Singer Omniverse Extension
Timedomain AI Singer Omniverse Extension is a convenient tool for singing synthesis on the Omniverse platform.
| 157 | Markdown | 25.333329 | 110 | 0.828025 |
yizhouzhao/VRKitchen2.0-IndoorKit/README.md | # Omniverse IndoorKit Extension (#ExtendOmniverse 2022 Contest Overall Winner)

This extension allows to load and record indoor scene tasks for robotics. [Introduction video here.](https://drive.google.com/file/d/1_u2uGuuxoSeeE6WiKhx703ZjQvJQ0ESa/view?usp=sharing)
<div>
<img src='./img/pickup_AdobeExpress.gif' width='320px'>
<img src='./img/drawer_AdobeExpress.gif' width='320px'>
<img src='./img/rotate_AdobeExpress.gif' width='320px'>
<img src='./img/water_AdobeExpress.gif' width='320px'>
</div>
In the field of robotics, it requires a lot of effort to set up even a simple task (e,g. picking up an object) for a robot in a real scene. At present, with the help of Omniverse, not only can we set up tasks for robots in a photo-realistic and physics-reliable manner, but we build this extension to bring high-quality content with a wide range of variability and randomness.
Besides, we design a complete pipeline to load and record the scene, control and replay the robot actions, and render images. We hope this work could encourage academic research in related fields.
<img src="img/ui.png" width="300">
# Get started with Omniverse Code/Create [version >= 2022]
## Download the [release](https://github.com/yizhouzhao/VRKitchen2.0-IndoorKit/releases/tag/0.2) or clone the this repository
> **Note**:
> The size of the extension including model assets is about 300 MB
```
git clone https://github.com/yizhouzhao/VRKitchen2.0-IndoorKit
```
Upzip or locate the root folder as <your-path-to-VRKitchen2.0-IndoorKit>
The file structure of this extension should look like:
```
<your-path-to-VRKitchen2.0-IndoorKit>
└───data [Folder to save the labeling data]
└───exts [Omniverse extenstion]
└───vrkitchen.indoor.kit
└───asset [Asset (object, house, e.t.c.) needed for robot tasks]
└───config [Extension config]
└───data [Extension data]
└───icons [Extension icons]
└───vrkitchen/indoor/kit [source code]
└───img
└───tool
│ README.md
......
```
## Add extension to Omniverse
1. **[Open extension manager]** After opening Omniverse Code, go to `Menu` -> `Window` -> `Extension`
2. **[Add this extension to Omniverse]** Click the <img src="https://github.githubassets.com/images/icons/emoji/unicode/2699.png?v8" width="18"> button, add absolute extension path to `Extension Search Paths`.
Finally, you can search the `vrkitchen.indoor.kit` and enable this extension.
> **Note**:
> The extension path to add is: `<your-path-to-VRKitchen2.0-IndoorKit>/exts`

# Play with Indoorkit
The functionality of our Indoorkit has three parts:
- TASK LAYOUT: to set up object, robot, and room for one task.
- SCENE UTILITY: to load scene and set up scene features including light, sky, matrial, and e.t.c.
- PLAY: to control the robot to perform and the task.
## 1. Task layout
Start with a new stage,

The `Task layout` module allows users to automatically add the task object, robot, and room.
a) Click the `task type combo box` to select task type from *Pick up object*, *Reorient object*, *Pour water*, and *Open drawer*.
b) Fill the `object id integer field` (ranging from 0 to 19), then click the `Add object` button to automatically add an object and a franka robot to the scene.
> **Note**:
> Now the robot prim: `/World/game/franka` is selected, you can change the position and rotation of the robot.
c) Fill the `house id integer field` (ranging from 0 to 19), then click the `Add house` button to automatically add a room structure to the task.
> **Note**:
> Now the robot prim: `/World/game/` is automatically selected, you can change the game position and rotation.
d) Click the `Record scene` button to save the scene information (about task type, object, robot, and room) into a json file.
After recording scene, you can close close the stage without saving.
## 2. Scene utility
-- Load the recorded scene and change scene features.

a) Click `New scene` to open a new stage (with /World and /World/defaultLight only). This this the same as the command: `Menu`->`File`->`New...`
b) Click `Load scene` to load the scene from saved information from `TASK LAYOUT`.
Then you can modify the scene by setting
- `Visible ground`: show ground plane
- `Light intensity`: change the defaultLight intensity
- `Sky type`: change the sky background
- `Random house material`: change floor and wall material
>**Note**:
>To load the house material requires users to open the `Nucleus` server. The materials are from `Nucleus`.
- `Enable isosurface`: enable isosurface option for water tasks.
## 2. Play
-- play the franka robot.

a) Click `Record` to start playing with the franka robot and recording the robot actions.
To control the robot:
Position the end effector (EE) relative the robot itself, use the `Robot control` UI or the keyboard:
- [W] Move EE forward;
- [S] Move EE backward;
- [A] Move EE to the left;
- [D] Move EE to the right
- [E] Move EE upward;
- [D] Move EE downward.
Rotation the end effector (EE), use the `Robot control` UI or the keyboard:
- [ARROW UP] Rotate EE upward;
- [ARROW DOWN] Rotate EE downward;
- [ARROW LEFT] Rotate EE to the left;
- [ARROW RIGHT] Rotate EE to the right.
To open and close the hand gripper, use the `Robot control` UI or the keyboard:
- [LEFT CONTROL] Open/Close the gripper.
b) Click `Stop` button to stop playing with the franka robot.
c) Click `Replay` button to replay robot actions.
>**Note**:
> The `Replay` and `Record` are according to the information of `task type`, `object id`, and `house id`.
You may render the desired type of the image at any time playing, replaying or pausing. Click `Capture image` to get a screenshot.
Finally, you can open the data folders:

# Cite this work
```
@article{zhao2022vrkitchen2,
title={VRKitchen2. 0-IndoorKit: A Tutorial for Augmented Indoor Scene Building in Omniverse},
author={Zhao, Yizhou and Gong, Steven and Gao, Xiaofeng and Ai, Wensi and Zhu, Song-Chun},
journal={arXiv preprint arXiv:2206.11887},
year={2022}
}
```
# Need more rooms?
Go to this repository: https://github.com/yizhouzhao/VRKitchen2.0-Tutorial
# License
- The rooms in this repository are from [Trescope](https://github.com/alibaba/Trescope), under the [MIT License](https://github.com/alibaba/Trescope/blob/main/LICENSE)
- The drawers and bottles in this repository are from [SAPIEN](https://sapien.ucsd.edu/), under this [Term of Use](https://sapien.ucsd.edu/about#term)
- The cups in this repository are from AI2THOR, under the [Apache License](https://github.com/allenai/ai2thor/blob/main/LICENSE).
- This repository is for OMNIVERSE CODE CONTEST, under the [OMNIVERSE PUBLISHING AGREEMENT
](https://developer.download.nvidia.com/Omniverse/secure/Omniverse_Publishing_Agreement_12May2022.pdf?jrPi6OXFm7gWYIsdrQGrSTgF4P3LNZ8cXw3jyHdg--8TYsFEK7bOTc5Az6My5OyURuC8xMU9_Ii1u8H7aPReCvxYFGCrc9VVKVdbfFShmc5sktkTrqywjogIpKeoYLtY-fdBX-WjCl_Vjziylc0Dddy0PXlVdlotRtzLmQ&t=eyJscyI6ImdzZW8iLCJsc2QiOiJodHRwczpcL1wvd3d3Lmdvb2dsZS5jb21cLyJ9).
# Acknowledgement
Thanks to the [NVIDIA Academic Hardware Grant Program](https://mynvidia.force.com/HardwareGrant/s/Application). Without its general support, this extension could not have possibly been developed so fast and so well.
| 7,570 | Markdown | 38.025773 | 376 | 0.729723 |
yizhouzhao/VRKitchen2.0-IndoorKit/LICENSE.md | MIT License
Copyright (c) 2022 yizhouzhao
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
| 1,067 | Markdown | 47.545452 | 78 | 0.805998 |
yizhouzhao/VRKitchen2.0-IndoorKit/tools/scripts/link_app.py | import os
import argparse
import sys
import json
import packmanapi
import urllib3
def find_omniverse_apps():
http = urllib3.PoolManager()
try:
r = http.request("GET", "http://127.0.0.1:33480/components")
except Exception as e:
print(f"Failed retrieving apps from an Omniverse Launcher, maybe it is not installed?\nError: {e}")
sys.exit(1)
apps = {}
for x in json.loads(r.data.decode("utf-8")):
latest = x.get("installedVersions", {}).get("latest", "")
if latest:
for s in x.get("settings", []):
if s.get("version", "") == latest:
root = s.get("launch", {}).get("root", "")
apps[x["slug"]] = (x["name"], root)
break
return apps
def create_link(src, dst):
print(f"Creating a link '{src}' -> '{dst}'")
packmanapi.link(src, dst)
APP_PRIORITIES = ["code", "create", "view"]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Create folder link to Kit App installed from Omniverse Launcher")
parser.add_argument(
"--path",
help="Path to Kit App installed from Omniverse Launcher, e.g.: 'C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4'",
required=False,
)
parser.add_argument(
"--app", help="Name of Kit App installed from Omniverse Launcher, e.g.: 'code', 'create'", required=False
)
args = parser.parse_args()
path = args.path
if not path:
print("Path is not specified, looking for Omniverse Apps...")
apps = find_omniverse_apps()
if len(apps) == 0:
print(
"Can't find any Omniverse Apps. Use Omniverse Launcher to install one. 'Code' is the recommended app for developers."
)
sys.exit(0)
print("\nFound following Omniverse Apps:")
for i, slug in enumerate(apps):
name, root = apps[slug]
print(f"{i}: {name} ({slug}) at: '{root}'")
if args.app:
selected_app = args.app.lower()
if selected_app not in apps:
choices = ", ".join(apps.keys())
print(f"Passed app: '{selected_app}' is not found. Specify one of the following found Apps: {choices}")
sys.exit(0)
else:
selected_app = next((x for x in APP_PRIORITIES if x in apps), None)
if not selected_app:
selected_app = next(iter(apps))
print(f"\nSelected app: {selected_app}")
_, path = apps[selected_app]
if not os.path.exists(path):
print(f"Provided path doesn't exist: {path}")
else:
SCRIPT_ROOT = os.path.dirname(os.path.realpath(__file__))
create_link(f"{SCRIPT_ROOT}/../../app", path)
print("Success!")
| 2,813 | Python | 32.5 | 133 | 0.562389 |
yizhouzhao/VRKitchen2.0-IndoorKit/tools/packman/config.packman.xml | <config remotes="cloudfront">
<remote2 name="cloudfront">
<transport actions="download" protocol="https" packageLocation="d4i3qtqj3r0z5.cloudfront.net/${name}@${version}" />
</remote2>
</config>
| 211 | XML | 34.333328 | 123 | 0.691943 |
yizhouzhao/VRKitchen2.0-IndoorKit/tools/packman/bootstrap/install_package.py | # Copyright 2019 NVIDIA CORPORATION
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import zipfile
import tempfile
import sys
import shutil
__author__ = "hfannar"
logging.basicConfig(level=logging.WARNING, format="%(message)s")
logger = logging.getLogger("install_package")
class TemporaryDirectory:
def __init__(self):
self.path = None
def __enter__(self):
self.path = tempfile.mkdtemp()
return self.path
def __exit__(self, type, value, traceback):
# Remove temporary data created
shutil.rmtree(self.path)
def install_package(package_src_path, package_dst_path):
with zipfile.ZipFile(
package_src_path, allowZip64=True
) as zip_file, TemporaryDirectory() as temp_dir:
zip_file.extractall(temp_dir)
# Recursively copy (temp_dir will be automatically cleaned up on exit)
try:
# Recursive copy is needed because both package name and version folder could be missing in
# target directory:
shutil.copytree(temp_dir, package_dst_path)
except OSError as exc:
logger.warning(
"Directory %s already present, packaged installation aborted" % package_dst_path
)
else:
logger.info("Package successfully installed to %s" % package_dst_path)
install_package(sys.argv[1], sys.argv[2])
| 1,888 | Python | 31.568965 | 103 | 0.68697 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/extension.py | ############# omniverse import ##################
import omni.ext
import omni.ui as ui
import carb
import pxr
############# python import ##################
import asyncio
import os
import time
import random
import math
import json
import numpy as np
############# VRKitchen import ##################
from .param import *
# from .layout.house import House
from .layout.randomizer import Randomizer
from .layout.utils import add_semantics
from .layout.house_new import House as HouseNew
from .autotask.auto import AutoTasker
# from .autotask.auto_label import AutoLabeler
from .render.helper import CustomSyntheticDataHelper
###################### ui import ################
from .ui.indoorkit_ui_widget import TaskTypeComboboxWidget, CustomRecordGroup, CustomControlGroup, CustomBoolWidget, CustomSliderWidget, \
CustomSkySelectionGroup, CustomIdNotice, CustomPathButtonWidget, CustomRenderTypeSelectionGroup
from omni.kit.window.popup_dialog import MessageDialog
# Any class derived from `omni.ext.IExt` in top level module (defined in `python.modules` of `extension.toml`) will be
# instantiated when extension gets enabled and `on_startup(ext_id)` will be called. Later when extension gets disabled
# on_shutdown() is called.
class MyExtension(omni.ext.IExt):
# ext_id is current extension id. It can be used with extension manager to query additional information, like where
# this extension is located on filesystem.
def on_startup(self, ext_id):
print("[vrkitchen.indoor.kit] VRKitchen2.0-Indoor-Kit startup")
# set rendering settings:
carb.settings.get_settings().set_bool("/rtx/ecoMode/enabled", True)
FPS = 60.0
carb.settings.get_settings().set_bool("/app/runLoops/main/rateLimitEnabled", True)
carb.settings.get_settings().set_int("/app/runLoops/main/rateLimitFrequency", int( FPS))
# carb.settings.get_settings().set_int("/persistent/simulation/minFrameRate", int(FPS))
# stage and timeline
self.stage = omni.usd.get_context().get_stage()
pxr.UsdGeom.SetStageUpAxis(self.stage, pxr.UsdGeom.Tokens.y)
self.timeline = omni.timeline.get_timeline_interface()
# robot
self.franka = None
# self.auto_labeler = AutoLabeler(None)
self.task_type = None
# set up render
self.use_isosurface = False # use isosurface
self.render_folder = RENDER_ROOT
self.render_helper = CustomSyntheticDataHelper()
# build windows
self.build_setup_layout_window()
################################################################################################
######################################## Build omni ui window ##################################
################################################################################################
def build_setup_layout_window(self):
"""
Build a window to control/debug layout
"""
from .ui.style import julia_modeler_style
self._window = ui.Window("VRKitchen2.0-Indoor-Kit", width=390)
with self._window.frame:
self._window.frame.style = julia_modeler_style
with ui.ScrollingFrame():
with ui.VStack(height=0):
# ui.Button("Debug", clicked_fn = self.debug)
self.task_desc_ui = ui.StringField(height=20, style={ "margin_height": 2})
self.task_desc_ui.model.set_value(" Welcome to VRKitchen2.0 Indoor Kit!")
ui.Spacer(height=10)
ui.Line(style_type_name_override="HeaderLine")
self.task_layout_collapse_ui = ui.CollapsableFrame("TASK LAYOUT", build_header_fn=self._build_custom_frame_header)
# self.task_layout_collapse_ui.set_collapsed_changed_fn(lambda x:self.on_task_layout_ui_collapse(x))
with self.task_layout_collapse_ui:
with ui.VStack(height=0, spacing=0):
ui.Line(style_type_name_override="HeaderLine")
ui.Spacer(height = 12)
with ui.HStack(height=30):
# set up tasks
self.task_types = TASK_TYPES
# ui.Label(" Task type: ", width = 30, style={ "margin": 2 , "color": "cornflowerblue", "font_size":18})
# default_task_index = self.task_types.index("pickup_object")
# self.task_type_ui = ui.ComboBox(default_task_index, width = 200, *self.task_types, style={ "margin": 8, "color": "cornflowerblue", "font_size":18})
self.task_type_ui = TaskTypeComboboxWidget(label="Task type:\t", options=self.task_types, on_restore_fn=self.fill_task_info)
# ui.Button(" + ", clicked_fn=self.auto_next_task, width = 20, style={ "margin_height": 8})
# ui.Button("+ object id", clicked_fn=self.auto_next_obj_only, style={ "margin": 8})
self.annotators = ANNOTATORS
ui.Label(" Annotator: ", width = 30, style={ "font_size": 12 , "color": "PowderBlue"}, visible = False)
annotator_index = ANNOTATORS.index("MyLuckyUser")
self.annotator_ui = ui.ComboBox(annotator_index, width = 100, *self.annotators, style={ "margin_height": 8, "font_size": 12, "color": "PowderBlue" }, visible=False)
# self.auto_suggest.annotator_ui = self.annotator_ui
with ui.HStack(height=30):
with ui.HStack():
ui.Label("\tObject id: ", width=30, style={"color": "DarkSalmon"})
self.task_id_ui = omni.ui.IntField(width = 30, name = "choose_id", style={ "color": "DarkSalmon"})
ui.Button("+", width = 30, style={"margin_height": 8, "color": "DarkSalmon", "border_color": 1, "border_width": 1},
clicked_fn=lambda: self.task_id_ui.model.set_value(min(self.task_id_ui.model.get_value_as_int() + 1, 19)))
ui.Button("-", width = 30, style={ "margin_height": 8, "color": "DarkSalmon", "border_color": 1, "border_width": 1},
clicked_fn=lambda: self.task_id_ui.model.set_value(max(self.task_id_ui.model.get_value_as_int() - 1, 0 )))
ui.Button("Add object", name = "add_button", clicked_fn=self.auto_add_obj, style={ "color": "DarkSalmon"})
ui.Label(" Object ", width=20, visible = False)
self.object_id_ui = omni.ui.IntField(height=20, width = 25, style={ "margin_height": 8 , "margin_width": 4}, visible = False)
self.object_id_ui.model.set_value(0)
ui.Button("+", width = 20, style={"margin_height": 8, "font_size": 12},
clicked_fn=lambda: self.object_id_ui.model.set_value(self.object_id_ui.model.get_value_as_int() + 1), visible = False)
ui.Button("-", width = 20, style={ "margin_height": 8, "font_size": 12},
clicked_fn=lambda: self.object_id_ui.model.set_value(self.object_id_ui.model.get_value_as_int() - 1), visible = False)
ui.Label(" Anchor:", width=20, visible = False)
self.anchor_id_ui = omni.ui.IntField(height=20, width = 25, style={ "margin_height": 8 , "margin_width": 4}, visible = False)
self.anchor_id_ui.model.set_value(0)
ui.Button("+", width = 20, style={"margin_height": 8, "font_size": 12},
clicked_fn=lambda: self.anchor_id_ui.model.set_value(self.anchor_id_ui.model.get_value_as_int() + 1), visible = False)
ui.Button("-", width = 20, style={ "margin_height": 8, "font_size": 12},
clicked_fn=lambda: self.anchor_id_ui.model.set_value(self.anchor_id_ui.model.get_value_as_int() - 1), visible = False)
ui.Label(" Robot:", width=20, visible = False)
self.robot_id_ui = omni.ui.IntField(height=20, width = 25, style={ "margin_height": 8 , "margin_width": 4}, visible = False)
ui.Button("+", width = 20, style={"margin_height": 8, "font_size": 12},
clicked_fn=lambda: self.robot_id_ui.model.set_value(self.robot_id_ui.model.get_value_as_int() + 1), visible = False)
ui.Button("-", width = 20, style={ "margin_height": 8, "font_size": 12},
clicked_fn=lambda: self.robot_id_ui.model.set_value(self.robot_id_ui.model.get_value_as_int() - 1), visible = False)
ui.Label("Mission ", width=20, visible = False)
self.mission_id_ui = omni.ui.IntField(height=20, width = 40, style={ "margin": 8 }, visible = False)
with ui.HStack():
ui.Label("\tHouse id: ", width = 30, style = { "color": "Plum", "font_size": 14})
self.house_id_ui = omni.ui.IntField(width = 30, name = "choose_id", style={"color": "Plum"})
self.house_id_ui.model.set_value(0)
ui.Button("+", width = 30, style={"margin_height": 8, "font_size": 14, "color": "Plum", "border_color": 1, "border_width": 1},
clicked_fn=lambda: self.house_id_ui.model.set_value(min(self.house_id_ui.model.get_value_as_int() + 1, 2)))
ui.Button("-", width = 30, style={ "margin_height": 8, "font_size": 14, "color": "Plum", "border_color": 1, "border_width": 1},
clicked_fn=lambda: self.house_id_ui.model.set_value(max(self.house_id_ui.model.get_value_as_int() - 1, 0)))
ui.Button("Add house", name = "add_button", clicked_fn=self.auto_add_house, style={ "color": "Plum"})
with ui.HStack(height=20, visible = False):
ui.Button("Add robot", clicked_fn=self.auto_add_robot, style={ "margin": 4})
ui.Button("Add mission", clicked_fn=self.auto_add_mission, style={ "margin": 4})
# ui.Label(" |", width=10)
with ui.HStack(height=20, visible = False):
ui.Button("Record object", name = "record_button", clicked_fn=self.record_obj_new, style={ "margin": 4})
ui.Button("Record robot", name = "record_button", clicked_fn=self.record_robot_new, style={ "margin": 4})
ui.Label(" |", width=10)
ui.Button("Record house", name = "record_button", clicked_fn=self.record_house_new, style={ "margin": 4})
with ui.HStack(height=20):
ui.Button("Record scene", height = 40, name = "record_button", clicked_fn=self.record_scene, style={ "margin": 4})
with ui.HStack(height=20, visible = False):
ui.Button("Load object", clicked_fn=self.load_obj_new, style={ "margin": 4})
ui.Button("Load robot", clicked_fn=self.load_robot_new, style={ "margin": 4})
# ui.Button("Load mission", clicked_fn=self.load_mission, style={ "margin": 4})
ui.Label(" |", width=10)
ui.Button("Load house", clicked_fn=self.load_house_new, style={ "margin": 4})
ui.Spacer(height = 10)
ui.Line(style_type_name_override="HeaderLine")
with ui.CollapsableFrame("SCENE UTILITY"):
with ui.VStack(height=0, spacing=4):
ui.Line(style_type_name_override="HeaderLine")
# open a new stage
ui.Button("New scene", height = 40, name = "load_button", clicked_fn=lambda : omni.kit.window.file.new(), style={ "margin": 4}, tooltip = "open a new empty stage")
# load recorded scene
ui.Button("Load scene", height = 40, name = "load_button", clicked_fn=self.load_scene, style={ "margin": 4})
# ground plan
CustomBoolWidget(label="Visible ground:", default_value=False, on_checked_fn = self.auto_add_ground)
# light intensity
CustomSliderWidget(min=0, max=3000, label="Light intensity:", default_val=1000, on_slide_fn = self.change_light_intensity)
# sky selection
CustomSkySelectionGroup(on_select_fn=self.randomize_sky)
# house material
CustomBoolWidget(label="Random house material:", default_value=False, on_checked_fn = self.randomize_material)
# water isosurface
CustomBoolWidget(label="Enable isosurface:", default_value=False, on_checked_fn = self.enable_isosurface)
# PLAY group
ui.Spacer(height = 10)
ui.Line(style_type_name_override="HeaderLine")
with ui.CollapsableFrame("PLAY"):
with ui.VStack(height=0, spacing=0):
ui.Line(style_type_name_override="HeaderLine")
ui.Spacer(height = 12)
# play and record
record_group = CustomRecordGroup(
on_click_record_fn=self.start_record,
on_click_stop_fn=self.stop_record,
on_click_replay_fn=self.replay_record,
)
# robot control
control_group = CustomControlGroup()
record_group.control_group = control_group
with ui.CollapsableFrame("Render"):
with ui.VStack(height=0, spacing=0):
CustomRenderTypeSelectionGroup(on_select_fn=self.set_render_type)
ui.Button("Capture image", height = 40, name = "tool_button", clicked_fn=self.render_an_image, style={ "margin": 4}, tooltip = "Capture current screenshot")
# PATH group
ui.Spacer(height = 10)
ui.Line(style_type_name_override="HeaderLine")
with ui.CollapsableFrame("PATH", collapsed = True):
with ui.VStack(height=0, spacing=0):
ui.Line(style_type_name_override="HeaderLine")
ui.Spacer(height = 12)
CustomPathButtonWidget(label="Task folder:", path=DATA_PATH_NEW)
CustomPathButtonWidget(label="Record folder:", path=SAVE_ROOT)
CustomPathButtonWidget(label="Render folder:", path=self.render_folder)
################################################################################################
######################################## Auto task labeling ####################################
################################################################################################
def fill_task_info(self, reset = False):
"""
Automatically (randomly fill task type, housing id, and object id)
:: params:
reset: if true, set all to zeros
"""
task_type_id = np.random.randint(len(self.task_types)) if not reset else 0
object_id = np.random.randint(20) if not reset else 0 # task id
house_id = np.random.randint(3) if not reset else 0 # house id
self.task_type_ui.model.get_item_value_model().set_value(task_type_id)
self.task_id_ui.model.set_value(object_id)
self.house_id_ui.model.set_value(house_id)
def init_auto_tasker(self):
"""
Initialize auto task labeling tool
"""
# update stage
self.stage = omni.usd.get_context().get_stage()
pxr.UsdGeom.SetStageUpAxis(self.stage, pxr.UsdGeom.Tokens.y)
task_index = self.task_type_ui.model.get_item_value_model().get_value_as_int()
task_type = self.task_types[task_index]
task_id = self.task_id_ui.model.get_value_as_int()
robot_id = self.robot_id_ui.model.get_value_as_int()
anchor_id = self.anchor_id_ui.model.get_value_as_int()
mission_id = self.mission_id_ui.model.get_value_as_int()
house_id = self.house_id_ui.model.get_value_as_int()
# meta_id = self.meta_id_ui.model.get_value_as_int()
# FIXME: add annotator
# annotator_index = self.annotator_ui.model.get_item_value_model().get_value_as_int()
annotator = "MyLuckyUser" # self.annotators[annotator_index]
self.auto_tasker = AutoTasker(task_type, task_id, robot_id, mission_id, house_id, anchor_id, annotator=annotator)
AutoTasker.TASK_DESCRIPTION = self.task_desc_ui.model.get_value_as_string()
def auto_next_obj_only(self):
"""
retrieve the next object index for current task
"""
# new scene
AutoTasker.new_scene()
global OBJ_INDEX
OBJ_INDEX = self.object_id_ui.model.get_value_as_int()
OBJ_INDEX += 1
self.object_id_ui.model.set_value(OBJ_INDEX)
self.init_auto_tasker()
self.auto_tasker.reconfig(OBJ_INDEX)
self.task_desc_ui.model.set_value(AutoTasker.TASK_DESCRIPTION)
def auto_next_task(self):
"""
next task
"""
task_id = self.task_id_ui.model.get_value_as_int()
self.task_id_ui.model.set_value(task_id + 1)
AutoTasker.new_scene()
self.init_auto_tasker()
self.auto_tasker.reconfig(0)
self.task_desc_ui.model.set_value(AutoTasker.TASK_DESCRIPTION)
def auto_next_task(self):
"""
next task
"""
task_id = self.task_id_ui.model.get_value_as_int()
self.task_id_ui.model.set_value(task_id + 1)
AutoTasker.new_scene()
self.init_auto_tasker()
self.auto_tasker.reconfig(0)
self.task_desc_ui.model.set_value(AutoTasker.TASK_DESCRIPTION)
def auto_add_obj(self):
self.init_auto_tasker()
if self.stage.GetPrimAtPath("/World/game"):
dialog = MessageDialog(
title="Add Object",
message=f"Already have `/World/game` in the scene. Please start a new stage.",
disable_cancel_button=True,
ok_handler=lambda dialog: dialog.hide()
)
dialog.show()
return
self.auto_tasker.add_obj()
# self.auto_tasker.build_HUD()
if self.stage.GetPrimAtPath("/World/game"):
self.task_desc_ui.model.set_value("Task object added!")
self.auto_add_robot()
def auto_add_robot(self):
self.init_auto_tasker()
self.auto_tasker.add_robot()
franka_prim = self.stage.GetPrimAtPath("/World/game/franka")
if franka_prim:
self.task_desc_ui.model.set_value("Feel free to move the robot, \nthen you can `Add house`")
selection = omni.usd.get_context().get_selection()
selection.clear_selected_prim_paths()
selection.set_prim_path_selected(franka_prim.GetPath().pathString, True, True, True, True)
viewport = omni.kit.viewport_legacy.get_viewport_interface()
viewport = viewport.get_viewport_window() if viewport else None
if viewport:
viewport.focus_on_selected()
else:
from omni.kit.viewport.utility import frame_viewport_selection
frame_viewport_selection(force_legacy_api=True)
def auto_add_house(self):
self.init_auto_tasker()
if self.stage.GetPrimAtPath("/World/layout"):
dialog = MessageDialog(
title="Add house",
message=f"Already have `/World/layout` in the scene. Please start a new stage.",
disable_cancel_button=True,
ok_handler=lambda dialog: dialog.hide()
)
dialog.show()
return
self.auto_tasker.add_house()
layout_prim = self.stage.GetPrimAtPath("/World/layout")
if layout_prim:
self.task_desc_ui.model.set_value("House added! Feel feel to move the /World/game and record scene.")
selection = omni.usd.get_context().get_selection()
selection.clear_selected_prim_paths()
selection.set_prim_path_selected("/World/game", True, True, True, True)
floor_prim = self.stage.GetPrimAtPath("/World/layout/floor")
def auto_add_mission(self):
self.init_auto_tasker()
self.auto_tasker.add_task()
################################################################################################
######################################## Modify Scene ##########################################
################################################################################################
def auto_add_ground(self, visible = False):
"""
Add ground to the scene
"""
self.stage = omni.usd.get_context().get_stage()
if not self.stage.GetPrimAtPath("/World/game"):
carb.log_error("Please add /World/game first!")
self.task_desc_ui.model.set_value(f"Please `Add Object`")
return
from .layout.modify import add_ground_plane
add_ground_plane(visiable=visible)
self.task_desc_ui.model.set_value(f"Add ground to scene (visible : {visible})")
selection = omni.usd.get_context().get_selection()
selection.clear_selected_prim_paths()
selection.set_prim_path_selected("/World/groundPlane", True, True, True, True)
def randomize_material(self, rand = True):
"""
Randomize house materials
"""
self.stage = omni.usd.get_context().get_stage()
if not self.stage.GetPrimAtPath("/World/layout"):
carb.log_error("Please add /World/layout (load scene) first!")
self.task_desc_ui.model.set_value(f"Please `Load Scene`")
return
self.randomizer = Randomizer()
self.randomizer.randomize_house(rand = rand)
self.task_desc_ui.model.set_value("Added floor/wall material")
def randomize_sky(self, sky_type = None):
"""
Randomize house materials
"""
self.randomizer = Randomizer()
self.randomizer.randomize_sky(sky_type = sky_type)
self.task_desc_ui.model.set_value("Sky added.")
def randomize_light(self):
"""
Randomize house materials
"""
self.randomizer = Randomizer()
self.randomizer.randomize_light()
self.task_desc_ui.model.set_value("Random light")
def change_light_intensity(self, intensity):
"""
Change default light intensity
"""
self.stage = omni.usd.get_context().get_stage()
light_prim = self.stage.GetPrimAtPath("/World/defaultLight")
if not light_prim:
# Create basic DistantLight
omni.kit.commands.execute(
"CreatePrim",
prim_path="/World/defaultLight",
prim_type="DistantLight",
select_new_prim=False,
attributes={pxr.UsdLux.Tokens.angle: 1.0, pxr.UsdLux.Tokens.intensity: 1000},
create_default_xform=True,
)
light_prim = self.stage.GetPrimAtPath("/World/defaultLight")
light_prim.GetAttribute("intensity").Set(float(intensity))
def enable_isosurface(self, enable = False):
"""
enable isosurface for water scene
"""
self.use_isosurface = enable
dialog = MessageDialog(
title="Isosurface",
message=f"Enabled iso surface: {self.use_isosurface} \n Please a [New Scene] and [Load Scene] for water task again.",
disable_cancel_button=True,
ok_handler=lambda dialog: dialog.hide()
)
dialog.show()
################################################################################################
######################################## Load / Record #########################################
################################################################################################
def init_new_house(self):
"""
Initiate HouseNew for recording/loading task info
"""
task_index = self.task_type_ui.model.get_item_value_model().get_value_as_int()
task_type = self.task_types[task_index]
task_id = self.task_id_ui.model.get_value_as_int()
robot_id = self.robot_id_ui.model.get_value_as_int()
anchor_id = self.anchor_id_ui.model.get_value_as_int()
mission_id = self.mission_id_ui.model.get_value_as_int()
house_id = self.house_id_ui.model.get_value_as_int()
annotator_index = self.annotator_ui.model.get_item_value_model().get_value_as_int()
annotator = self.annotators[annotator_index]
self.house = HouseNew(task_type, task_id, robot_id, mission_id, house_id, anchor_id, annotator)
# self.house.build_HUD()
# print("robot", self.house.robot_id)
def record_scene(self):
"""
Record obj + robot + house
"""
self.init_new_house()
self.house.record_obj_info()
self.house.record_robot_info()
self.house.record_house_info()
self.task_desc_ui.model.set_value("Scene recorded! Please start a new empty scene [Load scene] \n Note: you don't have to save the current stage.")
dialog = MessageDialog(
title="Scene Recorded",
message=f"Scene recorded! \nPlease start a [New scene] and then [Load scene] \nNote: you don't have to save the current stage.",
disable_cancel_button=True,
ok_handler=lambda dialog: dialog.hide()
)
dialog.show()
def record_obj_new(self):
"""
New pipeline to record game objects
"""
self.init_new_house()
self.house.record_obj_info()
self.task_desc_ui.model.set_value("object location recorded!")
def record_robot_new(self):
"""
New pipeline to record game robots
"""
self.init_new_house()
self.house.record_robot_info()
# if BaseChecker.SUCCESS_UI:
# BaseChecker.SUCCESS_UI.model.set_value("robot id (robot variation) recorded")
self.task_desc_ui.model.set_value("robot location recorded!")
def record_house_new(self):
self.init_new_house()
self.house.record_house_info()
# if BaseChecker.SUCCESS_UI:
# BaseChecker.SUCCESS_UI.model.set_value("house-anchor recorded")
self.task_desc_ui.model.set_value("game location in house recorded!")
def load_scene(self):
"""
Load obj + robot + house
"""
self.stage = omni.usd.get_context().get_stage()
pxr.UsdGeom.SetStageUpAxis(self.stage, pxr.UsdGeom.Tokens.y)
if self.stage.GetPrimAtPath("/World/game"):
dialog = MessageDialog(
title="Load scene",
message=f"Already have `/World/game` in the scene. Please start a new stage.",
disable_cancel_button=True,
ok_handler=lambda dialog: dialog.hide()
)
dialog.show()
return
dialog = MessageDialog(
title="Loading scene ......",
message=f"Please wait ......",
disable_cancel_button=True,
ok_handler=lambda dialog: dialog.hide()
)
dialog.show()
self.load_obj_new()
self.load_robot_new()
self.load_house_new()
# focus on game
selection = omni.usd.get_context().get_selection()
selection.clear_selected_prim_paths()
selection.set_prim_path_selected("/World/game", True, True, True, True)
viewport = omni.kit.viewport_legacy.get_viewport_interface()
viewport = viewport.get_viewport_window() if viewport else None
if viewport:
viewport.focus_on_selected()
else:
from omni.kit.viewport.utility import frame_viewport_selection
frame_viewport_selection(force_legacy_api=True)
selection.clear_selected_prim_paths()
dialog.hide()
dialog2 = MessageDialog(
title="Loading scene ......",
message=f"Loading scene complete!",
disable_cancel_button=True,
ok_handler=lambda dialog2: dialog2.hide()
)
dialog2.show()
def load_obj_new(self):
"""
New pipeline to load game objs
"""
stage = omni.usd.get_context().get_stage()
default_prim_path = stage.GetDefaultPrim().GetPath()
if default_prim_path.pathString == '':
# default_prim_path = pxr.Sdf.Path('/World')
root = pxr.UsdGeom.Xform.Define(stage, "/World").GetPrim()
stage.SetDefaultPrim(root)
default_prim_path = stage.GetDefaultPrim().GetPath()
self.init_new_house()
self.house.load_obj_info(relative=True)
task_index = self.task_type_ui.model.get_item_value_model().get_value_as_int()
task_type = self.task_types[task_index]
# fix linear joint scale
if task_type in ["open_drawer","open_cabinet", "open_door", \
"close_drawer", "close_cabinet", "close_door", "tap_water"]:
if task_type in ["open_door", "close_door"]:
self.fix_linear_joint(fix_driver=True, damping_cofficient=1000)
elif task_type in ["tap_water"]:
self.fix_linear_joint(fix_driver=True, damping_cofficient=100)
else:
self.fix_linear_joint(fix_driver=True, damping_cofficient=10)
if task_type in ["pour_water", "transfer_water", "tap_water"]:
self.add_liquid_to_cup(task_type, self.use_isosurface)
def load_robot_new(self):
"""
New pipeline to load robots objs
"""
self.is_initial_setup = False
self.init_new_house()
self.setup_robot(new_method=True)
franka_prim = omni.usd.get_context().get_stage().GetPrimAtPath("/World/game/franka")
if franka_prim:
add_semantics(franka_prim, "franka")
def load_house_new(self):
self.stage = omni.usd.get_context().get_stage()
self.init_new_house()
self.load_house_successful = self.house.load_house_info()
# if load house successfully, randomize sky, floor, and wall
if self.load_house_successful:
floor_prim = self.stage.GetPrimAtPath("/World/layout/floor")
if floor_prim:
add_semantics(floor_prim, "floor")
furniture_prim = self.stage.GetPrimAtPath("/World/layout/furniture")
if furniture_prim:
add_semantics(furniture_prim, "furniture")
wall_prim = self.stage.GetPrimAtPath("/World/layout/roomStruct")
if wall_prim:
add_semantics(wall_prim, "wall")
# from .layout.randomizer import Randomizer
# if not hasattr(self, "house_randomizer"):
# self.house_randomizer = Randomizer(None)
# self.house_randomizer.randomize_house(randomize_floor=True, randomize_wall=True)
# if IS_IN_CREAT:
# self.house_randomizer.randomize_sky()
self.randomize_material(rand=True)
# self.randomize_sky(sky_type="")
################################################################################################
######################################## Second window #########################################
################################################################################################
# pass
###################################################################################
################################ Robot ######################################
###################################################################################
def setup_robot(self, new_method = False):
"""
Set up robot in the currect example
"""
# get the game xform as the parent for the robot
self.stage = omni.usd.get_context().get_stage()
#game_xform = self.stage.GetPrimAtPath("/World/game")
robot_parent_path = "/World/game"
has_game_xform = True
if not self.stage.GetPrimAtPath(robot_parent_path):
has_game_xform = False
xform_game = pxr.UsdGeom.Xform.Define(self.stage, robot_parent_path)
xform_game.AddTranslateOp().Set(pxr.Gf.Vec3f(0.0, 0.0, 0.0))
xform_game.AddOrientOp().Set(pxr.Gf.Quatf(1.0, 0.0, 0.0, 0.0))
xform_game.AddScaleOp().Set(pxr.Gf.Vec3f(1.0, 1.0, 1.0))
# retreive timeline
# _timeline = omni.timeline.get_timeline_interface()
# _timeline.play() # default not playing
if not new_method:
# old method
# load json info from example
task_index = self.task_type_ui.model.get_item_value_model().get_value_as_int()
task_type = self.task_types[task_index]
task_id = self.task_id_ui.model.get_value_as_int()
house_id = self.house_id_ui.model.get_value_as_int()
object_id = self.object_id_ui.model.get_value_as_int()
task_json = os.path.join(DATA_PATH_ROOT, "tasks", task_type, str(house_id), str(object_id), str(task_id) + ".json")
print("task json: ", task_json)
has_robot_info = False
if os.path.exists(task_json):
# raise Exception( "The json file at path {} provided wasn't found".format(room_layout_json) )
layout = json.load(open(task_json))
if "robot" in layout:
position = layout["robot"]["position"]
rotation = layout["robot"]["rotation"]
has_robot_info = True
# if there is no robot information / or no game_xform
if not has_robot_info or not has_game_xform:
carb.log_warn("Don't know the location/rotation for the robot")
position = [0,0,0]
rotation = [-0.5,0.5,0.5,0.5]
# new robot loading method
else:
#from .layout.house_new import HouseNew
self.init_new_house()
position, rotation = self.house.load_robot_info()
# print("position, rotation ", np.array(position), np.array(rotation))
if False: # (not self.is_initial_setup) and IS_IN_ISAAC_SIM:
# target_path = "/World/game/mobility_Bottle_3618"
target_path = None
for target_prim in self.stage.GetPrimAtPath("/World/game").GetChildren():
if "mobility" in target_prim.GetPath().pathString:
target_path = target_prim.GetPath().pathString
if target_path is None:
raise Exception("Must have a game object with mobility in the scene")
# self.franka = FrankabotKeyboard()
self.franka = FrankabotGamePad(target_path, position=np.array(position), rotation=np.array(rotation), parent_path=robot_parent_path)
else:
franka_path = os.path.join(ROBOT_PATH, "franka/franka.usd")
# load robot
robot_prim = self.stage.GetPrimAtPath(robot_parent_path + "/franka")
if not robot_prim.IsValid():
robot_prim = self.stage.DefinePrim(robot_parent_path + "/franka")
success_bool = robot_prim.GetReferences().AddReference(franka_path)
if not success_bool:
raise Exception("The usd file at path {} provided wasn't found".format(franka_path))
# set robot xform
# robot_xform = pxr.UsdGeom.Xformable.Get(self.stage, robot_prim.GetPath())
# print("position $ rotation: ", position[0], position[1], position[2], rotation)
robot_xform_mat = pxr.Gf.Matrix4d().SetScale([1,1,1]) * \
pxr.Gf.Matrix4d().SetRotate(pxr.Gf.Quatf(float(rotation[0]), float(rotation[1]), float(rotation[2]), float(rotation[3]))) * \
pxr.Gf.Matrix4d().SetTranslate([float(position[0]), float(position[1]), float(position[2])])
omni.kit.commands.execute(
"TransformPrimCommand",
path=robot_prim.GetPath().pathString,
new_transform_matrix=robot_xform_mat,
)
# robot_xform.AddTranslateOp().Set(pxr.Gf.Vec3f(float(position[0]), float(position[1]), float(position[2])))
# robot_xform.AddOrientOp().Set(pxr.Gf.Quatf(float(rotation[0]), float(rotation[1]), float(rotation[2]), float(rotation[3])))
# robot_xform.AddScaleOp().Set(pxr.Gf.Vec3f(1.0, 1.0, 1.0))
# selection = omni.usd.get_context().get_selection()
# selection.clear_selected_prim_paths()
# selection.set_prim_path_selected(robot_parent_path + "/franka", True, True, True, True)
# setup physics
from pxr import PhysxSchema, UsdPhysics
physicsScenePath = "/World/physicsScene"
scene = UsdPhysics.Scene.Get(self.stage, physicsScenePath)
if not scene:
scene = UsdPhysics.Scene.Define(self.stage, physicsScenePath)
self._gravityDirection = pxr.Gf.Vec3f(0.0, -1.0, 0.0)
self._gravityMagnitude = 981
scene.CreateGravityDirectionAttr().Set(self._gravityDirection)
scene.CreateGravityMagnitudeAttr().Set(self._gravityMagnitude)
physxSceneAPI = PhysxSchema.PhysxSceneAPI.Apply(scene.GetPrim())
physxSceneAPI.CreateEnableCCDAttr().Set(True)
physxSceneAPI.GetTimeStepsPerSecondAttr().Set(60)
physxSceneAPI.CreateEnableGPUDynamicsAttr().Set(True)
physxSceneAPI.CreateEnableEnhancedDeterminismAttr().Set(True)
physxSceneAPI.CreateEnableStabilizationAttr().Set(True)
def fix_linear_joint(self, fix_driver = True, damping_cofficient = 1):
"""
Fix the linear joint limit when scaling an object
"""
self.stage = omni.usd.get_context().get_stage()
prim_list = self.stage.TraverseAll()
for prim in prim_list:
if "joint_" in str(prim.GetPath()):
if fix_driver:
# find linear drive
joint_driver = pxr.UsdPhysics.DriveAPI.Get(prim, "linear")
if joint_driver:
joint_driver.CreateDampingAttr(damping_cofficient)
# find linear drive
joint_driver = pxr.UsdPhysics.DriveAPI.Get(prim, "angular")
if joint_driver:
joint_driver.CreateDampingAttr(damping_cofficient)
# find linear joint upperlimit
joint = pxr.UsdPhysics.PrismaticJoint.Get(self.stage, prim.GetPath())
if joint:
upper_limit = joint.GetUpperLimitAttr().Get() #GetAttribute("xformOp:translate").Get()
print(prim.GetPath(), "upper_limit", upper_limit)
mobility_prim = prim.GetParent().GetParent()
mobility_xform = pxr.UsdGeom.Xformable.Get(self.stage, mobility_prim.GetPath())
scale_factor = mobility_xform.GetOrderedXformOps()[2].Get()[0]
print("scale_factor", scale_factor)
joint.CreateUpperLimitAttr(upper_limit * scale_factor / 100)
###################################################################################
################################ Liquid ######################################
###################################################################################
def init_fluid_helper(self, use_isosurface = False):
from .layout.fluid.cup_setup import CupFluidHelper
# cup_id = 0 # self.cup_id_ui.model.get_value_as_int()
# r = self.r_ui.model.get_value_as_float()
# g = self.g_ui.model.get_value_as_float()
# b = self.b_ui.model.get_value_as_float()
self.cup_fluid_helper = CupFluidHelper(use_isosurface)
# def set_up_fluid_helper(self):
# # Fluid System setup
# self.init_fluid_helper()
# self.cup_fluid_helper.create()
def add_liquid_to_cup(self, task_type, use_isosurface = False):
self.init_fluid_helper(use_isosurface)
self.stage = omni.usd.get_context().get_stage()
game_prim = self.stage.GetPrimAtPath("/World/game")
enable_physics = True
if task_type == 'tap_water':
enable_physics = False
for prim in game_prim.GetChildren():
if "mobility_" in prim.GetPath().pathString and task_type in ["pour_water", "transfer_water"]:
self.cup_fluid_helper.modify_cup_scene(prim, add_liquid = True, set_physics = enable_physics)
elif "container_" in prim.GetPath().pathString:
self.cup_fluid_helper.modify_cup_scene(prim, add_liquid = False, set_physics = enable_physics)
###################################################################################
################################ Play and Record #############################
###################################################################################
def init_franka_tensor(self):
"""
Init franka tensor controller
"""
from .param import APP_VERION
assert APP_VERION >= "2022.0.0", "need Omniverse Isaac-Sim/Create in 2022"
task_index = self.task_type_ui.model.get_item_value_model().get_value_as_int()
task_type = self.task_types[task_index]
task_id = self.task_id_ui.model.get_value_as_int()
# robot_id = self.robot_id_ui.model.get_value_as_int()
# mission_id = self.mission_id_ui.model.get_value_as_int()
house_id = self.house_id_ui.model.get_value_as_int()
# anchor_id = self.anchor_id_ui.model.get_value_as_int()
annotator_index = self.annotator_ui.model.get_item_value_model().get_value_as_int()
annotator = ANNOTATORS[annotator_index]
root_dir = '-'.join([str(os.path.join(SAVE_ROOT, annotator, task_type)),str(task_id), str(house_id)])#, \
#str(robot_id), str(mission_id), str(house_id), str(anchor_id)])
traj_dir = os.path.join(root_dir, TRAJ_FOLDER)
# print("traj_dir", traj_dir)
from .robot_setup.franka_tensor import FrankaTensor
self.ft = FrankaTensor(save_path=traj_dir)
def stop_record(self):
"""
Stop recording button
"""
if not hasattr(self, "ft"):
self.timeline.stop()
carb.log_error( "please load layout and start recording first")
return
self.ft.is_record = False
self.ft.is_replay = False
self.timeline.stop()
self.task_desc_ui.model.set_value("Stop.")
def replay_record(self):
"""
Replay recording button
"""
self.init_franka_tensor()
self.ft.is_replay = True
self.ft.is_record = False
self.ft.load_record()
self.timeline.play()
self.task_desc_ui.model.set_value("Start replaying...")
def start_record(self):
"""
Play and record
"""
self.init_franka_tensor()
self.ft.is_replay = False
self.ft.is_record = True
import shutil
if os.path.exists(self.ft.save_path):
shutil.rmtree(self.ft.save_path)
os.makedirs(self.ft.save_path, exist_ok=True)
self.timeline.play()
self.task_desc_ui.model.set_value("Start recording...")
def set_render_type(self, render_type):
"""
Set up rendering type for current camera
"""
self.render_helper.reset()
self.render_helper.render_type = render_type
print("Setting render_type", self.render_helper.render_type)
def render_an_image(self):
"""
Render an image to render folder according render type
"""
task_index = self.task_type_ui.model.get_item_value_model().get_value_as_int()
task_type = self.task_types[task_index]
task_id = self.task_id_ui.model.get_value_as_int()
house_id = self.house_id_ui.model.get_value_as_int()
self.render_helper.render_image(self.render_folder, prefix = f"{task_type}_{task_id}_{house_id}")
self.task_desc_ui.model.set_value("image captured!")
######################## ui ###############################
def _build_custom_frame_header(self, collapsed, text):
"""
When task layout ui collapse, show id notified for task, object, and house id
"""
if collapsed:
alignment = ui.Alignment.RIGHT_CENTER
width = 8
height = 8
else:
alignment = ui.Alignment.CENTER_BOTTOM
width = 8
height = 8
with ui.HStack():
ui.Spacer(width=8)
with ui.VStack(width=0):
ui.Spacer()
ui.Triangle(
style = {"Triangle": {"background_color": 0xDDDDDDDD}}, width=width, height=height, alignment=alignment
)
ui.Spacer()
ui.Spacer(width=8)
ui.Label(text, width = 100)
if collapsed:
self.id_note_ui = CustomIdNotice()
# print("on_task_layout_ui_collapse", task_block_collapsed)
self.id_note_ui.ui.visible = collapsed
task_index = self.task_type_ui.model.get_item_value_model().get_value_as_int()
task_type = self.task_types[task_index]
task_id = self.task_id_ui.model.get_value_as_int()
robot_id = self.robot_id_ui.model.get_value_as_int()
anchor_id = self.anchor_id_ui.model.get_value_as_int()
mission_id = self.mission_id_ui.model.get_value_as_int()
house_id = self.house_id_ui.model.get_value_as_int()
self.id_note_ui.task_ui.text = task_type
self.id_note_ui.object_ui.text = f"Object: {task_id}"
self.id_note_ui.house_ui.text = f"House: {house_id}"
############################# shot down #########################
def on_shutdown(self):
print("[vrkitchen.indoor.kit] VRKitchen2.0-Indoor-Kit shutdown")
############################# debug #############################
def debug(self):
"""
Debug
"""
print("debug") | 48,704 | Python | 45.697028 | 196 | 0.528129 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/__init__.py | from .extension import *
| 25 | Python | 11.999994 | 24 | 0.76 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/param.py | import omni
import carb
import os
from pathlib import Path
EXTENSION_FOLDER_PATH = Path(
omni.kit.app.get_app().get_extension_manager().get_extension_path_by_module(__name__)
)
ROOT = str(EXTENSION_FOLDER_PATH.parent.parent.resolve())
# ROOT = str(Path(__file__).parent.joinpath("../../../../../").resolve())
print("EXTENSION_FOLDER_PATH", EXTENSION_FOLDER_PATH, "ROOT", ROOT)
IS_IN_ISAAC_SIM = str(carb.settings.get_settings().get("/app/window/title")).startswith("Isaac Sim")
IS_IN_CREAT = str(carb.settings.get_settings().get("/app/window/title")).startswith("Create")
IS_IN_CODE = str(carb.settings.get_settings().get("/app/window/title")).startswith("Code")
APP_VERION = str(carb.settings.get_settings().get("/app/version"))
assert APP_VERION >= "2022.1.0", "Please start Isaac-Sim/Create/Code with version no small than 2022.1.0"
print("APP name: ", str(carb.settings.get_settings().get("/app/window/title")), APP_VERION)
# root = '/home/yizhou/Research/'
# root = '/home/vince/Documents/Research/'
# ROOT = '/home/nikepupu/Desktop' if IS_IN_ISAAC_SIM else 'E:/researches'
# Asset paths
ASSET_PATH = ROOT + "/exts/vrkitchen.indoor.kit/asset/"
SAPIEN_ASSET_PATH = ASSET_PATH + "/Sapien/"
HOUSE_INFO_PATH = ASSET_PATH + "/3DFront/"
CUSTOM_ASSET_PATH = ASSET_PATH + "/Custom/"
# STORAGE_ASSET_PATH = ROOT + "/asset/sapien_parsed/StorageFurniture/"
# Data path
DATA_PATH_ROOT = ROOT + "/data/"
DATA_PATH_NEW = DATA_PATH_ROOT + "/data_auto/"
SAVE_ROOT = DATA_PATH_ROOT + '/data_record/'
RENDER_ROOT = DATA_PATH_ROOT + '/data_render/'
#
ROBOT_PATH = ASSET_PATH + "Robot/"
ORIGINAL_IMAGES_FORLDER = "raw_images"
TRAJ_FOLDER = "trajectory"
DEPTH_IMAGES_FOLDER = "depth_images"
SEMANTIC_IMAGES_FOLDER = "semantic_images"
USE_ISO_SURFACE = False
#Annotator
ANNOTATORS = [
"MyLuckyUser",
]
# Task
TASK_TYPES = ["pickup_object","reorient_object", "pour_water",
"open_drawer"] # ,"open_cabinet", "put_object_into_box", "open_door", "transfer_water",
#"close_drawer", "close_cabinet", "close_door", "take_object_out_box"]
#Objects
OBJECT_TYPES = ["Bottle", "Box", "Door", "Faucet", "LightSwitch", "Microwave", "StorageFurniture"]
# Task objects
GAME_OBJ_NAMES = ["mobility", "switch", "SM_", "watercup", "fluid"]
CONTAINER_NAMES = ["box", "cup"]
OTHER_OBJ_NAMES = ["basin"]
# Physics
RIGIDBODY_OBJ_TYPES = ["Bottle", "SM_"] | 2,364 | Python | 32.309859 | 105 | 0.681895 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/render/helper.py | import math
import time
import typing
import asyncio
import carb
import omni
import numpy as np
from PIL import Image
import os
import omni.syntheticdata as syn
from omni.kit.window.popup_dialog import MessageDialog
class CustomSyntheticDataHelper:
def __init__(self):
# initialize syntheticdata extension
self.app = omni.kit.app.get_app_interface()
ext_manager = self.app.get_extension_manager()
if not ext_manager.is_extension_enabled("omni.syntheticdata"):
ext_manager.set_extension_enabled("omni.syntheticdata", True)
self.reset()
def reset(self):
# viewport
self.render_type = "Rgb"
# viewport = omni.kit.viewport_legacy.get_viewport_interface()
# viewport_handle = viewport.get_instance("Viewport")
from omni.kit.viewport.utility import get_active_viewport
self.viewport = get_active_viewport()
self.viewport_window = omni.kit.viewport.utility.get_viewport_from_window_name() # viewport.get_viewport_window(None)
self.timeline = omni.timeline.get_timeline_interface()
def render_image(self, export_folder = None, prefix = ""):
print("rendering image...")
self.stage = omni.usd.get_context().get_stage()
# get camera
# self.viewport_window.set_texture_resolution(*resolution)
camera_name = self.viewport_window.get_active_camera().pathString.replace("/","")
# set up export folder
if export_folder:
if not os.path.exists(export_folder):
os.makedirs(export_folder, exist_ok=True)
time_str = str(int(self.timeline.get_current_time() * self.stage.GetTimeCodesPerSecond()))
img_save_path = f"{export_folder}/{prefix}_{camera_name}_{self.render_type}_{time_str}.png"
# get render type
# synthetic_type = syn._syntheticdata.SensorType.Rgb
# if self.render_type == "Depth":
# synthetic_type = syn._syntheticdata.SensorType.DepthLinear
# elif self.render_type == "Semantic":
# synthetic_type = syn._syntheticdata.SensorType.SemanticSegmentation
# render and export
async def render_img():
# Render one frame
await omni.kit.app.get_app().next_update_async()
syn.sensors.enable_sensors(
self.viewport,
[
syn._syntheticdata.SensorType.Rgb,
syn._syntheticdata.SensorType.DepthLinear,
syn._syntheticdata.SensorType.SemanticSegmentation,
syn._syntheticdata.SensorType.InstanceSegmentation
],
)
# # await syn.sensors.initialize_async(self.viewport_window, [])
# await syn.sensors.next_sensor_data_async(self.viewport, True)
# if self.render_type == "Depth":
# from omni.syntheticdata.scripts.visualize import get_depth
# data = get_depth(self.viewport_window, mode = "linear")
# # print("img", data.shape)
# img = Image.fromarray(data.astype(np.uint8))
if self.render_type == "Depth":
await syn.sensors.next_sensor_data_async(self.viewport)
data = syn.sensors.get_depth_linear(self.viewport)
print("depthimg", data.shape)
img = Image.fromarray(data.astype(np.uint8))
elif self.render_type == "Semantic":
await syn.sensors.next_sensor_data_async(self.viewport)
data = syn.sensors.get_instance_segmentation(self.viewport, parsed = True)
img = Image.fromarray(data.astype(np.uint8))
else:
await syn.sensors.next_sensor_data_async(self.viewport)
data = syn.sensors.get_rgb(self.viewport)
print("img", data.shape, data.dtype)
img = Image.fromarray(data)
if export_folder:
img.save(img_save_path)
print("image saved at path: ", img_save_path)
dialog = MessageDialog(
title="Image capture",
message=f"Screenshot captured!",
disable_cancel_button=True,
ok_handler=lambda dialog: dialog.hide()
)
dialog.show()
asyncio.ensure_future(render_img())
| 4,492 | Python | 36.756302 | 126 | 0.585931 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/ui/style.py | # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
__all__ = ["julia_modeler_style"]
from omni.ui import color as cl
from omni.ui import constant as fl
from omni.ui import url
import omni.kit.app
import omni.ui as ui
import pathlib
EXTENSION_FOLDER_PATH = pathlib.Path(
omni.kit.app.get_app().get_extension_manager().get_extension_path_by_module(__name__)
)
ATTR_LABEL_WIDTH = 150
BLOCK_HEIGHT = 22
TAIL_WIDTH = 35
WIN_WIDTH = 400
WIN_HEIGHT = 930
# Pre-defined constants. It's possible to change them at runtime.
cl.window_bg_color = cl(0.2, 0.2, 0.2, 1.0)
cl.window_title_text = cl(.9, .9, .9, .9)
cl.collapsible_header_text = cl(.8, .8, .8, .8)
cl.collapsible_header_text_hover = cl(.95, .95, .95, 1.0)
cl.main_attr_label_text = cl(.65, .65, .65, 1.0)
cl.main_attr_label_text_hover = cl(.9, .9, .9, 1.0)
cl.multifield_label_text = cl(.65, .65, .65, 1.0)
cl.combobox_label_text = cl(.65, .65, .65, 1.0)
cl.field_bg = cl(0.18, 0.18, 0.18, 1.0)
cl.field_border = cl(1.0, 1.0, 1.0, 0.2)
cl.btn_border = cl(1.0, 1.0, 1.0, 0.4)
cl.slider_fill = cl(1.0, 1.0, 1.0, 0.3)
cl.revert_arrow_enabled = cl(.25, .5, .75, 1.0)
cl.revert_arrow_disabled = cl(.75, .75, .75, 1.0)
cl.transparent = cl(0, 0, 0, 0)
fl.main_label_attr_hspacing = 10
fl.attr_label_v_spacing = 3
fl.collapsable_group_spacing = 2
fl.outer_frame_padding = 15
fl.tail_icon_width = 15
fl.border_radius = 3
fl.border_width = 1
fl.window_title_font_size = 18
fl.field_text_font_size = 14
fl.main_label_font_size = 14
fl.multi_attr_label_font_size = 14
fl.radio_group_font_size = 14
fl.collapsable_header_font_size = 13
fl.range_text_size = 10
url.closed_arrow_icon = f"{EXTENSION_FOLDER_PATH}/icons/closed.svg"
url.open_arrow_icon = f"{EXTENSION_FOLDER_PATH}/icons/opened.svg"
url.revert_arrow_icon = f"{EXTENSION_FOLDER_PATH}/icons/revert_arrow.svg"
url.checkbox_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/checkbox_on.svg"
url.checkbox_off_icon = f"{EXTENSION_FOLDER_PATH}/icons/checkbox_off.svg"
url.radio_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/radio_btn_on.svg"
url.radio_btn_off_icon = f"{EXTENSION_FOLDER_PATH}/icons/radio_btn_off.svg"
url.diag_bg_lines_texture = f"{EXTENSION_FOLDER_PATH}/icons/diagonal_texture_screenshot.png"
####################### Indoor Kit ###########################################
# url.start_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/random.svg"
url.start_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/toolbar_play.svg"
url.replay_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/toolbar_replay.svg"
url.stop_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/toolbar_stop.svg"
url.pause_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/timeline_pause.svg"
url.pencil_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/pencil.svg"
url.open_folder_btn_on_icon = f"{EXTENSION_FOLDER_PATH}/icons/open_folder.svg"
# The main style dict
julia_modeler_style = {
"Button::tool_button": {
"background_color": cl.field_bg,
"margin_height": 8,
"margin_width": 6,
"border_color": cl.btn_border,
"border_width": fl.border_width,
"font_size": fl.field_text_font_size,
},
"CollapsableFrame::group": {
"margin_height": fl.collapsable_group_spacing,
"background_color": cl.transparent,
},
# TODO: For some reason this ColorWidget style doesn't respond much, if at all (ie, border_radius, corner_flag)
"ColorWidget": {
"border_radius": fl.border_radius,
"border_color": cl(0.0, 0.0, 0.0, 0.0),
},
"Field": {
"background_color": cl.field_bg,
"border_radius": fl.border_radius,
"border_color": cl.field_border,
"border_width": fl.border_width,
},
"Field::attr_field": {
"corner_flag": ui.CornerFlag.RIGHT,
"font_size": 2, # fl.field_text_font_size, # Hack to allow for a smaller field border until field padding works
},
"Field::attribute_color": {
"font_size": fl.field_text_font_size,
},
"Field::multi_attr_field": {
"padding": 4, # TODO: Hacky until we get padding fix
"font_size": fl.field_text_font_size,
},
"Field::path_field": {
"corner_flag": ui.CornerFlag.RIGHT,
"font_size": fl.field_text_font_size,
},
"HeaderLine": {"color": cl(.5, .5, .5, .5)},
"Image::collapsable_opened": {
"color": cl.collapsible_header_text,
"image_url": url.open_arrow_icon,
},
"Image::collapsable_opened:hovered": {
"color": cl.collapsible_header_text_hover,
"image_url": url.open_arrow_icon,
},
"Image::collapsable_closed": {
"color": cl.collapsible_header_text,
"image_url": url.closed_arrow_icon,
},
"Image::collapsable_closed:hovered": {
"color": cl.collapsible_header_text_hover,
"image_url": url.closed_arrow_icon,
},
"Image::radio_on": {"image_url": url.radio_btn_on_icon},
"Image::radio_off": {"image_url": url.radio_btn_off_icon},
"Image::revert_arrow": {
"image_url": url.revert_arrow_icon,
"color": cl.revert_arrow_enabled,
},
"Image::revert_arrow:disabled": {
"image_url": url.revert_arrow_icon,
"color": cl.revert_arrow_disabled
},
"Image::revert_arrow_task_type": {
"image_url": url.revert_arrow_icon,
"color": cl.revert_arrow_enabled,
},
"Image::revert_arrow_task_type:disabled": {
"image_url": url.pencil_btn_on_icon,
"color": cl.revert_arrow_disabled
},
"Image::open_folder": {
"image_url": url.open_folder_btn_on_icon,
"color": cl.revert_arrow_disabled
},
"Image::checked": {"image_url": url.checkbox_on_icon},
"Image::unchecked": {"image_url": url.checkbox_off_icon},
"Image::slider_bg_texture": {
"image_url": url.diag_bg_lines_texture,
"border_radius": fl.border_radius,
"corner_flag": ui.CornerFlag.LEFT,
},
"Label::attribute_name": {
"alignment": ui.Alignment.RIGHT_TOP,
"margin_height": fl.attr_label_v_spacing,
"margin_width": fl.main_label_attr_hspacing,
# "color": "lightsteelblue",
"font_size": fl.main_label_font_size,
},
"Label::attribute_name:hovered": {"color": cl.main_attr_label_text_hover},
"Label::collapsable_name": {"font_size": fl.collapsable_header_font_size},
"Label::multi_attr_label": {
"color": cl.multifield_label_text,
"font_size": fl.multi_attr_label_font_size,
},
"Label::radio_group_name": {
"font_size": fl.radio_group_font_size,
"alignment": ui.Alignment.CENTER,
"color": cl.main_attr_label_text,
},
"Label::range_text": {
"font_size": fl.range_text_size,
},
"Label::window_title": {
"font_size": fl.window_title_font_size,
"color": cl.window_title_text,
},
"ScrollingFrame::window_bg": {
"background_color": cl.window_bg_color,
"padding": fl.outer_frame_padding,
"border_radius": 20 # Not obvious in a window, but more visible with only a frame
},
"Slider::attr_slider": {
"draw_mode": ui.SliderDrawMode.FILLED,
"padding": 0,
"color": cl.transparent,
# Meant to be transparent, but completely transparent shows opaque black instead.
"background_color": cl(0.28, 0.28, 0.28, 0.01),
"secondary_color": cl.slider_fill,
"border_radius": fl.border_radius,
"corner_flag": ui.CornerFlag.LEFT, # TODO: Not actually working yet OM-53727
},
# Combobox workarounds
"Rectangle::combobox": { # TODO: remove when ComboBox can have a border
"background_color": cl.field_bg,
"border_radius": fl.border_radius,
"border_color": cl.btn_border,
"border_width": fl.border_width,
},
"ComboBox::dropdown_menu": {
"color": "lightsteelblue", # label color
"padding_height": 1.25,
"margin": 2,
"background_color": cl.field_bg,
"border_radius": fl.border_radius,
"font_size": fl.field_text_font_size,
"secondary_color": cl.transparent, # button background color
},
"Rectangle::combobox_icon_cover": {"background_color": cl.field_bg},
################## VRKitchen Indoor Kit ###############
"Field::choose_id": {
"margin": 8,
},
"Button::record_button": {
"background_color": cl.field_bg,
"border_color": cl.btn_border,
"border_width": fl.border_width,
"border_radius": 6,
"margin": 4,
"corner_flag": ui.CornerFlag.ALL,
},
"Button::load_button": {
"background_color": cl.field_bg,
"border_color": cl.btn_border,
"border_width": fl.border_width,
"border_radius": 10,
"margin": 4,
"corner_flag": ui.CornerFlag.ALL,
},
"Button::add_button": {
"background_color": cl.field_bg,
"border_color": cl.btn_border,
"border_width": fl.border_width,
"border_radius": 2,
"margin": 8,
"corner_flag": ui.CornerFlag.ALL,
},
"Button::control_button": {
"background_color": cl.field_bg,
"border_color": cl.btn_border,
"border_width": fl.border_width,
"border_radius": 4,
"margin": 2,
"corner_flag": ui.CornerFlag.ALL,
},
"Button::control_button_disabled": {
"background_color": cl(0.1, 0.7, 0.3, 0.4),
"border_color": cl.btn_border,
"border_width": fl.border_width,
"border_radius": 4,
"margin": 2,
"corner_flag": ui.CornerFlag.ALL,
},
"Button::control_button_pressed1": {
"background_color": cl( 0.7, 0.1, 0.3, 0.3),
"border_color": cl.btn_border,
"border_width": fl.border_width,
"border_radius": 4,
"margin": 2,
"corner_flag": ui.CornerFlag.ALL,
},
"Button::control_button_pressed2": {
"background_color": cl(0.1, 0.3, 0.7, 0.3),
"border_color": cl.btn_border,
"border_width": fl.border_width,
"border_radius": 4,
"margin": 2,
"corner_flag": ui.CornerFlag.ALL,
},
"Button::control_button_pressed3": {
"background_color": cl(0.7, 0.3, 0.7, 0.3),
"border_color": cl.btn_border,
"border_width": fl.border_width,
"border_radius": 4,
"margin": 2,
"corner_flag": ui.CornerFlag.ALL,
},
"Image::start_on": {
"image_url": url.start_btn_on_icon,
},
"Image::replay_on": {
"image_url": url.replay_btn_on_icon,
},
"Image::stop_on": {
"image_url": url.stop_btn_on_icon,
},
"Image::pause_on": {
"image_url": url.pause_btn_on_icon,
},
# "Image::radio_off": {"image_url": url.radio_btn_off_icon},
}
| 11,216 | Python | 33.943925 | 121 | 0.601373 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/ui/indoorkit_ui_widget.py | from typing import List, Optional
import omni
import omni.ui as ui
from .style import ATTR_LABEL_WIDTH, cl, fl
from .custom_base_widget import CustomBaseWidget
from ..robot_setup.controller import Controller
SPACING = 5
class TaskTypeComboboxWidget():
"""A customized combobox widget"""
def __init__(self,
model: ui.AbstractItemModel = None,
options: List[str] = None,
default_value=0,
on_restore_fn: callable = None,
**kwargs):
"""
Set up the take type combo box widget
::params:
:on_restore_fn: call when write/restore the widget
"""
self.__default_val = default_value
self.__options = options or ["1", "2", "3"]
self.__combobox_widget = None
self.on_restore_fn = on_restore_fn
# Call at the end, rather than start, so build_fn runs after all the init stuff
# CustomBaseWidget.__init__(self, model=model, **kwargs)
self.existing_model: Optional[ui.AbstractItemModel] = kwargs.pop("model", None)
self.revert_img = None
self.__attr_label: Optional[str] = kwargs.pop("label", "")
self.__frame = ui.Frame()
with self.__frame:
self._build_fn()
def destroy(self):
self.existing_model = None
self.revert_img = None
self.__attr_label = None
self.__frame = None
self.__options = None
self.__combobox_widget = None
@property
def model(self) -> Optional[ui.AbstractItemModel]:
"""The widget's model"""
if self.__combobox_widget:
return self.__combobox_widget.model
@model.setter
def model(self, value: ui.AbstractItemModel):
"""The widget's model"""
self.__combobox_widget.model = value
def _on_value_changed(self, *args):
"""Set revert_img to correct state."""
model = self.__combobox_widget.model
index = model.get_item_value_model().get_value_as_int()
self.revert_img.enabled = self.__default_val != index
def _restore_default(self):
"""Restore the default value."""
if self.revert_img.enabled:
# self.__combobox_widget.model.get_item_value_model().set_value(
# self.__default_val)
self.revert_img.enabled = False
if self.on_restore_fn:
self.on_restore_fn(True)
else:
self.revert_img.enabled = True
if self.on_restore_fn:
self.on_restore_fn(False)
def _build_body(self):
"""Main meat of the widget. Draw the Rectangle, Combobox, and
set up callbacks to keep them updated.
"""
with ui.HStack():
with ui.ZStack():
# TODO: Simplify when borders on ComboBoxes work in Kit!
# and remove style rule for "combobox" Rect
# Use the outline from the Rectangle for the Combobox
ui.Rectangle(name="combobox",
height=22)
option_list = list(self.__options)
self.__combobox_widget = ui.ComboBox(
0, *option_list,
name="dropdown_menu",
# Abnormal height because this "transparent" combobox
# has to fit inside the Rectangle behind it
height=10
)
# Swap for different dropdown arrow image over current one
with ui.HStack():
ui.Spacer() # Keep it on the right side
with ui.VStack(width=0): # Need width=0 to keep right-aligned
ui.Spacer(height=5)
with ui.ZStack():
ui.Rectangle(width=15, height=15, name="combobox_icon_cover")
ui.Image(name="collapsable_closed", width=12, height=12)
ui.Spacer(width=2) # Right margin
ui.Spacer(width=ui.Percent(5))
self.__combobox_widget.model.add_item_changed_fn(self._on_value_changed)
def _build_head(self):
"""Build the left-most piece of the widget line (label in this case)"""
ui.Label(
self.__attr_label,
width=80,
style = {"color": "lightsteelblue", "margin_height": 2, "alignment": ui.Alignment.RIGHT_TOP}
)
def _build_tail(self):
"""Build the right-most piece of the widget line. In this case,
we have a Revert Arrow button at the end of each widget line.
"""
with ui.HStack(width=0):
# ui.Spacer(width=5)
with ui.VStack(height=0):
ui.Spacer(height=3)
self.revert_img = ui.Image(
name="revert_arrow_task_type",
fill_policy=ui.FillPolicy.PRESERVE_ASPECT_FIT,
width=12,
height=13,
enabled=False,
tooltip="randomly fill (or reset) task type, object id, and house id."
)
ui.Spacer(width=5)
# call back for revert_img click, to restore the default value
self.revert_img.set_mouse_pressed_fn(
lambda x, y, b, m: self._restore_default())
def _build_fn(self):
"""Puts the 3 pieces together."""
with ui.HStack():
self._build_head()
self._build_body()
self._build_tail()
class CustomRecordGroup:
STYLE = {
"Rectangle::image_button": {
"background_color": 0x0,
"border_width": 1.5,
"border_radius": 2.0,
"margin": 4,
"border_color": cl.btn_border,
"corner_flag": ui.CornerFlag.RIGHT,
},
"Rectangle::image_button:hovered": {
"background_color": 0xAAB8B8B8,
"border_width": 0,
"border_radius": 2.0,
},
"Rectangle::image_button:selected": {
"background_color": 0x0,
"border_width": 1,
"border_color": 0xFFC5911A,
"border_radius": 2.0,
},
}
def __init__(self, width = 60, height = 60,
on_click_record_fn: callable = None,
on_click_stop_fn: callable = None,
on_click_replay_fn: callable = None,
):
self.timeline = omni.timeline.get_timeline_interface()
self.on_click_record_fn = on_click_record_fn
self.on_click_stop_fn = on_click_stop_fn
self.on_click_replay_fn = on_click_replay_fn
# another ui for control
self.control_group : CustomControlGroup = None
self._selected = False
with ui.HStack():
with ui.HStack():
with ui.ZStack(width=0, height=0, spacing=0): #
with ui.Placer(offset_x=width, offset_y=0):
self.play_label = ui.Label("Record", width = 60)
with ui.Placer(offset_x=0, offset_y=0):
self.rect_play = ui.Rectangle(name="image_button", width=2 * width, height=height, style=CustomRecordGroup.STYLE)
with ui.Placer(offset_x=5, offset_y=5):
self.image_play = ui.Image(
name="start_on", width=width - 10, height=height - 10, fill_policy=ui.FillPolicy.STRETCH
)
self.rect_play.set_mouse_pressed_fn(lambda x, y, btn, a: self._on_mouse_pressed_play(btn))
with ui.ZStack(width=0, height=0, spacing=0): #
with ui.Placer(offset_x=width, offset_y=0):
self.stop_label = ui.Label("Stop", width = 60)
with ui.Placer(offset_x=0, offset_y=0):
self.rect_stop = ui.Rectangle(name="image_button", width=2 * width, height=height, style=CustomRecordGroup.STYLE)
with ui.Placer(offset_x=5, offset_y=5):
self.image_stop = ui.Image(
name="stop_on", width=width - 10, height=height - 10, fill_policy=ui.FillPolicy.STRETCH
)
self.rect_stop.set_mouse_pressed_fn(lambda x, y, btn, a: self._on_mouse_pressed_stop(btn)) #
with ui.HStack():
with ui.ZStack(width=0, height=0, spacing=0):
with ui.Placer(offset_x=width, offset_y=0):
self.replay_label = ui.Label("Replay", width = 60)
with ui.Placer(offset_x=0, offset_y=0):
self.rect_replay = ui.Rectangle(name="image_button", width= 2 * width, height=height, style=CustomRecordGroup.STYLE)
with ui.Placer(offset_x=10, offset_y=10):
self.image_replay = ui.Image(
name="replay_on", width=width - 20, height=height - 20, fill_policy=ui.FillPolicy.STRETCH
)
self.rect_replay.set_mouse_pressed_fn(lambda x, y, btn, a: self._on_mouse_pressed_replay(btn))
def __del__(self):
# set ui.Image objects to None explicitly to avoid this error:
# Client omni.ui Failed to acquire interface [omni::kit::renderer::IGpuFoundation v0.2] while unloading all plugins
self.image_play = None
def _on_mouse_pressed_play(self, key):
# 0 is for mouse left button
if key == 0:
if self.timeline.is_stopped(): # if stopped, start recording
self.play_label.text = "Pause"
self.image_play.name = "pause_on"
self.on_click_record_fn()
if self.control_group:
self.control_group.enable()
elif self.timeline.is_playing(): # if is playing, pause
self.play_label.text = "Continue"
self.image_play.name = "start_on"
self.timeline.pause()
else: # if is paused, just play
self.play_label.text = "Pause"
self.image_play.name = "pause_on"
self.timeline.play()
def _on_mouse_pressed_replay(self, key):
# 0 is for mouse left button
if key == 0:
if self.timeline.is_stopped(): # if stopped, start recording
self.replay_label.text = "Pause"
self.image_replay.name = "pause_on"
self.on_click_replay_fn()
elif self.timeline.is_playing(): # if is playing, pause
self.replay_label.text = "Continue"
self.image_replay.name = "replay_on"
self.timeline.pause()
else: # if is paused, just play
self.replay_label.text = "Pause"
self.image_replay.name = "pause_on"
self.timeline.play()
def _on_mouse_pressed_stop(self, key):
# print("press stop button", self.timeline.is_playing(), self.timeline.is_stopped())
# 0 is for mouse left button
if key == 0:
self.play_label.text = "Record"
self.image_play.name = "start_on"
self.replay_label.text = "Replay"
self.image_replay.name = "replay_on"
self.on_click_stop_fn()
if self.control_group:
self.control_group.disable()
@property
def selected(self):
return self._selected
@selected.setter
def selected(self, value):
self._selected = value
class CustomControlGroup():
def __init__(self) -> None:
self.collapse_frame = ui.CollapsableFrame("Robot control")
self.collapse_frame.collapsed = False
self.collapse_frame.enabled = True
# ui
with self.collapse_frame:
with ui.VStack(height=0, spacing=0):
with ui.HStack():
ui.Label("position control: ")
self.button_w = ui.Button("W", name = "control_button", tooltip = "move end factor forward")
self.button_s = ui.Button("S", name = "control_button", tooltip = "move end factor backward")
self.button_a = ui.Button("A", name = "control_button", tooltip = "move end factor to left")
self.button_d = ui.Button("D", name = "control_button", tooltip = "move end factor to right")
self.button_q = ui.Button("Q", name = "control_button", tooltip = "move end factor to down")
self.button_e = ui.Button("E", name = "control_button", tooltip = "move end factor to up")
with ui.HStack():
ui.Label("rotation control: ")
self.button_up = ui.Button("UP", name = "control_button", tooltip = "Rotate hand upward")
self.button_down = ui.Button("DOWN", name = "control_button", tooltip = "Rotate hand downard")
self.button_left = ui.Button("LEFT", name = "control_button", tooltip = "Rotate hand to left")
self.button_right = ui.Button("RIGHT", name = "control_button", tooltip = "Rotate hand to right")
with ui.HStack():
ui.Label("gripper control: ")
self.button_control = ui.Button("LEFT CTRL", name = "control_button", tooltip = "Close/Open gripper")
self.button_list = [self.button_w, self.button_s, self.button_a, self.button_d, self.button_q, self.button_e,
self.button_up, self.button_down, self.button_left, self.button_right,
]
self.button_w.set_clicked_fn(lambda : self._on_button("w"))
self.button_s.set_clicked_fn(lambda : self._on_button("s"))
self.button_a.set_clicked_fn(lambda : self._on_button("a"))
self.button_d.set_clicked_fn(lambda : self._on_button("d"))
self.button_q.set_clicked_fn(lambda : self._on_button("q"))
self.button_e.set_clicked_fn(lambda : self._on_button("e"))
self.button_up.set_clicked_fn(lambda : self._on_button("up", 2))
self.button_down.set_clicked_fn(lambda : self._on_button("down", 2))
self.button_left.set_clicked_fn(lambda : self._on_button("left", 2))
self.button_right.set_clicked_fn(lambda : self._on_button("right", 2))
self.button_control.set_clicked_fn(lambda: self._on_button_control())
self.disable()
def enable(self):
"""
Enable itself by showing the robot controling buttons
"""
self.collapse_frame.collapsed = False
self.collapse_frame.enabled = True
self.enable_buttons()
def disable(self):
"""
Disable itself by closing the robot controling buttons
"""
self.collapse_frame.collapsed = True
# self.collapse_frame.enabled = False
def disable_buttons(self):
for button in self.button_list:
button.name = "control_button_disabled"
# button.enabled = False
Controller.reset_movement()
def enable_buttons(self):
for button in self.button_list:
button.enabled = True
button.name = "control_button"
Controller.reset_movement()
def _on_button(self, attr_name:str, style = 1):
attr = getattr(Controller, attr_name)
# print("attr", attr_name, attr)
button = getattr(self, f"button_{attr_name}")
if attr:
setattr(Controller, attr_name, False)
button.name = "control_button"
self.enable_buttons()
else:
self.disable_buttons()
setattr(Controller, attr_name, True)
button.enabled = True
button.name = f"control_button_pressed{style}"
def _on_button_control(self):
if Controller.left_control:
Controller.left_control = False
self.button_control.text = "LEFT CTRL"
self.button_control.name = "control_button"
else:
Controller.left_control = True
self.button_control.text = "Gripper closed"
self.button_control.name = "control_button_pressed3"
class CustomBoolWidget(CustomBaseWidget):
"""A custom checkbox or switch widget"""
def __init__(self,
model: ui.AbstractItemModel = None,
default_value: bool = True,
on_checked_fn: callable = None,
**kwargs):
self.__default_val = default_value
self.__bool_image = None
self.on_checked_fn = on_checked_fn
# Call at the end, rather than start, so build_fn runs after all the init stuff
CustomBaseWidget.__init__(self, model=model, **kwargs)
def destroy(self):
CustomBaseWidget.destroy()
self.__bool_image = None
def _restore_default(self):
"""Restore the default value."""
if self.revert_img.enabled:
self.__bool_image.checked = self.__default_val
self.__bool_image.name = (
"checked" if self.__bool_image.checked else "unchecked"
)
self.revert_img.enabled = False
def _on_value_changed(self):
"""Swap checkbox images and set revert_img to correct state."""
self.__bool_image.checked = not self.__bool_image.checked
self.__bool_image.name = (
"checked" if self.__bool_image.checked else "unchecked"
)
self.revert_img.enabled = self.__default_val != self.__bool_image.checked
if self.on_checked_fn:
self.on_checked_fn(self.__bool_image.checked)
def _build_body(self):
"""Main meat of the widget. Draw the appropriate checkbox image, and
set up callback.
"""
with ui.HStack():
with ui.VStack():
# Just shift the image down slightly (2 px) so it's aligned the way
# all the other rows are.
ui.Spacer(height=2)
self.__bool_image = ui.Image(
name="checked" if self.__default_val else "unchecked",
fill_policy=ui.FillPolicy.PRESERVE_ASPECT_FIT,
height=16, width=16, checked=self.__default_val
)
# Let this spacer take up the rest of the Body space.
ui.Spacer()
self.__bool_image.set_mouse_pressed_fn(
lambda x, y, b, m: self._on_value_changed())
NUM_FIELD_WIDTH = 50
SLIDER_WIDTH = ui.Percent(100)
FIELD_HEIGHT = 22 # TODO: Once Field padding is fixed, this should be 18
SPACING = 4
TEXTURE_NAME = "slider_bg_texture"
class CustomSliderWidget(CustomBaseWidget):
"""A compound widget for scalar slider input, which contains a
Slider and a Field with text input next to it.
"""
def __init__(self,
model: ui.AbstractItemModel = None,
num_type: str = "int",
min=0.0,
max=1.0,
default_val=0.0,
display_range: bool = False,
on_slide_fn: callable = None,
**kwargs):
self.__slider: Optional[ui.AbstractSlider] = None
self.__numberfield: Optional[ui.AbstractField] = None
self.__min = min
self.__max = max
self.__default_val = default_val
self.__num_type = num_type
self.__display_range = display_range
self.on_slide_fn = on_slide_fn
# Call at the end, rather than start, so build_fn runs after all the init stuff
CustomBaseWidget.__init__(self, model=model, **kwargs)
def destroy(self):
CustomBaseWidget.destroy()
self.__slider = None
self.__numberfield = None
@property
def model(self) -> Optional[ui.AbstractItemModel]:
"""The widget's model"""
if self.__slider:
return self.__slider.model
@model.setter
def model(self, value: ui.AbstractItemModel):
"""The widget's model"""
self.__slider.model = value
self.__numberfield.model = value
def _on_value_changed(self, *args):
"""Set revert_img to correct state."""
if self.__num_type == "float":
index = self.model.as_float
else:
index = self.model.as_int
self.revert_img.enabled = self.__default_val != index
if self.on_slide_fn:
self.on_slide_fn(index)
def _restore_default(self):
"""Restore the default value."""
if self.revert_img.enabled:
self.model.set_value(self.__default_val)
self.revert_img.enabled = False
def _build_display_range(self):
"""Builds just the tiny text range under the slider."""
with ui.HStack():
ui.Label(str(self.__min), alignment=ui.Alignment.LEFT, name="range_text")
if self.__min < 0 and self.__max > 0:
# Add middle value (always 0), but it may or may not be centered,
# depending on the min/max values.
total_range = self.__max - self.__min
# subtract 25% to account for end number widths
left = 100 * abs(0 - self.__min) / total_range - 25
right = 100 * abs(self.__max - 0) / total_range - 25
ui.Spacer(width=ui.Percent(left))
ui.Label("0", alignment=ui.Alignment.CENTER, name="range_text")
ui.Spacer(width=ui.Percent(right))
else:
ui.Spacer()
ui.Label(str(self.__max), alignment=ui.Alignment.RIGHT, name="range_text")
ui.Spacer(height=.75)
def _build_body(self):
"""Main meat of the widget. Draw the Slider, display range text, Field,
and set up callbacks to keep them updated.
"""
with ui.HStack(spacing=0):
# the user provided a list of default values
with ui.VStack(spacing=3, width=ui.Fraction(3)):
with ui.ZStack():
# Put texture image here, with rounded corners, then make slider
# bg be fully transparent, and fg be gray and partially transparent
with ui.Frame(width=SLIDER_WIDTH, height=FIELD_HEIGHT,
horizontal_clipping=True):
# Spacing is negative because "tileable" texture wasn't
# perfectly tileable, so that adds some overlap to line up better.
with ui.HStack(spacing=-12):
for i in range(50): # tiling the texture
ui.Image(name=TEXTURE_NAME,
fill_policy=ui.FillPolicy.PRESERVE_ASPECT_CROP,
width=50,)
slider_cls = (
ui.FloatSlider if self.__num_type == "float" else ui.IntSlider
)
self.__slider = slider_cls(
height=FIELD_HEIGHT,
min=self.__min, max=self.__max, name="attr_slider"
)
if self.__display_range:
self._build_display_range()
with ui.VStack(width=ui.Fraction(1)):
model = self.__slider.model
model.set_value(self.__default_val)
field_cls = (
ui.FloatField if self.__num_type == "float" else ui.IntField
)
# Note: This is a hack to allow for text to fill the Field space more, as there was a bug
# with Field padding. It is fixed, and will be available in the next release of Kit.
with ui.ZStack():
# height=FIELD_HEIGHT-1 to account for the border, so the field isn't
# slightly taller than the slider
ui.Rectangle(
style_type_name_override="Field",
name="attr_field",
height=FIELD_HEIGHT - 1
)
with ui.HStack(height=0):
ui.Spacer(width=2)
self.__numberfield = field_cls(
model,
height=0,
style={
"background_color": cl.transparent,
"border_color": cl.transparent,
"padding": 4,
"font_size": fl.field_text_font_size,
},
)
if self.__display_range:
ui.Spacer()
model.add_value_changed_fn(self._on_value_changed)
class CustomSkySelectionGroup(CustomBaseWidget):
def __init__(self,
on_select_fn: callable = None
) -> None:
self.on_select_fn = on_select_fn
self.sky_type = ""
CustomBaseWidget.__init__(self, label = "Sky type:")
def _build_body(self):
with ui.HStack():
self.button_clear = ui.Button("Sunny", name = "control_button")
self.button_cloudy = ui.Button("Cloudy", name = "control_button")
self.button_overcast = ui.Button("Overcast", name = "control_button")
self.button_night = ui.Button("Night", name = "control_button")
self.button_clear.set_clicked_fn(lambda : self._on_button("clear"))
self.button_cloudy.set_clicked_fn(lambda : self._on_button("cloudy"))
self.button_overcast.set_clicked_fn(lambda : self._on_button("overcast"))
self.button_night.set_clicked_fn(lambda : self._on_button("night"))
self.button_list = [self.button_clear, self.button_cloudy, self.button_overcast, self.button_night]
def enable_buttons(self):
for button in self.button_list:
button.enabled = True
button.name = "control_button"
def _on_button(self, sky_type:str):
if self.on_select_fn:
self.on_select_fn(sky_type.capitalize())
self.enable_buttons()
button = getattr(self, f"button_{sky_type}")
button.name = f"control_button_pressed{2}"
self.revert_img.enabled = True
def _restore_default(self):
"""Restore the default value."""
if self.revert_img.enabled:
self.revert_img.enabled = False
self.enable_buttons()
self.on_select_fn("")
class CustomIdNotice():
def __init__(self) -> None:
self.ui = ui.HStack()
with self.ui:
ui.Spacer(width=4)
self.task_ui = ui.Button("pickup_object", name = "control_button", style = {"color": "lightsteelblue", "border_color": "lightsteelblue"}, enabled = False)
ui.Spacer(width=4)
self.object_ui = ui.Button("object: 0", name = "control_button", style = {"color": "DarkSalmon", "border_color": "DarkSalmon"}, enabled = False)
ui.Spacer(width=4)
self.house_ui = ui.Button("house: 1", name = "control_button", style = {"color": "Plum", "border_color": "Plum"}, enabled = False)
self.ui.visible = False
class CustomRenderTypeSelectionGroup(CustomBaseWidget):
def __init__(self,
on_select_fn: callable = None
) -> None:
self.on_select_fn = on_select_fn
self.sky_type = ""
CustomBaseWidget.__init__(self, label = "Render type:")
def _build_body(self):
with ui.HStack():
self.button_rgb = ui.Button("RGB", name = "control_button_pressed3")
self.button_depth= ui.Button("Depth", name = "control_button")
self.button_semantic = ui.Button("Semantic", name = "control_button")
self.button_rgb.set_clicked_fn(lambda : self._on_button("rgb"))
self.button_depth.set_clicked_fn(lambda : self._on_button("depth"))
self.button_semantic.set_clicked_fn(lambda : self._on_button("semantic"))
self.button_list = [self.button_rgb, self.button_depth, self.button_semantic]
def enable_buttons(self):
for button in self.button_list:
button.enabled = True
button.name = "control_button"
def _on_button(self, render_type:str):
if self.on_select_fn:
self.on_select_fn(render_type.capitalize())
self.enable_buttons()
button = getattr(self, f"button_{render_type}")
button.name = f"control_button_pressed{3}"
self.revert_img.enabled = True
def _restore_default(self):
"""Restore the default value."""
if self.revert_img.enabled:
self.revert_img.enabled = False
self.enable_buttons()
self._on_button("rgb")
import subprocess, os, platform
class CustomPathButtonWidget:
"""A compound widget for holding a path in a StringField, and a button
that can perform an action.
TODO: Get text ellision working in the path field, to start with "..."
"""
def __init__(self,
label: str,
path: str,
btn_callback: callable = None):
self.__attr_label = label
self.__pathfield: ui.StringField = None
self.__path = path
self.__btn = None
self.__callback = btn_callback
self.__frame = ui.Frame()
with self.__frame:
self._build_fn()
def destroy(self):
self.__pathfield = None
self.__btn = None
self.__callback = None
self.__frame = None
@property
def model(self) -> Optional[ui.AbstractItem]:
"""The widget's model"""
if self.__pathfield:
return self.__pathfield.model
@model.setter
def model(self, value: ui.AbstractItem):
"""The widget's model"""
self.__pathfield.model = value
def get_path(self):
return self.model.as_string
def _build_fn(self):
"""Draw all of the widget parts and set up callbacks."""
with ui.HStack():
ui.Label(
self.__attr_label,
name="attribute_name",
width=120,
)
self.__pathfield = ui.StringField(
name="path_field",
enabled = False,
)
ui.Spacer(width = 8)
# # TODO: Add clippingType=ELLIPSIS_LEFT for long paths
self.__pathfield.model.set_value(self.__path)
self.folder_img = ui.Image(
name="open_folder",
fill_policy=ui.FillPolicy.PRESERVE_ASPECT_FIT,
width=12,
height=18,
)
self.folder_img.set_mouse_pressed_fn(lambda x, y, b, m: self.open_path(self.__path))
def open_path(self, path):
if platform.system() == "Darwin": # macOS
subprocess.call(("open", path))
elif platform.system() == "Windows": # Windows
os.startfile(path)
else: # linux variants
subprocess.call(("xdg-open", path))
| 31,182 | Python | 38.12547 | 166 | 0.540344 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/ui/custom_base_widget.py | # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
__all__ = ["CustomBaseWidget"]
from typing import Optional
import omni.ui as ui
from .style import ATTR_LABEL_WIDTH
class CustomBaseWidget:
"""The base widget for custom widgets that follow the pattern of Head (Label),
Body Widgets, Tail Widget"""
def __init__(self, *args, model=None, **kwargs):
self.existing_model: Optional[ui.AbstractItemModel] = kwargs.pop("model", None)
self.revert_img = None
self.__attr_label: Optional[str] = kwargs.pop("label", "")
self.__frame = ui.Frame()
with self.__frame:
self._build_fn()
def destroy(self):
self.existing_model = None
self.revert_img = None
self.__attr_label = None
self.__frame = None
def __getattr__(self, attr):
"""Pretend it's self.__frame, so we have access to width/height and
callbacks.
"""
return getattr(self.__frame, attr)
def _build_head(self):
"""Build the left-most piece of the widget line (label in this case)"""
ui.Label(
self.__attr_label,
name="attribute_name",
width=120,
)
def _build_body(self):
"""Build the custom part of the widget. Most custom widgets will
override this method, as it is where the meat of the custom widget is.
"""
ui.Spacer()
def _build_tail(self):
"""Build the right-most piece of the widget line. In this case,
we have a Revert Arrow button at the end of each widget line.
"""
with ui.HStack(width=0):
ui.Spacer(width=5)
with ui.VStack(height=0):
ui.Spacer(height=3)
self.revert_img = ui.Image(
name="revert_arrow",
fill_policy=ui.FillPolicy.PRESERVE_ASPECT_FIT,
width=12,
height=13,
enabled=False,
)
ui.Spacer(width=5)
# call back for revert_img click, to restore the default value
self.revert_img.set_mouse_pressed_fn(
lambda x, y, b, m: self._restore_default())
def _build_fn(self):
"""Puts the 3 pieces together."""
with ui.HStack():
self._build_head()
self._build_body()
self._build_tail()
| 2,769 | Python | 32.373494 | 87 | 0.590105 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/autotask/auto_config.py | # automatically generation configs meta data for task generation
import json
import copy
g_meta_json_path = "./configs.json"
# initail and target value pair for continous task
g_init_target_value_pair = [
(0, 0.25), (0, 0.5), (0, 0.75), (0, 1),
(0.25, 0.5), (0.25, 0.75), (0.25, 1),
(0.5, 0.75), (0.5, 1),
(0.75, 1)
]
g_mission_template = {
"size": 0,
"orient": [0, 0, 0.7071068, 0.7071068],
"robot_offset": [-40, 0, 0],
"robot_orient": [0.7071068, -0.7071068,0, 0],
"task_type": "",
"task_id": "",
"robot_id": "",
"mission_id": "",
"goal":{
"description":"Open the door a little.",
"condition": {
"init_value": -1,
"type": "rotation",
"target": "",
"joint":"",
"target_value": 0
}
}
}
def add_continuous_meta_open_mission(task_type, meta_json_path = g_meta_json_path):
"""
add continous mission types for open task
"""
# load json
assert task_type in ["open_door", "open_drawer", "open_cabinet", "close_door", "pour_water",
"close_drawer", "close_cabinet", "transfer_water", "tap_water"]
meta_json = json.load(open(meta_json_path))
# if task_type not in meta_json:
# clean
meta_json[task_type] = []
task_missions = meta_json[task_type]
for init_value, target_value in g_init_target_value_pair:
mission = copy.deepcopy(g_mission_template)
goal = mission["goal"]
condition = goal["condition"]
if task_type == "open_door":
#mission["robot_offset"] = [-40, 0, 0]
mission["robot_offset"] = [50, 0, 0]
mission["robot_orient"] = [0,0,0.7071068,0.7071068]
goal["description"] = "Open the door"
condition["type"] = "rotation"
condition["init_value"] = init_value
condition["target_value"] = target_value
elif task_type == "close_door":
mission["robot_offset"] = [70, 0, 0]
mission["robot_orient"] = [0,0,0.7071068,0.7071068]
goal["description"] = "close the door"
condition["type"] = "rotation"
condition["init_value"] = target_value
condition["target_value"] = init_value
elif task_type == "pour_water":
# only pour half and empty
if not (init_value, target_value) in [(0.5, 1), (0, 1)]:
continue
mission["robot_offset"] = [-30, 0, 0]
goal["description"] = "Pour the liquid out of the contrainer."
condition["type"] = "liquid"
condition["init_value"] = target_value
condition["target_value"] = init_value
mission["size"] = 1.0
mission["orient"] = [1, 0, 0, 0]
elif task_type == "transfer_water":
# only pour half and empty
if not (init_value, target_value) in [(0, 0.25), (0, 0.5), (0, 0.75), (0, 1)]:
continue
mission["robot_offset"] = [-30, 0, 0]
goal["description"] = "Pour the liquid into another contrainer."
condition["type"] = "liquid"
# condition["init_value"] = target_value
condition["target_value"] = target_value
mission["size"] = 1.0
mission["orient"] = [1, 0, 0, 0]
elif task_type == "close_drawer":
condition["type"] = "linear"
mission["robot_offset"] = [-70, 0, 0]
goal["description"] = "close the drawer"
condition["init_value"] = target_value
condition["target_value"] = init_value
mission["size"] = 70
elif task_type == "open_drawer":
condition["type"] = "linear"
mission["robot_offset"] = [-50, 0, 0]
goal["description"] = "Open the drawer"
condition["init_value"] = init_value
condition["target_value"] = target_value
mission["size"] = 70
elif task_type == "open_cabinet":
condition["type"] = "rotation"
mission["robot_offset"] = [-50, 0, 0]
goal["description"] = "Open the cabinet"
condition["init_value"] = init_value
condition["target_value"] = target_value
mission["size"] = 70
elif task_type == "close_cabinet":
condition["type"] = "rotation"
mission["robot_offset"] = [-870, 0, 0]
goal["description"] = "Close the cabinet"
condition["init_value"] = target_value
condition["target_value"] = init_value
mission["size"] = 70
elif task_type == "tap_water":
# only pour half and empty
if not (init_value, target_value) in [(0, 0.25), (0, 0.5), (0, 0.75), (0, 1)]:
continue
mission["robot_offset"] = [-30, 0, 0]
goal["description"] = "Get tap water."
condition["type"] = "liquid"
condition["init_value"] = init_value
condition["target_value"] = target_value
mission["size"] = 20
mission["orient"] = [0.7071068,-0.7071068,0,0]
task_missions.append(mission)
print("task_missions", task_missions)
with open(meta_json_path, "w") as f:
json.dump(meta_json, f, indent = 4)
if __name__ == "__main__":
print("genrating continous mission")
add_continuous_meta_open_mission("open_door")
| 5,589 | Python | 34.605095 | 97 | 0.510646 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/autotask/auto.py | # auto task generating
import os
import json
import numpy as np
import asyncio
import omni
import pxr
import carb
from omni.physx.scripts import physicsUtils
from ..param import IS_IN_ISAAC_SIM, DATA_PATH_NEW, CUSTOM_ASSET_PATH, ROBOT_PATH, SAPIEN_ASSET_PATH, IS_IN_CREAT, \
GAME_OBJ_NAMES, CONTAINER_NAMES, OTHER_OBJ_NAMES, HOUSE_INFO_PATH
from ..task_check import BaseChecker #, JointChecker, GraspChecker, OrientChecker, ContainerChecker
from .meta import AUTOTASK_META
# if IS_IN_CREAT:
# import omni.kit.viewport_widgets_manager as wm
# from ..ui.hud import LabelWidget
class AutoTasker():
TASK_DESCRIPTION = ""
TASK_ID = ""
def __init__(self,
task_type:str,
task_id:int,
robot_id:int = 0,
mission_id:int = 0,
house_id:int = 0,
anchor_id:int = 0,
meta_id : int = 0, # to retrieve which config from meta data
annotator : int = 0,
) -> None:
self.task_type = task_type
self.task_id = str(task_id)
self.robot_id = str(robot_id)
self.mission_id = str(mission_id)
self.house_id = str(house_id)
self.anchor_id = str(anchor_id)
self.meta_id = mission_id # meta_id
self.data_path = DATA_PATH_NEW
# scene
self.stage = omni.usd.get_context().get_stage()
##
self.annotator = annotator
# get objects
self.probe_obj_folder()
def probe_obj_folder(self):
"""
check task folder
"""
task_type_folder = os.path.join(self.data_path, self.annotator, "task", self.task_type)
if not os.path.exists(task_type_folder):
os.makedirs(task_type_folder)
task_folder = os.path.join(self.data_path, self.annotator, "task", self.task_type, str(self.task_id))
if not os.path.exists(task_folder):
os.makedirs(task_folder)
"""
Get furniture
"""
if self.task_type in ["open_drawer", "open_cabinet", "close_drawer", "close_cabinet"]:
self.obj_type = "StorageFurniture"
self.obj_folder = os.path.join(SAPIEN_ASSET_PATH, self.obj_type)
elif self.task_type in ["pickup_object", "reorient_object"]:
self.obj_type = "Bottle"
self.obj_folder = os.path.join(CUSTOM_ASSET_PATH, self.obj_type)
elif self.task_type in ["put_object_into_box", "take_object_out_box"]:
self.obj_type = "Box"
self.obj_folder = os.path.join(SAPIEN_ASSET_PATH, self.obj_type)
elif self.task_type in ["open_door", "close_door"]:
self.obj_type = "Door"
self.obj_folder = os.path.join(SAPIEN_ASSET_PATH, self.obj_type)
elif self.task_type in ["pour_water", "transfer_water"]:
self.obj_type = "Cup"
self.obj_folder = os.path.join(CUSTOM_ASSET_PATH, self.obj_type)
elif self.task_type in ["tap_water"]:
self.obj_type = "Faucet"
self.obj_folder = os.path.join(SAPIEN_ASSET_PATH, self.obj_type)
else:
raise Exception(f"current task type not supported: {self.task_type}")
objs = [ item for item in os.listdir(self.obj_folder) if item.isnumeric() ]
self.obj_list = sorted( objs, key=lambda x: int(x))
self.obj_id = self.obj_list[int(self.task_id)]
self.target_obj_path = "/mobility_" + self.obj_type + "_" + str(self.obj_id)
def reconfig(self, obj_index):
"""
Reconfig obj from object index
"""
self.obj_index = obj_index
self.obj_id = self.obj_list[int(obj_index)]
self.target_obj_path = "/mobility_" + self.obj_type + "_" + str(self.obj_id)
print("AUTOTASK_META[self.task_type][self.meta_id]", AUTOTASK_META[self.task_type][self.meta_id])
AutoTasker.TASK_DESCRIPTION = AUTOTASK_META[self.task_type][self.meta_id]["goal"]["description"]
print("AutoTasker.TASK_DESCRIPTION", AutoTasker.TASK_DESCRIPTION)
def add_obj(self):
"""
Add object to the scene
"""
self.stage = omni.usd.get_context().get_stage()
# set up game root
default_prim_path_str = self.stage.GetDefaultPrim().GetPath().pathString
## this is necessary because for standalone this might not be /World
if not default_prim_path_str:
default_prim_path_str = "/World"
self.xform_game_path = default_prim_path_str + "/game" # omni.usd.get_stage_next_free_path(self.stage, "/World/game", True)
# move obj to the correct place
xform_game = self.stage.GetPrimAtPath(self.xform_game_path)
if not xform_game:
xform_game = pxr.UsdGeom.Xform.Define(self.stage, self.xform_game_path)
# set game xform
game_xform = pxr.Gf.Matrix4d().SetScale([1, 1, 1]) * \
pxr.Gf.Matrix4d().SetRotate(pxr.Gf.Quatf(1.0,0.0,0.0,0.0)) * pxr.Gf.Matrix4d().SetTranslate([0,0,0])
omni.kit.commands.execute(
"TransformPrimCommand",
path=self.xform_game_path,
new_transform_matrix=game_xform,
)
# set obj prim path
mobility_prim_path = xform_game.GetPath().pathString + self.target_obj_path
print("mobility_prim_path", mobility_prim_path)
prim = self.stage.GetPrimAtPath(mobility_prim_path)
if not prim.IsValid():
prim = self.stage.DefinePrim(mobility_prim_path)
if self.task_type in ["pour_water", "transfer_water"]:
obj_usd_path = os.path.join(self.obj_folder, self.obj_id, "cup.usd")
else:
obj_usd_path = os.path.join(self.obj_folder, self.obj_id, "mobility.usd")
# import obj
success_bool = prim.GetReferences().AddReference(obj_usd_path)
if not success_bool:
raise Exception(f"Cannot import obj usd at path {obj_usd_path}")
# set up scale
if self.task_type in ["open_door", "close_door"]:
from .utils import calculate_door_size
scale = calculate_door_size(prim)
else:
scale = [AUTOTASK_META[self.task_type][self.meta_id]["size"]]*3
if prim.HasAttribute("xformOp:scale"):
prim.GetAttribute("xformOp:scale").Set(pxr.Gf.Vec3f(scale))
else:
obj_xform = pxr.Gf.Matrix4d().SetScale(scale)
omni.kit.commands.execute(
"TransformPrimCommand",
path=prim.GetPath().pathString,
new_transform_matrix=obj_xform,
)
# set up orient
#if self.task_type "reorient_object":
orient = AUTOTASK_META[self.task_type][self.meta_id]["orient"]
print("orient: ", orient)
mat = pxr.Gf.Matrix4f(pxr.UsdGeom.Xformable(prim).ComputeLocalToWorldTransform(0))
obj_xform = pxr.Gf.Matrix4f().SetScale(scale) * pxr.Gf.Matrix4f().SetRotate(pxr.Gf.Quatf(*orient))
new_xform = obj_xform
# new_xform = obj_xform * mat
print("new_xform", prim, obj_xform, mat, "rot", new_xform.ExtractRotationQuat(), "scale:", scale)
omni.kit.commands.execute(
"TransformPrimCommand",
path=prim.GetPath().pathString,
new_transform_matrix=new_xform,
)
# other imports
if self.task_type in ["put_object_into_box", "transfer_water", "tap_water"]:
self.add_auxilary_object()
# unbind material
if self.task_type in ["transfer_water", "pour_water"]:
print("unbind material")
omni.kit.commands.execute(
'BindMaterial',
prim_path=prim.GetPath().pathString + "/cupShape",
material_path=None,
strength=pxr.UsdShade.Tokens.strongerThanDescendants
)
def add_auxilary_object(self):
"""
Add object to the scene
"""
self.stage = omni.usd.get_context().get_stage()
# set up game root
default_prim_path_str = self.stage.GetDefaultPrim().GetPath().pathString
## this is necessary because for standalone this might not be /World
if not default_prim_path_str:
default_prim_path_str = "/World"
self.xform_game_path = default_prim_path_str + "/game" # omni.usd.get_stage_next_free_path(self.stage, "/World/game", True)
# move obj to the correct place
xform_game = self.stage.GetPrimAtPath(self.xform_game_path)
if not xform_game:
raise Exception(f"must have /World/game prim")
if self.task_type == "put_object_into_box":
aux_folder = os.path.join(CUSTOM_ASSET_PATH, "standalone")
aux_folder_objs = os.listdir(aux_folder)
aux_obj_name = aux_folder_objs[self.obj_index + 12]
aux_prim_path = xform_game.GetPath().pathString + "/mobility_standalone_" + aux_obj_name
obj_usd_path = os.path.join(aux_folder, aux_obj_name, "mobility.usd")
position = [-20,0,0]
else:
aux_folder = os.path.join(CUSTOM_ASSET_PATH, "Cup")
aux_folder_objs = sorted(os.listdir(aux_folder), key=lambda x:int(x))
aux_obj_name = str(int(self.task_id))
aux_prim_path = xform_game.GetPath().pathString + "/container_Cup_" + aux_obj_name
obj_usd_path = os.path.join(aux_folder, aux_obj_name, "cup.usd")
position = [0,0,-20]
# print("aux_prim_path", aux_prim_path)
prim = self.stage.GetPrimAtPath(aux_prim_path)
if not prim.IsValid():
prim = self.stage.DefinePrim(aux_prim_path)
success_bool = prim.GetReferences().AddReference(obj_usd_path)
if not success_bool:
raise Exception(f"Cannot import obj usd at path {obj_usd_path}")
# offset
if True:
purposes = [pxr.UsdGeom.Tokens.default_]
bboxcache = pxr.UsdGeom.BBoxCache(pxr.Usd.TimeCode.Default(), purposes)
game_prim = self.stage.GetPrimAtPath(self.xform_game_path)
bboxes = bboxcache.ComputeWorldBound(game_prim)
# print("bboxes", bboxes)
game_bboxes = [bboxes.ComputeAlignedRange().GetMin(),bboxes.ComputeAlignedRange().GetMax()]
else:
game_bboxes = omni.usd.get_context().compute_path_world_bounding_box(self.xform_game_path)
position[1] += game_bboxes[0][1] # the same y
position[0] += game_bboxes[0][0] # offset x
position[2] += game_bboxes[0][2] # offset x
# set up scale
obj_xform = pxr.Gf.Matrix4d().SetScale([1,1,1]).SetRotate(pxr.Gf.Quatf(1,0,0,0)).SetTranslate(position)
omni.kit.commands.execute(
"TransformPrimCommand",
path=prim.GetPath().pathString,
new_transform_matrix=obj_xform,
)
# unbind material
if self.task_type in ["transfer_water", "pour_water"]:
print("unbind material")
omni.kit.commands.execute(
'BindMaterial',
prim_path=prim.GetPath().pathString + "/cupShape",
material_path=None,
strength=pxr.UsdShade.Tokens.strongerThanDescendants
)
def add_robot(self):
"""
Add robot to the scene:
1. load robot
2. calculate position
"""
self.stage = omni.usd.get_context().get_stage()
franka_path = os.path.join(ROBOT_PATH, "franka/franka.usd")
self.xform_game_path = "/World/game"
# position, rotation
position = [i for i in AUTOTASK_META[self.task_type][self.meta_id]["robot_offset"]]
rotation = [i for i in AUTOTASK_META[self.task_type][self.meta_id]["robot_orient"]]
# offset
if True: ##IS_IN_ISAAC_SIM:
purposes = [pxr.UsdGeom.Tokens.default_]
bboxcache = pxr.UsdGeom.BBoxCache(pxr.Usd.TimeCode.Default(), purposes)
prim = self.stage.GetPrimAtPath(self.xform_game_path)
bboxes = bboxcache.ComputeWorldBound(prim)
# print("bboxes", bboxes)
game_bboxes = [bboxes.ComputeAlignedRange().GetMin(),bboxes.ComputeAlignedRange().GetMax()]
else:
game_bboxes = omni.usd.get_context().compute_path_world_bounding_box(self.xform_game_path)
print("game_bboxes", game_bboxes)
position[1] += game_bboxes[0][1]
# print("game_bboxes", game_bboxes, position)
if position[0] != 0 :
position[0] += game_bboxes[0][0]
if position[2] != 0 :
position[2] += game_bboxes[0][2]
# load robot
robot_prim = self.stage.GetPrimAtPath(self.xform_game_path + "/franka")
if not robot_prim.IsValid():
robot_prim = self.stage.DefinePrim(self.xform_game_path + "/franka")
print("add robot at path: ", franka_path)
success_bool = robot_prim.GetReferences().AddReference(franka_path)
if not success_bool:
raise Exception("The usd file at path {} provided wasn't found".format(franka_path))
# set robot xform
robot_xform = pxr.UsdGeom.Xformable.Get(self.stage, robot_prim.GetPath())
robot_xform.ClearXformOpOrder()
# print("position $ rotation: ", position[0], position[1], position[2], rotation)
robot_xform.AddTranslateOp().Set(pxr.Gf.Vec3f(float(position[0]), float(position[1]), float(position[2])))
robot_xform.AddOrientOp().Set(pxr.Gf.Quatf(float(rotation[0]), float(rotation[1]), float(rotation[2]), float(rotation[3])))
robot_xform.AddScaleOp().Set(pxr.Gf.Vec3f(1.0, 1.0, 1.0))
#selection = omni.usd.get_context().get_selection()
#selection.clear_selected_prim_paths()
#selection.set_prim_path_selected(robot_parent_path + "/franka", True, True, True, True)
def add_house(self):
"""
Add house from house_d
"""
print("auto add house??")
# scene
self.stage = omni.usd.get_context().get_stage()
self.layer = self.stage.GetRootLayer()
house_path = os.path.join(HOUSE_INFO_PATH, self.house_id, "layout.usd")
# omni.kit.commands.execute(
# "CreateSublayer",
# layer_identifier=self.layer.identifier,
# sublayer_position=0,
# new_layer_path=house_path,
# transfer_root_content=False,
# create_or_insert=False,
# layer_name="house",
# )
# move obj to the correct place
house_prim_path = "/World/layout"
house_prim = self.stage.GetPrimAtPath(house_prim_path)
if not house_prim.IsValid():
house_prim = self.stage.DefinePrim(house_prim_path)
success_bool = house_prim.GetReferences().AddReference(house_path)
if not success_bool:
raise Exception(f"The house is not load at {house_path}")
if not self.task_type in ["tap_water", "transfer_water", "pour_water"]:
from omni.physx.scripts.utils import setStaticCollider
# static collider
furniture_prim = self.stage.GetPrimAtPath(house_prim_path + "/furniture")
setStaticCollider(furniture_prim, approximationShape="none")
# TODO: check room_struct collider
room_struct_prim = self.stage.GetPrimAtPath(house_prim_path + "/roomStruct")
setStaticCollider(room_struct_prim, approximationShape="none")
# put game onto ground
game_prim_path = "/World/game"
game_prim = self.stage.GetPrimAtPath(game_prim_path)
if game_prim:
if True: #IS_IN_ISAAC_SIM:
purposes = [pxr.UsdGeom.Tokens.default_]
bboxcache = pxr.UsdGeom.BBoxCache(pxr.Usd.TimeCode.Default(), purposes)
bboxes = bboxcache.ComputeWorldBound(game_prim)
# print("bboxes", bboxes)
y = bboxes.ComputeAlignedRange().GetMin()[1]
else:
# prim_path = stage.GetDefaultPrim().GetPath().pathString
usd_context = omni.usd.get_context()
bboxes = usd_context.compute_path_world_bounding_box(game_prim_path)
y = bboxes[0][1]
game_xform = pxr.Gf.Matrix4d().SetScale([1, 1, 1]) * \
pxr.Gf.Matrix4d().SetRotate(pxr.Gf.Quatf(1.0,0.0,0.0,0.0)) * pxr.Gf.Matrix4d().SetTranslate([0,-y,0])
omni.kit.commands.execute(
"TransformPrimCommand",
path=game_prim_path,
new_transform_matrix=game_xform,
)
# add ground
ground_prim = self.stage.GetPrimAtPath("/World/groundPlane")
if not ground_prim:
physicsUtils.add_ground_plane(self.stage, "/World/groundPlane", "Y", 1000.0,
pxr.Gf.Vec3f(0.0, 0.0, 0), pxr.Gf.Vec3f(0.2))
ground_prim = self.stage.GetPrimAtPath("/World/groundPlane")
# prim_list = list(self.stage.TraverseAll())
# prim_list = [ item for item in prim_list if 'groundPlane' in item.GetPath().pathString and item.GetTypeName() == 'Mesh' ]
# for prim in prim_list:
ground_prim.GetAttribute('visibility').Set('invisible')
def add_task(self):
"""
Add task to current scene
"""
self.stage = omni.usd.get_context().get_stage()
self.task_checker = BaseChecker(self.task_type, self.task_id, self.robot_id, self.mission_id, annotator = "Yizhou", run_time = False)
# if self.task_type in ["open_drawer", "open_cabinet", "open_door", "close_door"]:
# self.task_checker = JointChecker(self.task_type, self.task_id, self.robot_id, self.mission_id)
# elif self.task_type == "pickup_object":
# self.task_checker = GraspChecker(self.task_type, self.task_id, self.robot_id, self.mission_id)
# elif self.task_type == "reorient_object":
# self.task_checker = OrientChecker(self.task_type, self.task_id, self.robot_id, self.mission_id)
# elif self.task_type in ["put_object_into_box"]:
# self.task_checker = ContainerChecker(self.task_type, self.task_id, self.robot_id, self.mission_id)
# else:
# raise Exception(f"Current task type {self.task_type} not supported")
# modify task from template
# print(AUTOTASK_META[self.task_type][self.meta_index]["task_template"])
self.task_checker.current_mission = AUTOTASK_META[self.task_type][self.meta_id]
condition = self.task_checker.current_mission["goal"]["condition"]
# get target
target_prim = None
for prim in self.stage.GetPrimAtPath("/World/game").GetChildren():
for game_name in GAME_OBJ_NAMES:
if game_name in prim.GetPath().pathString:
target_prim = prim
break
condition["target"] = target_prim.GetPath().pathString.split("/")[-1]
# other condition
if self.task_type in ["open_drawer", "open_cabinet", "open_door", "close_door", "close_drawer", "close_cabinet"]:
selection = omni.usd.get_context().get_selection()
assert len(selection.get_selected_prim_paths()) == 1, "Please select one joint!"
joint_path = selection.get_selected_prim_paths()[0]
joint_name = joint_path.split("/")[-1]
# print("joint_name:", joint_name)
self.task_checker.current_mission["goal"]
condition["joint"] = joint_name
elif self.task_type in ["put_object_into_box", "transfer_water", "take_object_out_box", "tap_water"]:
container_prim = None
for prim in self.stage.GetPrimAtPath("/World/game").GetChildren():
for game_name in CONTAINER_NAMES:
if game_name in prim.GetPath().pathString.lower():
container_prim = prim
break
if not container_prim:
raise Exception(f"Container prim must exist at under /World/game")
condition["container"] = container_prim.GetPath().pathString.split("/")[-1]
# save mission
self.task_checker.current_mission["goal"]["description"] = AutoTasker.TASK_DESCRIPTION
print("current_mission", self.task_checker.current_mission)
self.task_checker.current_mission["goal"]["condition"] = condition
self.task_checker.save_mission()
@classmethod
def new_scene(cls):
async def open_new_scene():
await omni.usd.get_context().new_stage_async()
await omni.kit.app.get_app().next_update_async()
asyncio.ensure_future(open_new_scene())
# def build_HUD(self):
# if IS_IN_CREAT or IS_IN_ISAAC_SIM:
# gui_path = self.stage.GetDefaultPrim().GetPath().pathString + "/GUI"
# gui = self.stage.GetPrimAtPath(gui_path)
# if not gui:
# gui = pxr.UsdGeom.Xform.Define(self.stage, gui_path)
# gui_location = pxr.Gf.Vec3f(0, 50, 0)
# gui.AddTranslateOp().Set(gui_location)
# self.wiget_id = wm.add_widget(gui_path, LabelWidget(f"Object id: {self.obj_id}"), wm.WidgetAlignment.TOP)
| 21,575 | Python | 41.98008 | 141 | 0.584056 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/autotask/utils.py | # utility function
import re
import omni
import pxr
from ..param import IS_IN_CREAT
def calculate_door_size(prim, scale = 1):
"""
calculate door size to scale it to the proper size for 3DFront
"""
target_box_size = [10, 73.157, 209] # 3D-FRONT door frame size
if False: #IS_IN_CREAT:
usd_context = omni.usd.get_context()
prim_bboxes = usd_context.compute_path_world_bounding_box(prim.GetPath().pathString)
# In create
else:
purposes = [pxr.UsdGeom.Tokens.default_]
bboxcache = pxr.UsdGeom.BBoxCache(pxr.Usd.TimeCode.Default(), purposes)
bboxes = bboxcache.ComputeWorldBound(prim)
# print("bboxes", bboxes)
prim_bboxes = [bboxes.ComputeAlignedRange().GetMin(), bboxes.ComputeAlignedRange().GetMax()]
print("prim_bboxes", prim_bboxes)
s_x = target_box_size[0] / (prim_bboxes[1][0] - prim_bboxes[0][0]) * scale
s_y = target_box_size[1] / (prim_bboxes[1][1] - prim_bboxes[0][1]) * scale
s_z = target_box_size[2] / (prim_bboxes[1][2] - prim_bboxes[0][2]) * scale
# if prim_bboxes[1][1] - prim_bboxes[0][1] < prim_bboxes[1][2] - prim_bboxes[0][2]:
# s_y, s_z = s_z, s_y
print("[1, s_y, s_z]", s_x, s_y, s_z)
return [1, s_y, s_z]
| 1,263 | Python | 37.303029 | 100 | 0.610451 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/autotask/meta.py | import json
from pathlib import Path
import os
auto_folder = str(Path(__file__).parent.resolve()).replace("\\", "/")
# print("auto_folder", auto_folder)
AUTOTASK_META = json.load(open(os.path.join(auto_folder,"configs.json"))) | 231 | Python | 22.199998 | 74 | 0.692641 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/autotask/auto_suggest.py | # task labeling suggestion
from logging import root
from omni import ui
import os
import json
import carb
from ..param import DATA_PATH_NEW, TASK_TYPES, ANNOTATORS
def generate_suggestion_text_from_list(id_list):
if len(id_list) == 0:
return "no suggestion"
return ",".join([str(_) for _ in id_list])
class AutoSuggest():
def __init__(self) -> None:
pass
def read_ui(self):
self.task_type_index = self.suggest_task_type_ui.model.get_item_value_model().get_value_as_int()
self.task_type = TASK_TYPES[self.task_type_index - 1]
self.task_id = self.suggest_task_id_ui.model.get_value_as_int()
self.robot_id = self.suggest_robot_id_ui.model.get_value_as_int()
self.mission_id = self.suggest_mission_id_ui.model.get_value_as_int()
self.house_id = self.suggest_house_id_ui.model.get_value_as_int()
self.anchor_id = self.suggest_anchor_id_ui.model.get_value_as_int()
self.annotator_index = self.annotator_ui.model.get_item_value_model().get_value_as_int()
self.annotator = ANNOTATORS[self.annotator_index]
def reset_ui(self):
self.suggest_task_type_ui.model.get_item_value_model().set_value(0)
self.suggest_task_id_ui.model.set_value(-1)
self.suggest_robot_id_ui.model.set_value(-1)
self.suggest_mission_id_ui.model.set_value(-1)
self.suggest_house_id_ui.model.set_value(-1)
self.suggest_anchor_id_ui.model.set_value(-1)
self.suggest_task_id_text_ui.model.set_value("")
self.suggest_robot_id_text_ui.model.set_value("")
self.suggest_mission_id_text_ui.model.set_value("")
self.suggest_anchor_id_text_ui.model.set_value("")
self.suggest_house_id_text_ui.model.set_value("")
self.info_ui.model.set_value("")
def suggest_trial_num(self):
from ..param import SAVE_ROOT
root_dir = '-'.join([self.task_type, str(self.task_id), str(self.robot_id), str(self.mission_id), str(self.house_id), \
str(self.anchor_id) ])
folders = os.listdir(SAVE_ROOT)
folders = [folder for folder in folders if folder.startswith(root_dir)]
return len(folders)
def suggest_task(self):
self.read_ui()
task_ids = os.listdir(os.path.join(DATA_PATH_NEW, self.annotator, "task", self.task_type))
task_ids.sort(key=lambda x: int(x))
self.suggest_task_id_text_ui.model.set_value(generate_suggestion_text_from_list(task_ids))
def suggest_robot(self):
self.read_ui()
robot_file = os.path.join(DATA_PATH_NEW, self.annotator, "task", self.task_type, str(self.task_id), "robots.json")
if os.path.exists(robot_file):
robot_ids = list(json.load(open(robot_file)).keys())
else:
carb.log_warn(f"No robots found for task {self.task_type}: {self.task_id}")
robot_ids = []
# print(robot_ids)
self.suggest_robot_id_text_ui.model.set_value(generate_suggestion_text_from_list(robot_ids))
def suggest_anchor_id(self):
self.read_ui()
house_folder = os.path.join(DATA_PATH_NEW, self.annotator, "house")
house_folders = os.listdir(house_folder)
keys = []
# folder: 0, 1, 2 etc...
display = []
for folder in house_folders:
path = str(os.path.join(house_folder, folder, "anchor.json" ))
if os.path.exists(path):
with open(path) as f:
data = json.load(f)
keys.extend(list(data.keys()))
for name in keys:
tmp = name.split()
assert (len(tmp) == 4)
task_type = tmp[0]
task_id = tmp[1]
robot_id = tmp[2]
anchor_id = tmp[3]
if task_type == self.task_type and str(task_id) == str(self.task_id) and str(robot_id) == str(self.robot_id):
display.append(anchor_id)
self.suggest_anchor_id_text_ui.model.set_value(generate_suggestion_text_from_list(display))
def suggest_houseID(self):
self.read_ui()
house_folder = os.path.join(DATA_PATH_NEW, self.annotator, "house")
house_folders = os.listdir(house_folder)
keys = []
# folder: 0, 1, 2 etc...
display = []
for folder in house_folders:
path = str(os.path.join(house_folder, folder, "anchor.json" ))
if os.path.exists(path):
with open(path) as f:
data = json.load(f)
keys.extend(list(data.keys()))
for name in keys:
tmp = name.split()
assert (len(tmp) == 4)
task_type = tmp[0]
task_id = tmp[1]
robot_id = tmp[2]
anchor_id = tmp[3]
if task_type == self.task_type and str(task_id) == str(self.task_id) and str(robot_id) == str(self.robot_id):
display.append(folder)
self.suggest_house_id_text_ui.model.set_value(generate_suggestion_text_from_list(display))
def suggest_mission(self):
self.read_ui()
mission_file = os.path.join(DATA_PATH_NEW, self.annotator, "task", self.task_type, str(self.task_id), "missions.json")
mission_ids = []
if os.path.exists(mission_file):
mission_info = json.load(open(mission_file))
# identifier_prefix = self.task_type + " " + str(self.task_id) + " " + str(self.robot_id)
identifier_prefix = self.task_type + " " + str(self.task_id) #+ " " + str(self.robot_id)
for key in mission_info:
if key.startswith(identifier_prefix):
mission_ids.append(key.split()[-1])
else:
carb.log_warn(f"No mission found for task {self.task_type}: {self.task_id}")
self.suggest_mission_id_text_ui.model.set_value(generate_suggestion_text_from_list(mission_ids))
def suggest_goal(self):
self.read_ui()
task_folder = os.path.join(DATA_PATH_NEW, self.annotator, "task", self.task_type, str(self.task_id))
if not os.path.exists(task_folder):
carb.log_warn(f"Task folder not exist at {task_folder}")
self.info_ui.model.set_value("Please add mission.")
mission_file_path = os.path.join(task_folder, "missions.json")
if os.path.exists(mission_file_path):
missions = json.load(open(mission_file_path))
carb.log_info(f"Loading missions.json at path {mission_file_path}")
mission_identifier_prefix = self.task_type + " " + str(self.task_id) + " "
mission_identifier_suffix = str(self.mission_id)
for key, value in missions.items():
if key.startswith(mission_identifier_prefix) and key.endswith(mission_identifier_suffix):
current_task = missions[key]
self.info_ui.model.set_value(json.dumps(current_task["goal"], indent = 2))
else:
self.info_ui.model.set_value("Please add mission.")
| 7,252 | Python | 41.415204 | 129 | 0.576117 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/autotask/auto_label.py | import omni
import numpy as np
try:
import pandas as pd
except:
omni.kit.pipapi.install("pandas")
import pandas as pd
GOODLE_SHEET_INFO = {
"close_cabinet": "187VN5J70tEH6ByemAs60FRA2uxE5UmtMr2rBZ0DCOAs",
"close_door": "1Lm-nqYdeUfjGZc2WyqJCG5JcI1z5zDhfeoxZiUX7VKE",
"close_drawer": "1OMmuQNKcvbc-CQm67CQbQSmiQGRMVXtNYYXgTsNg9NE",
"open_cabinet": "1SWXaK5v701wMklIMu4MTgh8Wes5WS9bd_YTrH9-DPdw",
"open_drawer": "1DHYxbRRs0i11rEmDKJ7XK4H0UTTct2QpPTpIPkHnImU",
"pickup_object": "1mq7qCTsJWKnr1-MWA7kzOehZM6fw-o8iHpqKAS6PM44",
"pour_water": "1mS1HUljpu2tZCfiHNvHc2FfrsvGFzwyXRm6pqj3uzZU",
"reorient_object": "1VyoSXjUxp5ef2RPGRxovIv3SA5rr-gm66sjABegqcwM",
"transfer_water": "1fKLFHfF3LsYIWlheqQwGHIf6Bpn05BnT-AQheANyO6o",
"tap_water": "1kgXT6baclDuvyCe4ijJgrR1xTDbkZggxP7d5gQpWR8w",
"open_door": "1fKp1vzDMeoR0lPspqtVZTaHdNhCyXdJ6SN2EnIjQ6CA",
}
# for key in GOODLE_SHEET_INFO:
# sheet_id = GOODLE_SHEET_INFO[key]
# test = pd.read_csv(f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv")
# print(test.head())
class AutoLabeler():
def __init__(self, task_type) -> None:
# load task
self.task_type = task_type
self.cache = {}
# for task_type_cache in GOODLE_SHEET_INFO.keys():
# cache_id = GOODLE_SHEET_INFO[task_type_cache]
# try:
# self.cache[task_type_cache] = pd.read_csv(f"https://docs.google.com/spreadsheets/d/{cache_id}/export?format=csv")
# except:
# print("service not available: ", task_type_cache)
# load data
if self.task_type:
sheet_id = GOODLE_SHEET_INFO[self.task_type]
self.data = pd.read_csv(f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv")
self.cache[task_type] = self.data
# load id
self.current_id = -1
def set_task_type(self, task_type):
if task_type not in self.cache:
cache_id = GOODLE_SHEET_INFO[task_type]
try:
self.cache[task_type] = pd.read_csv(f"https://docs.google.com/spreadsheets/d/{cache_id}/export?format=csv")
except:
print("service not available: ", task_type)
self.data = self.cache[task_type]
def set_id(self, id):
"""
set current id
"""
self.current_id = id
def find_row_num(self, task_id, robot_id, mission_id, house_id, trial_id):
cond = np.where( (self.data['task_id'] == int(task_id)) & (self.data['robot_id'] == int(robot_id)) &
(self.data['mission_id'] == int(mission_id)) & (self.data['house_id'] == int(house_id)) & (self.data['trial_id'] == int(trial_id))
)
try:
return int(cond[0])+2
except:
return -1
def load_row(self):
"""
Load task information from row_id
"""
assert self.current_id >= 0
if self.current_id >= len(self.data):
raise Exception(f"Note: current labeling is done {self.task_type}: {self.current_id} / {len(self.data)}")
id = self.current_id
task_id = self.data["task_id"][id]
robot_id = self.data["robot_id"][id]
mission_id = self.data["mission_id"][id]
house_id = self.data["house_id"][id]
trial_id = self.data["trial_id"][id]
return int(task_id), int(robot_id), int(mission_id), int(house_id), int(trial_id)
def next(self):
"""
find next id
"""
if self.current_id >= 0:
self.current_id += 1
else:
"""
find current labeling index
"""
for i in range(len(self.data)):
if pd.isnull(self.data['progress'][i]):
self.current_id = i
return
| 3,942 | Python | 33.893805 | 144 | 0.576865 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/house.py | import os
import json
import omni
import pxr
import carb
# phyxc
from omni.physx.scripts.utils import setCollider, setRigidBody, setStaticCollider, set_physics_scene_asyncsimrender
from ..param import SAPIEN_ASSET_PATH, HOUSE_INFO_PATH, DATA_PATH_ROOT, RIGIDBODY_OBJ_TYPES, GAME_OBJ_NAMES
from .utils import rename_prim, rotationXYZ_to_quaternion
# from omni.isaac.core.utils.stage import (
# get_current_stage,
# )
from pxr import UsdGeom, UsdLux, Gf, Vt, UsdPhysics, PhysxSchema, Usd, UsdShade, Sdf
class House():
def __init__(self,
data_path:str = DATA_PATH_ROOT,
sapien_asset_path:str = SAPIEN_ASSET_PATH,
house_info_path:str = HOUSE_INFO_PATH):
self.data_path = data_path
self.sapien_asset_path = sapien_asset_path
self.house_info_path = house_info_path
self.layout = {
"id":0,
"params":{
# "SCENE_ASSET_PATH":self.data_path,
"SAPIEN_ASSET_PATH":self.sapien_asset_path,
"HOUSE_INFO_PATH":self.house_info_path,
},
"asset":{
"room_name":"",
"sapien":[],
},
"layout_offsets":[]
}
def set_id(self, example_id):
"""
Set up example id
"""
self.example_id = example_id
self.layout["id"] = example_id
def set_task(self, task_type, task_id = None):
"""
Set up task type
"""
self.layout["task"] = task_type
def get_furniture_info(self):
"""
Get furniture information especially for collision from current scene
"""
self.stage = omni.usd.get_context().get_stage()
# furniture parent
furni_parent = self.stage.GetPrimAtPath("/World/layout/furniture")
additional_collisions = []
for prim in furni_parent.GetChildren():
if prim.HasAPI(pxr.UsdPhysics.RigidBodyAPI) or prim.HasAPI(pxr.UsdPhysics.CollisionAPI):
# prim.GetAttribute("physics:rigidBodyEnabled").Set(False)
print("collision prim name", prim.GetPath(), prim.GetAttribute("physics:rigidBodyEnabled").Get())
# robot_prim.GetAttribute("xformOp:orient").Get()
additional_collisions.append(prim.GetPath().pathString)
self.layout["asset"]["furniture_collisions"] = additional_collisions
def get_robot_info(self, robot_prim_path = "/World/game/franka"):
"""
Get robot information at robot_prim_path
"""
self.stage = omni.usd.get_context().get_stage()
robot_prim = self.stage.GetPrimAtPath(robot_prim_path)
if not robot_prim or not pxr.UsdGeom.Xform.Get(self.stage, robot_prim_path):
raise Exception(f"Must have a robot with XForm at path {robot_prim_path}")
quad = robot_prim.GetAttribute("xformOp:orient").Get()
if not quad:
rotateXYZ = robot_prim.GetAttribute("xformOp:rotateXYZ").Get()
quad = rotationXYZ_to_quaternion(rotateXYZ)
translate = robot_prim.GetAttribute("xformOp:translate").Get()
scale = robot_prim.GetAttribute("xformOp:scale").Get()
quad = eval(str(quad))
# print(quad)
robot_info = {
"position": [round(translate[0], 3), round(translate[1],3), round(translate[2], 3)],
"rotation": [round(quad[0], 3), round(quad[1], 3), round(quad[2], 3), round(quad[3], 3)],
}
return robot_info
def add_asset_info(self):
"""
Add other asset infomation
"""
# move to randomizer
pass
def get_asset_info(self, append = False):
"""
Get mobility, and furniture information from current scene
:param::
append: append room information if True else delete json
"""
self.stage = omni.usd.get_context().get_stage()
room_layout_json = os.path.join(self.data_path, "house", str(self.example_id) + ".json")
# if layout json already exists, record game/parent offset as obj randomization
if os.path.exists(room_layout_json):
carb.log_warn(f"room info already exists at {room_layout_json}")
# append other information into json
if append:
self.layout = json.load(open(room_layout_json))
self.add_asset_info()
return
else:
# delete json and start another
os.remove(room_layout_json)
# Get room name
room_path = self.stage.GetRootLayer().realPath
# print("room_path: ", room_path)
if room_path:
relative_path = omni.client.make_relative_url(self.house_info_path, room_path)
print("room_name: ", relative_path)
self.layout["asset"]["room_name"] = relative_path
else:
self.layer = self.stage.GetRootLayer()
# print("layer: ", )
for ref in self.layer.GetExternalReferences():
if "layout" in str(ref):
#PathUtils.compute_relative_path(self.house_info_path,str(ref))
relative_path = omni.client.make_relative_url(self.house_info_path, str(ref))
relative_path.replace("\\\\", "/")
self.layout["asset"]["room_name"] = relative_path
break
# Get sapien asset name
prims = [self.stage.GetDefaultPrim()]
game_prim = self.stage.GetPrimAtPath("/World/game")
if game_prim:
prims.append(game_prim)
for game_prim in prims:
for prim in game_prim.GetChildren():
# if prim is game obj, record information
is_game_obj = False
for game_name in GAME_OBJ_NAMES:
if game_name in prim.GetPath().pathString:
is_game_obj = True
break
if is_game_obj:
reference, _ = omni.usd.get_composed_references_from_prim(prim)[0]
print("mobility reference: ", reference.assetPath)
# get obj type from paths
path_splits = reference.assetPath.split("/")
if 'sapien_parsed' in path_splits:
# sapien objs
obj_type = reference.assetPath.split("/")[-3]
obj_id = int(reference.assetPath.split("/")[-2])
assetPath = None
elif 'omniverse:' in path_splits:
# obj from omniverse cloud
assetPath = reference.assetPath
obj_type = path_splits[-2]
obj_id = 0
else:
# custom objs
assetPath = "/".join(path_splits[-3:])
obj_type = path_splits[-3]
obj_id = path_splits[-2]
obj_info = {
"asset_path": assetPath,
"obj_type": obj_type,
"obj_id": obj_id,
}
# for attr in prim.GetAttributes():
# print(attr)
if prim.HasAttribute("xformOp:orient"):
quad = prim.GetAttribute("xformOp:orient").Get()
else:
rotateXYZ = prim.GetAttribute("xformOp:rotateXYZ").Get()
quad = rotationXYZ_to_quaternion(rotateXYZ)
translate = prim.GetAttribute("xformOp:translate").Get()
scale = prim.GetAttribute("xformOp:scale").Get()
quad = eval(str(quad))
# print("quad", quad)
obj_info["xformOp:translate"] = [translate[0], translate[1], translate[2]]
obj_info["xformOp:orient"] = [quad[0], quad[1], quad[2], quad[3]]
obj_info["xformOp:scale"] = [scale[0],scale[1],scale[2]]
self.layout["asset"]["sapien"].append(obj_info)
# print("get mobility info ???")
# get robot information if don't have
# if "robot" not in self.layout:
# if self.stage.GetPrimAtPath("/World/game/franka"):
# # if has robot
# self.get_robot_info()
# get additional furniture collision information if don't have
# if "furniture_collisions" not in self.layout["asset"]:
# self.get_furniture_info()
print("get mobility info", self.layout)
def save_asset_info(self):
"""
Save asset at data_path
"""
print("saveing file at " + str(self.layout["id"]) + ".json")
with open(os.path.join(self.data_path, "house", str(self.layout["id"]) + ".json"), "w") as output_file:
json.dump(self.layout, output_file, sort_keys=True, indent=4)
def _setup_physics_material(self, path):
"""
Set up physic material for prim at Path
"""
# def _setup_physics_material(self, path: Sdf.Path):
from pxr import UsdGeom, UsdLux, Gf, Vt, UsdPhysics, PhysxSchema, Usd, UsdShade, Sdf
from omni.physx.scripts import physicsUtils
stage = omni.usd.get_context().get_stage()
_material_static_friction = 1.0
_material_dynamic_friction = 1.0
_material_restitution = 0.0
_physicsMaterialPath = None
if _physicsMaterialPath is None:
_physicsMaterialPath = stage.GetDefaultPrim().GetPath().AppendChild("physicsMaterial")
UsdShade.Material.Define(stage, _physicsMaterialPath)
material = UsdPhysics.MaterialAPI.Apply(stage.GetPrimAtPath(_physicsMaterialPath))
material.CreateStaticFrictionAttr().Set(_material_static_friction)
material.CreateDynamicFrictionAttr().Set(_material_dynamic_friction)
material.CreateRestitutionAttr().Set(_material_restitution)
collisionAPI = UsdPhysics.CollisionAPI.Get(stage, path)
prim = stage.GetPrimAtPath(path)
if not collisionAPI:
collisionAPI = UsdPhysics.CollisionAPI.Apply(prim)
# apply material
# physicsUtils.add_physics_material_to_prim(stage, prim, _physicsMaterialPath)
def load_asset_info(self, house_id, object_id = None):
"""
load asset from data path
"""
room_layout_json = os.path.join(self.data_path, "house", str(house_id) + ".json")
print("hosue id", str(house_id), "data path: wtf", room_layout_json)
if not os.path.exists(room_layout_json):
raise Exception( "The json file at path {} provided wasn't found".format(room_layout_json) )
# load json
self.layout = json.load(open(room_layout_json))
# get currect stage and layer
self.stage = omni.usd.get_context().get_stage()
self.layer = self.stage.GetRootLayer()
# load house info
house_path = os.path.join(self.house_info_path, self.layout["asset"]["room_name"].replace("\\","/"))
# print('self.layout["asset"]["room_name"]',self.layout["asset"]["room_name"])
print("house_path: ", house_path)
omni.kit.commands.execute(
"CreateSublayer",
layer_identifier=self.layer.identifier,
sublayer_position=0,
new_layer_path=house_path,
transfer_root_content=False,
create_or_insert=False,
layer_name="",
)
# set up furniture root
default_prim_path_str = self.stage.GetDefaultPrim().GetPath().pathString
## this is necessary because for standalone this might not be /World
if not default_prim_path_str:
default_prim_path_str = "/World"
self.xform_game_path = default_prim_path_str + "/game" # omni.usd.get_stage_next_free_path(self.stage, "/World/game", True)
if not self.stage.GetPrimAtPath(self.xform_game_path):
xform_game = pxr.UsdGeom.Xform.Define(self.stage, self.xform_game_path)
xform_game.AddTranslateOp().Set(pxr.Gf.Vec3f(0.0, 0.0, 0.0))
xform_game.AddOrientOp().Set(pxr.Gf.Quatf(1.0, 0.0, 0.0, 0.0))
xform_game.AddScaleOp().Set(pxr.Gf.Vec3f(1.0, 1.0, 1.0))
# # Everything has to have collision
# furni_parent = self.stage.GetPrimAtPath("/World/furniture")
# for prim in furni_parent.GetChildren():
# setCollider(prim, "convexDecomposition")
# floor_prim = self.stage.GetPrimAtPath("/World/floors")
# setCollider(floor_prim, "convexDecomposition")
# add collision infomation
if "furniture_collisions" in self.layout["asset"]:
for furni_path in self.layout["asset"]["furniture_collisions"]:
prim = self.stage.GetPrimAtPath(furni_path)
setCollider(prim, "convexDecomposition")
print("try to set collider: ", furni_path)
setRigidBody(prim, "convexDecomposition", False)
physicsAPI = UsdPhysics.RigidBodyAPI.Apply(prim)
physicsAPI.CreateRigidBodyEnabledAttr(False)
# physicsAPI.CreateDisableGravityAttr(True)
print("set rigid body: ", furni_path)
# load furniture info
for obj in self.layout["asset"]["sapien"]:
# filter object only necessary for currect task
if object_id != None:
if obj['obj_id'] != object_id:
continue
# get asset path
if "asset_path" in obj and obj["asset_path"] is not None:
if "omniverse:" in obj["asset_path"]:
# cloud obj
obj_usd_path = obj["asset_path"]
else:
# custom object
obj_usd_path = os.path.join(self.sapien_asset_path, "../custom", obj["asset_path"])
else:
# sapien object
obj_usd_path = os.path.join(self.sapien_asset_path, obj["obj_type"], str(obj["obj_id"]), "mobility.usd")
print("obj_usd_path", obj_usd_path)
# load data
mobility_prim_path = xform_game.GetPath().pathString + "/mobility"
prim = self.stage.GetPrimAtPath(mobility_prim_path)
if not prim.IsValid():
prim = self.stage.DefinePrim(mobility_prim_path)
success_bool = prim.GetReferences().AddReference(obj_usd_path)
if not success_bool:
raise Exception("The usd file at path {} provided wasn't found".format(obj_usd_path))
# set xform
# obj_xform = pxr.UsdGeom.Xformable.Get(self.stage, prim.GetPath())
# translate_component = obj_xform.GetOrderedXformOps()[0]
# orient_component = obj_xform.GetOrderedXformOps()[1]
# scale_component = obj_xform.GetOrderedXformOps()[2]
translate = obj["xformOp:translate"]
# translate_component.Set(tuple(translate))
orient = eval(obj["xformOp:orient"]) if isinstance(obj["xformOp:orient"], str) else obj["xformOp:orient"]
rotation = pxr.Gf.Quatd(orient[0], orient[1], orient[2], orient[3])
# orient_component.Set(rotation)
scale = obj["xformOp:scale"]
# scale_component.Set(tuple(scale))
xform = pxr.Gf.Matrix4d().SetScale(scale) * pxr.Gf.Matrix4d().SetRotate(rotation) * pxr.Gf.Matrix4d().SetTranslate(translate)
omni.kit.commands.execute(
"TransformPrimCommand",
path=prim.GetPath(),
new_transform_matrix=xform,
)
## or
# xform_geom.AddTranslateOp().Set(position)
# xform_geom.AddOrientOp().Set(orientation)
# xform_geom.AddScaleOp().Set(scale)
# set collision & rigidbody
should_add_rigidbody = False
for collision_type in RIGIDBODY_OBJ_TYPES:
if collision_type in obj["obj_type"]:
should_add_rigidbody = True
break
if should_add_rigidbody:
setRigidBody(prim, "convexDecomposition", False)
# set up physcial materials
# self._setup_physics_material(prim.GetPath())
# rename path
# TODO: set up name rules
old_prim_name = prim.GetPath().pathString
new_prim_path = prim.GetPath().GetParentPath().AppendChild("mobility_" + obj["obj_type"] + "_" + str(obj["obj_id"]))
new_prim_name = omni.usd.get_stage_next_free_path(self.stage, new_prim_path.pathString, False)
carb.log_info("rename:" + old_prim_name + ";" + new_prim_name)
rename_prim(old_prim_name, new_prim_name)
default_prim_path_str = self.stage.GetDefaultPrim().GetPath().pathString
## this is necessary because for standalone this might not be /World
if not default_prim_path_str:
default_prim_path_str = "/World"
#set up physics scene
# from omni.physx.scripts import utils
_gravityMagnitude = 100.0 # IN CM/s2 - use a lower gravity to avoid fluid compression at 60 FPS
_gravityDirection = Gf.Vec3f(0.0, -1.0, 0.0)
_solver = "TGS"
_gpuMaxNumPartitions = 4
physicsScenePath = os.path.join(default_prim_path_str, "physicsScene")
scene = UsdPhysics.Scene.Define(self.stage, physicsScenePath)
scene.CreateGravityDirectionAttr().Set(_gravityDirection)
scene.CreateGravityMagnitudeAttr().Set(_gravityMagnitude)
set_physics_scene_asyncsimrender(scene.GetPrim())
physxAPI = PhysxSchema.PhysxSceneAPI.Apply(scene.GetPrim())
physxAPI.CreateSolverTypeAttr(_solver)
physxAPI.CreateGpuMaxNumPartitionsAttr(_gpuMaxNumPartitions)
def add_distraction_objects(self):
pass
| 18,324 | Python | 40.647727 | 137 | 0.560194 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/utils.py | # utility functions
import omni
import pxr
from pxr import Gf, Semantics
import carb
import json
import numpy as np
def add_semantics(prim, semantic_label):
if not prim.HasAPI(Semantics.SemanticsAPI):
sem = Semantics.SemanticsAPI.Apply(prim, "Semantics")
sem.CreateSemanticTypeAttr()
sem.CreateSemanticDataAttr()
sem.GetSemanticTypeAttr().Set("class")
sem.GetSemanticDataAttr().Set(semantic_label)
def rename_prim(old_prim_name, new_prim_name):
# old_prim_name = prim.GetPath().pathString
# new_prim_name = prim.GetPath().GetParentPath()
# new_prim_name = new_prim_name.AppendChild("Door1")
# new_prim_name = omni.usd.get_stage_next_free_path(self.stage, new_prim_name.pathString, False)
# print("new_prim_name: ", new_prim_name)
move_dict = {old_prim_name: new_prim_name}
if pxr.Sdf.Path.IsValidPathString(new_prim_name):
move_dict = {old_prim_name: new_prim_name}
omni.kit.commands.execute("MovePrims", paths_to_move=move_dict, on_move_fn=None)
else:
carb.log_error(f"Cannot rename {old_prim_name} to {new_prim_name} as its not a valid USD path")
def freeze_prim(prim, scale = [1, 1, 1]):
"""
Perform free transform command to current x_form_prim
"""
stage = omni.usd.get_context().get_stage()
omni.kit.undo.begin_group()
prim_name = prim.GetPath().pathString
temp_name = prim_name + "_temp"
rename_prim(prim_name, temp_name)
temp_prim = stage.GetPrimAtPath(temp_name)
# transform to the correct scale
prim_xform = Gf.Matrix4d().SetScale(scale)
omni.kit.commands.execute(
"TransformPrimCommand",
path=temp_name,
new_transform_matrix=prim_xform,
)
# create an unit xform
omni.kit.commands.execute(
"CreatePrim",
prim_path=prim_name,
prim_type="Xform",
select_new_prim=False,
)
move_dict = {}
for prim in temp_prim.GetChildren():
old_prim_name = prim.GetPath().pathString
new_prim_name = old_prim_name.replace("_temp", "")
move_dict[old_prim_name] = new_prim_name
omni.kit.commands.execute("MovePrims", paths_to_move=move_dict, keep_world_transform = True, on_move_fn=None)
# print(0/0)
omni.kit.commands.execute("DeletePrims", paths=[temp_prim.GetPath()])
# return new root prim
return stage.GetPrimAtPath(prim_name)
def rotationXYZ_to_quaternion(rotationXYZ):
translate = Gf.Vec3d(0, 0, 0)
euler = rotationXYZ
scale = Gf.Vec3d(1, 1, 1)
rotation = (
Gf.Rotation(Gf.Vec3d.ZAxis(), euler[2])
* Gf.Rotation(Gf.Vec3d.YAxis(), euler[1])
* Gf.Rotation(Gf.Vec3d.XAxis(), euler[0])
)
xform = Gf.Matrix4d().SetScale(scale) * Gf.Matrix4d().SetRotate(rotation) * Gf.Matrix4d().SetTranslate(translate)
return xform.ExtractRotationQuat()
class NpEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
if isinstance(obj, np.floating):
# 👇️ alternatively use str()
return float(obj)
if isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj) | 3,272 | Python | 31.73 | 117 | 0.640587 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/randomizer.py | import omni
import pxr
from pxr import Gf
import carb
import os
import random
import json
from omni.kit.material.library import get_material_prim_path, create_mdl_material
from ..param import IS_IN_ISAAC_SIM, SAPIEN_ASSET_PATH, HOUSE_INFO_PATH, DATA_PATH_ROOT
class Randomizer():
def __init__(self, task_json_path=None, random_seed = 1) -> None:
# self.house = house
# self.layout = self.house.layout if house is not None else {}
self.task_json_path = task_json_path
self.random_seed = random_seed
# randomize index
self.light_rnd = -1 # light randomized index
self.location_rnd = -1 # game loc randomized index
self.material_rnd = -1 # material randomized index
if task_json_path:
if not os.path.exists(self.task_json_path):
raise Exception( "The json file at path {} provided wasn't found".format(self.task_json_path))
self.task_json = json.load(open(self.task_json_path))
else:
self.task_json = {}
# init randomization
if "random" not in self.task_json:
self.random_info = {
"lights":[],
"materials":{},
"locations":[{
"translate":[0,0,0],
"orient":[1,0,0,0],
"scale":[1.0,1.0,1.0]
}],
}
self.task_json["random"] = self.random_info
else:
self.random_info = self.task_json["random"]
# material
self.material_dict = {}
# @staticmethod
def get_water_material(self):
from pxr import Tf, Sdf, Usd, UsdShade
# self.setup_material_helper()
# print()
water_url = 'http://localhost:8080/omniverse://127.0.0.1/NVIDIA/Materials/Base/Natural/Water.mdl'
water_mtl_name = water_url.split("/")[-1][:-4]
# print("material dict: ", self.material_dict)
water_material_prim_path = get_material_prim_path(water_mtl_name)
# omni.kit.commands.execute(
# "CreatePrim", prim_path=water_material_prim_path, prim_type="Scope", select_new_prim=False
# )
def on_create(path):
pass
return create_mdl_material(omni.usd.get_context().get_stage(), water_url, water_mtl_name, on_create)
# stage = omni.usd.get_context().get_stage()
# if stage.HasDefaultPrim():
# mtl_path = omni.usd.get_stage_next_free_path(
# stage, "{}/Looks/{}".format(stage.GetDefaultPrim().GetPath(), Tf.MakeValidIdentifier(water_mtl_name)), False
# )
# else:
# mtl_path = omni.usd.get_stage_next_free_path(
# stage, "/Looks/{}".format(Tf.MakeValidIdentifier(water_mtl_name)), False
# )
# omni.kit.commands.execute("CreateMdlMaterialPrim", mtl_url=water_url, mtl_name=water_mtl_name,
# mtl_path=water_material_prim_path, select_new_prim=False)
# return water_material_prim_path
# omni.kit.commands.execute(
# "CreateMdlMaterialPrim",
# mtl_url=water_url,
# mtl_name=water_mtl_name,
# mtl_path=water_material_prim_path,
# select_new_prim=False,
# )
# omni.kit.commands.execute(
# 'BindMaterial',
# prim_path=prim.GetPath(),
# material_path = water_material_prim_path,
# strength=pxr.UsdShade.Tokens.strongerThanDescendants
# )
return water_material_prim_path
def set_seed(self, seed):
self.random_seed = seed
def randomize_light(self):
"""
Randomize light intensity
"""
self.random_info["lights"] = [0, 200, 400, 600, 800, 1000] # light intensity indexes
self.light_rnd = random.choice([_ for _ in range(len(self.random_info["lights"]))])
self.stage = omni.usd.get_context().get_stage()
self.default_prim = self.stage.GetDefaultPrim()
# print("?", self.default_prim.GetPath().pathString + "/defaultLight")
light_prim = self.stage.GetPrimAtPath(self.default_prim.GetPath().pathString + "/defaultLight")
assert light_prim.GetTypeName() == "DistantLight"
light_prim.GetAttribute("intensity").Set(self.random_info["lights"][self.light_rnd])
def randomize_game_location(self):
"""
Randomize light intensity
"""
assert len(self.random_info["locations"]) > 0
self.location_rnd = (self.location_rnd + 1) % len(self.random_info["locations"])
self.stage = omni.usd.get_context().get_stage()
self.default_prim = self.stage.GetDefaultPrim()
game_prim = self.stage.GetPrimAtPath(self.default_prim.GetPath().pathString + "/game")
game_layout = self.random_info["locations"][self.location_rnd]
assert "translate" in game_layout and "orient" in game_layout
translate = game_layout["translate"]
orient = game_layout["orient"]
rotation = Gf.Quatd(orient[0], orient[1], orient[2], orient[3])
# TODO: check whether scale can be randomized
scale = (1.0, 1.0, 1.0)
print("location")
xform = Gf.Matrix4d().SetScale(scale) * Gf.Matrix4d().SetRotate(rotation) * Gf.Matrix4d().SetTranslate(translate)
omni.kit.commands.execute(
"TransformPrimCommand",
path=game_prim.GetPath(),
new_transform_matrix=xform,
)
def setup_material_helper(self):
"""
set up material randomizer
"""
self.stage = omni.usd.get_context().get_stage()
# check if has material
if len(self.material_dict) > 0:
return
carb.log_info("loading necleu materials")
# load from saved params
try:
# load the materials from nucleus url link
mat_root_path = "http://localhost:8080/omniverse://127.0.0.1/NVIDIA/Materials/"
carb.log_info(f"Collecting files for {mat_root_path}")
result1, entries = omni.client.list(mat_root_path)
from .material.param import NECLEUS_MATERIALS
self.material_dict = NECLEUS_MATERIALS
except:
# load the materials from nucleus url link
mat_root_path = "http://localhost:8080/omniverse://127.0.0.1/NVIDIA/Materials/"
carb.log_info(f"Collecting files for {mat_root_path}")
result1, entries = omni.client.list(mat_root_path)
if result1 != omni.client.Result.OK:
raise Exception(f"nucleus connect error at path: {mat_root_path}")
for e in entries:
print("result: ", e.relative_path)
material_type_folder = mat_root_path + e.relative_path + "/"
result2, mat_type_entries = omni.client.list(material_type_folder)
for mat_type_e in mat_type_entries:
if mat_type_e.relative_path not in self.material_dict:
self.material_dict[mat_type_e.relative_path] = []
material_folder = material_type_folder + mat_type_e.relative_path + "/"
result3, mat_entries = omni.client.list(material_folder)
for mat_e in mat_entries:
if mat_e.relative_path.endswith(".mdl"):
mat_path = material_folder + mat_e.relative_path
self.material_dict[mat_type_e.relative_path].append(mat_path)
# filter_out_empty
temp_dict = {}
for key in self.material_dict:
if len(self.material_dict[key]) > 0:
temp_dict[key] = self.material_dict[key]
self.material_dict = temp_dict
# mtl_created_list = []
# omni.kit.commands.execute(
# "CreateAndBindMdlMaterialFromLibrary",
# mdl_name='http://localhost:8080/omniverse://127.0.0.1/NVIDIA/Materials/Base/Architecture/Ceiling_Tiles.mdl',
# mtl_name='Ceiling_Tiles',
# mtl_created_list=mtl_created_list,
# bind_selected_prims=True,
# select_new_prim=False,
# )
def randomize_house(self, rand = True, randomize_floor =True, randomize_wall = True):
"""
randomize house's floor and wall
by default, we only randomize floor
"""
self.setup_material_helper()
floor_parent = self.stage.GetPrimAtPath("/World/layout/floors")
wall_parent = self.stage.GetPrimAtPath("/World/layout/structure") # roomStruct
self.random_info["floor_materials"] = [x for k in ["Wood"] for x in self.material_dict[k]] # Carpet
self.random_info["wall_materials"] = [x for k in ["Wall_Board"] for x in self.material_dict[k]] # "Masonry", "Architecture"
# print(self.random_info["floor_materials"])
# len_floor = len(self.random_info["floor_materials"])
# len_wall = len(self.random_info["wall_materials"])
wall_mtl_url = random.choice(self.random_info["wall_materials"]) if rand else self.random_info["wall_materials"][0]
floor_mtl_url = random.choice(self.random_info["floor_materials"]) if rand else self.random_info["floor_materials"][0]
wall_mtl_name = wall_mtl_url.split("/")[-1][:-4]
floor_mtl_name = floor_mtl_url.split("/")[-1][:-4]
# change mtl
new_looks_path1, wall_material_prim_path = get_material_prim_path(wall_mtl_name)
if new_looks_path1 and randomize_wall:
omni.kit.commands.execute(
"CreatePrim", prim_path=new_looks_path1, prim_type="Scope", select_new_prim=False
)
new_looks_path2, floor_material_prim_path = get_material_prim_path(floor_mtl_name)
if new_looks_path2 and randomize_floor:
omni.kit.commands.execute(
"CreatePrim", prim_path=new_looks_path2, prim_type="Scope", select_new_prim=False
)
for prim in floor_parent.GetChildren():
if prim is None:
raise Exception("no house in scene!")
carb.log_info("changing material at path: " + prim.GetPath().pathString)
if floor_material_prim_path:
omni.kit.commands.execute(
"CreateMdlMaterialPrim",
mtl_url=floor_mtl_url,
mtl_name=floor_mtl_name,
mtl_path=floor_material_prim_path,
select_new_prim=False,
)
omni.kit.commands.execute(
'BindMaterial',
prim_path=prim.GetPath(),
material_path=floor_material_prim_path,
strength=pxr.UsdShade.Tokens.strongerThanDescendants
)
for prim in wall_parent.GetChildren():
if prim is None:
raise Exception("no house in scene!")
carb.log_info("changing material at path: " + prim.GetPath().pathString)
if wall_material_prim_path:
omni.kit.commands.execute(
"CreateMdlMaterialPrim",
mtl_url=wall_mtl_url,
mtl_name=wall_mtl_name,
mtl_path=wall_material_prim_path,
select_new_prim=False,
)
omni.kit.commands.execute(
'BindMaterial',
prim_path=prim.GetPath(),
material_path=wall_material_prim_path,
strength=pxr.UsdShade.Tokens.strongerThanDescendants
)
def randomize_material(self):
"""
randomize material for mobility
"""
self.setup_material_helper()
# print("house material_dict: ", self.material_dict)
# print(os.getcwd())
# if selected, update selection materials
prim_paths = omni.usd.get_context().get_selection().get_selected_prim_paths()
if prim_paths and len(prim_paths) > 0:
pass
else:
# find target object
target_obj_id = str(self.task_json["object_id"])
obj_prim = None
self.stage = omni.usd.get_context().get_stage()
game_parent = self.stage.GetPrimAtPath("/World/game")
for prim in game_parent.GetChildren():
# if no materials
if target_obj_id in prim.GetPath().pathString:
obj_prim = prim
break
# print("obj_path_string", obj_prim.GetPath().pathString)
if len(self.random_info["materials"]) == 0:
material_list = [x for v in self.material_dict.values() for x in v]
mat_urls = random.sample(material_list, 10) # random sample ten materials 80% train 20% test
self.random_info["materials"] = {"train":mat_urls[:8], "test":mat_urls[8:]}
# self.save_asset_info()
# if has materials, load train material type
self.material_rnd = (1 + self.material_rnd) % len(self.random_info["materials"]["train"])
mtl_url = self.random_info["materials"]["train"][self.material_rnd] #random.choice(self.random_info["materials"]["train"])
mtl_name = mtl_url.split("/")[-1][:-4]
if obj_prim is None:
raise Exception(f"must load mobility first (object id){target_obj_id}")
carb.log_info("changing material at path: " + obj_prim.GetPath().pathString)
# change mtl
new_looks_path, material_prim_path = get_material_prim_path(mtl_name)
if new_looks_path:
omni.kit.commands.execute(
"CreatePrim", prim_path=new_looks_path, prim_type="Scope", select_new_prim=False
)
if material_prim_path:
omni.kit.commands.execute(
"CreateMdlMaterialPrim",
mtl_url=mtl_url,
mtl_name=mtl_name,
mtl_path=material_prim_path,
select_new_prim=False,
)
omni.kit.commands.execute(
'BindMaterial',
prim_path=obj_prim.GetPath(),
material_path=material_prim_path,
strength=pxr.UsdShade.Tokens.strongerThanDescendants
)
# mat_type = random.choice(list(self.material_dict.keys()))
# mtl_url = random.choice(self.material_dict[mat_type])
# mtl_name = mtl_url.split("/")[-1][:-4]
# # mtl_url = "http://localhost:8080/omniverse://127.0.0.1/NVIDIA/Materials/Base/Architecture/Ceiling_Tiles.mdl"
# # mtl_name = "Ceiling_Tiles"
# new_looks_path, material_prim_path = get_material_prim_path(mtl_name)
# if new_looks_path:
# omni.kit.commands.execute(
# "CreatePrim", prim_path=new_looks_path, prim_type="Scope", select_new_prim=False
# )
# if material_prim_path:
# omni.kit.commands.execute(
# "CreateMdlMaterialPrim",
# mtl_url=mtl_url,
# mtl_name=mtl_name,
# mtl_path=material_prim_path,
# select_new_prim=False,
# )
# for prim_path in prim_paths:
# omni.kit.commands.execute(
# 'BindMaterial',
# prim_path=prim_path,
# material_path=material_prim_path,
# strength=pxr.UsdShade.Tokens.strongerThanDescendants
# )
def record_game_offset(self):
# record game xform position and rotation
self.stage = omni.usd.get_context().get_stage()
game_prim = self.stage.GetPrimAtPath("/World/game") #pxr.UsdGeom.Xform.Get(self.stage, "/World/game")
if game_prim:
quad = game_prim.GetAttribute("xformOp:orient").Get()
translate = game_prim.GetAttribute("xformOp:translate").Get()
# print("game_prim", game_prim, eval(str(quad)))
quad = eval(str(quad))
layout_offset = {
"translate": [translate[0], translate[1], translate[2]],
"orient": [quad[0], quad[1], quad[2], quad[3]],
"scale": [1.0, 1.0, 1.0],
}
# check if currect layout offset is already recorded
layout_offset_already_recorded = False
#if "layout_offsets" in self.random_info["locations"]:
for offset in self.random_info["locations"]:
#if offset == layout_offset:
print("offset", offset)
if offset["translate"] == layout_offset["translate"] and \
offset["orient"] == layout_offset["orient"] and \
offset["scale"] == layout_offset["scale"]:
layout_offset_already_recorded = True
break
# if not in record, add offset record
if not layout_offset_already_recorded:
self.random_info["locations"].append(layout_offset)
print("New game offset recorded at: ", layout_offset)
def record_randomization(self):
with open(self.task_json_path, "w") as f:
json.dump(self.task_json, f, indent=4)
def randomize_sky(self, sky_type:str = None, url= "http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Skies/Dynamic/"):
"""
Add sky to the environment
"""
# return
# FIXME: not compatible with new version
self.stage = omni.usd.get_context().get_stage()
ENVIRONMENT_ROOT = "/Environment"
sky_prim_path = f"{ENVIRONMENT_ROOT}/sky"
# disable light
# light_prim_path = "/World/defaultLight"
# light_prim = self.stage.GetPrimAtPath(light_prim_path)
# if light_prim:
# light_prim.GetAttribute('visibility').Set('invisible')
if sky_type:
sky_name = f"{sky_type}Sky" if not sky_type == "Overcast" else "Overcast"
else:
sky_list = ["ClearSky","CloudySky","Overcast","NightSky"]
sky_name = random.choice(sky_list)
sky_url = f"{url}{sky_name}.usd"
# if found existing env, return
sky_prim = self.stage.GetPrimAtPath(sky_prim_path)
if sky_prim:
carb.log_warn("Sky already in the env")
sky_prim.GetReferences().ClearReferences()
else:
sky_prim = self.stage.DefinePrim(sky_prim_path, "Xform")
if len(sky_type) == 0:
# invalid sky type:
return
sky_prim.GetReferences().AddReference(sky_url)
rot = pxr.Gf.Vec3d(0, 0, 0)
properties = sky_prim.GetPropertyNames()
if "xformOp:rotateXYZ" in properties:
rotation = sky_prim.GetAttribute("xformOp:rotateXYZ")
rotation.Set(rot)
elif "xformOp:rotateZYX" in properties:
rotation = sky_prim.GetAttribute("xformOp:rotateZYX")
rotation.Set(rot)
elif "xformOp:transform" in properties:
carb.log_info("Object missing rotation op. Adding it.")
xform = pxr.UsdGeom.Xformable(sky_prim)
xform_op = xform.AddXformOp(pxr.UsdGeom.XformOp.TypeRotateXYZ, pxr.UsdGeom.XformOp.PrecisionDouble, "")
rotate = Gf.Vec3d(rot[0], rot[1], rot[2])
xform_op.Set(rotate)
# if IS_IN_ISAAC_SIM:
# from omni.isaac.core.utils.stage import add_reference_to_stage
# add_reference_to_stage(sky_url ,sky_prim_path)
# else:
# omni.kit.commands.execute("CreateUsdSkyPrimCommand", sky_url=sky_url, sky_path=sky_prim_path)
# too light, lower intensity to pretect eyes
#
# domelight_prim = self.stage.GetPrimAtPath("/Environment/sky/DomeLight")
# domelight_prim.GetAttribute("intensity").Set(0)
| 20,304 | Python | 40.354379 | 142 | 0.556984 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/house_new.py | from cgitb import enable
import os
import json
from typing import Container
import numpy as np
import asyncio
import omni
import pxr
import carb
from omni.physx.scripts import physicsUtils
from omni.physx.scripts.utils import setCollider, setRigidBody, setStaticCollider
from omni.usd import get_world_transform_matrix, get_local_transform_matrix
from ..param import DATA_PATH_NEW, ASSET_PATH, HOUSE_INFO_PATH, IS_IN_ISAAC_SIM, RIGIDBODY_OBJ_TYPES, GAME_OBJ_NAMES, \
IS_IN_CREAT, CONTAINER_NAMES, OTHER_OBJ_NAMES
from .utils import rename_prim, rotationXYZ_to_quaternion, freeze_prim
from .modify import modify_game_obj_prim
# if IS_IN_CREAT or IS_IN_ISAAC_SIM:
# import omni.kit.viewport_widgets_manager as wm
# from ..ui.hud import LabelWidget
from .utils import NpEncoder
class House():
def __init__(self,
task_type:str,
task_id:int,
robot_id:int = 0,
mission_id:int = 0,
house_id:int = 0,
anchor_id:int=0,
annotator="",
):
self.task_type = task_type
self.task_id = str(task_id)
self.data_path = DATA_PATH_NEW
self.robot_id = str(robot_id)
self.anchor_id = str(anchor_id)
self.mission_id = str(mission_id)
self.house_id = str(house_id)
self.annotator = str(annotator)
# task saving dicts/lists
self.object_info = []
self.robot_info = {}
self.make_task_saving_folder()
# house saving dict
self.house_appearance = {}
self.house_task_anchor = {}
self.object_prims = []
def make_task_saving_folder(self):
"""
check task saving folder
"""
task_type_folder = os.path.join(self.data_path, self.annotator, "task", self.task_type)
if not os.path.exists(task_type_folder):
os.makedirs(task_type_folder)
task_folder = os.path.join(self.data_path, self.annotator, "task", self.task_type, str(self.task_id))
if not os.path.exists(task_folder):
os.makedirs(task_folder)
def record_obj_info(self):
"""
record game object information and save
"""
# scene
self.stage = omni.usd.get_context().get_stage()
# Get sapien asset name
#prims = [self.stage.GetDefaultPrim()]
game_prim = self.stage.GetPrimAtPath("/World/game")
if not game_prim:
raise Exception("Please move object and robot under /World/game")
#print("prims", prims)
for prim in game_prim.GetChildren():
# print("prim ", prim.GetPath())
# if prim is game obj, record information
is_game_obj = False
for game_name in GAME_OBJ_NAMES + CONTAINER_NAMES + OTHER_OBJ_NAMES:
if game_name in prim.GetPath().pathString.lower():
is_game_obj = True
break
if is_game_obj:
reference, _ = omni.usd.get_composed_references_from_prim(prim)[0]
print("mobility reference: ", reference.assetPath)
relative_path = omni.client.make_relative_url(ASSET_PATH, reference.assetPath)
relative_path = relative_path.replace("\\\\","/").replace("\\","/")
# get obj type from paths
path_splits = relative_path.split("/")
# print("path_splits", path_splits)
# asset_path = "/".join(path_splits[2:])
obj_info = {
"asset_path": relative_path,
"obj_type": path_splits[-3],
"obj_id": path_splits[-2],
"materials":[],
}
mat = get_world_transform_matrix(prim)
if prim.HasAttribute("xformOp:orient"):
quad = prim.GetAttribute("xformOp:orient").Get()
else:
rotateXYZ = prim.GetAttribute("xformOp:rotateXYZ").Get()
quad = rotationXYZ_to_quaternion(rotateXYZ)
# quad = prim.GetAttribute("xformOp:orient").Get() # eval(str(mat.ExtractRotationQuat())) #eval(str(mat.ExtractRotation().GetQuat()))
quad = eval(str(quad))
translate = mat.ExtractTranslation()
scale = prim.GetAttribute("xformOp:scale").Get()
#print("translate", translate)
#print("quad", prim.GetPath(), quad)
obj_info["translate"] = [translate[0], translate[1], translate[2]]
obj_info["orient"] = [quad[0], quad[1], quad[2], quad[3]]
obj_info["scale"] = [scale[0],scale[1],scale[2]]
print("obj_info", obj_info)
# task_identity = obj_info["obj_type"] + obj_info["obj_id"]
self.object_info.append(obj_info)
# IMPORTANT: if the object is unbalanced scale, freeze object by
# To enter this condition is very strict: open/close door, wrong proportion of scale
# 1. Create a new xform
# 2. Move the object under the unit xform
# 3. Save the obj as another usd variance
game_obj_info = self.object_info[0]
game_obj_scale = game_obj_info["scale"]
if self.task_type in ["open_door", "close_door"]:
need_freeze = abs(game_obj_scale[0] / game_obj_scale[1]) > 1.2 or \
abs(game_obj_scale[0] / game_obj_scale[1]) < 0.8 or \
abs(game_obj_scale[1] / game_obj_scale[2]) > 1.2 or \
abs(game_obj_scale[1] / game_obj_scale[2]) < 0.8 or \
abs(game_obj_scale[0] / game_obj_scale[2]) > 1.2 or \
abs(game_obj_scale[0] / game_obj_scale[2]) < 0.8
if need_freeze:
carb.log_warn("Found non-unit scale object, freezing transfrom...")
original_usd_path = os.path.join(ASSET_PATH, game_obj_info["asset_path"])
var_usd_path = original_usd_path.replace("mobility",
f"mobility_{self.annotator}_{self.task_type}_{self.task_id}_{self.robot_id}_{self.mission_id}_{self.house_id}_{self.anchor_id}")
import shutil
shutil.copyfile(original_usd_path, var_usd_path)
omni.usd.get_context().close_stage()
omni.usd.get_context().open_stage(var_usd_path)
stage = omni.usd.get_context().get_stage()
default_prim = stage.GetDefaultPrim()
# default_prim.GetAttribute("xformOp:scale").Set(pxr.Gf.Vec3f(1, 2, 1))
new_prim = freeze_prim(default_prim, game_obj_scale)
pxr.UsdPhysics.ArticulationRootAPI.Apply(new_prim)
stage.SetDefaultPrim(new_prim)
omni.usd.get_context().save_stage()
# time.sleep(1.0)
# omni.usd.get_context().close_stage()
relative_path = omni.client.make_relative_url(ASSET_PATH, var_usd_path)
relative_path.replace("\\", "/")
game_obj_info["asset_path"] = relative_path
new_size = (game_obj_scale[0] * game_obj_scale[1] * game_obj_scale[2]) ** (1/3)
game_obj_info["scale"] = [1 / new_size , 1 / new_size , 1 / new_size]
# save obj info
if len(self.object_info) > 0:
if self.house_id != "-1" and self.anchor_id != "-1":
obj_identifier = f"{self.house_id} {self.anchor_id}"
task_obj_path = os.path.join(self.data_path, self.annotator,"task", self.task_type, self.task_id, "objects_with_rooms.json")
objects_with_rooms = {} if not os.path.exists(task_obj_path) else json.load(open(task_obj_path))
objects_with_rooms[obj_identifier] = self.object_info
with open(task_obj_path, "w") as f:
json.dump(objects_with_rooms, f, indent=4, cls=NpEncoder)
else:
task_obj_path = os.path.join(self.data_path, self.annotator,"task", self.task_type, self.task_id, "objects.json")
with open(task_obj_path, "w") as f:
json.dump(self.object_info, f, indent=4, cls=NpEncoder)
carb.log_info(f"current objects info saving at: {task_obj_path}")
def load_obj_info(self, relative = False):
"""
Load objects for the task
if relative: put obj at the original position
"""
# scene
self.stage = omni.usd.get_context().get_stage()
# set up game root
default_prim_path_str = "/World"
self.xform_game_path = default_prim_path_str + "/game" # omni.usd.get_stage_next_free_path(self.stage, "/World/game", True)
# check if in house
self.object_info = None
if self.house_id != "-1" and self.anchor_id != "-1":
obj_identifier = f"{self.house_id} {self.anchor_id}"
task_obj_path = os.path.join(self.data_path, self.annotator,"task", self.task_type, self.task_id, "objects_with_rooms.json")
objects_with_rooms = {} if not os.path.exists(task_obj_path) else json.load(open(task_obj_path))
if obj_identifier in objects_with_rooms:
self.object_info = objects_with_rooms[obj_identifier]
if self.object_info is None:
task_obj_path = os.path.join(self.data_path, self.annotator, "task", self.task_type, self.task_id, "objects.json")
if not os.path.exists(task_obj_path):
raise Exception( "The json file at path {} provided wasn't found".format(task_obj_path) )
# load object info
self.object_info = json.load(open(task_obj_path))
for obj_idx, obj in enumerate(self.object_info):
# load object usd
obj_usd_path = os.path.join(ASSET_PATH, obj["asset_path"])
translate = obj["translate"]
orient = obj["orient"]
rotation = pxr.Gf.Quatd(orient[0], orient[1], orient[2], orient[3])
scale = obj["scale"]
# move game xform to the first object
# set up parent
if obj_idx == 0:
xform_game = self.stage.GetPrimAtPath(self.xform_game_path)
if not xform_game:
xform_game = pxr.UsdGeom.Xform.Define(self.stage, self.xform_game_path)
self.game_translate = translate if not relative else [0,0,0]
game_xform = pxr.Gf.Matrix4d().SetScale([1,1,1]) * \
pxr.Gf.Matrix4d().SetRotate(pxr.Gf.Quatf(1.0,0.0,0.0,0.0)) * pxr.Gf.Matrix4d().SetTranslate(self.game_translate)
omni.kit.commands.execute(
"TransformPrimCommand",
path=self.xform_game_path,
new_transform_matrix=game_xform,
)
# xform_game.AddTranslateOp().Set(pxr.Gf.Vec3f(*translate))
# xform_game.AddOrientOp().Set()
# xform_game.AddScaleOp().Set(pxr.Gf.Vec3f(1.0, 1.0, 1.0))
# move obj to the correct place
mobility_prim_path = xform_game.GetPath().pathString + "/mobility"
prim = self.stage.GetPrimAtPath(mobility_prim_path)
if not prim.IsValid():
prim = self.stage.DefinePrim(mobility_prim_path)
success_bool = prim.GetReferences().AddReference(obj_usd_path)
# print("get prim children", prim.GetChildren())
if not success_bool:
raise Exception("The usd file at path {} provided wasn't found".format(obj_usd_path))
# relative translate
if obj_idx == 0: # main object
rel_translate = [0,0,0]
else:
rel_translate = [self.game_translate[i] + obj["translate"][i] for i in range(3)]
xform = pxr.Gf.Matrix4d().SetScale(scale) * pxr.Gf.Matrix4d().SetRotate(rotation) * pxr.Gf.Matrix4d().SetTranslate(rel_translate)
omni.kit.commands.execute(
"TransformPrimCommand",
path=prim.GetPath(),
new_transform_matrix=xform,
)
if obj["obj_type"].lower() in GAME_OBJ_NAMES or obj_idx == 0: # main object
obj_prefix = "mobility_"
elif obj["obj_type"].lower() in CONTAINER_NAMES:
obj_prefix = "container_"
else:
obj_prefix = "other_"
# if IS_IN_ISAAC_SIM:
# add_update_semantics(prim, obj["obj_type"])
# TODO: set up name rules
old_prim_name = prim.GetPath().pathString
new_prim_path = prim.GetPath().GetParentPath().AppendChild(obj_prefix + obj["obj_type"] + "_" + str(obj["obj_id"]))
new_prim_name = omni.usd.get_stage_next_free_path(self.stage, new_prim_path.pathString, False)
# carb.log_info("rename:" + old_prim_name + ";" + new_prim_name ";" + prim.GetPath().pathString)
rename_prim(old_prim_name, new_prim_name)
target_obj_prim = self.stage.GetPrimAtPath(new_prim_name)
modify_game_obj_prim(target_obj_prim)
print("modify prim name: ", new_prim_name)
self.object_prims.append(new_prim_name)
def record_robot_info(self, robot_prim_path = "/World/game/franka"):
"""
Record robots infomation, and save it RELATIVE position from the main game obj
:params:
robot_prim_path: default robot path
"""
self.stage = omni.usd.get_context().get_stage()
# Get sapien asset name
#prims = [self.stage.GetDefaultPrim()]
game_prim = self.stage.GetPrimAtPath("/World/game")
if not game_prim:
raise Exception("Please move object and robot under /World/game")
#for game_prim in prims:
for prim in game_prim.GetChildren():
# print("prim ", prim.GetPath())
# if prim is game obj, record information
is_game_obj = False
for game_name in GAME_OBJ_NAMES:
if game_name in prim.GetPath().pathString:
is_game_obj = True
break
if is_game_obj:
mat = omni.usd.utils.get_world_transform_matrix(prim)
game_translate = mat.ExtractTranslation()
break
if not game_translate:
raise Exception("Before recording robot, there must be a game object")
# then, find robot and calcuate relative postion
"""
Get robot information at robot_prim_path
"""
robot_prim = self.stage.GetPrimAtPath(robot_prim_path)
if not robot_prim or not pxr.UsdGeom.Xform.Get(self.stage, robot_prim_path):
raise Exception(f"Must have a robot with XForm at path {robot_prim_path}")
# get robot world transform
# if IS_IN_ISAAC_SIM:
# from omni.isaac.core.prims import XFormPrim
# pos, rot = XFormPrim(robot_prim_path).get_local_pose()
# translate = np.array(pos)
# quad = np.array(rot)
# else:
mat = get_local_transform_matrix(robot_prim)
translate = mat.ExtractTranslation()
quad = eval(str(mat.ExtractRotation().GetQuat()))
rob_info = {
"type":"franka",
"translate": [round(translate[0], 3), round(translate[1],3), round(translate[2], 3)],
"orient": [round(quad[0], 3), round(quad[1], 3), round(quad[2], 3), round(quad[3], 3)],
}
if self.house_id != "-1" and self.anchor_id != "-1":
task_robot_path = os.path.join(self.data_path, self.annotator, "task", self.task_type, self.task_id, "robots_with_rooms.json")
robot_identifier = f"{self.robot_id} {self.house_id} {self.anchor_id} {self.mission_id}"
objects_with_rooms = {} if not os.path.exists(task_robot_path) else json.load(open(task_robot_path))
objects_with_rooms[robot_identifier] = rob_info
with open(task_robot_path, "w") as f:
json.dump(objects_with_rooms, f, indent=4, cls=NpEncoder)
else:
task_robot_path = os.path.join(self.data_path, self.annotator, "task", self.task_type, self.task_id, "robots.json")
if os.path.exists(task_robot_path):
self.robot_info = json.load(open(task_robot_path))
robot_identifier = str(self.robot_id)
self.robot_info[robot_identifier] = rob_info
with open(task_robot_path, "w") as f:
json.dump(self.robot_info, f, indent=4, cls=NpEncoder)
carb.log_info(f"Saving robot json file at {task_robot_path}")
def load_robot_info(self):
"""
Load robot for currect task
"""
# if append house and anchor info
rot_info = None
if self.house_id != "-1" and self.anchor_id != "-1":
task_robot_path = os.path.join(self.data_path, self.annotator, "task", self.task_type, self.task_id, "robots_with_rooms.json")
robot_identifier = f"{self.robot_id} {self.house_id} {self.anchor_id}"
robot_identifier = f"{self.robot_id} {self.house_id} {self.anchor_id} {self.mission_id}"
objects_with_rooms = {} if not os.path.exists(task_robot_path) else json.load(open(task_robot_path))
if robot_identifier in objects_with_rooms:
rot_info = objects_with_rooms[robot_identifier]
if rot_info is None:
task_robot_path = os.path.join(self.data_path, self.annotator, "task", self.task_type, self.task_id, "robots.json")
if not os.path.exists(task_robot_path):
raise Exception( "The json file at path {} provided wasn't found".format(task_robot_path) )
# load json information
self.robot_info = json.load(open(task_robot_path))
# assert self.robot_id in self.robot_info, \
# f"Please record robot id variation first {self.task_type}, task_id {self.task_id}, robot_id {self.robot_id}"
if self.robot_id in self.robot_info:
rot_info = self.robot_info[self.robot_id]
else:
return None, None
return rot_info["translate"], rot_info["orient"]
def record_house_info(self):
"""
Record house information
::params:
anchor_id: postion of the game root
"""
# scene
self.stage = omni.usd.get_context().get_stage()
relative_path = None # house/layer asset relative path
# Get room name
room_path = self.stage.GetRootLayer().realPath
# print("room_path: ", room_path)
if room_path:
relative_path = omni.client.make_relative_url(HOUSE_INFO_PATH, room_path)
relative_path = relative_path.replace("\\\\", "/").replace("\\", "/")
# print("room_name: ", relative_path)
# self.layout["asset"]["room_name"] = relative_path
else:
self.layer = self.stage.GetRootLayer()
# print("layer: ", )
for ref in self.layer.GetExternalReferences():
if "layout" in str(ref):
#PathUtils.compute_relative_path(self.house_info_path,str(ref))
relative_path = omni.client.make_relative_url(HOUSE_INFO_PATH, str(ref))
relative_path = relative_path.replace("\\\\", "/").replace("\\", "/")
# print("relative_path", relative_path)
# self.layout["asset"]["room_name"] = relative_path
break
# make house saving folder
assert relative_path is not None
house_id = relative_path.split("/")[-2]
house_folder = os.path.join(self.data_path, self.annotator,"house", house_id)
if not os.path.exists(house_folder):
os.makedirs(house_folder)
# # make appearance
# appearance_json_path = os.path.join(house_folder, "appearance.json")
# if os.path.exists(appearance_json_path):
# self.house_appearance = json.load(open(appearance_json_path))
# self.house_appearance["asset_path"] = relative_path
# with open(appearance_json_path, "w") as f:
# json.dump(self.house_appearance, f, indent=4)
# carb.log_info(f"Saving hosue appearce json file at {appearance_json_path}")
# find game, task, anchor information
default_prim_path_str = "/World" #self.stage.GetDefaultPrim().GetPath().pathString
game_prim = self.stage.GetPrimAtPath(default_prim_path_str + "/game")
# if game information exists
if game_prim:
# load anchor
anchor_json_path = os.path.join(house_folder, "anchor.json")
if os.path.exists(anchor_json_path):
self.house_task_anchor = json.load(open(anchor_json_path))
# get game transform
mat = omni.usd.utils.get_world_transform_matrix(game_prim)
quad = eval(str(mat.ExtractRotation().GetQuat()))
translate = mat.ExtractTranslation()
translate = [i for i in translate]
anchor_info = {
"task_type": self.task_type,
"task_id": self.task_id,
"robot_id": self.robot_id,
"anchor_id": self.anchor_id,
"game_location": {
"translate": translate,
"orient":quad,
}
}
anchor_info["additional_collisions"] = [] # self.get_furniture_collisions()
# print("anchor_info", anchor_info)
anchor_identifier = self.task_type + " " + self.task_id + " " + self.robot_id + " " + self.anchor_id
self.house_task_anchor[anchor_identifier] = anchor_info
with open(anchor_json_path, "w") as f:
json.dump(self.house_task_anchor, f, indent=4, cls=NpEncoder)
carb.log_info(f"Saving anchor json file at {anchor_json_path}")
def load_house_info(self, enable_collision=True):
"""
load house infomation from house_id, and anchor_id
"""
print("loading house")
# scene
self.stage = omni.usd.get_context().get_stage()
# self.layer = self.stage.GetRootLayer()
house_path = os.path.join(HOUSE_INFO_PATH, self.house_id, "layout.usd")
# omni.kit.commands.execute(
# "CreateSublayer",
# layer_identifier=self.layer.identifier,
# sublayer_position=0,
# new_layer_path=house_path,
# transfer_root_content=False,
# create_or_insert=False,
# layer_name="house",
# )
# Check anchor exists, if not, then only the scene
house_folder = os.path.join(self.data_path, self.annotator, "house", self.house_id)
anchor_json_path = os.path.join(house_folder, "anchor.json")
if not os.path.exists(anchor_json_path):
carb.log_warn("No anchor file found, record anchor information first")
return False
# print("anchor_json_path: ", anchor_json_path)
try:
self.house_task_anchor = json.load(open(anchor_json_path))
except:
carb.log_error("anchro_json path not correct: " + str(anchor_json_path))
return False
anchor_identifier_prefix = self.task_type + " " + self.task_id # + " " + self.robot_id + " " + self.anchor_id
has_anchor = False
for key in self.house_task_anchor:
if key.startswith(anchor_identifier_prefix):
has_anchor = True
anchor_identifier = key
break
if not has_anchor:
carb.log_warn(f"No anchor id: {self.anchor_id}, please record anchor at {anchor_json_path}")
return False
# move obj to the correct place
house_prim_path = "/World/layout"
house_prim = self.stage.GetPrimAtPath(house_prim_path)
if not house_prim.IsValid():
house_prim = self.stage.DefinePrim(house_prim_path)
success_bool = house_prim.GetReferences().AddReference(house_path)
if not success_bool:
raise Exception(f"The house is not load at {house_path}")
# static collider
# print("set collisiton")
# furniture_prim = self.stage.GetPrimAtPath(house_prim_path + "/furniture/furniture_87879")
# setStaticCollider(furniture_prim, approximationShape="convexDecomposition")
furniture_prim = self.stage.GetPrimAtPath(house_prim_path + "/furniture")
# if furniture_prim:
# setStaticCollider(furniture_prim, approximationShape="convexHull")
# else:
# return False
# if not self.task_type in ["tap_water", "transfer_water", "pour_water"] and enable_collision:
# room_struct_prim = self.stage.GetPrimAtPath(house_prim_path + "/roomStruct")
# setStaticCollider(room_struct_prim, approximationShape="none")
# check task/task_type/robot
anchor_info = self.house_task_anchor[anchor_identifier]
# if anchor_info["task_type"] != self.task_type or \
# anchor_info["task_id"] != self.task_id or \
# anchor_info["robot_id"] != self.robot_id:
# raise Exception("Anchor information at {} does not match UI inputs".format(anchor_json_path))
# find game, task, anchor information
default_prim_path_str = "/World"
game_prim = self.stage.GetPrimAtPath(default_prim_path_str + "/game")
# if game information exists
if not game_prim:
carb.log_error(f"must have game obj at path {default_prim_path_str} + /game ")
return False
print("anchor_info", anchor_info)
orient = anchor_info["game_location"]["orient"]
translate = anchor_info["game_location"]["translate"]
rotation = pxr.Gf.Quatd(orient[0], orient[1], orient[2], orient[3])
game_xform = pxr.Gf.Matrix4d().SetScale([1,1,1]) * \
pxr.Gf.Matrix4d().SetRotate(rotation) * pxr.Gf.Matrix4d().SetTranslate(translate)
omni.kit.commands.execute(
"TransformPrimCommand",
path=default_prim_path_str + "/game",
new_transform_matrix=game_xform,
)
# set up additional collision
# for furni_path in anchor_info["additional_collisions"]:
# prim = self.stage.GetPrimAtPath(furni_path)
# # set rigidbody and disable it, only leave with collision
# setRigidBody(prim, "convexDecomposition", False)
# prim.GetAttribute("physics:rigidBodyEnabled").Set(False)
# print("try to set collider: ", furni_path)
## add ground
ground_prim = self.stage.GetPrimAtPath(default_prim_path_str + '/groundPlane')
if not ground_prim:
physicsUtils.add_ground_plane(self.stage, '/groundPlane', "Y", 1000.0,
pxr.Gf.Vec3f(0.0, 0.0, 0), pxr.Gf.Vec3f(0.2))
ground_prim = self.stage.GetPrimAtPath(default_prim_path_str + '/groundPlane')
# prim_list = list(self.stage.TraverseAll())
# prim_list = [ item for item in prim_list if 'groundPlane' in item.GetPath().pathString and item.GetTypeName() == 'Mesh' ]
# for prim in prim_list:
ground_prim.GetAttribute('visibility').Set('invisible')
# if ground_prim:
# omni.kit.commands.execute("DeletePrims", paths=[ground_prim.GetPath()])
# ground_prim = self.stage.GetPrimAtPath("/World/groundPlane")
# if ground_prim:
# omni.kit.commands.execute("DeletePrims", paths=[ground_prim.GetPath()])
# gui = self.stage.GetPrimAtPath("/World/GUI")
# if gui:
# omni.kit.commands.execute("DeletePrims", paths=[gui.GetPath()])
return True
#----------------------------------------utils---------------------------------------------
def get_furniture_collisions(self):
"""
Get furniture information especially for collision from current scene
"""
# scene # furniture parent
self.stage = omni.usd.get_context().get_stage()
additional_collisions = []
furni_parent = self.stage.GetPrimAtPath("/World/furniture")
# if has furniture
if furni_parent:
for prim in furni_parent.GetChildren():
if prim.HasAPI(pxr.UsdPhysics.RigidBodyAPI) or prim.HasAPI(pxr.UsdPhysics.CollisionAPI):
# prim.GetAttribute("physics:rigidBodyEnabled").Set(False)
print("collision prim name", prim.GetPath(), prim.GetAttribute("physics:rigidBodyEnabled").Get())
# robot_prim.GetAttribute("xformOp:orient").Get()
additional_collisions.append(prim.GetPath().pathString)
return additional_collisions
def regularizing_game_robot_obj_location(self):
"""
Regulariting game/robot/obj locations: put /World/game translate as the obj location
"""
carb.log_info("Regularizing game/robot/obj locations")
# move game to main object
stage = omni.usd.get_context().get_stage()
game_prim = stage.GetPrimAtPath("/World/game")
if game_prim:
for obj_prim in game_prim.GetChildren():
if "mobility" in obj_prim.GetPath().pathString:
pos = pxr.UsdGeom.Xformable(obj_prim).ComputeLocalToWorldTransform(0).ExtractTranslation()
# rot = pos = pxr.UsdGeom.Xformable(obj_prim).ComputeLocalToWorldTransform(0).ExtractRotation().GetQuat()
# print("pos", pos, "rot", rot)
pos = [i for i in pos]
game_xform = pxr.Gf.Matrix4d().SetScale([1,1,1]) * \
pxr.Gf.Matrix4d().SetRotate(pxr.Gf.Quatf(1.0,0.0,0.0,0.0)) * pxr.Gf.Matrix4d().SetTranslate(pos)
omni.kit.commands.execute(
"TransformPrimCommand",
path=game_prim.GetPath().pathString,
new_transform_matrix=game_xform,
)
obj_prim.GetAttribute("xformOp:translate").Set(pxr.Gf.Vec3f(0.0, 0.0, 0.0))
# also transfer the location of the robot
robot_prim = stage.GetPrimAtPath("/World/game/franka")
if robot_prim:
robot_translate = robot_prim.GetAttribute("xformOp:translate").Get()
new_robot_translate = [robot_translate[i] - pos[i] for i in range(3)]
robot_prim.GetAttribute("xformOp:translate").Set(pxr.Gf.Vec3f(*new_robot_translate))
break
def house_anchor_id_suggestion(self):
"""
Get house ids that are possible for current task_type/task_id/anchor
"""
suggested_house_ids = []
suggested_anchor_ids = []
anchor_identifier_prefix = self.task_type + " " + self.task_id + " " + self.robot_id
house_root = os.path.join(self.data_path, self.annotator, "house")
print("os.listdir(house_root)", house_root)
for house_name in os.listdir(house_root):
anchor_json_path = os.path.join(house_root, house_name, "anchor.json")
if not os.path.exists(anchor_json_path):
carb.log_warn("please add anchor.json to current task")
return ""
with open(anchor_json_path, "r") as f:
anchor_info = json.load(f)
for identifier in anchor_info.keys():
if identifier.startswith(anchor_identifier_prefix):
suggested_house_ids.append(house_name)
anchod_id = identifier.split()[-1]
suggested_anchor_ids.append(anchod_id)
return [str((i,j)) for i,j in zip(suggested_house_ids, suggested_anchor_ids)]
# def build_HUD(self):
# if IS_IN_CREAT or IS_IN_ISAAC_SIM:
# self.stage = omni.usd.get_context().get_stage()
# gui_path = self.stage.GetDefaultPrim().GetPath().pathString + "/GUI"
# gui = self.stage.GetPrimAtPath(gui_path)
# if not gui:
# gui = pxr.UsdGeom.Xform.Define(self.stage, gui_path)
# gui_location = pxr.Gf.Vec3f(0, 100, 100)
# gui.AddTranslateOp().Set(gui_location)
# self.wiget_id = wm.add_widget(gui_path, LabelWidget(f"House id: {self.house_id}"), wm.WidgetAlignment.TOP)
| 33,507 | Python | 45.474341 | 152 | 0.555854 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/modify.py | import omni
import pxr
import carb
from pxr import UsdPhysics, UsdShade, Gf, Semantics
from omni.physx.scripts import physicsUtils
from omni.physx.scripts.utils import setCollider, setRigidBody, setStaticCollider, removeCollider
from ..param import IS_IN_ISAAC_SIM
from .utils import add_semantics
if IS_IN_ISAAC_SIM:
from omni.isaac.core.utils.semantics import add_update_semantics
def modify_game_obj_prim(prim):
"""
modify game object attributes:
if Bottle, add rigibody, physical material, and mass
"""
# add game object semantic
add_semantics(prim, "game_obj")
# print("modifyiing: " + prim.GetPath().pathString)
if "Bottle" in prim.GetPath().pathString or "standalone" in prim.GetPath().pathString:
"""
Set bottle rigidbox and physical material
"""
setRigidBody(prim, "convexDecomposition", False)
#prim.GetAttribute("physics:rigidBodyEnabled").Set(False)
setup_physics_material(prim)
add_mass_to_prim(prim)
# stage = omni.usd.get_context().get_stage()
# physicsUtils.add_ground_plane(stage, "/groundPlane", "Y", 750.0, Gf.Vec3f(0.0, -10.0, 0), Gf.Vec3f(0.5))
# if 'Faucet' in prim.GetPath().pathString:
# setup_physics_material(prim)
# add_mass_to_prim(prim)
if IS_IN_ISAAC_SIM and "Bottle" in prim.GetPath().pathString :
add_update_semantics(prim, "Bottle")
if "StorageFurniture" in prim.GetPath().pathString:
"""
Set up physical material for handles
"""
# setup_physics_material(prim)
# add_physical_material_to("coll")
fix_handle('StorageFurniture')
# remove_collider_to("visuals")
# if IS_IN_ISAAC_SIM:
# add_update_semantics(prim, "StorageFurniture")
# add_semantics("handle")
if "Basin" in prim.GetPath().pathString:
approximationShape = "convexDecomposition"
# convex decomp basin
stage = omni.usd.get_context().get_stage()
collision_api = UsdPhysics.MeshCollisionAPI.Get(stage, prim.GetPath())
if not collision_api:
collision_api = UsdPhysics.MeshCollisionAPI.Apply(prim)
collision_api.CreateApproximationAttr().Set(approximationShape)
# set up physical metarial
# add_physical_material_to("Basin")
if IS_IN_ISAAC_SIM:
add_update_semantics(prim, "Basin")
elif "Faucet" in prim.GetPath().pathString:
from .fluid.cup_data import FAUCET_INFO
faucet_id = prim.GetPath().pathString.split("_")[-1]
inflow_position = FAUCET_INFO[faucet_id]["inflow_pos"]
omni.kit.commands.execute(
"CreatePrim",
prim_path="/World/game/inflow",
prim_type="Xform",
select_new_prim=False,
)
inflow_xform = pxr.Gf.Matrix4d().SetTranslate(inflow_position)
omni.kit.commands.execute(
"TransformPrimCommand",
path="/World/game/inflow",
new_transform_matrix=inflow_xform,
)
stage = omni.usd.get_context().get_stage()
import re
link_pattern = re.compile('.*'+'link_[0-9]+$')
links = list(filter( lambda x : link_pattern.findall(x.GetPath().pathString) , list(stage.TraverseAll()) ))
for link in links:
add_mass_to_prim(link, 0.1)
if IS_IN_ISAAC_SIM:
add_update_semantics(prim, "Faucet")
def add_mass_to_prim(prim, mass:float=0.02, density:float=1):
stage = omni.usd.get_context().get_stage()
mass_api = UsdPhysics.MassAPI.Get(stage, prim.GetPath())
if not mass_api:
mass_api = UsdPhysics.MassAPI.Apply(prim)
mass_api.CreateMassAttr().Set(mass)
# mass_api.CreateDensityAttr().Set(density)
else:
mass_api.GetMassAttr().Set(mass)
# mass_api.GetDensityAttr().Set(density)
def setup_physics_material(prim):
"""
Set up physic material for prim at Path
"""
# def _setup_physics_material(self, path: Sdf.Path):
stage = omni.usd.get_context().get_stage()
_material_static_friction = 100.0
_material_dynamic_friction = 100.0
_material_restitution = 0.0
_physicsMaterialPath = None
if _physicsMaterialPath is None:
# _physicsMaterialPath = stage.GetDefaultPrim().GetPath().AppendChild("physicsMaterial")
_physicsMaterialPath = prim.GetPath().AppendChild("physicsMaterial")
# print("physics_material_path: ", _physicsMaterialPath)
UsdShade.Material.Define(stage, _physicsMaterialPath)
material = UsdPhysics.MaterialAPI.Apply(stage.GetPrimAtPath(_physicsMaterialPath))
material.CreateStaticFrictionAttr().Set(_material_static_friction)
material.CreateDynamicFrictionAttr().Set(_material_dynamic_friction)
material.CreateRestitutionAttr().Set(_material_restitution)
collisionAPI = UsdPhysics.CollisionAPI.Get(stage, prim.GetPath())
# prim = stage.GetPrimAtPath(path)
if not collisionAPI:
collisionAPI = UsdPhysics.CollisionAPI.Apply(prim)
# apply material
physicsUtils.add_physics_material_to_prim(stage, prim, _physicsMaterialPath)
print("physics material: path: ", _physicsMaterialPath)
def add_ground_plane(prim_path = "/World/game", visiable = False):
stage = omni.usd.get_context().get_stage()
ground_prim = stage.GetPrimAtPath("/World/groundPlane")
if not ground_prim: #IS_IN_ISAAC_SIM:
purposes = [pxr.UsdGeom.Tokens.default_]
bboxcache = pxr.UsdGeom.BBoxCache(pxr.Usd.TimeCode.Default(), purposes)
prim = stage.GetPrimAtPath(prim_path)
bboxes = bboxcache.ComputeWorldBound(prim)
# print("bboxes", bboxes)
y = bboxes.ComputeAlignedRange().GetMin()[1]
physicsUtils.add_ground_plane(stage, "/World/groundPlane", "Y", 750.0, pxr.Gf.Vec3f(0.0, y, 0), pxr.Gf.Vec3f(0.2))
# select ground
selection = omni.usd.get_context().get_selection()
selection.clear_selected_prim_paths()
selection.set_prim_path_selected("/World/groundPlane", True, True, True, True)
ground_prim = stage.GetPrimAtPath("/World/groundPlane")
visibility = "visible" if visiable else 'invisible'
ground_prim.GetAttribute('visibility').Set(visibility)
# prim_list = list(stage.TraverseAll())
# prim_list = [ item for item in prim_list if 'groundPlane' in item.GetPath().pathString and item.GetTypeName() == 'Mesh' ]
# for prim in prim_list:
# prim.GetAttribute('visibility').Set('invisible')
# else:
# # prim_path = stage.GetDefaultPrim().GetPath().pathString
# usd_context = omni.usd.get_context()
# bboxes = usd_context.compute_path_world_bounding_box(prim_path)
# physicsUtils.add_ground_plane(stage, "/groundPlane", "Y", 750.0, pxr.Gf.Vec3f(0.0, bboxes[0][1], 0), pxr.Gf.Vec3f(0.2))
def add_physical_material_to(keyword:str):
"""
Set up physical material
"""
stage = omni.usd.get_context().get_stage()
prim_list = list(stage.TraverseAll())
prim_list = [ item for item in prim_list if keyword in item.GetPath().pathString and 'visuals' not in item.GetPath().pathString ]
for prim in prim_list:
setup_physics_material(prim)
print("add physics material to handle")
setStaticCollider(prim, approximationShape = "convexDecomposition")
def fix_handle(keyword):
"""
Set up physical material
and change collision type ot covex decomposition
"""
stage = omni.usd.get_context().get_stage()
prim_list = list(stage.TraverseAll())
#=========================
prim_list = [ item for item in prim_list if keyword in item.GetPath().pathString and \
'handle' in item.GetPath().pathString and item.GetTypeName() == 'Mesh' ]
# print("prim_list: ", prim_list)
for prim in prim_list:
setStaticCollider(prim, approximationShape = "convexDecomposition")
setup_physics_material(prim)
# table = {}
# for prim_path in prim_list:
# prefix, suffix = "/".join(prim_path.split('/')[:-1]), prim_path.split('/')[-1]
# if prefix not in table:
# table[prefix] = []
# table[prefix].append(suffix)
# for prefix, value in table.items():
# handle = value[-1]
# import os
# from omni.isaac.core.utils.prims import get_prim_at_path
# handle_path =str(os.path.join(prefix, handle))
# handle_prim = get_prim_at_path(handle_path)
# setup_physics_material(handle_prim)
# setStaticCollider(handle_prim, approximationShape = "convexDecomposition")
#=================================
# prim_list = list(stage.TraverseAll())
# prim_list = [ item for item in prim_list if keyword in item.GetPath().pathString and \
# 'visuals' in item.GetPath().pathString and item.GetTypeName() == 'Mesh' ]
# print(prim_list)
# for prim in prim_list:
# setup_physics_material(prim)
# setStaticCollider(prim, approximationShape = "convexDecomposition")
def remove_collider_to(keyword:str):
"""
Set up physical material
"""
stage = omni.usd.get_context().get_stage()
prim_list = list(stage.TraverseAll())
prim_list = [ item for item in prim_list if keyword in item.GetPath().pathString ]
for prim in prim_list:
removeCollider(prim.GetPath().pathString)
| 9,558 | Python | 38.829167 | 133 | 0.633919 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/param.py | from ..param import ROOT, APP_VERION | 36 | Python | 35.999964 | 36 | 0.777778 |
yizhouzhao/VRKitchen2.0-IndoorKit/exts/vrkitchen.indoor.kit/vrkitchen/indoor/kit/layout/fluid/cup_setup.py | import math
import os
from ..param import ROOT as root
from ...param import IS_IN_ISAAC_SIM, APP_VERION, USE_ISO_SURFACE
import carb
import omni
import pxr
from pxr import Gf, UsdPhysics, Sdf, Usd, UsdGeom, PhysxSchema, Vt
from omni.physx.scripts import utils, physicsUtils
if APP_VERION.startswith("2022"):
from omni.physx.scripts import particleUtils
import numpy as np
from .constants import PARTICLE_PROPERTY
# from omni.isaac.core.utils.stage import add_reference_to_stage
from .schemaHelpers import addPhysxParticleSystem, addPhysxParticlesSimple, PhysxParticleInstancePrototype
from .utils import generate_cylinder_y, generate_inside_point_cloud, get_quat_from_extrinsic_xyz_rotation
from .cup_data import CUP_PARTICLE_INFO
def setGridFilteringPass(gridFilteringFlags: int, passIndex: int, operation: int, numRepetitions: int = 1):
numRepetitions = max(0, numRepetitions - 1)
shift = passIndex * 4
gridFilteringFlags &= ~(3 << shift)
gridFilteringFlags |= (((operation) << 2) | numRepetitions) << shift
return gridFilteringFlags
class CupFluidHelper():
def __init__(self, use_isosurface = USE_ISO_SURFACE, cup_id = 0, r = 0.1, g = 0.4, b =0.6, material = None, height = None) -> None:
self.stage = omni.usd.get_context().get_stage()
self.cup_id = cup_id
self.rgb =[r,g,b]
self.material = material
self.height = height
self.use_isosurface = use_isosurface
def create(self):
# needs to be called first: set_up_fluid_physical_scene
self.set_up_fluid_physical_scene()
self.set_cup()
self.set_up_particle_system()
self.set_color()
self.set_particle_offset()
def modify_cup_scene(self, cup_prim, add_liquid = True, set_physics=True):
"""
Modify cup scene given the cup_prim,
1. setup physical scene and fluid scene
2. add particles
:param::
: cup_prim
"""
print("modify cup at path: ", cup_prim.GetPath().pathString)
game_prim = cup_prim.GetParent()
# set up physical
self.set_up_fluid_physical_scene()
carb.log_warn("APP_VERION 1: " + APP_VERION)
# modify particleSystemStr
if add_liquid:
particleSystemStr = "/World/Fluid" # game_prim.GetPath().AppendPath("Fluid").pathString
self.particleSystemPath = pxr.Sdf.Path(particleSystemStr)
self.particleInstanceStr = game_prim.GetPath().AppendPath("Particles").pathString
# modify cup
cup_shape_prim_path = cup_prim.GetPath().AppendPath("cupShape").pathString
cup_shape_prim = self.stage.GetPrimAtPath(cup_shape_prim_path)
cup_volume_prim_path = cup_prim.GetPath().AppendPath("cup_volume").pathString
cup_volume_prim = self.stage.GetPrimAtPath(cup_volume_prim_path)
if not cup_shape_prim:
raise Exception(f"Cup shape must exist at path {cup_shape_prim_path}")
# if IS_IN_ISAAC_SIM :
# from omni.isaac.core.utils.semantics import add_update_semantics
# add_update_semantics(cup_shape_prim, "Cup")
# utils.setPhysics(prim=cup_shape_prim, kinematic=False)
# utils.setCollider(prim=cup_shape_prim, approximationShape="convexDecomposition")
# if not set_physics:
# physicsAPI = UsdPhysics.RigidBodyAPI.Apply(cup_shape_prim)
# physicsAPI.CreateRigidBodyEnabledAttr(False)
physxCollisionAPI = pxr.PhysxSchema.PhysxCollisionAPI.Get(self.stage, cup_shape_prim.GetPath())
if not physxCollisionAPI:
physxCollisionAPI = pxr.PhysxSchema.PhysxCollisionAPI.Apply(cup_shape_prim)
self._setup_physics_material(cup_shape_prim.GetPath())
# Mug parameters
restOffset = PARTICLE_PROPERTY._cup_rest_offset
contactOffset = PARTICLE_PROPERTY._cup_contact_offset
assert physxCollisionAPI.GetRestOffsetAttr().Set(restOffset)
assert physxCollisionAPI.GetContactOffsetAttr().Set(contactOffset)
assert cup_shape_prim.CreateAttribute("physxMeshCollision:minThickness", pxr.Sdf.ValueTypeNames.Float).Set(0.001)
self._fluidPositionOffset = Gf.Vec3f(0,0,0)
massAPI = UsdPhysics.MassAPI.Apply(cup_shape_prim)
massAPI.GetMassAttr().Set(PARTICLE_PROPERTY._cup_mass)
# utils.setPhysics(prim=cup_prim, kinematic=False)
utils.removeRigidBody(cup_shape_prim)
utils.setRigidBody(cup_prim, "convexDecomposition", False)
utils.removeCollider(cup_volume_prim)
# add material
# create material 2
mtl_created_list = []
omni.kit.commands.execute(
"CreateAndBindMdlMaterialFromLibrary",
mdl_name="OmniGlass.mdl",
mtl_name="OmniGlass",
mtl_created_list=mtl_created_list,
)
mtl_path = mtl_created_list[0]
omni.kit.commands.execute(
"BindMaterial", prim_path=pxr.Sdf.Path(cup_shape_prim_path), material_path=mtl_path, strength=pxr.UsdShade.Tokens.strongerThanDescendants
)
if add_liquid:
self.volume_mesh = pxr.UsdGeom.Mesh.Get(self.stage, cup_prim.GetPath().AppendPath(f"cup_volume"))
self.set_up_particle_system()
carb.log_warn("APP_VERION 1: " + APP_VERION)
self.set_color()
from omni.physx import acquire_physx_interface
physx = acquire_physx_interface()
physx.overwrite_gpu_setting(1)
physx.reset_simulation()
def set_up_fluid_physical_scene(self, gravityMagnitude = PARTICLE_PROPERTY._gravityMagnitude):
"""
Fluid / PhysicsScene
"""
default_prim_path = self.stage.GetDefaultPrim().GetPath()
if default_prim_path.pathString == '':
# default_prim_path = pxr.Sdf.Path('/World')
root = UsdGeom.Xform.Define(self.stage, "/World").GetPrim()
self.stage.SetDefaultPrim(root)
default_prim_path = self.stage.GetDefaultPrim().GetPath()
# if self.stage.GetPrimAtPath("/World/physicsScene"):
# self.physicsScenePath = default_prim_path.AppendChild("physicsScene")
# return
particleSystemStr = default_prim_path.AppendPath("Fluid").pathString
self.physicsScenePath = default_prim_path.AppendChild("physicsScene")
self.particleSystemPath = pxr.Sdf.Path(particleSystemStr)
self.particleInstanceStr = default_prim_path.AppendPath("Particles").pathString
# Physics scene
self._gravityMagnitude = gravityMagnitude # IN CM/s2 - use a lower gravity to avoid fluid compression at 60 FPS
self._gravityDirection = Gf.Vec3f(0.0, -1.0, 0.0)
physicsScenePath = default_prim_path.AppendChild("physicsScene")
if self.stage.GetPrimAtPath("/World/physicsScene"):
scene = UsdPhysics.Scene.Get(self.stage, physicsScenePath)
else:
scene = UsdPhysics.Scene.Define(self.stage, physicsScenePath)
scene.CreateGravityDirectionAttr().Set(self._gravityDirection)
scene.CreateGravityMagnitudeAttr().Set(self._gravityMagnitude)
physxSceneAPI = PhysxSchema.PhysxSceneAPI.Apply(scene.GetPrim())
physxSceneAPI.CreateEnableCCDAttr().Set(True)
physxSceneAPI.GetTimeStepsPerSecondAttr().Set(60)
physxSceneAPI.CreateEnableGPUDynamicsAttr().Set(True)
physxSceneAPI.CreateEnableEnhancedDeterminismAttr().Set(True)
def set_up_particle_system(self):
self._fluidSphereDiameter = PARTICLE_PROPERTY._fluidSphereDiameter
self._particleSystemSchemaParameters = PARTICLE_PROPERTY._particleSystemSchemaParameters
self._particleSystemAttributes = PARTICLE_PROPERTY._particleSystemAttributes
if APP_VERION.startswith("2022"):
self._particleSystem = particleUtils.add_physx_particle_system(
self.stage, self.particleSystemPath, **self._particleSystemSchemaParameters, simulation_owner=Sdf.Path(self.physicsScenePath.pathString)
)
# materialPathStr = "/World/Looks/OmniGlass"
# particleUtils.add_pbd_particle_material(self.stage, materialPathStr, **PARTICLE_PROPERTY._particleMaterialAttributes)
# physicsUtils.add_physics_material_to_prim(self.stage, self._particleSystem.GetPrim(), materialPathStr)
else:
addPhysxParticleSystem(
self.stage, self.particleSystemPath, **self._particleSystemSchemaParameters, \
scenePath=pxr.Sdf.Path(self.physicsScenePath.pathString)
)
particleSystem = self.stage.GetPrimAtPath(self.particleSystemPath)
if APP_VERION.startswith("2022"):
pass
else:
for key, value in self._particleSystemAttributes.items():
particleSystem.GetAttribute(key).Set(value)
particleInstancePath = pxr.Sdf.Path(self.particleInstanceStr)
proto = PhysxParticleInstancePrototype()
proto.selfCollision = True
proto.fluid = True
proto.collisionGroup = 0
proto.mass = PARTICLE_PROPERTY._particle_mass
protoArray = [proto]
positions_list = []
velocities_list = []
protoIndices_list = []
lowerCenter = pxr.Gf.Vec3f(0, 0, 0)
particle_rest_offset = self._particleSystemSchemaParameters["fluid_rest_offset"]
####################################
if not hasattr(self, "volume_mesh") or self.volume_mesh is None: # not "volume_container" in CUP_PARTICLE_INFO[self.cup_id]:
################DATA####################
if self.height is None:
cylinder_height = CUP_PARTICLE_INFO[self.cup_id]["cylinder_height"]
else:
cylinder_height = self.height
cylinder_radius = CUP_PARTICLE_INFO[self.cup_id]["cylinder_radius"]
positions_list = generate_cylinder_y(lowerCenter, h=cylinder_height, radius=cylinder_radius, sphereDiameter=particle_rest_offset * 2.0)
# positions_list = generate_inside_mesh(lowerCenter, h=cylinder_height, radius=cylinder_radius,
# sphereDiameter=particle_rest_offset * 2.0, mesh= self.mesh, scale=self.scale)
else:
self.cloud_points = np.array(self.volume_mesh.GetPointsAttr().Get())
# two crowded, add 0.08
positions_list = generate_inside_point_cloud(sphereDiameter=particle_rest_offset * (2.0 + 0.08), cloud_points = self.cloud_points, scale=1.0)
for _ in range(len(positions_list)):
# print("position:", positions_list[_])
velocities_list.append(pxr.Gf.Vec3f(0, 0, 0))
protoIndices_list.append(0)
# print("positions_list", len(positions_list))
# positions_list -= np.array([228, 0, -231])
# positions_list = positions_list.tolist()
self.positions_list = positions_list
protoIndices = pxr.Vt.IntArray(protoIndices_list)
positions = pxr.Vt.Vec3fArray(positions_list)
velocities = pxr.Vt.Vec3fArray(velocities_list)
# if APP_VERION.startswith("2022"):
# particleUtils.add_physx_particleset_pointinstancer(
# self.stage,
# particleInstancePath,
# positions,
# velocities,
# self.particleSystemPath,
# self_collision=True,
# fluid=True,
# particle_group=0,
# particle_mass=PARTICLE_PROPERTY._particle_mass,
# density=0.0,
# )
# else:
# addPhysxParticlesSimple(
# self.stage, particleInstancePath, protoArray, protoIndices, positions, velocities, self.particleSystemPath
# )
if self.use_isosurface:
print("isosurface settings")
particle_system = self._particleSystem
mtl_created = []
omni.kit.commands.execute(
"CreateAndBindMdlMaterialFromLibrary",
mdl_name="OmniSurfacePresets.mdl",
mtl_name="OmniSurface_ClearWater",
mtl_created_list=mtl_created,
)
pbd_particle_material_path = mtl_created[0]
omni.kit.commands.execute(
"BindMaterial", prim_path=self.particleSystemPath, material_path=pbd_particle_material_path
)
# Create a pbd particle material and set it on the particle system
particleUtils.add_pbd_particle_material(
self.stage,
pbd_particle_material_path,
cohesion=0.01,
viscosity=0.0091,
surface_tension=0.0074,
friction=0.1,
)
physicsUtils.add_physics_material_to_prim(self.stage, particle_system.GetPrim(), pbd_particle_material_path)
particle_system.CreateMaxVelocityAttr().Set(20)
# add particle anisotropy
anisotropyAPI = PhysxSchema.PhysxParticleAnisotropyAPI.Apply(particle_system.GetPrim())
anisotropyAPI.CreateParticleAnisotropyEnabledAttr().Set(True)
aniso_scale = 5.0
anisotropyAPI.CreateScaleAttr().Set(aniso_scale)
anisotropyAPI.CreateMinAttr().Set(1.0)
anisotropyAPI.CreateMaxAttr().Set(2.0)
# add particle smoothing
smoothingAPI = PhysxSchema.PhysxParticleSmoothingAPI.Apply(particle_system.GetPrim())
smoothingAPI.CreateParticleSmoothingEnabledAttr().Set(True)
smoothingAPI.CreateStrengthAttr().Set(0.5)
fluidRestOffset = self._particleSystemSchemaParameters["rest_offset"]
# apply isosurface params
isosurfaceAPI = PhysxSchema.PhysxParticleIsosurfaceAPI.Apply(particle_system.GetPrim())
isosurfaceAPI.CreateIsosurfaceEnabledAttr().Set(True)
isosurfaceAPI.CreateMaxVerticesAttr().Set(1024 * 1024)
isosurfaceAPI.CreateMaxTrianglesAttr().Set(2 * 1024 * 1024)
isosurfaceAPI.CreateMaxSubgridsAttr().Set(1024 * 4)
isosurfaceAPI.CreateGridSpacingAttr().Set(fluidRestOffset * 1.5)
isosurfaceAPI.CreateSurfaceDistanceAttr().Set(fluidRestOffset * 1.6)
isosurfaceAPI.CreateGridFilteringPassesAttr().Set("")
isosurfaceAPI.CreateGridSmoothingRadiusAttr().Set(fluidRestOffset * 2)
isosurfaceAPI.CreateNumMeshSmoothingPassesAttr().Set(1)
primVarsApi = UsdGeom.PrimvarsAPI(particle_system)
primVarsApi.CreatePrimvar("doNotCastShadows", Sdf.ValueTypeNames.Bool).Set(True)
self.stage.SetInterpolationType(Usd.InterpolationTypeHeld)
particleUtils.add_physx_particleset_pointinstancer(
stage=self.stage,
path= particleInstancePath, #
positions=Vt.Vec3fArray(positions),
velocities=Vt.Vec3fArray(velocities),
particle_system_path=self.particleSystemPath,
self_collision=True,
fluid=True,
particle_group=0,
particle_mass=PARTICLE_PROPERTY._particle_mass,
density=0.0,
)
# if self.use_isosurface:
# particle_instance_prim = self.stage.GetPrimAtPath(particleInstancePath.pathString)
# # set partile up offset
# particles = pxr.UsdGeom.Xformable(particle_instance_prim)
# particles.AddTranslateOp()
def set_color(self):
# Set color
color_rgb = self.rgb#[0.1, 0.4, 0.6]
color = pxr.Vt.Vec3fArray([pxr.Gf.Vec3f(color_rgb[0], color_rgb[1], color_rgb[2])])
colorPathStr = self.particleInstanceStr + "/particlePrototype0"
gprim = pxr.UsdGeom.Sphere.Define(self.stage, pxr.Sdf.Path(colorPathStr))
gprim.CreateDisplayColorAttr(color)
# prototypePathStr = particleInstanceStr + "/particlePrototype0"
# gprim = UsdGeom.Sphere.Define(stage, Sdf.Path(prototypePathStr))
# gprim.CreateVisibilityAttr("invisible")
# TODO: debug transperency
gprim.CreateDisplayOpacityAttr([float(0.1)])
if self.use_isosurface:
gprim.GetPrim().GetAttribute('visibility').Set('invisible')
# usdPrim = stage.GetPrimAtPath(particleInstancePath)
usdPrim = self.stage.GetPrimAtPath(colorPathStr)
usdPrim.CreateAttribute("enableAnisotropy", pxr.Sdf.ValueTypeNames.Bool, True).Set(True)
usdPrim.CreateAttribute("radius", pxr.Sdf.ValueTypeNames.Double, True).Set(0.3)
gprim.GetRadiusAttr().Set(self._fluidSphereDiameter)
def set_cup(self):
# get cup info from data
abspath = CUP_PARTICLE_INFO[self.cup_id]["usd_path"]
mesh_name = CUP_PARTICLE_INFO[self.cup_id]["mesh_name"]
scale = CUP_PARTICLE_INFO[self.cup_id]["scale"]
particle_offset = CUP_PARTICLE_INFO[self.cup_id]["particle_offset"]
cup_offset = CUP_PARTICLE_INFO[self.cup_id]["cup_offset"]
self.scale = scale
default_prim_path = self.stage.GetDefaultPrim().GetPath()
self.stage.DefinePrim(default_prim_path.AppendPath(f"Cup")).GetReferences().AddReference(abspath)
mug = pxr.UsdGeom.Mesh.Get(self.stage, default_prim_path.AppendPath(f"Cup/{mesh_name}"))
utils.setPhysics(prim=mug.GetPrim(), kinematic=False)
utils.setCollider(prim=mug.GetPrim(), approximationShape="convexDecomposition")
if "volume_container" in CUP_PARTICLE_INFO[self.cup_id]:
volume_container = CUP_PARTICLE_INFO[self.cup_id]["volume_container"]
self.volume_mesh = pxr.UsdGeom.Mesh.Get(self.stage, default_prim_path.AppendPath(f"Cup/{volume_container}"))
prim = mug.GetPrim()
self.mug = mug
# self._setup_rb_collision_parameters(mug.GetPrim(), restOffset=self._mugRestOffset, contactOffset=self._mugContactOffset)
physxCollisionAPI = pxr.PhysxSchema.PhysxCollisionAPI.Get(self.stage, prim.GetPath())
if not physxCollisionAPI:
physxCollisionAPI = pxr.PhysxSchema.PhysxCollisionAPI.Apply(prim)
self._setup_physics_material(prim.GetPath())
# Mug parameters
restOffset = 0.0
contactOffset = 1.0
assert physxCollisionAPI.GetRestOffsetAttr().Set(restOffset)
assert physxCollisionAPI.GetContactOffsetAttr().Set(contactOffset)
assert prim.CreateAttribute("physxMeshCollision:minThickness", pxr.Sdf.ValueTypeNames.Float).Set(0.001)
# assert (
# mug.GetPrim().CreateAttribute("physxMeshCollision:maxConvexHulls", Sdf.ValueTypeNames.Float).Set(32)
# )
self._mugInitPos = Gf.Vec3f(cup_offset[0], cup_offset[1], cup_offset[2]) * scale
self._mugInitRot = get_quat_from_extrinsic_xyz_rotation(angleYrad=-0.7 * math.pi)
self._fluidPositionOffset = Gf.Vec3f(particle_offset[0], particle_offset[1], particle_offset[2])
self._mugScale = Gf.Vec3f(scale)
self._mugOffset = Gf.Vec3f(0, 0, 0) * scale
self.transform_mesh(mug, self._mugInitPos + self._mugOffset * 0, self._mugInitRot, self._mugScale)
massAPI = UsdPhysics.MassAPI.Apply(prim)
massAPI.GetMassAttr().Set(PARTICLE_PROPERTY._cup_mass)
def transform_mesh(self, mesh, loc, orient=pxr.Gf.Quatf(1.0), scale=pxr.Gf.Vec3d(1.0, 1.0, 1.0)):
for op in mesh.GetOrderedXformOps():
if op.GetOpType() == pxr.UsdGeom.XformOp.TypeTranslate:
op.Set(loc)
if op.GetOpType() == pxr.UsdGeom.XformOp.TypeOrient:
op.Set(orient)
if op.GetOpType() == pxr.UsdGeom.XformOp.TypeScale:
op.Set(scale)
def _setup_physics_material(self, path: pxr.Sdf.Path):
# and ground plane
self._material_static_friction = 10.0
self._material_dynamic_friction = 10.0
self._material_restitution = 0.0
self._physicsMaterialPath = None
if self._physicsMaterialPath is None:
self._physicsMaterialPath = self.stage.GetDefaultPrim().GetPath().AppendChild("physicsMaterial")
pxr.UsdShade.Material.Define(self.stage, self._physicsMaterialPath)
material = pxr.UsdPhysics.MaterialAPI.Apply(self.stage.GetPrimAtPath(self._physicsMaterialPath))
material.CreateStaticFrictionAttr().Set(self._material_static_friction)
material.CreateDynamicFrictionAttr().Set(self._material_dynamic_friction)
material.CreateRestitutionAttr().Set(self._material_restitution)
collisionAPI = pxr.UsdPhysics.CollisionAPI.Get(self.stage, path)
prim = self.stage.GetPrimAtPath(path)
if not collisionAPI:
collisionAPI = pxr.UsdPhysics.CollisionAPI.Apply(prim)
# apply material
physicsUtils.add_physics_material_to_prim(self.stage, prim, self._physicsMaterialPath)
| 21,056 | Python | 43.144654 | 154 | 0.645802 |
Subsets and Splits