task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Java
Java
import java.util.Arrays;   public class Stooge { public static void main(String[] args) { int[] nums = {1, 4, 5, 3, -6, 3, 7, 10, -2, -5}; stoogeSort(nums); System.out.println(Arrays.toString(nums)); }   public static void stoogeSort(int[] L) { stoogeSort(L, 0, L.length - 1); }   public static void stoogeSort(int[] L, int i, int j) { if (L[j] < L[i]) { int tmp = L[i]; L[i] = L[j]; L[j] = tmp; } if (j - i > 1) { int t = (j - i + 1) / 3; stoogeSort(L, i, j - t); stoogeSort(L, i + t, j); stoogeSort(L, i, j - t); } } }
http://rosettacode.org/wiki/Sorting_algorithms/Sleep_sort
Sorting algorithms/Sleep sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort In general, sleep sort works by starting a separate task for each item to be sorted, where each task sleeps for an interval corresponding to the item's sort key, then emits the item. Items are then collected sequentially in time. Task: Write a program that implements sleep sort. Have it accept non-negative integers on the command line and print the integers in sorted order. If this is not idomatic in your language or environment, input and output may be done differently. Enhancements for optimization, generalization, practicality, robustness, and so on are not required. Sleep sort was presented anonymously on 4chan and has been discussed on Hacker News.
#Nim
Nim
import os, strutils   proc single(n: int) = sleep n echo n   proc main = var thr = newSeq[TThread[int]](paramCount()) for i,c in commandLineParams(): thr[i].createThread(single, c.parseInt) thr.joinThreads   main()
http://rosettacode.org/wiki/Sorting_algorithms/Sleep_sort
Sorting algorithms/Sleep sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort In general, sleep sort works by starting a separate task for each item to be sorted, where each task sleeps for an interval corresponding to the item's sort key, then emits the item. Items are then collected sequentially in time. Task: Write a program that implements sleep sort. Have it accept non-negative integers on the command line and print the integers in sorted order. If this is not idomatic in your language or environment, input and output may be done differently. Enhancements for optimization, generalization, practicality, robustness, and so on are not required. Sleep sort was presented anonymously on 4chan and has been discussed on Hacker News.
#Objeck
Objeck
  use System.Concurrency; use Collection;   bundle Default { class Item from Thread { @value : Int;   New(value : Int) { Parent(); @value := value; }   method : public : Run(param : System.Base) ~ Nil { Sleep(1000 * @value); @value->PrintLine(); } }   class SleepSort { function : Main(args : String[]) ~ Nil { items := Vector->New(); each(i : args) { items->AddBack(Item->New(args[i]->ToInt())); };   each(i : items) { items->Get(i)->As(Item)->Execute(Nil); }; } } }  
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Clojure
Clojure
(import 'java.util.ArrayList)   (defn arr-swap! [#^ArrayList arr i j] (let [t (.get arr i)] (doto arr (.set i (.get arr j)) (.set j t))))   (defn sel-sort! ([arr] (sel-sort! compare arr)) ([cmp #^ArrayList arr] (let [n (.size arr)] (letfn [(move-min! [start-i] (loop [i start-i] (when (< i n) (when (< (cmp (.get arr i) (.get arr start-i)) 0) (arr-swap! arr start-i i)) (recur (inc i)))))] (doseq [start-i (range (dec n))] (move-min! start-i)) arr))))
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Common_Lisp
Common Lisp
(defun get-code (c) (case c ((#\B #\F #\P #\V) #\1) ((#\C #\G #\J #\K #\Q #\S #\X #\Z) #\2) ((#\D #\T) #\3) (#\L #\4) ((#\M #\N) #\5) (#\R #\6)))   (defun soundex (s) (if (zerop (length s)) "" (let* ((l (coerce (string-upcase s) 'list)) (o (list (first l)))) (loop for c in (rest l) for cg = (get-code c) and for cp = #\Z then cg when (and cg (not (eql cg cp))) do (push cg o) finally (return (subseq (coerce (nreverse `(#\0 #\0 #\0 ,@o)) 'string) 0 4))))))
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#FreeBASIC
FreeBASIC
' version 21-10-2016 ' compile with: fbc -s console ' for boundry checks on array's compile with: fbc -s console -exx   Sub shellsort(s() As Long) ' sort from lower bound to the highter bound ' array's can have subscript range from -2147483648 to +2147483647 Dim As Long lb = LBound(s) Dim As Long ub = UBound(s) Dim As Long done, i, inc = ub - lb   Do inc = Int(inc / 2.2) If inc < 1 Then inc = 1   Do done = 0 For i = lb To ub - inc ' replace "<" with ">" for downwards sort If s(i) > s(i + inc) Then Swap s(i), s(i + inc) done = 1 End If Next Loop Until done = 0   Loop Until inc = 1   End Sub   ' ------=< MAIN >=------   Dim As Long i, array(-7 To 7)   Dim As Long a = LBound(array), b = UBound(array)   Randomize Timer For i = a To b : array(i) = i  : Next For i = a To b ' little shuffle Swap array(i), array(Int(Rnd * (b - a +1)) + a) Next   Print "unsorted "; For i = a To b : Print Using "####"; array(i); : Next : Print shellsort(array()) ' sort the array Print " sorted "; For i = a To b : Print Using "####"; array(i); : Next : Print   ' empty keyboard buffer While InKey <> "" : Wend Print : Print "hit any key to end program" Sleep End
http://rosettacode.org/wiki/Sparkline_in_unicode
Sparkline in unicode
A sparkline is a graph of successive values laid out horizontally where the height of the line is proportional to the values in succession. Task Use the following series of Unicode characters to create a program that takes a series of numbers separated by one or more whitespace or comma characters and generates a sparkline-type bar graph of the values on a single line of output. The eight characters: '▁▂▃▄▅▆▇█' (Unicode values U+2581 through U+2588). Use your program to show sparklines for the following input, here on this page: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1.5, 0.5 3.5, 2.5 5.5, 4.5 7.5, 6.5 (note the mix of separators in this second case)! Notes A space is not part of the generated sparkline. The sparkline may be accompanied by simple statistics of the data such as its range. A suggestion emerging in later discussion (see Discussion page) is that the bounds between bins should ideally be set to yield the following results for two particular edge cases: "0, 1, 19, 20" -> ▁▁██ (Aiming to use just two spark levels) "0, 999, 4000, 4999, 7000, 7999" -> ▁▁▅▅██ (Aiming to use just three spark levels) It may be helpful to include these cases in output tests. You may find that the unicode sparklines on this page are rendered less noisily by Google Chrome than by Firefox or Safari.
#S-lang
S-lang
  % Just to demonstrate alternate ways of defining unicode: private variable spchrs = "\u{2581}\u{2582}\u{2583}\u{2584}\u{2585}\u{2586}\u{2587}\u{2588}"; private variable spchrs_alt = "▁▂▃▄▅▆▇█";   define sparkline(arrstr) { variable a = strtok(arrstr, " \t,"), alen = length(a), out = ""; a = atof(a); variable amin = min(a), amax = max(a), span = amax - amin, i, d;   _for i (0, alen-1, 1) if (span != 0) {  % int() truncates; adding .5 here to round: d = int((a[i] - amin) * 7.0 / span + 0.5); out += substr(spchrs, d+1, 1); } else out += substr(spchrs, 4, 1);   print(out); }   if (not _slang_utf8_ok) error("Sorry, UTF8 mode is not on."); sparkline("1 2 3 4 5 6 7 8 7 6 5 4 3 2 1"); sparkline("1.5, 0.5 3.5, 2.5 5.5, 4.5 7.5, 6.5 ");  
http://rosettacode.org/wiki/Sparkline_in_unicode
Sparkline in unicode
A sparkline is a graph of successive values laid out horizontally where the height of the line is proportional to the values in succession. Task Use the following series of Unicode characters to create a program that takes a series of numbers separated by one or more whitespace or comma characters and generates a sparkline-type bar graph of the values on a single line of output. The eight characters: '▁▂▃▄▅▆▇█' (Unicode values U+2581 through U+2588). Use your program to show sparklines for the following input, here on this page: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1.5, 0.5 3.5, 2.5 5.5, 4.5 7.5, 6.5 (note the mix of separators in this second case)! Notes A space is not part of the generated sparkline. The sparkline may be accompanied by simple statistics of the data such as its range. A suggestion emerging in later discussion (see Discussion page) is that the bounds between bins should ideally be set to yield the following results for two particular edge cases: "0, 1, 19, 20" -> ▁▁██ (Aiming to use just two spark levels) "0, 999, 4000, 4999, 7000, 7999" -> ▁▁▅▅██ (Aiming to use just three spark levels) It may be helpful to include these cases in output tests. You may find that the unicode sparklines on this page are rendered less noisily by Google Chrome than by Firefox or Safari.
#Scala
Scala
def mkSparks( numStr:String ) : String = numStr.split( "[\\s,]+" ).map(_.toFloat) match { case v if v.isEmpty => "" case v if v.length == 1 => "\u2581" case v => (for( i <- v; s = "\u2581\u2582\u2583\u2584\u2585\u2586\u2587\u2588".toCharArray; d = (v.max - v.min) / (s.length - 1) ) yield s( ((i - v.min) / d).toInt)).mkString }   println( mkSparks( "1 2 3 4 5 6 7 8 7 6 5 4 3 2 1" ) ) println( mkSparks( "1.5, 0.5 3.5, 2.5 5.5, 4.5 7.5, 6.5" ) )   // A random test... println( mkSparks( Stream.continually( math.abs(util.Random.nextInt % 8)).take(64).mkString(" ") ))
http://rosettacode.org/wiki/Sorting_algorithms/Strand_sort
Sorting algorithms/Strand sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Strand sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Implement the Strand sort. This is a way of sorting numbers by extracting shorter sequences of already sorted numbers from an unsorted list.
#zkl
zkl
fcn strandSort(A){ //--> new list, A is cleared, should add A=A.copy() sublist:=List.createLong(A.len()); results:=List.createLong(A.len()); while(A){ sublist.clear(A.pop(0)); foreach i in (A.len() - 1){ if(A[i]>sublist[-1]) sublist.append(A.pop(i)); } results.merge(sublist); } results }
http://rosettacode.org/wiki/Stable_marriage_problem
Stable marriage problem
Solve the Stable marriage problem using the Gale/Shapley algorithm. Problem description Given an equal number of men and women to be paired for marriage, each man ranks all the women in order of his preference and each woman ranks all the men in order of her preference. A stable set of engagements for marriage is one where no man prefers a woman over the one he is engaged to, where that other woman also prefers that man over the one she is engaged to. I.e. with consulting marriages, there would be no reason for the engagements between the people to change. Gale and Shapley proved that there is a stable set of engagements for any set of preferences and the first link above gives their algorithm for finding a set of stable engagements. Task Specifics Given ten males: abe, bob, col, dan, ed, fred, gav, hal, ian, jon And ten females: abi, bea, cath, dee, eve, fay, gay, hope, ivy, jan And a complete list of ranked preferences, where the most liked is to the left: abe: abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay bob: cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay col: hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan dan: ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi ed: jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay fred: bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay gav: gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay hal: abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee ian: hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve jon: abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope abi: bob, fred, jon, gav, ian, abe, dan, ed, col, hal bea: bob, abe, col, fred, gav, dan, ian, ed, jon, hal cath: fred, bob, ed, gav, hal, col, ian, abe, dan, jon dee: fred, jon, col, abe, ian, hal, gav, dan, bob, ed eve: jon, hal, fred, dan, abe, gav, col, ed, ian, bob fay: bob, abe, ed, ian, jon, dan, fred, gav, col, hal gay: jon, gav, hal, fred, bob, abe, col, ed, dan, ian hope: gav, jon, bob, abe, ian, dan, hal, ed, col, fred ivy: ian, col, hal, gav, fred, bob, abe, ed, jon, dan jan: ed, hal, gav, abe, bob, jon, col, ian, fred, dan Use the Gale Shapley algorithm to find a stable set of engagements Perturb this set of engagements to form an unstable set of engagements then check this new set for stability. References The Stable Marriage Problem. (Eloquent description and background information). Gale-Shapley Algorithm Demonstration. Another Gale-Shapley Algorithm Demonstration. Stable Marriage Problem - Numberphile (Video). Stable Marriage Problem (the math bit) (Video). The Stable Marriage Problem and School Choice. (Excellent exposition)
#Scala
Scala
object SMP extends App { private def checkMarriages(): Unit = if (check) println("Marriages are stable") else println("Marriages are unstable")   private def swap() { val girl1 = girls.head val girl2 = girls(1) val tmp = girl2 -> matches(girl1) matches += girl1 -> matches(girl2) matches += tmp println(girl1 + " and " + girl2 + " have switched partners") }   private type TM = scala.collection.mutable.TreeMap[String, String]   private def check: Boolean = { if (!girls.toSet.subsetOf(matches.keySet) || !guys.toSet.subsetOf(matches.values.toSet)) return false   val invertedMatches = new TM matches foreach { invertedMatches += _.swap }   for ((k, v) <- matches) { val shePrefers = girlPrefers(k) val sheLikesBetter = shePrefers.slice(0, shePrefers.indexOf(v)) val hePrefers = guyPrefers(v) val heLikesBetter = hePrefers.slice(0, hePrefers.indexOf(k))   for (guy <- sheLikesBetter) { val fiance = invertedMatches(guy) val guy_p = guyPrefers(guy) if (guy_p.indexOf(fiance) > guy_p.indexOf(k)) { println(s"$k likes $guy better than $v and $guy likes $k better than their current partner") return false } }   for (girl <- heLikesBetter) { val fiance = matches(girl) val girl_p = girlPrefers(girl) if (girl_p.indexOf(fiance) > girl_p.indexOf(v)) { println(s"$v likes $girl better than $k and $girl likes $v better than their current partner") return false } } } true }   private val guys = "abe" :: "bob" :: "col" :: "dan" :: "ed" :: "fred" :: "gav" :: "hal" :: "ian" :: "jon" :: Nil private val girls = "abi" :: "bea" :: "cath" :: "dee" :: "eve" :: "fay" :: "gay" :: "hope" :: "ivy" :: "jan" :: Nil private val guyPrefers = Map("abe" -> List("abi", "eve", "cath", "ivy", "jan", "dee", "fay", "bea", "hope", "gay"), "bob" -> List("cath", "hope", "abi", "dee", "eve", "fay", "bea", "jan", "ivy", "gay"), "col" -> List("hope", "eve", "abi", "dee", "bea", "fay", "ivy", "gay", "cath", "jan"), "dan" -> List("ivy", "fay", "dee", "gay", "hope", "eve", "jan", "bea", "cath", "abi"), "ed" -> List("jan", "dee", "bea", "cath", "fay", "eve", "abi", "ivy", "hope", "gay"), "fred" -> List("bea", "abi", "dee", "gay", "eve", "ivy", "cath", "jan", "hope", "fay"), "gav" -> List("gay", "eve", "ivy", "bea", "cath", "abi", "dee", "hope", "jan", "fay"), "hal" -> List("abi", "eve", "hope", "fay", "ivy", "cath", "jan", "bea", "gay", "dee"), "ian" -> List("hope", "cath", "dee", "gay", "bea", "abi", "fay", "ivy", "jan", "eve"), "jon" -> List("abi", "fay", "jan", "gay", "eve", "bea", "dee", "cath", "ivy", "hope")) private val girlPrefers = Map("abi" -> List("bob", "fred", "jon", "gav", "ian", "abe", "dan", "ed", "col", "hal"), "bea" -> List("bob", "abe", "col", "fred", "gav", "dan", "ian", "ed", "jon", "hal"), "cath" -> List("fred", "bob", "ed", "gav", "hal", "col", "ian", "abe", "dan", "jon"), "dee" -> List("fred", "jon", "col", "abe", "ian", "hal", "gav", "dan", "bob", "ed"), "eve" -> List("jon", "hal", "fred", "dan", "abe", "gav", "col", "ed", "ian", "bob"), "fay" -> List("bob", "abe", "ed", "ian", "jon", "dan", "fred", "gav", "col", "hal"), "gay" -> List("jon", "gav", "hal", "fred", "bob", "abe", "col", "ed", "dan", "ian"), "hope" -> List("gav", "jon", "bob", "abe", "ian", "dan", "hal", "ed", "col", "fred"), "ivy" -> List("ian", "col", "hal", "gav", "fred", "bob", "abe", "ed", "jon", "dan"), "jan" -> List("ed", "hal", "gav", "abe", "bob", "jon", "col", "ian", "fred", "dan"))   private lazy val matches = { val engagements = new TM val freeGuys = scala.collection.mutable.Queue.empty ++ guys while (freeGuys.nonEmpty) { val guy = freeGuys.dequeue() val guy_p = guyPrefers(guy) var break = false for (girl <- guy_p) if (!break) if (!engagements.contains(girl)) { engagements(girl) = guy break = true } else { val other_guy = engagements(girl) val girl_p = girlPrefers(girl) if (girl_p.indexOf(guy) < girl_p.indexOf(other_guy)) { engagements(girl) = guy freeGuys += other_guy break = true } } }   engagements foreach { e => println(s"${e._1} is engaged to ${e._2}") } engagements }   checkMarriages() swap() checkMarriages() }
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Julia
Julia
stack = Int[] # [] @show push!(stack, 1) # [1] @show push!(stack, 2) # [1, 2] @show push!(stack, 3) # [1, 2, 3] @show pop!(stack) # 3 @show length(stack) # 2 @show empty!(stack) # [] @show isempty(stack) # true
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Julia
Julia
  immutable Spiral m::Int n::Int cmax::Int dir::Array{Array{Int,1},1} bdelta::Array{Array{Int,1},1} end   function Spiral(m::Int, n::Int) cmax = m*n dir = Array{Int,1}[[0,1], [1,0], [0,-1], [-1,0]] bdelta = Array{Int,1}[[0,0,0,1], [-1,0,0,0], [0,-1,0,0], [0,0,1,0]] Spiral(m, n, cmax, dir, bdelta) end   function spiral(m::Int, n::Int) 0<m&&0<n || error("The matrix dimensions must be positive.") Spiral(m, n) end spiral(n::Int) = spiral(n, n)   type SpState cnt::Int dirdex::Int cell::Array{Int,1} bounds::Array{Int,1} end   Base.length(sp::Spiral) = sp.cmax Base.start(sp::Spiral) = SpState(1, 1, [1,1], [sp.n,sp.m,1,1]) Base.done(sp::Spiral, sps::SpState) = sps.cnt > sp.cmax   function Base.next(sp::Spiral, sps::SpState) s = sub2ind((sp.m, sp.n), sps.cell[1], sps.cell[2]) if sps.cell[rem1(sps.dirdex+1, 2)] == sps.bounds[sps.dirdex] sps.bounds += sp.bdelta[sps.dirdex] sps.dirdex = rem1(sps.dirdex+1, 4) end sps.cell += sp.dir[sps.dirdex] sps.cnt += 1 return (s, sps) end  
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#Elixir
Elixir
defmodule Sort do def radix_sort(list), do: radix_sort(list, 10)   def radix_sort([], _), do: [] def radix_sort(list, base) do max = abs(Enum.max_by(list, &abs(&1))) sorted = radix_sort(list, base, max, 1) {minus, plus} = Enum.partition(sorted, &(&1<0)) Enum.reverse(minus, plus) end   defp radix_sort(list, _, max, m) when max<m, do: list defp radix_sort(list, base, max, m) do buckets = List.to_tuple(for _ <- 0..base-1, do: []) bucket2 = Enum.reduce(list, buckets, fn x,acc -> i = abs(x) |> div(m) |> rem(base) put_elem(acc, i, [x | elem(acc, i)]) end) list2 = Enum.reduce(base-1..0, [], fn i,acc -> Enum.reverse(elem(bucket2, i), acc) end) radix_sort(list2, base, max, m*base) end end   IO.inspect Sort.radix_sort([-4, 5, -26, 58, -990, 331, 331, 990, -1837, 2028])
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#Fortran
Fortran
    SUBROUTINE VARRADIX(A , Siz)   ! ! No Copyright is exerted due to considerable prior art in the Public Domain. ! This Fortran version by Peter Kelly ~ [email protected] ! ! Permission is hereby granted, free of charge, to any person obtaining ! a copy of this software and associated documentation files (the ! "Software"), to deal in the Software without restriction, including ! without limitation the rights to use, copy, modify, merge, publish, ! distribute, sublicense, and/or sell copies of the Software, and to ! permit persons to whom the Software is furnished to do so, subject to ! the following conditions: ! The above copyright notice and this permission notice shall be ! included in all copies or substantial portions of the Software. ! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, ! EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF ! MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. ! IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY ! CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, ! TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE ! SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ! ! ! LSD sort with a configurable RADIX, Using a RADIX of 256 performs well, hence I have defaulted it in. It is snarly fast. ! It could be optimized by merging the two routines but this way gives greater clarity as to what's going on. IMPLICIT NONE ! ! PARAMETER definitions ! INTEGER , PARAMETER :: BASE = 256 ! whatever base you need, just change this ! ! Dummy arguments ! INTEGER :: Siz INTEGER , DIMENSION(Siz) :: A ! ! Local variables ! INTEGER , ALLOCATABLE , DIMENSION(:) :: b INTEGER , ALLOCATABLE , DIMENSION(:) :: c INTEGER :: exps INTEGER :: maxs ! ALLOCATE(b(Siz)) ALLOCATE(c(BASE))   exps = 1 maxs = MAXVAL(A) DO WHILE ( (maxs/exps)>0 ) CALL XXCOUNTING_SORT(A , Siz , exps , BASE , b , c) exps = exps*BASE END DO deallocate(C) deallocate(B) RETURN CONTAINS ! !//b is the base you want !//exp is the value used for the division SUBROUTINE XXCOUNTING_SORT(A , Siz , Exps , Base , B , C) IMPLICIT NONE ! I used zero based arrays as it made the calcs infinitely easier :) ! ! Dummy arguments ! INTEGER :: Base INTEGER :: Exps INTEGER :: Siz ! Size INTEGER , DIMENSION(0:) :: A INTEGER , DIMENSION(0:) :: B INTEGER , DIMENSION(0:) :: C INTENT (IN) Base , Exps , Siz INTENT (INOUT) A , B , C ! ! Local variables ! INTEGER :: i INTEGER :: k ! C = 0 ! Init the arrays B = 0 ! DO i = 0 , Siz - 1 , 1 k = MOD((A(i)/Exps) , Base) ! Fill Histo C(k) = C(k) + 1 END DO ! DO i = 1 , Base - 1 , 1 C(i) = C(i) + C(i - 1) ! Build cumulative Histo END DO ! DO i = Siz - 1 , 0 , -1 k = MOD(A(i)/Exps , Base) ! Load the Buffer Array in order B(C(k) - 1) = A(i) C(k) = C(k) - 1 END DO ! DO i = 0 , Siz - 1 , 1 ! Copy across A(i) = B(i) END DO RETURN END SUBROUTINE XXCOUNTING_SORT END SUBROUTINE Varradix !*************************************************************************** ! End of LSD sort with any Radix !*************************************************************************** MODULE LEASTSIG IMPLICIT NONE ! ! No Copyright is exerted due to considerable prior art in the Public Domain. ! This Fortran version by Peter Kelly ~ [email protected] ! ! Permission is hereby granted, free of charge, to any person obtaining ! a copy of this software and associated documentation files (the ! "Software"), to deal in the Software without restriction, including ! without limitation the rights to use, copy, modify, merge, publish, ! distribute, sublicense, and/or sell copies of the Software, and to ! permit persons to whom the Software is furnished to do so, subject to ! the following conditions: ! The above copyright notice and this permission notice shall be ! included in all copies or substantial portions of the Software. ! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, ! EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF ! MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. ! IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY ! CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, ! TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE ! SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ! ! Implementation of a classic Radix Sort LSD style :) ! Works well, Integers only but it goes faster than a comparison sort CONTAINS   ! Main Radix Sort sort function SUBROUTINE LSDRADIXSORT(A , N) IMPLICIT NONE ! ! Dummy arguments ! INTEGER :: N INTEGER , target, DIMENSION(0:N - 1) :: A ! All arrays based off zero, one day I'll fix it INTENT (IN) N INTENT (INOUT) A ! ! Local variables ! INTEGER , DIMENSION(0:9) :: counts INTEGER :: digitplace INTEGER :: i INTEGER :: j INTEGER :: largestnum INTEGER, DIMENSION(0:N - 1) :: results ! digitplace = 1 ! Count of the keys largestnum = MAXVAL(A)   DO WHILE ( (largestnum/digitplace)>0 ) counts = 0 ! Init the count array DO i = 0 , N - 1 , 1 J = (A(i)/digitplace) J = MODULO(j , 10) counts(j) = counts(j) + 1 END DO   ! Change count(i) so that count(i) now contains actual position of this digit in result() ! Working similar to the counting sort algorithm DO i = 1 , 9 , 1 counts(i) = counts(i) + counts(i - 1) ! Build up the prefix sum END DO ! DO i = N - 1 , 0 , -1 ! Move from left to right j = (A(i)/digitplace) j = MODULO(j, 10) results(counts(j) - 1) = A(i) ! Need to subtract one as we are zero based but prefix sum is 1 based counts(j) = counts(j) - 1 END DO ! DO i = 0 , N - 1 , 1 ! Copy the semi-sorted data into the input A(i) = results(i) END DO ! digitplace = digitplace*10 END DO ! While loop RETURN END SUBROUTINE LSDRADIXSORT END MODULE LEASTSIG !*************************************************************************** ! End of Classic LSD sort with Radix 10 !*************************************************************************** !Superfast FORTRAN LSD sort ! Dataset is input array, Scratch is working array ! SUBROUTINE FASTLSDRAD(Dataset , Scratch , Dsize) ! ! No Copyright is exerted due to considerable prior art in the Public Domain. ! This Fortran version by Peter Kelly ~ [email protected] ! ! Permission is hereby granted, free of charge, to any person obtaining ! a copy of this software and associated documentation files (the ! "Software"), to deal in the Software without restriction, including ! without limitation the rights to use, copy, modify, merge, publish, ! distribute, sublicense, and/or sell copies of the Software, and to ! permit persons to whom the Software is furnished to do so, subject to ! the following conditions: ! The above copyright notice and this permission notice shall be ! included in all copies or substantial portions of the Software. ! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, ! EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF ! MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. ! IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY ! CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, ! TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE ! SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ! ! This LSD sort is optimized to a base 16,Radix 256 sort which is about as fast as LSD gets. As well as a fast ! algorithm, it has great cache coherency so performs exceptionally on large data sets, ! I have optimized out all the divide and modulus functions and replaced them with bit shifts for speed. ! A further speed optimization is obtained by using pointers to the DATA and TEMP arrays and swapping them each pass of ! the LSB calculation. In FORTRAN this is a bit clunky but much faster than copying data back and forth between arrays. ! ! All arrays are zero based as this makes the indexing calculations straightforward without the need for ! subsequent adds and subtracts to track the correct index ! . IMPLICIT NONE ! ! Dummy arguments ! INTEGER :: Dsize INTEGER , TARGET , DIMENSION(0:Dsize - 1) :: Scratch ! Declared as TARGET as we will manipulate with pointers INTEGER , TARGET , DIMENSION(0:Dsize - 1) :: Dataset INTENT (IN) Dsize INTENT (INOUT) Scratch , Dataset ! ! Local variables ! INTEGER , POINTER , DIMENSION(:) :: a ! The pointer to the data INTEGER , POINTER , DIMENSION(:) :: b ! The pointer to the buffer INTEGER :: i INTEGER :: j INTEGER :: m INTEGER , DIMENSION(0:255,0:3) :: stats_table INTEGER :: n LOGICAL :: swap INTEGER :: u   ! stats_table = 0 ! index matrix swap = .TRUE. ! For swapping pointers ! a => Dataset b => Scratch ! DO i = 0 , Dsize - 1 , 1 ! generate histograms u = a(i) DO j = 0 , 3 , 1 n = IAND(u , z'FF') u = SHIFTR(u , 8) stats_table(n,j) = stats_table(n,j) + 1 END DO END DO ! DO i = 0 , 3 , 1 ! convert to indices m = 0 DO j = 0 , 255 , 1 n = stats_table(j , i) stats_table(j , i) = m m = m + n END DO END DO ! DO j = 0 , 3 , 1 ! Radix Sort, sort by LSB DO i = 0 , Dsize - 1 , 1 u = a(i) m = IAND(SHIFTR(u,SHIFTL(j,3)) , z'FF') ! Eliminate the MOD 16 and div with shifts b(stats_table(m,j)) = u ! Push the data into the buffer stats_table(m,j) = stats_table(m,j) + 1 END DO ! ! Instead of copying back from the temp values swap the array pointers ! IF( swap )THEN a => Scratch ! A now points to the b buffer b => Dataset ! B now is the data set ELSE a => Dataset b => Scratch END IF swap = .NOT.swap ! Set to swap back and forth every pass END DO ! RETURN END SUBROUTINE FASTLSDRAD !*************************************************************************** ! End of Superfast LSD sort !*************************************************************************** *======================================================================= * RSORT - sort a list of integers by the Radix Sort algorithm * Public domain. This program may be used by any person for any purpose. * Origin: Herman Hollerith, 1887 * *___Name____Type______In/Out____Description_____________________________ * IX(N) Integer Both Array to be sorted in increasing order * IW(N) Integer Neither Workspace * N Integer In Length of array * * ASSUMPTIONS: Bits in an INTEGER is an even number. * Integers are represented by twos complement. * * NOTE THAT: Radix sorting has an advantage when the input is known * to be less than some value, so that only a few bits need * to be compared. This routine looks at all the bits, * and is thus slower than Quicksort. *======================================================================= SUBROUTINE RSORT (IX, IW, N) IMPLICIT NONE INTEGER IX, IW, N DIMENSION IX(N), IW(N)   INTEGER I, ! count bits $ ILIM, ! bits in an integer $ J, ! count array elements $ P1OLD, P0OLD, P1, P0, ! indices to ones and zeros $ SWAP LOGICAL ODD ! even or odd bit position   * IF (N < 2) RETURN ! validate * ILIM = Bit_size(i) !Get the fixed number of bits *======================================================================= * Alternate between putting data into IW and into IX *======================================================================= P1 = N+1 P0 = N ! read from 1, N on first pass thru ODD = .FALSE. DO I = 0, ILIM-2 P1OLD = P1 P0OLD = P0 ! save the value from previous bit P1 = N+1 P0 = 0 ! start a fresh count for next bit   IF (ODD) THEN DO J = 1, P0OLD, +1 ! copy data from the zeros IF ( BTEST(IW(J), I) ) THEN P1 = P1 - 1 IX(P1) = IW(J) ELSE P0 = P0 + 1 IX(P0) = IW(J) END IF END DO DO J = N, P1OLD, -1 ! copy data from the ones IF ( BTEST(IW(J), I) ) THEN P1 = P1 - 1 IX(P1) = IW(J) ELSE P0 = P0 + 1 IX(P0) = IW(J) END IF END DO   ELSE DO J = 1, P0OLD, +1 ! copy data from the zeros IF ( BTEST(IX(J), I) ) THEN P1 = P1 - 1 IW(P1) = IX(J) ELSE P0 = P0 + 1 IW(P0) = IX(J) END IF END DO DO J = N, P1OLD, -1 ! copy data from the ones IF ( BTEST(IX(J), I) ) THEN P1 = P1 - 1 IW(P1) = IX(J) ELSE P0 = P0 + 1 IW(P0) = IX(J) END IF END DO END IF ! even or odd i   ODD = .NOT. ODD END DO ! next i   *======================================================================= * the sign bit *======================================================================= P1OLD = P1 P0OLD = P0 P1 = N+1 P0 = 0   * if sign bit is set, send to the zero end DO J = 1, P0OLD, +1 IF ( BTEST(IW(J), ILIM-1) ) THEN P0 = P0 + 1 IX(P0) = IW(J) ELSE P1 = P1 - 1 IX(P1) = IW(J) END IF END DO DO J = N, P1OLD, -1 IF ( BTEST(IW(J), ILIM-1) ) THEN P0 = P0 + 1 IX(P0) = IW(J) ELSE P1 = P1 - 1 IX(P1) = IW(J) END IF END DO   *======================================================================= * Reverse the order of the greater value partition *======================================================================= P1OLD = P1 DO J = N, (P1OLD+N)/2+1, -1 SWAP = IX(J) IX(J) = IX(P1) IX(P1) = SWAP P1 = P1 + 1 END DO RETURN END ! of RSORT     *********************************************************************** * test program *********************************************************************** PROGRAM t_sort IMPLICIT NONE INTEGER I, N PARAMETER (N = 11) INTEGER IX(N), IW(N) LOGICAL OK   DATA IX / 2, 24, 45, 0, 66, 75, 170, -802, -90, 1066, 666 /   PRINT *, 'before: ', IX CALL RSORT (IX, IW, N) PRINT *, 'after: ', IX   * compare OK = .TRUE. DO I = 1, N-1 IF (IX(I) > IX(I+1)) OK = .FALSE. END DO IF (OK) THEN PRINT *, 't_sort: successful test' ELSE PRINT *, 't_sort: failure!' END IF END ! of test program  
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#Ada
Ada
----------------------------------------------------------------------- -- Generic Quick_Sort procedure ----------------------------------------------------------------------- generic type Element is private; type Index is (<>); type Element_Array is array(Index range <>) of Element; with function "<" (Left, Right : Element) return Boolean is <>; procedure Quick_Sort(A : in out Element_Array);
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#Clojure
Clojure
  (defn patience-insert "Inserts a value into the sequence where each element is a stack. Comparison replaces the definition of less than. Uses the greedy strategy." [comparison sequence value] (lazy-seq (if (empty? sequence) `((~value)) ;; If there are no places to put the "card", make a new stack (let [stack (first sequence) top (peek stack)] (if (comparison value top) (cons (conj stack value) ;; Either put the card in a stack or recurse to the next stack (rest sequence)) (cons stack (patience-insert comparison (rest sequence) value)))))))   (defn patience-remove "Removes the value from the top of the first stack it shows up in. Leaves the stacks otherwise intact." [sequence value] (lazy-seq (if (empty? sequence) nil ;; If there are no stacks, we have no work to do (let [stack (first sequence) top (peek stack)] (if (= top value) ;; Are we there yet? (let [left-overs (pop stack)] (if (empty? left-overs) ;; Handle the case that the stack is empty and needs to be removed (rest sequence) (cons left-overs (rest sequence)))) (cons stack (patience-remove (rest sequence) value)))))))   (defn patience-recover "Builds a sorted sequence from a list of patience stacks. The given comparison takes the place of 'less than'" [comparison sequence] (loop [sequence sequence sorted []] (if (empty? sequence) sorted (let [smallest (reduce #(if (comparison %1 %2) %1 %2) ;; Gets the smallest element in the list (map peek sequence)) remaining (patience-remove sequence smallest)] (recur remaining (conj sorted smallest)))))) ;; Recurse over the remaining values and add the new smallest to the end of the sorted list   (defn patience-sort "Sorts the sequence by comparison. First builds the list of valid patience stacks. Then recovers the sorted list from those. If you don't supply a comparison, assumes less than." ([comparison sequence] (->> (reduce (comp doall ;; This is prevent a stack overflow by making sure all work is done when it needs to be (partial patience-insert comparison)) ;; Insert all the values into the list of stacks nil sequence) (patience-recover comparison))) ;; After we have the stacks, send it off to recover the sorted list ([sequence] ;; In the case we don't have an operator, defer to ourselves with less than (patience-sort < sequence)))   ;; Sort the test sequence and print it (println (patience-sort [4 65 2 -31 0 99 83 782 1]))  
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#11l
11l
F insertion_sort(&l) L(i) 1 .< l.len V j = i - 1 V key = l[i] L j >= 0 & l[j] > key l[j + 1] = l[j] j-- l[j + 1] = key   V arr = [7, 6, 5, 9, 8, 4, 3, 1, 2, 0] insertion_sort(&arr) print(arr)
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#Haskell
Haskell
import Control.Monad   permutationSort l = head [p | p <- permute l, sorted p]   sorted (e1 : e2 : r) = e1 <= e2 && sorted (e2 : r) sorted _ = True   permute = foldM (flip insert) []   insert e [] = return [e] insert e l@(h : t) = return (e : l) `mplus` do { t' <- insert e t ; return (h : t') }
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#Icon_and_Unicon
Icon and Unicon
procedure do_permute(l, i, n) if i >= n then return l else suspend l[i to n] <-> l[i] & do_permute(l, i+1, n) end   procedure permute(l) suspend do_permute(l, 1, *l) end   procedure sorted(l) local i if (i := 2 to *l & l[i] >= l[i-1]) then return &fail else return 1 end   procedure main() local l l := [6,3,4,5,1] |( l := permute(l) & sorted(l)) \1 & every writes(" ",!l) end
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#C.23
C#
  public static class PancakeSorter { public static void Sort<T>(List<T> list) where T : IComparable { if (list.Count < 2) { return; } int i, a, max_num_pos; for (i = list.Count; i > 1; i--) { max_num_pos = 0; for (a = 0; a < i; a++) { if (list[a].CompareTo(list[max_num_pos]) > 0) { max_num_pos = a; } } if (max_num_pos == i - 1) { continue; } if (max_num_pos > 0) { Flip(list, list.Count, max_num_pos + 1); } Flip(list, list.Count, i); } return; } private static void Flip<T>(List<T> list, int length, int num) { for (int i = 0; i < --num; i++) { T swap = list[i]; list[i] = list[num]; list[num] = swap; } } }  
http://rosettacode.org/wiki/Special_characters
Special characters
Special characters are symbols (single characters or sequences of characters) that have a "special" built-in meaning in the language and typically cannot be used in identifiers. Escape sequences are methods that the language uses to remove the special meaning from the symbol, enabling it to be used as a normal character, or sequence of characters when this can be done. Task List the special characters and show escape sequences in the language. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Raku
Raku
$ Item @ Positional  % Associative & Callable
http://rosettacode.org/wiki/Special_characters
Special characters
Special characters are symbols (single characters or sequences of characters) that have a "special" built-in meaning in the language and typically cannot be used in identifiers. Escape sequences are methods that the language uses to remove the special meaning from the symbol, enabling it to be used as a normal character, or sequence of characters when this can be done. Task List the special characters and show escape sequences in the language. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#REXX
REXX
if a¬==b then say 'not equal' if a ¬== b then say 'not equal' if a ¬ = = b then say 'not equal' if a ¬ , = = b then say 'not equal'
http://rosettacode.org/wiki/Special_characters
Special characters
Special characters are symbols (single characters or sequences of characters) that have a "special" built-in meaning in the language and typically cannot be used in identifiers. Escape sequences are methods that the language uses to remove the special meaning from the symbol, enabling it to be used as a normal character, or sequence of characters when this can be done. Task List the special characters and show escape sequences in the language. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Ruby
Ruby
val n = 1 + 2
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#JavaScript
JavaScript
function stoogeSort (array, i, j) { if (j === undefined) { j = array.length - 1; }   if (i === undefined) { i = 0; }   if (array[j] < array[i]) { var aux = array[i]; array[i] = array[j]; array[j] = aux; }   if (j - i > 1) { var t = Math.floor((j - i + 1) / 3); stoogeSort(array, i, j-t); stoogeSort(array, i+t, j); stoogeSort(array, i, j-t); } };
http://rosettacode.org/wiki/Sorting_algorithms/Sleep_sort
Sorting algorithms/Sleep sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort In general, sleep sort works by starting a separate task for each item to be sorted, where each task sleeps for an interval corresponding to the item's sort key, then emits the item. Items are then collected sequentially in time. Task: Write a program that implements sleep sort. Have it accept non-negative integers on the command line and print the integers in sorted order. If this is not idomatic in your language or environment, input and output may be done differently. Enhancements for optimization, generalization, practicality, robustness, and so on are not required. Sleep sort was presented anonymously on 4chan and has been discussed on Hacker News.
#Objective-C
Objective-C
#import <Foundation/Foundation.h>   int main(int argc, char **argv) { NSOperationQueue *queue = [[NSOperationQueue alloc] init]; while (--argc) { int i = atoi(argv[argc]); [queue addOperationWithBlock: ^{ sleep(i); NSLog(@"%d\n", i); }]; } [queue waitUntilAllOperationsAreFinished]; }
http://rosettacode.org/wiki/Sorting_algorithms/Sleep_sort
Sorting algorithms/Sleep sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort In general, sleep sort works by starting a separate task for each item to be sorted, where each task sleeps for an interval corresponding to the item's sort key, then emits the item. Items are then collected sequentially in time. Task: Write a program that implements sleep sort. Have it accept non-negative integers on the command line and print the integers in sorted order. If this is not idomatic in your language or environment, input and output may be done differently. Enhancements for optimization, generalization, practicality, robustness, and so on are not required. Sleep sort was presented anonymously on 4chan and has been discussed on Hacker News.
#Oforth
Oforth
import: parallel   : sleepSort(l) | ch n | Channel new ->ch l forEach: n [ #[ n dup 20 * sleep ch send drop ] & ] ListBuffer newSize(l size) #[ ch receive over add ] times(l size) ;
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#COBOL
COBOL
PERFORM E-SELECTION VARYING WB-IX-1 FROM 1 BY 1 UNTIL WB-IX-1 = WC-SIZE.   ...   E-SELECTION SECTION. E-000. SET WC-LOWEST TO WB-IX-1. ADD 1 WC-LOWEST GIVING WC-START   PERFORM F-PASS VARYING WB-IX-2 FROM WC-START BY 1 UNTIL WB-IX-2 > WC-SIZE.   IF WB-IX-1 NOT = WC-LOWEST MOVE WB-ENTRY(WC-LOWEST) TO WC-TEMP MOVE WB-ENTRY(WB-IX-1) TO WB-ENTRY(WC-LOWEST) MOVE WC-TEMP TO WB-ENTRY(WB-IX-1).   E-999. EXIT.   F-PASS SECTION. F-000. IF WB-ENTRY(WB-IX-2) < WB-ENTRY(WC-LOWEST) SET WC-LOWEST TO WB-IX-2.   F-999. EXIT.
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Crystal
Crystal
# version 0.21.1   def get_code(c : Char) case c when 'B', 'F', 'P', 'V' "1" when 'C', 'G', 'J', 'K', 'Q', 'S', 'X', 'Z' "2" when 'D', 'T' "3" when 'L' "4" when 'M', 'N' "5" when 'R' "6" when 'H', 'W' "-" else "" end end   def soundex(s : String) return "" if s == "" s = s.upcase result = s[0,1] prev = get_code s[0] s.lchop.each_char {|c| curr = get_code c result += curr if curr != "" && curr != "-" && curr != prev prev = curr unless curr == "-" } result.ljust(4, '0')[0, 4] end   pairs = [ ["Ashcraft" , "A261"], ["Ashcroft" , "A261"], ["Gauss" , "G200"], ["Ghosh" , "G200"], ["Hilbert" , "H416"], ["Heilbronn" , "H416"], ["Lee" , "L000"], ["Lloyd" , "L300"], ["Moses" , "M220"], ["Pfister" , "P236"], ["Robert" , "R163"], ["Rupert" , "R163"], ["Rubin" , "R150"], ["Tymczak" , "T522"], ["Soundex" , "S532"], ["Example" , "E251"] ]   pairs.each { |pair| puts "#{pair[0].ljust(9)} -> #{pair[1]} -> #{soundex(pair[0]) == pair[1]}" }
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Go
Go
package main   import "fmt"   var a = []int{170, 45, 75, -90, -802, 24, 2, 66}   func main() { fmt.Println("before:", a) for inc := len(a) / 2; inc > 0; inc = (inc + 1) * 5 / 11 { for i := inc; i < len(a); i++ { j, temp := i, a[i] for ; j >= inc && a[j-inc] > temp; j -= inc { a[j] = a[j-inc] } a[j] = temp } } fmt.Println("after: ", a) }
http://rosettacode.org/wiki/Sparkline_in_unicode
Sparkline in unicode
A sparkline is a graph of successive values laid out horizontally where the height of the line is proportional to the values in succession. Task Use the following series of Unicode characters to create a program that takes a series of numbers separated by one or more whitespace or comma characters and generates a sparkline-type bar graph of the values on a single line of output. The eight characters: '▁▂▃▄▅▆▇█' (Unicode values U+2581 through U+2588). Use your program to show sparklines for the following input, here on this page: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1.5, 0.5 3.5, 2.5 5.5, 4.5 7.5, 6.5 (note the mix of separators in this second case)! Notes A space is not part of the generated sparkline. The sparkline may be accompanied by simple statistics of the data such as its range. A suggestion emerging in later discussion (see Discussion page) is that the bounds between bins should ideally be set to yield the following results for two particular edge cases: "0, 1, 19, 20" -> ▁▁██ (Aiming to use just two spark levels) "0, 999, 4000, 4999, 7000, 7999" -> ▁▁▅▅██ (Aiming to use just three spark levels) It may be helpful to include these cases in output tests. You may find that the unicode sparklines on this page are rendered less noisily by Google Chrome than by Firefox or Safari.
#Seed7
Seed7
$ include "seed7_05.s7i"; include "scanfile.s7i"; include "float.s7i"; include "utf8.s7i";   const func array float: readDataLine is func result var array float: data is 0 times 0.0; begin write("Numbers separated by anything: "); IN.bufferChar := getc(IN); skipSpace(IN); while IN.bufferChar <> '\n' do data &:= float parse getNumber(IN); skipSpace(IN); if IN.bufferChar = ',' then IN.bufferChar := getc(IN); end if; skipSpace(IN); end while; end func;     const proc: main is func local const string: bars is "▁▂▃▄▅▆▇█"; var array float: data is 0 times 0.0; var float: min is 0.0; var float: max is 0.0; var float: number is 0.0; var integer: index is 0; begin OUT := STD_UTF8_OUT; data  := readDataLine; while length(data) >= 1 do min := data[1]; max := data[1]; for number range data do if number < min then min := number; end if; if number > max then max := number; end if; end for; for number range data do index := succ(min(trunc((number - min) * 8.0 / max), 7)); write(bars[index]); end for; writeln; data  := readDataLine; end while; end func;
http://rosettacode.org/wiki/Sparkline_in_unicode
Sparkline in unicode
A sparkline is a graph of successive values laid out horizontally where the height of the line is proportional to the values in succession. Task Use the following series of Unicode characters to create a program that takes a series of numbers separated by one or more whitespace or comma characters and generates a sparkline-type bar graph of the values on a single line of output. The eight characters: '▁▂▃▄▅▆▇█' (Unicode values U+2581 through U+2588). Use your program to show sparklines for the following input, here on this page: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1.5, 0.5 3.5, 2.5 5.5, 4.5 7.5, 6.5 (note the mix of separators in this second case)! Notes A space is not part of the generated sparkline. The sparkline may be accompanied by simple statistics of the data such as its range. A suggestion emerging in later discussion (see Discussion page) is that the bounds between bins should ideally be set to yield the following results for two particular edge cases: "0, 1, 19, 20" -> ▁▁██ (Aiming to use just two spark levels) "0, 999, 4000, 4999, 7000, 7999" -> ▁▁▅▅██ (Aiming to use just three spark levels) It may be helpful to include these cases in output tests. You may find that the unicode sparklines on this page are rendered less noisily by Google Chrome than by Firefox or Safari.
#SenseTalk
SenseTalk
put sparklineGraph of "1 2 3 4 5 6 7 8 7 6 5 4 3 2 1" put sparklineGraph of "1.5, 0.5 3.5, 2.5 5.5, 4.5 7.5, 6.5" put sparklineGraph of "0, 1, 19, 20" put sparklineGraph of "0, 999, 4000, 4999, 7000, 7999"   to handle sparklineGraph of input put each word delimited by " ," of input into numbers put the lowestValue of numbers into bottom put the highestValue of numbers into top put top - bottom into range -- total range of values put range/8 into step -- the size of each incremental step in the graph   repeat with each number in numbers put (trunc((number - bottom) / step) + 1) but no more than 8 into symbolNum put character symbolNum of "▁▂▃▄▅▆▇█" after graph end repeat put !" (range: [[bottom]] to [[top]])" after graph return graph end sparklineGraph  
http://rosettacode.org/wiki/Stable_marriage_problem
Stable marriage problem
Solve the Stable marriage problem using the Gale/Shapley algorithm. Problem description Given an equal number of men and women to be paired for marriage, each man ranks all the women in order of his preference and each woman ranks all the men in order of her preference. A stable set of engagements for marriage is one where no man prefers a woman over the one he is engaged to, where that other woman also prefers that man over the one she is engaged to. I.e. with consulting marriages, there would be no reason for the engagements between the people to change. Gale and Shapley proved that there is a stable set of engagements for any set of preferences and the first link above gives their algorithm for finding a set of stable engagements. Task Specifics Given ten males: abe, bob, col, dan, ed, fred, gav, hal, ian, jon And ten females: abi, bea, cath, dee, eve, fay, gay, hope, ivy, jan And a complete list of ranked preferences, where the most liked is to the left: abe: abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay bob: cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay col: hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan dan: ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi ed: jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay fred: bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay gav: gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay hal: abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee ian: hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve jon: abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope abi: bob, fred, jon, gav, ian, abe, dan, ed, col, hal bea: bob, abe, col, fred, gav, dan, ian, ed, jon, hal cath: fred, bob, ed, gav, hal, col, ian, abe, dan, jon dee: fred, jon, col, abe, ian, hal, gav, dan, bob, ed eve: jon, hal, fred, dan, abe, gav, col, ed, ian, bob fay: bob, abe, ed, ian, jon, dan, fred, gav, col, hal gay: jon, gav, hal, fred, bob, abe, col, ed, dan, ian hope: gav, jon, bob, abe, ian, dan, hal, ed, col, fred ivy: ian, col, hal, gav, fred, bob, abe, ed, jon, dan jan: ed, hal, gav, abe, bob, jon, col, ian, fred, dan Use the Gale Shapley algorithm to find a stable set of engagements Perturb this set of engagements to form an unstable set of engagements then check this new set for stability. References The Stable Marriage Problem. (Eloquent description and background information). Gale-Shapley Algorithm Demonstration. Another Gale-Shapley Algorithm Demonstration. Stable Marriage Problem - Numberphile (Video). Stable Marriage Problem (the math bit) (Video). The Stable Marriage Problem and School Choice. (Excellent exposition)
#Seed7
Seed7
$ include "seed7_05.s7i";   const type: preferences is hash [string] array string; const type: engaged is hash [string] string;   const func integer: pos (in array string: area, in string: searched) is func result var integer: pos is 1; begin while pos <= length(area) and area[pos] <> searched do incr(pos); end while; if pos > length(area) then pos := 0; end if; end func;   const func engaged: matchmaker (in preferences: guyPrefers, in preferences: girlPrefers) is func result var engaged: engagedTo is engaged.value; local var array string: freeGuys is 0 times ""; var string: guy is ""; var string: girl is ""; var string: fiance is ""; var array string: guyPreferencList is 0 times ""; var array string: girlPreferenceList is 0 times ""; var boolean: searching is TRUE; begin freeGuys := sort(keys(guyPrefers)); while length(freeGuys) <> 0 do guy := freeGuys[1]; freeGuys := freeGuys[2 ..]; guyPreferencList := guyPrefers[guy]; searching := TRUE; while searching and length(guyPreferencList) <> 0 do girl := guyPreferencList[1]; guyPreferencList := guyPreferencList[2 ..]; if girl not in engagedTo then engagedTo @:= [girl] guy; writeln(" " <& girl <& " and " <& guy); searching := FALSE; else fiance := engagedTo[girl]; girlPreferenceList := girlPrefers[girl]; if pos(girlPreferenceList, guy) < pos(girlPreferenceList, fiance) then # She prefers new guy engagedTo @:= [girl] guy; freeGuys &:= fiance; writeln(" " <& girl <& " dumped " <& fiance <& " for " <& guy); searching := FALSE; end if; end if; end while; end while; end func;   const func boolean: check (in engaged: engagedTo, in preferences: guyPrefers, in preferences: girlPrefers) is func result var boolean: stable is TRUE; local var string: he is ""; var string: she is ""; var string: guy is ""; var string: girl is ""; var engaged: inverseEngaged is engaged.value; var array string: sheLikes is 0 times ""; var array string: sheLikesBetter is 0 times ""; var array string: heLikes is 0 times ""; var array string: heLikesBetter is 0 times ""; var string: guysGirl is ""; var array string: guyLikes is 0 times ""; var string: girlsGuy is ""; var array string: girlLikes is 0 times ""; begin for he key she range engagedTo do inverseEngaged @:= [he] she; end for; for he key she range engagedTo do sheLikes := girlPrefers[she]; sheLikesBetter := sheLikes[.. pred(pos(sheLikes, he))]; heLikes := guyPrefers[he]; heLikesBetter := heLikes[.. pred(pos(heLikes, she))]; for guy range sheLikesBetter do guysGirl := inverseEngaged[guy]; guyLikes := guyPrefers[guy]; if pos(guyLikes, guysGirl) > pos(guyLikes, she) and stable then writeln(she <& " likes " <& guy <& " better than " <& he <& " and " <& guy <& " likes " <& she <& " better than their current partner"); stable := FALSE; end if; end for; for girl range heLikesBetter do girlsGuy := engagedTo[girl]; girlLikes := girlPrefers[girl]; if pos(girlLikes, girlsGuy) > pos(girlLikes, he) and stable then writeln(he <& " likes " <& girl <& " better than " <& she <& " and " <& girl <& " likes " <& he <& " better than their current partner"); stable := FALSE; end if; end for; end for; end func;   var preferences: guyPrefers is preferences.value; var preferences: girlPrefers is preferences.value; guyPrefers @:= ["abe"] [] ("abi", "eve", "cath", "ivy", "jan", "dee", "fay", "bea", "hope", "gay"); guyPrefers @:= ["bob"] [] ("cath", "hope", "abi", "dee", "eve", "fay", "bea", "jan", "ivy", "gay"); guyPrefers @:= ["col"] [] ("hope", "eve", "abi", "dee", "bea", "fay", "ivy", "gay", "cath", "jan"); guyPrefers @:= ["dan"] [] ("ivy", "fay", "dee", "gay", "hope", "eve", "jan", "bea", "cath", "abi"); guyPrefers @:= ["ed"] [] ("jan", "dee", "bea", "cath", "fay", "eve", "abi", "ivy", "hope", "gay"); guyPrefers @:= ["fred"] [] ("bea", "abi", "dee", "gay", "eve", "ivy", "cath", "jan", "hope", "fay"); guyPrefers @:= ["gav"] [] ("gay", "eve", "ivy", "bea", "cath", "abi", "dee", "hope", "jan", "fay"); guyPrefers @:= ["hal"] [] ("abi", "eve", "hope", "fay", "ivy", "cath", "jan", "bea", "gay", "dee"); guyPrefers @:= ["ian"] [] ("hope", "cath", "dee", "gay", "bea", "abi", "fay", "ivy", "jan", "eve"); guyPrefers @:= ["jon"] [] ("abi", "fay", "jan", "gay", "eve", "bea", "dee", "cath", "ivy", "hope"); girlPrefers @:= ["abi"] [] ("bob", "fred", "jon", "gav", "ian", "abe", "dan", "ed", "col", "hal"); girlPrefers @:= ["bea"] [] ("bob", "abe", "col", "fred", "gav", "dan", "ian", "ed", "jon", "hal"); girlPrefers @:= ["cath"] [] ("fred", "bob", "ed", "gav", "hal", "col", "ian", "abe", "dan", "jon"); girlPrefers @:= ["dee"] [] ("fred", "jon", "col", "abe", "ian", "hal", "gav", "dan", "bob", "ed"); girlPrefers @:= ["eve"] [] ("jon", "hal", "fred", "dan", "abe", "gav", "col", "ed", "ian", "bob"); girlPrefers @:= ["fay"] [] ("bob", "abe", "ed", "ian", "jon", "dan", "fred", "gav", "col", "hal"); girlPrefers @:= ["gay"] [] ("jon", "gav", "hal", "fred", "bob", "abe", "col", "ed", "dan", "ian"); girlPrefers @:= ["hope"] [] ("gav", "jon", "bob", "abe", "ian", "dan", "hal", "ed", "col", "fred"); girlPrefers @:= ["ivy"] [] ("ian", "col", "hal", "gav", "fred", "bob", "abe", "ed", "jon", "dan"); girlPrefers @:= ["jan"] [] ("ed", "hal", "gav", "abe", "bob", "jon", "col", "ian", "fred", "dan");   const proc: main is func local var engaged: engagedTo is engaged.value; var string: girl is ""; begin writeln("Matchmaking:"); engagedTo := matchmaker(guyPrefers, girlPrefers); writeln; writeln("Engagements:"); for girl range sort(keys(engagedTo)) do writeln(" " <& girl <& " and " <& engagedTo[girl]); end for; writeln; writeln("Marriages are " <& [] ("unstable", "stable") [succ(ord(check(engagedTo, guyPrefers, girlPrefers)))]); writeln; writeln("Perturb:"); engagedTo @:= ["abi"] "fred"; engagedTo @:= ["bea"] "jon"; writeln("engage abi with fred and bea with jon"); writeln; writeln("Marriages are " <& [] ("unstable", "stable") [succ(ord(check(engagedTo, guyPrefers, girlPrefers)))]); end func;
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#K
K
stack:() push:{stack::x,stack} pop:{r:*stack;stack::1_ stack;r} empty:{0=#stack}   /example: stack:() push 3 stack ,3 push 5 stack 5 3 pop[] 5 stack ,3 empty[] 0 pop[] 3 stack !0 empty[] 1  
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Kotlin
Kotlin
// version 1.1.3   typealias Vector = IntArray typealias Matrix = Array<Vector>   fun spiralMatrix(n: Int): Matrix { val result = Matrix(n) { Vector(n) } var pos = 0 var count = n var value = -n var sum = -1 do { value = -value / n for (i in 0 until count) { sum += value result[sum / n][sum % n] = pos++ } value *= n count-- for (i in 0 until count) { sum += value result[sum / n][sum % n] = pos++ } } while (count > 0) return result }   fun printMatrix(m: Matrix) { for (i in 0 until m.size) { for (j in 0 until m.size) print("%2d ".format(m[i][j])) println() } println() }   fun main(args: Array<String>) { printMatrix(spiralMatrix(5)) printMatrix(spiralMatrix(10)) }
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#Go
Go
package main   import ( "bytes" "encoding/binary" "fmt" )   // declarations for word size of data type word int32 const wordLen = 4 const highBit = -1 << 31   var data = []word{170, 45, 75, -90, -802, 24, 2, 66}   func main() { buf := bytes.NewBuffer(nil) ds := make([][]byte, len(data)) for i, x := range data { binary.Write(buf, binary.LittleEndian, x^highBit) b := make([]byte, wordLen) buf.Read(b) ds[i] = b } bins := make([][][]byte, 256) for i := 0; i < wordLen; i++ { for _, b := range ds { bins[b[i]] = append(bins[b[i]], b) } j := 0 for k, bs := range bins { copy(ds[j:], bs) j += len(bs) bins[k] = bs[:0] } } fmt.Println("original:", data) var w word for i, b := range ds { buf.Write(b) binary.Read(buf, binary.LittleEndian, &w) data[i] = w^highBit } fmt.Println("sorted: ", data) }
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#ALGOL_68
ALGOL 68
#--- Swap function ---# PROC swap = (REF []INT array, INT first, INT second) VOID: ( INT temp := array[first]; array[first] := array[second]; array[second]:= temp );   #--- Quick sort 3 arg function ---# PROC quick = (REF [] INT array, INT first, INT last) VOID: ( INT smaller := first + 1, larger := last, pivot := array[first];   WHILE smaller <= larger DO WHILE array[smaller] < pivot AND smaller < last DO smaller +:= 1 OD; WHILE array[larger] > pivot AND larger > first DO larger -:= 1 OD; IF smaller < larger THEN swap(array, smaller, larger); smaller +:= 1; larger -:= 1 ELSE smaller +:= 1 FI OD;   swap(array, first, larger);   IF first < larger-1 THEN quick(array, first, larger-1) FI; IF last > larger +1 THEN quick(array, larger+1, last) FI );   #--- Quick sort 1 arg function ---# PROC quicksort = (REF []INT array) VOID: ( IF UPB array > 1 THEN quick(array, 1, UPB array) FI );   #***************************************************************# main: ( [10]INT a; FOR i FROM 1 TO UPB a DO a[i] := ROUND(random*1000) OD;   print(("Before:", a)); quicksort(a); print((newline, newline)); print(("After: ", a)) )  
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#D
D
import std.stdio, std.array, std.range, std.algorithm;   void patienceSort(T)(T[] items) /*pure nothrow @safe*/ if (__traits(compiles, T.init < T.init)) { //SortedRange!(int[][], q{ a.back < b.back }) piles; T[][] piles;   foreach (x; items) { auto p = [x]; immutable i = piles.length - piles .assumeSorted!q{ a.back < b.back } .upperBound(p) .length; if (i != piles.length) piles[i] ~= x; else piles ~= p; }   piles.nWayUnion!q{ a > b }.copy(items.retro); }   void main() { auto data = [4, 65, 2, -31, 0, 99, 83, 782, 1]; data.patienceSort; assert(data.isSorted); data.writeln; }
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#360_Assembly
360 Assembly
* Insertion sort 16/06/2016 INSSORT CSECT USING INSSORT,R13 base register B 72(R15) skip savearea DC 17F'0' savearea STM R14,R12,12(R13) prolog ST R13,4(R15) " ST R15,8(R13) " LR R13,R15 " LA R6,2 i=2 LA R9,A+L'A @a(2) LOOPI C R6,N do i=2 to n BH ELOOPI leave i L R2,0(R9) a(i) ST R2,V v=a(i) LR R7,R6 j=i BCTR R7,0 j=i-1 LR R8,R9 @a(i) S R8,=A(L'A) @a(j) LOOPJ LTR R7,R7 do j=i-1 to 1 by -1 while j>0 BNH ELOOPJ leave j L R2,0(R8) a(j) C R2,V a(j)>v BNH ELOOPJ leave j MVC L'A(L'A,R8),0(R8) a(j+1)=a(j) BCTR R7,0 j=j-1 S R8,=A(L'A) @a(j) B LOOPJ next j ELOOPJ MVC L'A(L'A,R8),V a(j+1)=v; LA R6,1(R6) i=i+1 LA R9,L'A(R9) @a(i) B LOOPI next i ELOOPI LA R9,PG pgi=0 LA R6,1 i=1 LA R8,A @a(1) LOOPXI C R6,N do i=1 to n BH ELOOPXI leave i L R1,0(R8) a(i) XDECO R1,XDEC edit a(i) MVC 0(4,R9),XDEC+8 output a(i) LA R9,4(R9) pgi=pgi+1 LA R6,1(R6) i=i+1 LA R8,L'A(R8) @a(i) B LOOPXI next i ELOOPXI XPRNT PG,L'PG print buffer L R13,4(0,R13) epilog LM R14,R12,12(R13) " XR R15,R15 " BR R14 exit A DC F'4',F'65',F'2',F'-31',F'0',F'99',F'2',F'83',F'782',F'1' DC F'45',F'82',F'69',F'82',F'104',F'58',F'88',F'112',F'89',F'74' V DS F variable N DC A((V-A)/L'A) n=hbound(a) PG DC CL80' ' buffer XDEC DS CL12 for xdeco YREGS symbolics for registers END INSSORT
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#J
J
ps =:(1+])^:((-.@-:/:~)@A.~)^:_ 0:
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#Java
Java
import java.util.List; import java.util.ArrayList; import java.util.Arrays;   public class PermutationSort { public static void main(String[] args) { int[] a={3,2,1,8,9,4,6}; System.out.println("Unsorted: " + Arrays.toString(a)); a=pSort(a); System.out.println("Sorted: " + Arrays.toString(a)); } public static int[] pSort(int[] a) { List<int[]> list=new ArrayList<int[]>(); permute(a,a.length,list); for(int[] x : list) if(isSorted(x)) return x; return a; } private static void permute(int[] a, int n, List<int[]> list) { if (n == 1) { int[] b=new int[a.length]; System.arraycopy(a, 0, b, 0, a.length); list.add(b); return; } for (int i = 0; i < n; i++) { swap(a, i, n-1); permute(a, n-1, list); swap(a, i, n-1); } } private static boolean isSorted(int[] a) { for(int i=1;i<a.length;i++) if(a[i-1]>a[i]) return false; return true; } private static void swap(int[] arr,int i, int j) { int temp=arr[i]; arr[i]=arr[j]; arr[j]=temp; } }
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#C.2B.2B
C++
#include <algorithm> #include <iostream> #include <iterator> #include <vector>   // pancake sort template (calls predicate to determine order) template <typename BidIt, typename Pred> void pancake_sort(BidIt first, BidIt last, Pred order) { if (std::distance(first, last) < 2) return; // no sort needed   for (; first != last; --last) { BidIt mid = std::max_element(first, last, order); if (mid == last - 1) { continue; // no flips needed } if (first != mid) { std::reverse(first, mid + 1); // flip element to front } std::reverse(first, last); // flip front to final position } }   // pancake sort template (ascending order) template <typename BidIt> void pancake_sort(BidIt first, BidIt last) { pancake_sort(first, last, std::less<typename std::iterator_traits<BidIt>::value_type>()); }   int main() { std::vector<int> data; for (int i = 0; i < 20; ++i) { data.push_back(i); // generate test data } std::random_shuffle(data.begin(), data.end()); // scramble data   std::copy(data.begin(), data.end(), std::ostream_iterator<int>(std::cout, " ")); std::cout << "\n";   pancake_sort(data.begin(), data.end()); // ascending pancake sort   std::copy(data.begin(), data.end(), std::ostream_iterator<int>(std::cout, " ")); std::cout << "\n"; }
http://rosettacode.org/wiki/Special_characters
Special characters
Special characters are symbols (single characters or sequences of characters) that have a "special" built-in meaning in the language and typically cannot be used in identifiers. Escape sequences are methods that the language uses to remove the special meaning from the symbol, enabling it to be used as a normal character, or sequence of characters when this can be done. Task List the special characters and show escape sequences in the language. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Scala
Scala
val n = 1 + 2
http://rosettacode.org/wiki/Special_characters
Special characters
Special characters are symbols (single characters or sequences of characters) that have a "special" built-in meaning in the language and typically cannot be used in identifiers. Escape sequences are methods that the language uses to remove the special meaning from the symbol, enabling it to be used as a normal character, or sequence of characters when this can be done. Task List the special characters and show escape sequences in the language. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Seed7
Seed7
audible alert BEL \a backslash (\) \\ backspace BS \b apostrophe (') \' escape ESC \e double quote (") \" formfeed FF \f newline NL (LF) \n control-A \A carriage return CR \r ... horizontal tab HT \t control-Z \Z vertical tab VT \v
http://rosettacode.org/wiki/Special_characters
Special characters
Special characters are symbols (single characters or sequences of characters) that have a "special" built-in meaning in the language and typically cannot be used in identifiers. Escape sequences are methods that the language uses to remove the special meaning from the symbol, enabling it to be used as a normal character, or sequence of characters when this can be done. Task List the special characters and show escape sequences in the language. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#SQL
SQL
' ' String literal " " Identifier [ ] Identifier ` ` Identifier ? Numbered host parameter : Named host parameter $ Named host parameter @ Named host parameter ( ) Parentheses + Add - Subtract/negative * Multiply / Divide % Modulo & Bitwise AND | Bitwise OR ~ Bitwise NOT << Left shift >> Right shift = Equal == Equal <> Not equal != Not equal < Less > Greater <= Less or equal >= Greater or equal || String concatenation
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#jq
jq
def stoogesort: def swap(i;j): .[i] as $t | .[i] = .[j] | .[j] = $t;   # for efficiency, define an auxiliary function # that takes as input [L, i, j] def ss: .[1] as $i | .[2] as $j | .[0] | if .[$j] < .[$i] then swap($i;$j) else . end | if $j - $i > 1 then (($j - $i + 1) / 3 | floor) as $t | [., $i, $j-$t] | ss | [., $i+$t, $j] | ss | [., $i, $j-$t] | ss else . end;   [., 0, length-1] | ss;
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Julia
Julia
function stoogesort!(a::Array, i::Int=1, j::Int=length(a)) if a[j] < a[i] a[[i, j]] = a[[j, i]]; end   if (j - i) > 1 t = round(Int, (j - i + 1) / 3) a = stoogesort!(a, i, j - t) a = stoogesort!(a, i + t, j) a = stoogesort!(a, i, j - t) end   return a end   x = randn(10) @show x stoogesort!(x)
http://rosettacode.org/wiki/Sorting_algorithms/Sleep_sort
Sorting algorithms/Sleep sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort In general, sleep sort works by starting a separate task for each item to be sorted, where each task sleeps for an interval corresponding to the item's sort key, then emits the item. Items are then collected sequentially in time. Task: Write a program that implements sleep sort. Have it accept non-negative integers on the command line and print the integers in sorted order. If this is not idomatic in your language or environment, input and output may be done differently. Enhancements for optimization, generalization, practicality, robustness, and so on are not required. Sleep sort was presented anonymously on 4chan and has been discussed on Hacker News.
#Ol
Ol
  (define (sleep-sort lst) (for-each (lambda (timeout) (async (lambda () (sleep timeout) (print timeout)))) lst))   (sleep-sort '(5 8 2 7 9 10 5))  
http://rosettacode.org/wiki/Sorting_algorithms/Sleep_sort
Sorting algorithms/Sleep sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort In general, sleep sort works by starting a separate task for each item to be sorted, where each task sleeps for an interval corresponding to the item's sort key, then emits the item. Items are then collected sequentially in time. Task: Write a program that implements sleep sort. Have it accept non-negative integers on the command line and print the integers in sorted order. If this is not idomatic in your language or environment, input and output may be done differently. Enhancements for optimization, generalization, practicality, robustness, and so on are not required. Sleep sort was presented anonymously on 4chan and has been discussed on Hacker News.
#Pascal
Pascal
  program sleepsort; {$IFDEF FPC} {$MODE DELPHI} {$Optimization ON,ALL} {$ElSE} {$APPTYPE CONSOLE} {$ENDIF} uses {$IFDEF UNIX} cthreads, {$ENDIF} SysUtils;   const HiLimit = 40; type tCombineForOneThread = record cft_count : Uint64; cft_ThreadID: NativeUint; cft_ThreadHandle: NativeUint; end; pThreadBlock = ^tCombineForOneThread; var SortIdx : array of INteger; ThreadBlocks : array of tCombineForOneThread; gblThreadCount, Finished: Uint32;   procedure PrepareThreads(thdCount:NativeInt); var i : NativeInt; Begin For i := 0 to thdCount-1 do ThreadBlocks[i].cft_count:= random(2*HiLimit); end;   procedure TestRunThd(parameter: pointer); var pThdBlk: pThreadBlock; fi: NativeInt; begin pThdBlk := @ThreadBlocks[NativeUint(parameter)]; with pThdBlk^ do begin sleep(40*cft_count+1); fi := Finished-1; //write(fi:5,cft_count:8,#13); InterLockedDecrement(Finished); SortIdx[fi]:= NativeUint(parameter); end; EndThread(0); end;   procedure Test; var j,UsedThreads: NativeInt; begin randomize; UsedThreads:= GblThreadCount; Finished :=UsedThreads; PrepareThreads(UsedThreads); j := 0; while (j < UsedThreads) do begin with ThreadBlocks[j] do begin cft_ThreadHandle := BeginThread(@TestRunThd, Pointer(j), cft_ThreadID,16384 {stacksize} ); If cft_ThreadHandle = 0 then break; end; Inc(j); end; writeln(j); UsedThreads := j; Finished :=UsedThreads; repeat sleep(1); until finished = 0; For j := 0 to UsedThreads-1 do CloseThread(ThreadBlocks[j].cft_ThreadID);   //output of sleep-sorted data For j := UsedThreads-1 downto 1 do write(ThreadBlocks[SortIdx[j]].cft_count,','); writeln(ThreadBlocks[SortIdx[0]].cft_count); end;     begin randomize; gblThreadCount := Hilimit; Writeln('Testthreads : ',gblThreadCount); setlength(ThreadBlocks,gblThreadCount); setlength(SortIdx,gblThreadCount); Test;   setlength(ThreadBlocks, 0); {$IFDEF WINDOWS} readln; {$ENDIF} end.
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Common_Lisp
Common Lisp
(defun selection-sort-vector (array predicate) (do ((length (length array)) (i 0 (1+ i))) ((eql i length) array) (do ((mindex i) (min (aref array i)) (j i (1+ j))) ((eql j length) (rotatef (aref array i) (aref array mindex))) (when (funcall predicate (aref array j) min) (setf min (aref array j) mindex j)))))   (defun selection-sort-list (list predicate) (flet ((min-first (list) (do ((before-min nil) (min (first list)) (prev list (rest prev)) (curr (rest list) (rest curr))) ((endp curr) (if (null before-min) list (let ((min (cdr before-min))) (rplacd before-min (cdr min)) (rplacd min list) min))) (when (funcall predicate (first curr) min) (setf before-min prev min (first curr)))))) (let ((result (min-first list))) (do ((head result (rest head))) ((endp (rest head)) result) (rplacd head (min-first (rest head)))))))   (defun selection-sort (sequence predicate) (etypecase sequence (list (selection-sort-list sequence predicate)) (vector (selection-sort-vector sequence predicate))))
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#D
D
import std.stdio: writeln; import std.string: soundex;   void main() { assert(soundex("soundex") == "S532"); assert(soundex("example") == "E251"); assert(soundex("ciondecks") == "C532"); assert(soundex("ekzampul") == "E251"); assert(soundex("Robert") == "R163"); assert(soundex("Rupert") == "R163"); assert(soundex("Rubin") == "R150"); assert(soundex("Ashcraft") == "A261"); assert(soundex("Ashcroft") == "A261"); assert(soundex("Tymczak") == "T522"); }
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Haskell
Haskell
import Data.List   shellSort xs = foldr (invColumnize (map (foldr insert []))) xs gaps where gaps = takeWhile (< length xs) $ iterate (succ.(3*)) 1 invColumnize f k = concat. transpose. f. transpose . takeWhile (not.null). unfoldr (Just. splitAt k)
http://rosettacode.org/wiki/Sparkline_in_unicode
Sparkline in unicode
A sparkline is a graph of successive values laid out horizontally where the height of the line is proportional to the values in succession. Task Use the following series of Unicode characters to create a program that takes a series of numbers separated by one or more whitespace or comma characters and generates a sparkline-type bar graph of the values on a single line of output. The eight characters: '▁▂▃▄▅▆▇█' (Unicode values U+2581 through U+2588). Use your program to show sparklines for the following input, here on this page: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1.5, 0.5 3.5, 2.5 5.5, 4.5 7.5, 6.5 (note the mix of separators in this second case)! Notes A space is not part of the generated sparkline. The sparkline may be accompanied by simple statistics of the data such as its range. A suggestion emerging in later discussion (see Discussion page) is that the bounds between bins should ideally be set to yield the following results for two particular edge cases: "0, 1, 19, 20" -> ▁▁██ (Aiming to use just two spark levels) "0, 999, 4000, 4999, 7000, 7999" -> ▁▁▅▅██ (Aiming to use just three spark levels) It may be helpful to include these cases in output tests. You may find that the unicode sparklines on this page are rendered less noisily by Google Chrome than by Firefox or Safari.
#Sidef
Sidef
var bar = @('▁'..'█'); loop { print 'Numbers, please, separated by space/commas: '; var numbers = read(String).trim.split(/[\s,]+/).map{.to_n}; var (min, max) = numbers.minmax; say "min: %5f; max: %5f"%(min, max); var div = ((max - min) / bar.end); say (min == max ? bar.last*numbers.len : numbers.map{|num| bar[(num - min) / div]}.join); }
http://rosettacode.org/wiki/Sparkline_in_unicode
Sparkline in unicode
A sparkline is a graph of successive values laid out horizontally where the height of the line is proportional to the values in succession. Task Use the following series of Unicode characters to create a program that takes a series of numbers separated by one or more whitespace or comma characters and generates a sparkline-type bar graph of the values on a single line of output. The eight characters: '▁▂▃▄▅▆▇█' (Unicode values U+2581 through U+2588). Use your program to show sparklines for the following input, here on this page: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1.5, 0.5 3.5, 2.5 5.5, 4.5 7.5, 6.5 (note the mix of separators in this second case)! Notes A space is not part of the generated sparkline. The sparkline may be accompanied by simple statistics of the data such as its range. A suggestion emerging in later discussion (see Discussion page) is that the bounds between bins should ideally be set to yield the following results for two particular edge cases: "0, 1, 19, 20" -> ▁▁██ (Aiming to use just two spark levels) "0, 999, 4000, 4999, 7000, 7999" -> ▁▁▅▅██ (Aiming to use just three spark levels) It may be helpful to include these cases in output tests. You may find that the unicode sparklines on this page are rendered less noisily by Google Chrome than by Firefox or Safari.
#Tcl
Tcl
package require Tcl 8.6   proc extractValues {series} { return [regexp -all -inline {\d+(?:\.\d*)?|\.\d+} $series] } proc renderValue {min max value} { set band [expr {int(8*($value-$min)/(($max-$min)*1.01))}] return [format "%c" [expr {0x2581 + $band}]] } proc sparkline {series} { set values [extractValues $series] set min [tcl::mathfunc::min {*}$values] set max [tcl::mathfunc::max {*}$values] return [join [lmap v $values {renderValue $min $max $v}] ""] }
http://rosettacode.org/wiki/Stable_marriage_problem
Stable marriage problem
Solve the Stable marriage problem using the Gale/Shapley algorithm. Problem description Given an equal number of men and women to be paired for marriage, each man ranks all the women in order of his preference and each woman ranks all the men in order of her preference. A stable set of engagements for marriage is one where no man prefers a woman over the one he is engaged to, where that other woman also prefers that man over the one she is engaged to. I.e. with consulting marriages, there would be no reason for the engagements between the people to change. Gale and Shapley proved that there is a stable set of engagements for any set of preferences and the first link above gives their algorithm for finding a set of stable engagements. Task Specifics Given ten males: abe, bob, col, dan, ed, fred, gav, hal, ian, jon And ten females: abi, bea, cath, dee, eve, fay, gay, hope, ivy, jan And a complete list of ranked preferences, where the most liked is to the left: abe: abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay bob: cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay col: hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan dan: ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi ed: jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay fred: bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay gav: gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay hal: abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee ian: hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve jon: abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope abi: bob, fred, jon, gav, ian, abe, dan, ed, col, hal bea: bob, abe, col, fred, gav, dan, ian, ed, jon, hal cath: fred, bob, ed, gav, hal, col, ian, abe, dan, jon dee: fred, jon, col, abe, ian, hal, gav, dan, bob, ed eve: jon, hal, fred, dan, abe, gav, col, ed, ian, bob fay: bob, abe, ed, ian, jon, dan, fred, gav, col, hal gay: jon, gav, hal, fred, bob, abe, col, ed, dan, ian hope: gav, jon, bob, abe, ian, dan, hal, ed, col, fred ivy: ian, col, hal, gav, fred, bob, abe, ed, jon, dan jan: ed, hal, gav, abe, bob, jon, col, ian, fred, dan Use the Gale Shapley algorithm to find a stable set of engagements Perturb this set of engagements to form an unstable set of engagements then check this new set for stability. References The Stable Marriage Problem. (Eloquent description and background information). Gale-Shapley Algorithm Demonstration. Another Gale-Shapley Algorithm Demonstration. Stable Marriage Problem - Numberphile (Video). Stable Marriage Problem (the math bit) (Video). The Stable Marriage Problem and School Choice. (Excellent exposition)
#Sidef
Sidef
var he_likes = Hash( abe => < abi eve cath ivy jan dee fay bea hope gay >, bob => < cath hope abi dee eve fay bea jan ivy gay >, col => < hope eve abi dee bea fay ivy gay cath jan >, dan => < ivy fay dee gay hope eve jan bea cath abi >, ed => < jan dee bea cath fay eve abi ivy hope gay >, fred => < bea abi dee gay eve ivy cath jan hope fay >, gav => < gay eve ivy bea cath abi dee hope jan fay >, hal => < abi eve hope fay ivy cath jan bea gay dee >, ian => < hope cath dee gay bea abi fay ivy jan eve >, jon => < abi fay jan gay eve bea dee cath ivy hope >, );   var she_likes = Hash( abi => < bob fred jon gav ian abe dan ed col hal >, bea => < bob abe col fred gav dan ian ed jon hal >, cath => < fred bob ed gav hal col ian abe dan jon >, dee => < fred jon col abe ian hal gav dan bob ed >, eve => < jon hal fred dan abe gav col ed ian bob >, fay => < bob abe ed ian jon dan fred gav col hal >, gay => < jon gav hal fred bob abe col ed dan ian >, hope => < gav jon bob abe ian dan hal ed col fred >, ivy => < ian col hal gav fred bob abe ed jon dan >, jan => < ed hal gav abe bob jon col ian fred dan >, );   var guys = he_likes.keys; var gals = she_likes.keys;   var (:fiancé, :fiancée, :proposed);   func she_prefers (her, hottie) { var a = she_likes{her}; a.index(hottie) < a.index(fiancé{her}) } func he_prefers (him, hottie) { var a = he_likes{him}; a.index(hottie) < a.index(fiancée{him}) }   func unmatched_guy { guys.first {|k| !defined fiancée{k} } } func preferred_choice(guy) { he_likes{guy}.first {|k| !defined proposed{guy}{k} } }   func engage(guy, gal) { fiancé{gal} = guy; fiancée{guy} = gal; }   func match_em { say 'Matchmaking:'; while (defined(var guy = unmatched_guy())) { var gal = preferred_choice(guy); proposed{guy}{gal} = '❤'; if (!defined fiancé{gal}) { engage(guy, gal); say "\t#{gal} and #{guy}"; } elsif (she_prefers(gal, guy)) { var engaged_guy = fiancé{gal}; engage(guy, gal); fiancée{engaged_guy} = nil; say "\t#{gal} dumped #{engaged_guy} for #{guy}"; } } }   func check_stability { var instabilities = gather { guys.each { |m| gals.each { |w| if (he_prefers(m, w) && she_prefers(w, m)) { take "\t#{w} prefers #{m} to #{fiancé{w}} and #{m} prefers #{w} to #{fiancée{m}}"; } } } }   say 'Stablility:'; instabilities.is_empty  ? say "\t(all marriages stable)"  : instabilities.each { |i| say i }; }   func perturb_em { say 'Perturb:'; say "\tengage abi with fred and bea with jon"; engage('fred', 'abi'); engage('jon', 'bea'); }   match_em(); check_stability();   perturb_em(); check_stability();
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Kotlin
Kotlin
// version 1.1.2   class Stack<E> { private val data = mutableListOf<E>()   val size get() = data.size   val empty get() = size == 0   fun push(element: E) = data.add(element)   fun pop(): E { if (empty) throw RuntimeException("Can't pop elements from an empty stack") return data.removeAt(data.lastIndex) }   val top: E get() { if (empty) throw RuntimeException("Empty stack can't have a top element") return data.last() }   fun clear() = data.clear()   override fun toString() = data.toString() }   fun main(args: Array<String>) { val s = Stack<Int>() (1..5).forEach { s.push(it) } println(s) println("Size of stack = ${s.size}") print("Popping: ") (1..3).forEach { print("${s.pop()} ") } println("\nRemaining on stack: $s") println("Top element is now ${s.top}") s.clear() println("After clearing, stack is ${if(s.empty) "empty" else "not empty"}") try { s.pop() } catch (e: Exception) { println(e.message) } }
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Liberty_BASIC
Liberty BASIC
nomainwin   UpperLeftX = 50 UpperLeftY = 50 WindowWidth =900 WindowHeight =930   statictext #w.st, "", 10, 850, 870, 40   open "Spiral matrix" for graphics_nsb_nf as #w   #w "trapclose [quit]" #w "backcolor darkblue; color cyan; fill darkblue"   for N =2 to 50   #w.st "!font courier_new "; int( 60 /N); " bold" #w "down; font arial "; int( 240 /N); " bold"   g$ ="ruld" ' direction sequence if N/2 =int( N/2) then pg =2 else pg =0 ' pointer to current direction ' last move is left or right depending on N even/odd d$ =""   for i =1 to N -1 ' calculate direction to move d$ =nChar$( i, mid$( g$, pg +1, 1)) +d$ pg =( pg +1) mod 4 d$ =nChar$( i, mid$( g$, pg +1, 1)) +d$ pg =( pg +1) mod 4 next i   d$ =nChar$( N -1, "r") +d$ ' first row   #w.st " N ="; N; " "; d$   xp =60 +250 /N yp =80 +250 /N   stp =int( 750 /N)   for i =0 to N^2 -1 dir$ =mid$( d$, i, 1) select case dir$ case "r" xp =xp +stp case "d" yp =yp +stp case "l" xp =xp -stp case "u" yp =yp -stp end select   #w "place "; xp; " "; yp #w "\"; i next i   timer 3000, [on] wait [on] timer 0 #w "cls" scan next N   wait   function nChar$( n, i$) for i =1 to n nChar$ =nChar$ +i$ next i end function   [quit] close #w end
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#Groovy
Groovy
def radixSort = { final radixExponent, list -> def fromBuckets = new TreeMap([0:list]) def toBuckets = new TreeMap() final radix = 2**radixExponent final mask = radix - 1 final radixDigitSize = (int)Math.ceil(64/radixExponent) final digitWidth = radixExponent (0..<radixDigitSize).each { radixDigit -> fromBuckets.values().findAll { it != null }.flatten().each { print '.' long bucketNumber = (long)((((long)it) >>> digitWidth*radixDigit) & mask) toBuckets[bucketNumber] = toBuckets[bucketNumber] ?: [] toBuckets[bucketNumber] << it } (fromBuckets, toBuckets) = [toBuckets, fromBuckets] toBuckets.clear() } final overflow = 2**(63 % radixExponent) final pos = {it < overflow} final neg = {it >= overflow} final keys = fromBuckets.keySet() final twosComplIndx = [] + (keys.findAll(neg)) + (keys.findAll(pos)) twosComplIndx.collect { fromBuckets[it] }.findAll { it != null }.flatten() }
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#ALGOL_W
ALGOL W
% Quicksorts in-place the array of integers v, from lb to ub % procedure quicksort ( integer array v( * )  ; integer value lb, ub ) ; if ub > lb then begin  % more than one element, so must sort % integer left, right, pivot; left  := lb; right  := ub;  % choosing the middle element of the array as the pivot % pivot  := v( left + ( ( right + 1 ) - left ) div 2 ); while begin while left <= ub and v( left ) < pivot do left  := left + 1; while right >= lb and v( right ) > pivot do right := right - 1; left <= right end do begin integer swap; swap  := v( left ); v( left ) := v( right ); v( right ) := swap; left  := left + 1; right  := right - 1 end while_left_le_right ; quicksort( v, lb, right ); quicksort( v, left, ub ) end quicksort ;
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#Elixir
Elixir
defmodule Sort do def patience_sort(list) do piles = deal_pile(list, []) merge_pile(piles, []) end   defp deal_pile([], piles), do: piles defp deal_pile([h|t], piles) do index = Enum.find_index(piles, fn pile -> hd(pile) <= h end) new_piles = if index, do: add_element(piles, index, h, []), else: piles ++ [[h]] deal_pile(t, new_piles) end   defp add_element([h|t], 0, elm, work), do: Enum.reverse(work, [[elm | h] | t]) defp add_element([h|t], index, elm, work), do: add_element(t, index-1, elm, [h | work])   defp merge_pile([], list), do: list defp merge_pile(piles, list) do {max, index} = max_index(piles) merge_pile(delete_element(piles, index, []), [max | list]) end   defp max_index([h|t]), do: max_index(t, hd(h), 1, 0)   defp max_index([], max, _, max_i), do: {max, max_i} defp max_index([h|t], max, index, _) when hd(h)>max, do: max_index(t, hd(h), index+1, index) defp max_index([_|t], max, index, max_i) , do: max_index(t, max, index+1, max_i)   defp delete_element([h|t], 0, work) when length(h)==1, do: Enum.reverse(work, t) defp delete_element([h|t], 0, work) , do: Enum.reverse(work, [tl(h) | t]) defp delete_element([h|t], index, work), do: delete_element(t, index-1, [h | work]) end   IO.inspect Sort.patience_sort [4, 65, 2, -31, 0, 99, 83, 782, 1]
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#AArch64_Assembly
AArch64 Assembly
  /* ARM assembly AARCH64 Raspberry PI 3B */ /* program insertionSort64.s */   /*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeConstantesARM64.inc"   /*********************************/ /* Initialized data */ /*********************************/ .data szMessSortOk: .asciz "Table sorted.\n" szMessSortNok: .asciz "Table not sorted !!!!!.\n" sMessResult: .asciz "Value  : @ \n" szCarriageReturn: .asciz "\n"   .align 4 #TableNumber: .quad 1,3,6,2,5,9,10,8,4,7 TableNumber: .quad 10,9,8,7,6,-5,4,3,2,1 .equ NBELEMENTS, (. - TableNumber) / 8 /*********************************/ /* UnInitialized data */ /*********************************/ .bss sZoneConv: .skip 24 /*********************************/ /* code section */ /*********************************/ .text .global main main: // entry of program ldr x0,qAdrTableNumber // address number table mov x1,0 // first element mov x2,NBELEMENTS // number of élements bl insertionSort ldr x0,qAdrTableNumber // address number table bl displayTable   ldr x0,qAdrTableNumber // address number table mov x1,NBELEMENTS // number of élements bl isSorted // control sort cmp x0,1 // sorted ? beq 1f ldr x0,qAdrszMessSortNok // no !! error sort bl affichageMess b 100f 1: // yes ldr x0,qAdrszMessSortOk bl affichageMess 100: // standard end of the program mov x0,0 // return code mov x8,EXIT // request to exit program svc 0 // perform the system call   qAdrsZoneConv: .quad sZoneConv qAdrszCarriageReturn: .quad szCarriageReturn qAdrsMessResult: .quad sMessResult qAdrTableNumber: .quad TableNumber qAdrszMessSortOk: .quad szMessSortOk qAdrszMessSortNok: .quad szMessSortNok /******************************************************************/ /* control sorted table */ /******************************************************************/ /* x0 contains the address of table */ /* x1 contains the number of elements > 0 */ /* x0 return 0 if not sorted 1 if sorted */ isSorted: stp x2,lr,[sp,-16]! // save registers stp x3,x4,[sp,-16]! // save registers mov x2,0 ldr x4,[x0,x2,lsl 3] 1: add x2,x2,1 cmp x2,x1 bge 99f ldr x3,[x0,x2, lsl 3] cmp x3,x4 blt 98f mov x4,x3 b 1b 98: mov x0,0 // not sorted b 100f 99: mov x0,1 // sorted 100: ldp x3,x4,[sp],16 // restaur 2 registers ldp x2,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /******************************************************************/ /* insertion sort */ /******************************************************************/ /* x0 contains the address of table */ /* x1 contains the first element */ /* x2 contains the number of element */ insertionSort: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers stp x4,x5,[sp,-16]! // save registers stp x6,x7,[sp,-16]! // save registers add x3,x1,1 // index i 1: // start loop 1 ldr x4,[x0,x3,lsl 3] // load value A[i] sub x5,x3,1 // index j 2: // start loop 2 ldr x6,[x0,x5,lsl 3] // load value A[j] cmp x6,x4 // compare value ble 3f add x5,x5,1 // increment index j str x6,[x0,x5,lsl 3] // store value A[j+1} sub x5,x5,2 // j = j - 1 cmp x5,x1 // compare first element bge 2b // loop 2 3: add x5,x5,1 // increment index j str x4,[x0,x5,lsl 3] // store value A[i} add x3,x3,1 // increment index i cmp x3,x2 // end ? blt 1b // loop 1   100: ldp x6,x7,[sp],16 // restaur 2 registers ldp x4,x5,[sp],16 // restaur 2 registers ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30   /******************************************************************/ /* Display table elements */ /******************************************************************/ /* x0 contains the address of table */ displayTable: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers mov x2,x0 // table address mov x3,0 1: // loop display table ldr x0,[x2,x3,lsl 3] ldr x1,qAdrsZoneConv bl conversion10S // décimal conversion ldr x0,qAdrsMessResult ldr x1,qAdrsZoneConv bl strInsertAtCharInc // insert result at @ character bl affichageMess // display message add x3,x3,1 cmp x3,NBELEMENTS - 1 ble 1b ldr x0,qAdrszCarriageReturn bl affichageMess mov x0,x2 100: ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc"  
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#jq
jq
def permutations: if length == 0 then [] else . as $in | range(0;length) as $i | ($in|del(.[$i])|permutations) | [$in[$i]] + . end ;
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#Julia
Julia
# v0.6   using Combinatorics   function permsort(x::Array) for perm in permutations(x) if issorted(perm) return perm end end end   x = randn(10) @show x permsort(x)
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#Kotlin
Kotlin
// version 1.1.2   fun <T : Comparable<T>> isSorted(list: List<T>): Boolean { val size = list.size if (size < 2) return true for (i in 1 until size) { if (list[i] < list[i - 1]) return false } return true }   fun <T : Comparable<T>> permute(input: List<T>): List<List<T>> { if (input.size == 1) return listOf(input) val perms = mutableListOf<List<T>>() val toInsert = input[0] for (perm in permute(input.drop(1))) { for (i in 0..perm.size) { val newPerm = perm.toMutableList() newPerm.add(i, toInsert) perms.add(newPerm) } } return perms }   fun <T : Comparable<T>> permutationSort(input: List<T>): List<T> { if (input.size == 1) return input val toInsert = input[0] for (perm in permute(input.drop(1))) { for (i in 0..perm.size) { val newPerm = perm.toMutableList() newPerm.add(i, toInsert) if (isSorted(newPerm)) return newPerm } } return input }   fun main(args: Array<String>) { val input = listOf('d', 'b', 'e', 'a', 'f', 'c') println("Before sorting : $input") val output = permutationSort(input) println("After sorting  : $output") println() val input2 = listOf("first", "second", "third", "fourth", "fifth", "sixth") println("Before sorting : $input2") val output2 = permutationSort(input2) println("After sorting  : $output2") }
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Clojure
Clojure
  (defn pancake-sort [arr] (if (= 1 (count arr)) arr (when-let [mx (apply max arr)] (let [tk (split-with #(not= mx %) arr) tail (second tk) torev (concat (first tk) (take 1 tail)) head (reverse torev)] (cons mx (pancake-sort (concat (drop 1 head) (drop 1 tail))))))))  
http://rosettacode.org/wiki/Special_characters
Special characters
Special characters are symbols (single characters or sequences of characters) that have a "special" built-in meaning in the language and typically cannot be used in identifiers. Escape sequences are methods that the language uses to remove the special meaning from the symbol, enabling it to be used as a normal character, or sequence of characters when this can be done. Task List the special characters and show escape sequences in the language. Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Tcl
Tcl
{...} ;# group in one word, without substituting content; nests "..." ;# group in one word, with substituting content [...] ;# evaluate content as script, then substitute with its result; nests $foo ;# substitute with content of variable foo $bar(foo) ;# substitute with content of element 'foo' of array 'bar' \a ;# audible alert (bell) \b ;# backspace \f ;# form feed \n ;# newline \r ;# carriage return \t ;# Tab \v ;# vertical tab \\ ;# backslash \ooo ;# the Unicode with octal value 'ooo' \xhh ;# the character with hexadecimal value 'hh' \uhhhh ;# the Unicode with hexadecimal value 'hhhh' #  ;# if first character of a word expected to be a command, begin comment ;# (extends till end of line) {*} ;# if first characters of a word, interpret as list of words to substitute, ;# not single word (introduced with Tcl 8.5)
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Kotlin
Kotlin
// version 1.1.0   fun stoogeSort(a: IntArray, i: Int, j: Int) { if (a[j] < a[i]) { val temp = a[j] a[j] = a[i] a[i] = temp } if (j - i > 1) { val t = (j - i + 1) / 3 stoogeSort(a, i, j - t) stoogeSort(a, i + t, j) stoogeSort(a, i, j - t) } }   fun main(args: Array<String>) { val a = intArrayOf(100, 2, 56, 200, -52, 3, 99, 33, 177, -199) println("Original : ${a.asList()}") stoogeSort(a, 0, a.size - 1) println("Sorted  : ${a.asList()}") }
http://rosettacode.org/wiki/Sorting_algorithms/Sleep_sort
Sorting algorithms/Sleep sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort In general, sleep sort works by starting a separate task for each item to be sorted, where each task sleeps for an interval corresponding to the item's sort key, then emits the item. Items are then collected sequentially in time. Task: Write a program that implements sleep sort. Have it accept non-negative integers on the command line and print the integers in sorted order. If this is not idomatic in your language or environment, input and output may be done differently. Enhancements for optimization, generalization, practicality, robustness, and so on are not required. Sleep sort was presented anonymously on 4chan and has been discussed on Hacker News.
#Perl
Perl
1 while ($_ = shift and @ARGV and !fork); sleep $_; print "$_\n"; wait;
http://rosettacode.org/wiki/Sorting_algorithms/Sleep_sort
Sorting algorithms/Sleep sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort In general, sleep sort works by starting a separate task for each item to be sorted, where each task sleeps for an interval corresponding to the item's sort key, then emits the item. Items are then collected sequentially in time. Task: Write a program that implements sleep sort. Have it accept non-negative integers on the command line and print the integers in sorted order. If this is not idomatic in your language or environment, input and output may be done differently. Enhancements for optimization, generalization, practicality, robustness, and so on are not required. Sleep sort was presented anonymously on 4chan and has been discussed on Hacker News.
#Phix
Phix
without js -- (multitasking) integer count procedure sleeper(integer key) ? key -- (or maybe res &= key) count -= 1 end procedure --sequence s = command_line()[3..$] sequence s = split("3 1 4 1 5 9 2 6 5") if length(s)=0 then puts(1,"Nothing to sort.\n") else count = 0 for i=1 to length(s) do object si = to_number(s[i]) if integer(si) then atom task = task_create(sleeper,{si}) task_schedule(task,{si/10,si/10}) count += 1 end if end for while count do task_yield() end while end if
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Crystal
Crystal
def selectionSort(array : Array) (0...array.size-1).each do |i| nextMinIndex = i (i+1...array.size).each do |j| if array[j] < array[nextMinIndex] nextMinIndex = j end end if i != nextMinIndex array.swap(i, nextMinIndex) end end end
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#D
D
import std.stdio, std.algorithm, std.array, std.traits;   enum AreSortableArrayItems(T) = isMutable!T && __traits(compiles, T.init < T.init) && !isNarrowString!(T[]);   void selectionSort(T)(T[] data) if (AreSortableArrayItems!T) { foreach (immutable i, ref d; data) data.drop(i).minPos[0].swap(d); } unittest { int[] a0; a0.selectionSort;   auto a1 = [1]; a1.selectionSort; assert(a1 == [1]);   auto a2 = ["a", "b"]; a2.selectionSort; assert(a2 == ["a", "b"]);   auto a3 = ["b", "a"]; a3.selectionSort; assert(a3 == ["a", "b"]);   auto a4 = ['a', 'b']; static assert(!__traits(compiles, a4.selectionSort));   dchar[] a5 = ['b', 'a']; a5.selectionSort; assert(a5 == "ab"d);   import std.typecons; alias Nullable!int N; auto a6 = [N(2), N(1)]; a6.selectionSort; // Not nothrow. assert(a6 == [N(1), N(2)]);   auto a7 = [1.0+0i, 2.0+0i]; // To be deprecated. static assert(!__traits(compiles, a7.selectionSort));   import std.complex; auto a8 = [complex(1), complex(2)]; static assert(!__traits(compiles, a8.selectionSort));   static struct F { int x; int opCmp(F f) { // Not pure. return x < f.x ? -1 : (x > f.x ? 1 : 0); } } auto a9 = [F(2), F(1)]; a9.selectionSort; assert(a9 == [F(1), F(2)]); }   void main() { auto a = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2]; a.selectionSort; a.writeln; }
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Delphi
Delphi
program SoundexDemo;   {$APPTYPE CONSOLE}   uses System.StrUtils;   begin Writeln(Soundex('Ashcraft')); Writeln(Soundex('Tymczak')) end.
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Haxe
Haxe
class ShellSort { @:generic public static function sort<T>(arr:Array<T>) { var h = arr.length; while (h > 0) { h >>= 1; for (i in h...arr.length) { var k = arr[i]; var j = i; while (j >= h && Reflect.compare(k, arr[j - h]) < 0) { arr[j] = arr[j - h]; j -= h; } arr[j] = k; } } } }   class Main { static function main() { var integerArray = [1, 10, 2, 5, -1, 5, -19, 4, 23, 0]; var floatArray = [1.0, -3.2, 5.2, 10.8, -5.7, 7.3, 3.5, 0.0, -4.1, -9.5]; var stringArray = ['We', 'hold', 'these', 'truths', 'to', 'be', 'self-evident', 'that', 'all', 'men', 'are', 'created', 'equal']; Sys.println('Unsorted Integers: ' + integerArray); ShellSort.sort(integerArray); Sys.println('Sorted Integers: ' + integerArray); Sys.println('Unsorted Floats: ' + floatArray); ShellSort.sort(floatArray); Sys.println('Sorted Floats: ' + floatArray); Sys.println('Unsorted Strings: ' + stringArray); ShellSort.sort(stringArray); Sys.println('Sorted Strings: ' + stringArray); } }
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Icon_and_Unicon
Icon and Unicon
procedure main() #: demonstrate various ways to sort a list and string demosort(shellsort,[3, 14, 1, 5, 9, 2, 6, 3],"qwerty") end   procedure shellsort(X,op) #: return sorted X local i,j,inc,temp   op := sortop(op,X) # select how and what we sort   inc := *X/2 while inc > 0 do { every i := inc to *X do { temp := X[j := i] while op(temp,X[j - (j >= inc)]) do X[j] := X[j -:= inc] X[j] := temp } inc := if inc = 2 then 1 else inc*5/11 # switch to insertion near the end } return X end
http://rosettacode.org/wiki/Sparkline_in_unicode
Sparkline in unicode
A sparkline is a graph of successive values laid out horizontally where the height of the line is proportional to the values in succession. Task Use the following series of Unicode characters to create a program that takes a series of numbers separated by one or more whitespace or comma characters and generates a sparkline-type bar graph of the values on a single line of output. The eight characters: '▁▂▃▄▅▆▇█' (Unicode values U+2581 through U+2588). Use your program to show sparklines for the following input, here on this page: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1.5, 0.5 3.5, 2.5 5.5, 4.5 7.5, 6.5 (note the mix of separators in this second case)! Notes A space is not part of the generated sparkline. The sparkline may be accompanied by simple statistics of the data such as its range. A suggestion emerging in later discussion (see Discussion page) is that the bounds between bins should ideally be set to yield the following results for two particular edge cases: "0, 1, 19, 20" -> ▁▁██ (Aiming to use just two spark levels) "0, 999, 4000, 4999, 7000, 7999" -> ▁▁▅▅██ (Aiming to use just three spark levels) It may be helpful to include these cases in output tests. You may find that the unicode sparklines on this page are rendered less noisily by Google Chrome than by Firefox or Safari.
#Wren
Wren
import "io" for Stdin, Stdout import "/pattern" for Pattern   var p = Pattern.new("[,+1/s|+1/s,|+1/s|,]")   var spark = Fn.new { |s0| var ss = p.splitAll(s0) var n = ss.count var vs = List.filled(n, 0) var min = 1/0 var max = -min var i = 0 for (s in ss) { var v = Num.fromString(s) if (v.isNan || v.isInfinity) Fiber.abort("Infinities and NaN not supported.") if (v < min) min = v if (v > max) max = v vs[i] = v i = i + 1 } var sp if (min == max) { sp = "▄" * n } else { var rs = List.filled(n, null) var f = 8 / (max - min) var j = 0 for (v in vs) { var i = (f * (v - min)).floor if (i > 7) i = 7 rs[j] = String.fromCodePoint(0x2581 + i) j = j + 1 } sp = rs.join() } return [sp, n, min, max] }   while (true) { System.print("Numbers please separated by spaces/commas or just press return to quit:") Stdout.flush() var numbers = Stdin.readLine().trim() if (numbers == "") break var res = spark.call(numbers) var s = res[0] var n = res[1] var min = res[2] var max = res[3] if (n == 1) { System.print("1 value = %(min)") } else { System.print("%(n) values. Min: %(min) Max: %(max)") } System.print(s) System.print() }
http://rosettacode.org/wiki/Stable_marriage_problem
Stable marriage problem
Solve the Stable marriage problem using the Gale/Shapley algorithm. Problem description Given an equal number of men and women to be paired for marriage, each man ranks all the women in order of his preference and each woman ranks all the men in order of her preference. A stable set of engagements for marriage is one where no man prefers a woman over the one he is engaged to, where that other woman also prefers that man over the one she is engaged to. I.e. with consulting marriages, there would be no reason for the engagements between the people to change. Gale and Shapley proved that there is a stable set of engagements for any set of preferences and the first link above gives their algorithm for finding a set of stable engagements. Task Specifics Given ten males: abe, bob, col, dan, ed, fred, gav, hal, ian, jon And ten females: abi, bea, cath, dee, eve, fay, gay, hope, ivy, jan And a complete list of ranked preferences, where the most liked is to the left: abe: abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay bob: cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay col: hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan dan: ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi ed: jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay fred: bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay gav: gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay hal: abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee ian: hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve jon: abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope abi: bob, fred, jon, gav, ian, abe, dan, ed, col, hal bea: bob, abe, col, fred, gav, dan, ian, ed, jon, hal cath: fred, bob, ed, gav, hal, col, ian, abe, dan, jon dee: fred, jon, col, abe, ian, hal, gav, dan, bob, ed eve: jon, hal, fred, dan, abe, gav, col, ed, ian, bob fay: bob, abe, ed, ian, jon, dan, fred, gav, col, hal gay: jon, gav, hal, fred, bob, abe, col, ed, dan, ian hope: gav, jon, bob, abe, ian, dan, hal, ed, col, fred ivy: ian, col, hal, gav, fred, bob, abe, ed, jon, dan jan: ed, hal, gav, abe, bob, jon, col, ian, fred, dan Use the Gale Shapley algorithm to find a stable set of engagements Perturb this set of engagements to form an unstable set of engagements then check this new set for stability. References The Stable Marriage Problem. (Eloquent description and background information). Gale-Shapley Algorithm Demonstration. Another Gale-Shapley Algorithm Demonstration. Stable Marriage Problem - Numberphile (Video). Stable Marriage Problem (the math bit) (Video). The Stable Marriage Problem and School Choice. (Excellent exposition)
#SPARK_.2F_Ada
SPARK / Ada
package Preferences is   type Guy_X is (no_guy, abe, bob, col, dan, ed, fred, gav, hal, ian, jon); subtype Guy is Guy_X range Guy_X'Succ(Guy_X'First) .. Guy_X'Last;   type Girl_X is (no_girl, abi, bea, cath, dee, eve, fay, gay, hope, ivy, jan); subtype Girl is Girl_X range Girl_X'Succ(Girl_X'First) .. Girl_X'Last;   type Extended_Rank is range 0 .. 10; subtype Rank is Extended_Rank range 1 .. Extended_Rank'Last;   type His_Rank is array (Rank) of Girl; type He_Prefers is array (Guy) of His_Rank;   Guys_Like : constant He_Prefers := He_Prefers'( abe => His_Rank'(abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay), bob => His_Rank'(cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay), col => His_Rank'(hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan), dan => His_Rank'(ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi), ed => His_Rank'(jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay), fred => His_Rank'(bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay), gav => His_Rank'(gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay), hal => His_Rank'(abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee), ian => His_Rank'(hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve), jon => His_Rank'(abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope));   type Her_Rank is array(Rank) of Guy; type She_Prefers is array (Girl) of Her_Rank;   Girls_Like : constant She_Prefers := She_Prefers'( abi => Her_Rank'(bob, fred, jon, gav, ian, abe, dan, ed, col, hal), bea => Her_Rank'(bob, abe, col, fred, gav, dan, ian, ed, jon, hal), cath => Her_Rank'(fred, bob, ed, gav, hal, col, ian, abe, dan, jon), dee => Her_Rank'(fred, jon, col, abe, ian, hal, gav, dan, bob, ed), eve => Her_Rank'(jon, hal, fred, dan, abe, gav, col, ed, ian, bob), fay => Her_Rank'(bob, abe, ed, ian, jon, dan, fred, gav, col, hal), gay => Her_Rank'(jon, gav, hal, fred, bob, abe, col, ed, dan, ian), hope => Her_Rank'(gav, jon, bob, abe, ian, dan, hal, ed, col, fred), ivy => Her_Rank'(ian, col, hal, gav, fred, bob, abe, ed, jon, dan), jan => Her_Rank'(ed, hal, gav, abe, bob, jon, col, ian, fred, dan));   end Preferences;  
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#lang5
lang5
: cr "\n" . ; : empty? dup execute length if 0 else -1 then swap drop ; : pop dup execute length 1 - extract swap drop ; : push dup execute rot append over ; : s. stack execute . ;   [] '_ set : stack '_ ; stack # local variable 1 swap push set 2 swap push set s. cr # [ 1 2 ] pop . s. cr # 2 [ 1 ] pop drop empty? . # -1
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Lua
Lua
av, sn = math.abs, function(s) return s~=0 and s/av(s) or 0 end function sindex(y, x) -- returns the value at (x, y) in a spiral that starts at 1 and goes outwards if y == -x and y >= x then return (2*y+1)^2 end local l = math.max(av(y), av(x)) return (2*l-1)^2+4*l+2*l*sn(x+y)+sn(y^2-x^2)*(l-(av(y)==l and sn(y)*x or sn(x)*y)) -- OH GOD WHAT end   function spiralt(side) local ret, start, stop = {}, math.floor((-side+1)/2), math.floor((side-1)/2) for i = 1, side do ret[i] = {} for j = 1, side do ret[i][j] = side^2 - sindex(stop - i + 1,start + j - 1) --moves the coordinates so (0,0) is at the center of the spiral end end return ret end   for i,v in ipairs(spiralt(8)) do for j, u in ipairs(v) do io.write(u .. " ") end print() end
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#Haskell
Haskell
import Data.Bits (Bits(testBit, bitSize)) import Data.List (partition)   lsdSort :: (Ord a, Bits a) => [a] -> [a] lsdSort = fixSort positiveLsdSort   msdSort :: (Ord a, Bits a) => [a] -> [a] msdSort = fixSort positiveMsdSort   -- Fix a sort that puts negative numbers at the end, like positiveLsdSort and positiveMsdSort fixSort sorter list = uncurry (flip (++)) (break (< 0) (sorter list))   positiveLsdSort :: (Bits a) => [a] -> [a] positiveLsdSort list = foldl step list [0..bitSize (head list)] where step list bit = uncurry (++) (partition (not . flip testBit bit) list)   positiveMsdSort :: (Bits a) => [a] -> [a] positiveMsdSort list = aux (bitSize (head list) - 1) list where aux _ [] = [] aux (-1) list = list aux bit list = aux (bit - 1) lower ++ aux (bit - 1) upper where (lower, upper) = partition (not . flip testBit bit) list
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#APL
APL
qsort ← {1≥⍴⍵:⍵ ⋄ e←⍵[?⍴⍵] ⋄ (∇(⍵<e)/⍵) , ((⍵=e)/⍵) , (∇(⍵>e)/⍵)} qsort 31 4 1 5 9 2 6 5 3 5 8 1 2 3 4 5 5 5 6 8 9 31
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#Fortran
Fortran
Warning: trampoline generated for nested function "less" [-Wtrampolines]
http://rosettacode.org/wiki/Sorting_algorithms/Insertion_sort
Sorting algorithms/Insertion sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Insertion sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) An O(n2) sorting algorithm which moves elements one at a time into the correct position. The algorithm consists of inserting one element at a time into the previously sorted part of the array, moving higher ranked elements up as necessary. To start off, the first (or smallest, or any arbitrary) element of the unsorted array is considered to be the sorted part. Although insertion sort is an O(n2) algorithm, its simplicity, low overhead, good locality of reference and efficiency make it a good choice in two cases:   small   n,   as the final finishing-off algorithm for O(n logn) algorithms such as mergesort and quicksort. The algorithm is as follows (from wikipedia): function insertionSort(array A) for i from 1 to length[A]-1 do value := A[i] j := i-1 while j >= 0 and A[j] > value do A[j+1] := A[j] j := j-1 done A[j+1] = value done Writing the algorithm for integers will suffice.
#ACL2
ACL2
(defun insert (x xs) (cond ((endp xs) (list x)) ((< x (first xs)) (cons x xs)) (t (cons (first xs) (insert x (rest xs))))))   (defun isort (xs) (if (endp xs) nil (insert (first xs) (isort (rest xs)))))
http://rosettacode.org/wiki/Sorting_algorithms/Permutation_sort
Sorting algorithms/Permutation sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one. Pseudocode: while not InOrder(list) do nextPermutation(list) done
#Lua
Lua
-- Return an iterator to produce every permutation of list function permute (list) local function perm (list, n) if n == 0 then coroutine.yield(list) end for i = 1, n do list[i], list[n] = list[n], list[i] perm(list, n - 1) list[i], list[n] = list[n], list[i] end end return coroutine.wrap(function() perm(list, #list) end) end   -- Return true if table t is in ascending order or false if not function inOrder (t) for pos = 2, #t do if t[pos] < t[pos - 1] then return false end end return true end   -- Main procedure local list = {2,3,1} --\ Written to match task pseudocode, local nextPermutation = permute(list) --\ more idiomatic would be: while not inOrder(list) do --\ list = nextPermutation() --/ for p in permute(list) do end --/ stuffWith(p) print(unpack(list)) --/ end
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#Common_Lisp
Common Lisp
(defun pancake-sort (seq) "A destructive version of Pancake Sort that works with either lists or arrays of numbers." (defun flip (lst index) (setf (subseq lst 0 index) (reverse (subseq lst 0 index)))) (loop with lst = (coerce seq 'list) for i from (length lst) downto 2 for index = (position (apply #'max (subseq lst 0 i)) lst) do (unless (= index 0) (flip lst (1+ index))) (flip lst i) finally (return (coerce lst (type-of seq)))))
http://rosettacode.org/wiki/Sorting_algorithms/Pancake_sort
Sorting algorithms/Pancake sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of integers (of any convenient size) into ascending order using Pancake sorting. In short, instead of individual elements being sorted, the only operation allowed is to "flip" one end of the list, like so: Before: 6 7 8 9 2 5 3 4 1 After: 9 8 7 6 2 5 3 4 1 Only one end of the list can be flipped; this should be the low end, but the high end is okay if it's easier to code or works better, but it must be the same end for the entire solution. (The end flipped can't be arbitrarily changed.) Show both the initial, unsorted list and the final sorted list. (Intermediate steps during sorting are optional.) Optimizations are optional (but recommended). Related tasks   Number reversal game   Topswops Also see   Wikipedia article:   pancake sorting.
#D
D
import std.stdio, std.algorithm;   void pancakeSort(bool tutor=false, T)(T[] data) { foreach_reverse (immutable i; 2 .. data.length + 1) { immutable maxIndex = i - data[0 .. i].minPos!q{a > b}.length; if (maxIndex + 1 != i) { if (maxIndex != 0) { static if (tutor) writeln("With: ", data, " doflip ", maxIndex + 1); data[0 .. maxIndex + 1].reverse(); }   static if (tutor) writeln("With: ", data, " doflip ", i); data[0 .. i].reverse(); } } }   void main() { auto data = "769248135".dup; data.pancakeSort!true; data.writeln; }
http://rosettacode.org/wiki/Sorting_algorithms/Stooge_sort
Sorting algorithms/Stooge sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Stooge sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Show the   Stooge Sort   for an array of integers. The Stooge Sort algorithm is as follows: algorithm stoogesort(array L, i = 0, j = length(L)-1) if L[j] < L[i] then L[i] ↔ L[j] if j - i > 1 then t := (j - i + 1)/3 stoogesort(L, i , j-t) stoogesort(L, i+t, j ) stoogesort(L, i , j-t) return L
#Lua
Lua
  local Y = function (f) return (function(x) return x(x) end)(function(x) return f(function(...) return x(x)(...) end) end) end   function stoogesort(L, pred)   pred = pred or function(a,b) return a < b end   Y(function(recurse) return function(i,j) if pred(L[j], L[i]) then L[j],L[i] = L[i],L[j] end if j - i > 1 then local t = math.floor((j - i + 1)/3) recurse(i,j-t) recurse(i+t,j) recurse(i,j-t) end end end)(1,#L)   return L end   print(unpack(stoogesort{9,7,8,5,6,3,4,2,1,0}))    
http://rosettacode.org/wiki/Sorting_algorithms/Sleep_sort
Sorting algorithms/Sleep sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort In general, sleep sort works by starting a separate task for each item to be sorted, where each task sleeps for an interval corresponding to the item's sort key, then emits the item. Items are then collected sequentially in time. Task: Write a program that implements sleep sort. Have it accept non-negative integers on the command line and print the integers in sorted order. If this is not idomatic in your language or environment, input and output may be done differently. Enhancements for optimization, generalization, practicality, robustness, and so on are not required. Sleep sort was presented anonymously on 4chan and has been discussed on Hacker News.
#PicoLisp
PicoLisp
(de sleepSort (Lst) (make (for (I . N) Lst (task (- I) (* N 100) N N I I (link N) (pop 'Lst) (task (- I)) ) ) (wait NIL (not Lst)) ) )
http://rosettacode.org/wiki/Sorting_algorithms/Sleep_sort
Sorting algorithms/Sleep sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort In general, sleep sort works by starting a separate task for each item to be sorted, where each task sleeps for an interval corresponding to the item's sort key, then emits the item. Items are then collected sequentially in time. Task: Write a program that implements sleep sort. Have it accept non-negative integers on the command line and print the integers in sorted order. If this is not idomatic in your language or environment, input and output may be done differently. Enhancements for optimization, generalization, practicality, robustness, and so on are not required. Sleep sort was presented anonymously on 4chan and has been discussed on Hacker News.
#Pike
Pike
  #!/usr/bin/env pike   int main(int argc, array(string) argv) { foreach(argv[1..], string value) { int v = (int)value; if(v<0) continue; call_out(print, v, value); } return -1; }   void print(string value) { write("%s\n", value); if(find_call_out(print)==-1) exit(0); return; }  
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Dart
Dart
  void main() { List<int> a = selectionSort([1100, 2, 56, 200, -52, 3, 99, 33, 177, -199]); print('$a'); }   selectionSort(List<int> array){ for(int currentPlace = 0;currentPlace<array.length-1;currentPlace++){ int smallest = 4294967296; //maxInt int smallestAt = currentPlace+1; for(int check = currentPlace; check<array.length;check++){ if(array[check]<smallest){ smallestAt = check; smallest = array[check]; } } int temp = array[currentPlace]; array[currentPlace] = array[smallestAt]; array[smallestAt] = temp; } return array; }  
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort
Sorting algorithms/Selection sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of elements using the Selection sort algorithm. It works as follows: First find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, and continue in this way until the entire array is sorted. Its asymptotic complexity is   O(n2)   making it inefficient on large arrays. Its primary purpose is for when writing data is very expensive (slow) when compared to reading, eg. writing to flash memory or EEPROM. No other sorting algorithm has less data movement. References   Rosetta Code:   O     (complexity).   Wikipedia:   Selection sort.   Wikipedia:   [Big O notation].
#Delphi
Delphi
program TestSelectionSort;   {$APPTYPE CONSOLE}   {.$DEFINE DYNARRAY} // remove '.' to compile with dynamic array   type TItem = Integer; // declare ordinal type for array item {$IFDEF DYNARRAY} TArray = array of TItem; // dynamic array {$ELSE} TArray = array[0..15] of TItem; // static array {$ENDIF}   procedure SelectionSort(var A: TArray); var Item: TItem; I, J, M: Integer;   begin for I:= Low(A) to High(A) - 1 do begin M:= I; for J:= I + 1 to High(A) do if A[J] < A[M] then M:= J; Item:= A[M]; A[M]:= A[I]; A[I]:= Item; end; end;   var A: TArray; I: Integer;   begin {$IFDEF DYNARRAY} SetLength(A, 16); {$ENDIF} for I:= Low(A) to High(A) do A[I]:= Random(100); for I:= Low(A) to High(A) do Write(A[I]:3); Writeln; SelectionSort(A); for I:= Low(A) to High(A) do Write(A[I]:3); Writeln; Readln; end.
http://rosettacode.org/wiki/Soundex
Soundex
Soundex is an algorithm for creating indices for words based on their pronunciation. Task The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling   (from the   soundex   Wikipedia article). Caution There is a major issue in many of the implementations concerning the separation of two consonants that have the same soundex code! According to the official Rules [[1]]. So check for instance if Ashcraft is coded to A-261. If a vowel (A, E, I, O, U) separates two consonants that have the same soundex code, the consonant to the right of the vowel is coded. Tymczak is coded as T-522 (T, 5 for the M, 2 for the C, Z ignored (see "Side-by-Side" rule above), 2 for the K). Since the vowel "A" separates the Z and K, the K is coded. If "H" or "W" separate two consonants that have the same soundex code, the consonant to the right of the vowel is not coded. Example: Ashcraft is coded A-261 (A, 2 for the S, C ignored, 6 for the R, 1 for the F). It is not coded A-226.
#Elixir
Elixir
defmodule Soundex do def soundex([]), do: [] def soundex(str) do [head|tail] = String.upcase(str) |> to_char_list [head | isoundex(tail, [], todigit(head))] end   defp isoundex([], acc, _) do case length(acc) do n when n == 3 -> Enum.reverse(acc) n when n < 3 -> isoundex([], [?0 | acc], :ignore) n when n > 3 -> isoundex([], Enum.slice(acc, n-3, n), :ignore) end end defp isoundex([head|tail], acc, lastn) do dig = todigit(head) if dig != ?0 and dig != lastn do isoundex(tail, [dig | acc], dig) else case head do  ?H -> isoundex(tail, acc, lastn)  ?W -> isoundex(tail, acc, lastn) n when n in ?A..?Z -> isoundex(tail, acc, dig) _ -> isoundex(tail, acc, lastn) # This clause handles non alpha characters end end end   @digits '01230120022455012623010202' defp todigit(chr) do if chr in ?A..?Z, do: Enum.at(@digits, chr - ?A), else: ?0 # Treat non alpha characters as a vowel end end   IO.puts Soundex.soundex("Soundex") IO.puts Soundex.soundex("Example") IO.puts Soundex.soundex("Sownteks") IO.puts Soundex.soundex("Ekzampul")
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#Io
Io
List do( shellSortInPlace := method( gap := (size / 2) round while(gap > 0, for(i, gap, size - 1, key := at(i) j := i   while(j >= gap and at(j - gap) > key, atPut(j, at(j - gap)) j = j - gap ) atPut(j, key) ) gap = (gap / 2.2) round ) self) )   l := list(2, 3, 4, 5, 1) l shellSortInPlace println # ==> list(1, 2, 3, 4, 5)
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort
Sorting algorithms/Shell sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array of elements using the Shell sort algorithm, a diminishing increment sort. The Shell sort   (also known as Shellsort or Shell's method)   is named after its inventor, Donald Shell, who published the algorithm in 1959. Shell sort is a sequence of interleaved insertion sorts based on an increment sequence. The increment size is reduced after each pass until the increment size is 1. With an increment size of 1, the sort is a basic insertion sort, but by this time the data is guaranteed to be almost sorted, which is insertion sort's "best case". Any sequence will sort the data as long as it ends in 1, but some work better than others. Empirical studies have shown a geometric increment sequence with a ratio of about 2.2 work well in practice. [1] Other good sequences are found at the On-Line Encyclopedia of Integer Sequences.
#IS-BASIC
IS-BASIC
100 PROGRAM "ShellSrt.bas" 110 RANDOMIZE 120 LET N=20 ! Number of elements 130 NUMERIC ARRAY(1 TO N) 140 CALL INIT(ARRAY) 150 CALL WRITE(ARRAY) 160 CALL SHELLSORT(ARRAY) 170 CALL WRITE(ARRAY) 180 DEF INIT(REF A) 190 FOR I=LBOUND(A) TO UBOUND(A) 200 LET A(I)=RND(N)+1 210 NEXT 220 END DEF 230 DEF WRITE(REF A) 240 FOR I=LBOUND(A) TO UBOUND(A) 250 PRINT A(I); 260 NEXT 270 PRINT 280 END DEF 290 DEF SHELLSORT(REF A) 300 LET D=2^INT(LOG(N)/LOG(2))-1 310 DO 320 LET I=1 330 DO WHILE I<=D AND I+D<=N 340 FOR J=I+D TO N STEP D 350 LET AH=A(J):LET BH=J-D 360 DO WHILE BH>0 AND AH<A(BH) 370 LET A(BH+D)=A(BH):LET BH=BH-D 380 LOOP 390 LET A(BH+D)=AH 400 NEXT 410 LET I=I+1 420 LOOP 430 LET D=INT(D/2) 440 LOOP WHILE D>0 450 END DEF
http://rosettacode.org/wiki/Sparkline_in_unicode
Sparkline in unicode
A sparkline is a graph of successive values laid out horizontally where the height of the line is proportional to the values in succession. Task Use the following series of Unicode characters to create a program that takes a series of numbers separated by one or more whitespace or comma characters and generates a sparkline-type bar graph of the values on a single line of output. The eight characters: '▁▂▃▄▅▆▇█' (Unicode values U+2581 through U+2588). Use your program to show sparklines for the following input, here on this page: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1.5, 0.5 3.5, 2.5 5.5, 4.5 7.5, 6.5 (note the mix of separators in this second case)! Notes A space is not part of the generated sparkline. The sparkline may be accompanied by simple statistics of the data such as its range. A suggestion emerging in later discussion (see Discussion page) is that the bounds between bins should ideally be set to yield the following results for two particular edge cases: "0, 1, 19, 20" -> ▁▁██ (Aiming to use just two spark levels) "0, 999, 4000, 4999, 7000, 7999" -> ▁▁▅▅██ (Aiming to use just three spark levels) It may be helpful to include these cases in output tests. You may find that the unicode sparklines on this page are rendered less noisily by Google Chrome than by Firefox or Safari.
#zkl
zkl
var sparks=[0x2581..0x2588].apply("toString",-8); // int.toString(-8)-->UTF-8 var sl=(sparks.len()-1);   fcn sparkLine(xs){ min:=(0.0).min(xs); max:=(0.0).max(xs); // min/max are float reguardless of xs range:=max-min; // float println("Range [",min,"-",max,"]", xs); xs.pump(String,'wrap(x){ sparks[(x - min)*sl/range] }).println(); }
http://rosettacode.org/wiki/Sparkline_in_unicode
Sparkline in unicode
A sparkline is a graph of successive values laid out horizontally where the height of the line is proportional to the values in succession. Task Use the following series of Unicode characters to create a program that takes a series of numbers separated by one or more whitespace or comma characters and generates a sparkline-type bar graph of the values on a single line of output. The eight characters: '▁▂▃▄▅▆▇█' (Unicode values U+2581 through U+2588). Use your program to show sparklines for the following input, here on this page: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1.5, 0.5 3.5, 2.5 5.5, 4.5 7.5, 6.5 (note the mix of separators in this second case)! Notes A space is not part of the generated sparkline. The sparkline may be accompanied by simple statistics of the data such as its range. A suggestion emerging in later discussion (see Discussion page) is that the bounds between bins should ideally be set to yield the following results for two particular edge cases: "0, 1, 19, 20" -> ▁▁██ (Aiming to use just two spark levels) "0, 999, 4000, 4999, 7000, 7999" -> ▁▁▅▅██ (Aiming to use just three spark levels) It may be helpful to include these cases in output tests. You may find that the unicode sparklines on this page are rendered less noisily by Google Chrome than by Firefox or Safari.
#Zoea
Zoea
  program: sparkline input: '1 2, 3 4.5 5 6,7 8' derive: [1,2,3,4.5,5,6,7,8] derive: [1,2,3,4,5,6,7,8] output: '▁▂▃▄▅▆▇█'  
http://rosettacode.org/wiki/Stable_marriage_problem
Stable marriage problem
Solve the Stable marriage problem using the Gale/Shapley algorithm. Problem description Given an equal number of men and women to be paired for marriage, each man ranks all the women in order of his preference and each woman ranks all the men in order of her preference. A stable set of engagements for marriage is one where no man prefers a woman over the one he is engaged to, where that other woman also prefers that man over the one she is engaged to. I.e. with consulting marriages, there would be no reason for the engagements between the people to change. Gale and Shapley proved that there is a stable set of engagements for any set of preferences and the first link above gives their algorithm for finding a set of stable engagements. Task Specifics Given ten males: abe, bob, col, dan, ed, fred, gav, hal, ian, jon And ten females: abi, bea, cath, dee, eve, fay, gay, hope, ivy, jan And a complete list of ranked preferences, where the most liked is to the left: abe: abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay bob: cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay col: hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan dan: ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi ed: jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay fred: bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay gav: gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay hal: abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee ian: hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve jon: abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope abi: bob, fred, jon, gav, ian, abe, dan, ed, col, hal bea: bob, abe, col, fred, gav, dan, ian, ed, jon, hal cath: fred, bob, ed, gav, hal, col, ian, abe, dan, jon dee: fred, jon, col, abe, ian, hal, gav, dan, bob, ed eve: jon, hal, fred, dan, abe, gav, col, ed, ian, bob fay: bob, abe, ed, ian, jon, dan, fred, gav, col, hal gay: jon, gav, hal, fred, bob, abe, col, ed, dan, ian hope: gav, jon, bob, abe, ian, dan, hal, ed, col, fred ivy: ian, col, hal, gav, fred, bob, abe, ed, jon, dan jan: ed, hal, gav, abe, bob, jon, col, ian, fred, dan Use the Gale Shapley algorithm to find a stable set of engagements Perturb this set of engagements to form an unstable set of engagements then check this new set for stability. References The Stable Marriage Problem. (Eloquent description and background information). Gale-Shapley Algorithm Demonstration. Another Gale-Shapley Algorithm Demonstration. Stable Marriage Problem - Numberphile (Video). Stable Marriage Problem (the math bit) (Video). The Stable Marriage Problem and School Choice. (Excellent exposition)
#Swift
Swift
class Person { let name:String var candidateIndex = 0 var fiance:Person? var candidates = [Person]()   init(name:String) { self.name = name }   func rank(p:Person) -> Int { for (i, candidate) in enumerate(self.candidates) { if candidate === p { return i } } return self.candidates.count + 1 }   func prefers(p:Person) -> Bool { if let fiance = self.fiance { return self.rank(p) < self.rank(fiance) } return false }   func nextCandidate() -> Person? { if self.candidateIndex >= self.candidates.count { return nil } return self.candidates[candidateIndex++] }   func engageTo(p:Person) { p.fiance?.fiance = nil p.fiance = self self.fiance?.fiance = nil self.fiance = p }   func swapWith(p:Person) { let thisFiance = self.fiance let pFiance = p.fiance println("\(self.name) swapped partners with \(p.name)") if pFiance != nil && thisFiance != nil { self.engageTo(pFiance!) p.engageTo(thisFiance!) } } }   func isStable(guys:[Person], gals:[Person]) -> Bool { for guy in guys { for gal in gals { if guy.prefers(gal) && gal.prefers(guy) { return false } } } return true }   func engageEveryone(guys:[Person]) { var done = false while !done { done = true for guy in guys { if guy.fiance == nil { done = false if let gal = guy.nextCandidate() { if gal.fiance == nil || gal.prefers(guy) { guy.engageTo(gal) } } } } } }   func doMarriage() { let abe = Person(name: "Abe") let bob = Person(name: "Bob") let col = Person(name: "Col") let dan = Person(name: "Dan") let ed = Person(name: "Ed") let fred = Person(name: "Fred") let gav = Person(name: "Gav") let hal = Person(name: "Hal") let ian = Person(name: "Ian") let jon = Person(name: "Jon") let abi = Person(name: "Abi") let bea = Person(name: "Bea") let cath = Person(name: "Cath") let dee = Person(name: "Dee") let eve = Person(name: "Eve") let fay = Person(name: "Fay") let gay = Person(name: "Gay") let hope = Person(name: "Hope") let ivy = Person(name: "Ivy") let jan = Person(name: "Jan")   abe.candidates = [abi, eve, cath, ivy, jan, dee, fay, bea, hope, gay] bob.candidates = [cath, hope, abi, dee, eve, fay, bea, jan, ivy, gay] col.candidates = [hope, eve, abi, dee, bea, fay, ivy, gay, cath, jan] dan.candidates = [ivy, fay, dee, gay, hope, eve, jan, bea, cath, abi] ed.candidates = [jan, dee, bea, cath, fay, eve, abi, ivy, hope, gay] fred.candidates = [bea, abi, dee, gay, eve, ivy, cath, jan, hope, fay] gav.candidates = [gay, eve, ivy, bea, cath, abi, dee, hope, jan, fay] hal.candidates = [abi, eve, hope, fay, ivy, cath, jan, bea, gay, dee] ian.candidates = [hope, cath, dee, gay, bea, abi, fay, ivy, jan, eve] jon.candidates = [abi, fay, jan, gay, eve, bea, dee, cath, ivy, hope] abi.candidates = [bob, fred, jon, gav, ian, abe, dan, ed, col, hal] bea.candidates = [bob, abe, col, fred, gav, dan, ian, ed, jon, hal] cath.candidates = [fred, bob, ed, gav, hal, col, ian, abe, dan, jon] dee.candidates = [fred, jon, col, abe, ian, hal, gav, dan, bob, ed] eve.candidates = [jon, hal, fred, dan, abe, gav, col, ed, ian, bob] fay.candidates = [bob, abe, ed, ian, jon, dan, fred, gav, col, hal] gay.candidates = [jon, gav, hal, fred, bob, abe, col, ed, dan, ian] hope.candidates = [gav, jon, bob, abe, ian, dan, hal, ed, col, fred] ivy.candidates = [ian, col, hal, gav, fred, bob, abe, ed, jon, dan] jan.candidates = [ed, hal, gav, abe, bob, jon, col, ian, fred, dan]   let guys = [abe, bob, col, dan, ed, fred, gav, hal, ian, jon] let gals = [abi, bea, cath, dee, eve, fay, gay, hope, ivy, jan]   engageEveryone(guys)   for guy in guys { println("\(guy.name) is engaged to \(guy.fiance!.name)") }   println("Stable = \(isStable(guys, gals))") jon.swapWith(fred) println("Stable = \(isStable(guys, gals))")   }   doMarriage()
http://rosettacode.org/wiki/Stack
Stack
Data Structure This illustrates a data structure, a means of storing data within a program. You may see other such structures in the Data Structures category. A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:   push   stores a new element onto the stack top;   pop   returns the last pushed stack element, while removing it from the stack;   empty   tests if the stack contains no elements. Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):   top   (sometimes called peek to keep with the p theme) returns the topmost element without modifying the stack. Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks. Task Create a stack supporting the basic operations: push, pop, empty. See also Array Associative array: Creation, Iteration Collections Compound data type Doubly-linked list: Definition, Element definition, Element insertion, List Traversal, Element Removal Linked list Queue: Definition, Usage Set Singly-linked list: Element definition, Element insertion, List Traversal, Element Removal Stack
#Lasso
Lasso
local(a) = array   #a->push('a') #a->push('b') #a->push('c')   #a->pop // c #a->pop // b #a->pop // a #a->pop // null
http://rosettacode.org/wiki/Spiral_matrix
Spiral matrix
Task Produce a spiral array. A   spiral array   is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you go around the edges of the array spiraling inwards. For example, given   5,   produce this array: 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8 Related tasks   Zig-zag matrix   Identity_matrix   Ulam_spiral_(for_primes)
#Maple
Maple
  with(ArrayTools):   spiralArray := proc(size::integer) local M, sideLength, count, i, j: M := Matrix(size): count := 0: sideLength := size: for i from 1 to ceil(sideLength / 2) do for j from 1 to sideLength do M[i,i + j - 1] := count++: end: for j from 1 to sideLength - 1 do M[i + j, sideLength + i - 1] := count++: end: for j from 1 to sideLength - 1 do M[i + sideLength - 1, sideLength - j + i - 1] := count++: end: for j from 1 to sideLength - 2 do M[sideLength + i - j - 1, i] := count++ end: sideLength -= 2: end: return M; end proc:   spiralArray(5);    
http://rosettacode.org/wiki/Sorting_algorithms/Radix_sort
Sorting algorithms/Radix sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an integer array with the   radix sort algorithm. The primary purpose is to complete the characterization of sort algorithms task.
#Icon_and_Unicon
Icon and Unicon
procedure main(A) every writes((!rSort(A)||" ")|"\n") end   procedure rSort(A) every (min := A[1]) >:= !A every (mlen := *(A[1]-min)) <:= (!A - min) every i := !*mlen do { every put(b := [], |[]\12) every a := !A do put(b[(a-min)[-i]+2|1], a) every put(A := [],!!b) } return A end
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
Sorting algorithms/Quicksort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Sort an array (or list) elements using the   quicksort   algorithm. The elements must have a   strict weak order   and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers. Quicksort, also known as   partition-exchange sort,   uses these steps.   Choose any element of the array to be the pivot.   Divide all other elements (except the pivot) into two partitions.   All elements less than the pivot must be in the first partition.   All elements greater than the pivot must be in the second partition.   Use recursion to sort both partitions.   Join the first sorted partition, the pivot, and the second sorted partition. The best pivot creates partitions of equal length (or lengths differing by   1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from   O(n log n)   with the best pivots, to   O(n2)   with the worst pivots, where   n   is the number of elements in the array. This is a simple quicksort algorithm, adapted from Wikipedia. function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater) A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index) Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with   merge sort,   because both sorts have an average time of   O(n log n). "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end. Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort. Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase. With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
#AppleScript
AppleScript
-- quickSort :: (Ord a) => [a] -> [a] on quickSort(xs) if length of xs > 1 then set {h, t} to uncons(xs)   -- lessOrEqual :: a -> Bool script lessOrEqual on |λ|(x) x ≤ h end |λ| end script   set {less, more} to partition(lessOrEqual, t)   quickSort(less) & h & quickSort(more) else xs end if end quickSort     -- TEST ----------------------------------------------------------------------- on run   quickSort([11.8, 14.1, 21.3, 8.5, 16.7, 5.7])   --> {5.7, 8.5, 11.8, 14.1, 16.7, 21.3}   end run     -- GENERIC FUNCTIONS ----------------------------------------------------------   -- partition :: predicate -> List -> (Matches, nonMatches) -- partition :: (a -> Bool) -> [a] -> ([a], [a]) on partition(f, xs) tell mReturn(f) set lst to {{}, {}} repeat with x in xs set v to contents of x set end of item ((|λ|(v) as integer) + 1) of lst to v end repeat return {item 2 of lst, item 1 of lst} end tell end partition   -- uncons :: [a] -> Maybe (a, [a]) on uncons(xs) if length of xs > 0 then {item 1 of xs, rest of xs} else missing value end if end uncons   -- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: Handler -> Script on mReturn(f) if class of f is script then f else script property |λ| : f end script end if end mReturn
http://rosettacode.org/wiki/Sorting_algorithms/Patience_sort
Sorting algorithms/Patience sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting. Related task   Longest increasing subsequence
#Go
Go
package main   import ( "fmt" "container/heap" "sort" )   type IntPile []int func (self IntPile) Top() int { return self[len(self)-1] } func (self *IntPile) Pop() int { x := (*self)[len(*self)-1] *self = (*self)[:len(*self)-1] return x }   type IntPilesHeap []IntPile func (self IntPilesHeap) Len() int { return len(self) } func (self IntPilesHeap) Less(i, j int) bool { return self[i].Top() < self[j].Top() } func (self IntPilesHeap) Swap(i, j int) { self[i], self[j] = self[j], self[i] } func (self *IntPilesHeap) Push(x interface{}) { *self = append(*self, x.(IntPile)) } func (self *IntPilesHeap) Pop() interface{} { x := (*self)[len(*self)-1] *self = (*self)[:len(*self)-1] return x }   func patience_sort (n []int) { var piles []IntPile // sort into piles for _, x := range n { j := sort.Search(len(piles), func (i int) bool { return piles[i].Top() >= x }) if j != len(piles) { piles[j] = append(piles[j], x) } else { piles = append(piles, IntPile{ x }) } }   // priority queue allows us to merge piles efficiently hp := IntPilesHeap(piles) heap.Init(&hp) for i, _ := range n { smallPile := heap.Pop(&hp).(IntPile) n[i] = smallPile.Pop() if len(smallPile) != 0 { heap.Push(&hp, smallPile) } } if len(hp) != 0 { panic("something went wrong") } }   func main() { a := []int{4, 65, 2, -31, 0, 99, 83, 782, 1} patience_sort(a) fmt.Println(a) }